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Abstract

Supervisory Control and Data Acquisition (SCADA) networks play a vital role in
Industrial Control Systems (ICSs). Industrial organizations perform operations remotely

through SCADA systems to accelerate their processes. However, these network capabilities 
come at the cost of exposing the systems to cyber-attacks. Consequently, effective solutions 
are required to detect intrusions and secure SCADA systems as cyber-attacks on industrial 
infrastructure can have catastrophic consequences. Furthermore, SCADA field devices are 
equipped with micro-controllers for processing information and have limited computational 
power and resources. As a result, lightweight cryptography solutions are needed to 
strengthen the security of industrial plants against cyber threats. The Ph.D. work focuses on 
three major elements to secure the SCADA-based ICSs, namely, vulnerability assessment of 
field-site components, Intrusion Detection Systems (IDSs) for plant floor and control center, 
and robust cryptographic-based secure solution for SCADA communications. The overall 
goal of this thesis is to cover the landscape of SCADA weaknesses by providing efficient, 
lightweight, and robust solutions to strengthen the security of industrial applications. The 
thesis has the following major contributions:

• Module 1 : A thorough vulnerability analysis of industrial infrastructure has been
made and recommendations have been provided by considering real incidents
reported in vulnerability databases. Penetration testing has been carried out on one of
the SCADA components, namely, Onion Omega2 (System-on-a-Chip).

• Module 2 : An integrated model of IDS framework for real-time SCADA systems has
been proposed using defense-in-depth architecture by considering power grids as a
candidate ICS application. In this approach, the displacement of three IDSs has been
proposed, one at the plant floor using Gradient Boosting Feature Selection (GBFS)
based filtering model to detect the intrusions in real-time, another at the control center
using the majority vote-based ensemble method for accurate prediction. We propose
an IDS at intermediate SCADA (placed at sub-MTUs) using Variational Autoencoder
(VAE) based on semi-supervised learning to detect zero-day attacks. To improve the
efficiency of the model, high-quality synthetic datasets were generated for SCADA-
based power grids.

x

• Module 3 : A robust and low-cost security framework for SCADA has been proposed
to mitigate cyber-attacks. The security model is based on a multi-layer framework that
integrates both symmetric and asymmetric key cryptosystems. A SCADA hardware
test bench is developed to experimentally evaluate the proposed framework.

The contributions of this thesis fulfill the objective of providing a full life-cycle
strategy to innovate, design, and implement a security framework to protect SCADA
networks against cyber-attacks in industrial control systems.
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Chapter 1

Introduction

1.1 Overview of SCADA Networks for Industrial Control Systems

There has been a surge in the deployment of Supervisory Control and Data Acquisition

(SCADA) systems to control and monitor industrial infrastructure over the Internet

[1]. Organizations such as oil and natural gas, power stations, water & sewage

systems, chemical plants, manufacturing units, railway, and other transportation use

SCADA systems to monitor and control their infrastructure such as oil pipelines,

solar panels, water pipelines, boilers, railway tracks, and plant floor components

across open access networks [2, 3].

A SCADA system typically includes a control server (also known as Master Terminal

Unit (MTU)), SUB-MTUs, communication links (e.g. satellite, radio or microwave

links, cellular network, switched or lease lines and powerlines), and geographically

dispersed field control devices, namely, Programmable Logic Controllers (PLCs),

Remote Terminal Units (RTUs), and Intelligent Electronic Devices (IEDs) [2, 4].

The block diagram of a typical SCADA system is depicted in Figure 1.1.

For continuous monitoring and control of plant floor devices, sensors, and actuators

are used to measure different attributes of machinery and transmit that information

to field devices [5]. Further, the field control devices, namely, PLCs, RTUs, and

IEDs supply digital status information to the MTU (typically placed at the remote

location) to determine the acceptable ranges according to parameters set in the server.

This information will then be transmitted back to the field control device(s) where

actions may be taken to optimize the performance of the system. Moreover, the

status information is stored in a database and is displayed on a Human Machine

Interface (HMI) at the control center, where operators can interact with the plant floor

machinery for centralized monitoring and system control [6]. Large SCADA networks

such as those on a power plant require hundreds of field devices and dedicated

subsystems to reduce the load on the centralized server [2].

1
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Ffigure1.1: BflockdfiagramoffaSCADAsystem,Legend: MTU: MasterTermfinaflUnfit,PLCs:
ProgrammabfleLogficControflflers, RTUs: RemoteTermfinaflUnfits,IEDs:InteflflfigentEflectronfic
Devfices
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1.2 Security of SCADA Systems

SCADA communication messages have sensitive information as they are used to

monitor and control the plant floor devices. For example, in water and sewage

systems, communication messages are used to raise and lower water tank levels

or open and close the safety valves. Since these control devices are operated and

monitored remotely, they can make them high-value targets for attackers to launch

various cyber-attacks that can compromise the control systems, communication, and

emergency services. Consequently, one of the critical aspects of the SCADA systems

is the secure transmission of messages so that they cannot be tampered during the

communication. Moreover, the SCADA devices must be authenticated and maintain

confidentiality of the information during the transmission so that no interceptor can

misuse the system.

As mentioned above, there are various SCADA-based ICS applications, such as

gas refineries, water & sewage systems, power plants, railway monitoring systems,

etc. We have considered power grids application for the development of intrusion

detection systems for SCADA systems. Originally, power grids were designed to

generate and distribute electricity in an efficient and timely manner, rather than

focusing on security aspects of the critical infrastructure of the system. However, the

increase of interconnectivity and remote accessibility places power grids under the

risk of internal and external attacks.

Real-time cyber attacks can disrupt entire power grids. For example, in 2003 the

Davis-Besse nuclear power plant near Oak Harbor, Ohio was infected by a Slammer

worm that traveled from a consultant’s network to the process control network and

generated unwanted traffic [7]. As a result, the plant personnel could not access the

safety parameter display system for around five hours which showed sensitive data

about the reactor core, temperature, and radiation sensors of the power plant. In

2006 the Browns Ferry nuclear plant in Athens, Alabama was shut down after the

failure of critical reactor components and controllers due to a cyber attack on their

internal network [8]. In 2008, the second unit of the Hatch nuclear power plant in

Baxley, Georgia experienced an automatic shutdown due to routine software updates

to a single computer on the plant floor. The update was performed to synchronize

data between the plant and business networks [8]. Another incident in an Iranian
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nuclear plant was reported in 2011 where the plant process was interrupted due to

the Stuxnet worm. This attack was initiated by connecting an infected USB drive to

the Programmable Logic Controller (PLC) at the plant floor [9]. The Ukraine power

plant cyber attack was reported in 2015 [10]. This was the first known successful

attack on power grids where attackers were able to disrupt the electricity supply

to the end users. Thus, power grid attacks are one of the most critical issues in

industrial control systems and it is important to protect them by applying adequate

safety measures [11].

General safeguards include defense-in-depth architecture which separates the control

and corporate network traffic, strong access control and authentication mechanisms,

restricted perimeters using DMZ (demilitarized zone), vulnerability assessment, and

risk management systems [2]. However, these safeguards are difficult to deploy and

maintain owing to legacy-inherited security loopholes and restrictions [12]. Therefore,

these relevant preemptive measures are not sufficient to protect the SCADA system

from cyber attacks. An additional protection layer is also required which detects and

prevents the system from malicious events and threats.

Generally, packet filtering and identification of threats are key to securing these

systems. However, traditional firewalls do not always fulfill all the security requirements

of critical infrastructures. For example, in 2019, the western US power grid infrastructure

was hacked. The intruders created periodic blind spots for grid operators for about

10 hours, by identifying a vulnerability in the firewall configuration [13].

In the last few years, many key management techniques have been published to secure

SCADA communication, namely, SCADA Key Establishment (SKE), SCADA Key

Management Architecture (SKMA), Advanced SCADAKey Management Architecture

(ASKMA), and Hybrid Key Management Architecture (HKMA) [14], [15], [16], [17],

[18], [19]. These techniques fall under two main categories, namely, centralized key

management and decentralized key management schemes. Moreover, each of these

categories uses three approaches to generate and extract the session key, namely,

symmetric, asymmetric, and hybrid. The drawback of the centralized scheme is that

if the Key Distribution Center (KDC) is down, the communication is cut off, which is

not acceptable in SCADA systems. In a decentralized approach, the keys are created
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using keying material and may only affect the single communication link in case of a

breakdown.

The symmetric key based approach is efficient in terms of confidentiality and

high availability but does not provide authentication and integrity. On the other

end, an asymmetric key provides message integrity, authentication, and privacy,

but may compromise availability. Hence, hybrid techniques are more suitable for

SCADA systems. A few key management techniques have been proposed using hybrid

methods. For example, Rezai et al. [17] propose an advanced Hybrid key management

architecture (HSKMA), which improves the key management architecture proposed

by Choi et al. [18]. However, it uses a centralized KDC to distribute the keys.

Moreover, the communication between the MTU and the sub-MTU is established

using Elliptic-Curve Cryptography (ECC) based asymmetric key cryptography while

the sub-MTU and the RTU communicate using Rivest–Shamir–Adleman (RSA) public

key cryptography. The same approach has been used to enhance the scheme proposed

by Rezai et al. [20] using a decentralized system in [16]. In this scheme, the master

keys are refreshed using ECC and symmetric cryptography is used for encryption,

decryption, and session key updates. However, this scheme does not validate the

message integrity and authentication. Moreover, none of the previous methods has

practical implementation proof that it provides immunity against quantum attacks

[21]. Furthermore, it has been known that RSA does not guarantee perfect forward

secrecy [18]. In summary, none of the techniques covers all the security aspects.

1.3 Motivation

SCADA systems play a vital role in ICSs and rely on real-time request-response

mechanisms to operate the substation components accurately by consuming minimal

CPU and battery resources. For such time-critical applications, the deployed intrusion

detection system should act quickly to capture malicious activities using minimal

resources in a given time period for large-scale deployments. Moreover, accuracy

plays a vital role to predict the nature of incoming traffic. Therefore, for proper

validation & training, the control center should be equipped with a highly accurate

IDS. Furthermore, effective IDS should be able to capture both known and zero-day

attacks. To prevent intrusions and for secure communications, we also need to
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consider the deployment of lightweight cryptographic solutions. The foregoing discussion

brings in the need for an effective security framework that can not only detect but

also protect SCADA networks from potential intrusions.

1.4 Objective

The primary goal of our work is to propose a security framework for intrusion detection

& prevention in SCADA networks. The work focuses on three major aspects, namely,

vulnerability assessment of SCADA components, efficient and accurate intrusion

detection systems for known and zero-day attacks, and a robust security framework

for SCADA communication to protect the network from potential intrusions.

An IDS is proposed & implemented on SCADA based smart grid. Furthermore,

to prevent the system from various attacks, a robust & low-cost security framework

is proposed. The framework is based on a multilayered architecture that combines

both symmetric and asymmetric key cryptography techniques.

The proposed techniques were implemented & evaluated on a SCADA test bench.

1.5 Major Contributions

Figure 1.2 illustrates the major contributions of this Ph.D. work. It has three main

modules.

Module 1: Vulnerability and risk assessment of SCADA components

1. To cover the landscape of risk assessment, a comprehensive review of various

types of potential weaknesses of the SCADA system has been made by taking

real incidents reported in standard vulnerability databases and recommendations

have been provided for the improvement of the security of Industrial Control

Systems.

2. For vulnerability assessment, penetration testing has been carried out on one

of the SCADA components called Onion Omega2 (System-on-a-Chip). Various

product-level weaknesses have been made either at the network level or by

vendor patching.

Module 2: Intrusion Detection System (IDS) for SCADA Networks
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Figure 1.2: Major Contributions of the Ph.D. work

1. A Gradient Boosting Feature Selection (GBFS) based filtering model based on

the Weighted Feature Importance (WFI) scoring technique has been proposed

to reduce the complexity of classifiers at the plant floor of the power grids.

Moreover, the implementation and evaluation of various decision tree-based

machine learning techniques after feature selection have been carried out. This

approach optimizes the False Positive Rate (FPR) and the execution time as it

is more compatible with detecting intrusions in real-time communication.

2. For more accurate results and for verification, Recursive feature elimination

(RFE) based filtering model has been proposed to find out the most stable

features of the dataset at the control center. Further, these features are used to

classify normal and attack vectors using majority vote-based IDS with multiple

classifiers. Through this approach, the proposed framework achieves high 

processing speed and accurate prediction.

3. IDS at intermediate SCADA (Sub-MTUs), proposed in this work is intended

to detect zero-day attacks. For this, we have proposed a novel approach using

autoencoders to identify anomalous traffic. These semi-supervised models learn

the various features of real-time traffic using normal events only. Furthermore,
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for minimizing the overfitting problem and better validation, we have generated

synthetic datasets using the CTGAN model. The experimental results reveal

that the autoencoder models are able to detect unknown or zero-day attacks

even with a slight modification in the normal events. The results are promising

in terms of accuracy, precision, recall, and detection rate.

4. An integrated model of IDS framework for real-time SCADA systems has been

proposed using defense-in-depth architecture by considering power grids as a

candidate ICS application. In this approach, the displacement of three IDSs has

been proposed, one at the plant floor using Gradient Boosting Feature Selection

(GBFS) based filtering model to detect the intrusions in real-time, another at

the control center using the majority vote-based ensemble method for accurate

prediction. While IDS at intermediated SCADA (placed at sub-MTUs) has

been proposed using Variational Autoencoders (VAE) based on semi-supervised

learning to detect zero-day attacks. To improve the efficiency of the model,

high-quality synthetic datasets were generated for SCADA-based power grids.

Module 3: Robust and Secure Framework for SCADA Networks

1. A robust and low-cost security framework for SCADA has been proposed to

mitigate cyber-attacks. The security model is based on a multi-layer framework

that integrates both symmetric and asymmetric key cryptosystems. Further,

an efficient session key management mechanism has been proposed by merging

random number generation with a hashed message authentication code. Moreover,

for each session, three cryptographic techniques have been proposed based on

the concept of Vernam cipher and a pre-shared session key, namely, random

prime number generator, prime counter, & hash chaining. The proposed scheme

is intended to design for a real-time request-response mechanism in the SCADA

networks by supporting broadcast, multicast, and point-to-point communication.

A SCADA hardware test bench has been developed to experimentally evaluate

the proposed framework.
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1.6 Report Organization

The rest of the report is organized as follows. Chapter 2 describes related research in

the area of SCADA security by considering various attacks and protection schemes for

all the three modules, namely, vulnerability assessment of SCADA Components, IDS

for SCADA systems, and Robust framework for SCADA communication. Chapter

3 describes the methodology to assess vulnerabilities of SCADA system components

by considering a case study of Onion Omega-2. The complete experimental setup,

framework design, methodology for assessment, and result discussion of the proposed

intrusion detection system are covered in Chapter 4. Chapter 5 presents the framework,

experimental setup, and evaluations (performance assessment & security analysis)

of the proposed model for secure SCADA communications. Chapter 6 covers the

concluding remarks. Publication history is provided in the Appendix section.



Chapter 2

Background and Related Work

2.1 Literature review on Vulnerability assessment of SCADA

Components (Module 1)

At present, various models and categories of embedded products are launched by

different manufacturers most often, however, the decoding solution is not necessarily

applied to each and every version of these products [22]. These bring product-level

vulnerabilities in such devices, tools such as Binwalk, Firmware Reverse Analysis

Console (FRAK), Interactive Disassembler (IDA), and Binary Analysis Toolkit (BAT)

are used to decompress the file system of firmware [23], [24] The Binwalk tool is used to

decompose the binary file and extract the metadata from it. FRAK evaluates the data

provided by the equipment service provider and decompresses it. However, Binwalk

has more capability to decompress the file compared to FRAK. BAT uses GPLtool,

which recursively extracts the files from the binary firmware and also provides support

to segment the document [22], [25].

Well-known, open-source information-gathering tools such as Nmap, Nikto and

Sparta are used to identify open ports and services [26]. Furthermore, Nessus,

OpenVAS, FoundScan and Internet Security Scanner have been used as popular

scanning tools. These tools allow us to scan network devices and check them against

their databases containing thousands of records for known vulnerabilities. OpenVAS

vulnerability scanner developed by Greenbone Security is used to test various protocols

and networks. Many vulnerability scanners and penetration testing tools are available

in the Kali-Linux operating system [27]. Moreover, various test tools have been

proposed and implemented in academic research to determine network flaws based

on grammar and fuzzy logic methodology [28]. The PROTOS project group has

developed tools using syntax-based generation according to the protocol type [29]. A

popular search engine, Shodan, contains information of more than 600 million publicly

available IoT devices such as various ports information and banner data information,

10
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etc. This information is used to assess the weaknesses of SCADA/IoT devices in an

attempt to mitigate the attacks [30].

Various frameworks have been proposed by researchers for life cycle assessments

of infrastructure. Creery and Byres [31] propose a complete security assessment

process model for the evaluation of control systems. The control system cyber security

self-assessment tool (CS2SAT) was developed by the Idaho National Laboratory to

evaluate control system security [23]. This tool has the capability to systematically

evaluate the product by collecting all the necessary information from various resources

to identify flaws in the system. Sandia National Laboratories has developed the

information design assurance red team (IDART) to evaluate the security strength of

SCADA systems [32]. Most of these assessment techniques have been proposed for

identifying security flaws in control and monitoring systems in general, with limited

application to SCADA systems. Furthermore, the previous approaches are mainly

system-level assessment tools rather than at the device-level. In order to identify all

security issues in SCADA systems, vulnerability assessment must be done for each

component. n at the device-level. In order to identify all security issues in SCADA

systems, vulnerability assessment must be done for each component. The approach

should begin with risk assessment followed by vulnerability evaluation to validate the

security.

2.2 Literature review on Intrusion Detection Techniques (Module 2)

Researchers have proposed several solutions for intrusion detection techniques to

secure SCADA based power grids [33],[34]. Hink et al. provide a comparative

analysis of various machine learning techniques using a power grids dataset and

identify Adaboost-JRIP is one of the best classifiers [35]. However, the authors do

not filter and reduce the dimension of the dataset. Hence, they are unable to achieve

good accuracy and execution speed. Pan et al. have focused on hybrid IDS using

data mining, where they have used common path mining to identify the location of

attacks [36], [37].

Further, in [38], the authors apply Pearson Correlation Coefficient (PCC) for

feature selection and extract 75% of features. They use an Expectation Maximization

Clustering Technique (EMCT) to classify the events. Using this approach, they
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Figure 2.1: Major Contributions of the proposal to ensure security of SCADA systems

improve the execution speed but do not achieve better accuracy for a multi-class

dataset. Moreover, this technique is enhanced by combining PCC with the Gaussian

Mixture – Kalman Filter Model (GMM-KF) in [39]. The authors are able to reduce

the percentage of the features to 25 and achieved good accuracy and execution speed.

However, this experiment is limited to a binary dataset. Moustafa et.al.[40] have used

ICA – Independent Component Analysis feature selection and Beta Mixture Hidden

Markov (BMHM) classification model. The authors have obtained promising results

in regards to accuracy. However, they have worked on a subset of the features, and

hence we could not identify the exact number of features used in this section. We have

recently proposed WFI based GBFS model for feature selection and extracted 12%

of the most promising features in [6]. Our target was to achieve high execution speed

and a better predictive model for real-time SCADA communication. The proposed

GBFS model has further verified with different machine learning algorithms. We have

identified that the proposed solution is suitable for tree-based classifiers. Note that all

these experimental studies use the power grid dataset created by Oak Ridge National

Laboratories (ORNL). Figure 2.1 summarizes the literature on IDSs for power grids.

The research work in [41] focuses on developing an IDS for network administrators
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by combining supervised and unsupervised learning techniques using ensemble method.

This approach has been tested on various datasets like KDD Cup 99, NSK-KDD, and

Kyoto 2006+ and is able to classify around 95% of the incoming traffic correctly [41].

In [42], the authors propose sustainable ensemble learning to improve the detection

rate by aggregating multiclass regression models such that ensemble learning adapts

to different attacks. Cloud-based solutions for distributed anomaly detection systems

can be found in [43]. In [44], the authors propose a Gaussian mixture based anomaly

detection technique that relies on ensemble one-class statistical learning model that

is designed to effectively recognize zero day attacks in real-time using the concept of

edge networks.

One of the IDSs [45] is developed for unbalance data samples (KDDcup99), where

it is seen that J48 and Random Forest work best for big sample classes while others

such as Bayesian network and Random tree seem to be a good fit for small samples.

Therefore, the authors [45] propose a solution based on ensemble learning by applying

a majority vote classifier to improve the performance of classification. Further,

this work is improved by combining the prediction of Bagging and Boosting using

ensemble techniques with tree base algorithms as the base classifier in [46]. In

[47], the authors propose a novel approach that combines permission and intents

supplements with an ensemble method for accurate malware detection for cellular

phone communication. Moreover, in [48], authors execute anomaly detection over

the communication networks by combining the prediction of three different types of

classifiers, namely, neural networks, decision trees, and logistic regression using a

weighted majority voting scheme.

IDSs for real-time systems require low computational cost with high accuracy

and execution speed. Such an IDS can be developed using a hybrid approach that

combines the feature selection model along with an efficient classification scheme [49]

which is the motivation behind our proposed framework.

2.3 Literature review on SCADA Communication Algorithms (Module

3)

SCADA networks are typically configured using proprietary protocols such as Modbus,

IEC 61850, IEC 60870, DNP3, and Profinet, which do not support secure data
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communication. Moreover, the remote procedure call (RPC) follows open communication

and one of the real-time examples of the consequent vulnerability was the Blaster

worm [2]. Furthermore, many network sniffing tools are freely available to view and

gather the network traffic [50]. Therefore, secure data transmission is one of the

important requirements for SCADA systems. Key management and encryption play a

vital role in securing SCADA communication. Typically, in a SCADA communication,

the MTU sends control signals to the RTUs to control the plant floor devices, which

require three types of communication, namely, broadcast, multicast, and point-to-point.

However, controller RTUs may need to operate other field RTUs. In case of an

emergency shutdown, to acquire the clock information or synchronization, MTUs

broadcast the signal to all the control devices such as RTUs, IEDs, and PLCs. To

operate a specific substation device, the MTU requires multicast communication,

whereas plant for machinery typically requires point-to-point communication. Hence,

while designing a secure framework for SCADA networks, it is crucial to cover all

three types of communication.

During the last two decades, many key management schemes have been proposed,

which typically fall into two categories, namely, centralized key distribution such as

[4], [14], [51], [52], and decentralized key distribution scheme such as [16], [53], [54],

[55] . In the centralized scheme, the Key Distribution Center (KDC) plays a vital

role in generating and distributing secret keys to establish secure communication

between the communication parties. In contrast, the decentralized scheme requires

pre-shared keying material that is used to create the session key. Once the session

key is derived using keying essence, further communication takes place using that

key. Furthermore, some key management schemes use the public key-based technique

to establish secure transmission. Although this method is time-consuming, various

research studies suggest that ECC is a suitable public-key cryptosystem [4], [16], [18].

Sandia Labs proposed a SCADA key establishment (SKE) method for managing

cryptographic keys in the network [14]. This scheme is proposed for point-to-point

communication amongst MTU, sub-MTU, and RTU and uses the symmetric key

technique to establish secure communications between sub-MTUs and RTUs, while

sub-MTUs and MTUs communicate using public key cryptography. For the symmetric

key, the session key is generated using three types of keys, namely, long term key
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(LTK), general seed key (GSK), and general key (GK) [14]. KDC assigns public and

private key pair to each sub-MTU and MTU. However, this method does not support

broadcast, multicast, and RTU to RTU communication. Moreover, it increases the

overall key storage overhead and complexity as the long-term keys are managed

manually. In [52], the authors propose a SCADA Key Management Architecture

(SKMA) for secure session key management, which enhances the capability of SKE.

While the SKE uses both a public key algorithm and a symmetric key algorithm,

the SKMA uses only symmetric encryption algorithm. SKMA generates a session

key using a pseudorandom function, keyed by the node-node key, and a timestamp

that is based on the duration of the session. SKMA uses key establishment protocol

based on ISO 11770-2 mechanism [15]. However, the scheme does not provide secure

message broadcasting but supports RTU-RTU communication. Moreover, it does not

provide any confidentiality and integrity.

Advanced SCADAKey Management Architecture (ASKMA) supports both message

broadcasting and secure communications. Furthermore, evenly spreading the total

amount of computation across the high power nodes (MTU or SUB-MTU) significantly

avoids the performance bottleneck and keeps minimal burden on the low power nodes

(RTU). It uses the LKH (Logical Key Hierarchy protocol) to construct a logical tree

of symmetric keys. Each member knows all the symmetric keys from its leaf to the

root, and if any new node joins the group, LKH updates the entire set of symmetric

keys from its leaf to the root. Although the overall performance of ASKMA has many

advantages, it can be less efficient during the multicast communication process. To

solve this issue, ASKMA+ was proposed [14]. ASKMA+ divides the key structure

into two classes, by applying the IoLus framework to construct each class as a logical

key hierarchy (LKH) structure. Through this key structure, the authors proposed a

more efficient key-management scheme supporting efficient multicast communication

by considering the number of keys stored in a remote terminal unit (RTU). However,

ASKMA+ does not address the availability issue in SCADA.

To satisfy the availability requirement, Hybrid Key Management Architecture

(HKMA) and Advanced Hybrid Scada Key Management Architecture (AHSKMA)

is proposed [17], but there were a chance that field devices will stop working during

the replacement of field control devices. To solve this issue, Choi et al. propose a
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hybrid key management scheme [18]. A centralized key distribution (CKD) protocol

is applied between the sub-MTU and MTU, and LKH protocol is applied between

sub-MTU and RTU. However, if the centralized key distribution server breaks down,

the entire approach fails to execute the protocol. Rezai et al. [16] also use a hybrid key

management method using ECC. Jiang et al. [19] propose Limited Self-Healing key

distribution (LiSH), which offers revocation capabilities along with collusion-resistance

for group communication in SCADA systems. The LiSH+ is used to address the

dynamic revocation mechanism, which enhances the base method of LiSH. Kang et

al. [54] propose a scheme for radial SCADA systems based on a pre-shared session key

that relies on symmetric key cryptography. This solution enhances the performance

of the radial SCADA system by using the master key concept.

AGA-12, Part 2, provides security features offering a new security protocol standard

[56]. It uses cipher suites to secure communication amongst SCADA field devices,

which covers authentication, confidentiality, and integrity. However, it fails to provide

faster execution. Furthermore, it does not offer prevention against quantum and

Denial of Service (DoS) attacks. In addition, AGA-12 uses the RSA algorithm for

encryption, which was recently cracked and also does not provide key management

[21]. The other security standards, such as IEC 62210, IEC 62351, fail to offer security

against man-in-the-middle (MiM) attacks and also lack of strong key management.

A novel key distribution method was proposed for smart grids in [57] which uses

identity-based cryptography. This method adopts a hybrid approach to counteract

man-in-the-middle and replay attacks. However, this method does not cover the

authentication of the SCADA components. The authors in [58] introduce an authority

roles for SCADA devices using attribute-based access control. The hybrid Diffie-Key

exchange, along with the authentication scheme, was proposed in [59]. This scheme

uses RSA and AES for session key generation and encryption. However, it does not

provide high availability.
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Vulnerability & Risk assessment of SCADA Components -

Methodology, Experiments & Result discussion

The research work reported in this chapter has resulted in the following publications:

• D. Upadhyay and S. Sampalli, “SCADA (Supervisory Control and Data Acquisition)

systems: vulnerability assessment and security recommendations,”Computers

& Security, Elsevier, vol. 89, p. 101666, 2020. (Impact Factor: 5.105)

• D. Upadhyay, S. Sampalli, and B. Plourde, “Vulnerabilities’ assessment and

mitigation strategies for the small linux server, Onion Omega2,” Electronics,

MDPI, vol. 9, no. 6, p. 967, 2020. (Impact Factor: 2.39)

3.1 Summary of the chapter

The Onion Omega2 is a small embedded Linux server for building SCADA/IoT

communication systems. While it provides efficient functionality, it is important

to be aware of its vulnerabilities and built-in security features. We have identified

product-level vulnerabilities of Onion Omega2 using scanners and penetration tools.

This helped us to identify the threats and vulnerabilities of Onion Omega2 and

measure the level of risk. The vulnerabilities include missing patches, insecure system

configurations, and other security-related updates. The identified vulnerabilities can

either be fixed by the vendor and/or network administrator/engineer. Furthermore,

this section illustrates effective countermeasures for identified vulnerabilities to harden

the security of Onion Omega2. This study empowers vendors, software developers,

and network engineers with the knowledge necessary to take proactive measures to

ensure the security of the overall system built using Onion Omega2.
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3.2 Vulnerability Assessments of Onion Omega2

Vulnerability assessment is typically a highly subjective process; it requires powerful

analytical strategy and computational methodology [2], [60] For a thorough review

of the vulnerability assessment of the Onion Omega2, we have followed standard

vulnerability assessment tools and techniques. We started the security assessment

process of Onion Omega2 by conducting firmware analysis using the Binwalk tool.

Further, we have used standard tools such as Nikto, Sparta, OpenVAS, and Nessus to

analyze the scan results of Onion Omega2 starting from basic port scans to advance

level testing. We describe the scan results and mitigation techniques of Onion Omega2

in the following section. The section is mainly divided into two parts according to

remediation strategies:

1. Vendor level fixes

2. Network/Administrator level fixes

In this study, we demonstrate a step-by-step process to evaluate product-level

vulnerabilities of Onion Omega2, which focuses on both vendor and network-level

fixes. Moreover, this assessment strategy not only adheres to the best practices, but

also provides the roadmap to build and assess other secure embedded devices which

include micro-controllers, platforms, and customized operating systems. We started

our assessment process with basic port scans followed by the web server and DNS

server assessment. Through this, we have evaluated common loopholes in SCADA

products, which include buffer overflow, lack of bounds checking, command injections,

cross-site scripting, and directory path traversal. We then assessed the security

strength of remote login and Wi-Fi communication protocols. Furthermore, SSL/TLS

(secure socket layer/transport layer security ) security configuration is evaluated to

analyze the strength of security protocols. By using a similar systematic vulnerability

assessment process, security practitioners can determine the security weaknesses of

any embedded devices from the primary to the advanced level.

3.2.1 Vendor Level Fixes

The following section highlights the vulnerability assessment of the Onion Omega2

which focuses on vendor-level fixes where we provide a comprehensive summary of
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vendor-level fixes in the following Figure 3.1. According to the latest details, Onion

Omega2—v0.3.2 b217 and up, has patched vulnerabilities 4 and 5 as mentioned in

Figure 3.1. However, the first three vulnerabilities are not patched yet and have

been left to Onion Omega2 end users to implement the security hardening. One

reason these vulnerabilities have not been patched is that the Linux build system is

open-source and the firmware of Onion Omega2 is meant to be a “jack of all trades”,

and compatible with the end users to build their own customized firmware that can

be security hardened according to their needs.

3.2.2 Network/Administrator Fixes

This section presents the major weaknesses of Onion Omega2 for configuring SCADA

networks. We have found three major vulnerabilities of Onion Omega2 that need

to be fixed at the network-administrator level. The first vulnerability relates to

the IP forwarding service that is enabled in Onion Omega2, which could act as

an unreliable path to bypass the firewall. The second weakness was found in the

configuration of the message queue telemetry transport (MQTT) broker. An MQTT

broker is a lightweight protocol and is used to establish the communication with

low-battery IoT devices. This protocol does not protect with an authentication

password, consequently, allowing intruders to extract information from the internal

network. The third vulnerability includes a medium-strength cipher configured for

HTTPS protocol suites of the secure socket layer. In the following, we discuss each

of these vulnerabilities in detail. The comprehensive summary of network-level fixes

is provided in Figure 3.2.

3.3 Generic Vulnerability Assessment

This study mainly focused on the vulnerability assessment of Onion Omega2. However,

the procedure that we have adopted can be useful for the assessment and analysis

of other platforms. Vulnerability assessment is a continuous process due to constant

technological changes and hence becomes the backbone for a successful defense of any

industrial control system. This process is heavily dependent on asset management and

risk assignment to prioritize security issues. Figure 3.3 depicts a generic flowchart

for vulnerability analysis, in which we generalize the assessment process for other
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devices, platforms, and networks in industrial control systems. The proposed strategy

can be used to maintain the security and compliance standards of the system with

open-source tools and technologies. Using this generic framework, vendors, security

analysts, and network engineers can build their own configurations and run different

scans to detect security flaws in the system. Our approach gives the ability to assess

the infrastructure thoroughly, which covers different levels such as host, network,

wireless, and application-level vulnerabilities.
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Figure 3.1: Onion Omega2 vulnerability and mitigation (vendor fixes)



22

Figure 3.2: Onion Omega2 vulnerability and mitigation (vendor fixes)

Figure 3.3: Generic framework of vulnerability assessment process



Chapter 4

Intrusion Detection Systems for SCADA based power grid -

Methodology, Experiments & Result discussion

The research work reported in this chapter has resulted in the following publications:

• D. Upadhyay, J. Manero, M. Zaman and S. Sampalli, “Gradient Boosting

Feature Selection With Machine Learning Classifiers for Intrusion Detection on

Power Grids,” in IEEE Transactions on Network and Service Management,

vol. 18, no. 1, pp. 1104-1116, March 2021, doi: 10.1109/TNSM.2020.3032618.

(Impact Factor: 4.19)

• D. Upadhyay, J. Manero, M. Zaman and S. Sampalli, “Intrusion Detection

in SCADA Based Power Grids: Recursive Feature Elimination Model With

Majority Vote Ensemble Algorithm,” in IEEE Transactions on Network

Science and Engineering, vol. 8, no. 3, pp. 2559-2574, 1 July-Sept. 2021,

doi: 10.1109/TNSE.2021.3099371. (Impact Factor: 5.21)

• D. Upadhyay, J. Manero, M. Zaman and S. Sampalli, “A Defense-in-Depth

IDS Framework For Known and Zero-day Attack Detection in SCADA Systems,”

in IEEE Transactions on Network Science and Engineering, manuscript

under review. (Impact Factor: 5.21)

• D. Upadhyay, Q. Lui, J. Manero, M. Zaman and S. Sampalli, “Comparative

analysis of Tabular GANmodels by validating synthetic data of Power Grids,” in

20th IEEE International Conference on Smart Technologies, EUROCON

2023, manuscript under review.
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4.1 Summary of the chapter

This chapter presents three types of IDSs, namely, one for the plant floor, one for

the control center, and another for intermediate SCADA (SUB-MTUs). The plant

floor and control center IDSs have been proposed for the detection of known cyber

attacks, while IDS at sub-MTUs has been proposed for unknown attacks. The plant

floor IDS is developed using a GBFS-based feature selection approach to identify

the most promising features for anomaly detection in power grids. To accelerate the

execution speed and learning efficiency, a GBFS-based feature selection approach is

applied on filtered data to compute the most promising features (15 features out of 128

features) from the entire dataset dynamically according to network/SCADA traffic.

The dynamic approach of selecting the features from the entire dataset hides largely

all the sensitive information of the power grid system. Finally, these reconstructed

datasets are used by decision tree-based algorithms that classify the various attacks

and normal events.

Whereas, the RFE-XGBoost-based feature selection approach along with the

majority vote ensemble method is used to detect intrusions at the control center.

The proposed framework comprises three key elements, namely, data preprocessing,

feature selection, and anomaly detection. Initially, during data preprocessing, the

features are mapped and scaled to a specific range. The RFE-XGBoost-based feature

selection approach is subsequently applied to filtered data to compute the most stable

features from the entire dataset (30 features out of 128 features). This approach

enhances learning efficiency. Furthermore, the selection of the features is carried out

dynamically according to network traffic. In the subsequent stage, these reconstructed

datasets are used by nine heterogeneous classifiers to predict the various attacks and

normal events. Finally, the majority vote-based ensemble algorithm is applied to

predict the output based on the majority of the class labels predicted by each of the

nine classifiers.

The experimental results reveal that the proposed framework fares well in terms

of accuracy, detection rate, precision, and recall. Moreover, the proposed model

outperforms some of the state-of-the-art published techniques. The model offers a

blend of effectiveness with precision, as it uses a limited number of stable features,

and the classification is carried out based on combined predictions of the nine most
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promising classifiers. Moreover, this combination requires limited computational cost,

which is one of the crucial factors for mission-critical applications. Thus the proposed

model has the potential to leverage the competencies of real-time SCADA systems

for power grids.

4.2 Framework Design of proposed IDSs

The following sub sections focus on the framework design of each of the three proposed

IDSs that is intended to place in the various location of SCADA infrastructure by

considering defense-in-depth architecture.

4.2.1 Plant floor IDS: Proposed framework of GBFS-based WFI

Scoring model for Tree-based classifiers

This section presents the proposed framework for an intrusion detection system that

distinguishes normal and malicious events by analyzing SCADA traffic on power grids.

The proposed framework operates in three phases, namely, pre-processing the data,

feature selection, and anomaly detection using a classification approach. The elements

for each phase are illustrated in Figure 4.1.

During the data preprocessing phase, data cleansing, feature mapping, and feature

normalization are applied to the raw dataset to obtain filtered data. Then the

Gradient Boosting Feature Selection approach is applied on filtered data to select

the most promising features from the entire dataset dynamically. Since power grids

use a complex mix of SCADA systems to control field-site components, network

monitoring devices such as SNORT and Syslog are used to capture the different types

of features [35]. Usually, real-time data obtained from sensors or real-time systems

always presents some consistency issues, the signal is lost, or the measuring devices get

off the scale readings at some point. For this reason, we need to do a data cleansing

operation to remove incorrect data. We remove infinities and NaN values, looking

for empty sequence points that will be avoided by the algorithms. Furthermore, in

order to extract the relevant features, we apply a Gradient Boosting Feature Selection

which uses the Weighted Importance Feature extraction method to select the most

promising features. This approach helps to improve the computational speed and also

assists in providing a precise outcome for anomaly detection. Moreover, reduction in
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classifiers, namely NB, ET, DT, RF, GB, XGBoost, ADBoost, KNN, and ANN are

used to predict the output labels. Finally, the majority vote-based ensemble method

predicts the class label for input samples based on the majority of the class labels

predicted by each of these nine classifiers. The voting classifier uses “hard voting” to

classify the input sample based on the majority class label.

4.2.3 Intermediate SCADA Center IDS: Proposed Framework based on

semi-supervised ML approach using the concept of autoencoders

for zero-day attacks

Figure 4.3: proposed framework for intrusion detection of power grids at intermediate SCADA center

This section presents the proposed scheme for an intrusion detection system for

industrial control systems to detect zero-day attacks. This novel approach uses

concepts of auto-encoders to determine the unknown attacks by training the model

using normal traffic only. Furthermore, to validate the efficiency of the proposed

model, the synthetic datasets have been generated using the CTGAN model. Once

the model determines the attack vectors, in the next phase, the model detects the

types of attacks whether it is known or unknown to the model. In case of unknown

attacks, the record has been appended to the training dataset at the control center
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to train the supervised learning model. In the case of known attacks, the supervised

model will classify the type of known attacks. The approach of supervised learning

has been proposed in one of our previous research where the accurate classification is

done using the majority vote ensemble method. The researcher will find more details

in [6, 61] for the detection of known attacks. This combined approach accomplishes

two significant aspects of security, namely, the detection of unknown vulnerabilities

in SCADA systems, and accurate real-time traffic monitoring for known attacks.

The entire framework is divided into three phases, namely, data preprocessing,

semi-supervised modeling for the zero-day attacks, and anomaly detection for known

attacks, as illustrated in Figure 4.3. We have followed the same approach for data

preprocessing that was used in the development of the other two IDSs. For proper

training of the deep learning models, we have generated new data samples from the

existing samples using the CTGAN model. Further, this dataset has been separated

into two subsets, namely, the normal dataset and the attack dataset. During the phase

of semi-supervised learning, the autoencoders (vanilla and variational autoencoders)

are trained using normal traffic. The training is accomplished using real datasets as

well as synthetic datasets for the precise measurement of the model. Once the model

has been trained, the validation is taken place using normal and attack events for the

binary classification based on reconstruction error. In the case of the attack vector,

the input event has been further verified at the control center to differentiate known

and unknown attacks using a supervised learning model. For that, the majority

vote-based ensemble method is used to predict the class label for input samples based

on the majority of the class labels predicted by each of the nine classifiers as mentioned

in the previous section.

4.3 Dataset Description

4.3.1 Power system Dataset

To determine the performance of the proposed approach, we have used three public

benchmark datasets [62]. These datasets were created at Oak Ridge National Laboratories

(ORNL) by setting up a power grid testbed [36]. This testbed was configured using

various power grid components, namely, power generators – G1 and G2, IEDs – R1 to
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Table 4.1: Description of the output labels of the various categories of the datasets

Categories Output Labels

Binary (2) Normal, Attack

Three States (3) Normal, Attack, No Event

1-Natural SLG Fault,
Seven States (7) 1-Data injection attack

2- Remote Tripping Command injection attack
3- relay setting change attacks

1 – No event
8 – Natural events
- 6 SLG faults
- 2 Line maintenance events

Multi States (37) 28 – Attack events
- 6 data injection SLG fault replay attacks
- 4 command injection attacks against single IED
- 2 command injection attacks against two IEDs
- 10 relay setting change attacks on single IED
- 4 relay setting change attacks on two IEDs
- 2 relay disable and line maintenance attacks

R4, breakers – BR1 to BR4, and a three-bus two-line transmission system. In the case

of fault detection, the IED trips the corresponding breaker depending on the nature of

the fault. However, these IEDs are not smart enough to differentiate between original

and fake failures. Moreover, operators can also manually trip the breakers and other

system components during system maintenance [35]. The datasets derived from this

power grid testbed contain measurements related to normal, disturbance, control, and

cyber-attack behaviors captured during electrical transmission [37]. These datasets

are randomly sampled and classified into three main categories, namely, binary,

three-state, and multi-state. Initially, the multi-state dataset is constructed during

the experiment and consists of a total of 37 scenarios.

These scenarios are mainly divided into three categories, namely, 8 natural events,

one no event, and 28 attack events. The eight natural events are further divided into

6 SLG faults events and 2 line maintenance events, as listed in Table 4.1. Moreover,

the 28 attack events are subcategorized into three major attack events, namely, Data

Injection, Remote Tripping Command Injection, and Attack on Relay Settings. These
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include 6 SLG fault replay attacks, 4 command injection attacks against a single

IED, 2 command injection attacks against 2 IEDs, 10 relay setting change attacks

on a single IED, 4 relay setting change attacks on 2 IEDs, and 2 relays disable and

line maintenance attacks as listed in Table 4.1. These attack scenarios are simulated

using the concept of an internal intruder, who can launch different attacks by issuing

malicious injections from the substation [36]. Moreover, we have derived a seven-state

dataset from the multi-states dataset.

Each power grid dataset consists of 128 features. To derive these features, 4 phasor

measurement units (PMUs) are used to measure the electrical signals on an electrical

power grid using a common time source to maintain time synchronization. Each PMU

measures 29 features, hence in total 116 PMU measurements were carried out using

4 PMUs. These features are referred as R# - signal Reference which indicates the

index of PMU and type of measurement. For example, R1-PA1:VH represents the

Phase A voltage phase angle measured by PMU R1 [63]. Also, 16 more columns are

additionally inserted by control panel logs, snort alerts, and relay logs where relay

and PMU are integrated together [64]. The last column represents the marker to

label different events. The description of all the features is shown in Table 4.2. Also,

each set of 15 sets consists average of 294 “no event” instances, 1221 natural events

instances and 3711 attack vectors across the classification schemes [35].

Table 4.2: Description of features

Feature Description
PA1:VH-PA3:VH Phase A-C Voltage Phase Angle
PM1:V-PM3:V Phase A-C Voltage Magnitude
PA4:IH-PA6:IH Phase A-C Current Phase Angle
PM4:I-PM6:I Phase A-C Current Magnitude
PA7:VH-PA9:VH Pos.-Neg.-Zero Voltage Phase Angle
PM7:V-PM12:V Pos.-Neg.-Zero Voltage Magnitude
PA10:VH-PA12:VH Pos.-Neg.-Zero Current Phase Angle
PM10:V-PM12:V Pos.-Neg.-Zero Current Magnitude
F Frequency for relays
DF Frequency Delta (dF/dt) for relays
PA:Z Apparent impedance seen by relays
PA:ZH Apparent impedance Angle seen by relays
S Status Flag for relays

For the experimental study of zero-day attacks, we have targeted three SCADA-based
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Table 4.3: Main Features of Gas pipeline and Water storage dataset

Feature Description

PLC addresses Station addresses of the Modbus devices
for request and response

PLC read write functions Modbus codes for reading and writing coil
and register values

Length length of the Modbus packet

Contol mode modes of the system such as automatic,
manual, off

Control scheme Represents either the scheme is pump or
solenoid

Pump Pump control is on or off

crc rate pressure rates and measurements

Dead band, Rest rate, Set points (*
only for Gas pipeline dataset)

PID (Process ID) parameters for various
measurements

HH, LL (* only for water storage
dataset)

Level of the water in storage tank

industrial applications, namely, power grids, gas pipelines, and water storage systems.

For power grids, we have created one single dataset by combining 15 datasets into one.

The readers can find a detailed description of the dataset in [62]. The power system

dataset consists of a total of 128 features with 22,714 normal events and 55,663 attack

events.

4.3.2 Gas pipeline Dataset

The gas pipelines’dataset has been created at the lab scale testbed that includes

information related to Modbus control packets, crc rates, and pump measurements,

along with network traffic captured on a gas pipeline system at Mississippi State

University’s SCADA lab[65], [66]. Table 4.3 depicts the major features of the gas

pipeline dataset. The output label represents 1 normal event and 6 attack events

(including 2 response injection attacks, 2 command injection attacks, a code injection

attack, and a Denial of Service attack) [63]. For binary classification, the output

labels of 6 attack vectors are combined into one class and represented as an attack
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event along with the normal event. The gas pipeline’s dataset consists of a total of

26 features with 61156 normal events and 35,863 attack events.

4.3.3 Water Storage Dataset

The water storage dataset has also been generated on a lab-scale testbed at the same

place where the gas pipeline dataset has been created [62]. The features of water

storage and gas pipelines are almost similar that includes network traffic, process

control, and measurement features for normal and attack events. The water storage

parameters don’t have features regarding the measurement of PID (process ID) such

as rate, setpoint, cycle time, and deadband, instead, it includes features related to

the level of the water in the tank. Table 4.3 depicts the description of the features of

the water storage dataset. The dataset of the water storage tank consists of a total

of 23 features with 172,415 normal events and 63,764 attack events. The features of

the water storage and gas pipeline datasets are comparatively the same.

4.4 Experiments and Results

The experimental study and result analysis presented in this section are divided

into three categories based on the placement of intrusion detection systems. This

report highlights the results based on major contributions. However, the additional

supporting results are presented in the attached papers (papers 1 and 2) in the

Appendix section.

4.4.1 IDS for Plant Floor

Feature Selection: WFI scoring model based on Gradient Boosting

Generally, when we have a big model with hundreds or thousands of features, the

feature selection approach is used to choose the most promising features and remove

irrelevant features while retraining the model. Also, by analyzing the importance of

each feature manually, we can get an idea of what the model is doing, and whether

the model is working well. Here, we derive the importance of each feature by applying

the WFI scoring method on Gradient Boosting trained model. Furthermore, all
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the features are depicted as a percentage rating of how often the feature is used

in determining the output label.

The feature importance scores reflect information gained by each feature during

the construction of a decision tree. During experiments, we observe that 50% of the

128 features are not contributing to making any decision. The WFI score of such

features is zero. While, out of the remaining 50% of features, 15 features provide a

significant contribution in making decisions during the construction of the decision

tree. The WFI score of those features has high values in the range of 1 to 10. The rest

of the 45 features have feature importance scores between 0 and 1. These 45 additional

features contribute comparatively less and have a large drop in feature importance

score. Altogether the entire dataset is divided into three levels of information gain

groupings, namely, most promising, slightly contributing, and irrelevant features.

According to [67], feature extraction creates a subset of the given features which not

only reduces the noise but also improves the classifiers’ performance. Therefore, we

have tested 15 datasets of four different categories (binary, three-class, seven-class &

Multi-class) of the power grid systems created by the Oak Ridge National Laboratories

using the most promising features [63]. To identify these best features, we use the

WFI scoring model along with the concept of Num trees.

Furthermore, to increase the execution speed, we perform feature extraction on

binary datasets. We repeat the entire process by taking the various parameter value

of Num trees to collect various observations. From that, we have identified the best

features by taking common important features from the estimations. Here, Num trees

refers to the number of estimators whereas n refers to the total number of features.

We have used four estimators, namely, 100, 500, 700, and 1000, and initially, the

dataset consists of n = 128 features.

Figure 4.4 represents the relative importance of each attribute on the binary

dataset by considering four estimators. The high vertical bars represent the most

promising and common features in all four estimators. In this experiment, all estimators

use the top 15 features for each ensemble. In Table 4.5. we observe the most promising

features across all 15 datasets. Also, to validate the strength of the selected features,

the same 15 ones are applied to all four categories (Binary, three classes, seven classes,

and Multi-class) of intrusion classification. It can be observed that each dataset has
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Figure 4.4: Represents the relative importance of each attribute of the dataset with 5000 records;
computed by considering four estimators Num trees = 100,500,700,1000

Figure 4.5: Best 15 Features of 15 Datasets for all the four categories - Binary, Three classes, Seven
classes, and Multi-class
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a different set of stronger features, a conclusion that points to an independent feature

selection process for each dataset type.

Evaluation parameters

The choice of the evaluation parameters always depends on the nature of the dataset,

whether it is a multi-class or just binary. Typically, datasets are imbalanced in nature,

a property defined by having classes of different sizes. Hence to evaluate the efficiency

of the proposed GBFS-based framework, our approach not only relies on the accuracy

of the classifier but also incorporates other assessment parameters like Detection Rate

(True Positive Rate also called Recall & True Negative Rate), Precision, F1 Score and

Miss Rate (False Negative Rate).

The assessment metrics, namely, accuracy, recall, precision, and false negative rate

depend on the following four parameters, namely, True Positive (TP), True Negative

(TN), False Positive (FP), and False Negative (FN) [38]. TP refers to the number of

actual attacks which are classified as attacks, TN refers to the number of normal events

classified as normal events, FP refers to the number of normal events misclassified as

attacks and FN refers to the number of attacks misclassified as normal events. The

evaluation metrics are defined as follows, described from the basic four definitions.

• Accuracy is the percentage of all normal and attack vectors that are correctly

classified:

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

• Detection Rate (True Positive Rate (TPR) and True Negative Rate (TNR))

refers to the percentage of total relevant results correctly classified by the

classifier

TPR =
TP

TP + FN
(attack vector) (4.2)

TNR =
TN

TN + FP
(normal event) (4.3)

• Precision or Positive Predictive Value (PPV) refers to the percentage of the

results which are relevant.

PPV =
TP

TP + FP
(attack event) (4.4)



37

• F1 Score is simply the harmonic mean of precision and recall evaluating the

outcome in a balanced mode

F1 score = 2 ∗ Precision ∗Recall

Precision+Recall
(4.5)

• Miss Rate (FNR/FPR) is derived by subtracting the value of TPR from 1.

FPR = 1− TNR (attack) (4.6)

FNR = 1− TPR (normal) (4.7)

Result Discussion

The purpose of the proposed GBFS-based feature selection framework is to generate

a subset of the given attributes from the entire dataset using a WFI metric to

reduce the noise and improve the performance of the classifier. The derived subset

of the top 15 features may or may not contribute the same in the decision-tree

classifiers. We have observed the results of a total of 8 decision tree-based machine

learning techniques to validate our proposed methodology via multiple simulation

trials. Overall 60 computations are performed to evaluate the performance of each

classifier including the results of fifteen datasets of all four categories. Figure 4.6

represents the comparative analysis of the accuracy of eight tree-based classifiers of

15 datasets of each binary, three-class, seven-class, and multiclass categories.

Amongst all the eight classifiers, it was observed that XGBoost, random forest,

and its variance have proven to be the most efficient. However, other tree-based

classifiers also proved their efficiency ranging between 92 to 94 for Binary and three-state

and 85 to 90 for seven-class and multiclass. XGBoost comes up with accuracy equal

to 97.26, 96.09, 92.97, and 92.44 for binary, three-class, seven-class, and multiclass

datasets, respectively. Similarly, all three variants of Random Forest also achieve

very high accuracy such as 97.26, 97.24, and 97.17 for binary, 96.18, 96.38, and 96.50

for three-class, 94.43, 94.31, and 94.19 for seven classes and 92.46, 92.92, 91.92 for

multiclass, respectively.

Since the GBFS-Random Forest and its variances are the most efficient classifiers

to classify the normal and attack vectors with the nearly same range of accuracy, we

have compared the execution speed of all three classifiers to identify the best among
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Machine Learning Classifiers

Comparison Analysis of various Machine Learning classifiers for 4 categories of 15 datasetsFigure 4.6: Comparative view of Different Machine Learning Classifiers for - four categories ( binary,
three-state, seven-state and multi-state) for each of 15 datasets

them. As depicted in Figure 4.7, GBFS-Random Forest classified the various attack

and normal events for all four categories in 1.5 seconds. GBFS-AdaBoost Random

Forest took slightly more time than the GBFS-RF. GBFS-CVR-Random Forest took

comparatively higher execution time as it uses the combined approach of boosting and

ensemble of trees for the classification. However, by comparing the accuracy levels, we

observe that the boosting does not improve the result much, in such case GBFS-RF

is proven to be best amongst all three with high accuracy and less execution time.

We demonstrated that the 15 stochastic features shown in Figure 4.5 were the most

promising features for all the decision tree-based classifiers by iteratively running all

eight classifiers, for 15 datasets of all four categories. In each iteration, using 15

features, we retrained & re-tested all eight tree-based models to compute the general

average trend of malicious and normal events by observing DR, FPR, and Execution

Time.

Measure Binary Three-class Seven-Class Multi-class
Accuracy 97.26% 96.50% 94.12% 92.46%
FPR 0.037 0.067 0.019 0.003
Precision 0.9705 0.9887 0.9504 0.9250
Recall 0.9740 0.9676 0.9355 0.9240
F-Measure 0.9723 0.9781 0.9427 0.9244

Table 4.4: Performance evaluation metrics of Proposed GBFS Based Classifier
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Figure 4.7: Comparative view of Execution speed of Three GBFS-based Random Forest variances to
classify normal and attack events for four categories (binary, three-state, seven-state and multi-state)
for each of 15 datasets

All the selected classifiers maintain very high DR and lower FPR rates in all

the computations as shown in Table 4.4. We have achieved 98.5% detection rate

which truly differentiates attack and normal vectors with only 3.7% and 6.7% false

positive rate for binary and three class classifications. Moreover, seven-class and

multi-class classifiers have also outperformed as they gave around 94.42% and 92.5%

for the detection rate. This validates the significance of our proposed methodology

for feature selection. Real-time systems such as control and monitoring systems of

industrial infrastructures/power grids need a methodology of feature extraction where

processing time and storage space are always crucial.

4.4.2 IDS For Control Center

Feature Selection: Recursive Feature Elimination (RFE) method

The primary objective of the proposed model is to provide real-time intrusion detection

for power-grid systems. Hence, our target is to build a fast and accurate model that

captures any malicious event efficiently that may happen in the network. To fulfill

both requirements, we have used the RFE-XGBoost based WFI scoring model for

feature selection along with the majority vote-based ensemble method for prediction.

The feature selection module improves the computational cost as we are targeting the
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30 most consistent features out of 128 features of the given datasets. Furthermore, we

have used the nine most powerful classifiers to classify normal and malicious events.

For more accurate results, we have applied the majority vote-based ensemble method,

which predicts the class label based on the majority of the class labels predicted by

each of these classifiers.

These datasets used in our analysis are the publicly available datasets generated

at the ORNL laboratory on a small power grid testbed [16]. For proper validation,

experiments were computed for four different categories of the samples. Furthermore,

the observations were carried out using 100,000 normal and attack events of each of

these four categories, which were divided into 15 datasets. For fair distribution and

assessment, each dataset was split randomly into two subsets, training (80%) and

testing (20%). The training data was used for the algorithm training and the testing

data was used to test the accuracy of the result. To avoid selection bias in the datasets

and to reduce overfitting, we have used a 10-fold cross-validation technique during the

training process. This method performs the training 10 times with different random

selections (80/20) from the original dataset. This well-defined systematic approach

circumvents the inadequacy of bias performance assessment. The proposed approach

is implemented using Python on a Jupyter notebook using the Anaconda distribution

platform on Windows 10 with an Intel Core i5-8300H 2.30GHz processor, 8 GB RAM,

and Nvidia Geforce GTX 1060 GPU.

We have made observations based on the number of subsets of the features considering

15 binary datasets. Initially, we started with 128 features and reduced the number of

features in each iteration based on the output of the WFI scoring model to compare

the accuracy of the current set with the selected subset. To extract the gist of the

features, we have applied WFI based scoring model which scores the importance

of all features. This ranking defines how often the feature is used to determine

the output label while constructing a tree. Figure 4.8 illustrates the comparative

analysis of different features versus the accuracy graph of one of the 15 datasets. The

classification with 30 features offers the highest accuracy during the classification of

normal and attack events using the majority vote-based ensemble classifier.
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Figure 4.8: Comparative analysis of different features to evaluate the accuracy using RFE-XGBoost
WFI scoring model.

Result Discussion

To evaluate the performance of the majority vote-based ensemble algorithm, we have

computed the accuracy of fifteen datasets of all four categories using the nine most

promising classifiers. The choice of these classifiers is carried out based on our

preliminary results of the comparative analysis of various machine learning classifiers

[6]. We have chosen nine heterogeneous classifiers to determine the efficiency of

selected features via multiple simulation trials and observed the predictions of all

the algorithms. After deriving the accuracy of all nine classifiers, the majority vote

ensemble algorithm was applied to compare the prediction of the output labels. The

comparison was carried out based on the majority class label voting classifier with

“hard voting” to classify the input samples.

The ensemble algorithm predicts accurate outcomes by aggregating and applying

the majority vote rule on the result of the different classifiers. We have incorporated

heterogeneous classifiers, namely, random forest (RF), gradient boosting (GB), XGBoost

(XGB), Extra Tree (ET), Decision Tree (DT), K-Nearest Neighbor (KNN), Naive

Bayes (NB), Adaboost – Decision Tree (AdBoost-DT), and artificial neural network

(ANN) to achieve performance improvement of the majority vote based ensemble

model.

We have performed an overall 60 computations of each of the four categories
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Figure 4.9: Comparative view of different Machine Learning classifiers for four categories for each
of the fifteen datasets

(binary, three-states, seven-states, and multi-states) containing fifteen datasets to

evaluate the performance of each of the ten classifiers. According to the analysis,

the accuracy of the Naive Bayes algorithm is less compared with other classifiers

for all four categories, namely, binary (around 52.34%), three class (58.21%), seven

class (19.26%), and multi-class (13.2%). Figure 4.9 presents a comparative analysis

of the accuracy of the remaining eight classifiers along with the majority vote-based

ensemble algorithm. Among nine base classifiers random forest, gradient boosting,

and XGBoost have mostly proven to be more efficient in the case of binary, three

states, and seven states classification. However, for multi states classification, random

forest, extra tree, and XGBoost are more promising than the other six classifiers.

In the case of imbalanced datasets, the PR plot is more informative than the

ROC plot while evaluating classifiers [68]. Here we are not only targeting binary

classification but also classifying multiple attack events. Hence, for more information

retrieval, we have also analyzed PR curves in case of bias in the class distribution. The

baseline of the PR curve is determined by the relation of precision and recall values.

Figure 4.10 depicts the precision/recall for each threshold for a majority rule-based

ensemble model by considering all four categories of the dataset. For all the four

types, the majority rule-based ensemble classifier maintains a high detection rate.

The proposed model has achieved 98.9%, 97.8%, 96.2%, and 94.6% of the average
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(a)BfinaryStates (b)ThreeStates

(c)SevenStates (d) MufltfiStates

Ffigure4.10: Precfisfion-Recaflfl Curvesoff RFE-based Majorfityvoteensembfle methodfforffour
categorfies

precfisfion-recaflflcurveareafforbfinary,threestates,sevenstates,andmufltfi-states,

respectfivefly. TheexactpercentageoffeachoutputflabeflfisdepfictedfinFfigure4.10.

Theresufltsfindficatethemodeflperfformsexceptfionaflflyweflflwfithaflflthecategorfiesto

predfictvarfioustypesoffcflassflabefls.

Wehaveobservedthefimportanceoffthevarfiousffeaturesfintheprevfioussectfion,

whereaccuracyfismeasuredbyconsfiderfingsubsetsofftheffeatures.Inthat,wehave

ffocusedonthebfinarydataset.Forffurtherprooffoffconcept,wehaveevafluatedthe

accuracyoffthreeothercategorfies,namefly,three-cflass,seven-cflass,andmufltfi-cflass
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Table 4.5:
Comparison of accuracy of majority vote ensemble algorithm with and without recursive feature

elimination based feature selection

Classifiers Without Feature Selection RFE - Feature Selection
128 features (Accuracy) 30 features (Accuracy)

Binary 96.93 97.44
Three-Class 96.64 97.25
Seven Class 93.65 94.91
Multi-Class 92.23 93.08

datasets, by comparing all the 128 with 30 features. To extract the gist of the features,

we have applied an RFE-based WFI scoring model, which scores the importance

of all features recursively. This ranking defines how often the feature is used to

determine the output label while constructing the tree. Table 4.5 illustrates the

comparative analysis of four categories by considering 128 features versus 30 features

extracted by RFE. The classification with 30 features offers the highest accuracy

during the classification of normal and attack events using the majority vote ensemble

classifier. In Table 4.5, we have presented the result of one of the 15 datasets. During

experiments, we have also observed that the training time of multi states datasets

with all the 128 features is unrealistic as it took more than 24 hours. Hence, feature

selection is a crucial factor used to develop a better predictive model and make the

model computationally efficient.

4.4.3 IDS for Intermediate SCADA Centers (sub-MTUs)

Generation of Synthetic Datasets

For efficient training of the ML model and for accurate prediction, we have generated

the synthetic datasets from the existing original datasets for all three ICS applications

using the CTGAN model. For that, we have used the SDV Python library that

provides the utility of a GAN-based Deep Learning data synthesizer for tabular

datasets. First, we created an instance of CTGAN and fit that instant for the

given dataset. The CTGAN model learns the statistical properties of the dataset

during the training process and accordingly generates synthetic data that captures

the characteristics of the model. To control the learning behavior, CTGAN has many

hyper-tuning parameters which will impact the performance of the model, both in
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Table 4.6: Hyper-tuning parameters of CTGAN model

Dataset Hyper-tuning parameters

Power-grids epochs=500, batch size=500, embedding dim=256,
generator dim=(512,512), discriminator dim=(512,512),
generator lr=0.0003, discriminator lr=0.0003,
discriminator steps=5

Gas-pipeline,
Water-storage

epochs=50, batch size=150, embedding dim=64,
generator dim=(128,128), discriminator dim=(128,128),
generator lr=0.0001, discriminator lr=0.0001,
discriminator steps=5

terms of the quality of the dataset and computational time. We have applied grid

search to tune the parameters. Table 4.6 represents the hyper-tuning parameters that

we have used to improve the overall score that represents the quality of the dataset.

The SDV tool has provision to verify the quality of the synthetic data using evaluate

function. This function evaluates the given dataset based on various statistical and

probabilistic properties (such as KS Complement, ChiSquare Test, Logistic Detection

test, Binary Decision Tree test, and BNLikelihood test)and accordingly returns the

overall score of the model. We have used this function to verify the quality of the

synthetic data before and after hyper-tuning. We obtained 85.74% overall score before

hyper-tuning (using default parameters) and obtained 90.87% overall score after

hyper-tuning for a power-grids dataset. Similarly, we obtained 93.27% for the gas

pipeline dataset and 92.07% overall score based on statistical properties for the water

storage dataset. We generated a total of 2,000,000 records (50% normal events, 50%

attack events) for all three datasets.

(a) CopulaGAN (b) CTGAN (c) TVAE GAN (d) GaussianCopula GAN

Figure 4.11: Representation of power grid’s data consist of the real and synthetic dataset (Fine-tuned
post processed synthetic dataset)

Moreover, we have used a popular dimensionality reduction technique called Principal
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Component Analysis (PCA) for visualizing the synthetic and real datasets. Figure

4.11 represents the transformation of 2 components to the latent space for the power

system dataset using four tabular GAN models, namely, CopulaGAN, Conditional

Tabular Generative Adversarial Network (CTGAN), Triplet-Based Variational Encoder

Generative Adversarial Network (TVAE-GAN), and GaussianCopula GAN. This figure

shows a similarity between real and synthetic datasets by overlapped data points.

This visualization also validates the quality of the synthetic dataset.

Experimentation Methodology

Anomaly detection with vanilla autoencoders :

During these experiments, we used a vanilla autoencoder method with an encoder

and a decoder model, that has layer size in decreasing and increasing fashion of

neurons. There are two phases in the anomaly detection process, namely, the training

phase, and, the inference phase. During the training phase, a network is trained with

normal data to obtain a reconstruction of the given input. In the inference phase, the

architecture is used to obtain a reconstruction of the data, and the attack traffic is

identified as its reconstruction error that differs from the normal data reconstruction

as shown in Figure 4.12.

Autoencoders work on the concept of latent space, which represents a vector of

encoder and decoder networks. This vector is in form of reduced dimensionality

and contains a distillation of the features of the original data, that allows good

reconstruction. In the proposed experiments we have used latent spaces of 2 and

16 cells to focus on the important research question - what is the impact of different

latent space sizes when one of the objectives is to focus on accurate prediction? To find

the optimum network architecture, we performed a hyper-parameter tunning, where

we focused on two complementary areas, namely, the network structure, and the

latent vector dimension. We explored several combinations of deeper and shallower

networks using Encoder-Decoder models. During analysis, we concluded that shallow

architecture is sufficient to obtain promising results.

The result discussion of these experiments using vanilla autoencoders is further

detailed in the following subsections.
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Ffigure4.12: Modeflstrafinwfithnormafldataandfinfferencefismadeonnormaflandattackdata

FfirstBatch:PowergrfidsSCADADatasets

Thefirstbatchoffexperfimentswasperfformedonthepowersystemdataset.One

waytovfisuaflfizetheresufltfingquaflfityfistoobtafinatwo-dfimensfionaflfimageoffthe

flatentspaceusfingaPCAtransfformatfion. WeperfformaPCAtransfformatfionwfith2

componentsontheflatentspaceoffthenetwork.ThepurposeoffvfisuaflfizfingthePCA

dfistrfibutfionusfingtwocomponentsfistoverfiffytheeficfiencyoffthemodeflfintermsoff

dfiscrfimfinatfingbetweennormaflandattackevents.Ffigure4.13representsthefimpact

offthesfizeofftheflatentspacethatfindficatestheseparatfionoffprfincfipaflcomponents.

Forthfisexperfiment,wehaveusedtheorfigfinaflpowergrfiddataset.

Moreover,toovercometheflfimfitatfionoffthesfizeoffthedataset,wehaveused

asetoffsynthetficdatatoexpfloretworesearchquestfions: Whatfisthefimpactoff

thesynthetficdataonthemodeflfingandtrafinfingprocessoffautoencoders?Howdoes

synthetficdatacontrfibutetoeffectfiveflyfimprovfingtheaccuracyofftheresuflts?Durfing

theexperfimentswfithsynthetficdata,wetrafinedthevanfiflflaautoencodermodeflusfing

synthetficnormafleventsandtestedthemwfithreaflattackvectors. Thepurposeoff

thfisexperfimentfistoverfiffythefiflterfingbehavfiorwfithreaflattackvectors.Ffigure4.14

fiflflustrateshowthePCAtransfformatfionfisappflfiedtotheflatentspacevectorusfing

synthetficdataconsfiderfingthesamearchfitecturesandthesameflatentspacesfizes.
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Ffigure4.13: VanfiflflaAutoencoder-UsfingReaflPower-grfidsDataset: Errordfistrfibutfionofferror
reconstructfionoffNormaflandAttackeventswfith2and16ceflflsfintheflatentspace

Ffigure4.14:VanfiflflaAutoencoder-UsfingSynthetficPower-grfidsDataset:Errordfistrfibutfionofferror
reconstructfionoffNormaflandAttackeventswfith2and16ceflflsfintheflatentspace

Weconcfludethattheuseoffsynthetficdatasupportsmorestabfletrafinfing,and

optfimfizestheresufltfintermsoffffaflseposfitfiveratecomparetousfingreafldatasets.

SecondBatch:GasPfipeflfinesSCADADatasets

Inthfisexperfimentatfion,weusegaspfipeflfinesPfipeflfinedatasets.Usfingthesame

autoencoderarchfitectures(Latentspace2and16)weaccompflfishagoodseparatfion
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offthetwocflasses.InFfig. 4.15wefiflflustratethfisresuflt. Wecanseethateven

wfithasmaflflflatentspaceweobtafinresufltsthatarecfloseto100%accuracyasthe

reconstructfionerrorcflearflyfidentfifiesthenormaflcflassffromtheattackcflass.

Ffigure4.15: VanfiflflaAutoencoder-UsfingReaflGasPfipeflfineDataset:Errordfistrfibutfionofferror
reconstructfionoffNormaflandAttackeventswfith2and16ceflflsfintheflatentspace

Ffigure4.16: VanfiflflaAutoencoder-UsfingSynthetficGasPfipeflfineDataset: Errordfistrfibutfionoff
errorreconstructfionoffNormaflandAttackeventswfith2and16ceflflsfintheflatentspace

Tovaflfidateourproposedmodeflffurther,wehaveruntheexperfimentsusfinggas
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pipeline datasets. Using the same autoencoder architectures (latent space 2 and 16),

we accomplished a good separation of the two classes, namely, normal and attack

events. Figure 4.15 illustrates the result based on the original dataset of the gas

pipeline testbed. The smaller latent space (LS=2) is sufficient to obtain perfect

prediction accuracy as the reconstruction error identifies clearly the normal class

from the attack class.

Moreover, we have validated the same approach using a synthetic dataset generated

for the gas pipeline, and the results are quite similar as shown in Figure 4.16. We

obtain a clear class separation with an accuracy result close to 94%. Furthermore,

this approach validates that a synthetic normal dataset is as good as a real dataset

to identify unknown attacks (the attack vectors used in this experiment for testing

are from a real dataset). However, looking at the entire experimental results, we have

concluded that the real dataset is sufficient to train the models for accurate prediction.

The synthetic dataset is not required as it neither improves class separation nor

accuracy. Accuracy is at 100% already with original normal traffic. The results

indicate that the class separation between attack and normal traffic is simpler in the

gas pipeline dataset as it doesn’t have complex features to train and we can obtain

perfect results using normal traffic of the original dataset with vanilla autoencoders.

Third Batch: Water Storage System’s Dataset

We apply the same autoencoder architecture to water storage datasets. The

structure of the dataset is simple as it only consists of 23 features. Moreover, the size

of the real dataset is sufficient to train the model using real normal traffic. However,

for the validation of synthetic data, we have generated the results based on real and

synthetic datasets. In both cases, we obtain a perfect separation of the attack and

normal classes as presented in Figure 4.17, and Figure 4.18. Like the gas pipeline

dataset, the smaller latent space (LS=2) is sufficient to obtain perfect prediction

accuracy as the reconstruction error identifies clearly the normal class from the attack

class.

Anomaly detection with VAE autoencoders:

As discussed before in the Introduction section, the vanilla autoencoder uses a

simple structure, while the variational autoencoder uses an advanced structure during

the learning and reconstruction process. VAE autoencoders use the reparametrization



51

Ffigure4.17:VanfiflflaAutoencoder:UsfingReaflDatasetoff WaterStorageSystem:Errordfistrfibutfion
offerrorreconstructfionoffnormaflandAttackeventswfith2and16ceflflsfintheflatentspace

Ffigure4.18: Vanfiflfla Autoencoder: UsfingSynthetfic Datasetoff WaterStorageSystem: Error
dfistrfibutfionofferrorreconstructfionoffnormaflandAttackeventswfith2and16ceflflsfintheflatent
space

trfick,whfichfisfimpflementedusfingtheaverageofftheflatentspaceandasampflfing

ffunctfionthatusesthegaussfiandfistrfibutfionasfinput. Thereffore,wedecfidedto

perfformexperfimentswfithsfimpfleandcompflexautoencoderstoseethedfifference

finperfformance. Wehaveperfformedthesamesetoffexperfimentsusfingvarfiatfionafl
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autoencoders that we have computed for vanilla autoencoders. To obtain a homogeneous

comparison, we have selected 2 and 16 cells as latent space for the different VAE

constructions. The network has been implemented using three layers, namely, encoder

network, decoder network, and three hidden layers (128, 64, and 32 cells each) using

relu activation. While training the model, we used 270 epochs and batch size = 32

for power grid datasets. Similarly, 80 epochs and 32 batch size are used for the gas

pipeline dataset, and 70 epochs and 64 batch size are used for water storage datasets.

During the experiments, we formulated the implementation focusing on three main

approaches to detect unknown attacks, namely, training (normal vectors) and testing

(normal and attack vectors) the model using Original datasets, training & testing

using the synthetic datasets, training using synthetic normal events, and validation

using original attack vectors. We have trained the model using 80% of normal traffic.

The validation is carried out using 20% of remaining normal traffic and 20% of attack

vectors. The purpose of having this distribution is to maintain a balanced class

structure.

As depicted in Table 4.7, we have computed the results in terms of precision(PR),

recall(RC), and F1 score regarding normal and attack events for all three applications

and we got promising results. Moreover, we have computed the number of anomalies

detected during each cycle of the experiment. The results seem to be promising while

considering latent space is equal to 16. We obtained an accuracy of around 98% for

all three applications with original datasets. the accuracy has improved by 1% while

using synthetic data for the training process and that is around 99%.

We have also tried other combinations to validate the efficiency of the model, such

as validating the model using 20% normal events and all the attack records of the

dataset (that reflects unbalanced datasets) and then verified the results by computing

True Negative Rate (TNR) and False Negative Rate (FNR). For example, when we

tried 4543 normal instances and 51543 attack vectors (a total of 56086 instances), we

got 4400 True Positives (TP), 143 False Positives (FP), 51159 True Negatives (TN),

384 False Negatives (FN). In this case, we got TNR equal to 99.25%, and FNR equal

to 8.45%.

In a nutshell, we observed promising results for all the experiments that we have

performed to detect anomalies when a model has only knowledge of normal traffic.
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Table 4.7: Experimentation results summary computed using Variational Autoencoders

Applications
Types of
Dataset

Train

80% - N

Test

20% - N

20% - A

PR, RC, F1

(Normal)

PR, RC, F1

(Attack)

Anomaly

Detected

Power Grids
Original

(18171,
128)

(9086, 128)
1.00, 0.97,

0.98
0.97, 1.00,

0.98
4641 /
4543

Synthetic
(588638,
128)

(294320,
128)

1.00, 0.98,
0.99

0.98, 1.00,
0.99

144276 /
147160

Syn(N),

Real(A)
(80000,
128)

(40000,
128)

0.92, 0.98,
0.95

0.98, 0.91,
0.94

21514 /
20000

Gas Pipieline
Original (48924, 26) (24464, 26)

1.00, 0.97,
0.98

0.97, 1.00,
0.98

12650 /
12232

Synthetic
(1600000,

26)
(800000,

26)
1.00, 0.98,

0.99
0.98, 1.00,

0.99
407905 /
400000

Syn(N),

Real(A)
(80000, 26) (40000, 26)

1.00, 0.98,
0.99

0.98, 1.00,
0.99

20404 /
20000

Water Storage
Original

(137932,
23)

(68966, 23)
1.00, 0.95,

0.97
0.95, 1.00,

0.98
36261 /
34483

Synthetic (80000, 23) (40000, 23)
1.00, 0.98,

0.99
0.98, 1.00,

0.99
20418 /
20000

Syn(N),

Real(A)
(80000, 23) (40000, 23)

1.00, 0.98,
0.99

0.98, 1.00,
0.99

20409 /
20000
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Variational autoencoder has proven an efficient technique for the detection of zero-day 

attacks for all the datasets (real and synthetic) of three SCADA applications.

4.5 Proposed IDS framework for Power Grid SCADA System

Figure 4.19: IDS framework for real-time SCADA systems for power grids

In distributive environments such as power grids, the availability of the most

accurate intrusion detection system is a crucial factor. To achieve robust security

along with availability, we have used defense-in-depth architecture by placing IDS

at three different locations of the power grids, namely, IDS placed at Sub-MTUs

(intermediate SCADA), IDS placed at the control center, and IDS placed at the

plant floor. The proposed IDS framework for real-time industrial control systems for

power grids is shown in Figure 4.19.

First, the SCADA power grid traffic is analyzed for zero-day attacks at intermediate

SCADA centers using Variational Autoendoers (semi-supervised learning). In the

case of attack vectors, the packet will be sent to the control center IDS for further

evaluation. If the control center IDS also recognizes it as a malicious event, then

the packet will be dropped and categorized as a type of known attack. However, in

case of a discrepancy in prediction at the control center, the packet will be added to
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the training dataset to retrain the supervised learning models. In this manner, the

accuracy of supervised models will be increased by learning new features of zero-day

events.

In the case of normal events at intermediated SCADA center, the traffic will

be transmitted to both the supervised models for further assessments to detect any

known attacks. The plant floor IDS uses a GBFS-based filtering model to detect

intrusions. As IDS on the plant floor is high-speed and lightweight that is more

compatible with detecting intrusions in real-time communication. However, for more

accurate results, the output of this module is verified at the control center using the

majority vote-based IDS with multiple classifiers. In case of a discrepancy in the

output labels, the records will be added to a new training dataset to retrain the

GBFS filtering model periodically. In this manner, we can achieve the most updated

test model and replace the existing model with the recent model.

Through this approach the proposed framework achieves high computational speed

and accurate prediction for live SCADA traffic that not only detects known attacks

but is also used to filter zero-day attacks.

Table 4.8: Comparative analysis of various methods

Classifier
Feature
Selection

ML Model Attack Acc

ADA-JRIP [35] NA Supervised Known 94.55%
EMCT [38] PCC Supervised Known 90.2%

GMMKM [39] PCC Supervised Known 94.56%
Tree Based [6] GBFS Supervised Known 97.26%
MV-EM [61] RFE-XG Supervised Known 98.24%

PCA NA Semi-supervised Unknown 96.76%
Vanila AE NA Semi-supervised Unknown 99.25%

VAE NA Semi-supervised Unknown 98.92%

To validate the effectiveness of the proposed scheme, we have compared the

accuracy of our semi-supervised models with six published methods, namely, JRIP

using Adaboost technique (AdaJRIP) [35], Expectation Maximization Clustering

Technique (EMCT) [38], Gaussian Mixture – Kalman Filter Model (GMM-KF) using

Pearson Correlation Coefficient (PCC) feature selection method [39] and GBFS based

tree based classifiers [6]. All the methods utilize the same power-grids dataset for

result computation.



Chapter 5

Robust & Secure Solution for SCADA communication -

Methodology, Experiments & Result discussion

The research work reported in this chapter has resulted in two publications and one is

under review:

• D. Upadhyay, M. Zaman, R. Joshi and S. Sampalli, “An Efficient Key Management

and Multi-Layered Security Framework for SCADA Systems,” in IEEE Transactions

on Network and Service Management, ” vol. 19, no. 1, pp. 642-660, March

2022, doi: 10.1109/TNSM.2021.3104531. (Impact Factor: 4.19)

• D. Upadhyay, N. Gaikwad, M. Zaman and S. Sampalli, “Investigating the

Avalanche Effect of Various Cryptographically Secure Hash Functions and Hash

Based Applications,” in IEEE Access, vol. 10, pp. 112472-112486, 2022.

(Impact Factor: 4.43)

• D. Upadhyay, H.Ohno, M. Zaman, B. Stacey and S. Sampalli, “Design and

development of SCADA (Supervisory Control and Data Acquisition) test bench

for validation of lightweight cipher,” Computers & Security, Elsevier,

manuscript under preparation. (Impact Factor: 5.105)

5.1 Summary of the chapter

The protection of critical industrial infrastructure against cyber-attacks is crucial for

ensuring public safety, security, and reliability. SCADA systems are used to control

and monitor such industrial control systems. A robust solution to strengthen the

security of these systems against cyber-attacks is a crucial requirement in the design of

SCADA systems. Through this work, we aim to cover the protection of the industrial

control system landscape by offering a low-cost and robust framework for SCADA

networks, which protects them against various cyber-attacks. In this chapter, we have

56
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proposedasessfionkeyagreementfinaddfitfiontoflfightwefightmufltfi-flayeredencryptfion

technfiques.Thefframeworkcombfinesbothsymmetrficandasymmetrficcryptography

toachfievehfighcomputatfionaflspeedbycoverfingaflflthesecurfitymechanfisms.Thfis

securfitymodeflfisproposedtoenhancethesecurfityoffvarfiousfindustrfiaflsectorssuch

aswaterandsewagepflants,powerstatfions,chemficaflpflants,ofiflfindustrfies,product

manuffacturfingunfits,andtransportatfionsystems.Thesuccessffufldepfloymentoffthfis

modeflwfiflflaflflowoperatorsandtechnficfianstomonfitorandcontroflthepflantdevfices

remoteflyasfitwfiflflprotecttheentfiresystemffrompotentfiaflbreaches.

5.2 Mufltfi-flayeredFrameworkfforSecureSCADACommunficatfion

Thfissectfionpresentstheproposedmufltfi-flayeredfframeworkfforsecureSCADAsystems.

Thefframeworkusesthreefleveflsfforrobustness,namefly,symmetrfickeycryptography,

cryptographficaflflysecureHMACffunctfion,andapubflfickeyaflgorfithm.Thesecurfity

ffeaturesoffeachphasearefiflflustratedfinFfigure5.1.

Ffigure5.1: Mufltfi-flayeredfframeworkfforsecureSCADAcommunficatfion

Inourfframework,aunfiquesessfionkeyfisgeneratedfforeachconnectfionbetween

SCADAcommunficatfiondevfices.Theeflementsoffthfissessfionkeyaresecureflyshared

usfingasymmetrfickeycryptography.Thfisfiscaflfledthekeyagreementstage.Furthermore,

durfingthfisphase,thesender’sauthentficatfionandrecfipfientconfidentfiaflfityareaflso

vaflfidatedusfingtheprfivate-pubflfickeypafir. Moreover,HMACfisusedfformessage
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authentication and integrity. Once both the communication parties agree on the

reliable key exchange, further communications take place using symmetric cryptography.

The encryption of the original message is hashed, and subsequently, the symmetric

keys are generated to encrypt the message using the lightweight Vernam cipher. After

that, the cipher text and hash digest of this encrypted message are sent together

over the communication channel. At the other end, the receiver device validates

the message integrity using HMAC and then the cipher text is decrypted to receive

sender’s original message.

Since ICSs control field-site components at the plant floor, the activities related

to controlling and monitoring of the elements should be done securely and efficiently

[35]. For that, we have introduced two modules, namely, secure key exchange and

secure information exchange. Moreover, secure information exchange consists of

four methods, namely, Multi-Layered (ML) architecture, Random Prime Generator

(RPG), Prime Counter (PC), and Hash Chaining (HC). While ML and HC offer

very high security in SCADA networks, PC and HC are proposed for time-critical

applications. The RPG offers medium level security and availability.

5.3 Secure Key Exchange

The key agreement refers to three stages, namely, key generation at the sender side,

key distribution over the communication channel, and key extraction at the receiver

side.

5.3.1 Key Generation

During the key generation phase, a sender (MTU or RTU) uses three main elements,

namely, a Random Number (RN), Current Date & Time (CDT ), and Fraction of

Square Root of Prime number (FSRP ). Here, CDT and FSRP are used as secret

elements to generate the session key. The choice of these two key elements is based on

the property of generating true random numbers. CDT generates a random number

every microsecond and to make it more random, we choose FSRP , which returns a

non-terminating, non-repeating decimal number [69]. The session key (SK) is derived

by applying a hash function on both these elements by combining them, as in eq 5.1.
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Ffigure5.2:SecureKeyexchangemechanfismfforSCADAsystems

SK=HASH(CDT||FSRP) (5.1)

ThesesessfionkeyeflementsaresecureflydfistrfibutedusfingMACSALT.Thefindex

offFSRPfiscombfinedwfithKEYSALTtogenerateMACSALT,whereKEYSALT

fisderfivedbyXORfingCDTandFSRP.Thefformuflasaregfivenfineq5.2&5.3.

KEYSALT=CDT⊕FSRP (5.2)

MACSALT=KEYSALT||PRIMEfindex (5.3)

OnceSKandMACSALT aregenerated,RNfisencryptedusfingSKwhfichgenerates

cfipheroffrandomnumberC(RN),asfineq5.4.

C(RN)=RN⊕SK (5.4)

Inthfisprocess,theaflgorfithmproducesahashnotonflyffromtheencryptedRN

butaflsoffromtheCDT&FSRPkeyeflements.Thfisderfivatfionffoflflowstheprocedure
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of HMAC, as given in the eq 5.5 and is used to check message integrity.

HMACsender = HASH(C(RN), CDT ||FSRP ) (5.5)

5.3.2 Key Distribution

The bundle of the C(RN), HMAC of C(RN), and MACSALT is securely sent over

the communication channel using the private key of sender’s (Kspri) and public key of

receiver (Krpub) that validate the sender’s authentication and receiver’s confidentiality

as in eq 5.6.

Krpub(Kspri(C(RN), HMACsender,MACSALT )) (5.6)

5.3.3 Key Extraction

At the receiver side, the private key of the receiver and the public key of the sender

is applied to validate authentication and confidentiality as in eq 5.7.

Krpr(Kspu(C(RN), HMACsender,MACSALT ))) (5.7)

The elements ofMACSALT are used to generate FSRP and CDT . PRIMEindex

is used to extract the value of FSRP and CDT is obtained by XORing FSRP and

KEY SALT as shown below in eq 5.8-5.10.

MACSALT = KEY SALT ||PRIMEindex (5.8)

FSRP = FRAC(SQRT (PRIMEindex)) (5.9)

KEY SALT = CDT ⊕ FSRP (5.10)

Finally, the session key is derived by applying hash on CDT and FSRP as in eq

5.11.

CDT = FSRP ⊕KEY SALT (5.11)
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HMACreceiver = HASH(C(RN), CDT ||FSRP ) (5.12)

HMAC is computed at the receiver using C(RN), CDT & FSRP , as in eq.5.12

to compare with HMACsender to check data integrity. The HMAC of the sender and

receiver are checked, if both are equal it moves to the next step, or else the message is

discarded. The session key SK is then validated using CDT and FSRP as in eq.5.13.

The session key is XORed with C(RN) to get the RN as shown in eq.5.14.

SK = HASH(CDT ||FSRP ) (5.13)

RN = C(RN)⊕ SK (5.14)

The receiver will send an acknowledgment to the sender by encrypting RN + 1

using the same session key to validate secure key exchange. Figure 5.2 illustrates the

secure key exchange mechanism between SCADA devices, namely, MTU and RTU.

The proposed scheme uses RN, CDT, and FSRP to generate the session key (Ks)

for both communication devices, namely, MTU and RTU. However, during the key

exchange, these elements are not transferred openly, rather RN is encrypted by the key

generated using the combination of CDT & FSRP. Moreover, the modulo-2 operator

(XOR) is applied on CDT and FSRP to generate the keysalt which will be shared

over the communication channel along with an index of FSRP and the cipher text of

RN. The index of FSRP is considered as the root of trust for the entire scheme.

Furthermore, the Vernam cipher is used for symmetric key cryptography, which

requires a fresh key for each message during the encryption and decryption process.

This symmetric key is generated using the session key (Ks) and key parameters,

namely, CDT and FSRP, depending on the proposed approaches. The FSRP can be

generated using a random prime generator (Method 2) or a prime counter (Method 3).

Furthermore, hash chaining (Method 4) can be combined with any of these approaches

to generate a new fresh symmetric key for the Vernam cipher.
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5.4 Secure Information Exchange

In SCADA systems, the field site components are controlled and monitored using short

messages communicated between RTU and MTU. Based on the reading obtained from

the field control devices, namely, RTU, PLC, and IED, the SCADA master (MTU)

makes a proper decision and sends an appropriate signal to the field components

to operate plant machinery. Generally, the control messages are short in length

(typically 256 bits), which control the sensors and actuators of plant machinery.

For example, in water management systems, the signals used during communication

include OPEN/CLOSE the valve, SWITCH ON/SWITCH OFF the devices, the water

level tank, etc. [55]. Such systems operate using short messages. Hence the average

length of the control message consists of 24 to 32 characters (192 to 256 bits) for one

frame.

The Vernam cipher requires the same length for key and message. Moreover,

each communication message requires a distinct key for encryption and decryption.

To generate such a unique key every time, we have proposed two main approaches,

namely, multi-layered architecture, and hash chaining with FSRP. Moreover, both

these approaches are further divided in the multiple methods to generate a unique

value of FSRP, namely, random prime generator (RPG), and prime counter (PC).

Figure 5.3 illustrates the symmetric key generation process used to encrypt and

decrypt the message at both the communication endpoints. Both the sender and

receiver negotiate RN (random number), CDT (current date and time), and the index

number of FSRP (which acts as a seed for random prime generator/ prime counter)

to generate session key (Ks). Using RPG/PC, both the sender and receiver generate

a distinct FSRP for each message. Moreover, Blake2s (cryptographically secure hash

function [70]) is applied on the session key and FSRP to generate the encryption key

(Ke). Similarly, the receiver produces the decryption key (Kd) using the pre-shared

Ks and the value of FSRP. Note that, the value of the symmetric key is not only

depends on the previous key but also on the value of FSRP (which is generated using

RPG/PC). In the case of our multi-layered architecture, instead of two parameters,

both, MTU and RTU use three parameters, namely, CDT, FSRP, and Ks to generate

the symmetric key. These parameters are exchanged securely using MACSalt and

NTRUEncrypt public-key cryptography.
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Forourevafluatfion,theflengthoffthekeyfis256bfitsasBflake2sdependsona

32-bytewordsfize.Inthecaseoff256bfits<finputstrfing<512bfits,wecanrepflace

Bflake2swfithBflake2btogeneratethesymmetrfickey,whfichconsfistsoffa64-byteword

sfize.

ThecompfleteprocessdfiagramofftheproposedfframeworkoffsecureSCADA

systemsfisshownfinFfigure5.3.

Ffigure5.3:CompfleteprocessdfiagramoffsecurecommunficatfionbetweenMTUandRTU

TheffoflflowfingsectfiondescrfibesffourmethodstofimpflementsecureSCADAfframework

fforfinfformatfionexchange.

5.4.1 Hybrfid Mufltfi-flayeredArchfitecture

Wecanusethesamenomencflatureoffthesessfionkeyagreementfforffurthercommunficatfion

finwhfichafftersuccessffufldfistrfibutfionoffthesessfionkeythemessagefiscommunficated

betweentwopartfiesusfingbothsymmetrficandasymmetrfickeycryptography. The

dataencryptfionanddecryptfionareobtafinedusfingVernamcfipher.Thekeygenerator

offtheVernamcfipherffoflflowsthesameprocedureoffsessfionkeyderfivatfiontogenerate

thesymmetrfickeyatthesenderandrecefiversfides. Thesymmetrfickey,HMAC

andMACSALTarederfivedusfingFSRPandCDT.FurtherencryptedmessageC(M),
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HMAC and MACSALT are shared securely using asymmetric key cryptography. Here,

the complexity of the method is obtained by N * (Asymmetric Key + Symmetric Key)

during each session which provides high security with moderate availability. N is the

number of messages exchanged during the session.

The following methods describe the approach of symmetric key cryptography

instead of using a combination of public-private key pairs. After secure session key

and prime seed distribution, further encryption process can be carried out using one

of the three symmetric key-based proposed methods as listed below.

In this method, the seed of the prime index value is used to determine FSRP using

the next random prime number. Also, CDT and a hash of the input message h(M) are

determined to generate a symmetric key, HMAC and MACSALT. This information is

sent to the recipient over the communication channel. Using MACSALT and a random

number prime generator, the receiver can generate the symmetric key to decrypt the

data using the Vernam cipher. Here the complexity of the algorithm is measured

by Asymmetric key + N * Symmetric key for every session where asymmetric and

symmetric keys are used during session key distribution while the symmetric key

is used during secure communication. However, this approach is comparatively less

secure as the adversary could intercept the MACSALT to derive the keys such as

FSRP and CDT. The Algorithm steps are shown in the paper # 3 attached after the

Appendix.

5.4.2 Prime Counter

In this method, instead of random prime generator, we have used prime counter

which significantly increases the execution speed. The rest of the steps are the same.

The previous prime number is used to determine the next FSRP. Similarly, CDT

and a hash of the input message h(M) are used to determine the symmetric key,

HMAC, and MACSALT. This information is sent to the recipient. Using MACSALT

and prime counter, the receiver can generate a symmetric key to decrypt the data

using the Vernam cipher. In this approach, the adversary could also intercept the

MACSALT to derive the essence of the keys such as FSRP and CDT. The complexity

of an algorithm is measured by the Asymmetric key + N * Symmetric key for every

session. Consequently, the model provides good security with high availability.
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5.4.3 Hash Chaining

This proposed method is one of the robust solutions for SCADA systems which covers

all the security mechanisms. This approach not only provides high security but also

offers high availability. In this, the pre-shared session key is used as input of the

hash function to generate the next symmetric key. Moreover, the previous FSRP is

used to generate HMAC which can be derived independently at both the ends and

is used to check the integrity of the message. The generated symmetric key is then

used to encrypt and decrypt the message using the Vernam cipher. The complexity

of this method is based on the Asymmetric + N * Symmetric key cryptography. In

this proposed method, asymmetric key cryptography is used only once to distribute

the session key, however, further communication takes place securely using symmetric

key cryptography until the session has ended.

5.5 Experiments & Result Discussion

5.5.1 Algorithm selection of cipher suite for proposed framework

The choice of the algorithms to design the security framework generally depends on

the nature of the application. The communication of SCADA systems relies on a

real-time request-response mechanism. Moreover, SCADA field devices are equipped

with micro-controllers for processing information and have limited computational

power and resources. Consequently, identifying the most appropriate algorithms for

the proposed scheme is one of our implementation’s crucial steps. The identified

algorithms for our cipher suite should provide faster execution speed and be suitable

for deploying in an embedded system environment. The comparative analysis of

various algorithms was carried out using wolfSSL and libntru 0.5 cryptosystems on

Linux subsystem of Windows 10 with Intel Core i5-8300H 2.30GHz processor and

8 GB RAM. The wolfSSL is a lightweight and portable embedded SSL library that

is specially meant for IoT, embedded, and RTOS environments [71]. The libntru

0.5 is an open-source library that supports the implementation of the public-key

encryption scheme NTRUEncrypt in C language by following the IEEE P1363.1

standard [72]. Moreover, the proposed symmetric schemes are implemented on an

integrated development environment for Python called IDLE onWindows 10 operating
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system.

HASH Functions

In this framework, the hash function plays a vital role as it acts as a message

authentication code and is used to generate a symmetric key. To identify the secure

and computationally efficient function, we have compared various hash functions.

Based on the comparative analysis of computational speed presented in Table 5.1,

Blake seems to be most prominent.

Table 5.1: Comparative analysis of various Hash Functions

Algorithm Ex.Speed
(MB/sec)

MD5 340.729
RIPEMD 129.74
SHA 31.571
AES-256-CMAC 110.504
SHA2-256 152.863
SHA3-256 106.781
Blake2b 172.2
Blake2s 169.78

Symmetric Key Cryptography

Advanced Encryption Standard (AES) is the well-known symmetric key cryptography

used to design secure systems. AGA has used AES as a symmetric key component

in its standard protocol suite [73]. Nowadays, AES modes are preferred to secure the

systems owing to better security and faster execution speed. 3DES is also used in

traditional cryptosystems. In Table 5.2, we have compared the computational speed

of various modes of AES and DES with the proposed hash-based Vernam Cipher.

The computational speed of Vernam Cipher is calculated by adding the execution

speed of Blake2S hash with the speed of Exclusive-OR operation. The comparative

analysis shows that the hash-based symmetric key technique used in Vernam Cipher

is faster than other algorithms.
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Table 5.2: Comparative analysis of computational speed of various symmetric key algorithms

Algorithm Ex.Speed
(MB/sec)

AES-256-CBC-enc, AES-256-CBC-dec 94.565 , 88.169
AES-256-GCM-enc, AES-256-GCM-dec 25.596, 24.318
AES-256-ECB-enc, AES-256-ECB-dec 55.69, 63.067
AES-256-CFB 86.329
AES-256-OFB 71.146
AES-256-CTR 64.576
3DES 14.542
Vernam Cipher with Blake2s 157.45

Asymmetric Key Cryptography

Asymmetric key cryptography not only offers confidentiality but also ensures integrity,

authentication, and non-repudiation during communication. Some public key algorithms

such as Diffie-Hellman key exchange provide key distributions and secrecy, whereas

some provide encryption and digital signatures such as RSA, ECC, and NTRU [74].

We have compared various well-established public key algorithms, namely, RSA, DH,

ECC, and NTRU by considering the key size and total operations performed per

second. According to the output results presented in Table 5.3, NTRU outperforms

the other methods.

Table 5.3: Comparative analysis of the computational speed of various public key cryptography

Algorithm Key Size Mode Ops/sec

RSA 1024 Key Generation 12
RSA 2048 Key Generation 3
DH 2048 Key Generation 913
DH 2048 Key Agreement 500
ECC 256 Key Generation 523
ECDHE 256 Key Agreement 500
NTRU 1026 Key Generation 2153
NTRU 1499 Key Generation 698
NTRU 1615 Key Generation 801
NTRU 2066 Key Generation 345
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5.5.2 Computational speed of proposed framework

This section represents the calculation of the overall computational speed of the

proposed framework. We have considered the execution time of the major four

elements, namely, session key, symmetric key, HMAC, and asymmetric key. First,

we have calculated the time to generate and extract the session key. After that, we

computed the execution time of symmetric and asymmetric key generation, distribution,

encryption, and decryption. Finally, we have calculated the overall time by combining

it with the execution time to generate and extract the HMAC.

Total Execution Time

In order to achieve consistent results, we have measured the execution time of each

cryptographic component. The execution time of these elements is listed in Table 5.4.

Table 5.4: Considerable parameters of different cryptographic components

Notation Description Cost in ms

Tskg Time for a session key generation 0.06485
Tpc Time to generate Prime number Counter 0.00997
Trpg Time to generate random prime generator 0.5063
Tudt Time to generate universal date and time 0.00010
Tse Time for a symmetric encryption 0.000199
Tsd Time for a symmetric decryption 0.000996
Thash Time to generate HMAC 0.000001
Tex Time for a session Key extraction 0.0992
Takg Time for a asymmetric key generation 1.51025
Tae Time for a asymmetric encryption 0.073
Tad Time for a asymmetric decryption 0.1065

Moreover, Table 5.5 presents the mathematical equations that calculate the total

execution time of all the four methods, namely, ML, RPG, PC, and HC. In hybrid

approach, both symmetric and asymmetric algorithms are used to secure the information.

In contrast, in the other three approaches, once the session key has been shared

between two communication devices, only the symmetric key algorithm is used for

performance improvement. Furthermore, the execution time of these three symmetric

key algorithms is varied due to how they generate the keys to secure the information.

Table 5.6 represents the total execution time of all four proposed methods by
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Table 5.5: Total execution time calculation

Method Delay

Multi-layered Approach N * (Tskg + Tex + Takg + Tae + Tad + Tsym
+ Tse + Tsd + Thash)

Symmetric Key Approach Tskg + Tex + Takg + Tae + Tad + N * (Tsym
+ Tse + Tsd + Thash)

Random Prime Generator Tsym = Trpg + Tudt
Prime Counter Tsym = Tpc + Tudt
Hash Chaining Tsym = Thash

Table 5.6: Total Execution Time in Seconds

BIT STREAM Hybrid RPG PC HC
(256 bits)

1 0.0026 0.0052 0.0019 0.0016
10 0.0072 0.0437 0.0056 0.0026
50 0.0373 0.2806 0.0285 0.0046
100 0.0592 0.4111 0.0415 0.0136
500 0.3453 2.3248 0.2557 0.0635
1000 (32KB) 0.6203 6.5663 0.4410 0.1309
5000 (160KB) 3.3980 32.9295 2.5007 0.6867
10000 (320KB) 6.1889 50.8831 4.3941 1.3271
50000 (16MB) 30.2294 257.9262 21.2546 2.2456
100000 (32MB) 61.1824 560.3114 43.2326 10.4327

considering the major four parameters, namely, key generation, key extraction, encryption,

and decryption. According to the results, the execution time of HC is lower than the

other three methods and has proven the most efficient among all. Moreover, PC and

ML approaches are more prominent than RPG. Comparatively, RPG takes more time

because of its intricate design to generate a random prime number based on a seed

value.

5.5.3 Calculation of Key storage cost & randomness evaluation

Since key generation, distribution, and extraction are periodic and costly operations,

the SCADA network should have fewer stored keys on each field control device. For

this reason, we have identified the storage cost of our proposed key management

scheme. You can find a summary of the storage cost in the attached paper #3 by
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considering the three types of communication, namely, point-to-point, broadcast, and

multicast amongst MTU, Sub-MTU, and RTU. The total cost of keys is calculated

at each SCADA location, where m denotes the number of sub-MTU’s keys, and r

represents the maximum number of RTU’s keys.

Many cryptography applications may need to meet more robust random number

generator requirements when the randomness of the keys is one of the most critical

factors for that system. We have used the Vernam stream cipher for our proposed

framework, which requires a distinct and random key to secure the information.

In particular, the key generator’s output must be unpredictable. Hence, we have

evaluated the proposed symmetric key generator using the National Institute of

Standards and Technology (NIST) statistical toolkit. Figure 5.4 presents all 16 tests

and corresponding P-values for the proposed symmetric key generator for the Vernam

cipher. Our proposed key generator passes all the statistical tests and is proven to

be random.

Figure 5.4: Randomness assessment of symmetric key
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5.6 Performance Analysis

5.6.1 Security Analysis

In this section, the proposed framework is analyzed by considering various security

mechanisms, namely, authentication, confidentiality, integrity, availability, and scalability.

Moreover, the evaluation is extended by targeting various attacks and corresponding

prevention mechanisms.

1. Message Integrity

• Multi-layered hybrid architecture using symmetric and asymmetric key

cryptography offers integrity.

• Vernam stream cipher provides resistance to cryptography attacks [74].

• Randomness of Key offers immunity to collision and preimage resistance

attacks [75].

• Dynamic Salt offers resistance to rainbow table attack and dictionary

attack [75].

• NTRU-based public key cryptography offers resistance to quantum attacks,

brute force, and meet-in-the-middle attacks. It also prevents the system

from data harvest attacks [76].

• HMAC provides immunity against length extension attacks [77].

2. Authentication, Confidentiality

• Public key of the sender and private key of the receiver of NTRU-based

public key cryptography provides the sender’s authentication and recipient’s

confidentiality.

• HMAC offers message integrity and authentication.

3. High Availability – Faster execution

• Once the session key distribution is established using a hybrid method,

further communication will take place using symmetric key cryptography

that increases the computation speed.
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• Symmetric key generation using hash chaining and prime counter offers

high execution speed.

• Use of Vernam stream cipher uses modulo operation for encryption and

decryption which requires only 4 cycles in hardware implementation [78].

• NTRU is one of the fastest public key cryptography compared to well-known

methods such as RSA and ECC [79].

• HMAC is derived using the same components used to generate the key.

This reusability of elements reduces the computational time.

4. Scalability

• Same symmetric key cryptography (Vernam cipher) is used for both encryption

and decryption.

• Authentication and confidentiality are established using public-private key

pairs amongst communication parties.

Table 5.7: Comparative analysis of storage cost of keys

Key Management Schemes MTU Sub-MTU RTU

SKE [4] m(1+r) 1+r 1
SKMA [51] m(1+r) 1+r 1
ASKMA [52] 2m+mr r+logm 2+logr
ASKMA+ [14] m 1+r+logm 1+logr
Symmetric [54] r+1 - 2
Symmetric [54] r+1 - 2
Hybrid [18] m+2 2r+1 1+logr
CKMI [55] 2+r+m 2+r 1
Proposed Algo m+1 r+2 2

5.6.2 Storage cost

The periodic session key agreement is a crucial step in SCADA communication that

offers key refreshments. However, field control devices have limited power and memory

requirements. Hence, an effective key agreement scheme with fewer stored keys can

significantly improve the efficiency of SCADA networks. Many key management and
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agreement schemes have been proposed to address the problem of key storage costs.

We have compared the key storage cost of our proposed scheme with various published

techniques, as presented in Table 5.7.

Table 5.8: Comparative Analysis of various cipher suites

Cipher Suite Avg Time
(ms)

AGA ECDHE, RSA, AES-128, GCM, SHA256 4.14
AGA ECDHE, ECDSA, AES-128, GCM, SHA256 3.94

RSA, AES-128, CBC, SHA1 3.81
RSA, AES-128, CBC, SHA256 3.83
RSA, AES-256, CBC, SHA1 3.82
RSA, AES-256, CBC, SHA256 3.85

Multi-layered (NTRU, Vernam Cipher, Blake2s) 2.61
Random Prime Generator (NTRU, Vernam Cipher, Blake2s) 5.25
Prime Counter (NTRU, Vernam Cipher, Blake2s) 1.91
Hash Chaining (NTRU, Vernam Cipher, Blake2s) 1.68

5.6.3 Execution speed

Table 5.8 depicts the comparative analysis of the proposed scheme with various

state-of-the-art techniques by implementing various cipher suites using the wolfSSL

library. AGA has proposed two cipher suites for secure SCADA communication

including the bundle of ECDHE, AES, RSA, and SHA256 and ECDHE, AES, ECC,

and SHA256 for authentication, confidentiality, message integrity, and digital signature

[73]. The cipher suite RSA, AES, CBC, and SHA is used in TLS communication,

whereas we have used the NTRU, Vernam Cipher, and Blake2s for our proposed

framework. The average execution time of our proposed cipher suite is comparatively

better than other protocol standards.

5.7 Deployment of SCADA Security solution on a Hardware Test bench

This section covers the design and development of a small testbed of SCADA/IoT-based

Industrial Control Systems along with the integration of the security module proposed

in the previous section. The implementation consists of three major components,
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namely, plant floor devices, control center elements, and communication protocols.

We have developed three small demos, namely, control and monitor the speed of the

servo motor using the HMI (Human Machine Interface) of VTSCADA from a remote

location, water distribution system to control the water level and operate the valves

and pumps, monitor the voltage level of the power systems. The simulation setup

uses sensors, actuators, a Modbuspal simulator, and micro controls (Arduino, GBK

Kit, Raspberry Pi) as plant components, while WSL and VTSCADA are used as

control center devices. The communication is carried out using two communication

protocols, namely, MQTT for IoT Devices, and Modbus for ICS components.

1. Plant Floor Components

• Sensors & Actuators

• GBK Kit, Arduino Micro-controller

• Raspberry Pi, Onion-Omega2

• Modbus Simulator

2. Control center Components

• WSL Terminal, virtual Machine for Linux OS: MTU

• VTSCADA – HMI, data historian, Alarm System

3. Communication Protocols

• MQTT (IoT Devices)

• Modbus (ICS Devices)

Figure 5.5 demonstrates the concept of testbed design for secure SCADA communication.

We have considered the communication between PLCs and MTU where PLC is

situated on the plant floor and MTU at the control center. At the control center,

VTSCADA Light is used for various purposes such as controlling and monitoring the

plant floor devices remotely via HMI, maintaining the log files at reporting server, and

generating alerts for suspicious events. Here, we have configured the MTU Server in

the Windows subsystem of Linux (WSL). The HMI is connected to MTU Server using

an HDMI cable (wired connection). The proposed security module is deployed in the
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Figure 5.5: Test bench design for secure SCADA communications

MTU Server for secure communication with plant floor devices. However, owing to

legacy inherited security loopholes of Modbus protocol, the internal intruder has the

ability to intercept the traffic between MTU and HMI. To protect the system from

such internal attacks, deployment of IDS is essential. We have proposed lightweight

IDS systems for the control center and plant floor in one of our previous modules.

Figure 5.6: Flow Diagram of Proposed Framework for SCADA Test bench

At the plant floor, the same security module is deployed in Raspberry Pi which

acts as a secure system-in-chip component for field site devices such as PLCs, IEDs,

and RTUs. The MTU can communicate with field site components to control and

monitor the plant floor devices via our proposed lightweight security module deployed



76

in the Raspberry Pi. SCADA field site components include legacy inherited security

weaknesses and have very less computational and memory capabilities. Such devices

cannot handle the security requirements, and hence additional components will need

to be added between the field site components device and the network to handle the

security protocol requirement. Raspberry Pi is an affordable and easily obtainable

platform for prototyping, performing ladder logic testing, and integrating PLCs,

RTUs, and IEDs in real time for various industrial control systems and cybersecurity

concepts. Though raspberry Pi and field site components used a wired connection,

there is a chance of interception owing to Modbus protocol and this could be prevented

by deploying plant floor IDS proposed in the previous module.

Figure 5.6 represents the flow diagram of the proposed SCADA test bench. Secure

communication is established using defense-in-depth architecture between field site

components and the control center. This hardware test bench is currently under

construction to experimentally evaluate the proposed framework.

5.7.1 Case Study 1: Controlling Servo Motor remotely using

VTSCADA and MQTT Protocol

Components: Grove Beginner Kit (GBK), Servo Motor, Rotary Potentiometer,

LED & Buzzer (Alarm System), VTSCADA (Control Center), MQTT Protocol

Figure 5.7: Layout of testbed

• Controlling the components from HMI to the Plant floor

1. Sending data from VTSCADA to Rotate the servo motor.
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Figure 5.8: Experimental Setup

2. Setup the Alarm system according to the set points

– If the input is greater than 80 then the LED will be ON & Buzzer

starts buzzing

– Alert the people working on the plant floor.

– Prevent malicious activities – Data modification, MiTM attacks.

• Sending Data from Plant Floor to Control Center

1. Sending data from Rotary Potentiometer to VTSCADA

2. Setup the Alarm system according to the set points on HMI

– If the input is greater than 80 then Buzzer starts buzzing and indicates

on the alarm page

– Indicates the high alert to technicians/operators at the control center.

5.7.2 Case Study 2: Water Distribution System

Devices Used: Sensors, Actuators, Arduino, Raspberry Pi, WSL, VTSCADA

Communication Protocol: MQTT

Security Module: deployed in Raspberry Pi

We have designed a small testbed for water management & distribution systems.

In that, the communication takes place using the MQTT protocol amongst all the

devices. We have used water-level sensors which are connected to the Arduino

micro-controller to measure the level of the water. Here, we have considered three

tanks consisting of three water level sensors. Further, the Arduino controller is
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Figure 5.9: Sensors and Microcontrollers

connected to the Raspberry Pi to establish secure communication. The status information

of the level of the water has then transmitted securely to the WSL of the windows

which acts as an MTU Server. At the SCADA server, the information is decrypted

using the same security module and displayed on HMI (VTSCADA) as shown in

Figure 5.10.

(a) Initial Stage (b) After Simulation

Figure 5.10: Human Machine Interface (VTSCADA)

5.7.3 Case Study 3: Voltage Level Indicators for Power system

Plant Floor Devices: ModbusPal Simulator (Automation tool – Voltage regulators,

PLC (4 Registers, 2 Coils), Raspberry Pi

Control Center Devices: MTU Server (WSL), VTSCADA (HMI, Alarm System,

Reporting logs)

Communication Protocol: Modbus - TCP/IP (Port – 502)
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Security Module: Python Code - Hash Chaining Lightweight Cipher

Figure 5.11: Modbuspal Simulator - Register values

Figure 5.12: Automation tool for input Voltage generator

Using automation tool of the Modbuspal simulator, we have generated the random

input voltage for one of the four registers of PLC. Another three registers contain the

values of output voltage, low voltage alarm, and high voltage alarm respectively

as shown in Figure 5.11. The values assigned to these registers are dynamic and

generated by the simulator as depicted in Figure 5.12.

The Modbus protocol doesn’t have security features and hence the data can be

visible during transmission as shown in Figure 5.14. We have captured the Modbus

traffic using the loopback address. Further, the data has been encrypted using the

proposed security algorithm (hash chaining method) at Raspberry Pi before it leaves

the system as shown in Figure 5.15. The encrypted status information of registers is

sent to MTU. The received data is decrypted at MTU as shown in Figure 5.16 and

further transmitted to the HMI of VTSCADA as demonstrated in Figure 5.13.

The simulator works on Modbus TCP/IP protocol using port number 502. We

have also created 2 coils to enable output & for safety override. The status information



80

Figure 5.13: HMI view of Voltage Indicator on VTSCADA

Figure 5.14: Modbus traffic captured using loopback address

is securely communicated between PLC and MTU by deploying security modules at

both the communication ends, namely, raspberry pi at the plant floor, and WSl

at the control center. The purpose of this simulation is to demonstrate secure

communication between PLC and MTU over the internet.

5.7.4 Performance evaluation of proposed security methods on

Raspberry Pi

This section represents the measurement of computational speed and memory utilization

of Prime Counter and Hash Chaining (two of the most promising proposed security
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Figure 5.15: Encyption applied on PLC data

Figure 5.16: Decryption of received data at MTU

methods - described at beginning of this chapter) on hardware (Raspberry Pi, version

3 & 4). To calculate the execution time of each method we have considered the

overall time of each module to generate and extract the symmetric key along with

the encryption and decryption time taken by the Vernam stream cipher.

In Table 5.9, we present the time of two proposed symmetric key cryptography

methods (in milliseconds) for various sizes of input streams. Based on the results, hash

chaining seems to be the most efficient in terms of computational speed. Moreover,

Raspberry Pi 4 has proven efficient in terms of processing power compared to Raspberry

Pi 3. The average execution time to extract the MAC and to distribute the MAC

along with the session key is shown in Figure 5.17.

Moreover, we have computed the average execution time of each phase of the

proposed module by considering 10,000 binary strings. As depicted in Table 5.10,

we have considered four different phases, namely, symmetric key generation, data
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Table 5.9: Total execution time of proposed security algorithms on Raspberry Pi

Bit Strings
Prime Counter Time (MS) Hash chaining Time (MS)

Raspberry PI - 3 Raspberry PI - 4 Raspberry PI - 3 Raspberry PI - 4
1 1.960 0.923 0.678 0.275
10 19.052 7.214 6.536 2.413
50 82.516 31.728 34.630 12.144
100 160.039 57.815 66.740 26.14
500 802.070 309.366 303.382 121.661
1000 1441.089 540.111 600.563 236.421
5000 8019.959 3119.473 3226.179 1216.03
10000 15775.525 6140.058 6319.000 2438.607

Table 5.10: Computational speed of various phases of proposed security algorithms on Raspberry
Pi (in milli seconds)

Phases
Prime Counter
Time (MS)

Hash Chaining
Time (MS)

Raspberry Pi 3 Raspberry Pi 4 Raspberry Pi 3 Raspberry Pi 4
Key Generation 0.772 0.472 0.172 0.062
Data Encryption 0.211 0.111 0.1412 0.121
Data Decryption 0.823 0.132 0.2411 0.111
Key Distribution 1.831 0.83 1.676 0.82

Table 5.11: Comparison of memory utilization of proposed security algorithms on Raspberry Pi (in
bytes)

Memory Parameters
Prime Counter Hash chaining

Raspberry Pi 3 Raspberry Pi 4 Raspberry Pi 3 Raspberry Pi 4
RSS 39931904 30081024 39997440 30195712
VMS 53587968 38297600 53583872 38039552
Shared 10436608 8167424 10518528 8278016
Text 3760128 3760128 3760128 3760128
Data 29802496 22618112 29798400 22360064
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Figure 5.17: Average execution time of proposed security module on Raspberry Pi

encryption, data decryption, and session key distribution along with MAC to compare

the execution time of two methods on two versions of Raspberry Pi.

For memory utilization, we have used psutil (Python system and process utilities)

tool, a cross-platform library. This tool retrieves information on running processes and

system utilization in Python such as CPU, memory, disks, networks, and sensors. It is

mainly used for system profiling and monitoring the running processes. Particularly,

we have used the memory info function to retrieve the process memory utilization

from total physical memory. The RSS (resident set size) represents non-swapped

physical memory utilization. VMS (Virtual Memory Size) is the total amount of

virtual memory a process used during computation. Shared memory is used by

multiple processes. The text represents the amount of memory devoted to executable

code. And, the data field represented in Table 5.11 indicates the amount of physical

memory devoted to other than executable code. The size of these parameters is in

Bytes.



Chapter 6

Concluding Remarks

The proposal covers three major elements of the security of SCADA systems, namely,

vulnerability assessment, intrusion detection and secure communication.

For vulnerability assessment, Onion Omega2 (a small embedded Linux server) is

taken as a case study component that is used for building SCADA/IoT systems. While

it provides efficient functionality, it is important to be aware of its vulnerabilities and

built-in security features. We have identified product-level vulnerabilities of Onion

Omega2 using scanners and penetration tools. This helped us to identify the threats

and vulnerabilities of Onion Omega2 and measure the level of risk. The vulnerabilities

include missing patches, insecure system configurations, and other security-related

updates. The identified vulnerabilities can either be fixed by the vendor and/or

network administrator/engineer.

We have presented GBFS based WFI Scoring model for plant floor and RFE-

XGBoost-based feature selection approach along with the majority vote-based ensemble

method to classify normal and attack events at a control center. The experimental

results reveal that the proposed framework fares well in terms of accuracy, detection

rate, precision, and recall. Moreover, the proposed model outperforms some of the

state-of-the-art published techniques. The model offers a blend of effectiveness with

precision, as it uses a limited number of stable features, and the classification is

carried out based on combined predictions of the nine most promising classifiers.

Moreover, this combination requires limited computational cost, which is one of the

crucial factors for mission-critical applications.

A robust solution to strengthen the security of ICSs against cyber-attacks is a

crucial requirement in the design of SCADA systems. Through this work, we aim to

cover the protection of the industrial control system landscape by offering a low-cost

and robust framework for SCADA networks, which protects them against various

cyber-attacks. In this section, we have proposed a session key agreement in addition

84
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to lightweight multi-layered encryption techniques. The framework combines both

symmetric and asymmetric cryptography to achieve high computational speed by

covering all the security mechanisms. This security model is proposed to enhance the

security of various industrial sectors such as water and sewage plants, power stations,

chemical plants, oil industries, product manufacturing units, and transportation systems.

The successful deployment of this model will allow operators and technicians to

monitor and control the plant devices remotely as it will protect the entire system

from potential breaches.
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Gradient Boosting Feature Selection With Machine
Learning Classifiers for Intrusion

Detection on Power Grids
Darshana Upadhyay , Jaume Manero , Marzia Zaman , and Srinivas Sampalli , Member, IEEE

Abstract—Smart grids rely on SCADA (Supervisory Control
and Data Acquisition) systems to monitor and control complex
electrical networks in order to provide reliable energy to homes
and industries. However, the increased inter-connectivity and
remote accessibility of SCADA systems expose them to cyber
attacks. As a consequence, developing effective security mecha-
nisms is a priority in order to protect the network from internal
and external attacks. We propose an integrated framework for an
Intrusion Detection System (IDS) for smart grids which combines
feature engineering-based preprocessing with machine learning
classifiers. Whilst most of the machine learning techniques fine-
tune the hyper-parameters to improve the detection rate, our
approach focuses on selecting the most promising features of
the dataset using Gradient Boosting Feature Selection (GBFS)
before applying the classification algorithm, a combination which
improves not only the detection rate but also the execution speed.
GBFS uses the Weighted Feature Importance (WFI) extraction
technique to reduce the complexity of classifiers. We imple-
ment and evaluate various decision-tree based machine learning
techniques after obtaining the most promising features of the
power grid dataset through a GBFS module, and show that
this approach optimizes the False Positive Rate (FPR) and the
execution time.

Index Terms—SCADA systems, power grids, random for-
est, gradient boosting, feature selection, cyber security, network
intrusions.

I. INTRODUCTION

POWER grids are the basic infrastructure that support our
economies and daily lives by providing and sustaining a

continuous supply of electricity. They play a fundamental role
in connecting our industries and homes with locations far away
from where the electricity is generated, while assuring the
quality of the electricity supply at the point of consumption.
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Fig. 1. SCADA System Architecture for Power Grids Legend: PLCs:
Programmable Logic Controllers, RTUs: Remote Terminal Units, HMI:
Human Machine Interface, IEDs: Intelligent Electronic Devices.

These systems are complex and distributed in nature
and comprise several components such as power lines,
transformers, sensors, phasor measurement units (PMUs) and
sub-stations connected to supervisory control and data acquisi-
tion (SCADA) systems for real time monitoring, management
and control. Figure 1 illustrates the block diagram of a SCADA
architecture for a power grid, showing SCADA components
such as SCADA Master, HMI, PLCs, RTUs, and various power
grid components such as IEDs, substation switch and control
room components.

Generally, the sensors and PMUs at power stations moni-
tor different attributes of electrical signals continuously and
transmit that to the field control devices such as PLC, RTU,
or IED. Communication between the field control devices and
the SCADA master takes place via communication links and
switches. The SCADA master is located at the control center.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://
creativecommons.org/licenses/by-nc
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The field control devices supply digital status information
to the SCADA Master to determine acceptable parameter
ranges. This information will then be transmitted back to the
field device(s) where action may be taken to optimize the
performance of the system. Moreover, the status information
is stored in a data historian and displays it on an HMI (Human
Machine Interface), which provides centralized monitoring and
system control.

Originally, power grids were designed to generate and dis-
tribute the electricity in an efficient and timely manner, rather
than focusing on security aspects of the critical infrastruc-
ture of the system. However, the increase of inter connectivity
and remote accessibility places power grids under the risk of
internal and external attacks.

Real-time cyber attacks can disrupt entire power grids. For
example, in 2003 the Davis-Besse nuclear power plant near
Oak Harbor, Ohio was infected by a Slammer worm that
traveled from a consultant’s network to the process control
network and generated unwanted traffic [1]. As a result, the
plant personnel could not access the safety parameter dis-
play system for around five hours which showed sensitive
data about the reactor core, temperature, and radiation sen-
sors of the power plant. In 2006 the Browns Ferry nuclear
plant in Athens, Alabama was shut down after the failure
of critical reactor components and controllers due to a cyber
attack on their internal network [2]. In 2008, the second unit
of the Hatch nuclear power plant in Baxley, Georgia experi-
enced an automatic shutdown due to routine software update
to a single computer on the plant floor. The update was per-
formed to synchronize data between the plant and business
networks [2]. Another incident in an Iranian nuclear plant was
reported in 2011 where the plant process was interrupted due
to the Stuxnet worm. This attack was initiated by connecting
an infected USB drive to the Programmable Logic Controller
(PLC) at the plant floor [3]. The Ukraine power plant cyber
attack was reported in 2015 [4]. This was the first known suc-
cessful attack on power grids where attackers were able to
disrupt electricity supply to the end users. Thus, power grid
attacks are one of the most critical issues in industrial con-
trol systems and it is important to protect them by applying
adequate safety measures [5].

General safeguards include defense-in-depth architecture
which separates the control and corporate network traf-
fic, strong access control and authentication mechanisms,
restricted perimeters using DMZ (demilitarized zone), vulnera-
bility assessment and risk management systems [6]. However,
these safeguards are difficult to deploy and maintain owing
to legacy-inherited security loopholes and restrictions [7].
Therefore, these relevant preemptive measures are not suffi-
cient to protect the power grids from cyber attacks. Additional
protection layer is also required which detects and prevents the
system from malicious events and threats.

Generally, packet filtering and identification of threats are
key to securing these systems. However, traditional firewalls
do not always fulfill all the security requirements of critical
infrastructures. For example, in 2019, the western U.S. power
grid infrastructure was hacked. The intruders created periodic
blind spots for grid operators for about 10 hours, by identifying

a vulnerability in the firewall configuration [8]. Therefore, the
design and development of sophisticated and accurate intru-
sion detection and prevention systems are one of the primary
objectives to secure power grids.

Researchers and security experts have proposed various
intrusion detection and prevention approaches to ensure
secure and safe operations of power grids. A signature-based
approach is used for pattern matching to determine frequent
signatures of malicious packets [9]. In this approach the signa-
ture of every incoming packet is compared with all the stored
signatures to identify threats. This approach is valid for known
intrusions but is unable to identify zero-day attacks [9].

More recently, data mining, clustering and statistical signal
processing approaches have been used for anomaly detection.
These techniques are effective compared to pattern-matching,
but usually generate a high level of false-positive alarms [10].
Therefore, there is a need for better techniques that detect
intrusions from real incoming traffic. Machine Learning and
Deep Learning have stronger pattern recognition capabilities
than standard approaches. These techniques train and test
the model according to real network traffic to detect anoma-
lies with better precision and generate a smaller number of
false-positive alerts. Some of the most prominent machine
learning techniques include decision trees, Bayesian, genetic
algorithms, neural-networks and support vector machines [11].

Decision tree algorithms, which make decisions using bias
and variance analysis mechanisms are one of the powerful
supervisory machine learning techniques. Furthermore, ensem-
ble methods use the principle of combining weak learners to
obtain a stronger predictive model for better prediction and
performance. Ensembles can be obtained by boosting, which
is a specific mechanism where learners gradually learn from
the previous weak learners to reduce the overall loss function.
Moreover, Gradient Descent is used to optimize the overall
tree selection. This combined approach provides a powerful
method for identification and pattern recognition capabilities
for structured data [12].

Our proposed approach uses the Gradient Boosting algo-
rithm as the base classifier to detect malicious activities in
power grids. To solve the classification and regression prob-
lems, the ensemble Gradient Boosting algorithm has proven
to be more efficient than traditional boosting approaches [13].
The ensemble Gradient Boosting algorithm is an ensemble
learning method based on a combination of additive models
(weak learners), which can gradually learn from the previous
misclassifications to create a stronger learning model [14].
This algorithm has been complemented with a feature selection
process that increases the overall performance by extracting
the most relevant features from the input data.

The proposed technique has been developed using various
library functions of the open source library scikit-learn [15].
The library offers various classification, regression, and clus-
tering algorithms. Table I summarizes the general scientific
meanings of the software implementation terms used in this
article.

The major contributions of this article are as follows.
1) We use the gradient boosting weighted feature impor-

tance scoring model and tune the Num_trees parameters
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TABLE I
GENERAL SCIENTIFIC MEANINGS OF SOFTWARE

IMPLEMENTATION TERMS

to identify the top important features. To make it more
efficient, we merge these two concepts to select the
most Promising and common features from the exist-
ing datasets that reduce the overhead and increase the
execution speed for SCADA based power grids.

2) We derive 15 most promising features from the binary
class and apply the same features to the rest of the three
categories, namely, three class, seven class, and multi
class, to evaluate the performance of the feature selection
module.

3) We evaluate eight different tree-based algorithms to val-
idate the effectiveness of the selected features for the
classification of various power system attacks.

4) We perform a comparative analysis of eight tree-based
classifiers and identify the top three tree-based classifiers
according to multiple performance metrics.

5) We compare the accuracy of proposed methodology with
published state-of-the-art techniques.

The rest of this article is organized as follows. Section II
describes related research in the area of power grid secu-
rity by considering various attacks and protection schemes.
The proposed intrusion detection system framework based
on Gradient Boosting Feature Selection is introduced in
Section III. Section IV covers algorithm conceptualization
and mathematical proof of our approach. Section V describes
the proposed mechanism of feature selection by combining
regularization strategies with Weighted Feature Importance
metrics. Section VI presents the complete experimental setup,
evaluations, result-analysis and comparative studies of various
tree-based machine learning techniques performed on power
grid datasets. Conclusion and future work are provided in
Section VII.

II. BACKGROUND AND RELATED WORK

Many researchers have proposed different types of intru-
sion detection systems (IDSs) according to the need of

securing various components in power grids. For example,
one approach is specifically focused on security of the RTU
and the PLC, as these devices are easy targets for cyber
attacks [16]. A real-time attack with malware running on a
PLC was demonstrated by black hat researchers in 2016 [17].

Malicious cyber-attacks have costly consequences in power
grids, and as a result the grid operators are increasingly invest-
ing in IDSs. IDSs are typically based on the principle that
attacks show different behavior and patterns from the normal
traffic [18]. In this sense the classification problem can be
reduced to a pattern recognition activity. To identify mali-
cious behavior, identifying a pattern that differs from the
normal flow is required. The traditional approach is to develop
a signature of the attack and recognize this signature. This
method requires extensive manual work as the signature is
manually added to the database when the attack is identified
and its signature extracted. A more sophisticated approach is
to use machine learning to perform the pattern recognition
process [11].

Feature selection is also known as dimensionality reduc-
tion, which is used to improve the accuracy of estimators and
boost the performance of the high-dimensional datasets. The
feature selection techniques are mainly categorized into four
types, namely, Variance Threshold (VT), Univariate Feature
Selection (UFS), Recursive Feature Elimination (RFE) and
Model based feature selection. VT is a simple baseline
approach that removes all the variance which does not meet
the threshold, whereas UFS follows the method of a statistical
test to identify the best features [19]. In the UFS approach, the
features are selected by either comparing false positive rates
or obtaining scores or percentile of the given features [20].
Moreover, the configurable strategy of UFS allows a com-
bination of two approaches, namely, univariate selection and
hyper-parameter search estimator.

On the other hand, RFE selects the features recursively
by comparing the outcome of a larger set with the smaller
set while training the dataset [21]. This technique is more
efficient in terms of estimators’ accuracy scores but compu-
tationally costlier than VT and UFS. Model based feature
selection method is a meta-transformer that uses the WFI scor-
ing model to remove unimportant features according to the
threshold value [22]. This is comparatively faster than other
techniques as feature importance score is obtained during tree
construction. Moreover, this method can easily be merged with
other estimators, such as tuning the parameters.

To identify top features, we have used a gradient boosting
based WFI scoring model to discard the irrelevant features
along with Num_trees to tune the parameters. This approach
improves not only the accuracy of the tree-based classifiers
but also the execution speed.

Several machine learning approaches have been tested to
filter malicious packets, for instance, K-nearest neighbours
(k-NN) is quite effective, since its main characteristic, is
being a ‘lazy learner’ - it does not contain the trained model
but builds it real-time by learning from the nearest neigh-
bours - is very well aligned to this task. However it has
high performance requirements and may have fitting issues for
imbalanced small datasets [23]. Other tested approaches such
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as Support Vector Machines (SVM), which maps the inputs
into another dimensional space, offer good results, but are
costly to train. Neural network approaches have also shown
strong representational capabilities, but have not yet been
widely applied in commercial applications [11].

In the classification field, and for structured data inputs, the
gradient boosting family of algorithms shows improved repre-
sentation capabilities [24]. This approach combines boosting
with decision trees techniques. Specifically they combine ran-
dom tree refinements with boosting techniques’ optimization.
Variants like Gradient Tree Based Boosting (GTBM) or the
recently developed XGBoosting (Extreme Gradient Boosting)
are becoming tools of choice in many applications [24].
However their effectiveness has not been widely studied on
various IDS applications, which is the main motivation for
this work.

Furthermore, power grid SCADA systems rely on real time
request response mechanisms to operate the sub-station com-
ponents accurately by consuming minimal CPU and battery
resources. For such time-critical systems, the deployed intru-
sion detection system should act as quickly to capture mali-
cious activities using minimal resources in a given time period
for larger-scale deployments. Our proposed model leverages
all the competencies for such systems. The model offers a
combination of efficiency with precision, as it reaches high
accuracy levels while using a limited amount of resources.
This combination makes this model a good fit for mission
critical applications or for large sets of disseminated SCADA
devices, that have limited computing availability for filtering
mechanisms, and both these properties fit very well with the
power system scenario.

III. FRAMEWORK FOR A GBFS BASED INTRUSION

DETECTION SYSTEM

This section presents the proposed framework for an intru-
sion detection system that distinguishes normal and malicious
events by analyzing SCADA traffic on power grids. The
proposed framework operates in three phases, namely, pre-
processing the data, feature selection, and anomaly detection
using a classification approach. The elements for each phase
are illustrated in Figure 2.

During the data preprocessing phase, data cleansing, fea-
ture mapping and feature normalization are applied to the raw
dataset to obtain filtered data. Then the Gradient Boosting
Feature Selection approach is applied on filtered data to select
the most promising features from the entire dataset dynam-
ically. Since power grids use a complex mix of SCADA
systems to control field-site components, network monitoring
devices such as SNORT and Syslog are used to capture the
different types of features [25].

Usually, real-time data obtained from sensors or real-time
systems always presents some consistency issues, the signal
is lost, or the measuring devices get off the scale readings at
some point. For this reason, we need to do a data cleansing
operation to remove incorrect data. We remove infinities and
NaN values, looking for empty sequence points that will be
avoided by the algorithms.

Fig. 2. Framework for a GBFS Based Intrusion Detection System.

Furthermore, in order to extract the relevant features, we
apply a Gradient Boosting Feature Selection which uses
Weighted Importance Feature extraction method to select the
most promising features. This approach helps to improve the
computational speed and also assists in providing a precise
outcome for anomaly detection. Moreover, reduction in fea-
tures helps in consuming less memory while training and
testing the dataset during classification to classify normal and
attack events.

IV. GRADIENT BOOSTING AND XG BOOSTING THEORY

In this work, we have used the combination of two main
concepts, namely, the gradient boosting WFI scoring model
and Num_trees for feature selection, and XGBoost as one of
the classification methods.

One of the most efficient techniques of the tree-based
ensemble method is called boosting, which stores the labels
and weights of the leaf nodes that make the prediction inter-
pretations easy to handle. Gradient boosting [26] is a practical
approach proposed by Chen and Guestrin [24] and is consid-
ered as one of the algorithms of choice in machine learning.
We can obtain a strong learner by combining weak learners
during the gradient boosting process. In this technique, the
classification is dependent on the residuals of the previous
iteration where the impact of each feature is evaluated sequen-
tially until a target accuracy is obtained. The residuals are
calculated by a Loss function L(φ) that is optimized using
gradient descent. The final result φ(X ) is obtained by the addi-
tion of the results of the K sequential classifier functions fk
as follows:

Ŷ = Φ(X ) =

K∑

k=1

fk (X ) fk ∈ F (1)

where fk is a decision tree, and K is the total number of
iterations in the boosting algorithm.

XGBoosting has two enhancements, an improvement over
Gradient Descent and a more sophisticated regularization strat-
egy. The regularization factor to the cost function controls the
optimization process and manages the overfitting factor. In
this, the function to optimize in Step t is called the regular-
ization term Ω(ft ) and we use it in the following equation to
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calculate a Loss function L(φ)t at step t.

L(φ)t =
∑

l(ft−1 + ft ) + Ω(ft ). (2)

Without the regularization factor, the tree will split until it
learns all the features of the training set, which may result
in overfitting. By using a regularization function the train-
ing stops when the function identifies that the model is good
enough based on the learning score, which avoids the chance
of overfitting.

During optimization, the regularization term is improved
by approximation using a short Taylor series decomposition.
For complete details of XGBoost, we refer the reader to the
original article written by Chen and Guestrin [24].

A. Using Weighted Feature Importance (WFI) for Feature
Selection

Gradient boosting uses a powerful metric, called feature /
importance, to retrieve the scores of each attribute according
to importance after the boosted tree is constructed. This scor-
ing model provides the importance of each attribute in terms
of making key decision while constructing decision trees.
Generally, feature importance provides a score that defines the
significant role of each attribute. This importance is computed
explicitly by comparing and ranking all the features amongst
one another in the dataset. The importance of a single decision
tree is calculated by the amount of each attribute split point,
weighted by the number of observations from that node. This
split point is used to improve the performance and efficiency
of the algorithm.

In particular, purity (Gini Index) is used to select the split
points or to identify a more specific error function. The fea-
ture importance of each tree is averaged across all the decision
trees within the model. The Model based feature selection
class is used to transform a dataset into subsets by using the
most promising features. The focal point of this approach is
to embed the preprocessing with this model using WFI to
reduce the training time by removing irrelevant features from
the given dataset. Once the most promising ones are derived
through the GBFS technique, we can effectively use them for
training and testing the model.

V. A NOVEL WEIGHTED FEATURED SELECTION

ALGORITHM FOR INTRUSION DETECTION

A. Power System—Testbed Description

This section describes the overall approach with regard
to multilevel multiple attack vector classification of power
system disturbances. To evaluate the performance of the GBFS
based proposed algorithm, three publicly available datasets are
used [27]. These datasets were created at Oak Ridge National
Laboratories (ORNL) using the power system testbed.

The power system testbed configuration has been imple-
mented using power generators- G1,G2 and IEDs - R1 through
R4, to control the breakers BR1 through BR4, on or off,
respectively. To fulfill the simulation requirements, the three-
bus two-line transmission system is created [28]. Each one
of the four IEDs uses a distance protection scheme to trip
the respective breaker in case of fault detection, whether the

nature of the fault is valid, or faked since they do not have
smart logic to detect the difference between original and fake
faults. Furthermore, operators can manually trip the breakers
by issuing commands in case of maintenance on the lines or
other system components [25].

B. Dataset

The datasets include measurement related to normal, dis-
turbance, control and cyber attack behaviours with regards to
electrical transmission system in the power grid [29]. There are
three publicly available datasets and two of them are derived
using the third main dataset consisting of fifteen sets with
37 power event scenarios in each dataset. The datasets are
randomly sampled and categorised into three major classes;
Binary, Three-class and Multiclass. Furthermore, we have
derived a fourth dataset named Seven-class of fifteen sets
from the multiclass dataset, consisting of seven power event
scenarios in each.

The experiments were carried out using 4 different cate-
gories of the datasets where the Binary dataset has two output
labels, namely, normal and attack, The Three-class dataset has
three output labels - one additional label to binary dataset
is no event. The Seven-class dataset has seven output labels
as follows: 1 natural SLG (Single Line Ground) fault event
owing to short-circuit in a power line, 1 data injection attack,
2 remote tripping command injection attacks and, 3 relay set-
ting change attacks. The 37 scenarios of Multiclass dataset are
divided mainly in three categories - Natural events, 1 No event
and 28 Attack events. 8 Natural events categorized in 6 SLG
faults and 2 Line maintenance events. Furthermore, no event
indicates normal operation load changes and 28 attack events
are mainly divided into 3 major attack events termed as Data
Injection, Remote Tripping Command Injection and Attack on
Relay Setting. These attacks are further subcategorized in 6
data-injection SLG fault replay attacks, 4 command injection
attacks against single IED (relay), 2 command injection attacks
against two IEDs, 10 relay setting change attacks on a single
IED, 4 relay setting change attacks on two IEDs, and 2 relay
disable and line maintenance attacks [30]. Moreover, these
authentic datasets are used in various experiments related to
power system cyber-attacks classification [27]. All the attacks
scenarios are simulated by assuming that the intruder is an
internal entity, which is capable enough to launch various
attacks by issuing malicious commands from the substation
switch [25].

Each power grid dataset consists of 128 features. To derive
these features, 4 phasor measurement units (PMUs) are used to
measure the electrical signals on an electrical power grid using
common time source to maintain time synchronization. Each
PMU measures 29 features, hence in total 116 PMU measure-
ment carried out using 4 PMUs. These features are referred as
R# - signal_Reference which indicates the index of PMU and
type of measurement. For example, R1-PA1:VH represents the
Phase A voltage phase angle measured by PMU R1 [27]. Also,
16 more columns are additionally inserted by control panel
logs, snort alerts and relay logs where relay and PMU are inte-
grated together [30]. The last column represents the marker to
label different events. The description of all the features is
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TABLE II
DESCRIPTION OF FEATURES

shown in Table II. Also, each set of 15 sets consist average
294 “no event”İinstances, 1221 natural events instances and
3711 attack vectors across the classification schemes [25].

C. Regularization Strategies

Generally, boosting algorithms play a vital role in control-
ling the bias-variance trade-off. The objective of the gradient
boosting algorithm is to generate an optimal combination of
the trees while training the model using the concept of bino-
mial deviance theorem. In addition to minimizing the loss
function to the smallest possible degree, it is necessary to tune
the hyper-parameters carefully, since complex trees overfit and
simple trees can move the model to under-fitting. The major-
ity of the tuning parameters are divided into two categories,
one is specifically meant for construction and efficiency of
each individual tree, and the other type of boosting parame-
ters are used to boost the operation in the model. Owing to
this fact, we have tuned the hyper-parameters by extensive grid
search, taking learning rate, sub-samples and Num_trees into
consideration.

We have analyzed the effect of different regularization
strategies on various datasets by implementing a grid search.
Figure 3 illustrates the effect of boosting parameters of one
of the 15 binary datasets. According to the results depicted in
the graph, regularization via shrinkage (learning rate = 0.1)
improves the performance significantly, as compared to with-
out shrinkage (learning rate & subsample = 1.0) and in
the case of stochastic gradient boosting (combination with
learning rate and subsample < 1.0).

D. Feature Selection

Generally, when we have a big model with hundreds or
thousands of features, the feature selection approach is used
to choose the most promising features and to remove irrele-
vant features while retraining the model. Also, by analyzing
the importance of each feature manually, we can get an idea
of what the model is doing, and the model is working well.
Here, we derive the importance of each feature by apply-
ing WFI scoring method on Gradient Boosting trained model.
Furthermore, all the features are depicted as a percentage rat-
ing of how often the feature is used in determining the output
label. To make the list of features easier to read, we have

Fig. 3. Different Regularization strategies applied on a binary classification.
A hyper parameter optimization (learning rate = 0.1) improves the result
significantly, with small learning rates more trees are required for convergence.

Fig. 4. WFI scoring model to rank the features.

sorted them from most important to least important as shown
in Figure 4.

The feature importance scores reflect information gain by
each feature during the construction of a decision tree. During
experiments, we observe 50% of the 128 features are not
contributing to making any decision. The WFI score of such
features is zero. While, out of the remaining 50% of features,
15 features provide a significant contribution in making deci-
sions during the construction of decision-tree. The WFI score
of those features has high values in the range of 1 to 10.
The rest of the 45 features having feature importance scores
between 0 and 1. These 45 additional features contribute com-
paratively less and have a large drop in feature importance
score. Altogether the entire dataset is divided into three lev-
els of information gain groupings, namely, most promising,
slightly contributing, and irrelevant features.

According to [31], feature extraction creates a subset of
the given features which not only reduces the noise but
also improves the classifiers’ performance. Therefore, we
have tested 15 datasets of four different categories (binary,
three-class, seven-class & Multi-class) of power grid system
created by the Oak Ridge National Laboratories using the most
promising features [27]. To identify these best features, we use
the WFI scoring model along with concept of Num_trees.
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TABLE III
GRADIENT BOOSTING FEATURE SELECTION (BEST 15 FEATURES OF 15 DATASETS

FOR ALL THE FOUR CATEGORIES - BINARY, THREE CLASSES, SEVEN CLASSES AND MULTI-CLASS)

Fig. 5. Represents the relative importance of each attribute of the dataset with 5000 records;computed by considering four estimators
Num_trees = 100,500,700,1000.

Furthermore, to increase the execution speed, we perform
feature extraction on binary datasets. We repeat the entire pro-
cess by taking the various parameter value of Num_trees to
collect various observations. From that we have identified best
features by taking common important features from the estima-
tions as shown in the Algorithm 1. Here, Num_trees refers to
the number of estimators whereas n refers to the total number
of features. We have used four estimators, namely, 100, 500,
700, 1000 and initially dataset consist of n = 128 features.

Figure 5 represents the relative importance of each attribute
on the binary dataset by considering four estimators. The high

vertical bars represent the most promising and common fea-
tures in all four estimators. In this experiment, all estimators
use the top 15 features for each ensemble. In Table III we
observe the most promising features across all 15 datasets.
Also, to validate the strength of the selected features, the same
15 ones are applied to all four categories (Binary, three classes,
seven classes and Multi-class) of intrusion classification. It can
be observed that each dataset has a different set of stronger
features, a conclusion that points to independent feature selec-
tion process for each dataset type. The most important features
which contribute in determining the intrusions are Voltage
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Algorithm 1: Weighted Feature Importance Based on a
Gradient Boosting Feature Selection Model

Input: Training power-grid dataset PD
Output: Selected feature subset Selected PD
Initialize: Current power-grid dataset
Current-PD = {1, 2, . . . ,n};
begin

i ← 0
Num_trees ← {100, 500, 700, 1000}
Num_trees ← Num_trees (i)
while Features(Num_trees > 0) do

(1) Create GB model on value Num_trees
(2) Evaluate Ranking with WFI scoring
(3) Remove features lower importance
(4) Store the features in Scored-PD
Num_trees ← Num_trees (i + 1)

end
(5) Compare features of Scored-PD from all
Num_trees
(6) Take common features of Scored-PD Selected-PD
← Scored-PD

end

Phase Angles, Voltage Magnitude, Current Phase Angles and
Current Magnitudes according to the attack location on PMUs.

VI. EXPERIMENTS

A. Evaluation parameters

The choice of the evaluation parameters always depends on
the nature of the dataset, whether it is a multi-class or just
binary. Typically, datasets are imbalanced in nature, a prop-
erty defined by having classes of different sizes. Hence to
evaluate the efficiency of the proposed GBFS based frame-
work, our approach does not only relies on the accuracy of
the classifier but also incorporates other assessment parame-
ters like Detection Rate (True Positive Rate also called Recall
& True Negative Rate), Precision, F1 Score and Miss Rate
(False Negative Rate).

The assessment metrics, namely, accuracy, recall, precision
and false negative rate depend on the following four param-
eters,namely, True Positive (TP), True Negative (TN), False
Positive (FP) and False Negative (FN) [32]. TP refers to the
number of actual attacks which are classified as attacks, TN
refers to the number of normal events classified as normal
events, FP refers to the number of normal events misclassified
as attacks and FN refers to the number of attacks misclassi-
fied as normal events. The evaluation metrics are defined as
follows, described from the basic four definitions.

• Accuracy is the percentage of all normal and attack
vectors that are correctly classified:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

• Detection Rate (True positive Rate (TPR) and True
Negative rate (TNR)) refers to the percentage of total

relevant results correctly classified by the classifier

TPR =
TP

TP + FN
(attack vector) (4)

TNR =
TN

TN + FP
(normal event) (5)

• Precision or Positive Predictive Value (PPV) refers to the
percentage of the results which are relevant.

PPV =
TP

TP + FP
(attack event) (6)

• F1 Score is simply the harmonic mean of precision and
recall evaluating the outcome in balanced mode

F1_score = 2 ∗ Precision ∗ Recall

Precision + Recall
(7)

• Miss Rate (FNR/FPR) is derived by subtracting the value
of TPR from 1.

FPR = 1− TNR (attack) (8)

FNR = 1− TPR (normal) . (9)

B. Experimental results

Our target is to develop a model in such a way that it can be
easily deployed in a real-time power grid. For that, the model
should be fast and smart in identifying malicious events that
occur in the network. Therefore, we target the most relevant
features to classify normal and attack vectors. To compute the
most promising features, we have used a WFI scoring model
of Gradient Boosting feature selection. We have applied the
GBFS approach on the binary dataset by considering multiple
values of Num_trees = 100, 500, 700 and 1000 to identify
the most common amongst all. From our observations, we
conclude that mostly in each estimation the top 15 features
remain the same.

We conclude, experimentally, that high accuracy values
comply with a small learning rate, hence we decided to set the
value of Num_trees = 1000 along with learning rate = 0.1.
After computing 15 features of 15 sets of a binary dataset,
we used the same features to compute the three-class, seven-
class and multi-class dataset to detect the various attacks as
all the four datasets of 15 sets have the same input measure-
ment records - only the output label differs according to the
category of the dataset. Table III represents the 15 features of
15 sets for all the four categories. Also, the primary goal of
choosing a binary dataset to compute the promising features
is to achieve faster execution speed and precise outcome in
terms of detection rate as it only contains normal and attack
vectors. Moreover, we have applied the same features to the
rest of the three categories as basically all the categories are
containing both malicious and normal events.

The datasets are well suited for ensemble classifiers since
each set of the 15 datasets is produced at different attack
locations by ORNL, and each consists of approximately 5500
records. The significance of the features depends on the loca-
tion of the attacks on PMUs. Hence, the automatic stepwise
feature selection is one of the crucial points for classifica-
tion, which can be effectively handled by tree-based ensemble
classifiers. Furthermore, for the proof of the concept, we have
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Fig. 6. Confusion matrices, 2,3,7 output labels.

Fig. 7. Confusion Matrix for the 37 output labels.

evaluated the accuracy of other machine learning techniques
such as Naive Bayes, Support Vector Machine (SVM), Simple
Logistic Regression (SLR), One Rule (OneR), Decision Table
(DT) and Artificial Neural Network (ANN) for all the four
categories as mentioned in Table III. We focus on tree-based
ensemble classifiers since they give the best accuracy.

To evaluate the efficiency of the top 15 features in terms
of detection rate and execution speed, we have applied var-
ious classifiers on all the 15 datasets of four categories. As
the computed features are generated using the GBFS tech-
nique, we specifically target decision tree classifiers with a
combination of boosting approaches such as GB, XGBoost,
Random Forest(RF), AdaBoost Random Forest(AdaBoost-
RF), ClassificationViaRegration- Random Forest(CVR-RF),
Random Tree, AdaBoost Random Tree and J48.

The proposed framework is programmed using Python on
a Jupyter Notebook (Anaconda distribution) on Windows 10
with Intel Core i5-8300H 2.30GHz processor, 16 GB RAM
and Nvidia Geforce GTX 1060 6go GPU. The results of
classification of various classifiers are also validated using a
WEKA platform [33]. The experiments are computed using

TABLE IV
COMPARATIVE ANALYSIS (ACCURACY) OF VARIOUS MACHINE

LEARNING TECHNIQUES

random samples of 100,000 normal and attack observations
for each of the four categories divided into 15 sets. The train-
ing and testing set of the model is obtained using 10-fold
cross-validation methodology to measure the accuracy without
biasing the normal or malicious output classes.

To assess the performance of each classifier, we have com-
puted the following performance metrics: accuracy, detection
rate, false-positive rate, F1 score and execution speed of 15
datasets of all the four categories. The results of performance
metrics are derived from the confusion matrix during each
classification. Figure 6 represents the example of one of the
best confusion matrix of binary, three-class and seven-class
classifier, respectively. Similarly, Figure 7 depicts the most
promising confusion matrix of the multi-class classifier which
can differentiate the total of 37 various attacks and normal
events. By analyzing the confusion matrix, we can differenti-
ate normal and attack vector in terms of True Positive, True
Negative, False Positive and False Negative.

C. Result Discussion

The purpose of the proposed GBFS based feature selection
framework is to generate a subset of the given attributes from
entire dataset using a WFI metric to reduce the noise and
improve the performance of the classifier. The derived sub-
set of the top 15 features may or may not contribute same
in the decision-tree classifiers. We have observed the results
of total 8 decision tree-based machine learning techniques to
validate our proposed methodology via multiple simulation tri-
als. Overall 60 computations are performed to evaluate the
performance of each classifier to include the results of fif-
teen datasets of all the four categories. Figure 7 represents
the comparative analysis of the accuracy of eight decision
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Fig. 8. Comparative view of Different Machine Learning Classifiers for - four categories ( binary, three-state, seven-state and multi-state) for each of 15
datasets.

Fig. 9. Comparative view of Execution speed of Three GBFS based Random Forest variances to classify normal and attack events for four categories (binary,
three-state, seven-state and multi-state) for each of 15 datasets.

tree-based classifiers of 15 datasets of each binary, three-class,
seven-class and multiclass categories.

Amongst all the eight classifiers, it was observed that
XGBoost, random forest and its variance have proven to
be most efficient. However, other tree-based classifiers also
proved their efficiency ranging between 92 to 94 for Binary
and three-state and 85 to 90 for seven class and multiclass.
XGBoost comes up with accuracy equal to 97.96, 96.09,
92.97, 92.44 for binary, three-class, seven class and multiclass
datasets, respectively. Similarly, all three variants of Random
Forest also achieve very high accuracy such as 97.82, 97.78
and 97.70 for binary, 97.18, 97.18 and 97.01 for three-class,
94.43, 94.31 and 94.19 for seven class and 92.96, 92.92, 91.92
for multiclass, respectively. Since the GBFS-Random Forest

and its variances are the most efficient classifiers to clas-
sify the normal and attack vectors with nearly same range
of accuracy, we have compared the execution speed of all the
three classifiers to identify the best among them. As depicted
in Figure 9, GBFS-Random Forest classified the various attack
and normal events for all the four categories in 1.5 seconds.
GBFS-AdaBoost Random Forest took slightly more time than
the GBFS-RF. GBFS-CVR-Random Forest took comparatively
higher execution time as it uses the combined approach of
boosting and ensemble of trees for the classification. However,
by comparing the accuracy levels, we observe that the boosting
does not much improve the result much, in such case GBFS-
RF is proven to be best amongst all three with high accuracy
and less execution time.
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TABLE V
PERFORMANCE EVALUATION METRICS OF PROPOSED

GBFS BASED CLASSIFIER

TABLE VI
COMPARATIVE ANALYSIS OF OVERALL PERFORMANCE OF VARIOUS

TECHNIQUES AND PROPOSED GBFS BASED CLASSIFIER

We demonstrated that the 15 stochastic features shown in
Table III were the most promising features for all the deci-
sion tree-based classifiers by iteratively running all the eight
classifiers, for 15 datasets of all the four categories. In each
iteration, using 15 features, we retrained & re-tested all the
eight decision-tree based models to compute the general aver-
age trend of malicious and normal events by observing DR,
FPR and execution Time.

All the selected classifiers maintain very high DR and lower
FPR rate in all the computations as shown in Table V. We
have achieved 98.5% of detection rate which truly differen-
tiates attack and normal vectors with only 3.7% and 6.7%
of false positive rate for binary and three class classification.
Moreover, seven-class and multi-class classifiers have also out-
performed as they gave around 94.42% and 92.5% for the
detection rate.

This validates the significance of our proposed methodology
for feature selection. Real-time systems such as control and
monitoring systems of industrial infrastructures/power grids
need a methodology of feature extraction where processing
time and storage space are always crucial.

To validate the efficiency of the proposed methodology, we
have compared GBFS based decision tree algorithm with four
published methods, namely AdaBoost-JRIP (AdaJRIP) [25],
Common Path Mining [28], [34], Expectation Maximization
Clustering Technique (EMCT) [32] and Gaussian Mixture–
Kalam Filter Model (GMM-KF) using Pearson Correlation
Coefficient (PCC) feature selection method [35], by consid-
ering various performance evaluation factors such as whether

TABLE VII
COMPARATIVE ANALYSIS OF VARIOUS FEATURE SELECTION METHODS

proper pre-processing is applied or not; to accelerate the pro-
cess, whether feature selection approach is incorporated or not
and if applied how many features are selected to evaluate the
accuracy for various output classes.

It can be seen from Table VI that our proposed framework
outperforms compared to those of the published techniques
and accomplishes the highest accuracy with the 97.66%,
96.50% , 94.12% , 92.46% with only 12% of the features
for all the four categories of the power system datasets. Note
that the results mentioned in the table refer to the highest
accuracy achieved during the classification of the attacks and
normal events by various tree based classifiers.

Moreover, in order to show the efficiency, we have com-
pared our proposed scheme with two well-known feature selec-
tion methods, namely, Chi-Square and Principal Component
Analysis (PCA), in terms of the number of features, accuracy
and execution time for a binary class using Random Forest
(RF) classifier as shown in Table VII.

As mentioned earlier, data cleansing was performed to
accelerate the process of classification using various machine
learning algorithms. However, the technique in [25] has
obtained comparatively low results with various well-known
machine-learning algorithms such as OneR, SVM, Random
Forest, Naive Bayes, JRIP and AdaBoost-JRIP owing to
disregarding preprocessing before applying the classification
approach on the power system dataset. As per our observa-
tions, the given dataset needs to be refined by removing infinite
values before mapping and scaling the records. The features
R1:PA:Z, R2:PA:Z, R3:PA:Z, R4:PA:Z, represent apparent
impedance of the relay associated with IEDs of the given
power system dataset comprising of infinite values and should
be removed. However, in our proposed methodology, the top
15 features of any of the sets does not rely on impedance
of relay attribute such as R1:PA:Z, R2:PA:Z, R3:PA:Z and
R4:PA:Z. Hence we are essentially not deleting any row
records of the given dataset.

Proper sanitization converts the type of the features from
nominal to numeric which makes a huge impact in taking
decision to classify the events of the given dataset by var-
ious classifiers. To demonstrate the impact of preprocessing
and feature selection we have computed the results with and
without preprocessing and with and without feature selection
by applying all the eight decision-tree based classifiers on the
power system dataset as mentioned in Table VIII.

The first two columns represent the accuracy and execution
speed computed by eight decision-tree based classifiers with-
out applying pre-processing on the dataset. In this case, all
the classifiers have failed to achieve high accuracy and bet-
ter execution speed because in order to predict the outcome,
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TABLE VIII
COMPARATIVE ANALYSIS OF VARIOUS TREE-BASED CLASSIFIERS BASED

ON PRE-PROCESSING AND FEATURE SELECTION METHODOLOGY

the classifier applies the modeling algorithm on both numeri-
cal and categorical inputs. At each iteration the decision-tree
makes the decision by considering both the type of data in
the dataset,that results in a long prediction time and low accu-
racy rate. Hence, proper sanitizing is the primary step for the
classification.

In contrast, the third and forth columns of the table repre-
sents the results computed by the eight classifiers by applying
proper pre-processing on the entire dataset of 128 features.
The pre-processing includes feature mapping, feature normal-
ization and feature encoding techniques which improves the
accuracy and execution speed.

Finally, we have combined pre-processing with feature
selection to select the fifteen most promising features from
the dataset before applying the classifier, which not only
improves the accuracy but also improves the execution time.
In a nutshell, our approach combines both pre-processing and
feature selection, which has proven best amongst all the three
approaches for all the decision-tree based classifiers.

VII. CONCLUSION AND FUTURE WORK

This article presented a GBFS based feature selection
approach to identify the most promising features for anomaly
detection in power grids. The overall framework consists
of three key components. Initially, during data preprocess-
ing, the features are mapped and scaled to a specific range.
To accelerate the execution speed and learning efficiency, a
GBFS based feature selection approach is applied on filtered
data to compute the most promising features from the entire
dataset dynamically according to network/SCADA traffic. The
dynamic approach of selecting the features from the entire
dataset hides largely all the sensitive information of the power
grid system. Finally, these reconstructed datasets are used by
decision-tree based algorithms that classify the various attacks
and normal events. The experimental results reveal the effi-
ciency of the framework in terms of accuracy, detection rate,
miss rate and execution speed compared to the original dataset.
Moreover, the proposed GBFS based model outperforms some
state-of-the-art techniques described in published works.

In the future, we plan to extend this work by combining the
results of several classifiers to achieve an accurate outcome by
applying majority vote ensemble method. This method pre-
dicts the output label based on the majority of the output
labels predicted by each classifier. This will further improve

the efficiency of the prediction and provides the most accurate
output label in terms of normal and attack events. We will
target various classifiers, namely, Random Forest, Gradient
Boosting, XGBoost, Artificial Neural Network, Naïve Base,
and Decision Table for ensemble learning by referring to pre-
liminary results from this article. This approach will help to
generate a better predicting model compared to a single model
using “hard voting” based majority rule ensemble technique.
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Intrusion Detection in SCADA Based Power Grids:
Recursive Feature Elimination Model With Majority

Vote Ensemble Algorithm
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Abstract—We propose an integrated framework for an
intrusion detection system for SCADA (Supervisory Control and
Data Acquisition)-based power grids. Our scheme combines RFE-
XGBoost (Recursive Feature Elimination-eXtreme Gradient
Boosting) based feature selection with a majority vote ensemble
method. RFE selects features recursively based on Weighted
Feature Importance (WFI) scores during the training process,
while the majority vote ensemble method predicts the output label
based on a total of nine heterogeneous classifiers - three bagging
ensembles, namely, Random Forest (RF), Extra Tree (ET), and
Decision Tree (DT), three boosting ensembles, namely, XGBoost
(XGB), Gradient Boosting (GB), and AdaBoost-Decision Tree
(AdB-DT) along with artificial neural network (ANN), Naive
Bayes (NB), and k-nearest neighbors (KNN). This leads to a more
accurate solution as a result of the combination of the most useful
features and prediction from multiple heterogeneous classifiers.
Experimental results show that our approach increases the
accuracy, precision, recall, F1 score, and decreases the miss rate
as compared to previous approaches. The model is also evaluated
for four different class categories, namely binary, three-class,
seven class and multi-class, using Precision Recall (PR) and
Receiver Operating Characteristic (ROC) plot. In addition, an
end-to-end IDS framework is proposed for efficient and accurate
detection of intrusions.

Index Terms—SCADA systems, power grids, recursive feature
elimination, majority vote, ensemble method, feature selection,
cyber security, network intrusions.

I. INTRODUCTION

POWER grids are the underlying infrastructure that sup-

port our economies and daily lives by providing and sus-

taining a continuous supply of electricity. They play a

fundamental role in connecting industries and homes with far

away locations from where the power is originally generated.

Furthermore, they assure the quality of the electricity supply

at the point of consumption. In the past, power grids were iso-

lated systems. The field devices of such systems were man-

aged locally on the plant floor. However, as technology

advanced, energy system devices were gradually monitored

and controlled remotely. Currently, SCADA (Supervisory

Control and Data Acquisition) systems play a vital role in the

management of power grid components efficiently.

Current power grids comprise of multiple substations and

control centers and widely spread in large geographical

areas. Each substation consists of various components such

as power lines, transformers, sensors, actuators, and phasor

measurement units (PMUs), along with supervisory control

and data acquisition (SCADA) elements for monitoring the

system components remotely. Fig. 1 shows the block dia-

gram of a SCADA architecture for power systems. A

SCADA network segment typically includes a SCADA mas-

ter, HMI (Human Machine Interface), and data historian

placed at the control center, communication links, and vari-

ous field control devices such as Programmable Logic Con-

trollers (PLCs), Remote Terminal Units (RTUs), and IEDs

(Intelligent Eletronic Devices). The sensors and actuators

located at power grids frequently supply digital status infor-

mation to the field control devices. These devices further

communicate this information to MTU, where the server will

process the data according to acceptable parameter ranges.

This information will then be transmitted back to field con-

trol device to improve the performance and to avoid hazards.

The SCADA master also stores the status information on the

data historian and displays it on the HMI for centralized con-

trol and monitoring of the power grids.

However, this evolution has connected power systems to the

Internet, which, in turn, can expose them to various cyber-

attacks such as False Data Injection (FDI) attacks, Denial of

Service (DoS), or Man-In-the-Middle (MIM) attacks [1], [2].

FDI manipulates the energy measurement parameters, either

by identifying the backdoors that bypass the system or by

using privileges of authorized personnel [3]. The cyber attack

against the Ukrainian power plant in 2015 is one example of

such attacks in which nearly 250,000 people were left without

electricity for many hours [4]. Another example is the attack

on the Davis-Besse nuclear power plant in Oak Harbor, USA

[5] which was infected by the SQL Slammer worm. The worm

infected the entire power system with a DoS attack launched
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by exploiting the vulnerabilities of the SCADA system. Such

attacks on a nation’s power grid can lead to catastrophic con-

sequences [6].

Power grids face significant challenges pertaining to the

security and privacy of the data. One of the challenges in

securing power systems is the deployment of safeguards and

the management of the network because of legacy-inherited

security weaknesses and limitations. Although many security

controls including defense in depth architecture, access con-

trol, authentication mechanisms, confidentiality, integrity

techniques, and firewalls have been developed to protect criti-

cal infrastructure, the rapid evolution of hacking techniques

can easily expose the integrity of the system’s data and devi-

ces [7]. For example, in March 2019, the operators at a power

grid center in the US lost communication with multiple sites

of power generators due to a known firewall vulnerability [8].

Researchers have proposed intrusion detection techniques to

secure SCADA based power grids. Hink et al. provide a compar-

ative analysis of various machine learning techniques using a

power grids dataset and identify Adaboost-JRIP as one of the

best classifiers [9]. However, the authors do not filter and reduce

the dimension of the dataset. Hence, they are unable to achieve

good accuracy and execution speed. Pan et al. have focused on

hybrid IDS using data mining, where they have used common

pathmining to identify the location of attacks [10], [11]. Further,

in [12], the authors apply Pearson Correlation Coefficient (PCC)

for feature selection and extract 75% of features. They use an

Expectation Maximization Clustering Technique (EMCT) to

classify the events. Using this approach, they improve the execu-

tion speed but do not achieve better accuracy for a multi-class

dataset. Moreover, this technique is enhanced by combining

PCC with the Gaussian Mixture - Kalman Filter Model (GMM-

KF) in [14]. The authors are able to reduce the percentage of the

features to 25 and achieve good accuracy and execution speed.

However, this experiment is limited to a binary dataset. Mous-

tafa et. al. [13] have used ICA - Independent Component Analy-

sis feature selection and BetaMixture HiddenMarkov (BMHM)

classification model. The authors have obtained promising

results in regards to accuracy. However, they have worked on a

subset of the features, and hence we could not identify the exact

number of features used in this paper. We have recently pro-

posed WFI based GBFS model for feature selection and

extracted 12% of the most promising features in [15]. Our target

was to achieve high execution speed and a better predictive

model for real-time SCADA communication. The proposed

GBFS model has been further verified with different machine

learning algorithms. We have identified that the proposed solu-

tion is suitable for tree-based classifiers. Note that all these

experimental studies use the power grid dataset created by Oak

Ridge National Laboratories (ORNL). Table I summarizes the

literature on IDSs for power grids.

In our earlier work [15], we have proposed a computationally

efficient intrusion detection framework for power grids, which

not only improves the computational cost but also provides pri-

vacy preservation. In that approach, we have determined the

most significant features using a Weighted Feature Importance

(WFI) based gradient boosting scoring model [15]. Furthermore,

we have applied eight tree-based algorithms onmultilevel multi-

ple datasets to classify various attacks and normal events to vali-

date the efficiency of derived features [15]. In particular, the

most promising features were detected by considering multiple

values of number of trees while training the model to apply the

WFI scoring concept. From our preliminary results, we have

identified three bagging ensembles, namely, Random Forest

(RF), Extra Tree (ET), and Decision Tree (DT), three boosting

ensembles XGBoost (XGB), Gradient Boosting (GB) and Ada-

Boost-Decision Tree (AdB-DT) as the most promising classi-

fiers. Moreover, we have identified the accuracy of other

machine learning classifiers such as artificial neural network

(ANN), Naive Bayes (NB), and k-nearest neighbors (KNN).

In this paper, we have enhanced the feature selection and

classification module. The feature selection approach is

extended by incorporating Recursive Feature Elimination

(RFE) method. In that, the GBFS model is improved by replac-

ing the gradient boosting with XGBoost as we found XGBoost

is the most promising classifier amongst all the tree-based clas-

sifiers in our previous work. Hence, XGBoost can be a better fit

to score the features using the WFI technique while training the

dataset. Moreover, we have replaced the concept of evaluating

number of trees while training the model with RFE approach.

This approach helps us achieve a better predictive model by

searching all the stable features instead of the most promising

features while constructing the tree.

Another enhancement has been applied to the classification

model by using a majority vote based ensemble method con-

sisting of six tree-based classifiers along with artificial neural

network (ANN), Naive Bayes (NB), and k-nearest neighbors

Fig. 1. SCADA System Architecture for Power System. Legend: HMI:
Human Machine Interface, IEDs: Intelligent Electronic Devices, MTU: Master
Terminal Unit.
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(KNN). We have replaced the single tree base classifier with a

majority vote based ensemble method. The selection of various

heterogeneous classifiers is based on our preliminary results

[15]. This approach will determine the output label based on

the majority of the class labels predicted by all the nine classi-

fiers. The selected nine algorithms in this model work on differ-

ent analogies, such as tree based, naive based, lazy learner, and

neural networks based prediction. Consequently, the output

label is calculated using a majority of heterogeneous predic-

tions, which turned into a robust predictive model.

The concept of voting is used to average the output values

based on the prediction of different classifiers. This process

produces relatively uncorrelated output predictions of various

classifiers which significantly reduces the error rate. More-

over, if output labels are highly correlated, in that case also

this approach can easily detect a minor error. Furthermore,

decision tree-based classifiers are good candidates for this

approach as small perturbations generate totally different

structures and splits. Hence combining prediction of such

models using majority vote significantly improves the effi-

ciency of the classification process. However, the execution

speed and training time of this model could be higher than the

single classifier. Hence, we have suggested an end to end

machine learning based Intrusion Detection System frame-

work for power grid SCADA security which utilize both the

models as depicted in Figure 9 and described in Section VII.

The objective and major contributions of this work are listed

below.

Objective: The aim of this work is to propose a robust intru-

sion detection system for power grids which is compatible

with time critical systems and has the capability to detect

intrusions accurately using effective features of the network

traffic. Moreover, the proposed model is a good fit for the con-

trol center to serve large-scale SCADA systems.

Contributions:

1) We use RFE-XGBoost based weighted feature impor-

tance scoring model to identify the most promising fea-

tures. RFE selects the features recursively based on the

weighted importance score of each feature by compar-

ing a previously trained model with the current model.

Through this approach, the most stable features of the

dataset are determined which will be useful to achieve a

better predictive model.

2) We derive 30 most promising features out of 128 features

of the binary class, which significantly reduces the dimen-

sion of the dataset. Furthermore, the same features are

used to the rest of the three categories, namely, three class,

seven class, and multi-class to train the model to evaluate

the efficiency of the RFE based feature selection model.

3) For the performance improvement, we apply the major-

ity vote ensemble algorithm by considering nine hetero-

geneous classifiers to predict the output based on the

majority of the class labels predicted by each of these

nine classifiers.

4) We propose a deployment model of the IDS in SCADA-

based power grids which reflects real-time traffic

TABLE I
LITERATURE REVIEW OF PUBLISHED INTRUSION DETECTION SYSTEMS FOR POWER GRIDS
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monitoring by introducing placement of IDSmodels at the

different locations, namely, plant floor, and control center.

For performance assessment and validation, we compare the

accuracy of a total of nine classifiers along with the majority

vote ensemble classifier. Moreover, we examine one of the

classifiers of each method of bagging, boosting, and voting

ensembles in terms of Precision-Recall (PR) and Receiver

Operating Characteristic (ROC) plot. To validate the effi-

ciency of the selected features and majority vote classifier, we

evaluate the various performance metrics, namely, precision,

recall, F1 score and miss rate of our proposed scheme. We

also compare the accuracy of the majority vote ensemble

method with existing bagging and boosting based ensemble

techniques. Further, we compare the accuracy of the proposed

methodology with published state-of-the-art techniques.

The rest of the paper is structured as follows. Section II

describes the background and related work in the area of

power grid security. The proposed intrusion detection frame-

work and process diagram are described in Section III.

Section IV covers algorithm conceptualisation and mathemati-

cal proof of RFE based feature selection and the majority vote

ensemble method. Section V describes the experimental

results and discussions. The proposed placement of IDS

framework in SCADA based power grids is described in Sec-

tion VI. Concluding remarks are provided in Section VII.

II. BACKGROUND AND RELATED WORK

A. Power Grid Intrusion Detection Systems

The development of power grids has motivated researchers

to propose various types of intrusion detection techniques to

ensure security [17]. Generally, an IDS can be classified into

two categories, namely, host-based and network-based. Host-

based IDSs monitor the hosts on a network by collecting and

monitoring various event logs of targeted devices. For exam-

ple, a host based IDS for SCADA systems focuses explicitly

on securing components such as RTUs and IEDs [12]. The

IDS is responsible for identifying attacks against an IED of

the substation by recording sequential events [18]. Network-

based IDSs monitor the entire network traffic to detect mali-

cious activities. This type of IDS can be further categorized

into rule-based and anomaly-based IDS [19]. Rule-based IDSs

are used in SCADA power grids for in-depth protocol analy-

sis. This model works on the signature-based approach for pat-

tern matching to analyze the input data for malicious packets

[20]. In this approach, the signature of every incoming packet

is compared with all the stored signatures to detect the threats.

However, this approach works mainly for known threats but is

unable to detect zero-day attacks [20]. Furthermore, the anom-

aly is detected based on packet loggers and packet sniffing

tools to match the incoming traffic. This method is also less

efficient for unidentified traffic [21].

More recently, data mining, clustering, data visualization,

and statistical signal processing approaches have been used

for intrusion detection. These techniques are more effective

than rule-based intrusion detection, but typically produce a

high level of false alerts [22]. Therefore, there is a need for

more sophisticated methods that deal with real-time traffic

monitoring. Machine learning-based techniques such as K-

nearest neighbor (KNN), Hidden Markov models, and Sup-

port Vector Machines (SVM) have been used for detecting

intrusion from real incoming traffic. KNN, also known as

lazy learner, learns from nearest neighbors at run time [23].

However, this approach may be overfit for imbalanced

small datasets. The support vector machine maps the input

into another dimensional space, which offers promising

results but is costly to train. Both these techniques require

learning of expected anomaly but are sensitive to noise pre-

sented in the training datasets [24]. Similarly, Artificial

Neural Network (ANN) needs a large dataset to learn,

which probably takes a long training time and is not widely

used for small datasets [22].

For small and imbalanced datasets, tree-based classifiers

have proven to be one of the most efficient techniques [25].

Decision tree algorithms are one of the powerful supervisory

machine learning techniques. They make decisions using bias

and variance analysis to predict the labels. Furthermore,

ensemble methods use the principle of combining weak learn-

ers to obtain a more reliable predictive model for better pre-

diction and performance.

Ensembles can be obtained by boosting, which is a specific

mechanism where learners gradually learn from the previous

weak learners to reduce the overall loss function. This com-

bined approach provides a powerful methodology for identifi-

cation and pattern recognition for structured data [25].

XGBoost leverages the capabilities of boosting with ensem-

bles. Moreover, we have identified that XGBoost is promising

classifier amongst all the tree-based classifiers based on our

preliminary results for ORNL dataset [15]. Furthermore, this

method is not widely studied on power-grid based IDS appli-

cations. Consequently, we have decided to use the XGBoost

model in RFE based feature selection scheme to obtain precise

features. Further, it is also used as one of the classifiers to pre-

dict the output label in the majority vote ensemble method.

We have listed pros and cons of each machine learning algo-

rithms that we have used to generate majority vote based

model in Table II.

IDSs for real-time systems such as SCADA-based power

grids require low computational cost with high accuracy and

execution speed. Such an IDS can be developed using a hybrid

approach that combines the feature selection model along with

an efficient classification scheme [26] which is the motivation

for our proposed framework.

B. Ensemble Methods

A machine learning ensemble consists of a combination of

several algorithms to obtain a result with better accuracy than

from an individual classifier [27]. The ensemble is a statistical

artifact known for over a hundred years based on the principle

of Wisdom of the Crowds [28]. It was originally proposed by

Sir Francis Galton who made a contest for observing a crowd

in a cattle fair and showed that he was able to determine the

weight of an ox by averaging the individual guesses from each
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person in a more precise way than the prediction of an

individual.

There are three major classes of ensembles: bagging, boost-

ing, and voting. Bagging and boosting use the same learner

algorithm for prediction of the output labels. The difference

between the two methods lies in how they generate successive

subsets during classification. In boosting the datasets are ran-

domly created, whereas in bagging, the elements are weighted,

and not all of them have the same probability for selection

[29], [30]. The third class, namely, stacking (voting) leverages

several different algorithms working with the same data [31].

In a nutshell, bagging is used to decrease the model’s vari-

ance; boosting works on the model’s bias and voting achieves

better performance by combining prediction of classification

algorithms. The brief comparison of each of these three meth-

ods is listed in Table III.

In machine learning approaches, bagging is a powerful

method to develop ensembles. The proposed method in [32]

represents an example of a case study of neighbouring wind

turbines based on bagging. This work was initially developed

by Kramer et al. [33]. Bagging or bootstrapping aggregation

consists of building independent predictors which extract the

different samples from the training set and average the output

by the prediction algorithms.

To achieve the best results, the predictors should be differ-

ent or without correlation [27]. The voting ensemble creates

multiple models and combines them to produce improved

results. It is a more accurate classifier compared to the single

predictive model.

Over a past few years, many Intrusion Detection Systems

for various communication technologies have been proposed

to detect the threats more accurately based on ensemble learn-

ing [34], [35], [36], [37], [38], [39], [40], [41].

One of the IDSs [34] is developed for imbalanced data sam-

ples (KDDcup99), where it is seen that J48 and Random For-

est work best for big sample classes while others such as

Bayesian network and Random tree seem to be a good fit for

small samples. Therefore, the authors [34] propose a solution

based on ensemble learning by applying a majority vote

classifier to improve the performance of classification. Fur-

ther, this work is improved by combining the prediction of

Bagging and Boosting using ensemble techniques with tree

base algorithms as the base classifier in [35].

In [36], the authors propose a novel approach that combines

permission and intents supplements with an ensemble method

for accurate malware detection for cellular phone communica-

tion. Moreover, in [37], authors execute anomaly detection

over the communication networks by combining the predic-

tion of three different types of classifiers, namely, neural net-

works, decision trees, and logistic regression using a weighted

majority voting scheme.

The research work in [38] focuses on developing an IDS for

network administrators by combining supervised and unsuper-

vised learning techniques using ensemble method. This

approach has been tested on various datasets like KDD Cup

99, NSK-KDD, and Kyoto 2006+ and is able to classify

around 95% of the incoming traffic correctly [38]. In [39], the

authors propose sustainable ensemble learning to improve the

detection rate by aggregating multiclass regression models

such that ensemble learning adapts to different attacks. Cloud-

based solutions for distributed anomaly detection systems can

be found in [40]. In [41], the authors propose a Gaussian

TABLE II
COMPARISON OF MACHINE LEARNING METHODS

TABLE III
COMPARISON OF ENSEMBLE METHODS: BOOSTING, BAGGING, AND STACKING
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mixture based anomaly detection technique that relies on

ensemble one-class statistical learning model that is designed

to effectively recognize zero day attacks in real-time using the

concept of edge networks.

III. PROPOSED FRAMEWORK FOR INTRUSION DETECTION

SYSTEM IN POWER GRIDS

This section presents the proposed scheme for an intrusion

detection system for power grids to classify traffic into attacks

and normal events by analyzing SCADA traffic. This novel

approach uses the RFE-XGBoost based feature selection

method to determine the most consistent features from the

dataset based on feature importance scores. Furthermore, the

majority vote ensemble method identifies accurate outcomes

during classification. This combined approach accomplishes

two significant aspects of real-time traffic monitoring namely,

accuracy and computational speed. The entire framework is

divided into three phases - data preprocessing, feature selec-

tion, and anomaly detection, as illustrated in Fig. 2.

The data cleaning, feature mapping, and feature normaliza-

tion are done in the preprocessing phase to obtain streamed

and sanitized data. Since the power grid is part of a large

industrial control systems that use complex SCADA infra-

structure to control the substation equipment, network moni-

toring devices such as SNORT, Wireshark and Syslog are

used to obtain the different types of features from the commu-

nication data [16]. Usually, streaming data that is obtained

from sensors or actuators in real-time systems has reliability

issues, such as lost signal or wrong observations due to fail-

ures in measuring devices which result in their inability to

interpret the scale readings. For this reason, the data cleansing

operation is a critical process to remove incorrect data (like

infinities or NaN data). In this phase we remove empty

sequences that otherwise will generate issues such as inaccu-

rate and faulty inferences with the algorithms. Moreover, the

power grid records are collected at four PMUs (Phasor Mea-

surement Units) which are situated at different locations in the

power substation. Various internal attacks were launched by

the ORNL to generate the IDS dataset for power grids reflect-

ing the diverse nature of records. Another transformation that

we performed in the data in this phase is the data normaliza-

tion, to improve the training stability in the classifiers, espe-

cially for Artificial Neural Networks. For this normalization a

standard scaler, a method that normalizes the records by con-

sidering zero mean and unit variance, was used.

In the feature selection phase, the importance of each fea-

ture is identified using the WFI scoring model. The recursive

feature elimination approach is then applied to the binary data-

set to eliminate irrelevant features recursively. Once the model

determines the most consistent features, in the anomaly detec-

tion phase, the nine classifiers, namely NB, ET, DT, RF, GB,

XGBoost, ADBoost, KNN, and ANN are used to predict the

output labels. Finally, the majority vote-based ensemble

method predicts the class label for input samples based on the

majority of the class labels predicted by each of these nine

classifiers. The voting classifier uses “hard voting” to classify

the input sample based on the majority class label.

IV. CONCEPT OF METHODOLOGY

A. Majority Voting Algorithm

There are two main categories of majority-based ensemble

methods, namely, voting and averaging [42]. Generally, vot-

ing is used for classification, while averaging is used for

regression. We have used a voting based ensemble method to

detect intrusions. In this method, we can create multiple base

models using a training dataset. The output of each base model

acts as the input of the majority vote base ensemble algorithm.

These base models are created using different splits of the

same training dataset along with other classifiers. The majority

vote classifier predicts the output label based on the prediction

of multiple base models. To calculate the overall error, we

assume that the probability of each base model being correct

is ð1� �Þ, where � is the classifier error. We assume that the

Fig. 2. Process diagram of the proposed framework for intrusion detection in power grids.
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classification errors are independent, and we can also obtain

the probability of the majority vote error by applying binomial

distribution. The probability of obtaining k valid predictions

out of n (k over 50% or k > n=2) is achieved using binomial

distribution as follows:

Probability(X = k) ¼ n

k

� �
�kð1� �Þn�k (1)

We obtain the total probability by adding all the individual

probabilities for each k:

Total Probability ¼
Xn
k>n

2

n

k

� �
�kð1� �Þn�k (2)

If � < 1
2 , and the predictions from the classifier are consid-

ered as independent, the error is, in principle, smaller, as when

n!1, �! 0. With the majority vote strategy, we can obtain

better accuracy than with the direct or linear-averaged

approach. The majority vote model gives the same weight to

each one of the votes using a democratic approach (see

Algorithm 1)

If we observe that some inputs are more potent than others,

then we can quantify and adjust this contribution. For instance,

with a Bayesian model averaging (BMA) where the weighting

is adjusted after training by reviewing the individual contribu-

tions to accuracy one by one.

The other type of ensemble approach are short term algo-

rithms where ensembles are applied for short term energy

demand forecasting [43], [44]. The use of ensembles com-

bined with deep or machine learning algorithms is a promising

area of research as the ability to run multiple algorithms in

parallel is efficient, and the combination of models with differ-

ent strengths generates better results.

B. Feature Selection

Through feature selection, we can select the subset of rele-

vant features for the appropriate model construction. This will

avoid the bane of dimensionality and enhances the generaliza-

tion of the model by reducing overfitting [45]. However, due to

this approach, some feature information may be lost, but that

does not impact the overall performance of the model; instead,

the selected features are more representative to model the clas-

sifier. Moreover, the samples with hundreds of features will

increase the computation cost and decrease the classification

performance. Therefore, our first target is to identify the subset

of the relevant features of the dataset which are highly related

to the class but are not related to each other.

To identify the most consistent features of power grid datasets,

we have used the WFI based scoring model by ranking the ele-

ments. This method extracts the feature importance score of each

feature by considering the improvement in impurity while splitting

the individual tree. The irrelevant features are removed recursively

according to the scoring model using the RFE approach on

XGBoost algorithm. We have used binary datasets to extract the

most relevant features instead ofmulti-class datasets, as sometimes

the WFI scoring model has a bias towards multiple categories of

the dataset [46]. However, the extracted features are applicable to

all four categories of the datasets.The features are carefully

removed without losing much of the information to generate the

feature subset using RFE approach. In each iteration, XGBoost is

trainedwith a selected feature subset tomeasure the accuracy.

During the process of feature selection, the current subset is

replaced by the selected set of features when the accuracy of the

current subset is increased by more than 0.5%. This way, we can

achieve consistent elements from the entire dataset. The steps of

the RFE-XGBoost algorithm are shown in Algorithm 2.

V. EXPERIMENTS AND RESULTS

A. Datasets

To determine the performance of the proposed approach, we

have used three public benchmark datasets [16]. These datasets

were created at Oak Ridge National Laboratories (ORNL) by

setting up a power grid testbed [10]. This testbed was configured

using various power grid components, namely, power generators

- G1 and G2, IEDs - R1 to R4, breakers - BR1 to BR4 and a

three-bus two-line transmission system. In the case of fault

detection, the IED trips the corresponding breaker depending

upon the nature of the fault. However, these IEDs are not smart

enough to differentiate between original and fake failures.More-

over, operators can alsomanually trip the breakers and other sys-

tem components during systemmaintenance [9].

The datasets derived from this power grid testbed contain mea-

surement related to normal, disturbance, control, and cyber-attack

behaviors captured during electrical transmission [11]. These

datasets are randomly sampled and classified into threemain cate-

gories, namely, binary, three state, and multi state. Initially, the

multi state dataset is constructed during the experiment, and con-

sists of a total of 37 scenarios. These scenarios are mainly divided

into three categories, namely, 8 natural events, one no event, and

Algorithm 1. Majority vote ensemble training algorithm for n
classifiers

Data:

Dataset Train ¼ hX; bYi, Test ¼ x; byh i,
Size of Test Dataset:m
Classifiers C ¼ ciji 2 1 � � �nh i
begin

fori : 1 to n do

pi train predictor ðciÞ on Test Dataset
end

for i 1 tom do

for j 1 to n do

Apply predictorðcjÞ to sample xi
end

best prediction ¼ more classifier votes

ŷ best prediction

end

end

Result:

Predictions: by ¼ yiji 2 1 � � �mh i
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28 attack events. The eight natural events are further divided into

6 SLG faults events and 2 line maintenance events, as listed in

Table IV. Moreover, the 28 attack events are subcategorized into

three major attack events, namely, Data Injection, Remote Trip-

ping Command Injection, and Attack on Relay Settings. These

include 6 SLG fault replay attacks, 4 command injection attacks

against single IED, 2 command injection attacks against 2 IEDs,

10 relay setting change attacks on a single IED, 4 relay setting

change attacks on 2 IEDs, and 2 relay disable and line mainte-

nance attacks as listed in Table IV. These attack scenarios are sim-

ulated using the concept of an internal intruder, who can launch

different attacks by issuing malicious injections from the substa-

tion [10]. Moreover, we have derived a seven-states dataset from

the multi-states dataset. The dataset of each category is sub-sam-

pled into fifteen sets. Table IV gives the summary of various out-

put labels according to the four categories of the dataset.

The datasets of the power grids consist of a total of 128 fea-

tures. These features are derived using 4 Phasor Measurement

Units (PMUs), which measure electrical signals of substation

using a common time source for effective time synchronization.

A total of 106 PMU measurements are carried out using 4

PMUs, where each PMU measures 29 features of a particular

location. These features are referred to as R# (signal Reference),

which indicate the index of PMU and type of measurement. For

example, R2-PA2: IH represents the phase A - current phase

angle measured by PMU located at R2 [16]. Twelve different

categories indicate phase angles and magnitude of voltage and

current. The detailed description of the features is given in [15].

Furthermore, 16 more features are derived using control panel

logs, snort alerts, and relay logs [10]. The last column refers to a

marker that labels different normal and malicious events. Each

set consists of around 5000 instances that include 294 no events,

1221 natural events, and 3711 attack events approximately,

which represents that the given datasets are imbalance in nature.

B. Evaluation Methodology

The primary objective of the proposed model is to provide a

real-time intrusion detection for power-grid systems. Hence,

our target is to build a fast and accurate model that captures

any malicious event efficiently that may happen in the net-

work. To fulfill both requirements, we have used RFE-

XGBoost-based WFI scoring model for feature selection along

with the majority vote-based ensemble method for classifica-

tion. The feature selection module improves the computational

cost as we are targeting the 30 most consistent features out of

128 features of the given datasets. Furthermore, we have used

nine most powerful classifiers to classify the normal and mali-

cious events. For more accurate results, we have applied the

majority vote-based ensemble method, which predicts the

class label based on majority of the class labels predicted by

each of these classifiers.

These datasets used in our analysis are the publicly avail-

able datasets generated at the ORNL laboratory on a small

power grid testbed [16]. For proper validation, experiments

were computed for four different categories of the samples.

Furthermore, the observations were carried out using 100,000

normal and attack events of each of these four categories,

which were divided into 15 datasets. For fair distribution and

assessment, each dataset was split randomly into two subsets,

training (80%) and testing (20%). The training data was used

for the algorithm training and the testing data was used to test

the accuracy of the result. To avoid selection bias of the data-

sets and to reduce the overfitting, we have used 10-fold cross-

Algorithm 2. Recursive Feature Elimination based on

XGboost WFI scoring model

Data:

Training power-grid data-set: PD
begin

Initialize:

Current features Curr PD = {1,2,3,...,n}

Ranked features Sel PD = Curr PD
Set standard deviation SD = 0.5

Set proportion of features to be deleted = SetProp
Build XGBoost model based on Curr PD
Compute the initial accuracy AccðCurr PDÞ
while Features(Curr PD) != Empty do

Evaluate the ranking criteria

Rank features of Curr PD in ascending order by

WFI scoring model

Remove features = SetProp(min(Score))
Store the features in Sel PD
BuildXGBoost model based on the rank features

Sel PD
Compute the accuracy AccðSel PD)

if AccðCurr PDÞ þ SD < AccðSel PDÞ then
Curr PD Sel PD

else if AccðCurr PDÞ ¼¼ AccðSel PDÞ &
FtrðCurr PDÞ > FtrðSel PDÞthen
Curr PD Sel PD

end

Best PD Cur PD
end

Result: ranked feature subset Best D

TABLE IV
DESCRIPTION OF THE OUTPUT LABELS OF THE VARIOUS CATEGORIES

OF THE DATASETS
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validation technique during the training process. This method

performs the training 10 times with different random selec-

tions (80/20) from the original dataset. This well-defined sys-

tematic approach circumvents the inadequacy of bias

performance assessment. The proposed approach is imple-

mented using Python on a Jupyter notebook using the Ana-

conda distribution platform on Windows10 with Intel Core i5-

8300H 2.30GHz processor, 8 GB RAM, and Nvidia Geforce

GTX 1060 GPU.

C. Evaluation of Feature Selection

We have made observations based on the number of subsets

of the features considering 15 binary datasets. Initially, we

started with 128 features and reduced the number of features

in each iteration based on the output of the WFI scoring model

to compare the accuracy of the current set with the selected

subset. To extract the gist of the features, we have applied

WFI based scoring model which scores the importance of all

features. This ranking defines how often the feature is used to

determine the output label while constructing tree.

Fig. 3 illustrates the comparative analysis of different fea-

tures versus accuracy graph of one of the 15 datasets. The

classification with 30 features offers the highest accuracy dur-

ing classification of normal and attack events using the major-

ity vote-based ensemble classifier.

Fig. 4 demonstrates the accuracy of different 15 datasets

according to the various subsets of the total features. The

accuracy increased significantly up to 30 features, after that

there is no substantial improvement in accuracy. Hence we

have extracted most 30 features of each dataset and consider

the same features for all the four categories, namely, binary,

three-class, seven-class and multi-class datasets.

D. Result Discussion

To evaluate the performance of the majority vote based

ensemble algorithm, we have computed the accuracy of fifteen

datasets of all the four categories using nine most promising

classifiers. The choice of these classifiers is carried out based

on our preliminary results of the comparative analysis of vari-

ous machine learning classifiers [15]. We have chosen nine

heterogeneous classifiers to determine the efficiency of

selected features via multiple simulation trials and observed

the predictions of all the algorithms. After deriving the accu-

racy of all the nine classifiers, the majority vote ensemble

algorithm was applied to compare the prediction of the output

labels. The comparison was carried out based on the majority

class label voting classifier with “hard voting” to classify the

input samples.

The ensemble algorithm predicts accurate outcomes by

aggregating and applying the majority vote rule on the result

of the different classifiers. We have incorporated heteroge-

neous classifiers, namely, random forest (RF), gradient boost-

ing (GB), XGBoost (XGB), Extra Tree (ET), Decision Tree

(DT), K-Nearest Neightbour (KNN), Naive Bayes (NB), Ada-

boost - Decision Tree (AdBoost-DT), and artificial neural net-

work (ANN) to achieve performance improvement of the

majority vote based ensemble model.

We have performed overall 60 computations of each of the

four categories (binary, three-states, seven-states, and multi-

states) containing fifteen datasets to evaluate the performance

of each of ten classifiers. According to the analysis, the accu-

racy of the Naive Bayes algorithm is less compared with other

classifiers for all the four categories, namely, binary (around

52.34%), three class (58.21%), seven class (19.26%), and

multi class (13.2%). Fig. 5 presents a comparative analysis of

the accuracy of the remaining eight classifiers along with the

majority vote-based ensemble algorithm. Among nine base

classifiers random forest, gradient boosting and XGBoost

have mostly proven to be more efficient in the case of binary,

three states, and seven states classification. However, for multi

states classification, random forest, extra tree and XGBoost

are more promising than the other six classifiers.

Moreover, the majority vote ensemble classifier outper-

forms by taking advantage of prediction logic of other nine

classifiers. The accuracy of the majority vote based ensemble

method is higher and more precise than the other nine classi-

fiers with accuracy around 98.24% for binary, 97.95% for

three states, 95.91% for seven states, and 93.78% for multi

states datasets, approximately.

To validate the effectiveness of the proposed scheme, we

have compared the accuracy of majority vote based ensemble

algorithm with five published methods, namely AdaBoost-

JRIP (AdaJRIP) [9], Common Path Mining [10], [11],

Fig. 3. Comparative analysis of different features to evaluate the accuracy
using RFE-XGBoost WFI scoring model.

Fig. 4. Different number of features are evaluated to measure the accuracy of
15 binary datasets using RFE-XgBoost WFI scoring model.
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Expectation Maximization Clustering Technique (EMCT)

[12], Gaussian Mixture - Kalman Filter Model (GMM-KF)

using Pearson Correlation Coefficient (PCC) feature selection

method [14] and GBFS based tree based classifiers [15].

Furthermore, we have also compared various performance

evaluation factors such as whether proper pre-processing is

applied on datasets; whether feature selection approach is

incorporated and if applied how many features are selected to

evaluate the accuracy by considering four states of dataset.

Table V shows that the proposed framework outperforms

compared to other published techniques. The model accom-

plishes significant accuracy for all the four categories by

selecting only 25% of the features. Note that the results

mentioned in the table refer to the highest accuracy achieved

during the classification by the majority vote based ensemble

algorithm.

Bagging generally considers homogeneous weak learners to

train the model sequentially. However, the learning process

occurs independently, and prediction is made by averaging

all the parallel models. On the other hand, boosting learns

sequentially by considering errors from previous ones. In both

these methods, homogeneous learners are used. In contrast,

stacking often considers heterogeneous weak learners to train

the meta-model to predict the output based on different model

predictions. We have discussed the literature pertaining to var-

ious ensemble methods in Section II, namely, bagging, boost-

ing and stacking. To demonstrate the efficiency of our

proposed approach, we have compared bagging and boosting

based ensemble methods with the majority vote based ensem-

ble technique which refers to stacking approach.

As shown in Table VI, bagged DT, RF and ET are examples

of bagging ensembles whereas boosting ensembles include

GB, AdB-DT and XGB. Furthermore, we have designed the

majority vote ensemble technique by applying the predictions

of nine heterogeneous classifiers. Table VI represents the

promising results compared to other ensemble techniques in

terms of accuracy. Moreover, the other three non-ensemble

classifiers, namely, NB, KNN and ANN have less accuracy;

54.29%, 94.32%, 88.47% for binary, 58.21%, 93.72%,

87.02% for three state, 21.57%, 89.10%, 84.23% for seven

Fig. 5. Comparative view of different Machine Learning classifiers for four categories for each of the fifteen datasets.

TABLE V
COMPARATIVE ANALYSIS OF OVERALL PERFORMANCE OF VARIOUS TECHNI-

QUES AND PROPOSEDMAJORITY VOTE ENSEMBLEMETHOD BASED CLASSIFIER

TABLE VI
COMPARISON OF ACCURACY OF DIFFERENT ENSEMBLE TECHNIQUES
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state, and 13.18%, 87.77%, 83.13% for multi state as com-

pared to the majority vote ensemble method.

We have denoted the specification of each model in

Table VII. These parameters are achieved using a grid search

while training the model for hyper-parameter tuning, which

improves the efficiency of each classifier. Here, estimators

refer to the number of trees created in the model during the

training process. At the same time, maximum depth (max

depth) represents the node expansion until all leaves contain

less than the value defined in the minimum samples split (min

split). For the ANN model, we have created 512 hidden layers

with 50 epochs each by considering a batch size equal to 16.

Furthermore, we have considered ‘adam’ optimizer for weight

optimization and ‘relu’ as activation function for the hidden

layer. KNN decides the output label by considering the predic-

tion of three nearest neighbors.

Using an ROC plot, we can visualize the trade-offs between

the true positive rate (TPR) also known as sensitivity and false

positive rate (FPR). Further, the Area Under the Curve (AUC)

presents the degree of separability, which defines the capabil-

ity to differentiate the classes. Fig. 6 shows the ROC curves of

four classifiers created by the 10-fold cross-validation method.

We have examined RF, GB, XGBoost and Majority Vote,

which represent the different categories of ensemble tech-

nique, namely, bagging, boosting, and voting ensembles.

Moreover, we have presented the ROC curve of one of the

fifteen datasets of each of the four categories. ROC curve

qualifies the model according to the total area under the curve

for each classifier. The metric falls between 0 and 1, with a

higher value indicates better classification performance. The

graphs in Fig. 6 compare the AUC of four classifiers. The

green curve represents the majority vote-based ensemble

method is contributing to the high AUC scores for all four

classes. This means that the majority vote based model is bet-

ter at achieving a blend of precision and recall. Furthermore,

random forest and XGBoost contribute slightly better than

gradient boosting for all four categories. However, gradient

boosting is comparatively lower in terms of AUC scores spe-

cifically for the multi states dataset.

In the case of imbalanced datasets, the PR plot is more infor-

mative than the ROC plot while evaluating classifiers [47].

Here we are not only targeting binary classification but also

classifying multiple attack events. Hence, for more information

retrieval, we have also analyzed PR curves in case of bias in the

class distribution. The baseline of the PR curve is determined

by the relation of precision and recall values. Fig. 7 depicts the

precision/recall for each threshold for a majority rule-based

ensemble model by considering all the four categories of the

dataset. For all the four types, the majority rule-based ensemble

classifier maintains a high detection rate. The proposed model

has achieved 98.9%, 97.8%, 96.2%, and 94.6% of the average

precision-recall curve area for binary, three states, seven states,

and multi-states, respectively. The exact percentage of each

output label is depicted in Fig. 7. The results indicate the model

performs exceptionally well with all the categories to predict

various types of class labels.

Precision defines the ratio of the number of true positives,

divided by the total number of true positives and false positives,

which describes the efficiency of the model in terms of predic-

tion of the positive class. Recall represents the ratio of the num-

ber of true positives divided by the total number of true

positives and false negatives. While F measure is used to com-

bined the precision and recall to determine the harmonic mean

of those parameters. For the precise assessment, we have mea-

sured the efficiency of our proposed model not only by evaluat-

ing the accuracy of the classification but also by considering

other factors such as, recall, precision, F1 score and miss rate.

We have achieved high precision, recall, and F measure for

RFE based majority vote ensemble method for all the four cate-

gories. The results of these performance metrics are illustrated

in Table VIII. We have evaluated the results for all the 15 data-

sets of all four categories. However, we have depicted the most

promising result of all the observations in Table VIII. Further-

more, for a more detailed view, we have represented the results

of all the simulation trials in Fig. 8, which consist of all the 15

datasets of binary, three states, seven states, and multi states

categories. As shown in the figure, we have achieved around

97% detection rate, which offers significant classification of

TABLE VII
SPECIFICATION OF EACH MODEL ARCHITECTURE

Fig. 6. ROC Curves of three types (bagging, boosting and stacking) of
Machine Learning Classifiers for four categories.
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attack and normal events for binary and three states categories,

with only 3% miss rate. Furthermore, the seven class and

multi-class output labels are also accomplished with 93%

detection rate with around 7%miss rate.

We have observed the importance of the various features in

the previous section, where accuracy is measured by consider-

ing subsets of the features. In that, we have focused on the

binary dataset. For further proof of concept, we have evaluated

the accuracy of three other categories, namely, three class,

seven class, and multi class datasets, by comparing all the 128

with 30 features. To extract the gist of the features, we have

applied an RFE based WFI scoring model, which scores the

importance of all features recursively. This ranking defines

how often the feature is used to determine the output label

while constructing the tree. Table IX illustrates the compara-

tive analysis of four categories by considering 128 features

Fig. 7. Precision-Recall Curves of RFE based Majority vote ensemble method for four categories.

TABLE VIII
PERFORMANCE EVALUATION METRICS OF PROPOSED RECURSIVE FEATURE

ELIMINATION BASED MAJORITY VOTE ENSEMBLE METHOD
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versus 30 features extracted by RFE. The classification with

30 features offers the highest accuracy during the classifica-

tion of normal and attack events using the majority vote

ensemble classifier. In Table IX, we have presented the result

of one of the 15 datasets. During experiments, we have also

observed that the training time of multi states datasets with all

the 128 features is unrealistic as it took more than 24 hours.

Hence, feature selection is a crucial factor used to develop a

better predictive model and make the model computationally

efficient.

The detection time is determined using real-time data clas-

sification based on incoming traffic (generally based on one

observation). Intrusion detection systems should provide an

immediate response to potential attacks. To improve the per-

formance of such systems we need to eventually train the

module based on the behavior of real-time traffic and accord-

ingly need to deploy the model in a real-time environment.

Since training involves computational time and resources, it is

mostly performed using high-performance infrastructure (gen-

erally offline on the plant floor or at the control center). In

contrast, the intrusion detection inference engine (trained

model) is used to classify the observation of real-time traffic

and deployed in hardware that is connected to the communica-

tion network.

We have conducted experiments to determine the execution

time of each of the four phases, namely, pre-processing, fea-

ture selection, training time, and testing time of the proposed

technique by taking random samples from the original dataset

(5300 records out of 100,000 records). The execution times

reported refer to the implementation of the proposed approach

on Windows10 with Intel Core i5-8300H 2.30GHz processor,

8 GB RAM, and Nvidia Geforce GTX 1060 GPU. The execu-

tion times of all the modules of the proposed algorithm are

listed in Table X.

The above refers to the training time of the three phases.

Generally, the preprocessing, feature selection, and training of

the model are performed frequently at certain time intervals at

the plant floor/control center offline using high computational

resources. However, to address the detection rate of the pro-

posed scheme we need to target real-time classification. In

principle, the filtering mechanism of the proposed algorithm

should be incorporated in edge computing devices such as

smart routers and smart switches. This will significantly

reduce the detection rate as filtering (preprocessing) is

Fig. 8. Result of various performance measurements (Precision, Recall, F1 Measure) of RFE based majority vote ensemble method for four categories of fifteen
datasets.

TABLE IX
COMPARISON OF ACCURACY OFMAJORITYVOTE ENSEMBLE ALGORITHM WITH

ANDWITHOUT RECURSIVE FEATURE ELIMINATION BASED FEATURE SELECTION

TABLE X
EXECUTION TIME OF RANDOM SAMPLE OF 5300 RECORDS

TABLE XI
COMPARATIVE ANALYSIS OF TRAINING TIME OF VARIOUS

CLASSIFIERS (RANDOM SAMPLE OF 5300 RECORDS)
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computed on hardware. These distributed computing devices

make the detection rate low (nanoseconds) which also avoids

the requirement of a powerful CPU or the support of a GPU.

Thus, the execution time to classify normal/attack events by

our proposed model is comparatively low which is adequate

for a real-time intrusion detection system.

Furthermore, we have compared the training time of various

classifiers with the majority vote-based ensemble method as

depicted in Table XI. While the majority vote ensemble

method takes more time compared to the single classifier, to

balance the execution time, and to obtain high performance,

we have proposed a real-time IDS for SCADA systems as dis-

cussed in Section VI. In particular, we have deployed a major-

ity vote-based IDS on the control center that monitors all the

plant floor IDSs which work on a single GBFS based classi-

fier. This approach maintains the performance of IDS for

real-time SCADA systems to distinguish attacks and normal

events during live data streaming with the standard available

hardware.

VI. PROPOSED IDS FRAMEWORK FOR POWER GRID

SCADA SYSTEM

We have extended our previous GBFS based model with

RFE based majority vote ensemble method by combining the

results of several classifiers to achieve an accurate outcome.

The purpose of the previous model is to achieve accurate clas-

sification without deteriorating the performance of the system

using prediction of a single classifier. However, majority vote

ensemble method predicts the output label based on the major-

ity of the output labels predicted by each classifier. This will

further improve the efficiency of the prediction and provides

the most accurate output label in terms of normal and attack

events. For that, we have targeted various heterogeneous clas-

sifiers, namely, Random Forest, Gradient Boosting, XGBoost,

Artificial Neural Network, Na€ıve Base, and Decision Table

for ensemble learning by referring to preliminary results from

this paper [15]. This approach will generate a better predicting

model than a single model using a hard voting based majority

rule ensemble technique.

In distributive environments such as power grids, the avail-

ability of the most accurate intrusion detection system is a

crucial factor. This is achieved by replacing the existing

deployed model with the most recent ones, which enhances

the capability of IDS and is accomplished by training the

model frequently according to the live traffic. The training

time plays a significant role in real time detection as shorter

execution time develops the model quickly. We have pro-

posed the IDS framework for real-time SCADA systems for

power grids, as shown in Fig. 9. In this approach, we place

two different IDSs at two different locations, one at the plant

floor and another at the control center. The plant floor IDS

analyzes the SCADA traffic using the GBFS based filtering

model as it is more compatible in detecting the intrusions in

real-time communication. However, for more accurate

results, the output of this module is verified at the control cen-

ter using the majority vote-based IDS with multiple classi-

fiers. In case of a discrepancy in the output labels, the records

will be added to a new training dataset to retrain the GBFS fil-

tering model periodically. This way, we can achieve the most

updated test model and replace the existing model with the

recent model. Through this approach the proposed framework

achieves high computational speed and accurate prediction

for live SCADA traffic of power grids.

Fig. 9. IDS framework for real-time SCADA systems for power grids.
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VII. CONCLUSIONS

This paper presents a RFE- XGBoost based feature selec-

tion approach along with the majority vote-based ensemble

method for intrusion detection in power grids. The proposed

framework comprises of three key elements, namely, data pre-

processing, feature selection, and anomaly detection. Initially,

during data preprocessing, the features are mapped and scaled

to a specific range. The RFE-XGBoost based feature selection

approach is subsequently applied on filtered data to compute

the most stable features from the entire dataset. This approach

enhances the learning efficiency. Furthermore, the selection of

the features is carried out dynamically according to network

traffic. In the subsequent stage, these reconstructed datasets

are used by nine heterogeneous classifiers to predict the vari-

ous attacks and normal events. Finally, the majority vote-

based ensemble algorithm is applied to predict the output

based on the majority of the class labels predicted by each of

the nine classifiers.

The experimental results reveal that the proposed frame-

work fares well in terms of accuracy, detection rate, precision,

and recall. Moreover, the proposed model outperforms some

of the state-of-the-art published techniques. The model offers

a blend of effectiveness with precision, as it uses the limited

number of stable features, and the classification is carried out

based on combined predictions of nine most promising classi-

fiers. Moreover, this combination requires limited computa-

tional cost, which is one of the crucial factors for mission-

critical applications. Thus the proposed model has the poten-

tial to leverage the competencies of real-time SCADA systems

for power grids.
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Abstract—Supervisory Control and Data Acquisition (SCADA)
networks play a vital role in industrial control systems. Industrial
organizations perform operations remotely through SCADA
systems to accelerate their processes. However, this enhance-
ment in network capabilities comes at the cost of exposing
the systems to cyber-attacks. Consequently, effective solutions
are required to secure industrial infrastructure as cyber-attacks
on SCADA systems can have severe financial and/or safety
implications. Moreover, SCADA field devices are equipped with
microcontrollers for processing information and have limited
computational power and resources. This makes the deployment
of sophisticated security features challenging. As a result, effective
lightweight cryptography solutions are needed to strengthen the
security of industrial plants against cyber threats. In this paper,
we have proposed a multi-layered framework by combining
both symmetric and asymmetric key cryptographic techniques
to ensure high availability, integrity, confidentiality, authentica-
tion and scalability. Further, an efficient session key management
mechanism is proposed by merging random number generation
with a hashed message authentication code. Moreover, for each
session, we have introduced three symmetric key cryptography
techniques based on the concept of Vernam cipher and a pre-
shared session key, namely, random prime number generator,
prime counter, and hash chaining. The proposed scheme satisfies
the SCADA requirements of real-time request response mech-
anism by supporting broadcast, multicast, and point to point
communication.

Index Terms—SCADA Systems, random number generator,
symmetric key cryptography, public key algorithm, cyber secu-
rity, network attacks, key management.

I. INTRODUCTION

THERE has been a surge in the deployment of Supervisory
Control and Data Acquisition (SCADA) systems to con-

trol and monitor industrial infrastructure over the Internet [1].
Organizations such as oil and natural gas, power stations, water
& sewage systems, chemical plants, manufacturing units, rail-
way, and other transportation use SCADA systems to monitor
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Fig. 1. Block diagram of a SCADA system, Legend: MTU: Master Terminal
Unit, PLCs: Programmable Logic Controllers, RTUs: Remote Terminal Units,
IEDs: Intelligent Electronic Devices.

and control their infrastructure such as oil pipelines, solar pan-
els, water pipelines, boilers, railway tracks, and plant floor
components across open access networks [2], [3].

A SCADA system typically includes a control server
(also known as Master Terminal Unit (MTU)), SUB-MTUs,
communication links (e.g., satellite, radio or microwave
links,cellular network, switched or lease lines and power-
lines), and geographically dispersed field control devices,
namely, Programmable Logic Controllers (PLCs), Remote
Terminal Units (RTUs), and Intelligent Electronic Devices
(IEDs) [2], [4]. The block diagram of a typical SCADA system
is depicted in Figure 1.

For continuous monitoring and control of plant floor
devices, sensors and actuators are used to measure differ-
ent attributes of machinery and transmit that information to
field devices [5]. Further, the field control devices, namely,
PLCs, RTUs, and IEDs supply digital status information to the
MTU (typically placed at the remote location) to determine the
acceptable ranges according to parameters set in the server.
This information will then be transmitted back to the field
control device(s) where actions may be taken to optimize the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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performance of the system. Moreover, the status information
is stored in a database and is displayed on a Human Machine
Interface (HMI) at the control center, where operators can
interact with the plant floor machinery for centralized mon-
itoring and system control [6]. Large SCADA networks such
as those on a power plant require hundreds of field devices
and dedicated subsystems to reduce the load on the centralized
server [2].

SCADA communication messages have sensitive
information as they are used to monitor and control the
plant floor devices. For example, in water and sewage
systems, the communication messages are used to raise and
lower water tank levels or open and close the safety valves.
Since these control devices are operated and monitored
remotely, they can make them high-value targets for attackers
to launch various cyber-attacks that can compromise the
control systems, communication, and emergency services.
Consequently, one of the critical aspects of the SCADA
systems is secure transmission of messages so that they
cannot be tampered during the communication. Moreover,
the SCADA devices must be authenticated and maintain
confidentiality of the information during the transmission so
that no interceptor can misuse the system.

In the last few years, many key management techniques
have been published to secure SCADA communication,
namely, SCADA key establishment (SKE), SCADA
Key Management Architecture (SKMA), Advanced
SCADA Key Management Architecture (ASKMA),
Hybrid Key Management Architecture (HKMA) and
Advanced Hybrid SCADA Key Management Architecture
(AHSKMA), Limited Self-Healing key distribution
(LiSH) [7], [8], [9], [10], [11], [12]. These techniques
fall under two main categories, namely, centralized key
management and decentralized key management schemes.
Moreover, each of these categories uses three approaches
to generate and extract the session key, namely, symmetric,
asymmetric, and hybrid. The drawback of the centralized
scheme is that if the key distribution center (KDC) is down,
the communication is cut off, which is not acceptable in
SCADA systems. In a decentralized approach, the keys are
created using keying material and may only affect the single
communication link in case of a breakdown.

The symmetric key based approach is efficient in terms of
message integrity and high availability, but does not provide
authentication and confidentiality. On the other end, asymmet-
ric key provides message integrity, authentication, and privacy,
but may compromise availability. Hence, hybrid techniques
are more suitable for SCADA systems. A few key manage-
ment techniques have been proposed using hybrid methods.
For example, Rezai et al. [10] propose an advanced Hybrid
key management architecture (HSKMA), which improves the
key management architecture proposed by Choi et al. [11].
However, it uses a centralized KDC to distribute the keys.
Moreover, the communication between the MTU and the sub-
MTU is established using Elliptic-Curve Cryptography (ECC)
based asymmetric key cryptography while the sub-MTU and
the RTU communicate using Rivest–Shamir–Adleman (RSA)
asymmetric key cryptography. The same approach has been

used to enhance the scheme proposed by Rezai et al. [13]
using a decentralized system in [9]. In this scheme, the master
keys are refreshed using ECC and symmetric cryptography
is used for encryption, decryption, and session key updates.
However, this scheme does not validate the message integrity
and authentication. Moreover, none of the previous methods
has practical implementation proof that it provides immunity
against quantum attacks [14]. Furthermore, it has been known
that RSA does not guarantee perfect forward secrecy [11].
In summary, none of the techniques covers all the security
aspects.

The forgoing discussion brings in the need for an effec-
tive cryptography solution that will prevent these systems
from potential breaches. The objective of this paper is to pro-
pose a robust & low-cost security framework for automated
industries to mitigate various security flaws and cyber-attacks.
The proposed work aims to offer a multi-layered security
framework for industrial infrastructures by combining both
symmetric and asymmetric key cryptography techniques. This
novel approach follows a layered architecture, where the MTU
and sub-MTU can communicate using a hybrid technique for
an entire session while the sub-MTU and RTU can communi-
cate using symmetric key cryptography once the session key is
securely exchanged. Also, we have proposed a novel approach
to generate symmetric keys using vernam cipher rather than
using existing methods such as 3DES, AES, etc. Furthermore,
the proposed scheme satisfies SCADA requirements of real-
time request-response mechanism by supporting broadcast,
multicast, and point-to-point communication.

A. Contributions of the Paper

1) We propose a secure session-key agreement scheme
according to SCADA protocol standards to ensure the
security amongst MTU, sub-MTUs and RTUs. For that,
a true random number generator based on current date
and time (CDT) and a fraction of the square root of a
prime number (FSRP) are used to generate the session
key. Moreover, these elements are shared by XORing
them to enhance the privacy of the shared secrets.
Furthermore, the dynamic HMAC is derived using the
value of FSRP. Moreover, using these same elements,
the HMAC is derived to validate the integrity of the
message. This reusability of the elements increases the
computational speed of session key, symmetric key
and HMAC derivation. The randomness of key and
HMAC offers immunity against various attacks such as
correlation attacks, length extension attacks, etc.

2) We propose a novel approach to generate symmet-
ric keys in the Vernam cipher by combining prime
counter and hash chaining techniques. The mathematical
property of the fraction square root of prime num-
ber (FSRP) is used, which returns a non-terminating,
non-repeating irrational number. In a recent publica-
tion by Manjunatha et al. [15], the authors propose
Vulgar fractions to generate a complex key with secured
seed exchange for the Vernam cipher. This fraction
is generated by dividing a small number by a large
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prime number, resulting in a fraction number [15]. For
example, frac(1/7) = 0.1428571428571 generates long
strings with a repetitive sequence of digits. However, our
proposed approach advances that method by generating
completely random and non-repeating decimal num-
bers using the concept of FSRP. For example frac(sqrt
(7)) = 0.6457513110645905905016157536393 returns
long strings without repetitive sequence of digits.

3) We propose a multi-layered framework by integrating
the concept of symmetric and asymmetric key cryptog-
raphy that ensures various security mechanisms, namely,
authentication, confidentiality, message integrity, avail-
ability, and scalability for SCADA systems. The
proposed method for symmetric key cryptography is
based on the Vernam cipher, which provides protec-
tion against all the cryptographic attacks while the
NTRU based post-quantum public-key algorithm resists
quantum and data harvest attacks.

4) We identify an efficient cipher suite by comparing and
analyzing various private and public key algorithms for
the proposed framework by considering multiple fac-
tors, namely, prevention mechanism against classical
and quantum attacks, key storage cost, the random-
ness of key and computational speed. The proposed
cipher suite overcomes the weaknesses of the cipher
suite offered by the American Gas Association (AGA)
security standards [14], [16].

B. Outline of the Paper

The rest of this paper is organized as follows. Section II
describes related research in the areas of key management
and encryption schemes foe SCADA systems. Section III,
presents the reasoning of choice of the algorithms. The proposed
multi-layered framework for secure SCADA communication
is introduced in Section IV, which covers secure key and
information exchange. Section V presents the complete exper-
imental setup which includes algorithm selection for cipher
suites, computational speed of proposed framework, random-
ness evaluation of symmetric key, and calculation of the cost of
the keys. Section VI presents the comparative studies with the
state-of-the-art techniques in terms of security analysis, storage
cost, and execution speed. Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Literature Survey

SCADA networks are typically configured using proprietary
protocols such as Modbus, IEC 61850, IEC 60870, DNP3, and
Profinet, which do not support secure data communication.
Moreover, the remote procedure call (RPC) follows open link
communication and one of the real-time examples of the con-
sequent vulnerability was the Blaster worm [2]. Furthermore,
many network sniffing tools are freely available to view and
gather the network traffic [17]. Therefore, secure data trans-
mission is one of the important requirements for SCADA
systems. Key management and encryption play a vital role
in securing SCADA communication. Typically, in a SCADA
communication, the MTU sends control signals to the RTUs

to control the plant floor devices, which require three types
of communication, namely, broadcast, multicast, and point to
point. However, controller RTUs may need to operate other
field RTUs. In case of an emergency shutdown, to acquire the
clock information or synchronization, MTUs broadcast the sig-
nal to all the control devices such as RTUs, IEDs, and PLCs.
To operate a specific substation device, the MTU requires
multicast communication, whereas monitoring and controlling
the plant for machinery typically requires point-to-point com-
munication. Therefore, while designing a secure framework
for SCADA networks, it is crucial to cover all three types of
communication.

During the last two decades, many key management
schemes have been proposed, which typically fall into
two categories, namely, centralized key distribution such
as [4], [7], [18], [19], and decentralized key distribution
scheme such as [9], [20], [21], [22]. In the centralized scheme,
the Key Distribution Center (KDC) plays a vital role in gen-
erating and distributing the secret keys to establish secure
communication between the communication parties. In con-
trast, the decentralized scheme requires pre-shared keying
material that is used to create the session key. Once the session
key is derived using keying essence, further communication
takes place using that key. Furthermore, some key manage-
ment schemes use the public key-based technique to establish
secure transmission. Although this method is time-consuming
and power-consuming, various research studies suggest that
ECC is a suitable public-key cryptosystem [4], [9], [11].

Sandia Labs proposed a SCADA key establishment (SKE)
method for managing cryptographic keys in the network [7].
This scheme is proposed for point-to-point communication
amongst MTU, sub-MTU, and RTU and uses the symmet-
ric key technique to establish secure communications between
sub-MTUs and RTUs, while sub-MTUs and MTUs commu-
nicate using public key cryptography. For the symmetric key,
the session key is generated using three types of keys, namely,
long term key (LTK), general seed key (GSK), and general
key (GK) [7]. KDC assigns public and private key pair to
each sub-MTU and MTU. However, this method does not
support broadcast, multicast, and RTU to RTU communica-
tion. Moreover, it increases the overall key storage overhead
and complexity as the long-term keys are managed manu-
ally. In [19], the authors propose a SCADA Key Management
Architecture (SKMA) for secure session key management,
which enhances the capability of SKE. While the SKE uses
both a public key algorithm and a symmetric key algorithm,
the SKMA uses only symmetric encryption algorithm. SKMA
generates a session key using a pseudorandom function, keyed
by the node-node key, and a timestamp that is based on the
duration of the session. SKMA uses key establishment pro-
tocol based on ISO 11770-2 mechanism [8]. However, the
scheme does not provide secure message broadcasting but sup-
ports RTU-RTU communication. Moreover, it does not provide
any confidentiality and integrity.

Advanced SCADA Key Management Architecture
(ASKMA) supports both message broadcasting and secure
communications. Furthermore, evenly spreading the total
amount of computation across the high power nodes (MTU or
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SUB-MTU) significantly avoids the performance bottleneck
and keeps minimal burden on the low power nodes (RTU). It
uses the LKH (Logical Key Hierarchy protocol) to construct
a logical tree of symmetric keys. Each member knows all
the symmetric keys from its leaf to the root, and if any
new node joins the group, LKH updates the entire set of
symmetric keys from its leaf to the root. Although the overall
performance of ASKMA has many advantages, it can be
less efficient during the multicast communication process.
To solve this issue, ASKMA+ was proposed [7]. ASKMA+
divides the key structure into two classes, by applying the
IoLus framework to construct each class as a logical key
hierarchy (LKH) structure. Through this key structure, the
authors proposed a more efficient key-management scheme
supporting efficient multicast communication by considering
the number of keys stored in a remote terminal unit (RTU).
However, ASKMA+ does not address the availability issue
in SCADA.

To satisfy the availability requirement, Hybrid Key
Management Architecture (HKMA) and Advanced Hybrid
Scada Key Management Architecture (AHSKMA) were
proposed [10], but there is a chance that field devices
will stop working during the replacement of field control
devices. To solve this issue, Choi et al. propose a hybrid
key management scheme [11]. A centralized key distribu-
tion (CKD) protocol is applied between the sub-MTU and
MTU, and LKH protocol is applied between sub-MTU and
RTU. However, if the centralized key distribution server
breaks down, the entire approach fails to execute the pro-
tocol. Rezai et al. [9] also use a hybrid key management
method using ECC. Jiang et al. [12] propose Limited Self-
Healing key distribution (LiSH), which offers revocation
capabilities along with collusion-resistance for group commu-
nication in SCADA systems. The LiSH+ is used to address
the dynamic revocation mechanism, which enhances the base
method of LiSH. Kang et al. [21] propose a scheme for radial
SCADA systems based on a pre-shared session key that relies
on symmetric key cryptography. This solution enhances the
performance of the radial SCADA system by using the master
key concept.

AGA-12, Part 2, provides security features offering a new
security protocol standard [23]. It uses cipher suites to secure
communication amongst SCADA field devices, which cov-
ers authentication, confidentiality, and integrity. However, it
fails to provide faster execution. Furthermore, it does not
offer prevention against quantum and Denial of Service (DoS)
attacks. In addition, AGA-12 uses the RSA algorithm for
encryption, which was recently cracked and also does not
provide key management [14]. The other security standards,
such as IEC 62210, IEC 62351, fail to offer security against
man-in-the-middle (MiM) attacks and also lack strong key
management. A novel key distribution method was proposed
for smart grids in [24] which uses identity-based cryptography.
This method adopts a hybrid approach to counteract man-
in-the-middle and replay attacks. However, this method does
not cover the authentication of the SCADA components. The
authors in [25] introduce the authentication and authorization
roles for SCADA devices using attribute-based access control.

The hybrid Diffie-Key exchange, along with the authentica-
tion scheme, was proposed in [26]. This scheme uses RSA
and AES for session key generation and encryption. However,
it does not provide high availability.

B. Research Gaps

Originally, the objective of SCADA systems was to focus
on accurate and efficient process execution at the plant floor
rather than aiming to secure communication. While access-
ing the plant machinery remotely through SCADA systems
accelerates the industrial processes, it compromises the secu-
rity by exposing the systems to the outside world [24].
Consequently, unauthorized parties such as hackers, intelligent
foreign agents, and corporate saboteurs, can exploit the weak-
nesses to compromise industrial systems. Typically, general
safeguards include restricted perimeters, patch management,
strong cryptography and most importantly, separation of the
control network and corporate network through the defense-
in-depth mechanism [1], [22]. However, these security guards
are difficult to deploy owing to legacy-inherited security weak-
nesses, and that significantly increases the chances of possible
exploitation during real-time communication [2], [27].

Moreover, SCADA field devices such as PLCs, RTUs,
and IEDs have resource and computational power limitations
that make the deployment of sophisticated security features
challenging [9]. Furthermore, availability, integrity, and confi-
dentiality are the three fundamental security requirements of
SCADA communication [19]. To circumvent threats against
these security requirements, a robust security framework for
key management schemes and lightweight encryption tech-
niques are needed [9], [20]. Although many key management
and encryption techniques have been proposed, few methods
exist for secure key exchange for point-to-point communica-
tion while some are specifically intended for broadcast and
multicast communication. Furthermore, none of the schemes
satisfy all the requirements of secure SCADA communica-
tion and real-time request-response mechanism. Some private
key based methods offer integrity and availability, while some
public key based methods provide authentication and confiden-
tiality. Hence, neither private nor public key based approach
alone is sufficient [4], [28]. The development of a secured
SCADA framework with hybrid efficient key management
scheme and lightweight cipher is the primary research gap
that is addressed in this paper.

C. Proposed Solution

The proposed system aims to provide a multi-layered secu-
rity framework for industrial infrastructures by combining both
symmetric and asymmetric key cryptography techniques. This
novel approach covers major security aspects of the systems,
namely availability, integrity, confidentiality, authentication
and scalability. For that, an efficient session key management
mechanism has been proposed besides lightweight ciphers
by merging the concept of random number generator and
Hashed Message Authentication Code (HMAC). Moreover, for
each session, three symmetric key cryptography techniques
are introduced, namely, random prime number generator,



646 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 1, MARCH 2022

prime counter, and hash chaining based on the concept of
Vernam cipher and pre-shared session key. Furthermore, the
proposed scheme satisfies SCADA requirements such as real-
time request response mechanism by supporting broadcast,
multicast, and point to point communication.

III. REASONING OF CHOICE OF ALGORITHMS

Many SCADA-based industrial systems, such as water &
sewage control, energy and power plants, and gas pipelines,
rely on real-time communication with limited computational
resources. We have used the Vernam cipher for symmetric
key cryptography because it is proven to offer an abso-
lute secure solution theoretically, is easy to implement, and
accelerates encryption & decryption by using low power and
memory [29]. Therefore, it is an appropriate solution for
embedded system devices. Moreover, the modulo-2 operator
(XOR) used in the Vernam cipher provides faster execution
and the flexibility in design of the onboard hardware [15].
By employing these features of the Vernam cipher, we can
protect the data with low computational power and memory
utilization.

The Vernam cipher provides complete secrecy as the key is
unique and completely random for each message. An amount
of time that is necessary to break any cipher and tamper with
the data is based on the size and nature of the symmetric
key. However, in the Vernam cipher, as the keys are random
and unique for every message, an eavesdropper will be unable
to guess the key even with unlimited computing power. Even
asymmetric ciphers such as RSA can be broken with unlimited
time and processing power [14]. Furthermore, the frequency
analysis of the Vernam cipher is evenly distributed, and hence
cryptanalysis will not produce any meaningful information.

The focus of the proposed framework is to provide high
security along with high availability since SCADA commu-
nication depends on real-time request-response mechanisms.
We can replace digital signature and asymmetric key cryp-
tography by applying HMAC in symmetric key cryptography.
This approach provides message authentication and integrity
without compromising the execution speed during the com-
munication between MTU and RTU.

Typically, HMAC depends on a shared secret key, which
is exchanged using a trusted channel (in our case, we have
used NTRU-based asymmetric key cryptography) between the
sender and receiver to agree on the same key before starting
the information exchange. The same secret key is combined
with the MAC to generate HMAC at both the communication
devices. However, the cryptographic strength of the HMAC
depends on the size of the secret key, since brute force attacks
are the most common attacks against HMAC.

In a typical key distribution scenario, the secret key is dis-
tributed over the trusted channel. Instead, in our proposed
approach, we exchange the parameters of FSRP & CDT such
as the index of FSRP and keysalt which are used to gener-
ate the secret key. Moreover, these parameters are reusable,
and are not only used to generate the session key but also
are applied to produce the key for HMAC. Furthermore, the
key used in HMAC depends on the value of FSRP, which is

Fig. 2. Multi-layered framework for secure SCADA communication.

generated by a random prime generator or a prime counter to
produce a new key for each message. This makes brute force
attacks computationally infeasible as the secret key used in
HMAC is dynamically generated.

IV. MULTI-LAYERED FRAMEWORK FOR SECURE SCADA
COMMUNICATION

This section presents the proposed multi-layered framework
for secure SCADA communication. The framework uses three
levels for robustness, namely, symmetric key cryptography,
cryptographically secure HMAC function, and a public key
algorithm. The security features of each phase are illustrated
in Figure 2.

In our framework, a unique session key is generated for
each connection between SCADA communication devices.
The elements of this session key are securely shared using
asymmetric key cryptography. This is called the key agreement
stage. Furthermore, during this phase, the sender’s authenti-
cation and recipient confidentiality are also validated using
the private-public key pair. Moreover, HMAC is used for
message authentication and integrity. Once both the commu-
nication parties agree on the reliable key exchange, further
communications take place using symmetric key cryptogra-
phy. The encryption of the original message is hashed, and
subsequently, the symmetric keys are generated to encrypt
the message using the lightweight Vernam cipher. After that,
the cipher text and hash digest of this encrypted message are
sent together over the communication channel. At the other
end, the receiver device validates the message integrity using
HMAC and then the cipher text is decrypted to receive sender’s
original message.

Since ICSs control field-site components at the plant floor,
the activities related to controlling and monitoring of the
elements should be done securely and efficiently [30]. For
that, we have introduced two modules, namely, secure key
exchange and secure information exchange. Moreover, secure
information exchange consists of four methods, namely, Multi-
Layered (ML) architecture, Random Prime Generator (RPG),
Prime Counter (PC), and Hash Chaining (HC). While ML and
HC offer very high security in SCADA networks, PC and HC
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Fig. 3. Secure Key exchange mechanism for SCADA systems.

are proposed for time-critical applications. The RPG offers
medium level security and availability.

A. Secure Key Exchange

The key agreement refers to three stages, namely, key
generation at the sender side, key distribution over the com-
munication channel, and key extraction at the receiver side.

1) Key Generation: During the key generation phase, a
sender (MTU or RTU) uses three main elements, namely, a
Random Number (RN), Current Date & Time (CDT), and
Fraction of Square Root of Prime number (FSRP). Here, CDT
and FSRP are used as secret elements to generate the session
key. The choice of these two key elements is based on the
property of generating true random numbers. CDT generates
a random number every microsecond and to make it more
random, we choose FSRP, which returns a non-terminating,
non-repeating decimal number [31]. The session key (SK ) is
derived by applying a hash function on both these elements
by combining them, as in eq. (1).

SK = HASH(CDT ||FSRP) (1)

These session key elements are securely distributed using
MACSALT. The index of FSRP is combined with KEYSALT to
generate MACSALT, where KEYSALT is derived by XORing
CDT and FSRP. The formulas are given in eq. (2) & (3).

KEYSALT = CDT ⊕ FSRP (2)

MACSALT = KEYSALT ||PRIMEindex (3)

Once SK and MACSALT are generated, RN is encrypted
using SK which generates cipher of random number C(RN),
as in eq. (4).

C (RN ) = RN ⊕ SK (4)

In this process, the algorithm produces a hash not only from
the encrypted RN but also from the CDT & FSRP key ele-
ments. This derivation follows the procedure of HMAC, as

given in the eq. (5) and is used to check message integrity.

HMACsender = HASH(C (RN ),CDT ||FSRP). (5)

2) Key Distribution: The bundle of the C(RN), HMAC of
C(RN), and MACSALT is securely sent over the commu-
nication channel using the private key of sender’s (Kspri )
and public key of receiver (Krpub) that validate the sender’s
authentication and receiver’s confidentiality as in eq. (6).

Krpub

(
Kspri (C (RN ),HMACsender ,MACSALT )

)
. (6)

3) Key Extraction: At the receiver side, the private key
of receiver and public key of sender is applied to validate
authentication and confidentiality as in eq. (7).

Krpr(Kspu(C (RN ),HMACsender ,MACSALT ))) (7)

The elements of MACSALT are used to generate FSRP and
CDT. PRIMEindex is used to extract the value of FSRP and
CDT is obtained by XORing FSRP and KEYSALT as shown
below in eq. (8)-(10).

MACSALT = KEYSALT ||PRIMEindex (8)

FSRP = FRAC (SQRT (PRIMEindex )) (9)

KEYSALT = CDT ⊕ FSRP (10)

Finally, the session key is derived by applying hash on CDT
and FSRP as in eq. (11).

CDT = FSRP ⊕KEYSALT (11)

HMACreceiver = HASH (C (RN ),CDT ||FSRP) (12)

HMAC is computed at the receiver using C(RN), CDT &
FSRP, as in eq. (12) to compare with HMACsender to check
data integrity. The HMAC of the sender and receiver are
checked, if both are equal it moves to the next step, else the
message is discarded. The session key SK is then validated
using CDT and FSRP as in eq. (13). The session key is XORed
with C(RN) to get the RN as shown in eq. (14).

SK = HASH(CDT ||FSRP) (13)
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Fig. 4. Process diagram of encryption and decryption of data in secure SCADA communication.

RN = C (RN )⊕ SK (14)

The receiver will send an acknowledgement to the sender
by encrypting RN + 1 using the same session key to vali-
date secure key exchange. Figure 3 illustrates the secure key
exchange mechanism between SCADA devices, namely, MTU
and RTU.

The proposed scheme uses RN, CDT, and FSRP to gener-
ate the session key (Ks) for both the communication devices,
namely, MTU and RTU. However, during the key exchange,
these elements are not transferred openly, rather RN is
encrypted by the key generated using the combination of CDT
& FSRP. Moreover, the modulo-2 operator (XOR) is applied
on CDT and FSRP to generate the keysalt which will be shared
over the communication channel along with an index of FSRP
and the cipher text of RN. The index of FSRP is consid-
ered as the root of trust for the entire scheme. Furthermore,
the Vernam cipher is used for symmetric key cryptography,
which requires a fresh key for each message during the encryp-
tion and decryption process. This symmetric key is generated
using the session key (Ks) and key parameters, namely, CDT
and FSRP, depending on the proposed approaches. The FSRP
can be generated using a random prime generator (Method 2)
or a prime counter (Method 3). Furthermore, hash chaining
(Method 4) can be combined with any of these approaches
to generate a new fresh symmetric key for the Vernam
cipher.

B. Secure Information Exchange

In SCADA systems, the field site components are con-
trolled and monitored using short messages communicated
between RTU and MTU. Based on the reading obtained from
the field control devices, namely, RTU, PLC, and IED, the
SCADA master (MTU) makes a proper decision and sends

an appropriate signal to the field components to operate
plant machinery. Generally, the control messages are short
in length (typically 256 bits), which control the sensors and
actuators of plant machinery. For example, in water manage-
ment systems, the signals used during communication include
OPEN/CLOSE the valve, SWITCH_ON/SWITCH_OFF the
devices, RAISE/LOW the water level tank, etc. [22]. Such
systems operate using short messages. Hence the average
length of the control message consists of 24 to 32 characters
(192 to 256 bits) for one frame.

The Vernam cipher requires the same length for key and
message. Moreover, each communication message requires
a distinct key for encryption and decryption. To gener-
ate such a unique key every time, we have proposed two
main approaches, namely, multi-layered architecture, and hash
chaining with FSRP. Moreover, both these approaches are fur-
ther divided in the multiple methods to generate a unique value
of FSRP, namely, random prime generator (RPG), and prime
counter (PC). Figure 4 illustrates the symmetric key generation
process used to encrypt and decrypt the message at both the
communication endpoints. Both the sender and receiver nego-
tiate RN (random number), CDT (current date and time), and
the index number of FSRP (which acts as a seed for random
prime generator/ prime counter) to generate session key (Ks).
Using RPG/PC, both the sender and receiver generate a distinct
FSRP for each message. Moreover, Blake2s (cryptographi-
cally secure hash function [32]) is applied on the session key
and FSRP to generate the encryption key (Ke). Similarly, the
receiver produces the decryption key (Kd) using the pre-shared
Ks and the value of FSRP. Note that, the value of the sym-
metric key not only depends on the previous key but also on
the value of FSRP (which is generated using RPG/PC). In the
case of our multi-layered architecture, instead of two parame-
ters, both, MTU and RTU use three parameters, namely, CDT,
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Algorithm 1: Multi-Layered (Hybrid)
Input: M = Input Message
begin

Sender:
while (Session!=END) do

(1) Generate CDT
(2) Generate FSRP
(3) Ke ← HASH(Ks , CDT, FSRP)
(4) C (M ) ← M ⊕ Ke , Ks ← Ke

(5) HMACS ← HASH(C (M ), CDT || FSRP)
(6) KEYSALT ← FSRP ⊕ CDT
(7) MACSALT ← KEYSALT || Index
(8) Bundle ← Krpub(Kspri (C (M ), HMACS ,
MACSALT))

end
Receiver:
while (Session != END) do

(1) Bundle ← Krpri (Kspub(C (M ), HMACS ,
MACSALT))
(2) FSRP = Frac(Sqrt(PRIME (Index )))
(3) CDT ← KEYSALT ⊕ FSRP
(4) HMACR ← HASH(C (M ), CDT || FSRP)
if ((HMACS , HMACR) == TRUE) then

(5) Kd ← HASH(Ks ,CDT,FSRP)
(6) M ← C (M ) ⊕ Kd , Ks ← Kd

else
(7) Discard M

end
end

end

FSRP, and Ks to generate the symmetric key. These parame-
ters are exchanged securely using MACSalt and NTRUEncrypt
public-key cryptography.

For our evaluation, we assume that the length of the key is
256 bits as Blake2s depends on a 32 byte word size. In the
case of 256 bits < input string < 512 bits, we can replace
Blake2s with Blake2b to generate the symmetric key, which
consists of a 64 byte word size.

The following section describes four methods to implement
secure SCADA framework for information exchange.

1) Hybrid Multi-Layered Architecture: We can use the
same nomenclature of session key agreement for further secure
communication in which after successful distribution of the
session key the message is communicated between two par-
ties using both symmetric and asymmetric key cryptography.
The data encryption and decryption are obtained using Vernam
cipher. The key generator of the Vernam cipher follows the
same procedure of session key derivation to generate the sym-
metric key at the sender and receiver sides. The symmetric
key, HMAC and MACSALT are derived using FSRP and CDT.
Further encrypted message C(M), HMAC and MACSALT are
shared securely using asymmetric key cryptography. Here, the
complexity of the method is obtained by N * (Asymmetric Key
+ Symmetric Key) during each session which provides high

Algorithm 2: RPG & Prime Counter
Input: M = Input Message, Ks = Session Key

(a) FSRP = frac(Sqrt(RPG(Seed))) OR (b)
FSRP = frac(Sqrt(PC (Index )))

begin
Sender:
while (Session!=END) do

(1) Generate CDT
(2) Ke ← HASH(Ks , CDT, FSRP)
(3) C (M ) ← M ⊕ Ke , Ks ← Ke

(4) HMACS ← HASH(C (M ), CDT || FSRP)
(5) MACSALT ← FSRP ⊕ CDT
(6) Index ← Index + 1
(7) Transmit C (M ), HMAC,MACSALT

end
Receiver:
while (Session != END) do

(1) CDT ← MACSALT ⊕ FSRP
(2) HMACR ← HASH(C (M ), CDT || FSRP)
if ((HMACS , HMACR) == TRUE) then

(3) Kd ← HASH(Ks , CDT, FSRP)
(4) Ks ← Kd , Index ← Index + 1
(5) M ← C (M ) ⊕ Kd

else
(6) Discard M

end
end

end

security with moderate availability. N is the number of mes-
sages exchange during the session. The steps of this approach
are shown in Algorithm 1.

The following methods describe the approach of symmetric
key cryptography instead of using a combination of public-
private key pairs. After secure session key and prime seed
distribution, further encryption process can be carried out
using one of the three symmetric key based proposed methods
as listed below.

2) Random Prime Number Generator: In this method, the
seed of the prime index value is used to determine FSRP
using next random prime number. Also, CDT and hash of
the input message h(M) are determined to generate symmetric
key, HMAC and MACSALT. This information is sent to the
recipient over the communication channel. Using MACSALT
and random number prime generator, the receiver can generate
the symmetric key to decrypt the data using the Vernam cipher.
Here the complexity of algorithm is measured by Asymmetric
key + N * Symmetric key for every session where asymmetric
and symmetric key are used during session key distribution
while the symmetric key is used during secure communica-
tion. However, this approach is comparatively less secure as
the adversary could intercept the MACSALT to derive the keys
such as FSRP and CDT. Algorithm 2 summarizes the above
process.

3) Prime Counter: In this method, instead of random prime
generator, we have used prime counter which significantly
increases the execution speed. The rest of the steps are same
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Fig. 5. Complete process diagram of secure communication between MTU and RTU.

Algorithm 3: HASH Chaining
Input: M = Input Message, Ks = Session Key

FSRP = Frac(Sqrt(PC (Index )))
begin

Sender:
while (Session!=END) do

(1) Ke ← HASH(Ks ,FSRP)
(2) C (M ) ← M ⊕ Ke , Ks ← Ke

(3) HMACS ← HASH(C (M ),FSRP)
(4) Index ← Index + 1
(5) Transmit C (M ), HMAC

end
Receiver:
while (Session != END) do

(1) HMACR ← HASH(C (M ), FSRP)
(2) Index ← Index + 1
if ((HMACS , HMACR) == TRUE) then

(3) Kd ← HASH(Ks , FSRP), Ks ← Kd
(4) M ← C (M )⊕ Kd

else
(5) Discard M

end
end

end

and hence we have highlighted the difference in red font in
Algorithm 2. The previous prime number is used to determine
next FSRP. Similarly CDT and hash of the input message h(M)

are used to determine symmetric key, HMAC and MACSALT.
This information is sent to the recipient. Using MACSALT
and prime counter, the receiver can generate symmetric key
to decrypt the data using Vernam cipher. In this approach the
adversary could also intercept the MACSALT to derive the
essence of the keys such as FSRP and CDT. The complexity of
algorithm is measured by Asymmetric key + N * Symmetric
key for every session. Consequently, the model provides good
security with high availability.

4) Hash Chaining: This proposed method is one of the
robust solutions for SCADA systems which covers all the
security mechanisms. This approach not only provides high
security but also offers high availability. In this, the pre-shared
session key is used as input of the hash function to generate
the next symmetric key. Moreover, the previous FSRP is used
to generate HMAC which can be derived independently at both
the ends and is used to check the integrity of the message. The
generated symmetric key is then used to encrypt and decrypt
the message using the Vernam cipher, as mentioned in the
Algorithm 3. The complexity of this method is based on the
Asymmetric + N * Symmetric key cryptography.

The complete process diagram of the proposed framework
of secure SCADA systems is shown in Figure 5.

V. EXPERIMENTS

A. Algorithm Selection of Cipher Suite for Proposed
Framework

The choice of the algorithms to design the security frame-
work generally depends on the nature of the application.
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The communication of SCADA systems relies on a real-
time request-response mechanism. Moreover, SCADA field
devices are equipped with micro controllers for process-
ing information and have limited computational power and
resources. Consequently, identifying the most appropriate
algorithms for the proposed scheme is one of our imple-
mentation’s crucial steps. The identified algorithms for our
cipher suite should provide faster execution speed and be suit-
able for deploying in an embedded system environment. The
comparative analysis of various algorithms was carried out
using wolfSSL and libntru 0.5 cryptosystems on Linux sub-
system of Windows 10 with Intel Core i5-8300H 2.30GHz
processor and 8 GB RAM. The wolfSSL is a lightweight and
portable embedded SSL library that is specially meant for IoT,
embedded, and RTOS environments [33]. The libntru 0.5 is an
open source library that supports the implementation of the
public-key encryption scheme NTRUEncrypt in C language
by following the IEEE P1363.1 standard [34]. Moreover, the
proposed symmetric schemes are implemented on an inte-
grated development environment for Python called IDLE on
Windows 10 operating system.

1) HASH Functions: In this framework, the hash function
plays a vital role as it acts as a message authentication code
and is used to generate a symmetric key. To identify the cryp-
tographically secure and computationally efficient function, we
have compared various hash functions. Based on the compar-
ative analysis of computational speed presented in Table I,
Blake seems to be most prominent. There are three flavors
of Blake’s hash function, namely, Blake, Blake2, and Blake3.
Furthermore, Blake2 is subcategorized in two types, namely,
Blake2s and Blake2b. Blake2b is designed for 64 bits of word
length while Blake2s and Blake3 are designed for 32 bits.
Both the categories of Blake2 are cryptographically secure
hash functions and used to target various applications such
as cloud storage intrusion detection, version control systems,
and Internet of Things. Moreover, it is computationally effi-
cient like MD5, and provides security similar to SHA-3 [35].
We can also take advantage of Blake2 in multicore architec-
tures for parallel processing. Furthermore, Blake2 uses 32%
less RAM than Blake and has proven efficient MAC func-
tion [36]. These features make Blake2 a suitable candidate for
SCADA systems. For the framework implementation, we have
used Blake2s as one of our proposed cipher suite elements.
A new version of Blake, namely Blake3, has been released
recently [37]. Blake3 is comparatively faster than Blake2s as
it uses seven rounds, whereas Blake2s uses ten rounds to com-
pute the hash function [38]. One scope for future work for our
research would be to implement our framework using Blake3.

2) Symmetric Key Cryptography: Advanced Encryption
Standard (AES) is the well-known symmetric key cryptog-
raphy used to design secure systems. AGA has used AES as a
symmetric key component in its standard protocol suite [16].
Nowadays, AES modes are preferred to secure the systems
owing to better security and faster execution speed. 3DES
is also used in traditional cryptosystems. In Table II, we
have compared the computational speed of various modes of
AES and DES with the proposed hash-based Vernam Cipher.
The computational speed of Vernam Cipher is calculated by

TABLE I
COMPARATIVE ANALYSIS OF VARIOUS HASH FUNCTIONS

TABLE II
COMPARATIVE ANALYSIS OF COMPUTATIONAL SPEED OF

VARIOUS SYMMETRIC KEY ALGORITHMS

adding the execution speed of Blake2S hash with the speed
of Exclusive-OR operation. The comparative analysis shows
that the hash-based symmetric key technique used in Vernam
Cipher is faster than other algorithms.

3) Asymmetric Key Cryptography: Asymmetric key cryp-
tography not only offers the confidentiality but also ensures
integrity, authentication, and non-repudiation during communi-
cation. Some public key algorithms such as Diffie-Hellman key
exchange provide key distributions and secrecy, whereas some
provide encryption and digital signature such as RSA, ECC,
and NTRU [39]. We have compared various well-established
public key algorithms, namely, RSA, DH, ECC, and NTRU
by considering the key size and total operations performed per
second. According to the output results presented in Table III,
NTRU outperforms the other methods. NTRU public-key cryp-
tography is also known as NTRUEncrypt. This is constructed
using a lattice-based technique by applying the concept of the
shortest vector problem. It depends on the factoring of cer-
tain polynomials in a polynomial ring into a quotient of two
minimal coefficients. Both encryption and decryption follow
simple polynomial multiplication, which makes NTRU faster
than other asymmetric key cryptosystems [40]. Moreover, the
points mentioned below represent the capabilities of the NTRU
based public key cryptography. Therefore, we have chosen the
NTRU public key algorithm for our proposed cipher suite.

• NTRU is the highest performing public key cryptograpic
system for embedded devices [41].

• NTRU decryption is more than 92 times faster than RSA
decryption at an equivalent security level [42].

• NTRU is nearly 60% faster than RSA at encryption and
TLS with a 370 times improvement in key generation
time [42].
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TABLE III
COMPARATIVE ANALYSIS OF THE COMPUTATIONAL SPEED OF

VARIOUS PUBLIC KEY CRYPTOGRAPHY

• NTRU encryption and decryption are faster than the
best-performing ECC algorithms at equivalent security
levels [42].

• NTRU is only around 20 times slower than a recent AES
implementation [42].

• Both RSA and ECC are vulnerable to quantum computing
attacks where NTRU offers resistance to that [43].

• NTRU accomplishes TLS authentication and key nego-
tiation by combining classic cryptography which offers
quantum-safe cryptography [43].

• Parallel implementation of NTRU is possible on top of
the existing crypto infrastructure [41].

B. Computational Speed of Proposed Framework

This section represents the calculation of the overall compu-
tational speed of the proposed framework. We have considered
the execution time of the major four elements, namely, ses-
sion key, symmetric key, HMAC, and asymmetric key. First,
we have calculated the time to generate and extract the ses-
sion key. After that, we have computed the execution time
of symmetric and asymmetric key generation, distribution,
encryption, and decryption. Finally, we have calculated the
overall time by combining it with execution time to generate
and extract the HMAC.

1) Execution Time of Session Key Generation and
Extraction: We have generated the session key, KEYSALT,
and MACSALT using two random parameters CDT and FSRP,
along with Blake2s HASH function. These parameters are
securely exchanged between two communication SCADA
devices and extracted back at the receiver side. The aver-
age execution time and total execution time to generate and
extract these elements are shown in Figure 6 and Figure 7. We
observed that it takes approximately 0.15 milliseconds average
execution time to create and extract a 256-bit session key.

2) Execution Time of Symmetric Key Cryptography: This
section presents the execution time of three symmetric key
cryptography methods, namely, Random Prime Generator
(RPG), Prime Counter (PC) and Hash Chaining (HC). To
calculate the execution time of each method we have consid-
ered the overall time of each module to generate and extract
the symmetric key along with encryption and decryption time
taken by the Vernam stream cipher. In Table IV, we present the
time of three proposed symmetric key cryptography methods

Fig. 6. Average Execution Time for Session Key Generation and extraction.

Fig. 7. Overall Time (Session Key).

TABLE IV
EXECUTION TIME OF PROPOSED SYMMETRIC KEY METHODS

(in seconds) for various sizes of input streams. Based on the
results, hash chaining seems to be the most efficient in terms
of computational speed amongst the three proposed methods.

3) Execution Time of NTRU Based Public Key
Cryptography: We have compared NTRU based imple-
mentations based on security levels, namely, moderate,
standard, high, and highest security. Each security level
is defined considering the size of cipher text, a public
key, and private key. In most applications, the standard
security level is used to avoid lattice-based, brute force, and
man-in-the-middle attacks. The observation is carried out
using total execution time by considering key generation,
encryption, and decryption as shown in Table V. Moreover,
we have computed the average execution time of public-key
pair generation, which is around 1.51 ms with an encryption
time of 0.073 ms and a decryption time of 0.106 ms.
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TABLE V
EXECUTION TIME OF NTRU BASED PUBLIC KEY CRYPTOGRAPHY

TABLE VI
CONSIDERABLE PARAMETERS OF DIFFERENT

CRYPTOGRAPHIC COMPONENTS

TABLE VII
TOTAL EXECUTION TIME CALCULATION

4) Total Execution Time: In order to achieve consistent
results, we have measured the execution time of each cryp-
tographic components. The execution time of these elements
is listed in Table VI.

Moreover, Table VII presents the mathematical equations
that calculate the total execution time of all the four meth-
ods, namely, ML, RPG, PC, and HC. In hybrid approach,
both symmetric and asymmetric algorithms are used to secure
the information. In contrast, in the other three approaches,
once the session key has been shared between two communi-
cation devices, only the symmetric key algorithm is used for
performance improvement. Furthermore, the execution time of
these three symmetric key algorithms is varied due to how they
generate the keys to secure the information.

Table VIII represents the total execution time of all the four
proposed methods by considering the major four parameters,
namely, key generation, key extraction, encryption and decryp-
tion. According to the results, the execution time of HC is

TABLE VIII
TOTAL EXECUTION TIME IN SECONDS

lower than the other three methods and has proven most effi-
cient amongst all. Moreover, PC and ML approaches are more
prominent than RPG. Comparatively, RPG takes more time
because of its intricate design to generate a random prime
number based on a seed value.

C. Calculation of Key Storage Cost

Storage cost is another important parameter to evaluate the
performance of SCADA networks. Field control devices such
as RTUs, PLCs, and IEDs are typically located at the plant
floor and remote from the MTU. Hence they require to update
the session keys periodically. On the other hand, if field control
devices have many static keys, and if any of them is com-
promised, it can expose the entire network communication.
Consequently, the session key update process is a very crucial
step. Since the key generation, distribution, and extraction are
periodic and costly operations, the SCADA network should
have fewer stored keys on each field control device. For this
reason, we have identified the storage cost of our proposed key
management scheme. Table IX summarizes the storage cost by
considering the three types of communication, namely, point-
to-point, broadcast, and multicast amongst MTU, Sub-MTU,
and RTU. The total cost of keys is calculated at each SCADA
location, where m denotes the number of sub-MTU’s keys,
and r represents the maximum number of RTU’s keys.

D. Randomness Evaluation

Many cryptography applications may need to meet more
robust random number generator requirements when the ran-
domness of the keys is one of the most critical factors for
that system. We have used the Vernam stream cipher for
our proposed framework, which requires a distinct and ran-
dom key to secure the information. In particular, the key
generator’s output must be unpredictable. Hence, we have
evaluated the proposed symmetric key generator using the
National Institute of Standards and Technology (NIST) sta-
tistical toolkit. We have configured this tool in the Linux
subsystem of the Windows 10 operating system. This toolkit
offers a total of sixteen different statistical tests to determine
whether a generator is suitable for a particular cryptosystem.
Each test evaluates the randomness based on specific criteria
by considering the number of 1’s and 0’s in the binary stream
and accordingly produces the P-value. If the test has P-value
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TABLE IX
KEY MANAGEMENT : STORAGE COST OF KEYS

Fig. 8. Randomness assessment of symmetric key.

≥ 0.001, that means an input binary sequence would be ran-
dom with a 99.9% confidence. Figure 8 presents all the 16
tests and corresponding P-values for the proposed symmetric
key generator for Vernam cipher. Our proposed key generator
passes all the statistical tests and proven to be random.

VI. PERFORMANCE ANALYSIS

A. Formal Analysis of Protocol

Researchers currently use two main approaches to verify
security protocols, namely, provable security and the formal
method approaches [44], [45], [46]. Provable security defines
a rigorous framework to describe and prove cryptographic
properties from a mathematical point of view. However, the
formal method approach proposes a model to describe and

analyze cryptographic protocols by abstracting basic proper-
ties. Dalal et al. [47] discusses various tools such as Avispa,
ProVerif, and Scyther that are useful for the formal verification
of the cryptographic protocols. Scyther outperforms the state-
of-the-art Avispa tools. Although Scyther uses no abstraction
techniques, it still offers a performance level similar to the
abstraction-based ProVerif tool [47]. In Scyther, small (e.g.,
Needham-Schroeder, Yahalom, Otway-Rees) to medium-sized
(e.g., TLS, Kerberos) protocols are usually verified in less than
a second. Moreover, Scyther is currently the fastest protocol
verification tool that does not use approximation methods [48].

Therefore, we have used the Scyther tool to formally
verify our security protocol, which performs the evaluation
under the cryptographic assumption. We define all the crypto-
graphic functions completely. Moreover, the entire assessment
is carried out by considering the presence of an adversary.
This tool uses an unbounded model checking approach that
demonstrates the soundness of a protocol for all the possible
behaviors in the presence of an adversary [49]. The lan-
guage used in Scyther is called Security Protocol Description
Language (SPDL). It is also known as role-based language that
describes the entire protocol using roles and sending/receiving
events.

SPDL provides expressions for encryption and hashing.
Furthermore, we can verify authentication, confidentiality and
message integrity using claims in the Scyther. We have mainly
focused on three types of goals, namely, non-injective syn-
chronization, non-injective agreement, and secrecy for our
proposed approach. We have generated a trace pattern route
that represents the packet forwarding from RTU to MTU,
as illustrated in Figures 9 and 10. Figure 11 illustrates the
protocol design code for Scyther to analyze the attacks by
considering all the participants, namely, MTU, RTU, and



UPADHYAY et al.: EFFICIENT KEY MANAGEMENT AND MULTI-LAYERED SECURITY FRAMEWORK 655

Fig. 9. Formal Analysis of proposed protocol for secure communication between MTU and RTU using Scyther Tool.

Fig. 10. Claims & trace pattern validation of proposed protocol for secure
communication between MTU and RTU using Scyther Tool.

the attacker. We have verified the protocol using “automatic
claim” and “verification claim” procedures. As illustrated in
Figure 12, our proposed framework is resistant to all the
attacks over the communication channel.

B. Attack Analysis on Hash Function

Generally, a hash function can be broken by three types of
attacks, namely, collision attack, preimage resistance attack,
and length extension attack [35], [50], [51], [52], [53]. A brief
description of each attack is described below.

1) Collision Attack: This attack aims to identify two dif-
ferent inputs that will generate the same hash value

to create a collision with transmitted data over the
communication channel. For example, the attacker will
try to find messages m1 & m2, leading to the same
hash function, i.e., Hash(m1) = Hash(m2). In gen-
eral, for two different precedes, p1 & p2, the intruder
chooses two appendages m1 & m2 such that Hash(p1||
m1) = Hash(p2||m2) which leads to the chosen-prefix
collision attack.

2) Preimage Resistance Attack: This attack is intended to
find out the message for the particular hash value. That
means, given a hash value h, the attacker will find a
message m such that Hash(m) = h.

3) Length Extension Attack: In this attack, an attacker
can use Hash(m1) and the length of m1 to calcu-
late Hash(m1||m2), where an attacker will control m2
without knowing the content of m1.

Three types of approaches are used to check the strength
of the hash function to test if the given hash function
can be broken practically, theoretically or partially as listed
below [54].

1) Practically Broken: The attack has been demonstrated
in practice and able to break the entire hash function.
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Fig. 11. Claims & Protocol Design Code for Scyther for Analysis of attacks.

TABLE X
COMPARATIVE ANALYSIS OF THE VARIOUS HASH FUNCTIONS (COL:

COLLISION ATTACK, PR: PREIMAGE RESISTANCE ATTACK,
LE: LENGTH EXTENSION ATTACK)

2) Theoretically Broken: Attack demonstrates in theory by
proof of concept which is able to break all the rounds
of the hash function.

3) Partially Broken: No attack has demonstrated to break
the entire function successfully. However, only a reduced
version of the hash is broken and requires more work
than the claimed security level.

Table X compares the types of attacks and the breaking
mechanisms of various popular hash functions. As illus-
trated in Table X, Blake2 is comparatively better than other
functions. Blake2 can be partially broken and fragile due to
collision and preimage resistance attacks. To overcome this
issue, we have incorporated two approaches, namely, PNG
(Prime number generator) and HMAC. To prevent the system

Fig. 12. Claims & Attack Analysis of proposed protocol for secure
communication between MTU and RTU using Scyther Tool.

from collision attacks, we have introduced the parameters
FSRP and CDT, which generate a unique key at each iteration.
In this case, even if the attacker identifies a similar input which
generates the same hash function as the transmitted data, it will
not help in successfully launching a correlation attack. In our
proposed solution, we use HMAC, which not only relies on
the hash of the message but also uses CDT & FSRP. Hence,
during the validation process, the authentication and message
integrity are identified at the receiver end and can prevent the
system from correlation and preimage resistance attacks. The
following discussion gives the security proof of our proposed
approach against correlation and preimage resistance attack.

Security Proof: With reference to the proposed framework,
let us denote the original Message as C(M1) and the key
parameters used to generate HMAC as CDT & FSRP.

HMACSender = Hash((C (M 1),CDT ||FSRP)) (15)

Let us assume, over the communication channel, the attacker
identifies another message C(M2) and replaces C(M1) with
C(M2) where, Hash(C(M1)) = Hash(C(M2)). The receiver
computes HMAC based on received message C(M2) as
follows.

HMACReceiver = Hash((C (M 2),CDT ||FSRP)) (16)

HMACSender �= HMACReceiver (17)

The difference in signature of the HMAC identifies if the
integrity is compromised and in such a case M1 is discarded.
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The above proof illustrates that the proposed security frame-
work prevents the collision attack. Similarly, even though
the intruder can identify message C(M1) which generates
Hash(C(M1)), the message integrity or authentication cannot
be broken owing to the key parameters CDT and FSRP. Thus,
the pre-image attack is prevented.

C. Analysis of Avalanche Effect for Hash Function

Confusion and diffusion techniques have traditionally been
used to evaluate the security of cryptographic primitives [56].
In the context of the hash function, confusion is defined using
the relation between the secret key and a hash value for a
given input message. Confusion is obtained naturally due to
the inherited property of chaos [57]. Diffusion, also known as
the avalanche effect, is a desirable property for cryptograph-
ically secure hash functions [57]. This is one of the factors
to check the randomization capability of the given function.
The ideal hash function should exhibit the evidence of the
avalanche effect up to the significant level which supports
the randomization and make difficult to predict by cryptanal-
ysis [58]. Generally, the butterfly effect and large data blocks
are used to generate the avalanche effect [59], in which a small
change to an input value will make a significant change in the
output hash value. Moreover, there is no correlation between
current and previous hash outputs. In our proposed approach,
we have used the Blake hash function, which demonstrates a
higher-order avalanche effect in that there is a probability of
50% of data alteration in the hash output if a single bit is mod-
ified in the input [60]. The example in [32] demonstrates the
avalanche effect of Blake and is proven to generate random
hash output that doesn’t rely on the previous hash value.

D. Randomness Analysis of Keys

Session Key Generation (Parameters): A session key is
derived and communicated to both parties during initial
authentication. This key is derived using three parameters,
namely, random number (RNi), where i = 1,2,3, . . . n, index
of the function of the fraction of square root of a prime num-
ber (FSRP(index)), where index = 1,2,3, . . . n, and CDT =
current date and time in a microsecond. These parameters
are generated at each session and exchanged securely using
NTRUEncrypt (public-key cryptography). We have analyzed
the following test cases concerning the values of these three
parameters.

Case 1: MTU/RTU generates unique values for RN, Index
of FSRP, and CDT at every session:

SessionKey1 : Hash(RNi ,FSRP(index ),CDT ) returns
unique value

SessionKey2 : Hash(RNi ,FSRP(index − k),CDT )
returns unique value, where k is any random number

Case 2: MTU/RTU generates the same value of RN & seed
of FSRP for two or more consecutive sessions, however, CDT
is always unique:

SessionKey1 : Hash(RNi ,FSRP(index ),CDT ) returns
unique value as CDT is always distinct

SessionKey2 : Hash(RNi ,FSRP(index − k),CDT )
returns unique value as CDT is always distinct, where k = 0.

Here we have used the Blake2 hash function which is proven
to be a cryptographically secure function [32] and hence in
both the above cases, our proposed approach always generates
unique and random session keys.

Symmetric key Generation: The symmetric key is derived
using two parameters, namely, session key (Ks) and fraction
square root of a prime number. As mentioned earlier, the ses-
sion key is derived using three randomly generated parameters
and distributed over the secure communication channel using
public-key cryptography. Moreover, the value of FSRP is gen-
erated randomly using a random prime number generator or
prime counter. In this case, the seed of the prime number is
distributed to both the communication ends, namely, control
center, and field site components during session key exchange.
These parameters are further computed by combining the con-
cept of hash chaining and FSRP. This is how the proposed
approach generates unique and random parameters for the
symmetric key used in the Vernam cipher for every message.

Parameters: Here we have used two parameters to derive a
symmetric key for the Vernam cipher, namely, FSRP(index),
where index = 1,2,3, . . ., n (FSRP is generated using a ran-
dom prime generator or prime counter, the index value is
distributed during session key exchange), and session key
SKi = Hash(RNi, FSRP(index), CDT), where i, index = 1,2,3,
. . . n.

Case 1: MTU/RTU generates distinct values of Ks and
FSRP for every message:

SKi = Hash(SKi-1, FSRP(index)) returns unique value
SKi + 1 : Hash(SKi, FSRP(index-n)) returns a unique value,

where n is any random number, and SKi is updated with the
previous session key.

Case 2: MTU/RTU generates the same value of FSRP for
two or more consecutive messages, however, Ks is always
unique:

SKi = Hash(SKi, FSRP(index)) returns a unique value as
SK is always unique for all messages

SKi + 1 = Hash(SKi-1, FSRP(index-n)) returns unique
value as SK is always unique, where n = 0.

In both the above cases, the key is unpredictable and ran-
dom as the index value of FSRP is only known to MTU
and RTU. Moreover, the value of the symmetric key is dif-
ferent even though the value of the FSRP is the same for
two consecutive messages as the current key depends on two
parameters, namely, SK and FSRP, and is generated using a
cryptographically secure hash function.

E. Security Analysis

In this section, the proposed framework is analyzed by con-
sidering various security mechanisms, namely, authentication,
confidentiality, integrity, availability, and scalability. Moreover,
the evaluation is extended by targeting various attacks and
corresponding prevention mechanisms.

1) Message Integrity
• Multi-layered hybrid architecture using symmetric

and asymmetric key cryptography offers integrity.
• Vernam stream cipher provides resistance to cryp-

tography attacks [39].
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TABLE XI
COMPARATIVE ANALYSIS OF STORAGE COST OF KEYS (M = NUMBER OF

SUB-MTU’S KEYS, R = NUMBER OF RTU’S KEYS)

• Randomness of Key offers immunity to collision
and preimage resistance attacks [61].

• Dynamic Salt offers resistance to rainbow table
attack and dictionary attack [61].

• NTRU based public key cryptography offers resis-
tance to quantum attacks, brute force, and meet-
in-the-middle attacks. It also prevents the system
against data harvest attacks [62].

• HMAC provides immunity against length extension
attacks [63].

2) Authentication, Confidentiality
• Public key of sender and private key of receiver

of NTRU based public key cryptography pro-
vides sender’s authentication and recipient’s
confidentiality.

• HMAC offers message integrity and authentication.
3) High Availability—Faster execution

• Once the session key distribution is established
using hybrid method, further communication will
take place using symmetric key cryptography that
increases the computation speed.

• Symmetric key generation using hash chaining and
prime counter offers high execution speed.

• Use of Vernam stream cipher uses modulo operation
for encryption and decryption which requires only
4 cycles in hardware implementation [64].

• NTRU is one of the fastest public key cryptographic
systems compared to well-known methods such as
RSA and ECC [41].

• HMAC is derived using the same components used
to generate the key. This reusability of elements
reduces the computational time.

4) Scalability
• Same symmetric key cryptography (Vernam cipher)

is used for both encryption and decryption.
• Authentication and confidentiality are established

using public-private key pairs amongst communi-
cation parties.

F. Storage Cost

The periodic session key agreement is a crucial step in
SCADA communication that offers key refreshment. However,
field control devices have limited power and memory require-
ments. Hence, an effective key agreement scheme with fewer

TABLE XII
COMPARATIVE ANALYSIS OF VARIOUS CIPHER SUITES

stored keys can significantly improve the efficiency of SCADA
networks. Many key management and agreement schemes
have been proposed to address the problem of key storage
costs. We have compared the key storage cost of our proposed
scheme with various published techniques, as presented in
Table XI.

G. Execution Speed

Table XII depicts the comparative analysis of the proposed
scheme with various state-of-the-art techniques by implement-
ing various cipher suites using the wolfSSL library. AGA has
proposed two cipher suites for secure SCADA communication
including the bundle of ECDHE, AES, RSA, and SHA256 and
ECDHE, AES, ECC and SHA256 for authentication, confiden-
tiality, message integrity and digital signature [16].The cipher
suite RSA, AES, CBC and SHA is used in TLS communica-
tion, whereas we have used the NTRU, Vernam Cipher and
Blake2s for our proposed framework. The average execution
time of our proposed cipher suite is comparatively better than
other protocol standards.

VII. CONCLUSION

The protection of critical industrial infrastructure against
cyber-attacks is crucial for ensuring public safety, security,
and reliability. SCADA system are used to control and monitor
such industrial control systems. A robust solution to strengthen
the security of these systems against cyber-attacks is a crucial
requirement in the design of SCADA systems. Through this
work, we aim to cover the protection of the industrial control
system landscape by offering a low cost and robust framework
for SCADA networks, which protects them against various
cyber-attacks. In this paper, we have proposed a session key
agreement in addition to lightweight multi-layered encryp-
tion techniques. The framework combines both symmetric and
asymmetric cryptography to achieve high computational speed
by covering all the security mechanisms. This security model
is proposed to enhance the security of various industrial sec-
tors such as water and sewage plants, power stations, chemical
plants, oil industries, product manufacturing units, and trans-
portation systems. The successful deployment of this model
will allow operators and technicians to monitor and control
the plant devices remotely as it will protect the entire system
from potential breaches.
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