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Abstract

Fermat quotients are based on Fermat’s little theorem. Fermat quotients are of the

form qp(u) ≡ up−1−1
p

(mod p), for a prime p and an integer u with gcd(u, p) = 1.

They possess properties that make them suitable for generating pseudo-random num-

bers. They can also be used to generate Boolean functions. This thesis presents an

overview of major milestones in the study of Fermat quotients and related concepts.

In particular, applications of Fermat quotients in cryptography are discussed.
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List of Abbreviations and Symbols Used

In what follows, and throughout this thesis, n and r are positive integers, p a prime,

and q a power of p.

Notation Description

f(x) � g(x) |f(x)| ≤ Cg(x) for all x ≥ a holds for some constant C > 0.

This is equivalent to f(x) = O(g(x)).

f(x) � g(x) |f(x)| ≥ Cg(x) for all x ≥ a holds for some constant C > 0 .

f(x) = o(g(x)) lim
x→∞

f(x)

g(x)
= 0.

u ≡ v (mod n) v − u = kn for some integer k.

u 	≡ v (mod n) v − u 	= kn for any integer k.

gcd(u, v) the greatest common divisor of u and v.

lcm(u, v) the least common multiple of u and v.

qp(u) the Fermat quotient of p with base u defined by up−1−1
p

(mod p).

N the set of natural numbers.

Z the ring of integers.

(Zp,+, ·) the ring of p-adic integers with p-adic topology.

Zp the additive group of the ring (Zp,+, ·).
Z∗
p the multiplicative group of units in the ring (Zp,+, ·).

Fq a finite field with q elements.

B(u1, . . . , ur) Boolean function of r = 
2 log2 p� variables.

lp the smallest u for which qp(u) 	≡ 0 (mod p).

ϕ(m) the Euler’s totient function of m.

q(u,m) the Euler quotient of m with base u defined by uϕ(m)−1
m

(mod m).

λ(m) the Carmichael function of m.

Cm(u) the Carmichael quotient of m with base u.

wp the Wilson quotient defined by (p−1)!+1
p

(mod p).(
u
p

)
the Legendre symbol of u modulo p.

u | v u divides v; that is, v = uk for some integer k.

u � v u does not divide v, that is, v 	= uk for any integer k.
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Chapter 1

Introduction

1.1 Overview of cryptography

The information in this section has been taken from [20], [24], [27], [63].

Cryptography is almost as old as mankind. This is because human beings have

always communicated and had the need to keep messages private and readable only

by the intended recipients.

Cryptography is the study of techniques used to keep information secret. Crypt-

analysis is the science of studying attacks against cryptographic schemes. Crypt-

analysis seeks methods through which information, kept secret using cryptographic

schemes, can be uncovered without knowing the key. Cryptography and cryptanaly-

sis are both classified under cryptology. Cryptology, therefore, is the science of secret

communications.

The commonly used analogy is to assume a sender, Alice, wants to send a message

to a receiver, Bob. If she sends a confidential message using an insecure communica-

tion channel, such as a telephone line, an eavesdropper could easily intercept and read

the message. In a worse case, an adversary, Eve, might be able to modify the mes-

sage imperceptibly during transmission. Cryptography seeks to forestall such attacks.

A closely related concept is steganography. Steganography is another way of se-

curing communication. While cryptography attempts to change a message to a format

unintelligible to an interceptor, steganography seeks to obscure the very existence of

such a message. Steganography is the study of methods used to keep information

hidden. Steganography provides security through obscurity. Altering the least signif-

icant bit in a file is the most common way of hiding data; this file could be an audio

1
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file, an image file, or a video file. What cryptanalysis is to cryptography, steganalysis

is to steganography. Steganalysis is the study of methods used to detect messages

hidden through steganography.

There are records of cryptography being in use as far back as 3000 years ago

when Egyptians communicated with each other by sending their messages written in

hieroglyphs. Some other records in the historical evolution of cryptography include:

• ca. 100 BC: The Caesar Cipher was developed.

• 1466: The first cipher disk was developed by Leon Battista Alberti.

• 1553: The Vigenère cipher was described by Giovan Battista Bellaso.

• 1854: The Playfair cipher was invented by Sir Charles Wheatstone, named after

Baron Lyon Playfair, who popularised it.

• 1918: The Enigma machine was invented by Arthur Scherbius and was used in

military communication.

• Both world wars: Playfair cipher, ADFGVX, the Enigma machine.

• 1948: Claude E. Shannon published an article entitled “A mathematical theory

of communication” which introduced information theory.

• 1977: The Rivest-Shamir-Adleman (RSA) algorithm was publicly described.

• 1977: Data Encryption Standard (DES) was published as an official Federal

Information Processing Standard (FIPS) for the United States.

• 1985: Elliptic Curve Cryptography (ECC) was described.

• 1991: Phil Zimmermann released the public key encryption program Pretty

Good Privacy (PGP).

• 1994: Peter Shor described an algorithm for a theoretical quantum computer

that will allow prime factorization of a composite number in polynomial time.

• 2001: DES was replaced by the Rijndael algorithm, called the Advanced En-

cryption Standard (AES).
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1.2 Important terms in cryptography

The information in this section has been taken from [20], [24], [27], [66].

Some of the basic terms encountered in the study and practice of cryptography

include:

• Plaintext : the message (text, numerical data, an executable program, or any

kind of information) that is to be transmitted.

• Ciphertext : the output of an encryption process on the plaintext.

• Cipher : an algorithm for performing encryption or decryption.

• Encryption: the process that converts the plaintext into a ciphertext.

• Decryption: the process that converts the ciphertext back into plaintext.

• Key : a piece of information that can encrypt and/or decrypt a message.

• Cryptosystem: a system that consists of the plaintext, the ciphertext, the keys,

the encryption algorithm, and the decryption algorithm.

• One-way function: a function f that is easy to compute on every input x, but

infeasible to invert, that is, to compute x from f(x).

• One-time pad : a system in which a randomly generated key is used only once

to encrypt a message.

• Nonce: an arbitrary number that can be used just once in a cryptographic

communication.

• Seed : a number (or vector) used as input to initialize a pseudo-random number

generator.

• Hash function: a function that takes a variable length string of bits (called a

message) as input and outputs a bit string of a fixed length (called a hash value

or a message digest).
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• Exhaustive search (also known as Brute force attack): a cryptographic attack

that tries all the possible passwords.

1.3 Classifying cryptography

Encryption and decryption can be done either using the same key or using a pair

of keys – one for encryption, the other for decryption. If the same key, or a key

easily computable from it, encrypts and decrypts messages, this is called Symmetric

Cryptography. If different keys, which are not easily computable from one another,

encrypt and decrypt messages, this is called Asymmetric Cryptography.

Symmetric cryptography was the only kind of cryptography publicly known until

1976 when Diffie and Hellman introduced the concept of asymmetric cryptography.

In symmetric encryption, the key to be used must be shared between the parties that

intend to communicate. Secure key exchange is a major challenge for implementing

symmetric-key encryption [24, p. 187].

Symmetric encryption can use either block ciphers or stream ciphers [27]. Block ci-

phers encrypt blocks of plaintext of fixed length. The length of the blocks of plaintext

is called the block length [20, p. 15]. The length of the resulting blocks of ciphertext

is the same as the block length. DES is an example of a block cipher.

Stream ciphers encrypt data as a stream, one bit of plaintext at a time. Most

stream ciphers make use of the binary exclusive-or operator, XOR. Vernam’s one-

time pad is a classic example of a stream cipher [20, p. 13].

In asymmetric cryptography, two keys are used; a public key (which may be

known to others) and a private key (which must not be known by anyone except

the owner). The public key is used for encryption while the private key is used for

decryption [27, p. 226]. Asymmetric cryptography is also known as public-key cryptog-

raphy [27]. Asymmetric algorithms are fundamental to modern-day internet security,

particularly in e-commerce. For instance, secure websites often make use of SSL/TLS

(Secure Sockets Layer/Transport Layer Security) which uses public-key encryption.
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More details on its implementation can be found in [24].

Asymmetric cryptography is also used in digital signatures. Digital signatures

primarily help in ensuring the authenticity of messages sent; this is done by verifying

the identity of the sender. For instance, they are used to protect the authenticity

of electronic ID cards [10, p. 91]. The Rivest-Shamir-Adleman (RSA) algorithm, the

Diffie–Hellman key exchange protocol, and ECC (Elliptic-Curve Cryptography) are

a few examples of asymmetric techniques.

It is worthwhile to note that Kerckhoffs’ principle [20, p. 4], named after Auguste

Kerckhoffs, is one of the basic principles of modern cryptography. The principle holds

that the adversary knows all the details of a cryptosystem, in particular, the algo-

rithm used and its implementation. According to this principle, the security of a

cryptosystem must be based entirely on the secret key.

Encryption and decryption can be achieved using a key and an algorithm (cipher).

Classical ciphers can be divided into two general classes [24, p. 8]: substitution ci-

phers and transposition ciphers. A substitution cipher is a method of encrypting by

which units of plaintext are replaced with the ciphertext in a defined manner, with

the help of a key. Substitution ciphers are recorded as the first ciphers used in his-

tory [27, p. 5]. Substitution ciphers have variations [24, pp. 8–9]. They are described

below:

A substitution cipher is called mono-alphabetic if a given letter of plaintext is sub-

stituted for the corresponding letter of the ciphertext, and poly-alphabetic or multi-

alphabetic if more than one ciphertext is used to replace each plaintext. If two letters

of plaintext are substituted at a time, the cipher is called digraphic and it is called

polygraphic if more than two letters of plaintext are substituted at a time. A homo-

phonic cipher provides multiple substitutions for some letters but not others. Some

examples of substitution ciphers are: the Caesar cipher, Vigenère cipher, and Playfair

cipher.
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A transposition cipher is a method of encryption that rearranges the letters of the

plaintext according to a specific rule and key. The simplest transposition cipher is the

columnar transposition [24, p. 10]. It is possible to combine both substitution and

transposition in a cipher. This provides diffusion and is implemented in modern block

ciphers. The concept of diffusion in information security was explained in Shannon’s

1948 paper, for instance, [27, p. 59]. Diffusion means changes to one character in the

plaintext affect multiple characters in the ciphertext.

Quantum computing will render most of the current asymmetric cryptographic

protocols obsolete [27, p. 385] while symmetric algorithms such as the Advanced

Encryption Standard (AES) will still be usable, but may need longer keys. Designing

alternative public-key cryptosystems that resist quantum computer attacks is the

basis for studying post-quantum cryptography [10, p.88]. Quantum key distribution

(more commonly known as quantum cryptography) enables the sender Alice and the

receiver Bob to establish an unconditionally secure shared secret key. Delfs and Knebl

wrote more on this in [20].

1.4 Objectives of cryptography

To realize the objectives of cryptography, there are basic building blocks called crypto-

graphic primitives or cryptographic protocols used to solve problems involving secrecy,

authentication, or data integrity [20, p. 5]. Some of them are encryption and decryp-

tion algorithms, cryptographic hash functions, and pseudo-random generators.

Attacks on the secrecy of an encryption scheme depend on the resources available

to the adversary. Studying techniques to break a cipher without knowledge of the key

is the work of a cryptanalyst. Some of these techniques are mentioned in [20, pp. 4–5];

they include: Ciphertext-only attack, Known-plaintext attack, Chosen-plaintext at-

tack.

Wherever there is communication, there is a need for security. Thus, a primary

application of cryptography is in ensuring secure electronic communication, including

encrypting internet communications. Cryptography also finds applications in digital
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signatures and disk encryption [27].

The following are some of the objectives of cryptography [20, pp. 2–3]:

• Confidentiality : this ensures that there is limited access to encrypted informa-

tion.

• Data integrity : this takes care of the consistency and accuracy of information

as it is transmitted from the sender to the receiver.

• Authentication: this verifies the origin as well as the sending and receiving

parties in a communication.

• Non-repudiation: this makes a sender of a message unable to deny its author-

ship.



Chapter 2

Pseudo-randomness

Many algorithms and processes require the concept of randomness, and cryptographic

systems are no exception. Randomness has to do with unpredictability, while pseudo-

randomness is a simulated type of randomness that is based on an algorithm, so the

process is repeatable.

The concept of randomness has different areas of applications such as in statistics,

science, Monte Carlo methods, operations research, games, and computer program-

ming. For example, random numbers are used to test the effectiveness of computer

algorithms. More on random numbers can be seen in [37], [48].

2.1 Generating random numbers

Randomness is of particular importance in cryptography because the security of cryp-

tographic operations depends on a random choice of keys and sequences [20]. Ran-

domness is used, for instance, to generate stream ciphers. It is therefore useful to

know how to generate random numbers, or at least pseudo-random numbers.

Before modern computing, throwing dice and flipping coins were common meth-

ods used to generate random data. With the advent of computers, making computers

produce random data using algorithms became imperative. Generally, numbers are

classified as truly random or pseudo-random [70, p. 1].

A true random number generator (TRNG) uses a non-deterministic source to pro-

duce randomness. True random numbers can be generated from naturally occurring

(physical) phenomena like atmospheric noise or radioactive decay [27], [70]. True

Random Number Generators (TRNGs) usually depend on hardware.

8
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A pseudo-random number generator (PRNG) uses a deterministic algorithm to pro-

duce an apparently random sequence of length l, given a random sequence of length

k, with l larger than k [52, p. 170]. In other words, PRNGs create numbers with good

random properties but are predetermined based on an algorithm [27].

Cryptographically secure pseudo-random number generators (CSPRNGs) are more

appropriate for cryptographic operations than general pseudo-random number genera-

tors. Two distinguishing features of a CSPRNG are computational indistinguishability

and unpredictability. That is, pseudo-random numbers are said to be cryptographi-

cally secure if they satisfy the aforementioned features.

Unpredictability means that it should not be feasible to predict the next bit in the

pseudo-random sequence from the preceding bits. Computational indistinguishability

means that any subset of numbers taken from a given pseudo-random sequence should

not be distinguishable from any other subset of numbers in polynomial time by an

efficient algorithm. More technical details on computational indistinguishability and

cryptographically secure pseudo-random number generators can be seen in [27], [44].

The Dual Elliptic Curve Deterministic Random Bit Generator [27, p. 273] is a

PRNG that was promoted as a CSPRNG by the National Institute of Standards and

Technology (NIST).

2.2 Pseudo-random number generators (PRNGs)

Bhattacharjee, Maity, and Das [8, pp. 2–3] gave a mathematical definition of a pseudo-

random number generator as follows:

Definition 1. A pseudo-random number generator (PRNG) is defined as a structure

G = (S , μ, f,U , g), where S is a finite set of states, μ is the probability distribution

on S for the initial state called seed, f : S → S is a transition function, U is the

output space and g : S → U is the output function. The generator G generates the

numbers in the following way:
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1. Select a seed s0 ∈ S based on μ. The first number is u0 = g(s0).

2. At each step i ≥ 1, the state of the PRNG is si = f(si−1) and output is

ui = g(si). The outputs of the PRNG are pseudo-random numbers.

A PRNG works using an algorithm and is initialized with a random seed. Since

the same seed will yield the same sequence every time, it is important that the seed be

properly chosen and kept hidden for security [8]. A pseudo-random number generator

is so important because it is often difficult to obtain a truly random seed and it is

desirable to be able to stretch random seeds to much longer sequences that appear

random [52, p. 170].

2.2.1 Properties of a good PRNG

Bhattacharjee, Maity, and Das [8] put forward a number of properties a good PRNG

is expected to have:

• Uniformity :

This property ensures that the generated numbers are equally probable in every

part of the number space. That is, for every i,

ei =
N

K
,

where N is the range of the numbers divided into K equal subintervals and ei

is the expected number of samples.

• Independence:

This means there should not be any serial correlation between numbers gener-

ated in succession. This property ensures that any subsequence of numbers has

no correlation with any other subsequences.

• Large period :

The period of a PRNG is the smallest positive integer ρ such that, for every

n ≥ k, we have

sp+n = sn, where k ≥ 0 is an integer.
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A small period makes the sequence of numbers completely predictable, so a

PRNG is not considered good unless it has a large period.

• Reproducibility :

Since PRNGs are deterministic algorithms, reproducibility is a prominent reason

for constructing them. This is the property that ensures the same sequence

of numbers is generated from the same seed. It is useful in simulations and

debugging.

• Consistency :

This is to ensure that the traits of the PRNG are to be independent of the seed.

• Disjoint subsequences :

There should be little or no correlation between subsequences generated by

different seeds.

• Portability :

It is desirable that for a PRNG, the same algorithm can work on every system.

• Efficiency :

Generating a random number using a PRNG should not take significant time.

A PRNG should also not use much storage so as not to hinder its efficiency.

• Coverage:

This means the PRNG covers the output space for any seed. That is, for any

seed, every element of the output space eventually appears in the sequence.

• Spectral characteristics :

The expected frequency of generation of each number should be the same.

• Cryptographic security :

The requirements of an ordinary PRNG are also satisfied by a cryptographi-

cally secure PRNG, but the converse is not true. To be used in cryptographic

applications, the generated numbers should be cryptographically secure.

Ideally, all the above properties are satisfied for a good PRNG but practically,

most of the PRNGs do not possess all these properties. The first four properties are
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particularly important in determining a good PRNG [27]. However, many PRNGs

are considered good enough for usage in the applications for which they are intended.

Some examples of PRNGs [27] are the inversive generator, Linear Congruential

Generator (LCG), Lagged Fibonacci Generator (LFG), and Blum-Blum-Shub. East-

tom [27] wrote on improving PRNGs by shuffling the output or using a hash func-

tion. This is one of the numerous reasons for studying hash functions. Bhattacharjee,

Maity, and Das [8] also wrote on the method of combining more than one LCG to

improve the randomness of an LCG.

2.3 Pseudo-random sequences

Definition 2. A pseudo-random sequence is the output of a pseudo-random number

generator [52, p. 170]. A pseudo-random sequence is a sequence that appears to be

random but has been produced by a deterministic algorithm.

Pseudo-random sequences are widely used in cryptography. For example, they are

used to generate the key stream which is used in some stream ciphers. The Legendre

sequence (see below) is an example of a pseudo-random sequence [52].

Following Mauduit and Sárközy in their paper [45], the concept of a pseudo-

random sequence can be viewed in three ways:

• pseudo-random sequences in [0, 1);

• pseudo-random sequences of integers selected from {1, . . . , N};

• pseudo-random binary sequences.

Although these three concepts of a pseudo-random sequence are related, their

differences lie in their approach to studying various concepts of pseudo-randomness.

Mauduit and Sárközy [45] focused on pseudo-random binary sequences with uniform

distribution in their paper. One of the applications of pseudo-random binary se-

quences is in generating the key stream in the Vernam cipher, see [33].
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2.3.1 Pseudo-random binary sequences

The information from this subsection has been taken from [34], [49], [60], [66], [68].

Definition 3. Let (en), n ≥ 0, be a bit sequence (that is, a sequence over {0, 1}).
(en) is said to be t-periodic if en+t = et for any integer n ≥ 0.

Definition 4. A sequence (en) is called a linear recurrence sequence of order k over

{0, 1} if it satisfies the relation

en+k ≡ ak−1 · en+k−1 + ak−2 · en+k−2 + · · ·+ a0 · en (mod 2), n = 0, 1, . . . (2.1)

for some a0, a1, . . . , ak−1 in {0, 1}, a0 	= 0.

Definition 5. Take F2 = {0, 1} to be the finite field of order 2. The polynomial

c(x) = xk + ak−1x
k−1 + · · · + a0 ∈ F2[x] corresponding to the linear recursion (2.1)

is the characteristic polynomial of the sequence (en). We can assume c(x) is monic

(that is, its leading coefficient is 1).

Definition 6. The characteristic polynomial of (en) with minimal degree is called

the minimal polynomial of (en) and is denoted by cmin(x).

The minimal polynomial of a t-periodic sequence (en) is given by

xt − 1

gcd(xt − 1, ((en), t)(x))
(2.2)

where ((en), t)(x) ≡ e0 + e1x+ · · ·+ et−1x
t−1 (mod 2).

Definition 7. Let N be a positive integer. The N th linear complexity, LN((en)), of

the sequence (en) is the smallest k such that the first N terms of en can be generated

by a linear recurrence relation over {0, 1} of order k.

LN((en)) =

{
0 if the first N elements of (en) are all zero,

N if the first N − 1 elements of (en) are zero, and eN 	= 0.

Definition 8. Let LN((en)) denote again the Nth linear complexity. Then the non-

decreasing sequence of non-negative integers L1((en)), L2((en)), . . . is called the linear

complexity profile of (en).
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Definition 9. The linear complexity of the sequence (en) is the value

L((en)) = sup
N≥1

LN((en)).

The linear complexity of a linear recurring sequence corresponds to the degree of

its minimal polynomial, that is, the least order among all linear recursions for (en).

For a t-periodic sequence (en) = (e0e1 · · · et−1 · · · ),

L((en)) = L((en), 2t) ≤ t.

Thus the linear complexity of a periodic sequence is finite. The linear complexity of

a t-periodic sequence (en) can also be calculated thus:

t− deg(gcd(xt − 1, ((en), t)(x)))

where ((en), t)(x) ≡ e0 + e1x+ · · ·+ et−1x
t−1 (mod 2).

The linear complexity of a sequence is a measure of its unpredictability. Se-

quences with low linear complexity should be avoided for cryptographic applications,

and sequences with high linear complexity should be used with care. For instance, a

pseudo-random number generator can become easily predictable in polynomial time

if sufficiently many bits of its consecutive terms are known.

Examples:

1. en+3 ≡ en+2 + en (mod 2), with initial values (e0e1e2) = (101).

So the sequence is (en) = (1010011 . . .), and it is 7-periodic.

We also have

((en), t)(x)) ≡ 1 + 0 · x+ 1 · x2 + 0 · x3 + 0 · x4 + 1 · x5 + 1 · x6

≡ x6 + x5 + x2 + 1 (mod 2).

The corresponding characteristic polynomial, c(x), is x3 + x2 + 1 ∈ F2[x].

The minimal polynomial of this sequence is

cmin(x) =
x7 − 1

gcd(x7 − 1, x6 + x5 + x2 + 1)
=

x7 − 1

x4 + x2 + x+ 1
= x3+x+1 ∈ F2[x].

Since the minimal polynomial of (en) has degree 3, it follows that the linear

complexity of (en), L((en)), is 3.
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2. en+4 ≡ en+3 + en+2 + en (mod 2), with initial values (e0e1e2e3) = (1011).

So the sequence (en) = (1011100 . . .), and it is 7-periodic.

We also have

((en), t)(x)) ≡ 1 + 0 · x+ 1 · x2 + 1 · x3 + 1 · x4 + 0 · x5 + 0 · x6

≡ x4 + x3 + x2 + 1 (mod 2).

The corresponding characteristic polynomial, c(x), is x4 + x3 + x2 + 1 ∈ F2[x].

The minimal polynomial of this sequence is

cmin(x) =
x7 − 1

gcd(x7 − 1, x4 + x3 + x2 + 1)
=

x7 − 1

x4 + x3 + x2 + 1
= x3+x2+1 ∈ F2[x].

Since the minimal polynomial of (en) has degree 3, it follows that the linear

complexity of (en), L((en)), is 3.

2.3.2 Measures of pseudo-randomness of binary sequences

In addition to the linear complexity and the linear complexity profile, Mauduit and

Sárközy [45], [46] described certain measures of pseudo-randomness of binary se-

quences (eN) ∈ {−1, 1}N . Chen, Ostafe, and Winterhof [15] gave corresponding defi-

nitions of some of these measures for a finite binary sequence (en)
N
n=1 = (e1, . . . , eN)

from {0, 1}N . These measures include:

• Correlation measure

The correlation measure of order k of the sequence (en)
N
n=1 from {−1, 1}N is

defined by

Ck((en)
N
n=1) = max

M,D

∣∣∣ M∑
a=1

ea+d1 . . . ea+dk

∣∣∣
where the maximum is taken over all D = (d1, . . . , dk) and M > 0 such that

0 ≤ d1 < . . . < dk ≤ N −M .

For ease of notation,

denote
∣∣∣ M∑
a=1

ea+d1 . . . ea+dk

∣∣∣ as C{−1,1}(M,D).

The correlation measure of order k of the sequence (en)
N
n=1 from {0, 1}N is

defined by

Ck((en)
N
n=1) = max

M,D

∣∣∣ M∑
a=1

(−1)ea+d1
...ea+dk

∣∣∣
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where the maximum is taken over all D = (d1, . . . , dk) and M > 0 such that

0 ≤ d1 < . . . < dk ≤ N −M .

For ease of notation,

denote
∣∣∣ M∑
a=1

(−1)ea+d1
...ea+dk

∣∣∣ as C{0,1}(M,D).

• Well-distribution measure

The well-distribution measure of the sequence (en)
N
n=1 from {−1, 1}N is defined

by

W ((en)
N
n=1) = max

a,b,t

∣∣∣ t−1∑
j=0

ea+bj

∣∣∣,
where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a+ b ≤ a+ (t−
1)b ≤ N.

For ease of notation,

denote
∣∣∣ t−1∑
j=0

(−1)ea+bj

∣∣∣ as W{−1,1}(a, b, t).

The well-distribution measure of the sequence (en)
N
n=1 from {0, 1}N is defined

by

W ((en)
N
n=1) = max

a,b,t

∣∣∣ t−1∑
j=0

(−1)ea+bj

∣∣∣,
where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a+ b ≤ a+ (t−
1)b ≤ N.

For ease of notation,

denote
∣∣∣ t−1∑
j=0

(−1)ea+bj

∣∣∣ as W{0,1}(a, b, t).

Observe that the well-distribution is taken relative to arithmetic progressions:

we can think of a as the first term, b as the common difference, and t as the

number of terms in the progression.

Examples:
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1. Denote the sequence (en)
6
n=1 = (010011) as S1. From Table 2.1 and Table 2.2,

we find that C2(S1) = 4 and W (S1) = 2.

2. Denote the sequence (en)
6
n=1 = (011100) as S2. From Table 2.1 and Table 2.2,

we find that C2(S2) = 3 and W (S2) = 3.

The computations for the correlation measure of order 2 and the well-distribution

measure of the sequences S1 and S2 are shown in Table 2.1 and Table 2.2 respectively.

Note that the cell entries correspond to C{0,1}(M,D) and W{0,1}(a, b, t) respectively.

M
D = (d1, d2) Sequence 1 2 3 4 5

(0, 1) S1 1 2 3 4 3
(0, 1) S2 1 0 1 0 1
(0, 2) S1 1 2 3 4
(0, 2) S2 1 0 1 2
(0, 3) S1 1 0 1
(0, 3) S2 1 2 3
(0, 4) S1 1 0
(0, 4) S2 1 2
(0, 5) S1 1
(0, 5) S2 1
(1, 2) S1 1 2 3 2
(1, 2) S2 1 2 1 0
(1, 3) S1 1 2
(1, 3) S2 1 0
(1, 4) S1 1 0
(1, 4) S2 1 2
(1, 5) S1 1
(1, 5) S2 1
(2, 3) S1 1 2 1
(2, 3) S2 1 0 1
(2, 4) S1 1 2
(2, 4) S2 1 2
(2, 5) S1 1
(2, 5) S2 1
(3, 4) S1 1 0
(3, 4) S2 1 2
(3, 5) S1 1
(3, 5) S2 1
(4, 5) S1 1
(4, 5) S2 1

Table 2.1: Computing the correlation measure of sequences S1 and S2.
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t

(a, b) Sequence 1 2 3 4 5 6

(1, 1) S1 1 0 1 2 1 0

(1, 1) S2 1 0 1 2 1 0

(1, 2) S1 1 2 1

(1, 2) S2 1 0 1

(1, 3) S1 1 2

(1, 3) S2 1 0

(1, 4) S1 1 0

(1, 4) S2 1 2

(1, 5) S1 1 0

(1, 5) S2 1 2

(2, 1) S1 1 0 1 0 1

(2, 1) S2 1 2 3 2 1

(2, 2) S1 1 0 1

(2, 2) S2 1 2 1

(2, 3) S1 1 2

(2, 3) S2 1 0

(2, 4) S1 1 2

(2, 4) S2 1 0

(3, 1) S1 1 2 1 0

(3, 1) S2 1 2 1 0

(3, 2) S1 1 0

(3, 2) S2 1 0

(3, 3) S1 1 0

(3, 3) S2 1 0

(4, 1) S1 1 0 1

(4, 1) S2 1 0 1

(4, 2) S1 1 0

(4, 2) S2 1 0

(5, 1) S1 1 2

(5, 1) S2 1 2

(6, 1) S1 1

(6, 1) S2 1

Table 2.2: Computing the well-distribution measure of sequences S1 and S2.
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2.3.3 The Legendre sequence: an example of a pseudo-random binary

sequence

Definition 10. An integer u co-prime with p is a quadratic residue modulo p if it is

congruent to a perfect square modulo p; that is, if there exists an integer x such that

x2 ≡ u (mod p).

Otherwise u is called a quadratic non-residue modulo p [7, p. 178].

Definition 11. Let p be an odd prime. The Legendre symbol of an integer u modulo

p [7, p. 179] is defined as follows:

(u
p

)
=

⎧⎪⎪⎨
⎪⎪⎩

1 if u is a quadratic residue modulo p,

−1 if u is a quadratic non-residue modulo p,

0 if u ≡ 0 (mod p).

Definition 12. For an odd prime p, the Legendre sequence (�n) [6, p. 370] is defined

by

(�n) =

⎧⎨
⎩ 1, if

(
n
p

)
= −1,

0, otherwise,
n ≥ 0,

where
(

n
p

)
is the Legendre symbol of the integer n modulo p.

The linear complexity of the Legendre sequence is:

L((�n)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(p− 1)/2, p ≡ 1 (mod 8),

p, p ≡ 3 (mod 8),

p− 1, p ≡ 5 (mod 8),

(p+ 1)/2, p ≡ 7 (mod 8).

Examples:

1. For p = 5, the Legendre symbols are:((
1

5

)
,

(
2

5

)
,

(
3

5

)
,

(
4

5

)
,

(
5

5

)
,

(
6

5

)
,

(
7

5

)
,

(
8

5

)
, . . .

)
,

and the corresponding Legendre sequence is: (0, 1, 1, 0, 0, 0, 1, 1 . . . ).

Since p ≡ 5 (mod 8), its linear complexity, L((�n)) = 4.
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2. For p = 7, the Legendre symbols are:((
1

7

)
,

(
2

7

)
,

(
3

7

)
,

(
4

7

)
,

(
5

7

)
,

(
6

7

)
,

(
7

7

)
,

(
8

7

)
,

(
9

7

)
,

(
10

7

)
, . . .

)
,

and the corresponding Legendre sequence is: (0, 0, 1, 0, 1, 1, 0, 0, 0, 1, . . . ).

Since p ≡ 7 (mod 8), its linear complexity L((�n)) = 4.

The Legendre sequence has period p. It has a high linear complexity, a small

well-distribution measure, and a small correlation measure. These properties make it

very suitable for cryptographic use when p is sufficiently large.

In 1988, Damg̊ard [19] considered the possibility of constructing a CSPRNG

using a sequence of Legendre symbols modulo a prime. Gyarmati, Mauduit, and

Sárközy [19], [32] looked at Legendre symbols in the context of pseudo-random bi-

nary sequences. Particularly, Mauduit and Sárközy [45] investigated the pseudo-

randomness of the Legendre sequence by showing it has some desirable properties.

In particular, Mauduit and Sárközy [45] showed that for the sequence (en) =

(e1, . . . , en) where n = p − 1, ei =
(

i
p

)
, there exist positive numbers c1 and c2 such

that

Ck((en)) < c1p
1/2 log2 p

and

W ((en)) < c2p
1/2 log2 p.

For more on the Legendre sequence, see [17], [66], [67].

Examples:

1. For p = 5, n = p− 1 = 4,

(e4) =

((
1

5

)
,

(
2

5

)
,

(
3

5

)
,

(
4

5

))
= (1,−1,−1, 1).

Denote this sequence by E1. Then the computations in Table 2.3 and Table 2.4

show that

C2(E1) = 2 and W (E1) = 2.
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2. For p = 7, n = p− 1 = 6,

(e6) =

((
1

7

)
,

(
2

7

)
,

(
3

7

)
,

(
4

7

)
,

(
5

7

)
,

(
6

7

))
= (1, 1,−1, 1,−1,−1).

Denote this sequence by E2. Then (see again Table 2.3 and Table 2.4) we have

C2(E2) = 3 and W (E2) = 2.

The computations for the correlation measure of order 2 and the well-distribution

measure of the sequences E1 and E2 are shown in Table 2.3 and Table 2.4 respec-

tively. Note that the cell entries correspond to C{−1,1}(M,D) andW{−1,1}(a, b, t)

respectively.

M

D = (d1, d2) Sequence 1 2 3 4 5

(0, 1) E1 1 0 1

(0, 1) E2 1 0 1 2 3

(0, 2) E1 1 2

(0, 2) E2 1 0 1 0

(0, 3) E1 1

(0, 3) E2 1 0 1

(0, 4) E2 1 2

(0, 5) E2 1

(1, 2) E1 1 0

(1, 2) E2 1 2 3 2

(1, 3) E1 1

(1, 3) E2 1 2

(1, 4) E2 1 2

(1, 5) E2 1

(2, 3) E1 1

(2, 3) E2 1 2 1

(2, 4) E2 1 0

(2, 5) E2 1

(3, 4) E2 1 0

(3, 5) E2 1

(4, 5) E2 1

Table 2.3: Computing the correlation measure of Legendre sequences E1 and E2.
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t

(a, b) Sequence 1 2 3 4 5 6

(1, 1) E1 1 0 1 0

(1, 1) E2 1 2 1 2 1 0

(1, 2) E1 1 0

(1, 2) E2 1 0 1

(1, 3) E1 1 2

(1, 3) E2 1 2

(1, 4) E1 1

(1, 4) E2 1 0

(1, 5) E1 1

(1, 5) E2 1 0

(2, 1) E1 1 2 1

(2, 1) E2 1 0 1 0 1

(2, 2) E1 1 0

(2, 2) E2 1 2 1

(2, 3) E1 1

(2, 3) E2 1 0

(2, 4) E1 1

(2, 4) E2 1 0

(3, 1) E1 1 0

(3, 1) E2 1 0 1 2

(3, 2) E1 1

(3, 2) E2 1 2

(3, 3) E1 1

(3, 3) E2 1 2

(4, 1) E1 1

(4, 1) E2 1 0 1

(4, 2) E1 1

(4, 2) E2 1 0

(5, 1) E2 1 2

(6, 1) E2 1

Table 2.4: Computing the well-distribution measure of Legendre sequences
E1 and E2.



Chapter 3

Fermat quotients

3.1 Definition and basics of Fermat quotients

The Fermat quotient is based on Fermat’s little theorem [7, p. 113]:

Theorem 1. If p is a prime and u an integer with gcd(u, p) = 1, then up−1 ≡ 1

(mod p).

This theorem is named after Pierre de Fermat. By Fermat’s little theorem, up−1−1

is divisible by p, and the quotient obtained is called the Fermat quotient of p with

base u [2, p. 30]. Equivalently, this quotient can also be called the Fermat quotient

of u with respect to p [53].

Definition 13. For a prime p and an integer u with gcd(u, p) = 1, the unique integer

that satisfies

qp(u) ≡ up−1 − 1

p
(mod p), 0 ≤ qp(u) ≤ p− 1,

is called the Fermat quotient of p with base u; and we set qp(kp) = 0, k ∈ Z. Note

also that qp(0) is taken to be 0.

The Fermat quotient with base 2 is of particular interest. It was used by Wieferich

in his theorem concerning the first case of Fermat’s last theorem [2]:

Theorem 2. (Wieferich) If p is an odd prime, and x, y, z are integers, not divisible

by p, satisfying the equation xp + yp + zp = 0, then

qp(2) ≡ 0 (mod p).

By the definition of the Fermat quotient, we have

qp(2) ≡ 2p−1 − 1

p
(mod p).

23
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Thus, qp(2) ≡ 0 (mod p) is equivalent to 2p−1 ≡ 1 (mod p2). (As we will later see,

Fermat quotients are p2-periodic).

Definition 14. Odd primes that satisfy the congruence

qp(2) ≡ 0 (mod p)

are called Wieferich primes.

Wieferich primes occur very rarely; in fact, only two of such primes are presently

known: 1093, discovered by Meissner (1913), and 3511, discovered by Beeger (1922) [2].

More on Wieferich primes can be read in [23], and the latest published search results

can be found in [25].

3.2 Properties of Fermat quotients

The following properties of Fermat quotients were discovered by Eisenstein [1, p. 159], [31,

p. 1049], [64, pp. 167–168]:

Proposition 1. For an odd prime p and any integers u and v with gcd(uv, p) = 1,

(a) qp(1) ≡ 0 (mod p).

(b) qp(−u) ≡ qp(u) (mod p).

This means Fermat quotients behave like an “even function”.

(c) qp(uv) = qp(u) + qp(v) (mod p).

This is called the “logarithmic property” [35]. This property implies there exists

a group homomorphism qp : Z
∗
p2 → Zp [16], [64].

(d) qp(u+ pv) ≡ qp(u)− v · 1
u
(mod p).

(e) 2qp(2) ≡ 1− 1
2
+ · · · − 1

(p−1)/2
(mod p).

Equivalently,

2qp(2) ≡
p−1∑
r=1

(−1)r−1

r
≡ −

p−1
2∑

r=1

1

r
(mod p).



25

Proof. (a) Using the definition of the Fermat quotient,

qp(1) ≡ 1p−1 − 1

p
(mod p)

≡ 0 (mod p).

(b) By the definition of the Fermat quotient,

qp(−u) ≡ (−u)p−1 − 1

p
(mod p)

≡ (−1)p−1up−1 − 1

p
(mod p)

≡ 1 · up−1 − 1

p
(mod p)

≡ up−1 − 1

p
(mod p)

≡ qp(u).

(c) By the definition of the Fermat quotient,

qp(uv) ≡ (uv)p−1 − 1

p
(mod p)

≡ (uv)p−1 − vp−1 + vp−1 − 1

p
(mod p)

≡ (uv)p−1 − vp−1

p
+

vp−1 − 1

p
(mod p)

≡ up−1 − 1

p
· vp−1 +

vp−1 − 1

p
(mod p)

≡ qp(u)v
p−1 + qp(v) (mod p).

The result follows using Fermat’s little theorem.
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(d) Using the definition of the Fermat quotient and then the binomial theorem,

qp(u+ pv) ≡ (u+ pv)p−1 − 1

p
(mod p)

≡ up−1 + (p− 1)(pv)(u)p−2 + · · ·+ (pv)p−1 − 1

p
(mod p)

≡ up−1 − 1

p
− v

u

(
(1− p)(up−1)− · · · − upp−2vp−2

)
(mod p)

≡ up−1 − 1

p
− v · 1

u
(mod p) (using Fermat’s little theorem)

≡ qp(u)− v · 1
u

(mod p).

(e) Observe that 1
p

(
p
r

) ≡ (−1)r−1

r
(mod p), 1 ≤ r ≤ p− 1:

By expanding the binomial coefficient:

1

p

(
p

r

)
=

p(p− 1) · · · (p− r + 1)

r!
(mod p)

≡ (−1)(−2) · · · (−(r − 1))

1 · 2 · (r − 1) · r (mod p)

≡ (−1)r

r
(mod p).

Thus, −
p−1
2∑

r=1

1

r
(mod p) ≡

p−1∑
r=1

(−1)r−1

r
(mod p) ≡

p−1∑
r=1

1

p

(
p

r

)
(mod p)

≡ 1

p

(
p∑

r=0

(
p

r

)
−
(
p

0

)
−
(
p

p

))
(mod p)

≡ 1

p
(2p − 1− 1) (mod p)

≡ 2p − 2

p
(mod p)

≡ 2
2p−1 − 1

p
(mod p) ≡ 2qp(2).

This completes the proof.

Corollary 1. For an odd prime p and any integers r ≥ 0, and u with gcd(u, p) = 1,

qp(u
r) ≡ rqp(u) (mod p).
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Proof. Note that this result is a direct consequence of “the logarithmic property” of

Fermat quotients. We can also prove it directly from the definition of the Fermat

quotient as follows;

qp(u
r) ≡ (ur)p−1 − 1

p
(mod p)

≡ (up−1)r − 1

p
(mod p)

≡ (up−1 − 1)(1 + up−1 + · · · (up−1)r−1)

p
(mod p)

≡ (up−1 − 1)(1 + 1 + · · ·+ 1)

p
(mod p) (using Fermat’s little theorem)

≡ (up−1 − 1) · r
p

(mod p)

≡ rqp(u) (mod p).

Corollary 2. For an odd prime p and an integer u with gcd(u, p) = 1,

qp(u+ p2) ≡ qp(u) (mod p).

Proof. Take v = p in Proposition 1(d) so that

qp(u+ p2) ≡ qp(u)− p · 1
u

(mod p) ≡ qp(u) (mod p).

Therefore the Fermat quotient is p2-periodic.

3.2.1 Dynamic properties of Fermat quotients

The information in this section has been taken from [50].

Ostafe and Shparlinski [50] investigated the dynamical system generated by Fer-

mat quotients. They studied the sequence

un = qp(un−1), n = 1, 2, . . .

for an initial value u0 ∈ {0, 1, . . . , p− 1}, where p is a sufficiently large prime that is

fixed.

The authors obtained the following results:
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• Fixed points of Fermat quotients:

Let F (p) be the number of fixed points of the map u �→ qp(u). Then we have

F (p) � p
11
12

+o(1), as p → ∞.

• Concentration of values:

Let U(p; k, h) be the number of u ∈ {0, 1, . . . , p−1} for which there exists some

z ∈ [k+1, k+h] such that qp(u) ≡ z (mod p). Then for any integers k and h ≥ 1,

U(p; k, h) ≤ h0.5p0.5+o(1), as p → ∞.

• Image size: Let M(p) be the image size of qp(u) for {0, 1, . . . , p− 1}. Then

M(p) ≥ (1 + o(1))
p

(log2 p)
2
, as p → ∞.

Example: Fix p = 101, k = 9, h = 11, we find from Table 3.1 that U(101; 9, 11) = 14.

Table 3.1 shows the computation to obtain the concentration of u for qp(u) in the

range [10, 20].

z ∈ [10, 20] u|qp(u) ≡ z (mod p) card{u|qp(u) ≡ z (mod p)}
10 50 1

11 93 1

12 none 0

13 92 1

14 70 1

15 34,69,76 3

16 none 0

17 57 1

18 62,67,98 3

19 25,87,90 3

20 none 0

U(101; 9, 11) = 14

Table 3.1: Concentration of u for qp(u) in the range [10, 20]; p = 101.

A list of fixed points can be found in Table 3.2, and image sizes for the first 72

odd primes are listed in Table 3.3.
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Prime Fixed points Prime Fixed points Prime Fixed points

3 none 101 none 229 218

5 none 103 none 233 225

7 2, 4 107 86 239 53

11 none 109 none 241 126

13 none 113 none 251 123

17 6 127 none 257 109, 185

19 none 131 none 263 103

23 none 137 none 269 20

29 none 139 20, 52, 80, 84 271 187, 197

31 none 149 none 277 none

37 none 151 38, 67, 121 281 none

41 none 157 none 283 none

43 none 163 40 293 100

47 21, 32 167 142 307 none

53 6 173 106,170 311 189, 246

59 none 179 103, 173 313 232

61 57 181 none 317 41, 150

67 7, 39, 50 191 84 331 none

71 2, 4, 25 193 40 337 none

73 none 197 6 347 none

79 26 199 none 349 99

83 60 211 none 353 183, 206, 319, 324

89 28, 48 223 168 359 289

97 none 227 84, 145 367 268

Table 3.2: Fixed points of the map u �→ qp(u) for 3 ≤ p ≤ 370.
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Prime Image size Prime Image size Prime Image size

3 2 101 62 229 146

5 3 103 71 233 147

7 5 107 70 239 147

11 7 109 67 241 146

13 9 113 70 251 166

17 12 127 89 257 167

19 14 131 82 263 157

23 13 137 86 269 168

29 19 139 89 271 174

31 21 149 100 277 186

37 25 151 98 281 177

41 26 157 98 283 184

43 29 163 107 293 192

47 31 167 110 307 203

53 38 173 112 311 182

59 42 179 110 313 207

61 38 181 117 317 214

67 39 191 121 331 206

71 44 193 122 337 218

73 50 197 132 347 230

79 51 199 126 349 228

83 58 211 139 353 204

89 54 223 168 359 226

97 61 227 147 367 231

Table 3.3: Image size of qp(u) for 3 ≤ p ≤ 370.
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3.2.2 Divisibility of Fermat quotients

The divisibility condition of qp(u) by p has been studied by various authors. The

smallest u for which qp(u) 	≡ 0 (mod p) is commonly denoted by lp. Studying the

divisibility of Fermat quotients is related to other number-theoretic problems, espe-

cially to the first case of Fermat’s last theorem (see Theorem 10 in section 5.3).

Lenstra [42] showed that

lp ≤
{

4(log2 p)
2, if p ≥ 3,

(4e−2 + o(1))(log2 p)
2, if p → ∞.

Bourgain, Ford, Konyagin, and Shparlinski [9] improved Lenstra’s bound:

lp ≤ (log2 p)
463
252

+o(1).

Shteinikov [62] further improved this bound: For each ε > 0, there exists a δ > 0

such that for sufficiently large Q, the inequality

lp ≤ (log2 p)
3
2
+ε

holds for all primes p < Q, with the exception of O(Q1−δ) primes.

3.2.3 Pseudo-randomness of Fermat quotients

Ostafe and Shparlinski [50] also wrote on the pseudo-randomness of Fermat quotients

by studying the distribution of the points(
qp(u+ d0)

p
, . . . ,

qp(u+ ds−1)

p

)
, u = 1, . . . , N,

for D = (d0, . . . , ds−1) with 0 ≤ d0 < ds−1 < p2.

The authors obtained the following results:

• Linear complexity of a sequence of Fermat quotients:

For a sufficiently long sequence of Fermat quotients:

For p2 > N ≥ 1, the linear complexity Lp(N) of the sequence qp(u), u =

0, . . . , N − 1, satisfies

Lp(N) ≥ 1

2
min{p− 1, N − p− 1}.
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For arbitrary segments of a sequence of Fermat quotients:

For M and p2 > N ≥ 1, the linear complexity Lp(N) of the sequence

qp(u), u = M + 1, . . . ,M +N , satisfies

Lp(M,N) ≥ min

{
p− 1

2
,
N − p− 1

3

}
.

• Joint distribution:

For integers M,N ≥ 1, s ≥ 1 and an integer vector b = (b0, . . . , bs−1), consider

the exponential sums

Ss,p(M,N ;b) =
M+N∑

u=M+1

e

(∑s−1
j=0 bjqp(u+ j)

p

)
.

Then for any integer s ≥ 1,

max
gcd(b0,...,bs−1,p)=1

|Ss,p(M,N ;b)| � sp log2 p

uniformly over M and p2 > N ≥ 1.

3.3 Character sums and exponential sums

3.3.1 Character sums of Fermat quotients

To better grasp the concept of character sums, it is helpful to review the following

definitions [7]:

Definition 15. A character of an arbitrary group G is a complex-valued function f

defined on G with the multiplicative property:

f(uv) = f(u)f(v)

for all u, v ∈ G, and if f(w) 	= 0 for some w ∈ G.

Definition 16. Let G be the group of reduced residue classes modulo k. A Dirichlet

character modulo k is an arithmetical function χ corresponding to each character f

of G, defined as follows:

χ(n) =

{
f(n̂), if gcd(n, k) = 1,

0, if gcd(n, k) > 1.

where the residue class n̂ is the set of all integers congruent to n modulo k.
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A character χ1 is principal if

χ1(n) =

{
1, if gcd(n, k) = 1,

0, if gcd(n, k) > 1.

Definition 17. The Dirichlet L-functions,

L(s, χ) =
∞∑
n=1

χ(n)

ns

where χ is a Dirichlet character and s > 1, s = σ + it, σ, t ∈ R.

Basic properties of Dirichlet characters modulo k

1. χ(uv) = χ(u)χ(v) for all u, v ∈ G.

This means χ is completely multiplicative.

2. χ(u+ k) = χ(u) for all u ∈ G.

That is, χ is periodic with period k.

3. The group of reduced residue classes modulo k, G, is a finite abelian group of

order ϕ(k).

4. Let χ1, χ2, . . . , χϕ(k) denote the ϕ(k) Dirichlet characters modulo k. Let u and

v be two integers, with gcd(k, v) = 1. Then we have

ϕ(k)∑
r=1

χr(u)χ̄r(v) =

{
ϕ(k), if u ≡ v (mod k),

0, if u 	≡ v (mod k).

Trivially, ϕ(k) is a sum bound for non-principal Dirichlet characters. Different

authors have worked on non-trivial sum bounds for non-principal Dirichlet characters.

For instance, Shparlinski [61] proved a non-trivial bound for a non-principal Dirichlet

character χ modulo p:

For every fixed integer υ ≥ 1, for any integers H and N ≥ 1:

H+N∑
u=H+1

χ(qp(ku)) ≤ N1− 1
υ p

5υ+1

4υ2+o(1) , 1 ≤ N ≤ p2,

as p → ∞, uniformly over all integers k with gcd(k, p) = 1.
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Gomez and Winterhof [30] extended Shparlinski’s result:

N−1∑
u=0

χ(qp(au+ b)) � N1− 1
υ p

5υ+1

4υ2 (log2 p)
1
υ , 1 ≤ N ≤ p2,

for any integers a, b with gcd(a, p2) 	= p2.

Also, the authors obtained the following result for a set of non-principal Dirichlet

characters χ1, . . . , χl modulo p:

N−1∑
u=0

χ1(qp(u+ d1)) · · ·χl(qp(u+ dl)) � max
{ lN

p
1
3

, lp
3
2
log2 p

}

for any integers 0 ≤ d1 < d2 < · · · < dl ≤ p2 − 1 and 1 ≤ N ≤ p2.

3.3.2 Exponential sums of Fermat quotients

Let p be a prime, and set e(x) = e2πix.

Definition 18. Heilbronn’s exponential sum [35] is defined by

S(a) =

p∑
u=1

e
(aup

p2

)
,

for any integer a with gcd(a, p) = 1.

Heath-Brown [35] showed that S(a) = o(p) as p → ∞ but he was also able to

deduce the following result:

If p is a prime and gcd(a, p) = 1 then∑
M<u≤M+N
gcd(u,p)=1

e
(aup

p2

)
� p

11
12 log p,

uniformly in a, for all M , and for all N ≤ p.

By studying exponential sums involving up−1 instead of up, the author showed

that qp(u) is uniformly distributed modulo p2 for all N ≤ p. The result is presented

in the following theorem:

Theorem 3. For any integer a with gcd(a, p) = 1,

∑
M<u≤M+N
gcd(u,p)=1

e
(aqp(u)

p

)
� N

1
2p

3
8 ,
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uniformly for M,N ≥ 1. In particular,

p−1∑
n=1

e
(aqp(u)

p

)
� p

7
8 ,

uniformly for gcd(a, p) = 1.

For the proof, we require an estimate from the following theorem by Burgess [12,

p. 525]:

Theorem 4. If χ is a non-principal character modulo k, and if L(s, χ) denotes the

L-function corresponding to χ, where s = σ + it, σ and t are fixed real numbers

satisfying 0 < σ < 1, then for any fixed ε > 0,

|L(s, χ)| �
{

k
4−5σ+ε

8 , for 0 < σ ≤ 1
2
,

k
3−3σ+ε

8 , for 1
2
≤ σ < 1,

(3.1)

and in particular, ∣∣∣∣L
(
1

2
+ it, χ

)∣∣∣∣ � k
3
16

+ε.

Proof of Theorem 3. From Proposition 1, qp(uv) = qp(u)+qp(v) (mod p), with gcd(uv, p) =

1. Thus,

χ(u) =

⎧⎨
⎩ e

(
aqp(u)

p

)
, gcd(u, p) = 1,

0, gcd(u, p) > 1,

is a non-principal character modulo p2, of order p. Thus the sum above can be written

as
∑

M<u≤M+N χ(u), and the proof is concluded by using Burgess’s estimate, taking

k to be p2.

Character and exponential sums help in describing the pseudo-randomness of se-

quences derived from Fermat quotients [15].

3.4 Fermat quotient over function fields

Sauerberg and Shu [53] examined the generalization of Fermat quotients to the field

of rational functions over a finite field.
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3.4.1 Fermat quotient for the field of rational functions over a finite field

Let P be an irreducible polynomial of degree d in Fq[x], where q is a power of a prime

p, and let U be any polynomial in Fq[x]. Sauerberg and Shu [53] defined the Fermat

quotient for the field of rational functions over a finite field as follows:

Definition 19. The function QP on Fq[x] defined by

QP (U) =
U qd − U

P
=

U qdeg(P ) − U

P

is called the Fermat quotient for the field of rational functions over a finite field.

Examples:

1. Let P = x3 + x2 + 2x+ 1, U = x2 + x+ 1, P,Q ∈ F3[x]; q = 3, d = 3. Then

Q[x3+x2+2x+1](x
2 + x+ 1) =

(x2 + x+ 1)3
3 − (x2 + x+ 1)

x3 + x2 + 2x+ 1

≡ x54 + x27 + 1− (x2 + x+ 1)

x3 + x2 + 2x+ 1
∈ F3[x]

≡ x54 + x27 + 2x2 + 2x

x3 + x2 + 2x+ 1
∈ F3[x]

≡ x51 + 2x50 + 2x49 + 2x48 + x47 + 2x46 + x44 + x42

+ x41 + 2x38 + x37 + x36 + x35 + 2x34 + x33 + 2x31

+ 2x29 + 2x28 + x25 + x23 + x22 + 2x19 + x18 + x17

+ x16 + 2x15 + x14 + 2x12 + 2x10 + 2x9 + x6 + 2x5

+ 2x4 + 2x3 + x2 + 2x ∈ F3[x].

2. Let P = x2 + x+ 1, U = x2 + 1, P,Q ∈ F4[x] so that q = 4, d = 2. Then

Q[x2+x+1](x
2 + 1) =

(x2 + 1)4
2 − (x2 + 1)

x2 + x+ 1

≡ x32 + 2x16 + 1− (x2 + 1)

x2 + x+ 1
∈ F4[x]

≡ x32 + 2x16 + 3x2

x2 + x+ 1
∈ F4[x]

≡ x30 + 3x29 + x27 + 3x26 + x24 + 3x23 + x21 + 3x20

+ x18 + 3x17 + x15 + x14 + 2x13 + x12 + x11 + 2x10

+ x9 + x8 + 2x7 + x6 + x5 + 2x4 + x3 + x2 + 2x ∈ F4[x].
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3. Let P = x2 + 2, U = 4x3, P,Q ∈ F5[x] so that q = 5, d = 2. Then

Q[x2+2](4x
3) =

(4x3)5
2 − 4x3

x2 + 2

≡ 4x75 + x3

x2 + 2
∈ F5[x]

≡ 4x73 + 2x71 + x69 + 3x67 + 4x65 + 2x63 + x61 + 3x59

+ 4x57 + 2x55 + x53 + 3x51 + 4x49 + 2x47 + x45 + 3x43

+ 4x41 + 2x39 + x37 + 3x35 + 4x33 + 2x31 + x29 + 3x27

+ 4x25 + 2x23 + x21 + 3x19 + 4x17 + 2x15 + x13 + 3x11

+ 4x9 + 2x7 + x5 + 3x3 ∈ F5[x].

4. Let P = x2 + 2, U = 2x3, P,Q ∈ F5[x] so that q = 5, d = 2. Then

Q[x2+2](2x
3) =

(2x3)5
2 − 2x3

x2 + 2

≡ 2x75 + 3x3

x2 + 2
∈ F5[x]

≡ 2x73 + x71 + 3x69 + 4x67 + 2x65 + x63 + 3x61 + 4x59

+ 2x57 + x55 + 3x53 + 4x51 + 2x49 + x47 + 3x45 + 4x43

+ 2x41 + x39 + 3x37 + 4x35 + 2x33 + x31 + 3x29 + 4x27

+ 2x25 + x23 + 3x21 + 4x19 + 2x17 + x15 + 3x13 + 4x11

+ 2x9 + x7 + 3x5 + 4x3 ∈ F5[x].

From examples 3 and 4 above,

Q[x2+2](4x
3) = 2 ·Q[x2+2](2x

3).

This seems to indicate that Fermat quotients for the field of rational functions over a

finite field are closed under scalar multiplication (shown below). Some of the proper-

ties satisfied by Fermat quotients for the field of rational functions over a finite field

include:



38

Proposition 2. For all polynomials U and V in Fq[x] and constant c in Fq, the

following hold:

(a) QP (U + V ) = QP (U) +QP (V ).

This means Fermat quotients for the field of rational functions over a finite field

satisfy the additive property [53].

(b) QP (cU) = cQP (U).

This means Fermat quotients for the field of rational functions over a finite field

are closed under scalar multiplication.

(c) QP (UV ) = PQP (U)QP (V ) + V QP (U) + UQP (V ).

(d) QP (UV ) = V QP (U) + σ(U)QP (V ), for σ(U) = U qdeg(P )
.

(e) QP (U + V P ) ≡ QP (U)− V (mod P qd−1).

Proof of Proposition 2. (a) By the definition of Fermat quotient for rational func-

tion field,

QP (U + V ) =
(U + V )q

d − (U + V )

P

=
U qd + V qd − U − V

P
using the Frobenius endomorphism

=
U qd − U

P
+

V qd − V

P

= QP (U) +QP (V ).

(b) From the definition of Fermat quotient for rational function field,

QP (cU) =
(cU)q

d − (cU)

P

= c · U
qd − U

P

= cQP (U).
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(c) Using the definition of Fermat quotient for rational function field,

PQP (U)QP (V ) = P · U
qd − U

P
· V

qd − V

P

=
U qdV qd − U qdV − UV qd + UV

P
;

V QP (U) = V · U
qd − U

P
;

UQP (V ) = U · V
qd − V

P
.

Therefore,

PQP (U)QP (V ) + V QP (U) =
U qdV qd − U qdV − UV qd + UV

P
+ V · U

qd − U

P

=
U qdV qd − UV qd

P
.

Adding the last piece, UQP (V ), we have

PQP (U)QP (V ) + V QP (U) + UQP (V ) =
U qdV qd − UV qd

P
+ U · V

qd − V

P

=
U qdV qd − UV qd + UV qd − UV

P

=
U qdV qd − UV

P

= QP (UV ).

(d) Using the definition of Fermat quotient for rational function field,

QP (UV ) =
(UV )q

d − (UV )

P

=
UV qd + U qdV qd − UV − U qdV

P
using the Frobenius endomorphism

=
U qdV qd − UV

P
+

U qdV qd − U qdV

P

= V · U
qd − U

P
+ U qd · V

qd − V

P

= V QP (U) + σ(U)QP (V ) where σ(U) = U qd .
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(e) By the definition of Fermat quotient for rational function field,

QP (U + V P ) =
(U + V P )q

d − (U + V P )

P

=
U qd + (V P )q

d − U − V P

P
using the Frobenius endomorphism

=
U qd − U

P
+

(V P )q
d − V P

P

=
U qd − U

P
+ V qdP qd−1 − V

= QP (U)− V (mod P qd−1).

The following theorem presented by Sauerberg and Shu [53] is a precursor to some

results about Fermat quotients over rational function fields.

Theorem 5. Let P be an irreducible polynomial of degree d, let U =
∑m

i=0 uix
i be a

polynomial in Fq[x] of degree m < d, and let ε = ε(U) = ordp(gcd{i|ui 	= 0}). Then
P pε divides U qd − U in Fq[x] and

U qd − U

P pε
≡ V pε

⎛
⎝∑

pε|i
ui

(
i

pε

)
xi−pε

⎞
⎠ (mod P pε),

or equivalently,

U qd − U ≡ (V P )p
ε

⎛
⎝∑

pε|i
ui

(
i

pε

)
xi−pε

⎞
⎠ (mod P pε),

where V P = xqd − x, ordp(m) is the largest power of p dividing m. Further, the

polynomial on the right-hand side of the first equivalence is relatively prime to P . In

particular, pε is the exact power of P dividing U qd − U .

The results are presented in the corollary below:

Corollary 3. Let P be an irreducible polynomial.

(a) There are infinitely many pairs U, P in Fq[x] with P irreducible and 1 ≤
deg(U) ≤ deg(P ) such that QP (U) ≡ 0 (mod P ).
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(b) There are no irreducible polynomials U with deg(U) < deg(P ) and QP (U) ≡ 0

(mod P ).

(c) For a given U ∈ Fq[x] and r ≥ 1, QP (U) is divisible by P r for infinitely many

irreducible polynomials P if and only if U is a p∂r-th power in Fq[x] for p
∂r−1 ≤

r < p∂r .



Chapter 4

Applying Fermat quotients in cryptography

4.1 Constructing pseudo-random binary sequences

As earlier noted, pseudo-random sequences are produced from pseudo-random num-

ber generators. Fermat quotients can function as pseudo-random number generators

because of their pseudo-random properties (see Section 3.2).

For instance, Heath-Brown [35] showed that the Fermat quotients are asymptoti-

cally uniformly distributed forM,N ≥ 1 (see Theorem 3 in Section 3.3). This satisfies

the need for uniformity which a good pseudo-random number generator is expected

to have.

From Fermat quotients, pseudo-random sequences can be obtained. In particular,

Chen, Ostafe, and Winterhof [15] considered the following binary (threshold) sequence

derived from Fermat quotients modulo p defined by

(ep2) =

{
0, if 0 ≤ qp(u)

p
< 1

2
,

1, if 1
2
≤ qp(u)

p
< 1,

1 ≤ u ≤ p2. (4.1)

Denote the sequence ( qp(u)
p

)1≤u≤p2 by (Qp2).

Examples:

1. For p = 3, p2 = 9:

(Q9) =

(
q3(1)

3
,
q3(2)

3
,
q3(3)

3
,
q3(4)

3
,
q3(5)

3
,
q3(6)

3
,
q3(7)

3
,
q3(8)

3
,
q3(9)

3

)

=

(
0

3
,
1

3
,
0

3
,
2

3
,
2

3
,
0

3
,
1

3
,
0

3
,
0

3

)
.

Therefore, by (4.1),

(e9) = (0, 0, 0, 1, 1, 0, 0, 0, 0) .

42
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2. For p = 5, p2 = 25:

(Q25) =

(
q5(1)

5
,
q5(2)

5
,
q5(3)

5
,
q5(4)

5
,
q5(5)

5
,
q5(6)

5
,
q5(7)

3
,
q5(8)

5
,
q5(9)

5
,
q5(10)

5
,

q5(11)

5
,
q5(12)

5
,
q5(13)

5
,
q5(14)

5
,
q5(15)

5
,
q5(16)

5
,
q5(17)

5
,
q5(18)

5
,
q5(19)

5
,

q5(20)

5
,
q5(21)

5
,
q5(22)

5
,
q5(23)

5
,
q5(24)

5
,
q5(25)

5

)

=

(
0

5
,
3

5
,
1

5
,
1

5
,
0

5
,
4

5
,
0

5
,
4

5
,
2

5
,
0

5
,
3

5
,
2

5
,
2

5
,
3

5
,
0

5
,
2

5
,
4

5
,
0

5
,
4

5
,
0

5
,
1

5
,
1

5
,
3

5
,
0

5
,
0

5

)
.

Again, by (4.1),

(e25) = (0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0).

Another binary sequence derived from Fermat quotients is the Legendre-Fermat quo-

tient sequence [16] defined by

(fu) =

⎧⎨
⎩ 0, if

(
qp(u)

p

)
= 1 or qp(u) = 0,

1, otherwise,
u ≥ 0; (4.2)

where
(

.
p

)
is the Legendre symbol. The Legendre-Fermat quotient sequence is derived

from a combination of the Legendre symbol and Fermat quotients.

Denote the sequence
(
( qp(u)

p
)
)
u≥0

by (Qp).

Note: The Legendre-Fermat quotient sequence is the case m = 2 of the m-ary se-

quence, hu, of discrete logarithms modulo a divisor m ≥ 2 of p−1 of Fermat quotients

modulo p defined in [16], [30].

Examples:

1. For p = 3:

(Q3) =

((
q3(1)

3

)
,

(
q3(2)

3

)
,

(
q3(3)

3

)
,

(
q3(4)

3

)
,

(
q3(5)

3

)
,

(
q3(6)

3

)
,

(
q5(7)

3

)
,(

q3(8)

3

)
,

(
q3(9)

3

)
, · · ·

)

=

((
0

3

)
,

(
1

3

)
,

(
0

3

)
,

(
2

3

)
,

(
2

3

)
,

(
0

3

)
,

(
1

3

)
,

(
0

3

)
,

(
0

3

)
, · · ·

)

= (0, 1, 0,−1,−1, 0, 1, 0, 0, . . .) .
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Therefore, by (4.2),

(fu) = (0, 0, 0, 1, 1, 0, 0, 0, 0, . . .) .

2. For p = 5:

(Q5) =

((
q5(1)

5

)
,

(
q5(2)

5

)
,

(
q5(3)

5

)
,

(
q5(4)

5

)
,

(
q5(5)

5

)
,

(
q5(6)

5

)
,(

q5(7)

5

)
,

(
q5(8)

5

)
,

(
q5(9)

5

)
,

(
q5(10)

5

)
,

(
q5(11)

5

)
,

(
q5(12)

5

)
,(

q5(13)

5

)
,

(
q5(14)

5

)
,

(
q5(15)

5

)
,

(
q5(16)

5

)
,

(
q5(17)

5

)
,

(
q5(18)

5

)
,(

q5(19)

5

)
,

(
q5(20)

5

)
,

(
q5(21)

5

)
,

(
q5(22)

5

)
,

(
q5(23)

5

)
,

(
q5(24)

5

)
,(

q5(25)

5

)
, · · ·

)

=

((
0

5

)
,

(
3

5

)
,

(
1

5

)
,

(
1

5

)
,

(
0

5

)
,

(
4

5

)
,

(
0

5

)
,

(
4

5

)
,

(
2

5

)
,

(
0

5

)
,(

3

5

)
,

(
2

5

)
,

(
2

5

)
,

(
3

5

)
,

(
0

5

)
,

(
2

5

)
,

(
4

5

)
,

(
0

5

)
,

(
4

5

)
,

(
0

5

)
,

(
1

5

)
,(

1

5

)
,

(
3

5

)
,

(
0

5

)
,

(
0

5

)
, · · ·

)

= (0,−1, 1, 1, 0, 1, 0, 1,−1, 0,−1,−1,−1,−1, 0,−1, 1, 0, 1, 0, 1, 1,−1, 0, 0,

. . .).

Therefore, by (4.2),

(fu) = (0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, . . .).

Note that both the binary threshold and the Legendre-Fermat sequences are p2-

periodic.

4.1.1 Pseudo-randomness of binary sequences derived from Fermat

quotients

Chen, Ostafe, and Winterhof [15] obtained the following results on the binary thresh-

old sequence:

• A bound on the well-distribution measure:

W ((ep2)) � p(log2 p)
2.
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• A bound on the correlation measure of order 2:

For the binary threshold sequence (ep2), andD = (d1, d2) with 0 ≤ d1 < d2 < p2,

C2((ep2)) � p(log2 p)
3.

• A bound on the linear complexity profile:

L((ep2 , N) � log2
N
p

log2 log2 p
for 2 ≤ N ≤ p2.

Chen [16] obtained the following result on the linear complexities of the binary

threshold sequence and the Legendre-Fermat sequence:

• If 2p−1 	≡ 1 (mod p2) (that is, p 	= 1093, 3511), then the linear complexities of

(ep2) and (fu) both satisfy

L((ep2)) = L((fu)) =

{
p2 − p, if p ≡ 1 (mod 4),

p2 − 1, if p ≡ 3 (mod 4).

Examples: Note that for p = 3, 5, 2p−1 	≡ 1 (mod p2) so

1. For p = 3, L((e9)) = L((fu)) = 8 since 3 ≡ 3 (mod 4).

2. For p = 5, L((e25)) = L((fu)) = 20 since 5 ≡ 1 (mod 4).

4.2 Boolean functions derived from Fermat quotients

A Boolean function [69, p. 2] in n variables is a function f : Fn
2 → F2 where F

n
2 is the

n-dimensional vector space and F2 is the binary field. A Boolean variable can assume

one of two values, 0 (FALSE) or 1 (TRUE) [69]. Boolean functions are essential in

cryptography [69]. For instance, they are used in the design of stream ciphers, digital

signature schemes, and public-key cryptosystems.
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4.2.1 Boolean functions and the Legendre symbol

Using the Legendre symbol, Aly and Winterhof [5] studied Boolean functions derived

from Fermat quotients modulo p. They put forward the following definition for the

Boolean function B(U1, . . . , Ur) of r = 
2 log2 p� variables:

B(u1, . . . , ur) =

⎧⎨
⎩

0, if
(

qp(x)

p

)
= 1,

1, if
(

qp(x)

p

)
	= 1,

(4.3)

for any 0 ≤ x ≤ 2r−1, where (u1, . . . , ur) is the binary representation of x, and
(

.
p

)
denotes the Legendre symbol. Following [5], we use capital letters for variables and

small letters for integers and their binary representations.

4.2.2 Some of the parameters for the Boolean function B(u1, . . . , ur)

• Hamming weight :

The Hamming weight ‖a‖ of a vector a ∈ Br is the number of its nonzero

components, where Br = {0, 1}r.

• Fourier coefficients (or Walsh-Hadamard coefficients):

B̂(a) =
∑
u∈Br

(−1)B(u1,...,ur)+〈a,u〉

where a = (a1, . . . , ar), 〈a, u〉 = a1u1 + a2u2 + · · ·+ arur denotes the standard

inner product.

As a bound for the maximum Fourier coefficients, we have that:

max
a∈Br

|B̂(a)| � p
15
8 log

1
4
2 p.

Example:

For the Boolean function B(u1, u2, u3, u4) (see Table 4.2),

max
a∈B4

|B̂(a)| = 8.

• Nonlinearity :

N(B) = 2r−1 − 1

2
max
a∈Br

|B̂(a)|.
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Example:

For the Boolean function B(u1, u2, u3, u4) (see Table 4.2),

N(B) = 24−1 − 1

2
· 8 = 4.

x (u1, u2, u3, u4) qp(x)
(

qp(x)

p

)
B(u1, u2, u3, u4)

0 (0, 0, 0, 0) q5(0) ≡ 0
(
0
5

)
= 0 B(0, 0, 0, 0) = 1

1 (0, 0, 0, 1) q5(1) ≡ 14−1
5

(mod 5) ≡ 0
(
0
5

)
= 0 B(0, 0, 0, 1) = 1

2 (0, 0, 1, 0) q5(2) ≡ 24−1
5

(mod 5) ≡ 3
(
3
5

)
= −1 B(0, 0, 1, 0) = 1

3 (0, 0, 1, 1) q5(3) ≡ 34−1
5

(mod 5) ≡ 1
(
1
5

)
= 1 B(0, 0, 1, 1) = 0

4 (0, 1, 0, 0) q5(4) ≡ 44−1
5

(mod 5) ≡ 1
(
1
5

)
= 1 B(0, 1, 0, 0) = 0

5 (0, 1, 0, 1) q5(5) ≡ 54−1
5

(mod 5) ≡ 0
(
0
5

)
= 0 B(0, 1, 0, 1) = 1

6 (0, 1, 1, 0) q5(6) ≡ 64−1
5

(mod 5) ≡ 4
(
4
5

)
= 1 B(0, 1, 1, 0) = 0

7 (0, 1, 1, 1) q5(7) ≡ 74−1
5

(mod 5) ≡ 0
(
0
5

)
= 0 B(0, 1, 1, 1) = 1

8 (1, 0, 0, 0) q5(8) =
84−1
5

(mod 5) ≡ 4
(
4
5

)
= 1 B(1, 0, 0, 0) = 0

9 (1, 0, 0, 1) q5(9) ≡ 94−1
5

(mod 5) ≡ 2
(
2
5

)
= −1 B(1, 0, 0, 1) = 1

10 (1, 0, 1, 0) q5(10) ≡ 104−1
5

(mod 5) ≡ 0
(
0
5

)
= 0 B(1, 0, 1, 0) = 1

11 (1, 0, 1, 1) q5(11) ≡ 114−1
5

(mod 5) ≡ 3
(
3
5

)
= −1 B(1, 0, 1, 1) = 1

12 (1, 1, 0, 0) q5(12) ≡ 124−1
5

(mod 5) ≡ 2
(
2
5

)
= −1 B(1, 0, 0, 0) = 1

13 (1, 1, 0, 1) q5(13) ≡ 134−1
5

(mod 5) ≡ 2
(
2
5

)
= −1 B(1, 1, 0, 1) = 1

14 (1, 1, 1, 0) q5(14) ≡ 144−1
5

(mod 5) ≡ 3
(
3
5

)
= −1 B(1, 1, 1, 0) = 1

15 (1, 1, 1, 1) q5(15) ≡ 154−1
5

(mod 5) ≡ 0
(
0
5

)
= 0 B(1, 1, 1, 1) = 1

Table 4.1: Boolean function of 4 variables, B(u1, . . . , ur), derived from
Fermat quotients.

One can also define a Boolean function as follows [60]:

B(u1, . . . , ur) =

{
1, if 2x+ 1 is square-free,

0, if 2x+ 1 is not square-free,

where 0 ≤ x ≤ 2r − 1, and (u1, . . . , ur) is the binary representation of x.
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x u1 u2 u3 u4 ‖u‖ B̂(u)
0 0 0 0 0 0 -8
1 0 0 0 1 1 4
2 0 0 1 0 1 0
3 0 0 1 1 2 4
4 0 1 0 0 1 0
5 0 1 0 1 2 -4
6 0 1 1 0 2 0
7 0 1 1 1 3 2
8 1 0 0 0 1 4
9 1 0 0 1 2 0
10 1 0 1 0 2 -2
11 1 0 1 1 3 0
12 1 1 0 0 2 -4
13 1 1 0 1 3 -8
14 1 1 1 0 3 -4
15 1 1 1 1 4 0

Table 4.2: Truth table, Hamming weight, and Fourier coefficients of B(u1, . . . , ur).

x (u1, . . . , ur) 2x+ 1 B(u1, . . . , ur)

0 (0, 0, 0, 0) 1 B(0, 0, 0, 0) = 1

1 (0, 0, 0, 1) 3 B(0, 0, 0, 1) = 1

2 (0, 0, 1, 0) 5 B(0, 0, 1, 0) = 1

3 (0, 0, 1, 1) 7 B(0, 0, 1, 1) = 1

4 (0, 1, 0, 0) 9 B(0, 1, 0, 0) = 0

5 (0, 1, 0, 1) 11 B(0, 1, 0, 1) = 1

6 (0, 1, 1, 0) 13 B(0, 1, 1, 0) = 1

7 (0, 1, 1, 1) 15 B(0, 1, 1, 1) = 1

8 (1, 0, 0, 0) 17 B(0, 1, 1, 1) = 1

9 (1, 0, 0, 1) 19 B(1, 0, 0, 1) = 1

10 (1, 0, 1, 0) 21 B(1, 0, 1, 0) = 1

11 (1, 0, 1, 1) 23 B(1, 0, 1, 1) = 1

12 (1, 1, 0, 0) 25 B(1, 1, 0, 0) = 0

13 (1, 1, 0, 1) 27 B(1, 1, 0, 1) = 0

14 (1, 1, 1, 0) 29 B(1, 1, 1, 0) = 1

15 (1, 1, 1, 1) 31 B(1, 1, 1, 1) = 1

Table 4.3: Boolean function representation of 4 variables for square-free integers.



Chapter 5

Some further topics

5.1 Generalized Fermat quotients

5.1.1 Euler quotients

It is useful to recall the following definition [7, p. 25]:

Definition 20. Euler’s totient function ofm, ϕ(m), is the number of positive integers

not exceeding m which are relatively prime to m, where m ≥ 1.

Examples: ϕ(1) = 1, ϕ(2) = 1, ϕ(8) = 4 because 1, 3, 5, and 7 are relatively prime

to 8.

Recall an important property of Euler’s totient function [7, p. 28]: For p a prime

and u ≥ 1 an integer, we have

ϕ(pu) = pu−1(p− 1).

Example:

ϕ(32) = 25−1(2− 1) = 16.

Fermat’s little theorem, from which the Fermat quotient is derived, is a special

case of Euler’s theorem [7, p. 113]:

Theorem 6. (Euler’s theorem): Let u and m be two integers with gcd(u,m) = 1,m ≥
2. Then

uϕ(m) ≡ 1 (mod m).

It seems natural to ask whether any quotient can be derived from Euler’s theorem.

Lerch [41] introduced a generalization of the Fermat quotient for composite moduli

m (m odd, m > 1, subsequently extended to all m ≥ 2) based on Euler’s theorem.

49
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Apart from Lerch’s work, Agoh, Dilcher, and Skula [2] investigated these gener-

alized Fermat quotients for composite moduli and called them Euler quotients.

Definition 21. Let u and m ≥ 2 be two relatively prime integers. The quotient

q(u,m) ≡ uϕ(m) − 1

m
(mod m)

is called the Euler quotient of m with base u.

By Euler’s theorem, the Euler quotient is an integer.

Properties of Fermat quotients can be generalized to Euler quotients. For instance:

Proposition 3. Fix m ≥ 2.

(a) If u and v are integers with gcd(u,m) = gcd(v,m) = 1, then

q(uv,m) ≡ q(u,m) + q(v,m) (mod m).

(b) If c, k are integers, c, m are relatively prime, and β is a positive integer, then

q(c+ kmβ,m) ≡ q(c,m) +
ϕ(m)k

c
mβ−1 (mod mβ).

This corresponds to Proposition 1 in Section 3.2 and (a) is again referred to as

the logarithmic property for Euler quotients.

Proof of Proposition 3. (a) By the definition of the Euler quotient,

qp(uv) ≡ (uv)ϕ(m) − 1

m
(mod m)

≡ (uv)ϕ(m) − vϕ(m) + vϕ(m) − 1

m
(mod m)

≡ uϕ(m)−1 − 1

m
· vϕ(m) +

vϕ(m) − 1

m
(mod m)

≡ q(u,m)vϕ(m) + q(v,m) (mod m)

≡ q(u,m) + q(v,m) (mod m) using Euler’s theorem.
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(b) Using the definition of the Euler quotient and then the binomial theorem,

q(c+ kmβ,m) ≡ (c+ kmβ)ϕ(m) − 1

m
(mod m)

≡ cϕ(m) + ϕ(m)(kmβ)cϕ(m)−1 + · · ·+ (kmβ)ϕ(m) − 1

m
(mod m)

≡ cϕ(m) − 1

m
+

ϕ(m)k

c
mβ−1 (mod mβ) using Euler’s theorem

≡ q(c,m) +
ϕ(m)k

c
mβ−1 (mod mβ).

This completes the proof.

Generalized Fermat quotients are related to the Bernoulli numbers and polynomi-

als, and further congruences can be obtained from them (see [2]). Also analogous to

the concept of a Wieferich prime (for Fermat quotients) is the concept of a Wieferich

number :

Definition 22. Let m ≥ 2 and u be relatively prime integers. m is a Wieferich

number with base u if

q(u,m) ≡ 0 (mod m).

The paper [2] has interesting results on Wieferich numbers.

5.1.2 Carmichael quotients

A different generalization of the Fermat quotient can be obtained using the Carmichael

function [55], [56]:

Definition 23. The Carmichael function of m, λ(m), is defined as follows for a prime

power pk:

λ(pk) =

{
pk−1(p− 1) if p ≥ 3 or k ≤ 2,

2k−2 if p = 2 and k ≥ 3;

and

λ(m) = lcm(λ(pk11 ), λ(pk22 ), . . . , λ(pkss )),

where “lcm” means the least common multiple, and m = pk11 pk22 . . . pkss is the prime

factorization of m.
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Note that λ(1) = 1, and if m|n, then λ(m)|λ(n).

Examples:

λ(8) = 23−2 = 2;

λ(32) = 25−2 = 8;

λ(5) = 51−1(5− 1) = 4;

λ(25) = 52−1(5− 1) = 20.

Observe also that for every positive integer m, we have λ(m)|ϕ(m), and λ(m) =

ϕ(m) if and only if m ∈ {1, 2, 4, pk, 2pk}, where p is an odd prime and k ≥ 1.

As an analog of Euler’s theorem, Carmichael [13, p. 233] showed that:

Theorem 7. Let u and m be two integers with gcd(u,m) = 1,m ≥ 2. Then

uλ(m) ≡ 1 (mod m).

Definition 24. Let m ≥ 2 and u be relatively prime integers. The quotient

Cm(u) =
uλ(m) − 1

m

is called the Carmichael quotient of m with base u.

By Theorem 10, the Carmichael quotient is an integer.

Example:

C5(3) =
3λ(5) − 1

5

=
34 − 1

5

= 16.

Like Fermat quotients, Carmichael quotients also satisfy the “logarithmic prop-

erty”: If u and v are integers with gcd(uv,m) = 1, then

Cm(uv) ≡ Cm(u) + Cm(v) (mod m).
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Carmichael quotients can also be used to construct sequences similar to the binary

sequences derived from Fermat quotients which we considered in Section 4.1 and they

have the potential for further study in the future. For instance, refer to [55], [56].

5.2 Related matters

5.2.1 Carmichael numbers

In this subsection, the term pseudoprime refers to a Fermat pseudoprime.

While investigating the converse of Fermat’s little theorem, Robert Daniel Carmichael

discovered Carmichael numbers in 1910 [13]. Leading to the definition of a Carmichael

number, the following definitions are useful [65]:

Definition 25. If N is an odd composite number with gcd(u,N) = 1 and if

uN−1 ≡ 1 (mod N),

then N is called a pseudoprime to base u.

Definition 26. If N is an odd composite number with gcd(u,N) = 1 and if

u2rd ≡ −1 (mod N),

for some integer r with 0 ≤ r < s, where N − 1 = d · 2s with d odd, then N is called

a strong pseudoprime to base u.

Definition 27. If for every integer u with gcd(u,N) = 1,

uN−1 ≡ 1 (mod N),

then N is called a Carmichael number.

A Carmichael number is also called an absolute pseudoprime [28, p. 201], or a

universal pseudoprime [38, p. 508]. Some of the properties satisfied by Carmichael

numbers include (see [51]):

1. If the prime p divides the Carmichael number N , then N ≡ 1 (mod p− 1), and

hence N ≡ 1 (mod p(p− 1)).
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2. Every Carmichael number is square-free.

The two properties above are implied by Korselt’s criterion [4, p. 703]: N

divides uN − u for all integers u if and only if u is square-free and p− 1 divides

N − 1 for all primes p dividing N .

Carmichael number Factorization

561 3 · 11 · 17
1105 5 · 13 · 17
1729 7 · 13 · 19
2465 5 · 17 · 29
2821 7 · 13 · 21
6601 7 · 23 · 41
8911 7 · 19 · 67
10585 5 · 29 · 73
15841 7 · 31 · 73
29341 13 · 37 · 61
41041 7 · 11 · 13 · 41
46657 13 · 37 · 97
52633 7 · 73 · 103
62745 3 · 5 · 47 · 89
63973 7 · 13 · 19 · 37
75361 11 · 13 · 17 · 31
101101 7 · 11 · 13 · 2101
115921 13 · 37 · 241
126217 7 · 13 · 19 · 73
162401 17 · 41 · 233
172081 7 · 13 · 31 · 61
188461 7 · 13 · 19 · 109
252601 41 · 61 · 101

Table 5.1: The first 23 Carmichael numbers [38, p. 508].

The infinitude of Carmichael numbers remained a conjecture until 1994 when it

was proved [4]. Carmichael numbers have been studied in more detail, for instance,

in [4], [38], and [51].
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5.2.2 Wilson quotients

Wilson quotients are closely related to Fermat quotients. Before proceeding with the

definition of a Wilson quotient [3], it is helpful to state the following theorem:

Theorem 8. (Wilson’s theorem): If p is a prime, then (p− 1)! ≡ −1 (mod p).

We are now ready to review the definition of the Wilson quotient.

Definition 28. Let p be a prime. The Wilson quotient is defined as:

wp ≡ (p− 1)! + 1

p
(mod p).

Definition 29. The prime p is called a Wilson prime if wp ≡ 0 (mod p).

The first two Wilson primes are 5 and 13. This statement can be readily verified:

w5 ≡ (5− 1)! + 1

5
=

25

5
≡ 0 (mod 5).

w13 ≡ (13− 1)! + 1

5
=

479001601

13
≡ 0 (mod 13).

The third Wilson prime is 563, and there are no other such primes below 2×1013 [18].

As we shall see below, Wilson quotients are related to Fermat quotients of prime

moduli, and Fermat quotients of composite moduli (referred to as Euler quotients) in

a number of ways. As with Fermat quotients, Wilson quotients can also be extended

to composite moduli. The following theorem gives a basis for the definition of the

Wilson quotient for composite moduli:

Theorem 9. (Wilson’s theorem for composite moduli): Let m ≥ 2 be an integer, and

set εm = −1 when m = 2, 4, pα or 2pα, where p is an odd prime and α a positive

integer, and εm = 1 otherwise. Then

m∏
j=1

gcd(j,m)=1

j ≡ εm (mod m).
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Definition 30. Letm ≥ 2 be an integer, and εm be defined as in Theorem 12. Denote

P (m) =
m∏
j=1

gcd(j,m)=1

j.

Then the integer

W (m) ≡ P (m)− εm
m

(mod m)

is called the generalized Wilson quotient of m.

Analogous to the concept of Wieferich numbers for Euler quotients is the concept

of Wilson numbers for Wilson quotients.

Definition 31. For m ≥ 4, composite numbers that satisfy the congruence

W (m) ≡ 0 (mod m)

are called Wilson numbers.

Fermat quotients and Wilson quotients are related directly in a number of ways.

For instance,

1. Let p be an odd prime and m > 2 an integer not divisible by p. Then

−mW (pm) ≡ W (p)ϕ(m) +
∑
r|m

qp(r)
ϕ(m)

r − 1
(mod p),

where the sum is taken over all primes r that divide m.

2. For any prime p, we have

p−1∑
u=1

qp(u) ≡ wp (mod p).

More on the relationship between Fermat quotients and Wilson quotients can be

seen in [3], [39]. Table 5.2 shows Wilson numbers ≤ 5× 108:
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Wilson number Factorization

5 prime

13 prime

563 prime

5971 7 · 853
558771 3 · 19 · 9803
1964215 5 · 11 · 71 · 503
8121909 3 · 139 · 19477
12326713 7 · 1760959
23025711 3 · 1867 · 4111
26921605 5 · 67 · 80363
341569806 2 · 3 · 181 · 409 · 769
399292158 2 · 3 · 17 · 97 · 40357

Table 5.2: Wilson numbers ≤ 5× 108 in [3, p. 848].

5.2.3 Fermat numbers

Like the Fermat quotients, Fermat numbers are also named after Pierre de Fermat.

Numbers of the form

Fn = 22
n

+ 1, n ∈ Z, n ≥ 0

are called Fermat numbers.

Fermat noted that the first five such numbers are prime:

F0 = 3, F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

Fermat conjectured that all Fermat numbers are prime, but Euler refuted this con-

jecture when he showed that

F5 = 4294 967 297

is composite. Precisely,

F5 = 641 · 6700417.
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Fermat numbers and sieving

Many algorithms exist for factoring integers. An old method for factoring integers

uses the method of difference of two squares introduced by Fermat and Legendre [11].

Many other factoring algorithms are based on the strategy used in this method. Some

of them include the random squares method, the quadratic sieve, and the number field

sieve.

The number field sieve [43] is an algorithm with which integers of the form ae ± b

can be factored where a and b are small positive integers, and e is a large integer.

Although there are more efficient methods for factorizing Fermat numbers like the el-

liptic curve method, Fermat numbers have been factored by sieving. More on sieving

and factoring Fermat numbers can be seen in [23], [43].

Although the following section is not related to cryptography, it is worth men-

tioning this historically important application of Fermat quotients.

5.3 The first case of Fermat’s last theorem

Theorem 10. (Fermat’s last theorem): No three positive integers x, y, and z satisfy

the equation xn + yn = zn for any integer value of n greater than 2.

Dilcher and Skula [22] studied the first case of Fermat’s last theorem in great

detail. Their study was aided with special sums which they defined as follows:

s(k,N) =


 (k+1)p
N

�∑
j=
 kp

N
�+1

jp−2

for p prime, integers N and k with 1 ≤ N ≤ p − 1 and 0 ≤ k ≤ N − 1. Fermat

quotients are linked with these sums via the following formula:

Nqp(N) ≡
N−1∑
k=0

ks(k,N) (mod p).

Dilcher and Skula [22] showed that:
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Theorem 11. If the first case of Fermat’s last theorem is false, that is, if p is an odd

prime and x, y, z are integers, not divisible by p, satisfying the equation xp+yp+zp = 0,

then s(k,N) ≡ 0 (mod p) for all 1 ≤ N ≤ 46 and 0 ≤ k ≤ N − 1.

Dilcher and Skula [22] also showed the relationship between the first case of Fer-

mat’s last theorem, Bernoulli polynomials, and arithmetical functions.

Mirimanoff and Vandiver extended Wieferich’s theorem (see Theorem 2 in Section

3.1):

Theorem 12. (Mirimanoff) If the first case of Fermat’s last theorem is false, that is,

if p is an odd prime and x, y, z are integers, not divisible by p, satisfying the equation

xp + yp + zp = 0, then qp(3) ≡ 0 (mod p).

Theorem 13. (Vandiver) If the first case of Fermat’s last theorem is false, that is,

if p is an odd prime and x, y, z are integers, not divisible by p, satisfying the equation

xp + yp + zp = 0, then qp(5) ≡ 0 (mod p).

These results were further extended by other authors; see [23], Section 4.2 for

references.



Chapter 6

Conclusion

Although more could be discussed about Fermat quotients and their properties, their

pseudo-randomness seems to be most suited to their applications in cryptography.

Therefore, this final chapter summarizes the properties that make Fermat quotients

function as pseudo-random number generators. An overview of fields is also presented

as a refresher for the content in Chapter 2 and Chapter 3 pertaining to fields. Finally,

some prospects for further work are mentioned.

6.1 Fermat quotient-based pseudo-random number generators

(FQBPRNGs)

We now adopt the term Fermat quotient-based pseudo-random number generators

(FQBPRNGs) for pseudo-random number generators based on Fermat quotients.

Note also that Fermat quotients refer to Fermat quotients modulo a prime p, un-

less otherwise stated.

Let M,N ≥ 1, p a fixed prime and u an integer with gcd(u, p) = 1. The follow-

ing is a summary of the properties of Fermat quotients and sequences produced by

FQBPRNGs with respect to the properties described in Section 2.2:

• Uniformity :

Fermat quotients qp(u), u = M+1, . . . ,M+N , are uniformly distributed modulo

p2 for all N ≤ p.

• Independence:

Binary threshold sequences, (ep2), derived from Fermat quotients have a small

well-distribution measure and a small correlation measure.

W ((ep2)) � p(log2 p)
2; C2((ep2)) � p(log2 p)

3.
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• Large period :

Fermat quotients qp(u), u ≥ 0, are p2-periodic. That is,

qp(u+ p2) ≡ qp(u) (mod p).

Both the binary threshold sequence, (ep2), and the Legendre-Fermat sequence,

(fu) are p2-periodic.

• Coverage:

The image size of Fermat quotients qp(u), u = 0, 1, . . . , p − 1, M(p), is at least
p

(log2 p)
2 for p sufficiently large. That is,

M(p) ≥ (1 + o(1))
p

(log2 p)
2
, as p → ∞.

• Cryptographic security (Unpredictability):

For a sufficiently long sequence of Fermat quotients, the linear complexity,

Lp(N), of the sequence qp(u), u = 0, . . . , N − 1, p2 > N ≥ 1, is at least

half the value of the minimum of p− 1 and N − p− 1. That is,

Lp(N) ≥ 1

2
min{p− 1, N − p− 1}.

Also, for arbitrary segments of a sequence of Fermat quotients, the linear com-

plexity of the sequence, Lp(M,N), qp(u), u = M + 1, . . . ,M + N, M and

p2 > N ≥ 1, is at least the value of the minimum of p−1
2

and N−p−1
3

. That is,

Lp(M,N) ≥ min

{
p− 1

2
,
N − p− 1

3

}
.

If 2p−1 	≡ 1 (mod p2) (that is, p 	= 1093, 3511), then the linear complexities

of the binary threshold sequence (ep2) and the Legendre-Fermat sequence (fu)

both satisfy

L((ep2)) = L((fu)) =

{
p2 − p, if p ≡ 1 (mod 4),

p2 − 1, if p ≡ 3 (mod 4).
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6.2 Glossary: An overview of fields

The information in this section has been taken from [26].

• Group: An ordered pair (G, ∗) where G is a set and ∗ is a binary operation on

G satisfying the following axioms:

(i) ∗ is associative: (u ∗ v) ∗ w = u ∗ (v ∗ w) for all u, v, w ∈ G,

(ii) there exists an element e in G, called the identity of G, such that

u ∗ e = e ∗ u = u, for all u ∈ G,

(iii) there is an element u−1 of G, called an inverse of u, such that

u ∗ u−1 = u−1 ∗ u = e, for each u ∈ G.

The group (G, ∗) is called abelian (or commutative) if u·v = v·u for all u, v ∈ G.

• Ring : A ring is a set R together with two binary operations + and · satisfying
the following axioms:

(i) (R,+) is an abelian group,

(ii) · is associative: (u · v) · w = u · (v · w) for all u, v, w ∈ R,

(iii) the distributive laws hold in R: for all u, v, w ∈ R,

(u+ v) · w = (u · w) + (v · w) and u · (v + w) = (u · v) + (u · w).

The ring R is commutative if multiplication is commutative for all elements of

the ring, that is, u·v = v·u for all u, v ∈ R. The ring R is said to have an identity

(or contain a 1) if there is an element 1 ∈ R with 1 · u = u · 1 for all u ∈ R.

• Polynomial : Let R be a commutative ring with identity. The formal sum

cnx
n+cn−1x

n−1+ · · ·+c1x+c0 with n ≥ 0 and each ci ∈ R is called a polynomial

in x.

• Degree of polynomial : If cn 	= 0, then n is said to be the degree of the polynomial.

• Monic polynomial : A polynomial is said to be monic if cn = 1.
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• Irreducible polynomial : A non-constant polynomial is irreducible if and only if

it cannot be factored as a product of two monic polynomials of smaller degree.

• Zero divisor : A non-zero element u of R is called a zero divisor if there is a

non-zero element v in R such that either u · v = 0 or v · u = 0.

• Integral domain: A commutative ring with identity 1 	= 0 is called an integral

domain if it has no zero divisors.

• Field : A set F together with two binary operations + and · on F such that

(F,+) is an abelian group (with 0 as its identity), and (F − {0}, ·) ( with 1 as

its identity, 1 	= 0) is also an abelian group and the following distributive law

holds:

u · (v + w) = (u · v) + (u · w), for all u, v, w ∈ F.

• Characteristic of a field : The smallest positive integer r such that 1 + 1 + · · · 1
(r times) = 0 if such an r exists, and is defined to be 0 otherwise, where 1 is

the identity of the field.

• Finite field : A field with a finite number of elements. A finite field has charac-

teristic p for some prime p. For example, Fq[x] is a finite field with q elements,

where q = pn for some prime p.

• Rational function field (The field of rational functions): This contains elements

of the form u(x)
v(x)

, where u(x) and v(x) are polynomials with coefficients in an

integral domain D with v(x) not the zero polynomial.

• Order of a field : The number of elements in a field.

• Field homomorphism: a map of a field to another field that respects the field

structures.

• Frobenius endomorphism of a finite field : a one-to-one field homomorphism,

Fr, from F to F defined by Fr(u) = up, where F is a finite field of characteristic

p.
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6.3 Future work

One immediate potential for future work is to extend the results obtained (by various

authors) for Fermat quotients to generalized Fermat quotients like Euler quotients.

Another prospect is the investigation of other areas of applying Fermat quotients in

cryptography. For instance, using Fermat quotients as initialization vectors and com-

paring results obtained across classical pseudo-random number generators (PRNGs)

like Linear Congruential Generators (LCGs).

Since pseudo-randomness is a ubiquitous concept, Fermat quotients, possessing

good pseudo-random properties, can also find applications in other subject areas

outside cryptography.
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[52] A. Sárközy, C. L. Stewart. On pseudorandomness in families of sequences derived
from the Legendre symbol. Period. Math. Hungar. 54(2): 163–173, 2007.

[53] J. Sauerberg and L. Shu. Fermat quotients over function fields. Finite fields and
their applications, 3(4): 275–286, 1997.

[54] B. Schneier. Applied Cryptography – Protocols, Algorithms, and Source Code in
C, 2nd edition, 20th anniversary edition, Wiley, Indianapolis, IN, Wiley, 2015.

[55] M. Sha. The arithmetic of Carmichael quotients. Period. Math. Hungar. 71(1):
11–23, 2015.

[56] M. Sha. Correction to: The arithmetic of Carmichael quotients, Period. Math.
Hungar., 76(2): 271–273, 2018.

[57] I. D. Shkredov. On Heilbronn’s exponential sum. The Quarterly Journal of Math-
ematics, 64(4): 1221–1230, 2013.

[58] I. E. Shparlinski. Fermat quotients: exponential sums, value set and primitive
roots. Bulletin of the London Mathematical Society, 43(6): 1228–1238, 2011.

[59] I. E. Shparlinski. On the value set of Fermat quotients. Proceedings of the Amer-
ican Mathematical Society, 140(4): 1199–1206, 2012.

[60] I. E. Shparlinski. Cryptographic Applications of Analytic Number Theory: Com-
plexity Lower Bounds and Pseudorandomness. Progress in Computer Science and
Applied Logic, 22, Birkhäuser, Basel, 2003.
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