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Abstract

Over the past few years, cryptocurrency has evolved from a virtual concept to a digital

currency that can be used for payments. Bitcoin, the world’s largest cryptocurrency,

was created in 2009. It is expected that an increasing number of business trans-

actions will involve Bitcoin. Technically, Bitcoin uses blockchain as its distributed

ledger. Periodically, a group of business transactions is packed into a block, which is

added to the blockchain for verification purposes. However, Bitcoin has two inherent

limitations that affect its scalability. First, the original size of a block is at most

1 megabyte. Second, on average, a new block is generated once every ten minutes.

With these two limitations, Bitcoin cannot handle too many transactions in a short

period. To address the scalability problem with Bitcoin, a series of alternative schemes

have been proposed. Lightning Network (LN) is a layer-2 protocol that enables fast

Bitcoin transaction processing. However, it only works well for peer-to-peer micro-

payments, namely, small-amount payments between individual parties. In this thesis,

we propose an LN-based framework for both peer-to-peer and customer-to-business

payments, the Business-oriented Layer-2 Network (BLN). With BLN, Bitcoin trans-

action processing scales much better. Our experimental results indicate that BLN

outperforms LN in terms of transaction failure rate, transaction fee, and processing

time.
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Chapter 1

Introduction

The purpose of this thesis is to propose a new trading model based on the existing

structure of Bitcoin and the Lightning Network, and to apply the revised function

of the Redis cluster to improve transaction efficiency in this trading model. In this

chapter, we will provide a general description of some Bitcoin and Redis issues, and

then we will begin by presenting the motivation and outline of this thesis.

To avoid confusion, Table 1.1 has been provided here, which contains important

abbreviations that will be frequently used throughout the thesis.

Table 1.1: Table of Abbreviations

Full Name Abbreviations
Lightning Network LN

Business-Oriented Layer-2 Network BLN
Transaction Processing Center TPC
Hash Time Lock Contract HTLC

1.1 Scalability of Bitcoin

The concept of Bitcoin [2] was first proposed by Satoshi Nakamoto on November

1, 2008, and was officially launched on January 3, 2009. Unlike most currencies,

Bitcoin is not issued by a specific monetary institution but is produced through a

large number of calculations based on a specific algorithm. The Bitcoin economy

uses a distributed database composed of many nodes in the entire P2P network to

confirm and record all transactions, and uses cryptographic design to ensure the

security of every link in the currency circulation. The decentralized nature of P2P [3],

along with the algorithm itself, ensures that the value of the currency cannot be

artificially manipulated by churning out Bitcoins. The cryptographic-based design

allows Bitcoins to be transferred or paid only by the real owner, which ensures the
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anonymity of money ownership and circulation transactions. Meanwhile, the total

number of Bitcoins is limited. The currency system was capped at 10.5 million for

four years, after which the total number will be permanently capped at 21 million.

The reason why the blockchain based on the Bitcoin network has poor scalability

[4] is that the block size is limited to 1 MB, and the block generation speed is limited

to 10 minutes per block. It cannot support transactions in real life where thousands

of transactions will be created within a second. Therefore, the idea of the Lightning

Network [5] has appeared. Traditionally, once a transaction is created, it will be

broadcast to everyone. The miners in the Bitcoin network will collect this transaction

in their transaction pool [6], and then they will pack many transactions into one

block. If the block records on the blockchain, then all the transactions in that block

are finalized. In order to show the advantage of the Lightning Network, we will take

Alice buying coffee from Bob as an example. Specifically, Alice will buy a cup of

coffee during her working days. So from Monday to Friday, there will be five different

transactions in total, and they will all be broadcast to the network. But the thing is,

one cup of coffee is not worth too much, and most people will not care about it. And

they become five different transactions. If they are all recorded in one block, they

not only cost too much transaction fees but also waste too much space on the block.

Therefore, the core idea of the Lightning Network is that we don’t need to let

everyone know the details of all transactions. Instead, we make a deal privately. In

Alice and Bob’s example, they can merge five transactions into one. That means

both of them achieve an agreement that Alice buys five cups of coffee from Bob. The

time when Alice buys the coffee does not matter. Alice could buy all of the coffee at

the same time or buy the coffee at different times. For others, they don’t care about

when Alice buys the coffee. The only thing that matters is that Alice buys the coffee

from Bob. In a nutshell, the five transactions of Alice buying coffee from Monday to

Friday merge into one transaction that Alice buys five cups of coffee from Bob, and

we don’t know and we don’t care about when Alice buys the coffee. This method

reduces the waste of resources on the block in the Bitcoin network and also saves the

transaction fee for Alice.
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1.2 Revised Redis for Fast Processing

Before discussing how to revise the Redis cluster, let’s briefly describe the basic

functions of Redis. Redis [7] is a server-based database structured with key-value

pairs, supporting various data structures such as strings, lists, hashes, sets, and or-

dered sets. To ensure efficient reading, Redis stores data objects in memory and

periodically writes updated data to disk files.

In the case of applications, Redis is often used as a data cache because of its high

efficiency in reading and writing since data is accessed and operated on in memory.

Some data that needs to be frequently accessed and will not change in a short time

can be put into Redis for operation. If we want to improve the speed of user requests

and reduce the load on the website, as well as reduce the number of database reads

and writes, we can put this data into the cache. Another commonly used function is

real-time computing. If you need the ability to change and display data in real-time,

you can put the relevant data in Redis for manipulation, which greatly improves

efficiency.

The important structure of Redis can be divided into a master node and a slave

node. The master node stores all master data and performs all read and write op-

erations for the client. To prevent the master node from being out of service due to

an unexpected failure, the slave node stores a replica of all master data. When the

master node fails unexpectedly, the slave node can be used as an alternative to help

process the client request.

By default, the master node is responsible for all read and write operations from

the client and the slave node only works as a backup, but we can let the slave node

undertake part of the read or write operation by changing the configuration. However,

data synchronization between the master node and slave node becomes a challenge.

If the master node and slave node change the same data at the same time, data on

the master node and slave node may be inconsistent. So, most read and write oper-

ations happen only on the master node. Even so, this can lead to another problem:

under high pressure conditions, the master node has to undertake too much pressure,

resulting in a decline in service efficiency. Now, Redis cluster has been created, which
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means multiple Redis singletons cooperate with each other. Doing so takes some of

the pressure off the master node and improves scalability. But there is still no solution

if the high-pressure request is concentrated on a Redis singleton.

As our proposed trading model requires faster processing efficiency, we have re-

vised some of the configurations in the Redis cluster. In a later chapter, we will

explain in more detail how to optimize the Redis cluster for faster processing.

1.3 Thesis Motivation and Contribution

The purpose of this thesis is to propose a new trading model based on the existing

structure of Bitcoin and the Lightning Network. We want to solve the problem that

the Lightning Network does not support large transactions and the inequality between

the two parties in transactions. Additionally, we also aim to extend the transaction

scenario to online shopping, rather than just in-store purchases.

We propose a structure called the Transaction Processing Center (TPC) to act as

a broker and supervisor for all roles involved in the purchase scenario. This struc-

ture ensures the proper rights of each role and imposes reasonable penalties when a

role makes a mistake. Additionally, the TPC is user-friendly, helps to support large

transactions, and saves transaction fees for users.

To improve the TPC’s reliability, maintain stability and correctness under high

pressure of mass transaction requests, we also propose revising the function of the

Redis cluster. This involves storing master data evenly across all nodes, rather than

only in master nodes and replicas in slave nodes. This reduces stress on one node in

the case of a large number of requests.

1.4 Thesis Outline

The rest of the thesis is organized in the following manner. In the next chapter, we

will introduce the basic functions of Bitcoin, the Lightning Network, and Redis. After

analyzing the disadvantages of these functions, we will propose a new solution called

the Business-Oriented Layer-2 Network (BLN). After explaining how BLN works, a

series of experiments will be conducted to compare the performance of the Lightning

4



Network and BLN in terms of transaction failure rate and transaction fee. We will

explain in detail why they behave differently.
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Chapter 2

Related Work

In previous chapters, we provided an overview of Bitcoin, Lightning Network, and

Redis. In this chapter, we will delve into these topics in more detail to provide

a better understanding. We will also provide practical examples to illustrate their

characteristics.

2.1 Bitcoin

2.1.1 Bitcoin Transaction

The components of a transaction are described in Table 2.1. To better understand,

Alice’s transaction of buying coffee at Bob’s cafe is shown in Fig. 2.1 below. The most

important part of a transaction is its output. When a new transaction is created, its

output is called an unspent transaction output (UTXO) [8] [9], which means that no

one has spent the money yet. Take a simple example: Alice creates a transaction to

buy a coffee from Bob which costs her 1 bitcoin. When the transaction is recorded

on the blockchain, there will be one unspent transaction output worth one bitcoin for

Bob. Then Bob wants to spend his bitcoin, so he cites the previously mentioned Alice

transaction output as an input for his new transaction. At the same time, because

Bob cites Alice’s transaction output, that transaction output is no longer ”unspent”.

Therefore, we can see that all transactions on the blockchain are linked together by

inputs and outputs so we can easily track whole transactions along the blockchain.

If no one cites one transaction’s output, that means the transaction is complete, and

the owner can spend it to create another transaction.

Meanwhile, the output and input of a bitcoin transaction are not fixed. For ex-

ample, if Bob receives many bitcoins from many people, he can merge all unspent

transaction output in one transaction input like Fig. 2.2, which is named aggregating

transaction.
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Table 2.1: The Structure of a Transaction [1]

Size Field Description
4 bytes Version Specifies which rules this transaction follows

1-9 bytes(VarInt) Input Counter How many inputs are included
Variable Inputs One or more transaction inputs

1-9 bytes(VarInt) Output Counter How many outputs are included
Variable Outputs One or more transaction outputs
4 bytes Locktime A Unix timestamp or block number

Figure 2.1: A Transaction Involving Alice and Bob’s Cafe [1]

Figure 2.2: Aggregating Transaction [1]

7



Alternatively, Bob can distribute the output to a different bitcoin address, as

shown in Fig. 2.3. This type of transaction is called a distributing transaction, which

can be used to pay the transaction fee to the miner in the blockchain network while

buying something from a third party.

Figure 2.3: Distributing Transaction [1]

2.1.2 Bitcoin Address

Public Key

Public Key Hash(20 bytes/160bits)

SHA256

RIPEMD160

Base58Check Encode
with 0x00 version prefix

Bitcoin Address
(Base58Check Encode Public Key Hash)

"Double Hash"
or

 HASH160

Figure 2.4: Conversion of a Public Key into a Bitcoin Address
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Bitcoin address [10] [11] [12] is another important core element of the Bitcoin

network. Basically, all transactions depend on a Bitcoin address, which also serves as

a personal wallet. Generally, if someone wants to create a wallet, they must create

their own private key using the underlying system’s random number generator, which

generates a 256-bit binary number [13] [14]. The private key will be written as a

64-bit hexadecimal number. Of course, the person cannot let anyone know what

the private key is, otherwise the bitcoins in the wallet will be stolen. Then, the

person must generate the public key by calculating elliptic curve cryptography, which

results in a point (x,y) on an elliptic curve. The benefit of this is that the direction is

irreversible. The public key can only be derived from the private key, while the private

key cannot be derived from the public key. Finally, a Bitcoin address is generated by

the base58Check Encode [15] result of the public key hash value. The specific process

of converting a public key into a Bitcoin address and Base58CheckEncode is shown

in Fig. 2.4 and Fig. 2.5.

PayLoad

PayLoad

PayLoad

Version

1 Add version
prefix 2

SHA256

SHA256

First 4 bytes

Version Check
Sum

Hash (Version prefix + Paylad)

3 Add first 4 bytes at the end as
check sum

Base58Check Encode Payload

4 Encode in Base58

Figure 2.5: Base58CheckEncode Payload

2.1.3 Script in Bitcoin Transaction

To better understand transactions in the bitcoin network, it’s important to discuss

the essence of their inputs and outputs. Both the input and output are scripts [16],
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with the input being the unlock script and the output being the lock script. To

illustrate this concept, let’s consider the scenario of Alice buying coffee from Bob.

When Alice creates her transaction, the transaction output is the lock script, which

means that the money is ”locked” by Alice and only the one who can ”unlock” it has

the right to spend the money.

Before delving deeper into this topic, let’s first discuss the two main payment

methods in the bitcoin network. The first method is Pay to Public Key Hash (P2PKH)

[17] [18], which means that we pay the money to a specific bitcoin address. The

second method is Pay to Script Hash (P2SH) [19] [20], which includes an additional

component called the redeem script, allowing for the payment to be redeemed. We

will explore this concept further later on, but for now, let’s return to our Alice and

Bob example. Before Alice creates the transaction, Bob must provide his personal

bitcoin address, which we will refer to as his ”wallet” for clarity in the following

discussion. Of course, Alice cannot use the money inside because only Bob has access

to the private key. Alice then uses Bob’s public key address to generate the lock

script, which contains a series of operations. In our example, the lock script would

look like this:

OP-DUP OP-HASH160 [Bob Public Key Hash] OP-EQUAL OP-CHECKSIG

Meanwhile, when Bob wants to spend the money from that transaction output, in

other words, the lock script, Bob should also provide his own unlock script, which

will look like:

[Bob Signature] [Bob Public Key]

As soon as Bob spends the money from Alice’s transaction, the two scripts will

merge together and the operation order is:

[Bob Signature] [Bob Public Key] OP-DUP OP-HASH160 [Bob Public

Key Hash] OP-EQUAL OP-CHECKSIG

10



The system will run the merged script by manipulating a stack [21]. We will go

through it step by step with Fig. 2.6:

<sign> <sign> <sign>

<sign>

<Public Key> <Public Key>

<Public Key>

<Public Key>

<Public Key Hash>

1 <sign> 2 <Public Key> 3 <OP_DUP>

4 <OP_HASH160>

<sign> <sign>

<true>

<Public Key>

<Public Key Hash>

<Public Key>

<Public Key Hash>

5 <Public Key Hash> 6 <OP_EQUAL_VERIFY>

7 <OP_CHECKSIG>

Figure 2.6: Operation Stack

In step 1 and step 2, the script pushes Bob’s signature and Bob’s Public Key into

the stack. Bob’s unlock script ends here.

In step 3, OP-DUP duplicates the content at the top of the stack, which is Bob’s

Public Key.

In step 4, OP-HASH160 calculates the hash result of the top of the stack, and we

get Bob’s Public Key Hash at the top, which is also Bob’s bitcoin address.

In step 5, the script pushes the Bob Public Key Hash that Alice received from

Bob.

In step 6, OP-EQUAL checks if the top two contents in the stack are the same.

If everything is correct, they must be the same, and the stack will pop both out.

In the final step, the system will check if the digital signature belongs to Bob.

Bob’s digital signature is generated by his private key through encryption. A public

key is required for signature verification. Therefore, Bob cannot let anyone know his

11



private key because someone can create a fake unlock script and steal the money from

Alice’s transaction, which is recorded on the blockchain and visible to everyone. If

Bob’s digital signature is valid, the stack will return ”true,” and the transaction is

valid, allowing Bob to spend the money. This is how a person in the bitcoin network

can make a payment to another person.

2.2 Lightning Network

2.2.1 Multi-signature Address

Multi-signature scripts [22] [23] [24] impose a condition where a lock script contains

N public keys and at least M of those keys must provide signatures to release the

encumbrance. In simple terms, N people share the same wallet, and the wallet requires

the agreement of at least M people to open and use the money inside. The lock script

of the M-of-N multi-signature address will take the following form:

M [public key 1] [public key 2] ...[public key N] N OP-CHECKMULTISIG

A lock script for a 2-of-4 multi-signature address would look like this:

2 [public key 1] [public key 2] ...[public key 4] 4 OP-CHECKMULTISIG

That means there are four public keys in total and the unlock script is required to

provide at least two signatures. So the unlock script will be like this:

OP-0 [signature 1] [signature 2]

OP-0 means to push an empty array onto the stack. Normally, a multi-signature

address is used for multi-party cooperation. In the case of the Lightning Network,

a 2-of-2 multi-signature address is used as a wallet shared between two people. The

only way to open the wallet is if both parties come to an agreement.
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2.2.2 Funding Transaction and Commitment Transaction

In this section, we will continue using the example of Alice buying coffee from

Bob to explain how the Lightning Network works. If they decide to use the Lightning

Network, they will both use their own public keys to set up a multi-signature address.

In order to make the transaction work, they have to put money inside, which is called

the funding transaction [25] [26]. Let’s say Alice wants to put 10 bitcoins inside the

wallet. She will create a funding transaction and broadcast it. Once the transaction

is recorded on the blockchain, Alice will have her own 10 bitcoins in this wallet. It

should be noted that although Alice and Bob share the wallet, it does not mean they

share all the money inside. We can consider there is a balance in this wallet. Because

Alice funded 10 bitcoins in the wallet, the current balance between Alice and Bob is

10 to 0.

When Alice wants to buy coffee from Bob, the balance is changed through a

commitment transaction [25] [26]. The commitment transaction changes the record

of the balance between Alice and Bob. However, the commitment transaction must

contain the signature from both sides, otherwise, it is not valid. After the funding is

done, Alice and Bob create their own commitment transaction, like Fig. 2.7, which

has two outputs for Alice and Bob separately.

In Fig. 2.7, both commitment transactions have no signatures, so they are both

invalid. Therefore, Alice and Bob switch their commitment transactions and check

if the balance is good for them. If it is, they will sign their opponent’s commitment

transaction like in Fig. 2.8. After both receive their opponent’s signature, they can

sign their own commitment transactions. Then both commitment transactions will

have two signatures, making them valid.
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Alice's Commitment
Transaction 1:

  Output 1: 10 (Alice Balance)

  Output 2: 0 (Bob Balance)

(a) Alice Commitment Transaction 1

Bob's Commitment
Transaction 1:

  Output 1: 10 (Alice Balance)

  Output 2: 0 (Bob Balance)

(b) Bob Commitment Transaction 1

Figure 2.7: Alice and Bob Commitment Transaction 1 Without Signature

Alice's Commitment
Transaction 1:

  
  Bob's Signature

  Output 1: 10 (Alice Balance)

  Output 2: 0  (Bob Balance)

(a) Alice Commitment Transaction 1
with Bob Signature

Bob's Commitment
Transaction 1:

  Alice's Signature

  

  Output 1: 10 (Alice Balance)

  Output 2: 0  (Bob Balance)

(b) Bob Commitment Transaction 1 with
Alice Signature

Figure 2.8: Alice and Bob Commitment Transaction 1 with Opponent’s Signature
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Alice's Commitment
Transaction 2:

  
  Bob's Signature

  Output 1: 9 (Alice Balance)

  Output 2: 1  (Bob Balance)

(a) Alice Commitment Transaction 2
with New Balance and Signature

Bob's Commitment
Transaction 2:

  Alice's Signature

  

  Output 1: 9 (Alice Balance)

  Output 2: 1  (Bob Balance)

(b) Bob Commitment Transaction 2 with
New Balance and Signature

Figure 2.9: Alice and Bob Commitment Transaction 2 with New Balance

Alice's Commitment
Transaction 1:

  Alice's Signature

  Bob's Signature

  Output 1: 10 (Alice Balance)

  Output 2: 0  (Bob Balance)

Alice's Commitment
Transaction 2:

  Alice's Signature

  Bob's Signature

  Output 1: 9 (Alice Balance)

  Output 2: 1  (Bob Balance)

Better for Alice because of
higher Balance

Figure 2.10: Alice’s Valid Commitment Transactions

Next, Alice wants to buy a cup of coffee that costs 1 bitcoin. So the balance

between Alice and Bob must be changed. In this case, Alice and Bob create a new

commitment transaction on their own, and the new balance becomes 9 to 1. Then,

they repeat the previous step to exchange the signature in Fig. 2.9.
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However, as previously mentioned, a commitment transaction becomes valid as

soon as it has two signatures. So for Alice, her commitment transaction 1 is still

valid, and the original balance is 10 to 0 in Fig. 2.10, which is good for her. If she

does not broadcast the latest commitment transaction, she can steal the money from

Bob.

So we need punishments and restrictions that force both sides to only broadcast

the latest commitment transaction. The Lightning Network adds a new structure

called a Revocable Sequence Maturity Contract (RSMC) [27] [28]. In simple terms,

this structure creates two paths for the output of commitment transactions. If one

side broadcasts their commitment transaction, the other side can get their funds im-

mediately according to the record in the commitment transaction. And the one who

broadcasts the commitment transaction must wait until the confirmation is done.

In the Lightning Network script, it requires waiting for 1,000 confirmations in total.

Confirmation means how many blocks after the record exists on the blockchain. For

example, if the commitment transaction that has been broadcast is recorded on Block

1, and the end of the blockchain is Block 100, we say that the commitment trans-

action has 99 confirmations because there are already 99 blocks after Block 1 which

contains the commitment transaction. Meanwhile, there is a revocation key for each

commitment transaction. We use Alice’s commitment transaction 1 as an example,

and some details of Alice commitment transaction with RSMC are shown in Fig. 2.11.

When Alice and Bob switch their signature, they also switch the revocation key. If

Alice really broadcasts the commitment transaction 1, output 2 will send funds to

Bob immediately, while output 1 is pending confirmation. As we mentioned before,

Alice already gave her commitment transaction 1 revocation key to Bob. There are

only two cases:

Case 1: Confirmation is done, and Bob does nothing; output 1 sends the funds to

Alice.

Case 2: Bob noticed that Alice did not broadcast the latest commitment trans-

action, so he broadcasts the latest version of the commitment transaction and cites

Alice’s commitment transaction 1 with the revocation key that he previously got from

Alice. As a punishment, all funds in output 1 will be sent to Bob. Summing up with
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output 2, all money in this wallet will belong to Bob.

In the Lightning Network sample script, it requires 1,000 confirmations for one

commitment transaction. The generation speed of a block is 10 minutes. So it costs

10,000 minutes for the confirmation. The reason why it takes that long is that the

confirmation time is just long enough for Bob to notice if Alice follows the rule. And,

of course, if Bob does not notice before the confirmation is done, he will lose the

money that should belong to him. The detailed structure is shown in Fig. 2.11.

Now let’s summarize the trading sequence. Before Alice broadcasts her funding

transaction, she needs to create her commitment transaction 1 and get Bob’s signa-

ture. If Bob disappears after Alice broadcasts the funding transaction, her money

will be locked in the multi-signature address because she cannot get Bob’s signa-

ture. Then Alice wants to buy the coffee, so they both create a new commitment

transaction 2 to update the balance. To sum up, the following process order is:

1.Alice signs Bob’s commitment transaction 2.

2.Bob gives Alice his commitment transaction 1 revocation key.

3.Bob signs Alice’s commitment transaction 2.

4.Alice gives Bob her commitment transaction 1 revocation key.

5.Bob gives Alice the coffee.

It should be noted that Alice should sign before Bob. If Bob signs first and gives his

revocation key to Alice, it would be bad for him. Because if Alice disappears, Bob has

already given out his revocation key for commitment transaction 1, and he does not

have Alice’s signature on his commitment transaction 2 yet. So he cannot broadcast

either of the commitment transactions, and his money will be locked in this multi-

signature address. Therefore, Alice must sign Bob’s commitment transaction 2 first

to ensure that Bob has a valid commitment transaction to broadcast. Additionally,

Bob still needs to hold on to the coffee until Alice gives her commitment transaction 1

revocation key. Otherwise, Bob cannot punish Alice if she broadcasts the commitment

transaction 1. After both sides switch commitment transaction 1 revocation key and

signature for commitment transaction 2, Bob gives the coffee to Alice, and the trade

is complete.
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Alice's Commitment Transaction 1:

  Alice's Signature

  Bob's Signature

  Output 1: 10 (Alice Balance)

if revocation key:

Pay to Bob public key

else if after confirm

Pay to Alice public key

  Output 2: 0  (Bob Balance)

Pay to Bob public key immediately

Figure 2.11: Alice Commitment Transaction 1 with RSMC

2.2.3 Hash Time Lock Contract

The Hashed Timelock Contract (HTLC) [29] [30] [31] is an important element

in a Lightning Network transaction and consists of several components. The first

element is the hash lock, which is a cryptographically scrambled version of a public

key generated by the person who initiated the transaction. The associated private

key is then used to unlock the original hash. The second important element of HTLC

is the timelock, which causes the contract to expire if the private key is not provided

by the time it expires.

In Lightning Networks, the hash time lock contract is mainly used for multi-node

transactions. Generally, the private key R is generated by the transaction receiver,

who provides the corresponding public key hash(R) to the sender. The transaction

sender then uses the public key hash(R) to create a hash time lock contract. The
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receiver can obtain the payment by showing the private key R to the contract, or the

sender can be refunded if the time expires.

In the Alice and Bob scenario, Bob generates the private key R and gives the

public key hash(R) to Alice. Alice creates a hash time lock contract to pay Bob. Bob

can obtain the payment by revealing the private key to the contract or refunding the

money to Alice if the time expires.

This is just a simple example. As mentioned before, the hash time lock contract

is mainly used for multi-node transactions in Lightning Networks. We will discuss

this in more detail in the next section.

The Hash Time Lock Contract is an application of ”Pay to Script Hash” (P2SH).

In P2SH transactions, a new redeem concept called the Redeem Script is used. When

money is transferred to the address of the P2SH Script, the public key script is not

filled with a list of public key addresses, but with the hash value of the Redeem

Script, which makes the lock script very short. The unlock script is only long when

P2SH transfers out. This avoids the problem of having a lengthy lock script in a

multi-signature transaction, which could result in a dramatic increase in transaction

fees.

Let’s make a quick comparison between P2PKH and P2SH [32]:

We set up a 2-of-4 multi-signature address in P2PKH, so the lock and unlock

script will be as follows:

Lock Script: 2 PubKey1 PubKey2 Pubkey3 Pubkey4 4 OP-CHECKMULTSIG

Unlock Script: Signature1 Signature2

In P2SH case:

Redeem Script: 2 PubKey1 PubKey2 Pubkey3 Pubkey4 4 OP-CHECKMULTSIG

Lock Script: OP-HASH160 [20-byte hash to Redeem Script] OP-EQUAL

Unlock Script: Signature1 Signature2 Redeem Script
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We can notice that in the P2SH case, the lock script in P2PKH is changed into a

redeem script, and the new lock script is the hash result of the redeem script.

To make it more visualized, we can look into the sample shown in Fig. 2.12. It is

a P2PKH 2-of-5 multi-signature address-lock script. If we get rid of the abbreviations

and replace them with the actual public keys, the lock script looks very long. So, in

P2SH, the original lock script is changed to a redeem script and the redeem script is

compressed into a 20-byte hash result. Transaction fees are high due to long scripts,

so P2SH reduces the transaction fee for the transaction sender. However, the redeem

script needs to be provided by the unlock script, so the transaction receiver will

need to pay a higher transaction fee when they want to spend the money in a multi-

signature address. In other words, when they provide the unlock script in the P2SH

case.

Figure 2.12: Sample Multi-Signature Address Lock Script [1]

2.2.4 Transaction in Lightning Network

In the entire Lightning Network, the multi-signature address acts as the payment

channel among users. That means if we want to pay someone, it is not necessary to

create a new multi-signature address; the payment can be transferred across existing

payment channels. Let’s complicate the Alice and Bob scenario a little more. Alice

and her friend Carol usually buy breakfast together every morning from Dave. Carol

has a multi-signature address with both Bob and Dave, but Alice has a multi-signature

address only with Bob. The Fig. 2.13 shows their status. And here’s the interesting

thing: Alice does not have to create a new multi-signature address with Dave to pay
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for her breakfast. She can pay Dave through the payment channel between them. In

other words, Alice pays Bob, Bob pays Carol, and Carol pays Dave.

So, here is the specific process of Alice pay to Dave in Fig. 2.13: When Dave knows

Alice wants to pay him, he generates the private key R and public key hash(R). Then,

he gives hash(R) to Alice. Alice uses hash(R) to create HTLC 1 to pay Bob. Bob uses

hash(R) from Alice to create HTLC 2 to pay Carol. Carol uses the same hash(R) to

create HTLC 3 to pay Dave. In this case, all multi-signature addresses work as the

payment channel to Dave. All HTLC use the hash(R) from Dave. Once Dave notices

the HTLC3 from Carol, he will reveal the private key R to HTLC3 to get funds.

Then, Carol will know the private key R as well because Dave reveals it in HTLC3.

So Carol can get funds from HTLC2 by using the same private key R. By the same

theory, Bob can get funds from HTLC1. Judging from the results, the general balance

of Bob and Carol is not changing. Alice pays for her breakfast, and Dave receives

payment. And Alice saves the cost of creating any new multi-signature addresses for

Dave.

It is worth noting that even if Dave does not reveal the private key R, Alice, Bob,

and Carol will get the refund from their HTLC after the time expires. Also, if Carol

does not reveal the private key R to Bob, which she gets from Dave, there is no

benefit to her because her money has already been sent to Dave. The only way to get

her money back is to reveal the private key R to Bob on HTLC 2. The same theory

applies to Bob and Alice.

This is how the Lightning Network makes transactions through every user. One

person does not have to create a multi-signature address with everyone in the network

but is linked through the payment channel made by many multi-signature addresses.

Figure 2.13: Transaction Path from Alice to Dave
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2.3 Redis

2.3.1 Redis Cluster

Before discussing the architecture of the Redis cluster, let’s briefly review the ar-

chitecture of a single Redis instance [33] [34] [35].

In order to achieve read/write splitting, servers in Redis are classified as masters

and slaves. Write operations from the client are directed to the master server. The

master server then synchronizes the data to the slave server, which contains a copy of

the data from the master. Read operations from the client are directed to the slave

server. In this case, write and read operations happen on different servers. However, in

some scenarios, a single-instance storage Redis cache will encounter several problems.

Although Redis single-instance read and write splitting can balance the load of

read operations, all write operations still fall on the master node. The scenario of

massive data and high concurrency puts great pressure on the master node.

In the case of massive data storage, a single Redis server will not be able to contain

all the data. Too much data means high persistence costs. In severe cases, the client

request may block the server, resulting in a decline in service requests and reduced

service stability.

Therefore, Redis version 3.0 introduced the cluster mode, which realizes the dis-

tributed storage of data by splitting the data and storing different data on different

master nodes, thus solving the storage problem of massive data.

The Redis cluster adopts the idea of decentralization, and there is no central node.

From the client’s perspective, the entire cluster can be viewed as a whole and can

be connected to any node for operation, just like operating a single Redis instance.

When the key of the client’s operation is not allocated to a node, Redis returns a

redirect instruction, pointing the client to the correct node.

As shown in Fig. 2.14, the Redis cluster can be viewed as a combination of

multiple master-slave architectures, each of which can be viewed as a node (where

only the master node has the capability to handle requests).
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Client

Master

Slave Slave

Client

Write

Read

Master

Slot 0

Slot 1

Slot 2

...

Slot N

Slave

Slot 0 copy

Slot 1 copy

Slot 2 copy

...

Slot N copy

Figure 2.14: Redis Single Cluster Structure

2.3.2 Hash Slot

As mentioned earlier, Redis cluster solves the problem of storing massive data on a

single node by utilizing distributed storage. When considering distributed storage, it

is essential to determine how to split the data among different Redis servers. Common

partitioning algorithms include hash algorithm and consistent hash algorithm.

In a normal hash algorithm [36], the key is computed by hash(key) mod N, where

N is the total number of nodes. For example, if there are three nodes and six clients,

the key could be the client’s ID, and the hash algorithm would be hash(id) mod 3.

The advantage of this approach is its simplicity. However, if server 3 goes down, only

two machines will be available in the cluster, resulting in the hash function becoming

hash(id) mod 2. This leads to a problem where all the data needs to be recalculated

to find new storage servers, requiring a lot of data migration each time a server goes

down or a new server is added. This can cause the system to become unreliable and
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unstable.

Server 3

Data of id 5

Data of id 6

Server 1

Data of id 1

Data of id 2

Server 2

Data of id 3

Data of id 4

id 1

id 2

id 3id 4

id 5

id 6

Figure 2.15: A Simplified Sample Hash Ring

In the consistency hash algorithm [37], both the server and data are mapped to

an end-to-end hash ring [38] through the hash function. The storage node mapping

can be based on node IP addresses. After the data is mapped to the hash ring like

Fig. 2.15, the storage server is searched in a clockwise direction, i.e., the first storage

server is found in a clockwise direction starting from the location of data mapping on

the ring. So it’s stored on this server. In the figure below, client 0 and client 1 will be

mapped to server 1 because it is the first storage server they found in the clockwise

direction. When server 1 goes down, client 0 and client 1 will be mapped to server 2.

Compared with the normal hash algorithm, the consistency hash algorithm re-

duces data migration when the storage server goes down, but cannot solve the problem
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of data loading imbalance.

Therefore, Redis is using a hash slot algorithm [39] to shard the data. A hash slot

is essentially an array space. To solve the problem of even distribution, Redis added

another layer between data and nodes. This layer is called a hash slot, which is used

to manage the relationship between data and servers. Now, it is equivalent to placing

slots on servers and placing data in slots.

There are 16384 hash slots in the Redis cluster (the range of slots is 0-16383, hash

slots). Different hash slots are distributed on different Redis nodes for management,

i.e., each Redis node is only responsible for a part of the hash slots. During data oper-

ation, the cluster will use the CRC16 algorithm [40] to calculate the key and modulo

16384 (slot = CRC16(key) mod 16383). The result is the slot in which the key-value

is placed. Through this value, the Redis node corresponding to the corresponding

slot can be found. And then, we can access directly to the corresponding node.

The advantage of using hash slots is that nodes can be easily added or removed

without making the cluster unavailable. When you need to add nodes, you simply

move some of the hash slots from other nodes to the new node. When a node needs

to be removed, it simply moves the hash slot from the removed node to another node.

2.3.3 Advantages of Redis

Memcached [41] is a simpler system that is optimized for storing and retrieving

small pieces of data, such as cache keys and values. It has a very fast, single-threaded

architecture that can quickly handle high volumes of simple read and write opera-

tions. Memcached also has a distributed architecture that allows it to scale out across

multiple servers, which can further increase its performance in certain scenarios.

If your application requires simple, high-speed caching of small pieces of data,

Memcached may be a better choice. But in our case, BLN need a more full-featured

data store that can handle a wider range of use cases and support persistence, so

Redis may be a better choice.

KeyDB [42] is another relatively new database that was designed to improve Re-

dis’s performance in multi-threaded scenarios. KeyDB’s multi-threaded architecture

allows it to handle more concurrent requests than Redis, making it a better choice for
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high-concurrency workloads. KeyDB also includes features such as Adaptive Memory

Management that can improve memory usage efficiency.

In summary, if your workload requires high concurrency and you need better

performance in multi-threaded scenarios, KeyDB might be the better choice. If you

value a mature ecosystem, a wide range of modules, and efficient performance in

low-concurrency scenarios, Redis might be the better choice.
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Chapter 3

BLN: A Fast Layer-2 Framework

By describing the problems identified in the previous chapters, we can gain an un-

derstanding of the issues present in Lightning Network and Redis. In this chapter,

we will introduce the functions and structures of BLN, and explain how it addresses

these problems.

3.1 Problem with Lightning Network

The main components of the Lightning Network have been introduced, so here’s a

quick summary:

1.Users set up a payment channel by creating a 2-of-2 multi-signature address.

2.Users put money into the multi-signature address by broadcasting a funding

transaction.

3.Users broadcast a commitment transaction to update the balance of the multi-

signature address.

4.A commitment transaction is valid only if both parties sign it.

5.Only the latest commitment transaction can be broadcast; otherwise, the party

who broadcast it will be punished, and their money will be sent to the other party.

6.The purpose of the hash time lock contract is to allow for global transactions

across multiple nodes via hashes.

The idea is to reduce the number of unnecessary broadcasts by making an agree-

ment between both parties to the transaction and merging small transactions. More

importantly, it reduces the number of transaction broadcasts, which improves the

scalability of the Bitcoin blockchain. In the meantime, a small transfer, such as buy-

ing a cup of coffee, might cost less than the transaction fee in the original Bitcoin

network. In the Lightning Network, the transaction fee for such small transactions

has been greatly reduced for the user. However, the design also has disadvantages.
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First of all, t h e Li g ht ni n g N et w or k o nl y s u p p orts s m all tr a ns a cti o ns, s u c h as b u y-

i n g a c o ff e e, b e c a us e p a yi n g t hr o u g h m ulti- n o d e is li k e m o vi n g pi e c es o n a n a b a c us.

If Ali c e w a nts t o p a y C ar ol t hr o u g h B o b, i n t h e Li g ht ni n g N et w or k c as e, s h e n e e ds t o

m o v e o n e pi e c e t o B o b, a n d B o b n e e ds t o m o v e o n e pi e c e t o C ar ol. E v e n t h o u g h B o b

d o es n ot l os e m o n e y i n g e n er al, t w o m ulti-si g n at ur e a d dr ess es ar e still i n d e p e n d e nt.

Li k e i n Fi g. 3. 1, aft er B o b m o v es o n e pi e c e t o C ar ol, h e h as n o pi e c es l eft t o m o v e t o

C ar ol. S o, i n f a ct, B o b’s p a y m e nt a bilit y t o C ar ol is a ff e ct e d b y Ali c e’s tr a ns a cti o n.

H e c a n n o l o n g er p a y C ar ol if h e w a nts t o b u y s o m et hi n g fr o m h er. M or e o v er, if

Ali c e w a nts t o m o v e t hr e e pi e c es t o C ar ol, B o b c a n n ot h el p t his ti m e b e c a us e h e o nl y

h as o n e pi e c e f or C ar ol. T h at is pr e cis el y w h y t h e Li g ht ni n g N et w or k c a n o nl y s u p-

p ort s m all tr a ns a cti o ns b e c a us e t h e tr a ns a cti o n i n m ulti- n o d e a ff e cts t h e i nt er m e di at e

n o d e’s a bilit y t o p a y t o ot h ers. T h e bi g g er t h e tr a ns a cti o n, t h e bi g g er t h e i m p a ct.

Ali c e B o b C ar ol

B ef or e:

Ali c e B o b C ar ol

Aft er:

Fi g ur e 3. 1: M o vi n g O n e Pi e c e fr o m Ali c e t o C ar ol

N e xt, i n Fi g. 2. 1 3, w e c a n s e e t h at t h e ti m e li mit f or e a c h H T L C al o n g t h e

tr a ns a cti o n p at h fr o m Ali c e t o D a v e is di ff er e nt. T h at is b e c a us e w e n e e d t o pr o vi d e

a n a d e q u at e r es p o ns e ti m e. If t h e ti m e l o c k l e n gt h is t o o s h ort, m a n y H T L Cs mi g ht

e x pir e b ef or e t h e y g et a r es p o ns e. A d diti o n all y, t a ki n g i nt o a c c o u nt t h at t h e ot h er
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person might not respond until the last minute. For example, HTLC3 gives Dave 1

day to respond and Dave reveals the private key at the end of the day, Carol might

not be able to respond to HTLC2 in time if the time lock in HTLC2 is also 1 day.

Therefore, when the path from Alice to Dave gets longer, the time lock is also longer

and has more routing fees. However, we do not want to buy coffee and have it take

3 days for a response. This is another problem.

Last but not least, the decision on whether a transaction is canceled lies not with

the sender, Alice, but with the receiver, Dave, because Dave provides the private key

and is the only one who knows it. In the situation discussed earlier where Alice buys

breakfast face-to-face from Dave, if Dave receives funds from HTLC3 and he does

not give breakfast to Alice, they could argue directly. However, in real life, online

shopping is as frequent as shopping in stores. If the situation discussed above is the

case of online shopping, there is no guarantee that Dave will actually deliver something

to Alice. So not only is it unfair to Alice, but her rights to receive merchandise after

she pays cannot be guaranteed based on the current rules.

3.2 Overview of BLN

In Section 3.1, we discussed the existing problem with the current structure, us-

ing Alice buying a coffee from Bob as an example to illustrate how the Lightning

Network facilitates transactions. But according to our observation, in real-life sce-

narios, transactions are more complex than a simple coffee purchase. The transaction

between Alice and Bob in the example could be completed directly as it was a face-

to-face transaction where one person pays and the other delivers. However, in online

shopping, which constitutes a significant portion of real-life transactions and often

involves larger transaction amounts, the Lightning Network’s performance in terms

of safety and reliability is poor as we described at the end of Section 3.1.

As mentioned in Section 2.2.5, the ability of intermediate nodes involved in a

transaction to pay is affected by the length of the transaction path. The more in-

termediate nodes involved, the higher the transaction fees charged to the buyer. In

the current Lightning Network, the transaction fee for intermediate nodes depends
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on themselves, making it a free market where fees may fluctuate.

In terms of safety, if Alice and Bob are trading online, the transaction’s safety

is unfair to Alice because Bob decides the private key R, and she only knows the

public key hash(R). When Alice sets up her HTLC for Bob using the public key, she

cannot get her money back until the HTLC expires. In this case, Bob can directly

obtain the money in HTLC because he is the only one who decides the private key

R. Bob can then refuse to deliver the merchandise, claiming that he already delivered

it, and there is no way to determine who is telling the truth. Bob faces no direct

loss, whether he lies or not, but Alice risks paying the money without receiving the

merchandise she deserves. This phenomenon occurs because the payment and delivery

times are staggered. In contrast, face-to-face transactions like buying coffee rarely

involve paying without receiving the merchandise. If such a situation occurs, it results

in a real-life argument. However, in an online transaction, there is a possibility of

lying as no one knows what is really happening except for those involved. Therefore,

if we want to extend shopping to online shopping, a new business model is necessary

that involves an impartial third party to ensure both parties’ rights. In the previous

example, a reliable third party must be involved in the transaction between Alice and

Bob to ensure that Bob receives Alice’s money transfer and that Alice receives Bob’s

merchandise.

Therefore, we propose the Business-Oriented Layer-2 Network (BLN) as a so-

lution to these problems. BLN combines the Lightning Network with the business

model adopted by many online retailing platforms, such as Amazon. BLN includes a

Transaction Processing Center (TPC) that serves as a supervisor and broker for every

transaction. We can set up multiple BLN platforms in different regions, with each

platform having its own TPC. In addition to the buyer (Alice) and the seller (Bob),

we introduce two additional roles: delivery and storage, to account for all shopping

scenarios. The TPC acts as a transaction broker for all roles and must monitor each

role to prevent mistakes. If any mistakes occur, they will be punished appropriately.

At the same time, the TPC must ensure everyone’s legitimate rights: the buyer must

receive the merchandise they paid for, and other roles should receive payment from

the buyer. Naturally, the TPC must handle a large volume of transaction requests
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since it is the only intermediary. We chose to use Redis cluster, a key-value database,

as the TPC’s structure because it can efficiently process frequent read and write

operations. We also revised some configurations to improve its performance.

3.3 Architecture of TPC

This third-party structure must not only ensure the due rights of both sides of

the transaction but also solve the existing problems of the lightning network. An

important part of this is the ability to support large transfers and avoid excessive

transaction fees due to long transaction paths. There is also a need to make the

trading scenario more realistic.

TPC

SellerBuyer

Storage Delivery

1
2

34

Handover 

Deliver to

Deliver to

Pi
ck

 up

Sell to

Figure 3.2: Business Model Based on BLN

Most modern shopping can be summed up into two types. The first is where the

buyer goes directly to the store, pays the money, and then receives the merchandise

directly. The second is online shopping. The buyer pays online, and the merchan-

dise is delivered directly to the buyer’s home by a deliveryman. Alternatively, the

deliveryman will deliver the merchandise to the storage, where the buyer presents a

voucher and picks up the merchandise. Therefore, the members who might be in-

volved in a transaction include the buyer, seller, delivery, and storage. If we add the

third-party TPC, there will be five members involved in a transaction. Based on the
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transaction mode of the lightning network, we have built a business model shown in

Fig. 3.2.

To be noticed, the TPC and four other members each have a separate payment

channel. So, the primary role of the TPC is as an intermediary agent. And here,

we assume that TPC is absolutely impartial and unbiased. Although we follow the

Lightning Network’s way of trading via HTLC here, in this model, the private key

of HTLC is determined by the transaction sender rather than the receiver in the

Lightning Network. The reason the Lightning Network decides on the private key

by the receiver is to guarantee that the transfer will eventually be received by the

receiver. If not, the receiver will not reveal the private key, and all HTLCs along the

path will expire eventually. The difference in our business model is that the private

key is decided by the buyer to make sure the buyer will get the merchandise in the

end, or he or she will not reveal the private key. And TPC needs to make sure the

seller gets the payment after the buyer receives the merchandise.

We will explain how this business model works through the online shopping process

of a buyer. And the merchandise will be passed through the deliveryman and storage.

At first, the buyer selects what he wants to buy online and initiates the first HTLC1

in channel 1 using the public key hash(R). The HTLC1 contains the cost of paying

for the merchandise, the cost of delivery, and the cost of storage, and the buyer shall

not reveal the private key R to anyone until he or she receives his or her merchandise.

Then, the TPC will initiate another HTLC2 using the same public key hash(R) and

send it to the seller side through channel 2. The HTLC2 contains only the payment

for merchandise. But the seller cannot get the payment because the seller does not

know the private key R yet.

Next, the seller notices HTLC2, and he or she needs to give the merchandise

to the deliveryman. Then both the seller and deliveryman need to inform TPC

that they have already completed the handover of merchandise. In this case, TPC

initiates HTLC3 in channel 3 as the delivery fee to the deliveryman. Of course, the

deliveryman will not receive the delivery fee at this time. The same procedure occurs

when the deliveryman and the storage complete the handover of merchandise, TPC

initiates HTLC4 in channel 4 as a storage fee.
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At this point, all that remains is for the buyer to collect the merchandise at the

storage. When the buyer reaches the storage, he or she needs to reveal the private

key R to the storage to prove that he or she is the owner of the merchandise. When

the storage confirms the private key R by using the key to get the storage fee from

HTLC4, the storage can give the merchandise to the buyer. Because the storage

reveals the private key in HTLC4, TPC will know the private key as well and it also

knows that the buyer got the merchandise already. Then TPC sends the same private

key to the seller and deliveryman in another way. Again, all four HTLCs use the same

public key hash (R) so the seller and deliveryman can get their payment in HTLC2

and HTLC3. The TPC can get the payment from the buyer in HTLC1. At this point,

all steps of the transaction are complete. The TPC, storage, deliveryman, and seller

get the payment from the buyer. The buyer gets the merchandise.

Compared to the Lightning Network, this new business model mainly solves the

problem of staggered time between the buyer’s receipt and the buyer’s delivery in the

online shopping scenario. By switching the determining party of the private key, the

seller cannot receive any payment unless he or she deliver the merchandise. Similarly,

the buyer must reveal the private key to receive the merchandise. Now, everyone’s

rights are guaranteed.

Another important point to note is that, in this business model, the buyer must

have a face-to-face transaction with a party other than TPC. Specifically, if the buyer

goes to a physical store to buy something, they must deal with the seller face to

face. If it is an online shopping scenario, then the buyer must face the deliveryman

or storage personnel to handover the merchandise. In this case, neither party can

benefit by lying.

Last but not least, this business model covers all of the purchase scenarios men-

tioned earlier. Even if the buyer purchases directly from the physical store, the above

business model only needs to exclude storage and delivery. The transaction only

needs to be completed between the buyer, seller, and TPC.

33



3.4 Expired Transaction and Penalty

Although in normal transactions, the rights and interests of each party are equally

protected, it is inevitable that a transaction cannot be completed due to human error.

So when a transaction fails, the TPC needs to be able to determine which party is to

blame. When the TPC identifies who is responsible, it needs to punish the responsible

party so as to give no one an incentive to make mistakes. Here, we mainly consider

which party has made a mistake: the buyer, seller, deliveryman, or storage. Because

HTLC has a time lock, the TPC can determine which party is responsible for an

expired HTLC in the channel. To prevent these four parties from making mistakes,

each member must keep another resident HTLC as a margin with the TPC. All four

used the old lightning network method to set up HTLC. In other words, the private

key R is decided by the TPC. If the TPC can determine which party is responsible

in the event of an expired transaction, it can collect the money in the HTLC as a

penalty by revealing private key R.

So here is how the TPC ascribes blame: In the example discussed in Section 3.3,

each HTLC is set up in chronological order. So now we are going to figure out who

was responsible in chronological order.

First, let’s assume that an error occurred with the seller. The possible error is

that the seller accepts the order from the buyer but does not deliver the merchandise

on time, which results in the expiration of HTLC1 and HTLC2 in channel1 and

channel2. At this time, the HTLC3 corresponding to the deliveryman or the HTLC4

corresponding to storage has not been set yet. Therefore, the TPC can be sure that

the mistake was made by the seller and will charge the seller’s margin as punishment.

Next, we assume that the seller delivered the merchandise on time and delivered

them to the deliveryman. When both of them inform the TPC, then HTLC3 will be

set. If the deliveryman did not deliver on time, or delivery was lost in the middle of the

transit, the buyer does not reveal the private key R because he or she has not received

the merchandise. So HTLC1, HTLC2, and HTLC3 will expire. Since the merchandise

has not arrived at the storage yet, HTLC4 has not been set. The TPC can confirm

that there was a mistake in the previous step. The TPC can then determine whether
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it is the seller’s responsibility or the deliveryman’s by the time HTLC3 is set up.

Suppose that the seller handed over the deliveryman the merchandise more or less at

the last moment before the time expires. Then the TPC can conclude that the seller

bears the primary responsibility. Assuming that the seller delivered the merchandise

to the deliveryman early, then HTLC3 will be set up early as well, and the TPC can

determine that the deliveryman is delayed in the delivery process. So the deliveryman

takes primary responsibility.

When the transaction has been carried out until the merchandise is delivered to

storage, there are multiple cases where HTLC4 can expire. The first one is if the

buyer does not pick up the merchandise from the store in time. In this scenario, not

only should the TPC deduct the buyer’s margin, but the buyer must also set up a

new transfer of HTLC1 and pay an additional storage fee. Then, TPC can set up

new HTLC2, HTLC3, and HTLC4. The second one is if the merchandise is damaged

or missing from the storage. This will also cause the HTLC4 to expire, and the buyer

cannot pick up the merchandise. So TPC will deduct the storage’s margin. Another

possibility is that the previous steps took too long, resulting in insufficient time for

the buyer to pick up the merchandise. In this case, TPC can examine the setting

times of HTLC2, HTLC3, and HTLC4 to determine who has primary responsibility.

The excess deducted after deducting the margin can be refunded to the penalized

party through another HTLC. Since there are many possible reasons for the HTLC4

to expire, the TPC needs to gather more accurate information before determining

responsibility. In this case, TPC can set up a customer service channel to collect user

feedback to understand the specific cause of the error.

3.5 Transaction Processing and Storage

From the previous description, you can see that the TPC can be considered as the

central point for all transactions. It is also a node in the lightning network. However,

if the TPC is just a single node, it will not be able to withstand the pressure when

transactions occur frequently. When the number of users is large, the TPC needs to

set up a payment channel with each user. This means that the number of commitment
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transactions that need to be saved is high, and how to store, manage, and modify

so much data is another problem. Therefore, we must learn from the function of the

Redis cluster and make improvements based on this.

In terms of Redis, by default, reads and writes in the Redis cluster are executed

on the master, and it does not support reads and writes of the slave node, which

is different from the read and write splitting of Redis master-slave replication. The

core idea of Redis cluster is mainly to use slaves to backup data and switch over the

master when it fails to achieve high reliability. In other words, reliability comes at

the cost of a large number of redundant copies on the slaves.

Similarly, TPC is accomplished by several small clusters cooperating with each

other. Each cluster has several servers that process user requests and rewrite databases.

User information storage is used in the same way as Redis: the user ID is CRC16

calculated to determine which slot it should be stored in and thus, which database it

should be stored in. Fig. 3.3 shows a simple model of the inside of the TPC.
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Figure 3.3: Simple Model inside TPC

In the transaction scenario, suppose a buyer has a transfer to a seller. Assuming

server 1 is responsible for editing buyer commitment transactions and server 2 is

responsible for the seller, the buyer sends a transaction request to one of the TPC
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servers. The server receiving the request (it can be any server in TPC) determines

which slot contains the buyer or seller commitment transactions. Based on our initial

assumption, the server receiving the request knows that server 1 is responsible for

the buyer, and server 2 is responsible for the seller. So the server forwards the

request to server 1 and server 2 using the same communication method as Redis.

According to our business model mentioned in Section 3.3, when server 1 and server

2 receive and confirm the information, the server that receives the request notifies

the buyer to initiate HTLC1 to server 1, and server 2 initiates HTLC2 to the seller.

If the transaction is completed without error, server 1 and server 2 will draft a new

commitment transaction for the buyer and seller.

In terms of data storage, we do not want TPC to have master and slave nodes as

in the Redis cluster. The reason is that Redis reads and writes on the master node

by default, and the slave contains a copy of master data. Although in Redis, when

the master fails, the slave takes over the position of the master to ensure the stability

of the system, this stability is based on a large number of redundant copies, while in

normal circumstances, the slave resources are idle.

Furthermore, although the Redis cluster allows read and write operations to be

performed on the replica by configuration [43], we set the replica only to store copies

but not to support read and write operations. During the writes operation, the

following could happen: when the client writes data to the master data, the server

replies ”Done” to the client and then synchronizes data to the replica. In other words,

the server does not reply ”Done” to the client after all replicas are synchronized

because that would be inefficient, especially in the exchange of money. Therefore, if

a client wants to read or write data to a replica before server synchronization, replica

data may be inconsistent with that of the master data. To avoid this situation for

Bitcoin-based applications, it is better that the replica is not configured for read and

write. The remaining problem is that both the read and write operations will be

concentrated on the master, resulting in too much stress on one server.

So, our design is to average the slots for which each server is responsible. In other

words, each server is responsible for a database with some slots as the master and

some slots as the replica. Fig. 3.5 shows a simple example:
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Server 1 Server 2 Server 3

Database 1

Slot 0 (master)

Slot 1 (master)

Database 2

Slot 0 (replica)

Slot 1 (replica)

Database 3

Slot 0 (replica)

Slot 1 (replica)

Slot 2 (master) Slot 2 (replica) Slot 2 (replica)

Figure 3.4: Data Storage in Original Redis Cluster
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Slot 0 (master)

Database 2
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Slot 1 (master)

Database 3

Slot 1 (replica)

Slot 2 (replica) Slot 2 (master)

Figure 3.5: Data Storage in Revised Redis Cluster

The difference between the original Redis cluster and the revised Redis cluster is
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described in Fig. 3.4 and Fig. 3.5. In the original Redis cluster, the master node

contains all the master data, so when write operations are frequent, the master node

will experience heavy pressure. The slave nodes also store all slot replicas. To solve

these problems, TPC clusters have structures like the one shown in Fig. 3.5. Let’s

assume that this cluster is responsible for slots 0 through 3. Each server is responsible

for editing the corresponding database. Compared with Redis, the master data is

evenly distributed among different databases. Since writes only occur on the master

data, the write operation pressure is equally divided. The replicas are also equally

distributed to different databases in a similar way, and as you can see from this simple

figure, some storage space is saved.

Slot

User A

User N

Commitment
Transaction A1:

  Holder:TPC
  TimeStamp: a1
  Buyer Balance:1000
  TPC Balance: 0

Commitment
Transaction A2:

  Holder:TPC
  TimeStamp:a2
  Buyer Balance:500
  TPC Balance: 500

Commitment
Transaction A3:

  Holder:TPC
  TimeStamp:a3
  Buyer Balance: ...
  TPC Balance:  ...

...

Commitment
Transaction N1:

  Holder:TPC
  TimeStamp: ...
  Buyer Balance: ...
  TPC Balance: ...

Commitment
Transaction N2:

  Holder:TPC
  TimeStamp: ...
  Buyer Balance: ...
  TPC Balance: ...

Commitment
Transaction N3:

  Holder:TPC
  TimeStamp: ...
  Buyer Balance: ...
  TPC Balance:  ...

Figure 3.6: Data Storage in Slot

Suppose server 1 crashes because of some error, and server 2 has a copy of the

master data that server 1 is responsible for. Server 2 can temporarily take over for

server 1. Although there is only one replica for each slot, we can fill Database 1 with

another slot 1 replica, Database 2 with another slot 2 replica, and Database 3 with

another slot 0 replica. Each slot will have two replicas if needed. The example shown
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in Fig. 3.5 is just a simple illustration of how the distribution works. The real data

distribution can be controlled artificially by humans according to the capacity of the

server. The content stored inside each slot is the commitment transaction between

each user and the TPC. More details are shown in Fig. 3.6.
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Chapter 4

Performance Analysis

In this chapter, we will simulate the behavior of Lightning Network nodes and

compare their performance with BLN when they receive a large number of trans-

action requests simultaneously. The criteria for comparison will include transaction

processing time, transaction fee, and the number of transaction failures. Our goal is

to minimize the number of transaction failures and processing times.

4.1 Performance-Related Factors

4.1.1 Capacity of Intermediate Node

In the Lightning Network, for each transaction to be completed, there must exist

a path consisting of some payment channel, and each intermediate node on the path

should be able to cover the transaction amount. Since the capacity of each interme-

diate node varies, the amount should not be too large. Otherwise, a node in the path

may not be able to cover the transaction. Thus, the Lightning Network can only

support small transactions. Transaction failure occurs when there is no path in the

current Lightning Network that can cover the transaction amount.

4.1.2 Transaction Fee for Intermediate Node

Meanwhile, the transaction initiator needs to pay a transaction fee to the inter-

mediary node for its assistance. As the entire lightning network operates in a free

market, each intermediary node can freely determine the amount of transaction fee it

charges. An intermediary node can decrease its transaction fee to enhance its com-

petitiveness and attract more users to choose it as their intermediary node. If the

intermediary node is a super node, meaning it establishes payment channels with

multiple nodes, more transactions will flow through that node. In such cases, the

intermediary nodes can increase their transaction fees to generate more income. To
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summarize, the transaction fee for a transaction can vary from high to low due to the

influence of each intermediary node.

4.1.3 Number of Buyer and Seller

The impact of transaction failure and transaction fee mentioned in the previous

section both comes from the intermediary node of the transaction. However, the

sender and recipient of a transaction also affect the number of transaction failures. In

this thesis, we will refer to them as the buyer and seller, respectively, to distinguish

between them. The buyer is a user who usually transfers money out in the payment

channel but rarely receives money, while the seller usually receives transfers most of

the time but rarely transfers out. For example, in the scenario where Alice is buying

coffee at Bob’s cafe, Alice is acting as the buyer, and Bob is acting as the seller.

Alice rarely receives a transfer from Bob, and Bob rarely initiates a transfer to Alice.

In other words, under the influence of the buyer and seller, most transactions are

initiated by the buyer and received by the seller, so the flow of transactions is almost

one-way.

However, there is a significant issue: if Bob has only one payment channel with

Alice, the path established by other buyers who want to buy coffee at Bob’s cafe with

the lightning network must flow through Alice. As a result, Alice has to buy coffee

for others as well as for herself. Although Alice receives transfers from other buyers

in other payment channels, each payment channel is independent. Other buyers’

transfers to Alice do not go directly into the payment channel between Alice and

Bob. In other words, in the payment channel between Alice and Bob, Alice’s balance

will only get smaller and smaller. When Alice’s balance returns to zero, Alice can

no longer act as an intermediary node for others to buy coffee. Meanwhile, Bob only

established the payment channel with Alice, so other people who wanted to buy coffee

could not transfer money to Bob. Therefore, Alice’s balance in the payment channel

will directly affect the number of transaction failures. When Alice’s balance returns

to zero, all other transactions will fail.
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4.1.4 Topology

In the later experiments, we generated a connected graph to simulate the lightning

network. To ensure a fair comparison, we started by forming a balanced graph, where

each node had almost the same number of neighbors. However, in the real lightning

network, there exists a super node, which has many neighbors. This is because when

a new user joins the lightning network, they are more likely to establish a payment

channel with a super node. The reason is that linking with a super node can greatly

reduce the number of intermediary nodes in a transaction, resulting in a decrease in

the transaction fee for each transaction. In contrast, if a user accesses the network

from the edge of the graph, then each of their transactions will start at a corner of

the graph. If the end of the transaction is at the opposite corner of the graph, the

number of intermediary nodes in the transaction path will be high, leading to an

increase in the transaction fee. Therefore, when generating the connected graph, we

randomly selected several nodes as super nodes, increasing the probability of other

nodes connecting with them.

4.2 Experiment Configuration

In the experiment, we used Java to set up a connected graph with a thousand

user nodes to simulate the performance of the Lightning Network and BLN when a

large number of transaction requests are encountered at the same time. To choose an

optimal path, we used the DFS algorithm to find all the paths between the transac-

tion sender and receiver. From the chosen paths, we selected the shortest one that

could handle the transaction amount. If there was no path that satisfied the condi-

tion, we marked the transaction as failed. Finally, we measured the quality of the

Lightning Network and TPC by counting the number of transaction failures, the total

transaction fee, and the transaction processing time.

Before the transaction start up, each user funds N bitcoins for each payment chan-

nel (multi-signature address) they own. In other words, the initial balance between

the two sides of each payment channel is N to N. Transaction failure will not occur

in the Lightning Network and BLN if the amount of each transfer is too small, so we
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set the range of transfer amount to 5 to 15 bitcoins, with an average of 10 bitcoins.

The intermediary node among the transaction path will charge a transaction fee for

each transfer. We will use the sum of the transaction fees charged by the intermediary

nodes for all transactions as the evaluation standard. Although the transaction fee

charged by each intermediary node is inconsistent in reality, to prevent the final result

from fluctuating, we set the transaction fee charged by each intermediary node at 0.1

bitcoin.

Finally, when the results are available, we will repeat the experiment many times

and take the mean of the results of the repeated experiments to reduce bias. The

bias can come from the shape of the connected graph and the size of the transaction

amount.

Regarding transaction processing time, our main comparison is BLN with Redis

Cluster vs. BLN with a single server. We will explain why we need Redis Cluster

and what its advantages are. Table 4.1 summarizes the important fixed parameters

in the experiment.

Table 4.1: Important Parameters

Parameter Description
Node Num The number of node in graph

Transaction Num Numbers of transaction happened at the same time
Traffic Test Num Number of repetitions of test

Transaction Fee Amount Transaction fee amount for each intermediary node
Seller Num Numbers of seller in graph
Buyer Num Numbers of buyer in graph

Super Node Num Numbers of super node in super node based graph
Max Neighbour Max numbers of neighbour in balanced graph

Max Transaction Amount Maximum amount of a transaction
Min Transaction Amount Minimum amount of a transaction
Initial Balance in Channel User initially fund in each payment channel

4.2.1 Graph Generation

Since the experimental results will be affected by the shape of the connected graph,

we first created a balanced graph where each user node is limited to four payment
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channels, meaning that each node cannot have more than four neighbors. For compar-

ison, we also created some super node-based graphs, where a few nodes are randomly

selected to be super nodes during the graph generation process. When a new node

is added, we use random numbers to generate a value between 0 and 1. If the value

is less than 0.5, the new node will connect to a random super node; otherwise, it is

connected to any existing normal node.

To generate a connected graph, we use the traditional approach [44]: there are

1000 nodes in the experiment, and we use 500 of these nodes first. We set a probability,

such as 30 percent, and each node has a 30 percent chance of being connected to any

of the other 499 nodes. However, the graph generated in this way is likely not a

connected graph, and there will be many isolated ”islands” in the graph. Therefore,

we select the island with the highest number of nodes and remove the edges of all

other islands. Assuming that the largest island has N nodes, this leaves 1000-N nodes

that have not yet been connected to the graph. Next, we randomly connect the

remaining 1000-N nodes to any node on the island, resulting in a connected graph.

It is worth noting that we only choose nodes among the largest island to be super

nodes.

4.2.2 Choice of Buyer and Seller

When the transaction brings in buyer and seller factors, we set the number of

sellers to be 1 percent of the total number of user nodes. There are 1000 nodes in the

experiment. After graph generation, we will randomly select 10 nodes to be sellers.

The rest of the nodes will be considered as buyer.

4.3 Experimental Results

4.3.1 Transaction Failure Rate Under Low Balance

For comparison, we change the initial balance to 50, 100, 150, and 200, which

means the average transaction amount now costs about 20, 10, 6.6, and 5 percent of

the initial balance.
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From the result in Fig. 4.1, Fig. 4.2, Fig. 4.3, and Fig. 4.4, BLN’s average

transaction failure rate performance in the case of large transactions is far better

than lightning network’s. It doesn’t matter whether the lightning network’s connected

graph is a balanced or super node-based graph. The reason is that each BLN user

no longer acts as an intermediary node. Each person’s transaction and payment

channel are independent, meaning that one user’s transaction does not affect another

user’s payment channel. The only intermediary node is the TPC. In Fig. 4.1, the

transaction failure rate rises up to about 30 percent when its average cost is 20 percent

(10 bitcoins) of the initial balance per transaction, but it performs much better if we

increase the initial balance to 100, 150, and 200. In other words, if TPC has enough

money in the payment channel, transaction failure rarely occurs.

Meanwhile, another reason why the lightning network performs worse than BLN

is that if the payment path of a transaction in the lightning network is extremely long,

there will be a large number of intermediary nodes involved. If one of the intermediary

nodes does not have enough money in the payment channel, the entire payment path

cannot be used. Therefore, in the case of large transactions, the probability that

no path can meet the transaction amount increases. In other words, the transaction

failure rate also increases. The transaction failure rate will also rise when the total

number of transactions occurring at the same time increases. This is consistent with

the fact that the lightning network does not support large transactions but favors

small transactions.

We can observe that the transaction failure rate in a lightning network will slightly

decrease when super nodes exist in Fig. 4.1 and Fig. 4.2. This is because some pay-

ment paths do not have to be as long, and the number of intermediary nodes involved

in transactions decreases. The difference between the two super node-based graphs

is that one graph has only 5 super nodes, while another graph has 10. According to

our previous method of generating graphs, since the total number of nodes is fixed

at 1000, the average number of normal nodes connected per super node in the graph

with 5 super nodes is more than that in the graph with 10 super nodes. In other

words, the graph with 5 super nodes is more concentrated. All the normal nodes are

clustered around the 5 super nodes, which results the payment path becoming shorter
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than when all nodes are clustered around the 10 super nodes.

Therefore, we can conclude that when super nodes exist and connect more normal

nodes, the payment path will be shorter in general. As long as the payment path

is shorter, fewer users will be affected by other transactions, and the transaction

failure rate will go down. The presence of super nodes is beneficial to the transaction

success rate. The TPC in BLN accomplishes this task by shortening the path of each

transaction. Thus, even though there are a large number of transactions at the same

time, the transaction failure rate for BLN is better than that for lightning network.
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Figure 4.1: Transaction Failure Rate (Lightning Network vs. BLN, Initial Bal-
ance=50)
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Figure 4.2: Transaction Failure Rate (Lightning Network vs. BLN, Initial Bal-
ance=100)
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Figure 4.3: Transaction Failure Rate (Lightning Network vs. BLN, Initial Bal-
ance=150)
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Figure 4.4: Transaction Failure Rate (Lightning Network vs. BLN, Initial Bal-
ance=200)

However, when we add the Buyer/Seller factor, that is, the receiver of the trans-

action is no longer random but biased, the transaction failure rate of the lightning

network will increase significantly. At this point, whether a transaction can be com-

pleted is almost entirely determined by the node that establishes the payment channel

directly with the seller. When all transactions flow one-way from buyer to seller, al-

most all transactions flow through the intermediary node that directly establishes the

payment channel with the seller node. That is, if that intermediary node does not

have enough balance to send money to the seller, no subsequent transaction can be

made. Even if the intermediary node directly linked to the seller funds more money

into the payment channel, it will not solve the problem. Because that intermediary

node is essentially a user, he or she will not fund too much money in the payment

channel with the seller in order to help someone else complete the transfer. Other-

wise, he or she cannot complete his or her own transactions. This experiment also

highlights a big problem of the lightning network: lightning network does not support

large transactions. Only very small amounts of money can be transferred through

the lightning network.
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Figure 4.5: Transaction Failure Rate with the Existence of Buyer and Seller (Light-
ning Network vs. BLN)

The BLN solves this problem: The TPC itself is a completely user-serving broker.

Instead of investing money in the payment channel with each user as in the previous

experiment, TPC only needs to fund money in the payment channel with the seller

and does not need to fund money in any buyer’s payment channel. Because the money

flows one way: from the buyer to the TPC, then from the TPC to the seller. In other

words, the pressure to fund money to payment channels is completely shifted from

the user to the third-party TPC. This improves the user experience and allows the

TPC to handle large transactions as long as it has enough funds. We can see in Fig.

4.5 that BLN never experiences transaction failure.

The Table 4.2 summarizes the specific value of each parameter used in the trans-

action failure rate experiment.
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Table 4.2: Parameters in the Transaction Failure Rate Experiment

Parameter value
Node Num 1000

Traffic Test Num 100
Super Node Num 5,10

Transaction Fee Amount 0.1
Seller Num 10
Buyer Num 990

Max Neighbour 4
Max Transaction Amount 15
Min Transaction Amount 5
Initial Balance in Channel 50,100,150,200

Regarding additional information about this experiment, the transaction failure

rate has an upper limit in each trial. As shown in the figures, when the total number

of transactions increases, the transaction failure rate also increases. This is because

the payment channel balance of some nodes has been depleted. Nevertheless, in sub-

sequent experiments, we raised the total number of transactions to 100,000 or even

200,000, resulting in the transaction failure rate fluctuating around a fixed value.

Since the experiments involve random transactions, the transaction initiator and re-

ceiver are chosen randomly. Consequently, a node’s payment channel balance can

be replenished in later transactions, leading to stabilization of the transaction failure

rate around an upper limit.

4.3.2 Total Transaction Fee Under High Balance

Unlike previous transaction failure rate experiments, no transaction fee will be

deducted for transfers that fail, and the final result will be affected by the transaction

failure rate. This time, we assume that every transaction will be successful. We will

do this by significantly increasing the initial balance of the users.

Similar to the previous results in Fig. 4.6, BLN also outperforms the lightning

network in terms of the sum of transaction fees. Because the TPC is now the only

intermediary node for all transactions, the payment path is greatly shortened. In

addition, the transaction fee charged by each intermediary node is fixed at 0.1 in the
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experiment. The payment path length of each transaction in the lightning network

is greater than or equal to that of the TPC.
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Figure 4.6: Total Transaction Fee (Lightning Network vs. BLN )

Table 4.3: Parameters in the Transaction Fee Experiment

Parameter value
Node Num 1000

Traffic Test Num 100
Super Node Num 5,10

Transaction Fee Amount 0.1
Seller Num 10
Buyer Num 990

Max Neighbour 4
Max Transaction Amount 15
Min Transaction Amount 5
Initial Balance in Channel 1000000

The existence of a super node also affects the final result. Because super nodes

shorten the payment path for a small proportion of transactions, the sum of transac-

tion fees is slightly better than that of the lightning network with a balanced graph.
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Table 4.3 summarizes the specific value of each parameter used in the transaction

fee experiment.

4.3.3 Transaction Processing Time

In terms of transaction processing, when we consider the concepts of buyer and

seller, TPC needs to process at least two payment channels for each transaction

request. Specifically, it needs to update at least two commitment transactions -

one between the buyer and TPC, and another between the seller and TPC. The

TPC server has several steps that must be completed to update the commitment

transactions:

1.Creating a new commitment transaction

2.Exchanging signatures with the counterparty

3.Voiding the old commitment transaction by exchanging revocation key with the

counterparty

4.Recording the commitment transaction in storage

The processing time of these steps is mainly related to the Internet speed at the

time, so to quantify the data, we default to assuming that it takes 20 time units to

complete the four steps in the experiment.

Assuming that all transaction processing occurs simultaneously on one TPC server,

the server needs to sort all transaction requests and process them in order. Therefore,

the total processing time is linearly related to the number of transactions.

However, if we use the Redis cluster, each transaction processing will be dis-

tributed across different servers. In addition to the four required steps mentioned

above, the server needs to determine which server is responsible for processing the

request. When the TPC determines the server responsible for handling the buyer or

seller, the corresponding server will update the commitment transaction. So we need

to use a hash algorithm (CRC-16) to calculate the following additional steps:

1.Find the buyer’s data slot by buyer ID (0.5 time units).

2.Find the server responsible for the buyer slot (0.5 time units).

3.Find the seller’s data slot by seller ID (0.5 time units).

4.Find the server responsible for the seller slot (0.5 time units).
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Because each Redis cluster server processes transaction requests simultaneously,

when calculating the time required to process all transaction requests in the experi-

ment, we will find the server that processes the most transaction requests (worst case)

and use its processing time as the final measure.

Therefore, the formula for calculating the final processing time of TPC with 1-

server is:

Time to update commitment transaction(20 time units) * the number of

transaction * 2(buyer and seller commitment transactions)

The formula for calculating the final processing time of TPC with Redis cluster is:

The maximum number of update commitment transactions on server *

time to update commitment transaction(20 time units) + find the server

corresponding to each buyer and seller in each transfer(2 time units)

To be noted, in BLN with a Redis cluster, if the slot of the buyer and seller’s data is

updated by the same server, we will count that server as having processed two update

commitment transactions when finding the maximum number of update commitment

transactions on the server.

In Fig. 4.7, the advantage of BLN with Redis Cluster comes from having multiple

servers able to process transaction requests together. Although there are additional

steps to find out which server is responsible for updating commitment transactions,

the total time is still much less than that of BLN with 1 server. Much of this gap

comes from the time it takes to update commitment transactions. That said, the

more time it takes to update a commitment transaction, the greater the gap between

the two.

The difference between BLN with the original Redis cluster and BLN with the

revised Redis cluster is that the revised Redis cluster distributes transaction requests

to all 10 servers in one cluster, while the original Redis cluster focuses transaction

requests on 2 master servers among 10 servers. That means the pressure on one server
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in the revised Redis cluster is five times less than the pressure on the original Redis

cluster.

Table 4.4 summarizes the specific value of each parameter used in the transaction

processing time experiment.

Table 4.4: Parameters in the Transaction Processing Time Experiment

Parameter value
Node Num 1000

Traffic Test Num 100
Cluster Num 10

Server Num Per Cluster 10
Master Server Per Cluster 2
Slave Server Per Cluster 8

Time Cost of Updating Commitment Transaction 20 (time units)
Time Cost of Finding Server 2 (time units)
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Figure 4.7: Transaction Processing Time (TPC with Redis Cluster vs. TPC with 1
Server )
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Chapter 5

Conclusion and Future Work

5.1 Conclusion

We propose the TPC business model to solve the following problems: Firstly, in the

original Lightning Network, the sender and receiver of the transaction have different

rights. Once a transaction is initiated, the sender can only get a refund until the

HTLC expires. As a result, in an online shopping scenario, the receiver can collect

the transferred money from the sender but falsely claim that the merchandise has

been shipped. With no third-party oversight, no one can prove that the receiver has

lied. In contrast to the HTLC used by the Lightning Network, the TPC business

model determines the private key of the HTLC by the sender, guaranteeing the rights

of the sender. TPC acts as a supervisor and also guarantees the rights of the recipient

(can collect money after shipment). Moreover, the Lightning Network is only suitable

for buying goods in physical stores, while the TPC business model extends the form

of shopping to online shopping.

Additionally, when TPC has sufficient funds for payment channels, the entire

business can support large transactions, which solves the problem that the Lightning

Network can only support small payments. Furthermore, when TPC is the only

intermediate node, all payment paths are shortened. In other words, the transaction

fee per transfer is reduced for the user.

Roughly speaking, TPC resembles a centralized banking system, but there is one

fundamental difference between them. In a centralized banking system, financial

transactions are processed and recorded by a central authority, which maintains a

ledger of all account balances and transactions, and clients do not have the ability to

change the ledger of transactions. It is theoretically possible for a centralized banking

system to maliciously change a user’s account balance.

In TPC, both the client and TPC store a current ledger locally, which is the

commitment transaction. The commitment transaction will not be valid if it does
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not contain the signature from both sides. In other words, it makes no sense to fake

the current balance because the counterparty will not sign the forged commitment

transaction. The existence of RSMC in the commitment transaction ensures that

malicious parties can be punished if they commit malicious acts, and all of their

balance in the payment channel will be sent to the counterparty’s personal bitcoin

address. Both sides take equal responsibility, which is not the case in a centralized

banking system.

Further more, to ensure the stability of TPC, we continue to use the Redis cluster

function and make some improvements to ease the pressure of read and write op-

erations on the master node, while also saving some storage space from redundant

replicas.

Redis is selected to show that in-memory database can be used to speed up trans-

action processing at TPC. While other in-memory databases could also be used, Redis

is the one chosen in our research.

5.2 Future Work

5.2.1 Trust Mechanism of TPC

In the previous discussion, we assumed that TPC was fully trusted. However,

there is currently no mechanism for monitoring TPC. There are no penalties for TPC

accidents or malicious mistakes. Although if TPC loses credibility, no one will use the

business model again, the losses suffered by the users cannot be repaired. Therefore,

it is necessary to establish a new trust mechanism for TPC. TPC can be constrained

by a contract or other means so that it cannot make mistakes. If TPC makes a

mistake, it should be subjected to reasonable punishment. We plan to refer to the

proof of stake in Ethereum [45] [46]. That is, multiple committees will be set up

to monitor the status of TPC and vote to report on the status of the data that the

current committee members see [47] [48].
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5.2.2 Financial Commitment of TPC

In the case of a large transaction, there is pressure on the funds from the user side all

the way to the TPC. While it may be user-friendly, the TPC needs sufficient startup

funds. However, the only source of income for TPC is the transaction fee charged

as the intermediary node. As a result, TPC may increase transaction fees to boost

revenue. Since TPC is the only intermediary node, it may raise transaction fees

too high. Additionally, since the transaction method is HTLC like the traditional

lightning network, a significant amount of TPC’s funds are locked in HTLC until

the transaction is completed, further increasing the financial pressure on TPC. This

problem can be alleviated by having TPC increase the frequency of broadcasting

commitment transactions.

5.2.3 Customer Dispute

When a transaction unexpectedly expires due to an unknown reason, TPC can only

roughly determine who should bear the responsibility based on how far the transac-

tion has progressed. However, the actual situation may be more complicated, and

this approach may lead to an incorrect penalty. Therefore, when an error occurs,

TPC needs to gather more precise information before issuing a penalty. This can be

achieved by supporting real-time network communication with customers. Alterna-

tively, TPC can set up a customer service channel to collect feedback from users.

5.2.4 Partially Decentralized BLN

If we want to add some decentralized features, one potential approach would be

to adopt blockchain for supply chain management, allowing suppliers to input and

track data related to the sourcing and delivery of merchandise. This could increase

efficiency, reduce fraud, and improve accountability.

Another approach could be to adopt more collaborative decision-making processes,

such as through the use of consensus-based decision-making models or employee-

owned cooperatives. However, a fully decentralized BLN may not be feasible or

desirable, as certain centralized functions may be necessary for the company’s success
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and growth.

Bitcoin is decentralized because it is a peer-to-peer network of nodes, which means

that there is no central authority or server controlling the network. Transactions are

verified and recorded by nodes in the network, called miners, who compete to add

new blocks of transactions to the blockchain by solving complex mathematical puzzles.

However, BLN is not decentralized because it requires a supervisor for all transac-

tions. By sacrificing some decentralized characteristics, we adopted a supervision

mechanism.
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