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ABSTRACT 

 

Ecologists are often interested in understanding causal relationships from ecological data. 

However, developed methods for causal inference, particularly for observational-based 

studies are often not taught or applied in ecology. This thesis overviews how the 

structural causal model (SCM) framework can be employed to increase both 

observational and experimental causal inference in ecology, increasing the validity of 

causal conclusions drawn from ecological data. First, this thesis presents a 

comprehensive review of the SCM framework geared towards a general ecology 

audience interested in observational causal inference. Next, the SCM framework is 

applied to a local observational coral reef dataset, to determine the causal drivers of 

coral-reef regime shifts in Seychelles. This framework is also applied to a global 

observational coral reef dataset, to understand the global drivers of reef fish biomass. The 

cumulative results from the above two studies provide practical guidelines on how to 

apply the SCM to both local and global ecological data, each highlighting that novel, 

reliable causal conclusions can be drawn from this approach. Using theory and simulated 

data, this thesis further explains how the SCM framework can be used to ensure proper 

study design and analysis across quasi-experimental (e.g., matching methods, before 

control impact, regression discontinuity design, instrumental variables) approaches. Last, 

using key ecological examples, this thesis explores how the SCM framework can also be 

employed to help ensure valid causal conclusions are drawn from experimental data. 

Ultimately, the increased uptake of the SCM framework across ecology can increase the 

depth and pace at which we understand causal relationships in nature.  
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CHAPTER 1 INTRODUCTION 
 

1.1 WHAT IS CAUSAL INFERENCE? 

Causal inference refers to the transdisciplinary practice of integrating assumptions, study designs, 

and estimation strategies to allow researchers to draw causal conclusions from data (Imbens and 

Rubin 2015; Morgan and Winship 2015). It often requires the leveraging of theory and deep 

knowledge to accurately estimate the effect of events, choices, or other factors on a given outcome 

of interest (Cunningham 2021). As such, causal inference aims to provide evidence of causality 

guided by causal reasoning. The study and application of causal inference has roots in philosophy, 

statistics, social science, economics, and computer science (Imbens and Rubin 2015; Morgan and 

Winship 2015). Causal inference methods for both observational and experimental data are 

broadly applicable across disciplines, with many methods that were designed in one discipline 

finding broadscale use across others (e.g., Pearl 2009). Researchers are often interested in the 

causal mechanisms that govern natural and human processes, to use this gained knowledge to 

make decisions that benefit us and our environment.  

1.2 A BRIEF HISTORY OF CAUSAL INFERENCE 

Although ideas of causality have existed throughout history (e.g., see Aristotles’ four causes in 

Physics and Metaphysics), David Hume is often credited with providing the first modern definition 

of causality. Hume attempted to define what a cause is as well as how humans come to possess 

causal knowledge, and what is required to infer it from observations. Hume posited three essential 

requirements to determine cause: (1) contiguity, meaning that cause and effect must be nearby in 

time and space, (2) temporal priority, meaning that a cause must precede its effect, and (3) 

necessary connection, meaning that causes must always produce the effect, and that the effect is 

not produced without the cause (Hume 1739). His definition of a cause “We may define a cause to 

be an object, followed by another, […], where, if the first object had not been, the second had 

never existed” is still widely applied today (Hume 1748).  
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In the 1920s, two major advances defined alternative approaches to causal inference, the first 

being the popularization of randomized control experiments (RCTs). In 1923, Jerzy Neyman 

introduced randomized experiments in agriculture by discussing the potential yield to be gained 

from agricultural plots under different experimental exposures (Neyman 1923). This basis of his 

work was later formulized statistically and is now widely known as the potential outcome 

framework (Rubin 1974; Holland 1986). The potential outcome framework defines the causal 

effect for an individual unit as the difference between the potential outcomes that would be 

observed for that individual unit with and without a given treatment. Imagine we are interested in 

quantifying the causal effect of a treatment Xi on an outcome Yi, for an individual i. For each 

individual, there are two potential outcomes: 

 

 Yi(1) is the outcome of individual i if they take treatment X (Xi = 1) 

 Yi(0) is the outcome of individual i if they do not take treatment X (Xi = 0) 

 

The causal effect of the treatment on the outcome for individual i is defined as: 

 

Causal effecti = Yi(1) – Yi(0)                            [1.1] 

 

In words, the causal effect for individual i is defined as the difference between their potential 

outcomes. However, in reality, only one potential outcome, either Yi(1) or Yi(0) can be realized. 

An individual i can either take the treatment (Xi = 1) resulting in the observed Yi(1) or not take the 

treatment (Xi = 0) resulting in the observed Yi(0), but not both. This is referred to as the 

fundamental problem of causal inference (Rubin 1974; Holland 1986). To work around this, the 

potential outcome framework formally articulates how to quantify an average treatment effect 

(ATE) for RCTs (Rubin 1974; Holland 1986) as well as non-experimental (Rosenbaum and Rubin 

1983) data. Under the potential outcome framework ATE can be defined as: 

 

ATE = E[Yi(1)-Yi(0)]                                                                                                                    [1.2] 

 

In words, ATE is defined as the difference between the average potential outcomes Yi(1) and Yi(0) 

for a population of n units where i = 1…n. Again, this cannot be directly quantified as we do not 
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observe Yi(1) and Yi(0) simultaneously. However, under RCTs, if the treatment Xi is randomly 

assigned, then treatment Xi is independent of the potential outcomes that would be realized under 

each treatment. This is referred to as ignorability (Rosenbaum 2002), and written as: 

 

{Yi(1), Yi(0)} ⊥ Xi                                                                                                                                                                                    [1.3] 

 

Given this, we can estimate the ATE of a population by taking the difference in mean outcomes of 

the individuals in the treated group and control group, written as:  

 

ATE = E[Yᵢ | Xᵢ = 1]-E[Yᵢ | Xᵢ = 0]                                                                                                [1.4] 

 

In words, under a randomized experiment where ignorability is met, ATE = (average treatment 

outcome) – (average control outcome). The average difference in outcome is attributed to the 

treatment effect, and not to confounding that can arise from non-random treatment assignment. 

The potential outcome framework is arguably the most widely used framework for causal 

inference and provides the underlying theory behind RCTs. 

 

Around the same time as Neyman, Ronald Fisher also published on the importance of 

randomization in experimental designs (Fisher 1925). Throughout his life, Fisher remained a 

strong proponent of randomized experiments. He noted that the randomization process eliminated 

bias, for example, by removing all uncontrolled differences between treatment groups. According 

to Fisher, “randomization…relieves the experimenter from the anxiety of considering and 

estimating the magnitude of the innumerable causes by which data may be distributed.” (Fisher 

1935). Although randomized experiments first appeared in the 1800s (Peirce and Jastrow 1885; 

Stolberg 2006), and Neyman re-introduced randomized experiments a few years prior, Fisher is 

often credited with the “invention” or “discovery” of RCTs due to his advocacy and popularization 

of the concept (Rubin 2005; Hall 2007). RCTs are now prevalent across disciplines and is often 

regarded as “the gold standard” for causal inference (Hariton 2018). However, it is important to 

note that RCTs, much like any causal inference tool, rests on a set of causal assumptions, that 

when not met, can lead to erroneous causal conclusions (e.g., see Kimmel et al. 2021).  
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Figure 1.1 A path diagram and associated path coefficients representing the causal relationships 
between birth weight (X), growth rate (Q), gestation period (P), size of litter (L), and other factors 
(A, C) for guinea pigs. Adapted from Wright (1921).  
 

A second advance in causal inference that occurred in the 1920s came with Sewall Wright’s path 

analysis, which uses path diagrams to encode a researcher’s causal assumptions about a system or 

process under study (Wright 1920; Wright 1921). Figure 1.1 shows a path diagram adapted from 

Wright (1921), representing how different variables are hypothesized to effect birth weight in 

guinea pigs. Directed arrows point from cause to effect; for example, size of litter (L) directly 

effects gestation period (P), which in turn effects birth weight (X). Based on the path diagram and 

the observed correlations between paired variables, a system of equations can be constructed to 

solve for “path coefficients”, which represent the direct effects of variables on each other (Wright 

1921). First, equations can be constructed based on the principle that “correlation between two 

variables is equal to the sum of the products of the chains of path coefficients along all the paths 

by which they are connected (Wright 1921)” For example, in Figure 1.1, X and P are connected by 

the path P à X (associated with path coefficient p) as well as the path P ß L à Q à X 

(associated with path coefficients qll’). The correlation between X and P can thus be represented 

by the equation: 

 

rXP = p + qll’                              [1.5] 
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A second set of equations can also be constructed based on the principle that the complete 

determination of an effect in a path diagram must equal 1 (Wright 1921). For example, in Fig 1, 

the complete determination of P by factors L and C can be expressed by the equation: 

 

l’2 + c2 = 1                             [1.6] 

 

Given a path diagram and observed correlations between paired variables, these two types of 

equations can be used to solve for path coefficients. For example, if we know the correlation 

between P and L is 0.44444, then we can solve for the path coefficient l’ since rPL = l’ = 0.4444. 

Given that l’2 + c2 = 1, we can solve for l’2 (0.44442 = 0.1975), c2 (1-0.1975 = 0.8025) and the path 

coefficient c (√0.8025 = 0.8958). Figure 1.1 presents the calculated path coefficients for our path 

diagram (see Wright 1921; p 568-570 for full calculations using this example). Path coefficients 

show the strength and direction of direct effects; for example, assuming Figure 1.1 accurately 

represents the causal relationships among variables, rate of growth (Q) has a stronger positive 

effect on birth weight (X) relative to gestation period (P). A generalization of path analysis known 

as structural equation modeling (SEM) was subsequently developed by Otis Dunley Duncan in 

1975 (Duncan 1975) and continues to be widely employed across disciplines, including ecology 

and the social sciences (Hershberget 2003; Grace et al. 2010). SEM is meant to be used as a 

mathematical tool for drawing causal conclusions from observational data, given a researchers’ 

causal assumptions, which are encoded in SEM diagrams (Pearl 2012). These causal assumptions 

must ultimately be justified based on domain knowledge, such as scientific consensus, prior 

studies and experiments, scientific judgement, and other informed sources (Pearl 2012). 

Conditional on these causal assumptions, the SEM approach allows researchers to draw causal 

conclusions from observational data.  

 

SEMs offers great potential for quantifying causal relationships in nature, particularly when 

working with data across a wide range of questions and study systems that may otherwise be 

impossible or impractical to explore under experimental design. However, the application of SEM 

through the years has led to many misunderstandings about its original causal intent. Bollen and 

Pearl (2013) highlight eight core myths about causality and SEMs, including critiques by 

opponents that claim SEMs aim to establish causal relationships from correlation alone. Examples 
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are perpetuated both in historical (e.g., Guttman 1977, De Leeuw 1985; Baumrind 1983) and 

recent (Goldthorpe 2001; Freedmand 2004; Sobel 2008) literature. This gives the general 

impression that SEMs are used to derive causal conclusions from correlations that arise from 

observational data and complicated models of partial association alone, and thus such results 

should not be trusted as valid causal conclusions (Pearl 2012). However, SEM diagrams represent 

the causal assumptions of the researcher; the credibility of conclusions therefore depends on the 

credibility of the causal assumptions in each application. Unfortunately, the misconceptions 

around SEM have led to many researchers explicitly avoiding causal language and interpretation 

(e.g., Muthen 1987) and relying extensively on the data (instead of a researcher’s knowledge) to 

guide SEM diagrams and subsequent interpretations (Pearl 2012).  

 

It is worth noting that RCTs quickly became a widely applied and trusted tool for causal inference, 

whereas observational causal inference approaches such as SEM remain relatively underutilized. 

The opposition against observational approaches to causal inference can largely be attributed to 

Karl Pearson, whom many consider to be the founder of modern statistics. Pearson, inventor of the 

correlation coefficient, believed that ideas around causality were outdated and unscientific 

compared to the mathematically clear and precise concept of his correlation coefficient (Pearson 

1911). In his words, causality was just a “fetish amidst the inscrutable arena of modern science 

(Pearson 1911).” Pearson also pointed out non-causal spurious correlations that can often arise in 

observational data, leading to the often-repeated phrase “correlation does not imply causation” 

(F.A.D. 1900). This led to a general misconception that correlation can’t equal causation, even 

when valid observational causal inference is employed. For his efforts, Pearson has been regarded 

as “causality’s worst adversary” (Pearl 2009). The notion that causal conclusions can only be 

drawn from experiments has also been perpetuated across disciplines by many researchers through 

time. For example, in his influential article, Paul Holland (1986), noted “no causation without 

manipulation” as one of his mottos, explaining that variables that cannot be manipulated, such as 

race and sex, cannot act as causal factors. He then criticized SEMs for representing these factors 

(race and sex) as causal variables in SEM diagrams (Holland 1986).  

 

In recent years, a “causal revolution” has largely been attributed to computer scientist Judea Pearl, 

who has integrated the potential outcome framework with nonparametric SEM and other theories 
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of causation to formulate a comprehensive causal inference methodology known as the structural 

causal model (SCM; Pearl 2009). Similar to the original intent of SEMs, this framework encodes a 

researcher’s causal assumptions in graphical diagrams in the form of directed acyclic graphs 

(DAGs). DAGs are causal graphs comprised of a set of nodes (i.e., variables) and directed arrows 

pointing from cause to effect; they are also acyclic meaning they cannot contain bi-directional 

relationships or a feedback loop where a variable causes itself (Glymour and Greenland 2008, 

Elwert 2014). For example, the path diagram presented in Figure 1.1 is also a DAG. Given a DAG, 

a set of graphical rules can be applied to determine which variables must be controlled for (e.g., 

through statistical adjustment, stratification, experimental control) to eliminate bias and quantify 

causal relationships. Importantly, this framework highlights that causal assumptions encoded in 

DAGs can be used to guide valid causal inference across both observational and experimental data, 

helping remove the long-standing bias against observational causal inference. The SCM 

framework forms the basis of this thesis and is expanded upon in subsequent sections and 

chapters; however, it is worth noting that is one of many causal inference frameworks that exist. 

Other landmark developments in observational causal inference include the development of quasi-

experimental approaches including instrumental variables (Wright 1928), regression discontinuity 

design (Thistlethwaite et al. 1960), and propensity score matching (Rosenbaum and Rubin 1983), 

as well as early developments in time-series causal analysis such as Granger causality (Granger 

1969). The history and ongoing development of causal inference frameworks is complex and 

varied, and researchers interested in drawing causal conclusions from data should remain open to 

varied approaches available for doing so.  

1.3 CAUSAL INFERENCE IN ECOLOGY  

In ecology, RCTs remain the primary tool used for causal inference. RCTs rely on the 

randomization and control of a treatment variable to understand its effect of an outcome variable. 

Indeed, RCTs have led to significant advances in our understanding of ecological phenomena, 

such as Gauses’ laboratory experiments on yeast confirming the theory of competitive exclusion 

(Gause 1932), Paines’ starfish removal experiment creating the concept of keystone species (Paine 

1966), and Simberloff’s field experiment on mangroves, testing the theory of island biogeography 

(Simberloff 1976). However, although RCTs are seen as the gold standard in ecology and the 

sciences, with conclusions drawn from RCTs often not questioned, they are nonetheless 
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susceptible to potential biases that can lead to erroneous causal conclusions. For example, Kimmel 

et al. (2021) discuss four core causal assumptions required for valid causal inference in 

experimental biology. These include excludability, which is the assumption that the process by 

which treatments are assigned has no effect on the outcome. For example, an experimental set-up 

investigating the effect of drought on plant growth can lead to the excludability criterion being 

violated if the drought treatment also alters temperature, humidity, and light, which in turn also 

influence the outcome plant growth. In this situation, the violation of the excludability criterion 

will lead to confounding bias, a commonly acknowledged bias in observational studies (e.g., Gray 

et al. 2016). Other causal assumptions for RCTs include no interference between units, no multiple 

versions of treatment, and no compliance, meaning that all units receive the treatment they were 

assigned. Kimmel et al. (2021) highlight how each of these biases can arise in experimental 

designs, explaining that valid causal inference always rests on a set of core causal assumptions that 

must be carefully communicated and justified by the researcher, even under experimental set-ups. 

The general assumption that RCTs can lead to valid causal conclusions without the careful 

consideration of how the study design and/or statistical analysis of an experiment may bias causal 

estimates represents a current limitation of many ecological RCTs (Kimmel et al. 2021). Further, 

many pertinent causal queries in ecology cannot be answered through perfectly designed RCTs, 

and instead rely on observational data collected across broad scales of time and space, and in 

situations that are not easily manipulated. For example, ecologists continue to rely on 

observational data to understand how anthropogenic disturbances such as climate-induced 

bleaching events, pollution, or overfishing effect ecosystem health and services. The increased 

availability of observational data through citizen science and technological advances (Sagarin and 

Pauchard 2010) further highlights the importance of observational ecological studies.  

 

Across observational settings, some ecologists have advocated for the use of quasi-experimental 

approaches to estimate causal effects (Butsic et al. 2017; Larsen et al. 2019; Wauchope et al. 

2021). These include matching methods, which aim to balance the distribution of covariates 

between treatment and control groups to remove confounding bias within observational studies 

(e.g., see Adnam et al. 2008; Herrera et al. 2019 for ecological examples); before-after control 

impact (BACI) studies, which measure a response both before and after an intervention for both 

treatment and control sites, with differences in the rate of change between treatment and control 
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being attributed to the effect of the intervention (e.g., see Kadye and Booth 2012 and Bousquin 

and Colee 2014 for ecological examples); regression discontinuity design (RDD), which uses 

observational data near a discontinuity in either space, time, or policy to separate observations into 

treatment and control groups, with the assumption that at or near this discontinuity, confounding 

variables are equal between treated and control groups (e.g., see Perez et al. 2017 for ecological 

example); and instrumental variables (IV), which uses an instrument (i.e. a third variable) that is 

correlated with the predictor but not the outcome to overcome confounding and measurement 

errors (e.g., see Bush and Cullen 2009 and Amin et al. 2014 as ecological examples). Although 

these causal tools are valuable, like RCTs, they too require researchers to critically examine the 

causal assumptions required for each method. For example, although past ecological studies 

employing matching methods state the presumed confounding variables used in their matching 

procedure, they do not state how these variables interact with one another within the broader 

causal structure of a study system. Without this knowledge, it is unclear whether there are other 

confounding variables that need to be included in the matching analysis or whether the inclusion 

of all presumed confounding variables may lead to other forms of bias (Mansournia et al. 2013). 

As another example, past reviews of BACIs have noted the prevalence of improper study design, 

whereby key variables required to ensure proper BACI design across ecological studies are often 

neglected (Ferraro et al. 2019; Adams et al. 2019). Collectively, ecological causal inferences 

drawn from quasi-experimental approaches can be strengthened by ensuring that causal 

assumptions required for each approach are carefully examined and met.  

 

Other notable observational causal inference techniques in ecology include SEM, which has been 

employed to disentangle causal relationships across varied ecological systems (Grace et al. 2010), 

as well as convergent cross mapping (CCM; Sugihara et al. 2012), a time-series analysis specially 

created for understanding complex ecological relationships in nature. Although observational 

causal inference methodologies exist and have been employed across several ecological studies, it 

is important to note that most observational studies aiming to answer causal questions in ecology 

do not employ any available causal inference methodology. Instead, a commonly applied 

statistical approach is to generate a ‘causal salad’ model (Bhalla 2018 McElreath 2020), whereby 

predictor variables of interest are placed under one statistical model and subsequently interpreted 

for causal effects. Such an approach will generate a correlation between a predictor and response 
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variable, controlling for all other covariates entered in the model. The ‘causal salad’ model is only 

partially guided by causal reasoning, and often reflects only which variables a researcher may be 

interested in and/or have available. For example, both Cinner et al. (2016) and Cinner et al. (2020) 

investigated the effect of socio-environmental drivers on global reef fish biomass using the Reef 

Life Survey data (Reef Life Survey Foundation 2019). The former included 18 predictor variables, 

and the latter included 17 predictor variables, with 11 overlapping variables. Although the two 

studies used the same dataset, the effect sizes of the 11 overlapping predictor variables varied 

across studies due to differences between the two ‘causal salad’ models. This illustrates that 

correlative conclusions drawn from such approaches should not be trusted as valid causal estimates 

(although the authors did not explicitly set out to conduct a causal analysis). Ultimately, the 

‘causal salad’ approach often leads to biased estimates for all predictor variables of interest 

(McElreath 2020).  

 

Another commonly applied approach across observational ecological studies is to apply predictive 

model selection techniques such as Akaike’s Information Criterion (AIC; e.g., see Millard et al. 

2021 and Lu et al. 2021 for ecological examples). These approaches select the ‘best’ model among 

a candidate set and subsequently make inferences from parameters that are of ecological interest 

within the top-ranked model. However, such approaches are meant to measure out of sample 

predictive accuracy, and not for generating causal effects (Arif and MacNeil 2022). Recently, the 

advance of machine learning (ML) techniques combined with the availability of big data have also 

led to their misuse for drawing causal conclusions (e.g., see Guy et al. 2020 and Alkhamis et al. 

2021 for ecological examples). The substantive use of predictive approaches for drawing causal 

conclusions from ecological data signal that most ecologists are not equipped with the theory and 

tools required for observational causal inference.  

 

In addition to applying non-causal approaches, ecologists often avoid explicitly acknowledging the 

causal nature of their research, and instead use coded language that implies causality without 

explicitly saying so (Hernan 2018). Collectively, this has led to a culture whereby ecologists 

continue to depend on observational data to answer fundamental causal queries in ecology but do 

so under the prescription that “correlation does not imply causation” (attributed to Karl Pearson; 

F.A.D. 1900). However, correlation can equal causation, given the application of valid causal 
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inference approaches. What is needed then, is a fundamental shift in culture, whereby ecologists 

are equipped with the theory and tools required for widespread observational causal inference. 

This is turn can strengthen the pace and depth at which we understand our natural world.  

1.4 THE STRUCTURAL CAUSAL MODEL (SCM) FRAMEWORK 

 

 
Figure 1.2 Simplified directed acyclic graphs (DAGs). Variables are represented by nodes, with 
directed arrows pointing from cause to effect. Unobserved variables are depicted in grey. In 
scenarios a-d, the effect of X on Y can only be determined if Z is controlled for. In scenarios e-h, 
the effect of X on Y will be biased if Z is controlled for.   
 

Judea Pearl’s SCM framework, draws on directed acyclic graphs (DAGs) to visualize the 

hypothesized causal structure of a system or process under study, based on a researchers’ domain 

knowledge. DAGs comprise of a set of nodes (i.e., variables) and directed arrows pointing from 

cause to effect, with causes preceding their effects. For example, in Figure 1.2a, X effects Y, U 

effects Y and U effects X indirectly through Z. DAGs are also non-parametric, making no 

assumptions about the functional form (e.g., linear, nonlinear, stepwise) or effect size of direct 

effects (Glymour and Greenland 2008). This non-parametric nature of DAGs makes them 

compatible with a wide range of ecological systems. Given a DAG, graphical rules can be applied 

to determine variables that need to be controlled for (e.g., through statistical adjustment, 

stratification, experimental control) to answer causal queries from both observational and 
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experimental data. These graphical rules are detailed in later chapters, but the main takeaway is 

that given a DAG, they guide researchers on how to create causal models that can be used to 

answer a specific causal query at hand.  

 

To demonstrate the importance of the SCM framework, Figure 1.2 shows a series of DAGs 

representing the causal structure of simplified systems. In each instance, imagine we are interested 

in determining the effect of X on Y. Figure 1.2 a-d represent scenarios where controlling for Z is 

required to determine the effect of X on Y, whereas Figure 1.2 e-h represent scenarios where 

controlling for Z will lead to non-causal correlative associations between X and Y. In each case, 

the application of graphical rules within the SCM framework can confirm when Z (as well as any 

other variable) does and does not need to be controlled for. Having a formulized causal inference 

framework for determining covariate selection stands in contrast with commonly applied statistical 

techniques used in ecology. For example, if we are interested in the effects of both X and Z on Y, 

then a ‘causal salad’ approach would include both X and Z as predictor variables, leading to biased 

estimates under the scenarios presented in Figure 1.2 e-h.  Particularly when dealing with complex 

real-world systems, knowing which variables need to be controlled for (or not controlled for) for a 

given causal query can quickly become unimaginable without the formulized guidelines provided 

by the SCM framework. 

 

The SCM framework has been implemented across a wide array of disciplines, leading to key 

insights in epidemiology (e.g., Griffith et al. 2020), paediatrics (e.g., Williams et al. 2018), 

psychology (e.g., Jiang et al. 2021), and more. Within ecology, this framework has already been 

utilized to understand the drivers of species-level trait variation (Cronin and Schoolmaster 2018), 

re-define biodiversity-ecosystem functioning relationships (Schoolmaster et al. 2020), as well as 

conceptualize wildlife recovery dynamics (Wilson et al. 2021). As a widely applicable causal 

inference method, the SCM framework holds tremendous potential for shaping the way ecologists 

understand and apply causal inference. However, several limitations remain. First the SCM 

framework has only been applied to a few ecological studies (Cronin and Schoolmaster 2018; 

Schoolmaster et al. 2020; Wilson et al. 2021), and within these, only one (Schoolmaster et al. 

2020) included real-world ecological data. Second, these studies focus on niche ecological topics 

and do not facilitate a comprehensive understanding of how to apply the SCM framework geared 



 13 

towards an ecological audience. Further, only one study (Schoolmaster et al. 2020) has illuded to 

the use of the SCM framework for experimental set-ups. However, it is important to note that this 

framework can be employed across observational, as well as quasi-experimental and experimental 

settings to guide effective study design and statistical analysis required for drawing causal 

conclusions from ecological data.   

1.5 THESIS OBJECTIVES  

A major objective of this thesis is to effectively communicate the SCM framework to a general 

ecology audience, with the aim of increasing its utility and uptake across future ecological studies. 

To this end, Chapter 2 provides a user-friendly review of the SCM framework, with an emphasis 

on its application for observational causal inference in ecology. This chapter uses simulated 

ecological examples to detail the key steps required for observational causal inference, overviews 

common statistical biases that can occur in non-causal correlative studies, as well as highlights the 

recent application of the SCM framework within the ecological literature. Chapter 3 applies the 

SCM framework to determine the drivers of climate-induced coral reef regime shifts in Seychelles, 

providing the first application of the SCM framework in the coral reef literature. Chapter 4 

applies the SCM framework to understand the socio-environmental drivers of reef fish biomass 

across temperate and tropical reefs, providing the first application of this framework to a largescale 

ecological dataset. Whereas Chapter 2 can be referenced to provide a detailed overview of the 

SCM framework, Chapters 3 and 4 can be used as a practical guide for ecologists aiming to answer 

causal questions from ecological data.     

 

A second objective of this thesis is to show that the SCM framework can be employed to 

strengthen causal inference across both quasi-experimental and experimental settings. Chapter 5 

applies the key principles of SCM framework to strengthen causal conclusions drawn from quasi-

experimental approaches including matching methods, difference-in-difference, instrumental 

variables, and regression discontinuity design. Chapter 6 further highlights the utility of the SCM 

framework for strengthening causal inference in experimental ecological studies. Both chapters 

show that DAGs can be used to visualize the overall causal structure of a system, and guide 

ecologists on how to remove any biases (e.g., confounding) that may still be present under quasi-

experimental or experimental settings.  



 14 

CHAPTER 2 APPLYING THE STRUCTURAL 
CAUSAL MODEL (SCM) FRAMEWORK FOR 

OBSERVATIONAL CAUSAL INFERENCE IN 

ECOLOGY 
 

A version of this work is currently accepted as Arif S, M MacNeil A. Ecological Monographs.  

 

2.1 ABSTRACT 

Ecologists are often interested in answering causal questions from observational data but generally 

lack the training to appropriately infer causation. When applying statistical analysis (e.g., 

generalized linear model) on observational data, common statistical adjustments can often lead to 

biased estimates between variables of interest due to processes such as confounding, overcontrol, 

and collider bias. To overcome these limitations, we overview the structural causal model (SCM), 

an emerging causal inference framework that can be used to determine cause and effect 

relationships from observational data. The SCM framework uses directed acyclic graphs (DAGs) 

to visualize a researchers’ assumptions about the causal structure of a system or process under 

study. Following this, a DAG-based graphical rule known as the backdoor criterion can be applied 

to determine statistical adjustments (or lack thereof) required to determine causal relationships 

from observational data. In the presence of unobserved confounding variables, an additional rule 

called the frontdoor criterion can be employed to determine causal effects. Here, we use simulated 

ecological examples to review how the backdoor and frontdoor criteria can return accurate causal 

estimates between variables of interest, as well as how biases can arise when they are not 

employed. We further provide an overview of studies that have applied the SCM framework in 

ecology. SCM and its application of DAGs have been broadly employed in other disciplines to 

make valid causal inference from observational data. Their use in ecology holds tremendous 

potential for quantifying causal relationships and investigating a range of ecological questions 

without randomized experiments.  



 15 

2.2 INTRODUCTION 

Observational studies in ecology rely on data that have not been experimentally manipulated and 

are commonly used to understand ecological patterns and processes seen in nature (Carmel et al. 

2013). Observational approaches are increasing in relevance due to the emergence of large-scale 

ecological questions that are not easily manipulated or controlled, such as invasive species and the 

consequences of climate change. New advances in technology, such as remote-sensing, 

environmental genetics, and animal-borne sensors, as well as increased availability of data online 

and from citizen science, have enhanced opportunities to answer previously intractable ecological 

questions using observational data (Sagarin and Pauchard 2010). 

 

Many observational studies in ecology are aimed at answering causal questions, such as the impact 

of marine protected areas on fishing communities (Mascia et al. 2010) or the effect of forest 

fragmentation on species richness (Sam et al. 2014). However, causal inference – the leveraging of 

theory and deep knowledge to estimate the impact of events, choices or other factors on a given 

outcome of interest (Cunningham 2021) – is rare. Yet without the consideration of causal 

relationships, statistical analysis can frequently lead to biased estimates (i.e., estimates that differ 

from the true parameter being estimated) that undermine ecological inferences by providing non-

causal correlations among variables of interest. This is the basis of the often-repeated phrase 

“correlation does not imply causation” (F.A.D. 1900). We believe that increasing the use of causal 

inference methods in observational ecology will reduce bias throughout the discipline and lead to 

more accurate assessments across a range of ecological questions, especially when experimental 

approaches are unfeasible.  

 

Structural causal modelling (SCM, Pearl 2009) is an emerging causal inference framework, which 

unifies the strong features of structural equation modeling (SEM; Wright 1921, Shipley 2016) and 

Rubin’s potential outcome framework (Rubin 2005) among others, to create a powerful theory of 

causation and framework for causal inference. Importantly, this framework can be used to 

determine cause and effect relationships from observational data, without needing to set up 

randomized control experiments (Pearl 2009). SCM has been widely employed across other 

disciplines, including econometrics (Imbens 2020), epidemiology (Pearce and Lawlor, 2016), 
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paediatrics (Williams et al. 2018) and psychology (Rohrer, 2018), as well as a few ecological 

studies (Cronin and Schoolmaster 2018; Schoolmaster et al. 2020; Schoolmaster et al. 2022; Arif 

et al. 2022; Arif and MacNeil 2022). It holds tremendous potential for increasing the use of causal 

inference across observational ecological studies.  

 

Under the SCM framework, the derivation of causal effects rests on a set of causal assumptions 

about the data generating process (e.g., X effects Y and not the other way around). These causal 

assumptions are visualized using directed acyclic graphs (DAGs), which represent a researchers’ 

assumptions about the causal structure of a system or process under study (Pearl 2009; Morgan 

and Winship 2014). Given a DAG, a graphical rule known as the backdoor criterion determines the 

sufficient sets of variables for adjustment required to determine causal effects from observational 

data. When the backdoor criterion cannot be employed – due to the presence of an unobserved 

confounding variable – a second graphical rule called the frontdoor criterion can be employed. 

Using simulated ecological examples with specified (i.e., known) causal effects, we define these 

criteria and review how they can be employed to determine causal effects between variables of 

interest.  

 

To date, the few ecological studies that have employed the SCM framework have identified key 

causal relationships across study systems (Cronin and Schoolmaster 2018; Schoolmaster et al. 

2020), outlined general steps required for observational causal inference (Cronin and Schoolmaster 

2018), as well as clarified SCM theory (Schoolmaster et al. 2022). However, these studies can be 

niche topics and theoretically complex. Here, we provide an easily accessible overview of the 

SCM framework, highlighting two key tools – the backdoor and frontdoor criteria – that can be 

used for causal inference across observational ecological studies.  

2.3 DIRECTED ACYCLIC GRAPHS (DAGS) 
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Figure 2.1 A directed acyclic graph (DAG) representing the causal structure between three 
variables, X, Y and W.  
 

DAGs are used to represent causal relationships within a given system. A DAG consists of a set of 

nodes (variables) that are connected to each other by edges (arrows). These arrows represent 

causal relationships between variables, pointing from cause to effect, with causes preceding their 

effects. For example, the DAG in Figure 2.1 shows that X directly effects Y (X à Y), W directly 

affects both X (W à X) and Y (W à Y), and W indirectly effects Y through X (W à X à Y). It 

is important to note that the arrows between nodes (variables) represent hypothesized causal 

relationships (i.e., a lack of causal relationship can be found following a SCM analysis). On the 

other hand, a lack of arrow between two nodes assumes no causal relationship between variables, 

representing strong a priori causal assumptions. Therefore, missing arrows encode strong causal 

assumptions, whereas arrows between nodes represent the possibility of an effect (Elwert, 2013). 

 

A key characteristic of DAGs is that they must be acyclic, meaning that they cannot contain bi-

directional relationships (i.e., arrows need to be unidirectional) or a feedback loop where a variable 

causes itself (Glymour and Greenland 2008, Elwert 2014). This limits the application of DAGs to 

ecological systems that do not contain bi-directionality and or feed-back loops. However, one way 

to resolve this issue is to articulate the temporal sequence of events more finely (Greenland et al. 

1999). For example, if temperature at time one (Tempt1) effects ice cover, which then influences 

temperature at time two (Tempt2), Tempt1 and Tempt2 can be represented as separate nodes within 

a DAG, without violating acyclic requirements. For interested readers, Schoolmaster et al. (2020) 

provide a published ecological DAG that incorporates the temporal sequence of events (see their 

Appendix S2).  
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DAGs are also non-parametric, meaning that they do not make any assumptions about the 

stochastic nature of variables or their observation, or the functional form of direct effects (e.g., 

linear, nonlinear, stepwise) and their effect size (Glymour and Greenland 2008). In this sense, a 

DAG is qualitative: X à Y only communicates that X causally affects Y in some way, without 

specifying any other restrictions. This non-parametric nature of DAGs makes them compatible 

with a wide range of ecological systems.  

2.4 THE SCM FRAMEWORK 

 

Figure 2.2 A workflow for going from DAGs to causal inference under the SCM framework.  

 

DAGs are central to the SCM framework as they are used to visualize and quantify causal 

relationships from observational data (Pearl 2009). Figure 2.2 summarizes the SCM framework 

which includes creating a DAG (step 1), testing a DAG for DAG-data consistency (step 2), 

applying either the backdoor or frontdoor criterion (step 3), choosing an appropriate statistical 

model (step 4), and making inference by quantifying a causal effect (step 5). As we walk through 

our review, we will follow the workflow in Figure 2.2 using simulated ecological examples 

interspersed with relevant theory and background information.  

Step 1: 
Create DAG

Step 2: Test 
DAG-Data 
Consistency

Step 3: 
Apply 

Backdoor or 
Frontdoor 
Criterion 

Step 4: 
Choose a 
Statistical 
Model

Step 5: 
Causal 
Effect 

SCM
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2.4.1 Step 1: Creating a DAG 

 

DAGs represent a researcher's causal assumptions about the data generating process of a system of 

process under study (Pearl 2009, Morgan and Winship 2014). As such, researchers should ensure 

that their DAG represents the complete causal structure of the system or process, including all 

relevant measured and unmeasured variables, as well as all common causes of any pair of 

variables included in the DAG (Sprites et al. 2001, Glymour and Greenland 2008). DAGs should 

also be rigorously justified based on domain knowledge, theory, and research. A combination of 

background information including experimental data, past literature, and expert knowledge can be 

used to create DAGs of ecological systems. For example, Ethier and Nudds (2017) gathered 

information from published literature and local stakeholder knowledge to create DAGs depicting 

factors affecting population dynamics of bobolink (Dolichonyx oryzivorus). In another study, 

Cronin and Schoolmaster (2018) synthesized past literature to create a DAG representing the 

causes of trait covariation. Expert opinion can also be elicited to generate DAGs. To ensure 

credibility and transparency, researchers should apply formal methods for surveying experts, 

which has been developed within the ecological literature (e.g., Choy et al. 2009, Kuhnert et al. 

2010, Martin et al. 2012, Drescher et al. 2013), including for the development of causal diagrams 

(e.g., Marcot et al. 2006, McNay et al. 2006). For example, Marcot et al. (2006) show how to use 

expert review to create their DAG on the probability of capture of northern flying squirrels. 
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Figure 2.3 A DAG representing how different factors may influence forest species abundance.  

 

As a general ecological example, Figure 2.3 presents a DAG adapted from Adams et al. (2015), 

showing how different factors are expected to influence forest species abundance across a 

hypothetical region (Step 1, Figure 2.2). Here, protected areas are shown to effect forest species 

abundance through three intermediate processes: fire, poaching and logging (Adams et al. 2015). 

Other variables including distance to roads and cities, slope, and elevation effect both protected 

areas placement (protected areas are often placed in high and far places; Joppa et al. 2009) and 

forest species abundance through their effects on fire, poaching and/or logging (Adams et al. 

2015). We have created a simulated dataset, matching the causal structure of this DAG (see 

https://doi.org/10.6084/m9.figshare.19541059 for R code). We will use this DAG and simulated 

dataset to work through the rest of the SCM workflow (Steps 2-5, Figure 2.2). Specifically, we 

will aim to answer how protected areas, fire, logging and poaching each effect forest species 

abundance. Because our simulated data was created with specified (i.e., known) causal effects, we 

can use it to show how the SCM framework can return accurate causal estimates.  
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2.4.2 Step 2: Test DAG-Data Consistency 

 

Once a DAG has been created, it can be tested against observational data to check for DAG-data 

consistency. Simply put, a DAG often asserts multiple independencies that should hold in the 

observational data, given that both the DAG and observational data are representative of the data 

generating process. Given a DAG, a pair of variables can be independent of each other (e.g., X is 

independent of Y) if there are no paths (i.e., a sequence of nodes and arrows) connecting them. As 

well, a pair of variables can be conditionally independent. Conditional independencies emerge 

from d-separation (dependency separation; Pearl 1988), a graphical rule for deciding whether a 

variable X is independent of another variable Y, given a set of variable(s), Z in a path.  

 

d-separation (Pearl, 1988): A set of variables, Z, is said to block (or d-separate) a path 

from one variable to another if either  

(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (variable with two incoming arrows) that 

is outside Z and does not cause any variables in Z 

If all paths between X and Y are blocked (or d-separated) by Z, then X and Y are 

independent given Z, written X⊥Y|Z. For a more detailed discussion of d-separation, 

readers can reference Shipley (2000) and Shipley (2016) which discuss d-separation within 

an ecological context.  

 

DAG-data consistency requires that all implied independencies for a given DAG (including 

conditional independencies based on d-separation rules) are consistent with the observational 

dataset. For example, in a simplified DAG, X à Z à Y, X is independent of Y, given Z (an 

arrow-emitting variable that d-separates the path from X to Y). Therefore, the associated 

observational data should show that X is independent of Y when Z is adjusted for. Often a DAG 

will hold many independencies and these independencies can be tested against a dataset to ensure 

DAG-data consistency. If all implied independencies within a DAG coincide with the dataset, then 

this supports DAG accuracy. However, if at least one implied independency is refuted (i.e., does 

not match the data), then the DAG is not consistent with the data and would need to be altered.  
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For our DAG (Figure 2.3), there are 28 independencies that can be tested against our simulated 

data to ensure DAG-data consistency (Supplemental Material 2.8.1). In an observational study, we 

would test these independencies against observational data. Here, we proceed by testing DAG-data 

consistency using our simulated dataset, to walk readers through the process. Specifically, we use 

the R package ‘dagitty’, which provides a user-friendly way to evaluate whether a DAG is 

consistent with a dataset, even when DAGs become increasingly complex and include many 

variables (Textor et al., 2016). Dagitty uses a formal test of zero correlation to test whether each 

identified independency of a specified DAG is consistent with a given dataset (see Textor et al. 

2016 for details). Using dagitty, we tested DAG-data consistency and found that all 28 

independencies were consistent with our simulated dataset (Step 2, Figure 2.2; see 

https://doi.org/10.6084/m9.figshare.19541059 for R code). This is expected as our simulated data 

was created to match the causal structure of our DAG.  

 

In real world applications, a DAG may require a series of adjustments until DAG-data consistency 

is reached. As an ecological example, Schoolmaster et al. (2020) provide a real-world example of 

a DAG used to understand the relationship between tree species composition and canopy cover. 

Their initial DAG failed DAG-data consistency and was subsequently updated using a 

combination of domain knowledge and results from failed independence tests (Schoolmaster et al. 

2020). Anken et al. (2021) further provide general examples and guidelines on updating DAGs 

based on DAG-data consistency, using the R package ‘dagitty’. Importantly, they note that this 

process should be handled with care and always supported by domain knowledge. Failed 

independence tests are not necessarily proof that a DAG is incorrect; they can also indicate 

problems with the data (e.g., if the collected data does not represent the data-generating process). 

Ultimately, there should be a firm theoretical basis for creating and revising DAGs.  

 

Once a DAG has been sufficiently justified and tested and updated based on DAG-data 

consistency, the backdoor (or frontdoor) criterion can be employed (Step 3, Figure 2.2). Before 

moving on to application of backdoor and frontdoor criteria, we briefly review why they can be 

applied to DAGs to determine causal effects from observational data.  
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DAGs for causal effects 

Causal effects describe to what extent a predictor variable X (i.e., the cause) influences a response 

variable Y (i.e., an effect). The SCM framework uses counterfactual reasoning to determine the 

causal effect of X on Y (Pearl 2009). A counterfactual represents the potential outcome that would 

be realized if a predictor variable X was set to a different value, i.e., X=x. Specifically, a 

counterfactual for response variable Y is noted as Yx(u), which represents the value of (outcome) 

Y, had (predictor) X been x in unit (or situation) U = u (Rubin 2005, Morgan and Winship 2014). 

This counterfactual Yx(u) is represented by the equation: 

 

𝑌!(u) 	≜ 	𝑌"!(u)                             [2.1] 

 

Under the SCM framework, a DAG represents a structural model, M. In equation 1, Mx stands for 

a modified version of a model M, where X is intervened upon (i.e., “if X had been x”, X=x). 

Graphically Mx is represented by a modified DAG, where the arrows pointing into X are 

eliminated. Equation 1 states that the counterfactual Yx(u) is the solution for Y in the modified 

model Mx (see Galles and Pearl 1998 for axiom of Eq 1).  

 

This definition of counterfactuals can be used to predict the effect of interventions from 

observational data alone. Under the SCM framework, interventions are denoted by what’s known 

as the do-operator, written do() (Pearl 1995, 2009). For example, the query Q = P(y|do(x)) asks 

what the distribution of Y would be, if X is set to a particular value of x (i.e., the causal effect of X 

on Y). Related to Eq 1, this can be defined as  

 

P(y|do(x)) ≜ PMx (y)                                                                                                                      [2.2]  

 

showing that the distribution of outcome Y (if X is set to a particular value of x) is equal to the 

distribution of Y in the modified model Mx (Pearl 1995, 2009).  

 

Given that we do not have post-interventional data (following the distribution of Mx), the question 

becomes whether the query Q = P(y|do(x)) can be estimable from observational data (following 
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the distribution of M) and the set of causal assumptions represented by its associated DAG. When 

a query includes a do-expression, an algebraic procedure known as do-calculus (Pearl 1995) can be 

used to equate post-interventional distributions (those represented in Mx) to pre-interventional (or 

observational) distributions (those represented in M). To identify an interventional query, e.g., Q = 

P(y|do(x), the inference rules of do-calculus (outlined in Pearl 1995) need to be repeatedly applied 

until an expression is obtained that no longer contains a do-operator. If this can be done, then the 

post interventional query is estimable from observational data. While the application of do-

calculus makes for challenging reading, based on its derived inference rules, Pearl created the 

backdoor criterion and the frontdoor criterion, which are two DAG-based graphical rules that can 

be applied to estimate interventional queries from observational data (i.e., the causal effect of X on 

Y), without the need for do-calculus operations.  

 

2.4.3 Step 3: (Option 1): Apply Backdoor Criterion 

 

The backdoor criterion (Pearl 1993, Pearl 2009) is used to identify a set of variables, Z, that when 

controlled for, allows the post-interventional query Q = P(y|do(x)) to be accurately estimated from 

observational data. The backdoor criterion states that a set of variables, Z, is sufficient for 

estimating the causal effect of X on Y under two conditions: 

 

1. The variables in Z block all backdoor paths from X to Y. A path within a DAG is any 

sequence of arrows and nodes connecting two variables of interest, X and Y, regardless of 

direction. A backdoor path is a path between X and Y with an arrow pointing from Y and 

an arrow pointing into X. Backdoor paths create bias by providing one or more indirect, 

non-causal pathways through which information can leak from one variable through 

another, leading to spurious correlation. To block a backdoor path from X to Y, the 

backdoor path from X to Y must be d-separated. Again, the rules for d-separation are:   

d-separation (Pearl 1988): A set of variables, Z, is said to block (or d-separate) a path 

from one variable to another if either  
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(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (variable with two incoming arrows) that 

is outside Z and does not cause any variables in Z 

2. No element of Z is a descendant of (i.e., caused by) X. 

 

When applied, the backdoor criterion blocks all non-causal pathways between a predictor and 

response variable of interest, while leaving all causal paths open. As such, the application of 

backdoor criterion eliminates common statistical biases that can otherwise plague observational 

studies, including confounding, overcontrol, and collider bias. Supplementary Material 2.8.2 

defines each of these biases and shows how the backdoor criterion removes each of them. The 

main takeaway is that given a DAG, the application of the backdoor criterion will avoid all three 

biases, allowing for causal estimates to be made.  

 

Given our DAG (Figure 2.3), we can use the backdoor criterion to determine the sufficient set for 

adjustment required to answer our causal questions (Step 3, Figure 2.2). For example, if we want 

to quantify the causal effect of protected area on forest species abundance, there are nine backdoor 

paths that need to be blocked (i.e., d-separated):  

 

1. Forest Species Abundance à Carbon Sequestration ß Logging ß Elevation à 

Protected Area  

2. Forest Species Abundance à Carbon Sequestration ß Logging ß Slope à 

 Protected Area  

3. Forest Species Abundance ß Fire ß Distance to Roads and Cities à Logging  ß 

Elevation à Protected Area 

4. Forest Species Abundance ß Fire ß Distance to Roads and Cities à Logging  ß Slope 

à Protected Area 

5. Forest Species Abundance ß Logging ß Elevation à Protected Area 
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6. Forest Species Abundance ß Logging ß Slope à Protected Area 

7. Forest Species Abundance ß Poaching ß Distance to Roads and Cities à Protected 

Area 

8. Forest Species Abundance ß Logging ß Distance to Roads and Cities à Protected 

Area 

9. Forest Species Abundance ß Fire ß Distance to Roads and Cities à Protected Area 

 

The first four backdoor paths are already blocked because we have not adjusted for a collider 

variable (i.e., a variable with two incoming arrows: à X ß) in each of these four paths. 

Specifically, carbon sequestration acts as a collider variable in backdoor paths 1 and 2, and logging 

acts as a collider in backdoor paths 3 and 4. The remaining backdoor paths do not contain collider 

variables and must be blocked by adjusting for an arrow-emitting variable that isn’t a descendent 

of (i.e., caused by) protected area, our predictor variable. As such, path 5 can be blocked by 

adjusting for elevation, path 6 can be blocked by adjusting for slope, and paths 7-9 can all be 

blocked by adjusting for distance to roads and cities. Collectively, the causal effect of protected 

area on forest species richness, given this DAG can be quantified by adjusting for slope, elevation 

and distance to roads and cities.  

 

Given that application of the backdoor criterion can rapidly become difficult to keep track of for 

increasingly complex DAGs, researchers are encouraged to draw out their DAG on 

www.daggity.net (instructions within site), which will apply the backdoor criterion and generate 

the minimal sufficient adjustment set(s) required to determine causal effects, given a specified 

DAG and causal question. As an example, readers can visit dagitty.net/m18S_bV to work with our 

protected area DAG. Using this website (see Supplementary Material 2.8.3 for quick steps), to 

determine the causal effect of fire on forest species abundance, we can adjust for either (distance to 

roads and cities and protected area) or (logging and poaching). To determine the causal effect of 

poaching on forest species abundance we can adjust for either (distance to roads and cities and 

protected area) or (fire and logging). Last, to determine the causal effect of logging on forest 
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species richness we can adjust for either (distance to roads and cities and protected area) or (fire 

and poaching). When there are multiple options for a sufficient adjustment set based on the 

backdoor criterion, researchers can choose a set based on data availability and measurement error. 

If known, it is best to select the set where variables are measured most accurately. 

 

We note that given our DAG and linear simulated data, causal effects between variables of interest 

could also be determined using alternative methods such as SEM. However, a strength of the 

backdoor criterion is that it can allow causal estimation without requiring the availability of all 

variables in a DAG (Pearl 2009). For example, the effect of protected area on forest species 

abundance requires observational data on only variables for protected area, forest species 

abundance, slope, elevation, and distance to roads and cities. By only including variables 

necessary for answering specific causal queries, this can further enhance estimation accuracy by 

reducing researchers’ reliance on noisy and irrelevant data (MacDonald 2004). In addition, the 

application of the backdoor criterion does not require lengthy algebraic manipulations, isn’t 

computationally taxing and is compatible across linear and non-parametric statistical approaches 

(Pearl 2009). Ultimately, it provides ecologists with a widely applicable method for covariate 

selection across observational studies.   

 

2.4.4 Step 4: Choose a Statistical Model  

 

Once the backdoor criterion is used to determine the sufficient set(s) for adjustment, researchers 

must decide on an appropriate statistical model to carry out their causal analysis. Since our 

simulated data was created with a linear causal structure, we have chosen linear regression models 

for analysis (Step 4, Figure 2.2). However, it is up to each researcher to decide what form of 

analysis will best suit their data. As DAGs are non-parametric, they make no assumptions about 

the distribution of variables (e.g., normal) or the functional form of effects (e.g., linear, nonlinear, 

stepwise), making them compatible with a wide range of statistical methods. DAGs are also 

compatible with both frequentist and Bayesian statistical approaches since they are used to 

determine the sufficient set(s) for adjustment, and not the analysis itself. Statistical models 

developed under the SCM framework are still beholden to the same issues of sample size and 



 28 

measurement error in terms of the precision of resulting estimates; however, they are based on 

causal reasoning.  

 

2.4.5 Step 5: Causal Effect   

 

 

Figure 2.4 Results from linear regression models that employed the backdoor criterion to 
determine the causal effect of different predictor variables on forest species abundance, using our 
simulated dataset with specified (i.e., known) causal effects. Predictor, response, and control 
variables are highlighted in green, blue, and black, respectively; omitted variables are shaded in 
grey. We chose generalized linear regression as our statistical models; for example, the protected 
area model is represented by the linear regression equation: Forest Species Abundancei = α + 
β1Protected Areai + β2Slopei + β3Elevationi + β4Distance to Roads and Citiesi + εi. The known 
and estimated causal effects, along with AIC values are noted for each model. Lastly, the results 
from a causal salad model (where all variables are placed under one model) are shown as a 
contrast, with estimated effects for each included variable noted in red.  
 

Figure 2.4 shows that when the backdoor criterion was used to determine the sufficient set for 

adjustment, our linear regression models were able to correctly estimate the causal effect between 

selected predictor variables and forest species abundance, our response of interest (Step 5, Figure 

2.2; see https://doi.org/10.6084/m9.figshare.19541059 for R code). This is achieved because the 
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backdoor criterion blocks all non-causal pathways (i.e., backdoor paths) between our predictor and 

response variable of interest, while leaving all causal paths open. By adjusting for specific 

variables (if necessary) to answer specific causal questions, the backdoor criterion can guide 

causal inference in observational settings.  

 

Importantly, in performing a causal analysis we are not trying to find a ‘best model’ of the data 

according to criteria of model fit such as AIC, which seek to find the model with the greatest 

predictive support, regardless of potential biases present in estimated effect sizes (Arif and 

MacNeil 2022). For example, in Figure 5 we include a ‘causal salad’ model (Bhalla 2018; 

McElreath 2020) typical of ecological observational studies (including our own past work), 

whereby all available variables thought to affect a response are thrown into one statistical model 

and subsequently interpreted, without directly addressing the causal structure of the system. In our 

simulated example, the ‘causal salad’ model (Figure 2.4) is strongly favored over all other models 

by AIC, yet it provides an entirely inaccurate picture of the causal structure in the system. Under 

this approach, we obtain inaccurate estimates of our predictor variables of interest (Figure 2.4). For 

example, the estimated effect of protected area on forest species abundance is negligible due to 

overcontrol bias (see Supplementary Material 2.8.2) occurring from the inclusion of fire, poaching 

and logging, which are intermediate variables between the predictor and response variable of 

interest. Effect sizes for fire, poaching and logging are also biased due to the inappropriate 

inclusion of carbon sequestration, which is not a predictor variable but is instead influenced by our 

response variable of interest. Collectively, these results demonstrate the general principle that the 

models used for causal inference must be carefully built to consider relevant causal relationships 

within a system prior to analysis. It also directly undermines ‘variance explained’ as a modelling 

objective or arbiter of truth – without causal thinking to support modelling decisions, it is easy to 

add variables that seem to represent a better model according to a range of widely-used statistical 

criteria. In this, the backdoor criterion can play a critical role in model development that stands 

apart from typical model-selection methods, by determining the sufficient set(s) for adjustment 

required for causal inference. 
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2.4.6 The Frontdoor Criterion 

 

 

Figure 2.5 A DAG where the effect of X on Y cannot be estimated (due to an unobserved 
confounding variable U) without the use of the front door criterion.  
 

The DAG-based approach to causal models up to this point has assumed we have observational 

data on all variables needed to satisfy the backdoor criterion. However, in some circumstances, 

there may be a known but unobserved variable that confounds our results, preventing application 

of the backdoor criterion for determining causal effects. For example, if we want to determine the 

causal effect of X on Y for the DAG in Figure 2.5, the backdoor criterion instructs us to adjust for 

U. However, U is unobserved, and therefore cannot be used as a covariate in our final model. In 

such cases, an approach called the frontdoor criterion can be employed for causal inference (Pearl 

1995, Pearl 2009). To quantify the effect of X on Y in the presence of unobserved confounders, a 

variable Z satisfies the frontdoor criterion if:  

 

1. Z blocks all directed paths from X to Y  

2. There are no unblocked paths from X to Z 

3. X blocks all backdoor paths from Z to Y  

 

Once a Z variable is identified, the causal effect of X on Y can be determined by first employing 

the backdoor criterion to separately determine the effect of X on Z and Z on Y (Figure 2.5). The 

product of these two causal effects (i.e., point estimates) then becomes the effect of X on Y (Pearl 

1995; 2009). Below we show how to apply the front door criterion to determine the effect of 

sharks on rays based on a hypothetical ecological example.  
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Step 1: Create a DAG 

 

Figure 2.6 Employing the frontdoor criterion. (a) A DAG representing the causal structure between 
sharks and bivalves. Here, fishing pressure is an unobserved variable, and the frontdoor criterion 
needs to be employed to determine the effect of sharks on bivalves. (b, c) Employing the frontdoor 
criterion to determine the effect of sharks on bivalves from our simulated shark-bivalve dataset. 
Linear regression models were used to first determine the effect of sharks on rays and the effect of 
rays on bivalves, using the backdoor criterion to determine the sufficient set for adjustment. The 
product of these two effects gives us the effect of sharks on bivalves. Known causal effects (from 
our simulated data) are noted for comparison.  

 

The DAG in Figure 2.6a asserts that sharks effect rays, which in turn effect bivalves, through a 

top-down trophic cascade which has previously been supported (Myers et al. 2007, Buam and 

Worm 2009) and refuted (Grubbs et al. 2016) in the literature. In our hypothetical scenario, we 

also assert that fishing pressure effects both sharks and bivalves, but not rays. Here, observational 

data on fishing pressure isn’t available, making it an unobserved variable. Like our prior example, 

we created a simulated dataset (with known causal effects) matching our DAG (see 

https://doi.org/10.6084/m9.figshare.19541059 for R code) to demonstrate the use of the frontdoor 

criterion. Specifically, we will show how to employ the frontdoor criterion to return the causal 

effect of sharks on bivalves, which we have set to 0.02. 
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Step 2: Test DAG-data Consistency  

 

Given the DAG in Figure 2.6a, there are two independencies that can be tested based on d-

separation rules: 1) fishing pressure is independent of rays, given sharks and 2) sharks are 

independent of bivalves, given fishing pressure and rays. However, testing either independency 

requires observational data on fishing pressure (our unobserved variable). Therefore, due to our 

unobserved confounding variable, DAG-data consistency cannot be tested based on d-separation 

rules in this case. However, we can still apply the frontdoor criterion for causal estimates with our 

asserted DAG (unchecked for DAG-data consistency).  

 

Step 3 (Option 2): Apply Frontdoor Criterion  

 

The frontdoor criterion can be employed to find the effect of sharks on bivalves. Rays satisfy the 

frontdoor criterion since (1) they block all directed paths from sharks to bivalves, (2) there are no 

unblocked backdoor paths from sharks to rays, and (3) all backdoor paths from rays to bivalves are 

blocked by sharks (see rules for frontdoor criterion above). To determine the effect of sharks on 

bivalves, we first need to apply the backdoor criterion to determine the effect of sharks on rays 

(which can be estimated without any adjustments), and the effect of rays on bivalves (which can be 

estimated by adjusting for sharks). Both sub-models can employ the backdoor criterion without 

needing to adjust for fishing pressure (our unobserved variable). The causal effect of sharks on 

bivalves can then be estimated by multiplying the effect of sharks on rays by the effect of rays on 

bivalves.  

 

Step 4: Choose a Statistical Model 

 

We use linear regression models because our simulated data was created using linear relationships. 

 

Step 5: Causal Effect 
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Figure 2.6 shows that when the frontdoor criterion is employed, we were able to accurately 

determine the causal effect of sharks on bivalves (see 

https://doi.org/10.6084/m9.figshare.19541059 for R code). Specifically, the product of the effect 

of sharks on rays (Figure 2.6b) and the effect of rays on bivalves (Figure 2.6c) gave us an accurate 

causal estimate of sharks on bivalves (0.02), without having to adjust for fishing pressure, our 

unobserved confounding variable. In contrast, a model with just rays regressed on sharks gives a 

misleading estimate of 0.99. Here, the correlation between sharks and rays is spurious due to the 

confounding effect of our unobserved fishing pressure variable.  

 

The front door criterion is not as widely applicable to ecological data as the backdoor criterion, 

given that it requires a specific causal structure, specified by its three rules (see above). However, 

in cases where these rules are met, the frontdoor criterion can provide causal estimates, regardless 

of the strength of unobserved confounding. As well, it can be employed in the presence of multiple 

unobserved confounding variables.  

 

2.5 EXAMPLES OF SCM IN ECOLOGY 

Although currently underutilized, the SCM framework and its application of DAGs has been used 

to understand the causal structure of ecological systems. Here, we provide an overview of two 

recent applications of Pearl’s SCM framework in ecology.  

 

2.5.1 What Causes Species-level Trait Covariation?  

 

Ecological theory suggests that there may be several causes of species-level trait covariation 

including size, pace of life, evolutionary history, and ecological condition (Cronin and 

Schoolmaster 2018). Although numerous studies have attempted to quantify the causal effect of 

these factors on trait covariation, these studies do not explicitly consider the causal structure 

driving trait variation, which in turn can lead to inappropriate statistical adjustments and biased 

estimates. To resolve this, Cronin and Schoolmaster 2018 synthesized relevant literature and 
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domain knowledge to create a DAG representing the causes of species-level trait covariation that 

can be applied to across multiple kingdoms.  

 

Figure 2.7 A DAG representing how different factors influence species-level trait covariation, 
from Cronin and Schoolmaster 2018.  
 

As their Figure 2.7 DAG suggests, size and pace-of-life may be two direct causes of trait 

covariation, and their influence on traits are confounded by evolutionary history and ecological 

conditions. To determine how size and pace of life effect trait covariation, they first had to 

accurately quantify their causal effect on each trait, as this information was subsequently used to 

determine their influence on trait covariation. One way to do this is to employ the backdoor 

criterion. For example, to determine the effect of size on a trait (e.g., Trait 1 in Figure 2.7), the 

backdoor criterion instructs us to adjust for either pace of life or evolutionary constraints and 

ecological condition to remove the confound of evolutionary history and ecological condition. In 

contrast, previous studies have estimated the effect of either size or pace of life on traits without 

first controlling for these confounding variables (e.g., Brown et al. 2004; Johnson et al. 2012). 

Another widely accepted approach has been to first account for evolutionary constraints and then 

analyze the residuals (e.g., Bielby et al. 2007). However, Cronin and Schoolmaster 2018 show that 

these approaches lead to erroneous estimates about the causes of trait covariation. They also 

showed that methods including principle component analysis (PCA) and exploratory factor 
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analysis (EFA) are not able to partition trait covariance when the direct causes (size and pace of 

life) are correlated due to shared drivers (evolutionary history and ecological conditions). This is 

concerning as several high-profile studies have used these techniques to reach their conclusions 

(e.g., Wright et al. 2004 concluded from a PCA that size is the only causes of lead trait 

covariance). Taken together, a well-considered DAG guides ecologists on the sufficient set(s) for 

adjustment required to quantify the causes of trait-covariation and further highlights the utility of 

Pearl’s SCM framework for observational causal inference.  

 

2.5.2 Is Biodiversity a Cause of Ecosystem Functioning?  

 

 

 
 

Figure 2.8 Two DAGs representing the causal relationship between biodiversity and ecosystem 
function. The DAG in (a) is from Schoolmaster et al. 2020 and the DAG in (b) is from Grace et al. 
2021.  
 

A central goal of ecology is to understand the causes of ecosystem functioning (Mittelbach 2012); 

however, correctly identifying these causes has been difficult because there are numerous 

hypothesized drivers that are often interrelated. A widespread belief among ecologists is that 

biodiversity is a prominent cause of ecosystem functioning (Tilman et al. 2014). Hundreds of 

papers have published Biodiversity-Ecosystem Function (BEF) correlations across various 

ecological systems, with conflicting theories and conclusions (Schoolmaster et al. 2020). To better 

understand whether biodiversity causally effects ecosystem functioning, Schoolmaster et al. 2020 



 36 

created a DAG by synthesizing BEF literature and logic (Figure 2.8a). Their DAG deviates from 

the standard model whereby species richness is assumed to effect ecosystem functioning through 

functional trait diversity (Loreau 2001), and instead posits that species composition effect both 

species richness and functional trait diversity, with functional trait diversity driving ecosystem 

functioning (Figure 2.8a).   

 

Given their DAG (Figure 2.8a), the backdoor criterion states that functional trait distribution and 

the environment needs to be adjusted for to determine the causal effect (or lack thereof) of 

biodiversity on ecosystem function. Using simulated and empirical data, Schoolmaster et al. 2020 

show that when this is done, there is no causal relationship found between biodiversity and 

ecosystem functioning. Instead, they argue that previous observational studies that have found an 

association between biodiversity and ecosystem function arise from model misspecification (i.e., 

having an incomplete or incorrect set of predictors). For example, given their DAG, confounding 

bias from failing to condition on environmental factors can lead to spurious (i.e., non-causal) 

associations between biodiversity and ecosystem functioning. Given their DAG, Schoolmaster et 

al. 2020 conclude that BEF correlations are non-causal associations. Instead, their model suggests 

that it is species composition and not biodiversity that drives ecosystem functioning.   

 

Recently, a comment on Schoolmaster et al. (2020) was published by Grace et al. (2021), 

criticizing their DAG and conclusions, asserting that biodiversity causally effects ecosystem 

functioning. They provide an alternative DAG, which maintains that biodiversity can causally 

effect ecosystem functioning indirectly through its effect on trait diversity (i.e., ‘distinct functional 

trait’; Figure 2.8b). This aligns with the standard model (Loreau, 2001) on BEF correlations being 

causal. Schoolmaster et al. 2022 responded with a comprehensive reply, addressing critiques of 

their DAG, clarifying the SCM framework, and showing that the standard model and past 

interpretations of BEF experiments are not supported by causal analyses. Interestingly, 

Schoolmaster et al. 2022 note that the simulations provided by Grace et al. (2021) do not represent 

the standard model DAG they defend, but instead map onto the DAG presented by Schoolmaster 

et al. (2020).  
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Although the issue of BEF correlation versus causation has yet to be resolved, there now exist two 

contradictory DAGs that can be used to focus critical debate and deepen our understanding of this 

potential process. As noted by Grace et al. (2021), DAGs allow researchers to state their causal 

assumptions explicitly and transparently. Ultimately, this allows other researchers to examine 

those causal assumptions and subsequent interpretations critically, as was done by Grace et al. 

(2021) and Schoolmaster et al. 2022. Ultimately, communicating and critiquing researchers’ causal 

assumptions through DAGs may lead to a deeper understanding of BEF correlations, as well as for 

other ecological phenomena.  

2.6 ADDITIONAL CONSIDERATIONS 

 
2.6.1 Inaccurate or Unknown Causal Structure 

 

One of the potential limitations of DAGs is that they may not accurately represent the true causal 

nature of an ecological system. Simply put, inaccurate DAGs will lead to inaccurate causal 

inference. This can arise when using incorrect theory and background information, or by creating 

DAGs based on available data, rather than incorporating all relevant variables (such as omitted or 

unobserved variables). However, as a researcher’s causal assumptions are explicitly stated through 

graphical representation, DAGs allow reviewers to explicitly critique and correct potential 

problems with far more transparency than is typical (Pearl 2009). Further, the ability to test DAG-

data consistency via d-separation rules facilitates more reliable conclusions (Textor et al. 2016).  

 

We believe that SCM should be used whenever researchers have causal objectives and sufficient 

background knowledge to create and justify the assertions made in their DAG. If, however, the 

causal structure between the predictor and response variables of interest are not fully known, but 

there exists enough background knowledge and support to create several plausible DAGs (each of 

which support DAG-data consistency), it may be advantageous to present all DAGs as plausible 

alternatives, reflecting this epistemic uncertainty. This should provide more accurate estimates, 

especially when predictor variables have the same covariate adjustments across a range of 
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plausible DAGs. We emphasize that since several DAGs can pass DAG-data consistency, it is 

always imperative to first justify a DAG (or set of DAGs) based on theory, instead of relying 

solely on DAG-data consistency.  

 

2.6.2 Application within Quasi-Experimental and Experimental Approaches 

 

In recent years, ecologists have promoted the use of quasi-experimental methods for causal 

inference, including propensity score matching, before-after-control-impact (BACI) studies, 

regression discontinuity design (RDD), and instrumental variables (IV; Butsic et al. 2017, Larsen 

et al. 2019). Here, DAGs and the principles of the SCM framework (e.g., the backdoor criterion) 

can be used to create more robust study designs as well as explicitly communicate assumptions 

required for quasi-experimental approaches (see Chapter 5 for details). For example, propensity 

score matching is employed to remove confounding bias associated with ecological observational 

studies (e.g., Ramsey et al. 2019). However, although past ecological studies assume that all 

confounding variables enter a propensity score analysis, it is unclear how these variables relate to 

one another and within the broader causal structure of a study system. Without this knowledge, it 

is unclear whether there are unmeasured confounding variables that need to be included in the 

propensity score (leading to confounding bias) or whether the accidental inclusion of non-

confounding variables will lead to other forms of bias (e.g., overcontrol and collider bias; Shrier 

2009, Sjolander 2009, Mansournia et al. 2013). As noted by Pearl, for a propensity score analysis 

to be valid, the selected variables that enter a propensity score must satisfy the backdoor criterion 

to remove bias (Pearl 2009). In other words, the variables that enter a propensity score should be 

the sufficient set for adjustment based on the backdoor criterion. For an overview of how the SCM 

framework can guide quasi-experimental study designs, we refer readers to Chapter 5. By utilizing 

DAGs and the principles of the SCM framework, ecologists can design more robust quasi-

experimental approaches, while explicitly communicating their causal assumptions to their 

audience. 

 

DAGs and the SCM framework can also guide causal inference in experimental studies (see 

Chapter 6 for details). Like observational studies, experimental studies rely on causal assumptions 
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that must be ensured by the researcher (Kimmel et al. 2021). Here, DAGs can be used to 

understand if data collected from an experimental set up (e.g., RTCs) can be used for causal 

inference or if there are sources of bias that need to be accounted for (e.g., Williams et al. 2018; 

Schoolmaster et al. 2020; Schoolmaster et al. 2022). For example, Williams et al. (2018) overview 

a RCT investigating the effect of an intervention promoting breastfeeding on cognitive 

development during childhood. A DAG of this study clarifies that only using data from individuals 

who attend a follow-up session can lead to collider bias because both the intervention and outcome 

can affect the likelihood of individuals following up; therefore, follow-up data should not be 

distinctly analyzed (Williams et al. 2018). As an ecological example, Schoolmaster et al. (2020) 

use their biodiversity-ecosystem function (BEF) DAG to argue that BEF experiments do not 

directly manipulate biodiversity, but rather manipulate community structure, failing to isolate for 

the biodiversity effect.    

2.7 CONCLUSION 

Ecology has relied on observational data from its inception (Elton 1927), yet use of causal logic 

has typically been limited to RCTs. Our ongoing reliance on observational data to understand 

fundamental questions in ecology requires the increased use of valid causal inference 

methodologies. Here we have introduced Pearl’s SCM framework, which allows causal inference 

to be made in a wide range of observational contexts. The SCM framework uses DAGs to 

visualize the hypothesized causal structure of a system or process under study, allowing 

researchers to explicitly communicate their causal assumptions. Once a DAG has been built that is 

sufficient to characterize a system or process under study, the backdoor or frontdoor criterion can 

be employed to guide appropriate statistical adjustments required for causal inference. Doing so 

can improve the validity of causal conclusions drawn from observation-based research. 

 

2.8 SUPPLEMENTAL MATERIAL 

 
2.8.1 Testing DAG-data Consistency 
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Once a DAG has been created, it can be directly tested against observational data to ensure DAG-

data consistency, which is when data are consistent with all independencies implied by a given 

DAG. For example, there are 28 independencies that are implied by our forest species abundance 

DAG (Figure 3):  

 

1. Carbon Sequestration ⊥ Distance to Roads and Cities | Fire, Logging, Poaching 

2. Carbon Sequestration ⊥ Distance to Roads and Cities | Forest Species Abundance, Logging 

3. Carbon Sequestration ⊥ Protected Area | Fire, Logging, Poaching 

4. Carbon Sequestration ⊥ Protected Area | Forest Species Abundance, Logging 

5. Carbon Sequestration ⊥ Elevation | Distance to Roads and Cities, Logging, Protected Area 

6. Carbon Sequestration ⊥ Elevation | Fire, Logging, Poaching 

7. Carbon Sequestration ⊥ Elevation | Forest Species Abundance, Logging 

8. Carbon Sequestration ⊥ Fire | Forest Species Abundance, Logging 

9. Carbon Sequestration ⊥ Poaching | Forest Species Abundance, Logging 

10. Carbon Sequestration ⊥ Slope | Distance to Roads and Cities, Logging, Protected Area 

11. Carbon Sequestration ⊥ Slope | Fire, Logging, Poaching 

12. Carbon Sequestration ⊥ Slope | Forest Species Abundance, Logging 

13. Distance to Roads and Cities ⊥ Forest Species Abundance | Fire, Logging, Poaching 

14. Distance to Roads and Cities ⊥ Elevation 

15. Distance to Roads and Cities ⊥ Slope 

16. Forest Species Abundance ⊥ Protected Area | Fire, Logging, Poaching 

17. Forest Species Abundance ⊥ Elevation | Distance to Roads and Cities, Logging, Protected 

Area 

18. Forest Species Abundance ⊥ Elevation | Fire, Logging, Poaching 

19. Forest Species Abundance ⊥ Slope | Distance to Roads and Cities, Logging, Protected Area 

20. Forest Species Abundance ⊥ Slope | Fire, Logging, Poaching 

21. Elevation ⊥ Fire | Distance to Roads and Cities, Protected Area 

22. Elevation ⊥ Poaching | Distance to Roads and Cities, Protected Area 

23. Elevation ⊥ Slope 

24. Fire ⊥ Logging | Distance to Roads and Cities, Protected Area 

25. Fire ⊥ Poaching | Distance to Roads and Cities, Protected Area 
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26. Fire ⊥ Slope | Distance to Roads and Cities, Protected Area 

27. Logging ⊥ Poaching | Distance to Roads and Cities, Protected Area 

28. Poaching ⊥ Slope | Distance to Roads and Cities, Protected Area 

 

We use the R package ‘dagitty’ to test if these 28 independencies coincide with our simulated data 

(see https://doi.org/10.6084/m9.figshare.19541059 for R code). All 28 independencies are 

consistent with our simulated data, ensuring DAG-data consistency.  

 

2.8.2 Preventing Overcontrol, Confounding and Collider Bias:  

 

 
Supplementary Figure 2.9 DAGs depicting a (a) chain, (b) fork, (c) collider, and (d) descendant of 
a collider. To estimate the effect of A on B, biases associated with these structures, which include 
confounding, overcontrol, and collider bias, must be avoided. 
 

The components of a DAG can be broken down into three types of causal structures: chains, A à 

C à B (Supplementary Figure 2.9a); forks, A ß C à B (Supplemtary Figure 2.9b); and colliders 

A à C ß B (Supplementary 2.9c). When appropriate statistical adjustments are not made, these 

three causal structures can each lead to a specific type of bias: overcontrol, confounding, and 

collider bias (e.g., see also Elwert, 2014). Here, we review how the backdoor criterion directs us to 

avoid these biases, which can otherwise plague observational correlative studies. 

 

Overcontrol bias: In a chain, A à C à B, two variables may be associated because one variable, 

A, indirectly causes the other, B (Supplementary Figure 2.9a). If we want to find the effect of A on 

B, conditioning on C would block the association flowing from A to B. This is known as 

‘overcontrol bias’ and can be resolved by not conditioning on an intermediate variable between 

predictor and response variable. Here, the application of the backdoor criterion instructs us to not 

condition on variable C in order to determine the effect of A on B.  
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Confounding bias: In a fork, A ß C à B, two variables, A and B, may be associated because of 

a common cause, C (Supplementary Figure 2.9b). If we want to find the effect of A on B, then not 

conditioning on C would cause a spurious, or biased association between A and B. This is known 

as ‘confounding bias’ and can be resolved by conditioning on the common cause. Here, the 

application of the backdoor criterion instructs us to condition on variable C in order to determine 

the effect of A on B. 

 

Collider bias: In a collider, A à C ß B, two variables, A and B, may be associated because they 

have a common outcome, C (i.e., a collider, Figure 2.9c). Conditioning on a collider variable, C, 

creates a spurious, or biased association between A and B. This is known as ‘collider bias’ and can 

be resolved by not conditioning on a collider (e.g., C in Figure 2.9c and Figure 2.9d) or any 

descendant of a collider (e.g. D in Figure 2.9d). Here, the application of the backdoor criterion 

instructs us not to condition on variable C (Fig S1c and S1d) or D (Fig S1d) in order to determine 

the effect of A on B. 

 

While examples of confounding variables can be found throughout the ecology literature (e.g., 

land use change acts as a confound for determining the effect of climate on elevational species 

redistribution, Guo et al., 2018), the same cannot be said for overcontrol and collider bias. A 

literature search using Web of Science with the search terms “ecology” and “overcontrol” or 

“collider” resulted in no papers that mentioned these biases. This does not mean that these biases 

do not occur in observational ecological studies, but rather that they are not knowingly adjusted 

for. It is also noted that while ecologists are aware of confounding, it does not mean they are 

accurately being adjusted for across observational studies. For example, covariate adjustments 

resulting in the inclusion of multiple potential confounders can lead to bias, instead of reducing it 

(Shrier and Platt, 2008).  

 

Given a DAG, the application of the backdoor criterion will eliminate overcontrol, confounding, 

and collider bias, allowing for more reliable causal estimates from observational data.   
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2.8.3 Applying the Backdoor Criterion Using www.dagitty.net 

 

The backdoor criterion can be employed to determine the sufficient set(s) for adjustment required 

to quantify causal estimates between variables of interest. Since the application of the backdoor 

criterion can become complex and time consuming, users can use www.dagitty.net as a resource to 

draw their DAG (instructions within site). Given a DAG, and specified predictor and response 

variables, this website will automatically generate the backdoor adjustment set without needing to 

do it by hand. A saved version of our forest species abundance DAG (Figure 2.3) can be found 

here: dagitty.net/m18S_bV. Given this DAG, let’s use this website to determine the effect of 

protected area on forest species abundance: 

 

1. To select the predictor variable, protected areas, click on this variable, then select 

“exposure” under the Variable tab on the top left of the screen.  

2. To select the response variable, forest species abundance, click on this variable, then 

select “outcome” under the Variable tab on the top left of the screen.  

3. Under the ‘Causal effect identification’ tab on the top right of the screen, select 

‘Adjustment (total effect)’. The backdoor adjustment set will be noted here. Given our DAG, 

to determine the effect of protected are of forest species abundance, distance to roads and 

cities, elevation, and slope must be adjusted for. 
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CHAPTER 3 CAUSAL DRIVERS OF 
CLIMATE-MEDIATED CORAL REEF 

REGIME SHIFTS 

 
A version of this work has been published: as Arif S, Graham NAJ, Wilson S, M 

MacNeil A. 2022. Ecosphere 13(3): e3956.  

 

3.1 ABSTRACT 

Climate-induced coral bleaching events are a leading threat to coral reef ecosystems and 

can result in coral-macroalgal regime shifts that are difficult to reverse. It is unclear how 

different factors causally influence regime shift or recovery trajectories after a bleaching 

event. Here, we use structural causal modeling (SCM) and its application of directed 

acyclic graphs (DAGs) to determine how key factors affect regime shift vs recovery 

potential across coral reefs in Seychelles, which were severely impacted by bleaching 

events in 1998 and 2016. Our causal models reveal additional causal drivers of regime 

shifts, including initial macroalgae cover, wave exposure, and branching coral cover. We 

also find that reduced depth and structural complexity and increased nutrients increase 

the likelihood of regime shifting. Further, we use a DAG-informed predictive model to 

show how recovering reefs are expected to change after a recent 2016 bleaching event, 

suggesting that three out of twelve recovering reefs are expected to regime shift given 

their pre-disturbance conditions. Collectively, our results provide the first causally-

grounded analysis of how different factors influence post-bleaching regime shift vs 

recovery potential on coral reefs. More broadly, SCM stands apart from previous 

observational analysis and provides a strong framework for causal inference across other 

observational ecological studies.  
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3.2 INTRODUCTION 

Climate-induced coral bleaching is currently one of the leading threats to coral reef 

ecosystems and is expected to be an increasingly frequent stressor for coral reefs in the 

future (Hughes et al. 2018). A potential long-term consequence of climate-induced 

bleaching events is that they can lead to a coral-macroalgal regime shift, whereby the 

benthic composition abruptly transitions from a coral dominated reef to one dominated by 

macroalgae (Graham et al. 2015). Regime shifts have become a key concern for coral reef 

conservation as they represent substantial change and degradation of coral reefs 

worldwide, which are often difficult to reverse (Bellwood et al. 2004). For example, 

climate-driven regime shifts have led to altered trophic structure, diversity, and species 

composition of reef fish communities (Hempson et al. 2017; Robinson et al. 2019a), as 

well as increased catch instability and fisheries dependence on herbivorous fish 

(Robinson et al. 2019b). It is important to note that not all coral reefs shift towards algal 

domination after a bleaching event (e.g., Gilmour et al. 2013), and past research has 

found correlations between key predictor variables and regime shift vs recovery 

trajectory (Graham et al. 2015). However, these findings were not grounded in causal 

inference, the deliberate use of specific methods to infer causation (Pearl 2009).  

 

A literature review of causal inference in coral reef ecology (Supplementary Material 

3.6.7) shows that no observational studies to date have employed causal inference 

methods to determine relationships for reef regime shifts; however, most studies used 

causal language to communicate their results (e.g., “the effect of X on Y”). With the 

development of structural causal modelling (SCM; Pearl 2009), there is an opportunity to 

revisit these analyses to understand causal effects of factors influencing regime vs 

recovery trajectories on coral reef ecosystems. SCM is a causal inference method that can 

be used to determine causal relationships from observational data. It uses directed acyclic 

graphs (DAGs) to visualize the causal structure of a system under study, which is then 

used to guide covariate selection required for observational causal inference (see 

Methods for details).  Already, DAGs have been applied across several ecological 
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studies, leading to more informed insights across study systems (Cronin and 

Schoolmaster 2018; Schoolmaster et al. 2020). 

 

Here, we employ SCM to determine how key factors have influenced recovery vs regime 

shift trajectories after a widespread bleaching event in Seychelles. The mass coral 

bleaching event of 1998 reduced coral cover by over 90% across 21 coral reef sites in the 

inner Seychelles (Graham et al. 2015). Post-disturbance trajectories in cover of coral and 

macroalgae resulted in approximately half of these sites recovering live coral, while the 

other half shifted towards macroalgal domination. In addition, the 2016 bleaching event 

further impacted reefs across Seychelles, reducing coral cover by 70% on those reefs that 

had recovered from the 1998 disturbance (Wilson et al. 2019). It is currently unclear 

whether reefs that recovered from the 1998 bleaching event will recover a second time, or 

undergo regime shifts to macroalgal dominance. Applying SCM to this unique and well-

studied system, our study addresses two research questions: (1) does SCM lead to 

additional insights on the causal drivers of regime shifts following the 1998 bleaching 

event in Seychelles and (2) which of the reef sites that recovered following 1998 are 

expected to regime shift as a result of the 2016 bleaching event? By employing SCM, our 

study aims to better understand the causal factors influencing coral-algal regime shift 

dynamics.  

3.3 METHODS 

 
3.3.1 Ecological Surveys 

 

Seychelles were impacted by a widespread climate-induced coral bleaching event in 1998 

(Goreau et al. 2000). Pre- (1994) and post-bleaching (2005, 2008, 2011, 2014) surveys of 

21 coral reefs throughout the inner Seychelles Islands were conducted using identical 

methods (see Graham et al. 2015 for details). Coral reefs were categorized as either 

regime shifting or recovering based on data collected before and 16 years after the 1998 

bleaching event. Regime shifting reefs had post-disturbance macroalgae cover greater 

than coral cover and patterns through time showing high and/or increasing cover of 
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macroalgae over time. In contrast, recovering reefs had post-disturbance coral cover 

greater than macroalgal cover and patterns through time showing high and/or increasing 

levels of coral cover over time. In total, 12 reefs were classified as recovering and 9 were 

classified as regime shifting (see Graham et al. 2015 for details).  

 

3.3.2 Causal Framework  

 

Pearl’s structural causal model (SCM; Pearl 2009) framework uses directed acyclic 

graphs (DAGs) to visually represent the causal structure of a system under study. 

Specifically, nodes within a DAG represent variables, with directed arrows between 

nodes representing possible causal effects (e.g., X à Y shows that X affects Y). A lack 

of arrow assumes no causal relationship between variables, and these represent our priori 

assumptions about where causality cannot occur (Elwert 2014). DAGs must be acyclic, 

meaning that they cannot contain bi-directional relationships or a feedback loop where a 

variable either directly or indirectly causes itself (Elwert 2014). However, DAGs may 

still represent ecological systems with bi-directional relationships by more finely 

articulating the temporal sequence of events (Greenland et al. 1999). DAGs are also non-

parametric, making them compatible with a wide range of statistical analyses (Glymour 

and Greenland, 2008).  

 

 

Figure 3.1 A workflow for going from DAGs to causal inference under the SCM 
framework.  
 
 
The first step of a SCM is to create a DAG (Step 1, Figure 3.1). DAGs should be created 

and justified based on the accumulation of domain knowledge, which can include expert 

opinion and past and ongoing research. DAGs should include all measured and 

unmeasured variables required to depict the system or process under study, as well as all 
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common causes of any pair of variables included in the DAG (Sprites et al. 2001; 

Glymour and Greenland, 2008). Here, we have created a DAG representing how 

variables may influence regime shift vs recovery trajectories in Seychelles (Figure 3.2) 

based on ecological knowledge, and our own past and ongoing research.   

 

 

Figure 3.2 DAG representing the causal structure of factors influencing regime shift vs 
recovery trajectories in Seychelles coral reefs. We note that herbivorous fish biomass, 
branching coral, macroalgae cover, and structural complexity represent pre-disturbance 
observational data (1994), whereas depth, MPA status, and wave exposure data represent 
values that are assumed to stay stable across years. Although nutrient data was collected 
in 2004, they are expected to capture pre-disturbance nutrient levels across reef sites (see 
Graham et al. 2015). 
 
 
Several key factors are assumed to influence regime shift trajectory after a climate-

induced bleaching event: MPA, depth, nutrients, branching coral, structural complexity, 

herbivorous fish biomass, wave exposure and pre-disturbance macroalgal cover (Figure 

3.2). We note that we used 1994 (pre-disturbance) data for branching coral, macroalgae 

cover (not included in Graham et al. 2015 analysis), herbivorous fish biomass, and 

structural complexity because we wanted to know how their condition prior to the 1998 

bleaching event would influence regime shift vs recovery trajectory and to resolve any bi-
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directional relationships that may exist between our predictor variables and response 

(Glymour and Greendale 2008). A detailed rational of each directed arrow in our DAG is 

presented in our Supplementary Table 3.1.  

 

Once a DAG is created, it can be checked for DAG-data consistency (Step 2, Figure 3.1). 

Simply put, a specified DAG will have (often many) independencies between variables 

(e.g., A is independent – or d-separated – from B, if C is adjusted for) that should be 

compatible with the observational dataset, given that both the DAG and data are 

representative of the data-generating process. If all implied independencies are 

compatible with the data, it provides overall support for a DAG. We tested our DAG for 

DAG-data consistency using the R package ‘dagitty’ (Textor et al. 2016) which 

confirmed that all 32 independencies implied by our DAG were consistent with our 

observational data (Supplementary Material 3.6.3).  

 

A finalized DAG is then used to determine which variables need to be controlled (e.g., 

through covariate adjustment) for to determine a causal effect for a specific causal query. 

This is the critical step that separates SCM from correlative observational studies. 

Specifically, a graphical procedure known as the backdoor criterion guides covariate 

selection required to determine the causal effect of X on Y (Pearl 2009; Supplementary 

Material 3.6.4). In short, the backdoor criterion instructs us to block all non-causal 

pathways (i.e., backdoor paths) between our predictor and response variable of interest, 

while leaving all causal paths open. As such, the application of backdoor criterion 

eliminates common statistical biases that can otherwise plague observational studies, 

including confounding, overcontrol, and collider bias (see Chapter 2.8.2 for definitions) . 

Here, we employ the backdoor criterion to guide covariate selection for each predictor 

variable expected to influence recovery vs. regime shift trajectory (Step 3, Figure 3.1; 

Supplementary Material 3.6.4). We note that only the effect size of the predictor variable 

of interest is interpreted for its associated model, with additional covariates acting as 

required controls. This approach differs from the ‘causal salad’ model (Bhalla 2018; 

McElreath 2020) commonly used throughout ecology – including in our own work – 
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where all assumed predictor variables are placed into one model and subsequently 

interpreted.  

 

Once the backdoor criterion is applied for covariate selection, researchers must choose an 

appropriate statistical model (Step 4, Figure 3.1). As DAGs are non-parametric, they 

make no assumptions about the distribution of variables (e.g., normal) or the functional 

form of effects (e.g., linear, nonlinear, stepwise), making them compatible with a wide 

range of statistical methods. Here, we applied a Bayesian logistic regression analysis to 

each of our causal models, where the response variable was 0 for recovering sites, and 1 

for regime shifting sites. We standardized our data by subtracting the mean of each 

variable and dividing by 2 standard deviations in order to assess relative effect sizes of 

our predicter variables (Gelman and Hill, 2007). We ran our models using the 

‘rethinking’ package on R, using weakly informative priors. Our final Bayesian logistic 

regression models (one for each predictor variable) were:   

 

Y! 	~	Bernoulli(𝑝!) 

𝑀𝑃𝐴	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽" + 𝛽#𝑀𝑃𝐴 

𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽" + 𝛽#𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	 + 𝛽$𝐷𝑒𝑝𝑡ℎ 

𝐻𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!)

= 𝛽" + 𝛽#𝐻𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	 + 𝛽$𝑀𝑃𝐴	 + 𝛽%𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	

𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔	𝑐𝑜𝑟𝑎𝑙	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽" + 𝛽#𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔	𝑐𝑜𝑟𝑎𝑙	 + 𝛽$𝑀𝑃𝐴	 + 𝛽%𝐷𝑒𝑝𝑡ℎ	 + 𝛽%𝑊𝑎𝑣𝑒	

𝐷𝑒𝑝𝑡ℎ	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽" + 𝛽#𝐷𝑒𝑝𝑡ℎ	

𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽" + 𝛽#𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	 + 𝛽$𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔	𝑐𝑜𝑟𝑎𝑙	

𝑊𝑎𝑣𝑒	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!) = 𝛽" + 𝛽#𝑊𝑎𝑣𝑒 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙	𝑚𝑎𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!)

= 𝛽" + 𝛽#𝑀𝑎𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒	 + 𝛽$𝐻𝑒𝑟𝑏𝑖𝑣𝑜𝑟𝑒	𝑏𝑖𝑜𝑚𝑎𝑠𝑠	 + 𝛽%𝐷𝑒𝑝𝑡ℎ	 + 𝛽%𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡𝑠	

+ 𝛽&𝑊𝑎𝑣𝑒	
Priors (for standardized data):  

𝛽"~	𝐶𝑎𝑢𝑐ℎ𝑦(0,10) 

𝛽#,...,)~	𝑆𝑡𝑢𝑑𝑒𝑛𝑡_𝑡(4,0,2.5) 
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3.3.3 DAG-Informed Predictive Model  

 

We further created a predictive model to determine how recovering reef sites would be 

expected to respond to subsequent bleaching events in 2016 (n=12). Predictor variables 

included all factors that were found to directly influence this response based on our 

previous DAG-based analysis, which were: depth, nutrient, branching coral cover, 

structural complexity, wave exposure and initial macroalgal cover (see results). This 

approach captures all relevant variables assumed to influence a response variable of 

interest and is expected to lead to both high in-sample and out-of-sample predictive 

accuracy. We excluded herbivorous fish biomass because our results suggested that our 

coarse biomass metric may not be representative of herbivore grazing effects (see 

discussion). We employed a Bayesian logistic regression model, with 0 for recovering 

sites, and 1 for regime shifting sites. Our final predictive Bayesian logistic model is 

specified as:  

 

Y! 	~	Bernoulli(𝑝!) 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑚𝑜𝑑𝑒𝑙:	𝑙𝑜𝑔𝑖𝑡(𝑝!)

= 𝛽" + 𝛽#𝐷𝑒𝑝𝑡ℎ	 + 𝛽$𝑁𝑢𝑡𝑟𝑖𝑒𝑛𝑡	 + 𝛽%𝐵𝑟𝑎𝑛𝑐ℎ𝑖𝑛𝑔	𝑐𝑜𝑟𝑎𝑙	 + 𝛽&𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑎𝑙	𝑐𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦	

+ 𝛽*𝑀𝑎𝑐𝑟𝑜𝑎𝑙𝑔𝑎𝑒 + 𝛽+𝑊𝑎𝑣𝑒	
Priors (for unstandardized data):  

𝛽",...,)~	𝑁(0,10) 

 

We used data from the 1998 bleaching event to train our model. A posterior predictive 

check (McElreath, 2020) showed that our predictive model was able to correctly identify 

the trajectory of 90% (19/21) of sites after the 1998 bleaching event. Our trained model 

was then used to predict recovery vs. regime shift trajectory following the 2016 bleaching 

event using 2014 data.  
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3.4 RESULTS 

 
3.4.1 Causes of Regime Shifts 

 

 

 

Figure 3.3 Causal effect of factors on regime shift trajectory. (a) Standardized effect size 
of factors influencing regime shift trajectory. Parameter estimates are posterior median 
values (dot) 50% percentile interval (PI; thick lines), and 89% highest percentile interval 
(PI; thin lines). (b-h) Marginal plots of predictor variables (for continuous variables) 
affecting regime shift trajectory: solid black line represents the predicted median value of 
all drawn posterior predictive samples; grey shading represents the 95% Bayesian 
predictive intervals; blue dot represents the point at which regime shifts and recovery are 
equally likely. 
 

Our causal models show that depth and structural complexity decreased the likelihood of 

a climate-induced regime shift following the 1998 bleaching event in Seychelles (Figure 

3.3). Similar to Graham et al. 2015, we find that deeper and structurally complex reefs 

are more resilient against climate-induced bleaching events. Our nutrient causal model 

also shows that high nutrients (low carbon:nitrogen ratios) increase the likelihood of 

regime shifts (Figure 3.3). In addition to these insights, our causal models revealed 

several factors that influenced regime shift trajectory, which were not evident in our past 

correlative study (Graham et al. 2015). Importantly, higher initial macroalgal cover 
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increased the likelihood of regime shifting and had the strongest effect size (and largest 

variation) of all predictor variables (Figure 3.3). High wave exposure was also shown to 

increase the likelihood of regime shifting (Figure 3.3). To a lesser extent, both higher 

herbivorous fish biomass and branching coral cover increased the likelihood of regime 

shifting (Figure 3.3).   

 

3.4.2 Predictions for Future Regime Shifts  

 

 

Figure 3.4 Predictions of future regime shifts in Seychelles. (a) Probability of regime 
shift for recovering sites across Seychelles after a subsequent bleaching event in 2016, 
based on our predictive model. Estimates are based on 1000 samples drawn from the 
posterior predictive distribution, with mean probability (%) noted in brackets. (b) 
Marginal plots of predictor variables affecting regime shift trajectory, highlighting 2014 
values from recovering reefs that that fall above the 0.5 probability for regime shifting.  
 

Our predictive model suggests that out of the 12 sites that recovered from the 1998 

bleaching event in Seychelles, five reefs have a greater than 50% probability of regime 

shifting following the second bleaching event in 2016 (Figure 3.4a). These reefs include 

St Anne P, St. Anne G, Praslin NE P, Mahe NW C, and Mahe E P (Figure 3.4a). Of 
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these, three reefs are particularly vulnerable, with over 60% probability of regime 

shifting: St Anne P (67%), St. Anne G (84%), Mahe E P (81%, Figure 3.4a).  

3.5 DISCUSSION 

 
3.5.1 Causal vs. Correlative Analysis 

 

Our causal models indicate multiple additional factors that influenced regime shift vs 

recovery trajectory, including initial macroalgae cover, wave exposure, and branching 

coral cover, which were not evident from our past correlative analysis on the same study 

system (Graham et al. 2015), with most of the same variables. The main difference 

between a causal vs correlative analysis lies in covariate selection. Our previous analyses 

placed all assumed predictor variables into one model (i.e., a ‘causal salad’ model), and 

subsequently removed all variables which did not show an effect to arrive at a final 

model that included: herbivore biomass, depth, structural complexity, and nutrients, as 

well as juvenile coral density, which was not considered in the current analysis (see next 

paragraph; Graham et al. 2015). In comparison, here we used our ecological knowledge 

to create our DAG and subsequently applied the backdoor criterion to build a causal 

model for each of our predictor variables. The backdoor criterion guides covariate 

selection required to determine causal relationships from observational data, theoretically 

equivalent to what would be expected under a perfectly executed randomized controlled 

experiment (Pearl 2009). Given a DAG, the application of the backdoor criterion removes 

spurious correlations that may otherwise plague observational studies.   

 

DAGs also allow us to carefully think about which observational data may best suite our 

causal questions, reflecting the causal structure of our DAG (Figure 3.2). In our prior 

study, we used post-disturbance 2005 data for herbivorous fish biomass, to allow the 

short-term disturbance effects on herbivore biomass to be accounted for (Graham et al. 

2015). However, this could be bi-directional, since reef sites that are in the process of 

regime shifting can lead to increased post-disturbance herbivorous fish biomass. Such bi-

directionality is prohibited in a DAG, and the presence of bi-directional relationships in a 
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regression analysis can lead to erroneous results due to the presence of simultaneity bias 

(Merton, 1968). To remedy this, we used pre-disturbance 1994 data for herbivore 

biomass, allowing for a directed arrow pointing from herbivorous fish biomass to regime 

shift trajectory. We previously used post-disturbance juvenile coral density (2011 data) as 

a predictor variable (Graham et al. 2015). While post-disturbance juvenile coral density 

data may influence regime shift trajectory, it may also be influenced by the regime shift 

vs recovery process itself. Indeed, higher post-disturbance juvenile coral density may be 

more a process of recovery (Hughes et al. 2010; Gilmour et al. 2013) than a factor that 

influences regime shift vs recovery trajectories. Given this, we excluded post-juvenile 

coral density as a predictor variable in our DAG and analysis. In addition, we included 

pre-disturbance macroalgal cover as a predictor variable in our DAG, which was not 

previously considered, but ended up having the strongest effect size (Figure 3.3).  

 

In our review of all coral reef regime shifts, we found that observational studies did not 

apply causal inference techniques (Supplementary Material 3.6.7). Whereas some studies 

did not include any covariate adjustments, and others employed a ‘causal salad’ 

approach, and across all studies, causal analysis and the consideration of the overall 

causal structure between variables of interest was missing (Supplementary Material 

3.6.7). Here, the application of DAGs and the backdoor criterion provides of formal 

causal framework that can guide future covariate selection on coral reef regime shift 

studies. To further demonstrate how the backdoor criterion can lead to improved causal 

estimates, we compare our results guided by the backdoor criterion to other statistical 

models, including those that don’t include any covariate adjustments as well as a ‘causal 

salad’ model (Supplementary Table 3.2). Our estimates vary significantly across different 

models, highlighting the potential for more theory-driven and reliable causal models 

across observational studies (Supplementary Table 3.2). 

  

3.5.2 Additional Insights 
 
Our causal models reveal several key additional factors that affected regime shift vs 

recovery trajectory that were not evident in our previous study (Figure 3.3). In particular, 
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we find that higher initial (pre-disturbance) macroalgal cover, a variable not included in 

Graham et al. (2015) increases the likelihood of regime shifting (Figure 3.3). Following a 

disturbance event, additional space made available through coral mortality can lead to 

macroalgae expansion and subsequent inhibition of coral recruitment (McCook et al. 

2001). In Seychelles, the rate of coral recovery has been strongly negatively associated 

with the rate of macroalgae cover increase (Wilson et al. 2012). Initial macroalgal cover 

may lead to post-disturbance coral-algal shifts in two ways. First, reef macroalgae may 

have higher thermal tolerance than coral species, with some macroalgae species 

experiencing no mortality under elevated temperatures (Anderson 2006). Therefore, 

established macroalgae may remain intact following a bleaching event, creating a 

competitive starting point for macroalgal expansion. Second, various macroalgae species 

exhibit limited dispersal ability, with propagule settlement and recruitment remaining 

close to the source population (Capdevila et al. 2018). As such, having higher levels of 

macroalgae already established within a site may create a strong basis for macroalgae 

recruitment following a disturbance event. To our knowledge, the impact of initial 

macroalgal cover prior to disturbance on reef recovery dynamic has yet to be investigated 

elsewhere. Future research should examine whether this pattern is generalizable across 

other reef ecosystems, as well as the mechanisms that underlie this process.   

 

Our results also indicate that wave exposure increased the likelihood of regime shifting 

(Figure 3.3). Wave-exposed reefs with higher water flow can favor macroalgae growth 

through increased exposure to and uptake of inorganic carbon and nutrients, which can 

lead to higher photosynthesis and growth rates of macroalgae (Hurd 2000). Wave action 

can also limit coral growth and larval settlement (Gove et al. 2015), as well as remove 

coral through colony dislodgement and abrasive damage (Madin and Connolly 2006). On 

the other hand, higher flow rates associated with greater wave exposure have also been 

attributed to reduced bleaching susceptibility and faster recovery of corals through the 

passive diffusion of harmful oxygen radicals that can accumulate in corals under high 

SST and irradiance (Nakamura and Woesik 2001; Nakamura et al. 2003). However, 

McClanahan et al (2005) show that increased flow rate is correlated with increased 

bleaching intensity in Mauritius, reasoning that higher flow rates occurred in regions with 
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lower variation in water temperature, which in turn can increase bleaching susceptibility 

(Safaie 2018). Collectively, these factors may promote post-disturbance coral-algal 

regime shifts at wave-exposed reef sites. For example, wave exposure was found to be 

the main determinant of a coral-algal regime shift following a catastrophic typhoon 

disturbance in Micronesia (Ross et al. 2015). In Seychelles, recovery rate for recovering 

reef sites has also been negatively associated with increased wave exposure (Robinson et 

al. 2019c).  

 

We found a positive association between herbivorous reef fish biomass and regime shift 

trajectory (Figure 3.3). Following a climatic disturbance, herbivorous reef fish is 

expected to limit coral-algal shifts through grazing pressure, which limits the growth of 

macroalgae and enhances coral recruitment through creating space for larval settlement 

(McCook et al. 2001; Hughes 2007; Mumby and Harborne 2010). Yet in Seychelles, the 

pre-disturbance biomass of herbivorous fish seem to be positively correlated with regime 

shift occurrence. Previous studies in Seychelles have shown that higher herbivore 

biomass post-disturbance was correlated with a reduced likelihood of regime shifting 

(Graham et al. 2015), but a slower recovery rate on recovering reefs (Robinson et al. 

2019c). Coarse biomass metrics of herbivorous fish biomass, which combine distinct 

functional groups, may not be representative of true grazing effects on coral reefs, which 

are tightly linked to size structure and functional composition of herbivore assemblage 

(Nash et al. 2015; Steneck et al. 2018; Robinson et al. 2019c). Future studies in 

Seychelles can address this gap by looking at more accurate grazing metrics, which have 

been shown to clarify the effect of herbivorous reef fish across other coral reef systems 

(Steneck et al. 2018). In general, and particularly along reefs where fishing has drastically 

reduced herbivorous fish biomass, it is expected that lower levels of herbivory will limit 

recovery and lead to more coral-algal shifts following climatic disturbance (Hughes 

2007; Mumby and Harborne 2010).  

 

Higher initial branching coral cover was also shown to increase the likelihood of regime 

shifting (Figure 3.3). Branching corals are often vulnerable to bleaching given their lower 
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heat tolerance (Loya et al. 2001). Following a climate-induced bleaching event, this can 

lead to higher loss of branching coral; for example, surveys following the 2016 bleaching 

event in Seychelles found that 95% of Acropora and Pocillopora colonies were either 

bleached or recently dead (Wilson et al. 2019). Ultimately, reefs with high pre-

disturbance branching coral cover may result in a large coral mortality and the 

subsequent availability of open space, creating favourable conditions for macroalgae 

growth and dominance, which may overwhelm the effect of grazing pressure from 

herbivorous reef fish (Williams et al. 2001). Moreover, once dead, the structures provided 

by branching corals erode rapidly, impacting reef fish and other organisms (Sheppard et 

al. 2002). On the other hand, branching corals are often fast growing (Darling et al. 2012) 

and can play a critical role in coral recovery following disturbance, as demonstrated by 

the recovering reefs in Seychelles (Robinson et al. 2019c; Wilson et al. 2019) and the 

Great Barrier Reef (Linares et al. 2011). How this trade-off between heat tolerance and 

growth rates relates to longer term patterns and predictions of coral recovery may depend 

on the frequency and intensity of disturbances. Given that severe bleaching events are 

now expected every six years (Hughes et al. 2018), branching coral cover may ultimately 

be at a disadvantage over heat-tolerant corals (Kubicek et al. 2012; Kubicek et al. 2019), 

with reefs with higher branching coral cover potentially being more vulnerable to coral-

algal regime shifts.  

 

3.5.3 Predicting Recovery vs Regime Shift Trajectory Post 2016 Bleaching Event 

 

Our predictive model suggests that out of the 12 sites that recovered from the 1998 

bleaching event in Seychelles, five reefs show a greater than 50% probability of regime 

shifting following the second bleaching event in 2016, with three reefs having a 

probability above 60% (Figure 3.4a). These reef sites are vulnerable to coral-algal regime 

shifts due to a combination of factors. For example, St Anne P, which shows a 67% 

chance of regime shifting had (according to 2014 data) very high branching coral, low 

structural complexity, and high wave exposure (Figure 3.4c,e,f). In comparison, St Anne 

G, showing a 84% change of regime shifting had high wave exposure and very high 

macroalgae cover (Figure 3.4f,g). Last, Mahe E P, which had a 81% chance of regime 
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shifting had high nutrients (low carbon:nitrogen), low structural complexity and high 

wave exposure (Figure 3.4 b,e,f). We note that our predictions may underestimate reef 

vulnerability to the 2016 bleaching event as our predictive model was ‘trained’ using 

results from the first bleaching event in 1998. Indeed, Seychelles reefs may now be under 

unstable equilibria (May 1997; Scheffer and Carpenter 2003), essentially requiring less 

cumulative stress to drive coral-algal shifts (Mumby and Hastings 2009).  

 

Our predictions suggest that several factors can come together to influence regime shift 

vs recovery trajectories on coral reefs impacted by subsequent bleaching events. Given 

that severe bleaching events are now expected every 6 years (Hughes et al. 2018), 

conservation and management efforts may benefit from prioritizing locations where the 

rate of warming and threat of frequent bleaching is lowest (Van Hooidonk et al. 2016) 

and where recovery from climatic disturbances is most likely (Cote et al. 2010; Graham 

et al. 2020). Specifically, reefs with increased depth, resilient coral species and structural 

complexity, and low macroalgae, nutrients, and wave exposure may be more resilient 

against future climatic disturbances in Seychelles. Deeper, structurally complex granitic 

reefs with higher cover of heat-tolerant massive corals and low macroalgae may be 

important areas for future conservation efforts in this region (Graham et al. 2006; Dajka 

et al. 2019). Collectively, incorporating these findings into management efforts may aid 

in prioritizing potentially resilient coral reefs amidst our current environmental and 

climate change crisis.   

 

3.6 SUPPLEMENTARY MATERIAL  

 
3.6.1 Application of SCM  

 

Applying SCM to determine causal relationships from observational data require 4 key 

steps outlined in Figure 3.1. Here we detail each step that was taken to determine the 

causal drivers of coral-algal regime shifts following the 1998 bleaching event in 

Seychelles.  
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3.6.2 Step 1: Create DAG 

 

We created our DAG by consolidating our domain knowledge with past and ongoing 

research, as well as the expert opinion of NAJG, SKW and MAM, who have extensive 

knowledge of Seychelles coral reefs in particular. We included relevant variables 

required to show how factors may influence climate-induced regime shifts across 

Seychelles coral reefs and included common causes of any pair of variables included in 

the DAG (Sprites et al. 2001, Glymour and Greenland, 2008). The justification of the 

causal links between each variable in our DAG is detailed in Supplementary Table 3.1.  

 

Supplementary Table 3.1. Justification for the causal links in our coral reef DAG (Figure 
3.2).  
 
Causal Assumptions  Rational  

MPA à Herbivorous Fish Biomass It is widely accepted among coral reef 

scientists that MPAs generally lead to 

higher herbivorous fish biomass through 

the reduction of fishing pressure (e.g. 

Edwards et al. 2014; Soler et al. 2015). In 

Seychelles, MPAs have led to higher 

herbivorous biomass under stable 

conditions (Jennings et al. 1996), as well 

as after bleaching and the subsequent loss 

of corals (Graham et al. 2020). 

Structural Complexity à Herbivorous 

Fish Biomass 

Structural complexity provides a wider 

range of habitat variability for reef fish 

species, which can increase herbivorous 

fish biomass (Graham and Nash, 2013; 

Rogers et al. 2014; Verges et al. 2011). 
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Structural Complexity à Regime Shift Structural complexity can play a critical 

role in reef recovery by providing niche 

space for coral settlement and survival 

(Connell et al. 1997; Victor 2008). It can 

also increase the abundance and diversity 

of reef fish through habitat availability 

and refuge (Verge ́s and Vanderklift, 

2011; Graham and Nash 2013), which in 

turn can limit algal growth and regime 

shifts (Bellwood et al. 2004; Mumby and 

Harborne 2010). Structural complexity 

has played an important role in coral 

recovery in Guam (Colgan 1987) and the 

eastern Pacific (Guzman and Cortes 2007) 

and has previously been correlated with 

post-bleaching recovery in Seychelles 

(Graham et al. 2015).  

MPA à Branching Coral  MPAs had higher branching coral cover 

relative to fished sites across Seychelles 

coral reefs prior to the 1998 coral 

bleaching event (Graham et al. 2020). 

There is some uncertainty regarding why 

higher branching coral cover was found in 

MPAs pre-bleaching, and MPA placement 

in areas with higher branching coral may 

be a presumed factor. However, one of the 

marine reserves representing three of our 

MPA sites was chosen based on bird 

conservation and not coral cover (Graham 

et al. 2020). We suspect that MPAs may 
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have more pre-disturbance branching 

coral relative to fished sites as branching 

corals are easily damaged by fishing gear 

and other recreational activities 

(McManus et al. 1997; Cros and 

McClanahan 2003; Strain et al. 2019), 

particularly trap fishery (Stevens 2020).  

Branching Coral à Regime Shift Branching coral are generally more 

susceptible to bleaching and mortality 

from heat stress (Loya et al. 2001; 

Sheppard et al. 2002). Moreover, once 

dead, the structures provided by branching 

corals erode rapidly, impacting reef fish 

and other organisms (Sheppard et al. 

2002; Graham and Nash 2013; Wilson et 

al. 2019). This in turn can leave reefs with 

higher pre-disturbance branching coral 

cover more vulnerable to regime shifts 

following a climate-induced bleaching 

event. 

Wave Exposure à Regime Shift Wave exposure can favor macroalgae 

growth through increased exposure and 

uptake of inorganic carbon and nutrients 

(Larned and Atkinson, 1997; Hurd 2000). 

Wave action can also limit coral growth 

and larval settlement (Gove et al. 2015), 

as well as remove coral through colony 

dislodgement and abrasive damage 

(Madin and Connolly 2006). These factors 

are expected to increase the chances of 
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regime shifting at wave-exposed sites. 

However, we note that higher flow rates 

have also been attributed to reduced 

bleaching susceptibility and faster 

recovery of corals (Nakamura and Woesik 

2001; Nakamura et al. 2003), which in 

turn may limit coral-algal shifts following 

a climate-induced bleaching event.  

Depth à Regime Shift Many threats, such as sediment input and 

fishing pressure, are less pronounced in 

deeper waters, making them less 

vulnerable to regime shifts (Bridge et al. 

2013). Reduced light penetration and 

temperature may also decrease the 

likelihood of heat stress and subsequent 

coral bleaching (Slattery et al. 2011; 

Bridge et al. 2013). However, we note that 

light is also required for recovery of corals 

and on turbid reefs, coral may recovery 

more quickly in shallow water (Evans et 

al. 2020). Overall, we expect that depth 

will likely lower the changes of a regime 

shifting, which has previously been 

correlated with decreased likelihood of 

regime shifts in Seychelles (Graham et al. 

2015). 

Nutrient à Regime Shift  Increased nutrient loads from human 

sources can increase macroalgae growth 

and abundance (Schaffelke and Klumpp 

1997; Burkepile and Hay, 2006), limit 
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coral growth rates (Koop et al. 2001), 

reproductive success and settlement 

(Harrison and Wallace 1990; Ward and 

Harrison 1997), as well as increase 

bleaching susceptibility of corals 

(Wooldrige 2009). Increased nutrient 

loading in combination with reduced 

herbivory has also been shown to make 

coral reefs less resilient against 

disturbances (Hughes et al. 2003; 

Burkepile and Hay 2006). Collectively, 

these factors are expected to increase the 

likelihood of regime shifting for reefs 

with higher nutrients, a correlation that 

has previously been shown in Seychelles 

(Graham et al. 2015).   

Depth à Nutrient  Nutrients tend to decrease with depth 

because shallow reefs are more exposed to 

nutrient run-off (Bridge et al. 2013). 

Depth à Branching Coral Branching coral species inhabit shallow 

regions and are therefore expected to 

decrease with depth (e.g. Tamir et al. 

2019).  

Herbivore Fish Biomass à Regime Shift Herbivorous reef fish can limit coral-algal 

shifts through increased grazing pressure, 

which limits the growth of macroalgae 

and enhances coral recruitment through 

creating space for larval settlement 

(McCook et al. 2001; Bellwood et al. 
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2004; Mumby et al. 2006; Hughes 2007; 

Mumby et al. 2013).  

Wave Exposure à Branching Coral  Wave exposure influences branching coral 

distribution patterns and colony size, with 

higher wave exposure reducing branching 

coral cover (Done, 1983; Madin and 

Connolly, 2006). 

Branching coral à Structural Complexity Branching coral is positively correlated 

with structural complexity (Graham and 

Nash, 2013). Branching coral may be 

particularly likely to contribute to fine-

scale structural complexity on reefs 

(Chabanet et al. 1997).  

Initial Macroalgae à Regime Shift  Higher cover of pre-disturbance 

macroalgae may create a stronger basis 

for macroalgae expansion post-

disturbance given that macroalgae species 

tend to have limited dispersal ability, with 

propagule settlement and recruitment 

remaining close to the source population 

(e.g., Kendrick and Walker, 1991; 

Kendrick and Walker 1995; Capdevila et 

al. 2018). 

Herbivore Biomass à Initial Macroalgae Herbivore fish can decrease macroalgal 

cover through increased grazing pressure 

(McCook et al. 2001; Bellwood et al. 

2004; Mumby et al. 2006; Hughes 2007; 

Mumby et al. 2013). 
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Wave Exposure à Initial Macroalgae Wave exposure can increase macroalgae 

cover through increased exposure and 

uptake of inorganic carbon and nutrients 

(Larned and Atkinson, 1997; Hurd 2000). 

Nutrients à Initial Macroalgae Nutrients can increase macroalgae cover 

by simulating macroalgal growth 

(Schaffelke and Klumpp 1997; Burkepile 

and Hay, 2006). 

 

3.6.3 Step 2: Test DAG-Data Consistency 

 

Once a DAG has been created, it can be directly tested against observational data, to 

ensure DAG-data consistency. If an initial DAG does not pass DAG-data consistency it 

can be altered until DAG-data consistency is reached. Testing DAG-data consistency 

emerges from d-separation rules, which is a DAG-based rule for deciding whether a 

variable X is independent of another variable Y given a set of variable(s), Z in a path. A 

path is a sequence of arrows and nodes connecting two variables of interest within a 

DAG.  

d-separation (Pearl, 1988): A set of variables, Z, is said to block (or d-separate) a 

path from one variable to another if either  

(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (variable with two incoming 

arrows) that is outside Z and does not cause any variables in Z. A collider variable 

is a variable that is influenced by two or more variables in a given path. Collider 

variables block the association between the variables that influence it.  

 

There are 32 independencies (based on d-separation rules) that are implied by our DAG 

(see below). These independencies can be tested against our observational data to ensure 

DAG-data consistency. Our observational data should be consistent with these 
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conditional independencies, given that both our DAG and data are representative of the 

data generating process. For example, given our DAG, MPA should be independent of 

wave exposure (see 1 below), and MPA should also be independent of macroalgae when 

herbivore biomass, nutrients, and wave exposure are adjusted for (see 2 below). 

Collectively, all 32 conditional independencies implied by our DAG should be consistent 

with our observational data to provide support for our overall DAG structure.  

 

1. MPA ⊥ Wave Exposure (meaning MPA is independent of wave exposure) 

2. MPA ⊥ Macroalgae | Herbivore Biomass, Nutrients, Wave Exposure (meaning 

MPA is independent of macroalgae given that herbivore biomass, nutrients, and 

wave exposure are adjusted for) 

3. MPA ⊥ Macroalgae | Depth, Herbivore Biomass, Wave Exposure 

4. MPA ⊥ Depth 

5. MPA ⊥ Nutrients 

6. MPA ⊥ Structural Complexity | Branching Coral 

7. MPA ⊥ Regime Shift | Branching Coral, Depth, Herbivore Biomass, Structural 

Complexity, Wave Exposure 

8. Herbivore Biomass ⊥ Wave Exposure | Branching Coral, MPA 

9. Herbivore Biomass ⊥ Wave Exposure | MPA, Structural Complexity 

10. Herbivore Biomass ⊥ Depth | Branching Coral, MPA 

11. Herbivore Biomass ⊥ Depth | MPA, Structural Complexity 

12. Herbivore Biomass ⊥ Nutrients | Depth 

13. Herbivore Biomass ⊥ Nutrients | Branching Coral, MPA 

14. Herbivore Biomass ⊥ Nutrients | MPA, Structural Complexity 

15. Herbivore Biomass ⊥ Branching Coral | MPA, Structural Complexity 

16. Wave Exposure ⊥ Depth 
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17. Wave Exposure ⊥ Nutrients 

18. Wave Exposure ⊥ Structural Complexity | Branching Coral 

19. Macroalgae ⊥ Depth | Branching Coral, MPA, Nutrients, Wave Exposure 

20. Macroalgae ⊥ Depth | MPA, Nutrients, Structural Complexity, Wave Exposure 

21. Macroalgae ⊥ Depth | Herbivore Biomass, Nutrients, Wave Exposure 

22. Macroalgae ⊥ Branching Coral | Depth, MPA, Structural Complexity, Wave 

Exposure 

23. Macroalgae ⊥ Branching Coral | MPA, Nutrients, Structural Complexity, Wave 

Exposure 

24. Macroalgae ⊥ Branching Coral | Depth, Herbivore Biomass, Wave Exposure 

25. Macroalgae ⊥ Branching Coral | Herbivore Biomass, Nutrients, Wave Exposure 

26. Macroalgae ⊥ Structural Complexity | Branching Coral, Herbivore Biomass, 

MPA 

27. Macroalgae ⊥ Structural Complexity | Depth, Herbivore Biomass, Wave 

Exposure 

28. Macroalgae ⊥ Structural Complexity | Herbivore Biomass, Nutrients, Wave 

Exposure 

29. Depth ⊥ Structural Complexity | Branching Coral 

30. Nutrients ⊥ Branching Coral | Depth 

31. Nutrients ⊥ Structural Complexity | Branching Coral 

32. Nutrients ⊥ Structural Complexity | Depth 

 

We used the R package ‘dagitty’ (Textor et al. 2016) to test DAG-data consistency 

between our observational data and specified DAG. Dagitty uses a formal test of zero 

(partial) correlation for each identified independency based on d-separation rules. To 

mitigate problems around multiple testing (e.g., for complex DAGs with many testable 
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implications), the p-values obtained are then corrected using the Holm-Bonferroni 

method (see Textor et al. 2016 for details). These tests assume linearity and multivariate 

normality, though other options are available (see Ankur et al. 2021). Our observational 

data was found to be consistent with all 32 conditional independencies implied by our 

DAG providing support for our overall DAG. Once a DAG is finalized (i.e., ensures 

DAG-data consistency), we can employ the backdoor criterion to guide model selection 

required to determine the effect of a predictor variable on a response variable of interest. 

We note that since several DAGs can pass DAG-data consistency, it is critical to ensure 

that a finalized DAG can be justified (or set of DAGs) based on theory, instead of relying 

solely on DAG-data consistency. 

 

3.6.4  Step 3: Apply of the Backdoor Criterion for Model Selection 

 

The backdoor criterion is used to identify a set of variables, Z, that when adjusted for, 

allows the causal effect of X n Y to be accurately estimated from observational data, 

given a DAG. The backdoor criterion (Pearl, 1993, 2009) states that a set of variables, Z, 

is sufficient for estimating the causal effect of X on Y under two conditions: 

 

1. The variables in Z block all backdoor paths from X to Y. A path within a DAG is 

any sequence of arrows and nodes connecting two variables of interest, X and Y. 

A backdoor path is a path between X and Y with an arrow pointing into X. The 

backdoor paths are the paths that create bias by providing an indirect, non-causal 

path along which information can flow. To block a backdoor path from X to Y, X 

and Y must be d-separated by adjusting for Z (see requirements for d-separation 

above).  

2. No element of Z is a descendant of (i.e., caused by) X. 

 

The backdoor criterion blocks all non-causal pathways (i.e., backdoor paths) between our 

predictor and response variable of interest, while leaving all causal paths open. Note that 
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while causality flows in the direction of DAG arrows, information can flow in both 

directions, inducing various sources of potential bias. As such, the application of 

backdoor criterion eliminates common statistical biases that can otherwise plague 

observational studies, including confounding, overcontrol, and collider bias. Collectively, 

given a DAG, the backdoor criterion guides model selection required to determine causal 

relationships without biased spurious correlations (Pearl 2009). Below we apply the 

backdoor criterion to guide covariate selection for determining the causal effect of each 

of our predictor variables. We note that only the effect size of the predictor variable 

should be interpreted for its associated model, as additional covariates are there as 

required controls. 

 

MPA, depth and wave exposure models:  

 

To determine the effect of MPA on regime shift trajectory, there are no backdoor paths 

that need to be blocked. Similarly, the effect of depth and wave exposure on regime shift 

also do not have any backdoor paths that need to be blocked. Therefore, no covariate 

adjustments are required for all three models.  

 

Nutrient model:  

 

To determine the effect of nutrient on regime shift, there are two backdoor paths that 

need to be blocked or d-separated:  

 

1. Regime Shift ß Depth à Nutrients  

2. Regime Shift ß Branching Coral ß Depth à Nutrients  

 

Adjusting for depth will block both backdoor paths. This satisfies condition 1 of the 

backdoor criterion; condition 2 is also satisfied because depth is not a descendant of 
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nutrients (i.e., it is not affected by nutrients). Therefore, the effect of nutrients on regime 

shift can be quantified by adjusting for depth (i.e., adding depth as a covariate) in our 

statistical model.  

 

Herbivore biomass model:  

 

To determine the effect of herbivores fish biomass on regime shift, there are two 

backdoor paths that need to be blocked or d-separated: 

 

 1. Regime Shift ß Structural Complexity à Herbivore Biomass  

2. Regime Shift ß Structural Complexity ß Branching Coral ß MPA à 

Herbivore Biomass 

 3. Regime Shift ß Branching Coral ß MPA à Herbivorous Fish Biomass 

 

Adjusting for structural complexity (blocking path 1 and path 2) and branching coral 

(blocking path 3) will allow us to estimate the causal effect of herbivorous fish biomass 

on regime shift.  

 

To determine the effect branching coral on regime shift, there are five backdoor paths 

that must be blocked or d-separated: 

 

 1. Regime Shift ß Wave Exposure à Branching Coral  

 2. Regime Shift ß Depth à Branching Coral 

 3. Regime Shift ß Nutrients ß Depth à Branching Coral  

4. Regime Shift ß Herbivorous Fish Biomass ß MPA à Branching Coral  



 72 

5. Regime Shift ß Structural Complexity à Herbivorous Fish Biomass ß MPA 

à Branching Coral  

 

Adjusting for wave exposure (blocking backdoor path 1), depth (blocking backdoor paths 

2 and 3), and MPA (blocking backdoor path 4) will allow us to estimate the causal effect 

of branching coral on regime shift. We note that backdoor path 5 is already blocked 

because herbivorous fish biomass – a collider variable – has not been adjusted for. 

 

Structural complexity model:  

 

To determine the effect of structural complexity on regime shift, there are six backdoor 

paths that must be blocked or d-separated, including:  

 

 1. Regime Shift ß Branching Coral à Structural Complexity 

 2. Regime Shift ß Wave à Branching Coral à Structural Complexity  

3. Regime Shift ß Herbivorous Fish Biomass ß MPA à Branching Coral  

à Structural Complexity 

4. Regime Shift ß Depth à Branching Coral à Structural Complexity  

5. Regime Shift ß Nutrients à Initial Macroalgae ß Depth à Branching Coral 

à Structural Complexity 

6. Regime Shift ß Initial Macroalgae ß Wave à Branching Coral à Structural 

Complexity 

 

All backdoor paths between regime shift and structural complexity can be blocked or d-

separated by adjusting for branching coral cover.  
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Initial macroalgae model:  

 

Lastly, to determine the effect of initial macroalgae cover on regime shift, there are ten 

backdoor paths that must be blocked of d-separated:  

 

 1. Regime Shift ß Herbivorous Fish Biomass à Initial Macroalgae  

2. Regime Shift ß Structural Complexity à Herbivorous Fish Biomass à Initial 

Macroalgae  

3. Regime Shift ß Structural Complexity ß Branching Coral Cover ß MPA à 

Herbivorous Fish Biomass à Initial Macroalgae  

4. Regime Shift ß Herbivorous Fish Biomass ß MPA à Branching Coral  

5. Regime Shift ß Depth à Initial Macroalgae 

6. Regime Shift ß Nutrients ß Depth à Initial Macroalgae 

7. Regime Shift ß Branching Coral ß Depth à Initial Macroalgae 

8. Regime Shift ß Structural Complexity ß Branching Coral ß Depth à Initial 

Macroalgae  

9. Regime Shift ß Wave à Branching Coral ß Depth à Initial Macroalgae 

10. Regime Shift ß Nutrients à Initial Macroalgae  

11. Regime Shift ß Wave à Initial Macroalgae 

12. Regime Shift ß Branching Coral ß Wave à Initial Macroalgae 

 

Adjusting for herbivorous fish biomass will block or d-separate backdoor paths 1-4, 

adjusting for depth will block or d-separate backdoor paths 5-9, adjusting for nutrients 

will block backdoor path 10 and adjusting for wave will block backdoor paths 11 and 12.  
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3.6.5 Step 4: Statistical Model 

 

The final step in SCM is to choose our statistical model, to estimate effect sizes. As 

DAGs are non-parametric, they make no assumptions about the distribution of variables 

(e.g., normal) or the functional form of effects (e.g., linear, nonlinear, stepwise), making 

them compatible with a wide range of statistical methods. Any non-linear relationships 

between variables must come from domain knowledge or have a sound theoretical 

justification to avoid chasing noise in the observed data. DAGs are also compatible with 

both frequentist and Bayesian statistical approaches since they are used to guide model 

selection, and not the analysis itself. We note that statistical models developed under the 

SCM framework are still beholden to the same issues of sample size and measurement 

error in terms of the precision of resulting estimates; however, they will be more causally 

accurate. Here, we have employed the same point estimation method used by our past 

correlative analysis (Graham et al. 2015), a Bayesian logistic regression.  

 

Specifically, we applied a Bayesian logistic regression analysis to each of our causal 

models, where the response variable was 0 for recovering sites, and 1 for regime shifting 

sites. We standardized our data by subtracting the mean of each variable and dividing by 

2 standard deviations in order to assess relative effect sizes of our predicter variables 

(Gelman and Hill, 2007). We ran our models using the ‘rethinking’ package on R, using 

weakly informative prior. For logistic regression using standardized data, Gelmen et al. 

(2008) recommend a Cauchy(0,10) prior for B0 and a student_t(1,0,2.5) priors for B1…N 

as weakly informed priors. Recently, others have recommended a student_t(nu,0,2.5) for 

B1…N where nu is 3<nu<7 (Glosh et al. 2015). We have chosen nu of 4 

(student_t(4,0,2.5)) but have compared our results using a nu of 1-7, which all gave 

similar results.  

 

3.6.6 Causal vs. Correlative Models  
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Supplementary Table 3.2 Results from causal (backdoor criterion) vs correlative models 
(causal salad; no covariates).  
 

Predictor Variable  Backdoor 

Criterion  

Causal Salad  No Covariates  

MPA 0.06 [-1.20, 1.39] -1.57 [-5.02, 1.01] NA 

Nutrient  -1.61 [-3.65, 0.05] -0.33 [-2.62, 1.81] -1.30 [-3.44, 0.23] 

Herbivore Biomass 1.76 [-0.44, 4.04] 0.08 [-1.75, 3.68] 0.90 [-0.65, 2.62] 

Branching Coral  0.84 [-1.21, 3.09] -0.04 [-2.68, 2.71] 1.41 [-0.04, 3.12] 

Depth -2.12 [-4.19, -0.49] -4.76 [-9.67, -1.46] NA 

Structural 

Complexity 

-3.77 [-7.33, -1.63] -4.66 [-9.33, -1.77] -3.81 [-7.06, 1.62] 

Wave Exposure 1.02 [-0.45, 2.54] 1.83 [-0.89, 5.16] NA 

Initial Macroalgae  3.3 [0.40, 10.14] 1.44 [-1.67, 6.92] 4.44 [1.11, 10.24] 

 

Supplementary Table 3.2 contrasts causal estimates of our predictor variables from our 

causal models (where we used our DAG and the application of the backdoor criterion to 

guide model selection) with a ‘causal salad’ model (where all variables were placed into 

one model and subsequently interpreted) and no covariate models (where additional 

variables were not adjusted for). “NA” is noted in instances where the backdoor models 

coincided with our no covariate model (i.e., no covariate adjustments were required by 

the backdoor criterion). The results show that causal estimates can vary greatly 

depending on model selection, highlighting the importance of applying DAGs to 

visualize causal structure and guide appropriate causal analysis.     

 

3.6.7 Lack of Causal Inference Among Other Regime Shift Studies 
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We conducted a literature review on observational studies investigating factors that cause 

coral reef regime shifts. A systematic literature search was conducted using the Web of 

Science database, with the search terms “coral reef + (phase OR regime) shift”, which 

identified 1,262 results. We read through each abstract and selected studies that (1) used 

observational data and (2) focused on a form of coral reef phase shift (e.g., coral reef to 

macroalgae phase shift; recovery back to coral reef state). We excluded studies that 

looked at coral cover but did not consider this specifically under a phase shift context. 

The summary of our 14 selected studies is highlighted in Table S3.   

 

The questions motivating each study are causal (e.g., factors influencing coral-macroalgal 

phase shifts, Graham et al, 2015), and causal language such as “effect”, “influence”, or 

“cause” is used in all but three studies (Supplementary Table 3.3). However, these studies 

have not employed any causal inference methods (Supplementary Table 3.3). We note 

that while we have emphasized the use of SCM, there are other approaches to causal 

inference that are available to researchers. These include quasi-experimental methods 

employed under the potential outcomes (PO) framework (Butsic et al. 2017; Larsen et al. 

2019), as well as convergent cross mapping (CCM; Sugihara 2012) and granger causality 

(Detto et al. 2011), which can be used on time series data.  

 

Our study stands apart from past observational work on coral reef regime shifts because 

we have employed the backdoor criterion to guide covariate selection. In doing so, we 

have explicitly stated the causal structure of our system via our DAG and have adjusted 

for specific variables to answer specific causal questions. In contrast, while the studies 

listed under Supplementary Table 3.3 may explain why a predictor variable is expected to 

influence the response, none (including our own) state their causal assumptions about 

how all relevant variables are causally connected. For example, Jouffray et al. 2019 used 

20 anthropogenic and biophysical predictors thought to influence regime shifts without 

stating how variables may be causally connected. Without such consideration, issues of 

over-adjustment can lead to biased estimates between variables of interest due to 

processes such as overcontrol bias and collider bias (Pearl 2009; Elwert 2014). On the 
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other hand, some studies (Mumby and Harborne, 2010; Arias-Gonzalez et al., 2017) used 

only one predictor variable, without considering the need (or lack thereof) for covariate 

adjustment, which in turn can lead to confounding bias (Pearl 2009; Elwert 2014). 

Collectively, past observational studies on coral reef regime shifts have not employed 

causal inference methods and may therefore be prone to spurious and potentially 

misleading conclusions. In contrast, SCM offers a strong causal inference framework for 

coral reef ecologists interested in cause-and-effect relationships. It allows researchers to 

utilize their domain ecological knowledge to create DAGs and guide appropriate model 

selection for causal analysis.  

 

Supplementary Table 3.3 Summary of observational studies that look at factors 
associated with coral reef regime shifts. * denotes when causal language was used in the 
title.   
 

Paper  Predictor 

Variables  

Response 

Variable  

Conclusion  Causal Language  Causal 

Inferen

ce   

Graha

m et al. 

2015  

Herbivorous 

biomass, 

juvenile coral 

density, depth, 

initial structural 

complexity, 

carbon nitrogen 

ratio of sampled 

algae  

  

Recovery of 

coral reefs  

Post-bleaching 

coral reef 

recovery favored 

when reefs were 

structurally 

complex, in deep 

water, with high 

density of 

juvenile corals 

and herbivorous 

fish and low 

nutrient loads  

Affect; influence  No  
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Jouffra

y et al. 

2015  

Various; E.g. gra

zer biomass, 

caper biomass, 

brewer biomass, 

large predator 

biomass, 

latitude, depth, 

reef zone, etc.  

Reef regimes  (

calcifying 

regime; turf 

regime; 

Macroalgal/san

d regime)   

Various; E.g. ma

croalgal regime 

decreased with 

increase in 

grazer, scrapper, 

and browser 

biomass  

Drivers*; 

influence; 

effect, impact, expl

ain  

No   

Cheal e

t al. 

2010  

herbivore 

diversity, 

scrapper/excavat

or abundance, 

grazer/dentritivo

re abundance, 

algal browser 

abundance  

Phase 1 (low 

macroalgae), 

Phase 2 

(transitional), 

Phase 3 

(established 

macroalgae)  

Low fish 

herbivore 

diversity and low 

abundance of 

algal browsers 

and 

grazers/detritivor

es correlated with 

coral reef 

recovery  

None  No  

Aronso

n and 

Precht 

2000  

Year  Urchin density, 

fish count, 

percent cover 

macroalgae, 

percent cover 

CTB, percent 

cover hard 

corals, percent 

cover Halimeda

 spp (separate 

ANOVA for 

each variable)  

Macroalgae cover 

correlated with 

reduced urchin he

rbivory  

None  No  
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Kumag

ai et al. 

2018  

Sea surface 

temperature, 

surface current, 

estimated 

herbivorous fish

es occurrence   

Macroalgae-

coral shift  

Ocean current 

and herbivory 

drive 

macroalgae-to-

coral shift under 

climate warming  

Drive*, effect, 

influence, promote  

No  

Jouffra

y et al. 

2019  

20 

anthropogenic 

and biophysical 

variables (e.g. 

effluent, habitat 

modification, 

non-commercial 

boat fishing)  

Occurrence of 4 

distinct regime 

shifts  

Various: E.g. 

Regime 2 was 

best predicted by 

a strong positive 

relationship with 

maximum 

monthly 

climatological 

mean of wave 

power   

  

Drivers*, effect, 

influence, impact  

No  

Johns 

et al. 

2018  

Habitat  Coral recovery 

(coral 

recruitment, 

recruit survival, 

juvenile coral 

persistence)  

Negative impact 

of macroalgae on 

recruitment and 

recruit survival of 

corals maintain 

macroalgae state  

Maintain*, effect, 

increase, influence, 

impact, create  

No   

Mumby 

and 

Harbor

ne 

2010  

Marine reserve 

status  

Rate of change 

of coral cover  

Marine reserves 

enhance the 

recovery of 

corals  

Enhance, effect, 

affect, higher, 

lower, increase  

No   
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Cruz et 

al. 

2018   

Anthropogenic 

and 

environmental 

factors   

Zoanthid and 

macroalgal 

phase shift 

indices (PSI)  

Marginal 

reefs: correlation 

between coral-

zoanthid shifts 

and local 

human impacts;  

coral-algal shifts 

and ports, 

urbanized 

surfaces, higher 

latitudes and 

shore proximity.   

Effect; increase, 

decrease,   

No   

Bennett 

et al. 

2015   

Year   Fish trophic 

biomass, cover 

of benthic 

functional 

groups 

(separate 

ANOVA for 

each response 

variable)  

Tropical 

herbivores 

maintain coral 

reef state  

Maintain, increase, 

reduce, cause, 

impact, drive, 

lower  

No  

Ledlie 

et al. 

2007  

Year and 

monitoring site    

Percent 

coral cover, 

percent macroal

gae, changes in 

abundance and 

biomass of 

herbivorous 

fish (separate 

ANOVA for 

Absence of 

macroalgal 

consumers and 

current 

dominance 

of macroalgae re

duces a shift back 

to coral-

dominated state  

None  No  
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each response 

variable)   

  

Arias-

Gonzal

ez et al. 

2017  

  

Year (associated 

with coral-algal 

phase shift)  

  

Length, 

abundance, 

biomass for 

herbivorous 

fish  

  

Coral-algal phase 

shift not driven 

by herbivorous 

fish  

Driven*, effect, 

affect, precipitate  

No  

Huges, 

1994  

NA: interpretation based on 

graphs showing changes in coral 

cover, human population, number 

of Diadema, etc. with time  

Overfishing, 

hurricane damage 

and disease have 

combined to 

cause coral-

macroalgal shift  

Cause; effect;   No  

Lapoint

e 1997  

NA: nutrient-related variables 

were recorded for sites 

experiencing phase shifts, which 

exceeded nutrient thresholds 

noted to sustain macroalgal 

blooms  

Nutrient 

enrichment is a 

causal factor for 

coral-macroalgae 

phase shift in 

Jamaica and 

southeast Florida  

Causal factor  No  
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CHAPTER 4 GLOBAL DRIVERS OF REEF 
FISH BIOMASS 

Authors: Suchinta Arif, Matthew McLean, Aaron MacNeil  

4.1 ABSTRACT 

Reef fish play a key role in maintaining ecosystem health, providing key ecosystem 

services that are heavily relied upon for both fisheries and livelihoods. Although attempts 

have been made to answer how various factors effect global distribution of reef fish 

biomass, the methods used have not been appropriate for drawing causal conclusions. 

Here, we apply the Structural Causal Model (SCM) framework to answer how key socio-

environmental factors influence reef fish biomass across both tropical and temperate 

reefs. This causal framework draws on directed acyclic graphs (DAGs) and a set of 

graphical rules to guide statistical adjustments required to answer specific causal queries 

from observational data. Our observational data comes from the Reef Life Survey (RLS), 

providing data from 4,357 transects and 1,844 sites worldwide. Following the application 

of the SCM framework, our results confirm that, across both temperate and tropical reefs, 

mean sea surface temperature (SST), fish diversity, marine protected areas (MPAs), and 

depth have positive effects on reef fish biomass, whereas degree heating weeks (DHW) 

and market gravity act negatively. Our results provide the first example of the SCM 

framework being applied on a large-scale ecological dataset and is one of the few reef 

studies to carry out a causal analysis on observational data. Beyond the reef-related 

insights gained from our analysis, our work provides a case study for applying the SCM 

framework across future reef studies that are reliant on largescale ecological data.     

4.2 INTRODUCTION 

Reef ecologists are often interested in understanding causal relationships in nature. 

Recent examples include aiming to quantify the impact of climate change (e.g., 

McClanahan et al. 2020; Hamilton et al. 2022), other anthropogenic stressors (e.g., 

Duprey et al. 2016; Mbaru et al. 2020), and management interventions (e.g., Mellin et al. 
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2016; Campbell et al. 2020) on reef ecosystems. Such questions often rely on 

observational data that lie out of experimental control. Global observational datasets are 

increasingly available through citizen science, online initiatives, and technological 

advances including remote-sensing, and animal-borne sensors (Sagarin and Pauchard, 

2010) yet ecologists frequently lack methods to formally address causal questions. 

 

A fundamental causal question in reef ecology remains, what are the global drivers of 

reef fish biomass? Reef fish play key functional roles in reef ecosystems (Bellwood et al. 

2004) and are heavily relied upon for both fisheries (Grafeld et al. 2017) and ecosystem 

services such as recreation and tourism (Brander et al. 2007). As such, understanding the 

socio-environmental factors that influence reef fish biomass is important for both marine 

conservation and human development goals. As a starting point, previous studies have 

shed light on how different factors may be influencing reef fish biomass at a global scale. 

For example, Cinner et al. (2016) aimed to understand how 18 socioeconomic and 

environmental drivers impacted reef fish biomass, finding that high compliance reserves 

and local population growth showed a positive relationship with reef fish biomass, 

whereas market gravity showed a negative relationship (Cinner et al. 2016). In another 

global study, Duffy et al. (2016) found that temperature and biodiversity were among the 

strongest predictors of reef fish biomass, followed by human impacts. Several other 

studies at both global and localized scales have noted that reef fish biomass has a positive 

relationship with structural complexity, and a negative relationship with human 

population (e.g., Newton et al. 2007; Graham et al. 2006; Cinner et al. 2009).  

 

Although previous observational studies have paved the way to better understand the 

global drivers of reef fish biomass, important limitations remain. Mainly, observational 

studies have not yet employed causal inference methods to understand the causal drivers 

of reef fish biomass. While several observational causal inference frameworks exist and 

have been highlighted in the ecology literature (e.g., Larsen et al. 2019; Laubach et al. 

2020), these techniques have largely gone unrecognized within reef ecology. However, 

applying causal inference methods to observational data is essential for avoiding 
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statistical biases that can otherwise lead to non-causal associations between variables of 

interest, undermining results drawn from observational analysis.  

 

Here we apply a recently emerging and widely applicable causal inference framework, 

the Structural Causal Model (SCM; Pearl 2009), to determine the global drivers of reef 

fish biomass in both tropical and temperate reefs. The SCM framework (Pearl 2009) 

combines the features of structural equation modelling (SEM; Wright 1921) and the 

potential outcome framework (Rubin 1974; Holland 1986) with other theories of 

causation to provide a framework for observational causal inference. SCM uses directed 

acyclic graphs (DAGs) to visualize the causal structure of a system under study and can 

subsequently apply a graphical rule known as the backdoor criterion to determine 

covariate selection required for specified causal questions (see Methods for detail). Thus 

far, a handful of ecological studies have employed this framework to understand varied 

causal relationships (Cronin and Schoolmaster Jr. 2018; Schoolmaster Jr. et al. 2020; 

Wilson et al. 2021). Chapter 3 also applied the SCM framework to examine how different 

factors affect the likelihood of coral-algal regime shifts following a climate-induced 

bleaching event in Seychelles and found several factors that were missed by a previously 

correlative study (Graham et al. 2015) using the same dataset.  

 

Applying the SCM framework to determine the global drivers of reef fish biomass is 

important for two reasons. First, the application of a valid causal inference methods 

allows us to leverage global datasets to deepen our causal understanding of the controls 

of reef fish biomass, while limiting the statistical biases that can otherwise plague 

observational analysis. Second, the present study provides the first global ecological 

study that applies the SCM framework to draw causal conclusions from observational 

data. It can therefore be used as a template for ecologists aiming to answer causal 

questions from largescale ecological datasets.  

4.3 METHODS 
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4.3.1 Observational Data 

 

 
Figure 4.1 Reef fish biomass among 1,844 reef sites. Point colours vary in proportion to 
the average amount of fish biomass.  
 

Observational data were obtained from the Reef Life Survey (RLS), which uses 

standardized visual censuses along 50-m transects, that has been proven effective for 

broad scale studies (Edgar and Stuart-Smith 2009). Details of fish census methods, diver 

training, and data quality can be found in Reef Life Survey Foundation (2019). Data were 

collected at 4,357 transects and 1,844 sites (mean 2.4 transects per site), across both 

temperate and tropical reefs from 2004 and 2013 (Figure 4.1). Fish counts per transect 

and size estimates were converted to biomass estimates using species-specific length-

weight relationships from FishBase (www.fishbase.org). Fish diversity was obtained 

from the RLS data, which provided fish species richness at each transect. Depth and 

latitude were also recorded for each transect. At each site, management was categorized 

as either fished (regularly fished without effective restrictions), a no-take MPA, or a 

restricted MPA (active restrictions on gears or fishing effort). The Human Development 

Index (HDI) was obtained from the United Nations Development Program at the country 

level, representing a summary measure of human development encompassing: a long and 

healthy life, being knowledgeable, and having a decent standard of living. Human gravity 

represents human interactions within a reef and is determined by the population of a place 

divided by the squared time it takes to travel to the reef (detailed in Cinner et al. 2018); 

we calculated human gravity values for each transect. Data for SST mean and SST range 
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were obtained from the National Oceanic and Atmospheric Administration Coral Reef 

Watch (Lui et al. 2014). Net primary productivity data were derived from the standard 

Vertically Generalized Production Model (Behrenfeld et al. 1997).  

 

 
Figure 4.2 PCA of benthic composition data on tropical reefs, used to reduce the 
dimensionality of benthic composition. The first axes explaining 42.5% of the variation 
represents the amount of coral vs algae, whereas the second axes explaining 19.9% of the 
variation represents the amount of sand or rock vs coral or algae. These two axes are used 
as two separate predictor variables representing benthic composition.  
 

Benthic composition data were derived from photo quadrat data collected at tropical reefs 

at the transect level (detailed in Reef Life Survey Foundation 2019). Benthic organisms 

were grouped into 8 categories: coral, algae, seagrass, coral rubble, rock, sand, 

microalgae mats, and other sessile invertebrates. For each category, percentage cover was 

recorded in proportions from 0-1 (e.g., 50% coral cover would equal 0.5). The data were 

then arc-sine transformed and a PCA was applied to reduce the dimensionality of benthic 

composition (Figure 4.2). The first two axes were extracted and used as predictor 
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variables. Because benthic data were missing for ~35% of surveys, the missing PCA axes 

values were imputed using a random forest approach with the R package missForest. 

Imputation was performed with site longitude and latitude as covariates to improve 

imputation accuracy. We cross validated the accuracy of imputation by randomly deleting 

35% of data from sites where data existed, running the imputation, and then testing the 

Pearson correlation between imputed values and true values, which resulted in a value of 

0.78 

 

4.3.2 The SCM Framework 

 

The SCM framework consists of 4 key steps (detailed in Chapter 2). First, researchers 

must create a DAG to represent the causal structure of their system under study (Step 1). 

Researchers can then refine their DAG based on DAG-data consistency (Step 2). Once a 

DAG is finalized, a graphical rule known as the backdoor criterion can be used to 

determine covariate selection required for answering specific causal queries (Step 3). 

Following this, a statistical model can be built to determine causal effects from 

observational data (Step 4). We describe these four steps below, placing an emphasis on 

how to deal with largescale ecological datasets.  

 

Step 1: Creating a DAG 

 

DAGs are used to represent a researchers’ assumptions about the causal structure of a 

system or process under study. A DAG consists of a set of nodes (variables) that are 

connected to each other by edges (arrows). These arrows represent hypothesized causal 

relationships between variables, pointing from cause to effect, with causes preceding 

their effects. DAGs are also acyclic, meaning that they cannot contain bi-directional 

relationships (i.e., arrows need to be unidirectional) or a feedback loop where a variable 

causes itself (Glymour and Greenland 2008); however, see Greenland et al. (1999) for 

how to overcome this limitation by more finely articulating the temporal sequence of 

events. Importantly, DAGs must include all variables (both measured and unobserved) 

required to depict a system or process under study.  
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Figure 4.3 An initial DAG representing how socio-environmental drivers are 
hypothesized to effect reef fish biomass. Observed variables are dark grey and 
unobserved variables are light grey.  
 

DAGs should be built and justified based on domain knowledge, such as past studies, 

expert opinion, and scientific consensus. It is critical to recognize that causality exists 

outside of any specific analytical method, and a DAG is one way to represent these 

relationships (Pearl 2009). To build our reef biomass DAG, we gathered a group of reef 

researchers to build an initial DAG (Figure 4.3) that included relevant environmental and 

socio-economic variables, their causal pathways to reef fish biomass, as well as their 

causal relationship with one another. We further included common cause variables, 

defined as variables that effect two or more variables already included in a DAG (Sprites 

et al. 2001; Glymour and Greenland 2008). This initial DAG was created during a week-
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long workshop by the authors of the paper, as well as from reef researchers Dr. Eva 

Maire, Dr. James Robinson, Dr. Nicolas Loiseau, Dr. Nick Graham, Dr. Rick Stewart-

Smith, and Dr. Graham Edgar.  

 

As the aim of our research was to determine global drivers of reef fish biomass, causal 

relationships between variables were depicted at this scale. For example, we included 

latitude, and human development index (HDI) as variables in our DAG, which would not 

need to be included if dealing with a smaller scale study. As well, because our global 

dataset covered tropical and temperate shallow reefs (<50 m deep) only, we excluded 

causal links between depth and other variables that would exist if our dataset was 

inclusive of deeper reefs as well. Ultimately, the causal structure of a system may change 

depending on the scale and scope of the study, and researchers should be mindful of this 

while creating their DAG.    

 

Step 2: Testing DAG-data Consistency  

 

We tested our initial DAG for DAG-data consistency. Simply put, a DAG often implies 

many independencies (e.g., X is independent of Y) and conditional independencies (e.g., 

X is independent of Y, given Z) that should be consistent with the observational data, 

given that both the observational data and DAG are representative of the data-generating 

process. If DAG-data consistency is ensured, this provides support for the asserted 

structure of the DAG itself. On the other hand, if failed independencies exist, this can 

indicate potential problems. By assessing these failed independencies, researchers can 

update their DAG to better represent the data-generating process.  

 

Schoolmaster et al. (2020) provide a real-world ecological example of refining a DAG 

based on DAG-data consistency. Here, their DAG was updated to ensure complete DAG-

data consistency. However, DAG-data consistency can only be fully achieved if both the 

DAG and the observational dataset are perfectly representative of the data-generating 

process. Particularly when dealing with large-scale studies, it is important to recognize 

that observational datasets may not be perfectly representative of the data-generating 
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process (e.g., due to measurement error or coarse measurement of variables), which may 

also lead to failed independencies. Therefore, while failed independencies can be used to 

update a DAG, researchers should ensure that all updated causal links are first and 

foremost justified by theory, domain knowledge, and scientific ideas, and not solely to 

satisfy DAG-data consistency.  

 

 
Figure 4.4 A finalized DAG representing how socio-environmental drivers are 
hypothesized to effect reef fish biomass. Observed variables are dark grey and 
unobserved variables are light grey.  
 

To test DAG-data consistency, we used the R package ‘dagitty’ (Textor et al. 2016), 

which includes a formal test of zero correlation to signify whether independencies of a 

given DAG are consistent with a given dataset. As noted by Ankan et al. (2021), large 
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datasets can result in failed independencies between two variables even when these 

associations are negligible, since associations between two variables are rarely exactly 

zero. Therefore, we considered failed independencies when they were equal to or above 

an effect size of 0.2. There were 87 independencies implied by our initial DAG, of which 

15 did not pass DAG-data consistency. After reviewing the overall failed independencies, 

we updated our DAG with four additional causal links: Latitude à Human Gravity, 

Latitude à Fishing Dependency, Human Gravity à MPA and Depth à Benthic 

Composition (Figure 4.4). This updated DAG had 6 failed independencies out of 65 total 

implied independencies. Although we used DAG-data consistency to update our DAG, 

ultimately, it was theory and domain knowledge that guided its creation. We expect some 

failed independencies to remain as our global observational dataset is not perfectly 

representative of the data-generating process. Our final DAG was approved by all 

researchers involved in its creation.  

 

Step 3: Covariate Selection Based on the Backdoor Criterion  

 

Once a DAG has been finalized, the backdoor criterion can be applied to determine the 

adjustment set(s) required to determine the effect of X on Y (Pearl 2009). The backdoor 

criterion is a set of graphical rules that instructs us to block all backdoor paths. Backdoor 

paths are sequences of nodes and arrows in a DAG with an arrow pointing into the 

response variable of interest; if left open, they can induce non-causal associations 

between variables of interest. To block a backdoor path, we can either (1) adjust for an 

intermediate arrow-emitting variable or (2) not adjust for a variable with two incoming 

arrows (i.e., a collider variable: à X ß). Once all backdoor paths for a given predictor 

and response variable are blocked, causal estimates can be determined from observational 

data without being biased by common statistical adjustments such as confounding, 

overcontrol or collider bias (see Chapter 2.8.2 for definitions). A detailed breakdown of 

the backdoor criterion is provided in Chapter 2, and the mathematical underpinnings is 

provided in Pearl (2009).  
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When dealing with large complex DAGs, however, applying the backdoor criterion 

become time consuming and complicated. The website www.dagitty.net (instructions 

within site) can be used to draw out a DAG and specify the predictor and response 

variable of interest, which in turn will generate the backdoor adjustment set(s). Our DAG 

has been saved on www.dagitty.net/mfcM6WU. We apply the backdoor criterion for each 

of our causal queries, creating a separate model for each of our predictor variables of 

interest. When more than one adjustment set is available, we selected the adjustment set 

with the least expected measurement error to increase the accuracy of our causal 

estimates.  

 

Step 4: Causal Models 

 

Once the backdoor criterion is applied to determine covariate selection, researchers select 

the best statistical model that represents the question and data at hand. Here, we have 

chosen a Bayesian generalized linear-mixed model, were we set reef sites nested within 

country as a random effect to account for the hierarchical structure of the data (MacNeil 

et al. 2009; Cinner et al. 2018). We created one model per predictor variable of interest, 

where fish biomass was the response, and additional covariates (used as controls) 

selected based on the application of the backdoor criterion (Table 4.1). We interpreted the 

standardized effect size of the predictor variable of interest for each of our causal models. 

We analyzed temperate and tropical reefs separately to account for the possibility of 

different effect sizes. All analysis was conducted using the R package ‘rstanarm’ using 

default weakly informative priors (Goodrich et al. 2022).   

 

Table 4.1 Covariate selection for each predictor variable of interest based on the 
application of the backdoor criterion. For each model, reef fish biomass was set as the 
response, covariates were used as controls, and the coefficient of the predictor variable of 
interest was interpreted for their causal effects.    
 

Predictor Variable Control Variables  

Sea Surface Temperate 

(SST) 

Latitude  
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Fish Diversity Depth, MPA, Net Primary Productivity (NPP), Fishing 

Dependency, Human Gravity, SST 

Fishing Dependency  HDI, Latitude  

MPA  HDI, Fishing Dependency, Human Gravity  

Human Development 

Index (HDI) 

Latitude  

Depth  None required  

Human Gravity  HDI, Latitude  

Benthic Composition 

(coral:algae) 

Depth, MPA, NPP, Latitude, SST 

Benthic Composition 

(coral or algae:rock or 

sand) 

Depth, MPA, NPP, Latitude, SST  

4.4 RESULTS AND DISCUSSION  

 
Figure 4.5 Causal effect of socio-environmental drivers on reef fish biomass on (a) 
temperate and (b) tropical reefs. Parameter estimates are standardized posterior mean 
values (dot), 95% credible intervals (thin lines), and 50% credible intervals (thick lines).  
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Our results confirm that temperature, represented by SST mean, is a dominant control on 

reef fish biomass in temperate reefs, reflecting strong temperature-dependence of 

biomass in cooler regions (Figure 4.5). These effects tapper off at higher temperatures 

found in tropical reefs, likely as reef fish reach their optimal temperature (Jobling 1997). 

The overall positive effect of SST mean on reef fish biomass is not surprising as 

temperature remains a major driver of the physiology, behaviour, abundance, and 

distribution of marine fishes (e.g., Brierley and Kingsford 2009; Sunday et al. 2011). As 

depicted by our DAG (Figure 4.5), SST mean is thought to effect reef fish biomass both 

directly, as well as indirectly, for example, through its effect on reef fish diversity (Duffy 

et al. 2016). While warmer average temperatures have a net positive effect on reef fish 

biomass, wider temperature fluctuations, as assessed by the effect of SST range, had a 

negative effect on reef fish biomass on temperate reefs but a positive effect on tropical 

reefs (Figure 4.5). In temperate regions, higher SST range may represent environments 

where the upper thermal tolerance limit of reef fish species has been surpassed, leading to 

an overall reduction in reef fish biomass (Munday et al. 2008; Habary et al. 2017). 

Previous research has found that higher temperature fluctuations can negatively impact 

larval dispersal and mortality (O’Connor et al. 2007; Takahashi et al. 2012), as well as 

reproductive success (Pankhurst and Porter 2003). However, on tropical coral reefs, sites 

with higher SST range may represent areas with higher historical temperature variability, 

which has been shown to improve physiological tolerance and performance of coral reefs 

under thermal stress (Safaie et al. 2018). Thus, coral reefs located in areas with higher 

temperature fluctuations may be more resistant to anomalous temperatures and bleaching, 

which in turn can have a positive effect on reef fish biomass. This is further supported by 

our results for thermal stress, assessed by degree heating week (DHW), which had an 

overall negative effect on reef fish biomass reefs, though the effect size was much weaker 

in tropical reefs (Figure 4.5). The lower effect size seen in tropical reefs may be because 

DHW is correlated with SST range; tropical coral reefs with higher historical temperature 

fluctuations may therefore be more protected against thermal stress assessed by DHW, 

leading to its reduced negative effect.  
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Our results also show that reef fish diversity is a major driver of reef fish biomass, having 

the highest effect size for tropical reefs, and second only to sea surface temperature for 

temperate reefs (Figure 4.5). Our results support previous global (Duffy et al. 2016; 

Lefcheck et al. 2021) and localized (Benkwitt et al. 2020) studies on reef ecosystems 

showing that biodiversity is one of the strongest predictors of reef fish biomass. It further 

supports a growing body of literature showing a positive effect of biodiversity on 

biomass and other ecosystem services (e.g., Tilman 2014). The strong positive 

relationship between reef fish diversity and biomass highlights the importance of 

conserving biodiversity across reef ecosystems to maintain biomass and other ecosystem 

functions and services. Reducing climate-related and other anthropogenic stressors 

should also be prioritized as they can also lead to biodiversity-mediated declines in reef 

fish biomass (Benkwitt et al. 2020).  

 

Fishing dependency showed a negative effect on reef fish biomass on temperate reefs 

(Figure 4.5), which is expected as regions with higher fishing dependency likely have 

increased fishing pressure which in turn lead to overall reductions in reef fish biomass. 

Related, MPAs were shown to have a net positive impact on reef fish biomass, for both 

temperate and tropical regions (Figure 4.5). Our results show that general protection from 

fishing and other human pressures results in higher levels of reef fish biomass. This 

supports previous findings that fishes across trophic levels respond positively to MPAs 

on reefs (Soler et al. 2015). Our results are also supported by a global synthesis led by 

Lester et al. (2009), which show that MPAs increase fish biomass across marine 

ecosystems, and that MPAs have similar, if not a greater positive effect in temperate 

settings. Although some researchers have suggested that fished species in temperate 

regions are too mobile and/or long-lived to be effectively protected by MPAs (Shipp 

2003; Blyth-Skyrme et al. 2006), our results show that in temperate reefs, MPAs can be 

highly effective.  

 

Although MPA placement and management can be quite complex and context-dependent, 

our causal analysis provides a framework for assessing MPA effectiveness across future 

studies. We note that previous global reef studies have shown both a positive effect of 
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MPA (e.g., Duffy et al. 2016), as well as a lack of effect (e.g., Cinner et al. 2016), given 

the same dataset. These differences may have been due to statistical biases that often 

plague non-causal observational analysis (see Chapter 2). Here, the application of 

backdoor criterion allowed us to control for confounding factors assumed to impact both 

MPA placement and reef fish biomass, including fishing dependency, HDI, human 

gravity, and latitude. These controls are meant to remove bias in the socio-political 

processes that can accompany the selection of MPAs (e.g., Edgar et al. 2005; Ferraro et 

al. 2018). We encourage future studies investigating the effectiveness of MPAs to 

determine which variables should be controlled for, and similarly which variables should 

not be controlled for, through utilizing DAGs and the SCM framework.  

 

Depth had a positive effect on reef fish biomass, particularly in temperate reefs (Figure 

4.5). Although our data focused exclusively on shallow reefs (<50 m deep), our results 

nonetheless provide support for the deep reef refuge hypothesis (DRRH; Bongaerts et al. 

2010). DRRH posits that deeper reefs are buffered from disturbances that affect 

shallower reefs, including fishing pressure, coastal pollution, and climate warming 

(Hoegh-Guldberg & Bruno 2010; Mies et al. 2020; Soares et al. 2020). As many reef fish 

species have a wide depth distribution (Fitzpatrick et al. 2012), they may find refugia 

from such stressors in deeper reefs, increasing reef fish biomass at deeper sites. 

Disturbance mediated coral loss from climate-induced bleaching, sedimentation, nutrient 

run-off, disease outbreaks, storms and other natural disturbances which may be more 

pronounced on shallow reefs (Slattery et al. 2011; Bridge et al. 2013) can further reduce 

reef fish through the loss of reef habitat (Wilson et al. 2006; Reopanichkul et al. 2009). 

Overall, our result highlights the potential for deeper reefs to protect reef fish species 

from natural and anthropogenic stressors, and we recommend that deeper reefs should 

continue to be incorporated into marine conservation and management strategies.  

 

We note that previous studies that did not find an effect of depth on reef fish biomass 

may be due to model misspecification. For example, Cinner et al. (2016) looked at the 

influence of various environmental and social drivers of reef fish biomass, showing no 

substantial effect of depth. However, they used one statistical model with 18 covariates, 
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which may have biased their estimate of depth. For example, overcontrol bias occurs 

when an intermediate variable along a causal pathway is included as a covariate; in the 

pathway X à Z à Y, including Z as a covariate will remove the indirect effect of X on 

Y. As depth is expected to indirectly influence coral reef biomass through several 

mechanisms, the inclusion of 17 other covariates may have led to overcontrol bias, 

effectively removing the effect of depth. In contrast, given our DAG and the application 

of the backdoor criterion, no additional covariates were required to determine the effect 

of depth on reef fish biomass. This further highlights the utility of causal models for 

observational causal inference.    

 

Human gravity had a strong negative effect on reef fish biomass in the tropics, and a 

slight negative effect in temperate reefs (Figure 4.5). Human gravity is expected to 

reduce reef fish biomass mostly through increased fishing pressure (Duffy et al. 2016) as 

well as through increased coastal development, eutrophication, and other anthropogenic 

stressors. The weaker effect seen in the temperate reefs may be due to the long history of 

human impacts endured in temperate regions; the smaller relative impact of human 

gravity may therefore reflect the rarity of remaining remote or pristine sites (Duffy et al. 

2016).   

 

The effect of benthic composition on tropical reefs was first assessed looking at the effect 

of coral to algae ratio, which had a negligible but slightly positive effect of coral on reef 

fish biomass (Figure 4.5). This supports recent research highlighting that both coral- and 

algae-dominated reefs can harbour high reef fish biomass livelihoods (Fulton et al. 2020; 

Robinson et al. 2019; Hamilton et al. 2022). For example, following climate-induced 

bleaching events, both recovering coral reefs and regime-shifted macroalgae-dominated 

reefs have been shown to maintain assemblages of reef fish (e.g., Robinson et al. 2019). 

Next, we assessed how the ratio of sand or rock to coral or algae impacted reef fish 

biomass, finding a negative impact of sand or rock on reef fish biomass. This is expected 

as both coral and algae are able provide food, shelter, and additional resources to a 

variety of reef fish, whereas nonliving substrates like sand or rock do not. Together, our 

results suggest that both coral and algae can provide a range of benefits that can increase 
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reef fish biomass, which in turn can sustain fisheries and livelihoods (Fulton et al. 2020; 

Robinson et al. 2019).  

 

Collectively, our results can be used to prioritize reef conservation and management 

across both temperate and tropical reefs. Reef fish are diverse, play key functional roles 

in reef ecosystems, and provide food and livelihoods for over a billion people. Reef fish 

biomass is therefore directly related to ecosystem health, ecosystem services, and 

economic value (Woodhead et al. 2019). In temperate reefs, our results suggest that 

regions with higher average temperature, diversity, and depth, as well as lower 

temperature fluctuation and thermal stress and will harbour higher reef fish biomass. In 

tropical reefs, regions with higher average temperature, temperature fluctuation, 

diversity, depth, and living benthic substrate (coral or algae), as well as lower human 

gravity will harbour higher reef fish biomass. As our results further showed that MPAs 

can be effective at protecting reef fish biomass, reefs with the above characteristics 

should be prioritized, as they may be the most resilient against the ongoing negative 

impacts of climate change and other anthropogenic stressors. Understanding the drivers 

of reef fish biomass should therefore be used for sustaining both reef ecosystems and 

human development goals.  

 

Ecologists continue to rely on observational data to better understand causal relationships 

in reef ecosystems, such as how key socio-environmental factors influence reef fish 

biomass and other ecosystem services. Although disentangling causal relationships from 

observational data remains a central theme in reef ecology, the methods used to answer 

such questions have not been appropriate for drawing valid causal conclusions. For 

example, most reef studies employ what is known as the ‘causal salad’ model (Bhalla 

2018; McElreath 2020), whereby predictor variables of interest are placed under one 

statistical model and subsequently interpreted for their causal effects (e.g., Cinner et al. 

2016, Darling et al. 2019). Without explicitly acknowledging how variables of interest 

are related to one another and the broader causal structure of a reef system, such 

approaches can lead to a variety of statistical biases, including (but not limited to) 

confounding, overcontrol, and collider bias (see Chapter 2.8.2 for definitions). As well, 
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several reef studies rely on predictive model selection approaches such as Akaike’s 

Information Criterion (AIC) to select a best model, which is subsequently causally 

interpreted (e.g., Belwood et al. 2015; Safaie et al. 2018). However, as detailed in Arif 

and MacNeil (2022), predictive model selection techniques are meant for predictive 

inference (e.g., what model best explains a response variable, Y) and should not be 

conflated with causal analysis (e.g., what is the effect of X on Y).  

 

To remedy the widespread misuse of non-causal statistical analysis, here we have 

highlighted the SCM framework, which is widely applicable across observational reef 

studies. This causal framework has several key advantages. First, it utilizes DAGs to 

depict the causal structure of a system under study, drawing on the domain knowledge of 

ecologists. Next, the application of the backdoor criterion allows researchers to create 

appropriate statistical models, based on their specific causal query. This step allows 

researchers to step away from data-driven methods such as AIC and other model 

selection criteria and instead allows ecological domain knowledge to be translated into 

effective causal models. Further, the SCM framework is transparent, as it allows 

researchers to communicate their causal assumptions and simultaneously allows other 

researchers to critically examine the conclusions of a given study. This can lead to 

productive discussions within reef ecologists, ultimately deepening the pace at which we 

understand and analyze our natural world.  
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CHAPTER 5 UTILIZING CAUSAL DIAGRAMS 
ACROSS QUASI-EXPERIMENTAL 

APPROACHES 
 

A version of this work has been published: as Arif S, M MacNeil A. 2022. Ecosphere 

13(4): e4009.  

 

5.1 ABSTRACT  

Recent developments in computer science have substantially advanced the use of 

observational causal inference under Pearl's structural causal model (SCM) framework. A 

key tool in the application of SCM is the use of casual diagrams in the form of directed 

acyclic graphs (DAGs), used to visualize the causal structure of a system or process 

under study. Here, we show how causal diagrams can be extended to ensure proper study 

design under quasi-experimental settings, including propensity score analysis, before 

after control impact (BACI) studies, regression discontinuity design (RDD), and 

instrumental variables (IV). Causal diagrams represent a unified approach to variable 

selection across methodologies and should be routinely applied in ecology research with 

causal implications. 

 

5.2 INTRODUCTION 

The availability and importance of observation-based research has increased in recent 

years due to the proliferation of both digital data and global environmental threats that 

cannot be manipulated experimentally (Sagarin and Pauchard, 2010). While infrequently 

stated, most observational studies in ecology are aimed at answering causal questions, 

such as ‘what is the effect of protected areas on biodiversity?’ (Gray et al. 2016). Yet the 

prohibition of causal language for non-experimental data promoted by Pearson and Fisher 
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(Pearson 1911, Fisher 1921, Glymour 2009) has constrained the use of observational data 

to answer fundamental causal questions in ecology. These opportunities and challenges 

highlight the importance of coherent methods to properly analyze observational data and 

attain accurate conclusions about ecological systems and processes. 

 

Developments in observational causal inference have been spurred largely by the work of 

computer scientist Judea Pearl, who’s structural causal model (SCM; Pearl 2009) 

provides a comprehensive framework that utilizes causal diagrams in the form of directed 

acyclic graphs (DAGs) to determine cause and effect relationships from purely 

observational data. DAGs explicitly state the direction of hypothesized causal 

associations between variables in a system and, in doing so, reveal non-causal (spurious) 

associations as well. By ensuring that researchers explicitly and transparently state their 

causal assumptions, causal diagrams invite critical reception and feedback that is 

typically difficult to frame.  

 

What has gone unrecognized is that DAGs and principles from the SCM framework can 

also lead to effective study design across a range of quasi-experimental methods, 

including propensity score analysis, before after control impact (BACI) studies, 

regression discontinuity design (RDD), and instrumental variables (IV; Butsic et al. 2017; 

Larsen et al. 2019). Quasi-experimental approaches are widely used among other 

disciplines, and in recent years ecologists have argued for their increased use with 

ecological observational data (e.g., Butsic et al. 2017; Larsen et al. 2019; Wauchope et al. 

2021). However, determining causal relationships from quasi-experimental methods 

requires proper study design and statistical analysis that benefit from explicit 

communication about a researchers’ causal assumptions (Ferraro et al. 2019; Adams et al. 

2019). Here we show how the application of DAGs combined with the core principles of 

SCM can be applied across quasi-experimental approaches, leading to more robust causal 

conclusions drawn from observational data. Using simulated data (with known causal 

effects), we show how the application of causal diagrams can return accurate causal 

estimates, as well as highlight how biases can arise when they are not considered.  
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5.3 STRUCTURAL CAUSAL MODEL (SCM) 

 

SCM (Pearl 2009) provides a comprehensive theory of causation by unifying structural 

equation models (SEM; Wright 1921) with the potential outcome framework (Rubin 

1974; Holland 1986) and other theories of causation. Although the mathematical 

underpinning is quite complex (Pearl 2009), one of the advantages of applying SCM is 

that it reduces complicated equations and mathematical theory into a graphical 

application of rules using DAGs to visualize and quantify causal relationships.  

 

DAGs are causal diagrams that represent the causal structure of a system or process under 

study (e.g., see Grace and Irvine 2020). Specifically, nodes within a DAG represent 

variables, with directed arrows between nodes representing possible causal effects (e.g., 

X à Y shows that X affects Y). DAGs are also acyclic, meaning that they cannot contain 

bi-directional relationships or a feedback loop where a variable causes itself (Elwert 

2014). However, they can still represent ecological systems with bi-directional 

relationships by more finely articulating the temporal sequence of events (Greenland et 

al. 1999).  

 

DAGs are created based on researchers’ domain knowledge, which can be supported by 

expert opinion, scientific consensus, and relevant literature (e.g., Cronin and 

Schoolmaster Jr. 2018; Schoolmaster et al. 2020; Grace and Irvine 2020). They must 

include all measured and unmeasured variables required to depict the system or process 

under study, as well as all common causes of any pair of variables included in the DAG 

(Sprites et al. 2001). For example, to determine the effect of X on Y, our DAG must 

include X, Y, common causes of X and Y, as well as common causes of any pair of 

variables that are now included in the DAG.  
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Figure 5.1 A directed acyclic graph (DAG) representing the causal structure between a 
marine protected area (MPA) and coral reef fish biomass. 

 

As an ecological example, the DAG in Figure 5.1 represents the causal structure of how 

marine protected areas (MPAs) are expected to influence reef fish biomass for a 

hypothetical coral reef system, created based on past literature and expert knowledge of 

coral reef ecologists (Supplementary Table 5.1). We have created a simulated dataset 

based on the causal structure depicted in Figure 5.1, setting our known causal effect of 

MPA on reef fish biomass to 1.089 (Supplementary Material 5.8.2). We will use our 

DAG and associated simulated data to show how the application of SCM can lead to the 

accurate causal estimate of MPA on reef fish biomass.  

 

Once a DAG has been created, it can be tested against the associated observational data 

to test for DAG-data consistency. Simply put, a specified DAG will have (often many) 

independencies (e.g., X is independent of Y) and conditional independencies between 

variables (e.g., X is independent of Y, given Z) that should be consistent with the 

associated observational data, if both the DAG and observational data are representative 

of the data generating process (Pearl, 2009; Textor et al. 2016; Supplementary Material 

5.8.3). If all implied independencies are compatible with the data, it provides overall 
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support for a DAG. Given our DAG, there are 12 conditional independencies that are 

implied by our DAG (Supplementary Material 5.8.3). Using the package ‘dagitty’ we can 

test our DAG against our simulated data, which shows that all implied independencies are 

consistent with our simulated dataset (Supplementary Material 5.8.3). We note that if a 

DAG does not pass DAG-data consistency, it can be altered until DAG-data consistency 

is ensured, assuming that observational or simulated dataset is representative of the data-

generating process depicted in a DAG (Textor et al. 2016). We also note that since 

several DAGs may pass DAG-data consistency, it is imperative that a finalized DAG is 

first and foremost justified through domain knowledge (e.g., through the literature, expert 

knowledge, past experiments).  

 

Once a DAG is finalized and ensures DAG-data consistency, we can apply a graphical 

procedure known as the backdoor criterion to determine the sufficient set for adjustment 

required to determine the effect of X on Y (Pearl 2009), or in this case MPA on reef fish 

biomass. The application of backdoor criterion is based on an algebraic procedure known 

as do-calculas, which equates observational distributions to post-intervention 

distributions that would be expected under an experimental treatment (Pearl, 1995). 

While the application of do-calculas can make for challenging reading, based on its 

derived inferences rules, the backdoor criterion provides DAG-based graphical rules that 

can be applied to estimate causal effects from observational data.  

 

Specifically, the backdoor criterion instructs us to block all backdoor paths between our 

predictor and response variable, X and Y. A backdoor path is a sequence of arrows and 

nodes connecting X and Y variables with an arrow pointing into X. If left open, these 

backdoor paths create bias and induce spurious correlation by providing an indirect, non-

causal path along which information can flow. 

 

The Backdoor Criterion:  

 

The backdoor criterion (Pearl 1993, 2009) states that a set of variables, Z, is 

sufficient for estimating the causal effect of X on Y if variables in Z block all 
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backdoor paths from X to Y. To block a backdoor path between X and Y, the path 

must be ‘d-separated’ (Pearl 1988). A path between X and Y can be d-separated if 

either:  

 

(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (a variable with two incoming 

arrows, e.g., B is a collider variable in A à B ß C) that is outside Z and has no 

descendant in Z  

 

For our DAG, there are two backdoor paths between MPA and reef fish biomass that 

must be d-separated (i.e., blocked):  

 

1. MPA ß Structural Complexity à Reef Fish Biomass 

2. MPA ß Depth à Fishing Pressure à Reef Fish Biomass 

 

The first backdoor path can be blocked by adjusting for structural complexity and the 

second backdoor path can be blocked by adjusting for depth. Therefore, to block all 

backdoor baths, we must adjust for both structural complexity and depth.  

 

We note that the application of the backdoor criterion can become complicated as we 

move on to larger and more complex DAGs (see Supplementary Material 5.8.4). In some 

cases, more than one adjustment set may be available to determine the causal effect of X 

on Y. In these scenarios, it is best to choose the adjustment set with the lowest 

measurement error. Other times, the adjustment set(s) required may not be available due 

to the presence of unmeasured variables. To avoid this scenario, we recommend that 

researchers think critically and draw potential DAGs before collecting observational data. 

Given that application of the backdoor criterion can become difficult to apply for 

increasingly complex DAGs, researchers can draw their DAG on www.daggity.net 

(instructions within site), which will apply the backdoor criterion and generate the 

adjustment set(s) required to determine causal effects, given a specified DAG and causal 

question. 
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Once the backdoor criterion is applied to determine the sufficient set for adjustment, we 

can choose an appropriate statistical model for analysis. DAGs can be used to guide 

covariate selection (i.e., which variables to control for) and are not the estimation 

method; therefore, ecologists must select the statistical approach that best fits their data 

and study question. DAGs are non-parametric, meaning that they make no assumptions 

about the distribution of variables (e.g., normally distributed) or the functional form of 

causal effects (e.g., linear, nonlinear, stepwise). As such, they are compatible with a wide 

range of statistical analysis (e.g., hierarchical Bayesian model). Here, since our simulated 

data was created using linear relationships, we have applied a generalized linear model 

(GLM). Our GLM specifies reef fish biomass as the response variable, MPA as the 

predictor, and includes depth and structural complexity as controls. We interpret the 

coefficient of MPA as our total causal estimate on reef fish biomass. Here, our causal 

estimate of MPA on reef fish biomass returned an accurate estimate of 1.17 [1.08, 1.26], 

with the 95% confidence interval including the true causal effect of 1.089 

(Supplementary Material 5.8.5). 

 

It is important to note that covariate selection based on the backdoor criterion eliminates 

common statistical biases including confounding, overcontrol, and collider bias that often 

plague observational studies (see Chapter 2.8.2 for definitions). Confounding bias occurs 

when a common cause between predictor and response is not adjusted for. Given our 

DAG, if no adjustments are made, confounding bias would arise from depth and 

structural complexity, which effect both MPA and reef fish biomass. Indeed, a GLM with 

no adjustments gave an inaccurate estimate of 3.40 [3.32, 3.48] for the effect of MPA on 

reef fish biomass (Supplementary Material 5.8.6).  

 

Lesser known, but equally important, are overcontrol and collider bias. Overcontrol bias 

occurs when an intermediate variable between predictor and response is adjusted for, 

blocking the causal association between predictor and response. Given our DAG, 

adjusting for fishing pressure would lead to overcontrol bias, giving an inaccurate 

estimate of -0.10 [-0.16, -0.04] for the MPA effect, even when depth and structural 
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complexity are adjusted for (Supplementary Material 5.8.6). Collider bias occurs when a 

variable affected by both predictor and response is adjusted for, creating a spurious 

association between predictor and response. Given our DAG, adjusting for coral cover 

would lead to collider bias, giving an inaccurate MPA estimate of -0.13 [-0.15, -0.11] 

(Supplementary Material 5.8.6). Collectively, the application of the backdoor criterion 

eliminates all three statistical biases, allowing for accurate causal estimates.  

 

The SCM framework can be employed across a range of observational ecological studies 

(e.g., Cronin and Schoolmaster Jr. 2018; Schoolmaster et al. 2020; Grace and Irving 

2020). Importantly, DAGs and the principles of SCM (e.g., the backdoor criterion) can be 

applied to ensure proper study design across other quasi-experimental approaches that 

have gained traction withing ecology (Butsic et al. 2017; Larsen et al. 2019), including 

propensity score analysis, BACI studies, RDD, and IV.  

 

5.4 MATCHING METHODS 
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Figure 5.2 Quasi-experimental approaches: (a) propensity score analysis (b) before after 
control impact (BACI) (c) regression discontinuity design (RDD) (d) instrumental 
variable (IV). 
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to identify and adjust for confounding 

Regression Discontinuity Design 
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o RDD selects treatment and control groups 

from either side of a discontinuity, where 
confounding variables are expected to be 
similar
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Matching methods are often employed to remove confounding bias within observational 

studies (Stuart 2010). Matching methods aim to balance the distribution of covariates 

between treatment and control groups (Figure 2a). Covariates placed in a matching 

procedure should include all and only confounding variables assumed to affect both 

treatment assignment (e.g., MPA placement) and the outcome (e.g., reef fish biomass), 

thereby eliminating confounding bias (Rosenbaum and Rubin 1983). Implementing 

matching methods first requires the selection of a distance measure, used to define how 

close two units are based on selected covariates. Several distance measures are available 

to researchers, including propensity scores and Mahalanobis distance (Stuart 2010). 

Distance measures are subsequently used to match treatment and control units, which can 

be done through several matching methods including nearest neighbour matching, 

optimal matching, and exact matching (Stuart 2010).  

 

 

Matching methods have been employed across a range of ecological systems to determine 

the causal effect of treatments, including the effect of protected areas on natural forests 

(Adnam et al. 2008; Herrera et al. 2019) and freshwater species (Chessman, 2013), the 

effect of agriculture on stream ecosystems (Pearson et al. 2016), and the impact of 

invasive species management on tree condition (Ramsey et al. 2019). However, although 

past studies state the presumed confounding variables used in their matching procedure, it 

is unclear how these confounding factors interact with one another within the broader 

causal structure of a study system. Without this knowledge, it is unclear whether there are 

unobserved or unmentioned variables that need to be included in the matching analysis or 

whether the inclusion of all selected variables may lead to other forms of bias (e.g., 

overcontrol or collider bias) through the accidental inclusion of non-confounding 

variables.  

 

To resolve these issues, matching methods can make use of DAGs. As previously noted, 

after creating and finalizing a DAG, researchers can apply the backdoor criterion to 

determine which covariates need to be controlled for to determine the causal effect of X 

on Y. Under matching procedures, the set of covariates that enter the matching procedure 
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must satisfy the backdoor criterion (Pearl 2009). For example, if we choose propensity 

score matching, then given our DAG (Fig 1), to determine the effect of MPA on reef fish 

biomass, depth and structural complexity must enter the propensity score for MPA 

placement (Supplementary Material 5.8.7). To ensure covariate balance is achieved, we 

can employ balancing tests, which are often applied across matching procedures 

(Supplementary Material 5.8.7). When this is done, and our propensity score is used as a 

covariate adjustment, we return an accurate causal estimate for MPA of 1.17 [1.07, 1.27] 

(Supplementary Material 5.8.7).  

 

Employing the backdoor criterion also eliminates other forms of bias that can occur 

within matching methods, including overcontrol and collider bias (Pearl 2009; 

Mansournia et al. 2013). For example, if all available variables entered our propensity 

score, this would ultimately lead to overcontrol bias (due to the inclusion of an 

intermediate variable, fishing pressure) and collider bias (due to the inclusion of a 

collider variable, coral cover), giving an inaccurate MPA causal estimate of -0.19 [-0.29, 

0.11] (Supplementary Material 5.8.7). Additionally, DAGs include both measured and 

unmeasured variables needed to depict a complete causal structure, thereby explicitly 

stating any missing variables that must be considered. This is critical as the omission of 

unmeasured variables required in a backdoor adjustment set can lead to bias (Pearl 2009). 

Collectively, the application of the backdoor criterion on DAGs helps determine 

covariates that must and must not enter a matching procedure, while also communicating 

a system’s assumed causal structure.  

 

5.5 BEFORE AFTER CONTROL IMPACT (BACI) 

If observational data is available both before and after an event, BACI designs (Green 

1979) can be used to assess the effect of interventions, including anthropogenic 

disturbances or environmental management actions. BACI works by measuring a 

response (e.g., reef fish biomass) both before and after an intervention (e.g., MPA 

placement) for both treatment and control site(s). BACI rests on the assumption that 

trends in the treated and control groups would be identical if the intervention did not 
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occur, meaning any difference in the rate of change between treatment and control is 

attributed to the intervention (Figure 5.2b).  

 

BACI and its extensions (e.g., BACIPS, Stewart-Oaten et al. 1986; Progressive-Change 

BACIPS, Thiault et al. 2016) have been applied across various ecological studies, 

including to determine the effects of invasive species on invertebrates (Kadye and Booth 

2012), restoration programs on biota (Bousquin and Colee 2014; Suren et al. 2011) and 

MPAs on coral reef fish communities (Thiault et al. 2019). Wauchope et al. (2021) 

further show how to analyze BACI data to determine trend and immediate change, in 

addition to average change, which may better capture ecological responses to 

interventions. However, although BACI study designs have the potential to provide valid 

causal inference, past reviews have noted the prevalence of improper study design, where 

the consideration of all relevant variables is often neglected, particularly joint 

consideration of both ecological and human factors (Ferraro et al. 2019; Adams et al. 

2019). Here, DAGs can allow researchers to consider all relevant variables and clarify the 

assumptions required for appropriate BACI studies.  

 

Let’s consider a standard BACI design, which is also referred to as difference-in-

difference (DiD) in some fields (Wauchope et al. 2021). Given our asserted DAG and the 

application of the backdoor criterion, we know that depth and structural complexity are 

confounding variables that must be accounted for to determine the effect of MPA on reef 

fish biomass. A strength of a BACI design is that it already accounts for certain 

confounding variables. Confounding in BACI designs occurs only if a variable (1) effects 

the treatment group and (2) has an effect on the outcome trends, which can occur when a 

variable has a time-varying difference between treatment groups or a time-varying effect 

on the outcome (Zeldow and Hatfield 2019). In our simulation, neither depth nor 

structural complexity have a time-varying difference between treatment groups or a time-

varying effect on the outcome, so the application of a BACI analysis will return an 

accurate causal estimate for MPA of 1.07 [0.96, 1.20], without the need to adjust for 

these variables (Supplementary Material 5.8.8). Critically, when designing BACI studies, 

researchers must ensure that the variables in a backdoor adjustment set are accounted for, 
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either by design or through appropriate statistical adjustments. For example, if a 

bleaching event occurred after initial MPA placement, and disproportionately reduced the 

structural complexity across MPA sites, structural complexity would now act as a 

confounding variable by having a time-varying difference between treatment groups. 

Under these circumstances, our BACI analysis returns an inaccurate causal MPA estimate 

of 0.19 [0.08, 0.30; Supplementary Material 5.8.8]. However, we can return an accurate 

estimate of 1.06 [0.97, 1.16] by making the appropriate adjustment for structural 

complexity (Supplementary Material 5.8.8). We refer readers to Zeldow and Hatfield 

(2019), who provide instructions on how to adjust for confounding variables, when they 

do arise in BACI studies.  

 

Given the need for proper study design (Ferraro et al. 2019; Adams et al. 2019), using 

DAGs to guide BACI studies will ultimately lead to more impactful and accurate causal 

estimates due to the extra care taken to understand how causal assumptions can be met. In 

addition, researchers can also employ placebo tests used in BACI studies to further 

support their causal conclusions; for example, researchers can apply a BACI analysis 

using only pre-treatment data, which should show a lack of causal effect (e.g., Schnabl, 

2012). As such, the integration of causal diagrams with BACI can lead to additive 

methods for supporting causal claims, which in turn lead to more comprehensive causal 

conclusions.  

 

5.6 REGRESSION DISCONTINUITY DESIGN (RDD) 

 

RDD aims to minimize the effect of confounding bias by exploiting a discontinuity in 

either space, time, or policy to separate observations into treatment and control groups 

(Imbens and Lemieux, 2008). The key assumption is that at or near this discontinuity, 

confounding variables are equal between treated and control groups. If the underlying 

confounding variables are similar before and after the change, then the treatment effect 

can be estimated by comparing the average difference between treated and control groups 

(Fig 2c). Although past review papers have highlighted the potential of RDD in ecology 
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(Butsic et al. 2017), it remains underutilized. We could find only one example of its use 

for causal inference, a conference paper studying the effect of protected areas on 

deforestation, population settlements, and road infrastructure that used the border of 

protected areas as the discontinuity with treatment and control groups being comprised of 

study sites from each side (Perez et al. 2017).  

 

 
Figure 5.3 An alternative DAG representing the effect of a marine protected area (MPA) 
on reef fish biomass under a regression discontinuity design where only data near a 
discontinuity (MPA border) is considered. 

 

Despite limited use to date, RDD provides a strong causal inference approach across 

ecological studies whenever there exists a sharp break between treatment groups across 

observational units, including protected area borders, fishing and land use zones, species 

ranges, and soil types (Butsic et al. 2017). Yet here again causal diagrams should be 

utilized to visualize how exploiting a discontinuity can break the backdoor (i.e., non-

causal) paths between predictor and response. For example, to determine the effect of 

MPA on reef fish biomass, we can use the MPA border as our discontinuity if 

confounding variables (depth and structural complexity) are approximately the same on 

either side and fish do not readily move across the boundary. Figure 5.3 uses a DAG to 
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represent the causal structure between MPA and reef fish biomass within this kind of 

RDD design. Here, our observational data comes only from our discontinuity range, on 

either side of MPA border. As such, depth and structural complexity are assumed to no 

longer act as confounding variables, meaning the effect of MPA on reef fish biomass can 

be estimated without needing to adjust for additional variables (i.e., there are no backdoor 

paths between MPA and reef fish biomass within this discontinuity). A simulated dataset 

using data only from this discontinuity (following the causal structure in Figure 5.3) 

returned an accurate causal estimate of MPA on reef fish biomass, 1.08 [0.66, 1.49] 

(Supplementary Material 5.8.9).  

 

Visualizing RDD with causal diagrams is particularly important in ecology due to the 

complex nature of causal connections that may exist near a chosen discontinuity. For 

example, it may be the case that an ecological RDD design removes some backdoor paths 

between two a predictor and outcome variable of interest, while still leaving a sub-set of 

backdoor paths open. In such a case, necessary adjustments (during the statistical 

analysis) can be made to ensure all backdoor paths are closed. Ultimately, DAGs allow 

researchers to visualize the causal structure near a discontinuity, to help ensure proper 

study design. Although underutilized, well thought out RDD communicated through 

causal diagrams can provide effective and transparent observational causal inference and 

should be more routinely used. Placebo tests used within RDD studies (e.g., using pre-

treatment variables as placebo outcomes) can further be employed to provide additional 

support for causal conclusions (Eggers et al. 2021). 

5.7 INSTRUMENTAL VARIABLES (IV) 

The IV approach (Wright 1928; Kendall, 2015) can be used to determine the effect of X 

on Y in the presence of an unmeasured confounding variable, leading to confounding 

bias, or bi-directional relationships, which can generate simultaneity bias. For example, 

the DAG in Figure 5.2d shows that the effect of predictor on response cannot be 

determined from a simple regression analysis due to the presence of an unmeasured 

confounding variable. In such cases, an instrument, Z, can be used to determine the effect 

of X on Y if it meets three requirements (Hernan and Robins, 2006). First, Z must be 
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correlated with the predictor variable; the stronger the correlation, the more effective the 

instrument Z will be. Second, Z must not have a direct causal effect on the response 

variable and must only be associated with outcome Y through X, known as the exclusion 

criterion. Third, there must be no confounding variables that affect both Z and Y. If these 

three requirements are met, Z can be used as an instrument to determine the effect of X 

on Y through a two-stage regression (Kendall 2015).  

 

Finding an instrument that satisfies all three criteria can be difficult practice, which may 

limit its use in ecological studies. However, when applicable, IV remains a powerful 

technique that can be used to prevent confounding and simultaneity bias across 

observational ecological studies. Already, several implementations of IV exist within the 

ecological literature: Bush and Cullen (2009) used site accessibility measures as 

instruments to determine the effectiveness of endangered species recovery treatments; 

Amin et al. (2015) used biodiversity as an instrument to determine the effect of protected 

areas on deforestation; and Butsic et al. (2015) used multiple instruments to determine the 

effect of warfare, mining, and protected areas on deforestation.   
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Figure 5.4 DAGs under two instrumental variable scenarios: (4a) represents a scenario 
where an instrument, Z, can be used to determine the effect of X on Y while (4a) 
represents a scenario where an instrument, Z, cannot be used to determine the effect of X 
on Y because it cannot meet the exclusion criterion.   

 

When implementing IV, causal diagrams should be drawn to depict the complete causal 

structure of a system under study to accurately assess whether a chosen instrument meets 

the necessary requirements. For example, Figure 4a depicts a DAG where X and Y are 

confounded by an unmeasured variable U. Here, our instrument, Z, does not initially 

satisfy the exclusion criterion because it effects Y through another intermediate variable, 

V: Y ß V ß Z. To satisfy the exclusion criterion, we must block (d-separate) this 

pathway by adjusting for V. Once this is done, Z can be used as an instrument to 

determine the effect of X on Y. We can additionally test our causal assumption that our 

instrumental variable, Z, is sufficiently correlated with our predictor variable, X, by 

testing against weak instruments, which is commonly employed across IV studies (e.g., 

Staiger and Stock 1997; Supplementary Material 5.8.10). Following this, an IV approach 

on our simulated data, using Z as our instrument and adjusting for V, returns an accurate 

causal estimate of 1.11 [1.07, 1.15] for X on Y (known causal estimate of 1.089; 

Supplementary Material 5.8.10).  

 

As another example, the DAG in Figure 5.4b also requires adjustment for V to block the 

additional path from Z to Y: Y ß V ß Z. However, in doing so, we open another path 

between Z and Y: Y ß U2 à V ß Z. V acts as a collider variable (variable with two 

incoming arrows) in this path, which we open when adjusting for it. To block this 

additional path, we must also adjust for U2. However, U2 is an unmeasured variable, and 

therefore cannot be adjusted. In this scenario (Figure 5.4b), Z cannot act as an instrument 

to measure the effect of X on Y. A two-stage regression that did not adjust for U2 

returned an inaccurate estimate of 0.73 [0.69, 0.78] for X on Y (known causal estimate of 

1.089; Supplementary Material 5.8.10). By utilizing causal diagrams, we explicitly 

communicate our assumptions about the causal structure between an instrument, 

predictor, and response variable, and accordingly, ensure that the assumptions required 
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for an IV approach are satisfied. As such, the use of causal diagrams can lead to more 

accurate implementation of the IV approach.  

5.8 CONCLUSION 

Although causal diagrams are underutilized within ecology, they hold tremendous 

potential for guiding effective causal inference across a range of observational contexts. 

Here, we have highlighted the utility of DAGs (within the SCM framework) across four 

additional quasi-experimental approaches, showing how the use of causal diagrams 

clarifies and unifies variable selection in non-experimental settings. Their use will also 

help to produce more transparent communication about causal assumptions, leading to 

more critical and accurate discussion about the conclusions that can be drawn from 

ecological research. Further, the integration of DAGs with quasi-experimental methods 

leads to additive methods for supporting causal claims (e.g., balancing tests for matching 

methods, placebo tests for BACI and RDD designs, test for weak instruments for IV 

approaches), which can lead to more comprehensive causal analysis. Utilizing DAGs 

across quasi-experimental methods can lead to more accurate and comprehensive causal 

analysis. The consequences of such a change are profound – from management and 

policy decision making, to the development of ecological laws, ecology must embrace a 

causal understanding of our data-rich and radically-changing natural world. 

5.9 SUPPLEMENTARY MATERIAL 

 
5.9.1 Coral Reef DAG  

 

Our hypothetical DAG in Figure 5.1 represents the causal structure of how marine 

protected areas (MPAs) are expected to influence reef fish biomass for a hypothetical 

coral reef system, created based on past literature and expert knowledge of coral reef 
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ecologists. Supplementary Table 5.1 provides rationale for each of our directed links 

within our DAG.  

 
Table 5.1 Justification for the causal links in our hypothetical coral reef DAG. 
 

Causal Link Rational  

Depth à MPA 

 

In our hypothetical scenario, MPAs were placed 

in deeper and more structurally complex reefs, 

and these characteristics are expected to make 

reefs more resilient against climatic disturbances 

(Graham et al. 2015). 

Structural Complexity à MPA 

Depth à Fishing Pressure  Fishing pressure is less pronounced in deeper 

reefs (Bridge et al. 2013).  

Structural Complexity à Reef fish 

biomass 

Structural complexity increased habitat 

availability, which can subsequently increase 

reef fish biomass (Graham and Nash, 2013; 

Verges et al. 2011). 

Human Gravity -> Fishing Pressure Higher human gravity is associated with 

increased fishing pressure, Cinner et al. 2018).   

Human Gravity -> Reef Fish Biomass Higher human gravity is associated with 

negative human impacts in the surrounding 

environment (e.g., nutrient pollution), which in 

turn can influence reef fish biomass (Cinner et 

al. 2018) 

MPA à Fishing Pressure à Reef fish 

biomass 

MPAs lead to higher reef fish biomass through 

the reduction of fishing pressure (Edwards et al. 

2014; Soler et al. 2015). 
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MPA à Coral Cover MPAs protect coral cover from fishing gear and 

other recreational activities (McManus et al. 

1997; Strain et al. 2019; Stevens 2020). 

Reef Fish Biomass à Coral Cover  Herbivorous reef fish maintain coral cover 

through grazing on macroalgae, which 

subsequently enhances coral recruitment through 

creating space for larval settlement (McCook et 

al. 2001). 

 

5.9.2  Simulating Data  

 

We have created a simulated dataset that follows the (linear) causal structure depicted in 

our DAG (Fig 1) using R. The causal effect of MPA on reef fish biomass is set to 1.089. 

Using simulated data (with known causal effects) will help us later determine if the 

application of SCM can return the accurate causal estimates.  

 

# Generating simulated data set for factors influencing 

reef fish biomass on a series of coral reef sites, given 

our DAG in Fig 1.  

 
# install simstudy: user friendly package for simulating 

data 

 

install.packages("simstudy")  

library(simstudy) 

 

# set seed for reproducibility 

 

set.seed(5)  

 

# define variables for depth, human gravity, structural  
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complexity, MPA, fishing pressure, reef fish biomass 

and coral cover 

 

def <- defData(varname = "depth", dist = "normal", formula  

= 0, variance = 1) 

 

def <- defData(def, varname = "human_gravity", dist =  

"normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "structural_complexity", dist  

= "normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "MPA", dist = "binary",  

formula = "0.2 * depth + 2.8 * structural_complexity",  

link = "logit", variance = 1) 

 

def <- defData(def, varname = "fishing_pressure", dist =  

"normal", formula = "-0.99 * MPA + -0.2 * depth + 0.3 

* human_gravity", variance = 1) 

 

def <- defData(def, varname = "reef_fish_biomass", dist =  

"normal", formula = "-1.1 * fishing_pressure + -0.4 * 

human_gravity + 1.65 * structural_complexity", 

variance = 1) 

 

def <- defData(def, varname = "coral_cover", dist =  

"normal", formula = "0.5 * MPA + 2.5 *  

reef_fish_biomass", variance = 1) 

 

# create 10000 observations  

 

coraldata <- genData(10000,def)  
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5.9.3 Test DAG-data Consistency   

 

After a DAG is created it can be tested against the data it represents to ensure DAG-data 

consistency. A specified DAG will have (often many) independencies (e.g., X is 

independent of Y) and conditional independencies (e.g., X is independent of Y, given Z) 

that must be compatible with the dataset it represents. Conditional independencies 

emerge from d-separation (dependency separation) rules:  

 

d-separation (Pearl, 1988): A set of variables, Z, is said to block (or d-separate) a 

path from one variable to another if either  

(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (variable with two incoming 

arrows) that is outside Z and does not cause any variables in Z 

 

Our DAG has 12 independencies that can be tested against our simulated data:  

 

1. Coral Cover ⊥ Fishing Pressure | MPA, Reef Fish Biomass 

2. Coral Cover ⊥ Human Gravity | MPA, Reef Fish Biomass 

3. Coral Cover ⊥ Structural Complexity | MPA, Reef Fish Biomass 

4. Coral Cover ⊥ Depth | Fishing Pressure, Human Gravity, MPA, Structural 

Complexity 

5. Coral Cover ⊥ Depth | MPA, Reef Fish Biomass 

6. Fishing Pressure ⊥ Structural Complexity | Depth, MPA 

7. Human Gravity ⊥ Structural Complexity 

8. Human Gravity ⊥ Depth 

9. Human Gravity ⊥ MPA 

10. Reef Fish Biomass ⊥ Depth | Fishing Pressure, Human Gravity, Structural 

Complexity 
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11. Reef Fish Biomass ⊥ MPA | Fishing Pressure, Human Gravity, Structural 

Complexity 

12. Structural Complexity ⊥ Depth 

 

For example, based on d-separation rules, the first conditional independency states that 

coral cover should be independent on fishing pressure, is MPA and reef fish biomass is 

controlled for. All 12 independencies must be consistent with our simulated data to pass 

DAG-data consistency. Here, we will use the R package ‘dagitty’ (Textor et al. 2016) to 

test DAG-data consistency between our simulated dataset and specified DAG. Dagitty 

uses a formal test of zero (partial) correlation for each identified independency based on 

d-separation rules. To mitigate problems around multiple testing (e.g., for complex DAGs 

with many testable implications), the p-values obtained are then corrected using the 

Holm-Bonferroni method. We summarize the R code required to test DAG-data 

consistency below and refer readers to Textor et al. 2016 for further details.   

 
# Install R package dagitty 

install.packages(“dagitty”) 

library(dagitty) 

 

# download specified DAG from dagitty.net  

DAG <- downloadGraph("dagitty.net/mouvsuG") 

 

# evaluate the d-separation implications of our DAG with 

our simulated dataset 

test <- localTests(DAG,coraldata) 

 

# perform Holm-Bonferrino correction 

test$p.value <- p.adjust(test$p.value)  

test # should show all p values above 0.05, suggesting DAG-

data consistency 
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Our results support that our simulated dataset is consistent with all implied 

independencies within our DAG. This is expected as we simulated our dataset based on 

the (linear) causal structure of our DAG. In general, passing DAG-data consistency 

provides support for the causal claims within a DAG. If a DAG does not pass DAG-data 

consistency, it can be altered until DAG-data consistency is ensured. We note that since 

several DAGs may pass DAG-data consistency, it is imperative that a finalized DAG is 

first and foremost justified through domain knowledge (e.g., through the literature, expert 

knowledge, past experiments). 

 

5.9.4 Apply the Backdoor Criterion  

 

Once a DAG is finalized to ensure DAG-data consistency, we can apply the backdoor 

criterion to for model selection. Specifically, the backdoor criterion instructs us to block 

all backdoor paths between our predictor and response variable, X and Y. A backdoor 

path is a sequence of arrows and nodes connecting X and Y variables with an arrow 

pointing into both X and Y. Note that while causality follows the direction of arrows, 

information can flow in either direction, leading to confounding that is otherwise difficult 

to detect. If left open, these backdoor paths create bias and induce spurious correlation by 

providing an indirect, non-causal path along which information can flow. 
 

The Backdoor Criterion:  

The backdoor criterion (Pearl 2009) states that a set of variables, Z, is sufficient 

for estimating the causal effect of X on Y if variables in Z block all backdoor 

paths from X to Y. To block a backdoor path between X and Y, the path must be 

‘d-separated’ (dependence-separated). A path between X and Y can be d-

separated if either:  

 

(i) the path contains at least one arrow-emitting variable that is in Z, or  

(ii) the path contains at least one collider variable (a variable with two incoming 

arrows, e.g., B is a collider variable in A à B ß C) that is outside Z and has no 

descendant in Z  
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For our DAG, there are two backdoor paths between MPA and reef fish biomass that 

must be d-separated (i.e., blocked):  

 

3. MPA ß Structural Complexity à Reef Fish Biomass 

4. MPA ß Depth à Fishing Pressure à Reef Fish Biomass 

 

The first backdoor path can be blocked by adjusting for structural complexity and the 

second backdoor path can be blocked by adjusting for depth. Therefore, to block all 

backdoor baths, we must adjust for both structural complexity and depth.   

 

The application of the backdoor criterion can become complicated as we move on to 

larger and more complex DAGs. As an example, let’s consider the DAG in 

Supplementary Figure 5.5.  

 

 

 
Supplementary Figure 5.5 DAG showing how different factors influence sports injury, 
based on Shrier and Platt (2008).  
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Given this DAG, if we want to look determine the effect of warm-up exercise on injury, 

the following backdoor paths need to be blocked:  

 

1. Injury ß Neuromuscular Fatigue à Intra-Game Proprioception ß Contact Sport 

à Previous Injury ß Team Motivation à Warm-up Exercise (already blocked 

because we did not adjust for the collider variable intra-game proprioception)  

2. Injury ß Tissue Weakness ß Connective Tissue Disorder ß  Genetics à 

Neuromuscular Fatigue à Intra-Game Proprioception ß Contact Sport à 

Previous Injury ß Team Motivation à Warm-up Exercise (already blocked 

because we did not adjust for the collider variable intra-game proprioception) 

3. Injury ß Tissue Weakness ß Connective Tissue Disorder à Neuromuscular 

Fatigue ß  Genetics à Fitness Level ß Coach à Team Motivation à Warm-up 

Exercise (already blocked because we did not adjust for either collider variables 

neuromuscular fatigue or fitness level) 

4. Injury ß Tissue Weakness ß Connective Tissue Disorder à Neuromuscular 

Fatigue ß  Genetics à Fitness Level à Pre-game Proprioception à Warm-up 

Exercise (already blocked because we did not adjust for either collider variables 

neuromuscular fatigue) 

5. Injury ß Tissue Weakness ß Connective Tissue Disorder à Neuromuscular 

Fatigue ß  Fitness Level à Pre-game Proprioception à Warm-up Exercise 

(already blocked because we did not adjust for either collider variables 

neuromuscular fatigue) 

6. Injury ß Tissue Weakness ß Connective Tissue Disorder à Neuromuscular 

Fatigue ß  Fitness Level ß Coach à Team Motivation à Warm-up Exercise 

(already blocked because we did not adjust for either collider variables 

neuromuscular fatigue) 

7. Injury ß Tissue Weakness ß Connective Tissue Disorder ß  Genetics à 

Fitness Level à Neuromuscular Fatigue à Intra-Game Proprioception ß 

Contact Sport à Previous Injury ß Team Motivation à Warm-up Exercise 

(already blocked because we did not adjust for the collider variable intra-game 

proprioception) 
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8. Injury ß Intra-Game Proprioception ß Contact Sport à Previous Injury ß 

Team Motivation à Warm-up Exercise (already blocked because we did not 

adjust for the collider variable previous injury) 

9. Injury ß Tissue Weakness ß Connective Tissue Disorder à Neuromuscular 

Fatigue à Intra-Game Proprioception ß Contact Sport à Previous Injury ß 

Team Motivation à Warm-up Exercise (already blocked because we did not 

adjust for the collider variable previous injury) 

10. Injury ß Tissue Weakness ß Connective Tissue Disorder ß Genetics à Fitness 

Level ß Coach à Team Motivation à Warm-up Exercise (already blocked 

because we did not adjust for the collider variable fitness level) 

11. Injury ß Neuromuscular Fatigue ß Genetics à Fitness Level ß Coach à Team 

Motivation à Warm-up Exercise (already blocked because we did not adjust for 

the collider variable fitness level) 

12. Injury ß Neuromuscular Fatigue ß Fitness Level à Pre-Game Proprioception 

à Warm-up Exercise (block by adjusting for neuromuscular fatigue, fitness level, 

or pre-game proprioception) 

13. Injury ß Tissue Weakness ß Connective Tissue Disorder à Neuromuscular 

Fatigue ß Fitness Level à Pre-Game Proprioception à Warm-up Exercise 

(block by adjusting for tissue weakness, connective tissue disorder, 

neuromuscular fatigue, fitness level, or pre-game proprioception) 

14. Injury ß Tissue Weakness ß Connective Tissue Disorder à Genetics à 

Neuromuscular Fatigue ß Fitness Level à Pre-Game Proprioception à Warm-

up Exercise (block by adjusting for tissue weakness, connective tissue disorder, 

genetics, neuromuscular fatigue, fitness level, or pre-game proprioception) 

15. Injury ß Neuromuscular Fatigue ß Fitness Level à Coach à Team Motivation 

à Warm-up Exercise (block by adjusting for neuromuscular fatigue, fitness level, 

coach, or team motivation) 

16. Injury ß Tissue Weakness ß Connective Tissue Disorder ß Neuromuscular 

Fatigue ß Fitness Level à Coach à Team Motivation à Warm-up Exercise 

(block by adjusting for tissue weakness, connective tissue disorder, 

neuromuscular fatigue, fitness level, coach, or team motivation) 
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17. Injury ß Tissue Weakness ß Connective Tissue Disorder ß Genetics à 

Neuromuscular Fatigue ß Fitness Level à Coach à Team Motivation à 

Warm-up Exercise (block by adjusting for tissue weakness, connective tissue 

disorder, genetics, neuromuscular fatigue, fitness level, coach, or team 

motivation) 

 

Our goal is to block all 17 backdoor paths with the minimal sufficient adjustment set(s) 

needed. In other words, we are looking for the minimal number of adjusted variables 

required to block all backdoor paths. We note that the first 11 pathways are currently 

blocked because in each of these paths, at least one collider variable was not adjusted for. 

To block the remainder of the pathways (12-17) a few options are available.  

 

First, we see that adjusting for fitness level would block backdoor paths 10-15. However, 

this in turn would open backdoor paths 3, 10 and 11 (where fitness level acts as a collider 

variable). To re-block these paths, we could adjust for either coach, genetics, or team 

motivation without re-opening any additional backdoor paths. Therefore, we can satisfy 

the backdoor criterion by adjusting for either {fitness level and coach}, {fitness level and 

genetics} or {fitness level and team motivation}.  

 

Similarly, we see that adjusting for neuromuscular fatigue would block backdoor paths 

10-15. However, this in turn would open backdoor paths 4-6 (where neuromuscular 

fatigue acts as a collider variable). To re-block these paths, we could adjust for either 

tissue weakness or connective tissue disorder without re-opening any additional backdoor 

paths. Therefore, we can satisfy the backdoor criterion by adjusting for either 

{neuromuscular fatigue and tissue weakness} or {neuromuscular fatigue and connective 

tissue disorder}. 

 

Another option to block backdoor paths 10-15, without opening backdoor paths 1-11 is to 

adjust for pre-game proprioception (blocking backdoor paths 12-14) and either coach or 

team motivation (blocking backdoor paths 15-17). Therefore, we can satisfy the backdoor 
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criterion by adjusting for either {pre-game proprioception and coach} or {pre-game 

proprioception and team motivation}.  

 

Here, we have seven adjustment set(s), each requiring us to adjust for two separate 

variables. In scenarios with multiple minimal sufficient adjustment sets, researchers may 

want to choose to set with the least measurement error. As this example demonstrates, 

applying the backdoor criterion can become complicated with increasingly complex 

DAGs. To make things easier, researchers can draw their DAG on www.daggity.net 

(instructions within site), which will apply the backdoor criterion and generate the 

adjustment set(s) required to determine causal effects, given a specified DAG and causal 

question.  

 

5.9.5 Choose Statistical Model   

 

Once the backdoor criterion is applied for model selection, researchers must choose an 

appropriate statistical model for analysis. As DAGs are non-parametric, they make no 

assumptions about the distribution of variables (e.g., normal) or the functional form of 

effects (e.g. linear, nonlinear, stepwise), making them compatible with a wide range of 

statistical analysis. Since our simulated data was generated using linear relationships, 

here we will employ a generalized linear regression model (GLM). Our GLM specifies 

reef fish biomass as the response variable, MPA as the predictor, and includes depth and 

structural complexity as controls. 

 

# run GLM following the backdoor criterion for model 

selection 

 

Model1 <- glm(reef_fish_biomass~MPA + depth +  

structural_complexity, data=coraldata)  

 

# return estimate of MPA on reef fish biomass  

 



 138 

summary(Model1)  

 

# return 95% confidence interval around MPA estimate   

 

confint(Model1)  

 

The coefficient for MPA returns a causal estimate of 1.17 [1.08, 1.26] with our 95% 

confidence interval containing the known causal effect of 1.089.  

 

5.9.6 Confounding, Overcontrol, and Collider Bias    

 

When the backdoor criterion is not employed, several forms of statistical biases can arise. 

Below are examples of confounding, overcontrol, and collider bias.  

 

Confounding bias occurs when a common cause between predictor and response is not 

adjusted for. Given our DAG, if no adjustments are made, confounding bias would arise 

from depth and structural complexity, which effect both MPA and reef fish biomass. 
 

# Model with confounding bias  

Model2 <- glm(reef_fish_biomass~MPA, data=coraldata)  

 

# return estimate of MPA on reef fish biomass  

summary(Model2)  

 

# return 95% confidence interval around MPA estimate   

confint(Model2) 

 

Here, confounding bias leads to an inaccurate causal estimate of 3.40 [3.32, 3.48].  

 

Overcontrol bias occurs when an intermediate variable between predictor and response is 

adjusted for, blocking the causal association between predictor and response. Given our 

DAG, adjusting for fishing pressure would lead to overcontrol bias 
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# Model with overcontrol bias  

Model3 <- glm(reef_fish_biomass~MPA + depth +  

structural_complexity + fishing_pressure, 

data=coraldata)  

 

# return estimate of MPA on reef fish biomass  

summary(Model3)  

 

# return 95% confidence interval around MPA estimate   

confint(Model3) 

 

Here, overcontrol bias leads to an inaccurate causal estimate of -0.10 [-0.16, -0.04].  

 

Collider bias occurs when a variable affected by both predictor and response is adjusted 

for, creating a spurious association between predictor and response. Given our DAG, 

adjusting for coral cover would lead to collider bias. 

 
# Model with collider bias  

 

Model4 <- glm(reef_fish_biomass~MPA + depth +  

structural_complexity + coral_cover, data=coraldata)  

 

# return estimate of MPA on reef fish biomass  

summary(Model4)  

 

# return 95% confidence interval around MPA estimate   

confint(Model4) 

 

Here, collider bias leads to an inaccurate causal estimate of -0.13 [-0.15, -0.11].  

 



 140 

5.9.7 Matching Methods 

 

The application of the backdoor criterion can guide proper implementation of matching 

methods, such as propensity score analysis. Given our DAG in Figure 5.1 and following 

the backdoor criterion, we will use both depth and structural complexity to determine our 

propensity score for MPA.   

 

# Generating simulated data set for factors influencing 

reef fish biomass on a series of coral reef sites, given 

our DAG in Fig 1.  

 

library(simstudy) 

 

# set seed for reproducibility 

 

set.seed(5)  

 

#define variables for depth, human gravity, structural  

complexity, MPA, fishing pressure, reef fish biomass and 

coral cover 

 

def <- defData(varname = "depth", dist = "normal", formula  

= 0, variance = 1) 

 

def <- defData(def, varname = "human_gravity", dist =  

"normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "structural_complexity", dist  

= "normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "MPA", dist = "binary",  

formula = "0.2 * depth + 2.8 * structural_complexity",  
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link = "logit", variance = 1) 

 

def <- defData(def, varname = "fishing_pressure", dist =  

"normal", formula = "-0.99 * MPA + -0.2 * depth + 0.3 

* human_gravity", variance = 1) 

 

def <- defData(def, varname = "reef_fish_biomass", dist =  

"normal", formula = "-1.1 * fishing_pressure + -0.4 * 

human_gravity + 1.65 * structural_complexity", 

variance = 1) 

 

def <- defData(def, varname = "coral_cover", dist =  

"normal", formula = "0.5 * MPA + 2.5 * 

reef_fish_biomass", variance = 1) 

 

# create 10000 observations 

 

coraldata <- genData(10000,def)  

 

# Install MatchIt, a user friendly package for propensity 

score analysis 

 

install.packages("MatchIt")  

library(MatchIt) 

 

# Generate propensity score for MPA placement, based on 

depth and structural complexity using a full matching 

method 

 

PS <- matchit(MPA ~ depth + structural_complexity, method =  

"full", data = coraldata, distance = "glm", link =  

"probit", discard = "both") 
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Before using our propensity score, we can check for covariate balance, the degree to 

which the distribution of covariates is similar across our treatment (MPA) and control 

(non-MPA) groups. We can do this with the summary() output in MatchIt.  

 
# check for covariate balance using summary data  

summary(PS)  

 

There are three columns in the ‘Summary of Balance for Matched Data’ that we can use 

to assess covariate balance: standardized mean difference close to 0, variance ratios close 

to 1 (i.e., between 0.5-2), and low cDF statistics indicate good balance. These statistics 

should be considered together. Imbalance as measured by any of them may indicate a 

potential failure of the matching scheme to achieve distributional balance. Our results 

suggest that we have good balance.  

 

Now that we have our propensity score (checked for covariate balance), we can simply 

run a regression analysis with our propensity score as a covariate:  

 

# add propensity score to our coral reef dataset 

 

coraldata$propensity_score <- PS$distance  

 
# run model 

 

Model5 <- glm(reef_fish_biomass~MPA + propensity_score,  

data=coraldata)  

 

# return estimate of MPA on reef fish biomass  

 

summary(Model5)  

 

# return 95% confidence interval around MPA estimate   
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confint(Model5)  

 

Here, we return an accurate estimate of 1.17 [1.07, 1.27].  

 

Adding too many variables for propensity score matching can lead to biases, including 

overcontrol and collider bias. As an example, let’s see what happens when we add all 

available data to calculate the propensity score for MPA:  

 
# Generate propensity score for MPA placement, based on 

depth, structural complexity, human gracity, fishing 

pressure, coral cover 

 
PS2 <- matchit(MPA ~ depth + structural_complexity +  

human_gravity + fishing_pressure + coral_cover, method 

= "full", data = coraldata, distance = "glm", link = 

"probit", discard = "both") 

 

coraldata$propensity_score2 <- PS2$distance 

 
# run model 

 

Model6 <- glm(reef_fish_biomass~MPA + propensity_score2,  

data=coraldata) 

 

# return estimate of MPA on reef fish biomass  

 

summary(Model6) 

 

# return 95% confidence interval around MPA estimate   

 

confint(Model6) 
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Here, we return an inaccurate estimate of -0.19 [-0.29, 0.11].  

 

5.9.8 Before After Control Impact (BACI) 

 

Given our DAG in Figure 5.1, the backdoor criterion instructs us that depth and structural 

complexity (our confounding variables) must be accounted for. A main strength of BACI 

designs is that they account for confounding variables, as long as they are either time-

invariant group attributes or time-varying variables that are group invariant. As both 

depth and structural complexity are time-invariant (see simulation below), they will be 

accounted for in our BACI design.  

 
# Generating simulated before-after data set for factors 

influencing reef fish biomass on a series of coral reef 

sites, given our DAG in Fig 1.  

 

library(simstudy) 

 

# set seed for reproducibility 

 

set.seed(5)  

 

#define variables for depth, human gravity, structural  

complexity and MPA; these variables are expected to be 

similar both before and after MPA placement  

 

def <- defData(varname = "depth", dist = "normal", formula  

= 0, variance = 1) 

 

def <- defData(def, varname = "human_gravity", dist =  

"normal", formula = 0, variance = 1) 
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def <- defData(def, varname = "structural_complexity", dist  

= "normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "MPA", dist = "binary",  

formula = "0.2 * depth + 2.8 * structural_complexity", 

link = "logit", variance = 1) 

 

#define variables for fishing pressure, reef fish biomass 

and coral cover before MPA placement  

 

def <- defData(def, varname = "fishing_pressure_b", dist =  

"normal", formula = "-0.2 * depth + 0.3 * 

human_gravity", variance = 1) 

 

def <- defData(def, varname = "reef_fish_biomass_b", dist =  

"normal", formula = "-1.1 * fishing_pressure_b + -0.4 

* human_gravity + 1.65 * structural_complexity", 

variance = 1) 

 

def <- defData(def, varname = "coral_cover_b", dist =  

"normal", formula = "2.5 * reef_fish_biomass_b",  

variance = 1) 

 

#define variables for fishing pressure, reef fish biomass 

and coral cover after MPA placement 

 

def <- defData(def, varname = "fishing_pressure_a", dist =  

"normal", formula = "-0.99 * MPA + -0.2 * depth + 0.3 

* human_gravity", variance = 1) 

 

def <- defData(def, varname = "reef_fish_biomass_a", dist =  
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"normal", formula = "-1.1 * fishing_pressure_a + -0.4 

* human_gravity + 1.65 * structural_complexity", 

variance = 1)  

 

def <- defData(def, varname = "coral_cover_a", dist =  

"normal", formula = "0.5 * MPA + 2.5 * 

reef_fish_biomass_a", variance = 1) 

 

# create 10000 observations  

 

coraldata <- genData(10000,def) 

 

# create a data frame specifying a time variable (0 = 

before MPA placement; 1 = after MPA placement)  

 

coraldata_before <- data.frame(depth=coraldata$depth,  

human_gravity=coraldata$human_gravity,  

structural_complexity=coraldata$structural_complexity, 

MPA=coraldata$MPA, 

fishing_pressure=coraldata$fishing_pressure_b, 

reef_fish_biomass=coraldata$reef_fish_biomass_b, 

coral_cover=coraldata$coral_cover_b)  

 

coraldata_before$time=0 

 

coraldata_after <- data.frame(depth=coraldata$depth,  

human_gravity=coraldata$human_gravity, 

structural_complexity=coraldata$structural_complexity, 

MPA=coraldata$MPA, 

fishing_pressure=coraldata$fishing_pressure_a, 

reef_fish_biomass=coraldata$reef_fish_biomass_a, 

coral_cover=coraldata$coral_cover_a) 



 147 

 

coraldata_after$time=1 

 

coraldata_DiD <- rbind(coraldata_before, coraldata_after) 

 

# add an interaction variable between time and MPA  

 

coraldata_DiD$interac <- coraldata_DiD$time * 

coraldata_DiD$MPA  

 

# final data frame 

 

coraldata_DiD 

 

In our dataset, time is represented by a dummy variable, where 0 represents before and 1 

represents after MPA placement. We also have an interaction variable which is the 

product of time and MPA treatment.  

 

To estimate the effect of MPA on reef fish biomass using before-after data, we can run a 

GLM with MPA, time and our interaction term as covariates: 

 
# run model 

 
Model7 <- glm(reef_fish_biomass ~ MPA + time + interac,  

data=coraldata_DiD) 

 

# return estimate of MPA on reef fish biomass (read interac 

term) 

 

summary(Model7)  
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# return 95% confidence interval around MPA estimate (read 

interac term)   

 

confint(Model7) 

 

Here, we see that our model returned an accurate causal estimate of MPA: 1.07 [0.96, 

1.20].  

 

As a second example, let’s consider a situation where a bleaching event reduces structural 

complexity after MPA placement, disproportionately impacting MPA areas. Here, 

structural complexity is a confounding variable that is neither time- or group-invariant, 

invalidating the assumptions of a BACI design.  

 
library(simstudy) 

 

# set seed for reproducibility 

 

set.seed(5)  

 

#define variables for depth, human gravity, MPA which 

remain similar both before and after MPA placement; define 

structural complexity (before), fishing pressure (after), 

fishing pressure (before), reef fish biomass (before), and 

coral cover (before) 

 

def <- defData(varname = "depth", dist = "normal", formula  

= 0, variance = 1) 

 

def <- defData(def, varname = "human_gravity", dist =  

"normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "structural_complexity_b",  
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dist = "normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "MPA", dist = "binary",  

formula = "0.2 * depth + 2.8 * 

structural_complexity_b", link = "logit", variance = 

1) 

 

def <- defData(def, varname = "fishing_pressure_a", dist =  

"normal", formula = "-0.99 * MPA + -0.2 * depth + 0.3 

* human_gravity", variance = 1) 

 

def <- defData(def, varname = "fishing_pressure_b", dist =  

"normal", formula = "-0.2 * depth + 0.3 * 

human_gravity", variance = 1) 

 

def <- defData(def, varname = "reef_fish_biomass_b", dist =  

"normal", formula = "-1.1 * fishing_pressure_b + -0.4 

* human_gravity + 1.65 * structural_complexity_b", 

variance = 1) 

 

def <- defData(def, varname = "coral_cover_b", dist =  

"normal", formula = "2.5 * reef_fish_biomass_b", 

variance = 1) 

 

# create 10000 observations  

 

coraldata <- genData(10000,def) 

 

# define structural complexity (after), which is 

disproportionately reduced across MPA sites; add to pre-

existing dataset 
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defSC <- defCondition(condition = "MPA == 0", formula =  

"0.90 * structural_complexity_b", variance = 0.1, dist 

= "normal") 

 

defSC <- defCondition(defSC, condition = "MPA == 1",  

formula = "0.30 * structural_complexity_b", variance = 

0.1, dist = "normal") 

 

coraldata <- addCondition(defSC, coraldata,  

     "structural_complexity_a") 

 

# define reef fish biomass (after) and coral cover (after); 

add to pre-existing dataset  

 

coraldata$reef_fish_biomass_a <- -1.1 *  

coraldata$fishing_pressure_a + -0.4 *  

coraldata$human_gravity + 1.65 * 

coraldata$structural_complexity_a + rnorm(10000) 

 

 

coraldata$coral_cover_a <- 0.5 * coraldata$MPA + 2.5 *  

coraldata$reef_fish_biomass_a + rnorm(10000) 

 

# create a data frame specifying a time variable (0 = 

before MPA placement; 1 = after MPA placement)  

 

coraldata_before <- data.frame(depth=coraldata$depth,  

human_gravity=coraldata$human_gravity,  

structural_complexity=coraldata$structural_complexity_

b, MPA=coraldata$MPA, 

fishing_pressure=coraldata$fishing_pressure_b, 
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reef_fish_biomass=coraldata$reef_fish_biomass_b, 

coral_cover=coraldata$coral_cover_b)  

 

coraldata_before$time=0 

 

coraldata_after <- data.frame(depth=coraldata$depth,  

human_gravity=coraldata$human_gravity, 

structural_complexity=coraldata$structural_complexity_

a, MPA=coraldata$MPA, 

fishing_pressure=coraldata$fishing_pressure_a, 

reef_fish_biomass=coraldata$reef_fish_biomass_a, 

coral_cover=coraldata$coral_cover_a) 

 

coraldata_after$time=1 

 

coraldata_DiD <- rbind(coraldata_before, coraldata_after) 

 

# add an interaction variable between time and MPA  

 

coraldata_DiD$interac <- coraldata_DiD$time * 

coraldata_DiD$MPA  

 

# final data frame 

 

coraldata_DiD 

 

# run model 

 

Model8 <- glm(reef_fish_biomass ~ MPA + time + interac,  

     data=coraldata_DiD) 
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# return estimate of MPA on reef fish biomass (read interac 

term) 

 

summary(Model8) 

 

# return 95% confidence interval around MPA estimate (read 

interac term)   

 

confint(Model8) 

 

This time, our interaction term returns an inaccurate estimate of 0.19 [0.08, 0.30]. Here, 

our BACI design does not account for structural complexity, which acts as a confounding 

variable. To mitigate this, we can adjust for structural complexity by adding it as a 

covariate. We refer readers to Zeldow and Hatfield (2019), who provide instructions on 

how to adjust for different types of confounding variables, when they do arise in BACI 

studies. 

 
# run model 

 

Model8_adjusted <- glm(reef_fish_biomass ~ MPA + time +  

interac  + structural_complexity, data=coraldata_DiD) 

 

# return estimate of MPA on reef fish biomass (read interac 

term) 

 

summary(Model8_adjusted) 

 

# return 95% confidence interval around MPA estimate (read 

interac term)   

 

confint(Model8_adjusted) 
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Our interaction term now returns an accurate estimate of 1.06 [0.97, 1.16]. 

 

5.9.9 Regression Discontinuity Design (RDD)  

 

For our regression discontinuity analysis, we have MPA border as our discontinuity, with 

treatment and control coming from either side of this discontinuity. Our associated DAG 

in Figure 5.3 shows that when data from this region is considered, depth and structural 

complexity no longer act as confounding variables when determining the effect of MPA 

on reef fish biomass. Our simulation below uses a subset of data from this region, 

following the causal structure of our regression discontinuity DAG:  

 

# Generating simulated data set for factors influencing 

reef fish biomass on a series of coral reef sites, given 

our DAG in Figure 5.3.  

 

library(simstudy) 

 

# set seed for reproducibility 

 

set.seed(5)  

 

#define variables for depth, human gravity, structural  

complexity, MPA, fishing pressure, reef fish biomass and 

coral cover 

 

def <- defData(varname = "depth", dist = "normal", formula  

= 0, variance = 1) 

 

def <- defData(def, varname = "human_gravity", dist =  

"normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "structural_complexity", dist  
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= "normal", formula = 0, variance = 1) 

 

def <- defData(def, varname = "MPA", dist = "binary",  

formula = 0.5, link = "logit", variance = 1) 

 

def <- defData(def, varname = "fishing_pressure", dist =  

"normal", formula = "-0.99 * MPA + -0.2 * depth + 0.3 

* human_gravity", variance = 1) 

 

def <- defData(def, varname = "reef_fish_biomass", dist =  

"normal", formula = "-1.1 * fishing_pressure + -0.4 *  

human_gravity + 1.65 * structural_complexity", 

variance = 1)  

 

def <- defData(def, varname = "coral_cover", dist =  

"normal", formula = "0.5 * MPA + 2.5 * 

reef_fish_biomass", variance = 1) 

 

# create a subset of 500 observations  

 

coraldata_rd <- genData(500,def)  

 
# run model 

 

Model9 <- glm(reef_fish_biomass~MPA, data=coraldata_rd) 

 

# return estimate of MPA on reef fish biomass  

 

summary(Model9) 

 

# return 95% confidence interval around MPA estimate   
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confint(Model9) 

 

Here, our subset of data returned an accurate estimate of 1.08 [0.66, 1.49]. We note that 

one limitation of the RDD design is that it can be data demanding, requiring enough 

observations within the discontinuity threshold.  

 

5.9.10 Instrumental Variable (IV) 

 

Below is the code for a simulated dataset following the causal structure of Figure 5.4a. 

We have set the known causal effect of X on Y to 1.089.  

 
library(simstudy) 

 

# set seed for reproducibility 

set.seed(5)  

 

#define variables for Z, V, U, X, and Y 

def <- defData(varname = "Z", dist = "normal", formula = 0,  

variance = 1) 

 

def <- defData(def, varname = "V", dist = "normal", formula  

= "0.4 * Z", variance = 1) 

 

def <- defData(def, varname = "U", dist = "normal", formula  

= 0, variance = 1) 

 

def <- defData(def, varname = "X", dist = "normal", formula  

= "0.9 * Z + 0.5 * U", variance = 1) 

 

def <- defData(def, varname = "Y", dist = "normal", formula  

= "0.5 * U + 1.089 * X + 0.34 * V", variance = 1) 
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# create 10000 observations  

 

coraldata_iv <- genData(10000,def) 

 

Given our DAG in Figure 5.4a, to determine the effect of X on Y, we can use Z as our 

instrument, but must also adjust for V in order to meet the exclusion criterion. Using a 

two-stage least square regression, this looks like:  

 

# run model 

 

stage1 <- glm(X ~ Z + V, data = coraldata_iv) 

 

# While running our two-stage regression, we can test 

against weak instruments. A common rule of thumb is that an 

F-statistic of more than 10 shows support against a weak 

instrument(Staiger and Stock  1997). When dealing with one 

instrument, this F-statistic is the square of the 

instrument’s t-statistic in the first stage.  

 

# calculate F-statistic from first stage  

summary(stage1) 

 

# The F-statistic is 5961.9 (square of Z’s t statistic 

75.445), passing the weak instrument test.  

 

stage2 <- glm(Y ~ predict(stage1) + V, data = coraldata_iv) 

 

Model10 <- stage2 

 

# return causal estimate of X on Y   

summary(Model10) 
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# return 95% confidence interval around X   

confint(Model10) 

 

Here, we see that our results return an accurate estimate of 1.11 [1.07, 1.15].  

 

Next, let’s consider a simulated dataset following the causal structure of Figure 5.4b. 

Again, we set the known causal effect of X on Y to 1.089.  

 
# set seed for reproducibility 

set.seed(5)  

 

# define variables for Z, U2, V, U, X, and Y 

 

def <- defData(varname = "Z", dist = "normal", formula = 0,  

variance = 1) 

 

def <- defData(def, varname = "U2", dist = "normal",  

formula = 0, variance = 1) 

 

def <- defData(def, varname = "V", dist = "normal", formula  

= "0.4 * Z + 1.4 * U2", variance = 1) 

 

def <- defData(def, varname = "U", dist = "normal", formula  

= 0, variance = 1) 

 

def <- defData(def, varname = "X", dist = "normal", formula  

= "0.9 * Z + 0.5 * U", variance = 1) 

 

def <- defData(def, varname = "Y", dist = "normal", formula  

= "0.5 * U + 1.089 * X + 0.34 * V + 1.6 * U2", 

variance = 1) 
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# create 10000 observations  

coraldata_iv <- genData(10000,def) 

 

Here, we can use Z as our instrument, but would also need to adjust for both V and U2 to 

satisfy the exclusion criterion. However, since U2 is an unobserved variable, we cannot 

find the true causal effect:  

 
# run model 

 

stage1 <- glm(X ~ Z + V, data = coraldata_iv) 

 

stage2 <- glm(Y ~ predict(stage1) + V, data = coraldata_iv) 

 

Model11 <- stage2 

 

# return causal estimate of X on Y  

  

summary(Model11) 

 

# return 95% confidence interval around X   

 

confint(Model11) 

 

We have returned an inaccurate estimate of 0.73 [0.69, 0.78]. In comparison, if U2 was 

observed and adjusted for, we could run the following model:  

 
# run model 

 

stage1 <- glm(X ~ Z + V + U2, data = coraldata_iv) 

 

# Again, we can check against weak instruments using the F-

statistic from our first stage regression  
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summary(stage1)  

 

# The F-statistic is 5815(square of Z’s t-statistic 

76.257), passing the weak instrument test.  

 

stage2 <- glm(Y ~ predict(stage1) + V + U2, data = 

coraldata_iv) 

 

Model12 <- stage2 

 

# return causal estimate of X on Y   

summary(Model12) 

 

# return 95% confidence interval around X   

confint(Model12) 

 

Here, we return an accurate causal estimate of 1.08 [1.04, 1.13].  
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CHAPTER 6 REDUCING BIAS IN 
EXPERIMENTAL ECOLOGY THROUGH 

GRAPHICAL CAUSAL MODELS 
Authors: Suchinta Arif, Melanie Massey, Aaron MacNeil 

6.1 ABSTRACT 

Ecologists often rely on randomized control trails (RCTs) to prove causal relationships in 

nature. Many of our foundational insights of ecological phenomena can be traced back to 

well-designed experiments, and RCTs continue to provide valuable insights today. 

Although RCTs are often regarded as the “gold standard” to causal inference, it is 

important to recognize that they rely on a set of causal assumptions that must be justified 

and met by the researcher to draw valid causal conclusions. For example, common 

spurious associations found in observational correlative studies can also plague 

experimental results due to improper study design and/or statistical analysis. Here we use 

key ecological examples to show how biases such as confounding, overcontrol, and 

collider bias can occur in experimental set-ups. In tandem, we highlight how such biases 

can be removed through the application of the structural causal model (SCM). The SCM 

framework visualizes the causal structure of a system or process under study through 

directed acyclic graphs (DAGs) and subsequently applies a set of graphical rules to 

remove bias from both observational and experimental data. Here, we highlight how 

DAGs can be used across future ecological experimental studies to ensure proper study 

design and statistical analysis, leading to more accurate causal estimates drawn from 

experimental data.  

6.2 INTRODUCTION 

Experiments are a fundamental tool ecologists use to quantify causal relationships, in 

particular, by using randomized control trials (RCTs) that often regarded as the “gold 

standard” for causal inference (e.g., Hariton and Locascio 2018). Under RCTs, 
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researchers randomly assign units or individuals into treatment and control groups to 

eliminate potential confounding between treatment assignment and outcome, thereby 

increasing the internal validity of experiments (Rubin 1974; Holland 1986). Many of the 

foundational insights in biology were discovered through experiments. For instance, 

during early exploration of the scientific method, Francesco Redi (1626 - 1698) famously 

conducted his ‘fly experiments’ to test the theory of spontaneous generation (Gottdenker, 

1979). Redi designed an experimental setup in which there were eight identical flasks 

containing meat; he tightly sealed four of these flasks and left four uncovered, yielding 

‘treatment’ and ‘control’ groups (Gottdenker, 1979). In contrast to previously held beliefs 

that maggots were created within dead flesh itself, Redi’s experiment revealed that only 

that meat which was exposed to incoming flies would eventually produce maggots, 

drawing the causal conclusion that, for maggots to form, “live animals must… deposit 

their seeds” (Gottdenker, 1979). In addition to the fundamental observation omne vivum 

ex vivo (“all life comes from life”), such experimentation would ultimately cascade into 

more complex tests of the causal relationships in the natural world.  

  

Although RCTs have been invaluable in understanding numerous causal relationships in 

ecology, they are nonetheless susceptible to biases that can lead to erroneous causal 

conclusions. For example, Kimmel et al. (2021) discuss four core causal assumptions 

required for valid causal inference in experimental biology. These include excludability, 

which is the assumption that the process by which treatments are assigned has no effect 

on the outcome. Other causal assumptions include no interference between units, no 

multiple versions of treatment, and no compliance, meaning that all units receive the 

treatment they were assigned. Other studies have noted that RCTs can suffer from lack of 

generalizability, for example, because ecological treatments may not accurately represent 

actual ecological phenomena (e.g., Korell et al. 2019). Further, statistical approaches that 

have recently received criticism across observational ecological studies are also prevalent 

across experimental ecological studies. For example, many experimental studies employ 

predictive model selection techniques such as Akaike’s information criterion (AIC; 

Akaike 1973) to select the best model for analysis (e.g., Sato et al. 2011; Cameron et al. 

2013; Hunyadi et al. 2020); others place all predictor variables of interest as well as 
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potential confounders into one statistical model for analysis (McElreath 2020). Such 

approaches have been shown to be unreliable for drawing causal conclusions (McElreath 

2020; Arif and MacNeil 2022). Although causal conclusions drawn from RCTs are often 

not questioned, biases may still arise, either through study design and/or statistical 

analysis. However, there is currently no unified framework that is being employed to 

ensure accurate causal conclusions are drawn across RCTs in ecology.  

  

Pearl’s structural causal model (SCM; Pearl 2009) is a causal inference framework that 

has recently been highlighted in the ecological literature as a tool for determining causal 

relationships from observational data (Schoolmaster et al. 2020; Laubach et al. 2020; Arif 

et al. 2021; Arif and MacNeil 2022). The SCM framework relies on graphical causal 

models, in the form of directed acyclic graphs (DAGs), to visualize hypothesized causal 

relationships between variables of interest, identify potential biases, and guide 

appropriate study design and statistical analysis required for causal inference. What has 

received significantly less attention is that within the SCM framework, DAGs can also be 

used to reduce bias across RCTs by critically visualizing the causal structure of an 

experimental set-up (e.g., Schoolmaster et al. 2020). Here we overview how DAGs can 

reduce common biases across RCTs and advocate for their widespread uptake across 

experimental studies.  

6.3 THE SCM FRAMEWORK 

The SCM framework uses DAGs to represent the causal structure of a system or process 

under study. DAGs consist of variables (nodes), that are connected to each other via 

directed arrows, pointing from cause to effect. These directed arrows communicate a 

causal relationship between two variables but make no assumptions about the functional 

form or effect size (Glymour and Greenland 2008). DAGs must also include both 

measured and unmeasured variables required to depict the complete causal structure of a 

system or process (see Cronin et al. 2018; Schoolmaster et al. 2020 for complete 

examples of ecological DAGs).  
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Figure 6.1 Three directed acyclic graphs (DAGs) representing (a) the causal structure in a 
natural setting, with a confounder (C) affecting both the variable of causal interest X and 
the outcome Y (b) the causal structure under a perfectly executed RCT, which breaks the 
association between C and X and (c) the causal structure under a RCT that introduces 
additional confounding from variable C2.  
 

As an example, Figure 6.1a shows a DAG representing a natural system whereby X 

affects Y through mechanism M, C affects both X and Y, and both X and Y affect Z. 

Under the SCM framework, if we want to determine the effect of X on Y, we can apply a 

graphical rule known as the backdoor criterion to determine which variables may need 

to be controlled for to answer a specified causal question (Pearl 2009). In estimating the 

causal effect of X on Y, the backdoor criterion instructs us to block all backdoor paths 

between X and Y (i.e., our predictor and response variable of interest). Backdoor paths 

are sequences of nodes and arrows between X and Y with an arrow pointing into X; if left 

open, they can induce spurious (non-causal) associations between X and Y, biasing 

estimates. To block a backdoor path, we can either (1) control for an intermediate arrow-

emitting variable or (2) not control for a variable with two incoming arrows (i.e., a 

collider variable, such as Z) in the pathway. To determine the effect of X on Y, given our 

DAG in Figure 6.1, there is one backdoor path that needs to be blocked: X ← C → Y. To 

block this pathway, we can control for the arrow-emitting variable C. There are several 

ways to control for a variable, including experimental control, as well as statistical 

techniques including covariate adjustment, stratification, and restriction (Williams et al. 

2018).  

  

The backdoor criterion was created to remove non-causal associations that often plague 

observational studies, including confounding, collider, and overcontrol bias. 
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Confounding bias occurs when a variable that affects both the predictor and response is 

not controlled for. Given our DAG in Figure 6.1a, to determine the effect of X on Y, we 

must control for C to remove confounding bias. Here, not controlling for C would leave 

the backdoor path (X ← C → Y) open, leading to a non-causal association between X 

and Y. Collider bias occurs when both predictor and response affect a third common 

variable (or its descendant), and that variable (known as a collider variable) is controlled 

for. To determine the effect of X on Y, we must avoid controlling for Z. Here, controlling 

for Z opens a non-causal pathway (X → Z ← Y), leading to non-causal associations 

between X and Y (Figure 6.1a). Overcontrol bias occurs when an intermediate variable 

along a causal pathway between predictor and response is controlled for, blocking the 

indirect causal association between treatment and response. To determine the effect of X 

on Y, we must not control for M (Figure 6.1a). Here, controlling for M closes a causal 

pathway (X → M → Y), removing this causal association between X and Y.  

  

A perfectly executed RCT should remove all backdoor paths between treatment and 

outcome through randomization. Fig 1b represents our previous DAG under a perfectly 

RCT where treatment X is controlled and randomized. The arrows pointing into X are 

removed under the assumption that only the experiment determines the value of X. Under 

this scenario, there are no backdoor paths that need to be blocked (because C no longer 

affects X), and the effect of X on Y can be estimated without bias. However, ecological 

experiments can often diverge from perfectly executed RCTs (Williams et al. 2018; 

Schoolmaster et al. 2020; Kimmel et al. 2021) and backdoor paths may be open, for 

example, due to additional confounding variables that arise from an imperfect treatment 

assignment process. For example, in Figure 6.1c, the treatment assignment process led to 

an additional confounding variable, C2, that affected both treatment assignment X and 

outcome Y. Bias can also arise from improper statistical analysis of experimental data. 

For example, controlling for M in Figure 6.1b and Figure 6.1c will lead to overcontrol 

bias, whereas controlling for Z in Figure 6.1b and Figure 6.1c will lead to collider bias. 

By visualizing ecological experiments through DAGs, researchers can ensure that 

common biases including confounding, collider, and overcontrol bias are accounted for, 

allowing for more accurate causal conclusions to be drawn from experiments. 
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Below we present DAGs representing ecological experiments to show how these biases 

can arise and provide solutions for how to avoid them. We further show how DAGs can 

be used to assess external validity, focusing on the extent to which RCTs can be 

generalizable to real world scenarios. The case studies and associated DAGs depicted in 

this paper are simplified and used for illustrative purposes. We refer readers to Chapter 2 

for a comprehensive overview of creating complete DAGs for ecological research. 

6.4 CONFOUNDING BIAS 

Ecologists are aware that confounding bias can often plague observational studies; 

however, with RCTs it is often assumed that the randomization process will eliminate 

confounding. To break any confounding between treatment assignment and outcome the 

excludability assumption must be met (Kimmel et al. 2021). Excludability assumes that 

the process by which treatments are assigned has no effect on the outcome except through 

its effects on variation in treatment. However, the process of treatment assignment across 

ecological experiments can often lead to the excludability assumption being violated, 

subsequently leading to confounding bias; below we present two examples:  

  

6.4.1 Biodiversity-Ecosystem Function (BEF) Experiments 

 

Hundreds of experiments have been carried out in the hopes of understanding the causal 

relationship between biodiversity metrics and various ecosystem functions (reviewed in 

Loreau et al. 2001). Although the drivers of ecosystem functioning are numerous and 

often interconnected, authors of BEF experiments rarely communicate the overall causal 

structure of their study system, or the causal assumptions required for valid causal 

inference given their experimental set-up (Schoolmaster et al. 2020). However, this is a 

necessary step as BEF experiments may be prone to erroneous conclusions (Schoolmaster 

et al 2020).  

  

As a classic example, the Cedar Creek grassland experiments (Tilman et al. 1996) sought 

to determine the effect of plant species richness on productivity. In this study, each 
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experimental unit was a plot containing 1 - 24 species that were planted from seeds, 

forming a biodiversity gradient that ultimately represented the treatment. The community 

of species within each plot was established by randomly drawing from a candidate pool 

of 24 possible prairie species. A given species therefore had a 1/24 chance to be drawn 

into a plot with a species richness of 1, a 6/24 chance of being drawn into a plot with a 

species richness of 6, and so forth. It was thus assumed that the community within each 

plot was fully ‘randomized’. Care was notably taken to ensure plots were otherwise 

similarly treated (i.e., free of previous wild vegetation, consistent and equal weeding) 

throughout the experiment. After a commendable two growing seasons of experimental 

maintenance, Tilman et al. (1996) sampled plant biomass and concluded there was a 

positive causal relationship between species richness and productivity. 

 

 
Figure 6.2 A simplified DAG representing confounding bias in a biodiversity-ecosystem 
function (BEF) experiment. The directed arrow from environment to species richness, 
which would otherwise exist in nature is removed due to the experimental treatment 
assignment process. However, the treatment assignment process induced an additional 
confounding variable, whereby selection of large plants into a treatment differentially 
affected high vs low species richness treatments as well as affected the productivity 
outcome.  
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Although this experiment was carefully designed, a subtle bias known as the ‘selection 

probability effect’ may have confounded the results of this study (Figure 6.2; Huston 

1997). The selection probability effect occurs when there is an increasing chance of 

selecting a species with a specific trait as the number of sampling events increases. With 

respect to Tilman et al. (1997)’s study, the selection probability bias was evident as size 

variation existed among the 24 candidate species, and large species were more likely to 

be drawn into high species richness treatment plots, differentially impacting treatment 

assignment (Figure 6.2). Further, since plant communities are typically dominated by 

individuals from large species (Grime 1979), productivity data gathered from treatments 

with overrepresentation of large, dominant plants likely reflected effects of those 

dominant species, rather than species richness itself (Huston 1997). Specifically, 

treatments with large plants positively affected plant biomass, which in turn positively 

affected productivity (Figure 6.2). Therefore, the positive correlation between species 

richness and productivity found in this study may be due to confounding bias resulting 

from large plant species affecting both treatment assignment and outcome. Graphically, 

this is represented by a backdoor path between treatment assignment and productivity 

(productivity ß biomass ß selection of large plant à species richness treatment) being 

left open, leading to confounding bias. Although other issues with this study have also 

been noted (Huston 1997), this particular issue could be resolved by a study design that 

samples from plant species of similar height, removing the selection probability effect.  

  

BEF experiments continue to be highly utilized to understand complex ecological 

relationships. At the same time, some authors have highlighted biases that may arise 

across BEF experiments (e.g., Huston 1997; Mora et al. 2014; Schoolmaster et al. 2020; 

Kimmel et al. 2021). The future uptake of DAGs within BEF studies can transparently 

communicate the overall causal structure of a system under study and ultimately identify 

and hopefully resolve any potential biases that may be at play. 

  

6.4.2 Transgenerational Experiments 
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As mounting evidence suggests evolution may play a limited role in organismal 

responses to rapid climate change, experimental biologists have increasingly placed 

emphasis on phenotypic plasticity as a means of coping with climate impacts (e.g., Merila 

& Hendry, 2014; Seebacher et al., 2015). One form of phenotypic plasticity that is 

expected to contribute to organismal responses is transgenerational plasticity (TGP; 

sometimes termed ‘anticipatory parental effects’ [Marhshall & Uller, 2007]), whereby 

ancestral environments influence the phenotypic responses of subsequent generations 

non-genetically (Salinas et al., 2013; Donelson et al., 2018). 

 

Transgenerational experiments are necessarily complex, given that an ancestral (F0) 

generation must be reared to sexual maturity under the desired conditions, reproduce, and 

then the responses of subsequent (F1, F2, etc.) generations must be recorded. Throughout 

the experiment, there is a risk of unexpected variables impacting the assignment of 

individuals into the F1 (or later) treatment group and response simultaneously.  

 

 
 

Figure 6.3 A DAG representing a transgenerational plasticity experiment, whereby 
differential mortality under the ancestral (F0) generation treatment leads to selection 
differentially affecting the subsequent (F1) treatments.  
 

If selection exerts significant effects on both treatment assignment and response, an over- 

or underestimation of the strength of plasticity effects can occur. As an example, Zizzari 

& Ellers (2014) investigated TGP of heat tolerance in a collembolan arthropod. They 
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exposed F0 females to a significant heat shock, then bred them and estimated the heat 

tolerance of F1 offspring (Zizzari & Ellers, 2014). Although the proportion of 

successfully reproducing females was similar for heat shock and control treatments, a 

notable result of this study is that the mortality rate of heat shocked mothers was greater 

than double that of control mothers (19% vs. 8%). As shown in the DAG in Figure 6.3, 

mortality of F0 fish differentially affected selection across F1 treatment group, with 

potentially higher selection in the heat shock treatment. Selection may have also affected 

the outcome of interest, with higher selection increasing F1 thermal tolerance (Figure 

6.3). In other words, the backdoor path between F1 thermal treatment and F1 thermal 

tolerance (F1 thermal tolerance ß selection à F1 thermal treatment) is left open, leading 

to confounding bias. Ultimately, F1 offspring whose mothers had greater genetic capacity 

to tolerate heat shock may have been overrepresented in the heat shock treatment, 

potentially leading to an overestimation of the strength of TGP. 

 

In such cases as these, researchers at a minimum should be explicit in acknowledging 

whether their experimental treatments were subject to differential selection, and clearly 

rationalize how selection may have affected their conclusions (see Donelson et al., 2016 

for an example of a clear explanation). Authors may also opt to reduce differential 

selection by decreasing the magnitude of treatment (e.g., reducing treatment-induced 

stress), or incorporate estimates of genetic effects into their statistical framework to better 

isolate plastic treatment effects (Merila & Hendry, 2014). Authors should be 

conscientious in recording treatment-dependent metadata (e.g., mortality) to make 

informed decisions about potential confounders.  

 

6.5 COLLIDER BIAS  

Collider bias occurs when both the treatment and outcome each affect a third ‘collider’ 

variable (or its descendant), that when controlled for, leads to a non-causal association 

between treatment and outcome. A common way for collider bias to occur under RCTs is 

if both the treatment and outcome affect whether an individual or unit is included in the 

final analysis of a study. For example: 
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6.5.1 Survivorship Bias 

 

Data analyzed from RCTs are sometimes limited to individuals or units that have 

survived the full term of an experiment. For example, Lusk and Del Pozo (2002) 

conducted an experiment to quantify the growth rates of rainforest trees under low-light 

and high-light environments. Seedlings from 12 Chilean rainforest tree species were 

grown under both low- and high-light environments, and relative growth rates (RGR) of 

individual plants were measured 5-6 months following the experiment. Their results 

showed that RGR in high-light treatment were consistently higher than low-light 

treatment across the 12 species. 

  

 
Figure 6.4 A simplified directed acyclic graph (DAG) representing collider bias in a 
RCT. Here, both the treatment assignment (high vs low-light conditions) and the outcome 
(relative growth rate) affected which plant individuals survived until the end of the 
experiment. Only analyzing data from plants that survived until the end of the experiment 
will essentially control for this collider variable. This in turn will induce a non-causal 
spurious correlation between treatment and outcome, leading to collider bias.  
  

In this example, collider bias occurred since RGR was measured only for plants that 

survived until month 5-6 of the experiment. The study noted that mortality rates were 

significantly higher in low-light conditions. As well, mortality risks tend to be higher for 

slow-growing plants (i.e., those with lower RGR) in a population (Kobe et al. 1995). 

Thus, as shown by the DAG in Figure 6.4, both the treatment status (low- vs. high-light) 

and RGR outcome affected whether an individual plant survived long enough to be 

included in the final analysis. In other words, the collider variable ‘survival’ (representing 
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plants that survived until end of experiment) was controlled for, leading to a non-causal 

association between treatment and outcome (Figure 6.4). As such, low-light growth rates 

may be overestimated in this experiment, as only the ‘winners’ from low-light conditions 

were assessed.  

  

Analyzing any subset of experimental data may lead to collider bias if the subset of data 

is affected by both the treatment and response. A second example is overviewed in 

Williams et al. (2018), where an RCT investigating the effect of promoting breastfeeding 

on child cognitive development led to collider bias when only participants who attended a 

post-treatment follow-up were analyzed; here, both the treatment assignment and 

outcome affected the likelihood of participants following up. In general, researchers 

should be conscientious not to control for post-treatment variables that are influenced by 

both the treatment and outcome. Ultimately, utilizing DAGs allow researchers to 

visualize whether their study design and/or data analysis may lead to collider bias.  

6.6 OVERCONTROL BIAS 

Overcontrol bias occurs when an intermediate variable along a causal pathway between 

treatment and outcome is controlled for. Unlike confounding and collider bias, which 

induces non-causal associations, overcontrol bias removes indirect causal associations 

between treatment and outcome.  

 

6.6.1 Intermediate Variables in Temperature Experiments 

 

Temperature is one of the main drivers of biological functions across numerous levels of 

organization, influencing biotic enzyme kinetics, whole-organism physiology, population 

growth and distribution, and even species interactions (e.g., Wieser 1973). Given the 

numerous ways in which temperature can affect an outcome of interest, it is crucial to 

understand when variables act as mechanisms along a causal pathway. Many temperature 

experiments aim to reduce bias by controlling for additional variables; knowing when not 

to control for a variable because it is part of a causal pathway can in turn reduce 

overcontrol bias. 
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As an example, Lienart et al. (2014) conducted an experiment examining the impact of 

temperature and food availability on risk behaviour in fish. They collected wild juvenile 

Pomacentrus chrysurus, then randomly allocated them to one of four treatments, each 

representing a combination of two feeding levels and two temperature treatments. After 5 

days of acclimation under experimental conditions, risk behavior was assessed.  

  

 
Figure 6.5 A generalized directed acyclic graph (DAG) representing the effect of 
temperature treatments on an organism outcome (e.g., risk behaviour). Here, body size 
acts as an intermediate variable between treatment and outcome. If body size is controlled 
for, it will lead to overcontrol bias, removing this indirect causal association between 
treatment and outcome.  
  

To determine the effect of temperature and food on risk behaviour, the authors included 

size as a covariate in their analysis. They noted that “the manipulation of both 

temperature and food could have resulted in a difference in the size of the fish, which 

could potentially affect their antipredator response”. This rationale implies that body size 

acts as an intermediate variable between treatment and response (Figure 6.5), and thus 

should not have been controlled for to determine the total effect of treatment on outcome. 

Although the authors ultimately found a negligible effect of size, this study nonetheless 

highlights the misconceptions that experimental ecologists may have about controlling 

mechanisms along a causal pathway. If the experiment took place over a longer 

timeframe, with temperature and food availability influencing risk behaviour through 

body size, controlling for body size would have likely led to overcontrol bias.  

  



 175 

Variation in how researchers deal with overcontrol bias can be seen across other 

experimental studies that have investigated the impact of temperature of fish populations. 

For example, Spinks et al. (2020) conducted an RCT to investigate the parental effect of 

warming on reproduction and offspring quality. In their analysis, they decided whether to 

include post-treatment mother size (an intermediate mechanism between treatment and 

outcome) as a covariate based on the leave-one-out cross-validation information criterion 

(LOOIC), a predictive model selection technique. However, model selection techniques 

are meant for predictive inference (i.e., what is the best model to predict Y?) and should 

not be conflated with causal inference (i.e., what is the effect of X on Y?). In fact, 

predictive model selection techniques can often lead to overcontrol as well as other forms 

of bias (Arif and MacNeil 2022).  

 

In contrast, an experimental study investigating the effects of ocean warming in marine 

sticklebacks noted that they “did not include egg size as a covariate as egg size is an 

intermediate variable that may have been affected by temperature treatments in the F0 

and F1 generations” (Shama and Wegner 2013). Here, authors recognize that controlling 

for a mechanism should be avoided if looking for the overall effect of a treatment on 

outcome. Controlling for an intermediate variable is also valid if researchers are not 

interested in that particular causal pathway. For example, if we wanted to know the direct 

(vs. total) effect of temperature on outcome, then given our DAG in Figure 6.5, we would 

control for body size to remove the effect of this pathway.  

 

Some researchers may include an intermediate variable as a covariate because they are 

also interested in their causal effect on the outcome. For example, the influence of body 

size may be of fundamental biological interest, even if the influence of temperature is the 

primary question in the study (e.g., Fuxjager et al. 2019). However, in such cases, a 

separate causal model should be built for each predictor variable of interest, following the 

backdoor criterion. Given our DAG in Figure 6.5, to determine the effect of treatment on 

outcome, no additional covariates need to be controlled for, as there are no backdoor 

paths that need to be blocked. However, to determine the effect of body size on outcome, 

the backdoor path outcome ← mechanism → treatment → body size can be blocked by 
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either controlling for ‘treatment’ or ‘mechanism’. This could be achieved, for example, 

by statistically adjusting for either treatment or mechanism.  

 

A formal method for acknowledging and avoiding overcontrol bias can benefit 

experimental ecologists and lead to more informed experimental conclusions. DAGs 

allow researchers to visualize when variables may act as part of a causal pathway, 

subsequently allowing them to justify their exclusion or inclusion as a covariate in their 

analysis.  

6.7 EXTERNAL VALIDITY 

External validity represents the degree to which results of an experiment can be 

generalized to subjects and situations outside of the experimental set-up (Shadish et al. 

2002). RCTs can be conducted under artificial conditions and are sometimes critiqued for 

having low generalizability (Shadish et al. 2002). Ecologists have previously highlighted 

the ways in which external validity can be increased across RCTs, for example by 

conducting field experiments that are employed under natural settings, or replicating 

experiments across settings, populations, and conditions to determine whether results can 

be generalizable. Here, we highlight how DAGs can be used to visualize how 

experimental conditions may systematically differ from real-world conditions (e.g., 

Massey & Hutchings 2020). By visualizing the mechanisms at play under experimental 

set-ups, researchers can more effectively communicate how causal structures may differ 

between experimental vs natural settings, and how this in turn may affect the causal 

conclusions drawn across experimental studies.  

 

6.7.1 The Obfuscating Influence of Static Treatments 

 

There is a growing interest in experimental biology to use treatments that better reflect 

natural conditions, rather than contrived or static conditions (Morash et al., 2018; Massey 

& Hutchings, 2020). In nature, abiotic conditions such as temperature, dissolved oxygen, 

salinity, moisture, and light are rarely static; instead, they vary both temporally 

(diurnally, seasonally, and stochastically) and spatially. Despite this, experiments often 
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compare static treatment conditions against one another, potentially resulting in data that 

lack ecological relevance, or are otherwise obfuscated by static condition-imposed 

pathologies. 

 

 
Figure 6.6 A generalized directed acyclic graph (DAG) representing how, in thermal 
biology, both prior thermal acclimation of an organism to static conditions and stress 
responses induced by static treatment conditions can influence outcomes, and thus the 
external validity of experiments.  
 

In thermal biology, this problem has been explored at length, especially in the context of 

thermal acclimation (Angilletta, 2009). Several lines of evidence suggest that the use of 

constant temperatures may have serious repercussions on both individuals and even entire 

populations of experimental organisms. For instance, a recent study by Morgan et al. 

(2022) found that the laboratory-reared zebrafish, which have been kept at constant 28 °C 

for over 150 generations, have significantly limited capacity to plastically respond to 

thermal conditions when compared to lines of wild-caught zebrafish. Moreover, this 

acclimation capacity was limited at all levels of biological organization, from genetic, to 

physiological, to behavioural plasticity (Morgan et al., 2022). These findings ultimately 

challenge the generalizability of conclusions garnered from lab-reared zebrafish, a model 

organism used in at least 17 151 studies as of 2013 (Kinth et al., 2013). In this situation, 
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the evolutionary history of thermal adaptation to unnatural constant temperatures may 

affect the mechanisms and responses to treatments (Figure 6.6). Here, although the 

treatment effect can be quantified without bias (i.e., there are no open backdoor paths 

between treatment and organism response), the causal conclusions drawn will not be 

generalizable to what would be expected under a natural setting. The generalizability of 

conclusions from these experiments will thus depend on the strength of the effects of 

prior thermal adaptation or acclimation, and researchers should think critically about how 

recorded responses may differ from those in the natural system they are trying to 

represent. 

 

The generality of constant temperature experiments has also widely been criticized due to 

the possibility of treatments imparting unintended pathologies, especially under stressful 

conditions (Wilson and Franklin, 2002). Natural organisms have evolved to respond to 

changing environments and consequently are expected to perform better when a stressor 

is applied at a natural time scale rather than through chronic exposure (Angilletta, 2009; 

Colinet et al., 2015). For example, Kingsolver et al. (2016) demonstrated that at hot 

constant temperatures, organismal growth becomes limited due to pathological increases 

in molecular coping mechanisms (e.g., heat shock proteins), which reduces energy 

resource availability in the growth pathway. When a model based on constant 

temperature performance is subsequently applied to estimate growth under natural, 

fluctuating temperatures, growth is underestimated (Kingsolver et al., 2016; but see also: 

Rollinson et al., 2018). Therefore, the outcomes measured in constant temperature 

treatments may themselves be subject to the influence of additional and unintended 

mechanisms such as a stress response (Figure 6.6), and do not reflect what is expected in 

nature.  

 

Although approaches that modify constant temperature models to extend their 

applicability have been developed (e.g., controlling for Stress Response in Fig. 

S1; Kingsolver et al., 2016; Koussoroplis et al., 2017), many authors now advocate for 

the use of more ecologically relevant temperature regimes in experimental biology as a 
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means of generating realistic responses and conclusions (e.g., Massey & Hutchings, 

2020; Morash et al., 2018; Taylor et al., 2021).  

6.8 CONCLUDING REMARKS 

Causal diagrams in the form of DAGs are starting to gain traction across ecological 

observation studies but have yet to be applied in experimental ecology. Although causal 

conclusions drawn from RCTs are often taken at face value, ecologists are increasingly 

becoming aware that for causal inference to be valid, experimental approaches must be 

carefully designed and analyzed to avoid potential biases (Kimmel et al. 2021). By 

routinely utilizing DAGs, researchers can visualize and subsequently reduce 

confounding, collider bias and overcontrol bias across experimental studies in a coherent 

way. We further highlight how DAGs can be used to assess external validity of 

experiments by visualizing how mechanisms may differ between experimental set-ups 

and the natural world. By utilizing DAGs as a visual and conceptual tool, experimental 

ecologists can increasingly meet the causal assumptions required for valid causal 

inference. DAGs also allow researchers to transparently communicate their causal 

assumptions to others, which can facilitate more critical reception and lead to productive 

scientific debates that collectively deepen our understanding of ecological phenomena 

over time (e.g., Schoolmaster et al. 2021). Moreover, DAGs allow researchers to use their 

ecological domain knowledge, above all else, to build causal models, bridging the gap 

between ecological knowledge and statistical analysis. Ultimately, the uptake of this 

causal inference tool can significantly benefit experimental design, statistical analysis, 

and interpretation of results across experimental ecology. 
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CHAPTER 7 CONCLUSION 
 

Understanding causal relationships in nature remains a central goal of ecology. It is 

therefore important that ecologists are equipped with an understanding of the tools 

required for valid causal inference. The structural causal model (SCM) framework 

provides a set of widely applicable tools that can be used for causal inference under both 

observational and experimental settings (Pearl 2009). The overarching aim of this thesis 

was to introduce the SCM framework to a general ecology audience as a unifying and 

widely applicable causal inference tool, in the hopes of increasing its uptake and 

relevance within the field.  

7.1 A CLEAR PATH FOR OBSERVATIONAL CAUSAL INFERENCE IN ECOLOGY  

The field of ecology has always relied on observational data (Elton 1927), with 

observational studies often aimed at answering causal questions in nature. For example, 

many of today’s applied ecological problems, such as quantifying the impact of climate 

change and other anthropogenic stressors on ecosystems across the globe, are reliant on 

large-scale observational data that is not easily manipulated or controlled (Sagarin and 

Pauchard 2010). However, a fundamental limitation of our field is the persistent lack of 

causal inference methodologies applied across observational studies. The slow uptake of 

observational causal inference can be attributed to the combined influence of Karl 

Pearson and Ronald Fisher, prominent eugenicists who promoted the narrative that non-

causal spurious correlations cannot be removed from observational analysis (Pearson 

1911) and that randomized experiments were the only way to attain valid causal estimates 

(Fisher 1925), in part due to their desire to appear to be objective (Clayton 2021). This 

dark history created a culture whereby ecologists avoid explicitly acknowledging the 

causal goal of their observational research and instead use coded language that implies 

causality without explicitly saying so. Importantly, observational causal inference 

techniques are not often taught to ecologists, and developed methodologies are rarely 

applied within the field.  Instead, common approaches used to understand causal 
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relationships include the ‘causal salad’ model (Bhalla 2018; McElreath 2020) as well as 

predictive model selection techniques (Arif and MacNeil 2022), both of which can lead to 

spurious non-causal associations between variables of interest. This in turn limits the 

credibility of causal results and conclusions drawn from observational data, reaffirming 

the often-repeated phrase “correlation does not imply causation” (F.A.D. 1900). The 

irony of this is that correlation can imply causation if valid causal inference 

methodologies are increasingly applied. 

 

The current “causal revolution” being led by computer scientist Judea Pearl offers a deep 

potential to transform the way ecologists think about causality, particularly as it relates to 

observational data. Pearl’s SCM framework relies on a researcher’s domain knowledge 

(based scientific consensus, prior studies, expert opinion, and other informed sources), 

above all else, to represent the causal structure of a system or process under study, using 

directed acyclic graphs (DAGs; Pearl 2009). The application of graphical rules, including 

the backdoor and frontdoor criteria, then allows researchers to determine which variables 

need to be controlled for to answer causal queries from observational data (Pearl 2009). 

The mathematical underpinnings of the framework show that (1) valid causal conclusions 

can be drawn from both experimental and observational data, (2) both experimental and 

observational approaches require a set of causal assumptions that must be met and 

justified by the researcher, and importantly, (3) experimental approaches are not 

necessarily superior to observational approaches to causal inference (Pearl 2009). 

Ultimately, the validity of causal conclusions is determined by the validity of a 

researcher’s causal assumptions, encoded in their DAG.  

 

A fundamental aim of this thesis was to introduce the SCM framework as a widely 

applicable observational causal inference tool to a general ecological audience. To this 

end, Chapter 2 provided a review of the SCM framework, geared towards a general 

ecology audience interested in observational causal inference. This chapter used 

simulated ecological examples to highlight the steps within the SCM framework, 

including how to create and finalize a DAG, as well as how to apply the backdoor and 

frontdoor criterion to construct causal models and subsequently draw causal conclusions 
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from observational data. It further defined and highlighted how biases, such as 

confounding, overcontrol, and collider bias often occur in observational correlative 

studies, and how they can be eliminated through the application of the SCM framework. 

Although a few studies have highlighted the utility of the SCM framework in the 

ecological literature, they are either presented as niche, complex and system specific 

(e.g., Cronin and Schoolmaster 2018; Schoolmaster et al. 2020) or are presented to a 

general ecological audience with missing essential steps (e.g., the review by Laubach et 

al. 2021 does not present the backdoor or frontdoor criterion or mention DAG-data 

consistency checks). Chapter 2 is the first to our knowledge to provide a complete and 

comprehensive guide of the SCM framework geared towards a general ecology audience, 

and therefore holds great potential to increase its uptake within ecological observational 

studies.  

 

The few SCM ecological studies that have been published to date are predominantly 

reliant on either theoretical or simulated data (e.g., Cronin and Schoolmaster 2018; 

Schoolmaster et al. 2020; Grace et al. 2021; Wilson et al. 2021). However, it is critical 

for ecologists to understand how to apply the theoretical concepts of the SCM framework 

to real-world and often messy ecological data. To this end, Chapters 3 and 4 were the first 

to apply the SCM framework to answer causal questions in reef ecology, at both localized 

and global scales, respectively. They provide two of the first examples of how this 

framework can be applied to real-world ecological data and provide practical steps on 

how to critically examine both a DAG and available observational data to, for example, 

refine a DAG based on DAG-data consistency and subsequently draw causal conclusions 

from observational datasets. Chapter 3 and 4 have also provided novel insights into reef 

ecology which contrasts with conclusions drawn from correlative observational studies 

on the same study system. This should further encourage ecologists to use the SCM 

framework over non-causal correlative studies, as it can lead to more accurate and 

dependable causal conclusions.  

 

Collectively, Chapters 2, 3, and 4 provide a basis for understanding how to apply the 

SCM framework for observational causal inference in ecology, with the aim of 
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encouraging widespread application of this approach across observational ecological 

studies.   

7.2 STRENGTHENING QUASI-EXPERIMENTAL AND EXPERIMENTAL 

APPROACHES  

Recently, quasi-experimental approaches including matching methods, before after 

control impact (BACI), regression discontinuity design (RDD), and instrumental 

variables (IV) have been promoted in the ecological literature (Butsic et al. 2017; Larsen 

et al. 2019; Wauchope et al. 2021). While they provide great potential and have been 

employed across several ecological studies, limitations in their application remain. Each 

method requires that specific causal assumptions be met by a researcher to ensure 

accurate causal estimates; however, these assumptions are often not met due to improper 

study design and or statistical analysis (e.g., Mansournia et al. 2013; Ferraro et al. 2019; 

Adams et al. 2019). For example, matching methods such as propensity score analysis 

require that all and only confounding variables are used in the matching process to 

answer a causal question at hand (Rosenbaum and Rubin 1983). However, these is no 

formalized process to decide which variables act as confounders, and the addition of 

accidental non-confounding variables can in fact increase bias instead of reducing it 

(Pearl 2009; Mansournia et al. 2013). Similarly, BACI, RDD, and IV each have a set of 

causal assumptions that must be met before valid causal conclusions can be drawn; 

however, no unifying approach exists to guide in ensuring this process. To this end, 

Chapter 5 provided the theoretical basis of how DAGs and the principles of the SCM 

framework can be used to ensure proper study design and statistical analysis across quasi-

experimental approaches. Here, we used theory and simulated ecological examples to 

demonstrate how combining quasi-experimental approaches with the SCM framework 

can (1) produce more transparent communication about causal assumptions (2) ensure 

proper study design and statistical analysis and (3) result in a more comprehensive and 

robust framework for causal inference.  
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Similar to observational and quasi-experimental approaches, randomized control trails 

(RCTs) also rely on a set of causal assumptions that must be communicated and justified 

to ensure valid causal conclusions are drawn from experimental data (e.g., Kimmel et al. 

2021). Although RCTs in ecology are often regarded as the “gold standard” for causal 

inference, with few questioning experimental results, they too are prone to biases that 

lead to non-causal spurious associations between variables of interest. To this end, using 

core ecological examples, Chapter 6 highlighted that biases found within observational 

studies, including confounding, overcontrol, and collider bias can also be prevalent across 

experimental settings through study design and/or statistical analysis. As a solution, 

Chapter 6 shows that through the routine application of DAGs and the SCM framework, 

experimental ecologists can critically examine whether biases may be present and apply 

appropriate steps to remove them.  

 

Collectively, Chapter 5 and 6 presents a significant advance in the field as it is the first 

time the SCM framework has been presented as a unified approach to ensure proper study 

design and analysis across quasi-experimental and experimental ecological studies.  

7.3 INCREASED UPTAKE AND SUBSEQUENT BENEFITS OF THE SCM 

FRAMEWORK 

Collectively, the core chapters within this thesis aim to increase the uptake of the SCM 

framework across future ecological studies. By detailing the SCM framework to a general 

ecology audience (Chapter 2), providing real-world ecological examples of its application 

(Chapter 3 and 4), and highlighting its utility across both observational (Chapter 2, 3 and 

4), quasi-experimental (Chapter 5) and experimental (Chapter 6) studies, the cumulative 

contents of this thesis can educate a wide range of ecologists, and hopefully inspire the 

increased uptake and relevance of the SCM framework within ecology.   

 

The increased uptake of the SCM framework within ecology will have a myriad of 

benefits. As previously mentioned, causal conclusions drawn from observational data 

often do not employ any causal inference methodologies, and commonly applied 
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approaches (e.g., the ‘causal salad’ model and predictive model selection techniques) can 

lead to a variety of non-causal biases (e.g., confounding, overcontrol, collider bias) that 

result in non-causal associations between variables of interest (see Chapter 2). Such 

biases can also arise in quasi-experimental and experimental settings if researchers do not 

critically examine the causal assumptions required for their chosen approach (see 

Chapters 5 and 6). The application of the SCM framework can significantly reduce bias 

across the field, leading to more accurate causal conclusions about our natural world.  

 

Importantly, visualizing the causal structure of a system or process under study through 

DAGs will lead to more transparent communication about a researchers’ causal 

assumptions and subsequent causal conclusions. This is turn can lead to more critical 

reception and feedback of ecological studies, leading to productive discourse that 

increases our collective understanding of causal relationships in nature. Already, the 

application of the SCM framework by Schoolmaster et al. (2020) has led to their 

controversial conclusion that biodiversity-ecosystem function (BEF) relationships are 

non-causal associations. Their DAG transparently communicated their causal 

assumptions, which was subsequently critiqued by Grace et al. (2021), who provided 

their own version of a BEF DAG, asserting that BEF correlations are indeed causal. 

Schoolmaster et al. (2021) followed up re-asserting their original conclusions. Although 

this debate has yet to be resolved, DAGs can continue to facilitate transparent and 

productive discourse between researchers about BEF correlations as well as other 

ecological phenomena.   

 

Another key benefit of the SCM framework is that it allows researchers to bridge the gap 

between ecological domain knowledge and statistical models. Instead of creating 

statistical models based on a ‘causal salad’ approach, automated criteria such as AIC, or 

other technical approaches that rely on data-driven techniques, the SCM framework is 

theory-driven and relies on a researcher’s domain knowledge, above all else, to answer 

causal queries. As noted by Pearl, “Data do not understand causes and effects; humans do 

(Pearl and Mackenzie 2018).” The SCM framework requires that researchers use their 

ecological domain knowledge to create and fine-tune DAGs, which in turn are used to 
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guide causal models. This should encourage ecologists intimidated by complex 

modelling, knowing that knowledge about how the natural world works resides with 

them.  

7.4 LIMITATIONS OF THE SCM FRAMEWORK  

It is important to note that the SCM framework should not be the only causal inference 

tool ecologists are familiar with. Although we have shown that this framework can be 

integrated with other causal inference methodologies (including quasi-experimental 

approaches and RCTs) to improve causal estimates, it may not be well suited under some 

situations. For example, this framework is not well-suited to time-series data, which may 

benefit from other causal inference approaches such as convergent cross mapping, 

created specifically for complex ecological time-series data (Sugihara et al. 2012). The 

transdisciplinary field of causal inference is forever growing and consists of a variety of 

tools and approaches ecologists can utilize to estimate causal effects (Imbens and Rubin 

2015; Morgan and Winship 2015). The best approach or set of approaches will ultimately 

depend on the available data and causal question at hand. It is therefore recommended 

that all ecologists interested in causal queries familiarize themselves with a suite of 

causal inference techniques and consistently update their knowledge based on ongoing 

development within this field.  

7.5 CONCLUDING THOUGHTS 

Ecologists are often interested in drawing causal conclusions from data, however, 

developed methods for causal inference, particularly for observational data, are often not 

well-known amongst ecologists. This thesis centered around the SCM framework, which 

provides a set of widely applicable tools that can be used to draw causal conclusions 

across observational, quasi-experimental and experimental settings. The SCM framework 

uses DAGs to visualize the causal structure of a system or process under study, allowing 

researchers to explicitly communicate their causal assumptions to their audience. Once a 

DAG has been built that is sufficient to characterize a system or process under study, 

graphical rules including the backdoor or frontdoor criterion can be employed to guide 
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the construction of causal models. Doing so can improve causal conclusions drawn across 

a wide range ecological contexts and will ultimately increase the depth and pace of 

ecological research. 
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