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ABSTRACT 

The objective of this research was to develop a framework of analysis using Active Learning 

Kriging Monte Carlo Simulation (AK-MCS) to assess and optimize the reliability calculation of 

reinforced concrete bridges components. The methodology consisted of developing a computer 

code to perform AK-MCS analysis to calculate the reliability index of bridge girders and piers, 

verify the accuracy of the code by conducting a sensitivity analysis, and optimize AK-MCS 

analysis by balancing the accuracy and efficiency. The computer code was developed using 

MATLAB and its accuracy was verified by conducting 810 AK-MCS analyses (15 bridge girder 

and pier configuration x 54 unique AK configurations, where the latter refers to the set of 

correlation, regression, and learning functions). The verification analysis results indicted the 

sensitivity of the solution efficiency (run time and number of training points) to the choice of the 

AK configuration. The comprehensive metric system (CMS), developed elsewhere in literature, 

was utilized to propose optimum AK configurations for select girder and pier configurations by 

running 2160 AK-MCS analyses and ranking them according to CMS. The top 5 optimum AK 

configurations were then applied to a larger set of 40 girder configurations and 12 pier 

configurations to assess the accuracy and efficiency of the proposed optimum AK configurations. 

Analysis results indicted the accuracy of AK-MCS in predicting the reliability index of the 

considered girders and piers and the significant reduction in the computational time as compared 

with crude MCS (97.9%, reduction in time on average).  
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CHAPTER 1 INTRODUCTION 

1.1 BACKGROUND 

In Nova Scotia (NS), there are approximately 4,100 bridges. The provincial five-year highway 

improvement plan for 2022-2023 includes a budget of $29.1 million dollars for the maintenance 

and repair of only 19 bridges within the province, that is less than 0.5% of the bridge inventory 

(Public Works, 2022b). One of the main obstacles of determining the priority of maintenance and 

repairs is budgetary restraints provided by the federal and provincial governments (Public Works, 

2019a). It is imperative that both new infrastructure be developed for the growing population and 

the maintenance of existing infrastructure be balanced. One way of determining the priority of 

repairs and allocation of capital investment for bridge replacement and rehabilitation rests with the 

quantification of the risk of structural failures of the existing bridges. For a risk-based assessment 

approach, the probability of structural failure and the consequence of failure need to be quantified. 

The consequence of failure is typically determined in coordination with the authority having 

jurisdiction, while the probability of failure (𝑃𝑓) can be quantified by structural engineers using 

reliability analysis. 

1.2 RELIABILITY ANALYSIS FOR BRIDGE ASSESSMENT 

Reliability analysis is utilized to quantify the probability of load effects (moment, shear, axial, 

strain, etc.) exceeding the structural resistance for a predefined limit state (LS). The method 

accounts for the inherent randomness in both the resistance of the structure and applied loads 

(Allen, 1991; Kaymaz, 2005). The probability of exceedance is typically referred to as 𝑃𝑓, while a 

LS implies the condition of the structure beyond which it no longer fulfil the relevant design 
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performance. A reliability index (𝛽) is then calculated based on the quantified 𝑃𝑓 and assumed 

distribution of the LS.  

     Reliability analysis has been utilized to calibrate the structural safety for limit state design 

(LSD) in bridge design codes such as the Canadian Highway Bridge Design Code (CSA S6, 2019) 

and the American Association of Sate Highway and Transportation Officials (AASHTO) load and 

resistance factor design (LRFD) manual (AASHTO LRFD Bridge Design Specifications, 2017). 

It has also been utilized for developing risk-based methods to manage existing bridge inventories 

since it provides a rational-based approach to quantify the likelihood of structural failures, and 

thus, bridge retrofit, and maintenance can be prioritized (Jiang et al., 1988; Estes and Frangopol, 

2001; Lounis, 2000; Thompson et al., 1999; Khanzada, 2012).  

     Existing reliability-based bridge evaluation methods vary in functionality and robustness 

depending on the level of bridge complexity, required field data, and methods of reliability 

estimation (Ghosn et al., 2010; Jiang et al., 1988; Lounis, 2000). The choice of the reliability 

estimation method has been recognized as an important aspect of developing practical reliability-

based bridge evaluation tools (Ghorbanpoor and Dudek, 2007). In the following paragraphs, the 

sources of uncertainty in a bridge reliability analysis and the existing reliability estimation methods 

are reviewed.  

     There are three general sources of uncertainties that can be potentially addressed in a reliability 

analysis. The first is the natural variability of physical properties which would include material 

strength, location of rebars, and manufacturing tolerances. The second is operating conditions 

which would encompasses the variability in loads, time-variant durability considerations and other 

environmental considerations. The third is the incomplete understanding or mathematical 

representation of the data (Moustapha et al., 2022), which can occur in instances where limited 
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non distructive tests are used to approximate the condition of a patially degraded or aged bridge. 

These uncertainties are quantified using random variables to represent the state of the engineering 

system (herein referred to as the system). This system is then evaluated using the ultimate limit 

state (ULS) which is expressed in Equation (1), as the resistance (𝑅(𝑥)) minus the load (𝐿(𝑥)), 

and failure occurs when loads surpass the resistance of the model, or when the performance 

function (𝐺(𝑥)) is less than or equal to zero (Zhaoyan et al., 2013). This concept of failure may 

not necessarily be a catastrophic failure but forms a technical failure, which occurs when technical 

requirements and capacities are inadequate (Melchers, 2006).  

 
𝐺(𝑥) = 𝑅(𝑥) − 𝐿(𝑥) ≤ 0 (1) 

     The quantification of 𝑃𝑓 and 𝛽 enables a direct comparison amongst existing bridges for 

determining which structural repair takes priority. The concept of quantification of performance 

of the structure is not new and can be dated back to the earliest known building code in 

Mesopotamia roughly 1750 years before Christ (BC) (Nowak and Collins, 2013), where trial and 

error were the fundamental building blocks of reliability-based methods. If failure occurred, the 

builder would abandon or adjust the design depending on the consequence of failure.  

     There are two reasons that warranted the transition to modern probabilistic methods for 

structural analysis: i) the introduction of consistency in the decisions surrounding safety, and ii) 

the optimization to achieve structural economy (Melchers, 2006). As knowledge evolved, so did 

reliability methods, the capture of the inherent randomness of structural behaviour became possible 

with the development of computers and statistical reliability (Nowak and Collins, 2013). Over 

time, the typical limitations on the minimum factors of safety decreased, which is primarily 

attributed to the development of the profession’s collective understanding, information about 
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material properties and their behaviours, and the increase detailing in load models (Melchers, 

2006; Nowak and Collins, 2013). This progression has been instrumental in the development of 

the LSD approach to structural engineering codes and design guidelines (Melchers, 2006).  

     There are two primary categories of bridge reliability assessment, the first is code and policy-

based assessments for proposed designs which are developed based on the guidelines and their 

provided code statistics. The second are deterioration models used to model ageing structures 

under environmental conditions and traffic loading which use inspection information to capture 

the degradation and in-situ conditions of the applied loads (Rakoczy and Nowak, 2013). Due to 

the variability of environmental conditions, weather patterns and accident-based damage, 

deterioration models are warranted in some situations to capture the true behaviour and response 

of the existing structure overtime.  

     Methods to determine 𝛽 of structures (also called reliability estimation techniques) include 

approximate methods, simulation techniques, surrogate models, and surrogate model aided 

methods as summarized in Table 1 (Moustapha et al., 2022). There are two common approximate 

methods known as the first-order reliability methods (FORM) and second-order reliability methods 

(SORM). Approximate time-varying reliability method can be used as a degradation-based model 

for existing and ageing structures, which can include the consideration of alkali-silica, corrosion, 

sulfate attack, and freeze-thaw damage effects (Dey et al., 2019). The second is simulation 

techniques, which include Monte Carlo simulation (MCS), a well-known and commonly applied 

method of analysis that evaluates the LSF with a predefined number of trials in the MCS analysis 

(𝑁𝑀𝐶𝑆), where 𝑃𝑓 is calculated as the number of failed trails (𝑁𝑓) divided by 𝑁𝑀𝐶𝑆. The MCS is a 

simple tool used frequently as it does not require the knowledge associated with the most probable 

point (Khorramian and Oudah, 2022a). In some non-linear LS, this method is inefficient due to the 
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magnitude of computational power or time required to run the analysis. The third class is the 

surrogate model methods, where the performance function is replaced with an equivalent or 

simplified model that is used in conjunction with the available reliability estimation techniques 

like FORM or MCS to evaluate 𝑃𝑓. An example of surrogate model is the Kriging method which 

uses regression and correlation functions to generate a surrogate model (Cressie, 1990). The fourth 

class is surrogate model aided methods, which utilize a form of simulation in conjunction with a 

surrogate model (Moustapha et al., 2022). Three examples of surrogate model aided methods 

include Active Learning Kriging Monte Carlo Simulation (AK-MCS), Monte Carlo Simulation 

with Importance Sampling (MCS-IS), and Active Learning Kriging First Order Reliability Method 

(AK-FORM). 

Table 1. Reliability estimation techniques 

Class Definition Example Reference 

Approximate 

Methods 

Limit state function is 

linearized around a so-

called design point, in a 

suitably transformed 

probabilistic design space.  

- FORM 

- SORM 

 

(Echard et al., 2011; 

Kaymaz, 2005; Moustapha 

et al., 2022; Rakoczy and 

Nowak, 2013) 

Simulation 

Techniques 

To numerically simulate 

some phenomenon and then 

observe the number of 

times an event of interest 

occurs.  

- MCS 

 

(Nowak and Collins, 2013; 

Moustapha, Marelli et al., 

2022) 

 

Surrogate 

Model 

An alternative model 

typically used in place of 

the performance function to 

reduce computational 

demand.  

- Kriging 

- Polynomial 

chaos 

(Cressie, 1990; Echard et al., 

2011) 

Surrogate 

Model Aided 

Methods 

A surrogate model that is 

augmented through the 

used of simulation and 

machine learning 

techniques.  

- AK-MCS 

- AK-IS 

- AK-FORM 

 

(Echard et al., 2011; 

Moustapha et al., 2022) 
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     The choice of the reliability estimation technique to evaluate a particular LSF depends on 

balancing the accuracy and efficiency of the desired solution. The evolution of these methods is 

attributed to the limitations of each, firstly FORM and SORM methods work well in linear systems 

but when applied to non-linear LS they may perform poorly and become inconsistent (Kaymaz, 

2005). 

     Literature indicates that the most credible and commonly applied simulation method of 

reliability analysis is MCS. MCS is perceived to yield the most accurate reliability estimation if 

an adequate number of trails is utilized to evaluate the performance function. MCS is proven to 

balance the efficiency and accuracy aspects when utilized to assess the reliability of design options 

or calibrate load and resistance factors because the resistance model in these applications is 

typically simple (closed-form solution or simple iterative solution). However, MCS can become 

computationally demanding when the 𝑃𝑓 is low (large number of trails is required) or when the 

resistance model is computationally demanding (requires iterative solution or numerical 

simulation) such as the case of degrading existing bridges.  

     Existing structures degrade with time at different rates depending on the exposure condition 

and the deterioration state of the bridge (corrosion, freeze-thaw damage, etc.). Accurate closed-

form solution or simple iterative solutions to assess the resistance model for degrading structures 

are often not feasible or yield inaccurate representation of the resistance. In fact, engineers often 

utilize numerical simulation techniques like nonlinear finite element (FE) analysis to evaluate the 

resistance of degrading elements by considering the spatial variability in the deterioration 

(Khorramian et al., 2022a; Khorramian et al., 2022b; Oudah and Alhashmi, 2022b; Petrie, 2022). 

Numerical simulation may take a considerable amount of time which makes the use of MCS cost 

prohibitive, especially for developing a risk-based computer tool to assess the reliability and 
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prioritize repairs for bridges in NS as previously discussed. The use of surrogate model aided 

methods (class 4 as discussed in Table 1) becomes appealing in such situations because it can 

significantly reduce the computational cost, where the computational cost refers to the number of 

times the performance function needs to be evaluated to arrive at an accurate reliability evaluation 

of the LSF (Moustapha, M., et al., 2022). Kriging, a type of surrogate model that has gained 

traction in the last few decades, can be utilized to solve reliability problems with complex 

resistance models. The efficiency of Kriging can be further optimized when augmented with 

learning functions, this collaboration is referred to as active learning Kriging (Echard et al., 2011; 

Al-Bittar et al., 2018). Surrogate model aided methods take the benefits of both surrogate methods 

and simulation methods to create an accurate representation of the LS with the least number of 

required training points.  

1.3 RESEARCH MOTIVATION AND CONTEXT 

A long-term research programme has been lunched at the structural assessment and retrofit (SAR) 

research group to develop computer tools to assess the risk of bridge structural failure in NS. To 

evaluate the reliability of bridges in different stages of their lifespan or condition, a generic, 

accurate and an efficient framework of reliability analysis is required, where generic means 

applicable to all possible LSF (ultimate, serviceability, fatigue, etc.) where the resistance model 

can be evaluated using simple closed-form equation or complex numerical simulation. Efficient 

means both within an acceptable amount of time and within standard computational specifications, 

and accurate means within reasonably low percentage of error.  

     AK-MCS, a form of surrogate model aided method, was utilized in the proposed framework of 

analysis as it can yield a generic, accurate, and an efficient method of analysis. This method uses 

a relatively small number of trials evaluated through the performance function (called original 
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performance) to train a surrogate model of the performance function. The surrogate model is 

updated by adding more trails evaluated through the original performance function, where the 

additional trials are selected based on a learning function and a stopping criterion (Khorramian 

and Oudah, 2022b). AK-MCS has been utilized in literature to evaluate the structural safety of 

various LS but was not utilized for bridge engineering applications (Moustapha et al., 2022). The 

scope of the present research is to develop a framework of reliability analysis using AK-MCS for 

typical multi-girder bridges in NS, validate the accuracy and efficiency of the framework for select 

design options, and further optimize the calculation process, with an ultimate goal of developing 

a generic computer software to assess the safety of existing bridges using AK-MCS. 

     There are four primary structural components of a multi-girder bridge, the bridge deck, the 

supporting girders, the piers, and the abutment as shown in Figure 1. The bridge deck is the portion 

of the bridge that carries the loads generated by the traffic (trains, vehicles, or pedestrians), the 

barriers, and it self-weight. The loads applied to the deck are then transferred to the supporting 

girders, which are longitudinal supports that transfer the load from the deck surface to the pier (in 

case of a multi-span bridge) and the end abutments. The piers and abutment transfer the loads to 

the ground through the foundation.  

 

Figure 1. Schematic illustration of a multi-girder two-span bridge. 

1.4 THESIS OBJECTIVES AND SCOPE 

The objective of this research is to develop a functional framework and a computer code that 

evaluates the reliability of bridge components using AK-MCS as the method of analysis. The scope 

of work is as follows:  
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• Review key concepts of AK-MCS to provide contextual information surrounding the 

general procedure of reliability analysis, and the overview of existing and new methods. 

• Develop a framework of analysis where a generalized procedure adaptable to different 

model types is developed and the simplified performance functions are created and tested.  

• Validate the developed framework of analysis by conducting reliability analysis of bridge 

girders and piers and comparing with crude MCS. 

• Optimize the analysis procedure by performing a sensitivity analysis to provide generic 

recommendations about the use of AK-MCS for assessing the reliability of bridge girders 

and piers. The sensitivity analysis considers the accuracy, efficiency, and consistency of 

the framework of analysis. 

1.5 RESEARCH SIGNIFICANCE  

An accurate reliability estimation of existing bridge components is hindered due to inefficiency 

concerns related to the high computational time required to perform advanced structural analysis 

like finite element (FE) to determine the structural resistance, where FE is used for complex bridge 

configurations or when deterioration is severe. Work is needed to explore efficient reliability 

analysis methods that utilize a smaller number of possible resistance realizations (i.e. scenarios). 

AK-MCS is proposed in this research as an efficient reliability technique that requires a 

substantially smaller number of resistance realizations as compared with conventional methods 

like crude MCS. In this work, the accuracy and efficiency of AK-MCS are evaluated and verified 

for bridge evaluation applications using simple resistance models for proof-of-concept purposes, 

while future research will utilize the verified AK-MCS method for FE analysis of existing bridges.   
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1.6 THESIS STRUCTURE 

The thesis consists of six chapters, a bibliography, and appendices. The content and description of 

the chapters are given below: 

Chapter 1.  Introduction. It details the objective and scope of work and provides an overview of 

the thesis structure.  

Chapter 2.  Literature Review. It provides a contextual overview of relevant topics needed to 

understand the overall works presented. It reviews the definitions and provides a 

generalized background on relevant topics that pertain to the research topic. These 

topics include, reliability analysis, the Kriging method, active learning Kriging, and 

application to bridge reliability analysis.  

Chapter 3.  Computer Code Development and Application. It presents an overview of the AK-

MCS analysis structure and breaks down the MATLAB® code structure.  

Chapter 4.  Verification of AK-MCS Reliability for RC Bridges. The functionality of the 

methodology and framework of analysis are verified for reinforced concrete bridge 

girders and piers through a limited parametric analysis. 

Chapter 5.  Optimization of AK-MCS for Bridge Reliability Assessment. The AK-MCS analysis 

procedure is optimized in this chapter to balance between the required efficiency and 

accuracy of the reliability solution. Recommendations for an optimized AK-MCS 

analysis for bridge applications are derived based on a sensitivity analysis and by 

utilizing a metric system developed elsewhere in literature.  

Chapter 6.  Conclusions and Recommendations. It reiterates the scope and methodology, lists the 

most significant findings, and details areas for further development.  
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CHAPTER 2 REVIEW OF KEY CONCEPTS FOR AK-MCS 

2.1 INTRODUCTION 

This chapter provides the required background information of the literature related to all aspects 

of the research topic. This includes a general introduction to the history of the Kriging method and 

its mathematical formulation, a general overview on MCS, basic procedural context to the AK 

method, formulation of learning functions used within the model verification in Chapter 4 and the 

sensitivity analysis in Chapter 5, and a summary of terminologies used throughout.  

2.2 KRIGING  

2.2.1 Origins and Historical Development  

Kriging is a methodology that has been tailored to many different problems and types of analysis, 

including but not limited to geostatistics, reliability analysis, meteorology, forestry assessment, 

deterministic optimization, numerical optimization, design etc. The Kriging method was first 

developed in the 1950s by D.G. Krige (Cressie, 1990). Krige proposed a pure regression procedure 

to determine the best possible estimator of the mean grade of a block within the mining practice 

(Journel, 1977). In the 1960s it was formalized and generalized by Matheron at the University of 

France, and it was named ‘Krigeage or Kriging’ after the weighted moving-average methods 

initially developed by Krige (Journel, 1977). Dr. Krige was a mining specialist, who further 

developed the Kriging method based on his earlier works and Matheron research. In 1970, Watson 

Geoffrey used the Universal Kriging method, a method for estimating and contouring in trend 

surface analysis (Watson, 1970). This application of the Kriging method was applied to the 

quantification of geological variables and was presented at the international symposium on 

techniques for decision making in the mineral industry. In 1975, Kriging was utilized for 
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cartography of the sea floor (Chiles and Chauvet, 1997). In 1977, the use of Kriging for the 

evaluation of empirical data sets in geology was further researched (Whiten, 1977). In the 1980s, 

Kriging was tailored to computer experimental fields and in the 1990s to deterministic 

optimization problems (Kaymaz, 2005). It was not until the early 2000s that it was used for 

analytical functions and structural reliability.  

     The term Kriging encompasses many different estimation and regression procedures, various 

terms have been used within literature, such as universal Kriging, linear Kriging, log-normal 

Kriging, ordinary Kriging, etc. The term Kriging has also become synonymous to that of ‘optimal 

predictor’ as Kriging methods involve the use of interpolators to predict the behavior between 

points of data (Cressie, 1990); where the data can be adapted to the scope of interest. The term 

Kriging was retained because linear and nonlinear methods all shared the same common principle 

of minimizing the variance (Journel, 1977). Of the various terms used to describe the Kriging 

method, the Kriging process is the most accurate in describing the method of analysis presented in 

this works. Kriging is a nonlinear stochastic regression method (Kaymaz, 2005). Its primary role 

is to define a predictor frequently referred to as a surrogate model, based on two things, the first is 

the regression function and the second is the stochastic process. There are three common regression 

functions in literature including constant, linear, and quadratic (Lophaven et al., 2002). The 

primary difference between Kriging and conventional regression methods is related to how the 

error function is selected. In standard regression models, the error is a deterministic value, while 

for Kriging the error is represented as a stochastic process (Khorramian and Oudah, 2022b). In the 

stochastic process, there are two components considered, the mean value (𝜇) which is set to be 

zero, and the covariance which is the process variance times the correlation function. There are six 

standard correlation functions commonly used in literature including exponential, Gaussian, linear, 
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spherical, cubic, and spline (Lophaven et al., 2002). The mathematical formulation of the 

regression and correlation functions are presented in Section 3.3.2 and 3.3.3. 

2.2.2 Formulation 

To train the Kriging surrogate model there are two formulation considerations, the regression 

evaluation, and the stochastic process. The regression function relates the design of elements 

(DoE) data and fits it with a polynomial function (typically of degree zero, one or two), where the 

error is the distance between the fitted curve and the known point of data. The stochastic process 

treats the response for each design site and unknown site as a random variable. The correlation 

function is used to relate the random variables within the stochastic process. The estimated 

response of the system by the Kriging predictor is denoted by 𝑦̂(𝑋) for a new design site (𝑋). This 

estimation is then used in place of the response generated by the original model (𝑦(𝑋)). The 

number of input sites from the original model is denoted by 𝑆𝑖, and the output is also known as a 

response (𝑌𝑖) as shown in Equations (2) and (3), respectively, where 𝑛 is the number of random 

variables considered and 𝑞 is the number of model outputs.  

𝑆𝑖 = [𝑆𝑖1, 𝑆𝑖2, … , 𝑆𝑖𝑛] (2) 

𝑌𝑖 = [𝑌𝑖1, 𝑌𝑖2, … , 𝑌𝑖𝑞] (3) 

     The DoE is a set of two matrices shown in Equations (4) and (5). They are formulated based 

on the number of design sites (𝑚) and their number of responses (𝑚). 

𝑆 = [
𝑆11 ⋯ 𝑆1𝑛

⋮ ⋱ ⋮
𝑆𝑚1 … 𝑆𝑚𝑛

] (4) 
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𝑌 = [

𝑌11 ⋯ 𝑌1𝑞

⋮ ⋱ ⋮
𝑌𝑚1 … 𝑌𝑚𝑞

] (5) 

     Equation (6) represents the Kriging predictor (𝑦̂(𝑋)) where ℱ is the regression function, 𝓏 is 

the stochastic process and 𝛽𝑗 is a matrix of regression coefficients to be determined through the 

optimization of the mean squared error (MSE) of the predictor (Khorramian and Oudah, 2022b). 

𝑦̂𝑗(𝑋) =  ℱ(𝛽𝑗 , 𝑋) + 𝓏𝑗(𝑋);  
(6) 

     A regression function can be selected and the corresponding regression realizations for design 

sites (𝐹) can be built as shown in Equation (7) and (8).  

𝐹 = [
𝑓(𝑆1)𝑇

⋮
𝑓(𝑆𝑚)𝑇

] = [

𝑓1(𝑆1) ⋯ 𝑓𝑝(𝑆1)

⋮ ⋱ ⋮
𝑓1(𝑆𝑚) ⋯ 𝑓𝑝(𝑆𝑚)

] = [

𝐹11 ⋯ 𝐹1𝑝

⋮ ⋱ ⋮
𝐹𝑚1 … 𝐹𝑚𝑝

] 
(7) 

𝐹𝑖𝑗 = 𝑓𝑗(𝑆𝑖); 𝑖 = 1, … , 𝑚; 𝑗 = 1, … , 𝑝 (8) 

     The next stage is the selection of the correlation function. The correlation length vector (𝐿) can 

be assumed and the correlation matrix (𝑅) is subsequently built as shown in Equation (9). 

𝑅 = [
𝑅11 ⋯ 𝑅1𝑚

⋮ ⋱ ⋮
𝑅𝑚1 ⋯ 𝑅𝑚𝑚

] ; 𝑅𝑖𝑗 = 𝑅(𝐿, 𝑆𝑖, 𝑆𝑗) 
(9) 

     Now that the (𝑅) and (𝐹) matrices are built, an iterative procedure is used to calculate the 

optimum correlation length (𝐿∗) and the Kriging shape predictor factor (𝛽∗) as expressed in 

Equations (10) and (11), respectively. Khorramian and Oudah (2022b) uses a Gaussian 

formulation as an example to find 𝐿∗, however, there are a total of six correlation functions all with 

there own correlation length equations.  

𝛽∗ = (𝐹𝑇𝑅−1𝐹)−1𝐹𝑇𝑅−1𝑌 
(10) 
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𝐿∗ = min
𝐿

{|𝑅|
1

𝑚
𝜎𝑘

2} ; 𝜎𝑘
2 =

1

𝑚
(𝑌 − 𝐹𝛽∗)𝑇𝐹−1(𝑌 − 𝐹𝛽∗) (11) 

     Once the optimum is determined, the remaining parameters can be found, this is completed by 

applying Equation (12) to (13), where the regression evaluation for 𝑋 is 𝑓 and the correlation 

evaluation for 𝑋 is equal to 𝑟. 

𝑓 = 𝑓(𝑋) = [

𝑓1

⋮
𝑓𝑝

] ; 𝑓𝑖 = 𝑓𝑖(𝑋) (12) 

𝑟 = 𝑟(𝐿, 𝑋, 𝑆) = [

𝑟1

⋮
𝑟𝑚

] = [
𝑅(𝐿, 𝑋, 𝑆1)

⋮
𝑅(𝐿, 𝑋, 𝑆𝑚)

] ; 𝑟𝑖 = 𝑅(𝐿, 𝑋, 𝑆𝑖) (13) 

     The Kriging predictor is related to the DoE through both Kriging shape predictor factors 𝛽∗ and 

𝛾∗, as articulated in Equations (10) and (14). An additional calculation is shown in Equation (14), 

where the generalized least square approach was used to calculate Equation (15).  

𝛾∗ = 𝑅−1(𝑌 − 𝐹𝛽∗) 
(14) 

𝜎𝑘
2 =

1

𝑚
(𝑌 − 𝐹𝛽∗)𝑇𝑅−1(𝑌 − 𝐹𝛽∗) (15) 

     The mean value of the Kriging predictor (surrogate model) (𝑦̅(𝑋)) and the variance of the 

Kriging predictor (𝜑(𝑋)) are expressed in Equations (16) and (17), respectively.  

𝑦̅(𝑥) = 𝑓(𝑋)𝑇𝛽∗ + 𝑟(𝑋)𝑇𝛾∗ 
(16) 

𝜑(𝑋) = 𝜎𝑘
2(1 + 𝑢𝑇(𝐹𝑇𝑅−1𝐹)−1𝑢 − 𝑟𝑇𝑅−1𝑟) (17) 

𝑢 = 𝐹𝑇𝑅−1𝑟 − 𝑓 (18) 

     Figure 2 depicts the overall mathematical framework of the Kriging method and how the 

different equations relate to each other (Khorramian and Oudah, 2022b). 
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Figure 2. Summary of Kriging procedure (Khorramian and Oudah, 2022b). 

Correlation
Functions:
Table 4

Regression
Functions:
Table 3

Kriging
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2.3 MONTE CARLO SIMULATION (MCS) 

The name ‘Monte Carlo’ started out as a name representing the casino at Monte Carlo that operated 

in the 1950s. Due to the fact that gambling was illegal and also random, the name Monte Carlo 

Simulation (MCS) was adopted soon after as the technical term for the simulation of random 

processes (Brooks et al., 2011). The MCS development is rooted in Los Alamos Scientific 

Laboratory during the second world war, as scientists engaged in building the first atomic bomb. 

The first modeling application of the MCS was modeling the diffusion process in fissionable 

material, where the goal was to estimate the neutron multiplication rate (Assad and Gass, 2005). 

The development of the method was not possible without the development of scientific computers. 

As such, the method did not attain momentum in statistical analysis until after the 1990s and is the 

basis of the method used in the 21st century (Assad and Gass, 2005).  

     The MCS is sometimes referred to as brute MCS or crude MCS in studies that have 

conventional MCS models alongside augmented hybrids models, for example AK-MCS. The 

fundamental concept of the MCS is the evaluation of a LSF based on a predetermined failure 

criterion for a large number of trials. In other words, to numerically simulate some phenomenon 

and then observe some event of interest (Nowak and Collins, 2013). Using the statistical data from 

previous observations to represent the uncertainties (or randomness) of the system to represent (or 

predict) the behaviour of the systems response. MCS allows engineers and researchers the ability 

to generate results of interest without conducting large numbers of physical testing. The MCS can 

be applied to linear and non-linear LS, however depending on the complexity of the system it can 

be computationally demanding to simulate. MCS has been used to assess 𝛽 because of its accuracy 

and ability to capture multimodal and highly nonlinear LSF as compared with gradient-based 

methods such as FORM and variance reduction methods. However, MCS has an efficiency-related 
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issue if a large number of trials is required for problems where the expected 𝛽 is relatively high 

and if the cost of the computational model is high. These challenges are often encountered in bridge 

engineering where the expected 𝛽 is typically greater than 4.0 and the LSF is often assessed using 

numerical nonlinear FE analysis, especially when the soil-structure interaction is considered or 

when spatially distributed degradation is present (Khorramian et al., 2022; Oudah and Alhashmi, 

2022).  

     The stopping criterion of the MCS are associated with the targeted error and thresholds for 

certainty. The number of trails in MCS (𝑁𝑀𝐶𝑆) is determined based on the desired confidence level 

and the maximum tolerable error (𝑒𝑚𝑎𝑥) (Huang et al., 2012). These components are related to 

each other as defined in Equation (19), where (𝑍𝛼) is the Z-value for the selected confidence level, 

𝑝̂ is the expected probability of failure, and 𝑞̂ is the probability of survival expected. For example, 

the number of MCS trials required to achieve 95% confidence with a 5% error for a target 𝛽 of 4.0 

is 49 million, which makes MCS less efficient if nonlinear FE is required to assess the LSF. 

𝑁𝑀𝐶𝑆 =
𝑍𝛼

2𝑝̂𝑞̂

𝑒2
 (19) 

     The probability of failure (𝑃𝑓), calculation is expressed in Equation (20), where 𝑁𝑓 is the total 

number of failures (refer to Section 1.2 for more details). 

𝑃𝑓 =
𝑁𝑓

𝑁𝑀𝐶𝑆
 (20) 

     The reliability index (𝛽), is expressed in Equation (21), where Φ is the cumulative distribution 

function (CDF) and Φ−1 is the inverse CDF.  

𝛽 = Φ−1(1 − 𝑃𝑓) (21) 
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2.4 ACTIVE LEARNING KRIGING MONTE CARLO SIMULATION (AK-MCS) 

2.4.1 General Concept 

The fundamental concept of active-learning Kriging (AK) reliability is the reduction of simulation 

cost by introducing a surrogate model as an inexpensive representation of a complex LSF. AK 

uses the Kriging predictor as a surrogate model of the performance function, combining it with 

any reliability estimation method like MCS. The DoE are then used to train the surrogate model in 

a stepwise manner. There are numerous learning functions in the literature for the AK method, 

where the primary role of the learning function is to determine what additional points are selected 

to be added to the DoE. The term AK configuration refers to the selection of the regression, 

correlation and learning functions required to perform AK analysis. The AK configuration of the 

analysis needs to be optimized to reap any of the benefits of the AK method.  

     There are four main sections to the AK analysis, the initial DoE, Kriging, active learning, and 

reliability assessment. Within the DoE, 𝑛 denotes the number of random variables, that are used 

to generate the initial inputs for the original model which is represented as the LSF expressed in 

Equation (1). The initial DoE is comprised of the initial inputs and the initial outputs, where the 

outputs are the results of the LSF. This DoE is then submitted to Kriging. Kriging is used to 

generate a surrogate predictor using prescribed regression and correlation functions, where the 

number of required initial training points (𝑃) varies depending on the regression function. Once 

the surrogate predictor is trained using the initial DoE, the learning process commences, where 

additional DoE are selectively submitted to the Kriging to form an updated Kriging predictor. In 

the learning process, the mean and variance values are fed into a learning function. The learning 

function will then determine the next DoE candidate while a stopping criterion is established and 
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used to determine the desired level of accuracy for updating the Kriging predictor. If the stopping 

criterion is not met, an additional candidate will be selected and put through the original model to 

gain the output, where this new input and output would be one added design site to the DoE. The 

analysis will then restart with the new DoE until such time as the stopping criterion is met. Once 

it is met, the analysis moves to the fourth and final stage, the reliability assessment. In the reliability 

assessment all trials will be fed through the surrogate predictor to predict the performance function, 

and hence determining the 𝑃𝑓. The reliability assessment method of choice in this research is MCS.  

2.4.2 Learning Functions 

There are multiple learning functions in literature. Five learning functions were reviewed and 

considered in this research: U, H, EFF, REIF, and KO. The learning functions are reviewed in the 

following subsections, where 𝜇𝐺̂(𝑥) is the mean value of the Kriging predictor and 𝜎𝐺̂(𝒙) is the 

standard deviation of the Kriging predictor: 

2.4.2.1 U Learning Function 

The U learning function 𝑈(𝑥), was developed based on the concept that when performing MCS, 

only the sign of the performance function is relevant (Echard et al., 2011). A positive value would 

indicate a pass, whereas a negative would indicate a failure. Based on this, the occurrences with 

the highest potential of crossing from positive to negative (𝐺(𝑥) = 0) must be evaluated by the 

performance function. The U learning function represents the risk of making a mistake on the sign 

of the performance function and is expressed in Equation (22). The learning criterion is the 

minimization of 𝑈(𝑥), and the stopping criterion is defined as (𝑈(𝑥)𝑚𝑖𝑛 ≥ 2). 

𝑈(𝑥) =
|𝜇𝐺̂(𝑥)|

𝜎𝐺̂(𝒙)
 (22) 
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2.4.2.2 H Learning Function  

The H learning function 𝐻(𝑥), as expressed in Equation (23), was derived based on information 

entropy theory, which describes the disorder degree or uncertainty of the prediction (Shi et al., 

2020). The learning criterion is the maximization of 𝐻(𝑥) and the stopping criterion is defined as 

𝐻(𝑥)𝑚𝑎𝑥 ≤ 0.5 (Zhaoyan et al., 2013). 

𝐻(𝑥) = |ln (√2𝜋𝜎𝐺̂(𝑥) +
1

2
) [Φ (

2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
) − Φ (

−2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)]

− [(
2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

2
) 𝜙 (

2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)

+ (
2𝜎𝐺̂(𝒙) + 𝜇𝐺̂(𝑥)

2
) 𝜙 (

−2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)] | 

(23) 

     Upon investigation, it was found that there was a discrepancy in the formulation of the H 

learning function, the corrected version of the H learning function is shown in Equation (24) and 

the changes are noted in red. The detailed derivation of the corrected version of the 𝐻(𝑥) function 

(donated 𝐻𝑐(𝑥) thereafter) is included in Khorramian and Oudah (2022b). Both H and Hc were 

utilized in this research. 

𝐻𝐶(𝑥) = |(ln (√2𝜋𝜎𝐺̂(𝑥)) +
1

2
)  [Φ (

2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
) − Φ (

−2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)]

− [(
2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

2𝜎𝐺̂(𝒙)
) 𝜙 (

2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)

+ (
2𝜎𝐺̂(𝒙) + 𝜇𝐺̂(𝑥)

2𝜎𝐺̂(𝒙)
) 𝜙 (

−2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)] | 

(24) 
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2.4.2.3 Effective Feasibility Function  

The effective feasibility function (EFF) was inspired by contour estimation work and is derived 

from the efficient global reliability analysis (EGRA) method (Echard et al., 2011). It provides an 

indication of how much less the true value of the response at a point can be expected to be 

compared to the current best solution. Points with large uncertainty will also have large expected 

feasibility values. The function is depicted in Equation (25), where 𝐺+(x) = 𝐺̅(x) + 𝜀(𝑥) and 

𝐺−(x) = 𝐺̅(x) − 𝜀(𝑥), where 𝜖(𝑥) is the measure of error which determines the borders of the 

desired range. The learning criterion is the maximization of 𝐸𝐹𝐹(𝑥) and the stopping criteria is 

𝐸𝐹𝐹(𝑥)𝑚𝑎𝑥 ≤ 0.001. 

𝐸𝐹𝐹(𝑥) = (𝜇
𝐺̂
(𝑿) − 𝐺̅(𝑿)) [2𝛷 (

𝐺̅(𝑿) − 𝜇
𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
) − 𝛷 (

𝐺+(𝑿) − 𝜇
𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
) − 𝛷 (

𝐺−(𝑿) − 𝜇
𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
)]

− 𝜎𝐺̂(𝑿) [2𝜙 (
𝐺̅(𝑿) − 𝜇

𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
) − 𝜙 (

𝐺+(𝑿) − 𝜇
𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
) − 𝜙 (

𝐺−(𝑿) − 𝜇
𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
)]

+ 𝜀 [𝛷 (
𝐺+(𝑿) − 𝜇

𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
) − 𝛷 (

𝐺−(𝑿) − 𝜇
𝐺̂
(𝑿)

𝜎𝐺̂(𝑿)
)] 

(25) 

2.4.2.4 Reliability-Based Expected Improvement Function  

The reliability-based expected improvement function (REIF), as shown in Equation (26), was 

derived based on the folded-normal distribution for structural reliability analysis (Zhang et al., 

2019). The learning criterion is the minimization of 𝑅𝐸𝐼𝐹(𝑥), and the stopping criterion is defined 

as (𝑅𝐸𝐼𝐹(𝑥)𝑚𝑖𝑛 ≤ 0). 

𝑅𝐸𝐼𝐹(𝑥) = 𝜇𝐺̂(𝒙) [1 − 2𝛷 (
𝜇𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
)] + 𝜎𝐺̂(𝒙) [2 − √

2

𝜋
𝑒𝑥𝑝 (−

1

2
(

𝜇𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
)

2

)] (26) 
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2.4.2.5 Kriging Occurrence Learning Function  

The Kriging Occurrence (KO) learning function was developed by Khorramian and Oudah 

(2022a). Theoretically, the KO learning function is the probability that the response of point x 

occurs in the desired area, within the vicinity of the LSF, where the desired area is within the range 

of 𝐺(𝑥) − 𝜖(𝑥) to , 𝐺(𝑥) + 𝜖(𝑥). Mathematically, the KO learning function is the area under the 

probability density function (PDF) of a point 𝑥, that overlaps with the desired area (Khorramian 

and Oudah, 2022a). The KO function is expressed in Equation (27). 

𝐾𝑂(𝑥) = Φ (
𝐺̅(𝑥) + 𝜖(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
) − Φ (

𝐺̅(𝑥) − 𝜖(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
) 

 

(27) 

The measure of error which determines the borders of the desired range, 𝜖(𝑥), is recommended to 

be two or five standard deviations of the Kriging predictor (𝜎𝐺̂(𝑥)). The selection criterion for the 

addition of a training point, is the maximization of the learning function. This means that the point 

selected is the point with the highest probability of occurrence and is expected to give the lowest 

error. Alternatively, it could be defined as the selection of the new training point that reduces the 

error of the surrogate model the most (Khorramian and Oudah, 2022a). The stopping criterion is 

defined based on the level of accuracy required for the model, where the stopping criterion is equal 

to 𝐾𝑂(𝑥) < 0.05 for 95% accuracy or 𝐾𝑂(𝑥) < 0.005 for 99.5% accuracy (Khorramian and 

Oudah, 2022a). Four variations of the KO function were considered, KO05(2), KO005(2), KO05(5), 

and KO005(5), where the naming convention is based on the accuracy and the 𝜖(𝑥) values 

considered. If the learning function had 95% accuracy and an 𝜖(𝑥) = 2𝜎𝐺̂(𝑥), the name of the 

function is KO05(2), and if the function had an accuracy of 99.5% and 𝜖(𝑥) = 5𝜎𝐺̂(𝑥), the name 

of the function is KO005(5). 
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2.4.3 Application in Structural Safety 

The applicability of AK-MCS to assess the reliability of engineering systems has been investigated 

in literature through a series of examples. Echard (2011) investigated four examples that covered 

a wide variety of LS, including high non-linearity, non-convex domains of failure, and moderate 

and high dimensional problems. These examples included a series system with four branches 

(dimension 2), a non-linear analytical function with moderate dimension called the modified 

Rastrigin function, the dynamic response of a non-linear oscillator, and a high dimensional 

example.  

     Peijuan et al., (2017) applied the AK-MCS method to problems with a connected domain of 

failure (not involving several scattered gaps of failure), in effort to improve the speed of 

convergence. Three academic examples including the two-dimensional example and non-linear 

oscillator example from B. Echard (2017) and Kaymaz (2005) were also examined. Peijuan et al. 

(2017) also investigated a three-unequal-span continuous girder with an implicit performance 

function to verify the accuracy and validity of the methodology (Peijuan et al, 2017). Al-Bittar et 

al. (2018) applied the AK-MCS method to the reliability analysis of strip footings resting on 

spatially varying soils. Focusing on the probabilistic analysis of the ULS of the shallow footing, 

where the soil cohesion and angle of internal friction are considered as random fields. AK-MCS 

was also utilized to assess the safety of group piles interacting with soil where the spatial 

distributions of the soil and pile properties were considered (Khorramian et al., 2022a; Khorramian 

et al., 2022b). 

     One of the primary findings in works related to the AK-MCS methodology is the 

ineffectiveness of the method in applications where the 𝑃𝑓 is small (10-5 to 10-9) as compared with 

other reliability estimations techniques are used as AK importance sampling (AK-IS). In 2020, 
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Razaaly and Congedo proposed a variation the AK-MCS method called the extreme AK-MCS 

(eAK-MCS). Several examples where considered, including, a four branch 2D series, deviation of 

a cantilever beam 2D, response of a nonlinear oscillator 6D, and borehole-function 8D (Razaaly 

and Congedo, 2020). AK-MCS has also been applied in nuclear passive safety systems (Puppo et 

al., 2021), where the safety performance is evaluated through a computationally expensive 

thermal-hydraulic simulations models.  

     Structural reliability-based problems are used for both design and for assessment at some point 

in the structures service life, where service life refers to the period of time the structure is designed 

to fulfill its intended function. When considering a point in time during the service life, time-

dependant durability questions arise. AK-MCS has been considered for use in time-dependant 

reliability analysis for similar reasons as its applicability and benefits to general reliability-based 

problems. Time dependant reliability analysis has gained a lot of attention due to its connection 

with performance degradation, lifetime cost estimation, maintenance, lifetime testing and system 

resilience (Hu and Mahadevan, 2016). Shi et al. (2019) explored the application of time-dependant 

reliability analysis in structural assessment. An example of a stone arch under hurricane loading, 

roof truss structure, and a bean under stochastic loads were assessed. A FE model was used along 

with a single loop Kriging and a multiple loop Kriging and found that the double loop method was 

the most optimal as it required the least number of calls to the FE model. In time-dependent 

analysis, the resistance of the model would be replaced with a degradation model of sorts. A prime 

example would be FE analysis that reflects the in-situ conditions based on non-invasive material 

testing.  
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2.5 SUMMARY OF TERMINOLOGIES 

Table 2 describes the definitions of common terminologies relevant to the reliability analysis 

performed in this research. They are defined in sections of the text but have been dictated in table 

format for easy reference.  

Table 2. Definitions of reliability-related terms utilized in this research. 

Terms Definition Reference 

Crude Monte Carlo 

Simulation (MCS) 

A form of simulation model that runs a 

predefined number of randomly 

generated trials through the original 

performance function and not a 

surrogate performance function. 

(Nowak and Collins, 

2013; Zhang et al., 

2020)  

Kriging 

It is a nonlinear regression method that 

utilises a regression function where the 

error is represented as a stochastic 

process. 

(Echard et al., 2011; 

Khorramian and 

Oudah, 2022b) 

Active Learning Kriging 

Monte Carlo Simulation 

(AK-MCS) 

It is a surrogate-based model, 

augmented through the use of MCS 

trails and learning function to optimize 

and train the surrogate model. 

(Echard et al., 2011) 

Active Learning Kriging 

Configuration (AK-

Configuration) 

Refers to the selection and combination 

of regression, correlation and learning 

functions used within an AK analysis. 

(Buckley, et al., 

2021) 

Structural Service Life 

It is the duration of time the structure in 

question was designed to fulfill its 

function. 

(Hu and Mahadevan, 

2016) 
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CHAPTER 3 COMPUTER CODE DEVELOPMENT AND APPLICATION 

3.1 INTRODUCTION  

This chapter covers the development of the AK reliability analysis framework and details the 

methodology that was implemented to develop a MATLAB® code to perform the analysis. Two 

code structures including crude MCS and AK-MCS were developed. The former was used to 

calculate a benchmark 𝛽 to assess the accuracy of the AK-MCS method through the comparison 

of results. Section 3.2 and 3.3 detail the code structure for each, respectively. The term “crude” is 

utilized in this context to highlight the use of MCS as a reliability estimation technique that utilizes 

the original performance function to evaluate all trails, as opposed to when MCS is used in 

combination with AK to estimate the reliability using a surrogate performance function.  

3.2 MATLAB® CODE: CRUDE MCS  

The main script of the crude MCS (Main_Crude_MCS_Script) is where the primary analysis is 

completed. This script calls, processes and stores all the analysis data, by calling other scripts and 

functions while loading the required inputs. The main script calls the (X_MCS_Creator) script 

which consolidates the input statistics, geometric input, and calculates the mean loads based on 

the resistance function. This information is then fed into the (Random_Generator) script which 

generates an 𝑥 vector, containing the randomly generated and constant variables. The 𝑥 vector is 

then loaded into the performance function for girders (Performance_NEBT_Girder) or piers 

(Performance_Square_Pier) that calculates the resistance of the section based on the respective 

resistance function, for girders (Resistance_NEBT_Girder) or piers (Resistance_Square_Pier). 

The mean total loads are calculated based on the resistance model and applicable load/resistance 

factors. The loads are then randomly generated for each trial, and failure occurs when the load 
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surpasses the resistance of the section. The 𝑃𝑓 and 𝛽 are calculated in the main MCS script as per 

Equations (20) and (21).  

3.3 MATLAB® CODE: AK-MCS  

3.3.1 AK-MCS Code Flowchart 

AK-MCS method has four distinctive steps of analysis as indicated in Figure 3. The initial DoE is 

the design space represented by the random variables. Kriging is the second step that uses 

regression and correlation functions to evaluate a small number of the predetermined scenarios to 

develop a surrogate model. In the third step, the model is evaluated with a learning function and a 

stopping criterion, which determine if another trial is required to decrease the error associated with 

the surrogate model. If the stopping criterion is not met and another trial is added to the DoE, the 

new trial is selected by the learning function selection criterion. Once a new trial is added, the first 

three steps are repeated. This continues until a suitable surrogate model is developed, where 

suitable means the learning function stopping criterion is met (typically a form of error 

minimization requirements). This surrogate model is then used to evaluate all the pre-generated 

randoms variables sets and the AK-MCS probability of failure (𝑃𝑓𝐴𝐾−𝑀𝐶𝑆
) and AK-MCS reliability 

index (𝛽𝐴𝐾−𝑀𝐶𝑆) are calculated based on the number of failed (or negative valued) trials and the 

total number of trials.  



 

 

 

29 

 

Figure 3. AK-MCS a flowchart for the MATLAB® Code. 

     The input parameters to the AK-MCS code are similar to the MCS code with the addition of 

input of the parametric definition. The parametric definition are the vectors that contain the AK-

configuration information (regression, correlation, and learnings functions). The mathematical 

formulations of the used regression, correlation, and learning functions are outlined the following 

sections. 

     The mean load, statistical, parametric, and input data are stored in the AK-MCS script, where 

the Parametric_set_up is called and outlines the number of trials run through the final predictor 

and defines the AK configurations considered based on a set range that can include some or all 

functions in the parametric input. The Index_input script takes the defined AK configurations and 

indexes them accordingly, which stores the number associated with the regression, correlation and 

learning functions respectively. The Initial_Analysis script takes the defined input parameters and 

feeds them into the random generator function, creating a vector of inputs based on the statistics 

and mean value for each individual trial considered. This set of trails is the data set in which the 

analysis pulls from when training the surrogate model, and the trials that will be fed through the 

final surrogate predictor to calculate the 𝑃𝑓 and 𝛽 at the end of the AK-MCS procedure.  



 

 

 

30 

     The script called AK_Fn_Fast is the script that preforms the AK procedure, which encompasses 

the Kriging and active learning as detailed in Figure 3. The Kriging portion generates the surrogate 

model using the design and analysis of computer experiments (DACE) toolbox (Lophaven et al, 

2002). AK_Fn_Fast calls the Active_Learning function to implement the selection and stopping 

criterion of the learning function used to augment the Kriging predictor. The final surrogate model 

is determined based on the stopping criterion of the learning function in question. This predictor 

is then used to evaluate all the trials noted in the Parametric_set_up. The 𝑃𝑓 and 𝛽 are calculated 

based on the number of failed trials and the total number of trials. 

3.3.2 Regression Functions 

Three regression functions were used in the AK-MCS analysis as summarized in Table 3. 

Table 3. Regression functions considered in the AK-MCS analysis. 

Type Required number of design sites to 

initiate the analysis, P 

Functions 

Constant 𝑃 = 1  𝑓1(𝑥) = 1 

  
Linear 𝑃 = 𝑛 + 1 

 

𝑓1(𝑥) = 1 , 𝑓2(𝑥) = 𝑥1 , … , 𝑓𝑛+1(𝑥) = 𝑥𝑛 

Quadratic 
𝑃 =

1

2
(𝑛 + 1)(𝑛 + 2) 

𝑓1(𝑥) = 1 , 𝑓2(𝑥) = 𝑥1 , … , 𝑓𝑛+1(𝑥) = 𝑥𝑛 , 
𝑓𝑛+2(𝑥) = 𝑥1

2 , … , 𝑓2𝑛+1(𝑥) = 𝑥1 𝑥𝑛 , 
𝑓2𝑛+2(𝑥) = 𝑥2

2 , … , 𝑓3𝑛(𝑥) = 𝑥2 𝑥𝑛 , 
… , … , … , 𝑓𝑝(𝑥) = 𝑥𝑛

2 

Note: P = required size of initial training set and number of regression terms; n = number of input random variables 

3.3.3 Correlation Functions 

Six correlation functions were coded within this research to perform the AK-MCS analysis as 

summarized in Table 4.  
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Table 4. Correlation functions considered in the AK-MCS analysis. 

Correlation Function Function: 𝑹(𝜽, 𝒘, 𝒙) =  ∏ 𝑹𝒋(𝜽, 𝒅𝒋)𝒏
𝒋=𝟏  , 𝒅𝒋 =  𝒘𝒋 − 𝒙𝒋 

Gaussian 𝑅𝑗(𝜃, 𝑑𝑗) = exp (−𝜃𝑗𝑑𝑗
2) 

Cubic 𝑅𝑗(𝜃, 𝑑𝑗) = 1 − 3𝜉𝑗
2 + 2𝜉𝑗

3 ,     𝜉𝑗 =  𝑚𝑖𝑛 {1, 𝜃𝑗|𝑑𝑗|} 

Exponential 𝑅𝑗(𝜃, 𝑑𝑗) = exp (−𝜃𝑗|𝑑𝑗|) 

Linear 𝑅𝑗(𝜃, 𝑑𝑗) = max {0, 1 − 𝜃𝑗|𝑑𝑗|} 

Spherical 𝑅𝑗(𝜃, 𝑑𝑗) = 1 − 1.5𝜉𝑗 + 0.5𝜉𝑗
3 , 𝜉𝑗 =  𝑚𝑖𝑛 {1, 𝜃𝑗|𝑑𝑗|} 

Spline 𝑅𝑗(𝜃, 𝑑𝑗) = 𝜍(𝜉𝑗), 𝜉𝑗 =  𝜃𝑗|𝑑𝑗| 

𝜍(𝜉𝑗) = {

1 − 15𝜉𝑗 + 30𝜉𝑗
3       𝑖𝑓     0 ≤ 𝜉𝑗 ≤ 0.2

1.25(1 − 𝜉𝑗)3                𝑖𝑓   0.2 < 𝜉𝑗 < 1     

0                                     𝑖𝑓    1 ≤  𝜉𝑗             

 

Note: n = number of input random variables for Kriging and reliability analysis. 

3.3.4 Learning Functions 

The primary objectives of the learning function are to evaluate the accuracy of the surrogate model, 

determine if it meets the predefined stopping criterion and if not, select the next training point to 

be added to the DoE. The three key parameters associated with each learning function are the 

function, the stopping criterion, and the selection criterion. Each individual learning functions has 

their own unique set of parameters and are based on different methodologies as detailed in Section 

2.4.2. The learning functions coded in the MATLAB® script are summarized in Table 5, while the 

associated selection and stopping criteria are summarized in Table 6.  

Table 5. Learning functions considered in the AK-MCS analysis. 

Learning 

Function 
Ref. Functions 

U 

(Echard 

et al., 

2011) 
𝑈(𝒙) =

|𝐺̂(𝒙)|

𝜎𝐺̂(𝒙)
 

H 

(Zhaoya

n et al., 

2015) 

𝐻(𝑥) = |ln (√2𝜋𝜎𝐺̂(𝑥) +
1

2
) [Φ (

2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
) − Φ (

−2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)]

− [(
2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

2
) 𝜙 (

2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)

+ (
2𝜎𝐺̂(𝒙) + 𝜇𝐺̂(𝑥)

2
) 𝜙 (

−2𝜎𝐺̂(𝒙) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝒙)
)] | 
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Learning 

Function 
Ref. Functions 

Hc 

(Khorra

mian 

and 

Oudah, 

2022a) 

𝐻𝐶(𝑥) = |(ln (√2𝜋𝜎𝐺̂(𝑥)) +
1

2
) [Φ (

2𝜎𝐺̂(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
) − Φ (

−2𝜎𝐺̂(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
)]

− [(
2𝜎𝐺̂(𝑥) − 𝜇𝐺̂(𝑥)

2𝜎𝐺̂(𝑥)
) 𝜙 (

2𝜎𝐺̂(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
)

+ (
2𝜎𝐺̂(𝑥) + 𝜇𝐺̂(𝑥)

2𝜎𝐺̂(𝑥)
) 𝜙 (

−2𝜎𝐺̂(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
)] | 

EFF 

(Bichon

et al., 

2008) 

𝐸𝐹𝐹(𝑥) = (𝜇𝐺̂(𝑋) − 𝐺̅(𝑋)) [2𝛷 (
𝐺̅(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
) − 𝛷 (

𝐺+(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
)

− 𝛷 (
𝐺−(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
)]

− 𝜎𝐺̂(𝑋) [2𝜙 (
𝐺̅(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
) − 𝜙 (

𝐺+(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
)

− 𝜙 (
𝐺−(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
)]

+ 𝜀 [𝛷 (
𝐺+(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
) − 𝛷 (

𝐺−(𝑋) − 𝜇𝐺̂(𝑋)

𝜎𝐺̂(𝑋)
)] 

REIF 

(Zhaoya

n et al., 

2013) 
𝑅𝐸𝐼𝐹 (𝐺̂(𝒙)) =  𝜇𝐺̂(𝒙) [1 − 2𝛷 (

𝜇𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
)] + 𝜎𝐺̂(𝒙) [2 − √

2

𝜋
𝑒𝑥𝑝 (−

1

2
(

𝜇𝐺̂(𝒙)

𝜎𝐺̂(𝒙)
)

2

)] 

KO 

(Khorra

mian 

and 

Oudah, 

2022a) 

𝐾𝑂(𝑥) = Φ (
𝐺̅(𝑥) + 𝜖(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
) − Φ (

𝐺̅(𝑥) − 𝜖(𝑥) − 𝜇𝐺̂(𝑥)

𝜎𝐺̂(𝑥)
) 

 

Note: Reference = Ref.; Φ and 𝜙 are CDF and PDF operators for a standard normal distribution. 

Table 6. Selection and stopping criterion of the learning functions.  

Learning 

Function 
Reference Selection Criterion Stopping Criteria 

U (Echard et al., 2011) 𝑚𝑖𝑛 {𝑈(𝑥)} 𝑚𝑖𝑛{𝑈(𝑥)} >  2 

H (Zhaoyan et al., 2013) 𝑚𝑎𝑥 {𝐻(𝑥)} 𝑚𝑎𝑥{𝐻(𝑥)} <  0.5 

H (Khorramian and Oudah, 2022a) 𝑚𝑎𝑥 {𝐻(𝑥)} 𝑚𝑎𝑥{𝐻(𝑥)} <  0.5 

EFF (Bichon et al., 2008) 𝑚𝑎𝑥 {𝐸𝐹𝐹(𝑥)} 𝑚𝑎𝑥{𝐸𝐹𝐹(𝑥)} <  0.001 

REIF (Zhaoyan et al., 2013) 𝑚𝑎𝑥 {𝑅𝐸𝐼𝐹(𝑥)} 𝑚𝑎𝑥{𝑅𝐸𝐼𝐹(𝑥)} ≤  0 

KO (Khorramian and Oudah, 2022a) 𝑚𝑎𝑥 {𝐾𝑂(𝑥)} 𝑚𝑎𝑥{𝐾𝑂(𝑥)} < 0.05 𝑜𝑟 0.01 
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CHAPTER 4 VERIFICATION OF AK-MCS RELIABILTY FOR RC 

BRIDGES 

4.1 INTRODUCTION  

The objectives of this chapter are to i) verify the accuracy of the coded AK-MCS reliability 

analysis for predicting the reliability of steel reinforced concrete (RC) new England bulb tee 

(NEBT) bridge girders and square RC piers; and ii) evaluate the efficiency of the analysis method. 

The MATLAB® codes detailed in Section 3.2 and 3.3 were utilized to perform the analysis. The 

findings of this verification exercise will be utilized in Chapter 5 to recommend specific AK 

configurations to meet predefined desired accuracy and efficiency levels (sets of learning, 

regression, and correlation functions). The load and resistance models utilized in the analysis are 

described first, followed by presenting the procedure for conducting the reliability analysis, and 

concludes with analysis results and recommendations. 

4.2 CONSIDERED GEOMETRIC CONFIGURATIONS 

The AK-MCS reliability was verified by assessing the reliability of nine prestressed NEBT girders 

as summarized in Table 7 and six square steel RC bridge piers as summarized in Table 8. The 

selections of pier configuration were based on typical cross-sections found in practice. There were 

three variables considered in the geometric cases, the height of the section (𝐻), the bar sizes, and 

distribution of the rebar, which represented the reinforcement ratios (𝜌) implicitly. The depth to 

rebar (𝑑𝑖) was governed by the section 𝐻 as concrete cover and spacing between bar layers were 

kept constant at 50 mm, and 100 mm, respectively. The detailing of both the cross-section 

geometry and the reinforcing are found in Table 7. The selection of pier configuration was based 

on typical cross-sections found in practice. There were three variables considered in the geometric 
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cases, the height of the section (H), the bar sizes, and distribution of the rebar. By varying these 

properties, the reinforcement ratio of the section was considered implicitly. The depth to rebar (𝑑𝑖) 

was governed by the section H as concrete cover and spacing between bar layers were kept constant 

at 50 mm, and 100 mm, respectively. The detailing of both the cross-section geometry and the 

reinforcing are found in Table 7 and was designed as per the Canadian Highway Bridge Design 

Code (CHBDC) (CSA S6, 2019). The selection of the girder geometry and configuration was 

based on the three typical configurations for NEBT girders and three standard pre-stressed 

reinforcing strands. A single configuration or “layout” of the steel reinforcing bars was considered 

(it defines the concrete cover, spacing between rebar layers and the number of rebars per layer). 

The varied parameters within the cross-sections were the overall section height, and the diameter 

of the rebars (𝑑𝑏). By varying these two geometric parameters, the reinforcement ratios of the 

sections were considered implicitly. The depth to the reinforcing layers varies with the height of 

the section. However, the concrete cover and spacing between bars remains constant. Table A.1 of 

Appendix A includes the cross-section geometry of the idealized NEBT concrete girders. Table 7 

details the reinforcements within the designated cross-section, where the section identification (ID) 

numbers, 𝑑𝑏, the cross-sectional area of all the rebar in the section (𝐴𝑠𝑡), the bar configuration 

(𝐴𝑠
∗), depth to each layer (𝑑𝑠

∗) and the actual reinforcement ratio (𝜌) are noted.  
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Table 7. Details of girders considered in the analysis. 

Section 

ID 

NEBT 

ID 

db 

(mm) 

Ast (mm2) As* (mm2) ds* (mm) 𝝆 (%) 

GIRD 01 NEBT 3 9.5 994 Ab[2,2,2,4,4] [1100,1200,1300,1400,1500] 0.1950 

GIRD 02 NEBT 2 9.5 994 Ab[2,2,2,4,4] [900,1000,1100,1200,1300] 0.1822 

GIRD 03 NEBT 1 9.5 994 Ab[2,2,2,4,4] [700,800,900,1000,1100] 0.1709 

GIRD 04 NEBT 3 11 1,330 Ab[2,2,2,4,4] [1100,1200,1300,1400,1500] 0.2609 

GIRD 05 NEBT 2 11 1,330 Ab[2,2,2,4,4] [900,1000,1100,1200,1300] 0.2437 

GIRD 06 NEBT 1 11 1,330 Ab[2,2,2,4,4] [700,800,900,1000,1100] 0.2286 

GIRD 07 NEBT 3 12.5 1,717 Ab[2,2,2,4,4] [1100,1200,1300,1400,1500] 0.3369 

GIRD 08 NEBT 2 12.5 1,717 Ab[2,2,2,4,4] [900,1000,1100,1200,1300] 0.3146 

GIRD 09 NEBT 1 12.5 1,717 Ab[2,2,2,4,4] [700,800,900,1000,1100] 0.2952 

 Note: Values presented for the five layers of reinforcement [Layer 1, Layer 2, Layer 3, Layer 4, Layer 5] 

     The selections of pier configuration were based on typical cross-sections found in practice. 

There were three variables considered in the geometric cases, the height of the section (𝐻), the bar 

sizes and configuration, which represented the reinforcement ratios (𝜌) implicitly. The depth to 

rebar (𝑑𝑖) was governed by the section 𝐻 as concrete cover and spacing between bar layers were 

kept constant at 50 mm, and 100 mm, respectively. The detailing of both the cross-section 

geometry and the reinforcing are found in Table 8. 

Table 8. Details of piers considered in the analysis. 

Section ID 𝑯 (𝒎𝒎) Bar Size 𝑨𝒔𝒕 (𝒎𝒎𝟐) 𝑨𝒔𝒊 (𝒎𝒎𝟐) 𝒅𝒊 (𝒎𝒎) 𝝆 (%) 

PIER 01 500 25𝑀 3000 25M*[2,2,2] [50,250,450] 1.20 

PIER 02 500 25M 5000 25M*[4,2,4] [50,250,450] 2.00 

PIER 05 750 30𝑀 4200 30M*[2,2,2] [50,375,700] 1.12 

PIER 06 750 30M 8400 30M*[5,2,5] [50,375,700] 2.24 

PIER 09 1000 35M 6000 35M*[2,2,2] [50,500,950] 1.20 

PIER 10 1000 35M 10000 35M*[4,2,4] [50,500,950] 2.00 

Note: Values presented for the three layers of reinforcement [Layer 1, Layer 2, Layer 3]  

4.3 ULTIMATE LIMIT STATE 

The reliability of the select bridge girders and piers described in Section 4.2 was evaluated for the 

ULS Combination 1 in Table 3.1 and Table 3.2 in cl. 3.5.1 of the CHBDC (CSA S6, 2019). ULS 

combination 1 is expressed in Equation (28), where 𝑀𝐿, 𝑀𝐷𝑆𝑊
, 𝑀𝐷𝑊𝑆 , and 𝐷𝐿𝐴, are the live load 

moment, dead load moment due to girder weight, dead load moment due to wearing surface weight, 
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and the dynamic load allowance (accounts for vibratory effects of the moving vehicle and the 

bridge), respectively.  

𝑀𝑟 ≥ 1.2𝑀𝐷𝑠𝑤 + 1.5𝑀𝐷𝑤𝑠 + 1.7𝑀𝐿(1 + 𝐷𝐿𝐴) 

 

(28) 

4.4 LOAD MODEL 

Five random variables were considered for the load model including 𝑀𝐷𝑆𝑊, 𝑀𝐷𝑊𝑆, 𝑀𝐿, 𝐷𝐿𝐴, and 

live load effect (𝐿𝑒𝑓𝑓𝑒𝑐𝑡). Table 9 details the distribution type, 𝜆, coefficient of variation (COV) 

and the corresponding reference. The live load distribution type was considered Gumbel, while the 

dead loads, 𝐷𝐿𝐴, and live load effect were considered normal (CSA S6.1, 2019; Kennedy, 1992). 

The statistical parameters of the load model generally align with the values utilized in the 

calibration of the CHBDC and are based on field measurements in Canada. Note 𝑀𝐿 was multiplied 

by 𝐿𝑒𝑓𝑓𝑒𝑐𝑡 to account for the transformation of the live load applied on the girder to a moment, 

excluding the dynamic effect which is accounted for in 𝐷𝐿𝐴 factor. Refer to the Section 4.7 for 

the steps followed to determine the mean values of the load effects. 

Table 9. Input statistical properties of the load random variables.  

Variable Definition Distrib. 𝝀 𝑽 Reference 

𝑀𝐿 Live load moment Gumbel 1.1680 0.0686 (CSA S6.1, 2019) 

𝐿𝑒𝑓𝑓𝑒𝑐𝑡  Live Load Effect Normal 1.0200 0.0900 (CSA S6.1, 2019) 

𝑀𝐷𝑆𝑊
 Dead load generated by self-weight  Normal 1.0436 0.0359 (Kennedy, 1992) 

𝑀𝐷𝑊𝑆
 Dead load generated by wearing surface Normal 1.4370 0.5316 (Kennedy, 1992) 

𝐷𝐿𝐴 Dynamic load allowance Normal 1.0110 0.3010 (Kennedy, 1992) 

4.5 RESISTANCE MODEL 

4.5.1 Girder Resistance Model 

The resistance model for girders corresponds to the nominal bending resistance of bridge girder 

calculated based on CHBDC and the Concrete Design Handbook (CSA A23.3, 2014; CSA S6, 

2019). The standard geometry of the girder was idealized into an I-shaped cross-section as 
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summarized in Table 10. When idealizing the cross section, a series of design checks were put in 

place, where the gross cross-sectional area, second moment of inertia, and centroids were 

compared between the original cross section and the idealized cross section as detailed in 

Appendix A: Girder Section Idealization. 

Table 10. Idealized girder cross-sectional dimensions considered in the analysis. 

NEBT 

ID 

𝑯 
(𝒎𝒎) 

𝑯𝟏 
(𝒎𝒎) 

𝑯𝟐 
(𝒎𝒎) 

𝑯𝟑 
(𝒎𝒎) 

𝑩𝟏 
(𝒎𝒎) 

𝑩𝟐 
(𝒎𝒎) 

𝑩𝟑 
(𝒎𝒎) 

𝑨𝒄  
(𝒎𝒎𝟐) 

NEBT 1 1200 130 270 800 1200 810 180 518,700 

NEBT 2 1400 130 270 1000 1200 810 180 554,700 

NEBT 3 1600 130 270 1200 1200 810 180 589,000 

 

     The equivalent stress block methodology was used for determining the resistance of the section. 

Figure 4 details the sum of the forces in the x direction and a singular option for the location of the 

neutral axis. The equivalent stress block factors (𝛼1 and 𝛽1) are expressed in Equations (29) and 

(30), where, 𝑓𝑐
′ is the concrete compressive strength (Brzev and Pao, 2016a; CSA A23.3, 2014). 

The material resistance factors for concrete (Φ𝑐) was taken as 0.75 and steel (Φ𝑠) was considered 

0.95 for pre-stressed steel tendons in the girders as per CSA S6 (2019). The material resistance 

factors were set to unity for the reliability analysis. 

𝛽1 = 0.97 − 0.0025𝑓𝑐
′ ≤ 0.67 (29) 

𝛼1 = 0.85 − 0.0015𝑓𝑐
′ ≤ 0.67 (30) 

 

Figure 4. Girder diagram: (a) geometric cross-section, (b) strain diagram, and (c) stress diagram. 
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     The geometric measurements of the section are articulated in Figure 4. 𝐻, is the height of the 

section, 𝐵 is the base widths of the section, and 𝑑𝑖 is the depth to the individual layers of reinforcing 

bars. The sum of forces in the x direction (𝐹𝑥) and the sum of moments (𝑀) are set equal to zero. 

The sum of forces is used to solve for the depth to the neutral axis (𝑐) as detailed in Equation (31), 

where 𝑇𝑖 and 𝐶𝑟 refer to a tension force at layer i and the compression force, respectively. Note 

𝑁𝑐𝑠 is the number of concrete sections with different base dimensions within a singular cross-

section, and 𝑁𝑏𝑙 is the number of reinforcing bar layers within the cross-section. The moment 

capacity of the section is calculated as per Equation (32). Φs is only utilized when determining the 

mean loads applied on the cross-section, while it is set to unity in the reliability analysis (refer to 

Section 4.7 for explanation).  

∑ 𝐹𝑥 = 0, ∑ 𝐶𝑟 =  ∑ 𝑇𝑖

𝑁𝑏𝑙

𝑖=1

= ∑ Φ𝑠𝑓𝑠𝐴𝑠𝑖

𝑁𝑏𝑙

𝑖=1

  
(31) 

∑ 𝑀 = 0,     𝑀𝑟 = ∑ 𝑀𝐶𝑗

𝑁𝑐𝑠

𝑗=1

− ∑ 𝑇𝑖

𝑁𝑏𝑙

𝑖=1

(𝑐 − 𝑑𝑖 )   (32) 

4.5.1.1 Concrete Compression Force and Moment 

There are three possible locations for the neutral axis in the I-shaped girder (upper flange, web, 

lower flange). Equations (31) and (32) are expanded in Table 11 for the case of I-shaped girder. 

The code developed was validated against a series of textbook examples (Brzev and Pao, 2016b). 
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Table 11. Concrete force and moment calculation for an I-shaped girder. 

Location of a Force and moment  

           𝑎 < 𝐻1 

𝐶𝑟1
= 𝛼1Φ𝑐𝑓𝑐

′(𝐵1𝑎)  

𝑀𝑐1
= 𝛼1Φ𝑐𝑓𝑐

′ (𝐵1𝑎 (𝑐 −
𝑎

2
))  

 

𝐻1 < 𝑎 ≤ 𝐻1 + 𝐻2 

𝐶𝑟2
= 𝛼1Φ𝑐𝑓𝑐

′(𝐵1𝐻1 + 𝐵2(𝑎 − 𝐻1))  

𝑀𝑐2
= 𝑀𝑟1

+ 𝛼1Φ𝑐𝑓𝑐
′ (𝐵2(𝑎 − 𝐻1) (𝑐 − 𝐻1 −

𝑎 − 𝐻1

2
)) 

𝐻2 < 𝑎 ≤ 𝐻1 + 𝐻2 + 𝐻3 

𝐶𝑟3
= 𝛼1Φ𝑐𝑓𝑐

′ (𝐵1𝐻1 + 𝐵2𝐻2 + 𝐵3(𝑎 − (𝐻1 + 𝐻2))) 

𝑀𝑐3
= 𝑀𝑐2

+ 𝛼1Φ𝑐𝑓𝑐
′ (𝐵3(𝑎 − (𝐻1 + 𝐻2)) (𝑐 − 𝐻1 − 𝐻2 − (

𝑎 − 𝐻1 − 𝐻2

2
))) 

 

 

4.5.1.2 Steel Tension Force and Moment  

Prestress steel tendons or bars are used when i) self weight of the structures is large and 

serviceability LS are difficult to meet, ii) the length of the beam/girder is very long and/or iii) 

where additional resistance is required when the section is limited in size (CPCI Design Manual, 

2017). This form of reinforcement can be used in conjunction with standard steel reinforcement 

(partially prestressed sections) or as the sole form of reinforcing (fully prestressed section). The 

shape of the stress-strain curve for the different types of conditions of prestressed reinforcements 

are represented by 𝑘𝑝. 𝑘𝑝 is a constant value equal to 0.28 for low relaxation strand, 0.38 for plain 

prestressing bars, and 0.48 for deformed prestressing bars (CPCI Design Manual, 2017). The steel 

tendons considered are plain prestressed reinforcing bars with a tensile strength (𝑓𝑝𝑢) of 1860 MPa. 

The approximate method can be used to determine the stress in the prestressed reinforcement at 

factored resistance (𝑓𝑝𝑟). The 𝑓𝑝𝑟 value can then be used in the stress strain analysis in the 

MATLAB® code. There are two checks required to implement the approximate method. The first 

is that the compressive section must be idealized as a square, meaning that the depth to the neutral 

axis must be less than the height of the top flange as detailed in Equations (33). The second is the 

ratio between the depth of the neutral axis (𝑐) and the depth to the centroid of the rebar layers (𝑑𝑝) 
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must be less then 0.5 as shown in Equation (34). Both checks ensure that the approximation of the 

effective stress is within the allowable error outlined by the CSA A23.3 (2014) code. If both 

conditions outlined are met, Equation (35) is used to calculate the reduced 𝑓𝑝𝑟, where 𝐴𝑝 is the 

area of the prestressed reinforcing bars, 𝜔𝑝𝑢 is the prestressed steel ratio and the resistance factor 

for the prestressed bars (Φ𝑝) is 0.95.  

𝑎 =
𝜙𝑝𝑑𝑝𝜔𝑝𝑢

𝛼1𝜙𝑐 (1 + 𝑘𝑝

𝜙𝑝𝜔𝑝𝑢

𝛼1𝜙𝑐𝛽1
)

< 𝐻1  
(33) 

𝑐

𝑑𝑝
=

1

(
𝛼1𝜙𝑐𝛽1

𝜙𝑝𝜔𝑝𝑢
+ 𝑘𝑝)

< 0.5  
(34) 

𝑓𝑝𝑟 = 𝑓𝑝𝑢 (1 −
𝑘𝑝𝑐

𝑑𝑝
) 

(35) 

4.5.2 Pier Resistance Model 

There are three general sections to the resistance model for the pier geometry; the first is the 

generation of the interaction diagram based on geometric properties and incrementing 𝑐 from zero 

to 10𝐻, where an interaction diagram is a diagram that relates the axial load and moment 

combination. The second is the generation of the eccentricity line, where each line represents a 

singular 𝑐 value. The third section is to determine the intersection point between the interaction 

diagram and the eccentricity line to determine the section capacity. Φ𝑐 was taken as 0.75 and Φ𝑠 

was considered 0.9 for standard reinforcement rebars in the piers as per CSA S6 (2019). 
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4.5.2.1 Interaction Diagram 

The maximum axial force (𝑃𝑟,𝑚𝑎𝑥), which is a function of the factored axial load resistance at zero 

eccentricity (𝑃𝑟𝑜) is described in Equation (36) from cl. 10.10.4 (CSA A23.3, 2014). 

𝑃𝑟𝑜 = 𝛼1Φ𝑐𝑓𝑐
′(𝐴𝑔 − 𝐴𝑠𝑡 − 𝐴𝑡 − 𝐴𝑝) + Φ𝑠𝑓𝑦𝐴𝑠𝑡 + 𝜙𝑎𝑓𝑦𝐴𝑡 − 𝑓𝑝𝑟𝐴𝑝 (36) 

𝑃𝑟,𝑚𝑎𝑥 as defined by concrete handbook cl. 10.10.4 (CSA A23.3, 2014). For circular piers the 

reinforcement type is spiral, 𝑃𝑟,𝑚𝑎𝑥 is noted in Equation (37), and if the pier is square the 

reinforcement type is tied, 𝑃𝑟,𝑚𝑎𝑥 is noted in Equation (38) governs.  

𝑃𝑟,𝑚𝑎𝑥 = 0.9𝑃𝑟𝑜 (37) 

𝑃𝑟,𝑚𝑎𝑥 = (0.2 + 0.002ℎ)𝑃𝑟𝑜 ≤ 0.8𝑃𝑟𝑜 (38) 

4.5.2.2 Generation of Interaction Diagram 

The interaction diagram is parabolic in shape and is generated within this works based on 

incrementing the 𝑐 value from zero to 10𝐻 for a singular geometric configuration. Each point on 

the generated line is associated with an eccentricity value, where the eccentricity is measured as 

the distance from the geometric center of the structural member and the applied load. The first step 

would be to calculate the axial force for the specified 𝑐 value. The procedure is summarized in 

Figure 5, and expressed in Equation (39) to (43). 

 

Figure 5. Pier diagram (a) cross-sectional geometry, (b) strain diagram, and (c) stress diagram.  
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     There are two components to the axial force resistance of the section, the concrete under 

compression (𝑃𝑐) and the steel rebar under tension (𝑃𝑠𝑖
). 𝑃𝑐 is calculated as shown in Equation (39) 

(CSA A23.3, 2014). 

𝑃𝑐 =  𝛼1𝛷𝑐𝑓𝑐
′𝐵(𝛽1𝑐)  

(39) 

     The calculation of 𝑃𝑠 is described in Equations (40) to (42), where 𝑒𝑠𝑖
 is the tensile strain in the 

ith layer of rebar and 𝑒𝑐𝑢,𝑚𝑎𝑥 is the maximum compressive strain in the concrete compression zone.  

𝑒𝑠𝑖
= 𝑒𝑐𝑢,𝑚𝑎𝑥 (1 −

𝑑𝑖

𝑐
)  (40) 

𝑓𝑦𝑖
= 𝐸esi

 (41) 

𝑃𝑠 = Φ𝑠𝑓𝑦1𝐴𝑠1 (42) 

     The steel rebars below the neutral axis are under tension and therefore are subtracted 𝑃𝑐 as 

shown in Equation (43) to calculate the axial force (𝑃𝑦).  

𝑃𝑦 =  𝑃𝑐 − ∑ 𝑃𝑠

𝑁𝑏𝑙

𝑖=1

 (43) 

     Once the axial force (𝑃𝑦) is calculated, the second step is calculating the moment (𝑀𝑥) based 

on the section properties and 𝑐 value based on Figure 6 and Equations (44) to (45), where 𝑀𝑐 is 

the moment generated by the compressive zone and 𝑀𝑠𝑖
 is the tensile moment generated by the ith 

layer of reinforcing bars. The code developed to generate the interaction diagram was validated 

against a series of textbook examples (Brzev and Pao, 2016b). If the interaction point (moment 

and axial) of a given cross-section falls outside the boundaries of the interaction diagram, the 

section would be considered inadequate (failure). 
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𝑀𝑥 =  Mc ±  ∑ 𝑀𝑠𝑖

𝑁𝑏𝑙

𝑖=1

 
(44) 

𝑀𝑥 =  𝑃𝑐 (𝑐 −
𝑎

2
) ±  ∑ 𝑃𝑆𝑖

(𝑐 − 𝑑𝑠)

𝑁𝑏𝑙

𝑖=1

 

(45) 

 

Figure 6. Schematic illustration of an interaction diagram pier resistance prediction. 

4.5.2.3 Generation of Eccentricity Line 

The eccentricity line is a linear representation between the eccentricity (𝑒) of the applied load and 

a location on the interaction cure. This point of the curve is indicative of a singular 𝑐 value and is 

related to the 𝑒 as shown in Equation (46), where 𝑐𝑝 is known as center of plastic equal to half the 

cross-sectional height, 𝑒∗ is the axial load eccentricity with respects to the neutral axis, 𝑀𝑥 is the 

moment from the interaction diagram with respects to the neutral axis, and 𝑃𝑦 is the axial load from 

the interaction diagram with respects to the neutral axis.  

𝑒∗ =
𝑀𝑥

𝑃𝑦
,          𝑒 = 𝑒∗ − 𝑐 + 𝑐𝑝 (46) 

     The eccentricity line is a straight line, the slope of the line is 𝑒−1 and the intercept is zero. The 

equation of eccentricity is shown in Equation (47), where 𝑥 is the axial force and 𝑦 is the moment.  
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𝑦 = 𝑚𝑥 + 𝑏 =
1

𝑒
𝑥 (47) 

     When generating the eccentricity line, the moment values from the interaction diagram were 

substituted into the equation of the eccentricity line, meaning the points on each line share an x 

coordinate with a point on the opposing line. This simplifies the determination of the point of 

intersection between the eccentricity line and interaction diagram.  

4.5.2.4 Intersection of Eccentricity Line and Interaction Diagram  

The location where the interaction diagram and the eccentricity line intersect is the capacity for 

both axial and moment of the specified section. The resistance function outputs the axial force and 

moment of each point along the interaction diagram to determine the intersection point. The 

moment value is substituted for x in the eccentricity line of Equation (47) as seen in Equation (48).  

𝑦 =
1

𝑒
𝑥 =

1

𝑒
𝑀 (48) 

     The intersection point occurs when the sign of the difference changes from positive to negative. 

The last positive difference is set to equal (𝑋1, 𝑌1) and the first negative difference is set to (𝑋2, 𝑌2). 

As each point on the eccentricity line share an x coordinate with the interaction diagram, points 1 

and 3 share the same moment, and points 2 and 4 share the same moment, as shown in Figure 7. 

This further simplifies the interpolation between the four known points to obtain the intersection 

point. This intersection is characterized by Equations (49) and (50) for axial force and moment, 

respectively. 

𝑃𝑟 = 𝑌𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = (
(𝑋1𝑌2 − 𝑌1𝑋2)(𝑌3 − 𝑌4) − (𝑋3𝑌4 − 𝑌3𝑋4)(𝑌1 − 𝑌2)

(𝑋1 − 𝑋2)(𝑌3 − 𝑌4) − (𝑌1 − 𝑌2)(𝑋3 − 𝑋4)
) 

(49) 

𝑀𝑟 = 𝑋𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡 = (
(𝑋1𝑌2 − 𝑌1𝑋2)(𝑋3 − 𝑋4) − (𝑋3𝑌4 − 𝑌3𝑋4)(𝑋1 − 𝑋2)

(𝑋1 − 𝑋2)(𝑌3 − 𝑌4) − (𝑌1 − 𝑌2)(𝑋3 − 𝑋4)
) 

(50) 
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Figure 7. Schematic illustration of the intersection points in a pier interaction diagram. 

4.5.3 Statistics for Resistance 

There are a total of five base random variables considered in the resistance model, the professional 

factor (𝑃𝐹), 𝑓𝑐
′, 𝑓𝑦, 𝑑𝑠𝑖

, and the area of steel in each rebar layer (𝐴𝑆𝑖
) as summarized in Table 12. 

𝑓𝑐
′, 𝑓𝑦, and 𝐴𝑠𝑖

 account for the material variability, while 𝑑𝑠𝑖
 accounts for the variabilities in 

installation and 𝑃𝐹 accounts for the uncertainty in the structural analysis of the specific sections 

(Nowak and Szerzen, 2003). There are two distribution types considered in the resistance model: 

normal and truncated normal (Kennedy et al., 1992). Equation (51) denotes the equation used to 

calculate 𝜆 for the 𝑓𝑐
′random variable as it varies with the target compressive strength.  

λ = −2.4713x10−5𝑓𝑐
′3

+ 0.003174𝑓𝑐
′2

− 0.135436fc
′ + 3.064 (51) 

     It is noted that material properties are often modeled using lognormal distribution to avoid 

realizations of negative values (a material strength cannot be negative). However, it is unlikely for 

that to happen in the considered analysis since the mean values are relatively high, the biases are 

relatively low, and the coefficient of variation (𝑉) is relatively small. This approach has been taken 
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by research utilized to calibrate the member reduction factors for the American Concrete Institute 

(ACI) 318 code (Nowak and Szerzen, 2003).  

Table 12. Input statistical properties of the resistance random variables (Nowak et al., 2003) 

Variable Definition Distrib. 𝝀 𝑽 

𝑃𝐹𝑝𝑖𝑒𝑟 Professional factor (tied rein.) Normal 1.0000 0.0800 

𝑃𝐹𝐺𝑖𝑟𝑑𝑒𝑟  Professional factor  Normal 1.0200 0.0600 

𝑓𝑐
′ Concrete compressive strength Normal Eq. (51) 0.1000 

𝑓𝑦 (9.5𝑚𝑚) Yield strength of prestressed steel Normal 1.0600 0.0300 

𝑓𝑦 (11𝑚𝑚) Yield strength of prestressed steel Normal 1.0700 0.0100 

𝑓𝑦 (12.5𝑚𝑚) Yield strength of prestressed steel Normal 1.0400 0.0025 

𝑓𝑦 (25𝑀) Yield strength of steel Normal 1.1450 0.0500 

𝑓𝑦 (30𝑀) Yield strength of steel Normal 1.1400 0.0400 

𝑓𝑦 (35𝑀) Yield strength of steel Normal 1.1450 0.0350 

𝐴𝑠𝑖
 Area of still in ith layer Normal 1.0000 0.0150 

𝑑𝑠𝑖
 Depth to ith rebar layer Truncated Normal 1.0000 0.0250 

4.6 CONSIDERED AK CONFIGURATIONS 

The AK Configurations (defined in Section 2.4.1) corresponds to the choice of the regression, 

correlation, and learning functions. The number of unique AK configurations considered in the 

analysis of the girders and piers is 54 (each girder and pier configuration described in Table 7 and 

Table 8 was evaluated using 54 AK configurations). The 54 AK configurations are made up of 

three regression functions (constant, linear and quadratic), six correlation functions (Gaussian, 

cubic, exponential, linear, spherical and spline), and three learning functions (EFF, U, H for the 

girders and EFF, U, REIF for the peris). The formulation of the regression, correlation, and 

learning functions are detailed in Sections 3.3.2, 3.3.3, and 3.3.4, respectively. The AK 

configuration IDs are provided in Table B.1 for girder and Table B.2 for piers in Appendix B: AK 

Configurations. 
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4.7 STEPS OF THE RELIABILITY ANALYSIS 

The reliability analysis was conducted in three steps per each of the bridge and pier configurations 

described in Section 4.2 as follows: 

Step 1. Determine the mean load effect for the load model detailed in Section 4.4. The nominal 

value of 𝑀𝐿 was calculated using Equation (52) by setting 𝑀𝑟 equal to the factored applied moment 

(𝑀𝑓), where the latter equals the summation of the factored load effects in Equation (30) (i.e., 

utilization ratio of unity – ratio of demand to capacity equals one), 𝑀𝐷𝑠𝑤 𝑀𝐿Τ  ratio of 0.5213, and 

𝑀𝐷𝑤𝑠 𝑀𝐿Τ  ratio of 0.0887. The values for 𝑀𝐷𝑠𝑤 𝑀𝐿Τ  and 𝑀𝐷𝑤𝑠 𝑀𝐿Τ  were obtained based on field 

measurements in Alberta (Kennedy et al., 1992). The bridge girder and pier factored resistance 𝑀𝑟 

was calculated by utilizing the material resistance factor in CSA S6 (2019): 0.75 for concrete (Φ𝑐), 

0.95 for pre-stressed steel tendons in the girders (Φ𝑠), and 0.9 for the non-prestressed steel 

reinforcement in the piers. According to cl. 3.8.4.5.3 of the CHBDC, where there are three or more 

axles of the CL-W truck or more than one axle unit of a special truck(s), the 𝐷𝐿𝐴 for a concrete 

girder and pier is equal to 0.25 (CSA S6, 2019; CSA S6.1, 2019). 

𝑀𝐿 =
𝑀𝑟

1.2(𝑀𝐷𝑠𝑤 𝑀𝐿Τ ) + 1.5(𝑀𝐷𝑤𝑠 𝑀𝐿Τ ) + 1.7(1 + 𝐷𝐿𝐴)
 (52) 

Step 2. Conduct AK-MCS using the select AK Configurations. The reliability for each bridge 

girder and pier configuration described in Section 4.2 was evaluated using 54 AK configurations 

(described in Section 4.6) using the developed MATLAB® code for AK-MCS described in Section 

3.3. 

Step 3. Conduct crude MCS for comparison purposes. The reliability for each bridge girder 

and pier configuration described in Section 4.2 was evaluated using the developed MATLAB® 

code for crude MCS described in Section 3.2. 
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4.8 AK-MCS RELIABILITY ANALYSIS RESULTS AND DISCUSSION 

A total of 486 AK-MCS analyses were conducted for the girder application (9 girder 

configurations x 54 AK configuration) and 324 AK-MCS analyses were conducted for the pier 

application (6 pier configurations x 54 AK configuration). The analysis results were compared 

with crude MCS for verification. The number of AK-MCS (𝑁𝐴𝐾−𝑀𝐶𝑆) trials was determined to be 

1 × 106 and 5 × 107 for the crude MCS analyses with a confidence interval of 95% and a margin 

of error of 1.8% and 15% as per Equation (19) for 𝛽 of 3.5 and 4.5, respectively. The AK-MCS 

analysis was conducted using the SAR research group server: a windows-based server with dual 

Intel Xeon Gold 5220R 2.20GHz processors (48 cores), a NVIDIA Quadro P620 graphics card, 

and 128 Gb of available RAM. The analysis results are evaluated based on accuracy (error in 

predicting the reliability index relative to the crude MCS) and efficiency (number of points 

required to train the surrogate Kriging model).  

4.8.1 Accuracy of Results 

For the accuracy evaluation, the analysis results are summarized in Table 13 and Table 14 for the 

girder and pier analysis, respectively. Only the top 10 AK-MCS analyses ranked based on the 

lowest error in predicting the 𝛽 as compared with crude MCS are shown in the tables, while the 

reader is referred to Appendix C: Reliability Indexes Chapter 4 for the complete list of analysis 

results (54 AK-MCS analyses per girder and pier configuration). The error was calculated by 

comparing the 𝛽𝐴𝐾−𝑀𝐶𝑆 against the 𝛽𝑀𝐶𝑆 as expressed in Equation (53) (Buckley et al., 2021). The 

analysis results for the 54 AK configurations for the girder and pier applications are shown 

schematically in Figure 8 and Figure 9, respectively.  
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𝐸𝑟𝑟𝑜𝑟 = √∑ (
∑ 𝛽𝐴𝐾−𝑀𝐶𝑆(𝑖) − 𝛽𝑀𝐶𝑆(𝑗)

𝐴𝐾 𝐶𝑜𝑛𝑓𝑖𝑔.
𝑖=1

𝑁𝑠(𝑗)
)

2𝐼𝐷

𝑗=1

  (53) 

Table 13. Comparison of reliability indexes for MCS versus AK-MCS for girders – Analysis 

results ranked based on accuracy. 

Analysis 

Type 

AK 

ID 
Error 

GIRD ID 

1 2 3 4 5 6 7 8 9 

Crude 

MCS 
- - 4.1700 4.2073 4.1897 4.4627 4.4790 4.4920 4.2276 4.2609 4.3197 

AK-MCS 32 1.9E-04 4.1318 4.1449 4.2059 4.5264 4.5264 4.4652 4.1892 4.2649 4.3439 

AK-MCS 54 2.0E-04 4.1735 4.1193 4.2436 4.4652 4.4652 4.5264 4.2436 4.3145 4.2436 

AK-MCS 53 2.1E-04 4.1449 4.1449 4.1892 4.3776 4.5264 4.5264 4.1892 4.3776 4.3439 

AK-MCS 36 2.5E-04 4.1587 4.2649 4.2436 4.5264 4.4172 4.4172 4.1449 4.3439 4.2884 

AK-MCS 46 2.6E-04 4.2649 4.2059 4.1587 4.3776 4.3776 4.4652 4.1735 4.3439 4.3145 

AK-MCS 42 2.8E-04 4.2240 4.3439 4.2240 4.5264 4.5264 4.5264 4.2649 4.2436 4.3439 

AK-MCS 18 2.9E-04 4.0962 4.2436 4.3145 4.3439 4.4652 4.5264 4.2059 4.3145 4.3439 

AK-MCS 45 3.0E-04 4.1587 4.2059 4.1892 4.6114 4.4172 4.4172 4.2059 4.2240 4.3145 

AK-MCS 24 3.0E-04 4.1735 4.2240 4.1587 4.4652 4.4652 4.3439 4.1449 4.2240 4.3145 

AK-MCS 43 3.2E-04 4.1193 4.1735 4.2059 4.4652 4.6114 4.4172 4.3439 4.2649 4.3439 

AK-MCS 32 1.9E-04 4.1318 4.1449 4.2059 4.5264 4.5264 4.4652 4.1892 4.2649 4.3439 

 

Figure 8. Reliability indexes versus the AK configurations with 106 trials: (a) Girder ID 1, (b) 

Girder ID 2, (c) Girder ID 3, (d) Girder ID 4, (e) Girder ID 5, (f) Girder ID 6, (g) Girder ID 7, (h) 

Girder ID 8, and (i) Girder ID 9. 
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Table 14. Comparison of reliability indexes for MCS versus AK-MCS for Piers – Analysis 

results ranked based on accuracy. 

Analysis 

Type 

AK 

ID 
Error  

PIER ID 

1 2 5 6 9 10 

Crude 

MCS 
- - 4.5658 4.6667 4.5714 4.6351 4.5758 4.6404 

AK-MCS 36 4.0E-04 4.5264 4.6114 4.6114 4.5264 4.734 4.5264 

AK-MCS 9 4.1E-04 4.4652 4.4652 4.6114 4.6114 4.4652 4.6114 

AK-MCS 22 4.2E-04 4.6114 4.4651 4.6114 4.6114 4.4651 4.7534 

AK-MCS 43 4.3E-04 4.5264 4.6114 4.6114 4.4651 4.3776 4.6114 

AK-MCS 54 4.4E-04 4.6114 4.6114 4.4652 4.4652 4.4652 4.5264 

AK-MCS 32 4.6E-04 4.4652 4.6114 4.6114 4.5264 4.5264 4.4172 

AK-MCS 44 4.6E-04 4.5264 4.7534 4.4172 4.5264 4.4172 4.5264 

AK-MCS 13 4.8E-04 4.4652 4.6114 4.5264 4.4652 4.7534 4.7534 

AK-MCS 34 5.0E-04 4.5264 4.4172 4.5264 4.6114 4.5264 4.4652 

AK-MCS 42 5.8E-04 4.4652 4.4172 4.4652 4.4652 4.4652 4.5264 

 

 

Figure 9. Reliability indexes versus the AK configurations with 106 trials: (a) Pier ID 1, (b) Pier 

ID 2, (c) Pier ID 5, (d) Pier ID 6, (e) Pier ID 9, and (f) Pier ID 10. 

The 𝛽𝑀𝐶𝑆 are aligned with target values used in calibrating bridge design codes including the 

CHBDC and AASHTO LRFD, which confirms the accuracy of the crude MCS analysis (LS, load 

model, resistance model, and statistical parameters). Typical range of reliability indexes for bridge 
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components designed per CHBDC is 3.5 to 4.5 (CSA S6, 2019). The following observations can 

be made regarding the accuracy evaluation of the AK-MCS analysis: 

• The analysis results confirm that the developed MATLAB® script of the AK-MCS is 

functional as it was able to predict 𝛽 for the considered bridge girders and piers within a 

tolerable margin of error (less then 5%).  

• The accuracy of prediction depends on the choice of the AK configuration (regression, 

correlation, and learning functions) utilized in the AK-MCS analysis.  

• The mean error of the 𝛽𝐴𝐾−𝑀𝐶𝑆 of all 54 AK configurations is 0.0225 ± 0.0307. It was also 

observed that the target 𝛽𝑀𝐶𝑆 seems to impact the spread of results. As the 𝛽𝑀𝐶𝑆 increases, 

the larger is the variability in the results plotted in Figure 8. The 𝛽𝑀𝐶𝑆 for GIRD ID 1, 2, and 

3 is 4.2. The dispersion of the 𝛽𝐴𝐾−𝑀𝐶𝑆 around the 𝛽𝑀𝐶𝑆 is the least for GIRD ID 1, 2, and 3 

as compared to the other girders. GIRD ID 7, 8, 9 have a 𝛽𝑀𝐶𝑆 of 4.35 with a slightly larger 

spread of 𝛽𝐴𝐾−𝑀𝐶𝑆, and GIRD ID’s 4, 5, and 6 has a 𝛽𝑀𝐶𝑆 of 4.5 with the largest variation 

in 𝛽𝐴𝐾−𝑀𝐶𝑆 results. In other words, when the target 𝛽𝑀𝐶𝑆 increases, the variability in the 

performance of the AK configurations increases. This can be attributed to the number of 

trials needed to achieve an accurate presentation of 𝛽 as the target 𝛽𝑀𝐶𝑆 increase.  

• The mean error of the AK-MCS of all 54 pier configurations is 0.3601 ± 0.01089. The mean 

errors for piers with a ρ of 1% (Pier 1, Pier 5, and Pier 9) and 2% (Pier 2, Pier 6, and Pier 

10) are 0.0792 ± 0.02636 and 0.0453 ± 0.0258, respectively, where positive indicates 

overprediction and negative indicates underprediction. 

• The girder analysis sees a larger number of overpredictions, whereas the pier analysis 

generates mostly under predictions. This is likely attributed to the lower probability of 
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failure of the piers as compared with the girders. Should the number of trails of the AK-

MCS analysis of the piers increase, more overpredictions may occur.  

• The choice of the optimal AK configuration may be influenced by the complexity of the 

considered LS and the number of considered random variables. This observation is the 

primary motive for conducting the optimization exercise of the AK-MCS analysis presented 

in Chapter 5.  

• A single or multiple AK configurations may exist to optimize the accuracy prediction of the 

AK-MCS per design problem. 

 

4.8.2 Efficiency of Method 

For the efficiency evaluation, the analysis results are summarized in Table 15. The total number 

of points (𝑁𝑐𝑎𝑙𝑙𝑠) required to train the surrogate model for the respective AK-MCS analysis was a 

secondary consideration for ranking the performance of the AK configurations after the error. 

𝑁𝑐𝑎𝑙𝑙𝑠 is equal to the summation of the initial training points (𝑁𝑖𝑛𝑖𝑡𝑎𝑙) and the added training points 

(𝑁𝑎𝑑𝑑𝑒𝑑), as expressed in Equation (54). The minimum value of 𝑁𝑖𝑛𝑖𝑡𝑎𝑙 is a function of the 

regression function used in the AK-configuration as detailed in Table 3. 𝑁𝑖𝑛𝑖𝑡𝑎𝑙 for the girder 

application using the quadratic, linear, and constant functions were 6, 18, and 110, respectively. 

𝑁𝑖𝑛𝑖𝑡𝑎𝑙 for the pier application using the quadratic, linear, and constant functions were 6, 19, and 

125, respectively.  

𝑁𝑐𝑎𝑙𝑙𝑠 = 𝑁𝑖𝑛𝑖𝑡𝑎𝑙 + 𝑁𝑎𝑑𝑑𝑒𝑑  (54) 
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Table 15. AK-MCS analyses ranked based on accuracy for predicting 𝛽 for girders. 

Analysis 

Type 

AK-

Conf. 
𝑵𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝑵𝒂𝒅𝒅𝒆𝒅 𝑵𝒄𝒂𝒍𝒍𝒔 

Regression 

Function 

Correlation 

Function 

Learning 

Function 
Error  

AK-MCS 32 18 30 48 Linear Linear U 1.9E-04 

AK-MCS 54 110 2 112 Quadratic Spline HI 2.0E-04 

AK-MCS 53 110 3 113 Quadratic Spline U 2.1E-04 

AK-MCS 36 110 2 112 Quadratic Linear U 2.5E-04 

AK-MCS 46 6 55 61 Constant Spline EFF 2.6E-04 

AK-MCS 42 18 68 86 Linear Spherical HI 2.8E-04 

AK-MCS 18 110 4 114 Quadratic Cubic HI 2.9E-04 

AK-MCS 45 110 3 113 Quadratic Spherical HI 3.0E-04 

AK-MCS 24 18 52 70 Linear Exponential HI 3.0E-04 

AK-MCS 43 110 4 114 Quadratic Spherical EFF 3.2E-04 

 

Table 16. AK-MCS analyses ranked based on accuracy for predicting 𝛽 for piers. 

Analysis 

Type 

AK-

Conf. 
𝑵𝒊𝒏𝒊𝒕𝒊𝒂𝒍 𝑵𝒂𝒅𝒅𝒆𝒅 𝑵𝒄𝒂𝒍𝒍𝒔 

Regression 

Function 

Correlation 

Function 

Learning 

Function 
Error 

AK-MCS 36 125 0 125 Quadratic Linear REIF 4.0E-04 

AK-MCS 9 125 2 127 Quadratic Gaussian REIF 4.1E-04 

AK-MCS 22 19 29 48 Linear Exponential EFF 4.2E-04 

AK-MCS 43 125 4 129 Quadratic Spherical EFF 4.3E-04 

AK-MCS 54 125 1 126 Quadratic Spline REIF 4.4E-04 

AK-MCS 32 19 15 34 Linear Linear U 4.6E-04 

AK-MCS 44 125 1 126 Quadratic Spherical U 4.6E-04 

AK-MCS 13 19 41 60 Linear Cubic EFF 4.8E-04 

AK-MCS 34 125 2 127 Quadratic Linear EFF 5.0E-04 

AK-MCS 42 19 14 33 Linear Linear REIF 5.8E-04 

     Figure 10 displays sample relationships between the reliability index and how it changes as the 

number of added points (𝑁𝑎𝑑𝑑𝑒𝑑) increase for six of the AK configurations run for the GIRD ID 

4: 23, 24, 32, 36, 53 and 54. As the number of training points increase, the 𝛽 value converges. In 

configurations 36, 53 and 54, it is clear that the number of initial training points (𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙) 

represents the data well as the convergence has largely happened prior to the addition of new 

points. In other instances, like configurations 23, 24, and 32, it can be seen that as the new points 

are added to the DoE, the value of 𝛽 converges and significant improvement of the accuracy of the 

surrogate model is made. This occurs when 𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 is low and the 𝑁𝑎𝑑𝑑𝑒𝑑 is high.  
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Figure 10. Reliability index versus the number of added points for AK-MCS GIRD ID 4: (a) 

Configuration 23, (b) Configuration 24, (c) Configuration 32, (d) Configuration 36, (e) 

Configuration 53, and (f) Configuration 54. 

     For the constant regression function trails, the majority of improvement of the Kriging surrogate 

predictor happens within the first 150 added training points. Figure 10(e) displays configuration 

53 (quadratic regression, spline correlation and U learning functions). Due to the large number of 

𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 required, the 𝑁𝑎𝑑𝑑𝑒𝑑 are low and make very little improvement on the surrogate model in 

general. It can be concluded that in the case of the quadratic regression function, the final Kriging 

predictor suffices for the reliability prediction as opposed to conducting the active learning 
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component. Since there are little to no added points, the learning function may not be utilized and 

therefore deemed ineffective. 

4.9 CHAPTER SUMMARY 

Overall, the functionality of the framework of analysis indicates consistent results from the AK-

MCS analyses. The reliability indexes from the crude MCS, used as a reference (or benchmark) 

solutions, are within typical ranges for standard bridge components. Analysis results indicate the 

following concerns about AK-MCS analysis: i) the impact of the bias associated with the random 

generator, and the question of consistency of the model based on this bias, and ii) its sensitivity to 

assess multiple types of girders and piers. To address the concerns of consistency, it is 

recommended that the same analysis is run multiple times to remove the bias associated with the 

randomly generated input variables, and create a ranking structure to consider the error, the number 

of training points and the consistency of the outputs. These concerns are addressed in Chapter 5. 
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CHAPTER 5 OPTIMIZATION OF AK-MCS FOR BRIDGE 

RELIABILITY ASSESSMENT 

5.1 INTRODUCTION  

The accuracy and efficiency of the AK-MCS analysis are sensitive to the choice of the AK 

configuration as concluded in Chapter 4. Therefore, optimization is required to determine optimal 

AK configurations to meet prescribed performance objectives of the AK-MCS analysis (prioritize 

accuracy, or efficiency or balance both). A new metric system called the comprehensive metric 

system (CMS) has been introduced in literature by Khorramian and Oudah (2022c) to propose the 

optimal AK configuration for AK analyses by considering both the accuracy and efficiency aspects 

of the reliability analysis. In the CMS, the accuracy is assessed using root mean squared error 

(RSME), absolute average error (AAE), degree of consistency (DOC), and the efficiency is 

assessed using the total number of required initial and added points and is represented by the total 

training points (TTP) required to generate the surrogate model. The objective of this chapter is to 

apply the CMS metric to determine optimal AK configurations for select girder and pier 

configurations considered in Chapter 4 (GIRD ID 1, and PIER ID 5) and utilize the derived optimal 

AK configurations to assess the reliability of a larger set of girder and pier configurations using 

AK-MCS reliability analysis.  

     The formulation of the CMS metric is reviewed first in the following subsection, followed by 

presenting the results of the optimal AK configurations for the select girder and pier 

configurations. Finally, the results of the AK-MCS reliability analysis for the parametric analysis 

is presented.  
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5.2 METRIC BREAKDOWN  

There are four parameters considered in the CMS, the RMSE, the AAE, the TTP, and DoC 

(Khorramian and Oudah, 2022c) and are detailed in Equations (55) to (58). The RMSE and AAE 

are computed with relation to the difference between the AK-MCS analysis output, probability of 

failure of the ith identical AK configuration run (𝑃𝑓𝐴𝑘−𝑀𝐶𝑆𝑖
) and 𝑃𝑓𝑀𝐶𝑆

 from the crude MCS.  

 𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑓𝐴𝐾−𝑅𝑖

− 𝑃𝑓𝑀𝐶𝑆
)

2
𝑁𝑠

𝑖=1

𝑁𝑠
  

(55) 

𝐴𝐴𝐸 =  

∑ |
𝑃𝑓𝐴𝐾−𝑅𝑖

− 𝑃𝑓𝑀𝐶𝑆

𝑃𝑓𝑀𝐶𝑆

|
𝑁𝑠
𝑖=1

𝑁𝑠
 

(56) 

     The DoC is an indicator of the consistency of the applied method and is expressed in Equation 

(57). The rational for the DoC parameter is as follows. As the initial training set of DoE is randomly 

generated, the bias associated with different initial training sets can be mitigated by running the 

same analysis multiple times for the same AK configuration, each with a different randomly 

generated training point. Thus, DoC is simply defined as the number of successful analyses (𝑁𝑠) 

divided by the total number of identical analyses (𝑁𝐼), where the term successful analysis refers to 

a numerical reliability index output of the AK-MCS.  

𝐷𝑜𝐶 =
𝑁𝑠

𝑁𝐼
 (57) 

     The TTP is the summation of the initial and added points of each identical analysis divided by 

the total number of successful analyses as noted in Equation (58). 

𝑇𝑇𝑃 =  
∑ (𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙 + 𝑁𝑎𝑑𝑑𝑒𝑑𝑖

)
𝑁𝑠
𝑖=1

𝑁𝑠
 (58) 
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     To identify the optimal AK configurations, the four discussed parameters need to be 

transformed, scaled, and ranked (Khorramian and Oudah, 2022c). This is due to the similarities in 

data or values being too close to distinguish from each other. This separation between data points 

needs to be present to rank the data, and this separation is the scaling of the parameters considered.  

     The most accurate and consistent AK configuration should be considered, which implies the 

minimization of the error measures (RMSE and AAE) and the TTP, while maximizing the DoC. 

The transformation of each parameter to a value between zero and one is shown in Equations (59) 

to (62). Transformed RMSE is represented by 𝐼1, transformed AAE is represented by 𝐼2, 

transformed DoC is represented by 𝐼3 and transformed TTP is represented by 𝐼4. 

 𝐼1 = 1 − (
𝑅𝑀𝑆𝐸 − 𝑅𝑀𝑆𝐸𝑚𝑖𝑛

𝑅𝑀𝑆𝐸𝑚𝑎𝑥 − 𝑅𝑀𝑆𝐸𝑚𝑖𝑛
)  (59) 

 𝐼2 = 1 − (
𝐴𝐴𝐸 − 𝐴𝐴𝐸𝑚𝑖𝑛

𝐴𝐴𝐸𝑚𝑎𝑥 − 𝐴𝐴𝐸𝑚𝑖𝑛
)  (60) 

 𝐼3 = (
𝐷𝑜𝐶 − 𝐷𝑜𝐶𝑚𝑖𝑛

𝐷𝑜𝐶𝑚𝑎𝑥 − 𝐷𝑜𝐶𝑚𝑖𝑛
)  (61) 

 𝐼4 = 1 − (
𝑇𝑇𝑃 − 𝑇𝑇𝑃𝑚𝑖𝑛

𝑇𝑇𝑃𝑚𝑎𝑥 − 𝑇𝑇𝑃𝑚𝑖𝑛
)  (62) 

     Once the data is transformed, the next step is to scale the data to ensure there is variability in 

the distribution of the parameter points (Khorramian and Oudah, 2022c). There are three possible 

scales as shown in Equations (63) to (65) that can be used including variation 1 (𝑣1) linear, 

variation 2 (𝑣2) exponential or variation 3 (𝑣3) logarithmic. Depending on the data in question, the 
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selection of the scale varies, and the recommended scale for structural applications is logarithmic 

which aligns with the findings in Section 5.3.3 (Khorramian and Oudah, 2022c). 

 𝐼𝑙𝑖𝑛𝑒𝑟 = 𝐼𝑖  (63) 

𝐼𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 = exp{𝐼𝑖} 
(64) 

𝐼𝑙𝑜𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑖𝑐 = log{𝐼𝑖 } 
(65) 

     Once the scaling is complete, the final step is to rank the data. Since the goal is to find the cases 

that yield highest values in all four parameters simultaneously, a step-based ranking is completed. 

Figure 11 shows the four parameters number 1 through 4. The steps are articulated by the letter, 

step one (𝛿) for all four parameters is represented by (a) and step two (2𝛿) is represented by (b). 

If all parameters are within the first step, then that AK configuration would be ranked first. The 

step will continue to be increased until all the AK configurations have been ranked.  

 

Figure 11. Illustration of ranking increments of the metric parameters. 
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5.3 GIRDER ANALYSIS 

5.3.1 General 

The metric analysis was performed on GIRD ID 1, as detailed in Table 7 within Section 4.2., to 

determine the top five ranked optimum AK configurations. The top five optimum AK 

configurations are then applied to 41 additional analysis, GIRD ID 2 through 21 at 45 MPa and 

GIRD ID 1 through 21 at 55 MPa. The results are then compared to the 𝛽𝑀𝐶𝑆 to assess the 

performance of the optimal AK configurations in yielding accurate results for the considered girder 

and pier configurations.  

5.3.2 Input Parameters 

Figure 12 details the geometric parameters including cross-sectional and reinforcing geometry of 

GIRD ID 1. The statistical data from Chapter 4 was applied to this analysis (refer to Table 11 and 

Table 12). The six correlation functions detailed in Table 4 were considered, while only the 

constant and linear regression functions shown in Table 3 were considered. The quadratic 

regression function was excluded due to the large number of initial training points required. Nine 

learning functions were selected including EFF, U, Hc, H, REIF and four variations of the KO 

function, KO05(2), KO005(2), KO05(5), and KO005(5) (refer to Section 2.4.2 for the detailed 

formulation of the learning functions). The variation residing with the change of the stopping 

criterion and accuracy.  
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Figure 12. Geometry of GIRD ID 1. 

5.3.3 Summary of Results  

For section GIRD ID 1, the MCS reliability index (𝛽𝑀𝐶𝑆) and 𝑃𝑓𝑀𝐶𝑆
 were determined to be 4.1675 

and 1.5400𝑥10−5, respectively, based on crude MCS with 5x106 trials. The three forms of scaling 

presented in Section 5.2 were initially investigated. As shown in Figure 13, the logarithmic scale 

shows an approximately normal distribution for parameters 𝐼1 and 𝐼2. Additionally, the variations 

captured by the scaling models for 𝐼3 and 𝐼4 are better represented by the logarithmic scale. The 

recommended scale for the proposed analysis is therefore the logarithmic scale, which will also be 

applied to the pier configurations in Section 5.4.  

         

Figure 13. Scaling options for metric application: (a) linear scale, (b) exponential scale, and (c) 

logarithmic scale. 

(a) (b) (c) 
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     The summary findings of the CMS are detailed in Table 17. It is evident that the linear 

regression function relates the data more accurately when considering all four parameters 

simultaneously, however, it provides poor prediction when considering the four parameters 

separately. The REIF learning function only appears when all four parameters are considered. The 

correlation function results do not indicate an optimal function when considering all four 

parameters of interest individually or simultaneously (RMSE, AAE, DoC and TTP). The two 

correlation functions that reoccur the most frequently are Gaussian and cubic. As displayed in 

Table 17, the spherical correlation function for Opt (AK-MCS) analysis reoccurs the most when 

considering all four parameters but does not when considering individual evaluation parameters. 

The reliability index was not found to be significantly influenced by the choice of the correlation 

function.  

     Using the SAR research groups server, the 108 AK configurations took about 7 days with the 

majority of cases needing about 30 minutes to run, while 18 AK configurations took 5-8 hours 

each (37, 38, 39, 40, 41, 55, 56, 57, 58, 59, 73, 74, 75, 76, 77, 78, 79, 80). In comparison to the 

MCS analysis, which took a total of eight hours for each geometric configuration considered, the 

AK-MCS analysis has a time saving roughly between 37.5% and 93.75%. 
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Table 17. Metric AK configuration ranking for girder. 

Ranking 

Method 
Rank 

Regression 

function 

Correlation 

function 

Learning 

function 
𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 

Best 𝐼1 

(RMSE) 

1 Constant Spline Hc 1.0000 1.0000 0.0000 0.9483 

2 Constant Spline KO005(5) 0.6854 0.7564 0.6132 0.6099 

3 Constant Gaussian KO05(5) 0.6757 0.7013 0.7737 0.6154 

4 Linear Gaussian EFF 0.6505 0.7129 0.8982 0.4771 

5 Constant Cubic KO05(5) 0.6354 0.6733 0.8982 0.4985 

Best 𝐼2 

(AAE) 

1 Constant Spline U 1.0000 1.0000 0.0000 0.9483 

2 Constant Spline U 0.6854 0.7564 0.6132 0.6099 

3 Linear Gaussian KO05(2) 0.6505 0.7129 0.8982 0.4771 

4 Constant Gaussian KO05(2) 0.6757 0.7013 0.7737 0.6154 

5 Constant Cubic KO005(2) 0.6354 0.6733 0.8982 0.4985 

Best 𝐼3 

(DoC) 

1 Constant Gaussian KO005(5) 0.0000 0.0357 1.0000 0.5339 

2 Constant Gaussian HI 0.1248 0.1287 1.0000 0.5070 

3 Linear Gaussian 1 0.0851 0.0664 1.0000 0.5424 

4 Linear Gaussian 2 0.1766 0.2546 1.0000 0.5079 

5 Linear Gaussian 3 0.1736 0.1946 1.0000 0.4711 

Best 𝐼4 

(TTP)  

1 Constant Cubic U 0.5839 0.5742 0.3869 1.0000 

2 Constant Cubic U 0.3601 0.3453 0.0000 1.0000 

3 Constant Spline Hc 0.0995 0.0786 0.3869 0.9483 

4 Constant Spline Hc 1.0000 1.0000 0.0000 0.9483 

5 Constant Gaussian Hc 0.2488 0.2373 0.6132 0.8443 

Opt (AK-

MCS) 

1 Linear Spherical REIF 0.4364 0.4395 0.8982 0.6266 

2 Linear Spherical U 0.3931 0.4173 0.8982 0.6369 

3 Linear Cubic Hc 0.4161 0.4528 0.8982 0.5695 

4 Linear Linear REIF 0.3828 0.4100 0.8982 0.6196 

5 Linear Spline Hc 0.4480 0.4406 0.8982 0.5659 

 

5.3.4 Parametric Analysis of Multiple Girder Design Configurations 

Four girder cross-sectional sizes were considered in this analysis, three of which were covered in 

Chapter 4. The idealized geometries are included in Table 18. A total of 21 unique girder 

configurations (size and bar distribution) have been considered as include in Table 19.  

Table 18. Idealized girder cross-sectional section IDs. 

NEBT ID 
𝑯 

(𝒎𝒎) 

𝑯𝟏 

(𝒎𝒎) 

𝑯𝟐 

(𝒎𝒎) 

𝑯𝟑 

(𝒎𝒎) 

𝑩𝟏 

(𝒎𝒎) 

𝑩𝟐 

(𝒎𝒎) 

𝑩𝟑 

(𝒎𝒎) 

𝑨𝒄 

(𝒎𝒎𝟐) 

NEBT 1 1200 115 280 805 1200 810 180 509,700 

NEBT 2 1400 115 280 1005 1200 810 180 545,700 

NEBT 3 1600 115 280 1205 1200 810 180 581,700 

NEBT 4 1800 115 280 1405 1200 810 180 617,700 
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Table 19. Details of additional girders considered. 

Section ID NEBT ID db (mm) 𝑨𝒔 (𝒎𝒎𝟐) 𝑨𝒔𝒊 (𝒎𝒎𝟐) 𝒅𝒔 (𝒎𝒎) 𝝆𝒂𝒄𝒕 (%) 

GIRD 01 NEBT 3 9.5 994 Ab [2,2,2,4,4] [1100,1200,1300,1400,1500] 0.1950 

GIRD 02 NEBT 2 9.5 994 Ab [2,2,2,4,4] [900,1000,1100,1200,1300] 0.1822 

GIRD 03 NEBT 1 9.5 994 Ab [2,2,2,4,4] [700,800,900,1000,1100] 0.1709 

GIRD 04 NEBT 3 11 1,330 Ab [2,2,2,4,4] [1100,1200,1300,1400,1500] 0.2609 

GIRD 05 NEBT 2 11 1,330 Ab [2,2,2,4,4] [900,1000,1100,1200,1300] 0.2437 

GIRD 06 NEBT 1 11 1,330 Ab [2,2,2,4,4] [700,800,900,1000,1100] 0.2286 

GIRD 07 NEBT 3 12.5 1,717 Ab [2,2,2,4,4] [1100,1200,1300,1400,1500] 0.3369 

GIRD 08 NEBT 2 12.5 1,717 Ab [2,2,2,4,4] [900,1000,1100,1200,1300] 0.3146 

GIRD 09 NEBT 1 12.5 1,717 Ab [2,2,2,4,4] [700,800,900,1000,1100] 0.2952 

GIRD 10 NEBT 1 9.5 1134.12 Ab [2,2,2,4,6] [891,955,1017,1080,1143] 0.2225 

GIRD 11 NEBT 2 9.5 1134.12 Ab [2,2,2,4,6] [1091,115,1217,1280,1343] 0.2708 

GIRD 12 NEBT 3 9.5 1134.12 Ab [2,2,2,4,6] [1291,1355,1417,1480,1543] 0.1950 

GIRD 10 NEBT 1 9.5 1134.12 Ab [2,2,2,4,6] [891,955,1017,1080,1143] 0.2225 

GIRD 11 NEBT 2 9.5 1134.12 Ab [2,2,2,4,6] [1091,115,1217,1280,1343] 0.2708 

GIRD 12 NEBT 3 9.5 1134.12 Ab [2,2,2,4,6] [1291,1355,1417,1480,1543] 0.1950 

GIRD 13 NEBT 4 9.5 1134.12 Ab [2,2,2,4,6] [1491,1555,1617,1680,1743] 0.1836 

GIRD 14 NEBT 1 11 1520.53 Ab [2,2,2,4,6] [891,955,1017,1080,1143] 0.2983 

GIRD 15 NEBT 2 11 1520.53 Ab [2,2,2,4,6] [1091,115,1217,1280,1343] 0.2786 

GIRD 16 NEBT 3 11 1520.53 Ab [2,2,2,4,6] [1291,1355,1417,1480,1543] 0.2614 

GIRD 17 NEBT 4 11 1520.53 Ab [2,2,2,4,6] [1491,1555,1617,1680,1743] 0.2462 

GIRD 18 NEBT 1 12.5 1963.50 Ab [2,2,2,4,6] [891,955,1017,1080,1143] 0.3852 

GIRD 19 NEBT 2 12.5 1963.50 Ab [2,2,2,4,6] [1091,115,1217,1280,1343] 0.3598 

GIRD 20 NEBT 3 12.5 1963.50 Ab [2,2,2,4,6] [1291,1355,1417,1480,1543] 0.3375 

GIRD 21 NEBT 4 12.5 1963.50 Ab [2,2,2,4,6] [1491,1555,1617,1680,1743] 0.3179 

*Values presented for the five layers of reinforcement [Layer 1, Layer 2, Layer 3, Layer 4, Layer 5], where Layer 5 

is the lowermost layer 

     Table 20 and Table 21 list the summary findings of the top 5 optimum AK configurations based 

on a concrete compressive strength of 45 MPa and 55 MPa. The top 5 optimum AK configurations 

were determined based on the CMS and are summarised in Table 17. Two error calculations were 

considered, the error as per Equation (66) and the AAE as per Equation (56), where, negative 

indicates underprediction and positive represents over predication.  

𝐸𝑟𝑟𝑜𝑟 =
∑ (

𝛽𝐴𝐾−𝑀𝐶𝑆(𝑖) − 𝛽𝑀𝐶𝑆

𝛽𝑀𝐶𝑆
)𝐴𝐾 𝐶𝑜𝑛𝑓𝑖𝑔.

𝑖=1

5
  

(66) 

     The error calculation identifies and distinguishes cases where over and under prediction occur. 

This identifies the geometric cases where the surrogate model is conservative in nature 



 

 

 

65 

(underpredict). The number of underpredicted cases increase from 5/21 cases to 8/21 as the 𝑓𝑐
′ 

was changed from 45 MPa to 55 MPa, respectively. The AAE identifies the consistency of the AK 

configuration based on the absolute differences in the results, which results in a larger error value. 

When both the error and AAE are equal, the results are all a form of overprediction, if the AAE is 

larger then the error, there are some cases where the 𝛽𝐴𝐾−𝑀𝐶𝑆 is less then the 𝛽𝑀𝐶𝑆, and there are 

no cases where the error can be larger then the AAE.  

     When utilizing the top 5 optimum AK configurations on the assorted geometric configurations, 

the number of added points ranged from 0 to 36, with the mean value of 13.3 and the mode value 

of 1 and initial points of 18. This range is small in comparison to the results from the Chapter 4 

analysis that had a range of initial points between 6 and 110, and the number of added points 

between 0 and 300, with the mean value of 31 and the mode value of 0. The reasoning for the 

mode of zero in the Chapter 4 analysis results is due to the use of the quadratic regression function, 

most times 0 added points were needed as the number of initial training points were very high 

(over 100), where as the Chapter 5 Chapter 5. results cover only linear and constant regression 

functions meaning the number of initial training points was lower and the number of added higher.  

     Each analysis took approximately 5-10 minutes to run, reducing the computational demand by 

97% compared to the crude MCS method. The computationally demanding portion of the AK-

MCS method is the training of the surrogate model, same is true for more complex LSF represented 

by complex and demanding resistance and load models. If an optimum configuration can be 

determined, the cost savings of a more complex system can be exponentially higher, as the total 

time the model would have taken with MCS is exponentially longer then the current simplified 

LSF being assessed in this works.  
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Table 20. Optimum AK-MCS configuration for alternate girder configurations at 45 MPa. 

GIRD 

ID 
ꞵ

𝑴𝑪𝑺
 

ꞵ
𝑨𝑲−𝑴𝑪𝑺

 Values for Optimum AK Config. Min 

Error 

Max 

Error 

Average 

Error 
AAE 

1 2 3 4 5 

02 4.2073 4.1318 4.2240 4.2240 4.2649 4.1449 -0.0180  0.0137 - 0.0220 0.0109 

03 4.1897 4.3145 4.2884 4.2059 4.1193 4.2059 -0.0168  0.0298   0.0089 0.0156 

04 4.4627 4.3439 4.2884 4.4172 4.4172 4.4172 -0.0390 -0.0102 - 0.0193 0.0193 

05 4.4790 4.4652 4.4652 4.7534 4.7534 4.2436 -0.0526 0.0613 0.0128 0.0363 

06 4.4920 4.5264 4.6114 4.7534 4.7534 4.3439 -0.0329 0.0582   0.0235 0.0367 

07 4.2276 4.1735 4.2436 4.3439 4.2884 4.2649 -0.0128 0.0275   0.0083 0.0135 

08 4.2609 4.3145 4.2059 4.2884 4.3776 4.5264 -0.0129 0.0623   0.0192 0.0243 

09 4.3197 4.3439 4.4172 4.3439 4.3776 4.2240 -0.0222 0.0226   0.0050 0.0139 

10 4.2092 4.2059 4.2059 4.1587 4.1735 4.3439 -0.0120 0.0320   0.0020 0.0108 

11 4.2079 4.2240 4.2884 4.4172 4.2059 4.1449 -0.0150 0.0497   0.0114 0.0176 

12 4.1699 4.1735 4.2240 4.1449 4.2436 4.1449 -0.0060 0.0177   0.0039 0.0087 

13 4.1658 4.1892 4.1193 4.2240 4.4172 4.2884 -0.0112 0.0604   0.0196 0.0241 

14 4.5184 4.4652 4.5264 4.4172 4.4652 4.4652 -0.0224 0.0018 - 0.0112 0.0119 

15 4.4766 4.7534 4.4172 4.7534 4.4172 4.5264 -0.0133 0.0618   0.0217 0.0323 

16 4.4434 4.3145 4.4652 4.4172 4.4652 4.3439 -0.0290 0.0049 - 0.0095 0.0134 

17 4.4255 4.3439 4.5264 4.4652 4.5264 4.4652 -0.0184 0.0228   0.0090 0.0164 

18 4.3248 4.3439 4.5264 4.3439 4.5264 4.3439 0.0044 0.0466   0.0213 0.0213 

19 4.2898 4.2884 4.4172 4.1075 4.4172 4.6114 -0.0425 0.0750   0.0183 0.0354 

20 4.2251 4.2649 4.2884 4.2436 4.3439 4.2240 -0.0003 0.0281   0.0113 0.0114 

21 4.2361 4.2649 4.1892 4.2436 4.2059 4.2240 -0.0111 0.0068 - 0.0025 0.0059 

 

Table 21. Optimum AK-MCS configuration for alternate girder configurations at 55 MPa. 

GIRD 

ID 
ꞵ

𝑴𝑪𝑺
 

ꞵ
𝑨𝑲−𝑴𝑪𝑺

 Values for Optimum AK Config. Min 

Error 

Max 

Error 

Average 

Error 
AAE 

1 Min Min 4 5 

02 4.1844 4.1735 4.1587 4.1318 4.1318 4.2436 - 0.0126 0.0141 - 0.0039 0.0096 

03 4.1788 4.3439 4.1587 4.1449 4.2059 4.2649 - 0.0081 0.0395   0.0107 0.0159 

04 4.4128 4.7534 4.3145 4.3439 4.4172 4.4652 - 0.0223 0.0772   0.0104 0.0256 

05 4.4230 4.4172 4.4652 4.3776 4.2884 4.4652 - 0.0304 0.0095 - 0.0046 0.0122 

06 4.4213 4.4172 4.6114 4.4172 4.4652 4.4652 - 0.0009 0.0430   0.0122 0.0129 

07 4.1960 4.2649 4.1193 4.1193 4.1587 4.2649 - 0.0183 0.0164 - 0.0025 0.0157 

08 4.2303 4.3145 4.2884 4.4652 4.2436 4.2884   0.0031 0.0555   0.0212 0.0212 

09 4.2622 4.4172 4.2884 4.1735 4.3145 4.3439 - 0.0208 0.0364   0.0106 0.0190 

10 4.1784 4.1587 4.1075 4.1892 4.2240 4.1587 - 0.0170 0.0109 - 0.0026 0.0080 

11 4.1685 4.2884 4.1587 4.2240 4.1318 4.1318 - 0.0088 0.0288   0.0044 0.0124 

12 4.1620 4.0291 4.1193 4.1193 4.2649 4.1735 - 0.0319 0.0247 - 0.0050 0.0160 

13 4.1947 4.1587 4.1193 4.1449 4.2240 4.0854 - 0.0261 0.0070 - 0.0115 0.0143 

14 4.4485 4.4652 4.4652 4.6114 4.6114 4.4652  0.0038 0.0366   0.0169 0.0169 

15 4.4299 4.3776 4.4652 4.4172 4.6114 4.5264 - 0.0118 0.0410   0.0112 0.0171 

16 4.3947 4.4652 4.7534 4.7534 4.3145 4.7534 - 0.0182 0.0816   0.0485 0.0558 

17 4.3810 4.6114 4.3776 4.3439 4.2884 4.3146 - 0.0211 0.0526   0.0014 0.0196 

18 4.2657 4.4172 4.4652 4.2649 4.4172 4.3145 - 0.0002 0.0468   0.0258 0.0259 

19 4.2415 4.2436 4.1449 4.2240 4.2649 4.2436 - 0.0228 0.0055 - 0.0041 0.0067 

20 4.2128 4.1735 4.2240 4.2059 4.1735 4.1735 - 0.0093 0.0027 - 0.0054 0.0065 

21 4.1705 4.2059 4.3439 4.2436 4.2240 4.2059   0.0085 0.0416   0.0178 0.0178 
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5.4 PIER ANALYSIS 

5.4.1 General 

The configuration of the pier that was selected to undergo five identical comprehensive AK 

configuration runs (5 x 108 AK configurations) was PIER ID 5 as detailed in Table 8 within 

Section 4.2. The top five AK configurations were then applied to assess the reliability of six 

additional pier configurations as detailed in the parametric analysis subsection.  

5.4.2 Input Parameters 

There are three types of input parameters, the geometric considerations, the statistical random 

variables, and the AK configurations. The geometric case that is considered is section PIER ID 5, 

as shown in Figure 14. The statistical parameters for the random variables and load case have been 

maintained from Chapter 4 and include five load and five resistance based random variables. 

Where the 𝑓𝑐
′ is 45 MPa, Φ𝑐 is 0.75, Φ𝑠 is 0.9 and the reinforcing bars are tied and not prestressed. 

The total number of AK configurations considered are 108, all six correlation functions 

(exponential, Gaussian, linear, spherical, cubic, and spline), only two regression functions were 

considered (constant and linear). Quadratic regression was not considered as the number of points 

required for training the initial Kriging predictor is large enough that no additional added points 

are required for training. A total of nine learning functions were considered including EFF, U, Hc, 

H, REIF, KO05(2), KO005(2), KO05(5), and KO005(5). 
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Figure 14. Geometry of PIER ID 5. 

5.4.3 Summary of Results  

The MCS with 5x107 trials was considered as the exact solution when comparing to the AK-MCS 

results. For PIER ID 5, the target 𝛽𝑀𝐶𝑆 and 𝑃𝑓were determined to be 4.5714 and 2.44x10-6, 

respectively. Table 22 details the summary of outputs based on five ranking criteria detailed in 

Section 5.2. The first two are 𝐼1 and 𝐼2 which are based on the RMSE and the AAE, respectively. 

The third is 𝐼3 which details the DoC and the fourth is 𝐼1 which defines the TTP. Lasty the optimum 

configuration satisfying all four methods of criterion simultaneously. Using the SAR research 

groups server the 108 AK configurations took about 24 hours each run averaging between 10-15 

minutes. The MCS analysis took six hours per analysis, meaning that the AK-MCS method 

provided a time savings between 95.8% and 97.2% of the total MCS analysis duration. 
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Table 22. Metric AK configuration ranking for piers. 

Ranking 

Method 
Rank 

Regression 

function 

Correlation 

function 

Learning 

function 
𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 

Best 𝐼1 

(RMSE) 

1 Constant Gaussian Hc 1.0000 1.0000 0.0000 1.0000 

2 Constant Gaussian KO05(2) 0.6614 0.6561 0.6131 0.7819 

3 Constant Spline KO005(2) 0.5538 0.5660 0.6131 0.7338 

4 Constant Gaussian Hc 0.5498 0.5387 0.3869 1.0000 

5 Constant Cubic Hc 0.5262 0.5163 0.7737 0.8124 

Best 𝐼2 

(AAE) 

1 Constant Gaussian Hc 1.0000 1.0000 0.0000 1.0000 

2 Constant Gaussian KO05(2) 0.6614 0.6561 0.6131 0.7819 

3 Linear Gaussian Hc 0.5255 0.6169 0.8982 0.6451 

4 Constant Spline KO005(2) 0.5538 0.5660 0.6131 0.7338 

5 Constant Gaussian Hc 0.5498 0.5387 0.3869 1.0000 

Best 𝐼3 

(DoC) 

1 Constant Gaussian H 0.1554 0.1815 1.0000 0.5281 

2 Linear Gaussian KO05(2) 0.5100 0.4997 1.0000 0.6076 

3 Linear Gaussian KO005(2) 0.2994 0.3054 1.0000 0.5444 

4 Linear Gaussian KO05(5) 0.2912 0.2943 1.0000 0.4829 

5 Linear Gaussian KO005(5) 0.3991 0.4147 1.0000 0.4646 

Best 𝐼4 

(TTP) 

1 Constant Gaussian H 0.5498 0.5387 0.3869 1.0000 

2 Constant Gaussian H 1.0000 1.0000 0.0000 1.0000 

3 Constant Spline H 0.2516 0.2332 0.3869 0.9765 

4 Constant Spline H 0.3294 0.3129 0.0000 0.9765 

5 Constant Cubic H 0.5262 0.5163 0.7737 0.8124 

Opt (AK-

MCS) 

1 Linear Gaussian Hc 0.5255 0.6169 0.8982 0.6451 

2 Linear Spline REIF 0.4655 0.5312 0.8982 0.7124 

3 Linear Linear KO05(2) 0.5117 0.5224 0.8982 0.6433 

4 Linear Exponential REIF 0.4606 0.4827 0.8982 0.6903 

5 Linear Spherical U 0.4393 0.4833 0.8982 0.6903 

 

     Table 22 shows a similar pattern to that of the girder findings, linear regression is optimal when 

considering all four parameters, the REIF learning function reoccurs the most frequently, however 

there is no clear optimal correlation function. It could be argued that the Gaussian correlation and 

the KO05(2) and H learning functions reoccur the most frequently, but this is not indicative of a 

preferred AK configuration.  

     The pier analysis had a larger number of random variables compared to the girders; this addition 

was simply the treatment of the area of the steel bars as a random variable in each layer of rebar. 

Comparing the resistance models of the girder and pier it is clear that both are computationally 
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demanding, however the girder took significantly longer to run then that of the pier. This could 

indicate that the pier resistance model is further optimized than the girder model. This significant 

difference in analysis run time is characterised by the two factors, the number of random variables 

and the complexity of the resistance model. 

5.4.4 Parametric Analysis of Multiple Column Design Configurations 

Six additional geometric configurations where considered, as shown in Table 23 including PIER 

ID 3, 4, 7, 8, 11, and 12. The additional configurations are the geometric complements of the initial 

six geometries considered in Chapter 4. This means that they share the same variation in height 

and bar size, however they have significantly higher reinforcement ratios around 3 and 4 % versus 

the 1 and 2% from Chapter 4. All geometric configurations where subjected to the analysis based 

on the five optimal AK configurations, including those from Chapter 4 but excluding PIER ID 5 

as it was the geometric case considered in the metric application and could skew the results.  

Table 23. Additional pier geometric cases considered. 

Section ID 
𝑯 

 (𝒎𝒎) 

𝝆  
(%) 

Bar Size 𝑨𝒔 (𝒎𝒎𝟐) 𝑨𝒔𝒊 (𝒎𝒎𝟐) 𝒅𝒊 (𝒎𝒎) 𝝆𝒂𝒄𝒕 (%) 

PIER 01 500 1 6-25M 3000 25M*[2,2,2] [50,250,450] 1.20 

PIER 02 500 2 10-25M 5000 25M*[4,2,4] [50,250,450] 2.00 

PIER 03 500 3 15-25M 8000 25M*[5,2,2,2,5] [50,150,250,350,450] 3.20 

PIER 04 500 4 20-25M 10000 25M*[7,2,2,2,7] [50,150,250,350,450] 4.00 

PIER 06 750 2 12-30M 8400 30M*[5,2,5] [50,375,700] 2.24 

PIER 07 750 3 18-30M 12600 30M*[6,2,2,2,6] [50,212.5,375,537.5,700] 3.36 

PIER 08 750 4 22-30M 15400 30M*[8,2,2,2,8] [50,212.5,375,537.5,700] 4.10 

PIER 09 1000 1 6-35M 6000 35M*[2,2,2] [50,500,950] 1.20 

PIER 10 1000 2 10-35M 10000 35M*[4,2,4] [50,500,950] 2.00 

PIER 11 1000 3 15-35M 16000 35M*[5,2,2,2,5] [50,275,500,725,950] 3.20 

PIER 12 1000 4 20-35M 20000 35M*[7,2,2,2,7] [50,275,500,725,950] 4.00 

 

     Table 24 summarizes the outputs for all geometries when the top five optimal AK 

configurations are applied, and the error associated with each. Two error calculations were 

considered, the error as per Equation (66) and the AAE as per Equation (56), where negative 
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indicates underprediction and positive is over prediction. The AAE identifies the consistency of 

the AK configuration based on the absolute differences in the results, which results in a larger error 

value.  

     When utilizing the top 5 optimum AK configurations on the assorted geometric configurations, 

the number of initial points was 19 or 23 and the number of added points ranged from 0 to 36, with 

a mean value of 8.25 and a mode value of 7. The difference in the number of initial points was 

caused by the number of rebar layers in the sections despite the fact that all used a linear regression 

function. This range is small in comparison to the results from the Chapter 4 analysis that had a 

range of initial points between 6 and 125, and the number of added points between 0 and 246, with 

a mean value of 13.19 and a mode value of 0. The reason of the zero mode is due to the use of the 

quadratic regression function as explained in Section 5.3.4. 

Table 24. Optimum AK-MCS configuration for alternate pier configurations.  

PIER 

ID 
𝜷𝑴𝑪𝑺 

𝜷𝑨𝑲−𝑴𝑪𝑺 Values for Optimum AK Configurations 
Error AAE 

1 2 3 4 5 

01 4.5658 4.4652 4.3776 4.5264 4.7564 4.4172 -0.0125 0.0292 

02 4.6667 4.6114 4.5264 4.7534 4.4652 4.4652 -0.0219 0.0294 

03 4.6922 4.7534 4.5264 4.7534 4.4652 4.7534 -0.0089 0.0246 

04 4.7150 4.4652 4.7534 4.6114 4.6114 4.5264 -0.0258 0.0290 

05* - - - - - - - - 

06 4.6351 4.7534 4.5264 4.7534 4.5264 4.6114 -0.0002 0.0206 

07 4.7045 4.7534 4.7534 4.4172 4.3776 4.7534 -0.0199 0.0323 

08 4.7358 4.6114 4.5264 4.5264 4.6114 4.6114 -0.0334 0.0334 

09 4.5758 4.5264 4.7534 4.7534 4.4172 4.7534  0.0142 0.0324 

10 4.6404 4.3145 4.6114 4.4652 4.6114 4.5264 -0.0290 0.0290 

11 4.7144 4.6114 4.6114 4.7534 4.5264 4.7534 -0.0134 0.0200 

12 4.7380 4.7534 4.7534 4.6114 4.5264 4.7534 -0.0123 0.0162 

* was considered in Section 4.4.3. 

5.5 CHAPTER SUMMARY 

The AK-MCS analysis of bridge girders and piers were optimized in this chapter by utilizing a 

newly introduced metric for AK-MCS analysis in literature called the CMS. CMS is used to train 
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the performance of the AK analysis (accuracy and efficiency) by considering four parameters 

including the RSME, AAE, DOC, and the TTP. Two sensitivity analyses were performed: the first 

was performed by determining the reliability index for a singular girder and pier geometric 

configurations but with a multiple number of AK configurations, while the second was performed 

by determining the reliability index of multiple girder and pier geometric configurations but with 

the top five AK configurations determined in the first sensitivity analysis.  

     Analyses results indicated the accuracy and efficiency of the determined top five AK 

configurations in assessing the reliability of the select girder and pier geometric cases. The 

sensitivity analysis showed promising results, indicating the benefit of using an optimum 

configuration through the decrease in error and decrease in the number of required training points.  

The determined AK configurations are recommended for the general analysis of similar girder and 

pier configurations.  
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CHAPTER 6 CONCLUSIONS AND RECOMMENDATIONS 

6.1 SUMMARY 

Bridge assist management requires developing tools to evaluate the performance of structures to 

allow direct comparison to priorities repairs and replacements. Reliability-based frameworks of 

analysis facilitate the evaluation and comparison of bridge systems and/or elements by quantifying 

the structural safety (i.e., determining the reliability index, 𝛽). The 𝛽 is a measurement of safety 

of a given structure based on the inherent randomness of the system. Sources of uncertainties 

include the natural variability of physical properties, operating conditions, and the lack of 

knowledge or mathematical representation.  

     There were numerous methods of analysis available to evaluate the LSF including approximate 

methods, simulation techniques, surrogate models, and surrogate model aided methods. A generic, 

efficient, and accurate framework of analysis was needed to assess and evaluate multiple types 

and configurations of bridges. The selection of the AK-MCS method in this research was due to 

its applicability in estimating the reliability for simple LSF and efficiency in simulating complex 

and nonlinear LSF, where other methods may not be as versatile. The objective of this research 

was to develop a functional framework and a computer code that evaluates the reliability of bridge 

components using AK-MCS as the method of analysis  

     The framework of AK-MCS was reviewed and coded in MATLAB. AK-MCS uses a Kriging 

predictor trained in a stage-wise manner, along with a learning function to further optimize the 

training of the surrogate model. This is completed through the conditional selection of additional 

training points. AK-MCS methodology is comprised of four main sections, the initial and updated 

DoE, Kriging, active learning, and reliability assessment. Within the initial DoE, the random 

variables are generated and evaluated by the LSF, where the DoE is comprised of the inputs and 
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outputs. The DoE is then fed into the Kriging section. Kriging used stochastic regression and 

correlation functions to generate a surrogate predictor. The predictor is used to evaluate the 

predefined number of trials and the mean and variance of the surrogate model. The learning 

function is used to evaluate the stopping criteria and the selection of the additional training point. 

The final stage is the reliability assessment where the probability of failure equal to the number of 

failed trials over the total number trials.  

     The developed AK-MCS framework was validated by analyzing select girder and pier 

configurations designed according to the Canadian Highway Bridge Design Code (CHBDC) and 

the Concrete handbook (CSA S6, 2019; CSA A23.3, 2014). The load model was developed based 

on the CHBDC and included a singular load combination, as define in Equation (28). 54 unique 

AK configurations were considered in the verification stage for nine girder geometries and 54 AK 

configurations were considered for the six pier configurations.  

     The AK-MCS was further optimized in this research by recommending AK configurations (set 

of correlation, regression, and learning functions) that reduce the reliability prediction error and 

the number of training points. This was accomplished by utilizing a newly developed metric 

system, the CMS, in literature used to rank the performance of AK-MCS analysis as a function of 

the AK configuration. CMS formulation is described in Equations (55) to (63). Top performing 

AK configurations were determined based on select girder and pier configurations and then utilized 

to perform a larger sensitivity analysis to evaluate the performance of the determined AK 

configurations for assessing multiple configurations of bridge girders (12 geometries) and piers (6 

geometries).  
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6.2 CONCLUSION 

The conclusion and framework recommendations are presented in three sections: Chapter 4 

verification results, Chapter 5 sensitivity and optimization results, and lastly general remarks.  

6.2.1 Verification of AK-MCS 

The accuracy and efficiency of the sensitivity analysis in Chapter 4, where the analysis results are 

discussed based on measuring the error of AK-MCS as compared with crude MCS. 

• AK-MCS was validated for the considered geometric cases of girders and piers.  

• The mean error of the AK-MCS of all 54 AK configurations is 0.0225 ± 0.0307 as compared 

to the crude MCS. 

• The results show that AK configuration 32, which has a linear regression function, a linear 

correlation function and U learning function was the optimum configuration with a RMSE 

of 1.98E-4.  

• The results suggest that AK-MCS is sensitive to the choice of the optimal AK configuration 

may be influenced by the complexity of the considered limit state and the number of 

considered random variables. 

• As the 𝜌 increase so does the 𝛽𝑀𝐶𝑆, both of which are directly related to the variability seen 

in the spread of the 𝛽𝐴𝐾−𝑀𝐶𝑆 around the 𝛽𝑀𝐶𝑆, as see in Figure 8.  

• The mean error of the AK configuration of the pier configurations with ρ of 1% (Pier 1, Pier 

5, and Pier 9) and 2% (Pier 2, Pier 6, and Pier 10) were 0.0792 ± 0.02636 and 0.0453 ± 

0.0258, respectively, where positive indicates overprediction and negative indicates 

underprediction.  

• The pier results suggest that AK-MCS for 𝜌 of 1% is more accurate than 2% based on the 

mean value of 𝛽 although the former is more dispersed than the latter. The mean error of the 
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AK configuration of the pier configurations with H of 500 mm (Pier 1 and Pier 2), H of 750 

mm (Pier 3 and Pier 4), H of 1000 mm (Pier 5 and Pier 6) are 0.0985 ± 0.0274 and 0.0686 

± 0.0263, 0.0196 ± 0.0284 respectively.  

• The results suggest that AK-MCS for 𝐻 of 750 mm (height-to-width ratio of 1.5) is most 

accurate based on the mean and the standard deviation. Also, it is observed that the mean 

value tends to shift from underprediction to overprediction as the section depth increases. 

• It was also observed that while the quadratic regression function worked well, the number 

of initial design points required was very high, resulting in high computational burden and 

in most times, resulting in the non use of the learning function. This was because the 

stopping criterion was met and there was no optimization of the surrogate model through 

the selection of added points. It could be argued that in the case of the quadratic regression 

function, Kriging suffices (no nee for active learning). 

• It was evident that the input data generated varies and this indicates that the fit of the analysis 

can vary as one data set might preform better then another. It was recommended this be 

investigated through running identical analyses multiple times to see the effects of this 

inherent bias. This was the focus of Chapter 5.  

• The computational limits defined based on computer processor and memory are still of 

concern when conducting a sensitivity analysis. It was determined in the cases of quadratic 

or constant regression functions, the number of required training points (sum of initial and 

added points) are large and unrealistic when considering more complex load and resistance 

models.  
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6.2.2 Optimization of AK-MCS 

The accuracy and efficiency of the sensitivity analysis in Chapter 5, where the analysis results are 

discussed based on measuring the error of AK-MCS as compared with crude MCS. This is for the 

sensitivity analysis and the application of the optimum configuration to additional geometries.  

• Accuracy: The error associated with the girder configurations with 𝑓𝑐
′ of 45 MPa and 55 

MPa were 0.0076 ± 0.0119 and 0.0076 ± 0.0142. The error associated with the pier 

configurations with 𝜌 of 1% (PIER ID 1 and 9), 𝜌 of 2% (PIER ID 2, 6, and 10), 𝜌 of 3% 

(PIER ID 3, 7, and 11), and 𝜌 of 4% (PIER ID 4, 8, and 12) were 0.0008 ± 0.0189, - 0.0236 

± 0.0150, - 0.0141 ± 0.0055 and - 0.0238 ± 0.0107. The error is low which indicates 

accurate representation of the results compared to the MCS.  

• Efficiency: The total number of initial training pints (𝑁𝑖𝑛𝑖𝑡𝑖𝑎𝑙) was 18 as all optimum 

configurations had a linear regression function and the lower and upper bound of the added 

training points (𝑁𝑎𝑑𝑑𝑒𝑑) were 1 and 38, respectively. This shows a significant decrease in 

the number of total required training points and could indicate significant computational 

savings if the load or resistance models in question are complex. The total number of initial 

training points for PIER ID 1, 2, 6, 9, and 10 were 19 and for PIER ID 2, 4, 7, 8, 11, and 

12 were 23, respectively. This is due to an increase in the number of bar layers which in 

turn increased the number of random variables. The lower and upper bounds of the added 

points are 4 and 16, respectively. The optimum configurations took approximately 10 

minutes to run, seeing a reduction in computational time by 97.9%, with respects to the 

duration of the MCS run time. 

• Regression Function: It is evident that the linear regression function relates the data more 

accurately when considering all four parameters in the CMS compared to constant function. 
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Table 22 shows that linear regression was optimal when considering all four parameters 

and constant was optimal when considering singular components (i.e., RMSE, AAE, TTP 

and DOC).  

• Correlation Function: There is no clear optimal correlation function indicated based on 

Chapter 5 results. The two functions that reoccur the most frequently are Gaussian and 

cubic as displayed in Table 17. However, when considering all four parameters 

simultaneously the most frequent reoccur function is the spherical correlation function.  

• Learning Function: The REIF learning function only occur when the four parameters are 

considered, however in general the function that reoccur the most frequently is the Hc 

learning function. There was no clear optimal learning function. It could be argued that the 

REIF and Hc learning functions reoccur the most frequently, but this was not indicative of 

a preferred AK configuration.  

• Length of Computational Time: 18 of the 108 AK configurations (37, 39, 40, 41, 55, 56, 

57, 58, 59, 73, 74, 75, 76, 77, 78, 79, and 80) took approximately 5-8 hours each to run, 

with more then 200 added points required. The 18 cases did not provide any time savings 

as the MCS with 5x107 trials took roughly 8 hours. The remaining AK configurations had 

a reduction in computational time of approximately 93.75%. Using the SAR research 

groups server, the 108 AK configurations took about 24 hours each run averaging between 

10-15 minutes, while the MCS only took six hours each. It is clear that the computational 

savings reduces the analysis run time by approximately 95.8%, as compared with crude 

MCS. 
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6.2.3 General Remarks 

The duration of time required to run an AK-MCS analysis, arguably the training of the surrogate 

model, will become more costly as the complexity of the original model of the LSF increases. The 

difference in analysis run time savings between a simplified model and a complex model will be 

amplified, relative to the number of training points. It was clear that the recommended regression 

function is linear, the distinction of the optimal correlation and learning functions were not as clear 

in the sensitivity analysis findings. Based on the CMS the correlation function, has little effect on 

the results outcome. The two most frequent learning functions were RIEF and Hc are recommended 

for girder and pier with configurations, and reinforcement ratios similar to what was presented in 

the scope of this work.  

6.3 RECOMMENDED FUTURE RESEARCH 

Theoretically, this framework of analysis is generic in nature and can be used with a variety or 

resistance and load models to train the surrogate model. Recommended future research includes 

the following: 

• To expand upon the AK-MCS framework application, it should be applied to reliability 

problems where the resistance model is solved using numerical simulation. This is 

important because such method will be most beneficial in cases where the computational 

cost of the resistance model is high. 

• To ensure the methodology functions for time-dependant reliability analysis, 

recommended future work includes a sensitivity analysis using a series of degradation 

models augmented within the resistance model. 

• Consider that an optimal AK configuration may not be possible and approach the problems 

with the mindset that different analysis types (i.e., components, analysis configuration, load 
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case etc.) will determine the AK configuration selection. A larger sensitivity analysis is 

required as current examples and applications are limited within literature. 

• Further studies are required to recommend a generalized AK-MCS analysis configurations 

for a wide range of bridge configurations and analysis types. The preliminary research 

findings indicate the efficiency of the proposed AK-MCS method for software programing 

applications. 

• There are many forms of analysis that couple the Kriging method with learning functions 

and reliability assessment tools. This include but are not limited to AK-MCS, AK-IS, and 

AK-FORM. Literature indicates that AK-IS could preform better then that of AK-MCS, 

since the probability of failure of the considered bridge pier and girder configurations is 

low. The comparison will determine if the accuracy of the AK-MCS can be further 

improved upon.  
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APPENDIX A: GIRDER SECTION IDEALIZATION 

As indicated in Section 4.5.1, four girder sections were considered and idealized as I-shaped 

girders with the objective of simplifying the resistance model to reduce computational demand. A 

summary of the simplified geometries is detailed in Table A.1 Table A.2 details the actual cross-

sectional area (𝐴𝑎𝑐𝑡𝑢𝑎𝑙), second moment of inertia (𝐼𝑎𝑐𝑡𝑢𝑎𝑙) and depth to neutral axis (𝑌𝑎𝑐𝑡𝑢𝑎𝑙), 

compared to the idealized sections area (𝐴𝑖𝑑𝑒𝑎𝑙), moment of inertia (𝐼𝑖𝑑𝑒𝑎𝑙) and depth to neutral 

axis (𝑌𝑖𝑑𝑒𝑎𝑙) and the error of the idealization. 

 

Figure A.1 Girder cross-sectional geometry in mm: (a) standard NEBT 1600 girder, and (b) 

idealized NEBT 1600 girder. 

Table A.1 Idealized girder cross-sectional dimensions considered in the analysis.  

NEBT 

ID 

𝑯 
(𝒎𝒎) 

𝑯𝟏 
(𝒎𝒎) 

𝑯𝟐 
(𝒎𝒎) 

𝑯𝟑 
(𝒎𝒎) 

𝑩𝟏 
(𝒎𝒎) 

𝑩𝟐 
(𝒎𝒎) 

𝑩𝟑 
(𝒎𝒎) 

𝑨𝒄  
(𝒎𝒎𝟐) 

NEBT 1 1200 130 270 805 1200 810 180 518,700 

NEBT 2 1400 130 270 1005 1200 810 180 554,700 

NEBT 3 1600 130 270 1205 1200 810 180 589,000 

NEBT 4 1800 130 270 1405 1200 810 180 626,700 
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     The idealization was achieved by maintaining the overall section height (𝐻), and width (𝐵) and 

ensuring the second moment of inertia (𝐼), the gross cross-sectional area (𝐴𝑔) and the geometric 

centroid (𝑌̅), are approximately the same, Equations (72) to (74) were used respectively.  

𝐴𝑔 (𝑚𝑚2) =  ∑ 𝐻𝑖𝐵𝑖

𝑛

𝑖=1

 (72) 

𝐼𝑥(𝑚𝑚4) =
𝐵𝐻3

12
+ 𝐴𝑑2 

(73) 

𝑌𝑐𝑒𝑛𝑡𝑟𝑖𝑜𝑑(𝑚𝑚) =  
∑ 𝐻𝑖𝐵𝑖𝑌̅

∑ 𝐻𝑖𝐵𝑖
 

(74) 

Table A.2 Idealized girder cross-sectional parameters: idealized and original. 

NEBT ID 
𝑨𝒂𝒄𝒕𝒖𝒂𝒍 𝑨𝒊𝒅𝒆𝒂𝒍 𝑬𝑨 𝑰𝒂𝒄𝒕𝒖𝒂𝒍 𝑰𝒊𝒅𝒆𝒂𝒍 𝑬𝑰 𝒀𝒂𝒄𝒕𝒖𝒂𝒍 𝒀𝒊𝒅𝒆𝒂𝒍 𝑬𝒀 

(𝒙𝟏𝟎𝟑𝒎𝒎𝟐) (%) (𝒙𝟏𝟎𝟖𝒎𝒎𝟒) (%) (𝒎𝒎) (%) 

NEBT 1 517 509.7 1.41 99.1 114.0 -6.19 574.8 496.4 13.64 

NEBT 2 553 545.7 1.32 146.5 152.0 -9.36 667.3 617.4 7.48 

NEBT 3 589 581.7 1.24 204.8 199.0 -8.70 760.9 750.7 1.34 

NEBT 4 625 617.7 1.17 274.9 256.0 -8.32 855.1 896.5 -4.84 
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APPENDIX B: AK CONFIGURATIONS  

Table B.1 AK configuration master list for girder analysis in Chapter 4. 

AK Config. ID Regression Function Correlation Function Learning Function 

1 Constant  Gaussian EFF 

2 Constant  Gaussian U 

3 Constant  Gaussian H 

4 Linear Gaussian EFF 

5 Linear Gaussian U 

6 Linear Gaussian H 

7 Quadratic  Gaussian EFF 

8 Quadratic  Gaussian U 

9 Quadratic  Gaussian H 

10 Constant  Cubic EFF 

11 Constant  Cubic U 

12 Constant  Cubic H 

13 Linear Cubic EFF 

14 Linear Cubic U 

15 Linear Cubic H 

16 Quadratic  Cubic EFF 

17 Quadratic  Cubic U 

18 Quadratic  Cubic H 

19 Constant  Exponential EFF 

20 Constant  Exponential U 

21 Constant  Exponential H 

22 Linear Exponential EFF 

23 Linear Exponential U 

24 Linear Exponential H 

25 Quadratic  Exponential EFF 

26 Quadratic  Exponential U 

27 Quadratic  Exponential H 

28 Constant  Linear EFF 

29 Constant  Linear U 

30 Constant  Linear H 

31 Linear Linear EFF 

32 Linear Linear U 

33 Linear Linear H 

34 Quadratic  Linear EFF 

35 Quadratic  Linear U 

36 Quadratic  Linear H 

37 Constant  Spherical EFF 

38 Constant  Spherical U 

39 Constant  Spherical H 

40 Linear Spherical EFF 

41 Linear Spherical U 

42 Linear Spherical H 

43 Quadratic  Spherical EFF 

44 Quadratic  Spherical U 

45 Quadratic  Spherical H 

46 Constant  Spline EFF 

47 Constant  Spline U 

48 Constant  Spline H 
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AK Config. ID Regression Function Correlation Function Learning Function 

49 Linear Spline EFF 

50 Linear Spline U 

51 Linear Spline H 

52 Quadratic  Spline EFF 

53 Quadratic  Spline U 

54 Quadratic  Spline H 

 

Table B.2 AK configuration master list for pier analysis in Chapter 4. 

AK Config. ID Regression Function Correlation Function Learning Function 

1 Constant  Gaussian EFF 

2 Constant  Gaussian U 

3 Constant  Gaussian REIF 

4 Linear Gaussian EFF 

5 Linear Gaussian U 

6 Linear Gaussian REIF 

7 Quadratic  Gaussian EFF 

8 Quadratic  Gaussian U 

9 Quadratic  Gaussian REIF 

10 Constant  Cubic EFF 

11 Constant  Cubic U 

12 Constant  Cubic REIF 

13 Linear Cubic EFF 

14 Linear Cubic U 

15 Linear Cubic REIF 

16 Quadratic  Cubic EFF 

17 Quadratic  Cubic U 

18 Quadratic  Cubic REIF 

19 Constant  Exponential EFF 

20 Constant  Exponential U 

21 Constant  Exponential REIF 

22 Linear Exponential EFF 

23 Linear Exponential U 

24 Linear Exponential REIF 

25 Quadratic  Exponential EFF 

26 Quadratic  Exponential U 

27 Quadratic  Exponential REIF 

28 Constant  Linear EFF 

29 Constant  Linear U 

30 Constant  Linear REIF 

31 Linear Linear EFF 

32 Linear Linear U 

33 Linear Linear REIF 

34 Quadratic  Linear EFF 

35 Quadratic  Linear U 

36 Quadratic  Linear REIF 

37 Constant  Spherical EFF 
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AK Config. ID Regression Function Correlation Function Learning Function 

38 Constant  Spherical U 

39 Constant  Spherical REIF 

40 Linear Spherical EFF 

41 Linear Spherical U 

42 Linear Spherical REIF 

43 Quadratic  Spherical EFF 

44 Quadratic  Spherical U 

45 Quadratic  Spherical REIF 

46 Constant  Spline EFF 

47 Constant  Spline U 

48 Constant  Spline REIF 

49 Linear Spline EFF 

50 Linear Spline U 

51 Linear Spline REIF 

52 Quadratic  Spline EFF 

53 Quadratic  Spline U 

54 Quadratic  Spline REIF 

 

Table B.3 AK configuration master list for both girder and pier analyses in Chapter 5. 

AK Config. ID Regression Function Correlation Function Learning Function 

1 Constant  Gaussian KO05(2) 

2 Constant  Gaussian KO005(2) 

3 Constant  Gaussian KO05(5) 

4 Constant  Gaussian KO005(5) 

5 Constant  Gaussian EFF 

6 Constant  Gaussian U 

7 Constant  Gaussian H 

8 Constant  Gaussian Hc 

9 Constant  Gaussian REIF 

10 Linear Gaussian KO05(2) 

11 Linear Gaussian KO005(2) 

12 Linear Gaussian KO05(5) 

13 Linear Gaussian KO005(5) 

14 Linear Gaussian EFF 

15 Linear Gaussian U 

16 Linear Gaussian H 

17 Linear Gaussian Hc 

18 Linear Gaussian REIF 

19 Constant  Cubic KO05(2) 

20 Constant  Cubic KO005(2) 

21 Constant  Cubic KO05(5) 

22 Constant  Cubic KO005(5) 

23 Constant  Cubic EFF 

24 Constant  Cubic U 

25 Constant  Cubic H 
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AK Config. ID Regression Function Correlation Function Learning Function 

26 Constant  Cubic Hc 

27 Constant  Cubic REIF 

28 Linear Cubic KO05(2) 

29 Linear Cubic KO005(2) 

30 Linear Cubic KO05(5) 

31 Linear Cubic KO005(5) 

32 Linear Cubic EFF 

33 Linear Cubic U 

34 Linear Cubic H 

35 Linear Cubic Hc 

36 Linear Cubic REIF 

37 Constant  Exponential KO05(2) 

38 Constant  Exponential KO005(2) 

39 Constant  Exponential KO05(5) 

40 Constant  Exponential KO005(5) 

41 Constant  Exponential EFF 

42 Constant  Exponential U 

43 Constant  Exponential H 

44 Constant  Exponential Hc 

45 Constant  Exponential REIF 

46 Linear Exponential KO05(2) 

47 Linear Exponential KO005(2) 

48 Linear Exponential KO05(5) 

49 Linear Exponential KO005(5) 

50 Linear Exponential EFF 

51 Linear Exponential U 

52 Linear Exponential H 

53 Linear Exponential Hc 

54 Linear Exponential REIF 

55 Constant  Linear KO05(2) 

56 Constant  Linear KO005(2) 

57 Constant  Linear KO05(5) 

58 Constant  Linear KO005(5) 

59 Constant  Linear EFF 

60 Constant  Linear U 

61 Constant  Linear H 

62 Constant  Linear Hc 

63 Constant  Linear REIF 

64 Linear Linear KO05(2) 

65 Linear Linear KO005(2) 

66 Linear Linear KO05(5) 

67 Linear Linear KO005(5) 

68 Linear Linear EFF 

69 Linear Linear U 

70 Linear Linear H 

71 Linear Linear Hc 

72 Linear Linear REIF 

73 Constant  Spherical KO05(2) 
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AK Config. ID Regression Function Correlation Function Learning Function 

74 Constant  Spherical KO005(2) 

75 Constant  Spherical KO05(5) 

76 Constant  Spherical KO005(5) 

77 Constant  Spherical EFF 

78 Constant  Spherical U 

79 Constant  Spherical H 

80 Constant  Spherical Hc 

81 Constant  Spherical REIF 

82 Linear Spherical KO05(2) 

83 Linear Spherical KO005(2) 

84 Linear Spherical KO05(5) 

85 Linear Spherical KO005(5) 

86 Linear Spherical EFF 

87 Linear Spherical U 

88 Linear Spherical H 

89 Linear Spherical Hc 

90 Linear Spherical REIF 

91 Constant  Spline KO05(2) 

92 Constant  Spline KO005(2) 

93 Constant  Spline KO05(5) 

94 Constant  Spline KO005(5) 

95 Constant  Spline EFF 

96 Constant  Spline U 

97 Constant  Spline H 

98 Constant  Spline Hc 

99 Constant  Spline REIF 

100 Linear Spline KO05(2) 

101 Linear Spline KO005(2) 

102 Linear Spline KO05(5) 

103 Linear Spline KO005(5) 

104 Linear Spline EFF 

105 Linear Spline U 

106 Linear Spline H 

107 Linear Spline Hc 

108 Linear Spline REIF 
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APPENDIX C: RELIABILITY INDEXES CHAPTER 4 

Table C.1 Comparison of reliability indexes for MCS versus AK-MCS for all girders – Analysis 

results ranked based on accuracy. 

Analysis 

Type 

AK 

ID 

Average 

Error 

GIRD ID 

1 2 3 4 5 6 7 8 9 

Crude 

MCS 
- - 4.1700 4.2073 4.1897 4.4627 4.4790 4.4920 4.2276 4.2609 4.3197 

AK-MCS 32 4.01E-04 4.1318 4.1449 4.2059 4.5264 4.5264 4.4652 4.1892 4.2649 4.3439 

AK-MCS 54 4.15E-04 4.1735 4.1193 4.2436 4.4652 4.4652 4.5264 4.2436 4.3145 4.2436 

AK-MCS 53 4.24E-04 4.1449 4.1449 4.1892 4.3776 4.5264 4.5264 4.1892 4.3776 4.3439 

AK-MCS 36 4.36E-04 4.1587 4.2649 4.2436 4.5264 4.4172 4.4172 4.1449 4.3439 4.2884 

AK-MCS 46 4.42E-04 4.2649 4.2059 4.1587 4.3776 4.3776 4.4652 4.1735 4.3439 4.3145 

AK-MCS 42 4.61E-04 4.2240 4.3439 4.2240 4.5264 4.5264 4.5264 4.2649 4.2436 4.3439 

AK-MCS 18 4.69E-04 4.0962 4.2436 4.3145 4.3439 4.4652 4.5264 4.2059 4.3145 4.3439 

AK-MCS 45 4.84E-04 4.1587 4.2059 4.1892 4.6114 4.4172 4.4172 4.2059 4.2240 4.3145 

AK-MCS 24 5.08E-04 4.1735 4.2240 4.1587 4.4652 4.4652 4.3439 4.1449 4.2240 4.3145 

AK-MCS 43 5.82E-04 4.1193 4.1735 4.2059 4.4652 4.6114 4.4172 4.3439 4.2649 4.3439 

AK-MCS 49 6.19E-04 4.2059 4.0652 4.2649 4.4172 4.4652 4.3776 4.1892 4.3776 4.3145 

AK-MCS 16 6.36E-04 4.1892 4.1587 4.2240 4.4652 4.3439 4.4652 4.2240 4.4652 4.4172 

AK-MCS 44 6.42E-04 4.2884 4.1449 4.2240 4.5264 4.5264 4.5264 4.2649 4.2059 4.4652 

AK-MCS 4 6.48E-04 4.0854 4.1892 4.2240 4.2649 4.5264 4.5264 4.1587 4.3145 4.4172 

AK-MCS 17 6.66E-04 4.2059 4.2436 4.2649 4.6114 4.6114 4.4652 4.1587 4.2240 4.3776 

AK-MCS 33 6.78E-04 4.0962 4.2884 4.1892 4.3776 4.6114 4.5264 4.3439 4.2059 4.3776 

AK-MCS 6 6.91E-04 4.2059 4.2059 4.3776 4.3439 4.4652 4.4652 4.1587 4.2059 4.3439 

AK-MCS 27 6.93E-04 4.1892 4.2436 4.2436 4.3776 4.4172 4.3145 4.1318 4.3776 4.4172 

AK-MCS 22 7.11E-04 4.2436 4.2649 4.1449 4.7534 4.4652 4.4652 4.2240 4.3145 4.3145 

AK-MCS 26 7.31E-04 4.1075 4.2240 4.1587 4.4652 4.7534 4.6114 4.2436 4.3145 4.3145 

AK-MCS 35 7.43E-04 4.1892 4.2649 4.2649 4.4652 4.4172 4.7534 4.3145 4.3145 4.3776 

AK-MCS 40 7.50E-04 4.2240 4.2059 4.1892 4.7534 4.4172 4.3776 4.2059 4.3776 4.2436 

AK-MCS 7 7.54E-04 4.2436 4.2436 4.3145 4.3776 4.7534 4.4652 4.2884 4.2884 4.2649 

AK-MCS 34 7.63E-04 4.1193 4.1735 4.2649 4.6114 4.6114 4.6114 4.4652 4.2649 4.3776 

AK-MCS 23 8.04E-04 4.1587 4.2059 4.2884 4.6114 4.7534 4.6114 4.2059 4.3145 4.3145 

AK-MCS 25 8.30E-04 4.2059 4.0962 4.1735 4.7534 4.6114 4.7534 4.3439 4.2884 4.5264 

AK-MCS 5 7.55E-03 4.2240 4.2649 4.1587 4.7534 4.5264 4.7534 4.6114 4.3776 4.3145 

AK-MCS 12 7.57E-03 >4.753 4.2059 4.1318 4.7534 4.3439 4.4172 4.3776 4.1892 4.3145 

AK-MCS 13 7.73E-03 4.1193 4.2240 4.2884 4.4652 4.6114 4.4652 4.3145 4.3776 >4.753 

AK-MCS 9 7.73E-03 4.2884 4.2240 4.2884 4.3145 4.4652 4.5264 4.1587 4.1735 >4.753 

AK-MCS 14 7.74E-03 4.2436 4.0751 4.2059 4.4652 4.7534 4.6114 4.2649 4.6114 >4.753 

AK-MCS 50 7.85E-03 4.1735 4.1193 4.1892 >4.753 4.6114 4.7534 4.3776 4.3439 4.2436 

AK-MCS 52 7.86E-03 4.1587 4.1587 4.2240 4.4652 >4.753 4.6114 4.1892 4.2884 4.2884 

AK-MCS 37 1.03E-02 4.2059 4.2059 4.1735 4.5264 >4.753 4.6114 4.2884 4.2649 4.2884 

AK-MCS 31 1.08E-02 4.1449 4.2240 4.3776 4.6114 >4.753 4.4652 4.4172 4.4172 4.2649 

AK-MCS 51 1.09E-02 4.1587 4.1449 4.1587 4.5264 4.4172 >4.753 4.2884 4.3145 4.3145 

AK-MCS 1 1.10E-02 4.1587 4.1735 4.0962 4.4172 4.4172 >4.753 4.2059 4.2649 4.3439 

AK-MCS 15 1.10E-02 4.2649 4.1892 4.2240 4.3145 4.6114 >4.753 4.0962 4.2649 4.3776 

AK-MCS 41 1.33E-02 4.1449 4.2240 4.3145 4.4172 4.6114 >4.753 4.6114 4.3439 4.2649 

AK-MCS 28 1.33E-02 4.2240 >4.753 4.2884 4.4172 4.6114 4.7534 4.2884 >4.753 4.1892 

AK-MCS 8 1.35E-02 4.2436 4.2240 4.2649 4.3145 4.6114 4.3439 4.2059 >4.753 >4.753 

AK-MCS 30 1.53E-02 4.1735 4.1735 4.2436 4.3776 >4.753 4.4172 4.3776 4.2649 >4.753 

AK-MCS 19 1.70E-02 4.1587 4.1075 >4.753 4.4172 4.5264 >4.753 4.2240 4.2240 4.4172 
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Analysis 

Type 

AK 

ID 

Average 

Error 

GIRD ID 

1 2 3 4 5 6 7 8 9 

Crude 

MCS 
- - 4.1700 4.2073 4.1897 4.4627 4.4790 4.4920 4.2276 4.2609 4.3197 

AK-MCS 10 1.86E-02 4.2240 4.0652 >4.753 4.3439 4.3776 >4.753 4.1587 4.4172 4.2436 

AK-MCS 39 1.86E-02 4.2059 4.4172 4.4652 4.6114 >4.753 >4.753 4.3145 4.4652 4.4652 

AK-MCS 21 1.86E-02 >4.753 4.1892 4.4172 4.4652 4.6114 >4.753 >4.753 4.2436 4.2884 

AK-MCS 48 1.86E-02 4.2240 4.2059 4.2240 4.4652 >4.753 >4.753 >4.753 4.2059 4.3776 

AK-MCS 3 1.86E-02 >4.753 4.2436 4.2059 >4.753 4.3776 >4.753 >4.753 4.2649 4.3439 

AK-MCS 11 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 4.4172 4.6114 

AK-MCS 2 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 20 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 29 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 38 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 47 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

Table C.2 Comparison of reliability indexes for MCS versus AK-MCS for piers – Analysis 

results ranked based on accuracy. 

Analysis 

Type 

AK 

ID 

Average 

Error  

PIER ID 

1 2 5 6 9 10 

Crude 

MCS 
-  4.5658 4.6667 4.5714 4.6351 4.5758 4.6404 

AK-MCS 36 4.01E-04 4.5264 4.6114 4.6114 4.5264 4.7534 4.5264 

AK-MCS 9 4.15E-04 4.4652 4.4652 4.6114 4.6114 4.4652 4.6114 

AK-MCS 22 4.24E-04 4.6114 4.4652 4.6114 4.6114 4.4652 4.7534 

AK-MCS 54 4.36E-04 4.6114 4.6114 4.4652 4.4652 4.4652 4.5264 

AK-MCS 43 4.42E-04 4.5264 4.6114 4.6114 4.4652 4.3776 4.6114 

AK-MCS 32 4.61E-04 4.4652 4.6114 4.6114 4.5264 4.5264 4.4172 

AK-MCS 44 4.69E-04 4.5264 4.7534 4.4172 4.5264 4.4172 4.5264 

AK-MCS 13 4.84E-04 4.4652 4.6114 4.5264 4.4652 4.7534 4.7534 

AK-MCS 34 5.08E-04 4.5264 4.4172 4.5264 4.6114 4.5264 4.4652 

AK-MCS 42 5.82E-04 4.4652 4.4172 4.6114 4.4652 4.4652 4.5264 

AK-MCS 35 6.19E-04 4.7534 4.6114 4.3776 4.4652 4.6114 4.4652 

AK-MCS 26 6.36E-04 4.7534 4.4172 4.3776 4.6114 4.4652 4.6114 

AK-MCS 8 6.42E-04 4.4652 4.4172 4.5264 4.4652 4.5264 4.4172 

AK-MCS 18 6.48E-04 4.6114 4.4172 4.7534 4.6114 4.7534 4.4652 

AK-MCS 41 6.66E-04 4.6114 4.5264 4.7534 4.4652 4.4652 4.3776 

AK-MCS 27 6.78E-04 4.5264 4.4172 4.5264 4.4172 4.7534 4.4652 

AK-MCS 25 6.91E-04 4.3776 4.7534 4.2884 4.7534 4.5264 4.4652 

AK-MCS 16 6.93E-04 4.6114 4.3439 4.4172 4.6114 4.5264 4.4172 

AK-MCS 5 7.11E-04 4.7534 4.4652 4.4652 4.4652 4.6114 4.3776 

AK-MCS 4 7.31E-04 4.6114 4.4172 4.5264 4.5264 4.6114 4.2884 

AK-MCS 23 7.43E-04 4.4172 4.6114 4.5264 4.4172 4.4172 4.3145 

AK-MCS 33 7.50E-04 4.7534 4.6114 4.6114 4.3145 4.4652 4.4172 

AK-MCS 51 7.54E-04 4.7534 4.5264 4.4172 4.3439 4.7534 4.5264 

AK-MCS 45 7.63E-04 4.4652 4.4172 4.7534 4.7534 4.7534 4.3776 

AK-MCS 53 8.04E-04 4.3776 4.4652 4.7534 4.4172 4.4652 4.3776 

AK-MCS 24 8.30E-04 4.6114 4.4652 4.7534 4.7534 4.4652 4.2436 

AK-MCS 17 7.55E-03 4.4652 4.3776 4.6114 4.6114 4.4652 >4.753 

AK-MCS 50 7.57E-03 4.7534 4.3439 4.7534 4.5264 4.3776 >4.753 

AK-MCS 40 7.73E-03 4.5264 4.6114 4.6114 >4.753 4.4652 4.5264 
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Analysis 

Type 

AK 

ID 

Average 

Error  

PIER ID 

1 2 5 6 9 10 

Crude 

MCS 
-  4.5658 4.6667 4.5714 4.6351 4.5758 4.6404 

AK-MCS 15 7.73E-03 4.6114 4.6114 >4.753 4.6114 4.5264 4.5264 

AK-MCS 14 7.74E-03 4.5264 4.4652 4.4652 >4.753 4.4172 4.4652 

AK-MCS 7 7.85E-03 >4.753 4.7534 4.4172 4.5264 4.3439 4.4172 

AK-MCS 49 7.86E-03 >4.753 4.4652 4.3776 4.7534 4.3439 4.5264 

AK-MCS 6 1.03E-02 4.5264 >4.753 4.6114 4.7534 >4.753 4.7534 

AK-MCS 52 1.08E-02 4.3776 4.3439 >4.753 4.7534 4.6114 >4.753 

AK-MCS 10 1.09E-02 4.6114 4.5264 >4.753 >4.753 4.7534 4.4172 

AK-MCS 46 1.10E-02 >4.753 4.5264 4.5264 >4.753 4.4172 4.4652 

AK-MCS 37 1.10E-02 >4.753 4.4172 >4.753 4.5264 4.5264 4.3439 

AK-MCS 19 1.33E-02 >4.753 >4.753 >4.753 4.3776 4.5264 4.6114 

AK-MCS 31 1.33E-02 >4.753 >4.753 >4.753 4.3776 4.7534 4.4172 

AK-MCS 1 1.35E-02 >4.753 4.3145 >4.753 >4.753 4.3439 4.6114 

AK-MCS 28 1.53E-02 >4.753 >4.753 4.6114 >4.753 4.4172 >4.753 

AK-MCS 47 1.70E-02 >4.753 4.3145 >4.753 >4.753 >4.753 >4.753 

AK-MCS 2 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 3 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 11 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 12 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 20 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 21 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 29 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 30 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 38 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 39 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 

AK-MCS 48 1.86E-02 >4.753 >4.753 >4.753 >4.753 >4.753 >4.753 
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APPENDIX D: RELIABILITY INDEXES CHAPTER 5 

Table D.1 Optimum AK-MCS configuration for alternate girder configurations at 45 MPa. 

GIRD ID 𝜷𝑴𝑪𝑺 
𝜷𝑨𝑲−𝑴𝑪𝑺 Values for Optimum AK-MCS Config. Average 

Error 
AAE 

1 2 3 4 5 

01 - - - - - - - - 

02 4.2073 4.1318 4.224 4.224 4.2649 4.1449 -0.0022 0.01088 

03 4.1897 4.3145 4.2884 4.2059 4.1193 4.2059 0.0089 0.01558 

04 4.4627 4.3439 4.2884 4.4172 4.4172 4.4172 -0.0193 0.01925 

05 4.4790 4.4652 4.4652 4.7534 4.7534 4.2436 0.0128 0.03625 

06 4.4920 4.5264 4.6114 4.7534 4.7534 4.3439 0.0235 0.03672 

07 4.2276 4.1735 4.2436 4.3439 4.2884 4.2649 0.0083 0.01346 

08 4.2609 4.3145 4.2059 4.2884 4.3776 4.5264 0.0192 0.02433 

09 4.3197 4.3439 4.4172 4.3439 4.3776 4.224 0.0050 0.01387 

10 4.2092 4.2059 4.2059 4.1587 4.1735 4.3439 0.0020 0.01081 

11 4.2079 4.224 4.2884 4.4172 4.2059 4.1449 0.0114 0.01763 

12 4.1699 4.1735 4.224 4.1449 4.2436 4.1449 0.0039 0.0087 

13 4.1658 4.1892 4.1193 4.224 4.4172 4.2884 0.0196 0.02411 

14 4.5184 4.4652 4.5264 4.4172 4.4652 4.4652 -0.0112 0.0119 

15 4.4766 4.7534 4.4172 4.7534 4.4172 4.5264 0.0217 0.03227 

16 4.4434 4.3145 4.4652 4.4172 4.4652 4.3439 -0.0095 0.01342 

17 4.4255 4.3439 4.5264 4.4652 4.5264 4.4652 0.0090 0.0164 

18 4.3248 4.3439 4.5264 4.3439 4.5264 4.3439 0.0213 0.0213 

19 4.2898 4.2884 4.4172 4.1075 4.4172 4.6114 0.0183 0.03544 

20 4.2251 4.2649 4.2884 4.2436 4.3439 4.224 0.0113 0.01143 

21 4.2361 4.2649 4.1892 4.2436 4.2059 4.224 -0.0025 0.00593 

 

Table D.2 Optimum AK-MCS configuration for alternate girder configurations at 55 MPa. 

GIRD ID 𝜷𝑴𝑪𝑺 
𝜷𝑨𝑲−𝑴𝑪𝑺 Values for Optimum AK-MCS Config. Average 

Error 
AAE 

1 2 3 4 5 

01 - - - - - - - - 

02 4.1844 4.1735 4.1587 4.1318 4.1318 4.2436 -0.0039 0.0096 

03 4.1788 4.3439 4.1587 4.1449 4.2059 4.2649 0.0107 0.0159 

04 4.4128 4.7534 4.3145 4.3439 4.4172 4.4652 0.0104 0.0256 

05 4.4230 4.4172 4.4652 4.3776 4.2884 4.4652 -0.0046 0.0122 

06 4.4213 4.4172 4.6114 4.4172 4.4652 4.4652 0.0122 0.0129 

07 4.1960 4.2649 4.1193 4.1193 4.1587 4.2649 -0.0025 0.0157 

08 4.2303 4.3145 4.2884 4.4652 4.2436 4.2884 0.0212 0.0212 

09 4.2622 4.4172 4.2884 4.1735 4.3145 4.3439 0.0106 0.0190 

10 4.1784 4.1587 4.1075 4.1892 4.224 4.1587 -0.0026 0.0080 

11 4.1685 4.2884 4.1587 4.2240 4.1318 4.1318 0.0044 0.0124 

12 4.1620 4.0291 4.1193 4.1193 4.2649 4.1735 -0.0050 0.0160 

13 4.1947 4.1587 4.1193 4.1449 4.2240 4.0854 -0.0115 0.0143 

14 4.4485 4.4652 4.4652 4.6114 4.6114 4.4652 0.0169 0.0169 
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GIRD ID 𝜷𝑴𝑪𝑺 
𝜷𝑨𝑲−𝑴𝑪𝑺 Values for Optimum AK-MCS Config. Average 

Error 
AAE 

1 2 3 4 5 

15 4.4299 4.3776 4.4652 4.4172 4.6114 4.5264 0.0112 0.0171 

16 4.3947 4.4652 4.7534 4.7534 4.3145 4.7534 0.0485 0.0558 

17 4.3810 4.6114 4.3776 4.3439 4.2884 4.3146 0.0014 0.0196 

18 4.2657 4.4172 4.4652 4.2649 4.4172 4.3145 0.0258 0.0259 

19 4.2415 4.2436 4.1449 4.224 4.2649 4.2436 -0.0041 0.0067 

20 4.2128 4.1735 4.224 4.2059 4.1735 4.1735 -0.0054 0.0065 

21 4.1705 4.2059 4.3439 4.2436 4.2240 4.2059 0.0178 0.0178 

 


