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Abstract

Real estate administrative documents present a unique challenge where each condo

corporation’s documents come from multiple sources and in varying formats. More-

over, each record has varying sizes, making it very time-consuming to read and rec-

ognize these documents systematically. A condo buyer must understand these docu-

ments before proceeding with the purchase. Our industry partner is a company that

gathers and summarizes the condo corporation’s documents and highlights essential

information that the buyer should consider. In this process, the most laborious task is

categorizing these segmented documents where the number of categories is unknown

and changes based on the domain expert’s knowledge. It is only possible to create an

automatic classification system for such challenging data without the involvement of

domain experts. So we propose a user-centric, scalable, and reliable multi-page docu-

ment classification solution for our industry partner using a Human-in-a-loop (HITL)

framework. It is a web application with an interactive annotation system for the user

to provide feedback at the page and document level to train a two-step classification

system. The classification pipeline is a modular system that incrementally learns from

the domain expert’s page and document-level annotation independently. We evalu-

ated the level of feedback required by the HITL system by comparing our proposed

system quantitatively and qualitatively with document-level input via a user study.

In the same survey, we also assessed the need for the HITL system in real-world clas-

sification problems by comparing the automatic system with our proposed page-level

annotation system. Unlike previous research, we explicitly used textual features and

state-of-the-art (SoTA) language models to determine the predictive model suitable

for real estate administrative documents that can be used in an online setting. In our

work, we compare NLP models for multi-class classification for multi-page scanned

documents and found that frequency-driven models performed better than deep lan-

guage models. We demonstrated that the HITL system with page-level annotation

ability works better than fully automated classification and document-level annota-

tion for a real-world multi-page document classification problem.
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Chapter 1

INTRODUCTION

The clients of real estate companies expect their advisors to provide them with all the

information related to the condo corporations, including the Bylaws, rules, financial

reports, and strata plans. Real estate advising companies gather these documents

from each corporation for their clients and create a hand-crafted summary report,

which helps them decide whether to buy. There are 15-16 types of different documents

accounting for 200 to 300 pages that are scanned and stored in PDFs separately.

Currently, the company has a manual process where they OCR documents to highlight

the critical text to be added to the summary report. Once they create a pool of

digital copies, they manually label these documents, order them to highlight the

essential lines, and add a tag. All these steps, as shown in Fig. 1.1, are done for each

corporation by a domain expert with deep knowledge of these documents. The whole

process is time-consuming and has a lot of labor costs associated with it. There is a

necessity for Robotic Process Automation (RPA) which can take these documents as

input, recognize their type, and organize them in an order that the company can use

to find essential information. The automation process would include an OCR engine,

an feature extraction system, a classifier, and some rule-based information extraction

processes like table data extraction and date recognition. Since the files are specific

to the real estate domain, the output has to be reviewed by the domain expert. Upon

the data exploration, we found that the system required for this problem statement

has to tackle the following dataset challenges:

1. Scanned administrative text

2. Overlapping information between different types of documents

3. High volume of pages per document

4. Limited and imbalanced data

1
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Figure 1.1: Current Workflow : The flow chart shows the current steps taken by the company
to create the summary report from the document collected from real-estate corporations. Steps 1
to 4 are the manual steps done by the domain expert to formulate the final summarised report.
The highlighted step is the most time-consuming for the company, where they have to label the
documents and sort them into a particular order, in our case, date-wise.

5. Non-stationary classes

Since no public dataset corresponds to the scanned administrative multi-page real

estate documents, which have similar challenges as the company’s data, We spend

most of our time understanding the data and exploring possible solutions that can

adhere to the requirement of real-world business problems. The early research with

scanned documents treated each page as an image and used different layout features to

create feature vectors [11] [9] [20] [2]. The recent paper used a state-of-the-art multi-

modal approach to combining text and visualization [13]. Given the advancement of

the natural language model models, the imaging modality shows slight improvement

when compared to the uni-modal text models [13]. This motivated us to explore the

text-based models for our dataset and cover the following area as part of our research:

1. Which is the best-performing model for the dataset?

2. How can we create a user-centric incremental learning framework?

3. What feedback do we need from the user to improve the model?

Moreover, the dataset used in most of the research for this type of task differs from

ours in structure and content, which required us to evaluate our dataset from scratch

with classical and state-of-the-art text classification models. Our investigation found

that the documents’ composition changes drastically from corporation to corporation.

For example, the Depreciation Report document may or may not include strata plans
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and finance documents. Also, the label can change based on the categories defined

by the condo corporation and give it a label as MISC for this example. A real-estate

expert could identify the accurate label for such complex document structures. This

motivated us to create a user-centric classification system by implementing a Human-

in-the-loop framework for online training [29]. We used an early approach for the

classification model as a baseline where they classified each page and aggregated the

result for the document [11]. The use of HITL in NLP for classification tasks is scarce

and has been only explored for the clean or short sequence text [16]. Our proposed

study explores the following as part of the solution to real-time problems:

1. The need for HITL for scanned administrative documents

2. The level of annotation required when dealing with scanned multi-page docu-

ments

3. The qualitative evaluation of the proposed system by real estate domain expert

There are two primary components of our HITL document classification system,

similar to any HITL system, an inference pipeline and a training feedback loop, as

shown in Fig. [1.2]. The inference pipeline is the one that takes a document as an

input and outputs a predicted label for the document. Internally, the document goes

through several processes like PDF parsing, data preprocessing, table parsing, data

extraction, and a text-classification system. Our text classification is a two-step sys-

tem with a Page Importance Classifier (PIC) and Main-Page-Classifier (MPC). The

main idea behind this classification system is that we only need important pages to

classify a document. PIC is a binary classifier that filters out the pages based on

their textual information. The MPC only looks at the pages marked as necessary by

the PIC to predict a label. Both PIC and MPC get retrained based on the annota-

tions provided by the domain expert at the page and document levels, respectively.

Initially, the PIC is a naive system considering everything as necessary, whereas the

MPC is trained on the initial dataset provided by the company. A HITL system

continuously requires annotated data, and domain experts cannot annotate every

data instance. Our proposed solution changes this to a requirement-based system

where users provide input on a need basis. The document-level annotation happens

during validations, where the user accepts or rejects MPC’s output. The page-level
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Figure 1.2: Modules of HITL : The flow chart points out the challenges in the company’s
current workflow.

annotation expects the user to mark the page as relevant or irrelevant and update

the label of the individual page based on the content. The high-level flow of our

proposed methodology is shown in Fig. 1.3. In our paper, we evaluated the system,

which has both PIC and MPC, with a system with MPC only. This evaluation also

answers the questions about the level of annotation required by the HILT to improve

performance. We found that the page-level annotation showed improvement over the

document level. The solution has the following advantage over the fully automated

multi-page text classification pipeline:

1. Reliability: The user and developer perceive the problem differently. The

user finds it hard to translate the knowledge and requirements to the developer

who is formulating the system. This led to continuous to-and-fro between the

teams, leading to unreliable and inferior results. Our solution allows the domain

expert to correct the system after a developer finishes the development. Hence,

increasing the reliability factor compared to fully automated solutions.

2. Scalability: Despite being restricted by domain, the data grows exponentially

in real estate, which requires a system that can process as it comes and update

the model. Updating a model requires annotated data, data preprocessing, and

carefully curated features. We included all three steps in our design to allow

the system to scale and adapt as the data grows incrementally.

3. Interactive Explainability: Our solution bridges the gap between domain

expert knowledge and classification model training. It requires a system that
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Figure 1.3: High level Solution : The flow chart showcases the proposed solution from a high
level. In this, we replaced the manual tasks in the current workflow of the company with the
human-in-the-loop framework and a rule-based ordering based on the requirements described by the
company

monitors the model’s performance and shows where it goes wrong. Our solution

provides an interactive dashboard where users can not only visualize the results

but also correct them and annotate them at multiple levels of the document. It

eradicates the need to test the models outside the system.

1.1 CONTRIBUTIONS

The contribution of our system can be summarized as follow:

1. Our proposed system is the first web-based multi-page scanned document clas-

sification solution for real estate administrative documents that use the HITL

framework and allows domain experts to annotate at both page and document

levels.

2. We explored textual features to classify real estate administrative documents

using classical and state-of-the-art models. Conducting the comparative study,

we found that the classical model with vocabulary-based embedding performs

better than pretrained Deep language models.

3. The user study showed that the HITL framework could improve the underly-

ing text classification model for multi-page documents if the annotations are

provided at both page and document levels.



Chapter 2

RELATED WORK

This section covers the relevant literature required to understand the various compo-

nent of our proposed methodology. It includes work from text classification, multi-

page document classification, and the use of the HITL framework in natural language

processing downstream tasks.

2.1 MULTI-PAGE DOCUMENT CLASSIFICATION

We covered the research in the last decade or so in multi-page document classification.

Early studies addressed the categorization of multi-page texts. Every document com-

prises several pages, such as documents, insurance, and invoices [11]. They suggest

a bag of pages technique based on the same premise as the bag of words, in which a

document is represented by a histogram that contains the number of occurrences of

various types. The approach was tested on two different-sized datasets. The results

demonstrate that increasing the number of documents reduced categorization results,

with a difference of 21.1% between the first and second databases. Another suggested

a document categorization system based on visual layout structural similarity [25].

Column structures and percentages of text and non-text are extracted. This tech-

nique does not suggest a mechanism for classifying multi-page texts. It works nicely

for single-page documents.

Previous research has shown that textual characteristics surpass visual features in

classification and retrieval accuracy. The textual features are not explored explicitly

in any of the earlier studies. A combination of TFIDF and SVM in considerable

research to perform the classification task to validate the segmented pages from the

stream of document [7] [12]. In a multi-page document, the domain focuses more on

segmenting the stream of papers and considers classification task secondary [7] [9] [13].

Moreover, all the researcher focuses on either the multi-modal solution by combining

textual features with the image features or working purely on image features [9] [13]

6
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[20]. It has been seen that combining visual elements with text either degrades the

performance or does not create significant differences in scanned documents [12] [13].

Our work is foundational, where we explicitly work with textual features of multi-

page scanned documents and compare all the different types of embedding systems

and state-of-the-art transformer models.

2.2 TEXT CLASSIFICATION

In NLP tasks, text classification is a well-researched area because it has a lot of real-

world applications. This task has always been at the core of NLP downstream tasks.

There have been vast improvements in the past two decades, taking the research from

feature-based methods to few-shot transfer learning. The early techniques generally

take two steps to perform text classification. The first step is to preprocess the text

data and transform it into machine-understandable vectors using techniques such as

Bag-Of-Words (BOW) [32], N-gram, Term Frequency-Inverse Document Frequency

(TF-IDF) [23], word2vec [18], and Global Vectors for word representation (GloVe)[21].

The second step uses these vectors with generic classification models such as KNN

[19], SVM[6], Random Forest (RF) [1], and Naive Bayes (NB) [30]. The initial model’s

primary problem is that the performance depends on feature extractions. Moreover,

these feature-based methods assume that the words in the text are independent of

each other. Hence, they cannot capture the target text’s structure or context. The

introduction of deep learning models revolutionized the field of NLP. Initial attempts

with CNN, RNN, and attention helped researchers improve over classical methods.

The development of transformer-based models is a milestone in NLP history [28]. The

ability to produce contextual embeddings and use pre-trained models for downstream

tasks unlocked many applications. The transformer model uses layers of encoders

stacked above each to capture the context. These encoders have a self-attention

layer that has quadratic time complexity. This limits the number of tokens the

model can ingest for a supervised task. Most initial models have a hard limit of 512

tokens which is enough for most tasks, but the longer text might need to capture

long-term dependencies [8]. To overcome the short sequence issue, the researchers

try to decrease the complexity using variants of self-attention such as sparse self-

attention, block attention, window attention, and linearized self-attention. Some
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popular long sequence transformer models are Longformers[4], Bigbird[31], ETC[3],

and Reformer[17].

2.3 HITL IN TEXT CLASSIFICATION

Text classification is a classic problem in NLP to categorize text into different groups.

A text classifier is trained on a set of text documents (X) and their categorical labels

(Y ) to predict the Y value of an unseen X. For example, twitter’s sentiment classifier

can predict if one review is positive or negative. Many HITL frameworks have been

developed for this problem, training a text classifier, recruiting humans to annotate

data based on the current model behavior, and eventually retraining the classifier on

the larger dataset continuously [29]. Early research provides a HITL paradigm in

which users may interactively modify (add or delete) text characteristics and label

new documents [10]. In the same research, they extended their methodology by incor-

porating active learning into their framework by randomly providing data for users

to annotate. They intentionally select samples that optimize the projected knowl-

edge gain [10]. Labelers utilizing active learning can annotate fewer data points to

achieve the same model improvement as a system using random sampling. The ac-

tive learning component was further enhanced by including feature (word) sampling

in addition to label sampling (documents) [24]. Another research approach created a

comprehensive web-based application that supports generic text classification tasks

to facilitate the implementation of HITL text classifiers [26]. In addition, researchers

have created domain-specific HITL text categorization algorithms. In deployment, for

example, a rumor categorization system designed for journalists incorporates model

retraining, data collecting, and data annotation [16]. Text classifiers frequently em-

ploy the bag-of-words feature. On the other hand, an investigation proposes alternate

feature representation to better support a HITL pipeline [15]. We are motivated by

the HITL framework used for online learning for domain-specific data. Our imple-

mentation of the HITL text classification system takes inspiration from past research,

and we suggest improvements by evaluating our method via a user study [27].



Chapter 3

METHODOLOGY

The section breakdown the methodology used for our proposed solution to the com-

pany’s document classification task. The subsections cover the problem overview,

Data Preparation step, Classifier architecture, interface overview, and system design.

3.1 PROBLEM OVERVIEW

The multi-page document classification task is supervised learning, where we want

to predict the document’s label. Given the challenges of data, our proposed system

is a web application based on the HITL framework specially designed to handle ad-

ministrative documents in real estate. The methodology extends the baseline of the

early approach of labeling the documents using page-level vectors [11]. We replaced

the visual features used by the model with the textual features and added a novel

human-trainable filtering system. The application handles three primary tasks for

the machine learning pipeline: 1) data preprocessing, 2) Inferring the document la-

bel, and 3) retraining with newly labeled data. The web app is divided into two parts,

1) the backend covers the data storing and parsing algorithm, asynchronous training

and retaining, and updating the database with user actions. The front end provides

an interface for output validation, page annotation, and an interactive dashboard to

make retraining decisions.

3.2 DATA PREPARATION

The data preparation is an integral part of our proposed HITL web application. Our

experiment showed that frequency-based embedding like BOW and TFIDF perform

well on our real-estate textual data. We created a process to treat the scanned doc-

uments, starting from creating page chunks, extracting the text and metadata, and

then performing the routine task of text cleaning. The routine step involves removing

9
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Python Library Input Output Documentation Links
1 TIKA PDF Text of the Page https://github.com/chrismattmann/tika-python
2 PyPDF2 PDF Remove annotations from the page https://pypi.org/project/PyPDF2/
3 Tabula-py PDF Detect and extract tables https://pypi.org/project/tabula-py/
4 sutime Text Extract time and date from the text https://github.com/FraBle/python-sutime

Table 3.1: Python libraries used for extracting the text and other information from
the PDF

special characters, numbers, stop words, and extra spaces. Our HITL system repet-

itively uses a data preprocessing algorithm to prepare data for both inference and

retraining. The algorithm uses powerful data extraction and cleaning libraries in the

python programming language. We categorize the python libraries concerning their

focus of action shown in Table 3.1.

The main idea is to extract the text from each document page. The main challenge

is to create a general parsing algorithm for various structures, formats, and fonts.

We first started testing various parsing tools available in python. After evaluating

multiple outputs, we found that the Apache TIKA 1 library can provide complete

textual information on a scanned page. The input and output of some samples can

be seen in Fig. 3.1. Some pages only contained tables, and parsing them as text

would destroy the context of the information. The tables are significantly populated

in documents like Depreciation and financial report. Reading those numbers without

the context of the tabular format will be garbage for the system. Strata-plan (SP)

is a particular type of document containing many maps and geographical images

along the text. We found out that the page containing graphics can add noise to

the system, so we removed them using a rule-based filter discussed below. We tried

multiple libraries, but for our use case, we found Tabula-py 2 library’s table detection

and the ability to convert the table into pandas data frame satisfactory. We created a

custom algorithm to handle such pages; If the page contains a table, the page will not

participate in the classification process; instead, tabular data will be stored in a CSV

file. We fixed on following custom rules for the data preparation after experimenting

with the process multiple times to enhance the performance.

1. Number of tokens less than 30: In our experiments, we found that any

text of a page less than 30 tokens does not contain relevant information about

1https://github.com/chrismattmann/tika-python
2https://pypi.org/project/tabula-py
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Figure 3.1: Sample Extraction: The diagram shows the text extraction ability of the Apache
TIKA library. There are two types of example in this case. The first one shows the clean extraction
of the text, whereas the second shows the noisy extraction where we have special characters and
broken sequences.
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Figure 3.2: Data Preparation: The diagram defines the flow of the HITL framework for doc-
ument and label classification. This user will be controlling the retraining of the model using the
”HITL Manager Page” and the associated Model Performance dashboard. The user in the defined
framework will validate the recommendation given by the model.
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the document or contains graphics. Such pages add unnecessary noise to the

data, which can be removed with simple filtering. We apply this filter after the

routine preprocessing.

2. Extracting the Date and time: The company sorts the document based on

the dates if the document belongs to the same category as the condo corporation.

In their manual process, the user spends much time finding the date references

in the text and highlighting them. We used sutime 3 to see them in the text and

store them in the database. This data highlights the PDF when downloading

the classified PDF using the frontend tool.

3.3 PAGE FEATURE

The text must be converted from its character sequences into a vector space to be used

by machine learning models. We consider Sentence-BERT (SBERT) encodings [22] as

the feature representation for text documents. SBERT is a variant of the pretrained

Bidirectional Encoder Representations from Transformers (BERT) model [8] that

offers semantically meaningful encodings for unlabeled text documents. According

to studies, SBERT encodings perform better than BERT encoding out of the box in

several text classification tasks. Additionally, computing SBERT encodings use fewer

resources.

Similar to other BERT variants, SBERT stores a document as an n-dimensional

vector of continuous attributes with the following formula

x = (ai, ..., an)

We use the bert-base-nli-mean-tokens pre-trained model, which generates encodings

of length n = 768. BERT encodings are limited to 512 tokens, or around 300 to 400

words, because BERT uses subword tokenization. To prevent truncation, we employ

the mean SBERT encoding of each unique sentence for our dataset. In a preliminary

analysis, we discovered that mean SBERT encodings only benefit the classifiers’ F1-

Score.

3https://github.com/FraBle/python-sutime
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3.4 CLASSIFIER ARCHITECTURE

As discussed in Section1, the proposed architecture includes three modules, Training,

Inference, and User Action, as shown in Fig. 1.2. These three modules cover the core

of the backend of our system and define the frontend aspect. The inference module

is a two-step classification algorithm that takes documents as input and provides the

predicted label for the document. The user consumes this predicted label to vali-

date and select the relevant pages of the document using an interactive visualization

system. The HITL framework dictates that the model will learn the task based on

the annotations provided by the domain expert. The training module processes these

annotations and retrains the model with newly labeled and historical data to avoid

catastrophic forgetting. The main advantage of this system can be summarized as

follow:

1. The HITL system allows few-shot learning and incremental learning simultane-

ously, which means that system can be initiated with limited data and adopt

more data and new classes over time.

2. The tool’s ability to capture the data changes in real time makes the system

robust and reliable over time.

3. It takes away the burden from a Machine learning practitioner to be involved in

the process repeatedly. Rather the machine learning algorithm will learn from

the wisdom of the domain expert.

4. The tool takes care of imbalanced classes by allowing users to add more instances

of smaller classes over time.

3.4.1 TWO-STEP PAGE CLASSIFIER

A multi-page document could contain a long sequence of text. Processing such a

long sequence using the state-of-the-art transformer models is impossible because of

the restriction of 512 tokens. Even the transformer models claiming to be made

for long sequence text [4] [31] can only accommodate sequence lengths up to 4096.

The early document vectorizing schemes for creating document-level vectors create

high-dimension vectors, which are computationally expensive to train and infer. To
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Figure 3.3: Proposed Pipeline: The diagram elaborates the pipeline of our proposed system.
We expect the scanned PDF from the company will be parsed by our tool and get classified. The
ordered documents will go back to the user for the highlighting exercise. The highlighted sentence
from the document will be extracted, and a label will be provided. The final steps will remain the
same as in the original flow.

improve the performance, we added a few rule-based filters that ignore the pages

containing tables and length of sequence less than 30, along with a two-step document

classifier that works at the page level that learns to filter pages based on domain

expert knowledge. The flow of our proposed document classifier is shown in Fig. 3.3.

The document classifier comprises six steps, of which steps 1 and 2 are discussed in

section 3.2. Steps 3, 4, and 5 consist of two classifiers, a Page Importance Classifier

(PIC) and a Page Classifier, and an aggregation step to produce a final label for the

document.

The central idea behind creating the two-step technique is based on a fundamental

hypothesis that we do not process all the pages to classify a document. There could

be only a handful of relevant pages to the document, which helps the classifier identify

the document. However, the principal question is how the system will understand the

importance of a page, as machines understand text differently from humans. It will

not be possible for a person to mark something important until or unless he has a

solid reason. So, a call-to-action system should motivate the user to select document

pages that are not useful for the classifier. So, the setup contains two classifiers 1)

the Page Importance Classifier (PIC) and 2) the Main-Classifier that allocates labels

to the page.

1. Page Importance Classifier: This is a binary text classifier acting as a filter
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Figure 3.4: Page Importance Classifier: The diagram defines the inference flow of the PIC
pipeline. The stream of the pages will be labeled as 0 or 1 based on the content of the page. Only
the page labeled as 1 will be transferred to the main page classifier or MPC

to the main classifier. Since there was no labeled data to evaluate the page

importance classification, we used the SoTA SBERT embedding system with an

SVM classifier. As shown in Fig. 3.4, it takes the SBERT [22] embedding and

uses the support vector machine with a linear kernel to predict page importance.

It restricts the pages the user decides are irrelevant to the main page classifier.

When initialized, the PIC understands all the pages as important and allows all

pages to go to MPC. The classifier is trained only on the page-level annotations

provided by the domain expert using an interactive user interface discussed in

Section 3.5. We allow users to preview each page of the document to mark the

importance of the page depends, as it allows them to make decision-based on

the following three factors:

(a) the quality of the information present on the page

(b) the placement of the page in a document

(c) the contribution of the page in the classification of the document

2. Main Page Classifier : It is a multi-class classifier that labels the filtered

pages from PIC and uses polling operations to produce document-level labels,

as shown in Fig. 3.5. The polling operation sort the labels assigned to the pages

by their count and selects the maximum one for the document. This classifier

gets trained as the data comes incrementally. To set up the incremental data
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pipeline for the classifier, we used the HITL framework. The training data is

created based on the user’s validation of the model’s output and annotation

of the documents’ pages with overlapping content. The user can visualize the

incoming data using a dashboard, as discussed in Section 3.5. Given the use case

of real estate multi-page scanned documents, the data is dynamic and highly

imbalanced, and the system needs to evolve as the new data arrives. The data

for the upcoming training cycle are of two kinds:

(a) Historical data: This is the data already known by the classification

model.

(b) New Annotated Data: The data on which the classifier has made a

prediction, and the user has made validation and other annotations.

For every user, the MPC is initiated using the sample data provided by the

company, which contains 11 labels. The sample data details are discussed in

the upcoming Section 4.1.1. For the historical data, the ground truth comes

from the limited data provided by the company, discussed in detail in Section

3.2. We have included a validation step to prepare the training data using the

new data set. This step will ask the user to accept or reject the predicted

value. Depending upon what the user selects, the data will be recorded into

a relational database. Since the SVM is a naive classifier and requires to be

retrained from scratch, the pool of new and historical data will be sent to the

model for training.

3.4.2 THE HITL FRAMEWORK

The system includes feedback loops that convert user action into training data for

our proposed two-step classifier. The are two levels of feedback from the user 1)

the document level and 2) the page level based on the prediction provided by the

classifier. The system records these two input types and stores them in a relational

database at respective levels. Later, the domain expert can train the MPC and PIC

from a pool of new training data. There are specific actions the user can perform at

each annotation level.
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Figure 3.5: Main Page Classifier: The diagram defines the inference flow of the MPC pipeline.
The stream of the pages will be labeled as one of the classes defined by a domain expert. The polling
operation assigns the label to the document.

Figure 3.6: Document Level Annotation: The diagram defines the flow of the HITL framework
for document and label classification. This user will be controlling the retraining of the model using
the ”HITL Manager Page” and the associated Model Performance dashboard. The user in the HITL
framework will validate the recommendation given by the model.

1. Document Level Actions: The document level annotation consists of the

validation of the user on the prediction made by the main page classifier 2.

During the validation, the user can either accept or reject the output provided

by the MPC. The predictions accepted by the user will update the label of each

page in the file with the predicted label. On the other hand, the user can reject

the output if he perceives the document to be different from the predicted label.

Upon selecting the reject option, the user will be given the option to select a

label or provide a new label. In either case, the user action will overwrite the

predicted label with the document level label, as shown in Fig. 3.6.

2. Page Level: The page-level feedback is more granular than the document-level
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Figure 3.7: Page Level Annotation: The flow chart showcases the page-level annotation done
by the user. In this, the user can do two types of annotation 1) changing the page’s importance in
the document and 2) changing the label of pages. All the annotations get recorded into a relational
database where page-level data is stored

feedback. The user is asked to select or deselect a page as necessary and fix

the content overlap. This task requires a lot of attention from the user and can

be tedious. We wanted to make this task as easy as possible so that the user

could easily identify data gaps data. As shown in Fig. 3.9, a confusion matrix

representation of the classification results was the most acceptable way to list

all the irregularities in the predicted data. If the page is correctly classified, it

will land on the diagonal of the matrix. It will map the correct label given by

the user and the incorrect label provided by the classifier. The user is allowed

to explore all the pages in this matrix. To improve this annotation step further,

we made the confusion matrix interactable, where the user can check the pages

under each matrix tile. Upon clicking, the user can preview all pages with an

option to annotate them individually, as shown in Fig. 3.8. There are two types

of annotation the user can do at this stage 1) change the importance value from

1 to 0 and 2) change the page’s label. The first change will train the PIC model,

whereas the second will create data for the Main-Classifier. This feature of page

exploration and annotation makes sense because of three reasons
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(a) The user will able to directly translate his intuition to the system helping

the system to learn the data efficiently.

(b) There could be a possibility where a page belongs to document X, but the

information on the page is similar to document Y. In that case, the user

can also mark the label as Y instead of X.

(c) It helps in overcoming the data imbalance and later helps in page segmen-

tation tasks where we can know the composition of a document.

.

3.5 INTERFACE OVERVIEW

The section describes the different components of the user interface and its function-

alities. Our system has two main pages 1) the upload page and 2) the Train page.

The upload page allows the user to upload the documents, classify them and annotate

them at the document level. In contrast, the training page will enable users to have

interactive page-level analysis based on the classifier’s output and document-level an-

notations. The component of the user interface shown in Fig. 3.8 is described in

Table 3.2 and 3.3.

3.6 SYSTEM DESIGN

This section provides a breakdown of various technologies used to support different

components of the framework. Our suggested system is implemented as a web appli-

cation using back-end technologies like Flask (a micro-service framework written in

Python), SQLite (a storage database), and front-end technologies like JavaScript and

HTML5.REDIS and session-based user management enable multiple users to work

on the system concurrently in a production environment. The design needs secure

authentication and session management because the tool is intended to be deployed

online.
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Figure 3.8: Frontend Screen Shots: The figure shows the screenshot from the user interface of
the flask application used to take feedback from the user. The first image depicts the upload page
and document annotation system, whereas the second image corresponds to the training page where
the user can train the model and annotate the pages
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3.6.1 USER INTERFACE

We rely on our development of contemporary browsers and their rising computa-

tional power for visualizations to provide a cross-platform tool that is unrestricted

by the user’s operating system. Our original CSS and JavaScript codes are the tool’s

structure and layout managers. We use Bootstrap 5 to create the fundamental user

interface components. REST APIs and AJAX are used to connect the front end and

back end. All the components in our user interface and their brief description are

listed in Table 3.3 and 3.2.

3.6.2 HANDLING THE TIME-TAKING PROCESSES

The front-end system needs to be consistently responsive, so even if the back-end

takes a long time to process the data, the user interface should not wait. There are

two such processes in our proposed framework (1) classification of the file and (2)

training of the model. The time of the task is based on two major factor factors,

1) computational power and 2) the total number of pages to be classified. Within

the Flask, we used REDIS to defer these operations by putting information about

the task to be performed inside a queue, which gets processed later. We can scale

the system horizontally by initiating multiple queues simultaneously. This helped in

achieving the multiprocessing for our system and will help handle numerous requests

from various users efficiently.

3.6.3 INTERACTIVE CONFUSION MATRIX

The confusion matrix, shown in Fig. 3.9, is obtained using the d3js library in which

we created the blocks for each entry in the data. The x and y-axis of the grids

represent the actual and predicted labels, respectively. The next step is to place the

data on the grid based on the predicted and user-validated labels. We used Scalable

Vector Graphics (SVG) to set the height, width, shade, and interactivity. On clicking

the block on the matrix, an AJAX POST request queries the SQL database to get

the images related to that block. It dynamically shows the pages with the option to

mark them as relevant or irrelevant. This confusion matrix explains two things to

the user 1) which part of the document does the model unable to understand, and
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Figure 3.9: Confusion Matrix: The diagram is a snip shot of the confusion matrix.

2) which label needs more attention in the next training cycle. This gives the user

control over the system and allows him to shape the model in the desired way.
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ID Component Description
1 Page Navigation This is the left navigation system where users can switch pages.

Our system has two main pages: the upload and training pages.
2 Dataset Selec-

tion
Users can switch between the dataset they have uploaded to
the system. This helps them to revisit the data they uploaded
earlier. Moreover, the dataset is associated with the model it
uses to classify.

3 Inserting New
Data

The interface allows the user to upload a new dataset into the
system. There is no limit on how many files a user can upload
into the system.

4 Model Selection The dropdown allows the user to switch between the trained
model. The latest model will be selected by default, which the
user can change. This model selection also controls the dataset
selection dropdown. The dataset classified by a certain model
gets listed under that model name. These model names are
auto-generated.

5 User Setting. This is a drop-down functionality where the user-related setting
can be added. As per our tool, we can log out, which clears all
of a user’s session data.

6 Download Clas-
sified Dataset

The user can download the dataset after classifying and vali-
dating them. Upon clicking the download button, the back will
mark the first found date in the file and highlight it inside the
PDF. The downloaded file follows a naming convention in which
is \verb+¡file label¿ ¡file id¿ ¿¡name of the file¿.pdf+

7 Document Pre-
view

This screen area will display the entire document uploaded into
the system. The user must click on the File Name in the vali-
dation table.

8 Misclassified
Pool

The misclassified pool contains all the files that got misclassi-
fied. The user can select the correct label from the dropdown in
this section.

9 Validation Table This table displays all the files uploaded into the system. This
table captures the predicted labels and action buttons. The
user can preview the pdf, and if the user does comply with the
predicted label, they can accept or reject it using the action
button

10 Action Button There are two action buttons 1) Accept and 2) Reject. The
accept button will help if the user feels the predicted label is
correct else, they click on reject, which will add the file to the
misclassified pool.

11 Submit user
study Button

The user will click this button after completing the user study
to fill the SUS questionnaires and NASA task load index survey

Table 3.2: Components of Upload Page in the user interface based on the marking
shown in Fig. 3.8
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ID Component Description
12 Confusion Matrix This is a clickable matrix that separates the cor-

rectly classified pages from otherwise. This is click-
able visualization where the user can preview the
pages that are classified correctly or incorrectly

13 Relevance Chart This is a stacked bar chart showing the number of
relevant and irrelevant pages for a class labeled.

14 Data Difference Chart This is a stacked bar chart that shows the new data
added over the old data on which the current model
is trained

15 Pages Preview and Rele-
vance Selection

The user can annotate the pages as relevant or ir-
relevant in this section. They can also change the
label of the pages even though their document level
label is different

Table 3.3: Components of HITL manager page in the user interface based on the
marking shown in Fig. 3.8
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EXPERIMENTS

The experiment aims to evaluate the proposed methodology quantitatively and qual-

itatively. We started with creating various text classification pipelines considering

multiple embedding schemes and simple classifiers. Further, we extended the experi-

ment by fine-tuning state-of-the-art algorithms like BERT and Longformer. The core

idea of the first exercise is to study the efficacy of text-based classifiers on scanned

administrative real estate documents. Next, we conducted a user study with a com-

pany employee to understand the user perception of our proposed system for real-time

use. The user study answers multiple questions, such as 1) Does the task of domain-

specific document classification require a HITL system or automated pipeline? 2)

What level of annotation does a real estate document require to improve the underly-

ing model’s performance? and 3) How much impact does the HITL framework have

on the classification models quantitatively?

4.1 DATASET

Two types of datasets were used to evaluate our proposed methodology. The first

dataset, which contains documents from 15 corporations, was used for the compara-

tive study. In contrast, for the user study, we allowed the user to test the system with

unseen live data. Each dataset contains a group of PDF files belonging to a single

condo corporation. Since no fixed format is defined for corporations, each group of

files has a unique arrangement and a non-static number of labels. Despite the dissim-

ilarities in the structure of the documents, they have some uniform characteristics,

such as:

1. All are scanned and contain noise borne from OCR

2. The content overlap among the labels

3. High volume of pages

26
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4. Highly imbalanced

4.1.1 DATASET FOR COMPARATIVE STUDY

To evaluate the models required for the classification of the real estate documents,

the company provided documents belonging to 15 different condo corporations. One

part of the comparative study is experimenting with document-level and page-level

text embeddings with simple classifiers, which require us to formulate two data sets.

We started with parsing the text from all the documents and recording them in a

CSV file along with their metadata like date, page number, document name, and the

document label from its bookmark, provided by the company. Upon compiling the

data, we got 14 distinct labels and 2692 pages corresponding to 95 files. Further data

analysis revealed that 3 labels, Form V, ID, and budget, have only 1 file each with

82 pages totals, and 40 pages of the extracted pages were blank due to OCR error.

We removed these 122 pages, which left us with 2570 rows of data from 92 files and

11 labels, as shown in Table 4.1. As the primary task is to get a document label and

compare page-level embedding with document-level embedding, we only calculated

the evaluation metric at the document level. We applied data preprocessing steps on

the data as described in Section 3.2.

Class Labels Number of files Number of pages
AGM 12 556
BY 10 257
CM 10 459
DR 9 585
FB 9 55
FIN 9 208
INS 7 25
MISC 5 63
RDS 5 11
RUL 7 65
SP 9 286
Grand Total 92 2570

Table 4.1: Table show the data distribution of the dataset used for experiments
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4.1.2 DATASET FOR USER STUDY

For the user study, the domain expert was asked to use three system types: the

proposed system with page-level and document-level annotation and two baselines

with limited functionalities. We asked the user to integrate the system into their

current business workflow and evaluate its performance. To replicate the real-time

scenario, the user uploaded and trained different datasets for each system and each

iteration. The page count and document count for each system are shown in Table 4.2.

The proposed system got the maximum number of documents and pages compared to

the baselines. When we look at the label distributions of documents, we can observe

that CM and AGM are the highest numbers of documents in all three systems, as

shown in Fig. 4.2. On the other hand, the page count of labels shows that AGM,

CM, and DR contain a significant number of pages, as shown in Fig. 4.1. During the

user study, the user was allowed to add new labels. A new document, ALT, showed

up while using the proposed methodology.

Systems Document Count Page Count
Baseline 1 111 2902
Baseline 2 109 2899

Proposed System 167 3388

Table 4.2: The table shows the comparison between the page and document count
uploaded and trained by the user for three systems.

4.2 COMPARISON OF CLASSIFICATION MODEL

Our paper provides foundational work for classifying multi-page scanned documents

for the real-estate domains using the textual feature only. We trained multiple classifi-

cation models on the company’s text data ranging from the early methods like SVM,

Random Forest, XGBoost, and Naive Bayes to the SOTA pretrained transformer

models. Unlike pretrained models, the early classical model require text to be vector-

ized before training. There are multiple vectorization schemes for unstructured text

data, out of which we used Bag of Words (BOW) [32], TFIDF [23], Doc2vec [18], and

a recent SoTA unsupervised vectorization scheme SBERT [22]. SVM + TFIDF have

been used previously in multiple research. So we started with the method considering
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Figure 4.1: Page Count for each System: The bar chart compares the page distribution for
each label in all systems.

Figure 4.2: Document Count for each System: The bar chart compares the document distri-
bution for each label in all systems.
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it the baseline [7] [12].

The first goal of the experiment is to evaluate the page-level embedding against the

document-level embedding. The page-level data contain 2570 pages with 11 labels

that can be mapped to 92 documents. We used all four types of embeddings and

trained the simple classifiers. We employed stratified k-fold cross-validation, where

k=10, to train the classifier with default settings provided by the sci-kit learn python

library. We added a custom algorithm to derive document-level results from page-

level results by polling, as shown in Fig. 3.5. On the other hand, the document-

level embedding system does not need the aggregation step involved in the page-level

system. Another difference from the page-level pipeline is that we did not use SBERT

due to its limit of 512 tokens; for the document level, all the instances were longer

than that. To compare the performance of the models with the finite imbalanced data,

we used weighted F1-score and the average training time. We used the stratified K-

fold-cross validation, where k=10, technique with classical models to get the learning

curves and calculated the standard deviation.

The second goal is to compare the performance of the pretrained deep language

model (DLM) with the best of the simple classifier. We choose two categories of trans-

former models, short sequences such as BERT [8] will full attention and long-sequence

such as long-former [4] with sparse attention. Since the K-fold-cross-validation doesn’t

work with the deep language model, we used stratified test and train split to divide

the dataset into 80-20 ratio and ran the transformer model for 20 epochs.

The data prepossessing was done on the personal system of the lead researcher with

i7-7500U @ 2.70Ghz, 16 GB RAM, and 4 cores, which are optimized for CPU usage.

The model training involved transformer training and computing more significant

vectors like BOW and TFIFD for a document. We used compute Canada’s multicore

GPU clusters to run our experiments. The PyTorch 1 and transformer’s 2 library were

used to fine-tune the transformer models using the trainer class that allows multi-

processing among the GPUs. The fine tuning step involve training of pretrained

model on the our domain specific data, which will update the weights of all the layer

accordingly. We used the pretrained models from the hugging face library. In fine-

tuning, we let all the layers of the transformer participate in the training process. We

1https://pytorch.org/
2https://huggingface.co/docs/transformers/index
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optimized the models using the Adam optimizer with a learning rate of 0.005 and a

batch size of 8. For simple classifiers, we used the scikit-learn 3 library with their

default parameters. The details of each model are given in Appendix A.

The outcomes of this task can be summarized as follow:

1. Evaluating the page-level and document-level representation with simple various

simple classifiers using weighted f1-score and standard deviation

2. Evaluating the SoTA transformer models with the best simple classifier for real

estate multi-page scanned document classification task.

4.3 USER STUDY

We conducted the user study to understand the need and usability of our proposed

HITL system for the real estate scanned administrative multi-page documents. The

system’s usability is evaluated quantitatively and qualitatively in the user study. This

study will answer the following research questions:

1. What is the effectiveness of the HITL system in solving real-world business

problems compared to fully automated machine learning pipelines?

2. What is the level of annotation (Page or Document) that the user requires to

create a sustainable and reliable model for its domain data?

3. Does online training by the domain expert improve the performance of the

underlying model?

4.3.1 SETUP

Our proposed system is the first web application to implement the HITL system for

multi-page document classification for the real estate domain. As per our knowledge,

no other tool can be a potential baseline, leading us to create our baseline tools.

Since our methodology promotes the role of a domain expert in the machine learning

pipeline, the logical baseline should be an automated document classification pipeline.

3https://scikit-learn.org/stable/
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Functionalities Proposed System Document Level Annotation Automatic System
Page Annotation Yes No No
Output Validation Yes Yes No
Interactive Confusion Matrix Yes No No
Helper Visualizations Yes Yes No

Table 4.3: The table shows the comparison between the three systems we used for
the user study based on the functionalities.

The baseline system only infers the labels for each page and provides aggregated

document-level prediction to the user with any insight.

The other aspect of the tool is to compare our proposed page-level annotation with

the document level, which is the baseline in this case. The document-level annotation

tool should only allow the user to validate the document label and retrain the model

with newly added data. In contrast, our proposed page-level annotation allows the

user to mark the page’s importance and change the label. Using this approach, we got

3 systems, as shown in Table 4.3, for the user study based on the research question

we wanted to answer. All the tool versions use the combination naive Bayes + BOW

as the main page classifier. The naive Bayes was chosen based on the comparative

study performed before the user study. Since there was no labeled data to evaluate

the page importance classification, we used the SoTA SBERT embedding system with

an SVM classifier.

The user study was performed with a single user from the company who was

familiar with documents belonging to the real estate domain. The user was unfamiliar

with the tool, which helped us tackle the bias. We asked the user to work with the

actual dataset that the company will use in day-to-day work instead of the dummy

data and expected him to run the five iterations with a different data set. There was

no cap on the number of files uploaded to the tool for classification. Each iteration

consists of 44 multi-page documents comprising 300-400 hundred pages. As a metric

for evaluating usability, we employed the System Usability Scale (SUS) metric [5] and

NASA task load Index [14]. Apart from the quantitative metric, we asked the user to

comment on the tool’s usability advantages, shortcomings, and future improvements

they expect.



Chapter 5

EXPERIMENTAL RESULTS AND DISCUSSION

The domain-specific multi-page scanned documents behave differently from the reg-

ular synthetic dataset used in research papers regarding noise level, vocabulary size,

and text length. It requires a robust and reliable solution to handle these real-world

data challenges and adapt to the documents’ rapid changes. The SUS questionnaire

results, calculated in Table 5.1, show that the human-in-the-loop system is more

suitable than a baseline automatic system. There is an improvement of 20% in the

usability score for our proposed method over the baseline. The user found the base-

line version of the tool highly unusable for daily use when explicitly asked about the

frequency of use.

The system reliability factor was evaluated by a question ”I felt very confident

using the system” in the SUS survey. The proposed methodology was rated the

highest among the two baselines. The two baselines were given the same score, which

shows that the user feels more confident training models with page-level annotation

than document-level. For a non-technical domain expert, a system with more granular

information is better than a system showing results at a high level and having limited

customization options. At the same time, providing feedback to the system can be

mentally demanding and overwhelming for a new user. In the NASA TLX survey,

shown in Table 5.2, the user feels more frustrated when asked to provide annotation

at both page and document levels compared to its baselines.

The system’s performance is directly related to the accuracy of the model used for

the prediction. Our experiment shows that the simple classification model, such as

Naive Bayes, performs better than state-of-the-art fine-tuned models. The main rea-

son is that the transformer models are not good with limited and noisy data, whereas

the feature creation step for the simpler models reduces noise significantly. The same

weakness of the deep language model is exposed when we compared the BOW with

the SBERT vector scheme with various estimators. The results, shown in Table 5.3,

33
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SUS Questions Proposed System Baseline 1 Baseline 2
I think that I would like to use this system
frequently

1 1 0

I found the system unnecessarily complex 4 1 4
I thought the system was easy to use 3 3 2
I think that I would need the support of
a technical person to be able to use this
system

3 4 3

I found the various functions in this system
were well integrated

2 1 1

I thought there was too much inconsistency
in this system

2 1 1

I would imagine that most people would
learn to use this system very quickly

2 3 2

I found the system very cumbersome to use 2 2 3
I felt very confident using the system 2 1 1
I needed to learn a lot of things before I
could get going with this system

3 3 3

Final Score 60 50 50

Table 5.1: The table shows the score for each SUS question asked to the user after
they used each version of the tool. Baseline 1 is the document-level annotation system
created to compare the annotation levels, whereas baseline 2 is the automated system
to evaluate the need for the HITL system. The points given for each question asked
to the user range from 0 to 5, where 0 strongly disagrees, and 5 strongly agree.

Questions Interpretation Proposed System Baseline 1 Baseline 2
How mentally demanding was the
task?

Mental
Demand

25 25 15

How physically demanding was
the task?

Physical
Demand

5 5 5

How hurried or rushed was the
pace of the task?

Temporal
Demand

25 25 25

How successful were you in accom-
plishing what you were asked to
do?

Performance 75 85 85

How hard did you have to work
to accomplish your level of perfor-
mance?

Effort 45 45 45

How insecure, discouraged, irri-
tated, stressed, and annoyed were
you?

Frustration 25 25 15

Table 5.2: The table shows the score for each NASA Task Load Index question asked
to the user after they used each version of the tool. Baseline 1 is the document-level
annotation system created to compare the annotation levels, whereas baseline 2 is
the automated system to evaluate the need for the HITL system.
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Models Vector Scheme F1 - PLA. Std. PLA F1 - DLA Std. DLA

Naive Bayes

BOW 98.42% 0.77% 48.65% 13.10%
Doc2Vec 57.13% 6.77% 67.64% 10.97%
SBERT 65.51% 5.46% N/A N/A
TFIDF 98.33% 0.75% 43.66% 14.28%

Random Forest

BOW 95.60% 1.88% 79.78% 13.60%
Doc2Vec 67.38% 4.18% 70.39% 9.67%
SBERT 71.19% 6.24% 82.77% 11.32%
TFIDF 96.03% 1.71% N/A N/A

SVM

BOW 95.31% 1.48% 77.30% 13.95%
Doc2Vec 71.62% 3.55% 82.29% 14.01%
SBERT 78.54% 3.36% 85.72% 8.77%
TFIDF 94.78% 1.39% N/A N/A

XGBoost

BOW 93.13% 1.49% 81.15% 10.47%
Doc2Vec 69.66% 5.54% 69.43% 13.05%
SBERT 75.10% 4.13% N/A N/A
TFIDF 17.82% 5.55% 79.15% 16.19%

Table 5.3: Performance of the classical models reported on the proprietary dataset
shared by the company when using page-level vectors. The table shows the weighted
f1-score at both the document and page levels. We used acronyms in the table to
define the system where PLA stands for Page-Level Annotation, and DLA stands for
document-Level Annotation. std. denotes the standard deviation in f1 scores for the
systems.

show that the SBERT, which was trained using cosine similarity, has consistently un-

derperformed compared to the classical methods like BOW and TFIDF. The SBERT

is pretrained to capture the similarity between the two sentences using the cosine sim-

ilarity loss. This strategy works against the SBERT embeddings where documents

have information lap and have similar sentence structure. The BOW and TFIDF are

vocabulary-based methods, and domain-specific documents tend to have a limited

vocabulary. This could be another reason for a more straightforward approach like

naive Bayes to perform exceptionally well over pretrained language models, as shown

in Table 5.4.

The company dataset belongs to a restricted domain of real estate text, where

the text semantics is uniform across the labels. The information overlap within the

documents creates challenges for the classifier to separate the document. The T-

SNE plots of document level representation, shown in Fig. 5.1, fail to map similar

documents in the same clusters. The page-level representation improves over the
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Model weighted F1- Score
Best Baseline (Näıve Bayes - BOW) 98.42%

Longformer 88.60%
BERT 88.91%

Table 5.4: Performance of the Transformer models compared with the best of classi-
cal models reported on the proprietary dataset shared by the company using page-
chunking of documents. The table shows the weighted F1-score at the document level

document-level representation, but the cluster distributions are highly cohesive to

the high information overlap among the documents. The same translates to the

classification model’s F1 score at both levels presented in Table 5.3. The PIC could

solve this to some extent, as Fig. 5.2 shows the quantitative analysis of the user

study, the dip in the performance of the automatic ML, and the Document annotation

version. The Proposed model gained accuracy as the user provided annotation at the

page level.

The same pattern is observed in the learning curve of each label uploaded during

the user study showing an overall positive change in accuracy for all the uploaded

documents for the proposed system. The user during user-study tested different

datasets, as discussed in Section 4.1.2, for all three versions of the tool where the

dataset could be similar or completely different from the dataset used to train the

underlying classification model. Despite this challenge, the HITL system with page-

level annotation handled the changes and improved results over the base variants

proving its robustness and reliability.

5.1 DISCUSSION

In this section, we elaborate on the results and discuss the rationale behind our

outcomes. We have divided the section into two parts. The first talks about how we

overcame the real-world data challenges, and the second talks about the model used

and the HITL framework requirement.

5.1.1 Dataset Challenges

The dataset from the company came with a lot of challenges, as discussed in Chapter

1. The purpose methodology’s components handle these challenges, like the data
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Figure 5.1: t-SNE Projection : t-SNE plot of projections of page and document embeddings.
Starting from top left to right, page-level embeddings using TFIDF, SBERT, DOC2VEC, and BOW,
followed by document-level embedding using TFIDF, BOW, and DOC2VEC
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Figure 5.2: Learning curves Quantitatively comparing user study results from the accuracy
point of view. The graph shows the accuracy attained after each iteration. The First 3 line chart
shows the label-wise accuracy trend between the document-level annotation, fully automatic, and
proposed model. The single chart in the second line represents the overall learning curve of three
systems

preprocessing engine, annotation, and training module. HITL’s core strength is that

it allows users to provide input directly to the model. The primary challenge was

that there was minimal knowledge about the domain. So HITL system allowed us to

give control to the domain expert limiting the effort of deep diving into the domain.

Another related challenge was that the domain expert needed a system where he

could add new classes based on the document’s content. The ability to add a new

label to the system using the document-level annotation and training module solves

this problem. Moreover, the user can keep track of the classes and the number of

pages associated with them on the training page shown in Fig. 3.8.

Another two challenges are related to each other. The information overlap and

unbalanced classes are co-dependent. We wanted a system that could correctly iden-

tify the class of pages in our system so that classes with a low number of pages get

more training data. To solve the imbalance class problem, the information overlap

should be solved, which means that even though the document belongs to class A,
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the page belonging to X, Y, and Z classes should be correctly identified. The page-

level annotation module handles this issue by allowing users to change the labels of

the pages and marking the pages unimportant. By allocating the correct class to

the pages, there will be a shift of instances from higher to lower class, solving the

imbalance-class problem.

5.1.2 HITL framework

The human-in-the-loop framework’s simple idea is to place human beings in machine

learning to improve the predictive model. Given the history of the HITL in NLP, the

following are the requirements for the online HITL system:

1. There should be an aspect of the pipeline completely or partially dependent on

the user.

2. The model should be able to utilize the annotations or user input to update the

model.

In our system, we satisfy both the requirements of the online HITL system. We

incorporated the domain expert to validate the model’s output and engineer document

pages based on their importance. Secondly, we capture all the inputs the user provides

into a database and later convert them into valuable training data.
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CONCLUSION

The research presents a human-in-the-loop classification system for scanned admin-

istrative multi-page documents related to real estate. We began by exploring the

company’s dataset to understand the nature of the documents and the features re-

quired to be extracted and create a robust text extraction plan discussed in Section

3.2. The structure of administrative documents in real estate is highly dynamic and

depends majorly on the way condo corporations curate them. The document’s con-

tent can be completely different regardless of the same class. The only way to define

a class for a document is by looking for relevant pages. The relevant pages can be

anywhere in the file, and only a domain expert can identify those pages. Therefore,

the role of a domain expert is crucial when dealing with real estate administrative

documents or something similar.

The domain-specific data behaves differently from the general text used in multiple

types of research related to the downstream tasks in NLP. We have seen state-of-the-

art results using the transfer learning approach. Still, our experiments show that

the classical model with frequency-driven embedding works well for limited domain-

specific data. Our experiments show a difference of almost 10% between the SOTA

deep language model and the best-performing classical model, as shown in table

5.4. This vast difference indicates that the text data with limited vocabulary and

overlapping context requires a classical model that accounts for the composition of

the text over the context. The context of the text plays an essential part in training

the transformer models, which was missing from the text. To improve the performance

of the transformer model, a methodology to capture long-range context is required.

When using a user-centric framework, such as HITL, it is essential to make the

model output explainable with the proper interaction and visualization. The primary

need for a HITL system is getting users’ feedback to improve the underlying model.

40
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Creating an engaging system where users can annotate without feeling an extra bur-

den becomes essential. In our case, we tried two levels of annotations, page-level,

and document-level, for our user study involving the real estate domain expert. The

document-level annotation is straightforward, where the user has to provide a correct

label for the misclassified documents. The page-level annotation is more exerting for

the user as it asks to select the page’s relevance and change its labels. Comparing

the usability score, such as NASA TLX and SUS, with quantitative trends (Fig. 5.2)

between the two systems shows a clear trade-off between UX and performance. A

non-technical business user prefers an easy system with the moderate performance

to a complex system with high performance. Hence, for the user-centric application,

the UX components such as placement, the number of clicks, and the direction to use

plays significant role in usability.

The software usability survey evaluates a tool based on multiple factors and pro-

vides insight from the user’s perspective. If we look at the overall score of SUS in

Table 5.1, the proposed methodology has an upper edge compared to the baselines.

But if individual factors are evaluated, the proposed method shows weak performance

in critical areas. The user strongly agrees that the system is unnecessarily complex

compared to baseline 1, where the user annotates the misclassified document. This

could be possible because the number of annotations increased rapidly when using a

page-level system. The only areas where the tool shows an edge over the baselines

are ease of use, system integration, and the confidence provided by the tool to the

user. The granularity of the annotation and complete control over the training data

is the primary reason for these results.
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[12] Albert Gordo, Marçal Rusiñol, Dimosthenis Karatzas, and Andrew D. Bagdanov.
Document classification and page stream segmentation for digital mailroom ap-
plications. In 2013 12th International Conference on Document Analysis and
Recognition, pages 621–625, Aug 2013.

[13] Abhijit Guha, Abdulrahman Alahmadi, Debabrata Samanta, Mohammad Zubair
Khan, and Ahmed H. Alahmadi. A Multi-Modal Approach to Digital Document
Stream Segmentation for Title Insurance Domain. IEEE Access, 10:11341–11353,
2022. 2 citations (Crossref) [2022-08-21] Conference Name: IEEE Access.

[14] Sandra G. Hart and Lowell E. Staveland. Development of nasa-tlx (task load
index): Results of empirical and theoretical research. In Peter A. Hancock and
Najmedin Meshkati, editors, Human Mental Workload, volume 52 of Advances
in Psychology, pages 139–183. North-Holland, 1988.

[15] Camille Jandot, Patrice Simard, Max Chickering, David Grangier, and Jina
Suh. Interactive semantic featuring for text classification. arXiv preprint
arXiv:1606.07545, 2016.

[16] Twin Karmakharm, Nikolaos Aletras, and Kalina Bontcheva. Journalist-in-the-
loop: Continuous learning as a service for rumour analysis. In Proceedings of the
2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP): System Demonstrations, pages 115–120, Hong Kong, China, Novem-
ber 2019. Association for Computational Linguistics.

[17] Nikita Kitaev,  Lukasz Kaiser, and Anselm Levskaya. Reformer: The efficient
transformer. arXiv preprint arXiv:2001.04451, 2020.

[18] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[19] Antonio Mucherino, Petraq J. Papajorgji, and Panos M. Pardalos. k-Nearest
Neighbor Classification, pages 83–106. Springer New York, New York, NY, 2009.
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[30] Shuo Xu. Bayesian näıve bayes classifiers to text classification. Journal of In-
formation Science, 44(1):48–59, 2018.

[31] Manzil Zaheer, Guru Guruganesh, Avinava Dubey, Joshua Ainslie, Chris Alberti,
Santiago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and
Amr Ahmed. Big Bird: Transformers for Longer Sequences. arXiv:2007.14062
[cs, stat], January 2021. arXiv: 2007.14062.



45

[32] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model:
A statistical framework. International Journal of Machine Learning and Cyber-
netics, 1:43–52, 12 2010.



Appendix A

MODEL SETUP

This section shows the setup of the models used in the experiments.

Models Setup
Support Vector Machine SVC(C=15, decision function shape=’ovo’, kernel=’linear’)
Random Forest RandomForestClassifier(n estimators=20, random state=42)
XGBoost XGBClassifier()
Naive Bayes GaussianNB()
TFIDF TfidfVectorizer(max features = 10000)
SBERT model = SentenceTransformer(’sentence-transformers/bert-base-nli-mean-tokens’)
doc2vec model = Doc2Vec(documents, vector size=50, window=2, min count=1, workers=4)

BERT

Batch Size = 8,
No. of Epochs = 20,
Number of trainable Parameters = 109490699,
attention probs dropout prob”: 0.1,
hidden act = ”gelu”,
hidden dropout prob = 0.1,
hidden size = 768,
Pretrained Model = bert-base-uncased

Longformer

Batch Size = 4,
No. of Epochs = 10,
Number of trainable Parameters = 148667915,
attention probs dropout prob”: 0.1,
hidden act = ”gelu”,
hidden dropout prob = 0.1,
hidden size = 768,
Pretrained Model = allenai/longformer-base-4096

Table A.1: This table contains the setup of each model used in the experiments. The
Setup column contains the required information about the model to replicate the
results using the company’s dataset.
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