
A WASSERSTEIN GAN BASED FRAMEWORK FOR
ADVERSARIAL ATTACKS AGAINST INTRUSION DETECTION

SYSTEMS

by

Fangda Cui

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2022

© Copyright by Fangda Cui, 2022

To my great parents, for all the love, support, and encouragement you

have provided, and for inspiring me to be a better person!

ii

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Intrusion Detection . 1

1.2 Adversarial Attacks . 3

1.3 Overview of Wasserstein GAN Based Framework 4

1.4 Thesis Outline . 5

Chapter 2 Related Work . 6

2.1 Intrusion Detection Systems: From Signature to Deep Learning . . . 6

2.2 Generative Adversarial Network . 9
2.2.1 Wasserstein GAN . 11
2.2.2 Conditional GAN . 12

2.3 Adversarial Attacks against Intrusion Detection Systems 13
2.3.1 White-box Adversarial Attacks 13
2.3.2 Black-box Adversarial Attacks Using GAN 14

Chapter 3 Wasserstein GAN Based Adversarial Attacks 16

3.1 Selected Schemes for IDS . 16
3.1.1 Machine Learning . 16
3.1.2 Multilayer Perceptron . 17
3.1.3 Convolutional Neural Network 17
3.1.4 Recurrent Neural Network . 19

3.2 Wasserstein GAN Based Framework 21

3.3 Conditional Wasserstein GAN Based Framework 24
3.3.1 Input Conditions . 24
3.3.2 From WGAN to CWGAN . 26

iii

Chapter 4 Performance Analysis . 29

4.1 CICIDS2017 Dataset . 29
4.1.1 Dataset Selection . 29
4.1.2 Dataset Description . 30
4.1.3 Data Preprocessing . 31
4.1.4 Functional Features . 32

4.2 Experimental Setup and Evaluation Metrics 32

4.3 Experimental Results . 34
4.3.1 Performance of Selected IDS Schemes 34
4.3.2 Performance of Wasserstein GAN Based Framework 36
4.3.3 Performance of Conditional Wasserstein GAN Based Framework 41
4.3.4 Results Summary and Discussion 50

Chapter 5 Conclusion and Future Work 53

5.1 Conclusion . 53

5.2 Future Work . 53
5.2.1 Other Deep-generative algorithms 53
5.2.2 Dissimilarity Measurement . 56
5.2.3 Federated Learning and GAN 57
5.2.4 GAN-based Data Synthesis for IDS training 59

Bibliography . 60

iv

List of Tables

3.1 Description of the architecture of the Multilayer Perceptron for
the IDS. 18

3.2 Description of the architecture of the Convolutional Neural Net-
work for the IDS. 20

3.3 Description of the architecture of the Recurrent Neural Network
for the IDS. 20

3.4 Architecture of the generator and discriminator in the WGAN
framework. 23

3.5 Architecture of the generator and the discriminator in the con-
ditional WGAN framework . 27

4.1 Type of attack traffic records in CICIDS2017. 31

4.2 Characteristic features and corresponding attack types for CI-
CIDS2017. 33

4.3 Experimental results for selected ML/DL algorithms with CI-
CIDS2017 dataset. 38

4.4 The EIR(%) of the IDSs for adversarial samples of DoS Hulk,
DDoS, DoS GoldenEye, and PortScan generated by WGAN. . . 41

4.5 The EIR(%) of the IDSs for different types of adversarial samples
generated by the WGAN and CWGAN. 51

v

List of Figures

2.1 A schematic illustration of a conditional discriminator and a
conditional generator . 12

3.1 A schematic illustration of a Multilayer Perceptron Neural Net-
work. 18

3.2 A schematic illustration of a one-dimensional Convolutional
Neural Network. 19

3.3 A schematic illustration of a Recurrent Neural Network. . . . 21

3.4 A schematic illustration of the proposedWGAN-based framework. 22

3.5 An example of embedded vectors for class labels 26

3.6 A schematic illustration of the CWGAN-based framework . . . 26

4.1 An illustration of the network infrastructures used to generate
the CICIDS2017 dataset . 30

4.2 Evolution of average loss versus epoch for MLP, RNN, and CNN. 35

4.3 Evolution of test accuracy versus epoch for MLP, RNN, and
CNN. 36

4.4 Confusion matrix for the selected ML/DL algorithms. 37

4.5 The detection rate of the selected ML/DL algorithms with the
original and adversarial datasets for DoS Hulk. 39

4.6 The detection rate of the selected ML/DL algorithms with the
original and adversarial dataset for DDoS. 40

4.7 The detection rate of the selected ML/DL algorithms with the
original and adversarial dataset for DoS GoldenEye. 41

4.8 The detection rate of the selected ML/DL algorithms with the
original and adversarial datasets for PortScan. 42

4.9 The detection rate of the Naive Bayes algorithm with the origi-
nal dataset and two adversarial datasets generated by theWGAN
and the CWGAN . 43

vi

4.10 The detection rate (accuracy) of the Logistic Regression algo-
rithm with the original dataset and two adversarial datasets
generated by the WGAN and the CWGAN 44

4.11 The detection rate of the Decision Tree algorithm with the
original dataset and two adversarial datasets generated by the
WGAN and the CWGAN . 45

4.12 The detection rate of the Random Forest algorithm with the
original dataset and two adversarial datasets generated by the
WGAN and the CWGAN . 46

4.13 The detection rate of the Gradient Boosting algorithm with the
original dataset and two adversarial datasets generated by the
WGAN and the CWGAN . 47

4.14 The detection rate of the Multilayer Perceptron with the origi-
nal dataset and two adversarial datasets generated by theWGAN
and the CWGAN . 48

4.15 The detection rate of the Recurrent Neural Network with the
original dataset and two adversarial datasets generated by the
WGAN and the CWGAN . 49

4.16 The detection rate of the Convolutional Neural Network with
the original dataset and two adversarial datasets generated by
the WGAN and the CWGAN 50

5.1 A schematic illustration of a Long Short Memory Term network
used as a generator . 54

5.2 A schematic illustration of a variational Autoencoder 55

5.3 A schematic illustration of the Earth Mover Distance between
two one-dimensional distribution 55

5.4 The absolute difference between correlation matrices computed
on real and synthetic datasets 56

5.5 A schematic illustration of the federated learning technique. . 58

vii

Abstract

Intrusion detection systems (IDSs) detect malicious activities in network flows and

is essential for modern communication networks. Machine learning (ML) and deep

learning (DL) have been employed to construct IDSs. However, the reliability of

ML/DL-based IDSs is questionable under adversarial attacks. We propose a frame-

work based on Wasserstein generative adversarial networks (WGANs) to generate

adversarial traffic to evade ML/DL-based IDSs. The proposed framework involves

restricted modification operations and the output of the framework is carefully regu-

lated, preserving the functionality of the malicious attack. We also present a variant of

the proposed framework based on conditional WGANs. The variant framework sim-

plifies the training procedure without losing attack capability. Eight ML/DL-based

IDSs are constructed, and their robustness against adversarial attacks is tested using

the frameworks. The results show that the framework and its variant can generate

adversaries effectively, and the Convolutional Neural Network has the best robustness

under adversarial attacks.

viii

Acknowledgements

Thank you, Dr. Qiang Ye, for your time and your guidance. Thank you, Baorui

Jia, for helping me get through the difficulties here in Halifax. Thank you to all my

colleagues and teammates who devoted a great deal of their time and energy to me.

ix

Chapter 1

Introduction

1.1 Intrusion Detection

Network intrusion detection is a significant task for cyber security. The key purpose

of a network intrusion detection is to monitor network traffic to detect and report

cyber security problems such as malware, denial of service (DoS), and port scans. An

intrusion detection system (IDS) is usually a computer software that has the required

detection functionalities. With the rapid growth in network traffic and cyber attacks

on the Internet, IDSs have become essential tools to detect and defend against network

attacks. The IDSs aim to monitor the network flows and identify malicious traffic by

analyzing the features extracted from these flows. The IDSs are expected to classify

a traffic flow as legitimate or malicious with high accuracy and a low false positive

rate.

The first-generation IDSs are signature-based [40]. The signatures are usually

characteristic features of known types of attacks and can be found by analyzing

detected attack traffic flows. The signature-based IDSs performed their detection

tasks based on such pre-defined signatures. In other words, any monitored network

traffic flows will be treated as malicious if the pre-defined signatures are spotted

in them. However, the signature-based IDSs require frequent updates to deal with

newly emerged attacks as they are built upon the pre-known attack information. Any

out-of-date information can prevent signature-based IDSs from detecting such new

attacks (i.e., zero-day attacks).

Anomaly-based IDSs attempt to learn the normal behaviours of monitored net-

works and classify monitored system activities as normal or anomalous. Any observed

network activities that fall out of normal system operations will be treated as anoma-

lous/malicious and trigger the alert. Anomaly-based IDSs perform the detection

task based on heuristics or rules instead of traffic patterns or pre-defined signatures,

which is opposed to signature-based IDSs. As anomaly-based IDSs do not rely on

1

2

pre-known knowledge of cyber attacks, they have great potential on detecting new

types of attacks in a system and also do not require frequent maintenance. The major

shortcoming of anomaly-based IDSs is that it usually requires a large amount of data

for them to thoroughly learn the normal behaviors of the monitored network.

Hybrid IDSs were developed to overcome the drawbacks of signature-based IDSs

and anomaly-based IDSs. A hybrid IDS is usually built up by incorporating a

signature-based IDS and an anomaly-based IDS into a unifying system. In the sys-

tem, two IDSs can be deployed in parallel, and the final prediction of the hybrid

system is decided by weighing the result from each IDS. The weighting strategy can

be updated periodically based on the performance of the hybrid system. A hybrid

IDS generally outperforms the sub-IDSs that compose it. A well-established hybrid

IDS is good at detecting both known and unknown cyber-attacks and meanwhile

can avoid a high false positive rate. Though hybrid IDSs show obvious advantages,

compared to signature-based IDSs and anomaly-based IDSs, it takes a lot more effort

to construct it. It is a challenging task to get IDSs with different technologies to

inter-operate successfully and efficiently. Therefore, anomaly-based IDSs are still the

most widely studied ones in the community.

Due to recent development and growths in machine learning (ML) and deep learn-

ing (DL) techniques, a large number of different ML/DL algorithms have been em-

ployed to address various types of classification tasks. They have shown high effi-

ciency and outstanding performance in categorizing and classification within a short

amount of time. A similar trend has been found in the cybersecurity field such as

intrusion and malware detection. As a typical classification task, ML/DL algorithms

have been used to build up anomaly-based IDSs due to their simplicity, efficiency,

and outstanding performance [53]. However, these astonishing ML/DL algorithms

are not flawless. It has been proved in a recent work that the ML/DL algorithms

expose vulnerability when subjected to adversarial attacks, in which well-designed

adversarial inputs lead to the misclassification of ten different ML/DL algorithms [9].

A fundamental assumption in ML/DL-based systems is that the distribution followed

by the training data set will also be encountered at inference time, which may not

be the case in the real world. Adversarial attacks utilize this drawback and employ

search and optimization algorithms to generate adversarial samples (e.g., by adding

3

perturbations on original samples), which can compromise the performance of the

ML/DL algorithms.

1.2 Adversarial Attacks

Adversarial attack refers to a type of attack methodology, in which perturbations are

added to original samples to generate adversarial samples to deceive trained ML/DL

algorithms, leading to a high probability of misclassification. Adversarial attacks have

been widely investigated in the image processing field. For example, after adding

perturbations on image samples, generated new images can flip the results of ML/DL

algorithms and meanwhile retain their visualization for human eyes [37]. In recent

years, adversarial attacks have been successfully used on tabular data [10] as well,

and the results are also promising compared to attack results on image data sets.

Many adversarial attack methods have to know detailed information about an

ML/DL scheme (i.e., algorithms, architectures, parameters, etc.) to launch attack by

generating adversarial samples. Such attack methods are referred to as “white-box”

adversarial methods. For instance, the well-known Fast Gradient Signed Method

(FGSM) makes use of gradients of an artificial neural network to create adversarial

samples [21]. The FGSM examines the gradients of the loss with respect to the input

sample to create a new sample that maximizes the targeted loss function. Without

knowing the architecture and parameters of the artificial neural network, the gradi-

ents of the loss can not be calculated and monitored (i.e., doing a back-propagation),

and hence, the FGSM is not able to be used for launching adversarial attacks under

such scenarios. Hence, the “white-box” methods are usually adopted for theoreti-

cal study and provide useful knowledge and benchmark information regarding the

adversarial attacks on IDSs. In real-world cyber-attack scenarios, the detailed infor-

mation of the targeted ML/DL IDS is usually unknown to attackers, which is like a

“black box”. Therefore, the adversarial attack methods which can deceive ML/DL

algorithms without knowing their detailed information are usually called ‘black-box’

adversarial methods. Black-box adversarial methods are more useful and practical

when studying real-world cyber-attack scenarios.

Generative adversarial networks (GANs) [20] belong to a family of deep genera-

tive algorithms and are good potential candidates for launching black-box adversarial

4

attacks. The core idea of GANs is to have two players, namely a generator and a

discriminator, interactively play against each other. The task of the generator is to

generate samples that can best approximate the training set, whereas the goal of

the discriminator is to distinguish the generated samples from the original training

samples. In addition, by using the predicted labels from IDSs (ML/DL-based) as

benchmarks, the discriminator can further mimic the performance of IDSs without

knowing their detailed information. Therefore, the generator can finally be trained to

deceive the IDSs by getting feedback from the discriminator. This is how black-box

adversarial attacks can be launched by GANs. Wasserstein generative adversarial

networks (WGANs) are an improved version of the original (vanilla) GAN, which

overcomes the shortcomings of the original GANs, such as mode collapse and dif-

ficulty of convergence, by introducing the Wasserstein loss function [57]. Another

improved derivative of GANs is called conditional generative adversarial networks

(CGANs) [43]. The CGANs have the capability of generating adversarial samples

of multiple classes simultaneously by introducing conditions or label embeddings.

CGANs significantly improve the efficiency of GANs as there is no need to retrain

GANs (both generator and discriminator) for different classes of input samples.

1.3 Overview of Wasserstein GAN Based Framework

In the present study, we first build up a WGAN-based framework to compromise

the performance of the ML/DL-based IDSs by generating adversarial samples. Eight

ML/DL algorithms are selected for the present study, namely, Naive Bayes, Logis-

tic Regression, Decision Tree, Random Forest, Gradient Boosting, Multi-layer Per-

ceptron, Recurrent Neural Network and Convolutional Neural Network. Instead of

building up and evaluating the framework in a real-time network system, we elect to

use the recently published CICIDS2017 [49] dataset for the sake of efficiency and ef-

fectiveness. Four majority types of attack records from the dataset, DDoS, Dos Hulk,

DoS GodlenEye, and Portscan are used for the present study. Furthermore, the

designed WGAN framework has restricted modification mechanisms and output reg-

ulations which enable our WGAN to compromise the performance of ML/DL-based

IDSs and meanwhile preserve functionalities of attack records. The performance of

the proposed framework is tested using four different attack traffic records on eight

5

widely used IDSs. Our results indicate that the generated adversarial samples of

attack records by the WGAN can significantly reduce the detection accuracy of the

studied IDSs. Thereafter, we further improve the proposed WGAN framework and

alternate it into a CWGAN framework. The designed CWGAN framework can be

trained and generate adversarial samples of four different attack types simultaneously.

The performance of the CWGAN framework is generally consistent with the WGAN

framework, which reflects the success of the CWGAN method.

1.4 Thesis Outline

The rest of the thesis is organized in the following manner. In the next chapter,

we present the related works regarding ML/DL-based IDSs, generative adversarial

network (GAN) and two improved versions of the vanilla GAN (e.g., WGAN and

CGAN). We also discuss published literature related to adversarial attacks on IDSs

in Chapter II, including both white-box and black-box adversarial attack methods.

Chapter III introduces the details of the WGAN-based attack methodology, including

the fundamental framework, the architecture of the generator and discriminator, and

the details of the adopted algorithm. In addition, it is described in this chapter how

we alternate our WGAN-based framework into a more advanced CWGAN-based one.

Chapter IV first provides detailed information on how we test the proposed frame-

work, including the description of the dataset, how we perform the data preprocessing,

the selected features for modification, and the experimental setup and evaluation met-

rics. After this information is provided, the experimental results for both WGAN and

CWGAN-based frameworks are shown in Chapter IV. In the last chapter, the thesis

is concluded with the current milestone, and several further research directions are

proposed and discussed.

Chapter 2

Related Work

In this chapter, we first discuss the published work related to IDSs, including both

signature-based and anomaly-based ones. Then we introduce the background knowl-

edge for generative adversarial network (GAN) and their improved derivatives. Lastly,

the published literature regarding cybersecurity-related adversarial attacks will be re-

viewed. Note that as IDSs, ML/DL algorithms, and adversarial attacks are all popular

research topics, more than thousands of related research articles have been published

so far. Thus, it is unfeasible to review all of them and only representative ones will

be introduced.

2.1 Intrusion Detection Systems: From Signature to Deep Learning

IDSs are software applications that monitor network traffic flows to recognize harmful

ones. It then issues alerts to administrators if malicious traffic flows in the system are

determined and detected. IDSs can be divided into two types based on the detection

strategy used: Signature-based IDSs and Anomaly-based IDSs.

The signature-based IDS has a long history and the first published article can

date back to the late 1980s by D.E. Denning [13]. In Denning’s work, a real-time

signature-based IDS was developed using abnormal patterns obtained by monitoring

the system’s records. The designed IDS is independent of any particular system and

application environment. Denning’s work was used as a reference for many later

publications. Since then, there are a large number of researchers that published on

signature-based IDSs, such as Ilgun [23], Yang et al. [60], and Uddin et al. [54],

among many others. Due to the development of ML/DL algorithms and the obvious

shortcomings of signature-based IDSs (i.e., need frequent updates, and are fragile

when subjected to zero-day attacks), the study of signature-based IDSs gradually

decreased in the last two decades. However, as the most classical type of IDS, it is

still used and studied by some researchers these days. Ioulianou et al. [24] developed a

6

7

signature-based IDS for the Internet of Things (IoT). The IDS was tested with Denial

of Service (DoS) attacks using the Cooja simulator. Also, Li et al. [32] designed

a signature-based IDS based on collaborative blockchain, and the proposed system

performed well in different environments and adversarial scenarios. The contribution

of signature-based IDSs to cyber-security is not negligible.

Anomaly-based IDSs have become more popular in the last decade due to their

outstanding performance and unique advantages [19]. Thanks to the remarkable

capability and continuous development of ML/DL algorithms, they have been widely

adopted to build anomaly-based IDSs and have achieved initial potential results [53].

In early research, machine learning algorithms, either supervised or unsupervised

ones, are usually used by researchers due to their high availability and low computing

complexity. For instance, Eskin et al. [18] developed a geometric framework for

unsupervised anomaly-based detection. In the geometric framework, data features

are mapped to a feature space (usually a vector space) using pre-defined kernels, and

anomalies are detected by determining which data points lie in spare regions of the

feature space. The proposed geometric framework was tested using the KDD CUP

1999 [51] dataset with three unsupervised machine learning algorithms: clustering,

K-nearest neighbour, and one-class support vector machine. With their framework,

the detection rate can reach up to 98% with a false positive rate that is less than

10%. Jiang et al. [25] developed a cluster-based method for intrusion detection using

improved nearest-neighbour algorithms. Their method outperformed the framework

proposed by Eskin et al. [18]. In addition, they analyzed the time complexity of

the method and showed their algorithm is linear with the size of the dataset and

the number of attributes. These anomaly-based IDSs with unsupervised learning

algorithms are very useful when handling unlabeled data sets.

When it comes to anomaly-based IDSs using supervised learning algorithms, Yang

and Li [33] developed an active learning framework for supervised network intrusion

detection using the Traductive Confidence Machines for K-Nearest Neighbors (TCM-

KNN) algorithm. They also adopted KDD CUP 1999 data set to test the framework

and the detection rate of the TCM-KNN algorithms can reach up to 99% with a

false positive rate that was smaller than 0.5%. Meng [42] examined the performance

of the Support Vector Machine (SVM) and Decision Tree (DT) on network intrusion

8

detection. Instead of using the KDD CUP 1999 data set as a whole, Ment reported the

performance of ML algorithms on each subtype of the attack records in the dataset,

namely, Probe, Denial of Service (DoS), User to Root (U2R), and Remote to Local

(R2L). The detection rate of the SVM and DT algorithms is higher than 95% except

for the U2R attack. The poor performance of the ML algorithms on the U2R attack

is due to the lack of sufficient U2R records in the data set. Choudhury et al. [11]

compared the performance of a series of ML algorithms, such as Näıve Bayesian (NB),

Logistic Regression (LR), and Random Forest (RF), on network intrusion detection

using NSL-KDD dataset [51], which is an improved version of the KDD CUP 1999.

Their investigation shows that most of the ML algorithms can provide promised

results on anomaly-based intrusion detection.

In recent years, with the rapid development of computing hardware, deep learning

algorithms have grown rapidly and started to be used in the intrusion detection

domain. Ding and Zhai [15] developed a Convolutional Neural Network (CNN) for

anomaly-based intrusion detection. In their CNN, three one-dimension convolutional

layers were employed to extract features from original data records, and subsequently,

the extracted features are sent to several dense layers for classification. The output

layer of the CNN is a softmax function considering multiple attack classes in the NSL-

KDD Dataset. The designed CNN was compared with four other ML/DL algorithms,

namely, Random Forest, Support Vector Machine, Artificial Neural Network, and

Long Short Term Memory. Their results showed that the designed CNN outperformed

other algorithms on both the detection accuracy and the false positive rate. Tang

et al. [50] developed a deep Recurrent Neural Network (RNN) for an anomaly-based

intrusion detection system used in software-defined networks (SDNs). Tang et al.

built up the RNN with Gate Recurrent Units (GRUs) to form a GRU-RNN. The

proposed GRU-RNN outperformed the vanilla RNN and regular deep neural networks

(DNN), and the detection accuracy reached up to 89% for the NSL-KDD dataset with

only six raw features. In addition, Tang et al. performed analysis using Area under

the Receiver Operating Characteristics (AUROC) curve, and the AUROC of GRU-

RNN is equal to 0.90, which is higher than 0.80 and 0.50 for DNN and vanilla RNN,

respectively. These DL algorithms with ML algorithms together improve the accuracy

and simplify the intrusion detection problem in network systems.

9

2.2 Generative Adversarial Network

Generative adversarial network (GAN), which is first proposed by Goodfellow et

al. [20], is a type of deep learning-based generative algorithm. GAN aims to produce

adversarial samples by using a given dataset, so that generated samples are as similar

to input ones. There are two deep learning-based sub-components which compete

against each other in a GAN, namely, the generator G and the discriminator D. The

task of the generator is to create adversarial samples which are expected to be as real

as input data. Whereas the discriminator, as the adversary of the generator, tries to

distinguish the adversarial samples (fake data) from the input data (real data) [8]. In

the training process of a GAN, the two sub-components are trained simultaneously

and play against each other based on the zero-sum game theory. The generator wins

the game If the output of the generator can successfully deceive the discriminator,

and loses the game when the discriminator identifies the produced fake samples. Both

of the components update their parameters based on the competing results of the

current round and intend to improve their operation in the next round of the game

(training). Ideally, a GAN reaches its convergence state (e.g., the zero-sum game

ends) when no sub-component can win over the other one. In the convergence state,

the generator can produce adversarial samples that result in uncertain classification

(fifty-fifth results like flip the coins) of the discriminator. Subsequently, the generator

can operate separately without the discriminator to generate adversarial samples.

Based on Goodfellow et al. [20], the loss function of the generator is given by:

min
θ

LG(θ, ϕ) = Ez∈pZ(z)[log(1−Dϕ(Gθ(z)))] (2.1)

and the loss function of the discriminator is given as:

max
ϕ

LD(θ, ϕ) = Ex∈pX(x)[logDϕ(x)] + Ez∈pZ(z)[log(1−Dϕ(Gθ(z)))] (2.2)

In Eqs. (2.1) and (2.2), the θ and ϕ represent the parameters of the generator and

discriminator, respectively, which are supposed to be optimized through training. The

Z is the latent space containing noise vectors z (e.g., z ∈ Z) for adversarial sample

generation. The PZ(z) is the distribution over the latent space. In addition, the X

stands for the data space that includes all input samples (e.g., x ∈ X), and PX(x)

denotes the distribution of the real samples in the data space. It is noticed in Eqs.

10

(2.1) and (2.2) that both generator G and discriminator D rely on their counterpart’s

feedback or output to update their parameters. Therefore, the two equations can

be merged into a general loss function that describes the optimization process of the

vanilla GAN, given by:

min
θ

max
ϕ

LGAN(θ, ϕ) = Ex∈pX(x)[logDθ(x)] + Ez∈pZ(z)[log(1−Dϕ(Gθ(z)))] (2.3)

Eq. (2.3) indicates that the optimization of a GAN is a mini-max task between the

generator G and the discriminator D. For the vanilla GAN (using Eq. (2.3)), the

training is performed by mapping a pre-defined latent space (z ∈ Z) to a space of

real/input samples (x ∈ X) for distinguishing. On the one hand, theG has to generate

a distribution for z ∈ pZ (z) corresponding to x ∈ X. After all the real/input samples

(x ∈ X) running through the GAN (e.g., after one training epoch), the distribution

of the generated samples given by G can be computed and evaluated (i.e., comparing

with input samples). Note that the distribution pZ(z) of the latent space is usually

designed with a standard Gaussian or uniform [0, 1] distribution. On the other hand,

the discriminator D works as an adversary of the generator G to distinguish the input

samples (x ∈ X) from the generated ones Gθ (z) produced by the generator G. The

discriminatorD is trained to give predictions close to 1 for the real/input samples, but

nearly 0 for the case of the fake/generated samples (like an output of an ideal binary

classifier). This means that to optimize the loss function the discriminator intends to

maximize the term Dϕ(x) but minimize the term Dϕ(Gθ(z)). Note that the task of

minimizing the term Dϕ(Gθ(z)) is equivalent to maximizing the term (1−Dϕ(Gθ(z)).

Furthermore, to fool the discriminator D by inducing labels from the input samples,

the term Dϕ(Gθ(z)) needs to increase to 1 to maximize Dϕ(Gθ(z)), which, in other

words, is the same as minimizing (1−Dϕ(Gθ(z))).

In a word, the generator and discriminator are in opposition during the training,

while D tries to maximize the loss function (e.g., distinct all fake samples from the

real data), G tries to minimize the loss function (e.g., generate samples as real as

possible to completely fool D). The D and G stop updating their parameters when

the GAN reaches the equilibrium state between the two sub-components, which is

referred to as the Nash equilibrium.

11

2.2.1 Wasserstein GAN

Though GAN has shown great success in many fields such as image processing [22]

and tabular data generation [59], it is not an easy task to optimize a GAN [57].

There are several reported problems which make the training process of GANs slow

and unstable. One most common failure situations in GAN training is called mode

collapse [52]. When optimizing the discriminator and generator, one possibility is that

the generator becomes much stronger and can completely fool the discriminator with

the adversarial samples. Under such situations, the discriminator is no longer able

to provide any useful feedback to the generator (see Equation 2.1), and hence, the

generator stops updating its parameters to capture the complicated data distribution

of the original input, resulting in extremely low diversity of the generated adversar-

ial samples. On the contrary, sometimes the discriminator can also overwhelmingly

dominate the training process and distinguish all the produced samples (fake) from

the input ones (real). In these cases, the gradient descent value of the loss function

(the feedback to the generator) vanishes, and the generator can learn nothing from

the discriminator to improve its performance on adversarial sample generations. Sub-

sequently, the training process gets stuck, and the game will never end. In a word,

it is very tough to train a GAN: the GAN may never converge and mode collapse

occurs frequently.

To overcome the shortcomings of the vanilla (original) GAN, Arjovsky et al. de-

signed Wasserstein GAN (WGAN) to improve the GAN training process [4]. In a

WGAN, the original log-based loss function is replaced with a new loss function de-

rived from the Wasserstein distance. Also, instead of classifying the data as real (e.g.,

input data) or fake (e.g., generated data), the new discriminator provides a score to

evaluate the quality of the data. This score indicates how realistic the generated data

is with respect to the input data distribution. The authors named the new discrimi-

nator critic with the responsibility of calculating the Wasserstein metric between the

input data distribution and the adversarial data distribution. The loss function of

the Wasserstein GAN will be introduced in the next section with the details of the

proposed WGAN-based framework.

12

2.2.2 Conditional GAN

Being first introduced by Mirza and Osindero [43], the conditional generative ad-

versarial network (CGAN) is the conditional version of the vanilla GAN. Mirza and

Osindero delineate the problem using the famous MINST digit image dataset [29].

With the original GAN, they are not able to control what specific images (hand-

written digits) the generator will produce. In other words, there is no way that they

request the generator to provide a particular digit number (e.g., 0 to 9). The de-

signed CGAN successfully solves this problem by adding input conditions to both the

generator and discriminator. A schematic illustration of a conditional generator and

a conditional discriminator is shown in Figure 2.1. The vector x in Figure 2.1 repre-

sents the features of the input data, and the vector y denotes the vector containing

condition information. The input conditions y are usually based on but are not lim-

ited to class labels (i.e., one-hot encoded vectors or word embedding vectors). These

information vectors are usually concatenated with the original input data features x,

and then they are fed to the generator and discriminator for training.

Figure 2.1: A schematic illustration of a conditional discriminator and a conditional
generator [43].

13

Mirza and Osindero show that for a well-optimized CGAN the generator can suc-

cessfully produce MINST digit samples based on the provided conditional class labels.

In addition, they found out that the CGAN could be used to learn a multi-modal

distribution, and provided preliminary results of an application to image tagging in

which it is demonstrated how the CGAN method can generate descriptive tags which

are not part of labels from the training data set.

Note that adding condition information to the generator and discriminator of a

GAN does not alternate its loss functions. Hence, such information can not just be

added to the vanilla GAN but also to any kind of GAN derivatives. For instance,

Zheng et al. [62] developed a conditional Wasserstein generative adversarial network

(CWGAN) to improve the classification of imbalanced data with generated data sam-

ples. Lin et al. [34] designed a conditional dual GAN for image-to-image translation.

Both of the aforementioned two works provide promised results.

2.3 Adversarial Attacks against Intrusion Detection Systems

Despite certain successes, ML/DL-based IDS methods have been proven to be vul-

nerable to adversarial attacks. In recent years, investigations of adversarial attacks

on IDSs started to emerge. Adversarial attacks can be categorized into two types,

namely, white-box adversarial attacks and black-box adversarial attacks, based on

the attackers’ knowledge regarding the targeted IDS. Regarding white-box attacks,

the attacker has access to all the detailed information of the IDS (i.e., algorithms,

architecture, and internal parameters), while in black-box attacks, the attacker has

no access to such information at all. In real-world scenarios of network attacks, the

information of IDSs is usually unknown to attackers. Thus, though white-box attacks

can be more efficient as attackers can launch the attack by analyzing the weakness

of the targeted IDS, black-box attack methodologies are more useful and practical in

real-world attacks.

2.3.1 White-box Adversarial Attacks

Rigaki and Elragel [47] employed Jacobian-based Saliency Map Attack (JSMA) and

Fast Gradient Sign Methods (FGSM) algorithms to craft adversarial samples with

the famous NSL-KDD dataset [1]. The generated adversarial samples successfully

14

decreased the detection rate (about 20 percents) of several ML-based IDSs, including

Decision Tree, Random Forest, Linear SVM, Voting ensemble, and MLP. Wang [56]

further leveraged multiple adversarial algorithms (including JSMA, FGSM, DeepFool

and CW) to generate adversarial samples. Though the results given by Wang [56] are

more promising by examining the algorithm detection rate with adversarial samples,

they altered all the features of traffic records from the dataset during the sample

generation, which surely impact the original functions of the network traffic. The

aforementioned two studies assumed that the attackers have all knowledge about the

targeted IDSs, which belong to white-box attacks.

2.3.2 Black-box Adversarial Attacks Using GAN

In a real-world cyber attack, the detailed information of IDSs (i.e., detection algo-

rithm and value of parameters) is usually unknown to attackers. Generative ad-

versarial network (GAN) allows attackers to launch black-box attacks (e.g., without

knowing all the information of the targeted IDS) by mimicking the performance of the

targeted IDS using a discriminator. Lin et el. [35] proposed the IDSGAN framework

to generate traffic records for adversarial attack on IDSs, which is capable of mis-

leading the classification of several pre-trained ML/DL-based IDSs. They employed

a WGAN as the backbone of their system and evaluated the framework using the

famous NSL-KDD dataset. However, another recent study by Usama et al. [55] indi-

cated that the IDSGAN framework has changed several functional features of attack

traffic records, and hence, the generated adversarial records may no longer preserve

the original functionalities. Instead of using a WGAN, Usama et al. adopt a basic

(vanilla) GAN to build up their system. In addition, they divide the traffic features

into functional ones and non-functional ones based on different attack types, and

the modification only occurs on non-functional features when generating adversarial

samples, aiming to preserve the traffic functionalities. Phan et al. [17] developed a

framework similar to IDSGAN and performed investigations using a relatively new

dataset CICIDS2017 [49], which contains fourteen different types of attack records.

They performed adversarial attacks on nine ML/DL-based IDSs using the DDoS ma-

licious records in the CICIDS2017. In their results, the detection rate of all studied

IDSs decreased to nearly zero for generated adversarial records. However, Phan et

15

al. did not add regulations on the output layer of the generator of the WGAN, which

may cause unreasonable values in the generated adversarial samples (i.e., extremely

large and negative values).

Chapter 3

Wasserstein GAN Based Adversarial Attacks

In this chapter, we delineate our methodology for adversarial attacks against IDSs.

The framework proposed herein is based on previous studies by Lin et al. [35], Usama

et al. [55], and Phan et al. [17] on the adversarial attack against IDSs. In particu-

lar, compared with the latest publication by Phan et al. [17], there are four major

improvements: First, four different types of attack records are considered instead of

the DDoS solely; second, we provide a more complete list of functional features, and

these functional features are fixed during framework training; third, the output of the

generator is highly regulated to ensure all generated feature values are within reason-

able ranges; last but not least important, we design a variant of the framework based

on conditional GAN, with which the training procedure is significantly simplified but

without reducing the framework capability.

In the first section of this chapter, we discuss the details of the selected ML/DL

algorithms, such as algorithm hyperparameters and neural network architectures.

Then, we present the details of the WGAN-based framework for adversarial attack,

including the scheme, the architecture of the generator and the discriminator, and

the flow of the designed algorithms. Lastly, we show how the proposed WGAN-based

framework can be modified into a conditional one using embedded class labels. The

modified architecture of the conditional GAN and the related flow of the algorithm

will also be given.

3.1 Selected Schemes for IDS

3.1.1 Machine Learning

Five widely used machine learning algorithms were selected in the present study for

constructing the IDSs, namely, Naive Bayes (NB), Logistic Regression (LR), Decision

Tree (DT), Random Forest (RF), and Gradient Boosting (GB). The NB and LR

16

17

are relatively simple algorithms, but they are widely used to get benchmarks for

other algorithms. The DT is a kind of tree-based ML algorithm and has shown good

performance in classification tasks of IDSs [28]. The RF and GB algorithms belong to

tree-based ensemble learners, and they are based on bagging and boosting strategies,

respectively. The RF and GB algorithms could always provide promised results on

challenge classification tasks [46] [41].

3.1.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is one of the most widely used deep-learning al-

gorithms for classifications. A schematic illustration of a general MLP architecture

is shown in Fig. 3.1. There are three types of layers in a general MLP architecture:

input layer, hidden layer, and output layer. The number of neurons in the input

layer depends on the number of features of the input data. The number of neurons

in the output layer depends on classification tasks. Only one neuron is required in

the output layer for binary classification, and for multi-class classification tasks, the

number of neurons in the output layer is equal to the number of class labels in the

dataset. There is no rule of thumb for the number of hidden layers and the number

of neurons in each hidden layer. They have to be adjusted carefully case by case as

too many neurons and hidden layers may cause overfitting whereas too less neurons

and hidden layers may affect the capability of a neural network.

The architecture of the MLP used in the present study is described in Table 3.1.

We used three hidden layers with ReLU activation functions to ensure the neural

network has sufficient non-linearity and capability. The output layer has a Sigmoid

activation function as it is for a binary classification task. The number of neurons in

each layers depends on the dimension of the input features, which is reasonable.

3.1.3 Convolutional Neural Network

Though the Convolutional Neural Network (CNN) was originally developed for image

processing, it has been proven to have a good performance in manipulating tabular

data. A schematic illustration of a one-dimensional CNN is shown in Fig. 3.2.

Similar to image processing, a one-dimensional convolutional layer is responsible to

extract features from the input data features, and then a pooling layer is adopted

18

Figure 3.1: A schematic illustration of a Multilayer Perceptron Neural Network.

to find the characteristic features. Subsequently, the resulting feature channels are

sent to a fully-connected layer for classification. Multiple convolution layers and

fully-connected layers can be used to increase the non-linearity (capability). Note

that though the feature extraction function of convolutional layers can significantly

improve the capability of the neural network, training such a convolutional neural

network is time-consuming. We do not consider the computational feasibility in the

present study, but it is a matter of fact that it is very challenging to deploy a large

CNN on a mobile device.

Table 3.1: Description of the architecture of the Multilayer Perceptron for the IDS.

Operation Input Units Output Units Non-linearity

Linear input dim input dim*2 ReLU
Linear input dim*2 input dim*2 ReLU
Linear input dim*2 input dim//2 ReLU
Linear input dim//2 input dim//2 ReLU
Linear input dim//2 1 Sigmoid

19

Figure 3.2: A schematic illustration of a one-dimensional Convolutional Neural Net-
work.

The Convolutional Neural Network (CNN) used in the present study is described in

Table 3.2. Two one-dimensional convolutional layers (ReLU non-linearity) with max-

pooling functions are employed for feature extraction. The extracted features are then

flattened before feeding into two fully connected (linear) layers for classification. Note

that in image classification tasks the scale of the CNN is much larger than the one

adopted herein [27]. Large-scale CNN were also tried for the present study. However,

the authors did not see obvious improvement after using a large-scale CNN, and the

training speed significantly slowed down. Thus, the authors kept the proposed CNN

in Table 3.2.

3.1.4 Recurrent Neural Network

The Recurrent Neural Network (RNN) is usually to process time sequence data. In

the present study, the input traffic flows are not time sequences, and hence we treat

20

Table 3.2: Description of the architecture of the Convolutional Neural Network for
the IDS.

Operation Parameter Non-linearity

Conv1d (1, 4, kernel = 4) ReLU
Maxpool1d (4) -
Conv1d (4, 8, kernel = 4) ReLU
Maxpool1d (2) -
Flatten - -
Linear (64, 32) ReLU
Linear (32, 1) Sigmoid

them like a pseudo time sequence with only a one-time step. A schematic illustration

of using a RNN for IDSs is shown in Fig. 3.3. The RNN cell is initialized with some

hidden states. First, the preprocessed input features are fed into the RNN cell. With

the hidden states from the previous iteration and the input feature, the RNN cell

will update the hidden states, and then the updated hidden states will be sent to

fully-connected layers for classification.

Table 3.3: Description of the architecture of the Recurrent Neural Network for the
IDS.

Operation Parameter Non-linearity

RNN (input dim, 60) -
Linear (60, 30) ReLU
Linear (30, 1) Sigmoid

The architecture of the RNN used in this thesis is described in Table 3.3. We

adopted a single recurrent layer, and as the input data is not a sequence mode, only

one RNN cell was used in the layer. The details of the RNN cell are fundamental

knowledge in deep learning, and will not be discussed herein. It is proved in a later

section that the RNN can provide promised results on classification.

21

Figure 3.3: A schematic illustration of a Recurrent Neural Network.

3.2 Wasserstein GAN Based Framework

The schematic illustration of the proposed WGAN Framework is delineated in Figure

3.4. There are three major components in the framework, namely, a Generator, a

Discriminator, and an IDS. The IDS is pre-trained and its parameters are fixed during

the whole process. Also, in a real-world network attack, the detailed structure of the

IDS is usually unknown and is like a “black box” for attackers. To evade the detection

of the ”black-box” IDSs, the generator modifies features of the original attack traffic

records to generate adversarial attack traffic records. The modified attack traffic

records along with normal traffic records are then fed to both the discriminator and

the IDS. The discriminator is trained to mimic the performance of the black-box

IDS, and this is realized by obtaining the prediction outcomes (labels) of the input

traffic records from the IDS. Subsequently, the discriminator provides feedback to the

generator, and the generator updates itself based on such feedback.

Though the proposed WGAN framework aims to modify the attack traffic records

to evade the detection of the IDS, such modifications should retain the functionality

of the original attack traffic so that the adversarial attack traffic can still launch

22

Figure 3.4: A schematic illustration of the proposed WGAN-based framework.

network attacks in reality. It is evident that each category of attack has its specific

functional features representing the basic functionality of such a type of attack. It

indicates that, in adversarial record generations, the attack attribute would remain

unaltered if we solely fine-tuned nonfunctional features.

The generator is a crucial component of the WGAN framework as it plays the role

of generating adversarial attack traffic records. A latent noise vector was concatenated

with the non-functional features of the original attack traffic records before feeding

the records into the generator. The noise vector contains a specific number of random

noises following a N(0, 1) distribution. Adding the latent noise vector aims to favour

the generation of the adversarial records and meanwhile provides diversity to the

generated records up to a certain level. The structure of the generator used herein

is a deep neural network composed of five layers, one input layer, one output layer

and three hidden layers. The ReLU activation function was utilized to add the non-

linearity to the first four layers. In addition, mixed activation functions were employed

at the output layer to regulate the generated records. The Sigmoid activation function

was adopted to generate the normalized continuous values (range from 0 to 1), and

the Gumbel Softmax function was used to produce the one-hot encoded features. The

discriminator is also a five-layer deep neural network to classify attack records and

benign ones. For the discriminator, the LeakyReLU function was used to enhance the

23

Table 3.4: Architecture of the generator and discriminator in the WGAN framework.

Operation Input Units Output Units Non-linearity

Generator
Linear input dim input dim//2 ReLU
Linear input dim//2 input dim//2 ReLU
Linear input dim//2 input dim//2 ReLU
Linear input dim//2 input dim//2 ReLU
Linear input dim//2 g output dim Mixed
Discriminator
Linear input dim input dim*2 LeakyReLU
Linear input dim*2 input dim*2 LeakyReLU
Linear input dim*2 input dim*2 LeakyReLU
Linear input dim*2 input dim//2 LeakyReLU
Linear input dim//2 1

non-linearity of the neural network before output. Without knowing the structure and

parameters of the black-box IDS, it is assumed that the real-time classification results

of the IDS can be obtained by querying. Hence, the discriminator can gradually learn

and imitate the performance of the black-box IDS. The details of the structure of the

generator and discriminator are shown in Table 3.4.

For the WGAN framework, the generator and discriminator are trained and opti-

mized alternately. The prediction outcomes of the discriminator provide the gradient

information to the generator. Thus, the loss function of the generator is defined in

Eq. (3.1) :

LG = EM∈Sattack,ND(G(M,N)) (3.1)

where Sattack is the original attack traffic; G and D represent the generator and the

discriminator, respectively. The M and N denotes the non-functional features and

latent noise vector, respectively. To optimize the performance of the generator (e.g.,

fool the black-box IDS), the training tried to minimize the loss function LG. The

discriminator optimized its performance using the predicted labels from the black-

box IDS, aiming to capture the functionality of the black-box IDS. The loss function

for the discriminator is given by Eq. 3.2 :

24

LD = Es∈Bnormal
D(s)− Es∈Battack

D(s) (3.2)

where s is the training set of the discriminator; Bnormal and Battack represent the

predicted normal and attack traffic records, respectively, labeled based on the predic-

tion from the black-box IDS. The outline of the general WGAN training procedure

is shown in Algorithm 1. Note that for a Wasserstein GAN, in each iteration the

parameters of the discriminator are updated nd times (nd = 5 in the present study)

before starting to optimize the generator. This is because the generator is optimized

based on the feedback of the discriminator, and it is expected to get a relatively

optimal discriminator before updating the generator.

3.3 Conditional Wasserstein GAN Based Framework

3.3.1 Input Conditions

As we discussed in the previous chapter, the class label can be used as input conditions

for both the generator and discriminator. In the present study, instead of using a one-

hot vector of the class labels as condition information, we adopt a word-embedding

vector. The word embedding was done using the built-in function “nn.Embedding”

from the PyTorch package. The advantage of using a word-embedding vector is that

you can use an embedded vector to represent a specific number of words (labels) if the

length of the vector is larger than the number of labels. For example, there are five

labels herein representing benign traffic and four types of malicious traffic, and hence

the one-hot vector will have a length of five (e.g., [1 0 0 0 0], [0 1 0 0 0], . . . , [0 0 0 0 1] for

five class labels). However, we can use a word-embedding vector of any length longer

than five to represent the five labels, and the value of each element in the vector is

calculated using pre-defined embedding algorithms. An example of embedded vectors

is shown in Figure 3.5,

Compared with one-hot encoded vectors, using the embedding vectors (e.g. em-

bedded class labels) can make the training process of the CWGAN more smooth

and stable. For instance, the generator and discriminator can update the parameters

related to input conditions in a more flexible way as each element in the embed-

ded vector is non-zero. In contrast, for one-hot encoded vectors, only the parameter

25

Algorithm 1 Wasserstein GAN-based framework

Require:

Snormal, Sattack: The original records;

M : The non-functional features of Sattack;

N : The latent noise vector;

B: The trained black-box IDS;

nepoch: The total number of epoch;

nd: the number of iterations of the discriminator per generator iteration.

Ensure:

The generator G and discriminator D are optimized.

1: Initialize the generator G and the discriminator D

2: for i = 0 to nepoch do

3: M ′ = Generate(M,N)

4: Form Sadversarial using Sattack and M ′

5: Form a training set using Sadversarial and Snormal

6: B labels the training set as normal or attack

7: D scores the training set labeled by B

8: Update parameter of D according to Eq. 3.2

9: if (i mod nd == 0) then

10: D scores Sadversarial

11: Update parameter of G according to Eq. 3.1

12: end if

13: end for

26

Figure 3.5: An example of embedded vectors for class labels. Note that five class
labels are embedded into five unique vectors.

with respect to the non-zero element of each class type will impact the output of the

generator and discriminator.

3.3.2 From WGAN to CWGAN

Figure 3.6: Schematic illustration of the CWGAN-based framework. Note that the
embedded class labels are sent to both generator and discriminator as input condi-
tions.

The schematic illustration of conditional Wasserstein GAN (CWGAN) is shown

in 3.6. The embedded class labels are first concatenated with the noise vector and the

non-functional feature vector, and then the obtained vector is fed into the generator

for adversarial sample generation. Before sending the produced sample (a traffic flow)

to the discriminator for scoring, the same embedding vector will be concatenated

with the sample. In such a way, both the generator and discriminator will obtain

the same condition information regarding a specific input record. Training with the

27

Table 3.5: Architecture of the generator and the discriminator in the conditional
WGAN framework. Note that the number of neurons of the input layer for both
generator and discriminator is increased accounting for the input conditions.

Operation Input Units Output Units Non-linearity

Generator
Linear input dim+embedding dim input dim//2 ReLU
Linear input dim//2 input dim//2 ReLU
Linear input dim//2 input dim//2 ReLU
Linear input dim//2 input dim//2 ReLU
Linear input dim//2 g output dim Mixed
Discriminator
Linear input dim+embedding dim input dim*2 LeakyReLU
Linear input dim*2 input dim*2 LeakyReLU
Linear input dim*2 input dim*2 LeakyReLU
Linear input dim*2 input dim//2 LeakyReLU
Linear input dim//2 1

input conditions (embedded class labels), the GAN can learn which specific type of

data it is dealing with for both generative and discriminative tasks, and hence after

optimization, the generator obtains the capability of generating the specific type of

samples as required (controlled by using embedded class labels).

The update algorithm for CWGAN is shown in Algorithms 2. Note that in lines

3, 7 and 10, the input data is sent into the generator and discriminator along with

the input condition E.

The modified architectures of the generator and the discriminator are shown in

Table 3.5. Note that here we only increase the number of units for the input layer of

the generator and the discriminator accordingly, but keep the number of units of the

hidden layers unchanged. This is because we will compare the performance of the

CWGAN with WGAN, and increasing the size of all hidden units will significantly

alternate the capability of the generator and discriminator.

28

Algorithm 2 Conditional Wasserstein GAN-based framework

Require:

Snormal, Sattack: The original records;

M : The non-functional features of Sattack;

N : The latent noise vector;

E: The embedded class labels;

B: The trained black-box IDS;

nepoch: The total number of epoch;

nd: the number of iterations of the discriminator per generator iteration.

Ensure:

The generator G and discriminator D are optimized.

1: Initialize the generator G and the discriminator D

2: for i = 0 to nepoch do

3: M ′ = Generate(M,N,E)

4: Form Sadversarial using Sattack and M ′

5: Form a training set using Sadversarial and Snormal

6: B labels the training set as normal or attack

7: Distance score = Discriminator(Labeled training set, E)

8: Update parameter of D according to Eq. 3.2

9: if (i mod nd == 0) then

10: Distance score = Discriminator(Sadversarial, E)

11: Update parameter of G according to Eq. 3.1

12: end if

13: end for

Chapter 4

Performance Analysis

In this chapter, we first introduce the CICIDS2017 dataset, which was used to test

the performance of the designed GAN and CGAN-based attack methodology. Then,

we review the selected eight ML and DL algorithms. Before showing our results,

we depict the experiment setup and the evaluation metric used for the IDSs and

adversarial attack framework. Lastly, we present our testing results for both GAN

and CGAN method and also give a thorough discussion.

4.1 CICIDS2017 Dataset

4.1.1 Dataset Selection

There are a number of different datasets that have been published for intrusion de-

tection investigations. The first well-known dataset used to evaluate ML/DL-based

IDSs is KDD-Cup 99 dataset [48]. However, KDD-Cup 99 dataset has a huge number

of redundant records, which causes the learning algorithms to be biased towards the

frequent records, and thus prevents them from learning unfrequent records, which

could be more harmful to networks [31] [44]. Also, it has been reported that using

KDD-Cup 99 dataset leads to the overestimation of the performance of some anomaly

detection techniques [38]. To overcome the drawbacks of the KDD-Cup 99 dataset,

Tavallaee et al. did a statistical analysis of the KDD-Cup 99 dataset. They deleted

repeated data entries and select records from the KDD-Cup 99 dataset based on

“level of difficulty” to form a new dataset, named NSL-KDD. The NSL-KDD dataset

does solve some issues of the KDD Cup 99 dataset (i.e., no duplicate and redundant

records and a more reasonable size of the train and test dataset). However, as the

NSL-KDD is an optimized subset of KDD-Cup 99, it still has some inherent problems

inherited from KDD-Cup 99. For instance, McHugh [39] criticizes that the NSL-KDD

does not represent actual existing networks and associated attack scenarios.

29

30

CICIDS2017 dataset contains benign records and the most up-to-date common at-

tack records, which resembles the true real-world data [49]. In addition, CICIDS2017

includes the results of the network traffic analysis performed by CICFlowMeter with

labeled flows based on the time stamp, source, and destination IPs, source and des-

tination ports, protocols and attack. Unless the NSL-KDD dataset, CICIDS2017

contains a sufficient number of records of unfrequent low-footprint attacks. Though

CICIDS2017 has some minor drawbacks such as containing a few NULL values, it is

has become more and more popular when studying IDSs.

4.1.2 Dataset Description

The CICIDS2017 Dataset [49] is adopted herein to test and evaluate our proposed

WGAN-based attack methodology. The dataset was generated using two pre-built

network infrastructures as shown in Figure 4.1. Therein, one network is treated as the

victim corporation subjected to network attacks (30 servers with hundreds of client

machines), while the other network plays the role of the attacker (50 machines).

Figure 4.1: An illustration of the network infrastructures used to generate the CI-
CIDS2017 dataset [49].

The dataset composes different scenarios of fourteen modern attack types along

with normal network traffic. Each entry of the dataset consists of 80 columns, which

are flow features extracted from network traffic. The number of entries for normal and

different types of attack records in the dataset is shown in Table 4.1. In the present

31

study, we only concentrate on four major attack types from the dataset, namely, DoS

Hulk, PortScan, DDoS, and DoS GoldenEye, which compose more than 95% of the

total malicious records.

Table 4.1: Type of attack traffic records in CICIDS2017.

Type of Attack Traffic No. of Data

Benign 2273097
DoS Hulk 231073
PortScan 158930
DDoS 128027
DoS GoldenEye 10293
FTP-Patator 7938
SSH-Patator 5897
DoS Slowloris 5796
DoS Slowhttptest 5499
Bot 1966
Web Attack: Brute Force 1507
Web Attack: XSS 652
Web Attack: Brute Force 36
Web Attack: Sql Injection 21
Heartbleed 11

4.1.3 Data Preprocessing

The data types of the features in CICIDS2017 can be either continuous or discrete. A

preprocessing was performed for the dataset to transform the data into valid inputs

for the WGAN-based framework. The data preprocessing includes several sub-stepds.

Firstly, several irrelevant columns that have a constant value were dropped, as they

do not play any roles in differentiating categories. Then, the rows that contain null

or infinitive values were deleted from the dataset. They only compose a small part

(hundreds of entries) of the entire dataset, and hence, will not impact the results.

Afterwards, the feature values were all normalized to a range between 0 and 1 (i.e.,

min-max normalization) using Eq. 4.1, given as:

x′ =
x− xmin

xmax − xmin

(4.1)

32

Performing normalization is because the value range of different features is widely

varied. For example, the “Total Fwd packets” feature ranges from 1 to 219759, while

the “Down/Ratio Ratio” feature only ranges from 0 to 156. The normalized data

can lead to better training and test results. Lastly, there are several binary features

related to flag count, and they are one-hot encoded.

4.1.4 Functional Features

For the CICIDS2017 dataset, Sharafaldin et al. [49] performed an analysis using a

regressor and selected four characteristic features for each attack category. The char-

acteristic features of the selected attack categories for the present study from the

CICIDS2017 dataset are shown in Table 4.2. In this study, all the 10 characteristic

features shown in Table 4.2 are treated as functional features for each selected attack

category, which means they are all kept unchanged during the adversarial traffic gen-

eration. Our decision is understandable and reasonable. First, it is always expected

to modify as few features as possible when generating adversarial attack traffic to

maintain the original traffic pattern and preserve the attack functionalities of the

unmodified attack traffic. Second, the selected features are meaningful regarding the

nature of the attack traffic. For example, DoS and DDoS attacks usually flood a sys-

tem using a large amount of data within a very short period. This functional nature

can be reflected by a short flow inter-arrival time (IAT) and a huge average packet

size, both of which are treated as functional features herein.

4.2 Experimental Setup and Evaluation Metrics

An open-source machine learning framework, PyTorch, was used to build up the

proposed architecture. Eight common ML/DL-based IDS were considered herein to

evaluate the capability of the proposed framework against IDS detection. As dis-

cussed in previous chapters, the considered ML/DL-based IDSs include Naive Bayes

(NB), Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Gradient

Boosting (GB), Multilayer Perceptrons (MLP), Recurrent Neural Network (RNN),

and Covolutional Neural Network (CNN). Note that the five ML algorithms (NB,

LR, DT, RF, and GB) were constructed using Scikit-learn and made callable by Py-

Torch through a wrapper class, whereas the MLP, RNN, and CNN are built up using

33

Table 4.2: Characteristic features and corresponding attack types for CICIDS2017.

Characteristic Features Corresponding Attack Types

Bwd packet Length Std DoS GoldenEye, DoS Hulk, DDoS
Flow Duration DoS Hulk, DDoS
Flow IAT Mean DoS GoldenEye
Flow IAT Std DoS Hulk, DDoS
Flow IAT Min DoS GoldenEye
Fwd IAT Min DoS GoldenEye
Average Packet Size DDoS
PSH Flag Count PortScan
Bwd Packets/s PortScan
Win F.Bytes PortScan

the PyTorch deep learning library. As mentioned previously, we concentrate on the

four major types of attack traffic in the CICIDS2017, which are DoS Hulk, PortScan,

DDoS, and DoS GoldenEye.

The eight IDSs were pre-trained separately as binary classifiers (benign vs. attack)

before training the WGAN framework. Given that the characteristics of each attack

category are different, the WGAN framework was trained to generate the adversarial

samples for solely one attack category each time to deceive one selected IDS. For each

attack category, half of the original data was used to train, while the rest half of the

data was retained for testing. The WGAN framework is trained with a batch size of 64

for 30 epochs. The learning rates of the generator and discriminator are both 0.0001

with an RMSProp optimizer. The dimension of the latent noise vector is eight. The

weight clipping threshold for the discriminator is ±0.01. As the conditional WGAN

(CWGAN) also takes the embedded class labels as input, the data of all types of

attack records can be fed into the CWGAN simultaneously. Thus, we only need to

train CWGAN with each ML/DL algorithm once for all types of attack records.

For IDSs, we calculate all typical evaluation metrics for a binary classifier, includ-

ing accuracy (detection rate), precision, recall, F-score, the area under the receiver

operating characteristic (AUROC), and average precision (AUPRC). We also present

the confusion matrix of the result of each algorithm.

Regarding the WGAN and CWGAN framework, for the evaluation metrics, the

34

detection rates of each IDS for the original and adversarial datasets are calculated.

The detection rate is the same as the accuracy for a classifier, which defines as the

proportion of correctly detected attack traffic records by the IDS to all of those attack

records, reflecting the evasion ability of the adversarial samples and the robustness

of the IDS. A lower detection rate indicates more attack traffic records evade the

detection of the IDS, revealing higher adversarial attack effectiveness. Therefore, our

goal is to optimize the WGAN framework to obtain a lower detection rate for each

IDS.In addition to DR, the evasion increase rate (EIR) is widely adopted to evaluate

the efficiency of adversarial attacks, given by:

EIR = 1− Adversarial DR

Original DR
(4.2)

A lower EIR represents that more adversarial samples generated by the WGAN are

detected by IDSs, indicating a worse performance of the WGAN framework. There-

fore, we expect higher EIR can be achieved with the proposed framework.

4.3 Experimental Results

4.3.1 Performance of Selected IDS Schemes

The training of ML algorithms is relatively faster and easier compared to DL algo-

rithms. For the sake of being concise, we herein only show the training procedure

of the DL algorithms. The evolution of the batch-averaged loss of the test dataset

during training for the MLP, RNN, and CNN are shown in Fig. 4.2. It is noticed

that the MLP converged very rapidly during training. After two to three epochs, the

batch-averaged loss maintained at a level around 12. The convergence speed of the

RNN was slower than the one of the MLP, and it took about eight epochs to con-

verge. The CNN took the longest time to converge, and after about sixteen epochs

the batch-averaged loss stayed at a level around 13.5. The results are understandable

as the neural networks with more complex architectures are more difficult to optimize.

The evolution of the accuracy (detection rate) of the test dataset for the three DL

algorithms is shown in Fig. 4.3. After two to three epochs, the accuracy of the MLP

remained at a level of 97%. Similar to the batch-averaged loss, the evolution of the

detection rate of the RNN and CNN is slower. After about ten epochs, the accuracy

of both algorithms stopped increasing, indicating the convergence of the RNN and

35

Figure 4.2: Evolution of average loss versus epoch for MLP, RNN, and CNN.

CNN. Both of the two algorithms had a detection rate of 96.7% after optimization,

which is slightly slower than the MLP. As the major purpose of the present study is

not to develop a perfect IDS using specific DL algorithms, we stop further optimizing

the MLP, RNN, and CNN.

The confusion matrix of all selected algorithms is shown in Table 4.4. The confu-

sion matrix reflects that it is a binary classification with a highly imbalanced dataset.

There are about 600 thousand benign records and 80 thousand malicious records.

The performance of the NB algorithm was very poor, and it misclassified about 140

thousand benign cases and 37 thousand malicious cases. The prediction of the LR

algorithm is much better. However, the LR algorithm had a very high false negative

rate, misclassifying 43 thousand of malicious cases. The total number of misclassifi-

cations for DT, RF, and GB algorithms are all less than 1000, which outperformed

other algorithms. The performance of the MLP, RNN, and CNN are close, which all

misclassified about 20 to 25 thousand records.

The full evaluation results for the eight selected IDSs with the test dataset is shown

in Table 4.3. The NB algorithm has the worst performance, which is consistent with

the results of the confusion matrix. The poor performance of the NB algorithm is

36

Figure 4.3: Evolution of test accuracy versus epoch for MLP, RNN, and CNN.

probably due to its simplicity (i.e., not able to capture high-dimensional characteristic

features and non-linearity of the dataset). The NB and LR algorithms have the lowest

precision and recall rates, respectively. The low recall rate but the high precision rate

of the LR algorithm indicates that it is not good at handling imbalanced dataset. It

is shown that the DT, RF, and GB algorithms have a perfect performance, and all

the evaluation metrics reach nearly the highest score. For the three deep learning

algorithms, the MLP has the highest accuracy and recall rates, while the CNN has

the highest precision rate. The performance of the RNN lies between the MLP and

the CNN. The F-score, AUROC, and AUPRC show consistent results, reflecting the

overall capability of the algorithms. From the perspective of intrusion detection, RF

is the clear winner among all IDSs.

4.3.2 Performance of Wasserstein GAN Based Framework

Fig. 4.5 shows the detection rate of the IDSs for the DoS Hulk attack with the

original dataset and the adversarial dataset, respectively. For the original dataset,

the detection rate of the NB algorithm is around 80%, while the other seven algorithms

all have a detection rate higher than 97%. However, with the adversarial dataset, the

37

0 1

y
pred

0

1

y
tr

u
e

NB

37709

148438

82843

480080

0

5
105

0 1

y
pred

0

1

y
tr

u
e

LR

48696

2826

71856

625692

0

5
105

0 1

y
pred

0

1

y
tr

u
e

DT

547

379

120005

628139

0

5
105

0 1

y
pred

0

1
y

tr
u

e

RF

356

295

120196

628223

0

5
105

0 1

y
pred

0

1

y
tr

u
e

GB

550

367

120002

628151

0

5
105

0 1

y
pred

0

1

y
tr

u
e

MLP

8108

11910

112443

616596

0

5
105

0 1

y
pred

0

1

y
tr

u
e

RNN

16909

7178

103642

621328

0

5
105

0 1

y
pred

0

1

y
tr

u
e

CNN

19366

5172

101185

623334

0

5
105

Figure 4.4: Confusion matrix for the selected ML/DL algorithms.

38

Table 4.3: Experimental results for selected ML/DL algorithms with CICIDS2017
dataset.

IDS Accuracy Precision Recall F-score AUROC AUPRC

NB 75.15% 35.82% 68.72% 0.471 0.842 0.538
LR 93.12% 96.22% 59.61% 0.736 0.974 0.897
DT 99.88% 99.68% 99.55% 0.996 0.998 0.994
RF 99.91% 99.75% 99.71% 0.997 1.000 1.000
GB 99.88% 99.69% 99.55% 0.996 0.999 0.995
MLP 97.33% 90.42% 93.27% 0.918 0.997 0.983
RNN 96.80% 93.41% 86.22% 0.897 0.995 0.978
CNN 96.72% 95.14% 83.94% 0.892 0.993 0.973

detection rate of the NB, LR, RF, MLP, and RNN algorithms all decreased to zero.

The GB algorithm can slightly resist adversarial attacks, having a detection rate of

22% for the generated dataset. The CNN and DT have a strong capability to detect

adversarial records, with a detection rate of 65% and 98%, respectively.

The detection rate of the IDSs with the original and adversarial datasets for the

DDoS attack is shown in Fig. 4.6. The performance of the selected IDSs for the

original DDoS samples is similar to the one for the unmodified DDoS Hulk samples.

However, the robustness of the IDS under DDoS adversarial attack is distinct. Figure

4.6 shows that the MLP and CNN was able to detect more than 90% of the generated

DDoS samples. The DT and GB algorithms also have some ability to distinguish

the adversarial samples from the real records, having a detection rate up to 18% and

16%, respectively.

It is shown in Fig. 4.7 that all the IDSs performed very well on the detection

of the original data entries of the DoS GoldenEye records except the NB algorithm,

which only has a detection rate less than 78%. The DT and GB algorithms perfectly

detected the adversarial samples of the DoS GoldenEye attack. The MLP and CNN

also show compromised results when defending against adversarial attacks, having an

adversarial detection rate about 83% and 78%, respectively.

The performance of the IDSs for the original dataset of the PortScan records is

distinct compared to one of the IDSs for other types of attack records. The NB and

39

Figure 4.5: The detection rate of the selected ML/DL algorithms with the original
and adversarial datasets for DoS Hulk.

LR algorithms can barely detect the PortScan records from the original dataset, while

the other IDSs have very high detection rates (e.g., detection rate higher than 97%).

Regarding the adversarial data set, only the CNN has a good ability to defend against

the adversarial attack with a detection rate around 60%. The DT and GB algorithms

captured a few adversarial samples, having a detection rate around 8% on generated

records.

The EIR(%) can more directly reflect the relative power between the IDSs and

the WGAN framework, which is shown in Table 4.4. The NB, LR, RF, and RNN

algorithms are completely fooled by the proposed framework (i.e., with a 100% EIR).

The DT algorithm can perfectly detect the adversarial samples of the DoS Hulk and

DoS GoldenEye attacks, while the MLP is good at defending the adversarial attacks

from the DDoS and DoS GoldenEye samples (i.e., with a 7.2% and 14.53% EIR,

respectively).

With the adversarial dataset, the performance of the IDSs is significantly im-

pacted. Many IDSs can be fully deceived by the adversarial attack samples (i.e., note

the zero detection rates and 100% EIR values in Table 4.4). However, there are several

40

Figure 4.6: The detection rate of the selected ML/DL algorithms with the original
and adversarial dataset for DDoS.

exceptions, which can be summarized as follows: The DT algorithm shows the great

capability to detect the adversarial samples of DoS Hulk and DoS Goldeneye records

(see the EIR in 4.4); for the adversarial samples of DoS GoldeEye, the detection rate

of the GB and MLP are also promising, with a detection rate about 98% and 85%,

respectively (see Fig. 4.7); also, the MLP is very robust under the adversarial attacks

of the DDoS records, having a detection rate higher than 90 % (see Fig. 4.6); lastly,

regarding the GB algorithm, it shows slight resistance with the adversarial samples

of DoS Hulk and DDoS attack records (see Table 4.4).

Based on authors’ knowledge, there has been no approach reported in the literature

that can explain the distinct performance outcomes of IDSs under adversarial samples.

However, it must highly related to the natural of the ML algorithms. For example, the

DT algorithm only classify the records using selected features based on information

gains, and the modified non-functional features may not be selected by the algorithms,

and hence will not cause impact on the prediction results. With respect to the

GB algorithms, the boosting ensemble method seems provide the robustness to the

algorithm against adversarial samples. The explainability of the WGAN framework

41

Figure 4.7: The detection rate of the selected ML/DL algorithms with the original
and adversarial dataset for DoS GoldenEye.

will be left to the future work.

Table 4.4: The EIR(%) of the IDSs for adversarial samples of DoS Hulk, DDoS, DoS
GoldenEye, and PortScan generated by WGAN.

Attack Type NB LR DT RF GB MLP RNN CNN

DoS Hulk 100 100 0.8 100 77.48 97.46 100 34.34
DDoS 100 100 81.28 100 86.89 7.2 100 6.06
DoS GoldenEye 100 100 0.1 100 0.1 14.53 100 20.53
PortScan 100 100 94.49 100 95.1 100 100 38.05

4.3.3 Performance of Conditional Wasserstein GAN Based Framework

The results of the CWGAN method are present in this section and are also compared

with results from the original framework based on WGAN.

Figure 4.9 shows the detection rate of the Naive Bayes algorithm for the original

data sets and the adversarial data set from the WGAN and CWGAN for all four types

42

Figure 4.8: The detection rate of the selected ML/DL algorithms with the original
and adversarial datasets for PortScan.

of attacks. The NB algorithm barely detected any adversarial records generated by

either the CGAN framework or the WGAN framework. This is understandable as the

NB algorithm is simple and assumes that the value of a traffic feature is independent of

the value of any other features, indicating that the NB algorithm can not capture the

relationship among flow features and is easy to be deceived. Also, the NB algorithm

has no hyperparameters, and hence, there is no way to play around to further improve

the performance of the NB algorithm. Though the NB algorithm is efficient and has

been used in some real-world classification tasks,it should not be used in network

intrusion detection.

Figure 4.10 shows that though the Logistic Regression algorithm have better per-

formance than the NB algorithm on detection of the original attack records, it did

not provide any improvement for the IDS in defending against the adversarial attacks

(i.e., the detection rate for adversarial samples was close to zero for all types of at-

tack records). The only hyper-parameter of the LR algorithms is its regularization

term C, which can prevent the overfitting of the algorithm on training. But an extra

regularization term is not able to provide any extra capability to the algorithm itself.

43

Figure 4.9: The detection rate of the Naive Bayes algorithm with the original dataset
and two adversarial datasets generated by the WGAN and the CWGAN. Note that
the NB algorithm is not able to detect any generated adversarial records from both
the WGAN and CWGAN frameworks.

In other words, the LR is a generalized linear algorithm, and hence, the GAN could

learn the impact of each feature on the algorithm output and manipulate the features

to affect the algorithm’s prediction accordingly. Results in Fig. 4.10 indicate that

though the LR algorithm is good to be used as a benchmark in some cases when

constructing prototypes of IDSs(i.e., the LR algorithm has a detection rate higher

than 98% for DoS Hulk, DDoS and DoS GoldenEye attacks), it should not be used

in the final IDSs due to its poor performance under adversarial attacks.

Figure 4.11 shows the detection rate of the Decision Tree algorithm on the original

records and adversarial records for the four attack types. For the DoS GoldenEye

attack, the DT algorithm can detect the generated records from both the WGAN

and the CWGAN. The DT algorithm has a slightly higher detection rate on the at-

tack records generated by the WGAN than the ones produced by the CWGAN for

the DDoS and the PortScan attack. However, when it comes to DoS Hulk, the DT

algorithm can detect the adversarial records crafted by the WGAN but cannot de-

fend against the adversarial attack by the CWGAN. Therefore, for the CICIDS2017

44

Figure 4.10: The detection rate of the Logistic Regression algorithm with the original
dataset and two adversarial datasets generated by the WGAN and the CWGAN.
Note that though the LR algorithm is good at detecting DoS Hulk, DDoS, and DoS
GE attacks, it failed to detect adversarial samples of the three attack types.

dataset and the DT algorithm in the present study, the CWGAN framework has

stronger attack capbility. Intuitively, as the CWGAN is handling a more challenging

task (e.g., generating multiple types of adversarial attacks simultaneously), the adver-

sarial records generated by the CWGAN framework should be easier to be detected.

One possible reason is that to account for the input condition information (e.g. em-

bedded class labels) the number of neurons in the input layer is increased for both

the generator and the discriminator, and hence, the capability of the sub-components

is enhanced. Also, by providing the class information, the CWGAN frame might be

able to learn how to craft adversarial samples based on the type of attack records.

The results of the IDS using the Random Forest algorithm are shown in Fig. 4.12.

It is noticed that the RF algorithm has a perfect performance in detecting the original

attack records but failed to detect the adversarial records crafted by the WGAN and

the CWGAN framework. Thus, how robust an IDS is under adversarial attacks might

have no relationship with its capability to detect original unmodified attack records.

Also, it is well known that the RF algorithm is an ensemble learner constructed based

45

Figure 4.11: The detection rate of the Decision Tree algorithm with the original
dataset and two adversarial datasets generated by the WGAN and the CWGAN.
Note that the distinct performance for the DT algorithm on detecting the two different
adversarial dataset generated by the WGAN and the CWGAN algorithm.

on a bagging strategy using a number of DT algorithms. In general, the RF algo-

rithm is more complex than the DT algorithm. However, the more sophisticated RF

algorithm did not show expected robustness in defending against adversarial attacks.

Therefore, we can not make a conclusion that an IDS with more complex algorithms

will have a better performance when subjecting to adversarial attacks. It is worth

mentioning that in the present study one hundred weaker classifiers (e.g., Decision

Tree) were used to build up the RF algorithm. If the number of weaker classifiers will

affect the robustness of RF against adversarial attacks will be left to further study.

Figure 4.13 shows the detection rate of the Gradient Boosting algorithm on the

original and the adversarial records of all types of attacks considered. Regarding the

adversarial attacks, the effect of the WGAN and the CWGAN is consistent with the

IDS based on the GB algorithm. By comparing the results in Figs. 4.12 and 4.13, it

reflects that the boosting ensemble strategy outperforms the bagging ensemble strat-

egy in defending against adversarial attacks (i.e., higher detection rate on adversarial

46

Figure 4.12: The detection rate of the Random Forest algorithm with the original
dataset and two adversarial datasets generated by the WGAN and the CWGAN.
Note that though the RF algorithm provides nearly perfect results on detection the
original dataset, it can barely detect any generated data samples.

samples of different attacks). Note that the GB algorithm has a number of hyperpa-

rameters such as learning rate, number of estimators, and minimum sample splits. By

tuning up these hyperparameters, the capability of the GB algorithm on capturing

the adversarial samples could be further enhanced. Also, Gradient Boosting is the

most common sort of widely used boosting algorithm, and other more complicated

boosting algorithms such as XGBoost [14] and Light GBM [26] will be tested and

reported in a future publication.

As the most fundamental and widely used deep learning algorithm, the MLP has

been employed to build up the IDS. The detection rate of the MLP algorithm on the

original dataset and two adversarial datasets is shown in Fig. 4.14. The MLP shows

its robustness against adversarial samples of the DDoS and the DoS GE attacks from

both the WGAN and the CWGAN frameworks. However, the MLP algorithm did

not perform well in detecting adversarial samples of the other two types of attack

(e.g., DoS Hulk and PortScan), and especially for the modified PortScan samples,

the detection rate of the MLP algorithms is close to zero. In the present study, both

47

Figure 4.13: The detection rate of the Gradient Boosting algorithm with the original
dataset and two adversarial datasets generated by the WGAN and the CWGAN. Note
that the performance of the GB algorithm is generally consistent on the adversarial
datasets produced by the WGAN and the CWGAN.

the generator and the discriminator were constructed as a deep neural network, and

thus, the performance of the IDS based on the MLP algorithm can be treated as a

benchmark for other machine learning algorithms. It is known that the capability of

the MLP can be adjusted by increasing the number of hidden layers and the number

of neurons in each layer. Alternating the architectures of either the MLP or the

generator and discriminator could impact the final results.

The recurrent neural network is another very popular deep learning algorithm

and its test performance is shown in Fig. 4.15. Though the detection rate of the

RNN on the original dataset is very high (97.5%), the RNN is not able to defend

the adversarial attacks under both the WGAN and CWGAN framework. In contrast

to the MLP, the RNN did not show any resistance to adversarial attacks. This is

probably because the input data (either modified or unmodified) is not a real time

sequence (i.e., considered as a pseudo time sequence with only one time step), and

the RNN can not maximize its capability. Again, the performance of the RNN on

the adversarial samples indicates that the complicity of the algorithms is not related

48

Figure 4.14: The detection rate of the Multilayer Perceptron with the original dataset
and two adversarial datasets generated by the WGAN and the CWGAN. Note that
the MLP performed very well on detecting the adversarial samples of the DDoS and
DoS GoldenEye attacks.

to the algorithm’s robustness when subjecting an adversarial attack.

The results of the CNN in detecting the original and adversarial datasets of four

types of attack records is shown in Fig. 4.16. Though the CNN is not the best one

in detecting the original traffic records, it is generally the most robust one when de-

fending against adversarial attacks from either WGAN or CWGAN. The detection

rate of the CNN on adversarial samples is overall above 60%, except for the DoS

Hulk samples from the CWGAN (¿ 50%). Furthermore, the performance of the CNN

in detecting the adversarial datasets is consistent between the WGAN and CWGAN

framework, reflecting its resilience and stability. The robustness of the CNN is pos-

sibly due to two reasons. On the one hand, using a regular deep neural network

as a discriminator may not be able to mimic the feature extracting characteristics

(e.g., the convolution and max pooling procedure) of the CNN, and hence, the gen-

erator cannot get efficient feedback from the discriminator to improve its capability

on sample generation. On the other hand, as the CNN algorithm has the ability to

extract features from the records, a generator might be difficult to deceive the CNN

49

Figure 4.15: The detection rate of the Recurrent Neural Network with the original
dataset and two adversarial datasets generated by the WGAN and the CWGAN. Note
that though the RNN has a more complex architecture than selected ML algorithms,
it did not show better performance in defending against adversarial attacks.

by modifying the non-functional features solely.

The EIR (%) values of the eight algorithms for adversarial datasets of the four

attack types are shown in table 4.5. By checking the EIR values, it is noticed that

for the machine learning algorithms, the NB, LR, and RF do not have the capability

to defend the adversarial attack at all (i.e., one hundred or nearly one hundred EIR

values in both WGAN and CWGAN cases). Both the GB and the DT algorithms

have a strong capability to defend against the adversarial attack of the DoS Golden-

Eye. The DT algorithm also performs well in defending the DoS Hulk attack under

some scenarios (i.e., note the huge change of the EIR values in the two cases). Re-

garding the deep learning algorithms, the CNN generally outperformed all the other

two algorithms under adversarial attacks (i.e., a relatively low EIR value for both

WGAN and CWGAN framework). The poor performance of RNN in detecting the

adversarial samples reminds us that using more complex algorithms does not ensure

the enhancement of the capability of the IDSs against adversarial attacks (comparing

to simple ML algorithms). The DT, MLP, and CNN should be focused on in future

50

Figure 4.16: The detection rate of the Convolutional Neural Network with the original
dataset and two adversarial datasets generated by the WGAN and the CWGAN. Note
that the CNN has a consistent performance when defending the adversarial attacks
from the WGAN and the CWGAN framework, and also it has a good ability to detect
adversarial samples from all types of attacks.
””

studies regarding how to defend against adversarial attacks from GANs.

The performance of the WGAN and CWGAN on deceiving IDSs is close except for

the DT algorithm in the DoS Hulk case. Regarding the training time, as we only feed

one type of attack records into WGAN but all types of attack records into CWGAN

each time, the training speed of a WGAN is much faster. However, as we need

to train eight WGAN-based framework to match the function of a single CWGAN-

based framework, the total training time is comparable between eight WGAN-based

framework and one CWGAN-based framework.

4.3.4 Results Summary and Discussion

Regarding intrusion detection, tree-based algorithms provide the most promising re-

sults, and RF algorithm has the best performance among all eight algorithms. The

51

Table 4.5: The EIR(%) of the IDSs for different types of adversarial samples generated
by the WGAN and CWGAN.

Attack Algorithm NB LR DT RF GB MLP RNN CNN

DoS Hulk WGAN 100 100 0.8 100 77.48 97.46 100 34.34
CWGAN 100 100 94.79 100 79.18 90.04 100 49.95

DDoS WGAN 100 100 81.28 100 86.89 7.2 100 6.06
CWGAN 100 100 89.89 100 82.88 7.0 100 5.15

DoS GE WGAN 100 100 0.1 100 0.1 14.53 100 20.53
CWGAN 100 100 0.1 100 0.1 28.96 100 25.48

PortScan WGAN 100 100 94.49 100 95.1 100 100 38.05
CWGAN 100 100 96.71 100 96.7 99.59 100 14.01

deep learning algorithms are slightly underperformed than the tree-based ML algo-

rithms. The outcome among the three DL algorithms are comparable. The Navie

Bayes and Logistic Regression algorithms are not able to capture the malicious records

very well, and should not be used to build up an IDS.

The results in the last section also show that the performance between the WGAN

and the CWGAN is consistent in deceiving the IDSs. Among all the selected ML/DL

schemes, the CNN-based IDS is the most robust under adversarial attack. There are

two possible reasons that CNN has better resistance against adversarial attacks. On

the one hand, the discriminator may not able to perfectly mimic the performance of

the CNN, and hence, fails to provide high-quality feedback to the generator. Recall

that we use an MLP for the discriminator, which probably can not capture the feature

extraction process (by convolutional layers) of the CNN. On the other hand, the

generator used in this study may not have sufficient capability (i.e, need more neurons

and layers, or use more sophisticated architectures other than MLP) to generate the

required adversarial samples. Unfortunately, at this juncture, there is no promised

method regarding the explainability of the GANs. The aforementioned point will be

investigated in future work.

The WGAN and CWAGN frameworks in the present study are designed for black-

box attacks. However, the proposed frameworks can also be used for white-box attacks

as well. In white-box attack scenarios, the internal parameters and gradients of the

52

IDS will be known, and hence, we can investigate which non-functional features con-

tribute more to the final prediction of the ML/DL algorithms. This can be done by

using some machine learning interpretation software such as SHAP (SHapley Additive

exPlanantions). Subsequently, we can examine the internal gradients of the generator

and check its parameter updates. We can further freeze the non-functional features

with minor contribution and tune up the GAN to focus on modifying the signifi-

cant non-functional features. In such a way, both training efficiency and framework

capability should be enhanced.

Intrusion prevention system (IPS) is an active network protection system. Similar

to IDS, it monitors network traffic and attempts to identify potential threats using

signature, anomaly, or hybrid detection methods. However, unlike an IDS, an IPS

takes action to block or remediate an identified malicious activity. While an IPS

raises an alert, it also helps to prevent intrusion from occurring. IPSs are ideal for

environments where any intrusion could cause significant damage, such as intrusion

of bank databases or military private networks. The ML/DL algorithms have also

been used to build up IPSs [12]. Thus, by replacing an ML/DL-based IDS with an

ML/DL-based IPS, the present frameworks can also be used to test the robustness of

the IPS. The general process is exactly the same.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Over the past years, the ML and DL algorithms have been employed to construct

effective IDSs. In this thesis, we propose a WGAN-based framework to generate

adversarial samples that can deceive ML/DL-based IDSs. The proposed framework

only include restricted modification operations and the output in the framework is

carefully regulated, which enables the frame to evade ML/DL-based IDS while pre-

serving the nature of the target malicious attack. In addition, we present a variant of

the proposed framework, which is based on Conditional WGANs (CWGANs). The

variant framework can be used to generate adversarial traffic with the same level of

evading rate. However, the training phase of the variant framework is significantly

simpler because the variant framework can be trained for multiple types of malicious

attacks, such as DDoS and port scan, simultaneously. In our research, we validated

the effectiveness of the proposed framework by comparing the detection rate of the

original dataset and that of the generated datasets. Our experimental results indicate

that the proposed framework can completely deceive the IDS based on NB, LR, RF,

or RNN. Also, the framework can partially evade the IDS based on DT, GB, or MLP.

5.2 Future Work

5.2.1 Other Deep-generative algorithms

The generator and the discriminator in the GAN are designed for two different tasks,

namely, the generative task and the discriminative task. The generative task is usually

more challenge than the discriminative one as the discriminator only needs to judge

if an input record is real or fake (generated) instead of creating a new sample which

is expected to be similar to the input one. Hence, designing a more sophisticated

generator is more helpful in generating data of expected distribution (i.e., generate

53

54

adversarial samples to attack IDSs). One of the good candidates for the generator

is the Long Short Term Memory (LSTM), and an illustration of the architecture is

shown in Fig. 5.1. In an LSTM, instead of generating all the features at the same

time, the LSTM produces each feature one by one when obtaining information from

a previous LSTM cell. Meanwhile, the attention mechanism can be added to each

LSTM cell to simulate the correlations among adjacent features. In addition, at the

output layer, a pre-defined statistical model (i.e., Gaussian mixture model) can be

used to further mimic the distribution of each feature in the dataset. In a word, the

LSTM can not only craft samples but also control the distribution of the generated

samples based on the original dataset distribution and relationships between adjacent

features.

Figure 5.1: A schematic illustration of a Long Short Memory Term network used as
a generator [59].

Another very good candidate is a variational Autoendoer (VAE) [58]. Similar

to a regular Autoencoder, there are two sub-components in a VAE, an encoder and

a decoder. However, instead of encoding the original input data into a single data

point/vector, the VAE encodes the input data into a distribution, as shown in Fig.

5.2. The encoded distributions are usually chosen to be standard normal so that the

encoder can be trained to return the mean and the covariance matrix that describes

these Gaussian (the assumed distribution). The reason why an input is encoded as

a distribution instead of a single point/vector is that it makes the VAE possible to

express the latent space regularisation in a natural way: the distributions returned by

the encoder are enforced to be close to a standard normal distribution [36]. The VAE

has been proven to have better performance than MLP on tabular data generation [2].

55

Figure 5.2: A schematic illustration of a variational Autoencoder [16]. Note that the
input data is encoded into a distribution instead of single point/vector.

The above two mentioned architectures will be implemented and tested soon in a

future study. A thorough comparison will be made to examine if the LSTM and VAE

can get better results on adversarial sample generation (i.e., comparing the resulted

detection rate and evasion increase rate).

Figure 5.3: A schematic illustration of the Earth Mover Distance between two one-
dimensional distribution [57].

56

5.2.2 Dissimilarity Measurement

One important aspect is to evaluate the dissimilarity between the original traffic

records and the generated traffic records. It is expected that the adversarial records

can evade the detection of IDSs but meanwhile have a higher similarity to the original

records. The Earth Mover Distance (EMD) [2] is a widely used method to evaluate

the dissimilarity between the dissimilarity of two distributions. An example of how to

calculate the EMD between two distributions is shown in Fig. 5.3. Two distinct data

distributions p and q are given. Subsequently, the two datasets were manipulated

in several steps to make them identical. The moving distance with the minimum

effort required to complete the manipulation is called EMD. Note that there is an

infinite number of ways to manipulate the data to obtain two identical distributions.

However, only the distance of the one with the minimum effort is called the EMD.

In addition, in the example, the modification of samples comes from both datasets,

but this is not the case in our investigation (i.e., we keep the original traffic records

unchanged).

Figure 5.4: The absolute difference between correlation matrices computed on real
and synthetic datasets [6]. A more intensive red colour indicates a higher difference
between the real and synthetic correlation values.

57

The given example shows how to calculate EMD for two one-dimensional distri-

butions. However, the input network security dataset for our investigation is two-

dimensional (i.e., there are more than 600 thousand data entries in the dataset and

each row has more than 80 features). Hence, a more complex way to evaluate the

two-dimensional EMD is required (i.e., an average EMD based on the EMD between

each column of two datasets) [3]. Note that having the same EMD does not mean

the two sets of generated adversarial records are very similar, but they indicate that

similar efforts are required to convert them into related original traffic records.

Another popular metric to evaluate the dissimilarity of the tabular dataset is the

correlation matrix, which composes of the correlations between two column data [7].

Akim et al. developed a framework to synthesize the tabular data using a diffusion

model [6]. They calculate the absolute difference between correlation matrices of the

original and generated dataset as shown in Fig. 5.4. If the generated dataset main-

tains the correlation among features as the original dataset, the absolute difference

should be small (light red colour in Fig. 5.4), which is what we expected.

5.2.3 Federated Learning and GAN

Federated learning is a type of distributed machine learning approach where the goal

is to train a centralized algorithm while the training data remains distributed over

a large number of decentralized edge devices or servers. A schematic illustration of

the federated learning technique is shown in Fig. 5.5. In Fig. 5.5, the algorithm on

each local device is first trained with the local dataset, and subsequently, the updated

parameters and training gradients of the local algorithms are encrypted and sent to

a central algorithm (on the central server). The central algorithm synthesizes this

information and updates its parameters and gradients. The central algorithm also

provides feedback to local algorithms for the next step of training. The aforemen-

tioned procedure keeps on going until the test performance of the central algorithm

reach expectation. Federated learning has been widely used in the network security

community. There are two major advantages of federated learning. On the one hand,

as the central algorithm has no access to the local datasets, federated learning can ad-

dress some critical issues, such as data security and privacy-preserving, in algorithm

training. On the other hand, with federated learning, a large dataset can be broken

58

up into several small datasets which are used to train multiple local algorithms, and

the central algorithm is updated based on the factors of the local algorithms; thus,

the training efficiency can be significantly increased with federated learning.

The federated learning technique has been used with GANs. Rasouli et al. [45]

proposed a Federated Generative Adversarial Networks (FedGAN) for training a GAN

across multiple distributed data resources subject to communication and privacy con-

straints. The FedGAN was tested on multiple image data (MNIST, CIFAR-10, and

CelebA), and time series data (household electricity consumption and EV charg-

ing sessions) to study its convergence and performance. Their results showed that

FedGAN has similar performance to general distributed GAN, while reduced commu-

nication complexity. Regarding the present study, federated learning could also be

used in the proposed WGAN framework. First, as we increase the number of attack

types considered, the size of the training dataset may grow dramatically. Thus, train-

ing a centralized WGAN framework may be no longer efficient. Second, it might be

very dangerous to release certain intrusion detection datasets to the public. With fed-

erated learning, the WGAN framework can be trained without access to the dataset.

These points will be investigated in future work.

Figure 5.5: A schematic illustration of the federated learning technique.

59

5.2.4 GAN-based Data Synthesis for IDS training

One of the major challenges in training ML/DL-based IDSs is that the training

datasets are usually highly imbalanced. The performance of the IDSs declines signifi-

cantly in the case of learning from imbalanced data. Synthetic data generation is one

of the efficient solutions to enhance the training of the ML/DL-based IDSs with an

imbalanced dataset. The synthetic minority classes can adjust the class distribution

of the original dataset and overcome the bias of the algorithm training. GANs and

their variants have been widely used for tabular data generation [5] [59] [61]. How-

ever, only a limited number of them focus on data synthesis to enhance the training

of IDSs. Lee and Park [30] employs a vanilla GAN to generate virtual data similar to

the existing data to solve data imbalance. The CICIDS2017 dataset was oversampled

using the GAN, and subsequently, the new dataset was fed into a Random Forest

algorithm for classification. Their results show that the performance of the RF algo-

rithm is significantly improved on multiple minority attack classes (i.e., Heartbleed

and Bot) with the oversampled dataset.

Our proposed WGAN and CWGAN framework can be slightly modified (e.g.,

remove the pre-trained IDS) to accommodate data synthesis tasks. The results from

[30] can be used as a benchmark to evaluate the capability of the proposed frameworks.

Note that data synthesis tasks have more requirements on the output of the generator.

It is usually expected the generated data does not significantly impact the statistical

distribution of the input data, and also the virtual data remains a similar correlation

among data features. This is a promising future direction and should be investigated.

Bibliography

[1] Preeti Aggarwal and Sudhir Kumar Sharma. Analysis of kdd dataset attributes -
class wise for intrusion detection. Procedia Computer Science, 57:842–851, 2015.
3rd International Conference on Recent Trends in Computing 2015 (ICRTC-
2015).

[2] Alexandr Andoni, Khanh Do Ba, Piotr Indyk, and David Woodruff. Efficient
sketches for earth-mover distance, with applications. In 2009 50th Annual IEEE
Symposium on Foundations of Computer Science, pages 324–330, 2009.

[3] Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance
over high-dimensional spaces. In SODA, volume 8, pages 343–352, 2008.

[4] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan, 2017.

[5] Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Tobias
Hepp, Konstantin Nikolaou, Sergios Gatidis, and Bin Yang. MedGAN: Medical
image translation using GANs. Computerized Medical Imaging and Graphics,
79:101684, jan 2020.

[6] Vadim Borisov, Tobias Leemann, Kathrin Seßler, Johannes Haug, Martin Pawel-
czyk, and Gjergji Kasneci. Deep neural networks and tabular data: A survey,
2021.

[7] C. J. Brien, A. T. James, andW. N. Venables. An analysis of correlation matrices:
Variables cross-classified by two factors. Biometrika, 75(3):469–476, 1988.

[8] Jason Brownlee. Generative adversarial networks with python: deep learning
generative models for image synthesis and image translation. Machine Learning
Mastery, 2019.

[9] Nicholas Carlini and David Wagner. Adversarial examples are not easily de-
tected: Bypassing ten detection methods. In Proceedings of the 10th ACM
Workshop on Artificial Intelligence and Security, AISec ’17, page 3–14, New
York, NY, USA, 2017. Association for Computing Machinery.

[10] Francesco Cartella, Orlando Anunciacao, Yuki Funabiki, Daisuke Yamaguchi,
Toru Akishita, and Olivier Elshocht. Adversarial attacks for tabular data: Ap-
plication to fraud detection and imbalanced data, 2021.

[11] Sumouli Choudhury and Anirban Bhowal. Comparative analysis of machine
learning algorithms along with classifiers for network intrusion detection. In 2015

60

61

International Conference on Smart Technologies and Management for Comput-
ing, Communication, Controls, Energy and Materials (ICSTM), pages 89–95,
2015.

[12] Soubhik Das and Manisha J. Nene. A survey on types of machine learning
techniques in intrusion prevention systems. In 2017 International Conference
on Wireless Communications, Signal Processing and Networking (WiSPNET),
pages 2296–2299, 2017.

[13] D.E. Denning. An intrusion-detection model. IEEE Transactions on Software
Engineering, SE-13(2):222–232, 1987.

[14] Sukhpreet Singh Dhaliwal, Abdullah-Al Nahid, and Robert Abbas. Effective
intrusion detection system using xgboost. Information, 9(7), 2018.

[15] Yalei Ding and Yuqing Zhai. Intrusion detection system for nsl-kdd dataset using
convolutional neural networks. In Proceedings of the 2018 2nd International Con-
ference on Computer Science and Artificial Intelligence, CSAI ’18, page 81–85,
New York, NY, USA, 2018. Association for Computing Machinery.

[16] Carl Doersch. Tutorial on variational autoencoders, 2016.

[17] Phan The Duy, Le Khac Tien, Nghi Hoang Khoa, Do Thi Thu Hien, Anh
Gia-Tuan Nguyen, and Van-Hau Pham. Digfupas: Deceive ids with gan and
function-preserving on adversarial samples in sdn-enabled networks. Computers
& Security, 109:102367, 2021.

[18] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo.
A Geometric Framework for Unsupervised Anomaly Detection, pages 77–101.
Springer US, Boston, MA, 2002.

[19] P. Garćıa-Teodoro, J. Dı́az-Verdejo, G. Maciá-Fernández, and E. Vázquez.
Anomaly-based network intrusion detection: Techniques, systems and challenges.
Computers & Security, 28(1):18–28, 2009.

[20] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversar-
ial networks, 2014.

[21] Ian J. Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples, 2014.

[22] He Huang, Philip S. Yu, and Changhu Wang. An introduction to image synthesis
with generative adversarial nets. CoRR, abs/1803.04469, 2018.

[23] K. Ilgun. Ustat: a real-time intrusion detection system for unix. In Proceedings
1993 IEEE Computer Society Symposium on Research in Security and Privacy,
pages 16–28, 1993.

62

[24] Philokypros Ioulianou, Vassilios Vassilakis, and Ioannis Moscholios. A signature-
based intrusion detection system for the internet of things. 07 2018.

[25] ShengYi Jiang, Xiaoyu Song, Hui Wang, Jian-Jun Han, and Qing-Hua Li. A
clustering-based method for unsupervised intrusion detections. Pattern Recogni-
tion Letters, 27(7):802–810, 2006.

[26] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qi-
wei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision
tree. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

[27] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bot-
tou, and K.Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 25. Curran Associates, Inc., 2012.

[28] Christopher Kruegel and Thomas Toth. Using decision trees to improve
signature-based intrusion detection. In Giovanni Vigna, Christopher Kruegel,
and Erland Jonsson, editors, Recent Advances in Intrusion Detection, pages 173–
191, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[30] JooHwa Lee and KeeHyun Park. Gan-based imbalanced data intrusion detection
system. Personal and Ubiquitous Computing, 25, 02 2021.

[31] Kingsly Leung and Christopher Leckie. Unsupervised anomaly detection in net-
work intrusion detection using clusters. In Proceedings of the Twenty-Eighth
Australasian Conference on Computer Science - Volume 38, ACSC ’05, page
333–342, AUS, 2005. Australian Computer Society, Inc.

[32] Wenjuan Li, Steven Tug, Weizhi Meng, and Yu Wang. Designing collaborative
blockchained signature-based intrusion detection in iot environments. Future
Generation Computer Systems, 96:481–489, 2019.

[33] Yang Li and Li Guo. An active learning based tcm-knn algorithm for supervised
network intrusion detection. Computers & Security, 26(7):459–467, 2007.

[34] Jianxin Lin, Yingce Xia, Tao Qin, Zhibo Chen, and Tie-Yan Liu. Conditional
image-to-image translation, 2018.

[35] Zilong Lin, Yong Shi, and Zhi Xue. IDSGAN: Generative adversarial networks
for attack generation against intrusion detection. In Advances in Knowledge Dis-
covery and Data Mining, pages 79–91. Springer International Publishing, 2022.

63

[36] Jingmei Liu, Yuanbo Gao, and Fengjie Hu. A fast network intrusion detection
system using adaptive synthetic oversampling and lightgbm. Computers & Se-
curity, 106:102289, 2021.

[37] Xingjun Ma, Yuhao Niu, Lin Gu, Yisen Wang, Yitian Zhao, James Bailey, and
Feng Lu. Understanding adversarial attacks on deep learning based medical
image analysis systems. Pattern Recognition, 110:107332, feb 2021.

[38] Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999 darpa/lincoln
laboratory evaluation data for network anomaly detection. In Giovanni Vigna,
Christopher Kruegel, and Erland Jonsson, editors, Recent Advances in Intrusion
Detection, pages 220–237, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[39] John McHugh. Testing intrusion detection systems: A critique of the 1998 and
1999 darpa intrusion detection system evaluations as performed by lincoln labo-
ratory. ACM Trans. Inf. Syst. Secur., 3(4):262–294, nov 2000.

[40] John McHugh, Alan Christie, and Julia Allen. Defending yourself: The role of
intrusion detection systems. IEEE Software, 17(5):42–51, 2000.

[41] Souhail Meftah, Tajjeeddine Rachidi, and Nasser Assem. Network based intru-
sion detection using the unsw-nb15 dataset. International Journal of Computing
and Digital Systems, 8(5):478–487, 2019.

[42] Yu-Xin Meng. The practice on using machine learning for network anomaly
intrusion detection. In 2011 International Conference on Machine Learning and
Cybernetics, volume 2, pages 576–581, 2011.

[43] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets, 2014.

[44] Leonid Portnoy, Eleazar Eskin, and Salvatore Stolfo. Intrusion detection with
unlabeled data using clustering. 11 2001.

[45] Mohammad Rasouli, Tao Sun, and Ram Rajagopal. Fedgan: Federated genera-
tive adversarial networks for distributed data, 2020.

[46] Paulo Angelo Alves Resende and André Costa Drummond. A survey of random
forest based methods for intrusion detection systems. ACM Comput. Surv., 51(3),
may 2018.

[47] Maria Rigaki and Ahmed Elragal. Adversarial deep learning against intrusion
detection classifiers. 10 2017.

[48] Saharon Rosset and Aron Inger. Kdd-cup 99: Knowledge discovery in a charitable
organization’s donor database. SIGKDD Explor. Newsl., 1(2):85–90, jan 2000.

[49] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. Toward gener-
ating a new intrusion detection dataset and intrusion traffic characterization. In
ICISSP, 2018.

64

[50] Tuan A Tang, Lotfi Mhamdi, Des McLernon, Syed Ali Raza Zaidi, and Mounir
Ghogho. Deep recurrent neural network for intrusion detection in sdn-based net-
works. In 2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft), pages 202–206, 2018.

[51] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. A detailed
analysis of the of the kdd cup 99 data set. In Proceedings of the Second IEEE
International Conference on Computational Intelligence for Security and Defense
Applications, CISDA’09, page 53–58. IEEE Press, 2009.

[52] Hoang Thanh-Tung and Truyen Tran. On catastrophic forgetting and mode
collapse in generative adversarial networks, 2018.

[53] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin. Intrusion
detection by machine learning: A review. Expert Systems with Applications,
36(10):11994–12000, 2009.

[54] Mueen Uddin, Azizah Abdul Rahman, Naeem Uddin, Jamshed Memon, and
Suhail Kazi. Signature-based multi-layer distributed intrusion detection system
using mobile agents. International Journal of Network Security, 15:79–87, 01
2013.

[55] Muhammad Usama, Muhammad Asim, Siddique Latif, Junaid Qadir, and Ala-
Al-Fuqaha. Generative adversarial networks for launching and thwarting ad-
versarial attacks on network intrusion detection systems. In 2019 15th Inter-
national Wireless Communications & Mobile Computing Conference (IWCMC),
pages 78–83, 2019.

[56] Zheng Wang. Deep learning-based intrusion detection with adversaries. IEEE
Access, 6:38367–38384, 2018.

[57] Lilian Weng. From gan to wgan, 2019.

[58] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni.
Modeling Tabular Data Using Conditional GAN. Curran Associates Inc., Red
Hook, NY, USA, 2019.

[59] Lei Xu and Kalyan Veeramachaneni. Synthesizing tabular data using generative
adversarial networks. CoRR, abs/1811.11264, 2018.

[60] Jiahai Yang, Peng Ning, X. Sean Wang, and Sushil Jajodia. Cards: A distributed
system for detecting coordinated attacks. In Sihan Qing and Jan H. P. Eloff,
editors, Information Security for Global Information Infrastructures, pages 171–
180, Boston, MA, 2000. Springer US.

[61] Zilong Zhao, Aditya Kunar, Hiek Van der Scheer, Robert Birke, and Lydia Y.
Chen. Ctab-gan: Effective table data synthesizing, 2021.

65

[62] Ming Zheng, Tong Li, Rui Zhu, Yahui Tang, Mingjing Tang, Leilei Lin, and Zifei
Ma. Conditional wasserstein generative adversarial network-gradient penalty-
based approach to alleviating imbalanced data classification. Information Sci-
ences, 512:1009–1023, 2020.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Intrusion Detection
	Adversarial Attacks
	Overview of Wasserstein GAN Based Framework
	Thesis Outline

	Related Work
	Intrusion Detection Systems: From Signature to Deep Learning
	Generative Adversarial Network
	Wasserstein GAN
	Conditional GAN

	Adversarial Attacks against Intrusion Detection Systems
	White-box Adversarial Attacks
	Black-box Adversarial Attacks Using GAN

	Wasserstein GAN Based Adversarial Attacks
	Selected Schemes for IDS
	Machine Learning
	Multilayer Perceptron
	Convolutional Neural Network
	Recurrent Neural Network

	Wasserstein GAN Based Framework
	Conditional Wasserstein GAN Based Framework
	Input Conditions
	From WGAN to CWGAN

	Performance Analysis
	CICIDS2017 Dataset
	Dataset Selection
	Dataset Description
	Data Preprocessing
	Functional Features

	Experimental Setup and Evaluation Metrics
	Experimental Results
	Performance of Selected IDS Schemes
	Performance of Wasserstein GAN Based Framework
	Performance of Conditional Wasserstein GAN Based Framework
	Results Summary and Discussion

	Conclusion and Future Work
	Conclusion
	Future Work
	Other Deep-generative algorithms
	Dissimilarity Measurement
	Federated Learning and GAN
	GAN-based Data Synthesis for IDS training

	Bibliography

