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Abstract

Over-plotting and screen size are issues that challenge multivariate data visualization,

even on large displays. Large datasets make scrolling through data tedious, and pose

difficulties in isolating data points. Multivariate datasets can require displaying mul-

tiple graphs, which incurs cognitive load for the user when context switching between

graphs. A hybrid tablet + augmented reality(AR) interface can visualize large data in

AR beyond the boundaries of the conventional screen, which may permit effective mul-

tivariate data visualization. In this research I designed and evaluated a hybrid tablet

and head-worn AR interface to visualize multivariate Brain-Computer Interface(BCI)

time-series data. I explored two techniques for combining a head-worn AR display

with a tablet display for information visualization: rendering 2D AR content in layers

above the tablet display, and rendering 2D AR content around and on the same visual

plane as the tablet display. I conducted a controlled within-subjects experiment to

comparatively evaluate the above display and around display AR interfaces against a

tablet-only interface. In the above-display experiment, multivariate time-series data

is presented in four AR layers above the display. In the around-display experiment a

long duration time series extends beyond the edges of the display. I collected task ac-

curacy and time to complete tasks as primary measures. Semi-structured interviews,

self-reported usability and task load scores, and custom questionnaire responses are

collected for interface feedback. Above display AR yielded significantly higher task

accuracy but more time taken for task completion than the tablet only interface when

looking through the four horizontal AR layers in a standing position. Around display

AR yielded significantly higher task accuracy than the tablet only interface and sim-

ilar time taken to complete tasks. Still, participants expressed numerous reservations

about the hybrid setup, including higher task load and lower perceived usability vs.

the tablet only configuration.
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Chapter 1

Introduction

For visualizing longer duration and multivariate time series data, conventional dis-

plays such as tablets, personal computers and large interactive displays have limita-

tions due to screen size, portability and over-plotting [48]. For visualizing such data,

a hybrid interface that combines conventional display and augmented reality can be

leveraged. In such displays, a user can perceive large amounts of data without such

limitations. In our research, we designed tablet + AR with layering and focus+context

techniques to address data congestion due to screen size. We implemented layering

and focus+context techniques in two separate interfaces called above display visual-

ization of data (AbVD) and around display visualization of data (ArVD). In AbVD

interface, AR content is presented in four horizontal layers above the tablet display.

In ArVD, the AR content extends the visualization on the tablet from close to the

edges of the display.

There are different types of displays for presenting data such as laptops, tablets

and phones, split screen displays, large screen displays and curved screen displays;

though not all displays is suitable for every type of data presentation. These conven-

tional displays with limited screen size could impact certain types of data visualization

[1] such as poor visibility or interpretation of plots when sub-trends are overlapped.

Such limitations cannot be overcome using larger screens due to portability [4]. The

benefits of focus+context and overview+detail displays in AR proved to be effective

to support data visualization and overcome the difficulty of screen size. Also, AR can

extend the data visualization by presenting additional content of the visualization

beyond the physical screens [1].

In earlier research, data visualization using Tablet and augmented reality is demon-

strated by Langner et al.[1] and Reipschläger et al. [3]. MARVIS [1] and DesignAR

1
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[3] demonstrated the extension of visualization beyond the tablet screen through AR

and manipulating the AR contents from the tablet. Langner et al. [1] and Reip-

schläger et al. [3] have not explored the benefits of a tablet+AR interface through an

experiment of comparing tablet+AR with a tablet only interface. Such a comparative

evaluation could have revealed the benefits and limitations of visualizing multivari-

ate data in a tablet+AR interface. In this research we improvised by exploring the

benefits of tablet+AR through a controlled within-participants study against tablet

only interface.

We visualized Brain Computer Interface (BCI) time-series data in AbVD and

ArVD. Finding salient data points from multiple related time-series data and from

time-series data recorded for a longer duration are our use cases for AbVD and ArVD,

respectively. In data comprehension context, when time-series data is visualized for a

longer duration, it will be challenging to isolate data points in a single screen. If the

content is zoomed, users have to swipe multiple times to navigate through the data.

Use of focus+context view in ArVD leverages infinite screen space to present large

data without screen size limitation. Also, when multiple overlaid time-series graphs

are viewed in a single screen, there is a challenge to isolate salient data points due

to graphs overlapping with each other. Use of layering in AbVD to present multi-

ple related time-series plots provides better visibility that would otherwise be difficult

when those plots are overlaid on each other in physical screen. Our interface supports

perceiving complex BCI data (longer duration valence and arousal data up to 7000

epochs) and multiple time-series data that represents features involved in calculation

of valence and arousal. An epoch is a slice of EEG signal for a specific duration

representing time and frequency. Time-based epoching (One epoch is equal to 0.625

ms) is used in BCI to create slices of signals over a period of time that is large enough

to process the signals.

In our research, we evaluated our interfaces by comparing them with tablet only

interface for similar tasks in two controlled within-participants experiments. Tablets

have toggling, zooming and panning features to analyze large and multiple data visu-

alizations. A comparative evaluation of interfaces helped us to find answers if ArVD
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enhances comprehension of long-duration time series plots of BCI data, compared to

zooming and panning on a tablet. A similar comparative evaluation helped us to find

whether AbVD enhances comprehension of individual time series plots of BCI data

presented on separate horizontal layers in AR and shows the relationship with each

other, compared to presenting them all on a tablet display. Through our experiments,

we are also able to point out strengths and limitations of AbVD and ArVD in terms

of system usability, cognitive load and user experience.

In my thesis I explore two research questions. The first research question (RQ1)

that is connected to AbVD is: Can presenting individual time series plots of

BCI data on separate horizontal layers in AR enhance comprehension of

each plot and of how they are related to each other, compared to present-

ing them all on a tablet display?. Data comprehension in specific context to

AbVD means how participant interpret the features involved in calculating valence

and arousal data by finding salient data points in each feature presented in layers

and comparing the values of the data points i.e valence and arousal, the alpha/beta

frequencies of F3 and F4 presented as layers in AbVD interface.

In a controlled study we test a hypothesis (HA), which is a more constrained and

testable form of RQ1.

HA1) Placing time-series data in AR layers above a display leads to faster ac-

quisition of salient data points when the data is oversampled, when compared to

presenting all layers on a single physical display. and

HA2) Placing time-series data in AR layers above a display leads to more accurate

selection of salient data points when the data is oversampled, when compared to

presenting all layers on a single physical display.

For our testable hypotheses HA1 and HA2, the respective null hypotheses are

as follows: H0A1) Placing time-series data in AR layers above a display does not

lead to faster acquisition of salient data points when the data is oversampled, when

compared to presenting all layers on a single physical display. and H0A2) Placing

time-series data in AR layers above a display does not lead to more accurate selection

of salient data points when the data is oversampled, when compared to presenting all



4

layers on a single physical display.

The second research question (RQ2) that is connected to ArVD is: Can extend-

ing the boundaries of the tablet screen using AR enhance comprehension

of long-duration time series plots of BCI data, compared to zooming and

panning on a tablet?. In ArVD, data comprehension means to interpret salient

data points i.e valence and arousal values presented as a longer duration time-series

data(i.e 0-7000 epochs/5.5 minutes) in focus+context view.

Our related hypothesis(HB) is a constrained form of RQ2:

HB1) Presenting long duration time series data in its entirety by extending a

tablet display using AR will permit faster identification of salient data points than

when using zoom and pan on a tablet display. and

HB2) Presenting long-duration time series plots of BCI data by extending a tablet

display using AR will permit more accurate identification of salient data points than

when using zoom and pan on a tablet display.

For our testable hypotheses HB1 and HB2, the respective null hypotheses are as

follows: H0B1) Presenting long duration time series data in its entirety by extending

a tablet display using AR will not permit faster identification of salient data points

than when using zoom and pan on a tablet display. and H0B2) Presenting long-

duration time series plots of BCI data by extending a tablet display using AR will

not permit more accurate identification of salient data points than when using zoom

and pan on a tablet display.

We measured task accuracy and time taken for testing HA and HB for RQ1 and

RQ2. Task accuracy and time taken are some of the measures for system usability

for a specific task using two or more interfaces [4]. The usability of AbVD and ArVD

in identifying salient data points in AR layers and focus+context display can be in-

dicated by relevant measures such as accuracy and time taken to complete the task.

There are other measures for comprehension, which we discussed in the limitations.

In our research, we are confident in picking task accuracy and time taken as measures

for AbVD and ArVD.
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Our AbVD results indicated that in terms of accuracy (HA2) in locating salient

data points in layers, there is a significant difference between AbVD and tablet only in-

terface favoring AbVD. Though time taken is significantly higher in AbVD than tablet

only interface thus not favoring (HA1). In ArVD, there is no significant difference in

terms of time taken favoring (HB1), although we found significant difference in terms

of accuracy for finding salient data points in focus+context view (HB2). Our research

findings would benefit future research and development of hybrid tablet+AR HMD

interfaces and for people who work in neuroscience and other fields when analysing

BCI data.

Overall, our research on AbVD and ArVD contributed to the hybrid interface re-

search specifically by demonstrating the benefits of using a hybrid interface to present

complex BCI data. Our AbVD and ArVD interface added value to the immersive

analytics field, showing the use of immersive technologies such as AR/VR/MR to

visualize and explore the data. Conventional interfaces such as personal comput-

ers, tablets, large screen displays, and curved displays can present a variety of data.

However, the performance comparison between the conventional interface and hy-

brid interface can lead to an indication of aspects where the hybrid interfaces can

perform better than tablets and also indicates their limitations. Our within-subject

experiment compared AbVD and ArVD with the tablet-only interface to explore the

areas where the tablet+AR interface is beneficial for data visualization and analy-

sis. Through our study, we gained insights into participants’ experience using the

tablet+AR interface and their behavior for different tasks, such as tasks involving

different head orientations and resting positions. Our research also indicated aspects

of future improvements for the tablet+AR interface for BCI data.

My thesis chapters describe the background work and motivation behind tablet+AR

research. The system overview chapter presents the design decisions, motivation from

earlier work, the prototyping stage, and knowledge gathered from our pilot studies.

The evaluation section describes our controlled-within-subjects study that compared

AbVD and ArVD interfaces with the tablet. The data analysis chapter illustrates

the qualitative and quantitative data analysis and answers to our hypotheses HA and
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HB. The conclusion and discussion chapter portray the results and knowledge gained

from this research and its relevance to earlier works.



Chapter 2

Research background

The primary focus of our work is on three areas, augmented reality, brain computer in-

terface (BCI), and hybrid interfaces. Our work is also related to immersive analytics,

specifically information visualization in augmented reality. In brain computer inter-

face, we process EEG signals and visualize in handheld interface such as tablet+AR

interface. Some of the prior research related to this area are presented in following

sections.

2.1 Augmented reality

Augmented reality is the method of superimposing graphical elements in our view of

the real world. Augmented reality is used in general industrial applications such as

data visualization, manual assembly of circuits, and training (e.g., [24, 26]). AR is

also useful in the entertainment industry, such as sports for training and performance

monitoring of athletes (e.g.,[27]). AR us also used in advertisement, and marketing

areas (e.g.,[27]). Augmented reality evolved over decades for presenting contextual

information to the user in the real world. Tatham et al. [16] demonstrated a system

that superimposed graphical elements in the real world. The roots of head-mounted

displays(HMDs) can be traced back atleast to late 1968 when Sutherland et al. [14]

demonstrated the use of head-mounted displays to project 3D images. Earlier research

by Caudell et al. [15] illustrates the use of head mounted display called ”HUDSET” in

industrial applications such as aviation. Recent technological advances in augmented

reality paved the way for many commercial and industrial applications for providing

contextual information in public places like museums [29], for training and education

purposes [30], and entertainment such as gaming (e.g.,[28, 31]). AR applications are

getting increasingly popular such as Pokemon Go, a persuasive AR game app for

mobile devices [25].

7
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Using augmented reality, we can present contextual information or cues about the

subject that can aid in perceiving the details and enhance the user experience. Unal

et al. [73] demonstrated the use of location based augmented reality to superimpose

digital recreation of historical site over the real one. A drone is used to capture the

real world coordinates and render the digital 3D model accordingly on top of the

site [73]. Recent research in augmented reality shows that contextual information

visualization in AR helps the viewer to gain background information of paintings and

historical artifacts in museums(e.g.,[23, 29]). Park et al [29] conducted a study to

explore impacts of age and motivation in viewing abstract AR content for artifacts

in museum, results indicated higher age can lead to lower satisfaction and positive

motivation comes with addition of more features i.e taking pictures, leaving reviews.

AR is also used in visualizing information related to tasks in industrial environ-

ment. Satkowski et al. [24] conducted a user study to analyze the impact of the

external environment on data analysis tasks in an industrial environment. The re-

sults indicated that the background had no significant impact on the user’s perception

of AR content and task performance. Satkowski et al. [24] also pointed out that task

completion time might vary depending on complexity and distraction in the environ-

ment, but the impact is not significant. The research in augmented reality. Yoo et al.

[23] developed a project that provides contextual information paintings in museum

by slicing the image target and presenting abstract information about the component

i.e person in the painting. ([23, 29, 24]) gave us valuable insights about impact of di-

versity, environment and data visualization that helped us to consider above aspects

designing our study to evaluate AbVD and ArVD.

2.2 Limitations of conventional displays

Screen size and resolution can limit how displays can effectively support different data

visualizations. Pavanatto et al.[4] conducted a user study that compared physical,

virtual, and hybrid monitors in different aspects such as task performance, accu-

racy, comfort, and preference. Augmented reality can be an alternative to adding

or enlarging displays to project additional content. Reipschläger et al. [3] created

a workstation for designing 3D objects called DesignAR that combines a tablet and
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augmented reality. Reipschläger et al. [3] stated that AR objects placed close to

the display and around the edges of the display have a strong spatial connection

to the display. DesignAR [3], and MARVIS [1] show that extending displays using

tablet+AR can be helpful for data analysis tasks involving different kinds of visual-

izations, including maps and charts. The design of AbVD and ArVD is motivated

by MARVIS [1], DesignAR [3], and personal augmented reality for large interactive

displays [48], where they projected AR content above and around the display.

Pavanatto et.al’s[4] compared conventional computers and virtual monitors mo-

tivated our selection of aspects that are beneficial to compare, e.g. accuracy and

preference. DesignAR’s research by Patrick Reipschläger et al.[3] introduced the

concept of ”augmented display”. As per Patrick Reipschläger et al.[3], Augmented

displays extend the content displayed in physical monitors into 2D or 3D space in AR.

In immersive analytics, visualizing data in different views can lead to different

perspectives on data. Earlier research [64] demonstrated the creation of different vi-

sualizations through toolkits in immersive space. Cordeil et al.[64] created a toolkit

called IATK for generic data visualization and exploration. In IATK, the user can

select data, pick X and Y axis parameters, and create line charts, scatter-plots, and

scatter-plot matrices [64]. Cordeil et al. [97] created an immersive system called

ImAxes to explore multivariate data. In ImAxes, the axis parameters and data vi-

sualization can be changed to get different perspectives of data. Büschel et al. [2]

portrayed visual data analysis of user trajectories and event data in mixed reality

and conducted an expert feedback session to gain insights about data analysis. The

expert feedback highlighted key challenges such as limited field of view and physical

constraints when wearing the HoloLens 2 for a long time.

In the IATK toolkit [64], 2D/3D connected dots visualization where multiple

graphs overlaid on top of each other in 2D and spread apart in 3D is one design

motivation we explored for layering. Similar to the expert feedback study by Büschel

et al.[2], we decided to recruit 5 participants from neuroscience to gain insights into

their experience with our interface and get expert feedback on the possible future
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applications of the interface in neuroscience.

2.3 Brain computer interface

The Brain computer interface (BCI) is a system that interprets brain activity and

converts it into computer commands. The BCI terminologies used in our research

are alpha and beta frequencies, valence and arousal. Alpha, beta, theta, gamma and

delta are five frequency bands/rhythms observed in the human cortex. Brain activity

can be measured by electroencephalogram (EEG). EEG is the method of measuring

the electrical activity of neurons in the brain through a portable BCI device. Beta

rhythm is associated with increased alertness or focused attention, and alpha rhythm

is associated with a relaxed state [134]. F3 and F4 are electrodes in an EEG device

pointed to a specific scalp region. We visualized epoch-frequency plots, otherwise

called time-series plots, for our interfaces. They denote frequency values for each

epoch (1 epoch = 0.625 ms) from specific electrodes i.e., F3 and F4.

BCI is coined in early 70s when Vidal et.al [66]. EEG is widely used in several re-

search for emotion recognition and neurofeedback (e.g.,[6, 7, 9, 10, 13]). The features

extracted from the EEG signals will help in identifying patterns in brain activity.

Consumer grade BCI devices like OpenBCI [41], Neurosky [40] and EMOTIV[39] are

more commonly available in market. Though data from consumer devices are more

prone to packet loss. The EEG data is also used in previous research for evaluating

player task engagement when playing video games e.g.([6, 71]). OpenVibe [18] can

visualize the brain signal data in live and recorded formats and there are also other

scientific tools like Matlab, tableau, Python to visualize and analyze the recorded BCI

data. Such visualization tools can help present data in different ways, e.g., charts,

graphs, and multiple-linked visualizations. They have different features to interact

with data, e.g., linking, brushing, zooming and panning. Although, limitations in

terms of screen size and fitting large visualization or many related in a single physical

screen is a challenge.

Neurofeedback includes collection of EEG data in a controlled setting where a

person is tasked to do perform an operation that can activate certain regions of
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brain[72]. Ryan Hubbard et al.[65] demonstrated that neurofeedback could help en-

hance the learning experience in a virtual reality environment through feedback from

EEG signals on the state of the learner’s mind. Cavazza et al.[72] described three

levels of neurofeedback system, first is the target brain area, EEG is each brain area

is connected to specific functions of the brain. The second is the sensing device that

can capture the brain activity of the target brain area, The third is presenting the

signals to the user as an perceivable information.

BCI is also used in medical and industrial fields. Shih et al.[38] in the review high-

lighted the typical applications of BCI in the medical field. There are three types of

BCI, Invasive BCI, Non-Invasive BCI, and Semi-Invasive BCI. They are non-invasive

techniques using Electroencephalogram (EEG) are more commonly used for BCI ap-

plications to capture brain signals and convert them into commands (e.g.,[36],[37]).

Non-invasive BCI is in commonly used headsets such as EMOTIV[39], OpenBCI[41],

and Neurosky[40] by placing the device over the scalp of a person and sending the

raw EEG signal data from individual electrodes placed in the BCI device to the com-

puter. The platforms such as OpenVibe can connect and receive EEG signal data

from the BCI headset[18]. The OpenVibe platform filters the EEG signals using box

processing features to eliminate noise and extract specific frequency bands such as

alpha, beta, and delta frequencies([6, 18]). Electrodes in BCI device are positioned in

different areas of the scalp as per Brodmann’s Area to capture brain activity in spe-

cific areas[22]. Our background review on applications of BCI and signal processing

of EEG (e.g.,[36, ?, 37, 38]) encouraged us to use signal processing and extract spe-

cific features namely alpha, beta, valence and arousal from BCI data for visualization.

In OpenVibe [18], the interaction with data is challenging e.g., seeing salient

data points and screen size limiting the portion/number of features e.g., multiple

frequencies from sensor nodes. Tablet+AR interface can help to visualize the overall

duration of data and navigate through the salient data points. In ArVD and AbVD,

we can find a range of salient data points in longer duration and points of interest in

multiple related graphs can be viewed in layers.
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2.4 Time series analysis in EEG

Time series data means visualizing EEG data as the time-frequency decomposition of

one or more frequency bands. In the context of analysis of time series data that are

recorded for a longer duration, one practical application we found is seizure localiza-

tion in epilepsy. It requires large-scale artifact analysis to detect patterns and locate

seizure-related features. Lehnertz et al. [141] conducted a study on 300 EEG record-

ings, and non-linear analysis in EEG helped to locate seizures in different cerebral

regions in 80 percent of patients. Koenig et al. [142] mentioned that spontaneous or

sporadic EEG activity might not be sufficient to isolate areas in data that describe

shorter-duration events. Koenig et al. [142] also mentioned that time markers are

needed to describe attributes related to an event that changes over time. A microstate

means quantifying EEG signals into smaller duration data, for example, representing

100ms as a single epoch [143]. Konenig et al. [142] also demonstrated creating an

artificial signal by combining three signals of different frequencies and times. Kaur

et al. [144] reviewed several techniques to analyze EEG signals. One of the most

efficient ways for discrete and continuous EEG analysis is wavelet transform, i.e., the

conversion of the signal from time to frequency domain leads to the localization of

signal patterns.

2.5 Valence and arousal

Valence and arousal are essential features that determine a person’s emotional state.

S lupińska et al.[7] highlighted the use of The valence, arousal, and engagement factor

formula in human behavior. The research also mentioned that neuroscience measure-

ments such as valence, arousal, and engagement factors help study the participants’

experience during the VR experiment. The paper by S lupińska et al.[7] is very useful

for our research, and we used valence and arousal to extract its values in the openVibe

platform. The research also gave us insights into applying neuroscience concepts in

controlled experiments.

The valence and arousal values can be calculated from EEG signals using the for-

mula that uses alpha and beta frequencies of F3 and F4 nodes, Gilrado et al. [115]
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though it has to be accompanied with appropriate windowing and classification al-

gorithms to get accurate values free of noise. There are consumer grade devices such

as Neurosky that can portray direct values such as attention and meditation [145].

EMOTIV epoch plus also can portray metal states such as sadness, anger and joy to

the user [145]. We want our AbVD and ArVD interfaces to support different types of

EEG analysis in longer duration and multiple time series data not limited to valence

and arousal. Hence we did not use consumer-grade devices that give direct indication

of emotion states in our research.

Valence and arousal attributes to different emotions. There are research that uses

different frequency bands and electrode positions but ours is as per Gilrado et al.[?].

Alpha and beta are frequency bands in EEF aid in emotion classification. Dabas et

al.[21] demonstrated the classification of emotions from EEG signal frequencies us-

ing machine learning algorithms. Dabas et al.[21] also pointed out that alpha, beta,

theta, and delta frequencies are associated with specific states, i.e., Alpha frequencies

are associated with relaxed states, and Beta frequencies are associated with active

thinking or concentration.

We further reviewed other research that used the valence and arousal formula.

McMahan et al.[6] conducted a study that used the valence and arousal formula

to calculate players’ task engagement when the participants played a video game.

Though the valence and arousal formula in [6] is derived from [115]. The alpha and

beta signals ratio is used to find the different states of brain activity, such as task

engagement, when a participant is exposed to a particular scenario, Kamila S lupińska

et al.[7]. Chen et al.[10] created a model to process EEG signals alongside the user

profile for better emotion recognition. Previous research in BCI eg., [6, 7, 10, 21] that

demonstrated EEG signal processing and extracting frequency bands, mainly alpha

and beta, application of valence and arousal formula is beneficial to our research in

terms of calculating valence and arousal values.
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2.6 Feature extraction and data visualization in brain computer

interface

EEG technique is non-invasive, means the data can be captured from scalp of head

by using pointed electrodes in BCI device. The captured signals from EEG device

can be visualized as live or offline data in software platform. In the openVibe plat-

form, the EEG data can be displayed as live or offline as time series graphs (epoch-

frequency plots, i.e., epochs on X axis and frequencies on the Y axis [18]. The wave

patterns in EEG data can help understand the person’s mental state. In previous

research, data analysis and information visualization of BCI data have been done for

various purposes, such as concentration and meditation when performing activities

like studying and playing a video game [19]. In previous research, popular datasets

like the DEAP dataset from the publicly available repositories are used for research,

e.g.,[21]. Previous research employed different methods to collect data useful for

different experiments. These include instructing a participant to do a specific task

such as presenting a music video to different users [21], Asking the users to perform

guided eye movements, and viewing different images and landscapes [20]. Machine

learning algorithms are applied to find patterns in EEG features and train models,

e.g. ([20, 21]). . The research ([19],[20],[21]) gave insights about popular datasets for

BCI, types of study conducted in BCI and popular tools e.g([18],[40]) for BCI data

collection.

2.7 Frequency composition, windowing and ERP signatures in BCI

In BCI signal processing, the most common way to analyze EEG signals is to decom-

pose the signal into individual frequency bands, e.g., Alpha (8-12 Hz), Beta (13-30

Hz), Theta (1-3 Hz) and Delta (4-7 Hz) [126]. The changes in frequency bands can

be monitored over a particular time window, e.g. specific milliseconds intervals, to

analyze event-related simulations in individual frequency bands [126]. The changes

in frequency bands can be visualized and analyzed using a time-frequency plot that

motivated us to use time-series plots for presenting our data. Saby et al.[126], in the

review paper, summarized several works that portray frequency changes in infants,

e.g. [127, 128, 129].



15

Event-related potential (ERP) is another research area in BCI where stimuli-

invoked changes or waveform patterns are investigated. ERP can be measured using

EEG signals[131]. Stimuli can be any type, e.g., auditory or visual. Waveform changes

in response to stimuli within the particular time window are analyzed to get insights

about event-related changes. Saby et al. [131] reviewed several works investigating

EEG analysis in Rett syndrome. Saby et al. [131] mentioned that spectral analy-

sis is among the common approaches to analyze resting EEG in Rett syndrome. In

spectral analysis, EEG signals are decomposed into bands, i.e., alpha, beta, theta,

delta and gamma [131]. Sur et al.[130] described about the types of ERP waveforms

are P50, N100, N200 P200, N300, P300, N400, P600 and Movement-related cortical

potentials(MRCPs).

Signal windowing in EEG is one of the signal pre-processing steps where the

signals are divided into segments based on specific time intervals and frequencies.

Covantes-Osun et al. [132] mentioned windowing functions, i.e., Barlett, Kaiser,

Blackman, Hanning, Hamming and, Rectwin and presented a technique to find the

best windowing function with less signal scattering by finding the euclidian distance

between convoluted and non-convoluted signals. Augmented reality is the method of

superimposing graphical elements in our view of the real world.

2.8 BCI with augmented reality and other applications

We reviewed past research that included BCI and Augmented reality to find the

applications that uses BCI data in AR. EEG data is used in different domains such

as medicine, gaming, industry etc. In terms of previous works that used brain signals

in AR/VR/XR applications, we found several interesting applications of BCI and

AR in medicine. The BCI data has been used with augmented reality to promote

hands-free interaction with the system, which is used in domains such as healthcare

and industry, e.g.[32, 33]. Kohli et al. [32] reviewed applications of BCI signals and

pointed out that BCI with XR is used in robotics and home systems. Hands-free

interaction through BCI is one of the BCI applications relevant to Human Computer

Interaction. Angrisani et al.[33] proposed a system that included BCI and Augmented
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reality for industrial monitoring. The proposed system by Angrisani et al.[33] includes

interaction with the menu items using BCI signals through the gaze. Zhou et al.[34]

demonstrated that BCI signal data is also used in areas of virtual reality, such as

desktop VR flight simulation[34]. BCI is increasingly used in neuro-engineering to

address motor impairments through BCI-driven robotics[35]. Based on the recent

research e.g., [32, 33, 34, 35], we found that BCI data is used for neurofeedback that

helps different applications in AR and VR. However, the earlier researches mentioned

about did not point to a hybrid platform that helps user to visualize BCI signals and

analyze data in more self-explanatory nature irrespective of duration and number of

features.

2.9 BrainZebo - A neurofeedback project

In previous work by one of the researchers in our lab for the project called “BrainZebo”

encouraged us to explore interfaces that are suitable to visualize BCI data. BrainZebo

is a neurofeedback project in which the EEG signals captured live/recorded from

OpenBCI device is processed using SVM classifiers to extract valence and arousal

values and stream them through sockets using OSC (Open Sound Control) and to

VR application. The valence and arousal is visualized in VR in form of light blobs.

The color of the blobs, light intensity and music effects changes according to the va-

lence and arousal values. In BrainZebo a separate script in VR application processes

EEG signals and computes wave means, max values and left and right means and use

them for visualization. Max platform receives FFT (Fast Fourier Transform) values

from OpenBCI and converts it to music amplitude for VR application.

During my work in BrainZebo, as a part of preliminary work I explored different

ways to compute valence and arousal values directly from the signal processing plat-

form in offline using recorded data and visualize them in more readable fashion when

compared to abstract visualization of valence and arousal in BrainZebo. During liter-

ature review I read about, Gilrado’s et al [115] to compute valence and arousal and I

used that formula in OpenVibe to create a signal processing architecture to compute

valence and arousal values. The valence and arousal formula is also used in research

by McMahan et al. [6] More information about this implementation is presented in
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sec[3.3.1]. Platforms that can process and visualize the BCI data through time-series

graphs are desktop apps such as openVibe. In OpenVibe, we found examples of game

applications that uses BCI data for controlling a game object in virtual reality [77].

2.10 Physical displays

Conventional displays such as curved screens have their benefits. They can offer

greater immersion, but portability is limited, e.g., a desktop computer with curved

screen. Previous research also pointed out works that compared different displays

in terms of user experience. Zannoli et al. [133] ran a study that compared flat

screens with curved displays in terms of field of view, and the results indicated that

curved screens could offer better immersion by increasing the field of view. When

different types of displays had its own benefits, we chose HMD i.e., HoloLens 2 for

extending our display in AR. HoloLens 2 has a better field of view. In AR devices

such as HoloLens 2, the infinite screen space in AR and portability can be leveraged.

There are also options in Virtual reality (VR) where we can visualize data and the

position of content can align themselves according to head position of the user called

simulated head parallax e.g., FishTank VR [139]. But it might require complex head

movement tracking architecture and user has to be in total immersion in VR. Cubelos

et al. [140] proposed a methodology to analyze quality of experience during motion

parallax using multiple video view in VR, and one of the results pointed out user’s

movement speed can affect the perception of content in VR. We chose AR because

the user need not be total immersion with digital surroundings all the time and AR

can act as a natural extension to the contents presented in physical display.

Transparency is one of the advantages of using Holographic displays, and through

transparency, the user will not sense the presence of a physical screen when perceiving

the visualization [134]. We used HoloLens 2 for the same benefit, a fully functional

holographic display without the aid of an HMD device is still in the early stages of

development. Nakamura et al. [134] developed a small 360-degree cylindrical and

transparent holographic display for realistic 2D images. Large displays can offer im-

mense screen space to visualize the content and interaction options to manipulate the

data. Ardito et al. [135] pointed out that large screen displays are generally placed
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in fixed public settings and can also aid in visualizing datasets and enable the user to

get new perceptions of data. However, the larger screen size, reduces device’s porta-

bility. Smartphones are easily portable, though they offer limited support for visual

data exploration. Urushiyama et al. [136] proposed screen extension technique for

smartphone screens where the focus region and the smartphone’s off-screen contents

are presented in the external display. Despite offering portable options and utilizing

an external display for off-screen data, the external display is a physical display that

is limited to use in meeting rooms and desktop computers.

2.11 Hybrid interfaces

. The hybrid interfaces connect different types of devices to perform a task. Hybrid

interfaces exchange data among themselves to perform a task. We reviewed several

works in the past to know more about interaction between multiple devices that assist

in performing a task. Research by S.Satao and Harihara [42] demonstrated a tablet

application that uses CT data to visualize tumors in augmented reality during liver

dissection. The hybrid environment can enable the user to control the virtual objects

presented in the head-mounted display. Research by Wang and W. Lindeman [43]

demonstrated Tablet + HMD to control virtual objects presented in the display. The

same task can be performed simultaneously with two or more collaborating applica-

tions in a hybrid environment, such as desktop and virtual reality, when they share

similar data visualization and code closely coupled to work synchronously [44].

Some examples of hybrid interfaces in educational applications, e.g., iVRNote [46],

demonstrated a hybrid interface to assist in practical scenarios such as taking notes

in a virtual learning environment. In iVRNote [46], the tablet device can work syn-

chronously with notes displayed in VR and adjusts its position based on the tablet

position. When the student takes notes in the VR session, he simultaneously inter-

acts with the note in the VR and Tablet. The technique they applied to achieve

the synchronization is through electromagnetic sensors in the tablet that communi-

cates the position and orientation of the stylus to the VR. In MARVIS and DesignAR,

tablet computers work synchronously with Hololens in response to touch surface from

tablets e.g.,([1, 3]). MARVIS uses websockets to communicate to 2D visualizations
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projected n Hololens in response to touch events from tablet.

The previous works on hybrid interfaces, i.e. [42, 43, 44] gave us some idea on

communication between two applications on different devices to perform a task. Our

research uses the tablet touch surface and its user interface to communicate to aug-

mented reality layers in the Hololens application. Among the other previous relevant

research MARVIS [1] design was preferable in our research for communicating between

a tablet and AR device through websockets.

2.12 Extended physical displays using augmented reality - Relevant

works and challenges

The idea of using mixed reality with displays for creating hybrid distributed user

interfaces was first explored in the 1990s by Feiner and Shamash [8]. Integrating

physical and augmented workspace to perform 3D modeling using a tablet + HMD

was explored in DesignAR [3]. In DesignAR [3], the researchers used the tablets above

and around the display to generate 3D models in response to the user’s hand drawings

on the tablet screen using pen and touch techniques. The other recent research out-

lines the potential design space for using the above and around the display for data

visualization with the help of use cases. However, it does not evaluate the usability

of the study using controlled experiments[1]. In MARVIS, the researchers projected

additional AR content with the tablet display, enabling the user to better understand

specific visualizations with the additional AR context provided above, around, and

between tablet displays [1]. MARVIS also demonstrated the seamless integration of

AR and tablet display in extending visualizations from tablet display through AR

and manipulating AR visualization and tablet visualization simultaneously from the

tablet [1]. Our research compares tablet computers and tablet + HMD for data anal-

ysis and comprehension. Benjamin Bach studied the effectiveness of data exploration

in augmented reality with immersive tangible AR with other methods such as analyz-

ing the data in tablet AR and desktop computers through a controlled experiment [47].

The study by Benjamin Bach also showed that immersive AR with tangible mark-

ers perform better in terms of accuracy and time for tasks that require precision and
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interaction [47]. We also incorporated a set of training tasks to train participants

before starting the primary set of experiments. Training tasks can help participants

coordinate AR and interaction perception [47]. Over-plotting is also an issue even

with a larger display when displaying a large volume of data [48, 49]. In our research,

to view extensive time-series data, we project a large portion of time series data in

augmented reality around the tablet display with a portion of visualization presented

on the tablet. One of the existing methods to overcome the display of complex data

is by using focus + context displays which can zoom in on the selected focus area

through an interactive lens [50].

2.13 Data visualization in extended displays

In conventional displays, The amount of information displayed simultaneously is im-

pacted by technological limitations such as screen size, weight, and fashion [58]. Dis-

tinguishing important information from other information is difficult when the whole

visualization is presented [58]. In MARVIS the researchers extended the visualization

beyond screen in augmented reality [1]. Some earlier researches used in map applica-

tion in mobile used focus+context and overview+detail display techniques to project

large map data in a concise way, highlight important information and enable better

navigation through data. Such as the research by Cockburn who mentioned inter-

faces such as Google maps using overview + detail, zooming, and focus + context

to view map information [58]. Our research used focus points to navigate through

extensive time-series data. We used touch interaction with the tablet to interact with

the contents in the tablet and manipulate visualizations in the tablet and AR. Touch

is a prevalent mode of interaction offered by tablet devices and an important design

consideration when designing an interface [60]. It is more suitable for our tablet +

HMD interface.

Limitations of the screen size of the devices can also make visualizing of essential

portions of data challenging, especially when we zoom in and navigate through them.

Some earlier approaches to address the screen limitation when we zoom in are off-

screen visualizations such as Wedge [51] and Halo [52], which can clip important

information to the edges of the screen when the map content moves. The situated
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and embedded visualization in augmented reality can also visualize a portion of data

close to the data referent, adding more context to the visualization by displaying

additional information adjacent to the data visualization.

2.14 Spatial alignment of AR displays

Combining conventional displays with augmented reality could help in viewing com-

plex data. Reipschlager et al. [48] demonstrated the use of augmented reality to

present contextual visualizations for information visualization in large displays. Reip-

schlager et al. [48] also pointed adopted spatial alignment of AR data in front of the

display and edges of the display that made us believe above and above display could

help present complex data visualization limited due to screen size. Besides smaller

displays, there are significant shortcomings even for larger displays in terms of the

volume of data displayed on the screen. Increasing the size of the screen might not

always be a good option to present large data [48]. Willett et al. [53] demonstrated

situated and embedded AR visualization using spatial attributes adjacent to the phys-

ical spaces that could help analyze the data better.

In our research, The alignment of AR content is on top of the tablet screen for the

above display interface. Whereas, the alignment of AR content is closer to the edges

of the tablet screen. P. Reipschlager and R. Dachselt [3] defined the spatial proximity

of AR content close to the display and around the edges of the display in DesignAR.

AbVD and ArVD are designed with the notion that the content we present in aug-

mented reality should demonstrate a strong connection and precision to the physical

display. Reipschlager et al. [48] pointed out that connection and precision are es-

sential aspects of better spatial alignment and placement of AR on the center, left,

right, top, and bottom of the screen for extended data visualizations. Incorporating

augmented reality in the central zone can provide additional spatial dimension to the

visualization [48]. In our above display, we project four layers of AR above the tablet

display to visualize different BCI time series data. We believe the spatial position

of AR in above and around display is important to perceive the multivariate data in

augmented reality. Earlier researches pointed out that the spatial positioning of AR

content in the center, left, right, top and bottom is proper even for smaller screens[48].
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The spatial alignment of AR layers in research involving physical displays and

AR HMDs (e.g.,[1, 48]) motivated us to use the above display and around display

paradigms for our research. The MARVIS [1] and DesignAR [3] researches gave us

indepth understanding about the tablet + AR HMD interfaces and use case scenarios

of augmented displays that influenced our work.

The common issue in visualizing large and complex data is over-plotting when we

try to fit in more data into visualization that makes it difficult to read([48, 49]). Some

approaches in AR such as projecting the data in layers could make the data more

readable, and the elements projected in the layers could help in data comparison [48].

To make the AR layers clearer, controlling the transparency and toggling between

layers whenever necessary can make the user read the content better [48]. Colors

play an important role in distinguishing layers, and In our research, we used only

primary colors with background transparency which can distinguish a layer clearly

from the others. The color quality of AR is lower when compared to other conventional

displays such as computers, and the background might impact the effectiveness of

visualization [54]. Augmented reality is useful to visualize relationships and compare

different visualizations [48, 59]. Our research compares valence, arousal, and Alpha

and Beta frequencies of F3 and F4 sensor nodes. The challenge that may arise when

comparing visualizations is the size of the items compared or the complexity of the

items [59]. In our research, we compare four visualizations in the above display and

study the interface’s strengths.

2.15 Immersive analytics

Immersive Analytics, in general, is multi-disciplinary that combines popular domains

such as AR, VR, HCI, and tabletop for exploring design interfaces suitable for better

data visualization and comprehension [55]. The most important benefit of immersive

analytics is making use of the physical spaces effectively around the user to visualize

the data when compared to viewing the data in flat 2D surfaces like computers [75].

In order to understand the effectiveness of immersive interfaces, we need to under-

stand the experience of the user when they perform different tasks using the interface.
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Accuracy and time taken to complete the tasks are some important measures that will

portray the task effectiveness of the visualization [75]. Comparative studies between

the two immersive interfaces provides more insights about the ideal environment for

the users to perform the tasks. Bo Sun et al. [76] compared two types of immersive

interfaces that vary on visualization, mode of interaction and navigation indicated

that immersive setting involving limited physical movements and interaction through

gestures is a good setting for small spaces for everyday use. The research by Bo Sun

et al. [76] also motivated us to adopt an ideal setting for the experiment i.e seated

with limited movement to navigate through the data.

Exploring the feasibility of using the same interface for different types of domains

for immersive analytics is also a suitable research area that can be explored [55]. Our

research used two types of data: BCI and Space syntax. The selection, navigation,

changing, and filtering tasks are among the core modalities of immersive analytics

[56]. The interaction types we are motivated to use in our research are selecting the

AR visualizations from the tablet, toggling ON/OFF one or more layers, navigating

through the data, and selecting specific focus points.

Earlier research demonstrated the effectiveness of using a hand-held device to

manipulate data underlying visualizations presented on external displays, such as the

research by Louis-Pierre et al. [62]. The interaction and manipulation of digital

objects projected on a distant screen from the smartphone through gestured called

ASP (Around the smartphone) technique [62]. In the same research [62], two other

techniques to manipulate digital elements in distant displays called OSP (On the

smartphone) using fingers and WSP (With the smartphone) using the rotation of

the device compared to which audience preferred using the WSP technique. In our

research, we manipulate the 2D AR layers using touch and swipe interactions from

the tablet.

2.16 Existing tools and platforms to visualize BCI data

When there are tools to process and visualize data in physical displays, visualizing

BCI data in hybrid platforms such as tablet+AR gives new perspectives during data
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analysis. Looking at BCI data present in AR layers from different head orientations

and resting positions when the features related to valence and arousal can aid in iso-

lating a specific data point/peak, say valence, and check the values of other features

alpha/beta values of F3 and F3 at the same point. When a large time-series data un-

hindered by physical screen size is displayed, that can help the user to find a number

of data points within a specific range, and we can see the whole visualization clearly.

In OpenVibe or OpenBCI when we run the program to visualize signals, separate

windows or single window visualizing the signals will be displayed and it gives us an

overview of the signals and its difficult to understand related features and identifying

individual data points.

Other analytical platforms such as Tableu [94, 95] can help creating visualizations

for BCI such as line graphs for time-series data and we can use linking, brushing and

clicking on individual data points to read the values and present individual line charts

in single window, Though as discussed in introduction screen size limitation depending

on device type still persists. It motivated us to create a the hybrid environment

combining tablet+AR to visualize BCI signals as time-series graphs and through

layering and focus+context technique we can present BCI data irrespective of duration

and number of features. Our approach combines brain-computer interface and hybrid

displays that can potentially benefit brain-computer interface domain by opening

doors that enhances the perception of BCI data using hybrid displays. Our work can

be first step to motivate future work to use hybrid interface such as tablet+AR to

visualize and analyse BCI data.

2.17 Design choices

Tablet + AR

The design choices for AbVD and ArVD is adopted from MARVIS [1] and Desig-

nAR [3]. The tablet is portable and the previous research [1] and [3] that utilized

focus+context displays demonstrated that the augmented reality can be used to ma-

nipulate and extend visualizations beyond the boundaries of tablet by using aug-

mented reality from HMDs i.e HoloLens 2. Our choice for using AR is to leverage
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infinite screen space, and users need not be in total immersion, e.g., VR, to explore

the time-series data. AR can act as a natural extension to tablet screens, which made

us choose AR over other technologies.

Suitable placement of AR contents in AbVD and ArVD

When we present contextual information in AR in addition to physical display, the

position of the AR content relevant to the content displayed in physical monitor plays

an important role to demonstrate its relation to the visualization in physical display.

For example in [48] the context information in AR about a bar chart is placed in a

vertical position close to the bar chart in physical display to illustrate that the AR

content points to this specific bar chart in large screen[48]. In MARVIS[1] the use

case scenarios portrayed the placement of AR content +(charts) above the display

and close to edges of display (map extensions) that are useful for our research to

position contents in AbVD and ArVD. In MIRIA, the visualization of user’s position

and interaction data in AR is visualized in close proximity to the content displayed in

interactive surfaces[2]. In ArVD to visualize a longer duration time-series data, using

AR to extend the focus region in the tablet is a suitable visualization paradigm to

portray entire time-series graph to the user. In AbVD when we place the AR layers

close to each other above the display it can help us adjust our head-orientation and

view data from different angles to get different perspectives.

Interaction techniques

Tools such as IATK [64] served as a reference for analyzing the data visualizations in

immersive space i.e., Line charts. Fisher et.al.,[96] pointed out three principles of vi-

sual representation(adopted from [102]), appropriateness, naturalness and matching

principles. In addition to visual representation, Fisher et.al., [96] also pointed out

interaction technique is important to create a meaningful dialogue between visualiza-

tion and researcher. Time-series data is suitable to visualize valence, arousal recorded

for longer duration as per matching principle. Selection, navigation and finding loca-

tion of data are some of the common tasks in context of time-series data in immersive

analytics [90]. Tablets can act as interaction surface from where contents in AR can

be manipulated [1]. We adopted selection and navigation techniques in AbVD and
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ArVD to manipulate AR content. We adopted extended visualization of map path

from MARVIS [1] and DesignAR [3] as a baseline for layering and focus+context

techniques.

2.17.1 Why BCI data?

Our motivation to use BCI data is tied to the previous work done on BrainZebo that

portrayed abstract visualization of valence and arousal in the form of light blobs. In

our research, we are motivated to present data that lead to the calculation of valence

and arousal more generically, i.e., time-series, to help the users perceive the data,

e.g., finding the highest peak in time-series data, comparing the graphs and isolating

the data points. We acknowledge that time-series is more generic and applicable to

different domains, which allows us to use AbVD and ArVD for different types of

time-series data. In addition, the long-term goal of ARTIV research is to compare

different data visualization techniques in AbVD and ArVD for different types of data,

i.e., BCI, Space syntax and geospatial visualization.

2.17.2 Resting position

Our AbVD and ArVD interfaces are portable, and we have a QR code on the side

of the tablet that can place the AR layers closer to the physical display. With the

continuous tracking feature, AR layers can move with the tablet. In our study, the

participants performed most of their tasks in the seated position, and we made ob-

servations if they were tempted to move around to explore data for any task. We

tested only evaluated AbVD and ArVD interfaces is different resting positions, e.g.,

stand up and look down, seated view from an angle and seated and use single layer,

though we did not have any specific tasks that specifically asked the participants to

pick up the tablet and move around to explore the data.

2.18 Summary of background work

Previous research MARVIS [1], MIRIA [2], DesignAR [3], and Personal augmented

reality for information visualization [48] provides evidence that physical computers
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with augmented reality can aid in data visualization and data analysis tasks. Align-

ment of AR content are motivated from the works [1, 2, 3, 48] that lead to placement

of AR layers in AbVD and ArVD. Interaction techniques in AbVD are motivated from

[90, 91]. Previous work in brain computer interface of using EEG data to compute

valence and arousal [6] encouraged us to compute valence and arousal from recorded

BCI data. The comparative study performed in [4] encouraged us to compare AbVD

and ArVD with physical monitors. Recruitment random participants from different

background, level of experience with AR/VR and 5 expert participants from neuro-

science will mitigate bias in our study. In next chapter we will learn about system

design process.



Chapter 3

System overview

In this chapter we present design and implementation of AbVD and ArVD interface.

3.1 Overview of AbVD and ArVD in ARTIV-BCI

Our interfaces AbVD and ArVD consist of Microsoft surface Pro 3 tablet and HoloLens

2 device. Tablet comprises of a web application to visualize the BCI data and commu-

nicate with AR layers. In AbVD, we can toggle on/off and switch time-series graphs

in AR layers from the tablet. In ArVD similar to AbVD we can toggle and switch

the graph. In addition we can use focus points and shift-left/shift-right to navigate

the time series graph. In ARTIV-BCI we have menu to select AbVD or ArVD visu-

alization and a toolbar to turn on/off QR tracking to anchor the AR layers close to

tablet.

We used pre-recorded EEG data from OpenVibe, processed the EEG signals and

visualized them as time-series graphs, i.e., line graphs in AbVD and ArVD. In AbVD,

alpha and beta frequencies from F3 and F4 sensor nodes, valence and arousal values

derived from alpha and beta frequencies of F3 and F4 are presented in four AR

layers. In ArVD, A longer duration valence and arousal values (0-7000 epochs) are

displayed in AR. The AbVD supports finding salient data points in different layers

and comparison of data points in each layer. User can view and analyse the graphs

in different resting positions i.e., seated position from an angle, stand up and look

through the AR layers, and toggle on/off layers in AbVD. The ArVD supports finding

multiple data points across the range of time-series data using focus+context view

by clicking a specific epoch from the focus point.

28
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Figure 3.1: Overview of AbVD

Figure 3.2: Overview of ArVD
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3.2 Design

In our research group ARTIV (Augmented Reality + Tablet Information Visualiza-

tion), three researchers were involved in implementing Tablet+AR interface to explore

three types of data. I (Hariprashanth Deivasigamani) implemented AbVD and ArVD

for BCI data. Other researchers, Ramanpreet Kaur and Hubert Hu implemented sim-

ilar techniques for space syntax and geospatial data visualization using tablet+AR.

Each researcher was responsible for collecting data with respect to their domain.

Throughout the system design phase, We collaboratively brainstormed ideas using

Miro board [104], created UI sketches and evaluated designs.

3.2.1 Initial brainstorming

We used Miro board for brainstorming ideas for software platforms, design ideas,

features that can be presented, challenges and findings from previous works on hybrid

interfaces. The brainstorming phase helped us to exchange our thoughts and ideas.

This phase also allowed us to discuss freely and gather feedback to further refine our

ideas for sketching the AbVD and ArVD interfaces. A snapshot of brainstorming

from miro board is presented in Figure 3.3.

3.2.2 UI sketching

In this phase we drew UI sketches (paper and pencil prototypes) as can be seen in

Figure 3.4. In the sketching phase, we specifically considered the previous work done

in tablet+AR interfaces and ideas regarding our interface limited to our research

objectives. We came up with design sketches of AbVD and ArVD. We also derived

use cases to explore user interaction with our application and considered different

placements of AR layers.

3.2.3 Low-fidelity prototype

The initial prototype phase involved creating BCI visualizations and presenting them

on HoloLens 1 device. We explored initial ideas for visualizing BCI data in the

tablet+AR interface as can be seen in Figure 3.5(a) and 3.5(b). We also explored

multi-monitor concept to visualize time-series data (Figure 3.5(c)). To arrive at a
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Figure 3.3: Brainstorming using Miro board
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(a) User logs in to application (b) User select the data

(c) User selects above display (d) User selects around display

Figure 3.4: UI Sketching
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(a) Visualizing Alpha/Beta values of F3 and
F4 with valence and arousal values

(b) Deploying BCI data in Hololens emulator

(c) Multiple monitor concept for shared visualization

Figure 3.5: Low-fidelity prototype

standard design for AbVD and ArVD, We started with prototype sketching, followed

by creating a time-series visualization using the D3 package in JavaScript. We de-

ployed the web application using Webviews on the HoloLens. We wanted to compare

AbVD and ArVD against a common portable configuration (i.e., a tablet on its own),

and this allowed the same seated configuration, screen resolution, and UI controls in

all experimental conditions. After the low-fidelity prototyping phase, we had clearer

ideas about how to design and implement AbVD and ArVD.
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(a) ArVD (b) AbVD

Figure 3.6: High-fidelity prototype

3.2.4 High-fidelity prototype

During low fidelity prototyping for AbVD and ArVD, we derived design decisions to

present four layers of time-series data in AbVD and a longer duration time series data

in ArVD. We built a stable AbVD and ArVD interfaces with basic functions such as

moving the time series data, changing the alpha and beta values in the layers, and

toggling the layers. In anticipation of the comparative evaluation presented in the

following chapters, we refined the use-cases for the AbVD interface to focus on differ-

ent features involved in calculating valence and arousal as time series visualizations

on different AR layers. In the ArVD interface, we consider a longer duration of time

series data that extends from the tablet’s edges using augmented reality. A snapshot

of AbVD and ArVD interfaces at this phase is presented in Figure 3.6.

3.2.5 Design Testing and Feedback

We conducted pilot tests with four HCI grad students and faculty members who pro-

vided feedback regarding the tablet+AR and tablet-only interface. We made upgrades

to the interface after each pilot test. The evaluators expressed that if the time-series

data is of longer duration, i.e., 0-7000 epochs, then tablet+AR can be beneficial in

terms of adding more context to the screen through AR than a tablet-only interface to

view a longer duration time-series graph. For the above display interface, participants

mentioned that if the time series graphs are visually distinguishable using different
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colors and thickness of the lines, that will add to better information perception. In

the above display, we presented multiple time-series graphs from 0-2000 epochs with

axis labels on each layer.

3.3 Implementation

The data we used to create visualizations is pre-processed from the openVibe plat-

form. The BCI signal data is pre-recorded data freely available in the openVibe

platform for development and research [18]. The pre-recorded data is available in

GDF format. The BCI signals from the pre-recorded data are processed in openVibe

using box processing [18].

3.3.1 BCI data collection using OpenVibe

We used a pre-recorded sample dataset named ”real-hand-movements.gdf” available

for free in the openVibe platform created by INRIA. We treat this data set as black-

box. The dataset comprises of low-level data(raw frequencies) from a 9-electrodes (F3,

F4, C3, Cz, C4, P3, P4, O1, O2) that allowed us to derive medium-level data(alpha

and beta frequencies) from F3 and F4 nodes and then to high-level data(valence and

arousal values). We picked frontal nodes F3 and F4 as per the asymmetric frontal

activity hypothesis in Gilardo et al. [115] work, where left frontal activation and right

frontal activation are associated with negative and positive emotions.

We used time-based epoching (1 epoch = 0.625ms) to capture many data points

for our time-series visualization. The epoch setting is derived from BrainZebo project

which gives continuous neurofeedback throughout the duration the participant is

wearing the BCI headset. We applied channel selectors to select F3 and F3 sensor

nodes and bandpass filters to discard unnecessary frequencies and to capture alpha

(8-12 Hz) and beta (12-30 Hz) frequencies. We averaged the signal into epochs (1

epoch = 0.625ms). The epoch window is very small in our case since we wanted to

extract around 7000 data points. To perform a simple calculation in the alpha and

beta frequencies, We applied valence and arousal formulas from Gilardo et al.[115]

mentioned below in a simple DSP signal processing box and generated the valence

and arousal values. Our signal processing architecture is presented in Figure 3.7.
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arousal = (bF3 + bF4) / (aF3 + aF4)

valence = (aF4/bF4) - (aF3/bF3)

a = alpha frequency, b = beta frequency

We did not perform logarithmic power representation to compute the power of

alpha or beta within a specific window, as proposed by Ansari et al.[118] since our

data is recorded for longer duration. We applied the valence and arousal formula to

each epoch, i.e., 0-2000 epochs in AbVD and 0-7000 epochs in ArVD, and visualized

the data in the form of a time-series. The rationale for this approach is not to con-

vince BCI researchers to take this approach to compute valence and arousal but to

demonstrate how the higher level values are derived from raw signals.

We acknowledge the limitations regarding accuracy in valence and arousal values

and pre-processing steps e.g., windowing, isolating portions with stimuli, application

of algorithms, to get cleaner values for valence and arousal derivations that are free

of noise artifacts. There are other forms of valence and arousal derivations possible

that require other sensors. We also acknowledge the use of consumer devices to get

direct emotion values e.g., Neurosky that gives attention and meditation values and

EMOTIV EPOCH+ that displays emotions. Though values from consumer devices

are not suitable for our research since we would like to demonstrate the EEG signal

analysis from raw frequencies and visualize the time-series in AbVD and ArVD. Some

details from this dataset are missing, such as the scenario when recorded, timestamps

of stimuli. However, this stands as example to generate valence and arousal values

from raw signals. Our research in this phase is more about BCI data visualization in

AbVD and ArVD interface than an more specific use E.g., in a medical application.

We acknowledge the limitation of not using classifiers such as SVM [113, 107], Logistic

regression [111, 112] and LSTM [109, 110] to identify accurate valence and arousal

quadrant or distinction between high/low valence and high/low arousal. However

using classifiers and measures to remove noise artifacts from data are attributed to

future work.



37

Figure 3.7: Signal processing architecture in openVibe to capture alpha, beta fre-
quencies of F3 and F4, valence and arousal values



38

3.3.2 Visualizing BCI data on the tablet and HoloLens 2 using D3 js

We created the time-series visualization of BCI data in a web application using the

D3.js [61]. We used the Edge browser to run our web application. The X and Y axes

are labelled in the web application according to the feature visualized. In ArVD,

a portion of a time-series graphs in the focus region is rendered on tablet and the

remainder of time-series graph is rendered in AR. In AbVD, four time-series graphs

are presented in AR. D3.js is used to visualize time-series graphs on the AR layers

(Webviews). On the tablet display we have radio buttons to switch between Alpha

and Beta values of F3 and F4 and toggle buttons to toggle on/off the AR layers. We

used Unity 3D to build ARTIV-BCI application for HoloLens 2. We designed the AR

layers using Webviews and visualized BCI data for the AbVD and ArVD. Webviews

is an asset in Unity 3D that can render a webpage in HoloLens 2.

3.3.3 Communication between the tablet and HoloLens 2 applications

An XAMPP server [98] is used to run the web application. The Pagekite software [99]

is used to create URLs for the web application. The connection between the tablet

web application and the HoloLens 2 application is established using Websockets [100].

The websocket port will listen to the IP address of the web application to monitor

incoming broadcast messages between the tablet and HoloLens 2.

3.3.4 Aligning AR content with the tablet

We used QR tracking package from Nuget [103] in Unity 3D to scan a QR code

attached to the right side of the tablet (Figure 3.8). QR code align the AR content

with the tablet. The QR toolbar in the HoloLens 2 application has a button to start

and stop QR tracking. AR content move with the tablet when the QR tracking is

enabled. QR code attached to tablet as seen in Figure 3.8.

3.3.5 Transparency in AR layers

In the design phase we decided to make the AR layers transparent in order to enable

the users to see through layers of time-series graphs without obstruction. We used

canvas and made the background of web pages black in AR layers. Webview has a
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Figure 3.8: QR code attached to the tablet to align the AR contents

feature to make the black background transparent in HoloLens 2, and ensured that

this allowed the layers to become visually integrated by viewing them from above.

The background was also transparent for ArVD, as doing so made the AR content

appear to be more integrated with the tablet focus region.

3.3.6 Deploying HoloLens application

To deploy the application to the HoloLens 2 we built the UWP (Universal Windows

Platform) solution in Unity 3D and deployed the application via Visual Studio 2019

when the HoloLens 2 was connected. Once the application was deployed to the

HoloLens 2 and executed, a menubar appears as seen in Figure 3.9 where we can

select AbVD or ArVD using an air-tap gesture. We can turn on QR tracking from

the toolbar to scan the QR code and anchor the AR content to the tablet’s position

and orientation. The size of the AR layers in AbVD is equal to the dimensions of the

tablet screen. In ArVD the height of the AR layers is the same as the tablet screen

but the width extends to 6.25 feet to left and right of the tablet to support visualizing

longer duration data. Menu to select AbVD and ArVD along with QR tracking is as

seen in Figure 3.9.

3.3.7 AbVD

This section [3.3.7] and the next section [3.3.8] give a detailed description of AbVD

and ArVD, respectively. AbVD is comprised of a tablet and four AR layers above the
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Figure 3.9: Menu for above and around display with QR tracking

tablet display [Fig 3.10]. In each layer a separate BCI time series data visualization is

presented. Projecting data above the display is demonstrated in MARVIS for tablets

by Langner et al.[1] and for large interactive displays by Reipschlager et al.[48]. The

topmost layer in AbVD represents alpha and beta frequencies of F3, the second layer

from the top represents alpha and beta frequencies of F4, the third layer represents

arousal and the bottom layer represents valence. Each time series graph (F3, F4,

valence and arousal) is presented from 0 to 2000 epochs. The dimensions of each AR

layer are equal to the size of the tablet display. The QR code can position the AR

layers close to display as described in sec [3.2.4].

User interface of AbVD

In AbVD four AR layers are controlled by the web application on the tablet comprising

of buttons, radio buttons and check boxes as seen in Figure 3.10 (b). The user can

toggle on and off individual layers, and switch between displaying the features of alpha

and beta in the F3 and F4 layers. We represented each time-series graph in different

colors to help participant visually distinguish the graphs. The AbVD interface with

all 4 layers is illustrated in Figure 3.10.

Using AbVD

In AbVD, the user can perform data analysis tasks from different resting positions

and head orientations. Users can perform data analysis tasks in a seated position by
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(a) AbVD - Viewing in a seated position (b) AbVD - Viewing in a standing position

(c) AbVD - User clicks on toggle off (d) AbVD after toggle off

Figure 3.10: AbVD interface
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adjusting their head orientation by leaning back to view AR layers from an angle such

that the layers do not overlap, toggling on and off one or more layers, or standing up

and looking down to view all layers integrated together. Figure 3.10 also represents

viewing angles and toggle operation in AbVD.

3.3.8 ArVD

ArVD includes tablet and HMD. AbVD includes one large AR layer that presents

time series data on both sides of the tablet display, as shown in Figure 3.11, continuing

the time series presented on the tablet. Continuation of data in the context of ArVD

means, For example, given a time series data of 7000 epochs, if the portion of the

time-series graph on the tablet presents 3000-4000 epochs, on the AR visualization

right presents data from 0-2999 and on AR visualization on the left presents 3999-

7000 epochs (Figure 3.11(a)). ArVD uses the focus + context view to present the

large time series data. Focus+context means keeping a portion of the focus region on

the tablet and the remaining portion in AR.

User interface for ArVD

The large time series data is controlled using tablet as shown in Figure 3.11. The user

can select between valence and arousal data using the buttons present in the tablet.

The small-axis representing the epoch is presented below the time-series graph on

the tablet to enable the user to click on a specific epoch which shifts the time-series

so that tablet screen is centered on that epoch. The Zoom in and Zoom out button

is present in the menu bar to physically expand and shrink the time series data as

shown in Figure 3.11 (a),(b),(c),(d). The size, position, and range of the time-series

data shown in AR is synchronized with the tablet display such that the data appears

to be a single time series graph that extends past the boundaries of the tablet display.

Using ArVD

In ArVD, We can adjust the focus point of the time-series data by clicking on a

specific epoch presented on the smaller-axis on the tablet, and the whole time series

data will bring nearby data points onto the tablet. We can look at both sides of the

AR visualization to identify data points within a specific epoch range and switch the
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(a) ArVD - When we click zoom in (b) ArVD - When we click zoom out

(c) ArVD - User clicking on focus point
(d) ArVD - Time series graphs physically ad-
justs the view

Figure 3.11: ArVD interface
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visualization to valence or arousal depending on the task. We can also use shift-left

or shift-right to bring nearby data points onto the tablet or zoom out to view more

data points on the tablet. The axis labels can be used to locate any point along the

entire time-series.

3.3.9 Summary of implementation

To summarize, implementation of AbVD and ArVD started with brainstorming, pro-

totype design, and pilot studies that helped to refine AbVD and ArVD into fully

functional interfaces ready for evaluation. We encountered and mitigated some cru-

cial challenges, such as achieving transparency, anchoring AR layers, and making the

long-duration time-series data move in sync with the portion of data displayed on the

tablet. Building a tablet UI self-explanatory for first-time users is also a key chal-

lenge we faced. More information about the challenges, mitigation, and takeaway is

presented in the discussion chapter. After successful pilot studies, we evaluated our

interface through a controlled within-subject study. The study design for AbVD and

ArVD is illustrated in the next chapter.



Chapter 4

Comparative Evaluation of AbVD and ArVD vs.

Tablet-Only Interfaces

This chapter focuses on study design for AbVD and ArVD. We present our research

questions and hypotheses, recruitment strategy, target population, pre-screening pro-

cess, tool we used for collecting data, and AbVD and ArVD experiments. A summary

of data preparation is also presented in end of this chapter.

4.1 Research questions

We restate our research questions and hypotheses here.

4.1.1 AbVD

Research question 1 (RQ1):-

Can presenting individual time series plots of BCI data on separate horizontal layers

in AR enhance comprehension of each plot and of how they are related to each other,

compared to presenting them all on a tablet display?.

Hypotheses for RQ1

HA1) Placing time-series data in AR layers above a display leads to faster acquisition

of salient data points when the data is oversampled, when compared to presenting all

layers on a single physical display.

H0A1) Placing time-series data in AR layers above a display does not lead to faster

acquisition of salient data points when the data is oversampled, when compared to

presenting all layers on a single physical display.

HA2) Placing time-series data in AR layers above a display leads to more accurate

selection of salient data points when the data is oversampled, when compared to pre-

senting all layers on a single physical display.

45
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H0A2) Placing time-series data in AR layers above a display does not lead to more

accurate selection of salient data points when the data is oversampled, when com-

pared to presenting all layers on a single physical display.

Task accuracy is a primary indicator for HA2 and HB2. Time taken is a primary

indicator for HA1 and HA2. Task load ratings, system usability ratings and custom

questionnaire ratings are collected for user experience feedback. We have four task

groups in AbVD experiment to test HA1 and HA2. Each belongs to different resting

position and viewing angle: Group 1:- Seated and toggle, Group 2:- Seated and

view from an angle, Group 3:- Stand up and look through AR layers and Group 4:-

Use your own approach (Perform tasks in any way with what you have learnt with

interface).

4.1.2 ArVD

Research question 2 (RQ2):-

Can extending the boundaries of the tablet screen using AR enhance comprehension

of long-duration time series plots of BCI data, compared to zooming and panning on

a tablet?.

Hypotheses for RQ2

HB1) Presenting long duration time series data in its entirety by extending a tablet

display using AR will permit faster identification of salient data points than when

using zoom and pan on a tablet display.

H0B1) Presenting long duration time series data in its entirety by extending a tablet

display using AR will not permit faster identification of salient data points than when

using zoom and pan on a tablet display.

HB2) Presenting long-duration time series plots of BCI data by extending a tablet

display using AR will permit more accurate identification of salient data points than

when using zoom and pan on a tablet display.

H0B2) Presenting long-duration time series plots of BCI data by extending a tablet

display using AR will not permit more accurate identification of salient data points

than when using zoom and pan on a tablet display.
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We have two task groups to test HB1 and HB2: Group 1:- Using focus+context

feature and identify salient data points from entire time-series graph and Group 2:-

Use your own approach to identify salient data points in time-series graph.

4.2 Study overview

The purpose of this study is to test hypotheses HA1, HA2, HB1 and HB2. We

conducted a controlled-within participants study with 48 participants. The evalua-

tion involved two experiments, AbVD and ArVD. Each experiment is compared with

similar tasks using tablet-only interface. I was responsible for running AbVD and

ArVD study for BCI and another co-researcher was responsible for Space Syntax.

Semi-structured interview was conducted by both researchers and they were respon-

sible for asking probing questions relevant to their data (BCI and Space Syntax)

to the participants. In data analysis phase, individual researchers who conducted

study with BCI and Space Syntax data are responsible for retrieving questionnaire

sheets, interaction logs from Surface Pro, gaze data and video recordings from the

HoloLens 2. Statistical tests on measures are performed by individual researchers for

BCI and Space Syntax. We performed thematic analysis on semi-structured inter-

view data and Inter-rater reliability (IRR) analysis on video observations together as

a team. The participants who took part in study are students at Dalhousie University.

We recruited participants with and without prior experience using immersive head-

worn displays (AR/VR). The combination of naive and experienced users of HMDs

is to mitigate selection bias in our study. As per the recommendation by experts

method [63]. We also recruited 5 expert Neuroscience participants from neuroscience

school to gain insights about their user experience. We consider our interface generic,

and users with any level of experience with BCI or immersive technologies can use our

interface, hence during AbVD and ArVD evaluation, we did not target only expert

participants from a specific domain. We divided the participants into eight groups in

total following counterbalancing. As part of the exclusion criteria, we will excluded

the population with color blindness owing to the type of visualizations and tasks.

We represented each time-series graph in different colors to help participant visually
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Figure 4.1: Recruitment, consent and pre-screening process

distinguish the graphs. Though visualizations in the AbVD and ArVD require the

participants to properly distinguish the graphs and identify data points. During the

pilot study, it was observed that it would not be possible for participants having color

blindness to perform tasks. The recruitment and pre-screening process is as seen in

Figure 4.1

4.2.1 Study notice

We sent a study notice email through Dalhousie internal email server cs-jobs@kil-lsv-

2.its.dal.ca and csgrads-bounces@cs.dal.ca. The email draft is attached in Appendix

A. When participants expressed their interest through email, I scheduled a time-slot

for the study. The participant was scheduled for two time-slots for both AbVD and

ArVD experiments.
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Figure 4.2: AbVD and ArVD Experiments

4.2.2 Initial screening of participants

Participants were asked about their familiarity with using Head-Mounted Displays(HMD)

in the pre-screening questionnaire. We have eight groups in total based on the coun-

terbalancing of the task order.

4.2.3 Consent and briefing

The participants informed consent using the consent form(Appendix B) when they

arrived at the location. Participants were scheduled for two sessions (maximum 90

minutes each) at the Mona Campbell building 4th floor VR and Graphics Lab. Upon

arriving, we gave participants sheets describing the tasks, and one of the investigators

verbally explained the purpose of the study and described the tasks to them. The

participants were instructed to ask for clarification at any point during the study.
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4.2.4 Software tools and devices used

Microsoft HoloLens 2 and Microsoft Surface Book 3 were used by participants in the

study. We used built-in video recorder in HoloLens 2 to record the participants’ ac-

tions during the study. JavaScript logs captured interactions with the tablet. The

interviews were recorded through audio recorder software. We used HoloLens com-

panion app [83] to monitor the participants actions during the study. We also recorded

participants’ gaze data from HoloLens 2.

4.2.5 Setting up the study room

In the study room we marked the location where the tablet was placed with tape.

We attached the QR code to the right edge of the tablet and kept the tablet in the

marked region on the table. The researcher sat at a distance outside the study room

ensured that participants were shown the intended content and interface conditions by

monitoring with the remote HoloLens Companion app. Questionnaires were arranged

in condition order for each participant. We kept wipes, masks and hand sanitizer

in the room in case participants required them. As per COVID protocols, distance

between facilitator and participant was maintained and masks were worn by facilitator

and researcher. We sanitized HoloLens 2 and Microsoft Surface Pro 3 using wipes

before and after the experiment. The study venue is as seen in Figure 4.3(a) and

Figure 4.3(b) represents placement of tablet in a marked location on the table.

4.2.6 BCI introduction video

At the outset of the study participants watched an introduction video about BCI that

described the features explored in the study. The video provided a short 5 minutes

introduction to BCI, EEG signals, devices that capture EEG signals, the OpenVibe

platform, representation of EEG signals in OpenVibe, Alpha and Beta frequencies,

and features involved in calculating valence and arousal. After showing the video

participants were given an opportunity to ask questions before proceeding to the

experiments.
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(a) Study room with tablet placed on the
marked area

(b) Tablet placed in marked area with QR
code attached to tablet on right

Figure 4.3: Study venue

4.3 Experiments

Two experiments were conducted as a part of the study, one for AbVD and another

for ArVD for BCI data. The experiments included the ArVD and AbVD interfaces I

developed for BCI, but also included tasks and interfaces for a different domain (space

syntax). I only report on BCI results in this thesis as the space syntax conditions

were managed by another student. The flow of experiment is as seen in Figure 4.2

4.3.1 Counterbalancing of experiments

This is a within-subjects study with three factors (Data Domain, Platform, and In-

terface), each with two levels (BCI and Space Syntax, Tablet+HMD and Tablet Only

interface, AbVD and ArVD, respectively). Interface is the outermost factor, and the

two levels are treated as separate experiments, each with four conditions–this is be-

cause the interactions, visualizations, data, tasks, research questions and hypotheses

are different for the AbVD and ArVD interfaces. The Data domain factor is nested

within platform, and with counterbalancing this gives the following four orderings per

experiment:

Tablet+HMD (Space Syntax, BCI), Tablet(Space Syntax, BCI)

Tablet+HMD (BCI, Space Syntax), Tablet(BCI, Space Syntax)

Tablet(Space Syntax, BCI), Tablet+HMD(Space Syntax, BCI)
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Tablet(BCI, Space Syntax), Tablet+HMD(BCI, Space Syntax)

Figure 4.4 represents the counterbalancing order with 8 groups and also presents

Figure 4.4: Counterbalancing of experiments

counterbalancing as per two data domains (BCI and Space syntax).

4.3.2 Experiment 1: AbVD

In AbVD experiment, we evaluated AbVD against the tablet-only interface. The

participants were briefed about the experiment, including the tasks they needed to

perform. The participants were asked to explore data and interact with the visual-

izations presented on the display and in AR layers above the display for BCI. The

researcher verbally dictated the tasks step-by-step to the participants, and they car-

ried out operations to complete the tasks described in the task sheet. Participants

were asked to “think aloud” as they completed the tasks(Appendix C). Each task

set comprised of subset of five tasks, which were completed first and in the same
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Activity Duration(Max)(in mm:ss)
Study overview/review, answer questions 5:00

Describe experiment 5:00
For each condition x4 (72:00 total)

Complete training tasks 5:00
Complete task set 10:00

Custom questionnaire 3:00
Final questionnaire and semi-structured interview 8:00

Table 4.1: Estimated time for each task in the study

order across all conditions for all participants. These tasks are used to familiarize

the participants with the interface, the data domain, and its visualization and to get

used to the think-aloud protocol.

After completing the training tasks, the participants performed the main tasks.

The main tasks in AbVD were divided into 4 groups based on the head orientation

and the resting position. In Group 1, participants were asked to be seated and toggle

on or off individual layers to perform the tasks. In Group 2, the participant viewed

the data from an angle where the AR layers do not overlap and performed the tasks.

In Group 3, participants stood up, looked through all AR layers, and answered the

question. In Group 4, the participant can use their own approach to complete the

tasks. If a participant expresses concern about not completing a task, they were asked

to continue trying until the maximum time is reached.

Once all tasks were completed (or abandoned/timed out) for a given condition,

an interface questionnaire(Appendix D), System usability questionnaire(Appendix

G) and NASA-TLX questionnaire(Appendix H) were given to the participants. Once

the participant finished both tablet and AR task sets, a post-condition questionnaire

(Appendix E) were administered. Once the whole experiment for above display was

done, a semi-structured interview (Appendix I) was conducted. Table 4.1 presents

estimated time for the tasks.

AbVD tablet-only interface

For tablet only baseline condition we asked the participants to perform similar task

but with slightly different values in tablet only interface. In tablet-only interface we
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Figure 4.5: Tablet only interface for comparison with AbVD

presented all the four time series graphs together in the tablet. The users can interact

with the tablet to switch between the time series graphs and toggle on and off one

or more graphs. There are no specific instructions for head orientation or resting

positions, the users can perform the tasks normally in the way they use the tablet.

Tablet only interface as seen in Figure 4.5.

4.3.3 Experiment 2: Around Display

In ArVD experiment, we evaluated ArVD against tablet only interface. Experiment

2 followed the same format as Experiment 1, differing only in interface and task sets,

and required the same amount of time. It is a within-subjects experiment with two

factors (Data Domain, Interface), each with two levels (BCI and Space Syntax, Pla-

nar and Planar+3D Highlighting, respectively), giving four conditions. The Data

Domain factor are nested within Interface, and with counterbalancing this gives the

following four orderings:
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Planar+3D (SpaceSyntax, BCI), Planar (Space Syntax, BCI)

Planar+3D (BCI, SpaceSyntax), Planar (BCI, Space Syntax)

Planar (SpaceSyntax, BCI), Planar+3D (Space Syntax, BCI)

Planar (BCI, SpaceSyntax), Planar+3D (BCI, Space Syntax)

ArVD experiment had a similar format as AbVD. In the ArVD experiment, we

gave participants a set of training tasks to help them familiarize themselves with

the interface. Once training tasks were completed, we gave the participants the

main tasks. The main tasks had two groups. In Group 1, participants used fo-

cus+context to complete the tasks. In Group 2, participants used their own ap-

proach to perform the tasks. We provided the participants with an interface ques-

tionnaire(Appendix F), System usability questionnaire(Appendix G), and Task load

index questionnaire(Appendix H) after each condition. After completion of the ArVD

and tablet-only experiment, we gave a post-condition questionnaire(Appendix F) to

the participants. Then we conducted a semi-structured interview(Appendix I) with

the participants to learn about their feedback.

ArVD tablet-only interface

ArVD was evaluated against the tablet-only interface. The user interface is similar

to the ArVD, just without augmented reality. The users had to swipe left and right

to navigate through the data. We can use focus points and shift left and shift right

functions, in addition, to swipe left and swipe right to navigate the BCI data. There

are no specific instructions for head orientation or resting position for the physical

monitor condition of the ArVD. Tablet only interface that is used for comparison

with ArVD is as presented in Figure 4.6.

4.4 Preparing the data for data analysis

4.4.1 Data collection

Questionnaire data: We gathered responses from consent forms and participant’s

initial screening data. We collected participants’ responses to interface questionnaire,
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Figure 4.6: Tablet only interface for comparison with ArVD

post-condition questionnaire, SUS and TLX questionnaire. The diversity of partici-

pants who took part in the evaluation are presented in Appendix K.

Audio recorder: The audio logs of semi-structured interview was retrieved from

the audio-recorder and is later used for transcribing and information collection pur-

poses.

HMD video recorder (HoloLens 2): The HMD has an in-built video recorder

which can record the participant’s actions and audio.

Software logs: Javascript logs from the tablet application, recorded timestamped

data of user interactions in a log file that is later used to check events and its times-

tamps.

HMD tracking data:the HMD records timestamped head position and orienta-

tion, eye gaze, and hand position data. Participants wore HMD for both tablet+AR

and tablet only tasks.
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4.4.2 Preparing the data

Important measures to answer HA1, HA2, HB1 and HB2 are task accuracy, time

taken to complete tasks for each groups. We collected task accuracy and time taken

for each group in AbVD and ArVD experiment. We analyzed JavaScript logs, video

logs and audio transcripts to obtain accuracy and time-taken for the tasks. For per-

ceived interface feedback, we require system usability scores, task load ratings and

custom questionnaire. We collected video and audio logs for both experiments for

behavior analysis. The video and audio analysis provided us insights about the par-

ticipant’s experience and categorize their behaviours thematically. We also analyzed

JavaScript logs from the tablet to obtain thick descriptions of how each participant

completes the task. For qualitative data analysis we analyzed audio transcripts of

semi-structured interview data for constructing the feedback thematically.

We structured our during data preparation that portrayed measures of related

groups i.e., time taken, accuracy for individual task groups. We wanted to compare

our measures for significant difference only for relevant groups that help answering

our research questions e.g., Task accuracy for Group 1: Toggle in AbVD and tablet

only interface. Structuring the data according to relevant groups helped us to elim-

inate comparing different groups that are not related and/or did not help answering

our research questions. We also applied error correction according to the number

of comparisons we performed. Summary of data preparation and analysis plan is

described below.

Custom post-condition questionnaire

The post-condition questionnaire contains participant’s responses that compared AbVD

and ArVD to tablet-only interface. We gathered the responses and complied them in

a spreadsheet as seen in Tablet 4.2. The data is ordinal, hence we used Mann-Whitney

U test to find significant difference between the responses recorded in Experiment 1:

AbVD and tablet only interface and Experiment 2: ArVD and tablet only interface.

Epsilon squared test was used for finding effect size. We also applied Bonferroni error

correction to mitigate type I error.
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A sample from custom questionnaire data recorded in spreadsheet
Question Interface SA A N D SD

Viewing large time series data
ArVD 18 28 1 1 0
Tablet 23 22 1 1 0

Panning time-series data
ArVD 27 18 1 0 0
Tablet 36 11 1 0 0

Table 4.2: Data from custom questionnaire spreadsheet (SA - Strongly agree, A-
Agree, N - Neutral, D - Disagree, SD - Strongly disagree)

Data analysis plan for accuracy and time taken

To find significant difference between measures time taken and accuracy we used

Kruskal-Wallis for AbVD, ArVD and its respective tablet only interface to test

HA1, HA2, HB1 and HB2. In order to validate using Kruskal-Wallis for finding sig-

nificant difference between the measures we used Shapiro-Wilk test. Shapiro-Wilk

test indicates if the data distribution is normal. If the distribution is normal then we

proceeded to use Kruskal-Wallis otherwise ANOVA can be used for finding significant

difference. We did not use ANOVA for any in the results since the data distribution is

not normal. We then used Bonferroni correction to mitigate type I error and Epsilon

squared test to find effect size.

AbVD To test hypothesis HB1 we use task accuracy as measure. We described

about four scenarios or tasks groups where participants performed the tasks in AbVD

followed by similar tasks with slightly different values in tablet only interface in the

study overview section. We performed hypothesis testing for each task group i.e.,

Group 1: Seated and toggle tasks, Group 2: Seated and view from an angle tasks,

Group 3: stand up and look through the AR layers tasks and Group 4: use your own

approach tasks in AbVD experiment. Through statistical tests we compare the task

accuracy of each group in AbVD with its counterpart group in tablet only experi-

ment and identified whether tasks performed in AbVD is significantly accurate than

the tablet only interface. For HB1, our dependent variable for each task set

(Groups) is task accuracy and independent variable is platform i.e., AbVD

and tablet only interface.
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To test hypothesis HA1, we use time taken as measure. Similar to HB1 we have

four task groups and we compute time taken to complete the tasks in each group and

using statistical tests we identified whether time-taken to complete tasks in AbVD

is significantly lower compared to the tasks in tablet only interface. For HA1, our

dependent variable for each task set is time taken and independent vari-

able is platform i.e., AbVD and tablet only interface.

ArVD To test hypothesis HB2 in ArVD, we used task accuracy as measure. In

study overview we described about two task groups where participants performed

tasks i.e., focus+context and use your own approach. We computed task accuracy

for each group and using statistical tests we identified whether the task accuracy for

each group in ArVD is significantly higher than its counterpart groups in the tablet

only interface. For HB2, our dependent variable for each task set is task

accuracy and independent variable is platform i.e., ArVD and tablet only

interface.

To test hypothesis HA2, we used time taken as measure for each task groups in

ArVD experiment. To identify whether time taken to complete the tasks in ArVD is

significantly lower than the similar tasks in tablet only interface we performed sta-

tistical tests for significant difference between measures.For HA2, our dependent

variable for each task set is time taken and our independent variable is

platform i.e., ArVD and tablet only interface.

NASA-Task Load Index(TLX)

We collected responses for the perceived task load scores from the TLX question-

naire. We tabulated scores of mental demand, physical demand, temporal demand,

performance, effort or frustration data in a spreadsheet as seen in Table 4.3. The

scale for each aspect ranges from 0-100. We calculated the overall TLX score for each

participant using NASA-TLX spreadsheet[87] that computes overall task load scores

from the scores of individual task load factors[86].

The appropriate statistical tests for ordinal data such as Likert scale is debated[119].
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Mircioiu et al.[119] stated that the choice of statistical tests for Likert-scale data

largely depends on the objective, research question and hypothesis. Our objective

is to present cognitive workload for AbVD and tablet only interface from first ex-

periment and ArVD and tablet only interface from second experiment as interface

feedback. We visualized individual scores that contribute to task load i.e., men-

tal demand, physical demand, temporal demand, performance, effort and frustration

[122, 123]. We mention in our results the significant differences between the scores

given by the participants. NASA-TLX is ordinal data hence we used non-parametric

test, i.e., Mann-Whitney U test to identify significant difference between the scores,

e.g., significant difference between scores of physical demand in AbVD and tablet only

interface. Our dependent variables are overall TLX score, physical demand, mental

demand, temporal demand, performance, effort and frustration and our independent

variable is platform. We used Bonferroni error correction to mitigate type I error

and r-statistic to find effect size. We acknowledge the limitations of this approach

especially other types of statistical tests that could be used on ordinal data.

A sample from NASA TLX data recorded in spreadsheet
Task load factor Response Participant Group Overall

score
Mental demand 60

P1 Group 1 30

Physical demand 20
Temporal demand 0
Performance 80
Effort 30
Frustration 0

Table 4.3: Data from NASA TLX spreadsheet

System Usability Scale(SUS)

Participants’ responses to each question in the SUS questionnaire were compiled in a

spreadsheet and using SUS scale we calculated the total SUS score. The scores from

responses are recorded on the scale of 5-1 i.e, 5-strongly agree, 4-agree, 3-neutral, 2-

disagree, 1-strongly disagree. SUS score calculator[85] is used to record the responses

and the it contains the formula to calculate the overall SUS score. The SUS formula

has three steps. (A) Sum all the responses to odd number questions and subtract
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by 5, then (B) sum all even number questions and subtract the value from 25, and

finally (C) Calculate the sum of A and B and multiply the value by 2.5. The SUS

formula is presented in the SUS score column of the spreadsheet as seen in Table 4.4.

In our research we treated we gathered SUS data for perceived usability feedback[124,

125]. In results we visualized system usability scores for experiment 1: AbVD and

tablet only interface and experiment 2: ArVD and tablet only interface. We men-

tioned the grade of SUS overall scores e.g., 76 (Acceptable -’B’) [125]. SUS is ordinal

data, hence we performed non-parametric tests i.e., Mann-Whitney U test to find sig-

nificant difference between the scores e.g., significant difference between SUS scores

of AbVD and tablet only interface. Our dependent variable is overall SUS score and

independent variable is platform. We used r statistic to find effect size.

A sample from SUS calculation recorded in spreadsheet
Participant Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score
P1 2 4 2 4 2 4 2 4 2 4 25
P2 3 3 3 3 3 3 3 3 3 3 60

Table 4.4: SUS calculation spreadsheet

Audio recordings

Our audio data is comprised of audio logs recorded during experiment and semi-

structured interview data. The log contains responses of the participants about their

overall experience and their feedback about our techniques. We transcribed the audio

data to text using Microsoft Cognitive Services[89] and performed thematic analysis

(described below) on the data. This method helped us in our qualitative and quanti-

tative findings. Audio logs also helped to make observations on task accuracy based

on their verbal responses to tasks and time-stamp data for each the tasks[89].

Once we transcribed the audio logs we performed thematic analysis. Our thematic

analysis is motivated from Virginia and Braun[78] that portrays six steps for thematic

analysis. However we acknowledge limitations in our approach when compared to

[78], since our approach comprised of only four steps and with the audio data we

had, we are only able to refine the themes only to certain extent that can distinguish
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Figure 4.7: Codebook

the category of data. First, utterances during the experiment and interview responses

were broken down into data segments such that each segment referred to a single idea,

need, action, or object. Second we grouped similar data into bins (e.g., feedback on

neck pain, ergonomic issues, head-ache etc.). Third, themes were defined based on the

type of data present in the bins (e.g., the theme for neck pain, ergonomic issues, and

head-ache is ”Physical Constraints”). Fourth, similar themes are connected to a high

level theme (e.g., Tablet bias, physical constraints connected to user experience). The

themes are derived by three researchers together who took part in the whole process

is as seen in Figure 4.7. In our thematic analysis data related to both BCI and space

syntax are grouped into bins as seen in affinity diagrams (Figure 4.8-4.17). We only

present results from themes relevant to BCI in this research. We performed the whole

process in a Miro board tool.
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Figure 4.8: Affinity diagram - user experience (Layering advantages)
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Figure 4.9: Affinity diagram - user experience (Visual distinction and big picture view
in AR)
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Figure 4.10: Affinity diagram - user experience (Physical constraints and engaging
experience)
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Figure 4.11: Affinity diagram - user experience (Layering advantages)
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Figure 4.12: Affinity diagram - implementation (Number of layers)
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Figure 4.13: Affinity diagram - implementation (Resolution)
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Figure 4.14: Affinity diagram - implementation (Toggle and color blending)
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Figure 4.15: Affinity diagram - implementation (Grid and hybrid interface)
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Figure 4.16: Affinity diagram - future applications (Generic applications)
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Figure 4.17: Affinity diagram - future applications (Live data)
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Video recordings

The video data is collected from the HoloLens 2 for AbVD, ArVD and tablet-only

interface. In the video we recorded participants using the tablet+AR and the tablet-

only interface performing the tasks. We used inter-rater reliability (IRR) to analyze

the video data. The IRR process to analyze the video data involved two researchers

analyze the video logs of each participant. After analyzing few video logs and agreeing

upon the codes that we can use for further analysis, we started noting the number

of each observation of event relating to the code for each video and its time-stamps.

When the researchers are done, for video we divided the number of similar codes by

each researcher within a given time-frame with total number of codes assigned by

each researcher for a participant’s video. We continue to do the video analysis until

we met acceptable IRR score i.e., above 0.70. Table 4.5 represents the method of

IRR calculation performed by both researchers and the codebook for IRR is as seen

in Table 4.6.

IRR calculation
Researcher Participant Time Code Group IRR

score

1 P1
6:25-6:30 Participant came close

to AR layers 2 1
6:44-7:05 Participant came close

to AR layers
7:20-7:35 Participant came close

to AR layers

2 P1
6:26-6:32 Participant came close

to AR layers 2 1
6:46-7:05 Participant came close

to AR layers
7:20-7:35 Participant came close

to AR layers

Table 4.5: IRR calculation

JavaScript logs from the tablet:-

We captured interaction logs from the tablet using JavaScript. Interaction logs cap-

tured number of clicks and swipes and recorded each one with a timestamp is as seen
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Figure 4.18: Interaction logs from tablet

in Figure 4.18.

Task accuracy:- We calculated task accuracy by examining where the participants

clicked in the JavaScript logs from tablet, and reviewing the HoloLens 2 video logs

and audio transcripts for a given time-frame. Audio logs are checked to observe par-

ticipants’ verbal responses to the tasks to calculate accuracy. For example, in the

task “Click on 1000 epoch from arousal and report its value”, we observed the partic-

ipant’s click on arousal button, verbal response of the value and through video logs

showing what is displayed.

Time taken to complete the task:- We calculated time taken to complete each

task by looking at the time-stamps recorded in interaction logs on when the par-

ticipant stopped interacting, and adjusted using the HoloLens video logs and audio

logs.
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IRR codebook
Code Group Interface
Participant clicked on focus point and looked
at entire time-series data visualization

1 and 2 ArVD

Participant stood up and moved from loca-
tion

1 and 2 ArVD

Participant did not use shift left or shift right 1 and 2 ArVD
Participant used zoom in or zoom out to
identify data point

2 ArVD

Participant used a combination of shift and
focus points

2 ArVD

Participant moved closer to salient data
point in seated position to read the value

1 and 2 ArVD

Participant swiped in tablet to identify
salient data points

1 and 2 Tablet-
ArVD

Participant moved close to AR layer, used
finger to match X and Y values

1 and 2 ArVD

Participant came close, adjusted head orien-
tation as per layer and identified the data
point

1 and 4 AbVD

Participant used finger to match X and Y
value

1, 2, 3 and
4

AbVD

Participant leaned forward closer to AR layer
to identify data point

2 and 4 AbVD

Participant stood up and looked down to
identify salient data point

3 and 4 AbVD

Participant used toggle feature to isolate lay-
ers

1, 2, 3 and
4

AbVD

Kept all 4 layers on when completing the
tasks

1, 2, 3 and
4

AbVD

Participant used multiple layers only for
comparison tasks

1, 2, 3 and
4

AbVD

Participant used toggle to isolate graphs 1, 2, 3 and
4

Tablet-
AbVD

Participant used finger to match X and Y
value

1, 2, 3 and
4

Tablet-
AbVD

Technical confusion: what is meant by epoch
intervals ?

Generic ArVD

Logical confusion: what is meant by exten-
sion of time series data ?

Generic ArVD

Table 4.6: IRR codebook



Chapter 5

Data Analysis and Results

In this chapter we present data analysis and results. We present results of hypothesis

testing using associated measures: task accuracy, time taken. To validate HA and

HB, task accuracy and time-taken should return significant results for AbVD and

ArVD. User experience is unweighted NASA TLX, System Usability(SUS) and custom

questionnaire responses. Qualitative findings on semi-structured interview data and

behavioural analysis are presented in this chapter as well. A review of findings in

relation to our research questions RQ1 and RQ2 presented at the end of this chapter.

5.1 Study population

Based on the demographic questionnaire, 20 females and 28 males took part in our

study and among them 33 participants were familiar with AR/VR. 15 participants

stated that they have used an augmented reality application before (e.g., Pokemon

Go). The diversity of participants are presented in (Appendix K).

5.2 Statistical data analysis results for AbVD

In this section, we present results for statistical tests on primary measures: task ac-

curacy and time taken to reject H0A. We also present statistical results for perceived

task load scores, system usability scores and custom-questionnaire. Qualitative anal-

ysis results i.e., semi-structured interview and behavioral analysis results i.e.,video

observations and think aloud are presented in later portions of this section. Task

accuracy and time taken are as presented in Table 5.1.

5.2.1 Accuracy - Testing hypothesis HA1

Task accuracy and time taken for each group in AbVD experiment portrayed in 5.1.

In subsequent sections we present results of statistical tests. Figures 5.1, 5.2, 5.3, 5.4

76
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portrayed visual summary of task accuracy data as box plots.

Above display

Platform Task type Average
time taken
(MM:SS)

Accuracy

Tablet +
AR

Training tasks 03:10 -

Seated and Toggle 02:40 0.82

View from an angle 02:20 0.65

Stand up and look down 02:06 0.68

Use your own approach 02:02 0.68

Tablet
only

Training tasks 02:13 -

Group 1 02:03 0.82

Group 2 01:45 0.63

Group 3 01:37 0.51

Use your own approach 01:36 0.68

Table 5.1: Average time taken for each tasks in above display

Accuracy for tasks with single layer - seated and Toggle tasks

This is task accuracy for Group 1 in AbVD i.e., Accuracy of the tasks where par-

ticipants are asked to identify values of alpha, beta, valence and arousal values on

each layers in a seated position. Shapiro-Wilk test indicated that the distribution is

not normal (W = 0.93, p < .001). Hence non-parametric test has to be performed

to check statistical significance. The Kruskal-Wallis test is performed to significant

difference between AbVD and tablet only interface for seated and toggle tasks. The

simple main effect analysis indicated that there was no significant difference in the

accuracy for seated and toggle tasks (χ2 = 0.16, p = 0.69, df = 1) with negligible

effect size (ǫ2=0.002). The mean and standard deviation of AR and tablet are as
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follows, AR(M = 0.82, SD = 0.14) and tablet (M = 0.82, SD = 0.11). After Bon-

ferroni correction, αnew = 1. This task set is performed with single layer on and 42

participants used the toggle feature to turn on and off the layers specific to the task.

Figure 5.1: Accuracy for seated and toggle tasks

Accuracy for tasks with multiple layers viewed from an angle in seated

position

This is Group 2 tasks where the participants are asked to view the AR layers from

an angle in tablet+AR tasks and view all the graphs together in tablet-only tasks.

The tasks are to find alpha, beta, valence and arousal values at a specific epoch when

all the AR layers or graphs are toggled on. Shapiro-Wilk test for normality indicated

that the data deviated from normal distribution and non-parametric tests should be

performed to check the statistical significance (W = 0.95, p = 0.002).The Kruskal-

Wallis test showed that there was no significant difference in task accuracy in Group

2 tasks between AbVD and tablet only interface (χ2 = 0.17, p = 0.68, df = 1) with

negligible effect size(ǫ2=0.002). The overall mean and standard deviation for AR and

tablet are as follows, AR (M = 0.66, SD = 0.19). tablet (M = 0.63, SD = 0.17).

After Bonferroni correction, αnew = 1
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Figure 5.2: Accuracy for view from an angle tasks

Accuracy for tasks with multiple layers and viewed in a standing position

- stand up and look down tasks

This is Group 3 tasks where they are asked to stand up and look all the 4 AR

layers together as a single visualization. In tablet-only interface, the participants

viewed all the graphs together in tablet for the same group. The tasks are to identify

alpha, beta, valence and arousal values at a specific epoch. The Shapiro-Wilk test

for normality indicated that the distribution is normal hence parametric tests can

be used to find statistical significance (W = 0.97, p = 0.02).The Kruskal-Wallis test

indicated a significant difference in task accuracy for Group 3 tasks between AbVD

and tablet only interface (χ2 = 17.738, p < .001, df = 1, ) with relatively strong

effect size (ǫ2=0.19). The mean accuracy of tablet+AR when a participant stood

up and analysed the AR layers together was significantly higher than tablet-only for

the tasks where the participants analyzed all the time-series graphs overlapping in

a single visualization. The mean and standard deviation of AR and tablet are as

follows, AR (M = 0.67, SD = 0.17). tablet (M = 0.51, SD = 0.20). After Bonferroni

correction, αnew =< .001. In this group, 40 participants did not use toggle feature

when performing the task, they performed the tasks with all layers on.

Accuracy for finding data points using own approach tasks

We calculated accuracy for Group 4 tasks where the participant can use their own

approach to find alpha, beta, valence and arousal values at a specific epoch. The
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Figure 5.3: Accuracy for Stand up and look down tasks

Shapiro-Wilk test for normal distribution indicated that the distribution is not normal(W =

0.94, p < .001) and non-parametric test should be performed to find the statis-

tical significance of platform over accuracy. The Kruskal-Wallis did not indicate

any significant difference in task accuracy between AbVD and tablet only interface

(χ2 = 0.04, p = 0.84, df = 1) with negligible effect size(ǫ2 =0.0004). The mean and

standard deviation for AR and tablet are as follows, AR (M = 0.68, SD = 0.20).

tablet (M = 0.68, SD = 0.23). After Bonferroni correction, αnew = 1.

Figure 5.4: Accuracy for use your approach tasks
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5.2.2 Time-taken - Testing hypothesis for HA2

In this section, we present statistical results for overall time taken in AbVD and time

taken for individual tasks. The visual summary of time taken data is as seen in

Figures 5.5, 5.6, 5.7 and 5.8

Time Taken for seated and toggle tasks

For Group 1 tasks, the Shapiro-Wilk test for normality showed that sample is not

normally distributed (W = 0.87, p < .001). The non-parametric Kruskal-Wallis tests

revealed that there was a significant difference in time taken between AbVD and

tablet only interface for seated and toggle tasks (χ2 = 9.63, p = 0.002, df = 1) with

moderate effect size (ǫ2=0.10). The time taken to perform tasks in seated position in

tablet+AR is significantly more than tablet-only interface. The mean and standard

deviation for AR and tablet are as follows, AR (M = 2.52, SD = 1.09). tablet

(M = 1.87, SD = 0.66). After Bonferroni correction, αnew = 0.008.

Figure 5.5: Time taken for seated and toggle tasks

Time Taken for view from an angle tasks

For Group 2 tasks, The Shapiro-Wilk test indicated that data is not normally distributed(W =

0.84, p = 7.391e − 09). Non-parametric Kruskal-Wallis tests indicated that time

taken in AbVD was significantly higher than tablet only interface, (χ2 = 12.247, p <

.001, df = 1) with moderate effect size (ǫ2=0.13). Tablet (M = 1.60, SD = 0.63), AR

(M = 2.14, SD = 0.92). After Bonferroni correction, αnew = 0.002.



82

Figure 5.6: Time taken for view from an angle tasks

Time Taken for stand up and look down tasks

For Group 3 tasks, the Shapiro-Wilk test indicated that data is not normally dis-

tributed (W = 0.78, p < .001). The non-parametric Kruskal-Wallis test indicated

that time taken in AbVD is significantly higher than tablet only interface, (χ2 =

13.11, p < .001, df = 1) with moderate effect size (ǫ2=0.14). Mean and standard

deviation are as follows, AR (M = 1.90, SD = 0.81), tablet (M = 1.45, SD = 0.46).

After Bonferroni correction, αnew = 0.001.

Figure 5.7: Time taken for stand up and look down tasks
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Time Taken for use your own approach tasks

For Group 4 tasks, the Shapiro-Wilk test indicated that data is not normally dis-

tributed (W = 0.79, p < .001). The non-parametric Kruskal-Wallis test revealed that

time taken in AbVD is significantly higher than tablet only interface (χ2 = 7.179, p =

0.01df = 1) with moderate effect size (ǫ2=0.14). Mean and standard deviation are as

follows AR (M = 1.87, SD = 0.84), Tablet (M = 1.45, SD = 0.50). After Bonferroni

correction, αnew = 0.03.

Figure 5.8: Time taken for use your own approach tasks

5.2.3 Custom questionnaire analysis for AbVD

Since the data is ordinal, we used non-parametric Mann-Whitney U test to compute

significant difference in responses. We assigned weights ranging from 5 to 1 for the

responses: Strongly agree-5, Agree-4, Neutral-3, Disagree-2 and Strongly disagree-1.

The responses for questionnaire are presented in Figure 5.9 and Figure 5.10. The

statistical results for custom questionnaire are portrayed below in Table 5.2.

5.2.4 NASA TLX

The NASA-TLX scores are unweighted, and we have individual aspects of task load

namely mental demand, physical demand, temporal demand, performance, effort,

and frustration. During video analysis, we observed that participants had difficulty

reading the values of the data points in AR and they adjusted their head orientations
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: AbVD custom questionnaire
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(a) (b)

(c) (d)

Figure 5.10: AbVD custom questionnaire (Continued)
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Statistical analysis on custom questionnaire - AbVD

Question W p αnew AbVD
(Mdn)

Tablet
(Mdn)

ǫ2

Viewing
multiple
graphs
together

868.5 0.03 0.02 4 4 0.04

Visual dis-
tinction of
layers

903 0.06 0.30 4 4 0.03

Determining
X and Y
values

792 0.01 0.03 3 4 0.07

Isolating
layers us-
ing toggle
feature

925 0.05 0.27 4.5 5 0.03

Understanding
alpha,
beta, va-
lence and
arousal

1161 0.94 1 4 4 <.001

Table 5.2: AbVD Statistical analysis results on custom questionnaire responses

close to the data point to read its value. However, the participants did not felt the

need to change their head orientation or resting position in tablet-only tasks. The

participants looked into the tablet, interacted with the interface, and answered the

questions. Task load factors and overall NASA TLX score for AbVD and tablet only

interface is as seen in Figure 5.11. Data distribution of individual task load factors

in AbVD and tablet only interface are visualized in Figure 5.12.

Mann-Whitney U test indicated that there is a significant difference between the

overall NASA TLX score of AbVD and tablet only interface (W = 1467, p = 0.02)

with small effect size (r = 0.23). Mann-Whitney U test also indicated that AbVD

has significantly higher perceived physical demand with moderate effect and effort
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(a) AbVD (b) Tablet only interface

(c) Task load comparison

Figure 5.11: AbVD NASA-TLX

with low effect size. Our effect sizes are as per r-statistic. Tablets have significantly

higher performance scores with low effect size. Statistical results of Median, p-value,

effect size(r) and sum of the ranks(W) are portrayed in Table 5.3.

5.2.5 System Usability Scores(SUS)

The self-reported system usability scores for AbVD is 66 which points to marginal

rating of ’C’ , and tablet-only interface is 76 which points to acceptable rating of

’B’. During the interviews and prior screening of participants, they mentioned that

they had not used a hybrid interface before. They also expressed that they are more

familiar with tablet computers. Eleven participants reported in their responses that

they might need a help of a technical person to use the interface, which outlines their

non-familiarity with the interface. Thirty-six participants reported that the system is



88

(a) Physical demand (b) Temporal demand

(c) Effort (d) Performance

(e) Frustration (f) Mental demand

Figure 5.12: AbVD - Comparison of TLX factors
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Statistical analysis on perceived task load

Task
load

W p AbVD
(Mdn)

Tablet
(Mdn)

Effect
size
(r)

αnew

Mental
demand

1403 0.07 60 40 0.18 0.42

Physical
demand

1639 <.001 36 10 0.37 0.01

Temporal
demand

1350 0.15 20.5 20 0.15 0.9

Performance 756 0.003 70 80 0.29 0.02

Effort 1459 0.02 50 30 0.23 0.12

Frustration 1367 0.11 30 10 0.16 0.66

Table 5.3: NASA TLX - Perceived task load summary for AbVD

easy to use, and 39 participants found that various system functions are easy to use.

28 participants also expressed that they felt very confident using it. The self-reported

system usability scores of physical monitors are higher at 76. SUS scores of AbVD

and tablet only interface is as seen in Figure 5.13.

The Mann-Whitney U test on the system usability ratings showed that there is a

significant difference between scores of AbVD and tablets (W = 748, p = 0.003) with

negligible effect size (r = −0.03). The system usability ratings of tablet-only interface

(Mdn = 75) is significantly higher than the tablet+AR interface (Mdn = 67). There

is no change to p-value after Bonferroni since there is no multiple comparisons for

system usability scores.

5.3 Behaviour analysis for AbVD

5.3.1 Video observations

We observed how the participants performed each set of tasks in tablet and in aug-

mented reality from the video logs. We looked into specific patterns of behaviour by
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Figure 5.13: System usability scores comparison

each participants and made a note of them. The summary of each tasks are illustrated

below.

Finding data points in single layer - Toggle On and Off tasks

The set of tasks requires the participants to toggle on one AR layer at a time and

perform the tasks. The participants in a seated position analyzed the data in two

ways. In the first one, they came closer to the AR layers until they felt the ticks’

numbers were visible. Then they used their finger to match a data point in X-Axis

(Epoch) to the Y-Axis (Frequency/value) and read the values. The second way is

that the participants came close to the AR layers, adjusting their head orientations

as needed to see the layer, and found the data point values. The participants during

the interview session referred to seated and toggle tasks as easy since the number

of layers is less. They also felt that “Having control over the number of AR layers

is helpful.” The average time taken by participants in AbVD for the toggle tasks(in

mm:ss) is 2:40 seconds, and the accuracy is better, with a score of 0.82. We identified

the key strengths of toggling on and off from the interview data and the video logs.

The participants can have substantial control over the AR layers, and they preferred
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to have fewer layers that they felt relevant to the task. The limitations of this ap-

proach with AR are clarity of the font size of the ticks and resolution of AR.

In AbVD the toggle the layers tasks 44 participants correctly toggled the feature

asked by the researcher during the task. 4 participants expressed confusion when

switching between F3 and F4 layers. In tablet 40 participants toggled the feature

correctly and 4 expressed logical confusion on switching between alpha and beta in

F3 and F4.

On the other hand, physical monitors had a slight advantage in terms of head

orientation and resting position. The participants performed the tasks on tablets and

answered the questions without adjusting their head orientation. The participants

used their fingers and pointed over the data point over the specific epoch mentioned

in the task list and hovered their fingers over the Y-axis to identify the frequency

or value of valence and arousal. The participants also looked at the tablet and said

the value without using their fingers to match it. The accuracy yielded by the toggle

tasks are same as AR, which is 0.82, and the average time taken(in mm:ss) is 2:03.

The participants had prior experience using the tablet computer, which left them

with just the necessity to learn about the user interface and types of time series data.

Finding data points in a seated position from an angle - View from an

angle tasks

The set of tasks requires the participants to lean back to view the augmented reality

layers from an angle where they do not overlap. All the AR layers are toggled on

during the whole task set. The participants used their fingers similar to the toggle

task and matched the X and Y values to answer the question in the task list. Despite

leaning back and viewing from an angle, the participants adjusted their head orien-

tation a little closer to the AR layers since they had to make sure the frequency and

epoch values were correct due to the limitations in resolution and font size of the tick

values. The participants mentioned that working with four AR layers together was

challenging in the interview. The X and Y axis values are hard to read when layers

overlap.
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The average accuracy of this set of tasks is 0.65, and the average time taken(in

mm:ss) is 2:20. The accuracy was impacted by the number of layers and the over-

lapping layers. The strength of the viewing from an angling method is the ability to

visually distinguish different layers in Augmented reality when compared to viewing

all the graphs together on the tablet. The limitations are resolution, font size of the

tick values, and some efforts put by the participants to adjust their head orientation

to perform the tasks. On the tablet, the participants performed the tasks without ad-

justing their head orientation though viewing all the graphs together simultaneously

on the tablet is challenging to read the data peaks since all the graphs overlapped

each other. The accuracy of 0.63 is lower than the AR accuracy of 0.65, and the

average time taken by participants in tablet only interface(in mm:ss) is 1:45. The

participants’ familiarity with the tablet helped them perform the tasks faster than

the AR, though overlapping multiple line graphs resulted in lower accuracy.

When the researcher was describing the tasks the participants understood to toggle

all the layers on in both tablet+AR and tablet interface. 30 participants leaned close

to tablet+AR since the tick values are small when viewed from an angle. During

interviews a significant number of participants mentioned that if the font size of the

tick values are larger it could make the values easier to read from an angle. When the

participants came closer to view the layers, the ticks and lines overlapped that caused

some additional effort to read the values. One participant P10 with slight experience

using AR stated in interview, “Its quite hard to see when the layers overlap with each

other”. Another participant P34 with slight experience using AR said, ”Tasks should

be accompanied with additional features such as grid or slider for reading the values

easier.

Finding data points by looking through the AR layers in a standing

position - Stand up and look down tasks

The task list requires the participant to stand up and look through the AR layers to

answer the questions. Participants said, “It is difficult to see the bottom-most layer

in AR during the interviews.” Though the participant liked the visual distinction of
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layers, the accuracy of 0.68 is better than the tablet accuracy of 0.51. The partici-

pants spent more time(in mm:ss) of 2:06 seconds compared to tablet’s 1:37 seconds.

The participants said it was difficult to analyze the data with four layers toggled on

during the interviews. In video analysis, we found that participants bent down to

come closer to the AR layers to read the values, especially when performing tasks

in the bottom layer close to the display. The participants said that it is challenging

to read the values further down due to overlapping layers. The key benefit of this

approach to analyzing the data is the ability to visually distinguish the layers and

compare the values in the layers.

In video analysis and audio transcripts from think-aloud, we found that partici-

pants quickly distinguished the layers using the colors and the legend. The size of the

line graphs in the bottom layers presenting valence and arousal are thick to enable

better visual distinction and readability. The visual distinction also helped in better

comparison between the layers. The main limitation of this approach is the number

of layers and the font size of the tick values. The resolution of AR is also a limitation

when analyzing multiple graphs simultaneously. Many participants expressed that

having control over the number of layers and a grid to enable better readability of

the graphs could help analyze the time series data better.

Out of 48 participants, 45 stood up and looked at the AR layers from the top

and the participants distinguished the layers using colors. One participant said that

”Valence, then I have to look at blue color line” and observed the values accordingly.

27 participants informed tablet+AR are visually distinguishable than in tablets. In

the tablet-only interface participants performed the tasks by looking into all 4 graphs

that are overlaid on top of each other. A participant P46 during the tablet-only tasks

said ”Its hard to see when multiple graphs overlap at the same point”.

Use your own approach tasks

The participants can use their approach in the task list. The participants preferred

toggling the layers off and keeping only the layers necessary to perform the tasks.

Video analysis and interview data showed that the most preferred way to accomplish
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the tasks is seated and toggle on and off the AR layers approach. The participants

preferred a seated position and worked the best with little physical effort in head

orientation and resting position. The task accuracy in AR and physical monitors is

similar, with a value of 0.68. The participants took average(in mm:ss) of 2:02 seconds

in AR and 1:36 seconds in the tablet. The strengths of this approach are adequate

to control given to the participants. The familiarity with the interface at this point

proved to be helpful for the participant in choosing which approach suits them best

for them. The visual distinction of layers and legends and familiarity with the tablet’s

user interface made the participants perform tasks without any guidance on the head

orientation or the resting position. During the interview, the participant said that

controlling the number of layers and spacing between the layers would benefit data

analysis.

A learning effect was observed in terms of participant using their preferred way to

perform the tasks. In above display we can perform the tasks by toggling the layers

on or off, keeping all the layers on and viewing the layers from any angle when seated

or standing. 20 participants used multiple layers only for comparison tasks such as

finding the greater value of alpha or beta in F3 and F4 layers. 3 participants kept all

4 layers on during the tasks. During interviews participants expressed if they have

more control over the number of layers displayed and spacing between the layers then

it would make the tasks easier. In tablet-only interface 12 participants used multiple

layers only for comparison tasks and 30 participants used the toggle feature to keep

only one layer on at a time and performed the tasks.

5.3.2 Think-aloud

We used retrospective probing during the interview to ask follow up questions based

on participants’ experience.

Impact of layering in BCI data comprehension

We probed the participants on how the layering(HA) helped in terms of data com-

prehension in your perspective. Participants felt layering helps to get different per-

spectives of BCI data. 7 participants said layering helps to get different perspectives
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of data by looking at the layers. One way is to look at the layers in different angles

and the other is visually distinguishing each data presented in layer which reduces

complexity.

10 participants said that the layering has positive impact in terms of data com-

prehension. Participant P3 mentioned that layering has a positive impact depending

on the task since it reduced the number of times we interact with the tablet and

click on toggle button and bring up the data. The number of layers do not matter

if we have means to easily read the data. Participant P1 with experience using AR

devices quoted during interview, “Number of layers do not matter if movable axis or

grid is present to tell what X and Y is”. The participants also felt that if the data is

complex having different layers can help keep track of the different data. Participant

P37 quoted by saying ”It is useful have a third dimension like AR for visualizing

complex data in different layers and keep track of them”.

5.4 Qualitative data analysis AbVD - interviews

5.4.1 Visual distinction of data in AR

The participants felt that the peaks and lows of time series data are clear and easily

identifiable AbVD. During interviews 10 participants said that the layers are more

distinguishable in AR than in the tablets in above display.

5.4.2 Advantages of AR layers

During the interviews when we asked the participants on advantages of layering(HA),

The participants felt that visual distinction of four layers in BCI helped them iden-

tify individual features and perform data analysis tasks. 17 participants said that

distributing the data in different layers helped them compare the values, and ob-

serving the layers from different angles helped them get different data perspectives.

Layering also helped participants quickly identify values in individual layers, which

is problematic on a tablet due to overlapping two or more graphs at the same point.
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5.4.3 Toggle feature and number of layers

Participants expressed that four layers are a bit challenging to match X and Y values,

especially when they adjust their head orientation which can cause the graphs to

overlap. 30 participants mentioned that working with 4 layers is difficult and two

layers can be used instead. 30 participants said they prefer to have control over the

number of layers displayed in accordance to the task. 5 participants felt that the

number of layers might not matter if values could be determined without requiring

alignment with the ticks on the X and Y-axis.

5.5 Summary of Data Analysis - AbVD

We present the summarize the findings from data analysis in Table 5.4.

AbVD - Summary of data analysis

Measure Outcome

Accuracy The AbVR interface yielded more accuracy than tablet
only interface in tasks where participants identified data
points in each layer i.e., F3, F4, valence and arousal in
a standing position.

Time
taken

Participants took significant more time in all four task
groups of AbVD than tablet only interface due to more
time required to adjust their head and read the X and
Y values in AR.

System us-
ability

SUS scores of the tablet only interface are significantly
higher than those of AbVR. Participants felt the number
of layers made it complex to read X and Y values.

TLX TLX scores of AbVD is significantly higher than tablet
only interface.

Custom
question-
naire

Participants significantly rated tablet only interface
higher than AbVD for finding X and Y values and view-
ing multiple graphs together

Table 5.4: AbVD - Summary of data analysis
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5.6 Statistical data analysis results for Around display (ArVD)

In this section we present statistical test results for primary measures of ArVD: Task

accuracy, time taken for tasks in Group 1 and Group 2. To reject H0B both accuracy

and time taken must return significant results. We present normal distribution results

and statistical results for task accuracy, time taken, system usability scores and task

load scores. Similar to AbVD, we present behavioral analysis results from video

observations and think aloud data. Qualitative analysis results of semi-structured

interview and a summary of data analysis on ArVD is presented in later portions of

this section.

5.6.1 Accuracy - Testing hypothesis HB1

We performed statistical tests on Group 1 where participants used focus+context

feature and Group 2 where participants used their own approach to complete the

tasks. Task accuracy and time taken for Group 1 and Group 2 tasks are presented in

Table 5.5. The visual summary of task accuracy for both groups are as seen in Figure

5.14 and 5.15.

Around display

Platform Task type Average
time taken
(MM:SS)

Accuracy

Tablet + AR Training tasks 05:02 -

Use focus points and look
both sides

06:05 0.86

Use your own approach 04:48 0.82

Tablet only Training tasks 05:02 -

Focus point and swipe 06:05 0.81

Use your own approach 05:05 0.80

Table 5.5: Average time taken for each tasks in around display
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Identifying data points using Focus+context tasks

The Group 1 tasks required the participants to adjust the view of time series data

based on the specific focus point i.e., Epoch clicked in the tablet. The participant

then looked on both sides of the tablet to find the valence and arousal value from

a specific range. We calculated task accuracy for Group 1 and performed test for

normality using Shapiro-Wilk test. The results (W = 0.96, p = 0.01) did not indicate

normal distribution The Kruskal-Wallis test indicated a significant difference between

ArVD and tablet only interface in task accuracy (χ2 = 11.82, p < .001, df = 1, ) with

moderate effect size (ǫ2=0.12). Task accuracy in ArVD (M = 0.86, SD = 0.05)

is significantly higher than the tablet (M = 0.81, SD = 0.06). After Bonferroni

correction, αnew = 0.01

Figure 5.14: Accuracy of focus+context tasks

Find data points using own approach - Use your own approach tasks

We calculated accuracy for Group 2 tasks where the participants are asked to use their

own approach to find valence and arousal values in longer duration time-series graph.

The Shapiro-Wilk test did indicate a normal distribution (W = 0.97, p = 0.04). The

Kruskal-Wallis test did not indicate any significant difference between ArVD and

tablet only interface in terms of accuracy(χ2 = 0.18, p = 0.67, df = 1) with negligible

effect size (ǫ2=0.002). The mean and standard deviation of AR and tablet are as

follows, ArVD (M = 0.81, SD = 0.1) and tablet (M = 0.80, SD = 0.1). After

Bonferroni correction, αnew = 1
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Figure 5.15: Accuracy your use own approach tasks

5.6.2 Time taken- Testing hypothesis HB2

We performed statistical tests on time taken for both group 1 and 2 from ArVD ex-

periment. The following subsections will present the results from statistical analysis.

The visual summary of task accuracy for both groups are as seen in Figure 5.16 and

5.17.

Focus points and look around tasks

We calculated time taken for focus+context tasks(Group 1) and the Shapiro-Wilk test

for normality indicated that data is not normally distributed (W = 0.93, p < .001).

The Kruskal-Wallis test indicated no significant difference in time taken between

ArVD and tablet only interface for Group 1 tasks (χ2 = 0.32, p = 0.57, df = 1)

with negligible effect size(ǫ2=0.003). The mean and standard deviation of the time

taken in AR and tablet are as follows, ArVD (M = 5.90, SD = 1.51) and tablet

(M = 5.91, SD = 2.16). After Bonferroni’s correction, αnew = 1.

Use your own approach tasks

We calculated the time taken for the task set that requests participants to use their

own approach to find valence and arousal values. The Shapiro-Wilk test for normality

indicated that the data is different from normal distribution (W = 0.96603, p =

0.01365). The Kruskal-Wallis did not indicate any significant difference in time taken

between ArVD (χ2 = 0.08, p = 0.78, df = 1) with negligible effect size (ǫ2=0.001).
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Figure 5.16: Time taken for focus+context tasks

The mean and standard deviation for time taken for Group 2 tasks are as follows,

ArVD (M = 4.65, SD = 1.19) and tablet (M = 4.92, SD = 1.76). After Bonferroni

correction, αnew = 1.

Figure 5.17: Time taken for use your approach tasks

5.6.3 Custom questionnaire analysis ArVD

We used statistical tests similar to AbVD custom questionnaire analysis for ArVD.

The responses for questionnaire are presented in Figure 5.18 and Figure 5.19. The

statistical results are presented in Table 5.6
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(a) (b)

(c) (d)

(e) (f)

Figure 5.18: ArVD custom questionnaire
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(a) g (b) h

(c) i (d) j

(e) k (f) l

Figure 5.19: ArVD custom questionnaire (Continued)
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5.6.4 NASA TLX

In the ArVD experiment, the difference between AR’s task load(TLX) and physical

monitors is not significantly high. In terms of indiviual aspects of ArVD, participants

ratings pointed out physical demand significantly higher in ArVD than the tablet

only interface. In around display AR, we had only one AR layer; hence it was easy

for the participants to keep track of changes and identify the values. The unweighted

TLX score for AR is 40.45 and for the physical monitors is 39.18.

Mann-Whitney U test did not indicate a significant difference between overall

TLX scores of ArVD and tablet only interface (W = 1323.5, p = 0.2099) with small

effect size(r = 0.12). Through video analysis it is observed that participants had

difficulty reading the values of data points that are located far away and they have to

adjust their position to see the data point and read its value. Statistical analysis on

individual factors of task load e.g. Mental demand, physical demand etc., indicated

that there is no significant difference in the scores of individual factors between AbVD

and tablet only interface. Statistical results of NASA TLX are as seen in Table 5.7.

The data summary for each task load factor is as seen in Figure 5.21.

5.6.5 System usability score

The system usability score of the Augmented reality is 69 which points to marginal

rating of ’C’ and the physical monitors is 73 which points to acceptable rating of ’B-’.

During video analysis we observed that in physical monitors the participants used

more swipes to navigate through the data and shift left and shift right feature is not

used extensively.

The self-reported system usability score for the ArVD interface and the tablet-

only interface are tested significant difference using Mann-Whitney U test, (W =

1038, p = 0.40) with negligible effect size (r = −0.08). The results did not indicate

any significant difference between system usability scores of ArVD (Mdn = 73) and

tablet only interface (Mdn = 73). SUS scores of ArVD and tablet only interface are

as seen in Figure 5.22.
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(a) ArVD (b) Tablet only interface

(c) Task load comparison

Figure 5.20: ArVD NASA-TLX
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(a) Physical demand (b) Temporal demand

(c) Effort (d) Performance

(e) Frustration (f) Mental demand

Figure 5.21: ArVD - Comparison of TLX factors
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Figure 5.22: System usability score comparison

5.7 Behaviour analysis for ArVD

5.7.1 Video observations

Finding data points using focus+context view - Focus points and look

around tasks

We made observations from the video logs on specific actions, such as how the par-

ticipant performed the focus points tasks. The participants looked at both sides of

the augmented reality, moved their fingers to match the X and Y axis values, and an-

swered the questions. In the find values between longer range tasks, When the X and

Y axis values are far, the participants adjusted their head orientation, moved closer

to the data point, and answered the question. The resolution in augmented reality

is less when compared to tablets. Hence participants put some effort into reading

the values. The font size is not large enough for them when the data point is far.

Hence they moved their head closer to the data point to ensure the values. During

the interviews, most participants liked the data representation around the display.
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The task accuracy of the participants in augmented reality is greater than the phys-

ical monitors for the focus points tasks. The participants extensively used swipe for

tablets, and in AR, they looked at both sides of the extended display and answered

the questions. The average time taken in ArVD(in mm:ss) is 6:05 and tablet only

interface is 6:05.

In the focus+context tasks, 42 participants clicked on the focus point instructed

by the researcher and looked at the extended time series data in AR from both sides

of the tablet and identified the data points. The 42 participants did not use shift-

left/shift-right feature to adjust the view of data. 5 participants moved around both

sides of the AR in seated position to find the data points. 10 participants stood up

and walked closer to the data points in AR and read the values. One participant P12

during the interview stated ”The values are hard to read if its far away”. Another

participant P1 stated “The graph in AR sometimes go through the wall if shifted

to extreme left and the data points are far away”. In the tablet-only interface the

participants swiped using the finger, matched the value to the Y-axis and identified

the value. One participant P5 stated ”It is difficult to swipe for long time to reach the

data point”. In tablet-only interface 40 participants used swipe to navigate through

the data and identify the data points. 2 participants used fingers in both hands to

swipe the data on both sides.

In terms of logical confusion when performing the tasks that requires the partici-

pant to click on a focus point and identify data points within a certain epoch intervals,

25 participants asked the researcher “What is meant by epoch intervals?” and the

researcher clarified it during the training tasks before moving to the main task sets.

When performing the task that requires the participant to look both sides of AR to

identify the extend of time-series data, 20 participants asked ”What do you mean by

extent of time-series data?” and the researcher clarified it to the participants.
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Use your own approach tasks

In use your own approach tasks, 31 participants clicked on the focus point and looked

both sides of the AR to identify the data point, 42 participants did not use the shift-

left and shift right feature. 10 participants stood up and walked closer to the AR and

identified the data points. 5 participants moved closer to the data point in AR in a

seated position and identified the data points. Only 3 participants used the combina-

tion of focus-points and shift features to identify data points. In tablet-only interface

40 participants used swipe to navigate to the data point and identify the value. We

also observed 5 participants used the zoom-out feature to identify the highest peak

in the time series data.

The participants preferred clicking on the focus-point and looking both sides of

the AR and finding the data point in use your own approach tasks. One participant

P40 who had occasional experience with AR stated, “It is beneficial to see the whole

time series data and navigate through it synchronously with tablet and AR.” A key

observation is that the participants decide when to use the extended display (Zoom

in) and when to use just the tablet by zoom-out in use your approach tasks. During

the interview, participants said that a grid or a sliding Y-axis could be helpful to

read the values better. The average time taken by participants for tasks(in mm:ss)

in ArVD is 4:48 and tablet only interface is 5:05

5.7.2 Think-aloud

Similar to AbVD, we used retrospective probing during interview and we received

inputs from the participants regarding their experience with ArVD.

ArVD reduced interaction with tablet

When we asked the participants on how focus+context(HB) helped in terms of data

comprehension, participant felt ArVD reduced the number of time we interact with

the tablet to infer from the data. 10 participants said ArVD reduces interaction with

tablet when working with large data. The participant P3 when probed regarding the

ArVD interface mentioned he liked moved his head to look around and read from
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data than interacting with the tablet. The participant P48 during the interview said,

in case if someone does not want to spend time reading or interacting, presenting the

whole data helped them to comprehend the data better.

5.8 Qualitative data analysis - ArVD interviews

5.8.1 Impact of focus+context view in terms of data comprehension in

BCI

When we asked the participants on how focus+context(HB) helped in terms of data

comprehension, participants felt ArVD can support visualizing large data without

screen size limitation. 34 participants said that ArVD helps to view large time-series

data. Participant P27 who is familiar with AR stated, “ArVD made use of the infinite

screen space to present the BCI data and many devices have small screens to visualize

such data”. Another participant P3 stated “I see the peaks in valence and arousal

data clearly in around display”. On the other hand, the tablet display has display

limitations due to screen size. Hence participants expressed that AR is very beneficial

for viewing extensive time-series data that can extend from both sides of the tablet.

In terms of data analysis, 12 participants expressed that AR is beneficial since AR

helped them analyze data by just turning their head left or right to find the values.

5.8.2 ArVD required limited interaction

In semi-structured interviews, 8 participants said ArVD reduces the need to scroll

the data multiple times to reach from one point to another. In tablet-only interface,

participants had to swipe the screen multiple times to navigate through the time

series data. 4 participants also expressed that Tablet + HMD AR interface is very

interactive in navigating from one end of time-series data to another and switching

between valence and arousal time series data.

5.9 Summary of Data Analysis - ArVD

We present the summary of data analysis of ArVD in Table 5.8.
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Statistical analysis on custom questionnaire - ArVD

Question W p αnew AbVD
(Mdn)

Tablet
(Mdn)

ǫ2

Viewing
large time
series data
clearly

1051 0.40 1 4 4 0.01

Panning
longer
duration
time-series
data

928 0.05 0.3 5 5 0.04

Expand
the time-
series data
physi-
cally using
Zoom in

1044 0.38 1 4 4 0.01

Shrink the
time-series
data physi-
cally using
zoom out

1049 0.40 1 4 4 0.01

Determining
X and Y
values

898 0.06 0.36 3 4 0.04

Understanding
valence
and
arousal

1237 0.50 1 4 4 0.004

Table 5.6: ArVD - Statistical analysis results on custom questionnaire responses
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Statistical analysis on perceived task load

Task
load

W p ArVD
(Mdn)

Tablet
(Md)

Effect
size
(r)

αnew

Mental
demand

1270 0.07 37.5 40 0.08 0.42

Physical
demand

1440.5 0.03 22.5 10 0.21 0.20

Temporal
demand

1142 0.94 20 25 <.001 1

Performance 1071.5 0.54 72.5 80 <.001 1

Effort 1245 0.50 47.5 40 0.07 1

Frustration 1240 0.51 20 17.5 0.07 1

Table 5.7: NASA TLX - Perceived task load summary for ArVD

ArVD - Summary of data analysis

Measure Outcome

Accuracy ArVD yielded more accuracy than tablet only interface
in tasks that involved finding data points in longer du-
ration time-series data in focus+context view.

Time
taken

In ArVD there is no significant difference in time taken
for the tasks in ArVD and tablet-only interface.

System us-
ability

Through SUS scale the scores, there is no significant
difference in scores of ArVD and tablet-only interface.

TLX There is no significant difference between self reported
TLX scores of ArVD and tablet only interface

Custom
question-
naire

There is no significant difference between ratings of
ArVD and tablet only interface.

Table 5.8: ArVD - Summary of data analysis
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5.10 Thematic analysis results from semi-structured interviews

Based on the semi-structured interviews with the participants. We performed the-

matic analysis and divided the participants’ feedback into themes as follows.

5.10.1 User experience

Tablet bias

The participants are generally comfortable using the tablet computer due to their

previous experience using the tablets. During interview, 12 participant informed

about the tablet bias. One participant from architecture program stated ”Maybe I

prefer using tablet because I am familiar using it”. The experience of using AR plays a

significant role in performance, and some significant experience using the interface will

help the participants perform tasks better for first-time users. The new participants

in AR felt that the experiment is very engaging. The participants felt that AR has

excellent potential to demonstrate complex terminologies and relationships in science

better. Having both tablet and tablet with augmented reality visualization could help

the researcher gain different data perspectives.

Advantages of AR layers

The participants expressed layering gave them new perspectives of data and seeing the

graphs separately in layers made each graphs visually distinguishable. Participants

also expressed viewing angle is important when viewing multiple graphs in layers to

perceive the salient data points in the plot.

First time AR users

Four first time AR users among the participants said; experience using the interface,

acumen and technical know-how plays a role in both completing tasks and adapting

to using hybrid interface.
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Task difficulty

The participants felt that the tasks were more similar and were easy to understand

and keep track of the flow. Most of the tasks in the BCI above the display are

comparing different layers and identifying values. 4 participants in interview said

that tasks are repetitive (finding data points). For the around the display is to find

specific points within different ranges. The participants expressed that the above and

around display interface design is good, and it helped them identify the tasks better.

Advantages of viewing large time-series in AbVD

In semi-structured interview, we asked participants about the perceived advantages

of viewing longer duration time-series in ArVD, participants said it was beneficial to

see the entire time-series graphs and identifying salient data points by simply turning

their head left or right.

Physical constraints

The participant felt that the HMD weighed more at time for specific tasks such as

stand up and look down and adjusting the head orientation. Wearing the headset for a

longer time also caused ergonomic issues. 12 participants mentioned in interviews that

HMD feels heavy on their neck. Some participants expressed that they experienced

neck pain when they wore headsets for a longer period of time. Due to the physical

constraints the participants felt that if they have to use an interface in order to

perform data analysis tasks for a longer duration, they felt tablets are better.

5.10.2 Implementation

Resolution

The resolution of the visual elements presented in augmented reality is low compared

to the content presented on the tablet. The participants felt that numbers are hard

to read if they are far. The resolution of the time-series graph in AR could be better,

and the font size could be larger for the axis ticks. However, the colors blended well

for the above display, which has tasks for seeing through the time-series graphs from

the above. The resolution for the HoloLens is a known limitation.
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Grid to identifying X and Y values

The participants felt that in order to read the graphs better, a grid can be introduced

in above display AR and around display AR. During interviews 16 participants re-

ported that if there is a grid or slider added to the time-series graphs then it would

be easier to find the data points. In ArVD AR, a movable Y-axis that can be con-

trolled by the tablet will be beneficial to read the peaks better if the data point is

far. The tick marks in the X and Y axis looked smaller when a participant is in a

seated position and looked at a data point that is far away on other’s end.

Challenges with number of AR layers

When asked about the experience using AR layers, participants expressed that work-

ing with 4 layers is challenging when layers overlap with each other. They also said

that working with minimum number of layer i.e., 2 layers was easier. The partici-

pants expressed that in addition to having control over the number of layers using

the toggle feature, provided that they have an option to adjust the space between the

AR layers, it could help perform the tasks better with multiple layers. During inter-

view we asked the participant if they wish to have control over the spacing between

layers and number of layers. 30 participants reported that having control over the

spacing between layers is beneficial according to the task. One participant P35 who

is familiar using AR stated “It is beneficial to have spacing if I want to adjust the

layers according to my height”. They also felt that in specific tasks such as standing

up and looking down, and viewing from an angle if they have an option to control

the spacing between the layers could be very beneficial. Current spacing we used is

0.85 in Unity.

Calibration issues

We used a QR code to anchor the visualization to the tablet. 3 participants mentioned

about calibration issues when the tablet is moved when the continuous QR tracking

is disabled. For the most part, the alignment of AR layers is good. However, few

participants felt that in BCI times, the calibration is not perfect and the AR layer’s

position is slightly off at times, and the tablet has to be manually adjusted a little
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bit.

5.10.3 Future applications

Live BCI data

We had 5 participants from neuroscience school in our study. When asked about

the potential applications of AbVD and ArVD, the participants expressed live data

visualization as time-series from a BCI device in the interfaces will be one potential

future application.

General applications

We asked the participants to know what are the potential applications of AbVD and

ArVD according to their thoughts. Participants expressed that time-series is generic

and can be applied in different areas e.g., in a mathematical course in school, studying

variations in time-series, bone morphology :- visualizing different layers in tissue using

AR layers.

5.11 Review of findings in relation to the research questions

We recorded and analysed accuracy, system usability, TLX and time taken to com-

plete the tasks for above display and around display. We tested our hypothesis for

individual tasks, time taken for individual tasks and individual components of TLX.

In terms of TLX and System usability we did not find significant impact that shows

AR is better than tablets though they revealed important observations on what as-

pect could possibly make AR better in future. In terms of TLX the participants put

more efforts into AR especially in above display due to the number of layers and chal-

lenges in reading X and Y values due to font size, resolution in AR and overlapping

layers. In around display the participants are comfortable with single layer of AR

though reading the values became a challenge if the values are situated further from

the participant for example,if the tablet is centred at 1500 epochs, values at 5500

epochs are challenging to read.
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5.11.1 Above display

Research question 1(RQ1)

From the AbVD experiment we are able to find answers to RQ1. Results from hy-

potheses testing are presented below

Hypothesis

To reject hypothesis H0A1 we took time taken as indicator and for hypothesis H0B2

we took task accuracy as indicator. Statistical results on task accuracy indicated

that participants performed significantly more accurately in AbVD when compared

to tablet-only interface for the tasks where participants stood up and looked through

the AR layers. In terms of time taken our statistical results indicated that par-

ticipants took more time in AbVD when compared to tablet-only interface. Hence

Hence only H0B2 can be rejected.

User experience:

Perceived task load scores and system usability scores gave us insights about user

experience with AbVD. Statistical results on perceived system usability indicated

that participants preferred tablets to AbVD. Scores of individual factors in the task

load indicated that physical demand and effort is significantly higher in AbVD when

compared to tablet only interface. Performance scores in task load indicated that par-

ticipants are more confident using tablets-only interface when compared to AbVD.

Answer to RQ1:

We did not find any significant difference in time taken with respect to HA1 though

we managed to find significant difference in terms of task accuracy for HA2 favour-

ing AbVD. To summarise the overall AbVD experiment to answer RQ1, Layering

in AbVD helped participants locate salient data points significantly more accurately

than tablet-only interface for tasks where participants stood up and looked through 4

AR layers to perceive data points. 40 participants did not use the toggle feature in the

stand up and look down task set. As a part of interface feedback, participants rated

tablet only interface significantly higher than AbVD for system usability. In terms

of task load ratings, participants rated AbVD higher in terms of task load. Based on

qualitative data from interviews, participants appreciated the AbVD for presenting

different data layers more clearly than in physical monitors where the graphs tend
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to overlap. 17 participants expressed that layering the BCI data has its advantages

in terms of comparing values between two graphs. 10 participants also expressed

layers helped to distinguish the features clearly when compared to tablet only in-

terface. One participant P17 with slight familiarity in AR stated, “Layering helped

me to distinguish each graph clearly in augmented reality.” Though 30 participants

expressed working with 4 layers is challenging in terms of matching X and Y values of

salient data points in the axes, 15 participants said that presence of the grid in each

layer could be beneficial in future to match X and Y values of salient data points.

As a part of future improvements, 15 participants said if there is a feature to reduce

spacing between the layers in future it will be helpful for them to adjust the spacing

according to their height. Having considered all the findings from the AbVD exper-

iment, to answer RQ1 in a nutshell, presenting time-series plots in layers can help

locate salient data points with limited interaction and identify relations accurately

than tablet only interface in a specific viewing angle suitable to perceive data points

without any obstruction such as layers overlapping to read X and Y axes values.

5.11.2 Around display

Research question 2(RQ2)

From the ArVD experiment we are able to find answers to RQ2. Results from hy-

potheses testing are presented below

Hypotheses

To reject hypothesis H0B1 we used time taken as primary indicator and to reject

H0B2 we used accuracy as primary indicator. Our statistical results did not indi-

cate any significant difference in time taken between ArVD and tablet only interface.

However we found that participants’ performed significantly more accurately in fo-

cus+context tasks when compared to tablet only interface.Hence only H0B2 can

be rejected

User experience: Statistical analysis on perceived system usability scores did not

indicate a significant difference between ArVD and tablet only interface. Overall

NASA-TLX scores and scores of individual factors i.e.,Mental demand, physical de-

mand, temporal demand performance, effort and frustration did not indicate signifi-

cant difference between ArVD and tablet only interface.
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Answer to RQ2:-

We did not find any difference in time taken with respect to HB1 though we find

a significant difference in terms of accuracy for HB2 favoring ArVD. To summarise

the overall ArVD experiment as an answer to RQ2, The ArVD interface using ArVD

helped to locate salient data points significantly more accurately in a longer dura-

tion BCI time-series data in focus+context view. 41 participants did not use the

shift-left or shift-right feature presented to them in the focus+context tasks. In the

tasks where the participant could use their own approach, 42 participants did not use

shift-left/shift-right to move the data for identifying the data points. One of the par-

ticipants P37 from neuroscience program stated in interviews, “I felt good observing

the entire time series in ArVD and observing the data move from left to right in sync

with the focus portion of data in the tablet.”.

In the interview, participants expressed that AR is very beneficial to view the

whole time series data all the time, which is otherwise not possible on tablets due to

screen size limitations. The number of participants who reported tablet-only interface

is better to find X and Y values is significantly higher than tablet+AR. The 15

participants expressed that a grid in AR or an adjustable slider could help read

the X and Y values in AR better. In tablet+AR, 10 participants stood up and

moved closer to the data point. For feedback about future improvements in the

interview, a participant P42 from neuroscience program stated, “If there is a 360-

degree visualization of the time-series data, then it would be easier to look around

and find data points”. Having considered all the findings from the ArVD experiment,

to answer RQ2 in a nutshell, extending the boundaries of the tablet screen using AR

helped participants to locate salient data points in time-series data more accurately

than zooming and panning in tablets when participants perceived the whole duration

of time-series data in focus+context view with limited/almost no interaction with

tablet for navigating the data.
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Discussion

In this chapter we discuss implications of the findings from our research and its

relevance to previous work. We also summarized the contribution of our research,

summary of limitations and future work in this chapter.

6.0.1 Lessons learnt from our research

Viewing angle is important to perceive values of the data points

The important contribution of our AbVD and ArVD research is the proof that AR

can help to present specific challenging visualizations using tablet+AR. Tablet+AR

performed better than tablets in terms of accuracy in AbVD for a specific viewing

angle in standing position. On the other hand, the tablet could only present all four

graphs together in the tablet, which overlap with each other. Hence presenting data

in different layers when dealing with multivariate data is helpful for data comprehen-

sion in terms of accuracy. In the interview, participants from neuroscience background

gave several examples of presenting the data in different layers. With adequate con-

trol in spacing between layers and the number of layers displayed simultaneously, the

tablet+AR could present complex visualizations better. In ArVD, when we deal with

extensive data such as a time series data from 0 to 7000 epoch, Tablet+AR could

present the whole time series data better. The focus points feature to adjust the view

of data and analyze the data by looking at the extended AR display from both sides

of the tablet helped to perform the data analysis better than the tablet. When par-

ticipants dealt with finding data points over a long range on the tablet, they swiped

many times, and finding data points and remembering it was challenging. When the

participant switched between time series data, the tablet display with the support

of AR showed the entire graph. The participants also said it is visually engaging to

see one time series graph changed to another, and observing the changes in peaks

of entire time series data when switching between valence and arousal data is very

119
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helpful.

In earlier research, MARIVIS[1] and augmented reality for large interactive displays[48],

the researchers demonstrated the use of augmented reality to present complex visu-

alizations. Our contribution to research in presenting complex data through AR is

the adoption of the display paradigms of extended displays and focus+context to

present the brain computer interface data. Our approach is different in terms of the

number of layers in the above display and the extended AR display’s length around

the display. The immersive analytics of BCI data using a novel hybrid tablet+AR

interface is a new approach that did not exist in previous research in BCI.

Tasks performed in AR took more time than the ones in physical

monitors

The participants mentioned in the interview that with adequate practice and expe-

rience in tablet+AR they could perform the tasks faster. Our results revealed that

participants took more time in AR than in physical monitors. The accuracy is slightly

more in augmented reality than in tablet though the participants took more time in

augmented reality tasks. The main challenge is reading the values of the data points

due to number of layers and smaller font size of the X and Y values. The participants

look more time in looking at the data points, used their fingers to match the X and Y

axes values. In tablets the participants can use the touch surface to navigate through

the data and find the values that took less time. The future design should have more

features to read the X and Y values of the data points such a grid. Our research

contribution in comparing the accuracy and timestamp of the tablet+AR with the

baseline tablet only condition is novel. The tablet is better in terms of time taken to

complete the tasks, though there is a huge potential in tablet+AR interface in terms

of innovative ways to analyse the data better. The accuracy and timestamps for each

tasks are presented in Figure 6.1 and 6.2.
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Figure 6.1: Above display - Time taken and Accuracy

Figure 6.2: Around display - Time taken and Accuracy
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Learning effect in AbVD and ArVD

The participants during the training tasks took more time to get familiar with the

AR layers above the tablet. The training tasks in the ArVD took(in mm:ss) 3:10,

and ArVD took 5:02 seconds. When the participants performed the toggle tasks,

they learned about each AR layer and how to compare the layers and find which

value is more than the other. The clear distinction of each layer helped them perform

the stand-up, look down, and view from an angle tasks better. In ArVD, the use of

focus points and look at both sides task yielded good accuracy, and the participants

managed to analyze the time-series data by looking at both sides of the tablet. In

using your own approach tasks, the participant took less time than the focus points

tasks, which shows their increasing familiarity with the interface. The AbVD use your

own approach tasks are completed within 2:00, and participants preferred to perform

these tasks using the toggle, thereby turning off the layers whenever necessary. Their

preference to control the number of AR layers displayed on top of the tablet is evident

in the interviews when they expressed that working with four layers simultaneously

demands increased mental effort. The resolution of AR poses some challenges in

reading the numbers in graphs, and This can explain the time difference between

AR tasks and physical monitor tasks. In ArVD use your own approach tasks, we

observed 8 participants moved from their seated position and looked at the data

point. During identifying the largest peak in the whole time series data tasks, we

observed 10 participants zoomed out and answered the question instead of looking

around and finding the peak. Other participants looked at both sides of the time series

data in AR and answered the question. We observed participants asking questions

about the AR layers and interface during the training tasks. Once the training tasks

were completed, the participants got familiar with the interface and areas to look into

when they performed the tasks.

Overall performance of AbVD and ArVD against tablet

AbVD and ArVD is significantly better than tablets in terms of accuracy though

participants took more time in AR than in tablets. The participants performed

better in terms of accuracy for focus points + look around tasks in around display

and stand up and look through AR in around display. The participants preferred
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AR to tablets in viewing large time series data and they liked navigating through the

data using focus points. The participants also liked to observing changes in entire

time series graphs when switching between valence and arousal in around display.

In AbVD experiment participants preferred AR to tablets for visually distinguishing

different layers of data and viewing multiple graphs together. The TLX data showed

that task load in AR is high than in tablet, which explains why participants took more

time for the AR tasks. The participants’ familiarity with a tablet computer can be

seen in the system usability scores, In which the SUS score of tablets is higher than

AR. In interviews, the participant felt that though the Above and around display

interface is engaging for first-time users, they can perform tasks better in the tablet

+ HMD AR interface with adequate training. The lesser resolution in AR also posed

some difficulties in above and around display AR to read numbers on the X and

Y axis far away. The resolution caused a significant amount of time taken in AR

tasks. The participants, however, were able to perform tasks well just by looking

at both sides of the tablet. Hence in the interface questionnaire and interviews,

participants mentioned that looking at both sides and analyzing the time-series graph

in ArVD interface is better than swiping multiple times on a tablet. In AbVD, the

participants liked presenting the data in multiple AR layers, which is visually easy to

distinguish. The participants also liked to view data by standing up, looking through,

viewing from a certain angle, and adjusting their head orientation to analyze the AR

layers. The participants took slightly more time to perform these two tasks than on

physical monitors, but accuracy is better than tablets. On the tablet, when working

with multiple graphs simultaneously, the graphs overlap each other. In interviews,

participants mentioned that on the tablet, the graphs overlap, making it challenging to

find the values when all graphs are on. The AbVD and ArVD helped to analyze data

better in challenging visualizations such as viewing multiple graphs simultaneously

and performing data analysis on extensive time-series data extending through AR.

With some reasonable level of training in using the tablet+AR interface and a few

improvements such as a grid or a movable slider to read the values better.
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Takeaway ArVD and AbVD implementation

Some key takeaway from implementation is that it is not always about the number

of UI operations we have to manipulate the data; it is about how concise they are to

support the visualization. To elaborate on concise UI, we had several buttons for each

function during the initial pilot studies. Then later, we modified the user interface to

be more precise and self-explanatory. AR visualization in layers and focus+context

view should appear native to the tablet, i.e., color and size similar to the tablet

display. The main challenge was AbVD implementation is achieving transparency

and enabling ArVD time-series data to move in sync with the tablet. Both challenges

were overcome at one point after extensive trials. In AbVD, we changed the alpha

value of Webviews and made changes to the code to make the background of the

layers transparent. In ArVD, introducing a smaller axis to adjust the view precisely

in focus+context display helped us mitigate the challenges.

Impact of Above display and Around display in participant perspectives

During the interview, we asked the participants how they felt about the display in

terms of data analysis and data comprehension of BCI data. 40 participants felt that

AbVD and ArVD interfaces created a positive impact in terms of data comprehen-

sion. The participants felt that time series is generic and can be easily applied to

visualizations outside BCI. The participants felt that the interface addressed some

core visualization challenges, such as viewing extensive time-series data and present-

ing the data in layers. The participants also felt that they could understand valence

and arousal and how they are derived through the experiment with interface. The

interview with neuroscience participants revealed that they could apply this interface

to support data analysis in some areas of neuroscience.

Interviews with Expert Neuroscience Participants

We had 4 participants with neuroscience backgrounds, and during the interview, we

asked them about some potential areas in neuroscience where our above display and

around display interface can be used. They felt the interface could be applied in

analyzing timelines to see cell structure changes for specific functions compared to
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others to see how it is affected and how it affects the other one. The AR layers could

be changed to cell layers, for example, the retina, which has multiple layers of cells

and add or remove the layers to see what happens. The graphs are generic and can be

used in different applications in neuroscience, the axon elongation of the neurons, and

see the cell body. Move the cell body through the axon and see different parts like

the cell body and dendrites. Layering could be applied in analyzing the strength of

connections between different agents and networks between agents. One participant

felt the number of layers did not matter and provided a way to make it more precise

for analyzing the values. The around display could be related to one application for

pressure data visualization, which could help to pinpoint locations where pressure is

more or less.

ArVD and AbVD has a potential to be used in interdisciplinary domains

for presenting data

We had participants from different domains such as architecture, chemistry and inter-

disciplinary studies. The participants mentioned that ArVD has a positive impact

when we probed them regarding their experience with ArVD and its potential benefits

of integrating them with their domain. Participant P48 who is from interdisciplinary

studies said that ArVD interface has a positive impact in terms of bias and the

interface has a strength to be integrated to the interdisciplinary domains as social

systems to present data to large population E.g Population and addiction statistics,

Micro-regression, Macro-regression and insights about society. P48 further added, for

patients in audiology how psycho-acoustic music helps calm nerves and those have

particular waves data can be visualized in ArVD. When a music is heard, to identify

the regions of the brain that are activated in response to music and its frequency in

a specific epoch. One of the participants P37 from electrical engineering said that

the interface can be used in electrical drawings that can make use of extended space

especially in ArVD.

We believe our research contributed to hybrid interface research that explores the

benefits of multiple interfaces to perform a task or to address a complex visualiza-

tion i.e., presenting data recorded for longer duration and multiple related data. Our
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method to present complex visualizations using augmented display for better data

understanding of data and better data analysis have the potential to overcome screen

size limitations in conventional tablet display. Our user study provided substantial

data to understand the tablet+ AR HMD better, which lacked in previous researches

such as MARVIS[1], MIRIA[2], DesignAR[3] and Personal augmented reality for large

displays by Satowski et al.[48]. In brain computer interface domain, our research bring

valuable addition to immersive data analytics of BCI data and exploring different in-

terfaces to visualize BCI data better.

The previous research in extending the displays with augmented reality from inter-

active surfaces such as tablets is explored in DesignAR, where the researchers created

a 3D modeling workstation using tablets and augmented reality[3]. Due to the lack

of standard tools to project multivariate data in augmented reality[64], visualizing

graphs with large data with more than 5000 data points in our research was challeng-

ing to build and slow to render in AR. In ARTIV, we used 2D in augmented reality,

and our AR display is through Webviews and it was faster to deploy on HoloLens 2.

The evidence that interactive surfaces such as tablets proved to be an excellent

platform to explore extended displays in AR is seen in previous research MARVIS[1]

and DesignAR[3]. The strong aspects of using the Microsoft Surface Pro 3 in ARTIV

research are the detachable screen and touch interactions. The surface pro can be

placed on the table, and touch interactions with the tablet are smooth to manipulate

the data presented in the tablet and the AR. Augmented reality offers certain advan-

tages to extended displays; one primary advantage is that it costs less space[4]. In

ARTIV ArVD, we enlarged the time-series data to 12.5 feet, providing evidence that

AR can help present extensive data without a sizeable physical display. Pavanatto

et al.[4] conducted a user study that compared conventional displays against virtual

displays in a user study to explore the benefits of virtual displays in terms of per-

formance and productivity. In ARTIV, we compared the hybrid tablet+AR HMD

interface with tablet-only conditions for understanding the data and performing data

analysis tasks. Our results showed that extended displays are indeed helpful for vi-

sualization challenges due to screen size and the nature of data.
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MARVIS[1] and Personal augmented reality for large interactive displays[48] did

not have a user study that compares tablet+AR interface with physical monitors.

MARVIS[1] and MIRIA[2] have expert user feedback to evaluate their interface.

Our study is extensive and comprised of two domains BCI and Space syntax. Fo-

cus+context technique was explored in [58] and it was applied in MARVIS[1]. Com-

parative study of interfaces was performed in [4]. In our research we recruited 48

participants, and 4 among them were from neuroscience backgrounds(encouraged by

[1, 2]). Our work is unique in terms of data type and visualization problem i.e.,

screen size limitation and our techniques i.e., Layering and focus+context to address

the problem when compared to previous researches.

6.0.2 Contributions and related works

ARTIV-BCI compared to previous research that used tablet+AR

Overall, in ARTIV BCI, we created the extended AR displays above and around

the tablet, using the focus+context method to present the data visualization to the

user. Our interface differs from earlier relevant works such as MARVIS[1] by the

scale of data presented in AR around the display and the number of AR layers above

the display. MARVIS did not explore the interface specific for data but focused on

techniques that demonstrate above, around, between displays visualization. As far

as we know, no earlier research demonstrated a hybrid interface for exploring Brain

Computer Interface data.

DesignAR [3] is another work that demonstrated tablet+AR for data visualization

that motivated our research. When DesignAR mostly deals with 3D modelling using

combined tablet and augmented reality, whereas our work is related to 2D visualiza-

tion. Both MARVIS [1] and DesignAR [3] demonstrated tablet and AR can be used

for data analysis.
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Revisiting over-plotting and screen size limitation

The research problems of ARTIV-BCI are over-plotting and screen size. Reipschlager

et al. [48] presented sub-trends from visualizations in a large interactive display

using AR. MIRIA [2] also demonstrated the user trajectories in AR that extend from

a large screen. A large screen might not always be a solution for displaying large

visualization with thousands of data points and multiple related visualizations, such

as different sub-trends from data. Urushiyama et al. [136] demonstrated that portable

devices such as smartphones can extend their displays using another physical display

to present focus region in the phone and off-screen contents. In [136], we still require

another physical display. ARTIV-BCI demonstrated two techniques, 1) layering and

2) focus+context, that portrayed how AR can be used as an alternative to extend

physical screens. The benefits are, however, not limited to two techniques. Several

other techniques, such as 360-degree around the tablet display AR visualization, can

be a potential future work.

Comparison of hybrid interface with conventional interface

Comparing conventional interfaces such as tablets and personal computers with a

hybrid interface such as tablet+AR can measure the usability of a hybrid interface

for a particular research problem. Pavanatto et al. [4] conducted a comparative

study on hybrid, physical and virtual interfaces and measured the usability using

task accuracy, time taken and perceived usability. Craig et al. [140] also compared

two learning environments: tablet augmented reality and head-mounted displays.

Our motivation to compare tablet+AR with a tablet-only interface is mainly from

work by Pavanatto et al. [4]. Similar to [4], We conducted our interface evaluation in

a lab, and the evaluation of AbVD and ArVD under real-world circumstances could

be a potential future work.

Contributions to BCI research

In our research, we treat our dataset as a black box. The lack of sufficient pre-

processing to reduce noise and algorithms to extract accurate valence and arousal
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values is acknowledged. Combining BCI with augmented reality has been demon-

strated in [33, 34]. However, they are industry-specific applications that use live BCI

signals to perform a task in AR applications or visualize BCI data. As far as we

know, our research is the first to demonstrate BCI data visualization and exploration

in a tablet+AR interface. Through our layering and focus+context technique, we

inferred some benefits of AbVD and ArVD in identifying salient data points. There

is scope for future work, such as large-scale artifact analysis for ERP data running for

data recorded for a longer duration using focus+context and multiple artifact analysis

using the layering technique.

6.0.3 Summary of Limitations

Grid or slider to read X and Y values:-

In the current implementation of AbVD, the user can only read the X and Y values

by looking at the graph, adjusting the head orientation, and matching the X and Y

values using the finger and identifying the values. In AbVD, participants felt that

they should be given an option to toggle one or more layers on or off in all types of

tasks. The participants felt that if there were a grid in each AR layer, it would be

helpful to read the values.

Identifying values of salient data points that are located far away:-

In around display, the participants felt challenged to compare the value of a data point

if the Y-axis is far. In the Around display AR interface, we provided three Y-axis,

one on the tablet and the other two on both sides of the time-series data. If a data

point is for the participant, either uses fingers to match the data point to the Y-axis

or moved close to the data point and read the values. Hence in the above display

AR interface, the number of layers and their overlapping caused some difficulties in

reading X and Y-axis values. In ArVD, due to the size of the time series data, it was

challenging for participants to read the Y-axis data points that are located far away.
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Resolution of AR visualization in HoloLens 2:-

The resolution of AR in HoloLens is less when compared to a tablet, which posed

some significant challenges in reading the values. The participants felt that wearing

the headset for a long time caused some neck pain and ergonomic issues. The spacing

between layers is mostly fine. However, participants felt that the spacing could be

adjusted between the layers, which better suits the participant’s height. The swipe

feature is ruled out due to challenges in making the sync in visualization between

tablet and WebViews when the user swipes the tablet to move the time series data.

Swipe accuracy due to touch sensitivity:-

In our current ArVD implementation we navigated the time-series by clicking on focus

points in the tablet. We initially attempted to implement swipe feature to move the

time-series data from the tablet, however touch sensitivity of tablet is more than

Webviews where the portion of AR visualization is presented in HoloLens 2. Hence

we are unable to achieve accurate swipe that places the accurate continuity of data

in the AR from the tablet. To mitigate this we gave the participant to click on focus

points to adjust the view of time-series and shift-left and shift-right feature to shift

the data towards left or right from the tablet UI.

Methodology limitations

The duration of our study is longer due to combined BCI and Space Syntax experi-

ments i.e., average of 2 hours and 30 minutes. Participants performed the experiments

in both BCI and Space Syntax in the order after counterbalancing. In order to miti-

gate fatigue we requested the participants to inform the researchers if they need some

break after each experiment for water, restroom or to simply remove the HMD and

rest for sometime/take a walk before proceeding with other experiment. We acknowl-

edge the limitations due to fatigue having conducted a study that comprised two

different data i.e., BCI and Space Syntax. Our combined study comes under broader

research perspective of ARTIV to answer research questions in future that evaluates

whether the interface is suitable for a specific type of data or different types of data.
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The primary indicators used in our research are task accuracy and time taken to

complete the tasks. Both indicators helped us evaluate our interface’s usability for

specific tasks, i.e., correctness in identifying salient data points and time taken to ac-

complish the task. However, to measure data comprehension, many other indicators

can be used along with task accuracy and time taken to measure comprehension e.g.,

Pavanatto et al. [4] visual attention and head orientations which we acknowledge as

a limitation.

In our experiments, we asked the participants to perform the tasks seated except

Group 3 in AbVD, where participants stood up and looked down at the AR layers.

Our study is a lab based study, we kept the tablet flat on the surface and noted in

observations if the participant moved from their position. However, we acknowledge

that we did not have a scenario where the participant picked up the tablet, moved

around and performed the task. We also did not have a scenario where the tablet

screen is positioned in different viewing angles and see how the participants perceive

the AbVD and ArVD visualization. Both scenarios could be areas of future work.

6.0.4 Future work

Hybrid interfaces have excellent scope for handling complex visualization challenges

due to the screen limitations of physical monitors. During interviews, when we asked

the participant if the hybrid interface (AbVD and ArVD) impacted the data analysis

and data comprehension positively, 40 participants felt the hybrid interface positively

impacted analyzing the data. The participants felt that if the user were given an

option to switch between the tablet visualization and the AR visualization, it would

help them get different perspectives. In terms of feature, If AbVD and ArVD in-

terfaces are upgraded with features to adjust space between the layers, increase or

decrease the font size, and switch colors that are more suitable for the user to view

the data, it might further enhance the task accuracy and user experience. In AbVD

interface adding a grid to AR layers to read the X and Y values better.

In ArVD, a movable Y-axis that can slide through the AR display is one future

improvement that can be added to read X and Y values better when a data point
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is far. Another essential improvement to the ArVD interface is the precise swipe

feature that could enable both tablet and AR to move the time series data in sync.

One participant gave feedback for ArVD regarding a curved display for time series

data. In Webviews, a curved display is possible with external assets that can bend

the canvas. Curved AR display for longer duration time-series data is a possible

future upgrade for ArVD. In the current setup, we use BCI data already processed

in OpenVibe. There is also good scope to create visualizations using live data from

OpenVibe, stream them to the interface, and create a live time-series visualization.

In terms of BCI, evaluating AbVD and ArVD for a specific medical use cases for

example long duration EEG data analysis for identifying seizure patterns in patients

can explore the usability of interface even further. We did not evaluate tablet+AR

in comparison with a pure virtual monitor setting which could potentially evaluate

the benefits of data exploration in a tablet+AR interface versus AR only interface.
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Conclusion

In ARTIV BCI, we designed AbVD and ArVD interfaces for comprehending BCI

data. We learned to develop a hybrid tablet+AR interface using design paradigms

and earlier works that supported visualizing data using tablet and augmented real-

ity. We successfully implemented two techniques in our interface, layering and fo-

cus+context techniques to present BCI data. We evaluated our AbVD and ArVD in-

terfaces through within-participants study. Our results indicated significantly higher

task accuracy in finding the salient data points in individual graphs presented on lay-

ers and extended view of time-series supported HA2 and HB2 hypotheses in AbVD

and ArVD. In terms of time taken, Tablets took significantly lesser time than AbVD

interface. Our qualitative data analysis indicated several areas of future work, lim-

itations and lessons learnt during the development AbVD and ArVD. Overall, our

research provides evidence that hybrid interfaces such as tablet+AR are beneficial

for exploring BCI data. Our research also provided evidence that comparing a con-

ventional display with a hybrid interface can lead to interesting findings in terms of

the strengths and limitations of the interface in visualizing data. Our study that

compared hybrid interface with conventional displays is beneficial in finding answers

to how visualizing the data using layering and focus+context in AbVD and ArVD is

better compared to a tablet-only interface. Our work can motivate future researchers

to use tablet+AR in different domains to visualize complex data.
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Jyväskylä, Finland, June 11-15, 2013. University of Jyväskylä, Department of
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Appendix A

Recruitment notice to students

Figure A.1: Recruitment notice to students
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Appendix B

Consent form for the participants

Figure B.1: Consent form
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Figure B.2: Consent form(Cont)
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Figure B.3: Consent form(Cont)



Appendix C

Task list for Above display and Around display

Figure C.1: Training tasks for Above display and physical monitors
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Figure C.2: Task-set 1 Above display
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Figure C.3: Task-set 1 Above display Cont.
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Figure C.4: Task-set 2 Above display
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Figure C.5: Task-set 2 Above display Cont.
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Figure C.6: Training tasks for Around display and physical monitors
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Figure C.7: Training tasks for Around display and physical monitors Cont.



160

Figure C.8: Task-set 1 Around display
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Figure C.9: Task-set 1 Around display Cont.
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Figure C.10: Task-set 2 Around display
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Figure C.11: Task-set 2 Around display Cont.



Appendix D

Questionnaire for Hololens familiarity and Participant

background

Figure D.1: Hololens familiarity questionnaire
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Figure D.2: Participant background questionnaire
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Figure D.3: Participant background questionnaire cont



Appendix E

Above display - Interface and post condition questionnaire

Figure E.1: Above display
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Figure E.2: Above display cont.
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Figure E.3: Above display cont.



170

Figure E.4: Above display - Physical monitors cont.
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Figure E.5: Above display - Physical monitors cont.
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Figure E.6: Above display - Physical monitors cont.
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Figure E.7: Above display - Post condition questionnaire
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Figure E.8: Above display - Post condition questionnaire cont.
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Figure E.9: Above display - Post condition questionnaire cont.
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Around display - Interface and post condition questionnaire

Figure F.1: Around display - Interface questionnaire
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Figure F.2: Around display - Interface questionnaire cont.
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Figure F.3: Around display - Interface questionnaire cont.
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Figure F.4: Around display - Interface questionnaire cont.
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Figure F.5: Around display Physical monitors - Interface questionnaire
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Figure F.6: Around display Physical monitors - Interface questionnaire cont.
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Figure F.7: Around display Physical monitors - Interface questionnaire cont.
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Figure F.8: Around display Physical monitors - Interface questionnaire cont.
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Figure F.9: Around display - Post condition questionnaire
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Figure F.10: Around display - Post condition questionnaire cont.
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Figure F.11: Around display - Post condition questionnaire cont.



Appendix G

System Usability Scale(SUS)

Figure G.1: System usability questionnaire
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Figure G.2: System usability questionnaire cont.



Appendix H

Task Load Index(NASA-TLX)

Figure H.1: NASA-TLX questionnaire
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Figure H.2: NASA-TLX questionnaire cont.



Appendix I

Debriefing and interview

Figure I.1: Debriefing and interview
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Appendix J

Checklist for study

Figure J.1: Study checklist
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Appendix K

Participants diversity

Figure K.1: Participants diversity
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