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Abstract

This thesis considers variations on Lagrangian approaches to constraint-handling in

the context of stochastic black-box optimization. The augmented Lagrangian is one

such approach from the well-known method of multipliers that transforms a con-

strained problem into a sequence of unconstrained problems. Iterative updates to the

Lagrangian parameters are designed to use each solution in the sequence of problems

to drive the next solution closer to the desired optimum of the constrained problem.

We review a novel adaptation of this method for evolution strategies that simultane-

ously updates Lagrangian parameters alongside internal parameters in order to avoid

the cost of converging to intermediate values that become obsolete later in the se-

quence. Existing implementations of this adaptation are compared analytically and

experimentally, and a new weakness highlighted.

This investigation leads to proposing a new algorithm for constrained optimization

that for the first time adapts an exact Lagrangian approach for use with evolution

strategies. This is related to augmented Lagrangian evolution strategies in that it

forms iterative updates for Lagrangian parameters such that convergence to an opti-

mum in the search space corresponds with convergence to optimal Lagrange multipli-

ers. The approach is distinguished however by framing the multipliers as dependent

on position in the search space rather than as separate parameters and by approach-

ing a solution through solving implicit quadratic subproblems with identical optimal

multipliers. Along with comparisons on selected benchmark results from the litera-

ture, the exact Lagrangian method is compared experimentally on a range of archety-

pal test problems against previous implementations using the augmented Lagrangian

approach, and found to compare favourably. These results are further justified by

single-step analyses of an evolution strategy on the exact Lagrangian function.
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Chapter 1

Introduction

1.1 Optimization

The study of optimization is a rigorous approach to solving problems that require

determining an input for a given process in order to achieve a desired outcome: finding

a path that minimizes distance traveled, or a manufacturing plan that balances safety

and efficiency, are both examples that can be framed as optimization problems. This

thesis specifically considers optimization problems with a continuous domain or search

space. Mathematically, we seek a value x that maximizes or minimizes an objective

function f(x). The solution is called a global optimum, and is a point x∗ for which

f(x∗) ≤ f(x) ∀x ∈ R. Algorithmically, it is often sufficient to find a local optimum x∗

which satisfies f(x∗) ≤ f(x) within a local neighbourhood N (x∗) which is an open set

containing x∗. Since maximizing and minimizing are equivalent operations up to a

change of sign, I use the term minimization to refer to them both. The same concepts

extend directly to when f : Rn → R is a function mapping n-dimensional vectors x

to a scalar objective value f(x), in which case we seek an optimum x∗ ∈ R
n.

Depending on the particulars of the objective function, various methods exist for

solving such problems. If derivative information is not available, a solution may be

undertaken using derivative free optimization. If additionally no analytic definition

of f(x) is available, black-box optimization methods are employed that operate using

only the computed value f(x). Black-box methods assume no other knowledge of

the internals of the function or how the value is calculated, and in particular no

derivative information is assumed. Evolution strategies (ES) are a prominent example

of stochastic black-box methods that are inspired heuristically by evolution in nature:

a candidate solution is iteratively modified by combining information sampled locally

and randomly that is selected with a bias for improvement.

1
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Evolution strategies have been used effectively for solving a wide variety of problems

[1, 33, 91, 47, 37], and in the context of continuous optimization problems under

certain assumptions are known to converge log-linearly1 on convex-quadratic prob-

lems [53]. It remains an open question which constraint-handling methods are most

appropriate for use with evolution strategies, and a central goal of this thesis is to

propose an approach that will demonstrably improve on existing methods. Efficacy

of the algorithm will be justified both through a type of single-step analysis previ-

ously used to investigate constraint-handling with evolution strategies [92] as well as

experimental validation.

1.2 Constrained optimization

Constrained optimization considers approaches to problems where the domain of so-

lutions is somehow restricted: we seek a point x∗ which minimizes an objective func-

tion f(x) while also satisfying a set of constraints. The restrictions imposed by

constraints partition the search space into two complementary regions: the feasible

region of points that satisfy all constraints, and the infeasible region where at least

one constraint is violated. At a general level, constraints can be classified using a

taxonomy [75] that distinguishes between important characteristics using four named

and largely orthogonal partitions. This in turn distinguishes between optimization

algorithms that are applicable on different types of constraints.

Under this taxonomy, the majority of this thesis will focus on Quantifiable (as opposed

to non-quantifiable), Relaxable (as opposed to unrelaxable), and Known (as opposed

to hidden) constraints, given as QR*K in the taxonomic notation. Respectively, these

taxonomic classifications imply that every constraint can be evaluated as a numerical

value, infeasible points still have meaningful objective function values, and the number

of constraints is known before execution. This matches with the assumptions of

much of the literature from numerical optimization, where constraints are implicitly

assumed to be of type QRAK. The additional letter indicates that the constraints

1Stochastic log-linear convergence can be thought of as the expected difference between the
logarithms of the distance from the optimum in successive iterations tending to a constant value. If
∆(k) is the distance from the optimum in iteration k, then log-linear convergence (in expectation)
implies lim

k→∞

E
[
log
(
∆(k)

)
− log

(
∆(k+1)

)]
= c, for some positive constant c. See [103, 53].
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must also be given A priori (as opposed to by simulation). The notion of constraints

being determined a priori overlaps significantly with considering constraints that are

of negligible cost to calculate relative to evaluating the objective function.

In the case of quantifiable and known constraints (Q**K), it is usually convenient to

further separate them into two categories: equality constraints where feasible points

satisfy gi(x) = 0, i ∈ E , and inequality constraints where feasible points satisfy

gi(x) ≤ 0, i ∈ I. As with objective functions, constraints in the black-box setting

are treated by using only the values of gi(x), and without relying on the specific

definitions of the functions gi or assuming any derivative information. This justifies

the use of the wildcard * in the QR*K taxonomic classification for this thesis, implying

that a priori constraint information is permitted but not required.

1.3 Numerical optimization

Numerical optimization here broadly refers to the overlapping collection of classi-

cal approaches from numerical analysis including, among others, linear program-

ming, quadratic programming, nonlinear programming, convex programming, and

non-differentiable optimization. These stem historically from attempting to devise

rigorous solutions for decision and planning problems involving multiple variables,

and frame their approaches in terms of the underlying mathematical structure of the

problems. Awareness of this structure is a key distinction between the assumptions

underpinning the methods of numerical optimization and those of black-box methods

like evolution strategies. In spite of this, the insights carry over in a natural way that

justifies their study in the context of black-box optimizers. These are important to

understanding and justifying the approach I take to constraint-handling for evolution

strategies, so while a brief outline is given here of several important concepts from

numerical optimization, additional details are given in Appendix B at the cost of

additional exposition.

In unconstrained optimization, the minimum for a sufficiently smooth (differentiable)

objective function f(x) can be characterized in terms of its first and second deriva-

tives, analogously to the one-dimensional case from introductory calculus. It is nec-

essary for the minimum point x∗ to satisfy ∇xf(x
∗) = 0 for instance, which states
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that the gradient at the optimum must be zero. Relatedly, any point where the gra-

dient is zero is a stationary point. Throughout the search space, the value of the

gradient gives useful first-order information about the objective function that can be

exploited. One of the simplest examples of this is in the method of gradient descent

(equivalently ascent) which attempts to iteratively converge to the minimizer of f

from an arbitrary starting point within a neighbourhood of the optimum. In the

k-th iteration, the gradient at the current point is calculated as ∇xf(x
(k)), and the

next point is determined by making a step in the negative direction of that gradient

as

x(k+1) = x(k) − a(k) · ∇xf(x
(k))

with the scalar a(k) controlling the length of the step, and superscripts throughout

indicating the associated iteration number. Since the negative gradient points in the

direction of greatest decrease for f , we expect that moving in this direction will lead

to a point with decreased objective value. With sufficient iterations and appropriately

chosen step sizes, the sequence of points {x(k)} generated by these steps can be shown

to converge to the minimum x∗ on continuously differentiable convex problems.

In constrained optimization, similar statements can be made about the combination

of objective f and constraint functions gi by using their respective first- and second-

order derivative information. The most significant result of these characterizations

is the idea of Lagrange multipliers that are expressed as the coefficients αi in the

Lagrangian function

L(x) = f(x) +
m∑

i=1

αigi(x).

This function expresses a relationship between the m constraints and the objective

function in such a way that under certain conditions, the point that minimizes L(x)

corresponds to the point x∗ that minimizes f(x) while satisfying the constraints gi.

In other words, solving the constrained problem may be possible simply by apply-

ing standard unconstrained minimization routines to L(x). Framed this way, the

Lagrangian resembles a type of penalty function that transforms the constrained op-

timization problem into one of unconstrained optimization, similar in spirit to the
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penalty function

Q(x) = f(x) + ω · g(x)2

that quadratically penalizes points away from the constraint boundary. Like the

Lagrangian L(x), it can also be shown under certain conditions that the point x∗ that

minimizes the constrained problem defined by objective function f and constraint

functions gi is a point that minimizes Q(x). The key difference between the two

unconstrained formulations lies in their parameters. In order to achieve convergence

for Q(x) using an iterative approach, the penalty coefficient ω will often need to

be increased to become very large, and convergence proofs will even assume that

ω → ∞. This creates problems with numerical stability, and significantly increases

the ill-conditioning of the problem, meaning small changes in x are able to have

disproportionately large impacts on the value of Q(x). Both of these are serious

issues for unconstrained optimizers. On the other hand, the parameters αi for L(x)

have finitely-bounded values that are provably optimal under certain conditions. This

ties in closely with the first- and second-order characterization of the problem, and

the result is that in fact there is a Karush-Kuhn-Tucker pair of optimal vector values

(x∗,α∗) that gives the minimizer of the constrained problem and that corresponds

to the point minimizing L(x). Rather than having to increase the parameter ω to

become arbitrarily large in order to achieve convergence on Q(x), this result means

we only have to accurately set the values of αi in the expression of L(x) in order to

be able to find the constrained minimizer.

A visual example is given in Figure 1.1 for the objective function f(x) = x2 (blue

lines) and single constraint function g(x) = 2 − x = 0. In the left-most plot, the

curves resulting from

L(x, α) = f(x) + αg(x)

using various choices of Lagrange multiplier α are shown along with their associated

minima. Since the optimal choice of Lagrange multiplier is α∗ = 4 for this problem,

the curve for L(x, 4) (red lines) shares its unconstrained minimum with the solution

of the constrained problem at x = 2. In the right-most plot, lines

ℓ(x) = α(2− x)
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Figure 1.1: Visualizations in n = 1 of objective function f(x) = x2 with equality
constraint x = 2 and the Lagrangians L(x, α) resulting from α = 2k for k = 0, . . . , 4.
The optimal multiplier is α∗ = 4. At left, the minimal points are marked for each
curve L0(x, α). At right, the intersection is marked between each curve L(x, α) and
the line α(2− x). Figure B.1 gives the analogous case for an inequality constraint.

are additionally shown for selected increasing values of α. These equations ℓ(x)

represent the second half of the respective Lagrangian functions, and geometrically

the lines are seen to lead to a “shift” of the objective function that results in a curve

which shares its minimum with the solution of the constrained problem. Choosing a

value of α that is distant from the optimum value α∗ results in a curve with a solution

distant from the solution of the constrained problem.

At first, it seems that we may have only shifted the difficulty from finding x∗ to

now additionally finding optimal α∗
i . However, it is possible to derive relatively pre-

cise update rules for the Lagrange multipliers αi, that even operate independently of

the minimization of x. The method of multipliers gives one such approach by com-

bining the quadratic penalty and Lagrangian functions given above into the single

expression

Lω(x,α) = f(x) +
m∑

i=1

(
αigi(x) + ωig

2
i (x)

)

referred to as the augmented Lagrangian, having parameter vectors ω = [ω1, . . . , ωm]
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and α = [α1, . . . , αm] for the penalty coefficients and Lagrange multipliers, respec-

tively.

A visual example of the augmented Lagrangian is given in Figure 1.2 for the TR2

sphere problem showing objective function f(x) = xTx (blue contour lines) and

both the infeasible region (shaded grey) and constraint boundary (dashed lines) for

the linear inequality constraint 2 − x1 − x2 ≤ 0. Shaded contour regions are given

for three augmented Lagrangian functions resulting from using the optimal α∗ = 2

and unit penalty coefficient ω = 1 (top right), from increasing the penalty coefficient

by a factor of 20 (bottom left), and from increasing the Lagrange multiplier by a

factor of 20 (bottom right). The colours used to indicate the contour regions are

inconsistent between each plot, and are instead scaled to highlight relevant details.

When using the optimal multiplier, the unconstrained minimum of Lω(x, α) is seen to

correspond with the constrained optimum x∗ = [1, 1]. The contour lines also indicate

that the augmented Lagrangian is still reasonably well-conditioned; they are slightly

stretched ellipsoids, rather than the circles seen for f(x). Increasing the penalty

coefficient ω while holding the multiplier α steady does not change the location of the

unconstrained optimum of the augmented Lagrangian, but it significantly increases

the ill-conditioning near that optimum as the ellipsoids are seen to become much

more elongated. Increasing the multiplier α while holding the penalty coefficient ω

steady maintains the milder conditioning while shifting the unconstrained minimum

of Lω(x, α) far from the constrained optimum.

It can be proven [43, 27] that so long as the penalty coefficients satisfy a lower bound

ωi > ω̄ for a finite value of ω̄, the augmented Lagrangian function is appropriate for

use with unconstrained minimization when the Lagrange multipliers are updated in

the k-th iteration using a variation of

α
(k+1)
i = α

(k)
i + ω

(k)
i gi(x

(k)).

Even more, this can be proven to give a sequence of Lagrange multiplier vectors {α(k)}
that converges to the optimum KKT point α∗ under mild conditions. Because of this

prescribed update rule, a general unconstrained optimization routine is suitable for

minimizing Lω in order to thereby find the constrained minimizer x∗. This makes
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Figure 1.2: Visualizations in n = 2 of contour lines for the objective function f(x) =
xTx with inequality constraint g(x) = 2 − x1 − x2 ≤ 0. Top left: objective and
constraint functions given with the infeasible region shaded. Top right: contour
regions for Lω(x, α) with α = 2, ω = 1. Bottom left: contour regions for Lω(x, α)
with α = 2, ω = 20. Bottom right: contour regions for Lω(x, α) with α = 40, ω = 1.
The constrained optimum is marked throughout at x∗ = [1, 1].

use of the method of multipliers and augmented Lagrangian a broadly attractive

approach.

1.4 Constrained optimization with evolution strategies

The method of multipliers and associated augmented Lagrangian function have been

used extensively in continuous numerical optimization, and stochastic and evolution-

ary optimization methods have also implemented variations of the approach many
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times [121, 97, 35, 80, 81, 78, 79, 23, 24], much of the work occurring in the last

decade. A consistent feature between these varied implementations is their adherence

to the basic inner/outer loop model implied by the original method of multipliers:

an outer loop sets the values of the Lagrangian’s parameters α and ω in order to

determine an unconstrained problem that is operated on by an optimizer in the inner

loop. Once a solution is found, this is fed back to the outer loop in order to update

the Lagrangian parameters and repeat the cycle until convergence is observed to the

optimum. Although the original method of multipliers assumes that each inner loop

will find an exact solution for the given Lagrangian parameters, and some convergence

results even rely on this assumption, in practice it seems that only an approximation

to the solution is needed within some reasonable bounds.

A novel augmented Lagrangian algorithm for evolution strategies (the AL-ES) was

proposed as part of early work for this thesis [14] in the context of problems with

a single linear constraint. A significant contribution of the AL-ES was to propose

updates for the Lagrangian parameters as being integrated alongside other internal

parameter updates of the evolution strategy. The motivating idea was that perhaps

the limits of reasonable bounds for finding a solution of the inner loop could be pushed

sufficiently far that the evolution strategy could keep pace with changes to the La-

grangian parameters within a single iteration. If so, then considerable computational

expense could be saved. With integrated updates, there would be no need to converge

to intermediate results within each inner loop that would ultimately become obsolete

in subsequent iterations. This was demonstrated to be the case through single-step

analysis and experimental results, in large part due to careful updates of the penalty

coefficient ω that maintains balance between the evolution strategy’s progress on the

constraint and objective functions.

The AL-ES was analyzed by Atamna et al. [16] who used Markov chain analysis to

describe linear convergence results for a single constraint. Similar results were given

by the same authors for a version of the AL-ES modified for multiple constraints

[18, 19], and for the AL-ES integrated with covariance matrix adaptaion (CMA) on

a single constraint [17]. Encouraging empirical results on archetypal problems were

shown for both modified algorithms. The thread of AL-ES convergence results from
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Markov chain analysis also formed part of the PhD thesis of Atamna [15]. Dufossé

and Hansen considered an adaptation of the AL-ES for use with surrogate functions

[38], and additionally performed a parameter study to suggest improved parameter

values for the AL-ES when using covariance matrix adaptation (the AL-CMA-ES).

Empirical results on a selection of benchmark problems showed improved performance

for the AL-CMA-ES when using those parameter settings.

The inclusion of CMA is an important modification. It is the “de facto standard”

[53] for continuous optimization with evolution strategies, to the extent that it is

reasonable to partition ES algorithms into those that use CMA and those that do

not. Although its implementation invokes some technical detail, a key concept is that

it uses an approximation of the inverse of the local Hessian [52, 110] to make more

informed choices about where the evolution strategy should sample next. This will

significantly reduce the impact of ill-conditioning, as the evolution strategy is often

observed to adaptively determine an appropriate scaling of the local search space.

Put another way, the effect of including covariance matrix adaptation is that the

evolution strategy is ideally able to operate on a search space resembling a sphere

or reasonably well-conditioned ellipsoid, with the CMA encoding the transformation

between that almost-spherical space and the true search space. For any method that

uses evolution strategies then, it remains important to understand its behaviour on

those sphere and ellipsoid search spaces when no CMA is employed.

1.5 Contributions

Work from this thesis led to proposing the (1 + 1)-AL-ES [14], a novel constraint-

handling approach for evolution strategies that was considered on convex quadratic

problems with a single linear constraint. Single-step analysis revealed that updates

to Lagrangian parameters should be done with the goal of balancing the progress of

an evolution strategy in the constrained subspace with that in the unconstrained sub-

space. Experimental results showed log-linear convergence on spheres and moderately

conditioned ellipsoids.

This thesis will demonstrate that existing extensions of the AL-ES, in spite of promis-

ing published results, can exhibit poor performance on well-conditioned, spherical
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problems after the addition of even small numbers of linear constraints. The most

notable of these is when the constraint boundaries form a narrow feasible region.

An example in two dimensions with two constraints is when the constraint bound-

aries form nearly antiparallel lines with the optimum lying at their intersection. The

resulting augmented Lagrangian becomes ill-conditioned, introducing a significant im-

pediment to convergence that is partly covered by application of CMA (which greatly

reduces the negative impacts of any ill-conditioning) but persists without. The ability

of CMA to correct for the ill-conditioning is also directly affected by how effectively

the penalty parameter ω is adapted, yet the penalty update rule used for AL-ES

is designed to give good update steps for the Lagrange multipliers, not necessarily

to give good information about the relative constraints. Finally, by considering the

AL-ES update rule for the Lagrange multipliers as a type of gradient ascent for op-

timizing a dual function, I will argue that effective progress of the AL-ES toward

the constrained optimum should depend both on progress of the evolution strategy

in the primal search space and on good progress of the gradient ascent method in

the dual space. As a result, problems that are ill-conditioned in the dual space will

progress more slowly toward the optimal Lagrange multipliers, regardless of progress

in the primal search space. I will show experimentally that the performance on cer-

tain problems of the existing CMA adaptations of the AL-ES can be improved upon,

even without the use of CMA.

This improvement is achieved by the proposed exact Lagrangian approach for evo-

lution strategies (the EL-ES) forming the core of my thesis. This is a result of my

investigation into alternative ways of including constraint information as part of the

AL-ES and accounting for ill-conditioning outside the use of CMA. The EL-ES relies

on unconstrained optimization of a function similar in form to the augmented La-

grangian, but justifies its Lagrange multiplier updates in a different way that is more

aligned with the iterative and stochastic nature of an evolution strategy. By adapting

an early approach from Fletcher [41] that defines an exact Lagrangian function, the

optimizing step in any given iteration of the EL-ES can be understood as solving

certain quadratic subproblems that are defined for any candidate solution reached

by the ES. The state of the exact Lagrangian function operated on by the evolution

strategy is therefore defined completely in terms of the current position in the search



12

space. In order to calculate the needed values related to each quadratic subproblem,

it becomes necessary to approximate which constraints are active at the optimum.

This is accomplished through heuristics proposed as part of the EL-ES for managing

the working set of constraints likely to be active.

The efficacy of this novel approach for handling constrained optimization problems

with evolution strategies is supported both by theoretical and experimental results.

The rule used for updating the Lagrange multiplier is justified through performing a

single-step analysis, similar to the theoretical analyses performed on the original AL-

ES [92] and on a class of constrained problems consisting of linear objective functions

and conically constrained feasible regions [14]. Experimental results on a range of

archetypal and benchmark problems from the literature additionally demonstrate

that the EL-ES is competitive on the selected problems when compared on number

of function evaluations used to converge.

1.6 Summary and outline

The remainder of this thesis is organized as follows.

Chapter 2 summarizes evolution strategies as a stochastic approach to continuous

optimization, and provides an overview of the literature on constrained optimization

that highlights approaches using Lagrangian methods and approaches for evolution

strategies. Specific criteria are outlined for allowing comparisons between the variety

of distinct approaches to constrained optimization.

Chapter 3 outlines the method of multipliers (augmented Lagrangian) in Section 3.1

and exact Lagrangian approach in Section 3.2, both in the context of constrained

numerical optimization where the objective and constraint functions (and their related

derivatives) can be written analytically.

Chapter 4 presents black-box evolution strategy implementations of the augmented

Lagrangian approach (AL-ES) in Section 4.1 and the proposed exact Lagrangian

approach (EL-ES) in Section 4.3. For the AL-ES, both the original proposal and

subsequent variants are considered and compared in Section 4.2. Key connections

between both approaches are given in Section 4.4, including a single-step analysis of
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the novel EL-ES algorithm.

Chapter 5 provides experimental results validating the efficacy of the proposed EL-

ES. Archetypal sphere and ellipsoid problems are considered in Section 5.2, including

with randomly generated linear constraints that sample from the full range of possible

orientations. Section 5.3 compares on selected benchmark problems that are widely

used in the literature. Section 5.4 compares on a recently proposed scalable problem

based on the Klee-Minty hypercube.

Chapter 6 summarizes and discusses the results of the thesis holistically, and presents

several viable avenues for future research.

The additional contents of the appendices are included as valuable information that

would nonetheless interrupt the flow of presentation elsewhere in the thesis. Ap-

pendix A provides a detailed description of the constrained optimization problems

used from the literature. Appendix B contains a general overview of optimization

with particular emphasis on understanding the Lagrangian approach to constraint

handling. Appendix C consists of additional plots and figures supporting the experi-

mental results of Chapter 5.



Chapter 2

Background and literature review

Constraint handling for evolutionary algorithms is an active and diverse area of re-

search. For black-box optimizers like evolution strategies, which have no explicit

knowledge of the underlying constraint or objective functions, a fundamental issue

is establishing a balance between managing feasibility of individuals and improving

their objective function values. Achieving this balance is very specific to both the

underlying problem’s definition and the optimizer being used, and the result is an

abundance of constraint handling methods [84, 32]. The evaluation and subsequent

comparison of these methods is not always straightforward.

In this chapter, I focus on providing relevant background information and surveying

the current state of the literature for constrained optimization relevant to evolu-

tion strategies. In Section 2.1, I give a simplified overview of evolution strategies as

applied to unconstrained optimization, along with pseudo-code and explanations of

several representative implementations. Section 2.2 discusses three separate criteria I

use for making comparisons between alternative approaches and with my own work:

benchmark performance, archetypal problem performance, and constraint handling

classification. In Sections 2.3 - 2.6, I survey comparable evolutionary and stochastic

approaches to constrained optimization, in particular those using penalty or aug-

mented Lagrangian methods. Section 2.7 highlights approaches specifically applied

to evolution strategies, excepting those related to AL-ES which are covered in detail

in Chapter 4.

2.1 Evolution strategies

Evolution strategies (ES) [29, 53] are a well-established class of iterative, stochas-

tic algorithms for solving black box unconstrained optimization problems. They are

14
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comparison based, and so operate by using only objective function evaluations. Evo-

lution strategies are considered an example of the broader category of evolutionary

algorithms, although often the only shared feature with other evolutionary algorithms

is the heuristic for their original development being nature-inspired. Roughly speak-

ing, evolution strategies move through a search space by evaluating local samples

about the current iteration’s candidate solution, then combining this information to

determine a candidate solution for the next iteration. If the transitions between

iterations are appropriately biased towards improved solutions, then with enough it-

erations an evolution strategy may converge towards an optimum. The subsequent

performance of an algorithm is measured both in its ability to converge and in the

number of iterations (or function evaluations) required to do so.

One key feature of success for an ES algorithm lies in adapting the step size, an

internal parameter that determines the variance of each local sample. Intuitively, the

step size should grow when successive iterations show a sufficient improvement in f(x),

and shrink when the values of f(x) for candidate solutions stagnate or degrade. In the

former case, this leads to sampling with larger variances, potentially saving iterations

by replacing many smaller successful steps with fewer large ones. The latter case

encourages smaller variances for sampling, thereby decreasing the chance of making

an unsuccessful step and permitting convergence when in the neighbourhood of a

local optimum.

In a general way, the function of an evolution strategy can be broken down into four

steps: first, given an existing set of parent candidate solutions, a set of offspring is

generated through stochastic sampling scaled by a step-size σ and centered on the

parent(s). Second, these offspring are evaluated based on an objective function that

takes as input one individual and returns a score that the ES optimizer is seeking to

minimize (this is without loss of generality, as if maximization is desired then we may

consider the negative of the objective function). Third, the offspring are combined in

order to form the parent solution(s) for the next generation in such a way that bias

is introduced toward improving objective function scores. And fourth, the step-size σ

is updated in a manner that allows it to decrease in the vicinity of a local minimum

in order to achieve convergence.
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Defining exactly how each of these four steps are performed determines which of the

many flavours of evolution strategy will be used, although some steps are more distin-

guishing than others. For instance, it is almost universal that a normal distribution

is used when performing the stochastic sampling needed in the first step. This is

justified by the normal distribution being both a distribution of maximum entropy

and inherently isotropic [53, 54]. Given a parent candidate solution x(k) in iteration

k, the next candidate solution could therefore be created by computing

y = x(k) + σN (0, I)

where N (0, I) represents the n-dimensional normal distribution, centered at 0 and

with covariance matrix I (the identity matrix in dimension n). This applies a muta-

tion to the original candidate solution, resulting in a new candidate which then must

be evaluated as part of a selection process.

We will see that modifying this covariance matrix and updating the step-size σ be-

tween iterations are two key areas where designs of evolution strategies may differ.

The step size controls the expected sample distance from the distribution’s centre

point, and directly affects the convergence of the algorithm; setting σ too large will

prevent the ES from sampling candidate offspring that improve upon their parent,

while setting σ too small may cause the ES to converge prematurely to a non-

stationary point. Meanwhile, the covariance matrix gives control over the relative

directions emphasized by the sample; using the identity matrix leads to an isotropic

sampling distribution in all dimensions, while other positive-definite matrices dictate

the relative preferences between dimensions. In practice, this models various levels of

ill-conditioning of the Hessian, as recent directions with relatively large improvement

can be sampled with greater frequency (in accordance with the covariance matrix).

This is given more explicitly by the description of CMA-ES in Section 2.1.3.

There are several combinations of selection and recombination operations that give

viable evolution strategy variants. A shorthand notation is used to encapsulate these

differences, given as (µ/ρ+, λ). Taken from right to left: the value of λ indicates the

population size or number of offspring generated in each iteration, the value of ρ

indicates the number of parent individuals used to generate each offspring, and the
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value of µ indicates the total number of parent individuals in each iteration. The

value of ρ is sometimes omitted; this has been used to refer to the case of ρ = µ

when it is clear from context, but the case of ρ = 1 is otherwise to be assumed.

Additionally, the separator indicates whether elitism is used in the selection process:

a plus indicates that the best individuals are maintained between generations (so

µ parents are chosen from µ + λ individuals), while a comma indicates that each

generation is evaluated separately (so µ parents are chosen from λ individuals). As

an example of interpreting this notation, the (1 + 1)-ES is an evolution strategy that

generates a single offspring using a single parent, and in each iteration allows the best

of those two individuals to continue to the next iteration. This is a single-membered

evolution strategy with elitism. Another example is the (µ/µ, λ)-ES, which is an

evolution strategy that combines the best µ offspring from a population of λ to create

the next generation’s parental centroid. This is a multimembered evolution strategy

without elitism. Covariance matrix adaptation (CMA) may be used alongside either

of these approaches, and results in one of the most competitive black-box optimizers

based on benchmarking results [56, 125].

2.1.1 The (1 + 1)-ES

One of the simplest examples of an evolution strategy, the (1 + 1)-ES creates one

offspring candidate y from the single parent candidate x in each generation. Both

the offspring and parent are evaluated using the same objective function f , and their

results compared. If f(y(k)) < f(x(k)) in the k-th iteration then the offspring is

considered successful and it becomes the parent for the (k+1)-th generation as

x(k+1) = y(k).

Otherwise, the offspring is considered unsuccessful, and the parent x(k) remains the

parent for the next generation as

x(k+1) = x(k).

In this way, unsuccessful candidates are discarded, and only those with a better objec-

tive function value are retained to become the parent for the next generation. At any
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point, the current parent candidate solution is the best solution discovered thus far;

this implements the concept of elitism in the context of evolutionary algorithms.

Control of the step-size is a critical component for any evolution strategy, including

the (1 + 1)-ES. In this case, it is the only internal parameter of the algorithm that

changes between iterations, and the sample distribution is always kept isotropic. One

of the earliest step size control schemes is Rechenberg’s 1/5-th rule [94], which updates

σ in order to maintain in expectation a ratio of 1 : 4 between the successful and

unsuccessful offspring. A multiplicative version of this rule [70] is to compute σ(k+1)

from the k-th iteration as

σ(k+1) = σ(k) · exp
(
S− 0.2

n

)

, (2.1)

where n is the problem dimension and S is a binary value that indicates whether the

latest offspring was successful or not. Under this rule, the step size will be increased

when the proportion of successful candidates is more than 1/5, and decreased when

this proportion is less than 1/5.

Algorithm 2.1 Single iteration of (1 + 1)-ES with 1/5-th rule

Require: f : Rn → R

1: z ← N (0, I) ⊲ sample from normal distribution
2: y ← x+ σz
3: S← (f(y) < f(x)) ⊲ boolean check
4: if S then
5: x← y

6: end if
7: σ ← σ · exp

(
S−0.2

n

)
⊲ control step size

A single iteration of the (1+1)-ES is given in Algorithm 2.1, using the multiplicative

1/5-th rule of Eq. (2.1).

2.1.2 The (µ/µ, λ)-ES

The (1+1)-ES has very little overhead and is a straightforward optimization method.

At each iteration where an improvement is found, there is no consideration given for

how much of an improvement is made; the (1+1) method will accept an offspring that

offers any improvement. This is problematic on functions exhibiting multimodality,
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that are highly non-convex, or with very narrow basins surrounding the optimum

point. In a general sense, the issue is that the single-membered ES does not convey

sufficient information about the local neighbourhood of the parent before updating

its position in the search space along with other internal parameters including the

step size.

The issue of insufficient information is partly addressed through performing multiple

sampling operations within a single iteration in order to generate the offspring pop-

ulation. The (µ/µ, λ)-ES approach does this by creating a set of λ offspring for each

parent candidate solution x(k) as

y
(k)
i = x(k) + σ(k) · z(k)

i

for i ≤ λ, where the zi ∈ N (0, I) are vectors with elements drawn independently and

identically from the standard normal distribution. The offspring yi are all evaluated

using the objective function and re-ordered so that their indices i indicate their rel-

ative ranking according to f(yi). The best µ offspring are then combined using the

average

x(k+1) =
1

(
∑µ

i=1wi)

µ
∑

i=1

wiy
(k)
i (2.2)

= x(k) + σ(k) · 1

(
∑µ

i=1wi)

µ
∑

i=1

wiz
(k)
i

where the coefficients wi are weights. The new point x(k+1) is referred to as a parental

centroid as it is a combination of the µ selected previous offspring, rather than any

single individual. The simplest case of chosen weights is setting wi = 1 for each of

the µ offspring, in which case the update becomes the usual average

x(k+1) =
1

µ

µ
∑

i=1

y
(k)
i (2.3)

= x(k) + σ(k) · 1
µ

µ
∑

i=1

z
(k)
i

and this is assumed to be the case if weights are not specified. In the case that the



20

coefficients wi are specified and not all equal to values of unity, the update becomes a

weighted average. The shorthand notation is modified in this case to be (µ/µW , λ) to

indicate that a set W of weights is used when combining the offspring. Such weights

can always be normalized so that

µ
∑

i=1

wi = 1

and this allows for writing the update succinctly as

x(k+1) =

µ
∑

i=1

wiy
(k)
i (2.4)

= x(k) + σ(k) ·
µ
∑

i=1

wiz
(k)
i .

Like the weights in W , the values of µ and λ are parameters to be chosen by the user,

and are maintained for the entire run of an evolution strategy. Choosing values that

result in a truncation ratio given by µ/λ in the range of 0.2 to 0.5 is typical. There is

an inherent trade-off here, as larger parameter values for a given ratio will increase the

number of offspring and make it more likely that a single generation will improve its

candidate solution, yet may slow down the algorithm overall by using more objective

function evaluations than are actually needed. There is no elitism in (µ/µ, λ), as the

centroid in each generation is always calculated from the offspring.

To accompany the increasing complexity in moving from a (1 + 1) to a (µ/µ, λ)

evolution strategy, a more sophisticated step size update rule is appropriate. While

the 1/5-th rule is generally successful in the context of (1 + 1) strategies on well-

conditioned convex problems, it enforces a fixed ratio between successful and unsuc-

cessful iterations that may not be optimal through the entire run of the algorithm

on more general problems. One alternative approach is that of cumulative step-size

adaptation (CSA) [89, 58] which adaptively updates the step size by incorporating

non-local information through the use of an exponentially fading record of successful

steps.

After each iteration, the mutation vector is computed for the average of the µ best
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offspring as

ẑ =
1

(
∑µ

i=1wi)

µ
∑

i=1

wizi (2.5)

using the same weights as in Eq. (2.2). Taking this sum involves modifying the

normally distributed samples in two ways: through introducing a bias by considering

only the µ best zi according to their associated objective function values, and through

combining those zi using a linear (affine) combination. As will be seen shortly, we are

interested in the information conveyed by the former process and not by the latter,

so it will be necessary to normalize the resulting distribution of ẑ to account for its

derivation from a linear combination of normally distributed variables. To do so, we

recall first from elementary probability theory that:

1. normal distributions are equal if they have equal mean and variance;

2. a scalar multiple w applied to a standard normal variable z results in a variable

with equal mean and modified variance w2; and

3. the distribution of a sum of normal variables zi drawn independently from

N (mi, σ
2
i ) is equal to

N
(
∑

i

mi,
∑

i

σ2
i

)

.

Using the above, we derive a normalizing constant µeff for the variance of ẑ that will

account for the variances of the terms in the weighted sum. Referring to Eq. (2.5),

each term is seen to be an independent normal variable with distribution

N



0,

(

wi
∑

j wj

)2

· I





so calculating a weighted sum without re-ordering for the best µ offspring would give

a random variable of mean 0 and variance given by I scaled by the coefficient

∑

i

(

wi
∑

j wj

)2

=
1

(
∑

j wj

)2 ·
∑

i

w2
i .
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The desired normalizing constant µeff resulting in unit variance is given by the inverse

of the above, so is therefore represented by

µeff =

(
∑

i

wi

)2

·
(
∑

i

w2
i

)−1

=

(
µ
∑

i=1

wi

)2

(
µ
∑

i=1

w2
i

) . (2.6)

This results in
√
µeff · ẑ being normalized such that it would be distributed as a

standard normal variable if the samples zi were not re-ordered in Eq. (2.5) to only

select the µ best individuals. Note that in the case of using a weighted average

with weight values already normalized as in Eq (2.4), the expression for the constant

becomes

µeff =

(
µ
∑

i=1

w2
i

)−1

.

Similarly, in the case of using weights equal to unity as in Eq. (2.3), the expression

for the normalizing constant becomes simply

µeff = µ.

An exponential record is maintained of the average mutations ẑ, termed the search

path or evolution path and calculated as

s(k+1) = (1− c)s(k) +
√

µeffc(2− c)ẑ (2.7)

where the c ∈ (0, 1) is a user chosen parameter controlling the rate of exponential

fading. The coefficient
√

µeff(2− c)/c involves the normalizing constant µeff already

derived. The extra terms result from the geometric series [89]

lim
k→∞

√

(c · (1− c)0)2 + (c · (1− c)1)2 + · · ·+ (c · (1− c)k)2 =
√

c

2− c
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and normalize the distribution of ẑ with respect to the other half of the sum in

Eq. (2.7). This chosen normalization ensures that if successive steps are uncorre-

lated, then the expected squared length of the search path s is equal to the problem

dimension n.

Algorithm 2.2 Single iteration of (µ/µ, λ)-ES with CSA

Require: f : Rn → R, c ∈ (0, 1), D > 0
1: for i = 1→ λ do
2: zi ← N (0, I) ⊲ sample from normal distribution
3: yi ← x+ σzi

4: end for
5: sort([z1, . . . , zλ], [f(y1), . . . , f(yλ)]) ⊲ sort zi by values of f(yi)

6: ẑ =
1

µ

µ
∑

i=1

zk

7: x← x+ σẑ
8: s← (1− c)s+

√

µc(2− c)ẑ ⊲ update s

9: σ ← σ · exp c
D

( ‖s‖
E [‖N (0, I)‖] − 1

)

⊲ update σ

An overview of (µ/µ, λ)-ES using CSA is given in Algorithm 2.2. On Line 9, the step

size σ is updated using the search path s, and a damping constant D controls how

rapidly the step size can be adapted. The denominator E [‖N (0, I)‖] is the expected
length of an n-dimensional vector with elements drawn independently and identically

from a standard normal distribution, and can be calculated numerically from

E [‖N (0, I)‖] =
√
2 · Γ

(
n+1
2

)

Γ
(
n
2

) .

2.1.3 The CMA-ES

A common theme between the two previous ES approaches is the isotropy of the

sampling distribution; since the zi are drawn from N (0, I), their relative direction

with respect to x is distributed uniformly. Yet the underlying search space of an op-

timization problem is rarely so symmetric, and ill-conditioned problems in particular

can cause these approaches to use far more iterations than needed, or even converge

completely to a non-stationary point.

Ideally, we would like to control the step sizes along each dimension independently
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in a way that does not rely on the coordinate representation. To this end, CMA-ES

[58, 51] uses a covariance matrix C to define a linear map that approximately models

the inverse of the underlying Hessian of the optimization problem [110], ill-conditioned

or otherwise. In each iteration, offspring yi are generated using

y
(k)
i = x(k) + σ(k)C(k)

1
2z

(k)
i (2.8)

where the elements of zi ∼ N (0, I) are drawn independently and identically from

a standard normal distribution as before, and the matrix C(k)
−1
2 transforms these

isotropic samples into samples within the space defined by the linear map of the

covariance matrix. The square root notation of this matrix refers to using its eigen-

decomposition as

C = BD2BT

with D a diagonal matrix in order to arrive at

C
1
2 = BDBT.

In each iteration, the covariance matrix is updated as

C(k+1) = (1−c1−cµ)C(k)+c1p
(k+1)
c (p(k+1)

c )
T
+cµ

µ
∑

i=1

wi

(

C(k)
1
2zi

)(

C(k)
1
2zi

)T

(2.9)

with non-negative learning constants c1 ≤ 1 and cµ ≤ 1 and normalized weights wi.

This is an accumulated value consisting respectively of a multiple of the estimated

matrix C(k) taken from the current iteration, a rank one update term, and a rank

µ update term. The second term is the rank one update, and is defined using the

exponentially faded evolution path

p(k+1)
c = (1− cc)p(k)

c +
√

µeffcc(2− cc)
(
x(k+1) − x(k)

)
· 1

σ(k)

similar to the update rule from Eq. (2.7), with non-negative learning rate cc ≤ 1.

This evolution path accumulates information about steps taken in the search space

in order to encourage sampling in directions that have been recently successful. The
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third term of Eq. (2.9) is a rank µ update that is based on the weighted average of

candidates’ mutations from the most recent generation.

The global step size σ is updated separately with a generalization of the CSA rule

outlined in Algorithm 2.2. This generalization updates the evolution path

p(k+1)
σ = (1− cσ)p(k)

σ +
√

µeff · cσ(2− cσ)C(k)
−1
2
(
x(k+1) − x(k)

)
· 1

σ(k)
(2.10)

in each generation, and compares this against the expected path length in n dimen-

sions. The intent of pσ is to accumulate information about successful samples zi

drawn from the isotropic distribution N (0, I). If the offspring yi are generated with

C
1
2 = I, then the usual CSA rule in Eq. (2.7) is appropriate; however, when trans-

forming the samples as in Eq. (2.8), the effects of the covariance matrix must be

accounted for when calculating pσ in Eq. (2.10).

Algorithm 2.3 Single iteration of (µ/µW , λ)-CMA-ES

Require: f : Rn → R, cc, cσ, cµ ∈ (0, 1), D > 0,
∑µ

i wi = 1
1: for i = 1→ λ do
2: zi ← N (0, I) ⊲ sample from normal distribution

3: yi ← x+ σC
1
2zi ⊲ y ∼ N (x, σ2C)

4: end for
5: sort([z1, . . . , zλ], [f(x1), . . . , f(xλ)]) ⊲ sort zk by values of f(xk)

6: ẑ ←∑µ
i=1wiC

1
2zi

7: x← x+ σẑ ⊲ Update centroid

8: pσ ← (1− cσ)pσ +
√

µeff · cσ(2− cσ)C
−1
2 ẑ

9: σ ← σ · exp cσ
D

( ‖pσ‖
E [‖N (0, I)‖] − 1

)

⊲ update σ

10: pc ← (1− cc)pc +
√

µeffcc(2− cc) · ẑ

11: C ← (1− c1 − cµ)C + c1pcp
T
c + cµ

µ
∑

i=1

wi

(

C
1
2zi

)(

C
1
2zi

)T

⊲ Eq. (2.9)

An overview of (µ/µW , λ)-CMA-ES is given in Algorithm 2.3, adapted directly from

Hansen [51]. For the multimembered CMA-ES, suggested defaults for the population
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parameters are given by Hansen as

λ = 4 + ⌊3 lnn⌋, µ = ⌊λ
2
⌋ (2.11)

for problems of dimension n. Similar recommended values are given for each of the

other parameters, including learning rates, and are omitted here for brevity.

The (1 + 1)-CMA-ES

Covariance matrix adaptation can also be employed with the much simpler (1+1)-ES

[67]. The (1 + 1)-CMA-ES may also make use of an active step size update scheme

[68] that in the context of a (µ/µ, λ)-CMA-ES uses negative weightings for the worst

individuals in each generation in order to shift the covariance matrix away from those

directions where individuals are observed with poor objective function values. In

the context of a (1 + 1)-CMA-ES there is only one individual in each generation, so

instead a comparison is made between the individuals from the most recent iterations

and the current candidate solution, in order to determine how the covariance matrix

should be updated.

An overview of an implementation of the (1 + 1)-CMA-ES that additionally uses

active updates is given in Algorithm 2.4, adapted directly from the approach pro-

posed by Arnold and Hansen [5]. Certain implementation details are omitted in the

presentation in the interest of clarity.

The matrix A is the Cholesky decomposition AAT = C of the covariance matrix

C, and in practice is used as a more cost-effective implementation for both of the

covariance matrix updates [120]. This is based on the fact that if z is drawn from a

standard normal distribution, thenAz gives a vector sampled from a normal distribu-

tion with covariance matrix C. An exponentially fading record Psucc is maintained of

the proportion of successful iterations. This is used in the global step size adaptation

of σ using a multiplicative version of Rechenberg’s 1/5-th rule, with user parame-

ter D acting as a damping constant. An exponentially fading record s is used for

updating the covariance matrix C, in a manner similar to the rank 1 component of
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Algorithm 2.4 Single iteration of (1 + 1)-CMA-ES

Require: f : Rn → R, c, cP ∈ (0, 1), c+cov, c
−
cov, D > 0, AAT = C

1: z ← N (0, I) ⊲ Sample from normal distribution
2: y ← x+ σAz

3: if (f(y) < f(x)) then
4: Psucc ← (1− cP )Psucc + cP
5: s← (1− c)s+

√

c(2− c)Az

6: C← (1− c+cov)C+ c+covss
T ⊲ Implicit by updating A

7: x← y

8: else
9: if (f(y) > f(x(−5))) then ⊲ Compare with 5th order ancestor
10: C← (1 + c−cov)C− c−cov(Az)(Az)T ⊲ Implicit by updating A
11: end if
12: Psucc ← (1− cP )Psucc

13: end if
14: σ ← σ · exp

(
1
D

Psucc− 1
5

1− 1
5

)

⊲ Update global step size

Eq. (2.9). The active update is performed whenever the current offspring y is inferior

to its fifth-order ancestor. In this case, the covariance matrix is updated to discourage

sampling future offspring similar to y. The principle behind active covariance matrix

updates derives from Jastrebski and Arnold [68] who proposed it in the context of

multimembered evolution strategies.

2.2 Criteria for comparison

Benchmarks

Problem benchmarks such as those used in competitions from the IEEE Congress on

Evolutionary Computation (CEC) [77, 82, 129] aim to rank algorithms by establishing

a metric of comparison (in this case, comparing solution quality with fixed budgets

of function evaluations) across multiple distinct problems. The underlying metric for

comparison between algorithms on a single problem is based on either distance from a

known optimum or best feasible point found. These results can provide useful guide-

lines, although it can be difficult to extrapolate from individual benchmark results

to performance on broader problem classes or even real-world examples. Hellwig and

Beyer [62] observe that the CEC 2006 benchmark problems have a bias in favour of
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algorithms using axis-aligned searches. This bias is less severe, though still present, in

both of the CEC 2010 and 2017 problem sets, yet those problems have comparatively

few constraints (an average of slightly over 2 per problem). The established metric

is also at issue. Hansen et al. [55] argue that evaluating on fixed budgets gives data

that is not usefully interpretable, as comparing the quantitative quality of solutions

found by different algorithms does not give insight into the relative quality of the

algorithms themselves. Instead, they advocate comparing the number of function

evaluations needed by each algorithm to reach fixed targets.

The COCO (Comparing Continuous Optimizers) benchmark [55, 57] is a proposed

framework for benchmarking and comparing algorithms, and that aims in part to

address the aforementioned shortcomings. At present, the constrained portion of

the benchmark is still quite new, and few published results are available using the

framework.

The top results in the CEC 2006 and 2010 benchmarks [77, 82] are both variants

of the ǫ-constrained differential evolution (ǫDE) approach of Takahama and Sakai

[122, 123], while a 2019 update [111] to the CEC 2017 benchmark [129] ranks as first

the HECO-DE approach [130, 131] of Xu et al. Results are reported according to the

fixed budget CEC benchmark specifications, and so involve hundreds of thousands of

function evaluations.

Problem archetypes

Work on evolution strategies has provided an alternative to pure benchmark perfor-

mance by establishing an analytical framework for understanding algorithm perfor-

mance through simple, archetypal test problems with known difficulties for optimiza-

tion. This began with very early work from Rechenberg [94] and Schwefel [107] who

established methods for parameter control on unconstrained optimization problems in

part by analyzing behaviour on archetypal problems, such as the sphere and corridor

fitness functions. Ellipsoidal problems are also naturally considered [20], especially in

the context of non-isotropic offspring mutation mechanisms like CMA by Hansen and

Ostermeier [58]. It then seems natural to consider similar archetypal problems for
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constrained optimization. In order to evaluate performance and suggest new direc-

tions of research, the behaviour of an evolution strategy can be analyzed [83] under a

given constraint-handling method when applied to an elementary problem. So long as

these problems are chosen to have representative properties, they can be generalized

to predict the behaviour of the constraint-handling mechanisms in more complicated

situations.

Arnold and Brauer [13] analyze a simple (1 + 1)-ES on a linear objective function

with single linear constraint, building on earlier work and observations from Schwefel

[108] and Rechenberg [94]. Arnold continues these analyses in differents contexts,

considering the impacts of repair of infeasible offspring for the (1, λ)-ES [3], as well

as resampling of infeasible offspring for the (1, λ)-ES with cumulative step-size adap-

tation [2] and mutative self-adaptation [9]. Analysis of multiple linear constraints

is facilitated by modeling a conical feasible region with the optimum point at the

cone’s apex for a (1, λ)-ES by Arnold [4, 10] and by Porter and Arnold [92] for the

multirecombinative (µ/µ, λ)-ES. Related steady-state analyses are performed for con-

ically constrained problems with repair by projection by Spettel and Beyer using the

(µ/µI , λ)-ES with σ-self-adaptation [113], the (1, λ)-ES with σ-self-adaptation [114],

and the (µ/µI , λ)-ES with CSA [116]. Spettel et al. [118] and Hellwig and Beyer [61]

also analyze the use of a meta-ES for parameter control with conical constraints.

Linear problems like these are simple to describe, but serve as limited models for

general optimization problems. The sphere model is perhaps the next simplest case,

which is the class of quadratic problems with positive definite Hessian equal to a

scalar multiple of the identity matrix. Knowing that even single-membered evolution

strategies converge log-linearly on the unconstrained sphere, and considering that

every constraint adds an extra dimension to the problem, a naive expectation would

be for performance on the constrained sphere to scale approximately with the number

of constraints. In that case, an ES algorithm operating on the constrained sphere with

a single linear constraint should have very similar performance to the unconstrained

sphere. A limited version of this problem with dimension 2 is evaluated by Kramer

and Schwefel [72] in the general context of constraint handling for evolution strategies

and found to be surprisingly difficult for techniques available at the time.
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Constraint classification

Le Digabel and Wild [75] define a taxonomy for classifying constraints at their most

general level. Algorithms for constrained optimization can then be identified using the

taxonomy in order to contextualize their comparison. The QRAK taxonomy uses four

letters that partition the constraint types, distinguishing between constraints that are

Quantifiable or Non-quantifiable, Relaxable or Unrelaxable, Simulation based or A

priori, and Known or Hidden. Hidden constraints (H) are not given explicitly or

are not known to the solving algorithm until they are encountered, whereas known

constraints (K) are given explicitly in the problem definition. Relaxable constraints

(R) permit violations by candidate solutions, while for unrelaxable constraints (U) an

infeasible point is not meaningfully interpretable by the objective function or other

constraint functions. Quantifiable constraints (Q) confer a magnitude of violation

on points in the search space and allow an ordering of more or less infeasible values,

whereas non-quantifiable constraints (N) simply indicate a binary value for whether

a point is feasible or infeasible.

The augmented Lagrangian and exact Lagrangian evolution strategies (AL-ES and

EL-ES) considered in this thesis deal exclusively with quantifiable, relaxable, and

known constraints, and so are identified as QR*K in the taxonomic notation. Quan-

tifiable constraints potentially include both equality constraints gi(x) = 0, i ∈ E and

inequality constraints gi(x) ≤ 0, i ∈ I. An important distinction can be further

made between those QR*K constraints that are a priori (A), where the constraint

is calculable from the input parameters to the constrained optimization algorithm,

versus simulation based (S), where part or all of the optimization algorithm must be

executed in order for the constraints to be evaluated. This latter case includes black

box constraints where no gradient information is available. Optimization methods

from classical numerical optimization, including those using augmented and exact

Lagrangians, typically deal with constraints that are fully defined a priori, and so are

identified as QRAK.
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2.3 Penalty methods

Penalty methods transform constrained problems into unconstrained optimization

problems by using a penalty term alongside the objective function. The resulting

function measures fitness in the constrained search space. The quadratic penalty

function Q(x) for equality constraints is defined as

Q(x) = f(x) + ω · g(x)2, (2.12)

using both the values of the objective function f and a non-negative measure of the

constraint violation, and this is used to evaluate an individual x. A similar formula-

tion can be given for inequality constraints by instead using the term ω ·min (0, g(x))2.

By penalizing infeasible individuals, the quadratic penalty approach results in an un-

constrained problem with an optimum point that ideally corresponds with the con-

strained optimum. This correspondence relies on the choice of penalty coefficient ω

in the penalty term of Q, and Nocedal and Wright [128] give convergence results for

the quadratic penalty approach under the assumption that ω →∞. They note that

under-penalizing with ω set too small can result in convergence to an infeasible or non-

stationary point, yet over-penalizing with large values of ω induces several other prob-

lems: the Hessian of the fitness function becomes increasingly ill-conditioned, issues

of numerical accuracy are encountered, and Taylor series quadratic approximations

are accurate only in increasingly small neighbourhoods of the optimum point.

The simplest penalty method is the death penalty which discards all infeasible candi-

dates by assigning a static “infinite” penalty to constraint violation. In the context

of an evolution strategy that relies on fitness comparisons between successive gener-

ations, this may be handled by resampling infeasible individuals until feasible indi-

viduals are found. The behaviour of evolution strategies with resampling has been

investigated by Arnold [4, 10] and Porter and Arnold [92] where it was found to lead

to premature convergence to non-stationary points on certain problem types.

Finite static penalties other than the death penalty are not typically employed for

stochastic approaches to constrained optimization as there may be no single value

that will lead to convergence for every possible state of the algorithm. Methods using
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a dynamic penalty attempt to modify the penalty parameter on a fixed schedule, yet

this still leaves the problem of determining a reasonable schedule. Early examples

include work from Joines and Houck [69], who describe a dynamic penalty method

for a real-valued genetic algorithm that was later adapted for an evolution strategy

by Kramer [73]. In both cases, the penalty P is steadily increased as

P = (C · t)A ·
(
∑

i

gi(x)
β

)

with fixed parameters C < 1, β > 0, A > 1, and iteration number given by t.

Michalewicz and Attia [86] also follow a dynamic schedule as part of GENOCOP II,

which employs an inner/outer loop model that increases the penalty coefficient in the

outer loop after termination of a genetic algorithm optimizing a quadratic penalty

function in the inner loop.

More modern penalty-based methods employ adaptive updates [84] of the penalty

parameter by using the state information of the algorithm. Beyond some benchmark

comparisons, the general performance of these methods is difficult to evaluate [25].

Given the reliance of convergence on arbitrarily large penalties, and the noted prob-

lems this creates, it seems unlikely that a simple penalty approach will be generally

competitive.

2.4 Lagrangian method of multipliers

The method of multipliers refers to an approach for constrained optimization proposed

independently by Powell [93] and Hestenes [64] in the context of solving equality con-

strained problems (ECP). As observed by Fletcher [43], the idea is that convergence

properties of the quadratic penalty method of Eq. (2.12) may be preserved while

avoiding the difficulties incurred by increasing the penalty to infinity. By including

the Lagrangian function, the augmented Lagrangian

Lω(x,α) = f(x) +αTg(x) +
1

2
g(x)TΩg(x).
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is defined, with vector α of Lagrange multipliers, and diagonal penalty matrix Ω with

nonzero entries consisting of the entries of ω = [ω1, . . . , ωm]. The original method is

presented as suitable for an iterative approach, where the Lagrange multipliers are

continually approximated in a sequence {α(k)} → α∗ and solutions x(k) are found

for each vector of Lagrange multipliers in this sequence. The multipliers are updated

as

α(k+1) = α(k) + Ω(k)g(x(α(k)))

where x(α(k)) is the solution x in iteration k that minimizes Lω with respect to fixed

α(k). Under relatively mild assumptions, it can be proven [27] that this sequence of

multipliers converges to α∗ as x→ x∗. The method of multipliers is extended to the

case of inequality constrained problems (ICP) by Rockafellar [99, 98, 101], resulting

in the slightly modified augmented Lagrangian given by

Lω(x,α) = f(x) +
∑

i







αigi(x) +
1
2
ωigi(x)

2 if αi + ωigi(x) ≥ 0

−α2
i

2ωi
if αi + ωigi(x) < 0.

Using either formulation of the function Lω, an important feature of the method

of multipliers is that it allows placing finite limits on the values of the Lagrange

multipliers α and penalty terms ω. This is in contrast with penalty methods that may

require increasing the penalty parameter arbitrarily in order to achieve convergence.

By alternating between finding a minimum x(α) and updating multipliers α, both

the optimal point x∗ of the ECP (or ICP) will be approached as well as the optimal

Lagrange multipliers α∗, and these are the optimal Karush-Kuhn-Tucker (KKT) pair

(x∗,α∗). A more detailed description of the method of multipliers in the context of

other Lagrangian optimization is given in Section 3.1.

Genetic or evolutionary algorithms based on the method of multipliers or that rely

on the augmented Lagrangian function typically implement the alternating behaviour

by employing an inner and outer loop. The outer loop takes as input a point x(k)

representing the solution x(α(k)) and uses this to calculate updates to the parameters

resulting in α(k+1) (and possibly the penalty term ω(k+1)) before executing the inner

loop. The inner loop takes as input these Lagrangian parameters as fixed and uses

them to find the local optimum x(α(k+1)), which is returned again to the outer loop
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to be used as a starting point in the next iteration.

This inner/outer loop format is used by Costa et al. [34] along with a hybrid ge-

netic algorithm and pattern search method (HGPSAL) to optimize the augmented

Lagrangian. Their inner loop consists of first running a genetic algorithm to generate

a population of candidate solutions, then applying a Hooke and Jeeves pattern search

to refine the candidates locally. The scalar penalty parameter ω is either held steady

or increased by a constant factor. Safeguards are used in the outer loop to maintain

boundedness on the Lagrange multipliers as well as updating stopping criteria for the

inner loop.

In [35], Srivastava and Deb expand on previous work [119] to implement a genetic

algorithm (GAAL) using tournament binary selection, simulated binary crossover,

and adaptive polynomial mutation for solving the inner optimization loop for an

augmented Lagrangian. Each candidate solution from the genetic algorithm is further

improved with a “classical algorithm” (the authors use fmincon from Matlab) for

local optimization. The outer loop iterations then rely on user-supplied parameters

to evaluate the inner loop solution and subseqneutly determine whether to update

either the Lagrange multipliers or the penalty coefficient.

In [80], Long et al. use a modified differential evolution approach (MAL-DE) for

optimizing the inner loop that combines multiple trial vector generation strategies and

adaptively selects the best within each iteration. The penalty term ω is either held

steady or increased by a constant factor, subject to several criteria on the decreasing

constraint violation. Termination criteria are also evaluated based on the decrease in

constraint violation.

Multiple authors have also implemented the augmented Lagrangian approach for

several variations of particle swarm optimization: Rocha et al. [97] use a fish swarm

method, Mahdavi and Shiri [81] use a continuous ant colony method, Wen et al. use

both grey wolf optimization [78] as well as an artificial bee colony algorithm [79],

Bahreininejad [23] applies a water cycle algorithm, and Balande and Shrimankar [24]

use a firefly algorithm.
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By relying on the inner/outer loop model, each of these augmented Lagrangian meth-

ods will necessarily spend a significant portion of their function evaluations in pro-

gressing to intermediate, non-optimal solutions. Each run of an inner loop converges

to a solution for the given parameters, but the parameters themselves need to also

converge in the outer loop before this will coincide with the optimum x∗ of the fitness

function. Additionally, both of the genetic algorithm approaches rely heavily on sep-

arate optimizers like fmincon to ultimately achieve convergence on each subproblem

formed by the augmented Lagrangian in the inner loop.

2.5 Surrogate methods

Surrogate model algorithms attempt to reduce expensive function evaluations by

maintaining an internal model that can be queried instead. A notable example is the

COBRA algorithm described by Regis [95] that matches radial basis functions with

the search space in order to apply numerical constrained optimizers like fmincon. In

order to reduce the need for parameter tuning, Bagheri et al. [22, 21] propose SACO-

BRA as a refinement, and experimentally demonstrate convergence on most of the

CEC 2006 benchmark problems [77] while using fewer than 500 function evaluations.

Given their strong performance in the presence of expensive objective or constraint

function evaluations, surrogate models have also been used in various contexts by

evolutionary algorithms.

Regis [96] proposes CONOPUS as a particle swarm method, and uses an implementa-

tion with radial basis function surrogate models of the objective and constraint func-

tions to compare performance on several real-world as well as selected CEC benchmark

problems.

Wang et al. [127] introduce GLoSADE which relies on surrogate-assisted differential

evolution to globally locate regions of interest, then applies a gradient descent interior

point method to a local surrogate model in order to refine solutions.

The MPMLS method of Li and Zhang [76] applies multiobjective optimization prin-

ciples to solve multiple penalty problems simultaneously using differential evolution,

and performance is evaluated on selected problems from CEC benchmarks as well as
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an airfoil design problem.

Surrogate methods are combined with an augmented Lagrangian approach by Dufossé

and Hansen [38]. The MM-AL-CMA-ES uses a linear model to internally represent

the constraints, and applies CMA-ES to the unconstrained function formed by an

augmented Lagrangian using the modeled constraints. Lagrangian parameters are

updated in every iteration, analogous to the AL-ES [14] and as described in Sec-

tion 4.2 of this thesis. Good performance is observed across the same selection of

problems as used to evaluate the (1 + 1)-aCMA-ES [6].

2.6 Other notable approaches to constraint handling

Several other notable approaches exist for constrained optimization with evolutionary

algorithms that either offer significant variations of penalty, Lagrangian, and surro-

gate methods, or else avoid them entirely. Given the difficulty in setting user-defined

parameters for penalty-style methods [84], a common theme is to find alternate ways

of balancing progress on feasible individuals against progress on infeasible individu-

als.

The stochastic ranking method of Runarsson and Yao [104] is based on the idea that

penalty parameters are intrinsically difficult to set correctly. They argue that the

ultimate goal of any penalty-based method is a ranking of individuals that does not

give undue preference to either the objective function value or the constraint violation.

Instead of trying to achieve this through a derived penalty, their ranking of individuals

is directly manipulated by setting a fixed probability for preferring the objective

function value over constraint violation. The given probability must be set by the

user, something that is done implicitly in a penalty method. Stochastic ranking has

been applied to several optimization strategies, including differential evolution (DE)

by Zhang et al. [132] and a multimembered evolution strategy [85] by Mezura-Montes

and Coello Coello.

Tahk and Sun [121] employ a modified augmented Lagrangian approach by main-

taining two separate populations and co-evolving a candidate solution in the search
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space alongside the Lagrangian parameters. Simulated annealing is used to discour-

age premature convergence near the constraint boundaries. Evolution strategies are

used to evolve both populations, which are framed as solving a zero-sum game where

the worst individual in the opposing population is used to determine the fitness of

each offspring.

The ASCHEA method of Hamida and Schoenauer [50] uses an adaptive penalty that

is specifically updated to maintain a user-defined proportion of feasible individuals in

the population of each generation. The penalty is modified by multiplying by a user-

defined constant, with larger penalties resulting from too few feasible individuals. A

special selection operator is used to try to maintain a certain user-defined proportion

of feasible individuals, and a special combination operator explicitly encourages ex-

ploration near the border when the proportion of infeasible individuals is within a

specified range.

Tessema and Yen [124] use an adaptive two-penalty approach that normalizes both

the objective and constraint function values for an individual, then attempts to ex-

plicitly balance favouring feasible over infeasible offspring. The proportion of feasible

individuals is used to adapt the amount of additional penalties imposed on infeasible

candidates.

The ǫ-constrained differential evolution (ǫDE) aproach of Takahama and Sakai [122,

123] maintains a bounded region within distance ǫ of each constraint and compares

candidate solutions within this band exclusively on their objective function values.

The value of ǫ is decreased according to a fixed schedule so that the solutions are

eventually driven to satisfy the constraints exactly. Gradient approximations are ad-

ditionally used to generate offspring, and feasible elitism ensures that the best-so-far

feasible individuals are preserved. Xu et al. [130, 131] propose the HECO-DE ap-

proach which applies a similar ǫ-constrained approach to multi-objective optimization

with differential evolution, where the constraints and objective functions are treated

as separate functions to be jointly optimized.

The CORCO method is proposed by Wang et al. [126] which attempts to measure the

correlation between objective and constraint functions. A pre-processing step is used
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to generate separate populations based on improved objective or improved constraint

violation scores, and these in turn generate a scalar measure of correlation that is

used to guide the subsequent evolution of a population using differential evolution.

2.7 Constrained optimization with evolution strategies

Constraint handling specifically for evolution strategies has thus far followed several

of its own lines of inquiry. One approach is to directly modify the population rankings

in each iteration of an ES to balance the preference of feasible over infeasible candi-

date solutions. Runarsson and Yao [104] use an evolution strategy for defining their

stochastic ranking process, which is adapted for a multimembered evolution strategy

by Mezura-Montes and Coello Coello [85]. The authors of both works report experi-

mental results on a subset of the 2006 CEC benchmark using hundreds of thousands

of function evaluations.

The Adaptive Ranking Constraint Handling (ARCH) method is introduced by Sakamoto

and Akimoto [105, 106] which uses CMA and adaptively updates an additional rank-

ing coefficient based on the Mahalanobis distance between infeasible offspring and

their projection on the constraint boundary, within the context of the underlying

covariance matrix. This ranking coefficient in turn determines the total ranking of

candidate solutions. The ARCH method explicitly assumes that constraints are a

priori according to the taxonomy of Le Digabel and Wild [75] and inexpensive to

calculate, and aims to preserve certain invariance properties that allow taking full

advantage of covariance matrix adaptation.

Constraint-handling methods are adapted from differential evolution for use with

evolution strategies as with ǫMAg-ES by Hellwig and Beyer [60]. Their MA-ES

variant implements a reduced variant of CMA-ES alongside ǫ-level comparisons and

gradient-based repairs from Takahama and Sakai [123]. The authors note that within

each iteration that uses the repair operation, extra function evaluations are consumed

making the action more expensive. The ǫMAg-ES method was retroactively ranked

third in 2019 [111] among all submissions to the CEC 2017 problem set, using the

prescribed 2n · 104 budget of function evaluations for problems of dimension n.
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Active CMA methods re-purpose active updates from unconstrained optimization

[68, 5], where a separate evolution path is maintained to track the worst offspring

and the covariance matrix is then adapted to avoid long steps in these directions.

This is used by Arnold and Hansen with the (1+1)-aCMA-ES [6] by shifting the

variances of the covariance matrix away from recently violated boundaries, specifi-

cally to avoid sampling problems caused by small constraint angles. This is extended

to the multimembered case by Chocat et al. [31] for application to a rocket design

problem in the presence of noise, and by Krause and Glasmachers [74] who integrate

features of natural evolution strategies to propose xCMA-ES and evaluate its per-

formance on several sphere problems with varying bound constraints. Similar active

updates are combined with both a multimembered MA-ES and CMA-ES by Spet-

tel and Beyer [115], and experimental results for each compared across a variety of

problems. The resulting CA-MA-ES algorithm’s performance seems promising, but

focuses on a benchmark that is still under development and not yet widely used in

the literature.

Under the assumption of purely linear constraints, Spettel et al. [117] propose the

lcCMSA-ES that uses a pre-processing step to project onto the manifold of inter-

secting feasible regions. Feasibility is then maintained by a combination of biased

mutations for encouraging new offspring within the feasible manifold together with

a repair mechanism. The algorithm is shown to perform well across a selection of

linearized problems from the COCO bbob-constrained framework, as well as on the

Rotated Klee-Minty problem in various dimensions.

Active-set evolution strategies project candidate solutions onto the feasible subspace

where constraints are satisfied as equality constraints, then update the step size ac-

cording to the reduced subspace dimension. Lagrange multipliers are used implicitly

to determine whether a constraint is active. So long as there is a robust method

for adding and dropping constraints from the active set, this allows the step size

to adapt appropriately and avoid issues of stagnation. Building on initial work by

Arnold [11, 12], Spettel et al. [112] implement a (1+1)-ES with an updated approach

for suspending constraints from the active set. Experimental results show good per-

formance on certain linearly constrained sphere problems, as well as problems from
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the CEC 2006 benchmark. Throughout, the active set approaches assume that con-

straints are given a priori according to the taxonomy of Le Digabel and Wild [75] and

inexpensive to calculate.

2.8 Summary

A wide variety of constraint handling methods exist for stochastic optimization. In

order to make reasonable comparisons between algorithms, the QRAK taxonomy

allows classifying approaches based on assumptions made about the constraints. For

instance, approaches like the active set ES [112] and ARCH [106] methods perform

very well for QUAK problems where constraints can be evaluated with negligible

cost.

Other approaches for evolution strategies including the aCMA-ES [6] and MM-AL-ES

[38] have established a set of QR*K problems, many of them taken from the CEC

2006 benchmark problem set, that serve as a useful starting point for comparing the

performance of any novel ES approach. Convergence on these problems is observed

to occur within several thousand function evaluations. By comparison, algorithms

evaluated on the CEC 2006 problem set [77] typically report solutions with tens or

even hundreds of thousands of function evaluations.

Augmented Lagrangian approaches are a popular mode for handling QR*K optimiza-

tion problems, but the usual design relies on an inner/outer loop model that consumes

function evaluations while converging to values that quickly become obsolete. Imple-

menting an approach without the inner/outer loop model may provide the benefits

of the augmented Lagrangian model without its largest drawback. Integrating a La-

grangian approach with evolution strategies may additionally take advantage of their

beneficial convergence and invariance properties [19].



Chapter 3

Augmented and exact Lagrangian methods

This chapter presents the augmented and exact Lagrangian methods for solving con-

strained optimization problems, framed in terms of approaches from numerical op-

timization. Each of Sections 3.1 and 3.2 respectively provide justifications for the

evolution strategy algorithms presented later in Sections 4.1 and 4.3. A more compre-

hensive overview of some of the theory behind optimization with Lagrangian functions

is given in Appendix B.

Section 3.1 describes the method of multipliers, also referred to as the augmented

Lagrangian method, which aims to both define an unconstrained function with an

optimum shared by the constrained problem and give update rules for the Lagrange

multipliers that will lead to an optimal KKT pair. Section 3.2 outlines Fletcher’s

exact penalty method for both equality and inequality constraints, which also defines

an unconstrained function with a desired optimum but replaces multiplier updates

with a continuous approximation that can be understood as implicitly solving lo-

cal quadratic approximations of the constrained problem. Connections between the

two approaches are given in Section 4.4 in the context of their implementations for

evolution strategies.

Note that to avoid confusion with the (µ, λ) notation commonly used for evolution

strategies, Lagrange multipliers here are generally referred to as α rather than the

traditional λ used both in the appendix and in the literature.

3.1 Method of multipliers

The method of multipliers is a method proposed independently by Hestenes [64]

and Powell [93] for solving ECPs by combining penalty and Lagrangian functions

41
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with a sequence of Lagrange multiplier approximations {α(k)} that converges to α∗.

Central to the method is the definition of an augmented Lagrangian function as well

as recommended updates for the parameters of that function.

Powell forms an augmented Lagrangian by beginning with the usual quadratic penalty

method that attempts to solve

Qω(x) = f(x) +
1

2
g(x)TΩg(x) (3.1)

by gradually increasing ωi → ∞ which are the elements of ω forming the nonzero

entries of the diagonal matrix Ω. However, in order to avoid ill-conditioning and

other problems with arbitrarily large ωi, the penalty term’s origin is shifted and a

new variable θ introduced to instead solve

LPo
ω
(x,θ) = f(x) +

1

2
(g(x)− θ)TΩ(g(x)− θ). (3.2)

These new variables are updated as

θ
(k+1)
i = θ

(k)
i + gi(x

(k)(θ)) (3.3)

where x(k)(θ) represents the local solution for parameter θ, and the values ωi are

intended to be kept relatively constant. Formulated this way, Powell’s augmented

Lagrangian has the large advantage that ωi → ∞ is no longer a requirement for

finding a solution, so long as both ω and θ are updated correctly in order to shift the

constraints so that the minimum for LPo
ω
(x) is also x∗. By expanding the expression

in Eq. (3.2) for Powell’s augmented Lagrangian and dropping a constant term, we

find

Lω(x,θ) = f(x) + (Ω · θ)Tg(x) + 1

2
g(x)TΩg(x) (3.4)

and after defining Ω · θ = α we have an equivalent formulation of the augmented

Lagrangian as proposed by Hestenes

LHe
ω
(x,α) = f(x) +αTg(x) +

1

2
g(x)TΩg(x). (3.5)

This is the form of the augmented Lagrangian we will most often use, and so refer to
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it simply as Lω. The values of α are here updated as

α
(k+1)
i = α

(k)
i + ωi · gi(x(α(k)))

or equivalently

α(k+1) = α(k) +Ω · g(x(α(k))). (3.6)

This encodes a shift of the quadratic penalty term (compare to Eq. (3.3)) and can be

proven under mild assumptions to give a sequence of vectors that converges to the

optimal Lagrange multipliers α∗ as x→ x∗. An implementation of this approach to

the method of multipliers in given in pseudo-code by Algorithm 3.1, using the usual

inner/outer loop model. Line 2 encapsulates the inner loop portion, where an itera-

tive algorithm is used to minimize the unconstrained function given by Lω. Exactly

how the penalty coefficients ω should be updated in Line 4, and whether they should

be increased in every iteration, is a decision that can vary by implementation. We

omit these details here in the interest of simplicity, but recommended bounds are

offered analytically by both Fletcher [43] and Bertsekas [27].

Algorithm 3.1 Method of multipliers with inner/outer loop

Require: Initialize x(0), α(0), ω(0), k = 0, χ ≥ 1

1: while x(k) 6= x∗ do ⊲ Outer loop: updates α and ω

2: x(k+1) ← min
x

[
Lω(k)(x,α(k))

]
⊲ Inner loop: minimizes Lω

3: α(k+1) ← α(k) + ω(k)Tg(x(k+1)) ⊲ Eq. (3.6)
4: ω(k+1) ← ω(k) · χ ⊲ Optional: increase, if needed
5: k ← k + 1
6: end while

3.1.1 Justification of the update rule

One justification behind the specific update term for the Lagrange multipliers in

Eq. (3.6) comes from observing that a solution to the augmented Lagrangian in

Eq. (3.5) may not always lead to a solution of the underlying constrained prob-

lem, particularly if we have not used the correct Lagrange multipliers. This is often
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the case in practice, such as when the Lagrange multipliers α(k) are iteratively ap-

proximated. This is obviously a relevant concern for an adaptation of augmented

Lagrangian approaches for stochastic methods, and so the justification is summarized

below. The core idea of the justification is that inaccurate solutions to Lω allow ex-

pressing the Lagrange multiplier approximations in terms of gradients with respect to

local changes in the constraint violations, and setting these gradients to 0 to find the

stationary point where the constraints are satisfied leads to Eq. (3.6). The discussion

here is given in terms of equality constraints (ECP) for simplicity of presentation,

but extends similarly to inequalities.

To begin, note that if our current approximation α(k) 6= α∗, then the local minimum

of Lω(x,α
(k)) need not correspond to the constrained solution x∗. For brevity, let

x(k) = x(α(k)) represent the solution minimizing Lω(x,α
(k)). Then recalling the

necessary conditions of Theorem B.6, and assuming ω is set appropriately in order

to guarantee locally positive curvature for Lω, we can identify the situation where

x(k) 6= x∗ by the existence of constraint values g(x(k)) 6= 0. With this in mind,

we return to the augmented Lagrangian defined using α(k), and since x(k) is a local

minimizer, this implies we have also found a stationary point satisfying

∇xLω(x
(k),α(k)) = ∇xf(x

(k)) + (α(k))T∇xg(x
(k)) + g(x(k))TΩ · ∇xg(x

(k))

= ∇xf(x
(k)) +

(
α(k) +Ω · g(x(k))

)T∇xg(x
(k))

= 0.

Again for brevity, let u = g(x(k)) ∈ R
m be the vector of constraint violations for the

found point x(k). Then the gradient above can also be re-written as

∇xLω(x
(k),α(k)) = ∇xL0(x

(k),α(k) +Ω · u). (3.7)

This is the gradient of the ordinary Lagrangian L0 evaluated at the points x(k) and

α(k)+Ω·g(x(k)), and it is also equal to zero. Note that if u = 0 then as mentioned, we

are already at the solution x∗ of the constrained optimization problem and x(k) = x∗.

If however ui 6= 0, then the current point x(k) minimizes the ordinary Lagrangian with

gradient given in Eq. (3.7), and so is also a local minimum of a related but distinct
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ECP, one given by

min
x

f(x)

s.t. gi(x)− ui = 0.

This is the equality constrained problem asking for the point x that minimizes f(x)

subject to constraints gi being violated by exactly ui = gi(x
(k)), the amount of viola-

tion at our current solution. If we treat u as a variable, then we find an entire family

of related ECPs, each asking for the point x minimizing f(x) subject to constraint

violations being equal to u. Clearly, we are interested in the behaviour as u → 0.

Let x(u) be the minimizing point x for the variable u, then the solutions to these

ECPs can be expressed as solutions to the ordinary Lagrangian

L0(x(u),α) = f(x(u)) +αTu

with corresponding gradient

∇uL0(x(u),α) = ∇uf(x(u)) +α.

Setting this equal to zero we arrive at

−∇uf(x(u)) = α. (3.8)

Thus, the Lagrange multipliers α correspond with the negative gradient of f taken at

the local minimizer x(u) with respect to the variable u of constraint violation.

Returning to consider this in the context of our augmented Lagrangian, we can re-

write its expression as

Lω(x(u),α
(k)) = f(x(k)) + (α(k))Tu+

1

2
uTΩu

where x(k) = x(u). Minimizing this expression with respect to u requires a stationary
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point, which can be found using

∇uLω = ∇u

(

f(x(k)) + (α(k))Tu+
1

2
uTΩu

)

which after equating to zero and re-arranging gives

−∇uf(x
(k)) = α(k) +Ωu.

This gives the negative gradient of f taken at the local minimizer x(u) with respect

to u. Since this should correspond to the Lagrange multipliers by Eq. (3.8), we

therefore have an appropriate value for setting α(k+1). This is the same update rule

as in Eq. (3.6) and serves to justify its use.

This idea behind justifying the multiplier step is treated more rigorously by Bertsekas

[27] who defines the primal functional p in terms of constraint violation u as

p(u) = min
g(x)=u

f(x)

and observes in part that

∇up(u) = −α(u),

and in particular

∇up(0) = −α∗.

Since the primal functional returns the minimal value of f(x) across all points where

g(x) = u, this means the Lagrange multipliers near the optimum can be interpreted

as rates of change of the minimum of f with respect to changes in constraint viola-

tions u.

3.1.2 Extensions and inequalities

Along with having a convenient multiplier update rule, it can be shown [43, 27] that

the augmented Lagrangian given in Eq. (3.5) is also positive definite in a region of the



47

optimum x∗ and thus satisfies Eq. (B.18) for sufficiently large choices of ωi. Together,

Eqs. (3.5) and (3.6) form what is generally understood as the method of multipliers for

equality constraints, but there are alternative ways of viewing this formulation that

give beneficial insight. Nocedal and Wright [128] describe the augmented Lagrangian

as a suitable function for correcting consistent errors or perturbations in the quadratic

penalty approach. They show that approximate solutions for minimizing Qω(x) will

tend to give constraint violations gi(x) ≈ α∗

i

ωi
, and therefore include this term as an

estimator for the optimal Lagrange multiplier within each iteration. Bertsekas [27, 28]

meanwhile treats the quadratic penalty function in Eq. (3.1) fully as an objective

function, and constructs the related Lagrangian function as

Lω(x,α) =

(

f(x) +
1

2
g(x)TΩg(x)

)

+αTg(x).

The augmented Lagrangian is then no longer bound only to a quadratic penalty

function; other penalty functions would lead just as easily to a variation thereof.

The method of multipliers was originally extended to solving ICP problems by Rock-

afellar [99, 98, 101] and results in expressing the Lagrangian as

Lω(x,α) = f(x) + Ψ(x) (3.9)

where

Ψ(x) =
∑

i







αigi(x) +
1
2
ωigi(x)

2 if αi + ωigi(x) ≥ 0

−α2
i

2ωi
if αi + ωigi(x) < 0.

Roughly speaking, this defines a function continuous at the constraint boundaries

that nonetheless distinguishes between constraints that are consequential for the La-

grangian and those that are not.

Rockafellar arrives at this expression by converting the inequalities using introduced

slack variables zi ≥ 0 so that the augmented Lagrangian can be written as

LRo
ω
(x,α) = f(x) +

∑

i∈I
(gi(x) + zi)αi +

1

2

∑

i∈I
ωi (gi(x) + zi)

2

= f(x) +αT(g(x) + z) +
1

2
(g(x) + z)TΩ(g(x) + z) (3.10)
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for inequality constraints indexed by I. The expression in the second line follows

from using vector notation and defining the vector of slack variables

z =
(
−Ω−1α− g(x)

)

+

where the plus operator ·+ = max(0, ·) restricts element-wise to non-negative values.

The value of LRo
ω

can be explicitly minimized with respect to the zi by taking partial

derivatives and writing

∂L

∂zi
= ωigi(x) + ωizi + αi = 0

and then re-arranging gives

zi =
−αi

ωi

− gi(x). (3.11)

Now since zi ∈ R+, each value must be either positive or 0. If we allow P and Z to

respectively indicate the complementary index sets for positive and zero values of zi,

we can write the augmented Lagrangian Lω with respect to these index sets. Consider

first the situation where only one index set is non-empty at a time. Taking Z to be

non-empty resolves to the Lagrangian

LRo
ω
(x,α) = f(x) +

∑

i∈Z

(

αigi(x) +
ωi

2
gi(x)

2
)

which is equivalent to the expression in Eq. (3.10), while non-empty P gives

LRo
ω
(x,α) = f(x) +

1

2

∑

i∈P
ωi

(
α2
i

ω2
i

− 2α2
i

ω2
i

)

= f(x)−
∑

i∈P

α2
i

2ωi

after expansion and substitution of the value given by Eq. (3.11). Noting that the

indices i ∈ Z imply ωigi(x) ≥ −αi and include any constraints satisfied as equalities,

the two alternative expressions for the augmented Lagrangian can be joined together

to encompass both of P and Z and simply expressed as in Eqs. (3.9) and (3.10). The

condition of the top row of Eq. (3.10) is indexed by Z and includes both weakly active

constraints where gi(x) = 0 and active constraints where additionally αi > 0. The
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condition of the bottom row is indexed by P and accounts for inactive constraints.

The statement of Eq. (3.9) is also equivalent to

Lω(x,α) = f(x) +
∑

i

1

2ωi

(

[αi + ωigi(x)]
2
+ − α2

i

)

(3.12)

where the plus operator ·+ again maps to non-negative values, or using matrix nota-

tion evaluated only on specified constraint sets as

Lω(x,α) = f(x) +

(

αTg(x) +
1

2
g(x)TΩg(x)

∣
∣
∣
∣
Z
−
(
1

2
αTΩ−1α

∣
∣
∣
∣
P
.

The same extension to ICPs is derived by Nocedal and Wright [128] by solving

max
αi≥0

Lω(x,α) = f(x) +
∑

i

αigi(x) +
1

2ωi

∑

i

(

αi − α(k)
i

)2

(3.13)

explicitly in terms of variables αi. The result is the same as in Eq. (3.9), but frames

the augmented Lagrangian as quadratically penalizing new multipliers αi that are

more distant from the current multiplier α
(k)
i in a given iteration k. This is similar

in principle to solving a dual problem in order to determine good updates for the

multipliers, as outlined in Section B.5.

3.2 Fletcher’s exact penalty method

Penalty methods typically require coefficients that must be made arbitrarily large

in order to guarantee convergence. The method of multipliers as described in Sec-

tion 3.1 provides an alternative formulation where an optimum can be reached for

finite penalty coefficients, and Fletcher [39, 40] together with Lill [45] additionally pro-

pose several so-called penalty functions with the desirable feature that any penalty

coefficients above a fixed limit would be sufficient for convergence. These are ex-

amples of exact penalty methods, so named in order to contrast them with existing

sequential methods; while the latter attempt to approach the constrained optimum

by solving a sequence of optimization problems with an increasing penalty coefficient

and the sequence of solutions converging to x∗, the former aim to define a single
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problem with its unconstrained solution corresponding exactly to x∗. In sequential

methods such as the method of multipliers, both an inner and an outer loop control

the algorithm, with the outer loop updating parameters like the penalty coefficient

only after the inner loop has found an appropriate intermediate solution under the

existing parameters. In the exact method, only a single optimization problem is it-

erated on, defined completely in terms of location x in the search space. As will be

seen in Chapter 4, existing implementations based on the AL-ES [14] straddle the

difference between the exact and sequential approaches, while other augmented La-

grangian methods such as from Deb and Srivastava [35] rely entirely on a sequential

approach.

The exact penalty functions will be seen to be directly connected with Lagrangian

functions, as both of the functions’ values and their gradients are equal at the opti-

mum and their formulations are similar. The continuous approximation of Lagrange

multipliers provided by the exact Lagrangian functions is also used to extend the

method to handle inequality constraints [41].

3.2.1 Exact Lagrangian for equality constraints

Recall that the ECP asks for a solution x to the problem

min
x

f(x)

s.t. gi(x) = 0.

With objective function f(x) and constraint function g(x) : Rn → R
m both continu-

ously differentiable, Fletcher’s exact penalty function is defined as

φ(x) = f(x)− g(x)T · J+∇f + ω · g(x)T(JTJ)−1g(x) (3.14)

with scalar ω > 0, full rank n × m Jacobian matrix J of g, and other relevant

terms including derivatives evaluated with respect to x. So long as ω is chosen

sufficiently large, φ(x) will be positive definite in a neighbourhood Nr(x
∗) of the

optimum because of the associated “augmenting” penalty term, ensuring it is a local
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minimum.

Relation to Lagrangian functions

In order to see how the exact penalty function is related to Lagrangian functions, first

define the ordinary Lagrangian ψ in the usual way as

ψ(x) = f(x) + g(x)Tα

= f(x)− g(x)TJ+ · ∇f. (3.15)

where the derivatives are taken with respect to x. The multipliers α here are derived

from the KKT first-order necessary condition (see Theorem B.6) that∇xψ = 0, which

allows evaluating and re-arranging the condition to give

∇xf +∇xg
T ·α = 0

J ·α = −∇xf

α = −J+ · ∇xf (3.16)

as a least-squares solution for the Lagrange multipliers. This is also equivalent to

determining the multipliers by solving

J
(
−J+∇xf

)
= −∇xf

(I − P )∇xf = 0

with respect to the projection matrix P = JJ+ described in Eq. (B.4). This says

that the KKT optimum must be among the points x where the gradient is zero after

projection into the unconstrained subspace by (I − P ).

Although the Lagrangian function ψ(x) has a stationary point at the constrained

optimum x∗, this is not guaranteed to be a minimum as the curvature in the directions

of the constraint normals may not be positive. However, positive curvature may

be induced in these directions within Nr(x
∗) by adding an extra term involving a

sufficiently large positive definite matrix. To this end, the exact penalty function

φ(x) is defined as ψ(x) together with the term g(x)TΩg(x) for some positive definite
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matrix Ω. Fletcher suggests appropriate choices as including Ω = ωI, Ω = ω∇2f(x),

and Ω = ω(JTJ)−1, all with scalar ω > 0, and it is the final option used in the

definition of the exact Lagrangian in Eq. (3.14).

Rather than modifying the Lagrangian, we could equivalently consider this as a mod-

ification of the Lagrange multipliers. Returning to the definition of the ordinary

Lagrangian ψ(x) in Eq. (3.15), let the multipliers be given in terms of x by

α(x) = −J+∇f(x) + ω · (JTJ)−1g(x) (3.17)

then after substitution we again have the definition of the exact Lagrangian in

Eq. (3.14).

A key difference arises here between the exact Lagrangian and other Lagrangian

approaches: rather than taking the vector α of multipliers to be a parameter alongside

x that will be solved by minimizing L(x,α), the exact approach is to instead define

the multipliers completely in terms of x using the above approximation. It is in

this sense that the Lagrangian is exact, as its optimum will correspond under mild

assumptions to the constrained optimum without any sequential updates to external

parameters.

Using Eq. (3.16) and defining β = (JTJ)−1, the exact Lagrangian defined in Eq. (3.14)

is seen to still very closely resemble an augmented Lagrangian with a slight change

to the definition of the Lagrange multipliers:

Lβ(x,α(x)) = f(x) +α(x)Tg(x) + ω · g(x)Tβg(x).

The important distinction is that α(x) is not a separate parameter, as it would be

for the method of multipliers, but is defined completely in terms of the position x in

the search space.
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Multiplier equivalence with subproblems

To help understand the way these multipliers are continuously estimated, it will first

be shown that each set of approximated multipliers is in fact shared with an equal-

ity constrained subproblem involving quadratic/linear approximations for the objec-

tive/constraint functions of the ECP, respectively.

Theorem 3.1 (Fletcher [41]). The Lagrange multipliers defined in Eq. (3.17) are

identical to those solving the equality constrained subproblem

min
δ

Q(δ) =
ω

2
δTδ + δT∇xf

s.t. ℓ(δ) = JTδ + g = 0 (3.18)

consisting of a local quadratic approximation of f(x) and linear approximations of

the constraints gi evaluated at x.

Proof. From Eq. (3.18) we can write the associated Lagrangian function as

L(δ,α) = Q(δ) +αTℓ(δ).

The usual first-order necessary condition then requires that both ∇δL and ∇αL equal

0 at the subproblem’s optimum, and solving analytically gives the two expressions

∇δL = ∇δQ(δ) +αT∇δℓ(δ)

= ωδ +∇xf + Jα,

∇αL = ℓ(δ)

= JTδ + g

which each re-arrange to

−∇xf = ωδ + Jα,

−g = JTδ.
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Thus, the KKT pair δ,α for the subproblem can be recovered from the linear system

of block matrices

(

ωI J

JT 0

)(

δ

α

)

=

(

−∇xf

−g

)

(

δ

α

)

=

(
1
ω
(I − P ) JT+

J+ −ω(JTJ)−1

)(

−∇xf

−g

)

. (3.19)

The validity of the inverse matrix given in the second line above can be verified

explicitly. To do so, first recall that the projection matrix defined by Eq. (B.3) gives

both

(I − P ) = (I − JJ+)

= I − J(JTJ)−1JT

= I − JT+
JT

and

J+ = (JTJ)−1JT.

Therefore,

ωI · 1
ω
(I − P ) + (JT+

)(JT) = (I − P ) + P

= I

and

1

ω
(I − P ) · (J) = 1

ω

(

J − J(JTJ)−1JT · J
)

= 0
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satisfy the first line of the inverse block matrix on the right-hand side of Eq. (3.19),

while

J+ · ωI + (−ω(JTJ)−1)(JT) = ωJ+ − ωJ+

= 0

and

J+ · (J) = I

satisfy the second line.

With the matrix validated, we can expand the full expression of Eq. (3.19) and collect

terms in order to find

δ =
−1
ω

(I − P )∇xf − JT+
g,

α = −J+∇xf + ω(JTJ)−1g,

as the KKT pair for the equality subproblem defined in the theorem statement. The

expression above for α corresponds directly with Eq. (3.17), as required. �

This theorem justifies an understanding of the sequence of multiplier approximations

given by the function in Eq. (3.17) by means of understanding the sequence of under-

lying subproblems. Each subproblem also allows examining its solution analytically.

Consider a shift of origin for δ-space from the subproblem so that we let δ = 0 cor-

respond to the current point x in the search space for the ECP, and recall that the

subproblem of Eq. (3.18) is quadratic with Hessian ωI and the constraints ℓi are lin-

ear. The function Q must have a global unconstrained minimum where its derivative

is zero. Let δ∗ indicate the constrained optimum of the subproblem and δ(∗) be the

unconstrained optimum of Q, so that by solving the first-order equation

∇δQ = ωδ +∇xf

= 0 (3.20)
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we get

δ(∗) =
−∇xf

ω
. (3.21)

Geometrically, this is the location δ(∗) reached by moving from δ = 0 in the direc-

tion of the negative gradient of the objective function f . The solution δ∗ to the

constrained subproblem must therefore lie on the intersection of the constraints at

minimal distance from δ(∗). This statement makes intuitive sense, and is also sup-

ported by referring to Eq. (3.19) which gives the subproblem’s solution analytically

as

δ∗ = (I − P )

(−∇xf

ω

)

− J+T
g(x)

= (I − P )

(−∇xf

ω

)

− J(JTJ)−1g(x). (3.22)

This vector is written as the sum of two complementary components in the uncon-

strained and constrained subspaces, respectively: the first term is the negative gra-

dient vector of Q(δ) evaluated at δ = 0 (recall that this is the current position of x

in the search space) and projected into the unconstrained subspace, while the second

term is the vector connecting δ = 0 orthogonally with the intersection of the linear

constraints.

Moving towards the solution of the subproblem given by Eq. (3.18) therefore means

moving in both the unconstrained subspace to minimize f and in the constrained

subspace to minimize g. Across a sequence of such subproblems, the sequence of their

solutions {δ∗} approaching δ = 0 corresponds to the origin in δ-space approaching

the solution x∗ to the constrained problem. Referring to our understanding of each

subproblem’s solution in Eq. (3.22), this in turn corresponds with the first term being

pushed to zero, satisfying the first-order condition of a stationary point for f , and

the second term also being pushed to zero, satisfying the constraints.

For equality constrained problems with derivative information available, the multi-

pliers α can even be calculated directly from Eq. (3.17) without solving the actual

subproblems. For inequality constrained problems, generalizing the approach relies
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on their solution.

3.2.2 Exact Lagrangian for inequality constraints

Recall that the ICP asks for a solution x to the problem

min
x

f(x)

s.t. gi(x) ≤ 0

with all the same notation as detailed in Section B.2, including the active set which

is the collection of indexed constraints satisfied as equalities at the optimum. The

subproblem analogous to Eq. (3.18) for inequality constraints involves solving

min
δ

Q(δ) =
ω

2
δTδ + δT∇xf

s.t. ℓ(δ) = JTδ + g ≤ 0. (3.23)

Importantly, a true solution in terms of δ seems required, as using Eq. (3.17) to

directly approximate multipliers α is applicable only if the set of active constraints

at the optimum is already known.

When using numerical methods, even arriving at this quadratic subproblem greatly

simplifies the situation: it is generally easier to deal with a quadratic/linear problem

than one in which the objective or constraint functions may be more general or more

complex. Indeed, in proposing the extension of the exact Lagrangian to inequality

constraints, Fletcher [41] applies a general quadratic programming routine to the

subproblems in order to determine the associated Lagrange multipliers. However,

for stochastic methods such as evolution strategies, the simplification from nonlinear

to quadratic offers no immediate advantage. While the subproblems still provide a

valuable framework for understanding the algorithm, actually solving a sequence of

inequality subproblems would regress to a variation of the traditional inner/outer loop

model of the method of multipliers that expends function evaluations while converging

to intermediate values.
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The approximations of Eq. (3.17) can still be used if the active constraints are known,

so one alternative is to estimate the active set separately from the Lagrange multi-

pliers and use this to calculate α(x), allowing the estimated set to change as new

constraint information is collected. Since any number of such changes may occur, it

is useful to separately consider the working set W as the current best approximation

to the true active set at the optimum, with the goal being W (k) → A as x(k) → x∗.

Note that unlike in the original formulation of the exact Lagrangian, our resulting

Lagrange multipliers will be discontinuous due to discrete transitions in the members

of the working set. This results in the noted symptom of zigzagging, where the work-

ing set repeatedly adds then removes a constraint (or a set of constraints) so that

the resulting multiplier approximations cause the algorithm solving the ICP to be

drawn between alternating constraint boundaries instead of towards the constrained

optimum. An implementation of an exact Lagrangian algorithm will need to address

this concern.



Chapter 4

Augmented and exact Lagrangian evolution strategies

This chapter presents the augmented Lagrangian (AL-ES) and exact Lagrangian evo-

lution strategies (EL-ES) for constrained optimization, respectively framed and jus-

tified in terms of the method of multipliers and Fletcher’s exact method given in

Chapter 3.

Moving from the context of numerical optimization to evolution strategies introduces

several challenges. Most importantly, no first- or second-order derivative information

is available. The AL-ES adaptively updates a penalty coefficient based on recent

changes in the constraint and Lagrangian function values, while the EL-ES relies on

expressions such as Eq. (3.17) which require approximating the involved terms. As

each algorithm’s progress through the search space is governed by stochastic processes,

leading to changes in local values between iterations that resemble noise, it is a related

concern that the resulting approximations are stable enough to be useful. Finally,

the EL-ES requires careful management of the working set, as the automatic means

of determining the active set as used in the exact Lagrangian method from numerical

optimization cannot be meaningfully adapted for use with evolution strategies.

4.1 AL-ES for one constraint

Early work for this thesis led to the proposal by Arnold and Porter [14] of a novel aug-

mented Lagrangian approach for a (1 + 1)-ES which demonstrates good convergence

performance on n-dimensional spheres and moderately conditioned ellipsoids with a

single constraint. This approach was later extended to handle multiple constraints

by Atamna et al. [18, 19]. A key feature of the AL-ES algorithm is the integration of

updates for the Lagrangian parameters alongside updates for the internal parameters

of the evolution strategy adapted within every iteration.

59
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Under the assumption of only one constraint, the original AL-ES from Arnold and

Porter uses the corresponding augmented Lagrangian defined as

Lω(x, α) = f(x) + Ψ(x)

where

Ψ(x) =







αg(x) + 1
2
ωg(x)2 if α + ωg(x) ≥ 0

−α2

2ω
otherwise.

(4.1)

Updates for α follow the method of multipliers, so that in iteration k the lone multi-

plier is updated according to

α(k+1) =
(
α(k) + ω(k)g(x(k))

)

+

= max
(
0, α(k) + ω(k)g(x(k))

)
. (4.2)

In order to permit updating the Lagrangian parameters within every iteration of the

evolution strategy, the original AL-ES proposes to adaptively update the penalty

coefficient ω based on changes in the constraint violation between parent and off-

spring candidate solutions. The goal for updating ω this way is to ensure a balance

in progress for the evolution strategy between the constrained and unconstrained

subspaces. In iteration k, the penalty coefficient is thus calculated as

ω(k+1) =







ω(k)χ1/4 if ω(k)g(x(k))2 < k1|∆L(k)|/n or k2|∆g(k)| < |g(x(k))|

ω(k)χ−1 otherwise
(4.3)

and this is used in defining the augmented Lagrangian of Eq. (4.1). The values of

χ, k1, and k2 above are control parameters that affect how quickly the Lagrangian

parameters (α and ω) are updated. In the original AL-ES of Arnold and Porter,

values of χ = 21/4, k1 = 3, and k2 = 5 are used. The delta values used in Eq. (4.3)

represent changes in their respective functions between subsequent iterations with

Lagrange parameters held fixed, so

∣
∣∆L(k+1)

∣
∣ =

∣
∣Lω(k)(x(k+1), α(k))− Lω(k)(x(k), α(k))

∣
∣

∣
∣∆g(k+1)

∣
∣ =

∣
∣g(x(k+1))− g(x(k))

∣
∣ .
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With this in mind, the conditions of the first line in Eq. (4.3) can be broken into two

parts: the first aims to increase ω when changes in the augmented Lagrangian are

due primarily to changes in the objective function over changes in the Lagrangian pa-

rameters, while the second aims to increase ω when overly small changes in constraint

violation may signal that progress is slowing down.

Full details of the original (1 + 1)-AL-ES approach are given in Algorithm 4.1.

Algorithm 4.1 Single iteration of (1 + 1)-AL-ES

Require: f : Rn → R, g : Rn → R
m, χ > 1, k1, k2 > 0

1: z ← N (0, I)
2: y ← x+ σz ⊲ Generate offspring
3: ∆g ← g(y)− g(x)
4: ∆xLω ← Lω(y, α)− Lω(x, α)
5: if ∆xLω ≤ 0 then
6: x← y

7: σ ← σ · 21/n
8: α← max(0, α + ωg(y))
9: if ωg2(y) < k1|∆xLω|/n or k2|∆g| < |g(x)| then ⊲ Update penalty
10: ω ← ωχ1/4

11: else
12: ω ← ωχ−1

13: end if
14: else
15: σ ← σ · 2−1/(4n)

16: end if

A single offspring y is generated in each iteration, and values are calculated for both

the constraint g(y) and augmented Lagrangian Lω defined using Eq. (4.4) in Lines 3 -

4. If the offspring y gives an improvement in Lω over the parent x, then the parent and

step-size σ are updated in Lines 6 - 7, the Lagrange multiplier is updated in Line 8, and

the penalty coefficient ω is updated in Lines 9 - 13. The condition on the update for ω

aims to balance the progress of the evolution strategy on improving with respect to the

constraints and improving with respect to the objective function, as well as avoiding

premature stagnation signalled by rapidly decreasing magnitudes of change in the

constraint violation. Convergence is observed on spheres and moderately conditioned
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ellipsoids in the presence of a single linear constraint.

4.2 AL-ES for multiple constraints

A direct extension of the AL-ES to handle problems with multiple constraints is pro-

posed by Atamna et al. [18, 19] for multimembered evolution strategies, where con-

vergence properties are investigated analytically using a Markov chain approach. Im-

proved parameter settings are investigated by Dufossé and Hansen [38] and compared

experimentally alongside other approaches using CMA and surrogate models.

A summary and synthesis including these two additional approaches is presented

here and differences are highlighted. Both of the additional implementations use

(µ/µW , λ)-ES with weighted recombination and cumulative step-size adaptation. To

allow for multiple constraints, the augmented Lagrangian is defined as usual for each

implementation. Recall from Eq. (3.9) that this gives

Lω(x,α) = f(x) + Ψ(x)

with

Ψ(x) =
m∑

i=1







αigi(x) +
1
2
ωigi(x)

2 if αi + ωigi(x) ≥ 0

−α2
i

2ωi
otherwise.

(4.4)

Constraints that are inactive will correspond with the condition of the bottom row of

Eq. (4.4), while constraints that are active will correspond with the top. Equivalently,

constraint i is active when

− αi ≤ ωigi(x). (4.5)

The multipliers αi are written here as elements of the vector α, while the penalty

coefficients are written as the vector ω with (possibly distinct) elements ωi forming

the diagonal of Ω = ωI.

Updating Lagrange multipliers

Each of the AL approaches implement variations on the method of multipliers, so

that in iteration k the Lagrange multipliers α are updated according to Eq. (4.2).

Both Atamna et al. and Dufossé and Hansen use an additional damping factor 1
dα
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to slow down the adaptation of α, while Atamna et al. do not use the plus operator

(·)+, resulting in update rules of

α(k+1) = α(k) +
1

dα
·Ω(k)g(x(k))

for Atamna et al., and

α(k+1) =

(

α(k) +
1

dα
·Ω(k)g(x(k))

)

+

for Dufossé and Hansen, which results in each element being updated as

α
(k+1)
i = max

(

0, α
(k)
i +

1

dα
· ωi · gi(x(k))

)

.

Updating penalty terms

The original AL-ES assumes only a single penalty coefficient and uses the update

rule of Eq. (4.3) in each iteration, while the others allow for multiple distinct penalty

coefficients and so use the modified rule

ω
(k+1)
i =







ω
(k)
i χ1/4 if ω

(k)
i gi(x

(k))2 < k1|∆L(k)|/n or k2|∆g(k)i | < |gi(x(k))|

ω
(k)
i χ−1 otherwise

with minor differences in the fixed parameters. The AL-ES rule from Arnold and

Porter uses k1 = 3, k2 = 5, and χ = 21/4, while Atamna et al. use χ = 21/5n and

Dufossé and Hansen use χ = 21/
√
n.

Dufossé and Hansen are the only ones to give a recommended initialization for ω, de-

rived by first calculating the inter-decile range (IDR) for the objective and constraint

functions among the first set of offspring as

IDR
i≤λ

(f(yi)) = ∆f,

IDR
i≤λ

(gj(y
i)) = ∆gj, (4.6)
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and then setting

ω
(0)
i = 102 · ∆f

∆g2i
.

Additionally, Dufossé and Hansen add a check whereby the penalty term ωi is updated

only if it is associated with an active constraint according to Eq. (4.5).

Applying CMA

Only Dufossé and Hansen apply CMA to allow for application to a broader selection

of problems. Atamna et al. consider CMA elsewhere [17] to determine convergence

results, but only in the limited case of a single linear constraint. Dufossé and Hansen

note that since CMA should be more adept at handling ill-conditioning, it should

be possible to allow the penalty terms ωi to become larger and hopefully speed up

convergence. To this end, they set the fixed parameter k1 = 10, while keeping all

others the same. A comprehensive experimental comparison is given using the AL-

CMA-ES formulation (identified there as “AL many”), and the result is an apparently

widely applicable algorithm.

4.3 EL-ES algorithm

The EL-ES algorithm is presented here, which is the familiar (µ/µW , λ)-ES along

with calculations for updating the Lagrange parameters and managing the working

set in order to implement an exact Lagrangian approach. The algorithm itself is

given first, and its main operations are presented as three subroutines: two that

update the working set through expansion and pruning, and one that uses local/global

approximations to estimate values for the exact Lagrangian parameters α and ω. One

additional subroutine is called occasionally in order to maintain linear independence

of constraints within the working set.

Throughout, the discussion will focus on the case of inequality constraints, as these

pose the greatest difficulty in terms of determining their inclusion in the working

set. This is without any loss of generality, as equality constraints may be considered

as having been converted to the double-sided inequality constraints g(x) ≤ 0 and
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−g(x) ≤ 0. In practice of course, an equality constraint should be explicitly guar-

anteed inclusion in the working set, in which case the rest of the proposed EL-ES

algorithm could proceed with only trivial adjustments to accommodate this fact.

4.3.1 Algorithm outline

The main idea of the EL-ES is to use an evolution strategy to solve a constrained

optimization problem (GCP) by minimizing an approximation of the unconstrained

exact Lagrangian given in Eq. (3.14). In each iteration, local information from the

offspring selection process inherent to the ES is combined with historical information

from previous iterations to give approximate values for the Lagrangian parameters

α(x) and ω in terms of the current location in the search space. Although this

approach on its own gives good convergence results on some problems, it can encounter

difficulties with arrangements of constraints that produce instability in the iterative

working set approximations. In the case of inaccurate estimates for the Lagrange

multipliers using Eq. (3.17) or oscillating constraints that are repeatedly added and

removed from the working set W , a good strategy is to stay close to the current

constraint boundaries defined as active byW until either an optimum is found or else

the working set is reliably updated. To encourage this behaviour, the EL-ES evaluates

offspring against two separate objective functions to determine their rankings: the

Lagrangian φ(x) and a pure penalty function defined as

Qpen(x) = gW(x)TgW(x) (4.7)

that uses only local evaluations of constraint function gW evaluated on constraints

in W at the current centroid. Once the offspring rankings are calculated separately

for φ and Qpen the rankings themselves are summed to establishing a new ranking.

This explicitly assigns equal weight to minimizing the violation for all constraints in

W and minimizing the approximated Lagrangian, encouraging progress in the search

space within close proximity to the intersection of the active constraint boundaries.

This is the desired outcome in most cases; however, it may rarely occur that the

offspring rankings are exactly reversed forQpen and φ, in which case the sum of equally
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weighted rankings will give identical values for all offspring. Offspring selection in that

iteration would then degrade to a random walk. To avoid this disruptive outcome,

a tie-breaking process is needed. The result of applying ⊕ǫ can thus be summarized

as taking the sum of both sets of ranks to be the new rankings, while preferring the

rankings given by Q in the case of a tie.

Sums of offspring rankings appear in other constraint-handling methods for evolution

strategies proposed by Runarsson and Yao [104] as part of stochastic ranking, and by

Sakamoto and Akimoto [105, 106] as part of ARCH. For the EL-ES, the merging of

ranks is performed using a simple sum together with the given tie-breaking procedure.

Algorithm 4.2 Single iteration of (µ/µ, λ)-EL-ES with CSA

Require: f : Rn → R, g : Rn → R
m, c ∈ (0, 1), D > 0,

∑µ
i wi = 1

1: ExpandWS()
2: PruneWS()
3: UpdateAlphaOmega()

4: for ℓ = 1→ λ do
5: zℓ ← N (0, I) ⊲ Generate offspring
6: yℓ ← x+ σzℓ

7: end for

8: sort([z1:λ], [φ(y1)⊕ǫ Qpen(y1), . . . , φ(yλ)⊕ǫ Qpen(yλ)]) ⊲ Combine ranks

9: ẑ ←
µ
∑

ℓ=1

wℓzℓ

10: x← x+ σẑ
11: s← (1− c)s+

√

µeffc(2− c)ẑ ⊲ Update s

12: σ ← σ · exp c
D

( ‖s‖
E [‖N (0, I)‖] − 1

)

⊲ Update σ

An outline of the multimembered exact Lagrangian evolution strategy is given in

Algorithm 4.2, using calls to subroutines that are defined in subsequent sections of

this chapter. In Lines 1 - 3, three subroutines are called for expanding the working

set, pruning the working set, and updating the Lagrange parameters. Details for

these operations are given in Sections 4.3.2 and 4.3.3. In Lines 4 - 7, λ offspring are

generated by sampling from an n-dimensional normal distribution. Both the exact
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Lagrangian φ(x) and the penalty function of Eq. (4.7) are evaluated for each offspring,

and in Line 8 the operator

φ(yi)⊕ǫ Qpen(yi)

is used to indicate the sum of the rank of offspring yi according to φ(yi) (scaled by

(1 − ǫ)) and the rank according to Qpen(yi). This joint ranking is used to sort the

offspring, which are then combined in Lines 9 and 10 to form a new parental centroid

x. Finally, the evolution path s and step size σ are updated in Lines 11 and 12.

4.3.2 Calculating Lagrange parameters

Central to the EL-ES algorithm is using the approximation given by Eq. (3.17) to

determine the Lagrange multipliers. This is initially problematic in the context of

black-box algorithms like evolution strategies, as none of the gradient information

will be readily available. Instead, it is necessary to calculate local approximations to

relevant terms. This is done by taking advantage of the objective and constraint func-

tion evaluations used for ranking the offspring of a multimembered evolution strategy,

reducing the need for extra function evaluations to only evaluating the centroid as

part of the approximation process. The subroutine for approximating the Lagrange

multipliers α is called once per iteration of the EL-ES and is given in Algorithm 4.3.

The first line is a call to the subroutine detailed in Algorithm 4.6 which ensures that

the matrix inversion of the next line is operating on a nonsingular matrix; in other

words, that the Jacobian of the constraints in the working set are linearly indepen-

dent, as in Theorem B.6. An explanation of the other components follows.

The multiplier expression in Eq. (3.17) can be expanded as

α(x) = −J+∇f(x) + ω · (JTJ)−1g(x)

= −(JTJ)
︸ ︷︷ ︸

αA(x)

−1
JT∇f(x)
︸ ︷︷ ︸

αB(x)

+ω · (JTJ)
︸ ︷︷ ︸

αA(x)

−1
g(x)

showing the collected terms αA(x) and αB(x) are the only unknowns and are deter-

mined with respect to x. One approach for reliably approximating these values is to

blend together local and historical information taken from offspring evaluations on
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Algorithm 4.3 Subroutine for updating α, ω

Require: Current values for f(yi), g(yi) for i = 1 : λ offspring, g(x) for centroid,
step size σ, fixed learning rate cα ≤ 1

1: function UpdateAlphaOmega

2: EnforceLI() ⊲ Algorithm 4.6
3: αA ← 1

σ2 cov
i
(g(yi)) ⊲ Eq. (4.11)

4: αB ← 1
σ2 cov

i
(g(yi), f(yi)) ⊲ Eq. (4.12)

5: ω ← 1
2
·min

(
1
σ
std
i
(f(yi)),

1
σ2 std

i
(φ(yi))

)
⊲ Eq. (4.10)

6: g ← (1− cα) · g + cα · g(x) ⊲ Eq. (4.9)
7: αA ← (1− cα) ·αA + cα ·αA

8: αB ← (1− cα) ·αB + cα ·αB

9: ω ← (1− cα) · ω + cα · ω
10: α← −(αA)

−1 ·αB + ω · (αA)
−1 · g ⊲ Eq. (4.8)

11: end function

functions f and g. This results in a modified expression for the Lagrange multipli-

ers

α = −(JTJ)−1 · JT∇f + ω · (JTJ)−1 · g
= −(αA)

−1 ·αB + ω · (αA)
−1 · g (4.8)

where the bar notation indicates exponential fading is used to combine values from

the current iteration with the previous estimate. It is also understood that while

these values are accumulated across all constraints in each iteration, only the ele-

ments corresponding to constraints in the working set are used in updating α in the

expression above and in the discussion that follows. Each component of Eq. (4.8) is

exponentially faded using the same positive learning rate cα ≤ 1 as

g(k) = (1− cα) · g(k−1) + cα · g(x(k)) (4.9)

ω(k) = (1− cα) · ω(k−1) + cα · ω
αA

(k) = (1− cα) ·αA
(k−1) + cα ·αA(x

(k))

αB
(k) = (1− cα) ·αB

(k−1) + cα ·αB(x
(k))
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so that it only remains to calculate the values given in the right-most terms of each

sum above. The learning rate is set to cα = cσ as preliminary work on tuning

parameter cα indicates that this value is roughly appropriate on the selection of

problems considered in Chapter 5. The value of g(x(k)) is simply the constraint

violation of the centroid in iteration k, while the value of ω is calculated in each

iteration as

ω =
1

2
·min

[
std
i
(f(yi))

σ
,
std
i
(φ(yi))

σ2

]

. (4.10)

This attempts to maintain locally positive curvature of φ with the smallest needed

value. From Eq. (3.21), the quadratic subproblems will stagnate and δ(∗) will approach

0 as ω → ∞, so there is motivation in using a value of the penalty coefficient that

is no larger than necessary. The terms αA(x
(k)) and αB(x

(k)) are each estimates

calculated by using information around the centroid in the k-th iteration as

αA(x
(k)) = JTJ

≈ 1

σ2
· cov

i

(

g(y
(k)
i )
)

(4.11)

and

αB(x
(k)) = JT∇f(x(k))

≈ 1

σ2
· cov

i

(

g(y
(k)
i ), f(y

(k)
i )
)

. (4.12)

Justification for both of these expressions is given by using the definition of covari-

ance taken across the offspring yi to construct a linear approximation that will be

increasingly accurate as σ decreases. The approximation for αA is derived by starting

with

cov
i
(g(yi)) = E

[
(g(yi)− E[g(yi)])(g(yi)− E[g(yi)])

T
]

≈ E
[
(g(yi)− g(x(k)))(g(yi)− g(x(k)))T

]
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and using the first-order approximation of the differences this becomes

≈ E

[(
∇xg(x

(k))T(yi − x(k))
) (
∇xg(x

(k))T(yi − x(k))
)T
]

= E

[(
σ(k)JTzi

) (
σ(k)JTzi

)T
]

= (σ(k))2 · JT · E
[
ziz

T
i

]
· J

= σ2JTJ .

The final line corresponds with Eq. (4.11), and follows from the vectors zi being

standard normally distributed, giving the off-diagonal elements of the matrix ziz
T
i

expected values of 0 and the diagonal elements χ2 distributed with mean k = 1, thus

E
[
ziz

T
i

]
= I.

By a similar calculation, the approximation for αB is

cov
i
(g(yi), f(yi)) = E

[
(g(yi)− E[g(yi)])(f(yi)− E[f(xi)])

T
]

≈ E
[
(g(yi)− g(x(k)))(f(yi)− f(x(k)))T

]

≈ E

[(
σ(k)JTzi

) (
σ(k) · ∇xf(x

(k))T · zi

)T
]

= (σ(k))2 · JT · E
[
ziz

T
i

]
· ∇xf(x

(k))

= σ2JT · ∇xf (4.13)

which matches with Eq. (4.12).

Combining the approximations in Eqs. (4.11) and (4.12) with Eq. (4.9) and ω, we

have every term needed to calculate the faded multiplier vector in Eq. (4.8). In each

iteration, this approximates the Lagrange multipliers of Eq. (3.17) for the inequality

subproblem in Eq. (3.23), which are in turn equal to the Lagrange multipliers of the

underlying ICP by extension of Theorem 3.1. At each stage of the EL-ES, the value

of α represents the best estimate for the current Lagrange multipliers which should

be minimized against.
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Using Eq. (4.8) to write this as part of the Lagrangian seen by the ES, we have

φ(x) = f(x) + g(x)T
(
−(JTJ)−1 · JT∇f + ω · (JTJ)−1 · g

)

= f(x) + g(x)T
(
−αA ·αB + ω ·αA · g

)

= f(x) + g(x)Tα. (4.14)

Note that while this is written as an ordinary Lagrange function above, it is also

similar in form to the augmented Lagrangian

Lβ(x) = f(x) + g(x)Tα0 + g(x)Tβg(x). (4.15)

if we take the multipliers to be

α0 = −(JTJ)−1 · JT∇f

and augmenting term

β = ω(JTJ)−1.

In comparing the Lagrangian function φ(x) with the augmented Lagrangian Lβ(x)

so constructed, the only apparent difference is in their augmenting terms: while the

ordinary Lagrangian φ(x) uses the averaged value g of constraint violations in the

final term, as seen in the first line of Eq. (4.14), the augmented Lagrangian Lβ(x) of

Eq. (4.15) uses only the local value g(x). In spite of this small difference, the impact

is significant. In the former, we use g to approximate a continuous function α(x)

that gives Lagrange multipliers corresponding to the solution of the local subproblem

consisting of quadratic and linear approximations of f and gi, respectively. Assuming

the objective function is locally quadratic and the constraints locally linear, calculat-

ing the subproblem multipliers can lead to a good estimate for the true multipliers

of the ICP. The main effect of ω is in matching the subproblem’s quadratic approx-

imation to the underlying objective function f . In the latter, the multipliers α0 are

determined without any reference to the value of g(x), and instead can be determined

using the same approach as in Theorem 3.1 to correspond to an unbounded linear

subproblem with no constrained minimum. The effect of ω is to moderate the effect



72

of the augmenting penalty term.

4.3.3 Working set management

The discussion in Section 4.3.2 assumes that the active set A is known, consisting of

those constraint indices satisfying gi(x
∗) = 0 at the optimum. This is not generally

a realistic assumption, and so instead calculations like Eq. (4.8) rely on the current

working set W being a reasonable approximation. At any stage of the algorithm,

constraints in the working set are treated as needing to be satisfied as equalities,

while constraints not in the working set are disregarded both in terms of calculat-

ing Lagrange multipliers and in terms of ranking offspring. Since a constraint gi is

considered active at point x if gi(x) ≥ 0, and the working set aims to converge to

the set of active constraints as x(k) → x∗, a simple approach would be to define

W = {i : gi(x
(k)) ≥ 0}. However, this definition is inherently unstable due to the

stochastic nature of an evolution strategy that may move unpredictably between fea-

sible and infeasible regions near a constraint boundary. Instead, separate processes

are defined below for expanding and pruning the working set. The pruning process

attempts to remove a constraint from the working set based on the existence of neg-

ative Lagrange multipliers, while the expansion process attempts to add indices of

constraints that are recently violated. If either the size of the working set |W| ≤ m

becomes greater than the dimension n of the search space, or if a constraint is added

that is linearly dependent with the existing working set, then steps are taken to prune

W and restore linear independence.

4.3.4 Normalized constraint violation

Constraint violation, whether for a feasible or infeasible point, is difficult to compare

between constraints with potentially different scaling and between iterations while

the ES moves stochastically through the search space. In order to allow meaningful

comparisons, a single normalized value is calculated for each constraint in order to

represent the magnitude of recent violations.
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The normalization occurs by using an approximated positive linear scaling factor

for each constraint. Between any two points x and y, a finite difference of the j-th

constraint values gj(y)−gj(x) divided by the distance ||y−x|| gives an approximation

of the linear scaling of the constraint function between those points. By taking the

average of the finite differences of an evaluated constraint across all yi offspring, we

arrive at
1

λ

λ∑

i=1

(gj(yi)− gj(x))
||yi − x||

as an approximation of the local scaling. Since the distance between offspring and

centroid is well approximated by the step size σ of the evolution strategy, the square

of the linear scaling is well approximated by the variance divided by σ2 as

1

λ

λ∑

i=1

(gj(yi)− gj(x))2
σ2

and so the linear scaling factor itself is well approximated by the standard devia-

tion.

The ratio of the constraint violation gj(x
(k)) to the normalizing factor std

i
(gj(y

(k)
i ))

is therefore a candidate for a normalized constraint violation in iteration k. In order

to smooth the value between iterations, accumulation is additionally used in order to

calculate

g
(k)
j = (1− cα) · g(k−1)

j + cα · gj(x(k)),

which is given previously in Eq. (4.9), and

d
(k)

j = (1− cα) · d
(k−1)

j + cα ·
1

σ
std
i
(gj(y

(k)
i )).

calculated in the same manner. The normalized constraint violation v
(k)
j for the j-th

constraint in the k-th iteration is then defined as the associated ratio of the faded

constraint value to the faded standard deviation, expressed as

v
(k)
j =

g
(k)
j

d
(k)

j

. (4.16)
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4.3.5 Expanding the working set

The subroutine for expanding W is given in Algorithm 4.4 and is called once per

iteration of the evolution strategy. Expanding the working set involves potentially

adding to its indexed list of constraints. First, an initial set of eligible constraints is

constructed, consisting of all violated constraints not already indexed in the working

set. The associated normalized constraint violations of Eq. (4.16) are compared and

the single constraint with the largest violation is considered for inclusion in W .

Algorithm 4.4 Subroutine for expanding the working set

Require: W , vi for constraints not in working set

1: function ExpandWS

2: if max
i 6∈W

(vi) > 0 then ⊲ Eq. (4.16)

3: W =W ∪ {i}
4: end if
5: end function

The most significant potential complication of this subroutine is if a constraint is

added that causes the working set to become linearly dependent. Identifying this

situation proactively involves matrix operations in |W| ≤ m dimensions. Addition-

ally, a proactive check would have to consider all constraints in the working set, not

just those recently added: constraints, especially nonlinear constraints, may be added

to the working set while their locally approximated normals are independent, only

to approach dependence as the ES approaches the optimum. For these reasons, the

difficulty is addressed elsewhere within Algorithm 4.3 by calling the subroutine given

by Algorithm 4.6.

4.3.6 Pruning the working set

The subroutine for pruning W is given in Algorithm 4.5 and is called once per itera-

tion of the evolution strategy. Pruning the working set involves potentially removing

one of its indexed constraints, and is comprised of a two-stage process: first decid-

ing whether any constraints at all should be considered for removal, then potentially
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choosing which constraint is best to remove. The case where the working set is over-

constrained is also considered.

Algorithm 4.5 Subroutine for pruning the working set

Require: W , vi for i ∈ W

1: function PruneWS

2: ∆f ← |f(x(k−1))− f(x(k))| ⊲ k is current iteration
3: ∆h ← |f(x(k−1))− f(x(e))| ⊲ e is iteration of last removal
4: if ∆f < ∆h then
5: if min

i∈W
(αi) < 0 then

6: W ←W \
{

argmin
i∈W

(αi)
}

⊲ Remove index i from set W
7: e← k
8: else
9: if |W| > n & min

i∈W
(vi) < 0 then ⊲ vi from Eq. (4.16)

10: W ←W \
{

argmin
i∈W

(vi)
}

11: e← k
12: end if
13: end if
14: end if
15: end function

The initial decision is based on a simple idea of Fletcher’s [43], which is to compare

the historical change in f over recent iterations to the expected change in f for the

next iteration if the current working set were to be maintained. When the expected

change in f under the current working set is sufficiently large, the working set is

locked and no removals are allowed; the heuristic principle here is that in order to

avoid unnecessary oscillations in the working set, a constraint should be removed from

W only when there is evidence that better progress on minimizing f can be made

without it. For an evolution strategy, the expected change can be calculated as a

direct difference between candidate solutions using the same values of α, as

∆f = |f(x(k−1))− f(x(k))|

and then compared to the historical change in f since the last iteration e in which a
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constraint was removed from the working set

∆h = |f(x(k−1))− f(x(e))|.

Whenever the expected future change in f is less than the historical change in f since

the last constraint removal, the working set is eligible for constraint removal. Other-

wise, no constraint is removed. Note that this incurs one extra function evaluation

per iteration on the candidate solution x(k) calculated before updating the values of

α and ω; selection and recombination is performed first using the older values of α

and ω, then again after those values have been updated.

Once W is marked eligible for a removal, the values αi for the Lagrange multipliers

indexed by i ∈ W are compared and the constraint with the most negative Lagrange

multiplier is removed. If no negative multiplier is found, an additional check is made

whether the working set is over-constrained with |W| > n. If so, the constraint with

the minimal normalized constraint violation vj from Eq. (4.16) is removed.

4.3.7 Enforcing linear independence

The subroutine for enforcing linear independence withinW is given in Algorithm 4.6.

As it can be a computationally expensive operation involving matrix operations based

on the number of constraints, it is called only when a singular matrix is encountered,

such as while attempting to calculate the inverse in Eq. (4.11) as part of Algorithm 4.3.
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Algorithm 4.6 Subroutine for enforcing linear independence in the working set

Require: W , tolerance ǫ > 0
1: function EnforceLI

2: while W is linearly dependent do

3: (u1, . . . ), (w1, . . . ) = eig
[

cov
i
(g(yi))

]

⊲ Eq. (4.11)

4: for j = 1→ |W| do
5: if |uj| < ǫ then
6: B = {k : |[wj]k| > ǫ}
7: W =W \ argmin

k∈B
(vk)

8: end if
9: end for
10: end while
11: end function

The subroutine relies on the fact that linearly dependent vectors in the column-space

of a matrix will have corresponding zero eigenvalues. This fact is used to identify and

consider for removal those constraints in W that are causing the set to be linearly

dependent.

Line 3 of Algorithm 4.6 uses the covariance approximation of JTJ from Eq. (4.11),

calculated using constraints in the current working set. If any collection of the con-

straints in W are linearly dependent, then the matrix is singular and there should

be corresponding zero eigenvalues. Let u = 0 be one such eigenvalue with associated

eigenvector w of the approximated matrix αA ≈ JTJ that is not of full rank. Then

the entries of w also give the coefficients of a linear combination of the columns of

αA that equal zero, since

αA ·w = u = 0

by the definition of an eigenvector. If we consider the indices of the non-zero en-

tries of w, then these give the indices of the columns of αA appearing in the linear

combination, and thus give a collection of columns that form a linearly dependent

set. If there are multiple zero eigenvalues, then the same process can be repeated by

analyzing the respective associated eigenvectors to retrieve indices of columns that

form a linearly dependent set. Note that since αA ≈ JTJ , the column indices of this

matrix correspond to the column indices of J which in turn correspond to the indices

of constraints in the working set, so that the i-th column of αA corresponds with the
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i-th constraint in W . By finding a set of columns that form a linearly dependent set,

we have found a set of constraints that can be compared and considered for removal

in order to restore linear independence in W .

In order to implement this in practice, we first note that the eigenvalues and eigen-

vectors will usually not contain entries that can be identified as exactly zero due to

numerical inaccuracies, so a pre-selected tolerance value ǫ > 0 is used throughout

instead of 0. This value does not appear to be overly sensitive, and in experiments

ǫ = 10−6 has been found to work well. The implementation for the rest of the pro-

cess is largely straightforward. When the subroutine is called, the eigenvalues uj and

eigenvectors wj of the singular matrix are calculated, and for each eigenvalue with

|uj| < ǫ (indicating linear dependence, within the selected tolerance) the indices k

are collected from within the associated eigenvector where the absolute values satisfy

|[wj]k| > ǫ (indicating non-zero, within the tolerance). The normalized constraint

violations vk are compared across the collected indices k, and the constraint associ-

ated with the smallest value of vk is removed from the working set. If necessary, this

process is repeated until either the needed matrix is invertible, or else W is empty.

In practice, only one constraint is usually observed being removed at a time.

4.4 Connections between exact and augmented Lagrangians

As already remarked, the basic expression of the exact Lagrangian can in some con-

texts be treated as an augmented Lagrangian, so it is natural to consider connections

between the two. The EL-ES approach proposed in Section 4.3 can similarly be

connected with previous implementations of the AL-ES.

In order to motivate the derivation of these connections, we begin with consider-

ing how to improve on the results of the AL-ES as described Section 4.2 through

re-examination of the justification used [14] for the original multiplier update rule,

as presented in Eq. (4.2). There, the update rule for α is tied with updating the

penalty coefficient ω in a way that balances terms of the Lagrangian so that the ES

is able to make balanced progress in all dimensions of the search space. This balance

is expressed as part of a single-step analysis of the evolution strategy’s expected be-

haviour. In the discussion of Section B.4, the augmented Lagrangian is understood
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to be an unconstrained function that shares its minimum with a related constrained

problem (a GCP) so long as the elements of the penalty term Ω are large enough

to ensure locally positive curvature at the optimum. At the same time, the discus-

sions of Sections 3.1 and B.5 portray the choice of penalty terms ωi as being good

step-sizes for applying the method of gradient ascent on the negative dual function

−ψω(α) with respect to the Lagrange multipliers. Apparently, updating the penalty

coefficient in the AL-ES serves several overlapping purposes, and a good update rule

for ω should:

1. modify the Lagrangian function so that the ES can make balanced progress,

2. be large enough to ensure appropriate positive curvature of the Lagrangian

function in the search space, and

3. provide a good choice of step-size for updating the Lagrange multipliers α.

It is desirable to determine if any of these criteria can be relaxed or removed, so

that the impact of the penalty coefficient update rule can be better understood for

each component separately. The easiest to relax is perhaps the condition on positive

curvature, which can instead be achieved by for instance limiting the objective and

constraint functions to being convex. This is because the second-order necessary

condition of Eq. (B.17) becomes a sufficient condition whenever f and g are convex,

and this in turn guarantees locally positive curvature of the augmented Lagrangian

at the constrained optimum for any values of ωi. In particular, the ordinary (non-

augmented) Lagrangian

L0(x,α) = f(x) +αTg(x) (4.17)

is positive-definite in an open neighbourhood Nr(x
∗) of the optimum and corresponds

to the augmented Lagrangian with penalty term ω chosen to be the zero vector.

As desired, this simplifying assumption results in eliminating the need for ω updates

to enforce positive curvature, as well as decoupling the penalty coefficient update

from the Lagrange multiplier update; since there is no penalty term included in

the Lagrangian L0(x,α), we need to approach the update step for α in a different

way. The Lagrange multipliers are themselves defined in terms of the linear basis
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of constraint normals active at the optimum, so it seems natural to consider how

constraint information can be used. Indeed, as demonstrated in Section 5.2, one

motivation for developing the EL-ES is the observed poor performance of the AL-

ES on certain linearly constrained sphere problems, even when using CMA, with

particular arrangements of the constraints resulting in narrow feasible regions.

The Newton update step for α as given in Eq. (B.33) includes constraint information

which could be helpful for devising a new update rule for the Lagrange multipliers,

but it requires approximating local derivative information. Using the process given

by Eq. (4.11) introduced as part of the EL-ES, and assuming an approximation for

the Hessian matrix of f is available, say A, then a quasi-Newton update for the

multipliers is given by

α(k+1) = α(k) +
[
JTA−1J

]−1 · g(x(k)). (4.18)

In the simplest case that the Hessian approximation A ≈ a · I, then the objective

function is locally spherical and the above calculation is greatly simplified as

α(k+1) = α(k) + a ·
(
JTJ

)−1 · g(x(k)).

As in the EL-ES, this formulation of a quasi-Newton update rule for α conveniently

allows for local approximations of necessary terms simply by using constraint function

evaluations that will already be performed for the regular ES updates. However,

convex objective functions that are not spherical (that is, those functions with Hessian

not equal to a scalar multiple of the identity matrix) are unlikely to perform well unless

a better approximation is made for the Hessian, or information about the objective

function is included through other means.

A similar update rule that does include objective function information can be arrived

at by generalizing the single-step argument used to derive the original (1+ 1)-AL-ES

update rule for α. To do so, we first reproduce the original single-step analysis for

the AL-ES.
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4.4.1 Single-step analysis for (1 + 1)-AL-ES

Following the argument given as part of the proposal of the AL-ES [14], the objective

function

f(x) = axTx

is spherically symmetric and only a single linear constraint is considered. Thus, the

location of the parent candidate solution can be written without loss of generality

as the vector x = [x1, R, 0, . . . , 0] and the function for the lone (active) constraint

as

g(x) = bx1 + c.

By writing the coordinates this way, only changes along the x1 axis will affect con-

straint violation, and the value R gives the distance from the optimum in the (un-

constrained) subspace spanned by the remaining x2, . . . , xn axes.

A single step of the (1 + 1)-ES considers the value of the augmented Lagrangian for

the offspring y, expressed as

Lω(y) = Lω(x+ σz)

which after expansion gives

= a

n∑

i=1

(xi + σzi)
2 + α

[
n∑

i=1

b(xi + σzi) + c

]

+
ω

2

[
n∑

i=1

b(xi + σzi) + c

]2

.

The elements of the mutation vector z are sampled independently from a standard

normal distribution, and recalling that we can write the parent x in terms of only x1

and R, the augmented Lagrangian for the offspring becomes

Lω(y) = Lω(x)+2σax1z1+2Rσaz2+ασbz1+ωσb(c+ bx1)z1+
ω

2
σ2b2z21 +σ

2a

n∑

i=1

z2i .

This expression can be simplified considerably if we introduce the normalized step

size σ∗ = σn/R, then assuming this approaches a finite value in the limit as the
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dimension n→∞ and after collecting terms, we can write

Lω(y) ≈ Lω(x) +
2R2a

n

[

σ∗Ξ

R
z1 + σ∗z2 +

σ∗2

2

]

(4.19)

where

Ξ = x1 +
b

2a
(α + ωg(x)) .

The (1+1)-ES will accept the offspring only when Lω(y) ≤ Lω(x), yet examining the

expression above reveals that only the first two terms within the square brackets may

be non-positive, and their sign depends on the sampled values for z1 and z2. In order

for the ES to make balanced progress on both the distance from the (active) constraint

boundary and in the remaining n− 1 dimensions, we can therefore conclude that the

first and second terms within the square brackets should be of approximately equal

magnitude. Thus, Ξ
R
should be of unit order magnitude, meaning the magnitude of Ξ

should decrease approximately in proportion with the decrease in the distance R from

the optimum in the n−1 dimensional unconstrained space. Approaching the optimum

point implies that R→ 0, yet neither term of Ξ does so on its own. In order for rates

of decrease to remain proportional, the two terms of Ξ should be of approximately

equal magnitude and opposite sign. Since changes in α are already determined by the

method of multipliers update rule, this implies in particular that changes to ωg(x)

should be approximately proportional to 2a/b. Given that the constraint function is

linear, this is equivalent to desiring

ω ≈ 2a

b2
.

Although the explicit values of a and b are not available to the algorithm, the AL-ES

uses an update rule for the penalty coefficient that aims to approximate this value in

order to maintain balanced progress of the evolution strategy in both the constrained

and unconstrained subspaces.

4.4.2 Single-step analysis for multimembered ES

This analysis can be extended to problems with multiple constraints and applied to

evolution strategies beyond the (1 + 1)-ES. Multirecombinative evolution strategies
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were analyzed on conical feasible regions by Porter and Arnold [92], and predicted

behaviour was shown to match well with experimental results under certain assump-

tions. In two dimensions, these conical feasible regions align with the narrow feasible

regions discussed in Section 5.2, and have a similar structure in higher dimensions.

As in both the analysis for conical constraints as well as in Section 4.4.1, it makes

sense to consider balanced progress of the evolution strategy in the constrained as

well as the unconstrained subspaces of the problem. For Lagrangian functions, this

can be expressed in terms of the complementary linear maps given by matrices P

and (I − P ), as defined in Eq. (B.3).

For a constrained problem with potentially multiple constraints, the single step equa-

tion for an evolution strategy operating on the augmented Lagrangian is given similar

to before by writing the function value for a selected centroid L(x + σẑ) = L(y) in

terms of the change in parameter values. Let R be the distance from the optimum

in the unconstrained subspace of Rn and normalize the step-size as σ∗ = σn/R. By

assuming σ∗ approaches a stationary value and taking a second-order Taylor expan-

sion of Lω for the next selected step y = x + σẑ around the current centroid x, we

have the single-step equation given by

Lω(y) = Lω(x) + (y − x)T · ∇xLω(x) + (y − x)T · ∇2
xx
Lω(x) · (y − x)

= Lω(x) +
σ∗R

n
ẑT · ∇xLω(x) +

σ∗R

n
ẑT · ∇2

xx
Lω(x) ·

σ∗R

n
ẑ

= Lω(x) +
σ∗R2

n

[
ẑT · ∇xLω(x)

R
+
σ∗

n
ẑT · ∇2

xx
Lω(x) · ẑ

]

. (4.20)

For the evolution strategy to improve in this iteration, we require Lω(y) ≤ Lω(x),

implying the bracketed term in the last line of Eq. (4.20) needs to evaluate to a

negative value. In the situation where the Hessian of the Lagrangian Lω is positive-

definite, then the second half of the bracketed term will always be positive. The

elements of ẑT are equivalent to those drawn from a weighted sum of standard normal

variables, and these determine the sign of the first half of the bracketed term. Note

that if we let Ξ = ∇xLω, then Eq. (4.20) is similar to Eq. (4.19) given for the simpler

case of one linear constraint on the sphere.

We claimed in the introduction of Section 4.4 that a generalization of the single-step
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analysis for multiple constraints would lead to a new update rule for α, and we arrive

at this update now.

Multiplier update for ordinary Lagrangian

Consider the single step equation of Eq. (4.20) in the context of the ordinary La-

grangian in Eq. (4.17). In order to separately consider the progress of the evolution

strategy in the constrained and unconstrained subspaces, we can use the orthogonal

decomposition of ∇xL0 by projection matrices as given in Eq. (B.3) so that

∇xL0 = P · (∇xf +∇xg ·α) + (I − P ) · (∇xf +∇xg ·α)

= (P · ∇xf + Jα) + (I − P ) · ∇xf

= J
(
J+∇xf +α

)
+ (I − P ) · ∇xf,

where the second line follows by recalling that ∇xg = J is the Jacobian, and this is

unaffected by the projection matrix P so that PJα = Jα. Using this decomposition

in Eq. (4.20), we can write the first half of the bracketed term as

ẑT · ∇xL0(x)

R
= ẑT

( 1

R
(P · ∇xf + Jα) +

1

R
(I − P ) · ∇xf

)

(4.21)

= ẑT
( 1

R
J
(
J+∇xf +α

)
+

1

R
(I − P ) · ∇xf

)

.

Since R measures the distance from the optimum in the unconstrained space, then

R→ 0 as ‖(I − P ) · ∇xf‖ → 0, and in particular

1

R
‖(I − P ) · ∇xf‖

is of approximately unit order of magnitude as the optimum is approached. In order

for the evolution strategy to make balanced progress then, the term

J
(
J+∇xf +α

)

must go to zero along with R so that

1

R
J
(
J+∇xf +α

)
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has an approximately unit order of magnitude. In order for the two inner terms

to progressively cancel out as the optimum is approached, we must have α ≈ −J+ ·
∇xf(x). The same result is reached by using the first-order condition that∇xL0(x) =

0 to give

0 = ∇xf(x) +∇xg(x) ·α
= J+ · ∇xf(x) + J+J ·α
= J+ · ∇xf(x) +α, (4.22)

where the second line follows by multiplying through by the pseudo-inverse J+ of the

Jacobian of g.

4.4.3 Derivation from inexact solutions

Similar conclusions were reached by Miele et al. [87], Haarhoff and Buys [49], and

Buys [30], and highlighted by Bertsekas [26], in the context of numerical optimiza-

tion routines achieving inexact solutions. Rather than expending extra calculations

precisely solving for x(α(k)) for a given α(k), the idea is to allow points x(k) that are

close to stationary within some bounds, say ||∇Lω(x
(k),α(k))|| < ǫ, yet for which the

method of multipliers can still proceed.

Recalling that a local minimum requires a point where the derivative of the ordinary

Lagrangian L0 is zero with respect to α, we can construct the quadratic function

Q(x,α) = (∇xL0)
T(∇xL0)

= (∇xf +∇xg ·α)T (∇xf +∇xg ·α)

that measures the “error” in estimation of the optimum, and which will obviously

equal 0 with α = α∗, x = x∗ by Theorem B.6. Taking the derivative of this function

with respect to α and solving gives

2∇xg
T∇xf + 2∇xg

T∇xg ·α = 0

α = −
(
∇xg

T∇xg
)−1∇xg

T · ∇xf. (4.23)
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Note that this expression matches the one given in Eq. (4.22). If the solution is exact,

then both ||∇Lω(x
(k),α(k))|| = 0 and x(k) = x(α(k)), and Eq. (4.23) then reduces to

the usual multiplier update of Eq (3.6). However, when the solution x(k) only satisfies

the stationary condition ||∇Lω(x
(k),α(k))|| within the ǫ > 0 bound, the usual proce-

dure for the method of multipliers is no longer appropriate. In this case, Eq. (4.23)

gives the proper correction to the multiplier update.

4.4.4 Summary and resulting exact Lagrangian

From the above discussion, we have arrived at an ordinary Lagrangian given by

L0(x) = f(x) +
(

−
(
∇xg

T∇xg
)−1∇xg

T · ∇xf
)T

g(x) (4.24)

which combines Eq. (4.17) and update step Eq. (4.23) into a single expression. De-

spite having eliminated the penalty coefficient ω, Eq. (4.22) suggests the Lagrangian

function will be modified such that the ES can make balanced progress, and Eq. (4.23)

suggests that α will be a good approximation to the optimal Lagrange multipliers.

There is no augmenting penalty term, but for fully convex problems we might ex-

pect this approach to suffice; however, this may not be the case. As noted by both

Fletcher [43] and Bertsekas [27], if we consider a problem defined with quadratic ob-

jective function f having Hessian A and linear constraints g with Jacobian ∇xg = J ,

then the Hessian of the ordinary Lagrangian in Eq. (4.24) can be written as

∇2
xx
L0 = A−AJ(JTJ)−1JT − J(JTJ)−1JTA

= A (I − P )− PA

= (I − P )A(I − P )− PAP

where the last line follows by using the definition of Eq. (B.3) and then completing

the square with respect to (I − P ). This shows that the Hessian of the ordinary

Lagrangian has the same curvature as the objective f in the unconstrained directions,

but opposite curvature in the subspace spanned by the constraint normals. Therefore,

setting α according to Eq. (4.23) will give a Lagrangian function with an appropriate
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unconstrained minimum if and only if the curvature of f is negative exactly in the

directions of the constraint normals and positive elsewhere. In the simplest case of

minimizing on the sphere with linear constraints, as with many other convex problems,

this is obviously not the case.

The solution is to once again include an augmenting penalty term, and doing so

results in Eq. (3.14) and the subsequent exact Lagrangian method of Section 3.2.

The penalty term ω is once again responsible for ensuring locally positive curvature,

but now in a different way. While the penalty term (and thus the step size of the

multiplier update) needed to increase for the method of multipliers and related AL-ES

approaches of Section 4.2 in order to balance against less positive curvature of f in

the directions of the constraint normals, the penalty term for the exact Lagrangian

method needs to increase in order to balance against more positive curvature of f in

those same directions.

An instructive visualization of this effect is given in Figure 4.1 for the TR2 sphere

problem having objective function f(x) = xTx (blue contour lines) and both the

infeasible region (shaded grey) and constraint boundary (dashed lines) for the linear

inequality constraint 2 − x1 − x2 ≤ 0. The exact Lagrangian defines α(x) in terms

of position x in the search space, so the only parameter is ω. Shaded contour regions

are given for three exact Lagrangian functions φ(x) when using a roughly appropri-

ate value of ω = 2 (top right), a value of ω = 2 · 10−2 that is comparatively very

small (bottom left), and a value of ω = 2 · 102 that is very large. For the roughly

appropriate value, the contours for the exact Lagrangian are similar to the circles

seen for f(x) and have a minimum corresponding with the constrained optimum at

x∗ = [1, 1]. When the value of ω is very small, it is insufficient to maintain posi-

tive curvature in the directions of the positive and negative constraint normals, and

the constrained optimum becomes a saddle point for φ(x). When the value of ω is

very large, the curvature is locally positive and the minimum again corresponds with

the constrained optimum but with increased ill-conditioning in φ(x). Compare with

Figure 1.2 which shows the same effects on changing parameters for the augmented

Lagrangian Lω(x, α).
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Figure 4.1: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with inequality constraint g(x) = 2 − x1 − x2 ≤ 0. Top left: objective and
constraint functions given with the infeasible region shaded. Top right: contour
regions for φ(x) with ω = 2. Bottom left: contour regions for φ(x) with ω = 2 · 10−2.
Bottom right: contour regions for φ(x) with ω = 2 · 102. The constrained optimum
is marked throughout at x∗ = [1, 1].



Chapter 5

Experimental evaluation

This chapter evaluates the proposed exact Lagrangian evolution strategy (EL-ES) by

comparing its performance with that of existing constraint-handling methods using

data collected experimentally. Comparisons are split into three main problem sets,

consisting first of archetypal problems formed by combining sphere and ellipsoid ob-

jective functions with linear constraints, followed by a selection of commonly used

constrained optimization benchmark problems from the literature, and finally using a

recently proposed scalable benchmark problem with multiple linear constraints. We

will demonstrate by these results that the EL-ES outperforms the augmented La-

grangian approach (AL-ES) on all problems considered. The improvement resulting

from using the exact Lagrangian approach is also significant enough that the EL-ES

(without CMA) will be seen to outperform the AL-CMA-ES on a majority of the

selected problems while still being closely competitive on the others.

Section 5.1 introduces experimental criteria that will be used for evaluating the per-

formance of the different algorithms. Certain concerns are highlighted with how best

to make comparisons between approaches. Importantly, we summarize the concept of

an empirical cumulative distribution function (ECDF) that will be used to plot and

visually compare performance results throughout this chapter, including how target

sets are defined and evaluated against multiple runs on a chosen problem.

In Section 5.2, spherical and ellipsoidal objective functions are combined with linear

constraints and evaluated against. The particular case of a sphere with constraints

that form a narrow feasible region (NFR) highlights a situation found difficult by

AL-ES implementations, even when including CMA. Linear constraints of random

orientation are also considered, generated in such a way that each constraint will be

active and have a positive Lagrange multiplier.

89
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In Section 5.3, benchmark problems from the literature are selected and used to

demonstrate that the EL-ES is also applicable to problems with various combina-

tions of linear and non-linear features. As these problems are all commonly used to

benchmark the performance of constrained optimization algorithms, this places the

EL-ES among a variety of published results.

In Section 5.4, the linear Rotated Klee-Minty problem is considered which is scalable

in both dimension and number of linear constraints. Performance comparisons are

made between the EL-ES and AL-CMA-ES as previously described and the ǫMA-ES

and lcCMSA-ES. Both of the latter algorithms have published competitive results

when comparing on the Rotated Klee-Minty problem as well as other problem sets,

and so serve as useful comparative benchmarks of performance for the Lagrangian

approaches.

5.1 Methods of comparison

Problem benchmarks such as those used in competitions from the IEEE Congress on

Evolutionary Computation (CEC) [77, 82, 129] aim to rank algorithms by comparing

solution quality under fixed budgets of function evaluations. The results can be diffi-

cult to compare and extrapolate [62], and Hansen et al. [55] argue that comparisons

on fixed budgets are not in general usefully interpretable: analyzing quantitative re-

lationships between quality indicators (such as observing that one metric is twice as

small as another) need not indicate a similar relationship between the algorithms used

to reach them. Instead, Hansen et al. advocate comparing the number of function

evaluations needed by each algorithm to reach a set of fixed targets. This approach

forms part of the Comparing Continuous Optimizers (COCO) benchmark [57].

An important method of comparison between algorithms for COCO relies on empiri-

cal cumulative distribution functions (ECDFs) that can be plotted as visualizations.

These are in turn a generalization of single-target data profiles [88], which aggregate

multiple runs of an algorithm and yield the proportion of those runs meeting a fixed

target on a specified optimization problem after an elapsed measure of runtime. Tar-

gets are usually chosen to be the distance from a known optimal value, and runtime is

typically measured in function evaluations or iteration count. Targets are evaluated
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against a chosen function used through the algorithm’s operation (such as the objec-

tive function), and are considered met if the value returned by the function does not

exceed the target value. Once a target is met, the entirety of the run is considered as

successfully meeting the target, and the associated runtime for a successful target is

the earliest runtime for which the target was met. A data profile, or equivalently a

single-target ECDF, therefore measures the experimental success rate on the chosen

target with respect to runtime. Plotting a single-target ECDF as a graph such as

in Figure 5.1, with runtime on the x-axis and proportion of successful runs on the

y-axis, gives a curve that visually represents the range of performance on the selected

problem: runs that meet the target with relatively few function evaluations form the

left portion of the curve, while runs that take relatively more function evaluations (in-

dicative of worst-case performance) form the right portion. With enough runs to give

a representative sample, the extremes of the curve are thus indicative of best-case and

worst-case performance respectively, with the slope of the curve correlating inversely

with variance in performance between successful runs. In the example given by Fig-

ure 5.1, the observed best-case performance is seen to correspond with meeting the

fixed target using fewer than 102.5 function evaluations, while worst-case performance

corresponds with taking just over 103.0 evaluations.

Figure 5.1: Example of a single-target ECDF plot showing proportion of successful
runs (y-axis) for a single algorithm with respect to function evaluations (x-axis) scaled
logarithmically.

It is straightforward to generalize this idea to runtime ECDFs for multiple targets by

yielding the proportion of a target set that has been met after an elapsed measure

of runtime across a set of runs on a problem. The target set constitutes a sequence

of fixed targets, usually of increasing difficulty. Evaluating a single run with respect

to a fixed runtime as in a single-target ECDF, the number of targets met from the

sequence is a measure of its performance. Extending this to evaluate across a set of
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R runs in aggregate with respect to a fixed runtime, if we write the target set T as

having size |T |, and |Ti| as being the count of targets met by the i-th run from the

set, then the proportion of met targets across all runs is expressed as the ratio

1

R

∑

i

|Ti|
|T | =

∑

i |Ti|
R · |T | .

This can be thought of as the average proportion of targets achieved across all R runs,

or as the total number of targets achieved from within the total set of |T | ·R targets

as considered across all runs. Plotting an ECDF for multiple targets as a graph with

runtime on the x-axis and proportion of met targets on the y-axis gives a curve that

represents algorithm performance in a manner analogous to that of the single-target

data profile: the left portion of the curve indicates performance on easier targets, the

right portion indicates performance on more difficult targets, and the slope correlates

inversely with variance in convergence speed between targets.

Generating ECDFs for constrained optimization problems introduces extra complex-

ity, since targets can then reasonably be defined for the objective function as well

as for each of the constraints. It is therefore necessary to either consider target sets

separately for constraints and objective, or else combine them in a way that gives

meaningful results.

5.1.1 Target definitions

The latest COCO benchmark for single-objective constrained optimization recom-

mends1 the use of 41 targets defined as ti = f(x∗) + 10ei with exponents ei evenly

distributed in the closed interval [2,−6]. For a constrained optimization problem

(GCP), these are evaluated against the combined function

f̃(x) = max[f(x∗), f(x)] +
m∑

i=0

max[0, gi(x)] (5.1)

so that a run is successful on target ti in iteration k if f̃(x(k)) ≤ ti. This addi-

tively combines a measure of success for the objective function with a measure of

1Taken from the COCO outline for bbob-constrained at http://numbbo.github.io/coco-doc/
bbob-constrained/, retrieved Apr 25, 2022.
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feasibility.

A related approach is used by Hellwig et al. [63] and Spettel et al. [117] that instead

defines targets separately for objective and constraints. Respectively, these are two

sequences of values defined as

tfi = f(x∗) + 10ei , tgj = g(x∗) + 10ej (5.2)

with distinct exponents evenly distributed in the closed intervals ei ∈ [0,−8] for tfi
and ej ∈ [2,−6] for tgj . The set of constraint targets additionally contains the value 0.

The objective targets are simply evaluated against f(x) while the constraint targets

are evaluated against the sum of violated constraints

gΣ(x) =
m∑

i=0

max[0, gi(x)]. (5.3)

A run is therefore successful in its k-th iteration on the i-th f -target if f(x(k)) ≤ tfi

and successful on the j-th g-target if gΣ(x
(k)) ≤ tgj . The runtime for a successful run

is measured as number of function evaluations consumed by the algorithm, either for

f or g, up to the first successful iteration.

Both of these approaches have their drawbacks. The sum defined in Eq. (5.1) and

used by COCO obfuscates the distinction between convergence to the feasible region

and convergence to the optimal objective function value. The use of Eq. (5.3) can

also be problematic, both because it may contain spurious information (a constraint

being violated which is inactive at the optimum may be an irrelevant feature of an

algorithm’s progress towards that optimum) and because its information is “lossy”

(initialization within, or a single step made into, the feasible region is enough to

universally satisfy all g-targets for the remainder of a run). Recall that the runtime

for a target is evaluated according to the first iteration in which that target is met,

so that if gΣ(x
(k)) = 0 in iteration k, then clearly gΣ(x

(k)) ≤ tgj will also be satisfied

for all j indexing the g-target set.

I propose an alternative to address these concerns, which is to instead define the (ℓ1)



94

active constraint distance

gA(x) =
∑

i∈A
|gi(x)| (5.4)

as the sum of absolute values of constraint function values gi(x) limited to those in-

dexed by the optimal active set A. When used to evaluate against a set of g-targets

near the optimum, Eq. (5.4) approaches the same value as Eq. (5.3), and using either

equation there is equivalently appropriate. However, for evaluating g-targets farther

from the optimum, the active constraint distance gives a more meaningful value that

is not strictly a measure of feasibility. In particular, algorithms are not rewarded for

remaining feasible with respect to constraints that become irrelevant in a neighbour-

hood of the optimum. One possible drawback with this alternative is that the active

constraint distance becomes a meaningless measure if there are no constraints active

at the optimum; however, this situation is not a common test case.

5.1.2 Staggered ECDFs

Considering separate target sets on even a moderate number of problems can lead to

ECDF plots that contain all of the relevant information, but are difficult to interpret

quickly. As an alternative, I will primarily use staggered ECDFs that visually repre-

sent combined performance by showing success on the full set of f -targets together

with one of two fixed g-target values. An example is given in Figure 5.2 with the

proportion of met targets plotted against the count of (f + g) evaluations. Runs on

the first target set (shown in solid lines) are considered successful on the i-th target

if both f(x) ≤ tfi and gΣ ≤ 100 are satisfied, while runs on the second target set

(shown in dashed lines) are considered successful on the i-th target if both f(x) ≤ tfi

and gΣ ≤ 10−6 are satisfied. By using fixed g-targets staggered at roughly opposing

edges of the difficulty range, a clear picture is given for the two extremes of algorithm

performance while sacrificing minimal detail.

Additional figures beyond the staggered ECDFs show progress on the full range of

f -targets and the full range of g-targets. As in the example given by Figure 5.3, these

regular ECDF plots are grouped together by problem and arranged into pairs of rows
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Figure 5.2: Example of a staggered ECDF plot containing a single pair of curves for
the targets met by one algorithm.

representing the proportion of successful f -targets plotted against the count of f -

evaluations (top) and successful g-targets plotted against the count of g-evaluations

(bottom). The horizontal axes are shared across plots for the same problem and

aligned to allow comparisons between plots for f - and g-targets. In the example

figure, one pair of rows is given, labeled for the TR2 sphere problem.

Figure 5.3: Example of ECDF plots paired vertically by problem (indicated by the
label) showing f -evals vs. f -targets (top plot of pair) and g-evals vs. g-targets (bottom
plot of pair).

5.2 Spheres and ellipsoids

Spheres and ellipsoids constitute a class of functions with search space features that

are relatively simple to describe. In n-dimensional space, these can be parameterized
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as the sphere function

fsph(x) = a ·
n∑

i=1

x2i (5.5)

with single coefficient a, and generalized to the axis-aligned ellipsoid function

fgen(x) =
n∑

i=1

aix
2
i (5.6)

with n coefficients ai not all equal. Common examples of the latter with single

parameters ξ > 1 include the discus function

fdis(x) = ξx21 +
n∑

i=2

x2i

and cigar function

fcig(x) = x21 + ξ

n∑

i=2

x2i ,

while an ellipsoid with varying parameters is

fell(x) =
n∑

i=1

ξ(
i−1
n−1)x2i . (5.7)

It will be noted that each of these objective functions as given are highly separable, in

that the optimal value of the i-th coordinate does not depend on the chosen values for

other coordinates. However, the selected algorithms to be evaluated are all addition-

ally invariant to rotations of the coordinate system, so the results will be unaffected.

Adding linear constraints to any of these functions gives a simple constrained op-

timization problem, and different variations have been used to evaluate augmented

Lagrangian ES approaches both without [14, 16, 18] CMA and with [17, 38].

5.2.1 Fixed constraints

It is argued by Arnold and Porter [14] that any effective constraint-handling technique

for evolution strategies should necessarily be able to achieve log-linear convergence on
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convex quadratic problems subject to a single constraint. In this section, we demon-

strate that this is a feature of the EL-ES by performing experimental comparisons on a

sphere and moderately conditioned ellipsoid. Using these problems has the additional

benefit of allowing comparisons with other published results for evolution strategies

in the literature. We further consider a specially constructed type of linearly con-

strained sphere with two constraints that form a narrow feasible region (NFR) and

show that this type of problem poses difficulties for existing AL-ES implementations,

even when using CMA, but on which the EL-ES is able to converge effectively to the

optimum.

To begin, a set of problems is generated by combining objective functions with fixed

constraints, resulting in multiple instances of ICPs. Both the unit sphere func-

tion

fsph =
n∑

i=1

x2i

and ellipsoid function fell as in Eq. (5.7) are used, with ξ = 10 giving moderate

conditioning for the ellipsoid. In both problems, a single linear inequality constraint

function

g1(x) = bT1 x+ c1 ≤ 0

is used with b1 = −[1, 0] and c1 = 1. Thus the constraint boundary is orthogonal

to the x1 axis, and the optimal point is located at x∗ = [1, 0]. With respect to the

isotropic sphere function fsph, this is equivalent (up to a rotation and shift of the

constraint boundary, centered on the origin) to the TR2 sphere problem introduced

by Kramer and Schwefel [72] and used by both Arnold and Hansen [6] and Dufossé and

Hansen [38], for which b1 = −[1, 1] and c1 = 2 with optimal point at x∗ = [1, 1].

To highlight performance on a problem found difficult by the standard AL-ES, an

additional sphere problem for m = 2 is constructed with a narrow feasible region

(NFR). The first constraint is fixed using g1 as above, and the second constraint gen-

erated by negating the normal vector b1 then rotating by −1
100

-th of a right angle about

the origin; equivalently, rotating b1 by π
(
1− 1

200

)
radians. The resulting constraint



98

normal vectors are

b1 =

[

−1
0

]

, b2 = −
[

cos
(
π
(
1− 1

200

))

sin
(
π
(
1− 1

200

))

]

defining constraint functions

g1(x) = bT1 x+ c1 ≤ 0

g2(x) = bT2 x+ c2 ≤ 0

with c1 = c2 = 1. Note that both constraints are active at the optimum with non-zero

Lagrange multipliers.

Figures 5.4 and 5.5 give visualizations of the NFR sphere problem, with scaled axes

to highlight relevant details, using both augmented and exact Lagrangians. The

plots display contours of the objective function f(x) (blue lines) as well as both

the infeasible region (shaded grey) and constraint boundaries (dashed lines) for the

two inequality constraints. Shaded contour regions are given for three augmented

Lagrangian functions in Figure 5.4 defined by using the optimal α∗ and unit ω = 1

(top right), by increasing the penalty coefficient ω by a factor of 20 (bottom left),

and by increasing the Lagrange multipliers α by a factor of 20 (bottom right).

For optimal α and unit ω, the resulting augmented Lagrangian is well-conditioned

and its unconstrained minimum corresponds with the constrained optimum at x∗ ≈
[1, 127.321]. However, as ω increases the ill-conditioning also significantly increases,

and non-optimal values for α move the unconstrained minimum far from the con-

strained optimum. Perturbations in either of these Lagrangian parameters will have

significant impacts on the underlying augmented Lagrangian.

Similar shaded contour regions are given in Figure 5.5 for three exact Lagrangian

functions defined by using ω = 2 (top right), smaller ω = 2 · 10−2 (bottom left),

and larger ω = 2 · 102 (bottom right). The values ω = 2 and ω = 2 · 102 both give

exact Lagrangians with almost no ill-conditioning (compare also with Figure C.2 in

the appendix, which uses equal scaling for both axes) and an unconstrained minimum

corresponding to the constrained optimum x∗. The value of ω = 2 · 10−2 however is
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Figure 5.4: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for Lω(x,α) with
α = α∗, ω = 1. Bottom left: contour regions for Lω(x,α) with α = α∗, ω = 20.
Bottom right: contour regions for Lω(x,α) with α = 20α∗, ω = 1. The constrained
optimum is marked throughout at x∗ ≈ [1, 127.321]. Figure C.1 gives a similar version
with equal axis scaling.

not large enough to ensure locally positive curvature, and the resulting Lagrangian

has an unconstrained maximum at x∗.

With simple, convex quadratic objective functions and linear constraints all active,

each of the sphere, ellipsoid, and NFR problems as given above can be described

entirely by their respective Hessian and Jacobian matricesH and J , and the objective
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Figure 5.5: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for φ(x) with
ω = 2. Bottom left: contour regions for φ(x) with ω = 2 · 10−2. Bottom right:
contour regions for φ(x) with ω = 2 · 102. The constrained optimum is marked
throughout at x∗ ≈ [1, 127.321]. Figure C.2 gives a similar version with equal axis
scaling.

and constraint functions can be written as

f(x) =
1

2
xTHx,

g(x) = JTx+ c ≤ 0. (5.8)

By combining these definitions with the first-order necessary conditions given in

Eqs. (B.15) and (B.16), we can give analytic descriptions of the optimal KKT pair
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as

x∗ = −H−1J ·
(
JTH−1J

)−1 · c,
α∗ =

(
JTH−1J

)−1 · c
= −

(
JTH−1J

)−1
JTx∗

= −J+Hx∗.

The equivalence of the last line for α∗ follows either by using identities given by

Fletcher [43] for deriving the optimal KKT pair for the method of multipliers, or by

relying on the identity

(
JTH−1J

)−1
=
(
J+H(JT)+

)

which can be verified through explicit calculation.

Experimental results

These three problems consisting of the m = 1 sphere, m = 1 ellipsoid, and m = 2

NFR sphere are experimentally tested with problem dimensions of both n = 2 and

n = 20, creating six problems in total. To begin with, the problems are used as defined

and with no modifications, then later in Section 5.2.1 variations are considered with

changes to the scaling between the objective and constraint functions.

Data sets are generated for each problem by performing 25 runs on each of four al-

gorithms. The aCMA-ES [6] is a (1 + 1) evolution strategy that uses a covariance

matrix for generating offspring which is actively updated away from constraint vio-

lations. The AL-ES is a (µ/µW , λ) evolution strategy that follows the outline given

in Section 4.2 and otherwise implements Algorithm 2.2, which is the implementation

given by Atamna et al. [18, 19] using parameter settings suggested by Dufossé and

Hansen [38]. The AL-CMA-ES is also a (µ/µW , λ)-ES, but with CMA used in-

stead for offspring generation following the outline and parameter recommendations

of Section 4.2 and otherwise implementing Algorithm 2.3. Duffosé and Hansen [38]

apply surrogate modeling to an augmented Lagrangian approach with CMA-ES, and
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additionally implement AL-CMA-ES without surrogate modeling in order to inves-

tigate improved parameter settings. Their implementation of AL-CMA-ES without

surrogate modeling largely matches the implementation given in Algorithm 2.3.

Population parameters for each algorithm are set according to Eq. (2.11). Offspring

weights are generated numerically for AL-ES according to the recommendations of

Arnold [7, 8] for infinite-dimensional spheres, matching the implementation of Atamna

et al., while the AL-CMA-ES uses the default weights (including negative weights)

recommended for CMA-ES, matching the implementation of Dufossé and Hansen.

Finally, the EL-ES is the exact Lagrangian approach proposed in Section 4.3. Other

than the EL-ES, the performance of each chosen algorithm has been previously studied

on either or both of the m = 1 sphere and ellipsoid problems, providing a point of

comparison with results in the literature.

Runs are terminated only when f(x) and gA(x) are both within 1.0e-8 of optimum

values, given by f(x∗) and gA(x
∗) = 0, respectively. Starting points are initialized

randomly using coordinates drawn uniformly from the interval [−10, 10], with the

exception of the aCMA-ES which requires a feasible starting point. In order to

accommodate a reasonable comparison, a set of feasible points is generated for each

problem in a pre-processing step similar to [38] by using CMA-ES to minimize the

sum of constraint violations function gΣ(x) in a series of 200 runs. The result is a set

of 200 feasible points within the search space for each problem and an associated count

of g-evaluations used to find each point. This set is then sampled from uniformly at

random in order to initialize each run of the aCMA-ES, and the count of g-evaluations

is initialized to the number used to locate the feasible starting point.

Runtimes throughout are measured as evaluation counts for the objective function f

or constraint function g, or as a sum of both; these are referred to respectively as f , g,

and (f + g) evaluations (or evals). In the given ECDF plots, the base-10 logarithm of

the count of function evaluations is used as the unit for the x-axes. On all problems,

only a single constraint evaluation is considered needed to return gi(x) for all i.

Convergence plots are given in Figure 5.6 showing the distance ‖x − x∗‖ from the

constrained optimum and in Figure 5.7 showing the step size σ for all algorithms, both



103

Figure 5.6: Convergence plots showing distance ‖x− x∗‖ from the constrained opti-
mum with respect to the first 3.5 × 104 (f + g)-evals for median runs from each of
four algorithms. The x-axes are scaled to present as much detail as possible without
obscuring relevant data points.

Figure 5.7: Convergence plots showing step size σ with respect to the first 3.5× 104

(f + g)-evals for median runs from each of four algorithms. The x-axes are scaled to
present as much detail as possible without obscuring relevant data points.
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plotted against the total number of (f + g) function evaluations. Figure 5.8 addition-

ally shows the normalized distance ‖α−α∗‖/‖α∗‖ between the current approximation

of α and the optimal Lagrange multiplier vector α∗ for the three Lagrangian methods.

Each of the plots is generated from median runs of the corresponding 25 runs set, and

displays behaviour only across the first 3.5 × 104 total function evaluations in order

to highlight relevant details. The problems on the NFR sphere are made evident, in

particular for AL-ES and AL-CMA-ES on the n = 2 variant in Figures 5.7 where

the adapted step sizes are erratic and far too large. After an initialization period

for each problem in Figure 5.8, all three Lagrangian algorithms appear to exhibit

log-linear convergence of the Lagrange multiplier vector on the m = 1 sphere and

ellipsoids problems. The EL-ES appears to converge with slightly fewer overall func-

tion evaluations compared to the other two algorithms. This difference is much more

pronounced for the NFR spheres, where the EL-ES convergence is notably faster, and

the AL-ES approximation is seen to be overall very poor. Both the AL-CMA-ES and

EL-ES also appear to enter a final period of oscillation with no further improvements

near the end of these runs on the NFR sphere.

Figure 5.8: Convergence plots showing distance ‖α − α∗‖/‖α∗‖ from the optimal
Lagrange multiplier vector with respect to the first 3.5× 104 (f + g)-evals for median
runs from the three Lagrangian methods. The x-axes are scaled to present as much
detail as possible without obscuring relevant data points.

In order to generate ECDF data for the same six problems, target sets are fixed

according to Eq. (5.2) with f -target and g-target values evenly logarithmically spaced
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in the closed intervals [100, 10−8] and [102, 10−6], respectively. The function gA defined

in Eq. (5.4) is used to evaluate against g-targets. Note that the termination condition

used for this data set is more strict than any in the target sets, thus ensuring each

algorithm is permitted to succeed on as many targets as it is able.

Figure 5.9: ECDF plots showing (f + g)-evals vs. f -targets for fixed g-target 100

(solid lines) and fixed g-target 10−6 (dashed lines). The x-axes are scaled to present
as much detail as possible without obscuring data points.

Plots are given for each problem in Figure 5.9 representing combined performance

using staggered ECDFs as described in Section 5.1.2. In these curves, the poor

performance of AL-ES on the NFR spheres is made apparent; for the n = 2 case, fewer

than 20% of the targets are reached. The NFR spheres in both dimensions also show

the largest differences in performance overall, with the EL-ES converging significantly

faster than either of AL-CMA-ES or AL-ES, and AL-CMA-ES even failing to reach

all targets for the n = 2 case. For n = 20, EL-ES also out-performs the aCMA-ES

on some targets. Across all m = 1 problems, the performance is roughly equivalent

between AL-CMA-ES and EL-ES, with a small advantage for AL-CMA-ES when

n = 2 and a small advantage for EL-ES when n = 20. This may be explained by the

EL-ES requiring one additional f evaluation per iteration; both approaches evaluate

f(y
(k)
i ) for the λ offspring in the k-th iteration, however only the EL-ES needs to

additionally evaluate f(x(k)) while approximating α(k+1).

Additional ECDF plots are given in Figure C.3 of Appendix C that separately show
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progress on the full range of f - and g-targets. On the NFR sphere, the difference in

performance between aCMA-ES and EL-ES on n = 2 versus n = 20 can be attributed

to the performance on f -targets, as the g-target plots are almost identical for both

dimensions.

Overall, the EL-ES is at least a close competitor throughout to the AL-CMA-ES, and

draws roughly even with the aCMA-ES performance on some measures, in spite of not

using CMA for generating offspring. Specifically on the NFR problems, the EL-ES

appears to be the clearly superior choice; the aCMA-ES has better performance in

smaller dimensions, but this advantage appears to decrease markedly with increasing

dimensionality of the problem. The ability of the EL-ES to deal with narrow feasible

regions is due in part to the construction of its Lagrange multiplier, which accounts

for both the magnitudes of and correlations between the various constraints. For the

approaches based on AL-ES, the NFR sphere problems result in both increased ill-

conditioning for the Lagrangian functions as well as increased difficulty in converging

to an optimal Lagrange multiplier, and these issues are only partly addressed by the

addition of CMA.

Experimental results with varied scaling

The linearly constrained spheres of Section 5.2.1 involve objective and constraint func-

tions with equal scaling, in the sense that both the magnitudes of the constraints’

normal vectors and the eigenvalues of 1
2
H from Eq. (5.8) are equal to one. For the

linearly constrained ellipsoids, the eigenvalues of 1
2
H vary because of the parameter

ξ, but the smallest eigenvalue is still equal to one. In order to observe the algo-

rithms’ behaviour on problems with different scaling factors between the objective

and constraint functions, two new problem sets are considered with increased objec-

tive function scaling (termed large A) and with increased constraint function scaling

(termed large B). Formally, the large A problems use coefficient A = 103 and re-define
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the sphere and ellipsoid functions as

fell(x) = A ·
n∑

i=1

ξ(
i−1
n−1)x2i , (5.9)

fsph(x) = A ·
n∑

i=1

x2i

while the large B problems set B = 103 and re-define the constraint functions as

gi(x) = B · bTi x+ ci ≤ 0. (5.10)

In both variations, only the related scaling factor is changed, and no other aspects of

the problem definitions are modified.

Large B scaling

The methodology for generating data for the large B problem variants is the same

as in Section 5.2.1, except the six problem sets use the updated constraint function

definitions of Eq. (5.10). Figure 5.10 gives convergence plots for the distance ‖x−x∗‖,
while additional Figures C.4 - C.5 in Appendix C give convergence plots for the step

size σ and normalized distance ‖α−α∗‖/‖α∗‖. As before, each plot is with respect

to the total number of (f + g) function evaluations consumed by median runs of the

corresponding 25 runs set, and truncated to the first 3.5× 104 evaluations to ensure

relevant details are visible.

As with the unit scaled problems, the performance of all four algorithms exhibits

varying degrees of log-linear convergence on the m = 1 problems. On these median

runs, the most significant differences are again on the NFR spheres, with AL-ES in

particular showing erratic step size adaptation and poor convergence towards the

optimum. Convergence to the optimal Lagrange multiplier by the EL-ES is also

notably faster for the NFR spheres.

Figure 5.11 gives staggered ECDFs for the large B variants. Performance on the

m = 1 sphere and ellipsoid problems gives a similar overall ranking of the algorithms

as in Section 5.2.1, with the EL-ES drawing closer to the AL-ES performance on the
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Figure 5.10: Convergence plots showing distance ‖x − x∗‖ from the constrained
optimum with respect to the first 3.5 × 104 (f + g)-evals for median runs from each
of the four algorithms on large B variants. The x-axes are scaled to present as much
detail as possible without obscuring relevant data points.

Figure 5.11: ECDF plots showing (f + g)-evals vs. f -targets for fixed g-target 100

(solid lines) and fixed g-target 10−6 (dashed lines) on large B problem variants. The
x-axes are scaled to present as much detail as possible without obscuring data points.
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moderately conditioned ellipsoids. As with the unit-scaled problems, the aCMA-ES

is overall superior. However, on the m = 2 large B NFR sphere problems, the EL-ES

is superior to both of the other Lagrangian methods, with the AL-ES failing to meet

all f -targets even with the easiest staggered g-target.

Additional ECDF plots are given in Figure C.6 of Appendix C that show progress on

the separate f - and g-targets for the large B problem variants, similar to Figure C.3.

For the m = 2 NFR spheres in particular, the EL-ES is seen to be roughly equal in

performance to the aCMA-ES on g-targets and superior to the other two Lagrangian

methods on both target types.

Large A scaling

The methodology for generating data for the large A problem variants is the same

as in Section 5.2.1, except the six problem sets use the updated objective function

definitions of Eq. (5.9). Figure 5.12 gives convergence plots for the distance ‖x−x∗‖,
while additionally Figures C.7 - C.8 in Appendix C give convergence plots for the

step size σ and normalized distance ‖α − α∗‖/‖α∗‖. As before, each plot is with

respect to the total number of (f + g) function evaluations consumed by median runs

of the corresponding 25 runs set, and truncated to the first 3.5 × 104 evaluations to

ensure relevant details are visible

Roughly log-linear convergence is shown again by all of the algorithms’ median runs

on the m = 1 problems, while the NFR spheres are again problematic for the AL-

CMA-ES and especially the AL-ES. The flattening of the curves at the end of each

median run for the n = 20 NFR sphere appears to be a result of the limitations of

numerical accuracy caused by selecting both large A and larger n.

Staggered ECDF plots are shown in Figure 5.13 for the four algorithms evaluated

on the six large A problem sets. The aCMA-ES remains dominant on the four m =

1 problems, although by a more narrow margin than in either the unit scaled or

large B problem variants. The performance of the EL-ES and AL-CMA-ES is again

comparable on the m = 1 problems, with a slight advantage on the n = 2 sphere.

The advantage of the EL-ES is pronounced on the NFR sphere in both dimensions,
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Figure 5.12: Convergence plots showing distance ‖x − x∗‖ from the constrained
optimum with respect to the first 3.5 × 104 (f + g)-evals for median runs from each
of the four algorithms. The x-axes are scaled to present as much detail as possible
without obscuring relevant data points.

Figure 5.13: ECDF plots showing (f + g)-evals vs. f -targets for fixed g-target 100

(solid lines) and fixed g-target 10−6 (dashed lines) on large A problem variants. The
x-axes are scaled to present as much detail as possible without obscuring data points.
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with its performance even exceeding the aCMA-ES on some of the easier targets

with n = 20. Both the AL-ES and AL-CMA-ES struggle significantly on the two

NFR sphere problems, and for n = 2 neither are able to converge to all targets even

within 100 of feasible. Additional ECDF plots are given in Figure C.9 of Appendix C

showing progress on the separate f - and g-targets for the large A problem variants.

These highlight the difficulty of the augmented Lagrangian methods on meeting the

f -targets for the NFR spheres in particular.

Summary for fixed constraints

The EL-ES is seen to converge reliably on the eighteen problem variations tested

with fixed constraints (six each for unit, large B, and large A scaling), with mea-

sured performance on f - and g-targets generally close to that of the AL-CMA-ES

on single-constrained problems in spite of the use of CMA for improved offspring

generation. Convergence plots for these problems also show that the step size and

distance from optimum decrease log-linearly with respect to function evaluations, in

line with the other evolution strategies. The NFR sphere with two constraints is

seen to be a difficult problem for existing augmented Lagrangian methods; in some

contexts, they are not able to converge at all, even while using CMA. The EL-ES is

consistently successful on this problem however, and in larger dimensions is even able

to exceed the performance of the aCMA-ES. Convergence plots for the Lagrangian

methods demonstrate that the Lagrange multiplier approximations of the EL-ES can

be significantly more accurate after an equal number of function evaluations when

compared to either the AL-ES or AL-CMA-ES.

5.2.2 Random constraints

Fixed linear constraints as determined by the experimenter provide a valuable base-

line for performance, but do not accurately encompass the full range of possible

constraint combinations. One possibility for doing so is to construct a parameteriza-

tion for the constraints that allows their random generation in a reliable and unbiased

manner.
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Atamna et al. [18] generate constraints by means of normal vectors bi, where each

constraint function is linear and represented as

gi(x) = bTi x+ ci ≤ 0.

A fixed point x∗ is chosen to serve as the constrained optimum, then the constraint

normals are generated so that the selected point lies on the boundary of each feasible

region. The first constraint is always determined by setting b1 = −∇f(x∗) and

c1 = −∇f(x∗)Tx∗, giving a constraint that immediately satisfies the first-order KKT

condition of Eq. (B.11) with α1 = 1 and guarantees the chosen x∗ will be a constrained

optimum for convex f . Any additional constraints are then added by sampling from

a normal distribution N (0, I) to form additional vectors bi and setting the matching

ci = −bTi x∗ to maintain x∗ as the optimum. For each additional vector so constructed,

a simple check is performed to ensure that the point x∗ +∇f(x∗) remains feasible,

setting bi = −bi and ci = −ci if needed.

The result of this process is a set of linear constraints that are all active at the

optimum in the sense that all gi(x
∗) = 0, but for which only g1 has a nonzero

Lagrange multiplier. In the context of the complementary slackness condition in

Eq. (B.13), all constraints beyond the first one are weakly active. This construction

makes sense for the context in which it was originally used, but is a somewhat limited

problem formulation for testing a Lagrangian algorithm in that only a single Lagrange

multiplier ever needs to be approximated. The same method is also used by the

COCO benchmark for constrained optimization2, which does not evaluate algorithms

based on Lagrange multipliers. I propose an alternative here that duplicates desirable

features of the method used by Atamna et al. (such as fixing x∗ at a chosen point),

but ensures that each active constraint will have an associated positive Lagrange

multiplier.

Given a convex objective function f , the goal is to generate m ≤ n active linear

constraints with respect to a chosen point x∗ such that at that point:

2Taken from the COCO outline for bbob-constrained at http://numbbo.github.io/coco-doc/
bbob-constrained/, retrieved Apr 25, 2022.
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1. all constraints gi(x) = bTi x + ci have associated positive Lagrange multipliers

αi, and

2. the gradient ∇f(x∗) can be written as a linear combination of the constraint

normals ∇gi = bi using these αi.

These conditions together satisfy the KKT necessary conditions of Theorem B.6, and

since the functions are convex the conditions are in fact sufficient for x∗ to be a

constrained optimum of the ICP. These can equivalently be combined to require at

x∗ the lone condition that

1. the gradient ∇f(x∗) can be written as a linear combination of constraint nor-

mals using positive αi, and there is no proper subset of the constraint normals

for which this is also true.

This essentially excludes the possibility of any linear dependence between the con-

straint normals, as in the LICQ of Definition B.2. For any constraint gi with normal bi,

we will ensure ||bi|| = 1 by normalizing vectors as needed, and always set ci = −bTi x∗

so that x∗ lies on the boundary of the constraint as desired. It therefore suffices to

determine how the directions of the constraint normals should be generated.

To begin, sample independently from a normal distribution N (0, I) to create (m− 1)

random vectors bi constituting the constraint normal vectors, and normalize them to

be of unit length. This is equivalent to creating unit vectors from sampling (m − 1)

angles independently and uniformly from [0, 2π), corresponding with rotations about

the origin. Additionally, these vectors are linearly independent with probability 1

since the dimension n is strictly greater than (m−1). The final constraint normal bm

must then be chosen carefully so as to satisfy the first-order KKT condition Eq. (B.11).

This can be re-arranged to write

bm = a0(−∇f) +
m−1∑

i=1

ai(−bi)

in terms of positive scalars ai. With appropriate normalizations, this is equivalent
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to

bm =
1

a
·
m−1∑

i=1

[(zi)(−∇f) + (1− zi)(−bi)] (5.11)

where the zi lie in the open interval (0, 1), and a > 0 is simply a normalization constant

ensuring bm is a unit vector. Thus the final constraint normal bm can be generated

by sampling zi from the open uniform distribution U(0, 1) and then normalizing by

the resulting vector’s length to arrive at the value given in Eq. (5.11).

The result of this process is m vectors that satisfy the needed KKT condition: the

objective gradient can be written as a linear combination of the constraint normals

at the optimum using positive coefficients, which are the Lagrange multipliers. With

probability 1 they are linearly independent, and so no smaller subset of the bi could

be used to represent the gradient of f as a linear combination.

Figure 5.14: Visualized stages for generating two active linear constraints in n = 2.
Arrows correspond to vectors −∇f(x∗) (blue), −b1 (orange), and b2 (purple). The
line xT∇f(x∗) = 0 is given by a dotted line, while both constraint boundaries are
given by dashed lines and their infeasible regions shaded. Contour lines shown are
for the ellipsoid objective function f(x).

The process can be made clear through a simple example in n = 2 for generating m =
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2 active linear constraints. Let f be a convex quadratic function with unconstrained

minimum at the origin3 and x∗ = [10, 10] be the selected optimum. A visualization

of the resulting process is given in Figure 5.14. In order for the selected point x∗ =

[10, 10] to be the constrained optimum under linear constraints, all points superior to

x∗ with respect to f must end up in the infeasible region. The linear open boundary

of the region containing all those points with an objective function value smaller than

f(x∗) is given by xT∇f(x∗) = 0 (dotted blue lines in the figure), which is the line

orthogonal to the gradient ∇f at x∗ and tangent to the objective function f at x∗.

This line divides the plane into two half-planes, a feasible half-plane and an infeasible

half-plane, the latter of which includes the origin for our chosen f . Clearly, all points

in the infeasible half-plane must end up being infeasible under our constructed linear

constraints (or else there would be a feasible point y for which f(y) < f(x∗)) and the

feasible half-plane must end up being non-empty (or else there would be no feasible

solutions to f)4. After randomly generating the first constraint normal (left image

in the figure), the infeasible region associated with b1 is seen to cover only part of

the infeasible half-plane. The range of possible choices for the second constraint

normal is therefore restricted to the highlighted arc between the vectors −∇f(x∗)

and −b1, which visualizes the relationship given in Eq. (5.11). So long as the second

constraint normal is selected from within this range (right image in the figure), the

resulting infeasible region will encompass the remainder of the infeasible half-plane,

as desired.

Experimental results

By following the given random process for generating active constraints, problems

are created based on the n = 2 sphere with m = 2, and on the n = 10 sphere with

m = 2, 5, and 10. Data sets are generated for each selected combination of parameters

n and m by performing 100 runs using each of the four algorithms described in

Section 5.2.1. The larger number of runs is chosen to help account for the fact

that problem definitions will change between each run. In order to ensure a fair

3For this example, I specifically use fcig with ξ = 5, but for any other appropriate objective
function the process is the same.

4Taken together, these give the overall restriction that neither constraint normal bi can be equal
to either of ∇f(x∗) or −∇f(x∗), and this will be true with probability 1.
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comparison, each combination of parameters n and m is assigned a random seed that

is then used to generate in advance 100 constraint sets for all 100 runs, resulting

in each algorithm being given the same sequence of randomly-generated constraints

for each problem set. As in Section 5.2.1, target sets for the ECDFs rely on the

definition in Eq. (5.2) with f -target and g-target values evenly logarithmically spaced

in the closed intervals [100, 10−8] and [102, 10−6], respectively, and runtimes are again

measured as f -evals, g-evals, or (f + g)-evals, depending on the target set.

A run is terminated when f(x) and gA(x) are both within 10−8 of optimum values,

represented by f(x∗) and gA(x
∗) = 0, respectively, or when more than 105 total

(f+g) function evaluations have been used. It will be seen that convergence for these

problems typically occurs with not much more than 104 total function evaluations.

Starting points are initialized randomly using coordinates drawn independently and

uniformly from the interval [−10, 10]. To avoid the computational expense involved

in generating a full set of 200 feasible points for each of the 100 distinct problems

in each problem set, a smaller scale approach is instead undertaken for enabling the

aCMA-ES to have a feasible starting point. At the start of each run, a pre-processing

step uses the CMA-ES to minimize the sum of constraint violations gΣ(x) in a small

series of 15 runs. These runs are sorted by g-function evaluations and the median

entry is selected to serve as the starting point for the aCMA-ES algorithm. The

number of g-evals is also initialized to the number of evaluations used by the median

entry to locate the feasible point.

Staggered ECDF plots are given for each problem in Figure 5.15 representing com-

bined performance plotted against the sum of f - and g-evaluations. The interpretation

of the lines and staggered f - and g-targets is otherwise the same as in Figure 5.9,

where the TR2 sphere (n = 2,m = 1) serves as a point of performance comparison.

Despite only adding one additional constraint, the performance of each of the aCMA-

ES, AL-CMA-ES, and AL-ES algorithms is significantly degraded with the m = 2

random constraints, while the performance of the EL-ES is visually quite similar to

that seen in the previous m = 1 case of Figure 5.9. The EL-ES strictly dominates

the performance of the three other algorithms on the n = 10 sphere for both m = 5

and m = 10, and is closely competitive with the aCMA-ES for m = 2. As the only
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Figure 5.15: ECDF plots showing (f + g)-evals vs. f -targets for fixed g-target 100

(solid lines) and fixed g-target 10−6 (dashed lines) for randomly generated constraints
on n = 10 spheres. The x-axes are scaled to present as much detail as possible without
obscuring data points.

other non-CMA algorithm, AL-ES performs quite poorly across all problems.

Similar staggered ECDF plots for n = 20 spheres are presented in Figure 5.16 with

m = 2, 10, and 20. The process for generating 100 runs and other criteria are identical

to those used to generate Figure 5.15, and the single staggered plot for the n = 2,m =

2 random sphere is included again verbatim to facilitate comparison.

As in the case of the n = 10 spheres, the performance benefits of the Exact Lagrangian

approach appear to increase along with the number of constraints. The dimension

of the search space is now large enough that the EL-ES is superior to the aCMA-

ES in all cases, and is also strictly superior to both other Lagrangian approaches

throughout.

Additional plots for the separate f - and g- targets are given in Figures C.10 and C.11

for the n = 10 and n = 20 problems, respectively. The main advantages of EL-ES

over other algorithms is seen here to be due primarily to its performance with respect

to convergence on the g-targets, where it is strictly dominant over all other algorithms

for the most difficult 80% of the targets. In the plot for the AL-ES on the sphere

with n = 10 and m = 2, the associated line is almost invisible because only 11 of 25
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Figure 5.16: ECDF plots showing (f + g)-evals vs. f -targets for fixed g-target 100

(solid lines) and fixed g-target 10−6 (dashed lines) for randomly generated constraints
on n = 20 spheres. The x-axes are scaled to present as much detail as possible without
obscuring data points.

runs are recorded as able to reach even the first f -target (resulting in the proportion

of met targets being slightly under 0.9%) and none came closer than 10−1.

Summary for random constraints

The overall performance of the EL-ES on randomly generated active constraints is

seen to be notably superior to the two other Lagrangian methods tested. With

increasing constraint number, the performance of the EL-ES also appears to improve

relative to all other algorithms. On even a moderate n = 10 dimensional problem, the

EL-ES is able to out-perform the aCMA-ES with m = 5 and m = 10 constraints by

almost a factor of two with respect to total function evaluations. On the n = 20 sphere

problems, the superior performance of the Exact Lagrangian approach is evident

across all chosen numbers of constraints.

5.3 Benchmarks from the literature

To exhibit broader applicability of the proposed Exact Lagrangian algorithm, it is

necessary to compare performance against other algorithms in the literature. A set
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of constrained optimization problems has been selected with published experimental

results for evolution strategies [6, 38] that includes S240 and S241 taken from [107],

and G04 (also referred to as HB or Himmelblau’s problem), G06, G07, and G09 from

the 2006 CEC competition [77]. In addition, Rosenbrock’s Parcel problem is taken

from [43]. These are all unimodal constrained problems with a mixture of linear and

nonlinear inequality constraints. Problems S240 and S241 do not have upper bound

constraints, while all other problems have both upper and lower bound constraints

defined in addition to their other inequality constraints. Table 5.1 gives a summary

of the various problem attributes. Note that for problem G04, Dufossé and Hansen

[38] identify an error in previous definitions of the non-linear constraints, which has

been corrected here. Additionally, the identified number of constraints active at the

optimum has previously been in error [6, 38]. The correct constraint definition [65] is

used in experiments throughout this section, and the corrected value of mact for G04

is given in Table 5.1. Full definitions for all of these functions are given in Appendix A.

Problem n m mact f gi
S240 5 6 5 lin. lin.
S241 5 6 5 lin. lin.
Parcel 3 7 1 non-lin. lin.

G04 (HB) 5 16 5 non-lin. non-lin.
G06 2 6 2 non-lin. non-lin.
G07 10 28 6 non-lin. both
G09 7 18 2 non-lin. non-lin.

Table 5.1: Summary of problem attributes used in benchmark including dimension
n, total number of constraints m, number of active constraints mact, linearity or non-
linearity of objective function f , and whether non-bound constraints gi are linear,
non-linear, or a mix of both.

5.3.1 Experimental results

Data sets are generated for each problem by performing 25 runs using each of the four

algorithms used in Section 5.2, which are the aCMA-ES (1 + 1) evolution strategy,

the AL-ES (µ/µW , λ) evolution strategy outlined in Section 4.2 and implementing

Algorithm 2.2, the AL-CMA-ES (µ/µW , λ)-ES with covariance matrix adaptation

outlined in Section 4.2 and implementing Algorithm 2.3, and EL-ES as proposed in
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Chapter 4. The same target sets are fixed according to Eq. (5.2) with f -target and

g-target values evenly logarithmically spaced in the closed intervals [100, 10−8] and

[102, 10−6], respectively. As before, the function gA defined in Eq. (5.4) is used to

evaluate against g-targets, and runtimes are measured as counts of f , g, or (f + g)

evaluations.

All runs are terminated only when f(x) and gA(x) are both within 10−8 of optimum

values, represented by f(x∗) and gA(x
∗) = 0, respectively, ensuring that each algo-

rithm is permitted to succeed on as many targets as it is able. Problems S240 and

S241 use the recommended initial starting points, while all other problems have their

initial starting points generated by sampling randomly and uniformly within the re-

gion defined by the problem’s bound constraints. As the aCMA-ES requires a feasible

starting point, a set of feasible points is generated in a pre-processing step similar to

[38] and mirroring Section 5.2 by using CMA-ES to minimize the sum of constraint

violations function gΣ(x) in a series of 200 runs. The resulting set of 200 feasible

points within the search space is sampled from uniformly to initialize the aCMA-ES,

and the count of g-evaluations is initialized to the number used to locate the feasible

starting point.

ECDF plots are given for each problem in Figure 5.17 representing combined per-

formance by showing success on staggered targets plotted against the sum of f - and

g-evaluations. As for the staggered plots in Section 5.2, the combined performance

is displayed for f -targets with fixed g-target of 100 (solid lines) and fixed g-target of

10−6 (dashed lines). Thus, runs on the first target set are considered successful on the

i-th target if both f(x) ≤ tfi and gA ≤ 100 are satisfied, and runs on the second target

set are considered successful on the i-th target if both f(x) ≤ tfi and gA ≤ 10−6 are

satisfied.

In these staggered target curves, the overall performance of the top three algorithms is

seen to be generally competitive. The combined performance for EL-ES and aCMA-

ES is seen to be nearly equivalent on S240, S241, and G04, particularly for the fixed

target gA ≤ 100 with small differences visible elsewhere. The combined performance

of aCMA-ES is superior on Rosenbrock’s Parcel, G06, and G09, while the Exact La-

grangian is narrowly superior on G07. The EL-ES is superior to the other augmented
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Figure 5.17: ECDF plots showing (f + g)-evals vs. f -targets for fixed g-target 100

(solid lines) and fixed g-target 10−6 (dashed lines). The x-axes are scaled to present
as much detail as possible without obscuring data points.

Lagrangian algorithms on all problems except Rosenbrock’s Parcel and G09, where

for both problems it is slightly behind the AL-CMA-ES but still notably superior to

the AL-ES.

Additional ECDF plots are given in Figure 5.18 showing separate performance on f -

and g-targets. The plots are grouped together by problem and arranged into pairs of

rows representing the proportion of successful f -targets plotted against the count of

f -evaluations (top) and successful g-targets plotted against the count of g-evaluations

(bottom). A distinctive feature of aCMA-ES is evident as it is seen to require signif-

icantly fewer f -evaluations to succeed on all targets, visible in the top rows with the

best performance on f -targets for each problem.
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Figure 5.18: Pairs of ECDF plots showing f -evals vs. f -targets (top) and g-evals
vs. g-targets (bottom). The axes are shared across plots for the same problem and
aligned to allow comparisons between plots for f - and g-targets.
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5.3.2 Summary for literature benchmarks

The overall performance of EL-ES is favourable on the selected problems, even while

comparing against ES algorithms enabled by covariance matrix adaptation that ex-

ploit more information from the search space and avoid issues from ill-conditioning.

On four of the seven problems (S240, S241, G04, and G07), the combined performance

of EL-ES is approximately equal or superior to that of all other algorithms. Only

on two problems (RosenbrockParcel and G09) is the EL-ES performance not strictly

superior to that of both the other Lagrangian methods, and these both have relatively

ill-conditioned objective functions. While there are evident advantages from includ-

ing CMA with the AL-ES approach, which is to be expected, the EL-ES approach

on its own is able to deal with some the Lagrangian ill-conditioning, likely due to the

inclusion of constraint information in its multiplier update.

5.4 Rotated Klee-Minty problem

The Klee-Minty problem is a scalable constrained optimization problem with linear

objective function and linear constraints. It was proposed originally as a pathological

case for which the simplex algorithm exhibits worst-case performance [71] and more

recently modified by Hellwig and Beyer [59] with the inclusion of a translation and

rotation to make it suitable as a potential benchmark for probabilistic search algo-

rithms. They provide initial experimental results for both the CEC2017 competition

winner L-SHADE [90] based on differential evolution and their own algorithm ǫMAg-

ES [60] based on a reduced form of CMA-ES with ǫ-level constraint handling. The

benchmark has also been used Spettel et al. [117] while introducing the lcCMSA-ES

algorithm, a CMA-ES variant specifically designed for solving problems with linear

constraints, and by the same authors [63] in a broader survey of stochastic algorithms,

including various CEC competition winners as well as active-set-ES [112].

The original Klee-Minty problem defines an ICP in n dimensions having 2n inequality

constraints. Geometrically, the feasible space is contained within a hypercube with

slightly distorted corners and the linear objective function is given by

f(x) = cTx
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where c = [0, 0, . . . , 1] so the optimal point is located at the origin. The Rotated

Klee-Minty problem applies a transformation to the constraints by means of a rota-

tion about the origin by angle −350
180

π and translation by the vector [n3, n3, . . . , n3].

Bound constraints are also applied, primarily to limit the region for generating initial

(feasible, if necessary) points.

5.4.1 Experimental results

Comparative data sets are generated for four algorithms on Rotated Klee-Minty prob-

lems. The ǫMAg-ES [60] algorithm implements a reduced variant of CMA-ES along-

side ǫ-level comparisons and gradient-based repairs from Takahama and Sakai [123].

The authors note that within each iteration that uses the repair operation, extra con-

straint function evaluations are consumed making the action more expensive. The

ǫMAg-ES method was retroactively ranked third in 2019 among all submissions to the

CEC 2017 problem set, using the prescribed 2n · 104 budget of function evaluations

for problems of dimension n. The lcCMSA-ES [117] implements another reduced

variant of CMA-ES with a special focus on repair and projection of points into the

unconstrained subspace. The assumption of constraints being linear is strict, and

the first step of the algorithm is to gather a large number of sample points to be

used in the linear projection of infeasible points. Both ǫMAg-ES and lcCMSA-ES are

implemented using code from the authors5. Additionally, both the AL-CMA-ES

and EL-ES are used as described in Sections 5.2 and 5.3. Both the lcCMSA-ES

and ǫMAg-ES algorithms have published experimental results on the Rotated Klee-

Minty problem that compare favourably against other competitive algorithms from

the literature.

Existing work on the Rotated Klee-Minty problem has an established process for

performance comparison that is distinct from elsewhere in the literature. For each al-

gorithm, 1000 bootstrapped samples are generated from 15 run sets. A brief overview

of the bootstrapping process is given in Section A.2 of the appendix. Target sets are

fixed according to Eq. (5.2) and the function gΣ defined in Eq. (5.3) is used to evaluate

5Retrieved April 25, 2022, from https://github.com/patsp/RotatedKleeMintyProblem/tree/

ea_comparison/lcCMSA-ES
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against g-targets. Runtimes are measured as evaluation counts for either f or g, de-

pending on the target set being evaluated against, before being divided by the problem

dimension. Monotonicity is enforced during the bootstrapping process, giving plots

comparable to those previously published [63]. Repeating, near-horizontal plateaus

in some plots are indicative of the effects of enforcing the monotonic condition.

To allow a more direct and alternative comparison, data is generated for ECDF plots

here without any bootstrapping. In addition, unlike previous results, our function

evaluation counts are not scaled by dimension. To generate this data, 100 runs

were performed for the Rotated Klee-Minty problem in each of the dimensions n =

2, 3, 5, 10, 15, and 20 for each of the four algorithms. Target sets for the ECDFs rely

on the definition in Eq. (5.2) with f -target and g-target values evenly logarithmically

spaced in the closed intervals [100, 10−8] and [102, 10−6], respectively, and runtimes are

again measured as f -evals, g-evals, or (f + g)-evals, depending on the target set. In

order to facilitate comparisons with published results on these particular algorithms,

the value given by Eq. (5.3) is used for evaluating g-targets across all algorithms.

A run is terminated when f(x) and gΣ(x) are both within 1.0e-8 of optimum values,

represented by f(x∗) and gΣ(x
∗) = 0, respectively. The lcCMSA-ES and ǫMAg-ES,

following their default parameters, also terminate when more than 2n·104 total (f+g)
function evaluations have been used. Starting points are initialized randomly using

coordinates drawn independently and uniformly from the interval [0, 5n3].

Staggered ECDF plots are given in Figure 5.19 plotted against the sum of f - and

g-evaluations. As for the staggered plots in Section 5.2, the combined performance

is displayed for f -targets with fixed g-target of 100 (solid lines) and fixed g-target of

10−6 (dashed lines). Runs on the first target set are considered successful on the i-th

target if both f(x) ≤ tfi and gΣ ≤ 100 are satisfied, and runs on the second target

set are considered successful on the i-th target if both f(x) ≤ tfi and gΣ ≤ 10−6 are

satisfied.

The performance of lcCMSA-ES is given throughout by only a single line because

both of the fixed g-targets are the first targets satisfied during its pre-processing step.

The performance of EL-ES is seen to be broadly superior to all other algorithms
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Figure 5.19: ECDF plots showing (f + g)-evals vs. f -targets for fixed g-target 100

(solid lines) and fixed g-target 10−6 (dashed lines) for the Rotated Klee-Minty problem
in varying dimensions n. The x-axes are scaled to present as much detail as possible
without obscuring data points.

for dimensions n = 10 and above, and is additionally superior on the most difficult

targets for n = 5 and n = 3. The EL-ES is also strictly superior to the AL-CMA-ES

on all problems. The lcCMSA-ES appears very competitive on easier targets and in

smaller dimensions, but this deteriorates significantly with increasing n and it fails to

reach all targets within the allocated budget for problems in dimension n = 10 and

above.

Additional ECDF plots for the separate f - and g- targets are given in Figure 5.20,

where as before, the top rows are associated with success on f -targets plotted against

f -evaluation counts, while the bottom rows show success on g-targets plotted against

g-evaluation counts. The value of the pre-processing step of the lcCMSA-ES is evi-

dent, as it is able to succeed on all g-targets for all problems within only a few hundred

g-evaluations. The advantage of the EL-ES algorithm in higher dimensions appears

mostly due to success on f -targets, as it is otherwise comparable to the ǫMAg-ES in

satisfying g-targets for problems with n = 5 and above. On all problems, the EL-

ES is also seen to strictly dominate the three other algorithms on the most difficult

f -targets.
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Figure 5.20: Pairs of ECDF plots showing f -evals vs. f -targets (top) and g-evals vs.
g-targets (bottom) for the Rotated Klee-Minty problem. The axes are shared across
plots for the same problem and aligned to allow comparisons between plots for f - and
g-targets.

It should be noted that in trial runs for generating data on the n = 20 Rotated Klee-

Minty problem, the EL-ES was observed to fail in very rare cases (< 1% of runs),

likely due to instability in the working set caused by the large number of constraints.

These issues were not encountered while performing the 100 independent runs to gen-

erate the data used for the plots given above.
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5.4.2 Summary for Rotated Klee-Minty

Across all tested dimensions for the Rotated Klee-Minty problem, the performance

of the EL-ES algorithm is seen to largely out-perform three algorithms that employ

various forms of covariance matrix adaptation for generating improved offspring, one

of which was designed specifically for solving linear problems with linear constraints.

The Exact Lagrangian approach also appears to scale much better with increasing

dimension and number of constraints. This is potentially limited by rare cases of

failure in the n = 20 case due to difficulties in managing the working set.



Chapter 6

Discussion and future work

We have proposed through this research a novel approach for constrained continuous

optimization with stochastic black-box algorithms by adapting for the first time an

exact Lagrangian method from numerical optimization for use with evolution strate-

gies. Previous study and subsequent proposal of the augmented Lagrangian approach

(AL-ES) with a (1 + 1)-ES showed that using the Lagrange multiplier update rule

from the method of multipliers alongside careful adaptation of the penalty coefficient

could lead to log-linear convergence on certain sphere and ellipsoid problems with a

single constraint. This desirable behaviour is understood as resulting from adapting

the Lagrangian parameters in order to balance progress of the evolution strategy in

the constrained and unconstrained subspaces, as demonstrated by single-step analy-

sis.

Extensions of the AL-ES method [17, 16, 18, 38] exhibit good performance on certain

problems, but our experimental investigation highlighted that it appears necessary to

include covariance matrix adaptation in order to arrive at a widely applicable algo-

rithm. Without CMA, the ill-conditioning of the augmented Lagrangian was often too

significant to allow convergence, primarily due to the update rules for the Lagrangian’s

parameters. Additionally, from the discussion in Section B.5, the multiplier update

used by the AL-ES is seen to be a form of gradient ascent for the dual function with

step size determined by the penalty coefficient ω. This raises two potential concerns:

first, that the implicit maximization of the dual is based on only first-order derivative

information, and second, that the adaptation of the penalty coefficient is performed

without regard for its role as the step size.

A particular example of difficulty was demonstrated, by showing that even well-

conditioned spherical objective functions with linear constraints that create narrow

129
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feasible regions (NFR) result in much slower convergence (or even non-convergence)

when using existing implementations of the AL-ES. In part, this is because of poor

values arising from the multiplier update. In the dual formulation, this can be inter-

preted as a result of the multiplier update not accounting for second-order features

of the dual function, like curvature and ill-conditioning.

In Section 4.4 and in connection with Section B.5, we defined a multiplier update

rule that did include second-order information, based on quasi-Newton maximization

of the dual. One observed difficulty was that implementing the rule would require

knowledge of the derivatives of the objective and constraint functions. Instead, we

derived a multiplier update rule that only relies on first-order information. As such,

the proposed expression for the multiplier does not account for any ill-conditioning

in the objective function, but crucially includes information about the constraints

and the correlations between them. This rule was justified in two complementary

ways, both by application of the first- and second-order KKT conditions, as well as

through step-size analysis on the Lagrangian. Exactly how this information should be

included for use with stochastic algorithms like evolution strategies is not immediately

straightforward.

Our approach was to adapt an exact Lagrangian penalty method from Fletcher that

continuously defines Lagrange multipliers with respect to position in the search space,

rather than as part of an external update rule. Doing so allows approximating con-

straint information that is then included within the Lagrangian function in a way

that is usable by an evolution strategy, resulting in the EL-ES. By applying single-

step analysis to this new method, and taken together with theoretical insight from

the literature on numerical optimization, we showed that the multiplier update for

the EL-ES rule balances the progress of the evolution strategy in the constrained and

unconstrained subspaces, in a manner analogous to that of the original multiplier rule

for the AL-ES.

In order to validate our proposed approach, experimental data was generated for

multiple runs on spheres and moderately scaled ellipsoids with a single constraint.

The results showed that the EL-ES was able to perform almost as well as the AL-

CMA-ES on these archetypal problems, except where it performed significantly better
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on NFR spheres with two constraints. This increased performance is in spite of the

advantage given by improved offspring generation from CMA.

Results were also generated for varied scaling between objective and constraint func-

tions, as well as for constraints with random orientation. In order for evaluation on

the random constraints to be reliable and unbiased, an approach was proposed for

generating active constraints based on the relationship between their normal vectors

and the gradient of the objective function. This process makes use of the KKT condi-

tions that describe an optimum point in order to allow as much freedom in selecting

constraint orientations as possible while guaranteeing a pre-selected point will be-

come the optimum. These constraints were additionally guaranteed to not merely be

weakly active, and instead would have an associated non-zero Lagrange multiplier.

Performance of the EL-ES on all random constraint problems was observed to be

superior to that of either of the existing AL implementations, and even performed

better than the active-CMA-ES on problems with increasing number of constraints

and dimension. On problems with the number of generated constraints equal to the

dimension for n = 10 and n = 20, the EL-ES converged to the optimum with 2-4

times fewer function evaluations than the other algorithms.

Additional experimental results on benchmarks from the literature and the Rotated

Klee-Minty problem showed that the EL-ES is also competitive on certain problems

beyond archetypal spheres and ellipsoids, even when compared against algorithms us-

ing CMA for generating offspring. On the standard benchmark problems, the number

of function evaluations required for convergence using the EL-ES was smaller than

that required for the AL-ES by approximately a factor of 10. The overall performance

of the exact Lagrangian approach was also observed to never be far behind the meth-

ods using CMA. The benchmark problems were selected to match those previously

used [6, 38] for evaluating evolution strategies on constrained optimization problems,

allowing the EL-ES to be evaluated in light of those published results.

The Rotated Klee-Minty problem was selected as an additional benchmark that has

previously been used for evaluating performance of constrained optimization algo-

rithms, including the ǫMA-ES and lcCMSA-ES [59, 117, 63]. In addition to hav-

ing published results for the Rotated Klee-Minty problem, the ǫMA-ES has been
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favourably compared to leading algorithms when evaluated against the CEC 2017

benchmark problems [60], and the lcCMSA-ES has published very encouraging results

using an early variant of the BBOB COCO framework for constrained optimization

[117]. In our results on the Rotated Klee-Minty problem, the EL-ES outperformed

both other algorithms on the most difficult evaluated targets in all dimensions but

n = 2 and n = 20. In the smaller case, the EL-ES was roughly comparable to the

performance of the lcCMSA-ES algorithm. In the larger case, the EL-ES converged

with 2-4 times fewer function evaluations than the other algorithms. In rare cases,

the EL-ES may have difficulties converging for the n = 20 case due to instability in

the working set caused by the large number of constraints.

From this collection of encouraging empirical comparisons together with the justi-

fications given by both step-size analysis and consideration of the KKT conditions,

the exact Lagrangian method for evolution strategies is seen to offer an attractive

approach for continuous constrained black-box optimization.

Future work

An immediate and obvious improvement for the EL-ES would be the inclusion of

CMA for generating offspring, allowing for faster convergence on resulting Lagrangian

functions in spite of a certain degree of ill-conditioning. This needs to be done with

some care, as both the working set management and the approximation of Lagrange

multiplier terms assume to some extent that offspring are sampled isotropically from

the search space. If this can be properly accounted for, then an EL-CMA-ES imple-

mentation could be an algorithmic approach with very promising properties.

A limitation of the current implementation of the EL-ES relates to reliably managing

the working set, as on some problem instances the current approach appears to be

insufficient. In the case of the Rotated Klee-Minty problem in high (n = 20) dimen-

sion, there are a large number of similar constraints active near the optimum, and in

rare instances the working set will oscillate between adding and removing a subset

of constraints. This leads to a form of zigzagging, which in the case of an evolution

strategy can result in poor adaptation of the step size. Similarly, the problem G10

has been previously used for evaluating evolution strategies [6, 38], yet the EL-ES
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progresses far too slowly to result in reliable convergence. A key feature of this prob-

lem is the relatively large number of constraints with different weights. Deriving a

more reliable method of working set management would allow broader application of

the EL-ES.

Application of the EL-ES approach, either in its current form or using future improve-

ments, should be evaluated on the COCO bbob-constrained benchmark. Comparative

results for the AL-CMA-ES using this benchmark have recently been published by

Dufossé and Atamna [36]. Similar benchmark performance could be investigated for

the EL-ES with the addition of surrogate models for problems with expensive con-

straint evaluations, similar to the evaluation performed by Dufossé and Hansen [38]

for the AL-CMA-ES.

For work farther in the future, it would be beneficial to further investigate a broader

range of approaches previously used in numerical optimization, and consider how they

might be applied to stochastic algorithms like evolution strategies. The success of the

EL-ES is evidence that there are approaches in the literature that might benefit from

a second look. Work like that of Glad and Polak [48], which expands on the work of

Fletcher for exact Lagrangians, should in particular be investigated.

Finally, it would be interesting to consider whether extension of the Markov chain

analysis used to originally give convergence results for variations of the AL-ES [16,

17, 18] would be possible for the case of the EL-ES.
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Appendix A

Experimental details

A.1 Function definitions

Explicit function definitions are given here for the selected literature benchmarks used

in Section 5.3 for experimentally comparing the performance of the EL-ES with other

evolution strategies for constrained optimization.

Problem TR2

(Kramer & Schwefel [72])

Minimize

f(x) = x21 + x22

subject to

g1(x) = 2− x1 − x2 ≤ 0.

The lone constraint is active at x∗ = [1, 1] with f(x∗) = 2. The starting point is fixed

as x = [50, 50].

Problem S240

(Schwefel [109])

Minimize

f(x) = −
5∑

i=1

xi
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subject to

g1(x) = −50000 +
5∑

i=1

(9 + i)xi ≤ 0

and lower bound constraints 0 ≤ xi for i = 1, . . . , 5, with no upper bound con-

straints. Constraint g1, along with the lower bounds on x2, x3, x4, x5, are all ac-

tive at x∗ = [5000, 0, 0, 0, 0] with f(x∗) = −5000. The starting point is fixed as

x = [250, 250, 250, 250, 250].

Problem S241

(Schwefel [109])

Minimize

f(x) = −
5∑

i=1

ixi

subject to

g1(x) = −50000 +
5∑

i=1

(9 + i)xi ≤ 0

and lower bound constraints 0 ≤ xi for i = 1, . . . , 5, with no upper bound con-

straints. Constraint g1, along with the lower bounds on x1, x2, x3, x4, are all active

at x∗ = [0, 0, 0, 0, 25000/7] with f(x∗) = −125000/7. The starting point is fixed as

x = [250, 250, 250, 250, 250].

Problem RosenbrockParcel

(Rosenbrock [102], Fletcher [41])

Minimize

f(x) = −x1x2x3
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subject to

g1(x) = x1 + 2x2 + 2x3 − 72 ≤ 0

and bound constraints 0 ≤ xi ≤ 42 for i = 1, . . . , 3. Constraint g1 is active at

x∗ = [24, 12, 12] with f(x∗) = −3456.

Problem G04 (HB)

(Himmelblau [65])

Minimize

f(x) = 5.3578547x23 + 0.8356891x1x5 + 37.293239x1 − 40792.141

subject to

g1(x) = h1(x)− 92 ≤ 0

g2(x) = −h1(x) ≤ 0

g3(x) = h2(x)− 110 ≤ 0

g4(x) = 90− h2(x) ≤ 0

g5(x) = h3(x)− 25 ≤ 0

g6(x) = 20− h3(x) ≤ 0

where

h1(x) = 85.334407 + 0.0056858x2x5 + 0.0006262x1x4 − 0.0022053x3x5

h2(x) = 80.51249 + 0.0071317x2x5 + 0.0029955x1x2 + 0.0021813x23

h3(x) = 9.300961 + 0.0047026x3x5 + 0.0012547x1x3 + 0.0019085x3x4
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and bound constraints

78 ≤ x1 ≤ 102

33 ≤ x2 ≤ 45

and 27 ≤ xi ≤ 45 for i = 3, 4, 5. Both g1 and g6 are active, along with the lower

bounds on x1 and x2 and the upper bound on x4, at

x∗ ≈ [78, 33, 29.99525602, 45, 36.77581290]

with f(x∗) ≈ −30665.53867178.

Problem G06

(Floudas & Pardalos [46])

Minimize

f(x) = (x1 − 10)3 + (x2 − 20)3

subject to

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

and bound constraints

13 ≤ x1 ≤ 100

0 ≤ x2 ≤ 100.

Both g1 and g2 are active at x∗ ≈ [14.095, 0.84296] with f(x∗) ≈ −6961.81387558.
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Problem G07

(Hock & Schittkowski [66])

Minimize

f(x) = x21 + x22 + x1x2 − 14x1 − 16x2 + (x3 − 10)2 + 4(x4 − 5)2

+ (x5 − 3)2 + 2(x6 − 1)2 + 5x27 + 7(x8 − 11)2

+ 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to

g1(x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

g5(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x23 − 7x4 − 120 ≤ 0

g6(x) = x21 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 5x21 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g8(x) = (x1 − 8)2 + 4(x2 − 4)2 + 6x25 − 2x6 − 60 ≤ 0

and bound constraints

−10 ≤ xi ≤ 10

for i = 1, . . . , 10. Each of g1, g2, g3, g5, g6, g7 are active at

x∗ ≈[2.17199638, 2.36368294, 8.77392572, 5.09598444, 0.99065475,
1.43057395, 1.32164423, 9.82872583, 8.28009174, 8.37592676]

with f(x∗) ≈ 24.30620906.
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Problem G09

(Hock & Schittkowski [66])

Minimize

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x43 + 3(x4 − 11)2

+ 10x65 + 7x26 + x47 − 4x6x7 − 10x6 − 8x7

subject to

g1(x) = −127 + 2x21 + 3x42 + x3 + 4x24 + 5x5 ≤ 0

g2(x) = −196 + 23x1 + x22 + 6x26 − 8x7 ≤ 0

g3(x) = −282 + 7x1 + 3x2 + 10x23 + x4 − x5 ≤ 0

g4(x) = 4x21 + x22 − 3x1x2 + 2x23 + 5x6 − 11x7 ≤ 0

and bound constraints

−10 ≤ xi ≤ 10

for i = 1, . . . , 7. Both of g1 and g4 are active at

x∗ ≈[2.33049932, 1.95137235,−0.47754169, 4.36572630,
− 0.62448696, 1.03813102, 1.59422672]

with f(x∗) ≈ 680.63005737.

A.2 Bootstrapping

In order to simulate restarts and allow comparisons between algorithms with failures

on certain targets, the COCO benchmark [57] uses a method inspired by statisti-

cal bootstrapping for extending results in a viable way without requiring excessive

experimental runs. Instead, a small number of runs (COCO recommends 15) are per-

formed and these are used to generate a larger number of bootstrapped results. The
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operation for generating a bootstrapped runtime proceeds in the same way for each

target in the fixed set: if at least one of the experimental runs succeeded, then the

set of runs is drawn from uniformly at random and with replacement until a success

is found. The bootstrapped runtime is then the sum of the runtime of the successful

run and the runtimes for all unsuccessful runs, if any. A full set of bootstrapped sam-

ples is generated in this way for each target. The outline of this process is given in

pseudo-code by Algorithm A.1. To represent this as an ECDF graph, the proportion

of successful targets among the bootstrapped samples is plotted against the runtime.

Algorithm A.1 Generating bootstrapped results for ECDFs

Require: Indexed sets of runs R and targets T , max runtime m, bootstrap sample
size b

1: Initialize B of size b
2: for i = 1→ |T | do
3: for j = 1→ |B| do
4: Bi,j = 0
5: while no successful run found do
6: k ← U [1, |R|] ⊲ Sample from random uniform distribution
7: if run Rk succeeded for target Ti then
8: Bi,j ← Bi,j +Rk(Ti) ⊲ Add sample’s runtime on success
9: else
10: Bi,j ← Bi,j +m ⊲ Add max runtime on failure
11: end if
12: end while
13: end for
14: end for
15: return B

This differs from the process used in previous work on the Klee-Minty problem

[63, 117] which additionally enforces monotonicity1. In this process, each of the

bootstrapped samples for a fixed target is considered as part of a contiguous vir-

tual run, where runtimes for subsequent (more difficult) targets are not permitted

to be less than runtimes for prior (easier) targets. More concretely, for the set of

bootstrapped samples Bt,i corresponding to target t and with i = 1, . . . indexing the

samples, the authors enforce the condition that Bt,i = max(Bt,i, Bt−1,i). This has the

1Based on the authors’ code, retrieved April 25, 2022, from https://github.com/patsp/

RotatedKleeMintyProblem/tree/ea_comparison/lcCMSA-ES
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effect of propagating forward the runtime of the worst run on simpler targets to later,

more difficult targets, regardless of the likelihood that the target would result in that

runtime. In published ECDF plots, this effect is visualized by horizontal plateaus

followed by sharp vertical increases, that overall shift the apparent performance of al-

gorithms to appear worse. In the experimental results throughout Chapter 5, we aim

to largely avoid these issues by relying on raw data instead of using a bootstrapping

process.



Appendix B

Theory of optimization

The theory of numerical optimization is well covered by many authors. In order

to summarize key concepts that are important for understanding and justifying my

own work, I provide here an amalgam of standard work taken from the literature

and adapted for brevity and notational coherence, based primarily on the works of

Fletcher [44, 43], Bertsekas [27, 28], and Nocedal and Wright [128]. Throughout the

following I will use the ∇ and ∇2 operators to refer to the gradient and Hessian

matrix, respectively defined as

∇f(x) =







∂f(x)
∂x1

...
∂f(x)
∂xn






, ∇2f(x) =







∂2f(x)
∂x1∂x1

. . . ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

. . . ∂2f(x)
∂xn∂x1







where the variable under differentiation is understood. Where clarity is required,

subscripts such as ∇x and ∇2
x
will be used. In some expressions that benefit from

notational simplicity, I also write f , g, and related matrices and derivatives with the

understanding that they are to be evaluated at the current point x, unless otherwise

specified.

B.1 Unconstrained optimization

Optimization is the study of algorithms for finding extrema. For continuous numer-

ical optimization, this can be understood through the simple example given by an

unconstrained optimization problem where we are given a function

f(x) : Rn → R

143
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and desire a solution x∗ that satisfies either

min
x
f(x) or max

x
f(x)

across all x in the domain R
n. Since one optimization problem is identical to the other

up to the sign on f , we will throughout refer to minimization as the optimization

operation, without loss of generality.

Without restrictions on the function f , it may not be realistic to determine a global

minimum across the entire domain, so we are frequently satisfied with finding a local

minimum. This is a solution x∗ satisfying f(x∗) ≤ f(x) for all other points in the

neighbourhood Nr with ||x∗ − x|| < r for some r > 0, and is a strict local minimum

if the inequality is made strict. With mild restrictions on f , a local minimum within

a neighbourhood can be characterized with the following propositions.

Proposition B.1 (First-order Necessary). Let f be continuously differentiable within

neighbourhood Nr = {x : ||x∗ − x|| < r} with r > 0, having associated strict local

minimum x∗. Then the gradient satisfies

∇f(x∗) = 0.

Proposition B.2 (Second-order Necessary). Let f be twice continuously differen-

tiable in Nr, having associated local minimum x∗. Then the Hessian satisfies

zT∇2f(x∗)z ≥ 0

for all z ∈ Nr and is therefore positive semidefinite.

Proposition B.3 (Second-order Sufficient). Let f be twice continuously differentiable



145

in Nr around point x∗. If both ∇f(x∗) = 0 and the Hessian satisfies

zT∇2f(x∗)z > 0

for all z ∈ Nr and is therefore positive definite, then x∗ is a strict local minimum.

In the particular case that the neighbourhood Nr is extended to include the entire

domain, then these conditions refer to global rather than local solutions. The impli-

cations of these three propositions taken together typically play a foundational role in

the design of any numerical optimization algorithm. In the simplest cases, it may be

possible to even solve the problem analytically simply by solving for the conditions

placed on the first and second derivatives of f . For anything more complicated than

these relatively simple problems, an iterative algorithm may be used that takes place

over multiple steps. In the k-th iteration of such an algorithm, an estimate x(k) is

generated using local or historical information, and the aim is to have the sequence

converge as {x(k)} → x∗. The domain of f contains the estimates x(k) and is referred

to as the search space.

A fundamental example is that of Newton’s method, which uses derivative information

together with an initial estimate x(0) to attempt to converge to a local minimum. In

each iteration of the algorithm, a local quadratic approximation is formed from the

truncated Taylor series about x(k) as

f (k)(y) = f(x(k)) + yT∇f(x(k)) +
1

2
yT∇2f(x(k))y

where y = 0 corresponds to the point x(k) by a shift of origin, and this function is

minimized instead. By the first-order necessary condition of Proposition B.1, it must

hold that a local minimum of the quadratic approximation satisfies ∇f (k) = 0, so

solving

∇f(x(k)) +∇2f(x(k))y = 0

y = −∇2f(x(k))−1 · ∇f(x(k))

gives a candidate point y relative to x by the shift of origin. If ∇2f is positive definite
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then it is also invertible, and this additionally implies that the point y is a local

minimum for the quadratic approximation by the second-order sufficient condition of

Proposition B.3. Newton’s method is then to use the update formula

x(k+1) = x(k) + y (B.1)

= x(k) −∇2f(x(k))−1 · ∇f(x(k))

in order to generate the next step of the algorithm in the search space.

B.2 Constrained optimization

Constrained optimization expands on the ideas in Section B.1 by placing limitations

on the domain of f where a solution is acceptable. These constraints are commonly

expressed as a combination of equalities and inequalities that must be satisfied along

with the objective function. Beginning with the simpler case of the equality con-

strained problem (ECP), we ask for a solution satisfying

min
x

f(x)

s.t. gi(x) = 0. (ECP)

We are again minimizing the objective function f : Rn → R, but have now added

a set of m equality constraint functions gi : R
n → R indexed by i = 1, . . . ,m ≤ n,

or equivalently the single vector function g : Rn → R
m, that must be satisfied. The

solution for the ECP is the point x∗ with minimal value f(x∗) among all {f(x) :

g(x) = 0}. Any point that satisfies all of the given constraints in this way is said to

be feasible, while a point that violates one or more of the constraints is said to be

infeasible. We will specifically refer to the unconstrained minimum of the objective

function f to distinguish from the constrained minimum or simply minimum, which

is that point solving the ECP that minimizes f among all feasible solutions.

If the constraint functions under consideration are differentiable in Nr, then their

first-order behaviour can be described by writing the Jacobian

J = [∇g1,∇g2, , . . . ,∇gm] (B.2)
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as an n×m matrix, with columns consisting of the constraint normals. In the special

case that the constraints are all linear, this means the equality conditions can be

written as

g(x) = JTx+ c = 0

for some constant vector c. If the constraint normals are linearly independent in a

neighbourhood of the constrained optimum, then J has full rank there. This case

proves to be important for much of what follows, as do the following two important

definitions.

Definition B.1 (Tangent cone). Let x̂ be a feasible point and {x(k)} → x̂ be any

infinite sequence of feasible points approaching x̂. Then vector s is a feasible direction

if there is also a sequence of positive scalars δ(k) → 0 such that

δ(k)s(k) = x(k) − x̂

with

lim
k→∞

s(k) = s.

The set of all feasible directions so defined is the tangent cone at x̂.

Definition B.2 (LICQ). The linear independence constraint qualification (LICQ)

assumes the linear independence of the (active) constraint normals at x∗, and is al-

ternately referred to as the regularity or quasi-regularity assumption of point x∗.

The notion of an active constraint will be made explicit in Section B.3, but when

dealing only with equality constraints it suffices to note that all constraints are ac-

tive.

It will be helpful to consider the inverse of the matrix J under the assumption of full

rank, even in situations where m < n, so we rely on the notion of the generalized
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Moore-Penrose inverse written as

J+ =
(
JTJ

)−1
JT.

This generalized inverse is rank m, and satisfies J+J = I. Combining the Jacobian

and its generalized inverse gives the projection matrix

P = JJ+ = J+T
JT

= J
(
JTJ

)−1
JT (B.3)

which maps a vector into the constrained subspace spanned by the constraint normals

∇gi. To see this, recall that the vector after projection Px is in the span of the

columns of J if and only if it is a linear combination of those columns ∇gi. Writing

the projected vector using Eq. (B.3) and collecting terms therefore gives

Px = J
[(
JTJ

)−1
JTx

]

= J · r

for some vector r ∈ R
m, and whose elements ri give the coefficients of the desired

linear combination. The complement of this projection is (I − P ) which maps into

the unconstrained manifold, an affine manifold (vector subspace with possibly shifted

origin). These are complementary in the sense that any point x in the search space

can be written as a combination

x = Px+ (I − P )x

= Jr + s (B.4)

of its constrained and unconstrained components.

As in the unconstrained case, it is possible to characterize a solution to the constrained

problem. Given f and g both continuously differentiable, let x∗ be a constrained local

minimum with respect to f and all gi for an ECP and consider the set of first-order
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feasible variations

V = {v ∈ R
n \ 0 : vT∇gi(x∗) = 0, ∀ i}. (B.5)

This set is a recurring concept, and it is helpful to interpret it in different ways. It is

the set containing those vectors which remain feasible with respect to a linear approx-

imation of the constraints at x∗. It is also the set of non-zero directions v which are

orthogonal to the normals of the hyperplanes tangential to the constraint boundaries

at x∗.

Proposition B.4. Under the LICQ of Definition B.2, the tangent cone of Defini-

tion B.1 is equal to the set of feasible variations V from Eq. (B.5).

From this proposition, we can also observe that the condition on membership in V is

equivalent to requiring JTv = 0. Roughly speaking, if we consider a small step s from

x∗ that remains feasible, a first-order Taylor expansion must therefore satisfy

g(x∗ + s) = g(x∗) + sT∇g(x∗)

= 0

where the additional Taylor terms vanish in the limit with respect to s. For this

equality to hold, any feasible step s must be in the direction of a feasible variation,

and so sT∇g(x∗) = 0. Finally, the definition of V is equivalent to those vectors

that constitute the entirety of the unconstrained manifold of Eq. (B.4) defined by the

Jacobian at x∗.

Using the equivalence between incremental feasible steps and the set V of feasible

variations together with the fact that x∗ is a constrained local minimum by assump-

tion, it must be the case that sT∇f(x∗) ≥ 0 as well; otherwise, it would be possible

to take a feasible step with f decreasing. Stated concisely then, at the constrained

minimum x∗ there can be no vectors s where both conditions

sT∇g(x∗) = 0, (B.6)

sT∇f(x∗) < 0 (B.7)
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are satisfied: moving along any vector s from x∗ must either result in a non-decreasing

change in the objective function or a change in the feasibility, or both. This permits

proving a fundamental result for constrained optimization.

Theorem B.5 (First-order necessary condition). At a constrained minimum x∗ with

f and gi continuously differentiable, and with linearly independent ∇gi(x∗) (LICQ),

the gradient of the objective function is equal to a linear combination of the constraint

function gradients evaluated at x∗ as

∇f(x∗) = −
m∑

i=1

λi∇gi(x∗)

= −Jλ. (B.8)

Proof. If we view the gradient ∇f(x∗) in its projected form similar to Eq. (B.4), we

can write

∇f(x∗) = P∇f(x∗) + (I − P )∇f(x∗)

= −Jλ+ s (B.9)

as a sum of components in two distinct subspaces. Since we are assuming x∗ is

optimal, this implies both Eqs. (B.6) and (B.7) are satisfied. We will prove that these

equations are satisfied if and only if s = 0 in Eq. (B.9), and therefore that Eq. (B.8)

is a necessary condition for x∗ being optimal.

First, if there are no vectors satisfying both Eqs. (B.6) and (B.7), then s must also

be 0. To see this, first note that because it lies in the unconstrained manifold by

the decomposition by projection matrix P in Eq. (B.9), the vector s must satisfy

sT∇g(x∗) = Js = 0 and is orthogonal to any vectors projected into the constrained

subspace. Now the claim is proven by contradiction: assume that s is nonzero,

then the direction −s immediately satisfies Eq. (B.6) as it lies in the unconstrained

manifold. After applying the inner product with the expression for the gradient in
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Eq. (B.9), we also have

(−s)T∇f(x∗) = −tTJλ− sTs

= −sTs < 0,

which shows that s must also satisfy Eq (B.7) and give a direction in which f de-

creases, contradicting the assumption that there are no vectors satisfying both con-

ditions.

From the other side, if s = 0 then there can be no vectors satisfying the conditions

of both Eqs. (B.6) and (B.7). This is trivially true since s = 0 implies that the

gradient ∇f(x∗) = −Jλ is a linear combination of the constraint normals, thus any

u satisfying uT (−Jλ) = 0 immediately violates Eq. (B.7). �

From this proof we see that under certain assumptions, at a constrained minimum

x∗ it will always be possible to express the gradient of the objective function as a

linear combination of the gradients of the constraints. The coefficients in the vector

λ determine the linear combination and their existence is a necessary condition for

a point to be a constrained optimum. These coefficients are the Lagrange multipliers

and they play an important role in many approaches to constrained optimization.

B.3 Extending to inequalities

If the constraints are defined with inequalities instead of equalities, then we have the

inequality constrained problem (ICP) given by

min
x

f(x)

s.t. gi(x) ≤ 0. (ICP)

The major difference is of course how the constraints are treated: feasible points are

no longer only at the intersection of the constraint boundaries, and the number of

constraints m may be larger than the search space dimension n without violating the

LICQ. The notion of a feasible point in this case is extended to those satisfying the
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constraint inequalities, and as with the ECP an infeasible point will have a positive

constraint value gi(x) > 0 for some i. The Jacobian J and projection matrix P now

also refer to the constraint boundaries, which can be thought of as the set of points

that satisfy a particular constraint gi as an equality.

Inequality constraints also necessitate introducing the concept of an active constraint.

We say that constraint gi is active at a point x if gi(x) ≥ 0, and inactive otherwise.

The active set is denoted by A and corresponds to the set of constraints (or equiva-

lently, of constraint indices) that are active at x∗, and the size of this set is limited

under the LICQ by the dimension of the search space |A| ≤ n. In the most general

setting, the types of constraints may be mixed and we have

min
x

f(x)

s.t. gi(x) ≤ 0, i ∈ I
gj(x) = 0, j ∈ E . (GCP)

This gives separate index sets I, E for inequality and equality constraints, respectively.

As it generalizes and encompasses the ECP and ICP cases, we refer to it simply as

the general constrained optimization problem (GCP). This definition also overlaps

significantly with that of a nonlinear programming problem (NLP) sometimes used

in the literature for numerical optimization.

Since the constrained optimum must be feasible, the set of active constraints at x∗

are those that are satisfied as equalities

A = {i : gi(x∗) = 0, i ∈ I ∪ E}

which necessarily includes all equality constraints. Since gi(x) ≤ 0 indicates feasibility

for i ∈ I, the definition of the set of feasible variations V of Eq. (B.5) is modified

accordingly as

V = {v ∈ R
n \ 0 : vT∇gi(x∗) ≤ 0 ∀i ∈ I, vT∇gj(x∗) = 0 ∀j ∈ E} (B.10)
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which are those directions which remain feasible with respect to the linearized con-

straints at x∗. Similarly, Definition B.2 of the LICQ is expanded to require the linear

independence of the constraint normals for constraints in A rather than only for

equality constraints. Generalizing this way to include inequality constraints leads to

re-stating the necessary conditions as the Karush-Kuhn-Tucker (KKT) conditions:

Theorem B.6 (KKT Necessary Conditions). If x∗ is a local minimum of f(x) that

satisfies the equality constraints gj(x) = 0 for j ∈ E and inequality constraints gi(x) ≤
0 for i ∈ I, and if additionally the constraints in A have linearly independent normals

(LICQ), then there exists an optimal Lagrange multiplier vector λ∗ where

∇f(x∗) +
∑

i∈A
λ∗i∇gi(x∗) = 0, (B.11)

λ∗i ≥ 0, i ∈ I, (B.12)

λ∗i gi(x
∗) = 0, i ∈ I ∪ E . (B.13)

Proof. The condition of Eq. (B.11) is essentially the same as in Theorem B.5 which

stated the same necessary condition for equality constraints, while Eqs. (B.12) and (B.13)

are a result of now including inequalities. The necessity of requiring non-negative La-

grange multipliers in Eq. (B.12) can be seen by considering the opposite: if λp < 0,

then as |A∩I| ≤ n and the normals are linearly independent by assumption, it is pos-

sible to determine a vector s that is orthogonal to the constraint normals ∇gi(x∗) for

all inequality constraints that are active but not associated with λp, so i ∈ A, i 6= p,

yet for which sT∇gp(x∗) < 0 ensuring s ∈ V according to Eq. (B.10). Then by

Eq. (B.11) we can write

sT∇f(x∗) = −(λp)
(
sT∇gp(x∗)

)
< 0.

Note that this inequality holds since both bracketed terms are themselves negative.

This gives a feasible direction in which f decreases, violating the assumption that x∗

is a local minimum. We can therefore conclude that Lagrange multipliers must be

non-negative for inequality constraints.
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The condition of Eq. (B.13) is referred to as the complementary slackness condition

as it forces no more than one of gi(x
∗) < 0 and λ∗i > 0 to be true. This is equivalent

to requiring that both gi(x
∗) and λ∗i cannot be non-zero, or that inactive constraints

have Lagrange multipliers equal to zero. If strict complementarity holds, then exactly

one of gi(x
∗) < 0 and λ∗i > 0 is true, otherwise constraints with gi(x

∗) = λ∗i = 0 may

exist and are termed weakly active. �

B.4 The Lagrangian function

Following the result of Theorem B.6 outlining the KKT first-order necessary condi-

tions, we define the Lagrangian function as

L(x,λ) = f(x) +
∑

i

λigi(x)

= f(x) + λTg(x). (B.14)

Doing so gives a very helpful interpretation of KKT conditions by expressing them in

terms of the first-order derivatives of L. The condition of Eq. (B.11) becomes

∇f(x∗) + λ∗T∇g(x∗) = 0

= ∇xL(x
∗,λ∗) (B.15)

and the requirement that constraints in the active set are satisfied as equalities be-

comes

g(x∗) = 0

= ∇λL(x
∗,λ∗). (B.16)

Under the assumption of LICQ, the Jacobian J = ∇g(x∗) is of full rank and the

Lagrange multipliers given by λ are unique at the constrained optimum, so we refer

to (x∗,λ∗) as the optimal pair. Thus, the necessary conditions for the existence of an

optimal KKT pair (x∗,λ∗) are equivalent to requiring that the Lagrangian L(x,λ)

has a stationary point at (x∗,λ∗). This correspondence underlies the fundamental

connection between constrained optimization and unconstrained minimization of a
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Lagrangian function.

Figure B.1: Visualizations in n = 1 of objective function f(x) = x2 with inequality
constraint x ≥ 2 and the Lagrangians L(x, λ) resulting from λ = 2k for k = 0, . . . , 4
after enforcing Eq. (B.13). The optimal multiplier is λ∗ = 4. At left, the minimal
points are marked for each curve L0(x, λ). At right, the intersection is marked between
each curve L(x, λ) and the line λ(2 − x). Figure 1.1 gives the analogous case for an
equality constraint.

A visual example of the correspondence between Lagrangian functions and their op-

timal points is given in Figure B.1, analogous to Figure 1.1, for the simple objective

function f(x) = x2 (blue lines) and single constraint function g(x) = 2 − x ≤ 0. In

the left-most plot, the curves resulting from

L(x, λ) = f(x) + λg(x)

using various choices of Lagrange multiplier λ are shown along with their associated

minimums. As the constraint is an inequality, the curves for the resulting Lagrangian

functions are truncated to visualize the effect of Eq. (B.13) given by Theorem B.6,

resulting in L(x, λ) = f(x) whenever g(x) ≤ 0. The optimal choice of Lagrange

multiplier is λ∗ = 4 for this problem, and so the curve for Lagrangian L(x, 4) (red

lines) shares its unconstrained minimum with the solution of the constrained problem
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at x = 2. In the right-most plot, lines

ℓ(x) = λ(2− x)

are additionally shown for selected values of λ, representing the second half of the

Lagrangian functions defined by Eq (B.14) and geometrically shifting the curve of the

objective function so that the resulting curve shares its minimum with the solution

of the constrained problem.

The Lagrangian equations of Eqs. (B.15) and (B.16) together give a system of n+ |A|
equations and unknowns, which is n+m if all constraints are active. In practice, this

system may even be solved analytically if the problem equations are known, giving

precise Lagrange multipliers and minimum x∗. Often, the multipliers must instead

be approximated alongside the candidate solution. Using the Lagrangian function,

it becomes possible to give a concise description of second-order conditions on an

optimal solution x∗.

Proposition B.7 (Second-order Necessary Conditions). Given a KKT pair (x∗,λ∗)

satisfying the conditions of Theorem B.6, if f and g are also twice continuously dif-

ferentiable, then

yT∇2
xx
L(x∗,λ∗)y ≥ 0 (B.17)

for all y in the set

V ′ =
{
y : yT∇gi(x∗) = 0, ∀i ∈ A

}
.

This states that for x∗ to be a constrained optimum, it is necessary for the Hessian

of the Lagrangian to be positive semi-definite at x∗ with respect to the set V ′ ⊆ V

containing directions y that satisfy as equalities those constraints that are in the

active set. If f and the gi are additionally convex, then these necessary conditions

become sufficient conditions, and the lone optimal KKT pair corresponds to the lo-

cal minimum for the problem. However, in practice it is possible that a solution

satisfying both the first- and second-order necessary conditions will not also be a

local minimum. In order to guarantee that our solution is also a local minimum for
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L, and thus a constrained minimum for the ICP, we can use the following proposition:

Proposition B.8 (Second-order Sufficient Condition). Given a KKT pair (x∗,λ∗)

and with the same conditions of Proposition B.7, if additionally

yT∇2
xx
L(x∗,λ∗)y > 0 (B.18)

for all y in V ′, then x∗ is a local minimizer.

This states that if the Hessian of the Lagrangian is positive-definite with respect to

the set of feasible variations for x∗, then it is guaranteed to be a local constrained

minimum. Note the similarities between this sufficient condition for a constrained

optimum of ICP phrased in terms of the Lagrangian, and the second-order sufficient

conditions given in Proposition B.3 for unconstrained optimization. While any point

for which the Hessian of the Lagrangian is positive-definite will also be positive-

definite with respect to V ′, the reverse need not be true: a point satisfying the second-

order sufficient condition could still only be a saddle point of the Lagrangian function

L. Meeting this second-order sufficient condition through unconstrained optimization

of a Lagrangian is a primary motivator behind the augmented Lagrangian approach

or method of multipliers. There are several ways to approach its construction, but the

chief result is to construct a Lagrangian function that is augmented with a penalty

term that ensures positive curvature in a neighbourhood of the optimum. In this

way, a local minimum found through unconstrained minimization of the Lagrangian

will correspond to the constrained minimum of the ICP, due to the second-order

sufficiency condition.

B.5 Dual formulation for the augmented Lagrangian

The concept of duality comes from a more general theory for numerical optimization

[28]. For the augmented Lagrangian, it involves describing a related dual, the solutions

for which give information about (or even correspond directly with) solutions to the

primal problem. Note that this is closely related to the primal functional described
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in Section 3.1 but may be treated distinctly, so when referring to the latter case I

explicitly use the term of primal functional. Duality results are given by each of

Rockafellar [99, 100], Fletcher [42, 43], and Bertsekas [26, 27] for both convex and

non-convex problems using Lagrangian functions. This section synthesizes key points

of their results below. Given the definition of Lω in either of Eq. (3.9) or Eq. (3.12),

the dual is here defined as

ψω(α) = Lω(x(α),α) (B.19)

= min
x

Lω(x,α)

with respect to α, where x(α) is again the associated KKT point x (local optimum)

for a given value of α, and Lω is the augmented Lagrangian which is solved by the

KKT pair (x∗,α∗). An important feature of the dual is that the value of α∗ maximizes

the function ψω(α). This can be seen by noting first that

ψω(α) = Lω(x(α),α) ≤ Lω(x
∗,α) (B.20)

where the inequality follows by the definition of x(α). That is, x(α) minimizes Lω

across all x for this choice of α, which includes the vector x∗ that minimizes Lω

across all x for α∗. Additionally, the inequality

[Ψ(x)]i ≤
−α2

i

2ωi

(B.21)

can be shown to hold across all constraints. To see this, we refer to Eq. (3.9) and recall

that membership in the index set i ∈ Z corresponds with constraints where

[Ψ(x)]i = αigi(x) +
1

2
ωigi(x)

2

while i ∈ P corresponds with the complementary set of constraints where

[Ψ(x)]i =
−α2

i

2ωi

.
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Now if i ∈ P , the inequality of Eq. (B.21) is immediately satsified by the definition

above, while on the other hand if i ∈ Z then we have gi(x
∗) ≥ αi

ωi
from the corre-

sponding condition of Eq. (3.9), and this also satisfies Eq. (B.21). We can therefore

write

Lω(x
∗,α) ≤ Lω(x

∗,α∗) = ψω(α
∗). (B.22)

By combining the inequalities of Eqs. (B.20) and (B.22), we can therefore conclude

that ψω(α) ≤ ψω(α
∗) ∀ α.

The same conclusion can be reached by considering derivatives of the dual function.

To begin with, assume that all constraints are indexed by Z as given in Eq. (3.9).

Then the first-order gradient is found by expanding the dual function and taking the

derivative with respect to α as

∇αψω(α) = ∇αLω(x(α),α)

= ∇α

(

f(x(α)) +αTg(x(α)) +
1

2
g(x(α))TΩg(x(α))

)

and by applying the chain rule then collecting terms we have

= ∇αx(α) · ∇xf(x(α)) + g(x(α)) +αT · ∇αx(α) · ∇xg(x(α))

+∇αx(α) · ∇xg(x(α))TΩg(x(α))

= ∇αx(α) ·
(

∇xf(x(α)) +αT · ∇xg(x(α)) +∇xg(x(α))TΩg(x(α))
)

+ g(x(α))

= ∇αx(α) ·
(

∇xLω(x(α),α)
)

+ g(x(α)) (B.23)

where the ∇ operator applied to a vector throughout refers to the associated Jacobian

matrix consisting of columns of gradients. The same result arises from treating Lω as

a function of two variables and applying the “multivariable” chain rule. Let [∂x/∂α]

refer to the matrix of partial derivatives with the entry of the i-th row and j-th

column being ∂xi/∂αj, then

∇αψω(α)T =

[
∂Lω(x(α),α)

∂x

] [
∂x(α)

∂α

]

+

[
∂Lω(x(α),α)

∂α

] [
∂α

∂α

]
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which also reduces to Eq. (B.23).

A simplification for these expressions for ∇αψω(α) arises from using the first-order

conditions of Theorem. B.6, since

∇xLω(x(α)) = 0

and so Eq. (B.23) reduces to

∇αψω(α) = g(x(α)) (B.24)

and thus each element is given by the partial derivative

[∇αψω(α)]i =
∂Lω(x(α),α)

∂αi

for constraints indexed by i ∈ Z. By a similar argument, the partial derivative

∂Lω(x(α),α)

∂αi

=
−αi

ωi

applies to constraints indexed by i ∈ P , and thus

∂ψω(α)

∂αi

= max

[

gi(x(α)),
−αi

ωi

]

(B.25)

gives the elements of the entire gradient, aligning with the conditions of Eq. (3.9).

Calculating the Hessian is slightly more involved. As we did with the gradient, assume

first that the index set P is empty. Then begin by considering the partial derivatives

of ∇αψω from Eq. (B.24) after application of the chain rule, given by

∂g(x(α))

∂α
=
∂g

∂x

∂x

∂α
= JT ∂x

∂α
(B.26)

with J the Jacobian of the constraints as in Eq. (B.2). For notational brevity, the

parameters of g are dropped in the above expression, and we will continue to do so

for functions where the parameters are understood. To solve for ∂x
∂α

, we can introduce

known quantities by applying ∂/∂α to ∇xLω(x(α),α) = 0 with the multivariable
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chain rule in order to get

∂∇xLω

∂α
=
∂∇xLω

∂x

∂x

∂α
+
∂∇xLω

∂α
= 0. (B.27)

In particular, the partial derivative

∂∇xLω

∂x
= ∇2

x
Lω (B.28)

is the Hessian of the augmented Lagrangian with respect to x, and the partial deriva-

tive

∂∇xLω

∂α
=

∂

∂α

(
∇xf(x) +αT∇xg(x) + g(x)∇xg(x)

)

= ∇xg(x) = J (B.29)

is the Jacobian of g. Taking the values of Eqs. (B.28) and (B.29) and substituting

into Eq. (B.27), we have

∂∇xL

∂α
= (∇2

x
Lω) ·

∂x

∂α
+ J = 0

which re-arranges to give

∂x

∂α
= −(∇2

x
Lω)

−1 · J .

Using this identity together with Eq. (B.26), we can therefore write the Hessian of

the dual as

∇2
α
ψω(α) = JT ∂x

∂α

= −JT · (∇2
x
Lω)

−1 · J (B.30)

To also include the case where the index set P is not empty, observe that the various

second-order partial derivatives of Ψ(x) in Eq. (3.9) for i ∈ P are given by

∂2Ψ

∂αiαj

= 0
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everywhere except when i = j, where they are equal to −1
ωi
. Without loss of generality,

the constraint indices may be re-arranged so that the Hessian of the dual can be

written using block matrices as

∇2ψ(α) =

[

−JT · (∇2
x
Lω)

−1 · J 0

0 −Ω−1

]

(B.31)

with −JT ·(∇2Lω)
−1 ·J corresponding to i ∈ Z and −Ω−1 to i ∈ P . Since the Hessian

of the augmented Lagrangian is positive definite at the optimum, the Hessian of the

dual is negative, and so is maximized by α at the stationary point ∇ψ = g(x(α)) =

0.

Using the above, and in particular Eq. (B.24), it can be seen that the update used

in Eq. (3.6) for the method of multipliers is in fact a form of gradient ascent with

stepsize given by ω. Other step sizes are possible, and Bertsekas [26] even derives an

optimal value that is expressed in terms of minimum and maximum eigenvalues of the

Hessian of the dual. The understanding of approximations for Lagrange multipliers

as being maximizing steps in the search space of a dual function also suggests alter-

native approaches for constructing a sequence of multiplier approximations intended

to converge to the optimum, such as Newton’s method.

B.5.1 Newton’s method for Lagrange multipliers

Newton’s method for calculating Lagrange multipliers applies the same approach as

described in Eq. (B.1) by minimizing the negative of the dual function −ψω(α) in

order to generate a sequence {α(k)} that approaches α∗. Explicitly, the Newton step

calculates

α(k+1) = α(k) −
(
∇2ψω

)−1 · (∇ψ) (B.32)
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from a given estimate α(k) in order to minimize −ψω(α). Combining the first- and

second-order derivatives from Eqs. (B.24) and (B.30) gives the Newton step as

α(k+1) = α(k) +
[

JT
(
∇2

x
Lω(x(α

(k)),α(k))
)−1 · J

]−1

· g(x(α(k))) (B.33)

= α(k) +
(
JT · ∇2

x
L−1
ω
· J
)−1 · g(x(α(k)))

The sequence arrived at for {α(k)} as generated by this approach can then be used as

a sequence of Lagrange multipliers for Lω(x,α). Also of interest is to note [43] that
(
JT · ∇2

x
L−1
ω
· J
)−1 ≈ Ω for large values in Ω, which reduces Eq. (B.33) to the same

update rule as in Eq. (3.6).



Appendix C

Additional figures

Additional figures are collected here for the experimental results discussed in Chap-

ter 5. Where given, regular ECDF plots are grouped together by problem and di-

mension, and arranged into pairs of rows representing the proportion of successful

f -targets plotted against the count of f -evaluations (top) and successful g-targets

plotted against the count of g-evaluations (bottom).
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Figure C.1: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for Lω(x,α) with
α = α∗, ω = 1. Bottom left: contour regions for Lω(x,α) with α = α∗, ω = 20.
Bottom right: contour regions for Lω(x,α) with α = 20α∗, ω = 1. The constrained
optimum is marked throughout at x∗ ≈ [1, 127.321]. Similar to Figure 5.4 but with
equal axis scaling.
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Figure C.2: Visualization in n = 2 of contour lines for the objective function f(x) =
xTx with NFR inequality constraints. Top left: objective and constraint functions
given with the infeasible region shaded. Top right: contour regions for φ(x) with
ω = 2. Bottom left: contour regions for φ(x) with ω = 2 · 10−2. Bottom right:
contour regions for φ(x) with ω = 2 · 102. The constrained optimum is marked
throughout at x∗ ≈ [1, 127.321]. Similar to Figure 5.5 but with equal axis scaling.
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Figure C.3: ECDF plots paired vertically by problem (indicated by in-column labels)
showing f -evals vs. f -targets (top plot of pair) and g-evals vs. g-targets (bottom plot
of pair). The axes are shared across plots for the same problem and aligned to allow
comparisons between plots for f - and g-targets.
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Figure C.4: Convergence plots showing step size σ with respect to (f + g)-evals for
median runs from each of four algorithms on large B variants.

Figure C.5: Convergence plots showing distance ‖α − α∗‖/‖α∗‖ from the optimal
Lagrange multiplier vector with respect to (f + g)-evals for median runs from the
three Lagrangian methods on large B variants.
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Figure C.6: Pairs of ECDF plots showing f -evals vs. f -targets (top) and g-evals vs.
g-targets (bottom) on large B problem variants. The axes are shared across plots
for the same problem and aligned to allow comparisons between plots for f - and
g-targets.
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Figure C.7: Convergence plots showing step size σ with respect to (f + g)-evals for
median runs from each of four algorithms.

Figure C.8: Convergence plots showing distance ‖α − α∗‖/‖α∗‖ from the optimal
Lagrange multiplier vector with respect to (f + g)-evals for median runs from the
three Lagrangian methods. The axes are shared across plots for the same problem
and aligned to allow comparisons between plots for f - and g-targets.
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Figure C.9: Pairs of ECDF plots showing f -evals vs. f -targets (top) and g-evals vs.
g-targets (bottom) on large A problem variants. The axes are shared across plots
for the same problem and aligned to allow comparisons between plots for f - and
g-targets.
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Figure C.10: Pairs of ECDF plots showing f -evals vs. f -targets (top) and g-evals
vs. g-targets (bottom) for randomly generated constraints on n = 10 spheres. The
axes are shared across plots for the same problem and aligned to allow comparisons
between plots for f - and g-targets.
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Figure C.11: Pairs of ECDF plots showing f -evals vs. f -targets (top) and g-evals
vs. g-targets (bottom) for randomly generated constraints on n = 20 spheres. The
axes are shared across plots for the same problem and aligned to allow comparisons
between plots for f - and g-targets.



Bibliography

[1] A Abudhahir and S Baskar. An evolutionary optimized nonlinear function to
improve the linearity of transducer characteristics. Measurement Science and
Technology, 19(4):045103, 2008.

[2] D. V. Arnold. Analysis of a repair mechanism for the (1, λ)-ES applied to a sim-
ple constrained problem. In Genetic and Evolutionary Computation Conference
— GECCO 2011, pages 853–860. ACM Press, 2011.

[3] D. V. Arnold. On the behaviour of the (1, λ)-ES for a simple constrained prob-
lem. In H.-G. Beyer and W. B. Langdon, editors, Proceedings of the 11th Inter-
national Conference on Foundations of Genetic Algorithms, FOGA’11, pages
15–24. ACM Press, 2011.

[4] D. V. Arnold. Resampling versus repair in evolution strategies applied to a
constrained linear problem. Evolutionary Computation, 21(3):389–411, 2013.

[5] D. V. Arnold and N. Hansen. Active covariance matrix adaptation for the
(1 + 1)-CMA-ES. In Genetic and Evolutionary Computation Conference —
GECCO 2010, pages 385–392. ACM Press, 2010.

[6] D. V. Arnold and N. Hansen. A (1+ 1)-CMA-ES for constrained optimisation.
In Genetic and Evolutionary Computation Conference — GECCO 2012, pages
297–304. ACM Press, 2012.

[7] Dirk V. Arnold. Optimal weighted recombination. In Proceedings of the 8th In-
ternational Conference on Foundations of Genetic Algorithms, FOGA’05, pages
215–237. Springer-Verlag, 2005.

[8] Dirk V Arnold. Weighted multirecombination evolution strategies. Theoretical
Computer Science, 361(1):18–37, 2006.

[9] Dirk V Arnold. On the behaviour of the (1, λ)-σSA-ES for a constrained linear
problem. In Parallel Problem Solving from Nature-PPSN XII, pages 82–91.
Springer, 2012.

[10] Dirk V Arnold. On the behaviour of the (1, λ)-ES for conically constrained
linear problems. Evolutionary Computation, 22(3):503–523, 2014.

[11] Dirk V Arnold. An active-set evolution strategy for optimization with known
constraints. In International Conference on Parallel Problem Solving from Na-
ture, pages 192–202. Springer, 2016.

174



175

[12] Dirk V Arnold. Reconsidering constraint release for active-set evolution strate-
gies. In Proceedings of the Genetic and Evolutionary Computation Conference,
pages 665–672, 2017.

[13] Dirk V Arnold and Daniel Brauer. On the behaviour of the (1+1)-ES for a
simple constrained problem. In Parallel Problem Solving from Nature–PPSN
X, pages 1–10. Springer, 2008.

[14] Dirk V Arnold and Jeremy Porter. Towards an augmented Lagrangian con-
straint handling approach for the (1+1)-ES. In Proceedings of the 2015 Annual
Conference on Genetic and Evolutionary Computation, pages 249–256, 2015.

[15] Asma Atamna. Analysis of Randomized Adaptive Algorithms for Black-Box
Continuous Constrained Optimization. PhD thesis, Université Paris-Saclay,
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