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Abstract 

 

 Early motor learning is driven by error commission and feedback during physical practice 

(PP). Motor learning can also be facilitated by action observation (AO), which classically 

involves observing a skilled model flawlessly complete a skill. To determine whether error-

dependent feedback is conserved in AO, participants were recruited to learn a dart-throwing task 

via AO and PP. Over a 6-week period, participants observed either a learning model, who 

commits and corrects errors, or a skilled model committing no errors, followed by PP of the task. 

Participants’ performance on both the primary task and a transfer task was measured and 

contrasted to determine which AO model resulted in better motor learning. Results indicated that 

while the learning model group generally performed better on both tasks, the difference was not 

significant, suggesting that learning model AO may not be superior to skilled model AO in long-

term motor learning.  
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Chapter 1: Introduction 

 

 Motor learning refers to the process by which one acquires, develops, and refines motor 

skills (Newell, 1991). Given that motor skills are critical facets of activities of daily living, 

recreation, athletics, and occupational settings, an improved understanding of the processes 

underlying and driving motor learning can contribute to accelerated motor skill acquisition 

across a wide variety of fields. During the earliest phases of acquiring a novel motor skill, there 

is a high degree of dependence on error commission and correction; namely, an individual must 

make errors and derive feedback from multiple task attempts to consolidate learning of a new 

motor skill (Seidler et al., 2013).   

While motor learning is classically driven through physical practice (PP) of the skill one 

is trying to learn, a number of alternate learning strategies exist. One such example is action 

observation (AO), which involves watching another individual perform a motor skill, driving 

learning of that same skill. AO is facilitated through the body’s mirror neuron system, a set of 

neurons with complex firing patterns that activate the same sensorimotor pathways when 

observing a movement as would be activated during physical execution of that movement 

(Keysers et al., 2003; Wolpert, Diedrichsen, and Flanagan, 2011). These pathways activate the 

same neural structures and cytoarchitecture involved in performing the skill (Sale and 

Franceschini, 2012), enabling an alternative to PP that may be more accessible for individuals 

during rehabilitation of an injury or disease, or in circumstances where fatigue, time, or resources 

limit PP opportunities. While notable that independent PP generally yields better motor learning 

outcomes as compared to independent AO, a combined dosage of PP and AO results in superior 

motor skill acquisition as compared to either strategy used independently (McNeill et al., 2019). 
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Conventionally speaking, AO involves observation of a skilled model who flawlessly 

executes the task being demonstrated. However, this approach does not capitalize on the 

significance of error correction and feedback-driven learning cycles, both of which are critical 

drivers of early motor learning (Seidler et al., 2013). In comparison, AO of a learning model who 

commits errors during observation and improves their performance over time may be a more 

optimal alternative for early-phase learners who depend more heavily on feedback to drive skill 

acquisition. Despite a robust base of literature and conceptual predictions indicating that 

learning-model AO likely has benefits over skilled-model AO during early learning, attempts to 

demonstrate this effect remain limited and inconclusive (McCullagh and Meyer, 1997; Weir, 

1988; Pollock and Lee, 1992). One potential contributor to these findings may be the relatively 

low AO and PP volumes used in these studies, which generally did not exceed more than two 

sessions of participant training. Given that motor learning through PP takes weeks, months, and 

even years to acquire and consolidate feedback (Nieuwboer et al., 2009), it is reasonable to 

presume that the mechanisms driving AO would likely need to be active for similar levels of 

time as they would in PP. 

This work aimed to address the question of learning- versus skilled-model AO using a 

longitudinal study design wherein participants trained a dart-throwing task over a 6-week period 

using AO and PP. All participants completed the same volume of AO and PP (approximately 

1,200 throws of each), with the difference between experimental groups being the model they 

observed: either a learning model, who initially demonstrated multiple errors in their dart throw 

and improved over time, or a skilled model, who initially demonstrated very few or absent errors 

in their dart throw and did not vary in performance over time. It was hypothesised that AO of the 
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learning model would lead to both superior motor skill acquisition and transferability as 

compared to AO of a skilled model.  

Interested individuals were determined to be eligible to participate if they were right-

handed, over the age of 18, had normal vision and no conditions that would prevent them from 

learning a novel task, and were considered novice to dart-throwing tasks. The lattermost point 

was considered significant in that novice individuals were predicted to be the most likely 

responders to learning model AO given their dependence on errors and feedback during early-

phase learning (McNeill et al., 2019). Eligible participants completed a total of 18 sessions, 

inclusive of an introductory session involving consent and a 15-throw pretest. Subsequent 

sessions involved AO of the model completing 75 dart throws, interspersed with 75 physically-

practiced dart throws by the participant. Motor skill acquisition was measured using the mean 

radial error (MRE) of the participants’ distance from the target of the dart-throwing task, the 

bull’s eye. On participants’ final sessions, the task was modified such that five unique points on 

the dart board became the new targets, with the distance of the dart from these points being a 

measure of motor skill transferability.  

Motor skill acquisition was analyzed using a linear mixed effects model, and motor skill 

transferability was analyzed using an independent t-test. While both measures were slightly 

superior in the learning model group compared to the skilled model group, the differences were 

not significant at the 95% confidence level. The results of this study imply that while coupling 

PP with learning model AO is an effective approach to learning a novel motor skill, there is no 

evidence to support that it leads to significantly better acquisition or transferability compared to 

skilled model AO. These findings enhance the collective understanding of motor learning theory 
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and fundamental neuroscience and may have valuable implications in the fields of athletics, 

occupational training, and rehabilitation following disease or injury.   
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Chapter 2: Background 

2.1 Relevance and justification 

 

 Motor learning is the process by which one acquires, develops, and refines a motor 

skill, a term generally referring to a coordinated physical effort involving a sequence of 

movements to achieve a particular goal or outcome (Newell, 1991). Motor skills range from 

basic activities of daily living such as brushing one’s teeth or getting dressed, to occupational 

tasks like manual labour or tool handling, or to performance-oriented athletic outputs such as 

throwing, striking, jumping, or running. Wherever a motor skill is implemented, it is necessarily 

preceded by the learning of said motor skill, which can occur at various stages and settings 

throughout one’s lifespan, be this early childhood, old age, recreation, or work. Furthermore, 

motor learning holds a special place in the field of rehabilitation, where it is the primary 

approach in the re-acquisition of motor skills following surgery, brain injury, or diseases such as 

stroke (Krakauer, 2006). Given the pivotal role that motor skills play in day-to-day activity 

across all walks of life and levels of human function, research in motor control – the study of 

movement planning and execution (Schmidt et al., 2018) – has been concerned with 

understanding the processes involved in motor learning. By better understanding the factors 

driving these processes, key elements may be prioritised and leveraged to lead to better, faster 

motor skill acquisition outcomes.  

Accelerated motor learning presents a number of advantages for the numerous settings 

involving motor learning. For instance, faster motor skill re-acquisition during rehabilitation 

could lead to swifter patient recovery times and reduced demands on limited healthcare 

resources. In performance and athletic environments, rapid motor skill acquisition can make 

efficient use of the limited training time available during a season, either affording a greater 
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amount of effective training time – namely, time spent contributing to context-relevant motor 

skill development – or freeing up time resources to pursue different training aspects. Faster 

development and acquisition of motor skills in occupational settings could lead to reduced 

monetary and time costs in employee training and may result in fewer workplace errors. This 

type of process optimisation offers clear and numerous benefits but is necessarily preceded by an 

understanding of the processes driving motor skill acquisition.  

2.2 Motor learning principles, processes, and error-based learning 

 

 Motor skills are composed of fixed sequences of movements (Hikosaka et al., 2002), and 

are typically improved and consolidated in the body through repetition and practice (Karni et al., 

1998; Brem, Ran, and Pascual-Leone, 2013; Luft and Buitrago, 2005). This process of 

improvement occurs in three broadly-defined stages, as first described by Fitts and Posner 

(1967): firstly, the cognitive stage, where movements are slow and consciously deliberate; 

secondly, the associative stage, as movements become more fluid and autonomous; and lastly, 

the autonomous stage, where movements are fully autonomous and require little conscious 

input to successfully accomplish (Karni et al., 1998; Marinelli et al., 2017; Weaver, 2015; 

Nieuwboer et al., 2009). The associative stage may often be thought of as an intermediate phase 

between early-phase learning, which tends to be faster and elicits larger changes in skill level, 

and late-phase learning, which is often slower and is characterised by incremental changes and 

fine tuning of the skill (Karni et al., 1998; Marinelli et al., 2017). The earlier phases tend to be 

more cognitively demanding and uncoordinated compared to later phases and are characterised 

by the commission and correction of errors when attempting to execute the skill being learned 

(Seidler et al., 2013). Over time, practice of the skill leads to a higher proficiency in the skill –
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efforts become more autonomous, fewer errors are made, and applying the motor skill to 

accomplish a given task requires less conscious input (Nieuwboer et al., 2009).  

While proficiency in a particular motor skill is characterised by a relatively small rate of 

error commission, it is preceded by the commission and correction of errors in the first place. In 

fact, the process of trial-by-trial error correction is a significant driver of motor learning, 

particularly in the early phases when numerous errors are committed (Nieuwboer et al., 2009; 

Seidler et al., 2013), and can be roughly described as follows. Prior to attempting a motor task, 

the body’s sensorimotor system takes note of a number of pieces of information, including the 

initial state of the environment and the pre-response state of the musculature, and uses them to 

estimate the optimal strategy or motor plan for task completion. During and after the task’s 

execution, the sensorimotor system evaluates the dynamics and trajectory of the task-relevant 

effectors, as well as objective and subjective information about the task outcome, and compares 

these to the estimated motor plan in the form of an error signal. This error signal is used to 

improve future estimates of the appropriate motor plan for subsequent task attempts (Diedrichsen 

et al., 2010).  

A perplexing aspect of the above process is that the time to generate sensory error 

information, process it, and incorporate it into a corrected subsequent task attempt – around 120-

200ms in duration – is far slower than the time taken to carry out these corrected movements in 

real time. To explain the reason for this discrepancy, Schmidt (1975) drew on an idea first 

proposed by Lashley (1917) that these movements were decided upon prior to the movement 

being initiated and were centrally controlled by sets of stored muscle commands “primed” for 

action at any time called motor programs. Schmidt reasoned that there existed generalised 

motor programs for given classes of movements (e.g., throwing tasks) from which one is selected 
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to meet the demands of the task at hand – in other words, there is not a one-to-one match 

between the various stored motor programs and all the specific movements an individual can 

produce. Given that not all tasks within a class of movement are identical to one another (e.g., 

throwing a dart at a nearby board requires a different approach than throwing a baseball to a 

distant catcher), information about the environment and pre-response state are used to estimate 

the appropriate response specifications to modify the selected motor program. The correct 

determination of these parameters allows the performer to appropriately adapt their motor 

program to the task at hand and select the correct movements for a successful attempt.  

In what would come to be known as schema theory, Schmidt goes on to describe that 

following the execution of a movement, four pieces of information are assessed and stored: 1) 

the pre-response state of the relevant musculature and the environment, 2) the selected response 

specifications for the program, 3) the objective sensory consequences of the produced response, 

and 4) a subjective interpretation of how successful the response was in completing the task. This 

lattermost piece of information can also be thought of as the performer’s knowledge of results, a 

key determinant in the trial-by-trial error correction process described above – without any sort 

of task-relevant feedback, the performer cannot know if their effort was successful or not, and 

does not have the necessary signal to modify their response specifications appropriately.  

Wolpert, Miall, and Kawato (1998) proposed a novel computational framework in which 

motor programs were organised, selected, and engaged using controllers known as internal 

models – state-dependent sensorimotor representations of the task’s response specifications as 

estimated by the sensorimotor system (Thoroughman and Shadmehr, 2000). Internal models are 

thought to be mainly housed in the cerebellum (Imamizu et al., 2003; Ito, 2008; Wolpert, Miall, 

and Kawato, 1998), a region of the brain also generally involved in error-based learning 
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processes (Wolpert, Diedrichsen, and Flanagan, 2011; Seidler et al., 2013; Butcher et al., 2017; 

Petrosini et al., 2003), and can be categorised into two related subtypes. An inverse model 

initially identifies the appropriate motor program, as proposed by Schmidt, and associated 

response specifications necessary to complete the task, based on prior experiences, expectations, 

and perceptions of the state of the task environment. Once the task itself has been attempted, the 

comparison between the actual outcome and the intended outcome prescribed by the inverse 

model is recorded (Miall, 2003). This comparison is used to inform and develop a forward 

model, which estimates the outcome that a particular motor plan will yield for a particular motor 

task based on the body’s prior experiences with said plan and task (Cooper, 2010). In this way, 

the two internal models act cyclically with one another, generating sensory feedback with each 

action-outcome iteration to refine and eventually grasp the estimated motor plan required for a 

successful task outcome (Pickering and Clark, 2014; Wolpert, Diedrichsen, and Flanagan, 2011). 

This proposition integrated elegantly with elements of Schmidt’s schema theory while 

elucidating on the specific mechanisms used to access and utilise the information stored after 

each movement execution. Well before the advent of these theories, MacNeilage and 

MacNeilage (1973) unknowingly summarised this process and goal with the notion that “the 

need for peripheral sensory feedback can be thought of as inversely proportional to the ability of 

the central nervous system to predictively determine every essential aspect of the following 

acts.”.  

Capitalising on this type of error-based correction mechanism requires a signed error 

signal to adjust the motor plan in the proper direction. This requires not only the knowledge of 

the task results as proposed by Schmidt, but also a further understanding of the ways in which it 

fell short (Wolpert, Diedrichsen, and Flanagan, 2011). For instance, a dancer who attempts a 
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jump with a certain height in mind but does not jump high enough not only recognises that her 

jump was unsuccessful but acknowledges that on a subsequent attempt she must adjust her motor 

plan to jump higher, not lower. Depending on the dancer’s familiarity with the task, the 

adjustments for a successful next attempt may be understood generally (e.g., to push off from the 

floor with greater force) or specifically (e.g., to engage the core and heels during propulsion to 

achieve this greater force). This moment of recognizing and processing a committed error 

generates a neurophysiological signature that can be recorded via electroencephalography. When 

an overt motor error is committed, an event-related potential is produced approximately 100ms 

following the actual commission, known as an error-related negativity (ERN) (Gehring et al., 

2011). The ERN is produced in the anterior cingulate cortex, a region of the brain involved 

generally in motor control and specifically in adapting behaviour to changes in state and task 

demands. Larger ERNs are evoked when larger errors are committed, while smaller errors 

manifest in smaller ERNs. Both the magnitude and the relative abundance of ERNs have been 

shown to decrease as motor learning advances from earlier to later phases, as the motor skill 

becomes more autonomous and approaches proficiency (Seidler et al., 2013).  

2.3 Action observation theory and the mirror neuron system  

 

 It has been established that motor skills are generally improved by repetition and practice, 

but this practice does not necessarily need to involve physically performing the skill in question. 

Motor learning can be facilitated by action observation (AO), the process of observing another 

perform a particular action. This process utilises the body’s mirror neuron system (MNS), a 

group of neurons that discharge similarly when observing an action as they do when performing 

the same action (Oztop, Kawato, and Arbib, 2013; Wolpert, Diedrichsen, and Flanagan, 2011; 

Mattar and Gribble, 2005). Mirror neurons demonstrate highly complex firing patterns: they 
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respond to anticipations of visual, auditory, and tactile stimulation associated with a particular 

action (Keysers et al., 2003), and will activate the sensorimotor pathways involved when 

observing a goal-oriented task even if stages of that task are not clearly sensible (e.g., observing 

a hand reaching for an out-of-sight object) (Miall, 2003). The firing pattern appears to occur in a 

predictive manner, implicating the involvement of learned priors and expectations related to the 

specific action being observed (Flanagan and Johannson, 2003). This facet is necessarily 

preceded by the involvement of a specific action or task’s forward model(s), based on the 

expectations and anticipations of the sensory feedback present during that action’s outcome 

(Kirsch and Cross, 2015).  

 During AO of a particular task, the observer’s neural structures involved in physically 

performing the observed task are activated (Sale and Franceschini, 2012; Fadiga et al., 1995). 

The observation process generates and refines a sensorimotor representation of an observed 

action similarly to how a representation is generated and refined during repeated physical 

execution of a motor skill (Wolpert, Diedrichsen, and Flanagan, 2011). These shared 

characteristic processes give rise to the notion that there exists a functional equivalence 

between the observation of an action and the actual performance of that action (Holmes and 

Calmels, 2008; Jeannerod, 2001). This notion forms the basis for the fact that learning of a motor 

skill can be facilitated by virtue of the MNS-induced activation of the same neural structures and 

pathways involved in the physical execution of that skill (Mattar and Gribble, 2005; Wolpert, 

Diedrichsen, and Flanagan, 2011; Stefan et al., 2005). Following from this, AO can be 

effectively applied to a variety of motor learning environments. Cross et al. (2008) demonstrated 

that individuals who simply watched an actor correctly perform a motor task achieved higher 

task performance scores than individuals who did not watch the actor. With this being said, there 
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are a number of key contrasts between AO and physical practice (PP). Previous work has 

indicated that compared to PP, learning via AO appears to be modulated by the frequency at 

which learners are informed whether the task was successful or not, implying a more perceptual 

dependence in AO compared to PP (Badets and Blandin, 2010). Cross et al. (2008) also 

concluded that individuals who solely physically practiced a motor skill had higher task 

performance scores than individuals who solely observed the skill being correctly performed, 

implying that PP is a more potent learning strategy compared to AO when available.  

However, numerous studies have found that the combination of AO and physical 

practice of a task (AO+PP) will result in better performance outcomes and greater task motor 

memory than solely PP or solely AO. Based on the motor simulation performance model 

proposed by McNeill et al. (2019), this effect is most pronounced when utilised by lower-skilled 

individuals: namely, those who are inexperienced in the motor skill being learned or trained. 

However, AO+PP still leads to greater performance changes for moderately- and highly-skilled 

individuals, albeit with a smaller difference than that seen for lower-skilled individuals. This 

effect has been demonstrated in the rehabilitation of stroke (Sugg et al., 2015; Celnik et al., 2008; 

Sale and Franceschini, 2012), cerebral palsy (Kim, Kim, and Ko, 2014), and Parkinson’s disease 

(Pelosin et al., 2010), as well as in behavioural and sequence task learning (Mattar and Gribble, 

2005; Kelly et al., 2003) and human performance (Holmes and Calmels, 2008; Calvo-Merino et 

al., 2005; Neuman and Gray, 2013). These case studies suggest that combining PP and AO has a 

mechanistically constructive effect and can accelerate and improve motor learning in a broad 

variety of learning environments.  
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2.4 Optimising AO as an approach to motor learning based on motor control theory  

 

 A common feature of note in the vast majority of studies and environments that have 

used AO as a motor learning strategy, whether alone or in combination with PP, is that the 

observed action tends to resemble or closely resemble a perfect execution of the motor skill 

being trained – namely, the model executing the observed action is skilled at the task (Neuman 

and Gray, 2013; Calvo-Merino et al., 2005; Hari et al., 1998; Pelosin et al., 2010). Skilled model 

AO gives a clear portrayal of the goal of the motor task in question, and the correct conditions 

that accompany success – relevant facets for both motor learning, as per Wolpert, Diedrichsen, 

and Flanagan, 2011, and AO-induced neural activation, as per Miall, 2003 – but there is evidence 

to suggest that this approach does not fully optimise AO as a motor learning strategy. An 

individual’s ability to interpret and process another actor’s actions during AO of a motor skill 

can depend on the observer’s own prior experience with said skill, or its use in completing a 

motor task. An individual in the early phases of motor learning may have difficulty identifying 

and replicating components of a skill relevant to task success, simply due to their unfamiliarity 

with the skill and task alike (Wolpert, Diedrichsen, and Flanagan, 2011). This is particularly 

relevant given that, as per McNeill et al. (2019), AO appears to have the greatest effect in 

performance changes for early-phase learners – in other words, those who can learn the most 

from AO are likely to be unfamiliar with the skill or task at hand. This suggests a possible 

disjoint in the application of AO as a learning strategy and the population of learners to which it 

most effectively applies.    

Furthermore, it has been proposed that observing repeated perfect performance of a 

motor task promotes “mimicry” of an ideal motor task outcome (Lee, Swinnen, and Serrien, 

1994). This may be thought of as akin to studying for a test by memorizing the answer key – it 
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can equip the learner for a successful outcome in one very particular task environment, but this 

strategy may not afford a full grasp of the minutiae and subject matter of the actual learned 

material. In classical structural learning theory, an appreciation of the design, parameters, and 

environmental context of a particular motor skill allows an individual to adapt to changing task 

circumstances and dynamics. Individuals exposed to a series of motor tasks similar in structure 

but with randomly varying parameters tend to adapt quickly to tasks throughout the series, based 

on their familiarity with the possible perturbations in the task goal (Wolpert, Diedrichsen, and 

Flanagan, 2011). If individuals learning via skilled model AO are exposed only to a narrow 

swath of possible task parameters – i.e., those associated with expert performance of a skill, such 

as repeatedly and flawlessly sinking a three-point basketball shot from a certain point on the 

court – they may be disadvantaged when adapting the skill to different task environments, having 

not been familiarised with variations to the task dynamics.  

 Fitts and Posner proposed that the early phases of motor learning are driven by the 

commission and correction of errors to refine the sensorimotor system’s internal models. A brief 

examination of the mechanisms driving AO illustrates a similar involvement of – and even 

dependence on – error generation to drive motor learning. In accordance with the notion of 

functional equivalence between PP and AO (Holmes and Calmels, 2008; Jeannerod, 2001), there 

appear to be a number of hallmarks of error-based learning associated with PP that are conserved 

when using AO as a motor learning strategy. There exists evidence that humans are capable of 

recognizing, processing, and learning from motor errors made by other individuals (Burke et al., 

2010). The error-processing network involved in processing self-generated motor errors appears 

to also be engaged during motor error observation (Wolpert, Diedrichsen, and Flanagan, 2011), 

suggesting that the mechanisms involved in garnering sensory feedback from a self-generated 
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error are similarly employed during error observation. Furthermore, numerous studies have 

indicated that an ERN is similarly produced when an observer witnesses and recognises another 

individual making a motor error (Koban et al., 2010; Luu, Tucker, and Makeig, 2004; Thanh et 

al., 2014; Bates, Patel, and Liddle, 2005).  

The conservation of these identifiable physiological hallmarks lends credence to the 

proposed hypotheses surrounding potential mechanisms driving AO error-based learning. 

Wolpert et al. (2003) suggested that the body’s internal models for a particular motor skill or task 

can be meaningfully updated in real-time using feedback from observed errors. Given the 

similarities in sensorimotor systems between humans, the authors suggest that an individual 

observing a particular motor task can understand which muscles are activated and engaged and 

can detect adjustments to muscle engagement and dynamics as errors are committed and 

corrected. This process of observing the processes and outcomes of another individual’s actions 

may provide enough feedback to refine the observer’s internal models and drive motor learning, 

at least partially. Miall (2003) goes further to propose a hypothesis involving the mirror neurons 

located in the superior temporal sulcus (STS) and their ability to provide feedback for internal 

model refinement. It is suggested that a visual representation of an observed action is generated 

by the mirror cells in the STS and is relayed to the posterior parietal cortex (PPC) and mirror 

cells in the F5 area of the ventral premotor cortex. Projections leading from F5 and the PPC may 

be implicated in relaying information to the cerebellum, an area of the brain not only involved in 

error-based motor learning via PP and considered to be the storehouse of the body’s internal 

models (Petrosini et al., 2003), but also demonstrated to be an active element of the AO network 

(Sokolov et al., 2010). The mechanism proposed by Miall (2003) elegantly links error feedback 
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acquired by AO directly to the region of the brain mostly likely involved in processing observed 

feedback, illustrating how motor skill representations may be improved in AO.  

 Both the evidence and hypotheses discussed above illustrate a convincing precedent that 

humans can identify, process, and learn from observed errors in the same way that they learn 

from self-generated errors, and that AO has the potential to utilise error commission and 

correction as a resource in motor learning. Within this paradigm it becomes quickly apparent that 

using a skilled model to facilitate learning via AO could be potentially disadvantageous to the 

learner, in the sense that a skilled model neither commits nor corrects errors. If a learner can 

develop a motor skill or task simply by watching another actor make and correct errors, there 

exists an avenue by which to accelerate AO-based motor learning. This promising outlook could 

reduce the number of errors that a learner would need to make during their own PP of a skill or 

task, given that the actor’s error commission-correction cycles would generate sensory feedback 

and correction information for the observer to then use to update their own internal models – in a 

way, the actor makes the errors “for” the observer. As a result, the observer could achieve motor 

skill fluency faster, and with less physical practice of the skill itself, leading to reduced time and 

resource costs in motor learning environments.  

2.5. Previous research and the role of task exposure volume   

 

  There have been attempts by some previous studies to demonstrate that, when paired 

with PP, using a learning model in AO leads to better motor skill outcomes than the use of a 

skilled model. Pollock and Lee (1992) used a computer tracking game that had previously shown 

a large effect as an experimental motor task when participants observed a learning model. Two 

groups, each consisting of 18 female participants who were novice to the tracking game, 

participated in task learning via AO of either a skilled or learning model completing the game. 
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The skilled model group observed the experimenter perform the task, while the learning model 

group observed the other participants perform the task (i.e., they observed models who were 

fully novice to the task and were authentically learning the task as they were observed). 

Participants received a verbal description of the task, observed their respective model perform 3 

trials of the task, and then performed 3 trials themselves. They then observed the model complete 

another 12 trials, followed by completing another 12 trials themselves, to conclude their study 

participation. Comparisons between the results of the two groups indicated that, while 

observation of a model led to improvements in performance against a control group who did not 

observe any model, there was no significant difference in performance gains – as measured by 

the number of errors committed in the task – based on whether they observed a learning or 

skilled model.  

Work by McCullagh and Meyer (1996) compared the effectiveness of skilled and 

learning model AO by training 40 female participants on a free-weight squat lift with a 25lb 

barbell. This study also addressed the effect of providing feedback to participants, and how it 

might interact with the skill level of the model they observed. This feedback was presented by 

the study facilitators in one of two ways: as knowledge of performance, wherein a controlled 

number of comments were made on the participant’s squat kinematics and technique, and as 

knowledge of results, wherein the participants were told the outcome of their performance (in 

this case, the number of squats they completed during each of the five trials). The participants 

were assigned to one of four training conditions – observation of a learning model without 

feedback, observation of a learning model with feedback, observation of a skilled (or correct) 

model with feedback, and a control group that observed no model and received feedback. In 

addition, the control group acted as the model for the two learning model groups, once again 
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representing an authentic learning progression by employing a similar technique to the one used 

by Pollock and Lee (1992). The participants, none of whom had experience performing a squat, 

would perform five 30-second acquisition trials with a 2-minute rest between trials, during which 

they completed the squats. Before beginning their first trial and during the rest period between 

each of the trials, participants viewed their group’s respective model perform the task. As noted 

above, the feedback groups received commentary on both their performance and results from the 

experimenters. After two days had elapsed following the five-trial session, the participants 

returned to perform three 30-second trials with a 2-minute rest interval, but without any feedback 

or model observation. These three trials were used to evaluate participants’ performance on the 

task based on 12 criteria related to squat performance. Similar to the work completed by Pollock 

and Lee (1992), the results indicated that observing a model led to better learning outcomes than 

the control group; furthermore, it was also found that groups in receipt of feedback had improved 

learning outcomes compared to the group that did not receive feedback on their performance nor 

results. However, no significant difference in performance outcomes independent of feedback 

receipt was found between the two modelling conditions, implying that viewing either a correct 

or learning model was equally effective for the task at hand. 

The conclusions of both Pollock and Lee (1992) and McCullagh and Meyer (1996) are 

incongruent with the physiological and behavioural bases and conceptual predictions supporting 

the advantages of using a learning model in AO protocols. Weir (1988) attempted to demonstrate 

these advantages by utilising a dart-throwing task wherein participants would observe either a 

learning model or skilled model, and then physically attempt the task themselves for 60 throws. 

Thirty right-handed females were recruited and assigned to one of six groups consisting of five 

participants each: AO of a skilled model with knowledge of results (meaning the participants 
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knew the result of their observed model’s throw), AO of a skilled model with no knowledge of 

results (meaning that the participants did not know the result of their observed model’s throw), 

AO of an unskilled model with knowledge of results, AO of an unskilled model with no 

knowledge of results, and two control groups, one completing 60 PP throws and the other 

completing 68 PP throws, with no model observation. Participants in the model groups observed 

kinematic footage of their respective model throw eight darts. Each throw was separated by a 20-

second interval, during which the knowledge of results and no knowledge of results groups were 

shown a blank screen. Neither control group observed models completing the throws, but the 68-

throw group completed 8 throws during the observation period to account for potential 

differences in task volume exposure between the control and observation groups. Following the 

observation period, all groups then completed 60 throws with knowledge of their own results; 

following a 24-hour retention interval, all participants completed four additional throws, without 

knowledge of their own results. 

When examining the independent effects of the model’s skill level and the knowledge of 

results factors between groups, the author found that participants who observed a learning model 

achieved a lower absolute constant performance error than those who observed a skilled model, 

suggesting that those who observed a learning model had achieved better learning outcomes than 

those who did not. It was surmised that participants were likely able to derive more meaningful 

information from the variable performance of the learning model, as compared to the uniform 

performance of the skilled model. However, this difference was only apparent when comparing 

the no knowledge of results learning and skilled model groups. When assessing the difference 

between the knowledge of results learning and skilled model groups – namely, those two groups 

that knew the outcome of their model’s throw – it was found that the skilled model group had a 
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slightly higher performance than the unskilled model group, though the difference was not 

significant. This result has implications on differentiating between observation of variable task 

performance and erroneous task performance, and the importance of having knowledge of results 

to drive learning as per McCullagh and Meyer (1996). Without knowledge of results, the 

participants’ perception of their observations was that the model was either using consistent 

kinematic strategies, in the case of the skilled model, or variable kinematic strategies, in the case 

of the learning model, to complete the task. It was then the up to the viewers’ discretion as to 

how these strategies were interpreted, allowing for selective emphasis or disregard of certain 

techniques and resultant incorporation into their own internal models to drive learning. 

Meanwhile, those observers with knowledge of results would be able to link these variable 

kinematic strategies with information regarding the relative success or failure of the task, 

instantly receiving an impression of which kinematic strategies resulted in task failure and which 

resulted in task success. This information can be thought of as analogous to Schmidt’s 

proposition of the information stored after an overt task execution, and likely plays a similar role 

in informing subsequent task attempts. In any case, the results of this study complement the 

robust literature base and conceptual predictions indicating a probable link between model skill 

level and observers’ performance outcomes, setting a precedent for further exploration in this 

area.   

One factor that seems to have gone uninvestigated in these studies is the volume of 

training the participants underwent. Training volume never exceeded more than two sessions in 

the listed studies, with a second session – if present – acting as a retention trial to observe how 

learning was preserved. Given the indication that AO bears a functional equivalence to PP as a 

motor learning strategy, it is not unreasonable to postulate that the mechanisms driving learning 
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via AO should be active for similar volumes of time or task exposure as they would be during 

learning via PP to achieve the same level of motor skill proficiency. In PP, a certain amount of 

training volume – broadly used here to describe time, training effort, or number of task iterations 

– must be spent in the early phases of learning before advancing to a more autonomous, fluid 

proficiency of the skill (Nieuwboer et al., 2009; Seidler et al., 2013). For an individual truly 

novice to a new motor skill or task, physically-practiced errors must be committed and corrected 

in order to graduate to a zero-error level of skill, as per the characterisation of early-phase 

learning and the role of errors in driving this learning (Wolpert, Diedrichsen and Flanagan, 

2011). It can then be justified, by extent of functional equivalence, that a similar volume of error 

commission-correction cycles must be observed during AO as are committed in PP to graduate in 

skill level to the same degree. In reality, the requisite volume of cycles in AO is likely greater 

than the volume of cycles in PP required to reach the same level of proficiency, given the 

evidence that independent PP lends itself to faster motor skill acquisition than independent AO 

(Cross et al., 2008). The improvements seen in the studies presented above could have been 

driven by basic exposure to and PP of the motor task alone, offering a brief increase in skill 

proficiency as participants formulated an internal model of the task. However, the volume may 

not have been sufficient to expose participants to enough AO-sourced sensory feedback to 

differentially develop their internal models. The additional volume included in the study by Weir 

(1988) and resultant significant difference in the two modelling effects makes a compelling case 

for this requisite volume concept. Limiting training volume could prevent participants from 

advancing to later stages of skill acquisition and learning, where a difference in skill proficiency 

related to model type might become more pronounced. When using AO as an independent motor 

learning strategy – i.e., not paired with PP – training volume should likely be at least as high as 
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the physical training volume known to be needed to reach an intended level of motor skill 

proficiency. When combined with PP, total training volume can likely be reduced, due to the 

advantageous effect that this pairing has on motor learning outcomes.  

2.6. Research question and hypotheses  

 

 Based on the justifications, theory, and mechanisms discussed above, we believe that 

there exists strong evidence that AO is best applied as a motor learning strategy when observers 

watch a learning model, who makes and corrects errors, instead of a skilled model, who makes 

no errors. Differences in the two modelling effects on motor skill proficiency are likely best 

demonstrated when participants use AO on a longer time scale, to provide a sufficient amount of 

sensory feedback and error commission-correction cycles to meaningfully improve the 

observer’s internal models of the motor skill. Furthermore, we believe that this effect will be 

amplified when learning model AO is paired with PP, giving the observer opportunities for 

processing of sensory feedback obtained during AO and online reiteration of their internal 

models during subsequent PP. Accordingly, the primary objective of the proposed work is to 

investigate the differential impact of observing a skilled model or learning model on motor skill 

acquisition when paired with PP in a long-term motor learning program. We hypothesise that in 

a long-term training program, pairing learning model AO with PP will result in superior 

motor skill acquisition than pairing skilled model AO with PP. This hypothesis will be tested 

by training study participants in a dart-throwing task using AO+PP as their motor learning 

strategy and assessing their skill acquisition using the mean radial error (MRE) of their throw 

(the mean distance of a series of dart throws from the bull’s eye). Dart throwing was identified as 

an appropriate motor task owing to a number of factors, including the simplicity with which 

performance can be quantified and scored (i.e., as distance from a target), the ease of 
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representing the skill’s kinematics to an observer using a sagittal-view recording, and the 

prefabricated dart-throwing infrastructure in the Laboratory for Brain Recovery and Function. 

Furthermore, previous studies have similarly investigated motor learning using dart-throwing as 

a model motor skill and have been successful in demonstrating significant changes in 

performance (Weir, 1988; Tyĉ and Boyadjian, 2011), implying that it is a skill amenable to 

learning and refinement in the paradigm of a research study. 

The secondary objective of this work is to determine the differential impact of observing 

a skilled model or learning model on motor skill transferability – a shift in the parameters and 

goals of the task, while still engaging the same motor skill – when paired with PP in a long-term 

motor learning program. We hypothesise that participants who complement long-term PP 

with AO involving a learning model will perform better on a modified motor task than 

participants whose AO involves a skilled model. This hypothesis will be tested by assessing 

the MRE of participants’ throws on a dart-throwing task with different criteria for success than 

the previously discussed dart-throwing task.  
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Chapter 3: Methodology 

3.1 Participants 

 

Forty-one prospective participants were invited to participate in the study through word-

of-mouth and virtual information posters (see Appendix A). Participants’ eligibility was assessed 

using a two-stage screening process, the first being online, and the second in-person. Previous 

work done by Tyĉ and Boyadjian (2011) utilising a training volume and duration similar to the 

one proposed by this study (see 3.3, below) saw a statistically significant increase in dart-

throwing performance in a single group of 6 participants, implying that a total sample size of 

N=12 may be appropriate to observe a significant change in performance over a 6-week time 

period. To determine the minimum sample necessary to observe a difference between two groups 

over the course of a 6-week time period, an a priori power analysis was conducted in G*Power 

3.1.9.4 (see Appendix B for detailed protocol). This analysis indicated that a total sample size of 

N=24 would be appropriate to detect a significant difference between two equally-sized groups. 

Participants were required to be aged 18 or older, with normal or corrected-to-normal 

vision, and to be in good health (i.e., with no self-reported neurological or mobility-impairing 

diseases, conditions, or illnesses, as disclosed using an online screening form). Participants’ 

handedness was also assessed during the online screening stage, using the Edinburgh 

Handedness Inventory (Oldfield, 1971). Right-handed participants (a score of 40 or higher) were 

considered eligible, as the model the participants were to observe was right-handed, and it has 

been demonstrated that AO efficacy is sensitive to the model’s handedness likeness to observers 

(Rohbanfard and Proteau, 2011). Participants were also required to be novice to the motor skill; 

namely, having little to no experience throwing darts, so as to ensure that there is ample 

opportunity for early-phase learning to occur. This was assessed using an email questionnaire 
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asking questions about prospective participants’ familiarity with dart throwing in general, the 

frequency of their participation in dart-throwing activities, and how long ago they last threw a 

dart (see Appendix C for questionnaire details). Participants who were found to be sufficiently 

unfamiliar with dart-throwing tasks and met all other inclusion criteria were asked to visit the 

Laboratory for Brain Recovery and Function for an introductory session to complete the second, 

in-person component of the screening process, a 15-throw pretest of the dart throwing task 

described in 3.3, below. Participants’ performances on the pretest were assessed, and participants 

with an MRE greater than or equal to 8.5cm were considered sufficiently novice at the dart-

throwing task to participate in the study. Participants with an MRE less than 8.5cm were 

considered experienced at dart-throwing tasks and were excluded from further participation in 

the study. This cut-off threshold was based on prior work completed by the Laboratory for Brain 

Recovery and Function in which inexperienced individuals were recruited to learn a dart-

throwing task: those individuals’ mean dart-throwing scores at baseline were used to inform this 

estimate of “novice” dart-throwing ability. Of the 41 individuals recruited for participation, 24 

met eligibility criteria and were invited to participate in the study.  

3.2 Groups 

 

 The 24 eligible participants were pseudorandomised equally into one of two AO 

modelling conditions – skilled model or learning model (n=12 per condition). Given that 

participants were recruited on an ongoing basis over the course of the study’s duration, 

participants were assigned to groups in one of two ways: when the number of participants in each 

group was equal, a participant was assigned randomly; when the number of participants in each 

group was unequal, the participant was assigned to the group with fewer participants. Both 

groups participated in AO of a model performing the dart-throwing task. To authentically 
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represent both a learning and skilled model, the footage used for both groups’ AO was produced 

by having a model novice to dart-throwing train their throw over the course of 9 weeks. In the 

earlier weeks of filming, kinematics and performance associated with novice performance were 

emphasised, while as the model’s skill level advanced in later weeks, expert-associated 

kinematics and performance were emphasised. Kinematics were characterised based on studies 

by Tran, Yano, and Kondo (2016), Nakagawa et al. (2015), Obayashi et al. (2009), Schorer et al. 

(2012), and Tamei et al. (2011), which were collectively used to identify and differentiate the 

throw kinematics to be progressed to during different stages of the model’s training (see 

Appendix D for further details). 

The skilled model group observed footage of the model’s performance only in the late 

weeks of the 9-week training program described above, once the model exhibited skilled 

performance in the dart-throwing task and executed it with perfect kinematics and resultant near-

perfect performance outcomes (i.e., with ideal kinematics and a very low or absent MRE on the 

specified dart-throwing task). The performance level of the model was constant over the course 

of the participants’ training program, meaning that each session attended by participants 

involved observing the same quality of skilled performance.  

Conversely, the learning model group observed footage of the model that illustrated 

progression from unskilled to skilled performance over the course of the model’s 9-week training 

program. During the initial stages of the participants’ observation of the model, the footage 

showed the model committing numerous kinematic and performance errors (i.e., with poor form, 

returning large MREs) associated with novice performance. Over time, the participants observed 

a gradual correction and reduction in these errors, and eventual graduation to improved 

kinematics and performance outcomes. In the later stages of the participants’ observation of the 
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model, the learning model demonstrated advanced kinematics and performance associated with 

expert performance, resembling that of the footage observed by the skilled model group 

throughout their program. Both the learning model and skilled model group completed equal 

amounts of PP of the dart-throwing task following their respective AO observation, as described 

in detail in 3.3, below.  

3.3 Experimental task and protocol  

 

See Figure 3 at the conclusion of this section for a visual timeline of study participation. 

 After obtaining written informed consent from each eligible participant during their first 

visit to the laboratory, participants were introduced to the dart-throwing task first described in 

2.5. The objective of the task, which was clearly outlined to participants at the beginning of each 

session they attended, was to throw a dart to attempt to hit the center of the board (the bull’s 

eye). Following this explanation, participants were asked to complete the fifteen-throw pretest 

discussed in 3.1. MRE was measured by using a transparent overlay sheet placed on top of the 

dart board, with reference markers used to identify the position of the sheet relative to the board 

and the origin coordinates of the bull’s eye. Each time a dart struck the sheet overlying the board, 

the puncture left by the dart piercing the sheet was marked with a permanent marker. The 

distance of this puncture from the bull’s eye was measured manually using a ruler, providing the 

MRE of each throw the participant completed. 

Following the introductory session involving the 15-throw pretest and assessment of 

eligibility, follow-up sessions began with re-describing the goal of the dart-throwing task to 

ensure that it was clearly understood prior to beginning the session. The participant then 

completed five blocks of alternating AO and PP, first by observing footage of their group’s 

respective model performing the motor task (Figure 1). 
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Figure 1: Screen capture sample of AO footage to be shown to participants. In the uppermost 

panel, the model prepares for the throw. The middlemost panel shows the release of the dart. In 

the lowermost panel, the dart misses the board, indicating an unsuccessful task attempt.  

 

The monitor observed by participants was split into two halves, showing the model in a 

sagittal-plane view on the left-hand side, and the dartboard on the right-hand side. The 

participant observed the model preparing for the throw, drawing back, and then releasing the 

dart. The footage showed the dart being released, travelling across the room, and landing in the 

dartboard, with both halves of the monitor in sync with one another. This provided the 

participant knowledge of the model’s results and a clear indication of whether the attempt at the 
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task was successful, while simultaneously allowing them to observe the kinematics leading to the 

task result. However, participants received no external direction from the experimenter relating 

to which elements of the model’s kinematics to pay attention to. Once 15 throws were observed, 

the video was paused, indicating that the observation block had concluded. The participant then 

physically performed the dart-throwing task themselves by completing a physical practice block 

of 15 throws. At the beginning of each physical practice block, a transparent overlay sheet 

marking the bull’s eye position was placed over the dart board, similar to the 15-throw pre-test. 

As each dart struck the board, it punctured the sheet. After 15 throws were completed, the sheet 

was removed and replaced with a new sheet indicating only the bull’s eye position, and the 

punctured sheet was highlighted with a permanent marker. Similar to the observation blocks, the 

experimenter did not provide the participant with any feedback on their dart-throwing kinematics 

or how these kinematic strategies related to the result they achieved on the task. Following 

completion of the sheet transfer, the footage of the model was resumed for observation of 

another fifteen throws, followed by physical practice of another fifteen throws, until a total of 

five AO+PP blocks had been completed (with 75 throws having been observed, and 75 throws 

having been physically practiced). The MREs from each throw on the highlighted overlay sheets 

were measured manually using a ruler and recorded following the end of the session.  

Participants completed 18 sessions over the course of the study, inclusive of the 

introductory session. At a rate of 3 sessions per week, participation in the study from recruitment 

to completion took approximately 6 weeks for each participant. Over the course of the study, 

each participant would observe and physically throw over 1,200 darts. This specific training 

volume was established based on the discussion in section 2.4, which encouraged the use of an 

AO+PP volume known to elicit improvements in similar dart-throwing tasks when trained using 
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PP alone. Tyĉ and Boyadjian (2011) found that participants who trained a dart-throwing task 

over 6 weeks with 2-3 sessions per week each consisting of 60-80 throws – accumulating more 

than 1,200 throws over the course of the study – saw a 34% increase in throwing accuracy post-

training. This program was considered a prospective benchmark for establishing a sufficiently 

high PP volume, both in duration and number of throws, to see improvements in this study’s 

dart-throwing task.   

During the participant’s final visit (session 18), the session began by describing a 

modified goal for the dart-throwing task. The goal of the transfer task was to hit a target in the 

boundaries of the concentric ring most proximal to the bull’s eye. At the beginning of each 

practice block, a new target within the boundaries of this ring was illustrated to participants 

(Figure 2), requiring participants to hit five separate targets over the course of the session. This 

modified task was designed with the proposed study’s secondary hypothesis in mind; namely, to 

identify differences in motor skill transferability by testing the dart throw on a different task. The 

participant observed their respective model completing the original dart-throwing task, and then 

performed 75 throws of the modified task. Mean radial error was measured in the same way as 

the original task (i.e., manually, with a ruler), but using the block-specific targets as origin 

coordinates. Each block’s target was consistent across participants and between groups. 

Following this session, participation in the study was completed, and all participants received a 

debriefing form (see Appendix E). 
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Figure 2: Targets for the modified dart-throwing task, indicated by yellow X's. 

 

In addition to collecting participants’ performance data by recording their scores on both 

dart-throwing tasks, participants’ kinematic data was also collected. This was accomplished by 

recording sagittal-view video footage of each participant as they trained the dart-throwing task 

during their physical practice blocks. While use of this video footage beyond its collection or 

subsequent kinematic analysis was not within the scope of this study, its collection may be of use 

for future studies investigating the development of dart-throwing kinematics over the course of 

early-phase motor learning, particularly in response to alternative motor learning strategies such 

as AO.  

 

Figure 3: Conceptual figure showing timeline of study participation, progression, and points of 

measurement. 
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3.4 Statistical analysis  

 

The questions posed in the hypotheses were addressed using two statistical tests 

conducted in RStudio (RStudio Team, 2022). To address the study's primary objective – namely, 

determining whether observing a learning model leads to superior motor learning outcomes than 

observing a skilled model – a linear mixed effects (LME) model, implemented in RStudio using 

lme4 (version 1.3.1), was used to assess factors impacting MRE between groups and over time. 

The independent variables were group (with levels skilled model and learning 

model), session (with levels 2-17, corresponding to the sessions on which the primary task was 

attempted), and block (with levels 1-5, corresponding to the five blocks completed per session), 

all which were incorporated into the model as fixed effects. A hierarchal random effect term was 

used to nest the effect of block within session within participant. The fixed effects for block and 

session were centered on zero and scaled from -1:1, and score was converted to transformed 

zero-mean and unit variance. Significant effects (alpha=0.05) in the model were examined by 

plotting the predicted effects of the model, and effect sizes were estimated using partial r2 values. 

To address the secondary objective – the question of skill transferability as indicated by each 

groups’ performance on the modified dart-throwing task – an independent t-test was conducted 

in IBM SPSS Version 27 (IBM Corporation, 2022). This t-test was conducted at the 95% 

confidence level comparing between-group session 18 MREs (n=12 per group), with the effect 

size estimated using Cohen’s d.  
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Chapter 4: Results 

4.1 Participant demographics and study timeline  

 

Participants’ demographic data is summarized in Table 1 below. Inclusive of the 

introductory session, eligible participants completed 3 sessions per week (mean = 2.79, range 

2.2-3.6), over the course of approximately 6 weeks (mean = 6.17 weeks, range 4.71-7.71). In 

general, sessions were separated by no more than 1 calendar day, to allow time for offline 

consolidation of learning, and no less than 7 calendar days, to prevent a loss of familiarity with 

the task. However, owing to the ongoing COVID-19 pandemic and related public health 

measures, there were instances wherein one participant had to complete 3 sessions on 3 

consecutive calendar days and another participant completed their 18th session more than 7 days 

after their 17th.  

Table 1: Demographic data for study participants. 

 

Group Mean age (years) Gender presentation (n) 

Learning 23.8 Female (10), Male (2) 

Skilled 22.8 Female (10), Male (2) 

Overall 22.9 Female (20), Male (4) 

 

4.2 Effect of modelling condition on motor skill acquisition  

 

 Upon completion of the study, participants’ data were collated into group means for 

sessions 2-17, as summarized in Table 2 and visualized in Figure 4. LME analysis revealed 

several findings from the dataset, with the omnibus test results summarized in Table 3. There 

was a significant improvement in participants’ dart-throwing ability over the course of the study 
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independent of which group they were in, as indicated by a significant effect of session on MRE 

(p<0.001). It was also found that there was a significant effect of block on MRE, indicating that 

lower MREs were generally associated with later blocks of any given session (p<0.001). While 

the learning model group generally tended to demonstrate lower MREs than the skilled model 

group across all sessions, analysis did not indicate a significant effect of group on MRE (p = 

0.453). Furthermore, all interaction terms were nonsignificant (p>0.05), with the exception of 

session*block on MRE  ̧indicating that the block-dependent effect on performance varied as 

participants progressed into later sessions of the study (p=0.008). Specifically, during the earlier 

phases of the study, there was a greater-magnitude difference in MRE between blocks 1 and 5 of 

any given session, as well as larger, positive MRE differences between blocks 5 and 1 of 

consecutive sessions. However, as sessions progressed, these differences became smaller, 

resulting in less variable MREs across all five session blocks. 
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Table 2: Session-wise descriptive statistics for both the learning model group (LMG) and skilled 

model group (SMG) for sessions 2-17. Mean radial error (MRE) is reported in cm, representing 

absolute error as measured from the bull’s eye target. Standard deviations are listed in 

parentheses adjacent to each sessional MRE. Ranges are reported in cm, with the two values 

indicating the minimum and maximum MRE for each group at each session.  

 

Session LMG MRE (SD) SMG MRE (SD) LMG Range SMG Range 

2 9.68 (1.82) 10.41 (1.94) 6.80, 12.88 7.74, 12.96 

3 9.37 (2.34) 10.06 (2.24) 6.29, 14.26 6.15, 12.62 

4 9.28 (2.23) 9.87 (2.54) 6.36, 14.71 5.71, 13.41 

5 9.31 (2.28) 9.45 (2.14) 6.09, 14.27 6.76, 12.64 

6 8.40 (1.48) 9.97 (2.13) 6.18, 10.88 6.92, 12.98 

7 8.53 (1.82) 9.28 (2.32) 5.52, 11.56 6.04, 13.37 

8 8.41 (2.10) 9.16 (2.63) 5.79, 12.51 5.74, 12.96 

9 8.44 (2.21) 8.89 (2.20) 6.30, 12.89 5.14, 12.20 

10 8.17 (1.73) 9.06 (1.87) 6.39, 11.91 5.57, 11.61 

11 8.28 (1.88) 8.50 (2.03) 6.55, 12.40 5.04, 11.63 

12 7.79 (1.75) 8.73 (2.26) 5.92, 11.20 4.96, 11.51 

13 7.54 (1.52) 8.46 (2.08) 5.90, 11.10 5.94, 12.58 

14 7.64 (1.83) 8.86 (2.12) 5.38, 12.21 5.55, 12.30 

15 7.94 (2.00) 8.93 (2.10) 5.97, 12.75 4.74, 12.39 

16 7.90 (2.51) 8.49 (1.89) 5.81, 15.12 5.25, 11.00 

17 7.60 (1.80) 8.25 (1.65) 5.21, 11.58 5.55, 10.50 

 

Table 3: Linear mixed effects omnibus test findings, zero-mean centered.  

 

Model parameter Coefficient Standard 

error 

Confidence 

interval (95%) 

T-statistic 

(26422) 

P-value Partial r2 

Intercept -0.06 0.11 -0.28, 0.16 -0.56 0.575 -0.112 

Group 0.11 0.15 -0.18, 0.41 0.75 0.453 0.151 

Session -0.19 0.02 -0.22, -0.15 -9.20 <0.001 -0.439 

Block -0.06 0.01 -0.08, -0.03 -4.63 <0.001 -0.117 

Group * Session 2.82.3 0.03 -0.05, 0.06 0.09 0.931 0.002 

Group * Block 0.01 0.02 -0.02, 0.04 0.61 0.542 0.011 

Session * Block 0.06 0.02 0.01, 0.10 2.67 0.008 0.065 

Group * Block * 

Session 

-0.03 0.03 -0.08, 0.03 -0.97 0.333 -0.021 
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Figure 4: Visualization of results from sessions 2-17, with separate curves displaying learning model group and skilled model group 

findings. Data is zero-mean centered and modelled to fit LME estimates. Blocks are indicated by separate points and are linked 

within-session. Error bars represent bootstrapped 95% confidence intervals based on each group’s respective sessional means. 
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4.3 Effect of modelling condition on motor skill transferability   

 

 The pooled session 18 MREs are summarized in Table 4. Similar to the primary dart-

throwing task, the learning model group demonstrated less error overall on the modified dart-

throwing task, as evidenced by a lower pooled MRE; however, the independent t-test did not 

indicate that this difference was significant (t(22), p = 0.361, Cohen’s d = 0.38) (Figure 5).  

 

Table 4: Session 18 descriptive statistics for the learning model group (LMG) and skilled model 

group (SMG).  

 

Group LMG SMG 

MRE (cm) 7.64 8.43 

Standard deviation (cm) 2.23 1.95 

Range (cm) 5.55, 11.29 4.69, 10.81 
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Figure 5: Visualization of results from session 18. Separate boxes display the learning model group and skilled model group findings. 

Group medians are indicated by the solid horizontal line transecting the box, 1st and 3rd quartiles by the boundaries of the box, ranges 

by the span of the vertical lines emerging from the box, and outliers by any points not contained within the box.
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Chapter 5: Discussion 

5.1 Overview of findings 

 

This study aimed to evaluate the effect of pairing PP with AO of a learning model on 

longitudinal motor learning outcomes in comparison to a conventional skilled model. This was 

accomplished by teaching inexperienced participants how to perform a dart-throwing task over 

the course of a 6-week training program coupling PP and model-specific AO. Participants’ 

ability to transfer and generalize the dart-throwing skill to different task environments was 

evaluated using a modified dart-throwing task completed at the end of the 6-week timeline. The 

primary hypothesis of this study was that observation of a learning model, who commits and 

corrects errors over time, would lead to superior motor learning outcomes as compared to 

observation of a skilled model. Furthermore, it was also hypothesised that learning model AO 

would lead to superior motor skill transferability compared to skilled model AO, as evidenced by 

performance on a modified dart-throwing task.  

Over the course of the study, participants’ performance on the primary dart throwing task 

improved significantly as a function of session; namely, their exposure to coupled PP+AO 

appeared to drive acquisition of dart-throwing ability. This result is consistent with motor 

learning theory relating AO and PP exposure to skill acquisition, although it is challenging to 

discern exactly how much of this acquisition was owed to the AO material versus the physical 

exposure to the dart-throwing task. Nevertheless, significant learning occurred in response to the 

practice completed over the course of the study, independent of which model participants 

observed. Furthermore, there appeared to be a block-dependent effect on participants’ MRE, 

wherein participants showed lower MREs in later blocks of each session. This effect began to 
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diminish over the course of the study, which can likely be attributed to participants’ ongoing 

consolidation of feedback and retention of the parameters of the motor skill. This observation is 

consistent with previous findings in the literature, which describe the effect of offline learning: 

namely, gains in skill performance are consolidated not only by practice within a session, but 

stabilization and enhancement that occurs between sessions (Censor, Sagi, and Cohen, 2012). 

While this effect is not as pronounced as the improvements that occur during online (i.e., within-

session) learning, it still plays a significant role in skill advancement during early-phase learning 

and is heavily influenced by practice schedule and between-session sleep (Censor, Sagi, and 

Cohen, 2012). It is apparent that offline learning began to play a more significant role during 

later sessions of the study, as evidenced by a diminishing difference in late-session and early-

session MREs, and even became negative in the case of Session 16, Block 5, and Session 17, 

Block 1 for the learning model group (as shown in Figure 4).  

With respect to these findings concerning online and offline learning of the primary dart-

throwing task, it is significant to note that the participants selected to participate were novice to 

dart-throwing tasks in general. This status was evaluated using both subjective and objective 

measures (i.e., the screening questionnaire and performance on the fifteen-throw pretest, 

respectively) and was integrated into the study design so as best to capture the effects of AO+PP 

and error-based learning, both of which were predicted to be most prominent in early-phase 

learners. Individuals who exhibited a higher skill level at dart throwing during either of these 

screening points were excluded from participating. In this sense, there is a certain degree of 

selection bias in this study’s participant population, which raises the question as to whether 

participants’ significant improvements in dart-throwing skill were due to the effectiveness of the 

training program, or simply due to their inexperience with dart throwing and a high likelihood 
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that they would improve in skill regardless of the training program they followed. In any case, it 

is challenging to generalize these findings to a broader population of individuals, particularly 

those who may already have experience with dart-throwing tasks and therefore less room for 

improvement before reaching a skill plateau.  

While the learning model group tended to commit less error overall on both the primary 

and modified motor tasks as compared to the skilled model group, these differences were not 

significant at the 95% confidence level, characterised by large standard deviations within groups 

and a relatively small partial r2 values (Table 3). Unsurprisingly, this finding was also 

accompanied by nonsignificant interaction effects of group*time and group*block. Given this 

outcome, both the primary and secondary alternative hypotheses of this study are rejected: 

at this time, the data acquired in this study do not suggest that when coupled with long-term PP, 

AO of a learning model leads to improved motor skill acquisition and transferability as compared 

to AO of a skilled model. 

5.2 Factors contributing to findings and considerations for future work  

 

 Although this result is not consistent with the robust body of literature and theoretical 

predictions in support of a learning model AO protocol, there are a number of contextual factors 

to consider. As mentioned in 5.1, there are challenges associated with discerning how much 

learning occurred due to PP, and how much occurred due to AO exposure. This study used a 1:1 

ratio of AO:PP, meaning that for every observed throw, participants also physically completed 

one throw. This is generally consistent with the designs used in prior work, including McCullagh 

and Meyer (1997) and Pollock and Lee (1992) wherein both studies used 1:1 AO:PP ratios and 

found that while observing a model led to better motor learning outcomes compared to PP-only 

control groups, there was no significant difference between models. Interestingly, Weir (1988) 
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used a ratio of 8 AO dart throws and 60 PP dart throws and found no significant differences 

between the study’s AO groups and PP-only control groups, including the control group that 

completed 68 PP throws to account for differences in exposure volume. Work completed by 

Kraeutner (2019) examined the effect of motor imagery (MI) and PP on performance of a dart-

throwing task over the course of 10 days, using a volume of 90 throws per session. Participants 

completed these throws in one of three group conditions: 1) MI for days 1-5, and PP for days 6-

10, 2) PP for days 1-5, and MI for days 6-10, or 3) PP for days 1-10. Of these conditions, the PP 

group showed the largest changes in dart-throwing performance between days 1 and 10. In the 

motor simulation model proposed by McNeill et al. (2019), MI+PP shows a greater benefit with 

respect to early learning outcomes compared to independent PP, though not as great as AO+PP. 

This is to say that the findings from Kraeutner (2019) indicate results similar to those found in 

prior literature: namely, that motor learning outcomes acquired using alternative learning 

strategies coupled with an equal or greater dose of PP result in either nonsignificant differences 

between alternative strategy derivatives (e.g., different AO models) or between PP-only groups.   

When reflecting on findings from Cross et al. (2008) that on an independent basis, PP is 

generally a preferable motor learning strategy to AO, it is conceivable that the 1:1 coupling ratio 

used in this study and others resulted in a “washout” effect, wherein the majority of dart-

throwing skill acquisition was driven by PP and minorly by AO. Namely, participants may have 

improved their ability to throw darts simply because they threw a multitude of darts over the 

course of the study, and the overwhelming stimulus of this physical practice diminished the 

perceptibility of any effect from the accompanying AO that participants completed.  

One approach to addressing this effect would be through the introduction of a control 

group into the study design: in particular, a group completing only PP of the dart-throwing tasks, 
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as well as a group completing only AO of the dart-throwing task with scheduled physical tests of 

their dart-throwing ability. When contrasted with the results of the groups included in this study, 

the learning outcomes of these groups would describe the magnitude of the effect that coupled 

AO and PP had compared to their independent counterparts. While this design would have 

elucidated the findings of this study, it was opted against for two key reasons. Firstly, without the 

hindsight of this work’s results in mind, the purpose of introducing these control groups a priori 

would have been limited to determining the general differential effect of combined AO and PP 

on independent AO and independent PP, which has been already established, particularly in 

early-stage learners (McNeill et al., 2019). Moreover, there were concerns at the outset of the 

study amongst the authors surrounding the feasibility of recruiting and retaining 24 participants 

over the course of the 6-week study period, which would have been more challenging with 36 or 

even 48 participants to suitably populate control groups.  

 Another factor that may have influenced the results of this work was the participants’ 

lack of vicarious knowledge of performance surrounding the dart-throwing task. This can be 

thought of as externally-provided feedback that illustrates certain elements of performance that 

may be beneficial to the learner, either with respect to the learner’s own performance, or with 

respect to the model’s performance in the case of AO. Findings by McCullagh and Meyer (1996) 

indicated that individuals in receipt of feedback on their own performance achieved better motor 

learning outcomes compared to those who did not receive feedback, independent of the type of 

model they observed. However, in the case of the present study, participants received no 

feedback or cues when observing their respective model performing the dart-throwing task and 

subsequently physically practicing it themselves. While the intent of this design was to reduce 

any interference with the effect of the AO participants completed, eliminating this opportunity 
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for external feedback could have affected participants’ interpretation of their own performance 

strategies as well as their interpretation of their observed model’s kinematics. As per Schmidt’s 

schema theory, a key determinant of trial-by-trial error correction is an individual’s knowledge 

of results, enabling them to combine sensorimotor evaluations of task-relevant effectors with 

their objective and subjective interpretations about the task outcome to improve future iterations 

of a motor plan (Diedrichsen et al., 2010). Participants in the present study did receive 

knowledge of their results based on their understanding of the task objective and how close their 

dart was to the target, but it is conceivable that more substantial feedback from the experimenter 

regarding their strategies to obtain such a result could have positively influenced subsequent task 

attempts. This may have been particularly advantageous for the learning model group, where 

external feedback specific to the model’s performance could have highlighted particular errors 

and corrections that the model made and provided participants with explicit insight regarding 

their own kinematic strategies to complete the task. This hypothesis is particularly relevant given 

indications in prior literature that error recognition is not only conserved during action 

observation but has been demonstrated to effectively drive learning as well (Burke et al., 2010; 

Wolpert, Diedrichsen, and Flanagan, 2011). Compared to AO feedback in the skilled model 

group – which would have been devoid of any instructions surrounding erroneous kinematics, 

given the nature of the model’s performance – AO feedback in the learning model group could 

have provided participants with a promising edge to fully appreciate the nuances of their model’s 

performance and use it to advance their own motor learning.  

 It is of interest to note that although the differences in primary and modified motor task 

performance between groups were not significant, visual inspection of the raw data revealed 

relatively larger decreases in MRE for the learning model group during the earliest phases of the 
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study (i.e., up to session 7) that were not as readily apparent in the skilled model group. While 

the curve slopes describing the groups’ changes in MRE began to resemble one another more 

closely after this point, this feature of the data carries potential implications for the learning 

trajectories of each group. When considered in the context of the cognitive stage of learning and 

its dependence on error commission and correction, it is conceivable that these large swings in 

MRE reflected the “earliest” of this early-phase motor learning process in the learning model 

group. This could have involved participants in this group aggregating and processing error-

correction information from the model and coupling that with their own practice of the task, 

resulting in a rapid improvement from baseline that was not similarly observed in the skilled 

model group. A retrospective analysis was conducted using the same LME approach as specified 

in 3.4, with the session variable constrained to sessions 2-7. This secondary analysis indicated no 

significant effect of group on MRE; namely, any early performance changes were not found to 

be significantly different between groups based on the model’s estimates (p=0.298, partial 

r2=0.171). Therefore, it is more likely that the large score deviations witnessed in these early 

sessions captured the variation often exhibited in early-stage learning, as characterised by 

participants’ tendency to explore new kinematic strategies and discover various errors and 

successes in a novel motor task. Nevertheless, if combined with the alterations to this study 

design proposed above, further examination of this particular episode of the motor learning 

continuum has the potential to answer several interesting questions relating to the duration of the 

earliest phase of cognitive learning and its receptiveness to different forms and doses of AO.  
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Chapter 6: Conclusion 

 

 Motor learning is a complex process driven by a myriad of factors and is heavily 

influenced by time, prior skill level, and task-relevant interpretations. While AO has been shown 

to be a potent driver of motor skill acquisition, and the application of learning-model AO is 

supported by promising evidence and conceptual predictions, the data from this study do not 

explicitly support any sort of advantage compared to conventional AO of a skilled model. 

Nevertheless, this work must be viewed as a first step in exploring the efficacy of learning-model 

AO over a long-term timeframe, which is in and of itself a novel investigation relative to 

previous work. Future work is needed to understand the specifics of this effect, or lack thereof, 

especially considering the inclusion of parameters such as modified AO:PP dosing and vicarious 

knowledge of performance embedded in study designs. It may also be of interest to explore 

specific applications of a learning model, such as in the context of stroke rehabilitation using a 

model that represents a patient’s specific Chedoke McMaster staging (Gowland et al., 1993), or 

in return-to-sport settings using a model of a similar skill level to a recovering athlete. Beyond 

clinical implications, however, this work offers intellectual contributions to the fields of 

neuroscience, behavioural psychological, and motor control, advancements in which promise a 

wide range of benefits. Expanding our collective understanding of the principles and 

mechanisms driving motor learning can assist in optimizing and accelerating motor learning 

programs and environments, leading to new avenues of thought and application relating to motor 

skill acquisition and development. 
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Appendices 

Appendix A – Virtual information poster used for recruitment purposes 
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Appendix B – A priori power analysis protocol 

 

 The following parameters were used to define the a priori power calculation completed 

in G*Power 3.1.9.4. It should be noted that it was initially intended to use a repeated-measures 

ANOVA to analyze the findings of this study, using four sessions as key measurement points. 

However, after concluding data collection, it was decided to analyze findings using a linear 

mixed effects analysis, as described in Chapter 3: Methodology. Therefore, the a priori power 

calculation protocol specified below reflects the initial sample size calculation and rationale for 

an N=24 sample size, which was maintained despite the change in analysis approach.   

F tests - ANOVA: Repeated measures, within-between interaction 

Analysis:        A priori: Compute required sample size  

Input:        Effect size f        =        0.246   

α err prob        =        0.05 

Power (1-β err prob)        =        .80 

Number of groups        =        2 

Number of measurements        =        4 

Corr. among rep measures        =        0.5 

Non-sphericity correction ε        =        1 

Output:        Non-centrality parameter λ        =        11.6190720 

Critical F        =        2.7437108 

Numerator df        =        3.0000000 

Denominator df        =        66.0000000  

Total sample size        =        24 

Actual power        =        0.8018783 
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Appendix C – Screening Questionnaire  

 

 The following material is an adaptation of the screening questionnaire sent to participants 

to determine their eligibility for the study. Any responses indicating that the eligibility criteria 

described in 3.1 were not met resulted in notifying the individual that they were not eligible to 

participate.  

  

LEARNING-MODEL ACTION OBSERVATION QUESTIONNAIRE   

Below is a questionnaire used to determine whether potential participants are suitable for participation 

in studies involving action observation as a motor learning strategy. Please complete the questions 

honestly and to the best of your knowledge. All information, including your identity and contact 

information, will be kept completely confidential.   

If you have questions regarding the study or the form below, please contact aomodelstudy@gmail.com.  

  

The questionnaire includes 7 questions. Please answer the questions using the fillable fields below.  

  

1. How old are you?    

  

2. Do you have normal or corrected-to-normal vision (i.e. wear glasses or contacts)?   

Yes  

No  

3. Do you have a history of any injuries or conditions (neurological, physical, or otherwise) that would, to 

the best of your knowledge, impact your ability to perform a novel dart-throwing task?  

Yes   

If so, please indicate:    

No   
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4. Please indicate your preferences in the use of hands in the following activities by indicating a check in 

the appropriate column. Where the preference is so strong that you would never try to use the other 

hand, unless absolutely forced to, put 2 checks. If in any case you are really indifferent, indicate a 

check in both columns. 

Some of the activities listed below require the use of both hands. In these cases, the part of the task, or 

object, for which hand preference is wanted is indicated in parentheses.  

Please try and answer all of the questions, and only leave a blank if you have no experience at all with 

the object or task.  

 

5. Have you ever participated in a dart-throwing task for any of the purposes indicated below: 

Yes, competitively. 

Yes, recreationally, on a regular basis.   

Yes, recreationally, on a semi-regular basis.   

Yes, recreationally, on rare occasions.   

Yes, but on a very limited basis (i.e. I have thrown a dart a few times in my life).  

I have never thrown a dart in my life.   

Other: please indicate:   
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6. If you answered “Yes” to Question 5, when was the last time you participated in a dart-throwing 

activity? 

Less than a week ago.   

More than a week ago, but less than a month ago.   

More than a month ago, but less than three months ago.   

More than three months ago, but less than six months ago.  

More than six months ago, but less than a year ago.   

More than a year ago.  

Other: please indicate:   

7. During your dart-throwing task participation indicated in your response to Question 5, which of the 

following statements best describes your approximate frequency of participation (i.e. how often did 

you throw darts)? 

On a daily basis.   

More than once per week.  

Once per week.   

A few times per month.   

Once per month.    

A few times per year.  

Once a year.   

Other: please indicate:   
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Appendix D – AO model training program and timeline 

 

 In order to conserve the authenticity of the learning model and skilled model conditions 

to be used as AO material for participants, the model followed a 9-week training program to 

improve their dart throw by training the primary dart-throwing task discussed in this proposed 

study (i.e., to hit the bull’s eye on the board). The model trained 2-3 times weekly, throwing 

between 60 and 80 darts per session. Each session was filmed from both a sidelong sagittal view, 

capturing the model’s throw kinematics, along with a view of the dartboard, capturing the results 

of the model’s throw. The specific material of this training program was produced by first 

examining literature that identified kinematics associated with both novice and expert dart 

throwers. Tran, Yano, and Kondo (2016) found that experts exhibited considerably less elbow 

displacement in the vertical plane than novices did, along with a tendency to keep their throwing 

limb perfectly aligned with the plane of their throw with little to no lateral tendency. Studies by 

Tamei, Obayashi, and Shibata (2011) and Obayashi et al. (2009) indicated that shoulder variance 

is significantly reduced in experts as compared to novices, while the 2011 study also found that 

experts tend to exhibit more trunk control and elbow stability than novices. Throw precision was 

found to be increased by reducing variation in joints, particularly those closest to the finger 

(Nakagawa et al., 2015). These kinematic characteristics were used to provide various objectives 

and assessment points to graduate towards advanced or “skilled” model status, while still 

demonstrating characteristics representative of a “learning” model along the training curve. The 

training program was subdivided into three blocks, each lasting three weeks each – novice, 

intermediate, and advanced.  

During the novice block, the model focused on aligning their stance, reducing the degree 

to which their body lunged into the throw, and establishing comfortable shoulder and elbow 
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positions. While joint variability was not entirely eliminated, particularly in the elbow and 

shoulder, the model’s adjustments were largely focused on stabilising the body in space and 

controlling their center of mass during each throw, consistent with the directives from the 

literature discussed. In the intermediate block, the focus shifted to reducing variability in the 

shoulder and elbow and eliminating movement in the torso and hips (i.e., reducing any sort of 

lean into the dart throw). Small adjustments to elbow elevation were made – by lowering the 

elbow, the dart tended lower, while raising the elbow caused the dart to tend higher. The model’s 

training log from this block indicated a growing ability to consciously make shifts in their throw 

kinematics to hit the bull’s eye. This ultimately resulted in a re-introduction of a slight lean into 

the throw, as well as manipulations in joint elevation to achieve the intended outcome. In the 

advanced block, the model had established a dependent shoulder and elbow position, with 

limited or entirely absent trunk movement, and a consistent, deliberate lean during the release of 

their throw. Wrist and finger variability was reduced. It was also found that by slightly angling 

the dart tip upwards, accurate throw outcomes became more consistent. At the conclusion of this 

block, the model was able to consistently achieve accurate throws and hit the bull’s eye, 

indicating a successful training program and adherence to the learning-to-skilled model learning 

curve. 
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Appendix E – Debriefing Form 

 

 The form below was sent to participants after their participation in the study had 

concluded.  

 


