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Abstract  

In this thesis, we consider the logistics network of a multi-echelon multimodal supply chain with 
multiple products and components taking economic and environmental sustainability, and 
shipment consolidation into consideration. Procedures for calculating and using both the water 
and carbon footprints of the network as metrics for its environmental sustainability are also 
explored. The supply chain logistics network is modelled as a Mixed Integer Linear Program 
(MILP) and then tested on randomly generated but realistic test instances. The effects of 
shipment consolidation on the economic and environmental cost of operations are analysed 
with results showing that consolidation decreases the supply chain (SC) cost especially when 
the distance between the shipper and receiver is significant. 

Considering that in reality, some of the parameters of supply chain network models might be 
stochastic, experiments are carried out with the designed MILP model having its demand 
parameter as stochastic. With the continual digitalization of supply chain processes leading to 
the automatic generation of data, machine learning (ML) has evolved as a methodology with 
the potential to help optimize stochastic models with its increasingly accurate predictions of 
future occurrences due to the continuous innovation of new algorithms. ML approaches to 
predicting stochastic parameters using historical data are evaluated in comparison to the more 
traditional stochastic programming approaches over multiple prediction periods. The three ML 
models utilized, Attention CNN-LSTM (AC-LSTM), Attention ConvLSTM (ACV-LSTM) and an 
ensemble of both models using Support Vector Regression (Ensemble-SVR), performed 
significantly better than the stochastic programming approaches considered (Simple recourse 
programming and Chance-constrained programming) in all scenarios. The MILP models using 
the predictions from the ML algorithms obtained the highest value of stochastic solution (VSS) 
and had the lowest expected value of perfect information (EVPI). This makes a case for the 
continued integration of ML prediction methodologies into stochastic optimization modelling. 
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Chapter 1 

Introduction  

1.1 Problem Definition and Motivation 

A supply chain (SC) is a complex network of facilities and organizations that is usually over a 

wide geographical area with interrelated activities involving the flow of information, products 

and funds to produce and deliver a product or service to end users (Musmanno et al., 2004). 

There is a complex web of interactions between these players (facilities and organizations) that 

stems from the beginning stage of sourcing raw materials to the final stage of delivering the 

service or product to the end-users. One of the most crucial problems in Supply Chain 

Management (SCM) is the network design. Inefficiencies in this stage would lead the SC to 

operate at a higher cost (Kabadurmus and Erdogan, 2020). The goal is therefore to efficiently 

design the network such that it runs at the lowest cost (economic or as determined by the 

decision-maker) possible while fulfilling all the criteria or constraints present appropriately. 

In the design of the logistical networks of SCs, either local or global, one of the main factors 

that make the modelling complex is the presence of stochastic parameters. The parameters are 

uncertain and could affect every other decision variable present. For example, if the demand 

parameter were stochastic, it becomes difficult to make optimal decisions such as the quantity 

of raw materials to order, trucks to use, suppliers to contact, and so on. It is thereby necessary 

for the company/decision-maker to have a method of ensuring efficient logistical planning 

when stochastic parameters are present. The Logistics Network Design (LND) decisions have to 

be viable and resilient enough to function well in uncertain environments over long periods 

(Govindan et al., 2017). 

Most companies have to predict what the demand would be in the future to source the raw 

materials required and make other decisions within the network. This becomes even more 

critical when the goods involved are perishable and can not be rolled over to the next cycle. 

However, an over-projection could come with a cost incurred due to storage or damages 

(especially for perishable goods) while an under-projection leads to a loss in potential sales and 



2 
 

possibly, the loss of customer goodwill. It is therefore important to have a methodology for 

forecasting the stochastic demand with high accuracy or at least to reduce the regret of the 

decision-maker.  

Traditionally, Stochastic Programming (SP) is used for optimization models containing stochastic 

parameters. The distribution or past scenarios of the parameters are utilized to build the model 

and the best decision which is expected to lead to the least regret or optimize the goal (cost or 

profit) is then obtained. However, in today’s competitive environment, there is more 

motivation to have better accuracy in forecasting demand as false predictions could lead to the 

bullwhip effect (Carbonneau et al., 2008). This refers to the SC phenomenon describing how 

small fluctuations in demand at the retail level can cause progressively larger fluctuations in 

demand upstream of the network. With advancements in information technology and the 

increased availability of a huge volume of data generated in various parts of SCM (Tirkolaee et 

al., 2021), methods such as Machine Learning (ML) could play a bigger role in ensuring better 

predictability of demand and other stochastic parameters. 

In the design of SC networks, many previous studies mostly considered apparent costs such as 

order, raw material, transportation and production costs (Kabadurmus and Erdogan, 2020), 

neglecting other factors that could make the network more robust and resilient while directly 

or indirectly impacting the cost of the company. Some of these factors include sustainability, 

multimodal transportation, and shipment consolidation.  

One of the major factors under which the logistical operations of an SC network should be 

analyzed is its impact on the environment it interacts with. A competitive rush to the 

industrialization has resulted in the rapid depletion of non-renewable resources. The 

recognition of these impacts has led governments on different levels to sign new treaties [such 

as the Kyoto Protocol (UNFCCC, 2008), and Paris Agreement (UNFCCC, 2021)] aimed at 

pressurizing companies into reducing their industrial waste, carbon/water footprints, and so on, 

thereby leading to global awareness of the demand for sustainability (Ülkü & Engau, 2021). 

Some of the most important governmental regulations that have been directed at battling the 

carbon emission rate of companies include the concepts of the carbon tax and carbon cap-and-
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trade (Kabadurmus and Erdogan, 2020). There have also been recommendations in the 

literature on how water conservation policies could be developed to monitor and manage 

water usage levels by factories, especially in drought-prone localities (Farzaneh et al., 2021). 

This is necessary because a large portion of the world is at risk of water scarcity. With climate 

change worsening the situation, and the likely increase in human water needs as the years go 

by, there is a need to proactively set principles in place to manage the situation (Wheeler and 

Von Braun, 2013; Schewe et al., 2014). Ideally, the impact of SCs on water usage and pollution 

should be analyzed and considered in an integrated manner in the network design stage. In this 

thesis, environmental sustainability is considered through the inclusion of water and carbon 

footprint analysis in the design of the logistics network of SCs. 

Multimodal Freight Transportation (MFT) is the utilization of different modes (air, water, rail, 

road) in the shipment of cargo from one location to another. The presence of MFT widens the 

choice of the decision-maker (DM) by availing opportunities to use the most appropriate and 

efficient mode for every scenario encountered. For example, air mode, despite being the most 

expensive, might be the best option if the delivery deadline is close; while water mode, despite 

typically being the slowest, might be the best option cost-wise if the delivery deadline is 

reasonably far. Different modes also have different environmental impacts allowing the DM to 

set up his transportation options following company policy or governmental regulations. 

Multimodal transportation could reduce logistical operational costs and carbon emissions 

(Kabadurmus and Erdogan, 2020). Figure 1 shows a basic three-echelon supply chain network 

with 4 modes of transportation. 

Figure 1. Three-Echelon SC with Multimodal Freight Transportation 
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Shipment Consolidation is a logistics strategy whereby multiple shipments are merged so that 

they could be transported on the same vehicle to the same market region potentially saving 

costs through economies of scale (Ülkü, 2009). It could also provide the SC with an opportunity 

to achieve its goal of reducing emissions and becoming more sustainable by using fewer 

vehicles or covering shorter distances. (Ülkü, 2012). Different configurations of SCL are 

considered in this thesis including shipper-performed and carrier-performed consolidation. 

Also, an experiment is carried out on the impact of SCL on the network and when it is most 

profitable. 

As competitiveness within industries grows and the complexity of networks increases, it 

becomes more necessary to factor in strategies such as multimodal transportation and 

shipment consolidation into the logistical network of any SC to ensure operational excellence 

and improved network resilience. Also, as more companies become aware of their duties to the 

environment either due to the cost incurred from government regulations or the recognition of 

their corporate social responsibility, it becomes more important to factor sustainability directly 

into the early stages of the SC network design rather than having to accommodate it as a 

forethought potentially leading to non-optimal decisions. Accurate forecasting of expected 

demand also plays a role in ensuring that the necessary plans are put into motion to reduce the 

extra cost incurred due to overstocking or unmet demand. 

The problem being tackled in this thesis can therefore be defined as the design of a SCN with 

the goal of optimizing its economic and environmental (carbon and water footprint) 

sustainability while simultaneously factoring in MFT and SCL with a focus on the tactical level of 

SCM decisions (order quantity, suppliers to engage and so on). Afterwards, a case is made for 

the utilization of ML approaches to stochastic optimization modelling of logistics networks by 

evaluating its performance in comparison to traditional SP approaches.  
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1.2 Scope 

Considering a holistic approach, in this study, a realistic multi-commodity three-echelon supply 

chain optimization model is generated which considers factors such as environmental 

sustainability (water and carbon footprint), multimodal freight transportation (MFT) and SCL. 

The demand is also considered uncertain. Actual demand data is obtained, which is then used 

as a baseline to compare several SP methods and ML techniques of modelling with stochastic 

parameters and their performances over predictions of varying periods into the future. The 

problem is modelled as a Mixed Integer Linear Programming (MILP) model and solved using a 

Gurobi optimization solver. Necessary parameters are either obtained from standard resources 

or realistically generated for each test instance. The goals of this study can be described as the 

optimization of the logistical network of a stochastic sustainable supply chain with multimodal 

freight transportation and shipment consolidation (SSSCN/MFT&SCL). 

 

1.3 Contributions 

A summary of the comparison between this thesis and other relevant works in literature is 

provided in Table 1. The main contributions of this research work to literature are outlined as 

follows: 

• Development of a modelling framework for the design and/or operation of a supply 

chain network that simultaneously considers environmental sustainability factors such 

as water usage, water pollution and carbon emission, alongside multimodal 

transportation and shipment consolidation. 

• Analysis of the effect of SCL on the economic and environmental sustainability of an SC 

alongside the factors that enhance its advantageousness.  

• Comparative analysis of the efficiency of ML approaches and SP approaches to working 

with stochastic parameters in designing optimization models. 
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Table 1: An Overview of the Literature on the Research Work on SCND. 
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Le and Lee (2013), Zhang 

et al. (2017), Liotta et al. 

(2015), Moradinasab et al. 

(2018), Kabadurmus and 

Erdogan, (2020) 

✓ ✓    ✓  

Alizadeh et al. (2019) ✓ ✓  ✓  ✓  

De Boer et al. (2013), Gu 

et al. (2015) 
  ✓     

Xie et al. (2014) ✓     ✓  

Mostert et al. (2018) ✓ ✓    ✓  

Fan et al. (2019), Muñoz-

Villamizar et al. (2022) 
✓ ✓     ✓ 

Chen et al. (2017) ✓      ✓ 

Ma and Liu (2017) ✓   ✓    

Ahmadi and Amin (2019) ✓   ✓   ✓ 

Moheb-Alizadeh and 

Handfield (2018), Golpîra 

et al. (2017), Sajedi et al. 

(2020) 

✓ ✓  ✓    

Choudhary et al. (2015), 

Shaw et al. (2016), Saif 

and Elhedhli (2016), 

Kumar et al. (2022), Yu 

and Hou (2021), Chaabane 

et al. (2012), Mogale et al. 

(2022) 

✓ ✓      

Park et al. (2017), 

Farazmand et al. (2022), 

Beresford et al. (2011), 

Wang et al. (2018) 

✓     ✓  

Serrano et al. (2017), 

Glock and Kim (2014), 

Çapar (2013), Kang et al. 

(2017), Muriel et al. 

(2022) 

✓      ✓ 

Ridoutt et al. (2010)   ✓     

This thesis ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
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1.4 Thesis Organization 

The remainder of the thesis is structured as follows: Chapter 2 focuses on related works that 

have been done in literature exposing the gaps this research wishes to cover. Some background 

knowledge of each of the general concepts explored is provided in Chapter 3, including 

logistical network design for a supply chain, sustainability and multimodality, stochastic 

programming and machine learning. The problem under consideration is described in Chapter 

4, including the network model formulation with its objective function and constraints. Chapter 

5 explains the procedures utilized for analysing and evaluating the various approaches to 

handling an SCN with stochastic parameters. The numerical experiments to be performed are 

then delineated. Chapter 6 summarizes the results and discusses the major findings obtained 

from this research work. Lastly, Chapter 7 provides a conclusion and suggests potential areas 

for improvement in future researches.  
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Chapter 2 

Literature Review 

2.1 Sustainability in Supply Chains 

In the past two decades, sustainability in SCs has become a major concern (Kabadurmus and 

Erdogan, 2020). Alignment of the SC goals of an organization with the sustainability goals is very 

important to proactively respond to the possible impact of its operations on other areas such as 

the environment and the society at large. The "Triple-Bottom-Line" approach (TBL) to 

sustainability was proposed by Elkington (1994) with the consideration of profit and loss, as 

well as environmental and social values while analysing the general performance of any 

organization. The profit and loss performance determine the economic sustainability of an 

organization. Factors such as the increase in money flow throughput and continual growth 

despite competition are major goals of any SC. Environmental values are concerned with 

reducing pollution in the environment by emphasizing biodegradable products and reusing 

them to avoid further depletion of natural resources. Social values encourage the management 

of business to ensure increased positive and reduced negative impacts on people. In addition to 

the TBL approach, there has been a push to consider ‘culture’ as the fourth pillar of 

sustainability thereby forming a ‘Quadruple Bottom-Line’ (QBL) approach to analyzing 

sustainability (Ülkü & Engau, 2021; Tiller et al., 2022). This is because the consideration of the 

cultural impact of the design or operations of SCNs enforces policymakers to involve the 

oppressed local communities in their decision-making. This would further make companies 

align more with the United Nations Sustainable Development Goals (United Nations, 2021). 

Environmental sustainability is a widely considered factor in the majority of studies on 

sustainable SCs. Water and carbon footprint sustainability are two of the common metrics in 

the environmental sustainability of an SC. Researchers have shown that carbon emissions from 

various stages of the supply chain have a significant impact on the environment. The majority of 

the research works analysed considered carbon emissions as a cost while modelling the SCs. Le 

and Lee (2013) investigated the economic dimension as cost and the environmental dimension 
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as CO2 emission of the SC. They considered the CO2 emissions to only happen during 

transportation throughout the SC. Choudhary et al. (2015) demonstrated the potential of 

cutting down on the carbon footprint (CF) of the supply chains through reverse logistics without 

increasing the total cost. Shaw et al. (2016) investigated carbon emissions and carbon trading 

issues with the formulation of a chance-constrained model. Results showed that the plants 

activated as well as material flow throughout the SCN varied with the carbon credit price. 

 A rational trade-off between environmental issues and total cost has been studied by Zhang et 

al. (2017). A MILP was formulated and applied to an actual case study of an electric meter 

company to see the impact. The results showed that the introduction of CF as a parameter 

within the optimization model had a substantial impact on the SCN, resulting in a decrease in 

CO2 emissions per unit shipment. A robust three-stage SP model is proposed for an olefin with 

the consideration of supply and uncertainty in carbon emission tax rates (Alizadeh et al., 2019). 

They showed that increasing the carbon tax rate would decrease emissions but increase the 

total network costs. Kabadurmus and Erdogan (2020) designed a three-echelon sustainable 

supply chain network considering carbon exploring the effects of cap-and-trade policy on 

supply chain cost and emission. However, none of these papers considers the analysis of the 

water footprint (WF) of the supply chain as an environmental sustainability factor. 

WF analysis is another important element in sustainability. Most industrial production systems 

use fresh water as an essential element. The utilization of global freshwater for the agricultural 

and industrial sectors is 70% and 22%, respectively (United Nations Educational, Scientific and 

Cultural Organization, 2009). Many of the research works considering WF that were analyzed 

however focused more on the agricultural sector. This could still be considered as part of the 

supply chain as raw materials, especially for food supply chains, are sourced from farms. 

Analysis of WF is critical in all sectors of the SCN for environmental sustainability. Ridoutt et al. 

(2010) investigated the fresh mango SC network. It was found that the WF during the 

agricultural stages is 2298 litres per kg, whereas it increased to 5218 litres per kg of mango 

during the transportation, retailing, and consumption stages. De Boer et al. (2013) studied the 

impact of freshwater consumption on the environment while considering milk production in the 
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global SC in the Netherlands, including resource depletion, using a Life Cycle Analysis (LCA). 

They concluded that the amount of water required to produce 1 kg of fat and protein-corrected 

milk is 66 litres. Gu et al. (2015) inquired about both direct and indirect water consumption in 

an iron and steel factory in China. Based on the results obtained, the freshwater consumption 

and water pollution per ton of steel were 5.5m3 and 146m3, respectively.  

Alternatively, transportation modes, especially shipping serve as a potential source of water 

pollution through occurrences such as hydrocarbon leakage, sewage discharge and garbage 

discharge (Shi et al., 2018; Bedaiwi et al., 2019). All of the above indicate that in analyzing the 

WF of a complete SC network, both the impact of facility (such as farms and factories) 

operations and transportation on water usage and pollution have to be considered. In this 

thesis, we model an SCN that simultaneously considers environmental sustainability based on 

both carbon and water footprint. 

 

2.2 Multimodal Transportation in Supply Chains 

Multimodal transportation is another important element in the SCN with the potential of 

reducing the overall cost of SCs. Multimodal transportation refers to when a supply chain 

network considers two or more modes of transportation. Liotta et al. (2015) considered a 

three-echelon supply chain network with the road, rail, and water modes of transportation. It 

was shown that more multimodal distribution options can help meet environmental and cost-

saving goals by leveraging the different costs and emission rates of different modes. A 

bioethanol SC with multimodal transportation was investigated by Park et al. (2017) considering 

a combination of truck and rail. Using more than one mode of transportation was more cost-

effective than using just one mode of transportation and led to a lower cost for the SC. A 

multimodal cellulosic biofuel SC was addressed by Xie et al. (2014) to minimize total cost. It was 

found that railing was more convenient for long-distance transportation while trucking was 

more effective for short-distance transportation. Beresford et al. (2011) investigated the best 

multimodal transportation combination for transporting iron ore shipments from Australia to 
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Northeast China identifying the rail-sea-rail transportation method as the most efficient mode 

for bulk cargo. 

Moradinasab et al. (2018) modelled a petroleum SC while considering rail, road, and pipeline 

transportation to maximize the total profit and minimize environmental pollution. They 

formulated the problem as a MILP, and the results showed that profits increased by 11.12% due 

to the reduced transportation cost throughout the SC. An SC with long-distance freight delivery 

via multimodal rail-road transportation was worked on by Mostert et al. (2018). They 

considered roads, intermodal rail, and intermodal inland waterways to find the most economic 

mode of transportation. Results showed that the combination of two modes of transportation 

was a cost-effective method, especially when the distance to be covered was more than 300 

kilometres. Kabadurmus and Erdogan (2020) considered 5 different modes of transportation 

(including an environment-friendly truck) and found that the cost and emission level were 

reduced when compared to unimodal transportation considering only the road mode. Other 

studies that considered the combination of multiple transportation modes include Zhang et al. 

(2017), Wang et al. (2018), and Farazmand et al. (2022). Likewise, multiple modes of 

transportation (air, water, rail and road) are considered simultaneously in this thesis. 

 

2.3 Shipment Consolidation in Supply Chains 

Shipment Consolidation (SCL) also plays a huge role in potentially reducing cost and greenhouse 

gas emissions of SCNs (Ülkü, 2012). Serrano et al. (2017) proposed a global network of cross-

docking platforms to connect long-distant assembly factories with first-tier suppliers. The goal is 

to minimize the overall cost, which includes the cost of inbound and outbound transportation. 

Fan et al. (2019) examined the flow consolidation of perishable and dry goods. The findings 

suggest that shipping distance and cargo type affect the performance of flow consolidation in 

logistics. Çapar (2013) investigated a two-stage combined shipment consolidation with an 

inventory decision in the distribution system. An exact optimization approach was proposed to 

handle the issue of optimum replenishment amount at the distribution centre, the order-up-to 

level at retailers, and a shipment consolidation cycle to measure overall performance. The 
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results indicated that in a shipping consolidation setting, having zero inventory on the retailer’s 

end increased the total cost.  

Glock and Kim (2014) established a framework that enables the minimization of the overall cost 

for shipment consolidation in a context involving multiple vendors and single buyers. According 

to the numerical findings, deliveries should be arranged such that the buyer gets big shipments 

at the start of the delivery cycle and modest shipments at the end. They also mentioned that 

vendors with a high production capacity should have their shipments delivered at the end of 

the delivery process.  

Another type of study on consolidation was the Urban Consolidation Centers (UCCs) idea, which 

can be implemented considering several cities. A UCC is built on the city’s border so that large 

vehicles from shippers can access it and deliver products. Small trucks are then utilized to 

deliver products to city recipients. López and Cáceres (2020) discovered that such a system 

could increase complexity while increasing efficiency. Alves et al. (2019) used delivery lockers as 

a last-mile alternative to investigate urban freight policy in connection to e-commerce. Carriers 

may use lockers to decrease the number of trucks needed for delivery. Instead of home 

delivery, Haider et al. (2020) recommended combining client orders and distributing them to a 

nearby convenience store. This study designs an SC model that integrates multimodal 

transportation and shipment consolidation into each other evaluating its impact on especially 

large networks spanning global scales. 

 

2.4 Stochastic Demand in Supply Chains 

A big concern in modelling SCNs is that some of the parameters (such as demand) could be 

unknown or stochastic. Numerous techniques for building such models with stochastic 

parameters have been considered in the literature. This includes stochastic programming (Ma 

and Liu, 2017), robust optimization (Ben-Tal et al., 2009), and fuzzy programming 

(Zimmermann, 1978). With increasing computing capabilities and available historical data, the 

use of Machine Learning (ML) to assist DMs in planning is becoming more widely considered. In 
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this thesis, the efficiency of ML approaches is evaluated and compared to some of the more 

traditional Stochastic Programming (SP) approaches. 

2.4.1 Stochastic Programming 

SP is a framework that allows the consideration of stochastic parameters in the modelling of 

optimization problems. Some of the studies utilizing SP in the SCN context design are discussed. 

Ma and Liu (2017) investigated a closed-loop supply chain network considering transportation 

and customer demand as stochastic parameters with known joint distributions. An equivalent 

deterministic MILP model of the proposed stochastic chance constraint with Value at Risk (VaR) 

is then formulated and solved using commercial CPLEX software based on the finite discrete 

distributions of the uncertain parameters. Computational results reveal the significance of the 

proposed model and solution model. An integrated chance-constrained stochastic 

programming model for multi-period, multi-product, multi-echelon and multi-customer closed-

loop SC mobile network was proposed by Ahmadi and Amin (2019). An equivalent multi-

objective linear programming formulation was developed with stochastic product return rate 

and demand to determine the appropriate location and the optimum number of facilities. An 

integrated chance-constrained model is formulated for sustainable supplier selection and order 

allocation with stochastic demand (Moheb-Alizadeh and Handfield, 2018). 

2.4.2 Machine Learning 

Due to the increasing availability of supply chain generated data, computational power and 

other advantages of machine learning methods over traditional methods, researchers and 

practitioners have started incorporating machine learning methods into numerous areas of 

supply chain management (SCM) including supplier selection, supplier segmentation, risk 

prediction for the SC, demand forecasting, manufacturing, and inventory management 

(Tirkolaee et al., 2021). ML provides a good accuracy in demand forecasting which gives a 

significant advantage to SCM since it helps to reduce the well-known bullwhip effect (Chong et 

al., 2017). Cao et al. (2017) predicted the customer demand using the least square support 

vector machine and optimized it by the Particle Swarm Optimization algorithm. The applicability 

of machine learning methods, namely neural networks, Recurrent Neural Networks (RNNs), and 
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Support Vector Machines (SVMs) to forecast distorted demand at the end of a supply chain was 

addressed by Carbonneau et al. (2008). They compared the results with traditional forecasting 

methods, including naive forecasting, trend, moving average, and linear regression. The RNN 

and SVMs models outperformed the others. Ampazis (2016) does similar work in a different 

context utilizing Artificial Neural Networks (ANNs) and SVMs to forecast customer demand at 

the very first stage of a supply chain.  

An intelligent demand forecasting system was developed by Kilimci et al. (2019) using a 

combined application of time series methods, SVMs, and deep learning methods. A variety of 

numerical tests show that the suggested demand forecasting system achieves notable 

outcomes when compared to state-of-the-art studies. A study was carried out by Birim et al. 

(2022) considering demand forecasting under advertisement expenses using Support Vector 

Regression (SVR), Random Forest Regression, Decision Tree Regressor and deep learning 

techniques including ANNs, and Long Short-Term Memory (LSTM). LSTM was proven to be 

superior to other models in terms of predicting demand based on its significantly higher 

accuracy. The study we found most interesting though was Okwuchi et al. (2020) which 

compared traditional ML techniques of predicting time series demand data to deep learning 

models and observed that three deep learning models performed better than the traditional 

techniques. These models were the Attention-based CNN-LSTM (AC-LSTM), Attention-based 

Convolutional LSTM (ACV-LSTM) and an ensemble of both techniques using SVR. Okwuchi et al. 

(2020) utilized compound deep learning models that performed better than most of the best-

performing models in many of the studies stated above (e.g., Carbonneau et al., 2008; Ampazis, 

2016; Birim et al., 2022). 

The increase in the amount of data generated throughout SCM processes encourages the use of 

advanced methodologies such as ML to extract insights that can be used to improve such 

processes. Tirkolaee et al. (2021) recognize that there is a huge gap in the utilization of both ML 

within the optimization model to design and optimize supply chain networks. This paper 

thereby integrates ML models into the optimization problem and compares the performance 

with SP techniques for working with stochastic parameters. To this end, the three best ML 
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models observed by Okwuchi et al. (2020) are considered in this thesis as candidates for ML. 

This is as it is a fairly recent study and has excellent performing models. 

2.5 Summary 

This research designs a realistic model that considers a three-echelon SC network, with multiple 

product types being the flow downstream, and multiple components being the flow upstream 

serving as raw materials for the products (See Figure 1). Raw material requirements were also a 

factor considered by Fahimnia et al. (2015), Liotta et al. (2015) and Kabadurmus and Erdogan, 

(2020). Similar to the majority of the studies (such as Shaw et al. 2016; Zhang et al., 2017; 

Alizadeh et al., 2019), the SC network in this thesis considers multiple facilities, suppliers and 

retailers. Kabadurmus and Erdogan (2020) additionally consider carbon footprint and 

multimodal transportation. To the best of our knowledge, there is no previous work that 

considers and explores an SC with multimodal transportation, shipment consolidation and 

environment sustainability (water and carbon footprint) simultaneously under stochastic 

demand. We also could not find any previous work comparing the effectiveness of utilizing 

data-driven machine learning approaches in optimizing stochastic models to utilizing basic 

stochastic programming approaches. These gaps in literature motivates this thesis. 
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Chapter 3 

Background on Supply Chain Design and Related Concepts 

3.1 Sustainability 

One of the most pressing issues today is climate change, its effects and how much industrial 

activities have an impact on it. To alleviate the effects of climate change, new regulations and 

sustainability developmental goals have been put into effect by governing bodies on both 

regional and international levels. These include the likes of the Paris Agreement, Kyoto 

Protocol, and Carbon Offsetting and Reduction Scheme for International Aviation (Kabadurmus 

and Erdogan, 2020). Sustainability in the SC has thereby gained considerable attention in both 

academia and practice. This is because SC operations play a significant role in climate change on 

a worldwide scale (Kabadurmus and Erdogan, 2020).  

According to Ülkü & Engau (2021), there is a need to assess the performance of an SC network 

by the quadruple bottom line of sustainable development which includes its economic viability, 

environmental performance, social responsibility and cultural impact. Based on this, there have 

been works in academia on the design of supply chain networks while factoring in its effects on 

these factors (e.g., Kabadurmus and Erdogan, 2020; Najjar et al., 2020; Ülkü & Engau, 2021). 

This research integrates two dimensions of sustainable development, namely the economic and 

environmental performance, into the Logistics Network Design (LND). Important factors that 

contribute to the environmental performance of SCs include the water and carbon footprint of 

its activities such as transportation and production. Factoring these in the LND stage enables 

the SC to proactively align its activities to the relevant Sustainable Development Goals as 

defined by the United Nations. These include access to clean water and sanitation (goal 6), 

reduced climate action (goal 13), protection of life below water (goal 14) and life on land (goal 

15). 

3.1.1 Water Footprint Analysis 

Nearly 80% of the world’s population and ‘water affiliated organisms’ are at risk of water 

scarcity (Vörösmarty et al., 2010). This is due to the societal water consumption by humans 
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compounded with large industrial and agricultural usage.  Climate change exacerbates this 

situation (Wheeler & Von Braun, 2013). Considering that human water needs are likely to 

continue growing (Schewe et al., 2014), it is important to consider the impact of SCs on water 

usage. This is because poor, unmanaged water distribution systems can lead to agricultural 

failure, species extinction, food shortages and much more (Farzaneh et al., 2021). The growing 

world population, climate change and continuing industrialization pose additional stresses to 

freshwater availability (Manzardo et al., 2014). It is thereby important to factor in the impact of 

factories and transportation modes on the water when designing supply chain networks. This 

would motivate the efficient usage of the necessary elements of a supply chain that impact 

water sustainability.  

In considering factory location and its impact on water sustainability, Farzaneh et al. (2021) 

provide a system for the development of governmental plans for ecological and societal 

allocation of water within a region considering hydrological factors such as precipitation, 

evaporation, inflow and seepage after historical patterns on these parameters have been 

considered. Farzaneh et al. (2021) consider the development of water conservation policies 

that ensure that during a period, enough water is released to the local reservoir for societal 

usage, to satisfy downstream ecological needs, and support aquatic ecosystems and ecosystem 

services. This is to ensure the preservation of the water balance in the reservoir by ensuring 

that at the end of each period, the total water storage in the reservoir is not less than the dead 

capacity (which makes drought a risk) and not more than the flood capacity (which makes 

flooding a risk).  

Assuming that such models as proposed by Farzaneh et al. (2021) to determine the industrial 

allocation of water considering local factors (such as the local drought index) have been built 

and analysed, factories and manufacturing plants within such locations can then be regulated 

to limit their water usage on all processes to be within a specified cap. The model provided in 

this paper assumes that after local water management has run the necessary analysis and 

decided the amount of water cap is necessary for societal ecological and industrial usage, 

individual caps or wastewater release caps after which recycling is enforced are then mandated 

on local industries, factory, manufacturing centres with a charge for any overuse or money 
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spent on wastewater. The water footprint of each product is the average volume of water 

utilized (excluding the quantity recycled) while producing it (Gerbens-Leenes & Hoekstra, 2011). 

From the point of view of the company, it (the company) has to ensure all its local processes 

combined do not consume more water than the cap allocated to it (the company). This might 

affect its decisions on variables such as the technology to use, the maximum quantity of the 

item to produce or process, and the amount of water overuse it can afford despite the charge 

considering the end goal/gain. This is used to calculate the local water footprint of such a 

company.  

The next question is then about how a factory could measure the amount of water it consumes 

if the quantity can not be gauged automatically. In 2011, the Pacific Northwest National 

Laboratory released a 33-pages guideline for estimating unmetered industrial water use (Boyd, 

2011). This provided a systematic approach to calculating unmetered sources while utilizing 

engineering estimates. The analysis provided a methodology for estimating water use in 

systems such as steam boiler systems, and evaporative systems. The approach can however be 

studied and generalized to other systems that might exist within the industries. The report 

suggests that the most accurate way to measure water usage would be through the installation 

of flow meters. However, in the absence or impracticality of installing such devices, the 

guidelines can be used to obtain an engineering estimate. 

Facilities use industrial water generally for purposes such as processing, fabricating, cooling, 

diluting, washing or through the direct incorporation of water into a product. Systems that 

utilize water but operate in a closed-loop where there is no significant water loss per cycle 

would provide negligible impact and can be ignored in estimation (Boyd, 2011). All processes 

that constitute water usage in Company X have to be analyzed individually and expertly. The 

quantity of water usage in applications such as within an evaporative cooling system depends 

on total hours of operation, and the size of the device (i.e chiller tonnage). Within usages 

similar to the washing processes, the quantity of water depends on the number of units 

washed, processed or manufactured, the amount of water required for each washing per 

gallon, and how much of such water is recycled by percentage. 



19 
 

As an analysis of a sample system, Boyd (2011) gives the following formula to calculate annual 

water usage by an open-recirculating cooling system. 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑢𝑠𝑒 (𝑔𝑎𝑙/𝑦𝑒𝑎𝑟) = 𝑛 ∗ 𝑐ℎ𝑖𝑙𝑙𝑒𝑟 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ∗  
𝑡𝑜𝑡𝑎𝑙 𝑟𝑢𝑛𝑡𝑖𝑚𝑒 (ℎ𝑜𝑢𝑟𝑠)

8,760 ℎ𝑜𝑢𝑟𝑠
    

 

where n is the number of chillers installed within the cooling system, chiller consumption is a 

factor based on the size of each chiller, and total runtime is the number of hours the chillers are 

run in a year divided by the number of hours in a year. An expert would be required to analyze 

each of the existing water-consuming systems within a factory and develop the necessary 

estimation formulae. 

In summary, some of the quantity of water usage is dependent on how long the processes are 

run, while others depend on the total number of units or batches of units produced. The 

following formula is therefore used as a summary of total water usage within a factory or 

industry where processes that use water on an hourly basis are indicated as p while those that 

use on a quantity basis are indicated as q. 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑎𝑡𝑒𝑟 𝑈𝑠𝑎𝑔𝑒 =∑𝑊𝑝 ∗ 𝐻𝑝 +

𝑝

∑𝑊𝑞 ∗
𝑈𝑞

𝐵𝑞
𝑞

 

where 𝑊𝑝 is the quantity of water used per hour by each process p that uses water on an hourly 

basis, and 𝐻𝑝 is the total number of hours used per process p. 𝑊𝑞 is the quantity of water used 

up by each process q that uses water on a per-batch basis, 𝑈𝑞 is the total number of units 

worked on during process q and 𝐵𝑞 is the batch size. 𝑊𝑝 and 𝑊𝑞 are adjusted to reflect the 

portion of the water recycled during the process.  

Example 3.1 

The major sources of water usage in Factory X are an evaporative cooling system, a steam 

heating system and a washing system. After an expert analysis of all systems, it is determined 

that the cooling system uses water at a rate of 1,000 gallons per hour. The steam heating 

system uses water at an average rate of 1,100 gallons per hour (considering factors such as the 

feed water rate and condensate return). The washing system however uses 200 gallons to wash 

each batch of the product while reusing 50% of the wash water. 20,000 units are produced 
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annually at a size of 100 per batch, which requires the cooling system to run for 270 hours and 

the steam system to run for 250 hours. The total water use can thereby be calculated as below 

with the first, second and third terms representing the water consumption by the cooling, 

heating and washing systems respectively. 

𝑇𝑜𝑡𝑎𝑙 𝑤𝑎𝑡𝑒𝑟 𝑢𝑠𝑎𝑔𝑒

= 1000
𝑔𝑎𝑙

ℎ𝑟𝑠
 ∗ 270ℎ𝑟𝑠 + 1100

𝑔𝑎𝑙

ℎ𝑟𝑠
 ∗ 250ℎ𝑟𝑠 +

20,000

100
∗ 200 ∗ (1 − 0.5)𝑔𝑎𝑙 

   = 0.565 million gal 

Water is also polluted during transportation. In this thesis, we consider transportation water 

usage per mile to be negligible. This is as the water footprint directly related to transportation 

is minimal unless when biofuels (such as ethanol and biodiesel) are used (Aivazidou et al., 

2018). An exemption is however made for water transportation. This is because it could directly 

impact water through means such as oily water discharge, wastewater discharge, garbage 

waste and ballast water discharge. A general formula to calculate the impact of shipping on the 

water is provided below. The water footprint is then estimated as the number of 

containers/vehicles owned by the company multiplied by the time used and the average 

pollution rate per unit time for transportation mode t. 

𝑊𝑇 = 𝑤𝑡
𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 ∗ (

distance

average speed
) ∗  𝑌𝑡           

where 𝑊𝑇 is the total water pollution, 𝑤𝑡
𝑝𝑜𝑙𝑙𝑢𝑡𝑖𝑜𝑛 is the average water pollution a 

vehicle/container is accountable for per hour for mode t, and 𝑌𝑡 is the number of 

containers/vehicles in use. This gives an estimate of what each vehicle/container contributes to 

the total SC water footprint.  

For water footprint analysis in this thesis, the whole supply chain has to be considered. This 

includes not just the quantity of direct water consumption but also the sustainable level of 

water within the different catchment areas impacted considering available resources. To this 

effect, the following will be considered in the model formulation:  

a. The water scarcity level or water cap directives from local water management in facility 

locations. 
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b. The direct water consumption (excluding the quantity instantly recycled) while 

producing batches of each product (from plants). 

c. In transportation, all modes are considered to have negligible water impact except 

water transportation which could pollute water through its direct contact with it. This 

will be incorporated into the model based on the distance travelled. 

3.1.2 Carbon Footprint Analysis 

The environmental damage accompanying the activities within SCs calls for action from all 

parties including the regulatory bodies, business operators and consumers. Greening the supply 

chain should thereby be an objective while designing an SC network. To this effect, multiple 

carbon emission regulation schemes have been developed. A carbon cap is set for every 

company which can be reduced gradually to encourage them to go greener. Regulation 

schemes include the carbon tax and carbon cap-and-trade. Carbon tax means companies have 

to pay a tax on every unit of carbon emission above the cap set by the government. This is a 

widespread initiative used in many countries such as Canada and China (Goulder and Schein, 

2013).   The unit price paid for excess emission is set by the regulatory bodies. The carbon tax 

scheme however might cause under-utilization of resources if companies become too careful 

not to exceed the cap because of the reluctance to pay the tax. This limitation is covered by the 

carbon cap-and-trade scheme which allows companies to buy and sell the allowance for carbon 

emissions from other companies if necessary. The unit cost of carbon emission is determined by 

the market and companies can design the SC network to optimize the overall cost while 

factoring in emission allowance buying opportunities (Kabadurmus and Erdogan, 2020). 

In the SC context, both transportation and facility operations are among the factor that 

contributes to the overall carbon footprint. In logistics, transportation is considered to be one 

of the largest contributors to environmental hazards The source of most CO2 emissions in the 

United State is the transportation sector (EPA, 2022). In literature, the calculation of the CO2 

emissions from transportation is mostly based on the type of fuel used, the weight of the load, 

the distance travelled and the type of vehicle used. However, Ülkü (2012) argues that to be 

more realistic, factors such as vehicle packing efficiency and traffic congestion (especially for 
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road transportation) should be considered. Other factors such as the effective volume and 

weight utilization of the vehicle should also be considered in the calculation of the CO2 

emissions per trip. In the last few decades, studies on reducing emissions at the SC level, and 

hence from an SCN perspective have increased (e.g., Elhedhli and Merrick, 2012).  

The four major modes of transportation all have to be considered (air, road, rail and sea 

transportation). The shipping emission factor of all four modes respectively is provided  as 

1.278, 0.209, 0.021, and 0.0409 kg of Carbon emissions per ton-mile. This is the amount of 

carbon emitted when shipping a tonne of freight travelling 1 mile (Carbonfund, 2021) . Carbon 

emission per gallon of fuel is also obtainable from the same source. According to Ulku (2012), 

carbon emissions from different modes of transportation can be calculated using the following 

formula:  

𝐶𝑎𝑟𝑏𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 =∑𝐹𝑡
𝐶𝑂2  

𝐷

𝑀𝑡
∗ 𝑌𝑡 + 𝑃𝑡

𝐶𝑂2𝑈𝑡 + 𝑆𝑡
𝐶𝑂2  

𝑈𝑡𝐷∑𝑤𝑝

(1 − 𝑐𝑓)
 

𝑡

,          (3.1) 

  where 𝑐𝑓 = 1 − 
𝑠𝑝𝑡

𝑠𝑝𝑚𝑎𝑥
, 𝑈𝑡  = min {[

𝑉𝑡𝛾𝑡𝜃𝑣𝑡  

∑𝑉𝑝
,
𝑊𝑡𝛾𝑡𝜃𝑤t  

∑𝑊𝑝

]}, and 

 

i. For each vehicle, 𝜃𝑣𝑡  and 𝜃𝑤𝑡 are the weight and volume efficiency targets set by the 

DM. 

ii.  𝛾t is the packing efficiency indicating how well the packages are stacked up.  

iii. 𝑆𝑡
𝐶𝑂2 is the shipping emission factor per ton-mile when vehicle t is in use.  

iv. 𝐷 is the total miles travelled. 

v.  𝐹𝑡
𝐶𝑂2 is the carbon emission per gallon of fuel. 

vi. 𝑀𝑡 is the fuel mileage of the vehicle. 

vii. 𝑃𝑡
𝐶𝑂2 is the average amount of CO2 emission when packaging each unit of cargo unto 

vehicle t. This includes emissions from loading and unloading processes. 

viii. 𝑈𝑡 is the maximum number of product p that can fit in a single type-t vehicle. 

ix. 𝑠𝑝𝑡 is the average speed of vehicle t. 

x. 𝑠𝑝𝑚𝑎𝑥  is the maximum speed allowed 

xi. 𝑌𝑡 is the number of vehicles in use for transportation mode t 
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The first term in Eqn. 3.1 refers to the amount of carbon emitted if the vehicle was travelling 

empty. The second term refers to emission while packaging the products (loading and 

unloading), whereas the third term refers to the shipping emission based on the weight of the 

products being shipped, the distance being travelled and the congestion factor. 𝑠𝑝𝑡 and 𝑠𝑝𝑚𝑎𝑥 

can be assumed equal for some modes of transportation (e.g air, water and rail) thereby having 

a congestion factor of 0. 

Production activities within facilities also add to the total emissions of the SC. It is also assumed 

that the technology type in different facilities causes varying emission rates even for similar 

products. If the quantity of carbon emitted per batch production of final product f in factory i is 

represented as eip and the total quantity of product p produced is 𝑋𝑖𝑝, then the total carbon 

emission due to production is  

𝐶𝑎𝑟𝑏𝑝𝑟𝑜𝑑  = ∑∑(𝑒𝑖𝑝
𝑝∈𝑃

∗ 𝑋𝑖𝑝)  

𝑖∈𝑀

                      

 

3.2 Multimodal Freight Transportation and Shipment Consolidation 

Multimodal Freight Transportation (MFT) now plays a central role in SCs majorly due to trends 

that are fundamentally changing the business strategy of large or global corporations such as 

the growing demand for speedy product deliveries, the continued economic globalization 

driving trade and investment, adoption of practices like agile manufacturing and the need to 

make supply chains increasingly efficient (Rondinelli & Berry, 2000). The presence of multiple 

transportation modes allows the network to utilize the best combination of modes to ensure 

products are delivered on time and the SC goals are achieved. With the increasing expansion 

and integration of transportation systems, the evaluation of the full impact of transportation on 

the environment (water, air and land resources) becomes more complex (Rondinelli & Berry, 

2000). However, researches show that besides potentially reducing the total economic SC cost, 

multimodality of transportation could also decrease environmental impact (such as the total 

carbon emitted) by allowing the use of more sustainable transportation alternatives 

(Kabadurmus and Erdogan, 2020). 
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Shipment consolidation is a strategy that combines two or more orders into a larger unit that 

can be dispatched on the same vehicle usually in the same market region. This strategy is 

potentially more sustainable than having to dispatch each shipment individually. This is because 

it can greatly reduce the transportation cost per unit or order (hence economic sustainability) 

while employing fewer long-haul shipments and reducing total vehicle miles. Ülkü (2012) 

demonstrates that increased utilization of vehicle capacity (through shipment consolidation) 

would lead to a reduction in total carbon emission.   

The shipment could either be Full TruckLoad (FTL), where the shipper uses most or the entire 

truck space to make its delivery to its customers, or Less than TruckLoad (LTL), where only a 

fraction of the truck space is used and paid for. The LTL shipment from multiple shippers is 

loaded onto a truck and delivered as a whole to a customer or to a distribution center where 

the shipment is broken down and distributed to respective customers (Ülkü, 2012). FTL 

shipment is cost-effective if most of the capacity of the truck is utilized by the quantity of the 

freight. This can be achieved through shipment consolidation. Allowing a mix of FTL and LTL 

modes of shipments in an SC network can enable cost savings as there is generally more 

utilization of available trucks (Ülkü, 2012). From the shipper’s point of view, FTL mode can be 

used when a large capacity is required and LTL can be rented when only a fraction of the truck 

space is needed. 

The different shipment consolidation logistics configurations between shippers (e.g, a 

manufacturer) and receivers (e.g., a retailer) shown in Figure 2 (based on Higginson, 1996) are 

briefly described. 

In configuration 1a, the shipper utilizes its truck, the truck it receives from the receiver or a 3rd 

party logistics (3PL) truck to directly transport its cargo to the receiver. This might be efficient if 

the distance is short and/or if the shipper can achieve FTL. Otherwise, there might be great 

underutilization of vehicle capacities. This could be compounded in multimodal transportation, 

especially for global SCs where full fixed prices will be paid for underutilized vehicles/containers 

travelling over long distances. 
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Figure 2. Different Shipment Consolidation Configurations 

1. Shipper-Performed Consolidation   2. Carrier-Performed Consolidation 

a.       b. 

      

 

     

             

 

In configuration 1b, a single shipper intends to supply multiple receivers in the same or 

relatively close market region. The shipper thereby consolidates all deliveries and sends them 

over to a distribution facility closer to the region where the receivers are located. The facility 
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breaks down the package and either delivers in individual vehicles to the receivers or utilizes 

the milk run delivery format. In global SCs, a supplier that has a large customer base in another 

region can consolidate all its deliveries and thereby save money in the shipping of his 

consolidated load as he uses fewer vehicles/containers. 

In configuration 2a, loads from multiple suppliers are transported to a consolidation facility 

from where the loads are consolidated and then shipped over to the receiver. Depending on 

the distance and truckload, this could provide a cheaper alternative to direct delivery as the 

total distance travelled from the suppliers to the receiver is reduced thereby reducing fuel 

utilization and carbon emission. Also, in global supply chains where multimodal transportation 

is required, individual loads are consolidated and shipped out as a singular unit thereby saving 

costs accrued through less travel distance and increasing the utilization of vehicle capacities. 

Configuration 2b is similar to 2a. It however recognizes that the shipment might be required to 

go through a distribution facility if it is to be received by multiple receivers. 

Figure 3. Representation of Unimodal and Multimodal Transportation 

 

 

Each arc on the supply chain network can utilize multimodal transportation. However, in this 

study, some arcs are indicated as purely unimodal (see Figure 3a). These include trips between 

facilities in the same region (supplier to local consolidation facility and distribution facility to 

receiver). Arcs that require multimodal transportation are however considered to require 

trucking for a portion of the trip to transport the shipment from the shipping node to the 
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intermodal hub (such as the airport), and from the intermodal hub to the delivery node (see 

Figure 3b ). Both modes are sometimes merged and represented as Figure 3c in the coming 

chapters. 

 

3.3 Supply Chain Stochastic Demand Approaches 

Usually, many of the parameters considered in LND such as demand, supply, cost and delivery 

time are inherently uncertain (Govindan et al., 2017). These uncertainties could be caused by 

disruptions due to human or natural factors and unforeseen circumstances. The impact of these 

uncertainties could sometimes be significant, causing decision-making to be more challenging. 

Methodologies have been generated to solve SCN modelling problems with uncertainty to 

obtain the best configuration that generally performs well under all or most of the possible 

occurrences of the uncertain parameter (Govindan et al., 2017). Traditionally, methodologies 

employed to work with stochastic parameters with known probability distribution is stochastic 

programming (SP). When no information about the probability distribution is known, robust 

optimization (RO) models can be employed to optimize the worst-case scenario while fuzzy 

mathematical programming is capable of handling the modelling when the uncertainty has 

some level of ambiguity and/or vagueness (Govindan et al., 2017). 

Basic SP approaches to uncertain parameters will be considered in this research as the 

‘traditional’ methods. The performance obtained will be compared against the performance of 

other advanced techniques of machine learning.  

1. Stochastic programming 

a. Simple Recourse Programming 

b. Chance-Constrained Programming 

2. Machine Learning  

a. Attention Convolutional- Long short term memory (AC-LSTM) 

b. Attention Convolutional Neural Network- Long Short Term Memory (ACN-LSTM) 

c. Stacking ensemble of AC-LSTM and ACN-LSTM using Support Vector Regression 

(SVR) 



28 
 

3.3.1 Stochastic Programming 

Stochastic programs are optimization models in which some of the model parameters are 

considered uncertain. The first forms were by Beale (1955) and Dantzig (1955) which involved a 

sequence of action-observation-reaction (or recourse). Simple and general recourse assumes 

risk neutrality of the DM while other models like chance-constraint programming factor in risk-

averseness of the DM. SP has attracted a lot of attention in literature because it is a 

fundamental building block of many supply chain problems including capacity planning, 

multiperiod inventory, and contract design problems (Chen et al., 2009). 

To work with models having uncertainties, several mathematical frameworks have been used 

including stochastic programming, chance-constrained programming and robust optimization, 

each with varying degrees of risk-aversion (Li & Grossmann, 2021). SP is a risk-neutral approach 

that aims to optimize the expected outcome for all scenarios or over the probability 

distribution. The objective is to find a solution that performs optimally on average while being 

feasible for all (or most) of the possible scenarios. Chance constrained programming can be 

seen as a stochastic program wherein some of the constraints have probabilistic parameters 

and these constraints only have to be satisfied at a given level of probability. Chance-

constrained programming has connections with risk management as it allows modelling flexible 

enough to deal with reliability issues (Li & Grossmann, 2021). 

This thesis considers a model with demand as a stochastic parameter with an overstocking cost 

for stock above demand, and understocking cost for stock below demand. This is quite similar 

to the popular Newsvendor Problem (NVP) (Scarf, 1958). The vendor must decide on how much 

stock to order x at a cost c without prior knowledge of what the demand would be. This 

demand is represented by a random variable ξ. The selling price p could also be considered as 

the understocking cost u as it is a sales opportunity foregone. The overstocking cost o could be 

the difference between the sum of the purchasing and holding cost, and the salvage value. 

However, we can assume perishable goods have no salvage value and would thereby not incur 

holding costs as they are discarded with no return making the overstocking cost equal to the 

purchasing cost c. For this thesis, the simple recourse stochastic programming and chance-
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constrained programming are considered. It is also assumed that the probability distribution of 

the uncertain parameter (demand) is unknown but characterised by some discrete realizations 

(scenarios) of this parameter as an approximation of the probability distribution. A finite 

number of scenarios obtained from historical observations is utilized. 

1. Simple Recourse Stochastic Programming: The objective is to find a solution that performs 

optimally on average while being feasible for all (or most) of the possible scenarios. In two-

stage programming, there are two stages of decisions to be made. The first stage decisions are 

those to be made ‘here and now’ at the beginning of the period. Second-stage decisions involve 

uncertainty and are thereby taken as ‘wait and see’ decisions at the end of the period. These 

decisions are taken after the true values of the uncertain parameters are disclosed. For simple 

recourse SP, the recourse action simply involves calculating the penalty based on the deviations 

of the outcome from the prescribed solution (Dye, 2008). The NVP is an example of a stochastic 

linear program with recourse (Birge, 1997). The recourse can be seen as the second stage 

decisions to be made such as the quantity to backorder (if that option is available) or hold as 

inventory for the next cycle. It can be generally represented as the following model 

min
𝑥∈ℜ𝑚

𝑐𝑇𝑥 +  𝜓(𝜉, 𝑥)               

𝑠. 𝑡  𝐴𝑥 = 𝑏,              

𝑥 ≥ 0,        

where 𝜓(𝜉, 𝑥) =𝑜[x –  𝜉]+ + 𝑝[𝜉 − 𝑥]+ , [a]+ =max{a,0} (Birge, 1997). 

In a risk-neutral setting, the objective function of the problem can be formulated as the 

minimization of the expected value of the cost in relation to the probability of each possible 

demand scenario, or the probability distribution of the demand (assuming a continuous 

distribution) 

min
𝑥∈ℜ𝑚

 𝔼𝐹[𝑐
𝑇𝑥 +  𝜓(𝜉, 𝑥)]          

The minimization of the expected value gives a solution that performs optimally on average in 

all the possible scenarios (Dye, 2008).  
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2. Chance-Constrained Programming: This was developed by Charnes and Cooper (1958) and 

has gained significant attention from researchers in many fields. This approaches the NVP from 

a service-level perspective to find the optimal order quantity (inventory level) that allows the 

demand to be met with at least ′1 − α′ probability while minimizing the cost incurred due to 

inadequate or surplus inventory (van der Laan et al., 2022). This makes chance-constrained 

programming a risk-averse approach where α is the pre-set risk level of the decision maker. 

Supposing that the constraint that links an observation of the demand (scenario) 𝜉 to the target 

inventory level x is linear in x (represented as the function 𝑔(𝑥, 𝜉) ≤ 𝑏 ), then the service-level 

constraint of the model can be formulated as 

ℙ[𝑔(𝑥, 𝜉) ≤ 𝑏] ≥ 1 − α       

meaning the values of variable x the optimal model provides only has to fulfil the constraint 

often enough to meet the pre-set risk level α. The objective function remains the same while 

the service-level constraint eliminates some of the scenarios. 

In classical stochastic programming, it would be required that such a constraint is satisfied for 

all possible realisations of the stochastic parameter. However, this might be infeasible or very 

costly if the model has to adjust its decision variables to account for outliers within the scenario 

space. The chance constraint programming reformulation allows for the model to ignore as 

many outlier scenarios as possible that might increase the overall cost if catered for by the 

program but within the probability limits set by the risk-averse DM. 

3.3.2 Machine Learning 

General statistical approaches to demand forecasting employ the time-series method using 

techniques such as naïve methods, average methods, exponential smoothing, Holt's linear 

trend method, damped trend methods, moving averages, auto-regressive moving average and 

auto-regressive integrated moving average (Hyndman & Athanasopoulos 2018). However, 

machine learning (ML) approaches have been shown to perform significantly better than 

traditional statistical approaches (Carbonneau et al., 2008). While both statistical and machine 

learning methods to demand forecasting are based on time-series data, the difference between 
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them is in the computational power of each method. The statistical methods rely on limited 

historical time-series data while the ML approach can use huge volumes of data alongside 

several of its related features to forecast future demand. For example, weather data can be 

used alongside historical data to increase forecasting performance. ML can also do a deeper 

search to obtain insights into seasonality and correlation within the data to better improve 

forecasting accuracy (Kilimci et al., 2019). 

ML is a subfield of Artificial intelligence (AI) which takes advantage of available computational 

power and big data to enhance the application of innovative algorithms to improve multiple 

areas such as supply chain management. ML allows machines to learn without hardcoded 

programming. Unlike most traditional SP approaches, ML can deal with the huge volumes of 

data typically generated in supply chain management even when the problem being solved 

involves non-linearity. This will make the model a data-driven model and can find much use in 

optimizing supply chain networks, especially nowadays when they generate huge datasets. 

ML is usually classified into supervised and unsupervised learning. Supervised ML models are 

trained using defined labels which are then used to test and improve their (models) 

performance. These models are mostly used for regression and classification. Unsupervised ML 

models on the other hand do not require defined labels. The algorithm seeks out hidden 

patterns and insights from the training data that could then be used to classify or cluster both 

the training and testing data (Okwuchi et al., 2020). Prediction of a stochastic parameter using 

historical data would require a supervised learning regression algorithm with the historical data 

as labels. 

In supervised learning, several basic ML algorithms exist for solving regression problems. These 

include linear regression, support vector regression, random forest regression, and so on. An 

advanced type of ML is called Deep Learning (DL) which is based on artificial neural networks 

(ANN) with representation learning. ANNs are computing systems inspired by actual biological 

neural networks found in the human brain (Chen et al., 2019). An ANN is based on a collection 

of connected nodes called neurons which model the neurons in a biological brain. Weights are 

used to connect the neuron. A stack of neurons on the same level is called a layer. An ANN is 
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made up of multiple interconnected layers with each layer performing some sort of 

transformations on its input yielding a different output. Input data travels from the first layer 

(input layer), through several hidden layers and comes out of the last layer (output layer). The 

input to output transition is performed repeatedly. The weights of each connection are updated 

as the learning proceeds until the best weights that lead to minimal loss (or optimize a cost 

function e.g accuracy) are obtained. The weights are updated using stochastic gradient descent 

or other forms of optimizers. ANN serves as the foundation for other types of DL algorithms 

(Schmidhuber, 2015). Figure 4 (based on Bre et al., 2018) shows the structure of a typical 

artificial neural network with connecting neurons in multiple layers. 

Figure 4. Artificial Neural Network   

 

DL algorithms have been shown to generally perform better than basic ML models (Sarker 

2021; Okwuchi et al., 2012). Due to the ability of DL algorithms to learn more complex patterns 

in data and also improve continuously with increasing data size (Goodfellow and Courville, 

2016), the ML techniques used in this thesis are all DL algorithms. They have also been shown 

to perform excellently on time series data (Okwuchi et al., 2012). For time series data, a spatial 

relationship can be described as the pattern acquired based on the relative location of data 

points to each other. Temporal relationships however describe the patterns acquired from the 

sequential (time-based) arrangement of the data points. Different DL algorithms possess 

different strengths in observing both types of relationships (spatial and temporal). Examples of 

DL algorithms include Recurrent neural networks(RNN), convolutional neural networks (CNN), 
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Long Short Term Memory (LSTM), Deep Belief Networks, Deep Neural Networks and so on. For 

this thesis, only the relevant architectures and concepts are briefly explained. 

1. CNN-LSTM 

Convolutional Neural Networks (CNNs) are a specialized type of neural network (NN) used for 

working with two-dimensional grid-like image data. This makes it applicable to fields like image 

and video recognition, natural language processing, and medical image analysis. It has however 

also shown good performance in finding spatial relationships within numerical data (Bai et al., 

2018). Time series data with samples taken at regular time intervals could be seen as a one-

dimensional grid (Goodfellow and Courville, 2016). The CNN is made up of a series of 

interconnected layers with hidden layers such as convolution, pooling and normalization and 

fully connected layers. CNNs are difficult to tune, require large datasets and have difficulty in 

extracting temporal features (Okwuchi et al., 2020). 

Meanwhile, Long Short-Term Memory (LSTM) networks are special Recurrent Neural Networks 

(RNNs) that have an improved remembering capacity. Unlike other NNs, RNNs have a structure 

in which all inputs and outputs neurons are directly connected to each other. In addition, 

neuron outputs are applied recursively as inputs recurrently. This acts as feedback which serves 

as a form of memory that makes previous input data leave a footprint making it good for 

observing temporal patterns in sequential data. The iterative procedure of the RNN however 

often leads to the exploding and vanishing gradients problem. LSTM serve as an improvement 

to RNNs by fixing these problems through the use of special gates (input, input modulation, 

output, forget) thereby allowing short-term and long-term memories. This makes the LSTM 

much better than the standard RNNs at capturing long-term temporal dependencies within the 

data (Yildirim, 2018). LSTMs have high performance in observing temporal relationships in data 

but do not perform as well in observing spatial relationships. 

CNN-LSTM, therefore, involves the stacking of the CNN and LSTM models to take advantage of 

the strength of each. This creates an architecture that is not only good in observing temporal 

relationships within data (through the presence of LSTMs) but also good in observing its spatial 

relationships (through the presence of CNNs). CNN-LSTMs have been applied in time series, text 



34 
 

classification and price prediction showing results that outperform either singularly (Okwuchi et 

al., 2021). 

2. Convolutional LSTM (ConvLSTM): The Convolutional LSTM model is an architecture inspired by 

both CNN and LSTM having a better performance in observing the spatio-temporal 

relationships in data than either of the models individually (Shi et al., 2015). Compared to 

standard LSTMs, ConvLSTM is able to model both spatial and temporal relationships 

simultaneously by encoding the spatial information into tensors (Wang et al., 2017). The 

ConvLSTM architecture preserves the spatial information within the data by modifying the 

LSTM through the replacement of its (LSTM) matrix multiplication operations with 

convolutional operations (Luo et al., 2017). ConvLSTM is typically suitable for a series of time-

dependent images or videos (Vrskova et al., 2022). It has however also been applied to time 

series data (Okwuchi et al., 2021) but requires the reshaping of the input data appropriately. 

3. Attention Mechanism: This is a mechanism that can be added to an existing NN model. It 

mimics cognitive attention and its goal is to help the model focus on important parts of the 

input data rather than all of the information (Vaswani et al., 2017). For sequence modelling, the 

attention mechanism allows the modelling of dependencies without regard to their distance in 

the input or output sequences (Kim et al., 2017). This makes the network devote more 

attention and focus to small important parts of the data that have a larger influence on the 

output. Self-attention is an attention mechanism relating different positions of a single 

sequence in order to compute a representation of the same sequence. A self-attention layer 

can be added to the architecture of other deep learning models to potentially increase its 

performance. It is added to the CNN-LSTM and Convolutional LSTM layers previously described 

to form the Attention-based CNN-LSTM (AC-LSTM) and the Attention-based Convolutional 

LSTM (ACV-LSTM) respectively. Okwuchi et al. 2021 show that these attention-based models 

perform better than their counterparts without the attention layer. 

 

4. Ensemble: This is a process where multiple models are combined in the prediction process by 

either using different ML algorithms or using different training data sets. The predictions are 

then aggregated using an ensemble model which outputs a single prediction for the unseen 
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data. This helps reduce the generalization error on predictions. The ensemble model seeks ‘the 

wisdom of the crowd’ in making its final predictions (Kotu & Deshpande, 2015). Types of 

ensembles include stacking and bagging (bootstrap aggregating). Bagging is a technique for 

reducing the generalization error by combining the predictions from the children models. This is 

done by having all the children models individually train on the input data, and then vote on the 

output for the test data. For regression data, the average value of all the predictions would be 

taken as the final output. On the other hand, Stacking uses a new combiner algorithm to learn 

how best to combine the predictions from contributing children models taking advantage of 

where each child model performed better than the other. 

For this study, our objective is to forecast future demand based on historical orders. To this 

end, we investigate the utilisation of multiple machine learning techniques. An increase in 

forecasting accuracy would lower overall cost as inventory is reduced to what is required while 

increasing customer satisfaction due to fulfilled requests. 

 

3.4 Summary  

This chapter generally introduces the major concept that will be considered in the LND design. 

This included sustainability, MFT, SCL, SP and ML. The formulas and explanations provided 

inspire the objective function and constraints used in the formation of the optimization model.  
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Chapter 4 

Problem Description & Model Formulation 

A realistic 3-echelon supply chain network is contrived which considers environmental 

sustainability with factors like water and carbon footprints. The network also factors in 

multimodal freight transportation and consolidation of shipment between its agents. This 

sustainable SCN with multimodal freight transportation and shipment consolidation is termed 

Model A for convenience. A similar model without shipment consolidation capabilities is also 

formulated and termed Model B. This allows for a comparative study of both models to analyse 

the impact of shipment consolidation on economic and environmental sustainability. Both 

Model A and Model B are considered deterministic.  

4.1 Sustainable Supply Chain Network with Multimodal Freight 

Transportation and Shipment Consolidation (SSCN/MFT&SCL)  

The proposed SC model comprises multiple suppliers, plants, retailers, consolidation and 

distribution facilities/centers, components and final products. Suppliers provide components 

which are delivered to the manufacturing plants as raw materials. There is a bill of material 

(BOM) indicating which components are required for the production of each product. The 

plants then produce the final products and deliver them to the retailers according to their 

orders. Each plant uses varying technologies which impact the cost, time consumption, water 

consumption and emission rate of production. The goal is a system-wide optimization of the 

logistic network of the SCN with a focus on the tactical level logistical decision-making such as 

order quantity, suppliers to engage and transportation modes to use. Figure 5 shows the three 

echelon network describing the connections between the supply chain agents. We consider an 

SCN with 3-echelons because it is the simplest but not trivial case. 

The retailers/retail stores base the quantity they order on the local demand from customers. 

From the time between the initial retailer request to the delivery of the final products, there is 

a set planning period during which the order-deliver cycle has to be completed. For the 
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deterministic model, it is assumed that the retailers know the exact amount of demand they 

would receive and plan accordingly. 

Figure 5. Supply Chain Network Diagram 

 

 

The other characteristics of the network and assumptions considered are enlisted below: 

• The bill of material (BOM) indicates the components required for the production of each 

final product.  

• All manufacturing plants (suppliers) are capable of producing every final product 

(component). The capacity for a plant (supplier) to produce a final product (component) 

can be set to zero to make the plant (supplier) incapable of producing the final product 

(component). 

• The physical network infrastructures are allowed to be in different regions or countries, 

hence the requirement for multimodal modes of transportation which include road, rail, 

air and water. 
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• Different types of components or final products are allowed to be shipped together on 

the same vehicle/container. 

• The consolidation and distribution facilities/centers are set to be geographically located 

between the suppliers (plants) and the plants (retailers). The location of these 

consolidation/distribution facilities can however be set as required. The consolidation 

facilities are similar to urban consolidation centers and the distribution facilities are 

similar to urban distribution centers. 

• The consolidation facilities are assumed to be close to the shippers (suppliers in the 

upstream and plants in the downstream) thereby requiring road as the only mode of 

transportation. The model can be adjusted to remove this assumption. 

• The distribution facilities are assumed to be close to the receivers (plants in the 

upstream and retailers in the downstream) thereby requiring road as the only mode of 

transportation. The model can be adjusted to remove this assumption. 

• A short-haul truck with a fixed cost less than that of a normal long-haul truck is used for 

trucking between the shippers and the consolidation facilities, and between the 

distribution facilities and the receivers. 

• To be more realistic, rail, air and water transportation modes are only available on some 

of the arcs with long distances. Road transportation is available on all arcs. 

• There is an activation cost for each supplier and manufacturing plant. Each supplier 

(plant) has a limited capacity for producing each component (final product). 

Consolidation and distribution facilities are however un-capacitated. The capacity limit 

can be set if required. 

• The handling cost (loading, unloading) of items taken through the consolidation or 

distribution facilities is considered dependent on the number of items being processed. 

• Transportation capacity limitations between SC nodes are not considered. It is assumed 

that as many vehicles/containers as needed can be obtained. There is however a fixed 

cost for activating each unit of vehicle/containers except for air transportation where 

cost is solely based on the billable weight (the higher of the volumetric weight and 

physical weight) of the cargo and the distance travelled.  
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• When rail, air and water transportation modes are used, the need to utilize short-haul 

trucking for a portion of the trip is recognized (delivery to and from the intermodal hub. 

See Figure 3b). 

• The portion of each trip through air, water and rail requiring short-haul trucking can be 

described as a percentage 𝜃. It is assumed that 𝜃 on a specific arc for all three modes is 

the same. 

• The cost of utilizing rail, air and water transportation modes on any arc thereby has the 

added fixed cost of using two short-haul trucks (for delivery from and to the intermodal 

hub) for each vehicle/container (rail, air or water). The variable transportation cost is 

also set to be dependent on the percentage of the distance covered by the active mode 

and the short-haul trucks.  

• It is assumed that shippers have to use individual trucks (no milk runs) to directly deliver 

cargo to the receivers even if the cargo is LTL. This might not be too efficient thereby 

providing potential benefits to utilizing consolidation facilities between shippers and 

receivers, especially for long-distance trips. Return trips are not considered. 

• The carbon emission from each trip is dependent on both the number of vehicles 

activated and the weight of cargo on each vehicle. 

• Each manufacturing plant has a different emission rate for the production of different 

products. The total carbon emission due to production is the cumulation of the 

mathematical product of the quantity of each final product by its production emission 

rate from all plants. 

• For carbon footprint assessment, the carbon-tax scheme is considered. The carbon 

emission excess of the carbon cap is penalized with a tax. 

• Each manufacturing plant has multiple water-consuming processes. Some processes 

consume water on hourly or daily bases while others consume on basis of the quantity 

of production. 

• The quantity of water impacted by ships through water pollution is also considered.  

• The sum of the total quantity of water consumed in each plant above the stipulated 

regional cap and the quantity of water polluted through shipping is penalized with a tax. 
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This deterministic model SSCN/MFT&SCL is termed ‘Model A’ and it considers all possible SCL 

configurations simultaneously (see Figure 2 and Figure 5). These include: 

a. Direct shipping from the supplier (plant) to the plant (retailer). 

b. Shipping from the supplier (plant) to a consolidation facility where the package is 

consolidated with shipments from other suppliers (plants) before delivery to each plant 

(retailer). 

c. Supplier (plant) consolidates shipments destined for multiple plants(retailers) locally 

and then ships out to a distribution facility where the shipment is broken down and sent 

to each plant (retailer). 

d. Multiple deliveries from different suppliers (plants) to a consolidation facility where the 

shipments are consolidated and then shipped out to a distribution facility. The 

consolidated load is broken down and then sent to multiple plants (retailers). 

4.2 Mathematical Model: SSCN/MFT&SCL (Model A) 

The sets, parameters, decision variables and mixed-integer linear programming (MILP) model of 

the problem is presented below. 

Table 2: Sets 

𝑺 Suppliers, indexed by i 

𝑴 Manufacturing plants, indexed by j 

C Retailers, indexed by c 

Ce1 Consolidation facilities upstream of the SCN indexed by e1 

De1 Distribution facilities upstream of the SCN indexed by d1 

Ce2 Consolidation facilities downstream of the SCN, indexed by e2 

De2 Distribution facilities downstream of the SCN, indexed by d2 

𝑭 Final products, indexed by f 

𝑲 Components, indexed by k 

𝑷 All products: 𝑲 ∪  𝑭 , indexed by p 



41 
 

𝑩 Components k required for final products f represented as a pair, (k, f ) for k ∈ K, f ∈ F 

𝑻 All transportation modes, indexed by t where t = {𝑡𝑟𝑜𝑎𝑑, 𝑡𝑟𝑎𝑖𝑙, 𝑡𝑎𝑖𝑟 , 𝑡𝑤𝑎𝑡𝑒𝑟}  

�̅� Air transportation mode i.e., �̅� = {𝑡𝑎𝑖𝑟} 

�̂� Road transportation mode i.e., �̂� = {𝑡𝑟𝑜𝑎𝑑} 

𝑻′ All transportation modes except air transportation ; 𝑡′ =  {𝑡𝑟𝑜𝑎𝑑, 𝑡𝑟𝑎𝑖𝑙 , 𝑡𝑤𝑎𝑡𝑒𝑟}  

R Production processes that require daily water use, indexed by r 

Q Production processes that require water on a per batch basis, indexed by q 

𝑬1 Arcs in the upstream, (𝑎𝑢, 𝑏𝑢) ∈ 𝑬𝟏 ∶ 𝑖, 𝑗 ∈ 𝑺 ∪ 𝑴 ∪ 𝑪𝒆𝟏 ∪ 𝑫𝒆𝟏  

𝑬2 Arcs in the downstream, (𝑎𝑑, 𝑏𝑑) ∈ 𝑬𝟐 ∶ 𝑖, 𝑗 ∈ 𝑴 ∪ 𝑪 ∪ 𝑪𝒆𝟐 ∪ 𝑫𝒆𝟐  

𝑬  All Arcs in the SCN, (𝑎, 𝑏) ∈ 𝑬; 𝑬  =̇ 𝑬 1 ∪  𝑬 2  

 

Table 3: Parameters 

𝑙𝑑𝑖 Lead time for supplier i ∈ S [days] 

𝑐𝑜𝑡 Variable transportation cost per km per tonne for transportation mode 𝑡 ∈ 𝑇 [$] 

𝑓𝑡 Fixed cost of activating a vehicle/container for transportation mode 𝑡 ∈ 𝑻 where 

fair=0 [$] 

𝑓𝑟𝑜𝑎𝑑 Fixed cost of activating a short haul truck [$] 

𝑑𝑒𝑚𝑐𝑓 The demand of retailer c ∈ C for final product f ∈ F 

𝑑𝑎𝑏 Distance of arc between node a and node b for (a,b) ∈ E [km] 

𝜃𝑎𝑏 Percentage of the distance of arc requiring trucking between node a and node b 

for (a,b) ∈ E  

𝑝𝑖𝑘
𝑘  Unit purchase cost of component k ∈ K from supplier i ∈ S  [$] 

𝑝𝑗𝑓
𝑓

 Unit production cost of final product f ∈ F from plant j ∈ M   [$] 

𝑐𝑝 Consolidation/distribution handling cost per unit product [$] 

𝑎𝑖 Activation cost of supplier/plant i ∈ S ∪ M  [$] 

𝑙𝑖𝑝 Capacity (in units) of supplier/plant i ∈ S ∪ M to produce p ∈ P 

𝛼 Carbon tax of one unit (kg) of carbon emission above cap [$] 
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𝜙 Emission limit [kg] 

𝑤𝑝 Weight of product p ∈ P [kg] 

𝑣𝑝 Volume of product p ∈ P [m3] 

𝑤𝑡
𝑐𝑎𝑝 Total weight capacity of a vehicle/container/airplane t ∈ T [kg] 

𝑣𝑝
𝑐𝑎𝑝 Total volume capacity of a vehicle/container/airplane t ∈ T  [m3] 

𝑤𝑝
𝑏

 Billable weight of product p ∈ P  [kg] 

�̅�𝑡 Carbon emission per kilometre per weight (metric ton) for transportation mode 

t ∈ T  [kg/km-Ton] 

𝑒𝑖𝑓 Carbon emission (kg) of producing one unit of final product f ∈ F at plant i ∈ M 

[kg] 

𝛽 Charges for each unit of water usage above the cap (e.g recycling) [$] 

𝑏𝑖𝑞𝑓  Batch size of final product f ∈ F in manufacturing plant i ∈ M for process q ∈ Q 

𝜔𝑖 Water limit based on scarcity level of the catchment area in which plant i is 

located [gal] 

𝑤𝑎𝑖𝑟𝑓
𝑟

 Quantity of water used per day for process r ∈ R for final product f ∈ F in 

manufacturing plant i ∈ M [gal] 

𝑤𝑎𝑖𝑞𝑓
𝑞

 Quantity of water used in process q∈ Q for each batch of product f in 

manufacturing plant i ∈ M [gal] 

𝑤𝑎𝑡  Quantity of water per hour polluted through transportation mode t ∈ T [gal/hr] 

𝑝𝑑𝑖𝑓  The average quantity of product f ∈ F produced per day in the manufacturing 

plant i ∈ M 

𝑓𝑡
𝐶𝑂2 Fuel emissions factor [km/gal] 

𝑝𝑡
𝐶𝑂2 Packaging emission rate (while loading and unloading) for transportation mode t 

∈ T [kg/item] 

𝑠𝑡
𝐶𝑂2 Shipping emission factor for transportation mode t ∈ T [kg/Ton-km] 

𝑚𝑡 Average fuel mileage for vehicle type t ∈ T [km/gal] 

𝜃𝑣𝑡   Target volume efficiency of truck space set by DM 

𝜃𝑤𝑡 Target weight efficiency of truck space set by DM 
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𝛾𝑡 Packing efficiency for vehicle type t ∈ T [km/gal] 

𝑠𝑝𝑡 Average speed of transportation mode t ∈ T [km/hr] 

𝑐𝑓𝑡 Congestion factor of transportation mode t ∈ T 

µ𝑡  0 if road transportation is activated, 1 otherwise  

𝑝𝑜𝑟𝑡𝐷𝑡 Dwelling time spent at the intermodal hubs while switching modes t ∈ T [days]. 

cons_time Time taken to consolidate or breakdown cargo at the consolidation/distribution 

center [days] 

plan_period Maximum time allowed for a full cycle from retailers to suppliers and back to the 

retailers [days] 

M A very big positive number 

Sm A very small positive number 

 

Table 4: Decision Variables 

𝑋𝑎𝑏𝑡𝑝 The number of units of product p ∈ P transported from node a to node b 

using transportation mode t ∈ T for (a,b) ∈ E 

𝑌𝑎𝑏𝑡 The number of vehicles/containers/airplanes t ∈ T activated from node a 

to node b for (a,b) ∈ E  

𝑍𝑖𝑝  1 if supplier/plant i ∈ S ∪ M is activated for product p ∈ P, 0 otherwise 

𝐶𝑎𝑟𝑏𝑒𝑥𝑐𝑒𝑠𝑠  the amount of excess emission above the emission limit 

𝑊𝑖
𝑒𝑥𝑐𝑒𝑠𝑠

 The quantity of excess water usage above the stipulated limit in the region 

each plant i is located 

𝑊𝑡𝑟𝑎𝑛𝑠𝑝
 The total quantity of water polluted through transportation 

𝐾𝑎𝑏𝑡 1 if the number of vehicles/containers/airplanes t ∈ T activated from node 

a to node b is greater than zero, 0 otherwise 

𝑇𝑖𝑚𝑒𝑎𝑏 The maximum travelling time spent between each pair of SC agents that 

have direct connection [(S , M), (S , Ce1), (S , De1), (Ce1 , De1), (Ce1 , M), 

(De1 , M), (M , C), (M , Ce2), (M , De2), (Ce2 , De2), (Ce2 , C), (De2 , C)] 

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒 The maximum time consumed upstream of the SCN 
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𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒 The maximum time consumed downstream of the SCN 

𝑀𝑎𝑥𝑃𝑟𝑜𝑑𝑇𝑖𝑚𝑒 The maximum production time used by all plants 

 

Model A 

• Variable transportation cost 

𝐸𝐶1 = ∑ ∑ (1 − 𝜃𝑖𝑗)𝑑𝑎𝑏𝑐𝑜𝑡′  𝑌𝑎𝑏𝑡′ + 

𝑡′ ∈𝑇′(𝑎,𝑏)∈𝐸

∑ ∑ 𝜃𝑖𝑗𝑑𝑖𝑗 𝑐𝑜𝑡𝑟𝑜𝑎𝑑𝑌𝑎𝑏𝑡′  

𝑡′ ∈𝑇′(𝑎,𝑏)∈𝐸

 

 

(4.1) 

 

For multimodal transportation, the first term is the variable cost dependent on distance and the 

percentage 𝜃𝑎𝑏 of the trip covered by rail, road or water. The second term is the variable cost 

of using road transportation for 𝜃𝑎𝑏 percentage of each trip. Note that 𝜃𝑎𝑏=0 for arcs that use 

only road transportation. 

  

• Variable air transportation cost 

 

𝐸𝐶2 = ∑ ∑ 𝑤𝑝
𝑏𝑐𝑜𝑡𝑎𝑖𝑟(1 − 𝜃𝑎𝑏)𝑑𝑎𝑏𝑋𝑎𝑏𝑡𝑎𝑖𝑟𝑝

(𝑎,𝑏)∈𝐸𝑝∈𝑃

+ ∑ 𝜃𝑎𝑏𝑑𝑎𝑏 𝑐𝑜𝑡𝑟𝑜𝑎𝑑𝑌𝑎𝑏𝑡𝑎𝑖𝑟
(𝑎,𝑏)∈𝐸

 (4.2) 

 

The first term refers to the variable cost of air cargo dependent on the total billable weight of 

the cargo and the distance travelled. The second term refers to the variable cost for the 2 short 

road trips utilized to deliver goods from the start node to the airport and at the other end of 

the arc, from the airport to the end node. 

 

• Fixed transportation cost 

 

𝐸𝐶3 = ∑ ∑(𝑓𝑡  + 2µ𝑡𝑓
𝑟𝑜𝑎𝑑)𝑌𝑎𝑏𝑡

𝑡∈ 𝑇(𝑎,𝑏)∈𝐸

 (4.3) 
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where µ=0 when t=𝑡𝑟𝑜𝑎𝑑 and 1 otherwise. This is the cost of activating a 

vehicle/container/aeroplane. The cost of activating 2 short haul trucks is added if the mode is 

rail, air or water. 𝑓𝑡 of air transportation is equal to 0 as transportation cost is solely based on 

weight. 

 

• The purchasing cost of components 

𝐸𝐶4 = ∑ ∑∑∑ 𝑝𝑖𝑘
𝑘 𝑋𝑖𝑗𝑡𝑘

𝑘∈ 𝐾𝑡 ∈𝑇𝑖 ∈𝑆

                 

𝑗∈𝑀∪𝐶𝑒1∪𝐷𝑒1

 (4.4) 

 

This finds the mathematical product of the outputs from all Suppliers i ∈ 𝑆 (to manufacturing 

plants directly, or through the consolidation and distribution centers) and the cost of 

purchasing one unit of component k from supplier i. 

 

• The production cost of final products 

 

𝐸𝐶5 = ∑ ∑∑∑𝑝𝑗𝑓
𝑓
𝑋𝑗𝑖𝑡𝑓

𝑓∈ 𝐹𝑡 ∈𝑇𝑗 ∈𝑀

                

𝑖∈𝐶∪𝐶𝑒2∪𝐷𝑒2

 (4.5) 

 

This finds the product of the total output from all Manufacturing plants j∈ 𝑀 (to retailers, 

consolidation and distribution centers) and the cost of producing one unit of each final product 

f. 

 

• Make-bulk / break-bulk cost 

 

𝐸𝐶6 = 𝑐𝑝( ∑ ∑∑ 𝑋𝑖𝑒1𝑡𝑟𝑜𝑎𝑑𝑘
𝑘∈ 𝐾𝑖 ∈𝑆

  +

𝑒1∈𝐶𝑒1

∑ ∑ ∑𝑋𝑗𝑒2𝑡𝑟𝑜𝑎𝑑𝑓
𝑓∈ 𝐹𝑗 ∈𝑀

 

𝑒2∈𝐶𝑒2

) 

 

(4.6) 

 

This is the sum of the mathematical product of the input to each consolidation centre and the 

unit cost of consolidation, cp 
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𝐸𝐶7 = 𝑐𝑝( ∑ ∑∑ 𝑋𝑑1𝑗𝑡𝑟𝑜𝑎𝑑𝑘
𝑘∈ 𝐾𝑗∈𝑀

  +

𝑑1∈𝐷𝑒1

∑ ∑∑𝑋𝑑2𝑐𝑡𝑟𝑜𝑎𝑑𝑓
𝑓∈ 𝐹𝑐 ∈𝐶

 

𝑑2∈𝐷𝑒2

) (4.7) 

 

 

This is the sum of the mathematical product of the output from each distribution center and 

the unit cost of consolidation 𝑐𝑝 

 

• Facility activation cost 

            𝐸𝐶8 = ∑ ∑ 𝑎𝑖 𝑍𝑖𝑝                             

𝑝∈ 𝑃𝑖∈𝑆∪𝑀

 (4.8) 

 

The equation finds the total activation cost of all supplier and manufacturing plants of the 

supply chain utilized where 𝑍𝑖𝑝 is a binary with 1 indicating the activation of the node, and 0 

indicating otherwise. It is assumed that there is no activation cost for consolidation and 

distribution centers.  

 

• Carbon footprint cost 

 

𝐶𝐹 =∝ 𝐶𝑎𝑟𝑏𝑒𝑥𝑐𝑒𝑠𝑠 (4.9) 

  

This refers to 𝐶𝑎𝑟𝑏𝑒𝑥𝑐𝑒𝑠𝑠 , the excess carbon emitted above the carbon cap stipulated by the 

government. An amount of money ∝ is paid per unit extra as tax.  

 

• Water footprint cost 

𝑊𝐹 = β(∑𝑊𝑖
𝑒𝑥𝑐𝑒𝑠𝑠

𝑖∈𝑀

+𝑊𝑡𝑟𝑎𝑛𝑠𝑝 ) 
(4.10) 
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The first term refers to the accumulated excess water usage in each plant above the stipulated 

water usage cap in the region where plant i is located. The second term refers to the total 

water pollution/consumption for all transportation on all arcs while β refers to the cost paid per 

unit to recycle water or as charges.  

 

The cost-minimizing objective function: 

ᵶ =  Economic cost +  Carbon footprint cost +Water footprint cost     

ᵶ = 𝐸𝐶1 + 𝐸𝐶2 +⋯+ 𝐸𝐶8⏟              
𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐶𝑜𝑠𝑡

+  𝐶𝐹⏟
𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

+ 𝑊𝐹⏟
𝑊𝑎𝑡𝑒𝑟 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

 (4.11) 

The objective function is to minimize the sum of the economic, carbon footprint (CF) and water 

footprint (WF) cost. The economic cost is divided into eight subcategories which are presented 

as Eqns. (4.1) to (4.8). The CF cost is presented as Eqn. (4.9) while the WF cost is presented as 

Eqn. (4.11). 

Constraints: 

• Flow balance constraints in plants 

 

∑∑𝑋𝑖𝑗𝑡𝑘
𝑡∈𝑇𝑖∈𝑆

 + ∑ ∑𝑋𝑒1𝑗𝑡𝑘
𝑡∈𝑇𝑒1∈𝐶𝑒1

+ ∑ 𝑋𝑑1𝑗𝑡𝑟𝑜𝑎𝑑𝑘
𝑑1∈𝐷1

=  

∑ ∑∑𝑋𝑗𝑐𝑡𝑓
𝑐∈𝐶𝑡∈𝑇(𝑘,𝑓)∈𝐵

 + ∑ ∑ ∑ 𝑋𝑗𝑑2𝑡𝑓
𝑑2∈𝐷𝑒2𝑡∈𝑇(𝑘,𝑓)∈𝐵

 + ∑ ∑ 𝑋𝑗𝑒2𝑡𝑟𝑜𝑎𝑑𝑓
𝑒2∈𝐶𝑒2(𝑘,𝑓)∈𝐵

   

                                      ∀𝑗 ∈ 𝑀 , 𝑘 ∈ 𝐾  

(4.12) 

 

Constraint (4.12) ensures the input into each plant 𝑗 ∈ M from all nodes (supplier, 

consolidation, and distribution centers respectively) equals output from each plant through all 

nodes (retailer, consolidation and distribution centers respectively). (k,f) ∈ B ensures the 

components required for each final product according to the BoM is supplied. B is a set that 

contains the pair of final product f and the required components k. 
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• Demand balance constraint 

 

𝑑𝑒𝑚𝑐𝑓 = ∑∑𝑋𝑗𝑐𝑡𝑓
𝑡∈𝑇𝑗∈𝑀

 + ∑ 𝑋𝑑2𝑐𝑡𝑟𝑜𝑎𝑑𝑓
𝑑2∈𝐷𝑒2

 + ∑ ∑𝑋𝑒2𝑐𝑡𝑓
𝑡∈𝑇𝑒2∈𝐶𝑒2

     ∀ 𝑐 ∈ 𝐶, ∈ 𝐹  (4.13) 

 

 

Constraint (4.13) ensures the demand for each product f at retail store 𝑐 is equal to the input 

from all relevant locations (consolidation, distribution center, plant) through all modes of 

transportation  

 

• Flow balance constraint for upstream consolidation centers 

 

∑𝑋𝑖𝑒1𝑡𝑟𝑜𝑎𝑑𝑘
𝑖∈𝑆

= ∑ ∑𝑋𝑒1𝑑1𝑡𝑘
𝑡∈𝑇𝑑1∈𝐷𝑒1

 + ∑∑𝑋𝑒1𝑗𝑡𝑘
𝑡∈𝑇𝑗∈𝑀

          ∀ 𝑒1 ∈ 𝐶𝑒1, 𝑘 ∈ 𝐾  (4.14) 

 

Constraint (4.14) guarantees that the sum of each component k received by each consolidation 

center e1 from all suppliers is equal to the sum of each component k delivered to all 

distribution centers and plants. 

 

• Flow balance constraint for downstream consolidation centers 

 

∑𝑋𝑗𝑒2𝑡𝑟𝑜𝑎𝑑𝑓
𝑗∈𝑀

 = ∑ ∑𝑋𝑒2𝑑2𝑡𝑓
𝑡∈𝑇𝑑2∈𝐷2

 +∑∑𝑋𝑒2𝑐𝑡𝑓       

𝑡∈𝑇

 ∀ 𝑒2 ∈ 𝐶𝑒2, 𝑓 ∈ 𝐹 

𝑐∈𝐶

 (4.15)  

 

Constraint (4.15) ensures the sum of each final product f received by each consolidation center 

e2 from all plants is equal to the sum of each final product f delivered to all distribution centers 

and retailers. 
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• Flow balance constraint for upstream distribution centers 

 

∑∑𝑋𝑖𝑑1𝑡𝑘
𝑡∈𝑇𝑖∈𝑆

+ ∑ ∑𝑋𝑒1𝑑1𝑡𝑘
𝑡∈𝑇𝑒1∈𝐶𝑒1

 =  ∑ 𝑋𝑑1𝑗𝑡𝑟𝑜𝑎𝑑𝑘
𝑗∈𝑀

      ∀ 𝑑1 ∈ 𝐷𝑒1, 𝑘 ∈ 𝐾  (4.16) 

 

 

Constraint (4.16) ensures the sum of each component k received by each distribution center d1 

from all suppliers and consolidation center is equal to the sum of components k delivered by 

the deconsolidation centre to all plants. 

 

• Flow balance constraint for downstream distribution centers 

 

∑∑𝑋𝑗𝑑2𝑡𝑓
𝑡∈𝑇𝑗∈𝑀

+ ∑ ∑𝑋𝑒2𝑑2𝑡𝑓
𝑡∈𝑇𝑒2∈𝐶2

 =  ∑𝑋𝑑2𝑐𝑡𝑟𝑜𝑎𝑑𝑓
𝑐∈𝐶

      ∀ 𝑑2 ∈ 𝐷𝑒2, 𝑓 ∈ 𝐹   (4.17) 

 

 

Constraint (4.17) guarantees that the sum of each final product f received by each distribution 

center d2 from all plants and consolidation centers is equal to the sum of the final product f 

delivered by the distribution centre to all retailers. 

 

• Capacity constraints for suppliers and plants 

 

∑∑𝑋𝑖𝑗𝑡𝑘
𝑗∈𝑀𝑡∈𝑇

 +∑ ∑ 𝑋𝑖𝑑1𝑡𝑘
𝑑1∈𝐷𝑒1𝑡∈𝑇

 + ∑ 𝑋𝑖𝑒1𝑡𝑟𝑜𝑎𝑑𝑘
𝑒1∈𝐶1

 ≤ 𝑙𝑖𝑘𝑍𝑖𝑘  ∀𝑘 ∈ 𝐾, 𝑖 ∈ 𝑆   
(4.18) 

 

 

∑∑𝑋𝑗𝑐𝑡𝑓
𝑐∈𝐶𝑡∈𝑇

+∑ ∑ 𝑋𝑗𝑑2𝑡𝑓
𝑑2∈𝐷𝑒2𝑡∈𝑇

+ ∑ 𝑋𝑗𝑒2𝑡𝑟𝑜𝑎𝑑𝑓
𝑒2∈𝐶𝑒2

≤ 𝑙(𝑗+|𝑆|)(𝑓+|𝐾|)𝑍(𝑗+|𝑆|)(𝑓+|𝐾|)     ∀ 𝑓 ∈ 𝐹, 𝑗 ∈ 𝑀  
(4.19) 
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The sum of all the output from each supplier (plant) to the plants (retailers), consolidation 

center and distribution center should be less than or equal to the capacity of the supplier 

(plant). i and p are indexed differently in Constraint (4.19) because in 𝑙𝑖𝑝 and 𝑍𝑖𝑝, 𝑖 ∈ 𝑆 ∪  𝑀 

and 𝑝 ∈ 𝐾 ∪  𝐹 respectively. 

 

• Vehicle/Container volume capacity constraints  

 

                 ∑𝑣𝑝𝑋𝑎𝑏𝑡𝑝
𝑝∈𝑃

 ≤  𝛾𝑡𝑣𝑡
𝑐𝑎𝑝 𝜃𝑣𝑡𝑌𝑎𝑏𝑡              ∀ (𝑎, 𝑏) ∈ 𝐸 𝑡 ∈ 𝑇     (4.20) 

Constraint (4.20) ensures that the total volume of products transported on each arc does not 

exceed the total volume capacity of that arc due to the number of activated trucks, containers 

or airplane cargos. The constraint is adjusted to factor in the packing efficiency and target 

weights efficiency as explained in Eqn. (3.1). 

 

• Vehicle/Container weight capacity constraints  

 

                ∑𝑤𝑝𝑋𝑎𝑏𝑡𝑝
𝑝∈𝑃

  ≤  𝛾𝑡𝑤𝑡
𝑐𝑎𝑝 𝜃𝑤𝑡𝑌𝑎𝑏𝑡       ∀(𝑎, 𝑏) ∈ 𝐸, 𝑡 ∈ 𝑇     (4.21) 

 

 Constraint (4.21) ensures that the total weight of products transported on an arc does not 

exceed the total weight capacity of that arc due to the number of activated trucks, containers 

or airplanes. The constraint is adjusted to factor in the packing efficiency and target volume 

efficiency as explained in Eqn. (3.1). 

• Air transport billable weight  

 

              𝑤𝑝
𝑏  = max ( 𝑤𝑝,

𝑣𝑝

0.06
)   ∀ 𝑝 ∈ 𝑃        (4.22) 
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Eqn. (4.22) calculates the maximum of the product’s weight and the product’s volumetric 

weight to calculate its billable weight. This is only used for air transportation as the pricing 

practice for freight transportation through the air is calculated as the billable weight of the 

consignment multiplied by the distance travelled. The volumetric weight is calculated as the 

volume (m3) of cargo divided by 0.06, a value provided by the United States Postal Services 

(Kabadurmus and Erdogan, 2020).  

 

• Production water usage constraints based on regional cap 

 

𝜔𝑖 +𝑊𝑖
𝑒𝑥𝑐𝑒𝑠𝑠 = ∑∑ ∑ 𝑤𝑎𝑖𝑟𝑓

𝑟
𝑋𝑖𝑗𝑡𝑓

𝑝𝑑𝑖𝑓
𝑗 ∈𝐶∪𝐶𝑒2∪𝐷𝑒2𝑟∈𝑅𝑓∈ 𝐹

+ ∑∑∑ ∑
𝑤𝑎𝑖𝑞𝑓

𝑞 𝑋𝑖𝑗𝑡𝑓

𝑏𝑖𝑞𝑓
𝑗 ∈𝐶∪𝐶𝑒2∪𝐷𝑒2 𝑞∈𝑄𝑓∈ 𝐹𝑡∈𝑇

  ∀ 𝑖 ∈ 𝑀      

(4.23) 

 

Eqn. (4.23) ensures that the surplus by which water usage in each plant exceeds the regional 

cap is captured as 𝑊𝑖
𝑒𝑥𝑐𝑒𝑠𝑠 . This excess can then be summed for all plants. The first term 

indicates the total quantity of water used to perform each activity r∈ 𝑅 for each product f ∈ 𝐹 

in all the plants. Since the number of days (or hours) process r will run is required, the total 

quantity of products produced is divided by the average quantity of product f that plant i 

produces in a day, 𝑝𝑑𝑖𝑓. It is assumed that all processes r∈ 𝑅 have to run simultaneously. 

 The second term indicates the total quantity of water used to perform all activities q for each 

product f in all plants considering the total quantity of products that were produced and in 

what batch sizes. It is assumed that the better the technology in plant i, the less the water 

required (𝑊𝑖𝑞𝑓) for each batch and/or the larger the batch size (𝐵𝑖𝑞𝑓) for processes q∈ 𝑄 

and/or the less the water required (𝑊𝑖𝑟𝑓) per day for processes r∈ 𝑅. 
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• Transportation-based water pollution 

𝑊𝑡𝑟𝑎𝑛𝑠𝑝 = ∑ ∑(𝑤𝑎𝑡𝐷𝑎𝑏𝑡/𝑠𝑝𝑡)

𝑡 ∈𝑇(𝑎,𝑏)∈𝐸

 𝑌𝑎𝑏𝑡      
(4.24) 

 

Eqn. (4.24) indicates the total water pollution the SC network is accountable for. This is based 

on average shipping water consumption/pollution per hour for each transport mode (𝑤𝑎𝑡) for 

all transportation within the SC and how many containers/vehicles (𝑌𝑎𝑏𝑡) were used in each 

trip. 

 

• Total carbon consumption constraints and equations  

  𝐶𝑎𝑟𝑏𝑝𝑟𝑜𝑑  = ∑ ∑ ∑∑𝑒𝑖𝑓𝑋𝑖𝑗𝑡𝑓
𝑓∈𝐹𝑡∈𝑇𝑗∈𝐶∪𝐶𝑒2∪𝐷𝑒2

     

𝑖∈𝑀

 (4.25) 

  

𝑆ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

=   ∑ ∑
𝑠𝑡
𝐶𝑂2

1000
∗∑(𝑤𝑝
𝑝∈𝑃𝑡∈𝑇

𝑋𝑎𝑏𝑡𝑝(1 − 𝜃𝑎𝑏) 𝑑𝑎𝑏)/(1 − 𝑐𝑓)

(𝑎,𝑏)∈𝐸

 

+  ∑
𝑠𝑡𝑟𝑜𝑎𝑑
𝐶𝑂2

1000
∗∑(𝑤𝑝
𝑝∈𝑃(𝑎,𝑏)∈𝐸

𝑋𝑎𝑏𝑡𝑟𝑜𝑎𝑑𝑝𝜃𝑎𝑏  𝑑𝑎𝑏)/(1 − 𝑐𝑓)  

(4.26) 

 

  

𝐸𝑚𝑝𝑡𝑦 ℎ𝑎𝑢𝑙𝑎𝑔𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛

= ∑ ∑
𝑓𝑡
𝐶𝑂2(1 − 𝜃𝑎𝑏)𝑑𝑎𝑏𝑌𝑎𝑏𝑡

𝑚𝑡
+

𝑡∈𝑇(𝑎,𝑏)∈𝐸

∑
𝑓𝑡
𝐶𝑂2𝜃𝑎𝑏𝑑𝑎𝑏𝑌𝑎𝑏𝑡𝑟𝑜𝑎𝑑

𝑚𝑡
(𝑎,𝑏)∈𝐸

 

(4.27) 

  

𝑃𝑎𝑐𝑘𝑖𝑛𝑔 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  ∑ ∑∑𝑝𝑡
𝐶𝑂2𝑋𝑎𝑏𝑡𝑝

𝑝∈𝑃𝑡∈𝑇(𝑎,𝑏)∈𝐸

 (4.28) 

  

𝐶𝑎𝑟𝑏𝑇 =  𝑠ℎ𝑖𝑝𝑝𝑖𝑛𝑔 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 +  𝑒𝑚𝑝𝑡𝑦 ℎ𝑎𝑢𝑙𝑎𝑔𝑒 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛 + 𝑝𝑎𝑐𝑘𝑖𝑛𝑔 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛  (4.29) 
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𝐶𝑎𝑟𝑏𝑇 + 𝐶𝑎𝑟𝑏𝑝𝑟𝑜𝑑  − 𝐶𝑎𝑟𝑏𝑒𝑥𝑐𝑒𝑠𝑠  =  ϕ   (4.30)                   

 

These extensive equations for calculating carbon emissions from transportation are adapted 

from (Ülkü, 2012). The shipping emission is the emission based on the weight of cargo being 

transported and the distance travelled. The number of vehicles is not factored in as the weight 

is distributed over the vehicles in use. The empty haulage emission is the amount of CO2 

emissions if the vehicles were travelling empty. It is dependent on the mileage 𝑚𝑡 and total 

distance travelled by all vehicles. The packing emission is the amount of CO2 emissions while 

packaging a cargo through activities such as loading and unloading of the vehicle. It is 

dependent on the number of items handled. The packing emission of modes other than the 

road is set to be higher. This is to factor in the emissions due to the extra loading and unloading 

in the transportation hub (e.g transfer of containers from truck to ship in the seaport). 

 

• Time constraints 

       𝑇𝐼𝑚𝑒𝑆𝑀 ≥ 𝐾𝑖𝑗𝑡 (𝑙𝑑𝑖 +

𝜃𝑖𝑗𝑑𝑖𝑗

𝑠𝑝𝑡𝑟𝑜𝑎𝑑
+
(1−𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑃𝑜𝑟𝑡𝐷𝑡  )                    ∀ 𝑖 ∈ 𝑆, 𝑗 ∈ 𝑀, 𝑡 ∈ 𝑇     

(4.31) 

  

   𝑇𝐼𝑚𝑒𝑆𝐶𝑒1 ≥ 𝐾𝑖𝑗𝑡

(

 
 
𝑙𝑑𝑖 +

𝜃𝑖𝑗𝑑𝑖𝑗
𝑠𝑝𝑡𝑟𝑜𝑎𝑑

+
(1 − 𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑐𝑜𝑛𝑠𝑡𝑖𝑚𝑒

)

 
 
    ∀ 𝑖 ∈ 𝑆, 𝑗 ∈ 𝐶𝑒1, 𝑡 ∈ 𝑇 

(4.32) 

  

𝑇𝐼𝑚𝑒𝑆𝐷𝑒1 ≥ 𝐾𝑖𝑗𝑡

(

 
 
𝑙𝑑𝑖 +

𝜃𝑖𝑗𝑑𝑖𝑗
𝑠𝑝𝑡𝑟𝑜𝑎𝑑

+
(1 − 𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑐𝑜𝑛𝑠𝑡𝑖𝑚𝑒 + 𝑃𝑜𝑟𝑡𝐷𝑡

)

 
 
  ∀ 𝑖 ∈ 𝑆, 𝑗 ∈ 𝐷𝑒1, 𝑡 ∈ 𝑇 

(4.33) 

  

    𝑇𝐼𝑚𝑒𝐶𝑒1𝑀 ≥ 𝐾𝑖𝑗𝑡 (

𝜃𝑖𝑗𝑑𝑖𝑗

𝑠𝑝𝑡𝑟𝑜𝑎𝑑
+
(1−𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑃𝑜𝑟𝑡𝐷𝑡)                           ∀ 𝑖 ∈ 𝐶𝑒1, 𝑗 ∈ 𝑀, 𝑡 ∈ 𝑇       

(4.34) 
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𝑇𝐼𝑚𝑒𝐶𝑒1𝐷𝑒1 ≥ 𝐾𝑖𝑗𝑡

(

 
 

𝜃𝑖𝑗𝑑𝑖𝑗
𝑠𝑝𝑡𝑟𝑜𝑎𝑑

+
(1 − 𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑃𝑜𝑟𝑡𝐷𝑡 + 𝑐𝑜𝑛𝑠𝑡𝑖𝑚𝑒

)

 
 
  ∀ 𝑖 ∈ 𝐶𝑒1, 𝑗 ∈ 𝐷𝑒1, 𝑡 ∈ 𝑇 

(4.35) 

  

         𝑇𝐼𝑚𝑒𝐷𝑒1𝑀 ≥ 𝐾𝑖𝑗𝑡 (

𝜃𝑖𝑗𝑑𝑖𝑗

𝑠𝑝𝑡𝑟𝑜𝑎𝑑
+
(1−𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
)                 ∀ 𝑖 ∈ 𝐷𝑒1, 𝑗 ∈ 𝑀, 𝑡 ∈ 𝑇         

(4.36) 

  

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒 ≥ [𝑇𝐼𝑚𝑒𝑆𝑀 , 𝑇𝐼𝑚𝑒𝑆𝐶𝑒1 + 𝑇𝐼𝑚𝑒𝐶𝑒1𝑀,  𝑇𝐼𝑚𝑒𝑆𝐷𝑒1 + 𝑇𝐼𝑚𝑒𝐷𝑒1𝑀, 𝑇𝐼𝑚𝑒𝑆𝐶𝑒1

+ 𝑇𝐼𝑚𝑒𝐶𝑒1𝐷𝑒1 + 𝑇𝐼𝑚𝑒𝐷𝑒1𝑀] 

(4.37) 

  

       𝑇𝐼𝑚𝑒𝑀𝐶 ≥ 𝐾𝑖𝑗𝑡

(

 
 

𝜃𝑖𝑗𝑑𝑖𝑗
𝑠𝑝𝑡𝑟𝑜𝑎𝑑

+
(1 − 𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑃𝑜𝑟𝑡𝐷𝑡  

)

 
 
                 ∀ 𝑖 ∈ 𝐶, 𝑗 ∈ 𝑀, 𝑡 ∈ 𝑇 

(4.38) 

  

         𝑇𝐼𝑚𝑒𝑀𝐶𝑒2 ≥ 𝐾𝑖𝑗𝑡 (

𝜃𝑖𝑗𝑑𝑖𝑗

𝑠𝑝𝑡𝑟𝑜𝑎𝑑
+
(1−𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑐𝑜𝑛𝑠𝑡𝑖𝑚𝑒)                    ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐶𝑒2, 𝑡 ∈ 𝑇      

(4.39) 

  

        

𝑇𝐼𝑚𝑒𝑀𝐷𝑒2 ≥ 𝐾𝑖𝑗𝑡

(

 
 

𝜃𝑖𝑗𝑑𝑖𝑗
𝑠𝑝𝑡𝑟𝑜𝑎𝑑

+
(1 − 𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑐𝑜𝑛𝑠𝑡𝑖𝑚𝑒 + 𝑃𝑜𝑟𝑡𝐷𝑡 

)

 
 
     ∀ 𝑖 ∈ 𝑀, 𝑗 ∈ 𝐷𝑒2, 𝑡 ∈ 𝑇 

(4.40) 

  

𝑇𝐼𝑚𝑒𝐶𝑒2𝐷𝑒2 ≥ 𝐾𝑖𝑗𝑡

(

 
 

𝜃𝑖𝑗𝑑𝑖𝑗
𝑠𝑝𝑡𝑟𝑜𝑎𝑑

+
(1 − 𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑐𝑜𝑛𝑠𝑡𝑖𝑚𝑒 + 𝑃𝑜𝑟𝑡𝐷𝑡 

)

 
 
    ∀𝑖 ∈ 𝐶𝑒2, 𝑗 ∈ 𝐷𝑒2, 𝑡 ∈ 𝑇 

(4.41) 
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       𝑇𝐼𝑚𝑒𝐶𝑒2𝐶 ≥ 𝐾𝑖𝑗𝑡 (

𝜃𝑖𝑗𝑑𝑖𝑗

𝑠𝑝𝑡𝑟𝑜𝑎𝑑
+
(1−𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
+ 𝑃𝑜𝑟𝑡𝐷𝑡)                           ∀ 𝑖 ∈ 𝐶𝑒2, 𝑗 ∈ 𝐶, 𝑡 ∈ 𝑇      

(4.42) 

  

         𝑇𝐼𝑚𝑒𝐷𝑒2𝐶 ≥ 𝐾𝑖𝑗𝑡 (

𝜃𝑖𝑗𝑑𝑖𝑗

𝑠𝑝𝑡𝑟𝑜𝑎𝑑
+
(1−𝜃𝑖𝑗)𝑑𝑖𝑗

𝑠𝑝𝑡

24
)                                           ∀ 𝑖 ∈ 𝐷𝑒2, 𝑗 ∈ 𝐶, 𝑡 ∈ 𝑇          

(4.43) 

  

𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒

≥ [𝑇𝐼𝑚𝑒𝑀𝐶 , 𝑇𝐼𝑚𝑒𝑀𝐶𝑒2 + 𝑇𝐼𝑚𝑒𝐶𝑒2𝐶 ,  𝑇𝐼𝑚𝑒𝑀𝐷𝑒2 + 𝑇𝐼𝑚𝑒𝐷𝑒2𝐶 , 𝑇𝐼𝑚𝑒𝑀𝐶𝑒2

+ 𝑇𝐼𝑚𝑒𝐶𝑒2𝐷𝑒2 + 𝑇𝐼𝑚𝑒𝐷𝑒2𝐶] 

(4.44) 

  

𝑀𝑎𝑥𝑃𝑟𝑜𝑑𝑇𝑖𝑚𝑒  ≥ ∑∑∑ ∑
𝑋𝑖𝑗𝑡𝑓

𝑝𝑑𝑖𝑓
𝑗 ∈𝐶∪𝐶𝑒2∪𝐷𝑒2 𝑞∈𝑄𝑓∈ 𝐹𝑡∈𝑇

           ∀ 𝑖 ∈ 𝑀     
(4.45) 

  

                    𝐾𝑎𝑏𝑡  ≤
𝑌𝑎𝑏𝑡 
𝑆𝑚

                   ∀(𝑎, 𝑏) ∈ 𝐸, 𝑡 ∈ 𝑇   
(4.46) 

  

                    𝐾𝑎𝑏𝑡  ≥
𝑌𝑎𝑏𝑡 
𝑀
                   ∀(𝑎, 𝑏) ∈ 𝐸, 𝑡 ∈ 𝑇   

(4.47) 

  

𝑈𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒 +𝑀𝑎𝑥𝑃𝑟𝑜𝑑𝑇𝑖𝑚𝑒 ≤ 𝑝𝑙𝑎𝑛_𝑝𝑒𝑟𝑖𝑜𝑑 (4.48) 

 

The approximate time spent in the supply chain is equal to the maximum time expended in the 

downstream, upstream and maximum production time from all plants. To obtain the 

downstream (upstream) time, the maximum time spent on each of the four possible routes 

from the supplier (plant) to the plant (retailer) is considered in Eqn. (4.37) and Eqn. (4.44). The 

maximum production time is also obtained by dividing the number of products to be produced 

from each plant by the production rate per day. The maximum of all production times is then 

recorded. The upstream time, downstream time and production time are to all be completed 

within the allotted planning period (4.48). For routes that include the Supplier, the supplier lead 
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time is added to the time consumed. For the routes that have multimodal transportation 

capability, dwelling time spent at the port of exchange (PortD) is also added. This value is 

equated to 0 for road transportation. For routes that go through consolidation or distribution 

centers, an extra time const_time is added to reflect the time spent consolidating or breaking 

down the cargo. Constraints (4.46) and (4.47) ensure that only transportation modes that have 

vehicles/containers in use on each arc are considered in the calculation of the total time spent 

in the SCN. 

In Eqn. (4.31), 𝑇𝐼𝑚𝑒𝑆𝑀 represents the maximum time spent travelling from the suppliers to 

manufacturers. 𝐾𝑖𝑗𝑡 ensures that only the arcs that have at least one vehicle are considered. For 

each of these arcs, the lead time of the supplier 𝑙𝑑𝑖 is added to the travel time (in days) used by 

the required transportation mode. The time spent in the dwelling ports (𝑃𝑜𝑟𝑡𝐷𝑡) is then 

added. The procedure is repeated for all possible connections in the SCN from Eqn. (4.32) to 

Eqn. (4.43). Consolidation time (cons_time) is added for arcs that end at the 

consolidation/distribution facilities, dwelling time (𝑃𝑜𝑟𝑡𝐷𝑡) is added for arcs that go through 

intermodal hubs and supplier lead time (𝑙𝑑𝑖) is added for arcs that start at the suppliers. 

 

• Boundary and integrality constraints 

 

                      𝑋𝑎𝑏𝑡𝑝, 𝑌𝑎𝑏𝑡 ≥ 0, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ;  𝑍𝑖𝑝, 𝐾𝑖𝑗𝑡 ∈ {0,1}  4.49 

  

 𝐶𝑎𝑟𝑏𝑒𝑥𝑐𝑒𝑠𝑠,𝑊𝑖
𝑒𝑥𝑐𝑒𝑠𝑠,𝑊𝑡𝑟𝑎𝑛𝑠𝑝, 𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒 , 𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚𝑡𝑖𝑚𝑒 , 𝑀𝑎𝑥𝑃𝑟𝑜𝑑𝑇𝑖𝑚𝑒 ≥ 0 4.50 

 

The model is a mixed integer-linear model because of the presence of integer variables such as 

𝑋𝑖𝑗𝑡𝑝 and 𝑌𝑖𝑗𝑡. All the other variables are either continuous or binary. The total number of 

variables and constraints (exempting the boundary and integrality constraints) in the model can 

be described in terms of the set sizes. 
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Number of variables= (2 + |𝑃|)𝐴2|𝑇| + |𝑆 +𝑀| ∗ |𝑃|  + |𝑀|  +  17 

Number of constraints =  4𝐴2|𝑇| + 7 +  2|𝑀| + |𝑃| + |𝑇| ( |𝐷𝑒2||𝐶|  + |𝐶𝑒2||𝐶|  + |𝐶𝑒2||𝐷𝑒2|  +
|𝑀||𝐷𝑒2|  + |𝑀||𝐶𝑒2|  + |𝐶||𝑀|  + |𝐷𝑒1||𝑀|  + |𝐶𝑒1||𝐷𝑒1| + |𝐶𝑒1||𝑀| + |𝑆||𝐷𝑒1| + |𝑆||𝐶𝑒1| +
|𝑆||𝑀|)  + |𝑀||𝐾|  + |𝐶||𝐹| + |𝐶𝑒1||𝐾| + |𝐶𝑒2||𝐹| + |𝐷𝑒1||𝐾| + |𝐷𝑒2||𝐹| + |𝐾||𝑆| + |𝐹||𝑀| 

where A = |S + M+ Ce1 + Ce2 + De1 + De2 + C| 

As an example, for an SCN with |S|=|M|=|C|=|4|, |Ce1|=|Ce2|=|De1|=|De2|=1, |T|=4, 

|K|=6, |F|=4 and |P|=10, the number of variables equals 12,389 and the number of constraints 

equals 4,485. 

 

 

4.3 Mathematical Model: SSCN/MFT without SCL (Model B) 

A second model is defined with the objective of using it to evaluate the value of incorporating 

SCL within a supply chain network. This was done by comparing the SSCN/MFT&SC model 

(termed Model A) and an alternative that excludes the SCL option (termed Model B). Without 

SCL, only direct delivery from shippers to receivers is allowed (See Figure 6). All other 

assumptions indicated in the description of Model A are also applicable to Model B. 

Figure 6. Integral Backbone of the SC network 
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Model B 

Sets, parameters and decision variables are the same as provided in Table 2, Table 3 and Table 4 

respectively. 

 

The cost-minimizing objective function: 

ᵶ =  Economic cost +  Carbon footprint cost + Water footprint cost      

 
  ᵶ = 𝐸𝐶1 + 𝐸𝐶2 +⋯+ 𝐸𝐶5 + 𝐸𝐶8⏟                  

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐶𝑜𝑠𝑡

+  𝐶𝐹⏟
𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

+ 𝑊𝐹⏟
𝑊𝑎𝑡𝑒𝑟 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

 (4.51) 

 

The objective function is to minimize the sum of the economic, carbon footprint (CF) and water 

footprint (WF) cost. The economic cost is divided into six subcategories which are obtained 

from Eqns. (4.1) to (4.5) and Eqn. (4.8). This is similar to Model A. However, Make-bulk / break-

bulk costs (𝐸𝐶6 and 𝐸𝐶7) are removed. The CF cost is obtained from Eqn. (4.9) while the WF 

cost is obtained from Eqn. (4.10). 

 

Constraints: 

Constraints (4.12) – (4.50) and Constraint (4.52) provided below. 

• Consolidation/ distribution center elimination constraints 

 

𝐶𝑒1 = 0, 𝐶𝑒2 = 0, 𝐷𝑒1 = 0, 𝐷𝑒2 = 0 

 

(4.52) 

Constraint (4.52) provides an easy modification of the constraints of Model A to form Model B. 

It removes all the consolidation/distribution facilities and enforces only the option of direct 

directly from shippers to receivers.  
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4.4 Summary 

This chapter begins by describing the proposed SCN with multimodal freight transportation and 

shipment consolidation. This model was termed Model A. Details about the notations were 

then stated. This included the sets, parameters and decision variables. The full mathematical 

model was then provided stating the objective function and constraints. The size of the model 

in terms of variables and constraints was then briefly discussed. Next, Model B, a version of 

Model A without shipment consolidation was discussed with its notations, objective function, 

and constraints presented. 
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Chapter 5 

Approaches for the Stochastic Version of Model A 

This chapter discusses the various aspects required for consideration when optimizing a supply 

chain network design problem having stochastic parameters. Models A in the previous section 

is deterministic. However, we consider its (Model A) stochastic version, where one of its 

parameters is uncertain. Different approaches to optimizing stochastic models are thereby 

explored. The approaches considered in this study are generally classified as: 

• Stochastic programming approaches (SP) 

• Machine Learning approaches (ML) 

For the SP approaches, model reformulations (e.g simple recourse) are proposed. Model A is 

reformulated to factor in either multiple discrete scenarios or the distribution of the stochastic 

parameter. The objective function and constraints that have the stochastic parameter are also 

modified. For each of the ML approaches, historical data of the stochastic parameter is fed into 

models as training data, after which the trained model is used to predict the future values of 

the parameter. These predictions can then be fitted into Model A and solved deterministically.  

In this study, we consider the demand parameter (𝑑𝑒𝑚𝑐𝑓) to be the stochastic parameter. To 

comparatively test the efficiency of each of the approaches mentioned above, real demand 

data is obtained, and comparative experiments are performed.  

In the remainder of this chapter, we go into more detail on the SP (it's model reformulations) 

and ML approaches considered. We then discuss the experiments to be carried out and the 

evaluation metrics to utilize. For these experiments, details on obtaining the values of the 

network model parameters are explained and the sourcing of real data for the stochastic 

parameter (demand) is discussed. 
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5.1 Stochastic Programming Approaches 

Several Stochastic Programming (SP) approaches have been proposed in the literature including 

methods such as the simple recourse, chance-constrained programming, Conditional Variance 

at Risk (CVaR), etc. However, the optimization model has to be reformulated for each method. 

The demand balance constraint (4.12) of the model is the constraint having a stochastic 

parameter. The optimal solution is sensitive to the value of the uncertain parameter. Due to 

uncertainty, we can not find a solution optimal for all scenarios. We seek to balance the optimal 

solution among all scenarios. We source discrete scenarios from the data points and assume 

each scenario has equal probabilities. For risk-averse approaches, we seek a solution that 

minimizes the objective function while considering as many scenarios as possible and fulfilling 

the risk level set by the DM. 

5.1.1 Simple Recourse SP: Model Reformulation (Model A1) 

This is a reformulation of Model A which we term Model A1. The demand parameter is 

represented as a finite set of discrete scenarios to be obtained from historical data. Considering 

that the model will become infeasible if some of the scenarios are not satisfied, we add a 

surplus/shortage penalty for each unsatisfied scenario to maintain feasibility. 

Model A1 

Sets, parameters and decision variables include those provided in Table 2, Table 3 and Table 4 

respectively. The parameter 𝑑𝑒𝑚𝑐𝑓 is replaced with 𝑑𝑒𝑚𝑐𝑓𝑠. To formulate the simple recourse 

model, it is necessary to consider some extra notations. 

Set 

Sc Set of scenarios, indexed by 𝑠 

Parameters 

𝑏𝑖𝑓  Understocking cost for final product f in plant i 

ℎ𝑖𝑓 Overstocking cost for final product f in plant i 

𝑝𝑟𝑜𝑏𝑠 Probability of scenario s  
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Variables 

𝑧𝑐𝑓𝑠
+   Unsatisfied demand for retailer 𝑐 ∈ 𝐶 for product , 𝑓 ∈ 𝐹 in scenario 𝑠 ∈ 𝑆𝑐 

 𝑧𝑐𝑓𝑠
−    Surplus above demand for retailer r 𝑐 ∈ 𝐶 for product, 𝑓 ∈ 𝐹 in scenario 𝑠 ∈ 𝑆𝑐 

 

• Surplus/Shortage cost 

𝑆𝑆 = ∑ 𝑝𝑟𝑜𝑏𝑠
𝑠∈𝑆𝑐

 ∑∑(

𝑓∈𝐹

𝑏𝑓 𝑧𝑐𝑓𝑠
+ + ℎ𝑓 𝑧𝑐𝑓𝑠

− )

𝑐∈𝐶

        
(5.1) 

 

The cost-minimizing objective function: 

ᵶ =  Economic cost +  Carbon footprint cost + Water footprint cost 
+  Surplus/Shortage cost    

 

 
 ᵶ = 𝐸𝐶1 + 𝐸𝐶2 +⋯+ 𝐸𝐶8⏟              

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐶𝑜𝑠𝑡

+  𝐶𝐹⏟
𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

+ 𝑊𝐹⏟
𝑊𝑎𝑡𝑒𝑟 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

+ 𝑆𝑆⏟
𝑆𝑢𝑟𝑝𝑙𝑢𝑠/𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝐶𝑜𝑠𝑡 

 (5.2) 

The objective function is to minimize the sum of the economic, carbon footprint (CF), water 

footprint (WF) cost and Surplus/Shortage (SS) cost. The economic cost is divided into eight 

subcategories which are obtained from Eqns. (4.1) to (4.8). The CF cost is obtained from Eqn. 

(4.9) while the WF cost is obtained from Eqn. (4.10). This is similar to Model A. However, the 

cost incurred due to the deviation of the total supply to the retailers (manufacturing plant 𝑋𝑗𝑐, 

consolidation 𝑋𝑒1𝑐 and distribution center 𝑋𝑑1𝑐) from the demand scenarios is added as Eqn. 

(5.1). This is to enforce the model to choose the best values for the supply that would lead to 

the least cost based on the deviation from all the scenarios under consideration. 

Constraints: 

Constraints (4.12), (4.14) – (4.50) and Constraints (5.3) – (5.4) described below. 

• Demand balance constraint 

 

𝑑𝑒𝑚𝑐𝑓𝑠 = ∑∑𝑋𝑗𝑐𝑡𝑓
𝑡∈𝑇𝑗∈𝑀

 + ∑ 𝑋𝑑2𝑐𝑡𝑟𝑜𝑎𝑑𝑓
𝑑2∈𝐷𝑒2

 + ∑ ∑𝑋𝑒2𝑐𝑡𝑓
𝑡∈𝑇𝑒2∈𝐶𝑒2

+ 𝑧𝑐𝑓𝑠
+ −  𝑧𝑐𝑓𝑠

−   ∀ 𝑐 ∈ 𝐶, 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆𝑐 

 

(5.3) 
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𝑧𝑐𝑓𝑠
−  ,  𝑧𝑐𝑓𝑠

− ≥ 0 

 

(5.4) 

Constraint (5.3) captures the difference between the input from all sources (manufacturing 

plant, consolidation and distribution center) to each retailer c for each final product f for each 

scenario s as either surplus ( 𝑧𝑐𝑓𝑠
− ) or shortage (𝑧𝑐𝑓𝑠

+ ). These are then penalized in the objective 

function. In comparison to Model A, all constraints are used in Model A1 except for Constraint 

(4.13) which is replaced by Constraints (5.3) and (5.4). 

 

5.1.2 Chance-constrained SP: Model Reformulation (Model A2) 

In this reformulation of Model A, the decision maker sets a risk value 𝛼𝑟𝑖𝑠𝑘 which indicates how 

many of the scenarios the model factors in when optimizing. This is useful when there might be 

outliers within the scenarios. The model ignores the scenarios that are likely to increase the 

overall cost as much as 𝛼𝑟𝑖𝑠𝑘 permits. The demand constraint is an equality constraint so it was 

expanded into 2 constraints (‘≤ ‘ and ‘ ≥‘). The model is termed Model A2. 

Model A2 

Sets, parameters and decision variables include those provided in Table 2, Table 3 and Table 4 

respectively. The parameter 𝑑𝑒𝑚𝑐𝑓 is replaced with 𝑑𝑒𝑚𝑐𝑓𝑠. To formulate the chance-

constrained model, it is necessary to consider some extra notations. 

Set 

Sc Set of scenarios, indexed by s 

 

Parameters 

𝑏𝑖𝑓 Understocking/Backordering cost for final product f in plant i 

ℎ𝑖𝑓 Overstocking cost for final product f in plant 

𝑝𝑟𝑜𝑏𝑠 Probability of scenario s  

𝛼𝑟𝑖𝑠𝑘 Probability of violating the chance constraint 
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Variables 

𝑧𝑐𝑓𝑠
+  Unsatisfied demand for retailer 𝑐 ∈ 𝐶 for product , 𝑓 ∈ 𝐹 in scenario 𝑠 ∈ 𝑆𝑐 

 𝑧𝑐𝑓𝑠
−  Surplus above demand for retailer 𝑐 ∈ 𝐶 for product, 𝑓 ∈ 𝐹 in scenario 𝑠 ∈ 𝑆𝑐 

Ns 1 if scenario s is fulfilled, 0 otherwise 

 

The cost-minimizing objective function: 

ᵶ =  Economic cost +  Carbon footprint cost + Water footprint cost 
+  Surplus/Shortage cost    

 

 
 ᵶ = 𝐸𝐶1 + 𝐸𝐶2 +⋯+ 𝐸𝐶8⏟              

𝐸𝑐𝑜𝑛𝑜𝑚𝑖𝑐 𝐶𝑜𝑠𝑡

+  𝐶𝐹⏟
𝐶𝑎𝑟𝑏𝑜𝑛 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

+ 𝑊𝐹⏟
𝑊𝑎𝑡𝑒𝑟 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡 𝐶𝑜𝑠𝑡

+ 𝑆𝑆⏟
𝑆𝑢𝑟𝑝𝑙𝑢𝑠/𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝐶𝑜𝑠𝑡 

 (5.5) 

The objective function is the same as that of Model A1 with the goal of finding the best values 

for the decision variables that minimize the sum of the economic, carbon footprint (CF) and 

water footprint (WF) costs. This is similar to Model A. However, deviations in the supply from all 

sources (manufacturing plant 𝑋𝑗𝑐, consolidation 𝑋𝑒2𝑐 and distribution center 𝑋𝑑2𝑐) to each 

retailer c for each final product f for each scenario s is penalised as the Surplus/Shortage (SS) 

cost [Eqn. (5.1)]. 

 

Constraints: 

Constraints (4.12), (4.14) – (4.50) and Constraints (5.7) – (5.10) provided below.  

 

• Demand balance constraint 

The demand balance constraint(4.13) can be changed to a chance constraint 

Pr(𝑑𝑒𝑚𝑐𝑓 = ∑∑𝑋𝑗𝑐𝑡𝑓
𝑡∈𝑇𝑗∈𝑀

 + ∑ 𝑋𝑑2𝑐𝑡𝑟𝑜𝑎𝑑𝑓
𝑑2∈𝐷𝑒2

 + ∑ ∑𝑋𝑒2𝑐𝑡𝑓
𝑡∈𝑇𝑒2∈𝐶𝑒2

 ) ≥ 1 − 𝛼𝑟𝑖𝑠𝑘    ∀ 𝑐 ∈ 𝐶, ∈ 𝐹  

(5.6) 

 

Constraint (5.6) can then be reformulated as Constraints (5.7) to (5.10) below. 
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Due to the equality in the chance constraint (5.6), it can be broken down into two constraints 

with ‘≥’ and ‘≤’. 𝑁𝑠 as a binary variable basically counts the number of times the Constraints 

(5.7) and (5.8) are violated and Constraint (5.9) ensures the average of the variable 𝑁𝑠 for all 

scenarios is less than the set 𝛼𝑟𝑖𝑠𝑘. Constraint (5.10) ensures the binariness of 𝑁𝑠 and sets a 

boundary for the surplus and shortage variables (𝑧𝑐𝑓𝑠
+  ,  𝑧𝑐𝑓𝑠

− ). 

 

5.2 Machine Learning Approaches 

To integrate Machine Learning (ML) approaches into stochastic optimization modelling, the 

procedure used in this thesis is to utilize historical data in predicting the value of the stochastic 

parameter in the future. This value can then be used in Model A and solved deterministically. 

The demand parameter (𝑑𝑒𝑚𝑐𝑓) is considered stochastic with univariate time series historical 

data. A time series is a set of observations recorded at equally spaced intervals, and a 

univariate time series is a time series with a single observation recorded at each timestamp. 

The demand data we have fits this description. The ML models explored are the three best-

performing models by Okwuchi et al., (2020) who compared traditional machine learning 

models with deep learning models in predicting the price and yield of perishable goods. These 

three are the attention-based compound deep learning models named Attention Convolutional 

𝑑𝑒𝑚𝑐𝑓𝑠 +𝑀𝑁𝑠  ≥   ∑∑𝑋𝑗𝑐𝑡𝑓
𝑡∈𝑇𝑗∈𝑀

 + ∑ 𝑋𝑑2𝑐𝑡𝑟𝑜𝑎𝑑𝑓
𝑑2∈𝐷𝑒2

 + ∑ ∑𝑋𝑒2𝑐𝑡𝑓
𝑡∈𝑇𝑒2∈𝐶𝑒2

+ 𝑧𝑐𝑓𝑠
+ −  𝑧𝑐𝑓𝑠

−    ∀ 𝑐 ∈ 𝐶, 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆𝑐 

  

 

(5.7) 

𝑑𝑒𝑚𝑐𝑓𝑠 −  𝑀𝑁𝑠 ≤ ∑∑𝑋𝑗𝑐𝑡𝑓
𝑡∈𝑇𝑗∈𝑀

 + ∑ 𝑋𝑑2𝑐𝑡𝑟𝑜𝑎𝑑𝑓
𝑑2∈𝐷𝑒2

 + ∑ ∑𝑋𝑒2𝑐𝑡𝑓
𝑡∈𝑇𝑒2∈𝐶𝑒2

+ 𝑧𝑐𝑓𝑠
+ −  𝑧𝑐𝑓𝑠

−  ∀ 𝑐 ∈ 𝐶, 𝑓 ∈ 𝐹, 𝑠 ∈ 𝑆𝑐    

 

(5.8) 

∑𝑁𝑠
𝑠∈𝑆𝑐

 ≤ 𝛼𝑟𝑖𝑠𝑘 |𝑆𝑐| 

 

(5.9) 

𝑧𝑐𝑓𝑠
+  ,  𝑧𝑐𝑓𝑠

− ≥ 0,  𝑁𝑠 ∈ {0,1} 

 

(5.10) 
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Neural Network-LSTM (AC-LSTM), Attention Convolutional-LSTM (ACV-LSTM) and a stacking 

ensemble of both using Support Vector Regressor (Ensemble SVR). For each model, the training 

data was used to build the model as well as evaluate its performance. After adjusting its (the 

model) hyperparameters to obtain the best performances, the model is used to predict the 

future demand data points required. 

The general procedure of building an ML model (especially for supervised learning) involves the 

following steps [as shown in Figure 7 (based on Vrskova et al., 2022)]: 

1. Choosing the most appropriate model considering the data at hand and the objective. 

2. Preprocessing the data and adjusting its shape to that required by the chosen model. 

3. Dividing the data into training, validation and testing data.  

4. The training data is used as input to train and build the ML model while the performance of 

the model on the validation data serves as continuous feedback to improve its parameters. 

Finally, the testing data is the unseen data used at the end of the process to confirm how 

good the built model is. 

5. If the performance on the testing data is poor, the network hyperparameters are adjusted 

and the training process started again.  

Figure 7. Flowchart of ML procedures  
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5.2.1 Models 

The following are the ML architectures employed in this study. 

1. Attention ConvLSTM (ACV-LSTM): After preliminary trials, an architecture comprising three 

repeated layers of 2D ConvLSTM each with a kernel size of (1,3), and 64 filters is built. Each 

layer was followed by a batch normalization layer. The output was then mapped into a self-

attention layer with sigmoid activation. This is then followed by 4 dense layers with the 

number of neurons set as 64,32,16,1 times the number of output respectively. Dropout 

layers with a rate of 0.1 are put between consecutive dense layers. This is described in 

Figure 8. Rectified linear activation function (Relu activation) is used on each layer (except 

the self-attention layer), the loss function is set as ‘mean squared error’ and the optimizer is 

set as ‘Adam’. 

 

Figure 8. ACV-LSTM Architecture 

 

2. Attention CNN-LSTM (AC-LSTM): After preliminary trials, an architecture comprising of four 

repeated layers of 1D convolution with 120 filters, kernel size of 3 and stride of 1 is built. Each 

layer is followed by a batch normalization layer. The output was then mapped into 2 

consecutive LSTM layers with 100 units and then into an additive self-attention layer with 

sigmoid activation. This is then followed by 4 dense layers with the number of neurons set as 

64,32,16,1 times the number of output respectively. Dropout layers with a rate of 0.1 are put 

between consecutive dense layers. This is described in Figure 9. Rectified linear activation 
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function (Relu activation) is used on each layer (except the self-attention layer), the loss 

function is set as ‘mean squared error’ and the optimizer is set as ‘Adam’. 

Figure 9. AC-LSTM Architecture 

 

3. Stacking Ensemble using SVR: The two models, AC-LSTM and ACV-LSTM are used to create an 

ensemble. Support vector regression is used as a stacking algorithm. First, both algorithms are 

individually trained on the data, and then SVR is used as a combiner algorithm to make a final 

prediction using the prediction from AC-LSTM and ACV-LSTM as additional inputs (See Figure 

10). Stacking algorithms typically yield better performances than any of the child models it is 

built on (Wolpert, 1992). 

Figure 10. Ensemble Architecture 
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5.2.2 ML Performance Metrics 

The most frequently used performance measures in literature are the Mean absolute 

percentage error (MAPE), Mean squared error (MSE), Mean absolute error (MAE) and Root 

mean square error (RMSE) (Hyndman & Koehler, 2006; Shukla & Jharkharia, 2013).  

Mean absolute error is a common metric used for evaluating regression models. It computes 

the absolute difference between the predicted and actual values. The total of the absolute 

error for all samples is summed up and the average is calculated. MAE is less impacted by 

outliers than other measures such as MSE and RMSE. 

𝑀𝐴𝐸 =
∑ |𝑃𝑟𝑒𝑑 − 𝐴𝑐𝑡|𝑁
𝑖=1

𝑁
 

 

(5.11) 

where |𝑎| is the absolute value of a. 

 A special metric is developed which takes the ratio of overstocking to understocking cost (OUC) 

into consideration and uses them as weights to penalize positive and negative deviations. This 

metric is used as a custom metric within the ML models to ensure the model obtains the best-

performing weights and predictions considering our objective (reducing 

overstocking/understocking cost). This special metric is called the MOU (Mean 

Overstocking/Understocking cost). 

𝑀𝑂𝑈 =
∑ (𝑈𝑛 [𝐴𝑐𝑡 − 𝑃𝑟𝑒𝑑]+ + 𝑂𝑣 [𝑃𝑟𝑒𝑑 − 𝐴𝑐𝑡]+)
𝑁
𝑖=1

𝑁
 

 

(5.12) 

where [𝑎]+is the maximum of 𝑎 and 0, Un is the understocking cost, Ov is the overstocking cost 

and N is the number of predictions being compared. 

5.2.3 Model Tuning  

There are a lot of hyper-parameters in deep learning modelling that can be used to control the 

behaviour of the algorithm. Hyper-parameters tuning thereby becomes necessary to find the 

combination that gives the best performance. The model has to avoid underfitting or overfitting 

the training data. Underfitting refers to when the model is not flexible enough to learn the 
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training data and would normally not generalize well on new testing data. Overfitting refers to 

when a model is too closely aligned with the training data by learning its details and noise to 

the extent that it negatively influences its performance on new testing data. How well the 

model performs on previously unseen inputs is called generalization. The generalization error of 

a model is measured as its performance on test data is separate from the data it was trained 

with (Goodfellow and Courville, 2016).  

Hyper-parameters such as the learning rate determine the size of the steps the optimization 

algorithms take toward finding the global minimum. The larger the value, the more the chances 

of non-convergence. On the other hand, the lower the value, the more the chances of the 

optimizer getting stuck in a local minimum. To choose the best learning rate, a scheduler is 

used to continually adjust the learning rate value after every epoch. 

Model checkpointing is also used to save the weights of the model at the epoch where the 

model obtains the least validation error. This helps to avoid inaccuracies caused by overfitting 

which might be due to having too many epochs.  

Other parameters such as the model size, the number of layers, optimizer algorithm, 

regularization parameter and error functions were determined through manual iterations 

 

5.3 Numerical Experimentations 

In analysing all the models already defined, three individual experiments are to be performed. 

These experiments and the logic behind them are outlined below. 

1. Comparative Analysis of Models A and B: The integral backbone of the three-echelon SCN 

was shown in Figure 1. Model A however includes consolidation and distribution centers which 

are not integral parts of the network. Model B provides an alternative configuration to Model A 

by restricting delivery options to only direct delivery from shipper to the receiver. Constraint 

(4.52) ensures this by excluding the consolidation/distribution facilities forcing the model to 

take only direct routes between shippers and receivers. This also means that in the network of 
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Model B, shippers might have to use full trucks even if they want to ship LTL over long 

distances.  

In this experiment, the objective is to observe if the presence of the consolidation/distribution 

facilities enables economic and/or environmental cost savings or not. Metrics such as the 

average distance between the integral SCN facilities (suppliers, manufacturing plants and 

retailers) and the average vehicle capacity usage are varied and the cost of both models are 

compared. 

The average distance is varied to test the relationship between the advantageousness of SCL 

and the distance to travel between shippers and receivers. The average vehicle capacity usage 

is varied to evaluate the relationship between the average quantity of outbound cargo from 

each shipper and the potential cost-saving benefits of using SCL within the SCN. The demand is 

considered deterministic for this experiment. 

The second and third experiments are carried out to examine different approaches to 

optimizing decision-making when some of the relevant parameters of the SSCN/MFT&SC model 

are uncertain. For these experiments, the demand is considered stochastic. Data-driven 

stochastic programming and machine learning approaches are thereby employed to optimize 

the stochastic model. Real demand data is sourced online, extracted and preprocessed to the 

format required. For each of the SP approaches, the SC model is reformulated appropriately. 

This gives new models which we term Models A1 and A2. For each of the ML approaches, an 

algorithm is built and used to predict the demand which is then used to solve Model A 

deterministically. Solutions obtained from all the approaches (SP & ML) are then compared 

with the deterministic solution obtained from using the actual demand assuming perfect 

knowledge. This helps us evaluate the expected value of perfect information (EVPI) of each 

approach. The solutions are also compared to that of using the expected value of the demand 

parameter from historical data. This serves as a lower baseline for comparing how good or bad 

how approaches are in comparison to simply using the average historical value of the stochastic 

parameter.  
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 In the sequence of logistical operations in the SCN, the retailers make their order requests and 

start the cycle. The time spent in the SCN from the time of ordering by the retailers to the final 

delivery of the requested final products must be less than or equal to the set planning period 

(See Figure 11). Experiments 2 and 3 are based on these details. 

Figure 11. Sequence of Operations 

 

2. Stochastic Model with a planning period of 28-days: This considers a production planning 

period of 4-weeks (28 days) wherein the demand is forecasted leading to the supply of required 

components. The sum of the delivery time from suppliers to the plant, supplier lead time, 

dwelling time at intermodal facilities, consolidation time, production time within the plants and 

the delivery time of final products from plants to retailers thereby have to be less than 28 days. 

In real life, this might apply to products that have short expiry dates or quickly run out of 

fashion. Considering the short period (relative to Experiment 3), the SC might not be able to 

take advantage of some of the cheaper and more sustainable transportation modes (such as rail 

or water) (Carbonfund, 2022). For example, sea shipping typically takes 20-45 days or more 

(Freightos, 2022). Alternatively, the demand quantity might also be considerably large requiring 

a processing period of more than 28 days. These limitations are considered in the third 

experiment. The performance of the SP & ML approaches are compared over a planning period 

of 28-days. 

3. Stochastic Model with a planning period of 3-months: The second experiment considers a 

production planning period of 3 months (84 days) wherein the forecasted demand dictates the 

number of components demanded from suppliers. Once again, the total sum of delivery time 

from suppliers to plants, supplier lead time, dwelling time at intermodal facilities, consolidation 

time, production time within plants and delivery time of final products from plants to retailers 
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have to be less than 3 months. The longer planning period allows for the optimization model to 

consider even slower modes of transportation, while also testing the robustness and limit of 

the approaches under consideration.  

 

5.4 Overall Evaluation Metrics 

For Experiment 1, to evaluate the efficiency of Models A and B, their economic and 

environmental costs are compared while varying the average vehicle capacity usage (𝐴𝑉𝐶𝑈) 

and the average_distance parameters. The demand is considered deterministic for this 

experiment. 

𝐴𝑉𝐶𝑈 represents the amount of cargo an average supplier has to ship out to meet the final 

demand from the retailers in terms of the number of vehicles/containers. 𝐴𝑉𝐶𝑈 is dependent 

on the total demand for final products from the retailers, the average number of components 

required to produce each final product, the average weight/volume of these components, the 

average weight/volume capacity of a vehicle/container, and the number of suppliers required 

to fulfil the total demand. 

𝐴𝑉𝐶𝑈 =
(𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑)(𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡)𝐾𝑤/𝑣

|𝑆|𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑐𝑎𝑝
 

(5.13) 

 

The numerator indicates the total weight/volume of components that are required from all 

suppliers based on the final product demand from all the retailers, average component 

weight/volume and number of components required for each final product. The denominator 

indicates the number of suppliers and the average vehicle weight/volume. 𝐴𝑉𝐶𝑈 thereby 

represents the average vehicle capacity usage for each supplier. The closer 𝐴𝑉𝐶𝑈 gets to 1, the 

more the average percentage of a truck occupied by outgoing cargo. AVCU below 1 indicates 

that an average supplier has to ship out less than FTL cargo while values higher than 1 indicate 

that the supplier might have to use a mixture of FTL and LTL to meet its requests. The higher 

the AVCU, the more the total demand and number of trucks the average supplier requires. 
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Eqn. (5.13) can be reformulated to make demand the subject of the formula. Total demand can 

also be represented as the mean demand of all the retailers C for all final products F. Eqn. (5.15) 

allows us to vary the 𝐴𝑉𝐶𝑈 to obtain different mean demand values for experimentation. This 

is required because the demand is an actual parameter in the model formulation.  

𝑡𝑜𝑡𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 = 𝑚𝑒𝑎𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 ∗ |𝐶||𝐹| (5.14) 

𝑚𝑒𝑎𝑛 𝑑𝑒𝑚𝑎𝑛𝑑 =
𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑐𝑎𝑝 ∗ 𝐴𝑉𝐶𝑈 ∗ |𝑆|

# 𝑜𝑓 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 𝑓𝑖𝑛𝑎𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 ∗ 𝐾𝑤/𝑣 ∗ |𝐶| ∗ |𝐹|
 

(5.15) 

 

where S is the number of suppliers engaged, 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑐𝑎𝑝 is the maximum capacity of the 

vehicle, and components per final product is the average number of components required for 

the production of one final product according to the BoM. 𝐾𝑤/𝑣 is the average weight/volume 

of each component.  

We also evaluate the impact of the average distance between shippers and receivers on the 

viability of SCL. The locations of the facilities are set to be dependent on the parameter 

average_distance as indicated in Table 4. This allows for the comparison of the total SC cost 

(economic impact) and the total distance travelled (environmental impact) for Model A and B 

when the facilities are varying distances apart. Both evaluations metric (𝐴𝑉𝐶𝑈 and 

average_distance) serve a function in analysing the settings or conditions under which SCL is 

advantageous and when it does not provide clear advantages. 

For Experiments 2 and 3, the evaluation metrics utilized to compare the SP and ML approaches 

were the Value of Stochastic Solution (VSS) and Expected Value of Perfect Information (EVPI). 

For a stochastic optimization model, if we replace the stochastic parameter with its expected 

value (such as its mean from historical data), and solve the model deterministically, we obtain a 

simpler problem (Birge, 1997). The solution for the model with mean values could serve as a 

baseline to compare other approaches to handling stochastic models. VSS is a measure of how 

good or bad the solutions obtained from these other approaches are in comparison to the 

model with mean values. Also, the actual future value of the stochastic parameter, assuming 

perfect knowledge, can be used to solve the model deterministically. This serves as another 
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baseline which can also be used to compare the other approaches to handling stochastic 

models. The closer the solution from these approaches is to that of the model with perfect 

knowledge, the lower the EVPI, and vice versa. 

In this study, the solution for a specific solution approach (either SP or ML) is considered as the 

total cost which is calculated as the sum of the model’s optimization cost and the 

overstocking/understocking cost (OUC) obtained from comparing the quantities of the final 

products provided to the actual demand. As an example, if our approach instructs the SCN to 

provide 15 final products and the actual demand is 10, the total cost of the approach is the SCN 

cost incurred due to the transportation, production, and so on, of 15 products plus the 

overstocking cost of 5 units. On the other hand, if it instructs the SCN to provide 5 final 

products, the total cost is equal to the cost of providing the 5 units and the understocking cost 

of 5 units. 

We intend to obtain both the VSS and EVPI simultaneously. The lower baseline is set as the 

solution obtained from solving Model A deterministically with the average of all the past 

demand scenarios. This is termed the ‘Model with mean values’. The higher baseline is set as 

the solution obtained from solving Model A deterministically with the actual future demand 

assuming perfect knowledge. This has no overstocking or understocking cost. The solution from 

each of the approaches (SP from Model A1&A2 and ML from Model A) is then positioned 

between the ‘Model with mean value’ and the model with ‘Actual demand’ [See Figure 12 

(based on Birge 1997)].   

Figure 12. VSS vs Solution vs EVPI  
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For the SP approaches, the reformulated models A1 and A2 are solved using the scenarios 

generated from the data. The final value of the total supply of final products to each retailer 

[see Constraint (5.3) for Model A1 and Constraint (5.6) for Model A2] is taken as the 

‘prescriptions’ of the model. The base Model A is then solved deterministically with these 

prescriptions to obtain the SC cost. The OUC is also calculated using the surplus/shortages 

(difference between actual demand and prescribed). The SC cost is added to the OUC as the 

final cost of the SP approach. 

For the ML approaches, almost similar procedures are taken. After the ML model has been used 

to predict the future demand, the predicted demand is used to solve the optimization Model A1 

deterministically to obtain the SC cost. The surplus/shortages are then used to calculate the 

OUC. The SC cost and the OUC are then added to get the final cost of each ML approach. The 

VSS and EVPI are used as evaluation metrics to compare both approaches. The formula below is 

used to calculate the performance of each model relative to the total cost obtained using the 

mean values of historical data and actual demand assuming perfect knowledge of the future. 

  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =
𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑠𝑡 − 𝑠𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑠𝑡

𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒𝑠 𝑐𝑜𝑠𝑡 − 𝑀𝑜𝑑𝑒𝑙 𝑤𝑖𝑡ℎ 𝑎𝑐𝑡𝑢𝑎𝑙 𝑑𝑒𝑚𝑎𝑛𝑑 𝑐𝑜𝑠𝑡
∗ 100    (5.16) 

Eqn. (5.16) is set such that the solution from the ‘Model with mean values’ gives a performance 

of zero while that of the model with ‘actual demand’ gives a performance of 100. The closer the 

solution under consideration is to that of perfect knowledge, the closer the performance factor 

is to 100. Approaches that give solutions worse than that of the mean demand obtain a 

negative value for performance. The performance of the solution under consideration relative 

to the model with mean values is the VSS and its performance relative to the model with actual 

demand is its EVPI. 

The mean absolute error (MAE) is the average of the deviation of the provided units from the 

actual demand for all final products F for all retailer C and is calculated using Eqn. (5.17). This is 

used as an additional evaluation metric. Note that Eqn. (5.17) is an adaptation of Eqn. (5.11). 
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𝑀𝐴𝐸 =
∑ ∑ ( [𝐴𝑐𝑡𝑐𝑓 − 𝑃𝑟𝑒𝑑𝑐𝑓]+)𝑐∈𝐶𝑓∈𝐹

|𝐶||𝐹|
 

 

(5.17) 

The MILP models are coded using Gurobi optimization solver and the ML models are built and 

trained using Tensorflow. All experiments were executed on an Intel Core™ i7-9750H CPU with 

2.60 GHz PC and 6GB dedicated memory.  

 

5.5 SC Network Model Parameter Generation 

The size of the model is dependent on the number of elements present (i.e number of 

suppliers, plants, retailers, products and components). This means the model can be adjusted 

to fit both large and small SCs. The multimodality of the network could also be adjusted to only 

include the available modes. These can be used to specify the regionality or globality of the 

supply chain members. 

To analyze the proposed model, realistic data is generated for most of the parameters such as 

plant and supplier capacity, costs, distances, weight/volume of products or components etc. 

Other parameters such as emission rates are obtained from publicly-available resources and the 

literature. Plant capacity is determined such that multiple plants will be needed to satisfy 

customer needs. Supplier capacity is also determined so that multiple suppliers are required by 

each plant. Most of the parameters are obtained from Kabadurmus and Erdogan (2020) as the 

network they analyse contains many of the elements used in our model. The volume, weight 

and cost of components are designed to be much less than those of the final products because 

in this case study, we assume that 3 components are required for a single product. Weight and 

volume capacity for road, rail and water transportation modes are according to the standard for 

their container types. A 40ft-container is considered for rail and water while a 45ft-container is 

considered for road transportation. The activation cost of each plant/supplier is considered 

$2000 (Kabadurmus and Erdogan, 2020) while there is no fixed activation cost for 

consolidation/distribution centres. There is however a variable cost dependent on the quantity 

of cargo processed through the facilities (set as 0.5$/unit). Water recycling cost is dependent 
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on the region and could range from as low as 0.22$/m3 (0.0008$/gal) to as high as 2.0$/m3 

(0.0075$/gal) (Plapally, 2012). The median is used (0.0042$/gal). The quantity (in gal) of water 

used for each process is guided by the examples provided by Boyd (2011). The quantity of each 

product f produced per day in each plant is set such that multiple days might be required to 

fulfil the demand. More details are provided in Table 5.  

Table 5: Data Generation for Case Study 

Parameter Data Generation 

Average demand of a retailer (for 

deterministic model) 

This is set to be dependent on the average 

vehicle capacity usage (𝐴𝐶𝑉𝑈) for 

Experiment 1 [See Eqn. (5.15)].  

Demand variance of a retailer Uniform random number between 0.25 and 

0.33 of the average demand. 

Actual demand of a retailer Normal distribution according to the average 

demand and variance. 

Plant capacity for a final product Uniform random number between c and 

1.5*c, where c is the total quantity of 

demand required divided by the number of 

plants available (for the stochastic model, the 

maximum demand from historical data is 

used as c). 

Supplier capacity for a component Uniform random number between s and 

1.5*s. s is calculated as the total quantity of 

component k required divided by the number 

of suppliers available (quantity of component 

is based on the BoM). 

Production cost of a final product (𝑝𝑓𝑗𝑓) Normal distribution with the mean m and 

standard deviation 0.05*m, where m is a 

uniform random number between 10 and 
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100. 

Purchasing cost of a component (𝑝𝑘𝑖𝑘) Normal distribution with the mean m and the 

standard deviation 0.05*m, where m is a 

uniform random number between 1 and 10. 

Carbon emission (in kg) for producing a final 

product  

Uniform random number between 0.02 and 

0.08. 

Average distance  This is adjusted to vary the average distance 

between shippers and receivers for 

experimentation. 

Location of a supplier Each node is randomly located on a square 

grid. X and Y coordinates are random 

numbers between average_distance*0 to 

average_distance*0.5. 

Location of a manufacturing plant Each node is randomly located on a square 

grid. X and Y coordinates are random 

numbers between average_distance*1 to 

average_distance*1.5. 

Location of a retailer Each node is randomly located on a square 

grid. X and Y coordinates are random 

numbers between average_distance*2 to 

average_distance*2.5. 

Location of a consolidation center Uniform random number betweIn i and i*r, 

whIre i is the average location of all the 

shipping (supplier or plant) nodes and r is a 

factor indicating how far the center is from 

the nodes it serves. 

Location of a distribution center Uniform random number between j and j*r, 

where j is the average location of all the 

receiving nodes (plant or retailer) and r is a 
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factor indicating how close the center is from 

the nodes it serves. 

Distance of arcs Euclidean distance between nodes. 

Percentage of distance of arc for which road 

transport is required (𝜃) 

Uniform random number between 5 and 10. 

Lead time for a supplier (𝑙𝑑𝑖) Uniform random number between 1 and 5 

Weights (kg) of a final product and a 

component (𝑤𝑝) 

The weight of a final product is a uniform 

random number between 1.5 and 3, and the 

weight of a component is 0.8 

Volumes (m3) of a final product and a 

component (𝑣𝑝) 

The volume of a final product is a uniform 

random number between 0.08 and 0.18, and 

the volume of a component is 0.05 

Production batch size for each MC ( 𝑏𝑖𝑞𝑓 ) Uniform random number between 40 and 60  

Average quantity of product f produced daily 

in each plant (𝑝𝑑𝑖𝑓) 

Uniform random number between 800 and 

1500 

Quantity of non-reused water utilized for 

making a batch of final products in each MC 

(𝑤𝑎𝑖𝑞𝑓
𝑞 ) 

Uniform random number between 100 and 

200 gal 

Quantity of water use per day by each 

process (with daily use) in each MC (𝑤𝑎𝑖𝑟𝑓
𝑟 ) 

Uniform random number between 15,000 

and 20,000 gal 

Target volume efficiency (𝜃𝑣𝑡) 1 for all transportation modes 

Target weight efficiency (𝜃𝑤𝑡) 1 for all transportation modes 

Packing efficiency factor (𝛾t) Uniform random number between 0.8 and 1 

Consolidation/distribution time (cons_time) 1 day 

Carbon tax per unit (𝛼) 1.2$/kg  

Water recycle cost (𝛽) 0.0042$/gal (Plapally, 2012) 
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Table 6: Parameter Values of Transportation Modes 

 Road Rail Water  Air 

𝑓𝑡 (per vehicle) 150 170 150 0 

𝑓𝑟𝑜𝑎𝑑 50    

𝑐𝑡 (per km per vehicle) 0.075 0.035 0.05 0.0025a 

𝑤𝑎𝑡(gal/hr) 0 0 200 0 

�̈�𝑡 (per km per kg) 0.075 0.025 0.015 0.6 

𝑓𝑡
𝐶𝑂2 (kg/gal) 8.78 0 0 0 

𝑝𝑡
𝐶𝑂2(kg/item) 1.0 -3.0 3.0-5.0 3.0-5.0 3.0-5.0 

𝑠𝑡
𝐶𝑂2 (kg/Ton-km) 0.144 0.014 0.028 0.875 

𝑚𝑡 (km/gal) 10.5    

𝑣𝑡
𝑐𝑎𝑝
 (m3) 90 67 67 60 

𝑤𝑡
𝑐𝑎𝑝
 (kg) 24000 26000 26000 21000 

𝑠𝑝𝑡  (km/hr) 100 32 40 900 

𝑐𝑓 0-0.2 0 0 0 

𝑃𝑜𝑟𝑡𝐷 (days) 0 1-3 1-5 1-3 

aThe variable cost of air mode is calculated per km per kg 

Data for 𝑓𝑡
𝐶𝑂2 is obtained from EPA (2022). The fuel used in road transportation is taken as 

motor gasoline. The values for other modes are set to 0 as the cargo only occupies a portion of 

the vehicle. This is compensated for by slightly increasing the value of 𝑠𝑡
𝐶𝑂2. 𝑠𝑡

𝐶𝑂2 is obtained 

from Carbonfund (2022). Mileage of truck is extracted from United States Department of 

Energy (2020). The packing emission rate for each mode is set as a random value within the 

given range. The total packing emission is dependent on the number of items being loaded onto 

the truck/container.  

Table 7: Probability of Availability of Transportation Modes on Multimodal Arcs 

 Trucks Rail Water Air 

Minimum 

distance(>km) 

0 300 1000 800 

Probability (%) 100 75 25 100 
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To be more realistic, the probabilities of rail and water transportation modes being available 

are set to be 75% and 25% respectively. Also, they are only activated if the distance to be 

covered is more than 300 and 1000 kilometres respectively. Air transportation is available on all 

arcs with a distance greater than 800. After preliminary tests, values are also chosen for the 

emission limit and water limit based on the total demand and number of plants. 

5.6 Data Sourcing  

To examine and compare the effectiveness of all the approaches considered, an actual dataset 

was extracted from Kaggle.com titled ‘Store item demand forecasting challenge’ (Kaggle, 2018). 

The dataset contains 5 years of daily sales data of 50 items in 10 different retail stores. In 

preprocessing, we divide the data into 10 separate groups with each having 5 different items 

for the 10 stores. This allows for 10 repetitions of the same experiments with exclusive data. 

Each supply chain network will therefore have 10 retailers with 5 final products. The obtained 

data is clean and has no missing values. Some of the data is cut out to represent the unseen 

actual future demand data while the rest is used to build the models (See Figure 13). The data is 

preprocessed differently for each approach (SP or ML). For the SP approaches, the scenarios are 

generated from the data which are then used as parameters while building each model, while 

for the ML approaches, the data is reshaped to the required input dimension for each model. 

Figure 13. Splitting Data into Historical/Training and Future Demand Data 
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5.7 Summary 

This chapter starts with a description of the multiple approaches to handling stochastic 

optimization modelling explored in this study. The SP approaches were presented and the 

reformulations to the base Model A where provided. These were termed Model A1 and Model 

A2. Details on the procedure of applying ML approaches were then presented describing the 

models/algorithms, training performance metrics and model tuning. We then go ahead to 

discuss the details of the experiments to be carried out. Details on evaluation metrics, network 

parameter generation and data sourcing are then provided. 
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Chapter 6 

Experiment Results & Discussion 

6.1 Experiment 1 

To analyse the influence of shipment consolidation on the supply chain network, six sample 

networks with 4 suppliers, 4 manufacturing plants, 4 retailers, 5 final products, 6 components 

and 4 modes of transportation were generated (4S-4M-4C, 5F-6K, 4T) using realistic random 

test instances according to Table 5 . The mean of the obtained results was calculated and 

graphs were plotted. The average_distance between shippers and receivers is set as 2000km to 

represent a wide global SC. The goal of this experiment is to evaluate the advantageousness of 

SCL and the conditions that make it profitable. For the Model A, the number of upstream 

consolidation and distribution centres were set to 1. The same was set for the number of 

downstream consolidation and distribution centres. For Model B, the values of the facilities 

were set to zero. This enforced the model to take only the direct routes from shippers to 

receivers while Model A could take multiple routes.  

The average vehicle capacity usage AVCU is set as an evaluating factor to compare both models. 

The more the AVCU, the more the quantity of the items being shipped out on average by each 

supplier or plant. The cost would also generally increase. The results obtained are also plotted. 

According to Figure 14, the total cost accrued by Model A was always less than or equal to that 

of Model B. This is expected as the only transportation route option available to Model B is the 

direct route while Model A has more transportation options and could seek cheaper 

alternatives. This makes it such that the lowest cost possible for Model A is the cost of Model B. 

The total cost is the sum of the transportation, facility activation, production, carbon and water 

cost. 
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Figure 14. Total Cost vs AVCU 

 

Figure 15. Number of Vehicles vs AVCU 

 

Figure 16. Total Distance Travelled vs AVCU 

 

There were more vehicles in total used in Model A (Figure 15). There were a lot of short-haul 

trips between the shippers and the consolidation/distribution facilities thereby requiring more 

vehicles. This could have been potentially reduced if there were milk runs between the 
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shippers.  From Figure 16, it can be seen that the total distance travelled by all the 

vehicles/containers in Model A is significantly lower than that of Model B. This is most likely 

because the shipments were consolidated early in the SC and fewer vehicles/trucks (most likely 

with FTL) were used for bigger parts of the trips. This option was not available in Model B as 

shippers had to use as many trucks as required even if they were shipping LTLs, thereby causing 

Model B to have fewer trucks, but with each needing to traverse the full distance to the 

receiver. 

Figure 17. Carbon Cost/CF/WF vs AVCU 
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17c 

 

The cost accrued due to the carbon tax was higher for the Model B (Figure 17a). The values in 

the figure however include the carbon emissions during production within the plants. The 

reduced carbon cost for the Model A is majorly due to the decrease in the total distance 

travelled (Figure 16).  Figure 17b shows that the carbon footprint of Model A is consistently less 

than that of Model B. This means that Model B is less environmentally sustainable. In Figure 

17c, the WF of both models are the same in most of the experiments. There are however 

samples where the WF of either model is slightly higher than the other. This is because 

production is the major contributor to the water footprint in our case studies and production 

WF is the same for both models in most cases. The only other source of WF in our study is the 

water mode of transportation. The slight difference between the WF of Models A and B seem 

to occur when either of them chooses to use the water mode of transportation within its SCN.  

The experiment was repeated with the value of AVCU fixed as 1.2 while varying the average 

distance between shippers and receivers. 
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Figure 18. Total Cost vs Average Distance 

 

Figure 19. Total Distance Travelled vs Average distance 

 

The total cost was fairly similar until the average_distance got up to around 1500km (see Figure 

18). The total distance travelled was also similar until the average_distance (between shippers 

and receivers) got to around 600 (see Figure 19). This means SCL might not lead to economical 

and environmental savings in every scenario. The distance between the SC agents has to be 

above a certain threshold for SCL to be beneficial. The high spike in Figure 19 between 
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average_distance 2000 and 3000 shows that if all the necessary factors were in place, a huge 

environmental savings opportunity could arise. 

In summary, the inclusion of shipment consolidation into the supply chain network generally 

reduced the total transportation cost, carbon cost due to emissions above the cap, and reduced 

total distance travelled. However, the number of vehicles used increased due to the absence of 

milk runs between shippers. The average distance between the shippers and receivers also has 

to be above a certain threshold before SCL can be considered advantageous. 

 

6.2 Experiment 2 

For the ML approaches, monthly demand for the retailers is predicted using historical demand 

as input. The daily data is aggregated into monthly (28-days) values. Demand for 24 months 

before the demand prediction date is taken as input with a corresponding output of the 

demand prediction for 3 months after the prediction date. 3-months timeline was selected so 

as to be able to use the output of each ML model/algorithm for both Experiments 1 and 2 

simultaneously. After training the models and predicting the demand for the final 3 months, the 

future prediction for the first month is taken as the value used in this experiment. The data has 

10 retail stores with 50 items/final products. This was divided into 10 groups with each group 

having the same 10 retail stores but with 5 unique items/final products each. For each retail 

store, each product has historical demand data. The goal is therefore to predict the demand for 

the next month (28-days) for all retail stores and items.  

The SCN model was set with 4 suppliers, 4 manufacturing plants, 10 retailers, 5 final products, 7 

components and 4 modes of transportation (4S-4M-10C, 5F-7K, 4T). The planning period is set 

as 28 days. Parameters are generated, and the model is preliminarily solved deterministically 

with the actual demand values (no overstock and understock) to obtain the first baseline. This 

gave the actual cost of the supply chain if we had perfect knowledge. The total cost was divided 

by the total quantity of final products to obtain an idea of the unit cost. The understocking cost 

is considered as sales opportunity foregone and made equivalent to the selling price which is 

set as 2 times the per unit cost of the final products (total SC cost/total quantity of final 
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products). Overstocking cost is also considered as half the unit cost (salvage value is set as half 

the unit cost). Excess stock is however not carried over to the next planning period. The 

historical data aggregated into monthly data is used as past scenarios for the SP models, and as 

training data for the ML models. The ML models were trained with MOU (Eqn. 5.12) as the 

custom metric so the model learns to optimize the output while factoring in the penalties for 

overstocking and understocking proportionately.  

Figure 20 shows the graphical comparison between the prediction demand and actual demand 

for the AC-LSTM model for Group 1 and 10. The x-axis shows the Store/Item(final product) 

number while the y-axis shows the demand value. The tight closing between the actual and 

predicted values in the results shows that the model was able to learn the relationships within 

the data. The model tends to often overshoot in its predictions. This is because the penalty for 

over-prediction is less than that of under-prediction (understocking cost>overstocking cost).  

Figure 20. AC-LSTM Prediction Graph 

 

 

Figure 21 and Figure 22 show that the ACV-LSTM and Ensemble SVR were also able to learn the 

pattern within the data and give very close predictions. The Ensemble SVR however seems to 

generally have higher predictions than the ACV-LSTM. This could be advantageous if it leads to 

a smaller overall SC cost. The overall performance of all model types is evaluated next. 
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Figure 21. ACV-LSTM Prediction Graph (28-days) 

 

Figure 22. SVR-Ensemble Prediction Graph (28-days) 

 

Table 8 shows a summary of all the models considered for Group 1. The first column describes 

the mean absolute error (MAE) between the predicted and actual demand values. Considering 

that the goal of the prediction is its usage within a newsvendor MILP model, this evaluation 

compares all the ML and SP models through the total cost incurred after using the predictions 

to optimize the MILP model while including the overstocking and understocking costs (OUC) 

due to inaccurate predictions. The mean value of historical demand is also used as a ‘prediction’ 

to enable comparison with the ML and SP models and to evaluate the Value of the Stochastic 

Solution. The solution of the model with ‘Actual Demand’ is added to the table to compare how 

good the predictions of the ML and SP are in comparison to the ideal scenario where the actual 

demand is known perfectly.  
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From Table 8 , the results from the experiment show that generally, the ML models outperform 

the SP models. MAE is calculated as the average of the absolute difference between the 

prediction and actual demand [see Eqn. (5.17)]. For each SP approach, the model’s ‘prediction’ 

is considered as the summation of the values of the variables 𝑋𝑗𝑐, 𝑋𝑑2𝑐, 𝑋𝑒2𝑐 [see Constraint 

(5.3) for Model A1 and Constraint (5.6) for Model A2] after optimization. The Total OUC is also 

calculated as the cost of understocking and overstocking. Optimization model cost (also Total 

cost) is the addition of the cost of solving the Model A deterministically with the ‘prediction’ of 

each method and the Total OUC. ACV-LSTM gives the smallest MAE. The Ensemble-SVR 

however performs better, leading to the lowest OUC and total cost.  

Table 8: Group 1 Evaluation (28-days) 

Model (Group 1) Performance Metrics (28-days) 

MAE Total OUC Optimization Model 
Cost 

SP Simple Recourse 69.2 608,979 4,609,866 

Chance constraint (α=0.2) 63.4 527,516 4,576,183 

Chance constraint (α=0.2) 59.8 469,474 4,547,130 

ML AC-LSTM 31.4 98,839 4,365,955 

ACV-LSTM 23.9 144,385 4,385,431 

Stacking Ensemble 30.8 97,108 4,360,621 

Baselines Model with mean values 70.4 625,594 4,622,319 

Actual Demand 0 0 4,339,078 

A very similar trend is seen with Group 10 in Table 9 with the ML approaches having very good 

performances and obtaining results closest to that of having perfect knowledge (EVPI). The 

Ensemble SVR once again performs best with the smallest OUC and Total cost while the AC-

LSTM has the smallest MAE. The Simple recourse approach (Model A1) obtains a solution very 

close to the model with mean values while the Chance constraint approaches (Model A2) 

obtain better results with increasing values of α. 
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Table 9: Group 10 Evaluation (28-days) 

Model (Group 10) Performance Metrics (28-days) 

MAE Total OUC Optimization Model 

Cost 

SP Simple Recourse 100.2 700,864 5,144,707 

Chance constraint (α=0.2) 89.5 620,082 5,117,958 

Chance constraint (α=0.2) 82.4 547,745 5,092,752 

ML AC-LSTM (MAE) 30.4 92,506 4,957,362 

ACV-LSTM (MAE) 35.9 209,997 5,005,574 

Stacking Ensemble (MAE) 40.4 84,515 4,951,500 

Baselines Model with mean values 104.7 725,360 5,145,069 

Actual Demand 0 0 4,884,868 

Only evaluation data for Group 1 and 10 are shown in this chapter with the remaining 8 groups 

illustrated in the Appendix. The average of all ten groups is however discussed for overall 

comparison. Table 10 shows the summary of all 10 groups with the average of all solutions 

generally in line with the analysis of Groups 1 and 10. 

Table 10: Average Evaluation for all 10 Groups (28-days) 

Average of 10 Groups Performance Metrics (28-days) 

MAE OUC Optimization Model 
Cost 

SP Simple Recourse 106.4 805,370 5,660,968 

Chance constraint (α=0.2) 98.5 739,430 5,635,534 

Chance constraint (α=0.2) 92.9 654,018 5,603,868 

ML AC-LSTM (MAE) 45.4 119,331 5,466,616 

ACV-LSTM (MAE) 40.1 154,057 5,439,291 

Stacking Ensemble (MAE) 42.2 113,660 5,435,597 

Baselines Model with mean values 125.7 843,018 5,669,537 

Actual Demand 0 0 5,364,076 



94 
 

Figure 23 and Figure 24 plot the three solutions (Groups 1, 2 and the average of all groups) on a 

two-dimensional graph to show how well placed each model is in comparison to the baselines. 

The position of each approach relative to the model with mean values is its VSS while its 

position relative to the model with actual demand is its EVPI. 

The performance measures in Figure 24 are calculated using Eqn. (5.16). The closer the value is 

to 100, the more the cost saved due to the accuracy of the prediction. The Ensemble-SVR has 

the lowest EVPI showing how close to perfect knowledge the model’s predictions were. The 

ACV-LSTM model is however the closest to the mean values among the ML models. It (ACV-

LSTM) still performs significantly better than the SP models. Among the SP models, the Simple 

recourse (Model A1) performs the worst with a total cost very close to that of the mean values 

(overall least VSS) showing how close the solution obtained from the method was to barely 

using the average of the historical data. The Chance constraint models (Model A2) perform 

slightly better than the Simple recourse (Model A1) but perform poorly in comparison to all the 

ML approaches.  

Figure 23. Mean vs Solution vs Perfect Knowledge (28-days) 
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Figure 24. Mean vs Solution vs Perfect Knowledge Total Cost (28-days) 

 

 

6.3 Experiment 3 

The previous experiment considered the planning period to be 28 days. This experiment 

however considers a larger planning period of 84 days (Note: A month is considered 28 days). 

The reason for enlarging the planning period was to get an idea of how the SP and ML models 

would perform if we had to forecast further into the future or expand our planning horizon. For 

the ML models, historical demand for 24 months before the beginning of the planning period 

was taken as input to predict the demand for the following 3 months. The available data is for 

65 months with the first 62 months used as training data and the last 3 months used as the 

unseen actual future demand. The training data was split into a sequence such that Month 1 to 

Month 24 data is used as input for Month 25 to Month 27, Month 2 to Month 25 is used as 

input for Month 26 to Month 28, up till, Month 36 to Month 59 used as input for Month 60 to 

Month 62. After training the model, Month 37 to Month 62 is then used as testing data to make 

the final prediction for Months 63 to 65. This procedure was already carried out in Experiment 

2. The 3-month prediction was then summed up into a single value. 
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For the SP models, the first 62 data points are also used to generate the required scenarios. A 

rolling aggregate with a 3-months span is used for each scenario. This means, that the sum of 

demand from Month 1 to Month 3 is the first scenario demand, the sum of demand from 

Month 2 to Month 4 is the second scenario demand, up till, the sum of demand from Month 60 

to Month 62 as the last scenario. This procedure was taken for two reasons, 1. So the 

generated scenarios can capture some long-term trends and 2. To maintain a relatively large 

number of scenarios. The model is then optimized with the demand scenarios generated as the 

discrete samples of the stochastic demand parameter. For each SP model, after optimization, 

the values of the variables 𝑋𝑗𝑐, 𝑋𝑑2𝑐, 𝑋𝑒2𝑐 (see Demand balance constraint 4.13) are extracted 

and summed up as the quantity of final products the models A1 & A2 prescribe the SCN to 

supply for each retail store for each product. These values are then used as the demand value 

to solve Model A deterministically to obtain the model cost. The difference between the 

quantity of final products supplied and the actual demand is used to obtain the OUC cost. 

For the ML approaches, Figure 29 shows the relationship between the actual demand and the 

predicted demand using the AC-LSTM model. The model’s predictions are again very close to 

the actual demand despite the larger planning period potentially leading to a small OUC.  

Figure 26 and Figure 27 also show that the ACV-LSTM and Ensemble SVR have good 

performances. Graphs for groups 2 to 9 are shown in the Appendix. 

 

Figure 25. AC-LSTM Prediction Graph (3-months) 
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Figure 26. ACV-LSTM Prediction Graph (3-months) 

 

 

Figure 27. SVR Ensemble Prediction Graph (3-months) 

 

 

Table 11 presents a comparative analysis of all the methods. All ML models have good 

performances with values very close to the model with actual demand. The SVR Ensemble gives 

the lowest total cost. AC-LSTM however comes close with a total cost almost equal to that of 

the SVR Ensemble. AC-LSTM has the least OUC and MAE. The SP approaches do not perform 

well as all have MAE, OUC and total costs higher than the model with mean values. Similar 

results are obtained in Group 10 (Table 12). 
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Table 11: Group 1 Evaluation (3-months) 

Model (Group 1) Performance Metrics (3-months) 

MAE Total OUC Optimization Model 

Cost 

SP Simple Recourse 121.2 1,078,558 11,109,093 

Chance constraint (α=0.1) 135.2 1,224,624 11,152,059 

Chance constraint (α=0.2) 136.8 1,220,792 11,222,144 

ML AC-LSTM  49.1 250,940 10,800,178 

ACV-LSTM  62.8 426,127 10,879,521 

Stacking Ensemble  49.9 287,533 10,793,808 

Baselines Model with mean values 106.1 805,470 11,018,492 

Actual Demand 0 0 10,712,399 

 

Table 12: Group 10 Evaluation (3-months) 

Model (Group 10) Performance Metrics (3-months) 

MAE Total OUC Optimization Model 

Cost 

SP Simple Recourse 160.4 1,088,517 11,115,358 

Chance constraint (α=0.1) 165.2 1,222,940 11,190,968 

Chance constraint (α=0.2) 165.1 1,222,406 11,204,924 

ML AC-LSTM (MAE) 54.2 226,672 10,895,784 

ACV-LSTM (MAE) 147.3 775,414 11,034,724 

Stacking Ensemble (MAE) 90.7 455,559 10,942,753 

Baselines Model with mean values 153.4 813,211 11,035,848 

Actual Demand 0 0 10,763,345 
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Averaging all 10 Groups (Table 13) and comparing the results of all models, the ML models 

generally outperform the SP models. Among the ML approaches, the SVR Ensemble performs 

the best overall. This is not surprising as the Ensemble-SVR uses the outputs of the two other 

ML models as extra input (children models) when training itself. The AC-LSTM and ACV-LSTM 

also perform close to the model with ‘actual demand’ and obtain similar results. Analysing the 

SP approaches, unlike when the planning period was 28-days (Experiment 2), all the models 

perform poorly (below Model with mean values). The Chance constraint approach (Model A2) 

has the highest average total cost, OUC and MAE. This might be a result of the model being too 

conservative thereby impacting the viability of the solution obtained over a longer period. In 

comparison to Experiment 2 where the planning period was significantly smaller, both the ML 

and SP models do not perform in this experiment as well as they did. The AC-LSTM and SVR 

Ensemble with MAE of 69.2 and 65.9 respectively however still perform relatively well in 

comparison to the actual demand values. This is because Figure 25 shows that actual demand 

could be as high as 7000 (that is within 1% accuracy). 

Table 13: Average of 10 Groups Evaluation (3-months) 

Average of 10 Groups Performance Metrics (3-months) 

MAE Total OUC Optimization Model Cost 

SP Simple Recourse 181.3 1,539,783 15,731,840 

Chance constraint (α=0.1) 185.4 1,671,597 15,787,402 

Chance constraint (α=0.2) 186.2 1,720,751 15,804,447 

ML AC-LSTM (MAE) 69.2 338,656 15,355,731 

ACV-LSTM (MAE) 103.4 637,870 15,359,121 

Stacking Ensemble (MAE) 65.9 319,260 15,251,771 

Baselines Model with mean values 176.2 1,171,575 15,587,240 

Actual Demand 0 0 15,156,420 

 

Figure 28 and Figure 29 graphically shows the comparison of the three tables (Group 1, 10 and 

average) and how the models perform in comparison to the baselines. 
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Figure 28. Mean vs Solution vs Perfect Knowledge (3-months) 

 

Figure 29. Mean vs Solution vs Perfect Knowledge Performance (3-months) 

 

 

There is a consistent pattern of the ML approaches performing better than the SP approaches, 

with the Ensemble-SVR performing best. This trend can be attributed to the ability of ML 

models to efficiently learn patterns and seasonality within the historical data using advanced 
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algorithms and computational powers, thereby able to predict the future demand fairly closely 

leading to less penalty incurred due to overstocking or understocking.  

In terms of CPU runtime, for Model A1 with simple recourse, it took an average of two minutes 

to solve the models to optimality. For Model A2 with chance constraint and 𝛼 = 0.1, it took an 

average of two hours to solve the models while that of 𝛼 = 0.2 took about four hours to solve. 

In comparison, in the ML approaches, it took about 12 hours to run the ML algorithms with an 

additional two minutes to solve Model A deterministically using the predicted values. This 

shows that even though the machine learning approaches provided better results and helped 

save more cost, they were more computationally expensive. 
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Chapter 7 

Conclusion & Future Research 

In this thesis, a novel supply chain optimization problem is presented to design sustainable 

multimodal supply chains which also consider shipment logistics and stochastic demand. One of 

the objectives of this thesis was to build an SCN model that shows how water footprint and 

carbon footprint analysis can be factored into the tactical decisions made when planning supply 

chain logistics. We went through the procedure on how to analyse and incorporate different 

elements such as water footprint analysis, carbon footprint analysis, multimodal freight 

transportation and shipment consolidation logistics into the SCN in the design stage or while 

performing logistical operations for an existing SCN. This involved the building of an adaptable 

optimization model which could be modified and applied to optimize real-life SCN optimization 

problems. 

We then demonstrated how shipment consolidation logistics could serve as a tool for reducing 

not just the economic cost of SCs, but also the amount of environmental impact of SC 

operations due to a reduction in the distance travelled to attain SC goals. We evaluated the 

conditions that make the use of SCL within the SC most profitable. Model A (with SCL) was 

compared with Model B (without SCL). For the base case data used, Model A performed equally 

or outperformed Model B in every single scenario. This is because Model A has the 

infrastructure of the Model B within it and generally decides to use consolidation/distribution 

facilities when there are cost-saving opportunities, or ignore those facilities and make only 

direct deliveries from shippers to receivers when that is better.  

 While varying the average vehicle capacity usage (AVCU) factor, Model A seemed to find 

significant cost-saving opportunities when the vehicle utilization factor indicated a combination 

of FTL and LTL. It seemed the LTLs were mostly transported through consolidation/facilities. The 

number of vehicles utilized within Model A was generally higher than that of Model B. This is 

mostly because the shippers had to use individual trucks to deliver their LTL cargo to the 
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consolidation/distribution centers before shipping it to the receivers. This led to extra costs due 

to the fixed cost of activating each vehicle. The overall cost of Model A was however still less 

than Model B. This is because the optimizer would only choose to use SCL whenever there were 

significant cost savings to offset the vehicles’ fixed costs. 

After the AVCU factor was fixed as 1.2 and the average distance between the shipping and 

receiving facilities varied, Model A initially had the same cost as Model B for short distances but 

found higher cost-saving opportunities as the average distance travelled increased. This 

demonstrates that utilizing SCL might offer no cost savings when the distance of delivery is low 

but becomes more profitable when the SCN is large and spans over a wide area (e.g regional, 

global). The cumulated distance travelled by all vehicles/containers/airplanes within Model A 

was equal to or significantly lower than that of Model B in all the scenarios considered. This 

means Model B has more environmental impact as transportation-based CF is roughly 

proportional to the distance travelled. This highlights the environmental advantage of 

incorporating shipment consolidation into SCs. The managerial implication of this is that the 

SSCN/MFT&SCL model can be used by DMs to choose when it is appropriate to use 

consolidation facilities within the SCN to obtain a feasible solution under budget 

considerations. Using the results obtained from modifying the model generated in this thesis to 

specific scenarios, the DM can make logistical decisions and choose the appropriate suppliers, 

manufacturing plants, transportation modes and order quantity for their operations to 

minimize economic and environmental costs while concluding all operations within the set 

planning period. 

In tackling the inherent stochasticity of some of the parameters under consideration when 

designing an SCN or making logistics decisions, different approaches were utilized and 

compared. These included multiple SP and ML approaches from which all the ML models 

performed better than the traditional SP models. The ensemble model performed best and 

obtained results closest to the model with perfect predictions thereby giving the lowest EVPI. 

Even after extending the forecasting period, the ML approaches still had performances 

significantly better than the SP approaches with their (ML models) predictions within 1% of the 

actual demand values. This makes the case for the consideration of ML-based approaches when 
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making logistical decisions on how to run an SC. With the proliferation in the generation of data 

through the continual digitalization of SC processes, and the innovation of new efficient 

algorithms, ML-based approaches to uncertainty within the SC promise to be even more 

accurate thereby enabling more precise planning. The flexibility and effectiveness of ML models 

in predicting varying forecast periods allow the DM to freely change the planning period in 

response to the trends in the market or technical changes in network parameters (such as 

supplier lead time). 

Areas of further extension to this work could include: 

1. The consideration of the impact of SCs on other pillars of sustainability (social and 

culture) and how to factor this into the supply chain network design and logistics 

planning.  

2. The expansion of the model to consider milk runs between the shippers and between 

the receivers. This will potentially reduce the economic and environmental costs of the 

model.  

3. The application of this work to real-life case studies to discover new findings or verify 

the current findings. 

4. The use of other demand-related data (e.g weather conditions, store location, month of 

the year) alongside the demand data to further improve the forecasting accuracy of ML 

models. 

5. The consideration of other SP methodologies such as sample average approximation 

using simulated data, Conditional Value at Risk. 

6. The utilization of decomposition methods or metaheuristics to handle large-scale cases 

that can not be easily solved using optimization solvers (such as Gurobi). 

7. The analysis of the impact of improved prediction precision through the use of machine 

learning on the bullwhip effect. 
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Appendix 

The results and graphs obtained for Groups 2 to 10 are provided in this chapter. 

Group 2
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Model (Group 2) Performance Metrics (28-days) Performance Metrics (3-

months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

139.6 964,335 7,072,519 215.6 1,984,764 

 

20,231,160 

 

Chance 

constraint 

(α=0.1) 

120.6 880,005 7,038,212 220.2 2,262,029 

 

20,227,873 

 

Chance 

constraint 

(α=0.2) 

115.9 791,854 7,023,798 219.8 2,259,101 

 

20,222,094 

 

ML AC-LSTM  90.5 156,037 6,807,077 99.1 190,872 

 

19,948,809 

 

ACV-

LSTM  

81.9 144,916 6,790,158 128.9 231,158 

 

20,076,401 

 

Stacking 

Ensemble  

42.7 117,727 6,740,396 77.0 448,586 

 

19,880,104 

 

Baselines Model 

with 

mean 

values 

147.2 1,001,314 7,085,294 216.0 1,502,304 

 

20,246,691 

 

Actual 

Demand 

0 0 6,701,768 0 0 19,714,867 
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Group 3 
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Model (Group 3) Performance Metrics (28-days) Performance Metrics (3-months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

70.5 1,140,646 8,132,071 280.4 2,204,239 

 

21,325,571 

 

Chance 

constraint 

(α=0.1) 

75.4 1,148,838 8,135,178 282.1 2,459,214 

 

21,403,700 

 

Chance 

constraint 

(α=0.2) 

68.3 897,047 8,037,237 

 

279.8 2,456,088 

 

21,402,332 

 

ML AC-LSTM  53.1 106,390 

 

7,785,767 

 

68.1 302,743 

 

20,741,281 

 

ACV-LSTM  47.2 290,331 

 

7,831,955 

 

157.7 973,788 

 

20,804,298 

 

Stacking 

Ensemble  

53.2 109,881 

 

7,736,867 

 

67.4 270,918 

 

20,782,818 

 

Baselines Model 

with mean 

values 

180.3 1,207,656 

 

8,155,155 

 

271.6 1,695,665 

 

21,141,360 

 

Actual 

Demand 

0 0 7,695,000 

 

0 0 20,616,088 
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Group 4  
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Model (Group 4) Performance Metrics (28-days) Performance Metrics (3-months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

107.2 775,304 

 

5,373,454 

 

150.2 1,238,868 

 

13,428,341 

 

Chance 

constraint 

(α=0.1) 

87.7 642,575 

 

5,324,003 

 

152.5 1,400,477 

 

13,491,512 

 

Chance 

constraint 

(α=0.2) 

80.3 560,013 

 

5,296,262 

 

151.5 1,270,504 

 

13,447,714 

 

ML AC-LSTM  58.0 114,095 

 

5,132,994 

 

58.3 153,699 

 

13,052,736 

 

ACV-LSTM 33.3 105,638 

 

5,112,966 78.1 476,312 

 

13,164,687 

 

Stacking 

Ensemble  

30.4 119,112 

 

5,166,989 

 

78.6 471,706 

 

13,140,531 

 

Baselines Model with 

mean 

values 

108.5 774,731 

 

5,371,192 

 

148.9 942,841 

 

13,303,566 

 

Actual 

Demand 

0 0 5,106,847 

 

0 0 12,993,957 
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Group 5 
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Model (Group 5) Performance Metrics (28-days) Performance Metrics (3-months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

145.5 920,012 

 

6,368,357 

 

201.9 1,888,855 

 

19,671,473 

 

Chance 

constraint 

(α=0.1) 

141.2 908,754 

 

6,364,738 

 

203.5 2,127,231 

 

19,764,097 

 

Chance 

constraint 

(α=0.2) 

121.6 734,582 

 

6,290,905 

 

203.5 2,127,231 

 

19,766,110 

 

ML AC-LSTM  32.9 157,546 

 

6,127,640 

 

109.3 768,058 

 

19,306,171 

ACV-LSTM 37.2 104,005 

 

6,051,385 

 

72.9 492,931 

 

19,180,611 

 

Stacking 

Ensemble  

30.5 146,124 

 

6,081,689 

 

52.2 304,420 

 

19,053,548 

 

Baselines Model with 

mean 

values 

147.89 964,782 

 

6,383,938 

 

202.1 1,452,887 

 

19,507,390 

 

Actual 

Demand 

0 0 6,024,914 

 

0 0 18,991,453 
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Group 6 
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Model (Group 6) Performance Metrics (28-days) Performance Metrics (3-months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

128.5 823,907 

 

5,538,496 

 

180.2 1,408,814 

 

15,023,548 

 

Chance 

constraint 

(α=0.1) 

115.3 780,803 

 

5,525,434 

 

170.3 1,206,797 

 

14,967,626 

 

Chance 

constraint 

(α=0.2) 

105.6 725,752 

 

5,509,965 

 

175.5 1,610,008 

 

15,064,017 

 

ML AC-LSTM  35.6 136,884 

 

5,410,440 

 

52.5 233,040 

 

14,606,825 

 

ACV-LSTM  40.8 102,402 

 

5,309,248 72.1 174,071 14,531,681 

Stacking 

Ensemble 

38.2 122,907 

 

5,334,767 

 

67.8 153,226 

 

14,502,892 

 

Baselines Model with 

mean 

values 

133.4 842,543 

 

5,542,981 

 

175.7 1,060,885 

 

14,861,598 

 

Actual 

Demand 

0 0 5,259,048 

 

0 0 14,451,284 
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Group 7 

 

  



125 
 

 

Model (Group 7) Performance Metrics (28-days) Performance Metrics (3-months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

90.2 743,848 

 

5,255,589 

 

181.2 1,749,540 

 

18,091,028 

 

Chance 

constraint 

(α=0.1) 

89.9 671,425 

 

5,212,582 

 

193.5 1,987,195 

 

18,189,266 

 

Chance 

constraint 

(α=0.2) 

97.3 641,199 

 

5,214,510 

 

190.7 1,987,492 

 

18,188,732 

 

ML AC-LSTM  32.1 151,892 

 

5,081,991 

 

99.8 709,691 

 

17,703,366 

 

ACV-LSTM  32.9 95,844 

 

5,036,467 

 

142.2 1,038,734 

 

17,828,332 

 

Stacking 

Ensemble  

67.5 109,028 

 

5,297,945 

 

59.9 262,453 

 

17,650,717 

 

Baselines Model with 

mean 

values 

128.5 777,689 

 

5,260,351 

 

176.8 1,308,846 

 

17,918,642 

 

Actual 

Demand 

0 0 4,961,295 

 

0 0 17,402,456 
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Group 8 
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Model (Group 8) Performance Metrics (28-days) Performance Metrics (3-months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

132.6 946,408 

 

6,197,667 

 

204.1 1,610,210 

 

14,949,048 

 

Chance 

constraint 

(α=0.1) 

120.2 831,426 

 

6,161,549 

 

205.6 1,611,193 

 

14,948,670 

 

Chance 

constraint 

(α=0.2) 

122.3 844,997 

 

6,166,178 

 

209.3 1,785,206 

 

15,020,518 

 

ML AC-LSTM  40.9 116,258 

 

6,164,600 

 

77.9 192,710 

 

14,636,752 

 

ACV-LSTM  35.9 191,112 

 

6,033,082 

 

96.6 568,399 

 

14,283,050 

 

Stacking 

Ensemble  

52.8 108,524 

 

6,097,639 

 

67.8 341,979 

 

14,046,616 

 

Baselines Model with 

mean 

values 

133.2 968,149 

 

6,204,242 

 

203.6 1,247,323 

 

14,803,605 

 

Actual 

Demand 

0 0 5,893,894 

 

0 0 14,251,628 
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Group 9 
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Model (Group 9 Performance Metrics (28-days) Performance Metrics (3-

months) 

MAE Total 

OUC 

Optimization 

Model Cost 

MAE Total 

OUC 

Optimization 

Model Cost 

SP Simple 

Recourse 

80.2 588,365 4,328,512 152.4 1,590,448 16,866,840 

Chance 

constraint 

(α=0.1) 

81.9 523,449 

 

4,302,186 

 

161.2 1,804,709 

 

16,939,816 

 

Chance 

constraint 

(α=0.2) 

75.6 465,349 

 

4,279,878 

 

163.2 1,807,037 

 

16,940,754 

 

ML AC-LSTM  49.3 99,570 4,172,795 54.2 210,352 16,362,881 

 

ACV-LSTM  32.1 142,797 4,187,516 100.5 815,054 16,569,990 

 

Stacking 

Ensemble  

35.5 123,743 

 

4,162,359 59.1 325,547 16,352,258 

Baselines Model with 

mean 

values 

102.9 619,657 

 

4,340,593 

 

147.3 1,217,052 

 

16,694,665 

 

Actual 

Demand 

0 0 4,111,744 0 0 16,225,171 

 

 


