
PERFORMANCE ANALYSIS OF CRYPTOGRAPHIC
FUNCTIONS ON PROGRAMMABLE NICS

by

Jack Zhao

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

August 2022

© Copyright by Jack Zhao, 2022

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vi

List of Abbreviations Used . vii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Motivation . 1
1.2 Contribution . 2
1.3 Thesis Outline . 3

Chapter 2 Background and Related Work 5

2.1 Background . 5
2.1.1 SmartNIC Overview . 5
2.1.2 Cryptography in Network Security 8
2.1.3 Why Offloading Crypto Operations? 9
2.1.4 SmartNIC Cryptography Capabilities 10

2.2 Related Works . 13
2.2.1 SmartNIC as a Performance Accelerator 13
2.2.2 In-network Cryptography . 17
2.2.3 Cryptography performance. 21

Chapter 3 Basic Cryptography Performance on SmartNIC:
Design and Evaluation . 24

3.1 Overview . 24
3.2 Evaluation Setup . 24
3.3 Results and Discussion . 25

3.3.1 Symmetric ciphers . 25
3.3.2 Hash functions . 28
3.3.3 Asymmetric ciphers . 31

Chapter 4 The Case for SmartNIC Cryptography Offload:
Design and Evaluation . 37

4.1 Overview . 37

ii

4.2 VPN Tunneling . 37
4.2.1 Evaluation and analysis . 38
4.2.2 Takeaways . 41

4.3 User Authentication . 42
4.3.1 Evaluation and analysis . 42
4.3.2 Takeaways . 45

4.4 Secure Web Serving . 45
4.4.1 Evaluation and analysis . 46
4.4.2 Takeaways . 49

Chapter 5 Conclusion and Future Work 50

5.1 Conclusion . 50
5.2 Future Work . 50

Bibliography . 54

iii

List of Tables

2.1 Architectural specifications of popular commodity SmartNICs . 5

2.2 Overview of crypto-acceleration features on commodity SmartNICs 10

2.3 Related work studies comparison 23

3.1 Asymmetric Cipher (ECDSA) Throughput Comparison (Sign) . 31

3.2 Asymmetric Cipher (ECDSA) Throughput Comparison Table
(Verify) . 31

4.1 Average, 95th and 99th percentile of the round trip latency (in
miliseconds) for processing a batch of 1K authentication requests 43

5.1 Impact of Quantum Computing on Common Cryptographic Al-
gorithms . 52

iv

List of Figures

2.1 SmartNIC Architecture Comparison 7

3.1 Symmetric Cipher Throughput Comparison (Encryption) . . . 26

3.2 Symmetric Cipher Throughput Comparison (Decryption) . . . 26

3.3 SHA-256 Hash Algorithm Throughput Comparison 29

3.4 SHA-512 Hash Algorithm Throughput Comparison 29

3.5 Asymmetric Ciphers Throughput Comparison (Sign) 32

3.6 Asymmetric Ciphers Throughput Comparison (Verify) 33

3.7 ECDH Throughput Comparison 35

4.1 VPN tunneling setup . 39

4.2 Average round-trip latency in a VPN tunnel 40

4.3 Average TCP throughput in a VPN tunnel 40

4.4 User authentication setup . 43

4.5 Throughput ratio (i.e., the ratio of served authentication re-
quests) as a function of the request rate 44

4.6 HTTPS server setup . 46

4.7 Average web server latency . 47

4.8 Average web server throughput 48

v

Abstract

The development of programmable network interface cards (also known as Smart-

NICs) often come with multiple computing cores and multi-hundred Gbps bandwidth

that can be used as an enhancement of network computing to extend the server CPU

processing capacity. This trend inspired academics and industry to put more roles

on the SmartNICs for applications offloading or acceleration that can traditionally

only run on the servers (e.g., key-value stores or distributed transactions). How-

ever, there are no systematic studies on running network security applications on

the SmartNIC, especially those commonly incorporated with heavy-loaded crypto-

graphic operations. This thesis aims to fill the gap by providing the first in-depth

analysis of the cryptography capabilities of the current SmartNICs. Our study shows

that the SmartNICs’ cryptographic performance is highly influenced by cryptographic

instructions optimization, crypto-hardware acceleration, and other architectural en-

hancement. Moreover, data transmissions between SmartNICs and their onboard

crypto-hardware accelerator can impact the overall cryptographic performance, espe-

cially for small-size short-living tasks. However, SmartNICs can take advantage of

their deployment location, i.e., closer to client devices than server CPUs, to speed

up crypto-based functions, especially for latency-critical applications. However, the

SmartNIC benefits can be easily outweighed if the application is too data-intensive

or includes several non-crypto tasks.

vi

List of Abbreviations Used

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AI Artificial intelligence

API Application Programming Interface

CBC Cipher Block Chaining

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DDR Double Data Rate

DFS Distributed File System

DMA Direct Memory Access

DRAM Dynamic Random Access Memory

DSA Digital Signature Algorithm

DSP Digital Signal Processor

ECC Elliptic-Curve Cryptography

ECDSA Elliptic Curve Digital Signature Algorithm

ECMP Equal-Cost Multi-Path

FHE Fully Homomorphic Encryption

FPGA Field-Programmable Gate Array

GCM Galois/Counter Mode

HPC High-Performance Computing

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IKE Internet Key Exchange

IoT Internet of Things

IPsec Internet Protocol Security

ISA Instruction Set Architecture

MAC Medium Access Control

MAC Message Authentication Code

vii

MPI Message Passing Interface

NIC Network Interface Card

NIST National Institute of Standards and Technology

NPU Network Processing Unit

PD Protection Domain

PKA Public Key Acceleration

QUIC Quick UDP Internet Connection

RADIUS Remote Authentication Dial-In User Service

RAM Random Access Memory

RDMA Remote Direct Memory Access

RNG Random Number Generator

RPC Remote Procedure Call

RSA Rivest–Shamir–Adleman

RTT Round Trip Time

SHA Secure Hash Algorithm

SIMD Single Instruction, Multiple Data

SoC System-on-Chip

SRAM Static Random Access Memory

TEE Trusted Execution Environment

TLS Transport Layer Security

TRNG True Random Number Generator

viii

Acknowledgements

First, I would like to extend my sincerest gratitude to my supervisor, Dr. Israat

Haque, who has watched me tirelessly throughout my Master’s degree. She has always

been there to keep me on the straight path and nurtured my growth as a researcher.

Her motivation kept me going through the hurdles of academia and research. It was

an honor to have her as both a supervisor and a guardian throughout my time at

Dalhousie.

Next, I would be remiss if I did not acknowledge the contribution of Dr. Miguel

Neves, the postdoc fellow at the Programmable and Intelligent Network (PINet)

research lab, Dalhousie. He has helped me tremendously throughout my research en-

deavors and was ever-present to extend a helping hand and ensure I remain motivated

enough to stay the course. I also want to thank my colleagues for making our lab

like home and my other friends for their friendly advice and support throughout my

academic journey.

Lastly, I would love to thank my parents and my partner, without whom I would

not be here. Their constant support and love are a debt I cannot repay, and it is one

of life’s greatest joys to make them proud of my efforts throughout this work and my

Master’s degree.

ix

Chapter 1

Introduction

With the slowdown of CPU performance advances in the recent years, improving

the production process and innovating the hardware architecture are incapable of

catching up with what Moore’s law predicts for the semiconductor industry, espe-

cially for data centers and organizations that require tremendous computing power.

People have been continuously looking for other alternatives to help expand the ap-

plication performance; the adoption of using programmable accelerators (e.g., GPUs,

programmable SSDs, SmartNICs) have been stretching in different directions [1].

SmartNICs or smart network interface cards have been one trending solution re-

searched and developed by prominent vendors (e.g., Nvidia, Broadcom, Netronome)

to ease this problem. It is beneficial as the supporter of the host CPU and saves them

some precious computing power; thus is commonly seen in the production environ-

ment, especially cloud environments. Those SmartNICs often pack more powerful and

specialized computing resources than the traditional NICs, including multicore pro-

cessors, onboard SRAM/DRAM, customized hardware accelerators for compression

and crypto tasks, and programmable DMA engines [2]. These extensive features have

attracted researchers to explore in different directions, especially applications offload-

ing such as load balancing, key-value stores, distributed transactions, etc. [3] [4] [5] [6].

1.1 Motivation

Despite the SmartNICs’ wide adoption and studies in different aspects, little is known

about SmartNICs’ capability to run cryptography-related function. On the one hand,

cryptographic hardware accelerators are commonly seen on the SmartNICs; they

could produce noticeable results in domain-specific tasks and rapidly process secure

network packets. On the other hand, SmartNICs are not comparable with the server

in terms of general computing power. Moreover, offloading some of the host tasks

onto SmartNICs could increase the data transmission cost; utilizing SmartNIC cores

1

2

with other components, like hardware accelerators, could also increase overhead in

practice.

State-of-the-art studies have shown some interest in offloading cryptography-

related tasks on the SmartNICs; however, those studies only dive into a single prob-

lem or task without conducting the big pictures. For instance, Taranov et al. [7]

have found that Broadcom Stingray SmartNICs could maintain high processing rates

for message authentication ciphers (e.g., AES and SHA). Cui et al. [4] provide solu-

tions to improve the TLS connection performance by offloading the handshake of TLS

sessions to NVIDIA BlueField SmartNICs. In contrast, to solve the same problem,

Kim et al. [8] chose to partially offload the TLS data encryption/decryption stage

to Marvell LiquidIO III boards. Those are all inspiring studies; however, there is a

noticeable missing piece in the current study on SmartNICs that needs to be fulfilled

by systematically analyzing the SmartNICs’ cryptography capabilities. Moreover, we

are eager to answer two questions: “when one should offload cryptography tasks to

the SmartNIC?” and “what kind of cryptography tasks should be offloaded?”

1.2 Contribution

This thesis provides the first in-depth analysis to fill the missing part of the systematic

cryptography capabilities study of SmartNICs. A summary of the contribution and

findings of this thesis is listed as follows:

• To meet the performance of cryptographic workloads on the server, present

SmartNICs rely laboriously on architecture enhancements, e.g., cryptographic

instructions and hardware accelerators. Specifically, thanks to specially dedi-

cated instructions, ARM-based SoC SmartNICs could produce up to 25% better

throughput than servers with cryptography hashes.

• The overheads of data transmission between SmartNIC’s processor and onboard

crypto-hardware accelerator could be the bottleneck of the cryptographic oper-

ations; even the cryptographic primitives (e.g., ECC-based digital signatures)

have different sources of algorithmic optimizations. Our study shows up to 91%

slowdown for ECDSA when using the onboard accelerator.

3

• Despite the cryptography acceleration mechanisms, current SmartNICs can still

struggle with heavy data flow cryptography applications or the workload mixed

with additional tasks. For specific applications, for example, client authentica-

tion and secure web servers, we can see roughly 56% and 73% worse performance

on SmartNICs than the server CPU under high loads, even when the hardware

can provide enough bandwidth.

• The deployed location of SmartNICs, i.e., close to client devices than server

CPUs has a noticeable impact on the latency and can help accelerate crypto-

intensive distributed applications. Our study suggests that there can be up to

50% deductions on latency for packets with smaller data sizes.

This study also comes with an online repository [9] with all the configurations we

use to set up the experiments, running logs with results, and automated scripts to

reproduce every step on different platforms. Content in the repository also provides

further benchmarks, and due to the complexity, we did not show them in the thesis.

Overall, we believe our findings positively affect the design and application offloading

policies on the SmartNIC and could help make the initial move towards more in-depth

studies on how to use SmartNIC to enhance the network security applications:

• For the SmartNIC’s design, vendors could use our findings to improve the exist-

ing cryptography features and add support for potential features on the Smart-

NIC. It could also help implement hardware accelerators that could fit the

long-term benefits.

• For application’s offloading policies, our study could be used as guidance to

help build offloading engines with more rational decisions. We also provide

some lessons we learned and the future research directions that could extend

from our current study.

1.3 Thesis Outline

The remainder of this thesis structure is organized as follows: Chapter 2 is divided into

two sections, the first of which, Section 2.1, lays the foundational background required

to help interpret the work undertaken in this thesis. Next, Section 2.2 presents some of

4

the research works relevant to our work. Chapter 3 aims to systematically evaluate the

basic cryptography on the SmartNIC and compare it with the server’s performance.

Here, the overview of why there is a need to do the basic cryptography evaluation

is explained in Section 3.1. This context is then followed by how we set up our

evaluation testbed and the benchmarking tool in Section 3.2. Following these, Section

3.3 shows the three basic cryptography cipher categories we selected: symmetric

ciphers, hash functions, and asymmetric ciphers, with their evaluation and analysis,

as well as the takeaways we learned from those evaluations. Chapter 4 provides more

detailed studies based on the real-world applications, with the justifications of how the

applications are selected in Section 4.1. Following these, we have Sections 4.2, 4.3, and

4.4 for the three applications we selected: VPN tunneling, user authentication, and

secure web serving; for each section, we have a comprehensive evaluation comparison

and analysis accordingly. Chapter 5 concludes this thesis in Section 5.1 and discusses

future research directions in Section 5.2.

Chapter 2

Background and Related Work

This chapter introduces the necessary background and knowledge required to com-

prehend the work presented in this thesis. Following that, we review related work

that could help improve the understanding of the topic.

Network programmability includes various techniques (e.g., software-defined net-

working (SDN)) and hardware (e.g., SmartNIC, switch, or FPGA). It is possible to

solve different networking problems using such techniques and hardware. For example,

we can offer reliability, performance, and security in wired [10–20] and wireless [21–26]

networks using SDN over programmable switches or NICs. However, in this thesis,

our focus is on SmartNICs-based security services evaluation. Thus, we provide neces-

sary background on SmartNICs, their capabilities along with cryptographic functions

and their applications.

2.1 Background

2.1.1 SmartNIC Overview

SmartNIC is a programmable accelerator that provides many cryptograph-related

hardware accelerations and other networking features. Every server needs a NIC

to connect to the network; most of them are currently using 25 GbE and 50 GbE

connections and are rapidly moving towards 100 GbE transmission technology. The

SmartNIC is the NIC with programmable features and is widely used in the data

Table 2.1: Architectural specifications of popular commodity SmartNICs

SmartNIC model Vendor SoC CPU FPGA NPU Processor On/Off path

LiquidIO III CN96XX Marvell OCTEON TX2 ✓ Arm v8.2, 36 cores, 2.4 GHz On
Agilio LX Netronome NFP-6000 ✓ Flow Processing Core (FPC), 120 cores, 1.2 GHz On
BlueField 1M332A NVIDIA BlueField ✓ Arm Cortex-A72, 16 cores, 0.8 GHz Off
Stingray PS225 Broadcom BCM58802H ✓ Arm Cortex-A72, 8 cores, 3.0 GHz Off

DSC-100 Pensando Capri ✓ ✓
NPU: Match Processing Unit, 112 cores, 0.83 GHz
CPU: Arm Cortex-A72, 4 cores, 3.0 GHz

On: NPU
Off: CPU

Alveo SN1000 Xilinx Alveo ✓ ✓
FPGA: XCU26
CPU: NXP Layerscape LX2162A

On: FPGA
Off: CPU

5

6

center nowadays and helps enhance the central server’s networking, security, and

storage efficiency at a relatively affordable price; many cloud service providers have

already adopted it, and it definitely has more growth in the foreseeable future based on

the prediction from the industry [27]. Most SmartNIC could provide these additional

computing resources for the data center to use, and it is always used the open-

source software to utilize, so the usabilities are flexible. Those additional computing

resources have always been used to improve network package processing and help

offload some lightweight tasks that traditional networking solutions can only run on

the host CPU.

To have a more detailed view of the current SmartNIC market, we summarize

the specification of six commercial SmartNICs from major vendors in Table 2.1. A

typical SmartNIC often comes with onboard memory, accelerators (e.g., cryptogra-

phy, compression, and regular expression matching), and multiple processing cores.

SmartNIC’s memory always comes with 32 KB in L1 cache, 1 to 16 MB for L2 cache,

and in the range of 4 to 16 GB in the DRAM [28], our study omits the memory

capability for simplicity. Those processing cores in the SmartNIC could be general-

purpose CPUs, especially the ARM processor, which is the most commonly used due

to its power efficiency nature.

There are also other special purpose processors like network processing units

(NPUs), digital signal processors (DSPs), field-programmable gate arrays (FPGAs),

or even processors specifically designed for artificial intelligence (AI) tasks [2] [29] [30].

Some SmartNICs with domain-specific processors can also let programmers utilize na-

tive hardware primitives (e.g., in Micro-C or VHDL) manually to manipulate data

and achieve better processing speed. It is also common to see multi-purpose cores

packed into one single SmartNIC product.

SmartNIC accelerators are one central selling point of the SmartNIC, and they

can work really well for domain-specific processing, especially in cryptography-related

domains; for example, a previous study shows that the MD5/AES engine can produce

7.0x/2.5x faster operations than the one on the host server (even using the Intel AES-

NI instructions) [28]. Another advantage for the SmartNIC is that the position of

the SmartNIC is one step closer to the client or other hosts compared to the host

that attached the SmartNIC. In network applications, packet forwarding is not free.

7

MAC

PCIe

Processing
cores

Server

SmartNIC

(a) On-Path SmartNIC

MAC

PCIe SWITCH

PCIe

Processing
cores

Server

SmartNIC

(b) Off-Path SmartNIC

Figure 2.1: SmartNIC Architecture Comparison

SmartNIC increases network package processing capabilities and speed; it also reduces

network latency by having a shorter physical distance from the target. Moreover, we

also know that SmartNICs can process the entire protocol stack if needed, based on

one previous study [4].

Based on the network package processing or network traffic on the SmartNIC, the

SmartNIC could also categorize based on how the SmartNIC processing cores interact

with the traffic; there are two types: on-path SmartNIC and off-path SmartNIC.

Packets on the on-path SmartNIC go through the processing cores (Figure 2.1a).

This means the processor on the on-path SmartNIC has to interact with all the

packets received or transmitted by the host, which means it is more like the legacy

NIC but adds more computing power in specific domains on top of it. However, since

on-path SmartNIC needs to interact with all the packets, the hardware design needs

to balance the efficiency and functionalities; moreover, in terms of the functionalities,

improving the network-related functionalities’ performance is its priority. LiquidIO

and Agilio are examples of on-path SmartNICs.

For the off-path SmartNIC, the packets could be traveling around the processing

cores using the NIC-level switching fabric by following the forwarding rules without

8

interacting with the processing cores (Figure 2.1b). That helps to let only the packets

that need the extra computing power use the resources; furthermore, the hardware

can have more room to put in specific types of processors for certain packets without

worrying about the influence of the rest of the packets. Mellanox BlueField and

Broadcom Stingray are examples of off-path SmartNICs.

It is also possible to find hybrid designs in which the SmartNIC contains both

on-path and off-path modules; DSC and Alveo are examples of the hybrid design,

where the user could choose the best way to process its packet based on their needs,

however, the design and manufacture cost of the hardware is also higher.

2.1.2 Cryptography in Network Security

Cryptography is a broad area; our study only focuses on cryptography functions re-

lated to network applications. There are currently three main categories of cryptog-

raphy functions that are commonly used in major network applications: symmetric

ciphers, hash functions, and asymmetric ciphers.

Symmetric ciphers typically represent the cryptography that uses the same or

the simple transformation of the same cryptographic keys for both encryption and

decryption processes, thus symmetric. Therefore, in a network application, symmet-

ric ciphers are generally used to encrypt the data from plaintext to ciphertext and

vice versa. Moreover, modern symmetric ciphers are also designed with the authen-

ticated encryption with associated data (AEAD) feature, which means that the data

encryption process can simultaneously assure the confidentiality and authenticity of

the data. Commonly used symmetric ciphers include different types of AES-CBC,

AES-GCM, and ChaCha20-Poly1305, whereas AES-GCM and ChaCha20-Poly1305

are also AEAD ciphers [31].

The hash function is a cryptography operation that could map data with arbitrary

size into fixed-size values using an irreversible operation. Furthermore, a good hash

function in the security network applications always needs to satisfy two requirements:

first, the hash function operation time should be as short as possible; secondly, the

function should be one-way; thirdly, there should be as small duplications (or colli-

sions) from the outputs as possible by using two different input values; finally, the

result from the hash function should be able to pass a standard randomness test.

9

Commonly used hash functions in network security-related applications are SHA-256

and SHA-512 [32].

Asymmetric ciphers also represent the cryptography that uses a pair of related

keys. One is used as the public key, which everyone could know, and another uses as

the private key, which is only known by the owner that generated this key pair; thus,

use asymmetric key pairs to do the data encryption and decryption. Asymmetric ci-

phers were widely used for data encryption and decryption like the symmetric ciphers;

however, asymmetric ciphers are generally used exclusively for data authentication

due to some of the following security risks: first, the cryptography risks (including

all the state-of-the-art commonly used asymmetric ciphers could be mathematically

vulnerable to the quantum computer with the help of Shor’s algorithm [33] [34]),

second, the risk that developers are often making mistakes when implementing asym-

metric ciphers like RSA. Commonly used asymmetric ciphers are RSA, DSA, and

ECDSA [31].

2.1.3 Why Offloading Crypto Operations?

Cryptography operations (e.g., hashing, encryption, decryption) are often considered

computationally heavy on the server CPUs and use a considerable amount of re-

sources. Semiconductor manufacturers (e.g., Intel, AMD) often design instructions

(e.g., AES-NI) or add additional crypto-hardware accelerators based on the need to

help improve the performance. However, over time, more computing tasks are added

to the server (e.g., deep learning, video processing, and database monitoring) that

compete with the already valuable computing power on the server; this has forced

the community to explore alternative processing methods for additional workloads.

SmartNICs, on the other hand, have some advantages: First, there are a bunch of

cryptography-related processing mechanisms (as we discuss in the next section), and

the hardware performance is continuously growing. Second, SmartNICs are consider-

ably cheap to install and upgrade compared to the server in terms of price; moreover,

compared to the traditional NIC that requires close source vendor software, it is less

complex to migrate to the SmartNIC and deploy existing cryptography functions.

Third, most SmartNICs use more power-efficient processor architectures like ARM

and FPGA, with colossal software optimization potential to have even better power

10

Table 2.2: Overview of crypto-acceleration features on commodity SmartNICs

Feature

SmartNIC/
Accelerator

LiquidIO III
NITROX V

Agilio LX
Custom

BlueField
Rambus EIP-154

Stingray PS225
FlexSPARX 4

DSC-100
PenTrust + PenAccel

Alveo SN1000
Custom

AES G#
ChaCha20/Poly1305 # # # # #
RSA #
DSA # #
ECDSA/ECDH # #
SHA-256 # G#
SHA-512 G# # # #
TRNG # #

 = Crypto-hardware acceleration, G# = Processor acceleration, # = No acceleration.

efficiency shown in many studies [35] [36] [37], along with the cryptography-related

performance and deployment improvements, makes it more appealing to use as a sup-

plement in the data center. Therefore, it is reasonable to offload some cryptography-

related tasks on the SmartNIC and use it as a primary or additional source to release

the server’s pressure.

2.1.4 SmartNIC Cryptography Capabilities

Current SmartNICs support a wide range of cryptography accelerations, including

different types of symmetric and asymmetric ciphers, hash functions, and random

number generators, all of which play essential roles in network security. We have col-

lected the cryptography acceleration capabilities for the top most popular SmartNICs

on the market in Table 2.2. There are three categories of cryptography enhancement

on the SmartNIC: the crypto-hardware acceleration, processor acceleration, and soft-

ware optimizations [2].

Crypto-hardware acceleration. Most of the SmartNICs in our study support

some form of crypto-hardware acceleration [2]. Crypto-hardware acceleration is the

hardware implementation of certain cryptography operations; the acceleration is pri-

marily achieved by reducing the computing cycles for specific cryptography algorithms

on the hardware level or even making certain operations run in parallel. In general,

crypto-hardware acceleration could provide an incredible performance increase com-

pared to software optimization; it is also more power-efficient and has a relatively low

manufacturing price than optimizing a general-purpose processor [38].

Our investigation demonstrated that most production SmartNIC crypto-hardware

accelerators depend predominantly on ASIC design due to its lower price and mature

11

production line [2]. We also notice that FPGA-based accelerators on the SmartNIC

are also trending because the programmable feature could provide more functionalities

in the application and has been discussed in many other works [39] [40]. However,

we still chose to reveal only the ASICs crypto-hardware accelerator on the SmartNIC

because of its dominance in the market. The hardware integration of the ASICs

on the SmartNIC is also flexible to produce; it could be designed and embedded on

the SmartNIC by the manufacturer (e.g., NITROX V from Marvell or FlexSPARX

from Broadcom) or installed separately as a third-party module (e.g., Rambus2 [41]

modules in NVIDIA BlueField); furthermore, the communication between the CPU

and the crypto-hardware accelerator on the SmartNIC is generally using the PCIe

bus [2].

Processor acceleration. The processor acceleration is the collection of build-

in cryptography features on the SmartNIC’s CPU that come with part of the CPU

design. It usually can be accessed by using the CPU’s instruction on the ISA level.

Unlike the crypto-hardware accelerator on the SmartNIC, which often needs extra

driver support from the accelerator vendor, processor acceleration is more generic in

software development because it uses the CPU instruction set directly, which should

already be supported by the system [2].

Moreover, the program that is already written for the CPU hardware architecture

on the SmartNIC can be ported to the SmartNIC smoothly without modifications.

CPUs always have commonly used and well-established instructions built-in for those

cryptography algorithms; for example, column mixes and hash updates operations

in the AES and SHA are built-in instructions on the ARM cores [42]. Moreover,

the instruction sets vary in different processor architecture; generally, the newer one

could contain more instructions; for example, ARMv8.2 support SHA3 and SHA-512

instructions that are not available in the ARMv8 architecture [2].

Software optimizations. The cryptography performance can also improve by

doing the software optimization on the SmartNIC. Software optimization could pro-

vide performance improvement even after the hardware is released; however, it takes

more thought and effort for the developer and requires them to have a comprehensive

knowledge of the hardware architecture and how the cryptography algorithms work.

We notice that although many of the software optimizations are not targeted to the

12

SmartNIC specifically, those software optimization improvements can still provide

obvious performance gains on the SmartNIC’s cryptography functionality [2].

Those optimization improvements are mainly developed due to the popularity in-

crease of the ARM architecture in recent years [43]; furthermore, as we mentioned

previously, most SmartNICs have ARM cores build-in, so the SmartNICs have been

blessed with that trend. To be more specific, these optimizations that are cryptog-

raphy related including design better vectorized implementations [44] and optimizing

arithmetic operations (e.g., multi-precision multiplication [45]).

In general, all three categories of cryptography enhancements are important for

the SmartNIC. Crypto-hardware accelerator can always create better performance,

but it is inflexible in future upgrades, especially since more and more new algorithms

have developed and evolved over the years. Moreover, it needs more effort for the

vendor to design and test the hardware and often requires specific driver release and

maintenance from the vendor. Processor acceleration can be more recognizable, and

more developers are working on it to provide meaningful optimizations and feedback.

However, it is still part of the hardware design with less flexibility when upgraded.

Finally, software optimization always provides the best adaptability when new al-

gorithms and designs exist. Although it might have weaker performance than the

hardware accelerator, it still plays a crucial role in enhancing the SmartNIC’s cryp-

tography capabilities. Thus, there is no winner in these three categories of cryptog-

raphy enhancements. An extreme example is Apple’s A11 chip which is packed with

many custom hardware and processor accelerations; along with their own software

optimization, they have created one of the best-in-class chips based on the ARM ar-

chitecture, which requires a tremendous R&D and financial investment. Therefore,

hardware designers and software developers could use one or multiple cryptography

acceleration enhancements to achieve the best possible performance depending on the

computation demand and the budget.

13

2.2 Related Works

2.2.1 SmartNIC as a Performance Accelerator

Some of the papers provide systematic evaluations on offloading distributed appli-

cations and microservices onto the SmartNIC. iPipe [28] provides a framework for

Multicore SoC SmartNICs, which help build distributed applications. The study first

analyzes the features of the SmartNICs and concludes with a few design ideas. Their

analysis shows that the packet forwarding with different sizes needs different com-

puting cycles; therefore, the offload needs to change the decision for different packet

sizes adaptively.

Meanwhile, the hardware packet management can reduce the synchronization

overhead efficiently by providing a shared queue abstraction. Also, the offloading

framework needs to leverage the domain-specific hardware accelerator. However, it

also needs to notice that the NIC core needs to wait for the execution completion,

which creates extra latency. Another observation from their study is the performance

loss when applications use memory beyond the L2 cache. Moreover, SmartNIC can

gain performance from non-blocking direct memory access (DMA). Their iPipe frame-

work design is based on the above findings and provides a programmable and efficient

environment that could simultaneously run multiple applications.

E3 [3] focuses on offloading microservices (like the IoT hub or virtual network

functions) on the SmartNIC in order to improve the energy efficiency and the la-

tency of those microservices. The study first gives a general architecture analysis of

the SmartNIC and finds that network switching is one of the bottlenecks for letting

microservices run on the SmartNIC. In order to unleash the power of the Smart-

NICs in the data center and improve the energy efficiency and the latency of the

microservices, the researchers use the equal-cost multipath (ECMP) load balancing

to provide a high-performance host and SmartNIC communication. Besides, E3 also

uses a communication-aware microservice placement algorithm to provide the Smart-

NIC overload reduction and migration of the microservice. This study did a great

job of demonstrating the potential of using SmartNIC to accelerate the microservices;

however, there is no in-depth studies or analysis on the security and cryptography

features of the SmartNIC.

14

Other researchers study the on-path SmartNIC-accelerate solution for distributed

transactions and introduce Xenic [6]. Their solution has the following features: first,

Xenic supports a stateful offloading by its transaction commit protocol to avoid host

Remote Procedure Call (RPC) overhead or limitations of one-sided Remote Direct

Memory Access (RDMA). Xenic has a co-designed data structure to allow the data

to be stored on both SmartNIC and Server. It also supports function shipping for

the transaction logic offloading without worrying about the PCIe crossing. Xenic also

implements multi-hop NIC to NIC communication to further improve the overall pro-

tocol efficiency. The result is that they double the delivery throughput compared to

the state-of-the-art RDMA solutions by optimizing the on-path SmartNIC accelera-

tion. While this work has not touched on any aspect of the security and cryptography

acceleration of the SmartNIC, it helps us better understand the on-path SmartNIC

acceleration solution.

Researchers also tried to reduce the barrier to offloading the existing applications

onto the SmartNIC. NICA [46] creates a hardware-software co-designed framework for

the inline application acceleration in packet filtering and packet transformation. The

contribution is an inline accelerator that provides the operating system abstractions

and virtualization (with state isolation and performance isolation support) support

on the SmartNIC.

FLOEM [47] introduces a programming language with the compiler and runtime to

provide programming abstraction for the SmartNIC-accelerated applications. Their

study has three features: first, it uses the existing data-flow model to provide packet

processing. Second, it achieves parallelization of the application by using the logical-

to-physical queue mapping plus providing the per-packet state anywhere in the pro-

gram and the caching between the server and the SmartNIC. Finally, it also supports

porting the existing applications with minimum effort. Same as the previous studies

mentioned above, these studies did mention the cryptography features on the Smart-

NIC; however, security and cryptography features on the SmartNIC are not their

focus.

Some studies focus on the offloading in specific layers and protocols of the network.

The previous study provides solutions and evaluations on the layer-5 protocols for

autonomous NIC offloads [48]. Their paper talks about layer-5 protocols over TCP

15

acceleration in hardware and software. There are on-CPU and off-CPU options in

hardware acceleration, and for the off-CPU options, they compare the NIC with

other specific accelerators. Furthermore, they compare the existing dependent offloads

method with the autonomous offloads they introduce on the NIC acceleration, which

shows that the autonomous offloads can increase the performance per dollar. Their

study also chose TLS offloading for their evaluation, which is identical to our study.

However, their study focuses more on the performance aspect of the TLS offloading

on the SmartNIC, not the security aspect, and they only select the AES-GCM cipher

for the evaluation in their study.

Some other studies provide a TCP offload engine for the SmartNICs, like FlexTOE

[49]. FlexTOE provides a few benefits compared to state-of-the-art solutions. First of

all, it has removed all the TCP stack overhead via data-path offload to avoid control

logic and cache on the NIC. Compared to the in-kernel and kernel-bypass solution,

the data-path offload solution could save memory usage because it does not need to

have the heavy instruction and instruction cache as well as reduce the overall CPU

cycles. Secondly, it separates the TCP data path into modules to make it flexible

and easy to modify for data center usage and future upgrade; this is a significant

advantage for the data center to adopt the offload design compared to the previous

inflexible offload methods. Finally, it uses all possible TCP process parallelization to

boost the throughput of the overall design.

A study also focuses on analyzing QUIC protocol and methods to offload it onto

the SmartNIC to improve the speed [50]. Unlike previous works, which only focus on

the cryptography aspect of the QUIC protocol offload, they evaluate all aspects and

separate them into four parts: cryptography, connection setup and tear-down, ACK

and packet reordering processing, and packet I/O with header formatting. Their

study shows two expensive parts in the overall QUIC protocol, the kernel data copy

action and the cryptography operations. They then show three suggestions on how to

improve the QUIC protocol speed.

The first one is to offload the AEAD cryptography operations onto the SmartNIC;

the second is to reorder the decrypted packet to reduce the memory usage and improve

the processing speed; Finally, hold the control operations on the server to prevent

overstressing the SmartNIC. While this study mentioned the cryptography operations

16

inside the QUIC protocol, it focuses more on the overall performance of improving the

QUIC protocol with the SmartNIC. This study helps us have a better understanding

of how SmartNIC can improve the performance of UDP-like protocols.

There is also a study on analyzing the potentiality of offloading load balancers

on the SmartNIC [4]. Their design includes the following features: a lightweight net-

working stack to provide a state machine, connection setup, and packet processing

functionalities. A lightweight shared data synchronization supports both L4 (trans-

port layer) and the L7 (application layer) load balancer. Moreover, the study also

considers the hardware accelerator for the SmartNIC, including the packet rewrite

engines and cryptography accelerator. Their study evaluated the load balancer hash

table’s performance and compared it with the server x86 architecture; in compari-

son, SmartNIC’s actual performance is always higher than the generic performance

in ratio. Sometimes, the performance could even overcome the server CPU. This

evaluation result matches the founding of our study, and our study gives a further

explanation of why this happens.

Another study LineFS [5] provides an implementation of offloading a distributed

file system (DFS) on the SmartNIC. The current solutions for DFS require the DFS

service and the actual applications running on the same host, which means they share

the same CPU and memory resources. In this situation, the performance for both

DFS and applications can be slowed down dramatically when running CPU-intensive

tasks. Therefore, offloading DFS on the SmartNIC can solve this problem. However,

there are two main challenges: first, the latency to offload tasks on the SmartNIC

is relatively higher than the host’s direct memory access; second, the SmartNIC has

slower performance than the host server. They use two design principles to overcome

this shortage. The first solution is to offload only the non-latency-critical task onto

the SmartNIC; this could reduce the latency influence of the offloading process. The

second solution is to use pipeline parallelism to improve the overall throughput of

the DFS service. The result shows that the LineFS solution has a better throughput

than the state-of-the-art solutions with lower latency.

Other than ARM-based SmartNIC, there are also studies on FPGA-based Smart-

NIC, and some of their research methodologies could also help our studies. hXDP [51]

17

tries to reduce the barrier to implementing software in an FPGA-based NIC by mak-

ing it easy to use and using as few FPGA resources as possible. Their approach

uses the eBPF infrastructure and recreates it onto the FPGA so that people can run

Linux’s eXpress Data Path (XDP) on FPGA. In order to achieve that, they created

the hXDP, which includes the compiler to translate the XDP program, it has a mod-

ule to extend ISA with some other optimizations, and it has the tool on the FPGA

to communicate with XDP programs. They achieve a closer performance on average

instructions per cycle than the x86 platform with low hardware resource use and bet-

ter latency. This research helps us have a better understanding of the FPGA-based

SmartNIC though it is not the focus of our research.

Other than utilizing only the SmartNIC to perform network acceleration, other

studies try to create an in-network load balancing tool on both the programmable

switch and the SmartNIC to improve the overall network application performance.

Study [52] introduces an accelerator-aware in-network load balancer called P4Mite,

which helps distribute the traffic among the server CPUs and the SmartNICs, or even

other types of accelerators. There are two outstanding features P4Mite provides.

First, P4Mite can work well in a heterogeneous system; it actively monitors and

collects the load statics from all the devices it manages so that the appropriate amount

of traffic can be delivered to the desired computing units accordingly based on their

resources. Another feature is that P4Mite tries to improve the performance and

utilize the switch’s memory space by relying heavily on hashing and bit mapping.

This study shows us the potential for network application performance improvement

by designing the system, combing servers, SmartNICs, and other network devices.

2.2.2 In-network Cryptography

Some researchers are also studying the crypto-related aspect of SmartNIC or network

devices. sRDMA [7] stands for secure Remote Direct Memory Access (RDMA). This

study tries to build the enhancement of the SmartNIC’s Remote Direct Memory

Access with efficient authentication and encryption. sRDMA fills out the gap that

there is no commonly used security protocol (like IPsec or TLS) support for InfiniBand

Architecture (IBA). The sRDMA supports header and packet authentication, payload

encryption, and memory protection. It can be backward compatible with the legacy

18

protocol and can be easily ported to new hardware.

It can prevent eavesdropping and man-in-the-middle attacks and the replay attack

that the IPsec protocol cannot do by default. In addition to that, sRDMA integrates

with the Protection Domain (PD) level keys so that it does not need to have a key

overhead for each connection, thus reducing the memory overhead. It also provides

extended memory protection to ensure the security of one-side communication. They

also evaluate the latency and bandwidth performance for SHA-256, SHA-512, AES-

128, and ChaCha20-Poly1305 in sRDMA.

Their latency evaluation is divided into header authentication only and full packet

security. One finding from the experiment is that comparing those two results, they

found that payload authentication is more expensive than header authentication.

Moreover, AEAD inside the full packet security shows a faster latency increase when

payload size increases compared to other choices because AEAD not only provides

authentication but also needs more data encryption/decryption when payload size

gets larger. They also evaluate the write and read bandwidth for the header authen-

tication, packet authentication, and AEAD. The result shows that all cipher-based

algorithms could achieve line rate in bandwidth by using more cores for header and

packet authentication (besides SHA-512 for the packet authentication) with the best

performance from ChaCha20-Ploy1305, and AES has the best performance for AEAD.

This study has a detailed analysis of some of the SmartNIC’s cryptography features;

however, it can only apply to the RDMA-supported SmartNICs.

Moreover, the previous study already tried to analyze and improve a single security-

related protocol, like TLS, on the SmartNIC [8]. Their study focuses on improving the

overall throughput of the TCP connection setups by offloading the TLS handshake

onto the SmartNIC and the other remaining operations on the Server CPU. The idea

is based on the presumption that a modern x86 CPU (for example, with the help

of AES-NI) can have better performance for the TLS data packets encryption and

decryption than the TLS handshake, which is mostly about public-key cryptography

operations.

Moreover, their study reduced the TLS handshake managing complexity by di-

viding the TCP connection into two stages: the first step is to have a stateless TCP

connection setup with an SYN cookie solution. Secondly, provide a client-side API

19

to handle the key exchange phase packet loss and retransmission. Furthermore, to

stop the SmartNIC from overloading, their setup stops TLS handshake offload on

SmartNIC with a high load. Their evaluation shows a promising 5.9x throughput

improvement compared to a single CPU core. While this study compares some of

the AES and RSA ciphers in the TLS, our study further illustrates more general and

thorough results in basic cryptography and security-related applications.

There is also a study about cryptographic hashing on the P4 data plane in Smart-

NIC and FPGA devices [53]. This study proposes the implementation of crypto-

graphic hash functions in P4 platforms to solve the issue that the current P4 plat-

form does not have this type of support. Their prototype runs on three types of

hardware, CPU (t4p4s), NPU (from a SmartNIC), and FPGA. Their result shows

that the CPU solution is highly extensible with more library support but can create

more latency than others; the SmartNIC-based solution can have higher throughput

on smaller message sizes, but not for the larger ones. Moreover, the FPGA solution

has more potential in terms of low latency, but it lacks library support in the cur-

rent stage. This study only explores the cryptography hashing performance for the

domain-specific language P4 targeted devices.

Besides the in-network cryptography studies on the SmartNIC, other researchers

also implement some of the commonly used functions onto the programmable switch

and boost up and analyze the performance of those implementations.

One study presents P4-EncKV, which uses the programmable switch to accel-

erate the encrypted data store [54]. Their study designed an in-network proxy for

encrypted key-value stores that improve the query speed and saves bandwidth while

maintaining the existing security features. P4-EncKV tries storing different length

values into a set of register arrays and reconstructing the value later using the match-

action table. Right now, they demonstrate their proof-of-concept design with reduced

about 20-25% latency. This study does not directly improve the cryptography algo-

rithms; instead, they tried to improve the network security operation on the network

device, which gives us a different way of thinking about improving the secure network

application performance.

P4-IPsec [55] implement IPsec in P4-Based Software-defined networks. IPsec is

a complex and widely used protocol, the complexity of IPsec protocol can increase

20

even more in dynamic and multi-peers setup, like most enterprise and extensive or-

ganization networks will face. Implementing IPsec on a P4-based SDN can reduce its

complexity and improve scalability. Their design tries to be as minimalist as possible,

and there are some worth noticing features.

Most IPsec setup uses Internet Key Exchange (IKE) protocol to authenticate both

peers and set up a secure channel for key exchange. It also helps negotiates security

associations like cryptographic algorithms, encryption keys, and other information

necessary for secure communication. In contrast, the first thing P4-IPsec tries to

simplify the design is to use an IKE-less implementation, which avoids IKE message

exchange and uses the SDN controller as a substitution to set up and renew the

unidirectional IPsec tunnel. Secondly, they use the P4 externs to implement the

P4-IPsec’s cipher suites to reduce the latency created by loading it onto an external

process. The result shows that deploying P4-IPsec has a negligible impact on the

goodput of the P4 target data plane, and the latency impact on the control plane

is also relatively small. This study proves the concept of implementing IPsec on the

P4 programmable data plane; however, missing features on the hardware, especially

cryptography support, is still the bottleneck for current P4 switch hardware.

One study implemented a pre-computed scrambled lookup table with AES en-

cryption on the programmable switch [56]. This study was inspired by the previous

AES optimization studies on embedded devices. Moreover, the researcher noticed

that programmable switches and other embedded devices all have similar memory

and computing constraints; however, compared to the embedded devices, the pro-

grammable switch has a relatively larger memory which is possible to store the lookup

table. After using the scrambled lookup table, the operation for AES can be reduced

to two stages per round in theory, with one lookup and one XOR operation. In prac-

tice, their work only occupied less than 15% SRAM on the Tofino v1 and negligible

utilization of other resources. However, the performance and power consumption are

not ideal due to the lack of AES hardware accelerator on a programmable switch; it

could not even compete with cheaper x86 laptops with AES-NI hardware accelerator.

SipID [57] is an implementation of HalfSipHash on the programmable switch.

Hash functions are commonly used in data plane application development, like, in-

dexing, fingerprinting, or sampling; however, developers are forced to use CRC32 hash

21

in most cases due to hardware limitations. On the other hand, there are secure hash

functions, like SHA256, but they are computationally expensive and complicated to

implement on a programmable switch. Unlike those mentioned above, HalfSipHash

balanced the computation complexity with the security.

SipID improves the performance in two directions, first, reducing the arithmetic

operations to only slicing bits and copying the value to a new variable; second, re-

ducing the pipeline stages to only four per SipRound. Their result shows that SipID

can handle more than 300 million hashes per second for 8-bytes input, and it is more

than enough to replace the current CRC32 hash function. The study also evaluates

combined ingress and egress pipelines to reduce overhead; the maximum hash rate for

the ingress and egress design can be three times faster than the ingress-only design.

The studies of cryptography implementations for programmable switches showed us

the probability of doing more secure cryptography operations in-network. However,

most of the results are not compatible even with the consumer-level devices, needless

to say, the data center level’s server. The main reason is the lack of cryptography

hardware accelerators on the programmable switch. On the other hand, the crypto-

related hardware accelerators are commonly installed on the SmartNIC, making it

have better potential than the programmable switch.

2.2.3 Cryptography performance.

We also checked out other studies on cryptography performance evaluation. There

are cryptography performance evaluations on different types of hardware.

First, we take a look at cryptography performance analysis on IoT devices. This

study has a detailed analysis of the crypto-hardware in low-power and resource-

constrained IoT devices [58]. They evaluate the cryptography support in the op-

erating system as well as the cryptography hardware and software performance. To

be more specific, their system can split into three levels of cryptography acceleration:

full hardware, partial hardware, and purely software acceleration. Furthermore, they

have tested their design on cipher hardware and external accelerators.

Their evaluation shows that hardware accelerators can significantly improve the

cryptography process. For short inputs, the ciphers with hardware accelerators can

gain 4 to 6 times of improvement, and the hashes can gain 2 to 3 times of progress.

22

However, the hardware control overhead can have a significant influence on short

inputs. Whereas long inputs can improve, with 10 to 30 times gain on ciphers and

5 to 10 times earn on hashes; moreover, the external hardware accelerator creates

much overhead. The external hardware accelerator consumes more energy than both

on-chip hardware and software implementation, which is about 13 to 25 times more.

The other study introduces a secure Message Passing Interface (MPI) library for

High-Performance Computing (HPC) applications in data center and cloud services

[59]. Their work is based on OpenSSL, BoringSSL, Libsodium, and CryptoPP; they

first evaluate these four libraries and finds that all libraries have different encryption

overheads.

The study did the benchmarks in the following aspect. The first aspect is encryption-

decryption; this is the preliminary evaluation of the cryptography performance of

each library with different message sizes. The second is ping-pong, which measures

the throughput when two sides communicate with each other back and forth. The

third is the OSU benchmark, a micro-benchmark to test multiple network features,

including bidirectional bandwidth, multi-threaded latency, and more; their study uses

the OSU test suite to measure the throughput when multiple senders and receivers are

in uni-direction. Finally, they considered NAS parallel benchmarks, the benchmark

for evaluating the performance of highly parallel supercomputers (at least 1000 pro-

cessors); this study used this benchmark specifically for their network cryptography

performance. After that, they use the Hockney and max-rate models to model MPI

communication, two commonly used communication performance models to help de-

velop and evaluate parallel algorithms in high-performance computing. This study

uses those two models to accurately predict the encrypted model performance so

that other people can estimate the performance of the cryptography process without

actually testing it.

Those two studies related to the cryptography performance evaluation above help

us understand how researchers select and set up experiments on other types of network

devices. Moreover, those studies provide background knowledge for us when we select

the suitable cryptography library and measurement matrics for our case studies.

To summarize, Table 2.3 lists all related works and their contribution compared to

ours. Many works focus on offloading different types of applications on the SmartNIC;

23

Table 2.3: Related work studies comparison

Symmetric ci-
phers analysis

Hash functions
analysis

Asymmetric
ciphers analy-
sis

Cryptography
and security
related web
applications’
performance
evaluation
comparison

SmartNIC
architecture
(on-path / off-
path) analysis

General web
services ac-
celeration or
offload analy-
sis

Our Study [2]
iPipe [28] # # # G#
E3 [3] # # # #
Xenic [6] # # # #
NICA [46] # # # #
FLOEM [47] G# # # # #
Pismenny et al. [48] # # # G#
FlexTOE [49] # # # #
Yang et al. [50] # # # G# #
Cui et al. [4] G# G# # # #
LineFS [5] # # # #
hXDP [51] # # # #
Tajbakhsh et al. [52] # # # # G#
sRDMA [7] G# G# # # G# #
Kim et al. [8] G# # G# G# #
Scholz et al. [53] # G# # # # #
Kuzniar et al. [54] # # # G# #
P4-IPsec [55] # # # G# # #
Chen [56] # # # G# # #
Yoo et al. [57] # G# # # # #
Kietzmann et al. [58] # # #
Naser et al. [59] # # # G# # #

 = Well-addressed in the analysis, G# = Mentioned in the analysis, # = Not mentioned in the analysis.

few need cryptography features on the SmartNIC, so they have some analysis; how-

ever, there is no state-of-the-art study for a systematic evaluation of the SmartNIC’s

cryptography capabilities. Other researchers study the cryptography capabilities of

the other types of network devices, like the programmable switch and IoT device,

and deploy security features on those devices. We believe that SmartNIC also has

the potential to embed and enhance the cryptography and security capabilities of the

network by leveraging its growing computing resources.

Chapter 3

Basic Cryptography Performance on SmartNIC:

Design and Evaluation

3.1 Overview

The state-of-the-art research does not systematically address the SmartNIC’s cryp-

tography; moreover, most SmartNIC manufacturers only list all the cryptography

accelerator features without their actual performance benchmark. Digging into the

essence of the security application can help us have a more precise understanding of

the performance of the SmartNIC. Thus, our study focused on evaluating the basic

cryptography performance first on the SmartNIC before we start doing more studies

on complex applications. Furthermore, we want to compare the performance of cryp-

tography operations on the SmartNIC with the server to see the performance gap

between both types of hardware. We also want to know what SmartNIC’s comput-

ing power and other hardware features could we utilize to help enhance the overall

security operations of a network infrastructure.

3.2 Evaluation Setup

Our basic cryptography evaluations work on a single server and single SmartNIC.

Our experiments on the single server containing a 10-core Intel Xeon Silver 4210R

2.40 GHz CPU with 32 GB of DDR4 DRAM. The server’s operating system runs

Ubuntu 20.04.1 LTS with the Linux kernel version 5.4.0; additionally, the hardware

supports AES-NI instructions [60]. For the attachment of the server, it is equipped

with a two-port 25 GbE Mellanox BlueField SmartNIC containing a 16-core ARMv8

Cortex-A72 0.8 GHz processor and 16 GB of DDR4 DRAM. The SmartNIC also runs

a modified version of Ubuntu 20.04 LTS with a custom build Linux kernel provided

by Mellanox (version 5.4.44-mlnx.14.gd7fb187) [61].

The tool we are using for the cryptography algorithms’ performance benchmarking

24

25

on the SmartNIC is OpenSSL Speed (version 1.1.1f) [62]; it is benchmarking tool

integrated into OpenSSL. OpenSSL is one of the most widely used cryptography

libraries, and it is open-source. It features a variety of implementations of basic

cryptography functions, and it is available on almost all modern operating systems

(Linux, macOS, and Windows) with active development. Our experiments test out

the performance of different cryptographic algorithms on both the server and the

SmartNIC with three classes of commonly used algorithms: symmetric ciphers, hash

functions, and asymmetric ciphers. We then select the representative of each class of

algorithms to evaluate its performance; thus, we could compare the results of different

classes according to the main algorithm’s perspective.

To be more specific. For the symmetric ciphers, we evaluate how much the data

size that algorithms could perform encryption and decryption per second, and we

have done our evaluation with different message sizes. We have similar setups for hash

functions as the symmetric ciphers; we evaluate the data size of the hash that could

process per second, and we have tested each evaluation with the hash on different sizes

of the message. For asymmetric ciphers, our study evaluates the sign and verify speed

for different types of asymmetric ciphers with different key lengths. To simplify the

problem and eliminate the influence of multi-threading on cryptography operation’s

performance, each experiment in our study runs on a single thread. We also make sure

to reset the operating system environment the benchmark tool is running to eradicate

the influence of other factors. Moreover, to make the evaluation more accurate, the

results are calculated from an average of 10 repetitions.

3.3 Results and Discussion

3.3.1 Symmetric ciphers

Our first evaluation is for the symmetric ciphers on different hardware. Our study

selected the three most commonly used symmetric ciphers: AES-256-GCM, AES-

256-CBC, and Chacha20-Poly1305. AES is commonly seen in the personal computer

or more powerful hardware, such as the server. The reason is that most modern

hardware nowadays has the hardware accelerator for AES, which could dramatically

increase the speed of doing AES operations. To be more specific, AES-GCM is yet

26

 0

 0.5

 1

 1.5

 2

 2.5

 3

16 64 256 1024 8192 16384

Th
ro
ug

hp
ut

 (
GB

/s
)

Message size (bytes)

SmartNIC
Server

(a) AES-256-CBC

 0

 0.5

 1

 1.5

 2

 2.5

 3

16 64 256 1024 8192 16384

Th
ro
ug

hp
ut

 (
GB

/s
)

Message size (bytes)

SmartNIC
Server

(b) AES-256-GCM

 0

 0.5

 1

 1.5

 2

 2.5

 3

16 64 256 1024 8192 16384

Th
ro
ug

hp
ut

 (
GB

/s
)

Message size (bytes)

SmartNIC
Server

(c) ChaCha20-Poly1305

Figure 3.1: Symmetric Cipher Throughput Comparison (Encryption)

 0

 0.5

 1

 1.5

 2

 2.5

 3

16 64 256 1024 8192 16384

Th
ro
ug
hp
ut

 (
GB

/s
)

Message size (bytes)

SmartNIC
Server

(a) AES-256-CBC

 0

 0.5

 1

 1.5

 2

 2.5

 3

16 64 256 1024 8192 16384

Th
ro
ug
hp
ut

 (
GB

/s
)

Message size (bytes)

SmartNIC
Server

(b) AES-256-GCM

 0

 0.5

 1

 1.5

 2

 2.5

 3

16 64 256 1024 8192 16384

Th
ro
ug
hp
ut

 (
GB

/s
)

Message size (bytes)

SmartNIC
Server

(c) ChaCha20-Poly1305

Figure 3.2: Symmetric Cipher Throughput Comparison (Decryption)

the most common cipher for the TLS suite [63] [64], which people use that daily when

they surf the web or use the web application. It is widely adopted because of the

increasing popularity of AEAD (Authenticated Encryption with Associated Data).

On the other hand, the usage of AES-CBC is fading out due to its security concerns

and the implementation difficulty with MAC-then-Encrypt mode; however, it still has

a notable amount of market share in web applications [65].

ChaCha20-Poly1305 is also an AEAD algorithm, and it is more lightweight than

AES-GCM in a fair comparison; however, AES has a much cheaper hardware ac-

celeration solution to boost the performance on most modern servers and personal

computers. That being said, ChaCha20-Poly1305 still stands out with its lower bat-

tery usage than AES-GCM. Since mobile and IoT devices have limited space to add

hardware accelerators and desire to increase the battery life, ChaCha20-Poly1305

could benefit those limited resources hardware [66]. As part of the AEAD’s feature,

both AES-GCM and ChaCha20-Poly1305 can provide authenticated encryption, and

they also both work at the 256-bit security level [2]. Symmetric ciphers are mainly

used for data encryption and decryption; therefore, we did our evaluation for both

accordingly.

Data encryption. Our study analyzes the symmetric cipher’s data encryption

27

throughput (in GB/s) comparison with different message sizes, and all the results are

plotted in Figure 3.1. Our results indicate that for data encryption with symmetric

ciphers, the server’s performance is always better than the SmartNIC; this behavior

is expected because the server’s processor has higher performance on paper than

the SmartNIC’s. Moreover, the lack of hardware acceleration support for symmetric

ciphers on the SmartNIC could also be a critical factor influencing the result. One

study by Cui et al. [4] uses LiquidIO that support hardware acceleration for symmetric

ciphers, and the SmartNIC’s performance for AES algorithm is more than 2x faster

compared to the server when processing larger packets (1024B or larger). Thus, it

indicates that the SmartNIC with hardware accelerator can outperformance the server

in some scenarios.

Our result shows that when we compare different cipher types on the server, the

throughput for AES-GCM and ChaCha-Poly1305 can significantly (up to 5x) exceed

AES-CBC. This result is mainly because AES encryption with CBC mode is based

on a serialized process, which means that each block that needs to be encrypted is

processed one after another in a sequence. On the processor level, when doing the in-

struction pipelining, the pipeline needs to stall and wait for the block encryption com-

plete [8]. Our result also indicates that AES-GCM is faster than ChaCha-Poly1305

because the former cipher can utilize the processor-level cryptography extensions (e.g.,

AES-NI instructions) [2].

On the other hand, SmartNIC has different trends in terms of the encryption

performance using AES-CBC cipher, and we believe there are two reasons for that.

One reason is that the instruction parallelism works much better on x86 than the

SmartNIC’s processor (i.e., ARMv8), which could have a noticeable impact on the

stream ciphers. Specifically, Intel AVX-512 instructions [67] could provide SIMD

(Single Instruction, Multiple Data) support up to 512-bit, which indicates how many

multiple data points it could process simultaneously; in contrast, ARMv8 NEON [68]

allows at most 128-bit parallelism. The other reason is that AES-CBC does not

have integrity protection build-in, which is one of the default features for AEAD

algorithms like AES-GCM and ChaCha-Poly1305. Therefore, AES-CBC is a missing

separate message authentication step that uses hash on the algorithm’s output and

thus reduces the algorithm’s overall encryption time.

28

Data decryption. Our measurement of the symmetric cipher’s data decryption

throughput (in GB/s) comparison with different message sizes is present in Figure

3.2. Our result shows the same trends from most algorithms’ performance compared

to their encryption counter results; however, the performance of AES-CBC gives

different results, with respectively up to 50% and 312% higher throughput on the

server and SmartNIC [2]. Compared to AES-CBC encryption, the decryption process

could effectively operate parallel, which makes a noticeable improvement with the

help of pipelining on both server and SmartNIC, and also further helps the x86 to

take advantage of their architecture enhancements [69].

Takeaways

• For symmetric encryption/decryption algorithms with sequential operations

(e.g., AES-CBC encryption), the multicore SoC SmartNICs can perform more

closely than the server.

• On the other hand, for other types of symmetric algorithms that could benefit

from the processor’s parallelism, the task offloading is not worth it; the server’s

CPU could easily outperform the SmartNIC’s CPU.

3.3.2 Hash functions

Next, our study focuses on the evaluation of cryptographic hash functions. In this

work, we have selected two of the most widely used cryptographic hash functions:

SHA-256 and SHA-512 [64] to have their performance comparison. Cryptographic

hash functions are commonly seen and fundamental for modern cryptography; some

applications include data integrity verification or message authentication, quick and

efficient data lookup with the hashtable, and even the proof-of-work in digital cur-

rencies (e.g., Bitcoin) [70].

Hash functions throughput (in GB/s) comparison result for SHA-256 is present

in Figure 3.3. Our result shows that the throughput increases when the message size

gets larger; this behavior is expected since hashing larger messages in a stress test

means that there are fewer system interactions. Moreover, our study suggests that

hash functions are relatively efficient in modern hardware, and the interaction with

29

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

16 64 256 1024 8192 16384

Th
ro

ug
hp

ut
 (

GB
/s

)

Message size (bytes)

SmartNIC
Server

Figure 3.3: SHA-256 Hash Algorithm Throughput Comparison

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45
 0.5

16 64 256 1024 8192 16384

Th
ro

ug
hp

ut
 (

GB
/s

)

Message size (bytes)

SmartNIC
Server

Figure 3.4: SHA-512 Hash Algorithm Throughput Comparison

the system (e.g., memory allocations) can have a noticeable time cost, thus leading

to the figure’s result [2].

One interesting trend in our result is that for messages greater than 1 KB, the

SmartNIC’s throughput could surpass the server. The hash computations acceler-

ation on the ARMv8 processors, one of the cryptographic instructions, is the main

30

contribution to this result [71]. However, this advantage does not appear on the Intel

Cascade Lake CPU used in our test. Our study found that the successor versions

of Intel Xeon processors (e.g., Ice Lake and Rocket Lake architectures) have also

included the support for SHA instructions [72], which in theory could improve the

throughput.

Figure 3.4 shows the throughput (in GB/s) comparison result for SHA-512. The

result for SHA-512 does not have the same trend as SHA-256; performance on the

server is substantially higher than the SmartNIC for all message sizes. This differ-

ence is mainly influenced by the lack of dedicated instructions on ARMv8 processors

for doing the SHA-512 operations; furthermore, the instruction that supports SHA-

512 operations has been introduced to ARM instruction sets starting from the later

ARMv8.2 [71].

Additionally, our result shows that the performance of SHA-512 on the server

can be up to 49% higher for 16 KB messages compared to SHA-256, which shows

a widely noticed trend on the 64-bit x86 machines [73]. The main reason is that

on 64-bit arithmetic units, the SHA-512 algorithm could be processed with fewer

round operations per byte when accomplishing a continuous input. More specifically,

our study addresses that there are 80 rounds over 128-byte blocks for the SHA-512

operations against 64 rounds over 64-byte blocks for the SHA-256 operations when

adopting 64-bit arithmetic [2]. Eventually, that summarizes into fewer instructions

execution for the same amount of data input; thus, SHA-512 shows better performance

on the x86 machines.

Takeaways

• To achieve a better crypto-hashing performance, modern SmartNICs depend

extensively on architecture enhancements or processor cryptography accelera-

tions, like cryptography instructions. Therefore, when designing the task of-

floading for secure hash-related programs, the SmartNIC’s architecture needs

to be considered, as well as the running state and workload characteristics.

• On the other hand, crypto-hash is a relatively lightweight yet essential cryp-

tography operation; the energy cost per operation should also be an important

factor when performing the task offload. SmartNICs are generally designed to

31

be more power-efficient compared to the server.

3.3.3 Asymmetric ciphers

Another evaluation in our study is to compare the server’s and SmartNIC’s per-

formance when using various asymmetric ciphers, sometimes known as public-key

primitives. The name for asymmetric cipher comes from the asymmetric features in

the cryptographic system. Asymmetric ciphers commonly use a public/private key

pair with a one-way function, where the data processing with the one-way function

by one key can only be retrieved by using the one-way function with another key. No-

tice that although, in theory, those functions used by asymmetric ciphers should be

one-way functions, in practice, we usually use theoretically two-way functions but are

extremely hard to compute in one-way. Message authentication (or digital signature)

and key exchange tasks are the most common applications for asymmetric ciphers.

Our detailed explanation about all ciphers we used with some of their features ad-

dressing below, and we first start our investigations with message authentication.

Table 3.1: Asymmetric Cipher (ECDSA) Throughput Comparison (Sign)

Curve SmartNIC SmartNIC (PKA) Server

P256 4884.945 452.61 32165.32
P384 117.775 220.835 717.455
P521 45.185 109.67 2333.695

Table 3.2: Asymmetric Cipher (ECDSA) Throughput Comparison Table (Verify)

Curve SmartNIC SmartNIC (PKA) Server

P256 1517.73 217.845 10499.085
P384 162.695 103.575 942.01
P521 64.885 51.48 1180.115

Message authentication. To perform authentication with the asymmetric ci-

pher, a sender first creates a digital signature by combining the message with a private

key, which is then verified by the receiver using the sender’s public key. RSA, prime

32

101

102

103

104

105

106

ds
a2
04
8

rs
a2
04
8

rs
a4
09
6

ec
ds
ap
25
6

Si
gn

 s
pe
ed

 (
si

gn
/s

)

Cryptographic algorithm

SmartNIC
SmartNIC(PKA)

Server

Figure 3.5: Asymmetric Ciphers Throughput Comparison (Sign)

field DSA, and elliptic-curve DSA (ECDSA) are the most extensively used digital

signature algorithms today, and those algorithms are all widely embraced in Internet

protocols, like TLS and SSH [74] [75]. The security of RSA is based on the factoring

problem, where it is practically challenging to factorize the given number into two

large prime numbers. While the security of (EC)DSA is based on the discrete loga-

rithm problem, currently, there are no efficient methods to solve those problems. Our

experiments evaluate RSA and DSA with key sizes above 2048 bits as those are the

minimal sizes presently advocated by the NIST [76]. Notice that since ECC ciphers

require smaller key sizes to achieve the same level of security as RSA, our test uses

256-bit keys for a fair comparison for ECC ciphers.

33

101

102

103

104

105

106

ds
a2
04
8

rs
a2
04
8

rs
a4
09
6

ec
ds
ap
25
6

Ve
ri

fy
 s
pe
ed

 (
ve

ri
fy

/s
)

Cryptographic algorithm

SmartNIC
SmartNIC(PKA)

Server

Figure 3.6: Asymmetric Ciphers Throughput Comparison (Verify)

Figure 3.5 shows the signing throughput for three authentication algorithms setup

in our analysis for both the server and SmartNIC. Notice that PKA stands for Public

Key Acceleration, the software package provided by the manufacturer of our Smart-

NIC to utilize the hardware public key accelerator; on the figure, PKA indicates

that the hardware accelerator is turned on [2]. Unlike past research, e.g., [8], which

utilizes a less powerful server in their study, our server result shows a significant per-

formance advantage in all cases we investigated (more than 10x better depending on

the scenario). As a result, even in the presence of crypto-hardware accelerators on the

SmartNIC, the server layout (e.g., CPU and memory architecture) is still a crucial

factor influencing whether or not to offload public-key operations to SmartNICs.

34

One thing worth noticing is that the performance of using CPU-based processing

for ECDSA is better than using a crypto-hardware accelerator on the SmartNIC.

Our study found two factors that could influence this result: firstly, there are data

transfer costs when processing tasks using the hardware accelerator; this overhead

in transferring and synchronizing the data could become the bottleneck of the over-

all performance; secondly, recent ARM processor core optimizations for supporting

elliptic curves (especially NIST P-256 curves) have made their cores considerably

faster [77]. Therefore, to better understand this result, we did more tests and created

Table 3.1 to compare message signing performance with various elliptic curves on

the server and SmartNIC. From the result, we can see that, for curves with bigger

key sizes (e.g., up to 2.4x for the NIST P-521 curve), utilizing the crypto-hardware

accelerator can still outperform the CPU on the SmartNIC.

Our evaluation also includes the signing performance comparison, and the result

is demonstrated in Figure 3.6. Our evaluation illustrates that the server not only

demonstrates a better message signing performance but also delivers signature veri-

fication throughput. More specifically, for non-ECC-based ciphers, such as 2048-bit

DSA, 2048-bit RSA, and 4096-bit RSA, the server can verify up to 9.3x, 11.1x, and

10x more messages per second than the SmartNIC employing crypto-hardware ac-

celerator. Unlike signing, where ECDSA’s throughput is generally higher than other

asymmetric ciphers we tested with the same setup, ECDSA’s message verification

performance was comparable to that of non-ECC-based ciphers. However, we notice

that for the scenario where the SmartNIC utilizes the crypto-hardware accelerator,

ECDSA with curve P-256 gives an 81% worse performance than 4096-bit RSA. Our

evaluation also includes the message verification performance comparison with differ-

ent elliptic curves in Table 3.2. From the table, we can see that the crypto-hardware

accelerator (PKA) is losing its advantage in all the cases, suggesting that the soft-

ware optimizations on the ARM architecture mentioned above significantly impact

the SmartNIC CPU utilization and improve the performance.

Key exchange. Key exchanges with the asymmetric ciphers are used to share

secrets between two or more communicating parties. Historically RSA and prime field

Diffie-Hellman (DH) has been the priority choice for the key exchange. However, due

35

101

102

103

104

105

P256 P384 P521

Th
ro

ug
hp

ut
 (
op

/s
)

ECDH curve type

SmartNIC
SmartNIC (PKA)

Server

Figure 3.7: ECDH Throughput Comparison

to the complexities of implementing RSA and some other security concerns, elliptic-

curve Diffie-Hellman (ECDH) has become increasingly popular, and a predominant

option in the state-of-the-art solutions [78]. ECDH is a variant of Diffie–Hellman

protocol that uses an elliptic-curve group; specifically, it involves two parties creating

an elliptic-curve public/private key pair and distributing it over an insecure channel.

The shared secret can then compute on both sides using this key exchange method

by combining the received key with their own (private) one; this shared secret can

then be used directly as a key or generate another key based on this secret. Other

studies suggest that NIST P-256 is still the most commonly used curve so far, but

P-384 and P-521 are also becoming popular choices in some of the commonly used

modern applications like TLS connections [74] [78].

Figure 3.7 shows throughput compersion for running ECDH with different curve

types on both server and SmartNIC. According to our evaluation, the server outper-

forms SmartNIC in all cases (up to 18x for curve P-521 compared to the SmartNIC

with crypto-hardware accelerator setup) [2]. Moreover, as the key size grows, the

ECDH’s performance decreases as we expected on the SmartNIC since the larger key

size requires more operations to process [79]. However, the server does not follow this

36

trend; instead, the performance relies on the optimizations supported by the proces-

sor [2]. For example, one study [80] recently optimized the NIST P-256 and P-521

curves for x86 processors, and those support has been added to OpenSSL. When

compared to original OpenSSL implementations, these enhancements yield signifi-

cant speedups. Thus we could see a better outcome for the P-256 and P-521 curves

compared to the P-384 curve on the server.

Takeaways

• The algorithmic improvement and optimization of the cryptographic primitives

could, in some cases, outperform the crypto-hardware accelerator solutions.

Therefore, it is essential to have a quick evaluation before setup the real-world

applications, especially for emerging hardware.

• Moreover, the data transmission overhead between SmartNIC and the hard-

ware accelerator when processing cryptographic operations could also be a non-

negligible factor in downgrading the overall performance; thus, it should be

considered, especially for tasks with shorter operational time.

Chapter 4

The Case for SmartNIC Cryptography Offload:

Design and Evaluation

4.1 Overview

This chapter discusses the advantages of offloading major security applications onto

SmartNICs. Moreover, we look at three applications in particular: VPN tunneling,

user authentication, and secure web serving. These applications were chosen based

on several substantial justifications below: (i) those applications could provide repre-

sentatives of use cases in different domains where the SmartNICs are widely adopted

(e.g., public cloud data centers, university campuses, enterprise networks) (ii) appli-

cations that selected are often the primary choices of those use cases in the real-world

scenario, which contribute practical value (iii) they use different combinations of the

security primitives we studied in Chapter 3, and security plays an essential role in

the design and deployment those applications; moreover, (iv) they are open-source,

which allowing the community to reproduce the results of this work easily.

In our evaluation, we are especially interested in those real-world cases throughput

and latency because those are two of the most noticeable factors to evaluate their

performance and could provide a generalization comparison in different scenarios.

4.2 VPN Tunneling

Internet users commonly use virtual private network (VPN) services to protect their

privacy, avoid censorship, and access geo-filtered content. It is also utilized by many

corporations and organizations to let their workers access internal network resources

and add a shell for their intellectual properties from being revealed by third parties.

Moreover, more people are accepting VPNs in their everyday and professional life

due to the awareness of security and privacy concerns and the need for remote work.

According to a recent analysis [81], the global VPN industry is expected to reach

37

38

more than USD 100 billion by 2027, with a market value of approximately USD 35.4

billion in 2020.

Although multiple VPN tunneling applications and protocols (e.g., PPTP, SSTP,

SSL, WireGuard) exist on the market, OpenVPN and IPsec are still the most popular

protocol selections and are utilized by a vast portion of VPN services [82]. OpenVPN,

along with other VPNs (e.g., WireGuard), are the route-based VPNs that support

dynamic routing information swaps through VPN tunnels. In contrast, our analysis

focuses on the IPsec (IKEv2/IPsec, specifically), a policy-based VPN for traffic tun-

neling. In the policy-based VPNs, virtual network interfaces are replaced by firewall

rules to determine which traffic belongs to the VPN so that the permitted traffics

are encapsulated and sent through encrypted messages [83]. The secure session es-

tablishment process using Internet Key Exchange version 2 (IKEv2) inside the IPsec

protocol suite can be breakdown into two phases: The first phase generates a secu-

rity association (SA), which lists a set of cryptographic parameters such as a shared

secret and an encryption/decryption algorithm that could allow IKE messages to

transmit securely between two communicating parties. Then in the second phase, it

produces a secondary SA (or “child SA”) to use as a tunnel for the two parties to

set up authentication and begin data exchange [2]. IPSec mainly relies on symmetric

encryption to set up private data communication. Notice that, in practice, there is a

user authentication step before setting up the VPN tunnel. Our evaluation does not

consider this step and only focuses on setup the VPN tunnel directly using IPsec.

4.2.1 Evaluation and analysis

Figure 4.1 shows our experimental setup for VPN tunneling. Our setup includes

two endpoints; to better address those two parties, we name them as VPN client

and server accordingly, as shown in the figure. The VPN client has the specification

with Intel Core i7-9700 @ 3.0 GHz CPU with 8 cores and 16 GB of DDR4 DRAM;

the operating system is Ubuntu 18.04.6 LTS (kernel 5.4.0-90-generic). The server

and SmartNIC, which are used as the VPN server in this scenario, are the same

as described in Section 3.2. Our evaluation compares two VPN tunneling scenar-

ios: client-CPU (named “server”) and client-SmartNIC. Both scenarios deploy the

VPN tunnels using StrongSwan (version U5.8.2/K5.4.0-74-generic) [84]. For IKEv2

39

SmartNIC

CPU

VPN
client

VPN
server

A
client-server

tunnel

B
client-SNIC
tunnel

Figure 4.1: VPN tunneling setup

authentication, both server and SmartNIC tunnels employ a pre-shared key (PSK)

and SHA1 for hashing. Furthermore, two sets of experiments are executed in our

evaluation: i) the VPN client pings 100 times to the VPN server and measures the

average round-trip latency, the ping process sequentially to eliminate the influence

of other factors. ii) the same VPN client uses iperf3 (version 3.1.3) [85], a network

performance measurement tool, to generate a 1-minute long TCP flow and measures

the average throughput. Our study repeated each experiment 10 times and reported

the data encryption/decryption results, which used the selected AES-256-GCM and

AES-256-CBC ciphers in the operations; and noticed that the Chacha20/Poly1305

cipher is ignored from our evaluation for this case study since we could not run the

associated StrongSwan plugin on the SmartNIC. Below, we break down our case study

result analysis for VPN latency and throughput.

Latency. The average round-trip latency for the VPN encryption/decryption

with various algorithms is shown in the Figure 4.2. In the result, we use the plain-

text (ping) latency to represent the “baseline” result. Our evaluation shows that in

comparison to the server, the SmartNIC provides much lower latency which could

be up to 52% lower in the GCM mode. This result reflects how the SmartNIC’s

physical position could positively influence the overall latency. To be more specific,

the SmartNIC, when it plays the role of the VPN server, is “one hop” closer to the

40

 0
 0.2
 0.4
 0.6
 0.8
 1

 1.2

Ba
se
li
ne

AE
S-
25
6-
CB
C

AE
S-
25
6-
GC
M

La
te
nc

y
(m

s)
SmartNIC

Server

Figure 4.2: Average round-trip latency in a VPN tunnel

 0

 1500

 3000

 4500

Ba
se
li
ne

AE
S-
25
6-
CB
C

AE
S-
25
6-
GC
MTh

ro
ug

hp
ut

 (
Mb

it
s/

se
c)

SmartNIC
Server

Figure 4.3: Average TCP throughput in a VPN tunnel

VPN client, which is more noticeable in short-path conditions (e.g., an edge data

center) [2]. Moreover, compared with the baseline approach, we find that adding the

VPN tunnel only contributes a relatively low overhead (less than 35%). This small

overhead is due to the message encrypted and decrypted in this case by the VPN

endpoints being relatively small, i.e., the ping process only has a tiny request and

41

reply packet.

Throughput. Although from our previous analysis, the SmartNIC could per-

form well with the low cryptographic operation load settings, its performance suffers

dramatically as the load increase. Our throughput stress test results are present in

Figure 4.3. Because the SmartNIC is a high-speed network device and no additional

processing is required from its CPU cores when dealing with plaintext TCP (i.e.,

non-VPN traffic), we notice that in our result, the SmartNIC performs far better

than the server. However, for the VPN traffic, which requires the use of crypto-

processing, there is an inverted trend demonstrated in our result. For example, the

throughput of the SmartNIC and server for an AES-GCM-based VPN tunnel could

be approximately 739 and 1300 Mbps, respectively.

When comparing the performance of AES-GCM and AES-CBC on both hardware,

we find out that AES-GCM’s performance results are generally better than AES-CBC,

which is contradictory to our basic cryptography performance evaluation in Section

3.3.1. Our study concluded that the extra cost of processing SHA1 in real-world

applications contributes to this worse performance of AES-CBC. More specifically,

this SHA1 process is used for message authentication in setting up the VPN tunnel

along with the AES-CBC for message authentication; on the other hand, AES-GCM

is an AEAD algorithm, as mentioned in the previous Section 3.3.1, which has the

message authentication build-in. Thus, when this message authentication becomes a

requirement in the real-world application, the overall throughput for the application

that uses AES-CBC surpasses the one that uses AES-GCM.

4.2.2 Takeaways

• SmartNICs are “one hop” closer to the client than the server, giving it a position

advantage when offloading the task, which could help accelerate the crypto-

based networked applications. For network tasks without cryptography, this

advantage is more prominent.

• Moreover, the latency-critical applications with lighter cryptography tasks can

benefit more from the position advantage of the SmartNIC than bandwidth-

intensive applications.

42

4.3 User Authentication

User authentication widely appears in modern applications; whether it is the user’s

login on the web services or the identity verifications between IoT devices, the authen-

tication system has already become the gatekeeper of online security. Moreover, many

enterprises, ISPs, and educational institutions deploy user authentication systems to

protect and control their IT resources’ access. As a result, using modern SmartNIC

as an assistant for the server CPU in reducing the load on it when operating the

authentication servers could be a reasonable choice [2]. Notably, network operators

have identified poor resourcing of authentication servers as one of the most common

challenges while running this vital infrastructure [86].

In terms of the standard authentication system structure, typically, there is an

access server and an authentication server. When the user (e.g., a VPN client or IoT

device) attempts to log in to a particular network, it first makes an access request to

an access server to grant the access. Next, the access server queries the authentica-

tion server to confirm the user credentials. The authentication server then processes

the query by matching the user database with the hash of user credentials, and the

database could be either local or remote. Finally, the user’s access query is granted

or denied based on that matching result between user credentials and database infor-

mation [87].

4.3.1 Evaluation and analysis

Figure 4.4 shows our evaluation setup for the user authentication. Our experiment

compares two authentication scenarios: i) sending the user credentials and letting the

server CPU (we call it “server”) do the authentication (scenario A-B), and ii) sending

the user credentials and authenticating by the SmartNIC (scenario A-C). In this case

study, we use the same hardware setup as described in Section 4.2 for the network

access server. Moreover, the server and SmartNIC that host the authentication server

uses hardware specifications we described in Section 3.2.

The authentication service we set up uses the RADIUS (Remote Authentication

Dial-In User Service) protocol. We use radperf (version 2.0.1) [88] to simulate both

the client device and access server, and it controls the desired rate we need to send

43

SmartNIC

CPU

Authentication
server

B
client-server
auth request

C client-SNIC
auth request

Access
server

Client
device

access
request

A

Figure 4.4: User authentication setup

Table 4.1: Average, 95th and 99th percentile of the round trip latency (in miliseconds)
for processing a batch of 1K authentication requests

Device Average 95th 99th

SmartNIC 0.36 0.46 0.47
Server 0.71 0.90 0.91

the authentication requests. The authentication server is set up to process requests

using FreeRADIUS (version 3.0.20), a free and open-source suite of tools for setting

up the RADIUS server [89]. For the FreeRADIUS configuration, we keep the default

settings, including UDP as transport protocol and SHA-256 as the hashing function

for the password. The UDP is selected on the FreeRADIUS as the default setting,

mainly because of its faster speed compared to TCP, and RADIUS has a few inherent

qualities that are characteristic of UDP (e.g., the stateless nature) [90]. Moreover,

to have a fair comparison between the SmartNIC and server CPU and to eliminate

the influence of different numbers of cores and clock speed frequency, our experiment

only allows the authentication server runs with a single-core and single-thread mode.

To make the result more accurate, we repeat each test run 100 times and take the

average.

Latency. Table 4.1 compares the latency for each device for processing a thousand

authentication requests issued at an unlimited rate. From the result, we found out

44

 30
 40
 50
 60
 70
 80
 90
 100

500 2000 3500 5000 6500 8000 9500

Th
ro

ug
hp
ut

 R
at

io
 (

%)

Request Rate

SmartNIC
Server

Figure 4.5: Throughput ratio (i.e., the ratio of served authentication requests) as a
function of the request rate

that compared to the server, SmartNIC is significantly faster (up to 50% on average).

There are two main reasons for this faster result: First, the SmartNIC is “closer”

to the client device, i.e., the network access server, which gives it the advantage in

terms of network latency, just as we discussed in the VPN study case. Second, as our

discussion in Section 3.3.2, the SmartNIC could utilize the cryptographic instructions

that provide the hash acceleration features, which could make the checking user cre-

dentials process much more efficient. Additionally, the SmartNIC has substantially

shorter tail latencies (approximately 52% at the 99th percentile), which can be critical

if the workload is deadline-oriented [2].

Throughput. The setup above represents a bursty workload in which we load

as much traffic as possible in a short period. In expansion, we focus on a continuous

traffic loading scenario for this evaluation. Figure 4.5 shows the result for this sce-

nario, it demonstrates the relationship between request rate and devices’ throughput

ratio. This result helps us understand the proportion of utilization from the input

load; the higher the ratio, the better data it can be served. Our evaluation shows

that in compersion to the server, the SmartNIC appears to hit its bottleneck more

quickly (at around 3.5 K requests per second. In contrast, the server can maintain

45

a fairly high throughput ratio (beyond 70% of the input rate) up to 9.5K requests

per second, even though its throughput ratio slowly drops when the request rate in-

creases. Our analysis indicates that this slowly dropping in the throughput ratio is

due to the background process (e.g., garbage collection) that is an essential part of

FreeRADIUS [2].

4.3.2 Takeaways

• SmartNICs have the advantage when offloading tasks requiring only specific

cryptography instructions (e.g., tasks that repeatedly compute SHA-256 hashes

on the SmartNIC cores).

• On the other hand, this advantage can be readily outweighed in a mixed work-

load. Therefore, offloading crypto applications’ workload is crucial to be con-

sidered when deploying the offloading engines.

4.4 Secure Web Serving

A web server is computer software and its underlying hardware that uses HTTP

(Hypertext Transfer Protocol) and other protocols to respond to client requests made

over the Internet. HTTPS (Hypertext Transfer Protocol Secure) is the secure variant

of HTTP and can also use on the web server for secure web serving. The adoption of

HTTPS has significantly grown over the last few years [91] and has already become

the default way to surfer the websites’ content on major browsers. Accordingly, based

on the report from Google, more than 95% of its services are currently serving HTTPS

by default [92]. As a result of this trend, several preliminary studies (e.g., [8], [48]) are

on offloading the TLS operations to SmartNIC to accelerate the secure web serving

speed. Despite the fantastic existing outcome, there are still a few important questions

that remain unanswered. Our study tries to touch on two of them: i) how is the

performance of the web server regarding a full (rather than partial) application offload

on the SmartNIC; and ii) how is the change from TLS 1.2 to TLS 1.3 influence the

performance when offloading the web server onto the SmartNIC completely.

Two practical observations drive our questions above. First, partial offloads (e.g.,

only offloading the TLS handshake part or data encryption/decryption part from the

46

SmartNIC

CPU

Web
client

Web
server

A
client-server

request

B
client-SNIC
request

Figure 4.6: HTTPS server setup

entire web serving process) require customization of the protocol. This customization

requires extra work on hardware support, code maintenance, debugging, and security

patches; moreover, partial offloads may not be economically sustainable compared

to full offloads when SmartNIC hardware keeps improving. Second, there is a con-

siderable performance boost in TLS 1.3 compared to its predecessors. To be more

specific, the most recent version, in particular, decreases the number of packets that

the web server needs to handle by restructuring the client-server handshake process to

a single RTT (Round Trip Time) by combing “hello” and key exchange messages [93].

Furthermore, using the “0-RTT” (zero round trip time resumption) mode with TLS

1.3 could make this performance improvement even more noticeable for the initiation

of the secure web serving [93].

4.4.1 Evaluation and analysis

Figure 4.6 shows our secure web serving experiment setup. The web server and the

web client are running with the same specification we introduced in Sections 3.2 and

4.2. Our experiment compares two scenarios: i) the HTTPS requests to the web

server that handles fully on the server, and ii) the HTTPS requests that handle fully

on the SmartNIC. To set up our web server, we use NGINX (version 1.18.0) [94] for

request serving; it runs on a large fraction of web servers with easy-to-use features,

47

101

102

103

1KB 10KB 100KB 1MB 10MB

La
te

nc
y

(m
s)

Web Page Size

SmartNIC (TLS1.2)
SmartNIC

Server

Figure 4.7: Average web server latency

lightweight size, and outstanding performance. We keep all the NGINX configurations

as default except the number of workers and custom certificate. For the worker, we

only use a single worker to eliminate the influence; the worker is a concept in NGINX

where one worker could process multiple requests parallelly, and the request is not

necessarily part of the same process. Furthermore, for the custom certificate, we used

a self-signed certificate in our setup to reduce the network overhead from fetching the

certificate from the Internet. The certificate has a 4096-bit key and uses SHA-256

as its hash function; the security properties on the certificate (e.g., key usage) are

compliant with the stand X.509 v3 extensions. To set up our web client, we use

the wrk [95] benchmarking tool (version 4.2.0). In our experiment, we set the tool

to operate on a single thread and a fixed number of 50 parallel connections (i.e.,

throughout the experiment, the client will keep 50 open connections at any given

moment). Each TCP connection in our experiment serves a single web page request,

and all the web pages are randomly generated before the experiment with the exact

page size we need. Each experiment performs a fixed three minutes, and our result

takes an average of 10 runs.

Latency. Figure 4.7 shows the average request latency for web page with different

sizes. The result shows that even though the SmartNIC is “one hop” closer to the web

48

101

102

103

104

1KB 10KB 100KB 1MB 10MBTh
ro

ug
hp

ut
 (
re

qu
es

ts
/s

ec
)

Web Page Size

SmartNIC (TLS1.2)
SmartNIC

Server

Figure 4.8: Average web server throughput

client than the server, it still performs worse for small requests (up to 10 KB). We

believe this worse performance is caused by the SmartNIC’s utilization of its crypto-

hardware accelerator during the network connection setup, like TLS handshake, which

adds extra overhead when transferring data between the crypto-hardware accelerator

and the processor, as we saw in Section 3.3.3. When the request size gets larger, server

and SmartNIC latencies tend to converge as the request size grows. However, we could

spot an interesting discord for 1 MB requests, where the SmartNIC outperformed the

server significantly. Our study noticed that as a trade-off between the number/size of

segments and the overall request latency, this is contributed by NGINX dividing large

web pages into smaller parts before sending them to the client [96]. More specifically,

the SmartNIC, which has a weak processor but a closer position advantage than the

server CPU, could benefit from a more significant number of smaller segments instead

of a large piece. This behavior is not directly linked to the cryptography features

of the SmartNIC; therefore, there could be a further investigation of the latency

versus fragment size trade-off as future work. Finally, the compersion between TLS

1.2 and TLS 1.3 shows that the newer version has a slightly better output; this is

more pronounced for the smaller web pages, where the handshake stage has a more

considerable contribution to the entire overhead.

49

Throughput. Figure 4.8 presents how the throughput (in requests per second)

changes on both the server and the SmartNIC as we increase the web page size that

the client request. As we expected, larger web page requests could decrease the per-

formance on both devices because they add a higher load on the data transmission

and require more data encryption/decryption. Moreover, we can see that the server

generally has better performance than SmartNIC. Notice that the server’s through-

put is remarkably better when there are higher connection requests in the network

(i.e., 1 KB web page size) or encryption required by more extensive data (i.e., 10 MB

web page size). Our study believes this behavior is because a secure web server re-

quires processing multiple cryptography operations, and various crypto-acceleration

mechanisms working together on the server could fulfill this need. Those mechanisms

include dedicated server instructions with the public-key cryptography that benefits

the handshake phase, symmetric encryption instructions for data encryption/decryp-

tion, and data parallelism that are more powerful than SmartNIC [97]. In contrast,

current SmartNIC is generally obscure for the mixed workload, and it could perform

better on the task with a specific set of cryptography algorithms.

4.4.2 Takeaways

• Applications using a wide variety of cryptographic methods (e.g., the application

requires a mixed-use of symmetric and asymmetric ciphers) could face barriers

due to the limited hardware crypto-acceleration support on the SmartNICs.

This feature leads to a performance loss of up to 73% for a secure web server.

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Offloading applications onto the SmartNICs has been a practical and promising ap-

proach for improving the network application performance continuously. While many

researchers have studied this trend for “plaintext” applications, the cryptography ca-

pabilities of the current SmartNICs still need additional investigation. This thesis

describes our contribution to the first in-depth systematic analysis of the current

cryptography-based workload support on the SmartNIC.

We have summarized the cryptographic functionalities of six top commercial

SmartNICs, then structured the analysis for the ARM-based device with its basic

cryptography capabilities and its performance with complex security applications.

Our findings demonstrate that current SmartNIC designs can benefit latency-sensitive

operations, although caution is advised when dealing with computationally demand-

ing workloads. Mainly, SmartNICs’ cryptography capabilities strongly depend on the

support of the crypto-hardware accelerators to meet servers’ performance; and might

not be beneficial for the complex workload that requires more generalized computing

capabilities.

5.2 Future Work

This study covers a broad range of cryptography algorithms that are commonly used

in modern applications. However, cryptography or network security is a large domain

that can be explored from different aspects. We believe our methodology in this

paper could be extended to help study and analyze other security features on the

same devices.

Random number generator (RNG). Generating random numbers can be

50

51

critical to a cryptography application; some algorithms require the RNG for cer-

tain randomness to achieve the desired security. Applications like cryptography key

generation [98] or smart contracts [99] need certain level of randomness. However,

many applications still use the software-based pseudorandom number generators that

use pre-determined functions. SmartNIC, on the other hand, often comes with a

hardware-based random number generator (known as the true random number gen-

erator) that could create random numbers that is practically impossible to model.

Furthermore, there is no current study on the performance of the hardware-based

RNGs on the SmartNIC, which could be valuable for further analysis.

Trusted execution environment (TEE). TEE is a secure area of the pro-

cessor; it helps preserve the data inside with confidentiality and integrity. TEE is

helpful for cloud providers or companies that need a network infrastructure to pro-

vide confidential information, authentication, or proceed with confidential computing.

Well-known TEE solutions are ARM TrustZone [100] and RISC-V Keystone [101];

those features are commonly enabled on the SmartNIC with the corresponding pro-

cessors. Specifically, different SoCs come with different TEE architectures that could

create performance impacts of applications offloaded to these environments [102],

which could be explored further.

Energy consumption. Cryptography tasks are always considered heavy-loaded

and play an essential role in network applications, as described in this study; there-

fore, they also contribute a noticeable amount of energy consumption. In some cases,

even though SmartNICs cannot provide comparable computing power to the server,

it could still be valuable to handle some offloading tasks because SmartNICs gener-

ally have better performance per watt. Therefore, future studies could address this

possible advantage of the SmartNIC. However, it is worth knowing that it is hard to

have an accurate power consumption measurement for the processor. It will be even

more challenging if we want to measure the hardware accelerator along with it. We

can measure energy using hardware or software tool; hardware measurement [103] is

often more accurate but less flexiable, whereas software one [104] is less accurate but

more flexiable. Some researchers developed more accurate statistical methods for a

better energy consumption measurement [105] [106]. However, those studies still need

extensive evaluations if they want to apply to different architectures or workloads,

52

especially if we want to measure precisely for security and cryptography applications.

Furthermore, having a fair comparison between server and SmartNIC with differ-

ent hardware architectures is even more complicated because the power measurement

models are different across different architectures. Therefore, the best way so far, also

selected by the previous study [3], is to measure the wall power (measure directly from

the power supply) for the comparison. Their study measured the idle and active wall

power difference, which is a relatively straightforward way to demonstrate the energy

cost comparison for the server and the SmartNIC. Therefore, there should be more

justification on which methodology to use for power consumption measurement in

future studies.

Modern ciphers. Different security features are not the only things we could ex-

tend in future studies; it is also worth noticing that cryptographic algorithms are con-

stantly evolving. Although our study covers the vast majority of cryptography primi-

tives that are supported on current (co)processors, many other experiential “modern”

cryptographic algorithms (e.g., post-quantum and fully homomorphic ciphers) are

developed to mitigate future threats or used in novel applications. Moreover, since

many of those “modern” ciphers do not have the same support on the state-of-the-art

hardware, there could be further explorations on utilizing multi-core SmartNICs as

an option to offloading post-quantum and FHE-based cryptographic tasks, and the

BLAKE (based on the ChaCha cipher) hash functions.

Table 5.1: Impact of Quantum Computing on Common Cryptographic Algorithms

Cryptographic Algorithm Type Quantum Computer Impact
AES Symmetric cipher Larger Key Sizes Needed

ChaCha20/Poly1305 Symmetric cipher Larger Key Sizes Needed
SHA-256/SHA-512 Hash function Larger Hash Output Sizes Needed

RSA Asymmetric cipher No Longer Secure
DSA Asymmetric cipher No Longer Secure

ECDSA/ECDH Asymmetric cipher No Longer Secure

To further explain how SmartNICs could work with post-quantum cryptography

in future studies, we must first understand the quantum computer’s impact. Table

5.1 lists the impact of quantum computers on the most commonly used cryptography

algorithms nowadays based on existing studies [107] [108] [109]; those ciphers are also

what we have chosen in our study.

53

To be more specific, hash and symmetric ciphers could still be usable under certain

conditions in the post-quantum era. Moreover, the existing post-quantum cryptogra-

phy categories include: lattice-based cryptography, multivariate cryptography, hash-

based cryptography, code-based cryptography, supersingular elliptic curve isogeny

cryptography, and symmetric key quantum resistance [110]. We observed that offload-

ing hash-based cryptography onto the SmartNIC could be a promising future study

direction because hash-based cryptography (e.g., XMSS [111] or SPHINCS+ [112])

can still benefit from the existing acceleration for SHA algorithms, and the Smart-

NICs could have significant secure hashing performance in some scenarios. We plan

to explore such performance analysis in the future.

Bibliography

[1] J. Nider and A. Fedorova, “The last cpu,” in Proceedings of the Workshop on
Hot Topics in Operating Systems, 2021, pp. 1–8.

[2] J. Zhao, M. Neves, and I. Haque, “The case for smartnic crypto offload,” IEEE
Transactions on Dependable and Secure Computing, 2022, submitted.

[3] M. Liu, S. Peter, A. Krishnamurthy, and P. M. Phothilimthana, “E3: Energy-
efficient microservices on SmartNIC-accelerated servers,” in 2019 USENIX An-
nual Technical Conference (USENIXATC 19), 2019, pp. 363–378.

[4] T. Cui, W. Zhang, K. Zhang, and A. Krishnamurthy, “Offloading load bal-
ancers onto smartnics,” in Proceedings of the 12th ACM SIGOPS Asia-Pacific
Workshop on Systems, 2021, pp. 56–62.

[5] J. Kim, I. Jang, W. Reda, J. Im, M. Canini, D. Kostić, Y. Kwon, S. Peter, and
E. Witchel, “LineFS: Efficient smartnic offload of a distributed file system with
pipeline parallelism,” in Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles CD-ROM, 2021, pp. 756–771.

[6] H. N. Schuh, W. Liang, M. Liu, J. Nelson, and A. Krishnamurthy, “Xenic:
SmartNIC-accelerated distributed transactions,” in Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles CD-ROM, 2021,
pp. 740–755.

[7] K. Taranov, B. Rothenberger, A. Perrig, and T. Hoefler, “sRDMA–efficient
NIC-based authentication and encryption for remote direct memory access,”
in 2020 USENIX Annual Technical Conference (USENIX ATC 20), 2020, pp.
691–704.

[8] D. Kim, S. Lee, and K. Park, “A case for smartnic-accelerated private commu-
nication,” in 4th Asia-Pacific Workshop on Networking, 2020, pp. 30–35.

[9] [Online]. Available: https://github.com/printfer/smartNIC benchmark

[10] M. Darianian, C. Williamson, and I. Haque, “Experimental evaluation of two
openflow controllers,” in 2017 IEEE International Conference on Network Pro-
tocols (ICNP) Workshop on PVE-SDN, 2017.

[11] M. Shojaee, M. C. Neves, and I. Haque, “Safeguard: Congestion
and memory-aware failure recovery in SD-WAN,” in 16th International
Conference on Network and Service Management, CNSM 2020, Izmir,
Turkey, November 2-6, 2020. IEEE, 2020, pp. 1–7. [Online]. Available:
https://doi.org/10.23919/CNSM50824.2020.9269119

54

https://github.com/printfer/smartNIC_benchmark
https://doi.org/10.23919/CNSM50824.2020.9269119

55

[12] M. A. Moyeen, F. Tang, D. Saha, and I. Haque, “SD-FAST: A packet
rerouting architecture in SDN,” in 15th International Conference on
Network and Service Management, CNSM 2019, Halifax, NS, Canada,
October 21-25, 2019. IEEE, 2019, pp. 1–7. [Online]. Available: https:
//doi.org/10.23919/CNSM46954.2019.9012703

[13] U. Lekhala and I. Haque, “PIQoS: A programmable and intelligent qos
framework,” in IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops, INFOCOM Workshops 2019, Paris, France,
April 29 - May 2, 2019. IEEE, 2019, pp. 234–239. [Online]. Available:
https://doi.org/10.1109/INFCOMW.2019.8845158

[14] F. Tang and I. Haque, “ReMon: A resilient flow monitoring framework,” in
Network Traffic Measurement and Analysis Conference, TMA 2019, Paris,
France, June 19-21, 2019. IEEE, 2019, pp. 137–144. [Online]. Available:
https://doi.org/10.23919/TMA.2019.8784521

[15] I. Haque and M. A. Moyeen, “Revive: A reliable software defined data
plane failure recovery scheme,” in 14th International Conference on Network
and Service Management, CNSM 2018, Rome, Italy, November 5-9, 2018,
S. Salsano, R. Riggio, T. Ahmed, T. Samak, and C. R. P. dos Santos,
Eds. IEEE Computer Society, 2018, pp. 268–274. [Online]. Available:
https://ieeexplore.ieee.org/document/8584938

[16] H. Siddique, M. Neves, C. Kuzniar, and I. Haque, “Towards network-accelerated
ML-based distributed computer vision systems,” in IEEE 27th International
Conference on Parallel and Distributed Systems (ICPADS), 2021, pp. 122–129.

[17] C. Boeira, M. Neves, T. Ferreto, and H. Israat, “Characterizing network per-
formance on single-node large-scale container deployments,” in IEEE 10th In-
ternational Conference on Cloud Networking (CloudNet), 2021, pp. 97–103.

[18] C. Kuzniar, M. Neves, V. Gurevich, and I. Haque, “IoT device fingerprinting
on commodity switches,” in IEEE/IFIP Network Operations and Management
Symposium (NOMS), 2022, pp. 1–9.

[19] F. Tang, M. Shojaee, and I. Haque, “ACE: an accurate and cost-
effective measurement system in SDN,” 2022. [Online]. Available: https:
//arxiv.org/pdf/2108.12849.pdf

[20] H. Tajbakhsh, R. Parizotto, M. Neves, A. Schaeffer-Filho, and I. Haque,
“Accelerator-aware in-network load balancing for improved application perfor-
mance,” in 2022 IFIP Networking Conference (IFIP Networking), 2022.

[21] M. Kulkarni, M. Baddeley, and I. Haque, “Embedded vs. external controllers
in software-defined IoT networks,” in 2021 IEEE 7th International Conference
on Network Softwarization (NetSoft), 2021.

https://doi.org/10.23919/CNSM46954.2019.9012703
https://doi.org/10.23919/CNSM46954.2019.9012703
https://doi.org/10.1109/INFCOMW.2019.8845158
https://doi.org/10.23919/TMA.2019.8784521
https://ieeexplore.ieee.org/document/8584938
https://arxiv.org/pdf/2108.12849.pdf
https://arxiv.org/pdf/2108.12849.pdf

56

[22] H. Ghannadrezaii, J.-F. Bousquet, and I. Haque, “Cross-layer design for
software-defined underwater acoustic networking,” in IEEE OCEANS, 2019.

[23] I. Haque and D. Saha, “SoftIoT: A resource-aware SDN/NFV-based IoT net-
work,” The Elsevier Journal of Network and Computer Applications, vol. 193,
Nov 2021.

[24] D. Saha, M. Shojaee, M. Baddeley, and I. Haque, “An Energy-Aware SDN/NFV
architecture for the internet of things,” in IFIP Networking 2020 Conference
(IFIP Networking 2020), Paris, France, Jun. 2020.

[25] I. Haque, M. Nurujjaman, J. Harms, and N. Abu-ghazaleh, “SDSense: An agile
and flexible SDN-based framework for wireless sensor networks,” The IEEE
Transactions on Vehicular Technology, vol. 68, no. 2, pp. 1866 – 1876, February
2019.

[26] I. Haque and N. Abu-Ghazaleh, “Wireless software defined networking: a survey
and taxonomy,” IEEE Communications Surveys and Tutorials, vol. 18, no. 4,
pp. 2713–2737, May 2016.

[27] K. Srinivasan, “The rise of smartnics,” Jun 2021. [Online]. Available:
https://semiengineering.com/the-rise-of-smartnics/

[28] M. Liu, T. Cui, H. Schuh, A. Krishnamurthy, S. Peter, and K. Gupta, “ipipe:
A framework for building distributed applications on multicore soc smartnics,”
in Proceedings of the ACM Special Interest Group on Data Communication
(SIGCOMM), 2019.

[29] T. Döring, H. Stubbe, and K. Holzinger, “Smartnics: Current trends in research
and industry,” Network, vol. 19, 2021.

[30] S. Schweitzer, “Smartnic architectures: A shift to accel-
erators and why fpgas are ...” Jul 2020. [Online]. Available:
https://www.electronicdesign.com/industrial-automation/article/21136402/
xilinx-smartnic-architectures-a-shift-to-accelerators-and-why-fpgas-are-poised-to-dominate

[31] S. Cybersecurity, V. Clifton, and R. Hat, “Guide to ipsec vpns.”
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
NIST.SP.800-77r1.pdf

[32] I. T. L. Computer Security Division, “Hash functions: Csrc,” Jan 2017.
[Online]. Available: https://csrc.nist.gov/projects/hash-functions

[33] V. Bhatia and K. Ramkumar, “An efficient quantum computing technique for
cracking rsa using shor’s algorithm,” in 2020 IEEE 5th international conference
on computing communication and automation (ICCCA). IEEE, 2020, pp. 89–
94.

https://semiengineering.com/the-rise-of-smartnics/
https://www.electronicdesign.com/industrial-automation/article/21136402/xilinx-smartnic-architectures-a-shift-to-accelerators-and-why-fpgas-are-poised-to-dominate
https://www.electronicdesign.com/industrial-automation/article/21136402/xilinx-smartnic-architectures-a-shift-to-accelerators-and-why-fpgas-are-poised-to-dominate
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-77r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-77r1.pdf
https://csrc.nist.gov/projects/hash-functions

57

[34] C. Gidney and M. Eker̊a, “How to factor 2048 bit rsa integers in 8 hours using
20 million noisy qubits,” Quantum, vol. 5, p. 433, 2021.

[35] F. Mantovani, M. Garcia-Gasulla, J. Gracia, E. Stafford, F. Banchelli, M. Josep-
Fabrego, J. Criado-Ledesma, and M. Nachtmann, “Performance and energy
consumption of hpc workloads on a cluster based on arm thunderx2 cpu,” Future
generation computer systems, vol. 112, pp. 800–818, 2020.

[36] K. Keipert, G. Mitra, V. Sunriyal, S. S. Leang, M. Sosonkina, A. P. Rendell,
and M. S. Gordon, “Energy-efficient computational chemistry: Comparison of
x86 and arm systems,” Journal of chemical theory and computation, vol. 11,
no. 11, pp. 5055–5061, 2015.

[37] S. Biookaghazadeh, M. Zhao, and F. Ren, “Are FPGAs suitable for edge com-
puting?” in USENIX Workshop on Hot Topics in Edge Computing (HotEdge
18), 2018.

[38] W. J. Dally, Y. Turakhia, and S. Han, “Domain-specific hardware accelerators,”
Communications of the ACM, vol. 63, no. 7, pp. 48–57, 2020.

[39] M. Nabeel, M. Ashraf, E. Chielle, N. G. Tsoutsos, and M. Maniatakos, “Cophee:
Co-processor for partially homomorphic encrypted execution,” in 2019 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST).
IEEE, 2019, pp. 131–140.

[40] M. S. Riazi, K. Laine, B. Pelton, and W. Dai, “Heax: An architecture for
computing on encrypted data,” in Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 1295–1309.

[41] “High speed public key accelerator,” Mar 2021. [On-
line]. Available: https://www.rambus.com/security/protocol-engines/
high-speed-public-key-accelerator/

[42] [Online]. Available: https://developer.arm.com/documentation/ddi0596/
2020-12/SIMD-FP-Instructions

[43] K. Investments, “Qualcomm (qcom): Arm cpu market presents $3.8 bln
opportunity,” Mar 2022. [Online]. Available: https://seekingalpha.com/article/
4491550-qualcomm-arm-cpu-market-presents-3-8-bln-opportunity

[44] P. Longa, “Four{Q}neon: Faster elliptic curve scalar multiplications on arm
processors,” in International Conference on Selected Areas in Cryptography.
Springer, 2016, pp. 501–519.

[45] Z. Liu, K. Järvinen, W. Liu, and H. Seo, “Multiprecision multiplication on
armv8,” in 2017 IEEE 24th Symposium on Computer Arithmetic (ARITH).
IEEE, 2017, pp. 10–17.

https://www.rambus.com/security/protocol-engines/ high-speed-public-key-accelerator/
https://www.rambus.com/security/protocol-engines/ high-speed-public-key-accelerator/
https://developer.arm.com/documentation/ddi0596/2020-12/SIMD-FP-Instructions
https://developer.arm.com/documentation/ddi0596/2020-12/SIMD-FP-Instructions
https://seekingalpha.com/article/4491550-qualcomm-arm-cpu-market-presents-3-8-bln-opportunity
https://seekingalpha.com/article/4491550-qualcomm-arm-cpu-market-presents-3-8-bln-opportunity

58

[46] H. Eran, L. Zeno, M. Tork, G. Malka, and M. Silberstein, “NICA: An infrastruc-
ture for inline acceleration of network applications,” in 2019 USENIX Annual
Technical Conference (USENIXATC 19), 2019, pp. 345–362.

[47] P. M. Phothilimthana, M. Liu, A. Kaufmann, S. Peter, R. Bodik, and T. An-
derson, “Floem: A programming system for NIC-accelerated network applica-
tions,” in 13th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), 2018, pp. 663–679.

[48] B. Pismenny, H. Eran, A. Yehezkel, L. Liss, A. Morrison, and D. Tsafrir, “Au-
tonomous NIC offloads,” in Proceedings of the 26th ACM International Con-
ference on Architectural Support for Programming Languages and Operating
Systems, 2021, pp. 18–35.

[49] R. Shashidhara, T. Stamler, A. Kaufmann, and S. Peter, “FlexTOE: Flexi-
ble tcp offload with fine-grained parallelism,” arXiv preprint arXiv:2110.10919,
2021.

[50] X. Yang, L. Eggert, J. Ott, S. Uhlig, Z. Sun, and G. Antichi, “Making QUIC
quicker with NIC offload,” in Proceedings of the Workshop on the Evolution,
Performance, and Interoperability of QUIC, 2020, pp. 21–27.

[51] M. S. Brunella, G. Belocchi, M. Bonola, S. Pontarelli, G. Siracusano, G. Bianchi,
A. Cammarano, A. Palumbo, L. Petrucci, and R. Bifulco, “hXDP: Efficient
software packet processing on FPGA NICs,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20), 2020, pp. 973–990.

[52] H. Tajbakhsh, R. Parizotto, M. Neves, A. Schaeffer-Filho, and I. Haque,
“Accelerator-aware in-network load balancing for improved application perfor-
mance,” in IFIP Networking Conference 2022, 2022.

[53] D. Scholz, A. Oeldemann, F. Geyer, S. Gallenmüller, H. Stubbe, T. Wild,
A. Herkersdorf, and G. Carle, “Cryptographic hashing in p4 data planes,” in
2019 ACM/IEEE Symposium on Architectures for Networking and Communi-
cations Systems (ANCS). IEEE, 2019, pp. 1–6.

[54] C. Kuzniar, M. Neves, and I. Haque, “Poster: Accelerating encrypted data
stores using programmable switches,” in 2020 IEEE 28th International Confer-
ence on Network Protocols (ICNP). IEEE, 2020, pp. 1–2.

[55] F. Hauser, M. Häberle, M. Schmidt, and M. Menth, “P4-IPsec: Site-to-site and
host-to-site vpn with ipsec in p4-based sdn,” IEEE Access, vol. 8, pp. 139 567–
139 586, 2020.

[56] X. Chen, “Implementing aes encryption on programmable switches via scram-
bled lookup tables,” in Proceedings of the Workshop on Secure Programmable
Network Infrastructure, 2020, pp. 8–14.

59

[57] S. Yoo and X. Chen, “Secure keyed hashing on programmable switches,” in
Proceedings of the ACM SIGCOMM 2021 Workshop on Secure Programmable
network INfrastructure, 2021, pp. 16–22.

[58] P. Kietzmann, L. Boeckmann, L. Lanzieri, T. C. Schmidt, and M. Wählisch,
“A performance study of crypto-hardware in the low-end iot.” IACR Cryptol.
ePrint Arch., vol. 2021, p. 58, 2021.

[59] A. Naser, M. S. Lahijani, C. Wu, M. Gavahi, V. T. Hoang, Z. Wang, and
X. Yuan, “Performance evaluation and modeling of cryptographic libraries for
mpi communications,” arXiv preprint arXiv:2010.06139, 2020.

[60] “Why intel® aes-ni matters.” [Online]. Available: https:
//www.intel.com/content/www/us/en/architecture-and-technology/
advanced-encryption-standard-aes/data-protection-aes-general-technology.
html

[61] Mellanox, “Mellanox/bfb-build: Bfb (bluefield boot stream and os installer)
build environment.” [Online]. Available: https://github.com/Mellanox/
bfb-build

[62] I. OpenSSL Foundation, “openssl-speed.” [Online]. Available: https:
//www.openssl.org/docs/man1.1.1/man1/openssl-speed.html

[63] “Improving aes-gcm performance,” Sep 2017. [Online]. Available: https:
//blog.mozilla.org/security/2017/09/29/improving-aes-gcm-performance/

[64] V. Krasnov, “How ”expensive” is crypto anyway?” Aug 2018. [Online].
Available: https://blog.cloudflare.com/how-expensive-is-crypto-anyway/

[65] N. Sullivan, “Padding oracles and the decline of cbc-mode cipher
suites,” Aug 2021. [Online]. Available: https://blog.cloudflare.com/
padding-oracles-and-the-decline-of-cbc-mode-ciphersuites/

[66] ——, “Do the ChaCha: better mobile performance with cryp-
tography,” Aug 2018. [Online]. Available: https://blog.cloudflare.com/
do-the-chacha-better-mobile-performance-with-cryptography/

[67] “Intel® avx-512 instructions.” [Online]. Available: https:
//www.intel.com/content/www/us/en/developer/articles/technical/
intel-avx-512-instructions.html

[68] “Introducing neon for armv8-a.” [Online]. Available: https://developer.arm.
com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology

[69] A. Bogdanov, M. M. Lauridsen, and E. Tischhauser, “Aes-based authenticated
encryption modes in parallel high-performance software,” Cryptology ePrint
Archive, 2014.

https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://www.intel.com/content/www/us/en/architecture-and-technology/advanced-encryption-standard-aes/data-protection-aes-general-technology.html
https://github.com/Mellanox/bfb-build
https://github.com/Mellanox/bfb-build
https://www.openssl.org/docs/man1.1.1/man1/openssl-speed.html
https://www.openssl.org/docs/man1.1.1/man1/openssl-speed.html
https://blog.mozilla.org/security/2017/09/29/improving-aes-gcm-performance/
https://blog.mozilla.org/security/2017/09/29/improving-aes-gcm-performance/
https://blog.cloudflare.com/how-expensive-is-crypto-anyway/
https://blog.cloudflare.com/padding-oracles-and-the-decline-of-cbc-mode-ciphersuites/
https://blog.cloudflare.com/padding-oracles-and-the-decline-of-cbc-mode-ciphersuites/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://blog.cloudflare.com/do-the-chacha-better-mobile-performance-with-cryptography/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-avx-512-instructions.html
https://developer.arm.com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology
https://developer.arm.com/documentation/102474/0100/Fundamentals-of-Armv8-Neon-technology

60

[70] M. Dubrovsky, M. Ball, and B. Penkovsky, “Optical proof of work,” arXiv
preprint arXiv:1911.05193, 2019.

[71] “A64 cryptographic instructions.” [Online]. Available: https://developer.
arm.com/documentation/100076/0100/a64-instruction-set-reference/
a64-cryptographic-algorithms/a64-cryptographic-instructions

[72] “Intel® sha extensions.” [Online]. Available: https://www.intel.com/content/
www/us/en/developer/articles/technical/intel-sha-extensions.html

[73] S. Gueron, S. Johnson, and J. Walker, “Sha-512/256,” in 2011 Eighth Inter-
national Conference on Information Technology: New Generations, 2011, pp.
354–358.

[74] N. Heninger, “Rsa, dh, and dsa in the wild,” Cryptology ePrint Archive, 2022.

[75] J. Bos and M. Stam, Computational Cryptography: Algorithmic Aspects of
Cryptology. Cambridge University Press, 2021, vol. 469.

[76] E. Barker and Q. Dang, “Recommendation for key management - nist.”
[Online]. Available: https://nvlpubs.nist.gov/nistpubs/specialpublications/
nist.sp.800-57pt3r1.pdf

[77] H. Tschofenig, M. Pegourie-Gonnard, and H. Vincent, “Performance of state-of-
the-art cryptography on arm-based microprocessors.” [Online]. Available: https:
//csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/
documents/presentations/session7-vincent.pdf

[78] R. Holz, J. Amann, O. Mehani, M. Wachs, and M. A. Kaafar, “Tls in the wild:
An internet-wide analysis of tls-based protocols for electronic communication,”
arXiv preprint arXiv:1511.00341, 2015.

[79] J. W. Bos, C. Costello, P. Longa, and M. Naehrig, “Selecting elliptic curves for
cryptography: an efficiency and security analysis,” Journal of Cryptographic
Engineering, vol. 6, no. 4, pp. 259–286, 2016.

[80] S. Gueron and V. Krasnov, “Fast prime field elliptic-curve cryptography with
256-bit primes,” Journal of Cryptographic Engineering, vol. 5, no. 2, pp. 141–
151, 2015.

[81] Research and Markets, “Global virtual private network (vpn) market report
2021: Market to reach $107.6 billion by 2027 - covid-19 pandemic provides
strong push for vpns,” Jul 2021. [Online]. Available: shorturl.at/esBN4

[82] M. T. Khan, J. DeBlasio, G. M. Voelker, A. C. Snoeren, C. Kanich, and
N. Vallina-Rodriguez, “An empirical analysis of the commercial vpn ecosys-
tem,” in Proceedings of the Internet Measurement Conference 2018, 2018, pp.
443–456.

https://developer.arm.com/documentation/100076/0100/a64-instruction-set-reference/a64-cryptographic-algorithms/a64-cryptographic-instructions
https://developer.arm.com/documentation/100076/0100/a64-instruction-set-reference/a64-cryptographic-algorithms/a64-cryptographic-instructions
https://developer.arm.com/documentation/100076/0100/a64-instruction-set-reference/a64-cryptographic-algorithms/a64-cryptographic-instructions
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sha-extensions.html
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-57pt3r1.pdf
https://nvlpubs.nist.gov/nistpubs/specialpublications/nist.sp.800-57pt3r1.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf
https://csrc.nist.gov/csrc/media/events/lightweight-cryptography-workshop-2015/documents/presentations/session7-vincent.pdf
shorturl.at/esBN4

61

[83] W. J. Tolley, B. Kujath, M. T. Khan, N. Vallina-Rodriguez, and J. R. Cran-
dall, “Blind In/On-Path attacks and applications to VPNs,” in 30th USENIX
Security Symposium (USENIX Security 21), 2021, pp. 3129–3146.

[84] “strongswan - about.” [Online]. Available: https://www.strongswan.org/
about.html

[85] V. GUEANT, “Iperf - the ultimate speed test tool for tcp, udp and sctptest
the limits of your network + internet neutrality test.” [Online]. Available:
https://iperf.fr/

[86] “8 most common radius mistakes,” Jun 2021. [On-
line]. Available: https://networkradius.com/articles/2021/06/09/
8-most-common-RADIUS-mistakes.html

[87] A. Feraudo, P. Yadav, R. Mortier, P. Bellavista, and J. Crowcroft, “Sok: Be-
yond iot mud deployments–challenges and future directions,” arXiv preprint
arXiv:2004.08003, 2020.

[88] “Radperf - radius performance testing utility.” [Online]. Available: https:
//networkradius.com/radius-performance-testing/

[89] “Freeradius - fast, feature-rich, modular, and scalable.” [Online]. Available:
https://freeradius.org/

[90] J. Hassell, “Using udp versus tcp - radius [book].” [Online]. Available:
https://www.oreilly.com/library/view/radius/0596003226/ch02s01.html

[91] A. P. Felt, R. Barnes, A. King, C. Palmer, C. Bentzel, and P. Tabriz, “Mea-
suring {HTTPS} adoption on the web,” in 26th USENIX security symposium
(USENIX security 17), 2017, pp. 1323–1338.

[92] “Https encryption on the web.” [Online]. Available: https:
//transparencyreport.google.com/https/overview

[93] H. Lee, D. Kim, and Y. Kwon, “Tls 1.3 in practice: How tls 1.3 contributes to
the internet,” in Proceedings of the Web Conference 2021, 2021, pp. 70–79.

[94] [Online]. Available: https://hg.nginx.org/nginx/rev/release-1.18.0

[95] [Online]. Available: https://github.com/wg/wrk/releases/tag/4.2.0

[96] A. Rawdat, “Testing the performance of nginx and nginx plus web
servers,” Aug 2021. [Online]. Available: https://www.nginx.com/blog/
testing-the-performance-of-nginx-and-nginx-plus-web-servers/

[97] “Crypto acceleration: Enabling a path to the future of comput-
ing,” Nov 2020. [Online]. Available: https://newsroom.intel.com/articles/
crypto-acceleration-enabling-path-future-computing/#gs.xos9e1

https://www.strongswan.org/about.html
https://www.strongswan.org/about.html
https://iperf.fr/
https://networkradius.com/articles/2021/06/09/8-most-common-RADIUS-mistakes.html
https://networkradius.com/articles/2021/06/09/8-most-common-RADIUS-mistakes.html
https://networkradius.com/radius-performance-testing/
https://networkradius.com/radius-performance-testing/
https://freeradius.org/
https://www.oreilly.com/library/view/radius/0596003226/ch02s01.html
https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://hg.nginx.org/nginx/rev/release-1.18.0
https://github.com/wg/wrk/releases/tag/4.2.0
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/
https://newsroom.intel.com/articles/crypto-acceleration-enabling-path-future-computing/#gs.xos9e1
https://newsroom.intel.com/articles/crypto-acceleration-enabling-path-future-computing/#gs.xos9e1

62

[98] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining your
ps and qs: Detection of widespread weak keys in network devices,” in 21st
USENIX Security Symposium (USENIX Security 12), 2012, pp. 205–220.

[99] D. He, Z. Deng, Y. Zhang, S. Chan, Y. Cheng, and N. Guizani, “Smart contract
vulnerability analysis and security audit,” IEEE Network, vol. 34, no. 5, pp.
276–282, 2020.

[100] A. Ltd., “Trustzone for cortex-a – arm®.” [Online]. Available: https:
//www.arm.com/technologies/trustzone-for-cortex-a

[101] K. Team. [Online]. Available: https://keystone-enclave.org/

[102] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive survey,”
ACM Computing Surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[103] A. Cabrera, F. Almeida, J. Arteaga, and V. Blanco, “Measuring energy con-
sumption using eml (energy measurement library),” Computer Science-Research
and Development, vol. 30, no. 2, pp. 135–143, 2015.

[104] S. A. Chowdhury and A. Hindle, “Greenoracle: Estimating software energy
consumption with energy measurement corpora,” in 2016 IEEE/ACM 13th
Working Conference on Mining Software Repositories (MSR). IEEE, 2016,
pp. 49–60.

[105] M. J. Walker, S. Diestelhorst, A. Hansson, A. K. Das, S. Yang, B. M. Al-
Hashimi, and G. V. Merrett, “Accurate and stable run-time power modeling for
mobile and embedded cpus,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 36, no. 1, pp. 106–119, 2016.

[106] M. Chadha, T. Ilsche, M. Bielert, and W. E. Nagel, “A statistical approach to
power estimation for x86 processors,” in 2017 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2017, pp.
1012–1019.

[107] L. Chen, L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,
and D. Smith-Tone, Report on post-quantum cryptography. US Department of
Commerce, National Institute of Standards and Technology . . . , 2016, vol. 12.

[108] V. Mavroeidis, K. Vishi, M. D. Zych, and A. Jøsang, “The impact of quantum
computing on present cryptography,” arXiv preprint arXiv:1804.00200, 2018.

[109] B. Bathe, R. Anand, and S. Dutta, “Evaluation of grover’s algorithm toward
quantum cryptanalysis on chacha,” Quantum Information Processing, vol. 20,
no. 12, pp. 1–19, 2021.

[110] D. J. Bernstein and T. Lange, “Post-quantum cryptography,” Nature, vol. 549,
no. 7671, pp. 188–194, 2017.

https://www.arm.com/technologies/trustzone-for-cortex-a
https://www.arm.com/technologies/trustzone-for-cortex-a
https://keystone-enclave.org/

63

[111] J. Buchmann, E. Dahmen, and A. Hülsing, “Xmss-a practical forward secure
signature scheme based on minimal security assumptions,” in International
Workshop on Post-Quantum Cryptography. Springer, 2011, pp. 117–129.

[112] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-
pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn, “Sphincs:
practical stateless hash-based signatures,” in Annual international conference
on the theory and applications of cryptographic techniques. Springer, 2015, pp.
368–397.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	List of Abbreviations Used
	Acknowledgements
	Introduction
	Motivation
	Contribution
	Thesis Outline

	Background and Related Work
	Background
	SmartNIC Overview
	Cryptography in Network Security
	Why Offloading Crypto Operations?
	SmartNIC Cryptography Capabilities

	Related Works
	SmartNIC as a Performance Accelerator
	In-network Cryptography
	Cryptography performance.

	Basic Cryptography Performance on SmartNIC: Design and Evaluation
	Overview
	Evaluation Setup
	Results and Discussion
	Symmetric ciphers
	Hash functions
	Asymmetric ciphers

	The Case for SmartNIC Cryptography Offload: Design and Evaluation
	Overview
	VPN Tunneling
	Evaluation and analysis
	Takeaways

	User Authentication
	Evaluation and analysis
	Takeaways

	Secure Web Serving
	Evaluation and analysis
	Takeaways

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

