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Abstract

Mental well-being is increasingly demanded due to growing concerns about mental

health. At the same time, the Internet and smartphones are transforming the world

in unprecedented ways. This pervasiveness opens up new avenues for research by

providing access to an individual’s behaviour and daily habits. Unobtrusive data

collection and analysis from smartphone sensors is a promising approach to address-

ing mental health issues and have been the focus of many research studies. In this

work, we explore this opportunity by analyzing data collected from smartphone usage

and leveraging the advantages of data visualization and machine learning methods

to possibly identify and compare behavioural indicators and patterns that can indi-

cate mental health. We developed a visualization system to interact with extracted

features about behavioural indicators like screen usage, calling, and sleep to assess

the daily routine of participants under study. We also present two usage scenarios to

demonstrate our visual approach’s applicability in exploring the given dataset.
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Chapter 1

Introduction

Anxiety, depression and substance abuse are youth’s most common behavioural dis-

orders. A third of men and more than half of women had an episode of prominent

depressive and anxiety symptoms at least once during mid-to-late adolescence [76].

Anxiety is a common mental health problem, which typically onset at an early age and

follows a chronic course [23]. Many patients experience a relapse or chronic course of

anxiety, often resulting in substantial impairment across their lifespan [41, 42, 36, 28].

A steep increase in the prevalence of behavioural disorders including anxiety has been

observed over the last three decades, and this is likely to continue in the future [24].

Cognitive behavioural therapy (CBT) is the first-line treatment option for youth

anxiety-related disorders. CBT involves psycho-education about anxiety, teaching

youth skills for managing fears (e.g., relaxation, cognitive restructuring, problem-

solving), and provides a context for youth to encounter their fears gradually and

minimize avoidance (e.g., exposure) [59]. The efficacy of CBT for youth anxiety has

been demonstrated in several randomized control trials indicating large pre to post-

treatment effects and demonstrating superiority to control conditions [108]. While

CBT is just one of the many effective treatment options for anxiety disorders [26],

most youths with anxiety disorders do not receive adequate mental health care [24, 40].

Notably, the delivery of treatment for anxiety disorders will change considerably

over the next few years due to the widespread availability of the internet and smart-

phone applications and their utility in delivering CBT-based psychological interven-

tions. This change will ease many barriers that stand in the way of youth seeking or

receiving treatment under the current health care standards [57].

While mental health apps cannot replace professional clinical services, meta-

analyses highlights the potential of mental health apps to serve as cost-effective,

easily accessible, and low-intensity interventions for those who cannot receive stan-

dard psychological treatment [68, 63]. Mobile sensing technology can be ubiquitous
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and offer unprecedented opportunities to gain valuable insights into areas where youth

might experience problems with daily life behaviour. Today’s smartphones have high-

quality built-in sensors like GPS, Bluetooth, accelerometer, gyroscope, and ambient

light/noise sensors. Analysts can use logs from these sensors combined with calling,

app usage, and screen usage events to derive critical information about youth’s social

interactions, physical mobility and sleep routines.

1.1 Research Questions

In this thesis, we explore the possibility of combining feature engineering and estab-

lished data visualization and machine learning techniques to visually identify individ-

ual behavioural patterns and compare the same with the remainder of the group or

subgroups having participants with matching behavioural patterns. We attempted to

answer the following research questions using a visual system.

1. (RQ1): Is this dataset collected as part of the PROSIT study adequate to

identify distinct participant groups based on similarities in smartphone usage

behaviour?

2. (RQ2): Is it possible to visualize this smartphone sensor-based dataset to

identify behavioural trends or to preprocess it to extract meaningful features

characterising a participant’s behaviour and daily habits?

3. (RQ3): Can the abovementioned features be sub-selected and examined to

better understand how different combinations aid in the identification of similar

groupings or cluster formations?

This project is an exploratory study. It does not pursue the validation of an

argument; instead, it aims to bring together diverse established techniques found in

the existing literature to research the potential of mobile sensing data to identify

behavioural disorders.

1.2 Contributions

In brief, the contributions of this thesis to explore research questions described in

section 1.1 are listed below:
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1. (C1): A data preprocessing pipeline and a feature engineering approach to ex-

tract meaningful information from raw mobile sensing data. With this, we in-

vestigated methods to extract features representing screen usage, calling habits

and sleep routine that can help us answer RQ1 and RQ2.

2. (C2): An interactive visual system with glyph-based scatter plot to explore

similar user groups or identify outliers. Further, allow comparison of aggregated

features of individual participants with aggregated features of other users in the

same or different groups. This contribution attempts to answer RQ3.

3. (C3): An interactive radial chart-inspired visualization with a brush filtering

component to filter the days during the study period. This work attempts to

address RQ2 by combining smartphone data (accelerometer, gyroscope, screen

brightness, sleep noise, and screen lock state) to help visually identify partici-

pants’ sleep and activity patterns.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chapter 2 briefly introduces

feature engineering process, dimensionality reduction and classification. These three

strategies are used together in this project to identify subgroups or clusters visually.

Chapter 3 presents the literature review of some of the research work previously

done in mobile sensing for mental health, visualization of multidimensional data and

visualization of time series data. In Chapter 4, we describe the data collection process

used in the PROSIT project and briefly present the data-set’s structure. Chapter 5

discusses the methodology and approach used to pre-process the raw data and explains

the reasoning behind the design goals used for developing and implementing our visual

system. Chapter 6 describes three use cases that represent the usefulness of our

visual system, and also demonstrates our visual system’s effectiveness in exploring

and analyzing any given dataset. Here, we demonstrate two usage scenarios, first

using the IRIS dataset and then the PROSIT dataset. Chapter 7 concludes our

thesis work by briefly highlighting limitations and future directions.



Chapter 2

Background and terminology

This chapter presents the background and the relevant concepts for this work.

2.1 Feature Engineering

A feature is a numeric representation of the characteristics of the raw data. Features

sit between data and models in the machine learning pipeline, and the process of for-

mulating the most appropriate features given the data or the model is named feature

engineering. ML models, such as decision trees, random forests, neural networks,

and gradient boosting machines take feature vectors as inputs and make a prediction.

These models learn in a supervised manner, with feature vectors mapped to the pre-

dicted output. The performance of such machine learning methods heavily depends

on the choice of data representation (or features) to which they are applied. For that

reason, much of the effort in deploying machine learning algorithms go into the design

of preprocessing pipelines and data transformations that result in a representation of

the data that can support effective machine learning[107, 19]. It is a crucial step that

enables higher quality output results. Fig. 2.1 shows an example end-to-end data

modelling pipeline, and the place features are introduced in the same.

Figure 2.1: Feature engineering in a typical end-to-end data modelling pipeline.

2.2 Dimensionality Reduction

Real-world data often has high dimensions, meaning it has many features or attributes

representing each data instance. In order to handle such data adequately, its dimen-

sionality must be reduced. Dimensionality Reduction(DR) refers to the problem of

4
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mapping high dimensional data points into meaningful representations of reduced

dimensions [34, 73]. Ideally, the reduced representations should have a dimensional-

ity corresponding to the data’s intrinsic dimensionality. The intrinsic dimensionality

of data is the minimum number of parameters needed to account for the observed

properties of the data [39]. DR is important in many domains since it helps tackle

the sparsity of raw data, which is a consequence of the curse of dimensionality. Tra-

ditionally, DR was performed using linear techniques such as Principal Components

Analysis(PCA) [77], factor analysis [88], classical scaling [92]. These techniques keep

the low-dimensional representations of dissimilar data points far from each other.

For high-dimensional data that lie on or near a low-dimensional, nonlinear mani-

fold, keeping the low-dimensional representations of very similar data points close

together is usually more important, which is typically not possible with a linear map-

ping. Therefore, these linear techniques do not perform adequately for a nonlinear

data set.

In the last few years, large variety of diverse alternative non linear DR techniques

have emerged, including popular algorithms such as Locally Linear Embedding (LLE),

Isomap, Isotop, Maximum Variance Unfolding (MVU), Laplacian Eigenmaps, Neigh-

borhood Retrieval Visualizer, Maximum Entropy Unfolding, t-SNE, and many others

[82, 90, 106, 18, 95, 97], see e.g. [96, 97, 64, 22] for overviews. t-SNE which is a modi-

fied method based on SNE technique has performed well in unsupervised experiments.

t-SNE is capable of capturing much of the local structure of the high-dimensional data

very well, while also revealing global structure such as the presence of clusters at sev-

eral scales [95]. SNE starts by converting the high-dimensional Euclidean distances

between data points into conditional probabilities that represent similarities. The

similarity of datapoint xj to datapoint xi is the conditional probability, pj|i, that

xi would pick xj as its neighbour if neighbours were picked in proportion to their

probability density under a Gaussian centred at xi. For nearby datapoints, pj|i is

relatively high, whereas for widely separated data points, pj|i will be almost infinites-

imal (for reasonable values of the variance of the Gaussian, σi). Mathematically, the

conditional probability pj|i is given by

pj|i =
exp(−||xi − xj||2/2σ2

i )∑
k ̸=i exp(−||xi − xk||2/2σ2

i )
, (2.1)
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where σi is the variance of the Gaussian that is centered on datapoint xi. Because we

are only interested in modeling pairwise similarities, we set the value of pi|i to zero.

For the low-dimensional counter parts yi and yj of the high-dimensional datapoints

xi and xj, it is possible to compute a similar conditional probability, which we denote

by qj|i. We set the variance of the Gaussian that is employed in the computation of

the conditional probabilities qj|i to
1√
2
. Hence, we model the similarity of map point

yj to map point yi by

qj|i =
exp(−||yi − yj||2)∑
k ̸=i exp(−||yi − yk||2)

. (2.2)

Since we are only interested in modeling pairwise similarities, we set qi|i = 0.

If the map points yi and yj correctly model the similarity between the high-

dimensional data points xi and xj, the conditional probabilities pj|i and qj|i will be

equal. To measure the faithfulness with which qj|i models pj|i Kullback-Leibler di-

vergence (which in this case equal to the cross-entropy up to an additive constant)

is used. SNE minimizes the sum of Kullback-Leibler divergences over all datapoints

using gradient descent method. The cost function C is given by

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|i log
pj|i
qj|i

, (2.3)

in which Pi represents the conditional probability distribution over all other data-

points given datapoint xi, and Qi represents the conditional probability distribution

over all other map points given map point yi. Because the Kullback-Leibler di-

vergence is not symmetric, different types of error in the pairwise distances in the

low-dimensional map are not weighted equally. In particular, there is a large cost for

using widely separated map points to represent nearby datapoints (i.e., for using a

small qj|i to model a large pj|i, but there is only a small cost for using nearby map

points to represent widely separated datapoints. This small cost comes from wasting

some of the probability mass in the relevant Q distributions. In other words, the

SNE cost function focuses on retaining the local structure of the data in the map (for

reasonable values of the variance of the Gaussian in the high-dimensional space, σi).

Although SNE constructs reasonably good visualizations, it is hampered by a cost

function that is difficult to optimize and by a problem we refer to as the “crowding



7

problem.”. The cost function used by t-SNE differs from the one used by SNE in

two ways: (1) it uses a symmetrized version of the SNE cost function with sim-

pler gradients that were briefly introduced by Cook et al. [25] and (2) it uses a

Student-t distribution rather than a Gaussian to compute the similarity between two

points in the low-dimensional space. t-SNE employs a heavy-tailed distribution in the

low-dimensional space to alleviate both the crowding problem and the optimization

problems of SNE.

In this thesis, we have used t-SNE technique to compute projections of user se-

lected features belonging to participants, and these projections are used for generating

the chart.

2.3 Classification

Machine learning is a subfield of artificial intelligence that focuses on using data and

algorithms to imitate learning whose accuracy improves with experience. The study

of ML is essential for addressing fundamental scientific and engineering questions and

for the efficient software systems it has produced across a broad range of domains. ML

has progressed rapidly over the past two decades and is now a practical technology in

widespread commercial use. A diverse array of machine-learning algorithms has been

developed to cover the wide variety of data and problem types exhibited across differ-

ent machine-learning problems [71, 45]. Conceptually, machine-learning algorithms

can be viewed as searching through a vast space of candidate programs, guided by

training experience, to find a program that optimizes the performance metric [55].

Instances in a dataset used by machine learning algorithms are represented using

multiple features which may be continuous, categorical or binary. If the instances

are given with known labels (the corresponding outputs), then the learning is called

supervised; otherwise, unsupervised learning is where instances are unlabelled. The

most widely used machine-learning methods are supervised learning methods [45].

Here, the training data forms a collection of (x, y) pairs, and the goal is to produce a

prediction y∗ in response to a query x∗. The inputs x may be classical vectors or more

complex objects such as documents, images, DNA sequences, or graphs. Similarly,

many different kinds of output y have been studied. Much progress has been made

by focusing on the simple binary classification problem in which y takes one of two
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values.

One example of such techniques, the k-nearest neighbours algorithm, often known

as KNN or k-NN, is a non-parametric, supervised learning classifier that makes clas-

sifications or predictions about grouping individual data points based on closeness.

While it can be used for both regression and classification problems, it is most com-

monly utilized as a classification technique based on the notion that comparable

points can be discovered together. KNN classification has two stages, the first stage

is to determine the nearest neighbours, and the second stage is to determine the

class based on majority vote of classes of those neighbours [27, 29]. It is also worth

mentioning that the KNN method belongs to the ”lazy learning” family of models,

which means it just saves a training dataset rather than going through a training

step. All calculation takes place when a classification or prediction is produced. It

is also known as an instance-based or memory-based learning approach because it

significantly relies on memory to retain all of its training data. The distance between

the query point and the other data points must be calculated to determine which

data points are closest to the query point. These distance measures aid in forming

decision borders that divide query points into distinct regions. Any of the several

distance metrics like Euclidean, Manhattan, Minkowski or Hamming distance can be

chosen to compute these distances

In this thesis, feature engineering is used to extract screen usage call-related and

sleep-related features from raw sensor data, and the t-SNE or PCA techniques are used

to compute the 2D projections. Later KNN algorithm is applied over the feature space

to predict a class label of every data point. This information is visually embedded in

the form of a glyph to allow data exploration. Chapter 5 further elaborates this in

detail.



Chapter 3

Literature Review

This chapter outlines the literature that was reviewed during this thesis. We mainly

focus on mental health issues such as anxiety and depression since it is commonly

recognized that these two are strongly linked to the use of smartphones and social

media, as well as inactivity [32]. We centred our review on earlier work that leveraged

mobile sensing data to detect symptoms of anxiety or depression, as well as work on

visualizing time-series multivariate data to find similar groups and patterns.

In the first section, we summarize work analyzing mobile sensing data to identify

mental health issues like anxiety and depression. In the second section, we review

work related to multidimensional data visualization, including techniques like dimen-

sionality reduction and classification for multivariate data. The last section reviews

popular methods to visualize time series data.

3.1 Mobile sensing data for Mental health

Smartphones are becoming increasingly popular among adults of all backgrounds

around the world, and they are carried with them the majority of the time as one of

their most important personal belongings. Smartphone subscriptions have surpassed

six billion worldwide and are expected to increase by several hundred million soon [8].

As a result, a significant amount of research has been focused on gathering data (e.g.,

app usage logs, media and internet consumption, communication logs, screen activity,

location and human activity detection) from these mobile devices to study user be-

haviour for targeted profiling. The goal of such targeting could be for business reasons

like ads and digital marketing to increase brand awareness, but a similar approach

has been used to study and understand user behaviour that correlates to mental

well-being. Depression, for example, is associated with several behavioural changes

like reduction in physical activity and changes in sleep routine, some of which can

be detectable using mobile phone sensors [78, 94]. Studies have indicated that data

9
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from phone sensors effectively analyzed the relationships between social interactions,

screen usage and sleep with depression [30, 79] and such features significantly corre-

lated with its severity [102]. Some research also describes excessive smartphone use

as compulsive behaviour and has linked it to a few depressive symptoms [91, 65].

Physical activity has been shown to help prevent a variety of diseases, as well as

improve mental health and general quality of life. Three out of every four teenagers

and one out of every four adults do not currently fulfill WHO’s worldwide physical

activity recommendations [13]. Numerous studies have found links between physical

activity and improvements in mental health symptoms in various populations [75].

Most smartphones today come in many high-quality sensors, such as an accelerometer,

gyroscope, proximity sensors, and magnetometer, that can be used to measure the

extent of physical activity.

Several studies have used data from smartphone usage to predict personality traits.

Given that our thesis focused on identifying mental health issues, these related stud-

ies can be used to learn how to extract essential features from raw mobile sensing

data and apply artificial intelligence approaches. A study by Stachl et al., worked

extensively in this area of personality prediction [89]. This study recruited 743 vol-

unteers and filtered out participants with less than 15 days of logging data, no app

usage, and missing questionnaire data. The final sample (n=624) was used for anal-

ysis. The dataset consisted of logs of events which included calls, contact entries,

texting, global positioning system (GPS) locations, app starts/installations, screen

de/activations, flight mode de/activations, Bluetooth connections, booting events,

played music, battery charging status, photo and video events, and connections to

wireless networks (WiFi). The character length of text messages and technical device

characteristics were also collected. Researchers extracted 1,821 behavioural predic-

tors from this raw dataset in domains of 1) communication and social behaviour,

2) music consumption, 3) app usage, 4) mobility, 5) overall phone activity, and 6)

day and night-time activity. The final dataset also consisted of 35 personality di-

mensions (five domains and 30 facets) assessed for each participant during the study.

These extracted variables mainly included standard estimators (e.g., arithmetic mean,

standard deviation). More complex variables containing information about the irreg-

ularity, the entropy, the similarity, and the temporal correlation of behaviours were
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also computed (e.g. mobility data). Later, these variables were used to train and

validate k-fold linear and non-linear regression models. Results showed that these

models could successfully predict Big Five personality trait levels for more than half

of the domains and facets.

Another study by Saeb et al., explored the detection of daily-life behavioural

markers using mobile phone sensor data and its usage to identify the severity of de-

pressive symptoms [83]. In this study, 40 adults were recruited for two weeks and

were instructed to carry a mobile phone with a data acquisition app. An online as-

sessment consisting of Patient Health Questionnaire-9 (PHQ-9), a commonly used

measure for self-reported depressive symptom severity [61] was used at the beginning

of the study period to label the severity of depressive symptoms in individual par-

ticipants. Though this study mainly focused on features extracted from GPS points

and their correlation to depression, there were also features indicating phone usage

duration and frequency. The results of this study demonstrated that the severity of

depressive symptoms has a moderate to strong negative association (r=-.63, P=.005)

with GPS data properties, as well as a moderate positive correlation (r=.54, P=.011)

with phone usage.

A study by Huckins et al., focused on college student’s mental health and be-

haviour during the early phases of the Covid-19 pandemic [48]. Researchers here

used mobile sensing data and self-reported mental health labels to study the changes

in behaviour and mental health of students associated with the restrictions imposed

due to the pandemic. Mobile sensing data was collected using a smartphone app

from 217 undergrad students 18 to 22 years of age. These students had been a part

of longitudinal research for the previous two years. Sensor logs, including GPS, ac-

celerometer, and screen lock events, were collected during the Winter 2020 semester.

This data was used to extract features representing the day-to-day and week-to-week

impact of workload on stress, sleep activity, mood, sociability, mental well-being

and academic performance of the students. Short surveys were conducted weekly

in the form of Ecological Momentary Assessments(EMA) [85] of the Patient Health

Questionnaire-4(PHQ-4), which is a brief measure of depressive and anxious symp-

toms [62]. The extracted features included Sedentary time, Sleep(i.e. sleep onset,

wake time and sleep duration), location(i.e. distance travelled, number of locations
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visited) and phone usage(i.e. screen duration). Results from the study show that

individuals in the winter of 2020 were more sedentary, which was expected due to

severe lockdown restrictions. Participants also reported being anxious and depressed

relative to previous terms and subsequent breaks. The analysis showed various be-

havioural changes, including increased screen time, decreased physical activity, and

fewer locations visited. The study discovered that these changes in behaviour were

related to COVID-19 news variations at the time and that they were associated with

anxiety (P<.001) and sadness (P=.03).

The PROSIT[10] study’s mobile sensing data is similar to some of the research

described above, and we have leveraged their findings, which show a strong link

between behavioural changes and mental health difficulties. We used a modified

version of their methods to extract these behavioural indicators and develop a tool to

examine changes in those indicators during the study period visually. Other programs

like RADAR-Base and mindLAMP work in areas similar to PROSIT, where they

collect high-resolution data at scale and analyze it with the help of data visualization

to correlate it with mental well-being [80, 93].

3.2 Visualization and analysis of multidimensional data

Visual Data Exploration is usually broken down into three-step process: Overview

first, zoom and filter, and then details-on-demand [86]. Visualization techniques help

provide a high-level overview and allow the user to discover relevant subgroups in the

data. It is critical to preserve the overall picture while focusing on the subset with

another visualization technique. An overview like this is necessary to represent the

cluster patterns or groups that naturally arise in data.

Traditional methods such as scatterplots and scatterplot matrices can produce a

view of a dataset’s inherent structure. They remain one of the most popular and

widely-used visual representations for multi-dimensional data due to their simplicity,

familiarity and visual clarity. Work by Elmqvist et al., utilizes scatterplots for visual

exploration of multi-dimensional datasets using structured navigation in data dimen-

sion space [33]. Fig. 3.1 shows the example of a scatterplot matrix of a car dataset

having 8-dimensions. Techniques like GPLOM [49] are improvised versions of scat-

terplot matrices combining scatterplots for pairs of continuous variables, heatmaps
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Figure 3.1: Example of a scatterplot matrix for a 8-dimensional car dataset. (Source:
[33])

Figure 3.2: GPLOM visualization, which is a modified version of scatterplot matrix
of a sample dataset. Barcharts and heatmaps show aggregated data. Heatmaps are
also color coded to represent aggregated sales numbers. (Source: Im et al.[49])
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Figure 3.3: Schematic overview of a visual technique to scale scatterplot matrices
(Source: Lehmann et al.[66])

for categorical variables, and bar charts for pairings of a categorical and continuous

variable. This method is well suited for data with multiple categorical variables.

Fig. 3.2 shows a GPLOM visualization of a sample dataset with 5-dimensions. How-

ever, the scatterplot matrix technique is not scalable and is ineffective when the size

and dimensionality of data increase [70, 15]. The visualization technique proposed

by Lehmann et al. [66] addresses the scalability problem of scatterplot matrix. They

presented an interactive framework and tested the visual representations with a real

dataset having more than 100 dimensions. Fig. 3.3 shows a schematic overview of the

proposed visual technique. However, such visual representations can be complex for

analysts to understand and navigate without guidance.

Many techniques have been devised to project high-dimensional data into 2D or

3D dimensional space. As the dimensionality increases, various techniques like di-

mension subsetting, dimension reduction, dimension embedding, multiple displays are

used to handle the curse of dimensionality problem [104]. A more popular approach

is to apply Machine Learning(ML) techniques to generalize the complexity of high di-

mensional data by employing Dimensionality Reduction(DR), density estimation and

clustering/classification methods. Here, the structure of a dataset can be defined as

the “geometric relationships among subsets of the data vectors in the L-space” [84],

where vectors regard instances or data points, and L their dimensionality. Section

2.2 has a more detailed explanation of DR. A comparative study by Ventocilla et

al., presents an empirical user study that compares eight multidimensional projection

techniques for supporting the estimation of the number of clusters, k, embedded in six

multidimensional data sets [99]. Results of this study suggested that t-SNE will likely
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lead to estimates closer to the number of labels in a data set when compared to other

Multidimensional Projections (MDPs). Point plots are visualizations that project

data instances from an n-dimensional space to an arbitrary k-dimensional space, such

that data records map to k-dimensional points. A graphical representation or a mark

is drawn at the associated k-dimensional point for each data point. The objective of

such graphical representation, also known as ‘glyph,’ is to represent multivariate data

so that an investigator can quickly comprehend relevant information to apply suitable

analysis. Fig. 3.4 shows a few examples of glyphs that have been previously used as

markers. Glyphs have become a popular method for conveying information visually.

Individual dimensions for each data point are mapped to attributes of a particular

shape or symbol, and variations and anomalies among these graphical entities can

easily be perceived. A taxonomy of glyphs and placement strategies by Matthew O

Ward [103] presents an overview of multivariate glyphs, a list of issues regarding the

layout of glyphs, and a comprehensive taxonomy of placement strategies to assist the

visual design process.

Once the positions for the glyphs are computed, a possible post-processing step

for data-driven techniques would involve adjusting these initial positions of glyphs

to reduce clutter and overlap. This is required because overlap can distort the final

image’s interpretability. In literature, many solutions can be found to address this

problem with occlusion due to the overlap of glyphs. A technique by Hilasaca et al.,

called Distance Grid (DGrid) proposed a novel approach to removing overlapping DR

projections by combining a density-based strategy to generate auxiliary points with

a novel space-partitioning method [46]. In this thesis, we used the DGrid technique

to remove the occlusion caused due to overlap of glyphs. Fig. 3.5 shows this overlap

removal process using Dgrid on a sample scatterplot. Python implementation of this

algorithm can be found here.1

An example of another popular technique which allows the visualization of multi-

dimensional data is the Parallel Coordinates or PCP (Parallel Coordinates Plot).

This technique induces a non-projective mapping between N-Dimensional and 2-

Dimensional sets [53]. A mathematician and computer scientist named Alfred In-

selberg popularized this technique in 1985 for studying high-dimensional geometry

1https://github.com/fpaulovich/dimensionality-reduction

https://github.com/fpaulovich/dimensionality-reduction
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Figure 3.4: Examples of glyphs. Top row: (a) variations on profiles; (b)
stars/metroglyphs; and (c) stick figures and trees. Bottom row: (d) autoglyphs and
boxes; (e) faces; and (f) arrows and weathervanes (Source: [103])

Figure 3.5: Overview of overlap removal process using Distance Grid(DGrid)[46].
The scatterplot area is first split into a grid (A), and “dummy” points (small black
dots) are crafted to represent empty space (B). Finally, original and “dummy” points
are assigned to grid cells (C), and the “dummy” points are removed (D), resulting in
a completely overlap-free layout. (Source: [46])
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[51]. Parallel Coordinates display each multidimensional data item as a polygonal

line which intersects the horizontal dimension axes at the position corresponding to

the data value for the corresponding dimension [58]. To interpret the plot, users can

look for clusters of similar lines (indicating the partial correlation between pairs of

dimensions) and lines that are either isolated or have a slope that is significantly

different from their neighbours (indicating outliers). Scatter plots and PCP can be

used to assess the dataset’s correlation visually. A user study by Li et al., compared

these two visualizations and assessed their perception of correlation [67]. Although

the study concluded that scatter plots are more practical for supporting visual cor-

relation analysis, the ability of PCP to scale for the higher number of dimensions

cannot be ignored. Fig. 3.6 shows the visual comparison of scatter plot matrix and

PCP to perceive correlation in multidimensional data. It can be clearly seen that as

the number of dimensions increases scatterplot matrix technique requires more visual

space to display matrix combinations between individual dimensions, thus making

this techniques less useful in cases where the number of dimensions is large.

Another relatively older study by Brunsdon et al. [20] examined PCP along with

three other techniques for multi-dimensional data visualization: projection pursuit

[38], Geographically Weighted Regression [21] and RADVIZ [47]. This study sug-

gested that the PCP approach was the most intuitive of the four techniques and even

commented that PCP was essentially a multidimensional variation of the scatterplot.

Instead of just two axes, as in the case of a scatterplot, PCP has one axis for every

dimension and can be used to draw relationships between those axes, which are de-

picted as parallel lines. The ordering of the axes, on the other hand, influences the

depiction of relationships within the dataset; therefore, attention must be made when

choosing one. The depiction of the data in parallel coordinates can get rather messy

when large numbers of cases are involved. Chapter 10 of Inselberg’s book provides a

great discussion on exploiting interactivity in PCPs to understand large and complex

data [50].

A study by Krause et al., presented a framework called SeekAView that allowed

the analyst to build subspaces to analyze the structure of datasets having around

100 dimensions visually [60]. Fig. 3.7 shows different panels presented in SeekAView.

This technique uses a combination of PCA projected scatter plot, parallel coordinates,
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(a) Representation of sample data with
three extreme values of r measuring
correlation using (i)scatterplots, and
(ii)parallel coordinate plots (PCP)

(b) Visualization of multivariate data:
(i)scatterplot matrix and (ii)parallel cor-
dinate plot.

Figure 3.6: Visual comparison representing the ability to display measure of correla-
tion within multidimensional data(Source: [67])
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Figure 3.7: The user interface of SeekAView : framework to visually analyze the
structure of multidimensional data (Source: [60])

and scatter plot matrix to analyze the structure and dependencies within the various

dimensions in the dataset. Cluster labels from hierarchical clustering (DB-SCAN with

single linkage) were coupled with visualizations to find groups of similar dimensions.

Users also had the flexibility to brush filter various visualization plots. These brush

filtering enabled users to specific targets that can be used to suggest different views.

Brushes could also remove outliers or focus attention on a specific class.

Another study by Ventocilla and Riveiro proposed an advanced visualization to

explore the structure of large datasets [98]. This study also uses the strategy to ana-

lyze the data by building a visual overview of data in multi-dimensional space. Such

an overview is built on a framework using Growing Neural Gas (GNG), and visual

encodings with force-directed graphs (FDG). A progressive visualization approach

was used here to study the structure of the dataset: a progressive algorithm gener-

ates early results based on the dataset and parameter settings and produces partial

results that the user can analyze. This cycle repeats until the algorithm achieves a

convergence. Fig. 3.8 shows an overview of this progressive evolution of GNG topol-

ogy when applied to a sample medical dataset. User interactive features like hovering

and clicking on nodes on the GNG plot highlighted the respective data line over the

PC plot. Filtering was triggered by dragging up and down feature boundaries in the
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Figure 3.8: Progressive evolution of GNG topology when applied to a sample medical
dataset. From left to right represent the topology state after progression in the
number of signal sampling. (Source: [98])

PC plot. Dragging feature boundaries caused prototype lines with values outside the

boundaries and their corresponding nodes in the GNG to be demoted to a gray colour

with lower opacity. K-means clustering method was also employed to cluster the data

points and colour code the nodes in GNG and lines in PC plots to help analysts

identify similar groups.

3.3 Visualization of time series data

Time is an inherent data dimension that is central to the task of identifying trends

and relationships within the data. It is a set of observations arranged in chronological

order. Time and time-oriented data have distinct characteristics that make it worth-

while to treat such data as a separate data type [14, 16]. Analysis of time series data

is quite diverse and can be seen in a wide variety of research involving the study of

the behaviour of a subject over a specific time. There can be several examples like (1)

studying the movement of a planet around its star, (2) predicting the net sales of a

company in the next quarter based on previous trends, (3) recommending a product

to a customer based on their previous purchase or (4) studying the progression of a

chronic illness in a patient. Time series analysis has long been used in science and

engineering and has contributed significantly to the most recent technological ad-

vancements (analog and digital communication, robotic control). Visualization plays
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Figure 3.9: Views of interactions between the GNG and PC plots highlighting the
reciprocity between overview and detailed view of multidimensional dataset. (Source:
[98])
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Figure 3.10: Linear vs Circular visualizations of intensity of sunlight measured over
certain time. (Source: [105])

an essential role in such research involving time-series data. A variety of visual ap-

proaches have been used to explore time series data. Each of these techniques is

significant in its own right. Each of these approaches has its significance [87, 35]. The

choice of any of these visual representations depends on the characteristics of time

series data and the overall goal of the visualization.

Classical point graph, line chart and bar chart have been proven to be very ef-

fective in visualizing serial data and is very popular even today to highlight trends

and anomalies. Circular/spiral graphs, on the other hand, have been proven to help

expose periodic behaviours over small subsets of time. We can demonstrate the ad-

vantage of circular visual representations in identifying patterns in time series data.

Fig. 3.10 shows linear vs circular visual representations of the sunlight intensity mea-

sured over time. By comparing both visualizations, it can be seen that circular visual

representation is much easier to compare data over individual days. A circular graph

is also more effective in identifying important events like sunrise, sunset and cloudy

periods during the daytime.

A visual framework by Graells and Jaimes[44] combined linear and spiral layouts

to analyze time-series data visually. The time brushing feature was implemented as

scroll bars to interact with the data and allow users to focus on a specific subset of

time. Fig. 3.11 shows an overview of the prototype implementation. The linear part
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Figure 3.11: Prototype implementation of Lin-spiration. Visual technique that com-
bines linear and spiral representations for time-series data analysis (Source: [44])

Figure 3.12: Overview of four techniques to visualize time series data. Example shows
same time series data plotted using different representations to compare preception.
(Source: [54])

shows the focused area of the data, whereas the spiral part shows the remainder of it.

Scroll bars on the top allow users to interact with the visualization to change focus

over time for each variable.

A study by Javed evaluated the visual perception of different time series data

visualized together in a single chart [54]. Fig. 3.12 shows the four visual techniques

that were evaluated for perception. Author divided the graphs into two categories:

(i) shared space layouts which plot multiple time-series data over same region i.e.

subfigures (a) and (b) in Fig. 3.12 and (ii) split space layouts which plots individual

time-series data over sub-regions split within the complete available space i.e. subfig-

ures (c) and (d) in Fig. 3.12. This study suggested that superimposed(shared space)

techniques excel at comparisons within a local visual span. In comparison, juxta-

posed(split space) techniques required the user to gaze vertically between different

sub-spaces, making the comparison more difficult.
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Figure 3.13: Circular visual design for effectively visualizing sleep data. (Source:
[101])

A visual design study by Wallace et al., surveyed three sleep clinicians to validate

the effectiveness of two different design types (linear vs circular) to plot self-tracked

sleep data effectively [101]. Evaluation results of this study suggest that the spiral

design is intuitive, reveals sleep patterns across long periods, and requires less effort

than a standard line chart. Fig. 3.13 shows the final version of the visualization design

that was voted best suited for sleep data visualization in a design user study.

For our system, we leveraged the data visualization design listed above and devel-

oped a circular clock-based visual chart that can be used to plot many sensor data

layers on top of each other. The design goal here is to preserve the cyclical rhythmic

nature of human behaviour and help users visually identify individual participants’

sleep and activity patterns throughout the study period. Chapter 5, which outlines

the design goals and methodology, will elaborate on this in more detail.



Chapter 4

Data

4.1 Data Collection

PROSIT is a research project conducted by Dalhousie University’s Psychiatry Depart-

ment [10]. This study aims to improve the mental well-being of youth. Researchers

in this study sought a novel approach to providing clinical care to youth at risk of de-

veloping some of the most common mental health disorders or individuals who have a

medical condition but have never been diagnosed or treated as a result of the current

healthcare system. Given the potential of mobile sensing in providing unobtrusive

logging of user activity that can be used to assess social behaviour, researchers from

the PROSIT were keen on designing a mental health app that can serve as a cost-

effective, easily accessible solution for those who cannot receive standard psychiatric

treatment. An innovative mobile sensing app called PROSIT was developed to collect

objective metadata data from the devices participants were using. Different versions

of apps were designed to work on both Android and iOS versions since these were

the two most popular mobile operating systems used by the general public. Data on

social interactions were collected using this app for a period of a 6-week time window

at the beginning of the study period. Participants were also asked to rate their social

interactions during this time subjectively. Researchers were interested in measuring

new onsets and trajectories of mental disorders in youth.

In many studies, researchers used the PROSIT Android and iOS apps to capture

and store valuable data from participants’ smartphones. Until this thesis was writ-

ten, up to four studies had been conducted, each targeting specific user groups or

periods. For instance, the Covid study focused on participants’ mental health during

the COVID-19 pandemic period and other studies like Social media study use fo-

cused on the impact of social media usage by adolescents on their mental well-being

[69]. Although the structure and format of data collected from participants were the

same, these studies mainly differed in the targeted participant groups and the set of

25
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questionnaires that the participants had to answer during the study period. For this

thesis, we worked only with data collected as part of the Covid study, representing

the smartphone usage and behaviour patterns of participants during the Covid-19

pandemic. It should be noted that the system proposed as part of this thesis can

replicate the processing and visualization of similar data collected in other studies

using the same or a similar PROSIT app.

As part of the Covid study, we had data from participants using iOS and Android

devices. We had 831 participants with iOS devices, and we used filtering criteria where

only those participants who had data for more or equal to 14 days were considered for

analysis. After filtering, we were left with 523 participants. Out of these 523, only 477

participants had labels about a mental health condition. As shown in the chapter5,

these labels are essential in creating a custom glyph and colour-coding those glyphs

in the visualization dashboard. This information is designed to help the dashboard

user identify similar user groups and outliers, meaning to identify participants whose

mental health label is different compared to their neighbours with similar smartphone

usage patterns.

4.2 Data Structure

During the developmental phase of the PROSIT app, researchers looked for mobile

sensor-based indices that may predict youth’s behaviour in real life. These indices

were selected based on their potential to make inferences about participants’ mental

health state [81, 43]. Table 4.1 and Table 4.2 lists few of the sensor data attributes

that were captured by Android and iOS versions of the PROSIT app. Data consisted

of 22 attributes for Android devices and 14 attributes for ios devices. Few of these

attributes were not useful since they could not be linked to human behaviour. Hence

we have not used all the captured data for our analysis and visualization. Fig. 4.1 show

the distinct attributes representing measurements from various sensors and events

collected from the devices used by the participants.

The PROSIT app is downloaded into the smartphone of a participant in the study.

The app temporarily stores sensory data fetched from the device in a local SQLite

database. This data is transmitted to a secure server over an HTTPS connection when

the device is connected to WIFI. The app was carefully developed to take battery
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ios

android

Figure 4.1: Distinct attributes representing sensor measurements for data collected
from ios and android devices



28

Sl
No

Sensor Description
capture
in an-
droid

Data
cap-
ture in
ios

Usage
in this
thesis

1 Accelerometer

Measure of acceleration in
m/s2 on three physical axes
(x, y, z) including force of
gravity.

yes yes yes

2 Gyroscope
Measure of angular velocity
in rad/s around each of the
three physical axes (x, y, z).

yes yes yes

3 Call

Timestamps of calling
events i.e. call incoming,
call dialling, call connected,
call disconnected and
call hold.

yes yes yes

4 Lock state
Device screen locking states
i.e. locked or unlocked.

yes yes yes

5 Light lux
Measure of ambient light
levels around the device.

yes no yes

6 Brightness
Intensity of screen bright-
ness.

no yes yes

7 Sleep Noise
Noise levels during sleep
times detected by the de-
vice.

no yes yes

8 GPS

Current Location Coordi-
nates of the device. This in-
formation encrypted for en-
hanced security.

yes yes no

9 Magnetometer
Measure of strength of Mag-
netic field around the de-
vice.

yes yes no

10 Connectivity
Device connectivity to in-
ternet.

yes yes no

11 Power state

Device charging and battery
event i.e. charging, full,
unplugged, PowerUnknown,
power connected, shutoff.

yes yes no

Table 4.1: List of sensor data which is captured by PROSIT app on android and ios
devices
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Sl
No

Sensor Description

Data
cap-
ture
in an-
droid

Data
cap-
ture in
ios

Usage
in this
thesis

12 Bluetooth
Bluetooth features used to
periodically scan for nearby
devices.

yes no no

13
Detected Activ-
ity

Workout or physical activ-
ity like walking, running,
cycling etc. detected by the
device

yes no no

14 installed apps
Time stamps of events when
an app is installed or unin-
stalled in the device.

yes no no

15 Notifications
Type of notification re-
ceived from an app

yes no no

16 Pressure Information about pressure yes no no

17 Proximity
Measure when user’s face is
close to the device.

yes no no

18 SMS

metadata captured from
SMS sent or received by the
device. i.e. hashed phone
number, SMS data, length
and type

yes no no

19
Sound Pressure
Level

Background noise levels. yes on no

20 Step Counter
Number of steps detected
by the device.

yes no no

21 Weather
Weather information based
on GPS coordinates.

no yes no

Table 4.2: List of sensor data which is captured by PROSIT app on android and ios
devices continued...
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usage into consideration. Continuously logging data at specific intervals would cause

the app to consume a large amount of device battery, which would be undesirable

for any user. Instead of periodic logging, data was logged only when there was a

signification change in the last logged value. The threshold for this change was decided

to be different for different sensors. For example, GPS coordinates were logged only

when the locations changed in a range of more than 20 meters from the previously

recorded point. On the server-side, all the data is stored in the MongoDB database.

The flexibility of a no-SQL database like MongoDB is ideal in the case of PROSIT

since not all the sensor data is recorded simultaneously. MongoDB allows data to

be stored as JSON documents, and each sensory log is stored as an independent

document. These documents representing a log of different sensor measurements of

a device have a unique ObjectId assigned by the MongoDB database for indexing.

Other than ObjectId, every document has five key-value pairs. A unique participantId

is assigned to each participant before installing the PROSIT app on their device.

All their data on the server has this unique participantId, which can be used to

distinguish data from different participants. Apart from that, each document has a

timestamp indicating the time when the log was measured and upload time indicating

when the log was uploaded to the server. For all of the analyses, we only used

measurement time, and the time here was in UTC, therefore we converted the time

zone to Atlantic Standard Time (AST). The actual sensor data is stored under a

key called ”value,” which has the measurement or the event log. Fig. 4.2 shows the

structure of a document with single attribute value and Fig. 4.3 shows the structure of

document with multiple values for a single attribute (ex: accelerometer or gyroscope

data).

This raw data is further pre-processed to make it dashboard ready, the details of

which are described in Chapter 5.
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Figure 4.2: the data structure of a document on a server database, i.e. MongoDB
with a single value for each attribute

Figure 4.3: The data structure of a document on a server database, i.e. MongoDB
with multiple values for a single attribute



Chapter 5

Methodology

This chapter describes our data visualization system’s design, preprocessing pipeline

and implementation steps. We took an iterative approach to test and improve pre-

processing and visualization techniques. Examining academic papers, journals, blogs,

internet articles, and open source projects influenced our design choices and imple-

mentation directions. Due to its sensitivity, no part of the PROSIT dataset has been

stored outside a secure server. Development and preprocessing of data was also done

securely on this server. The complete code (without real data) developed during this

thesis can be found here 1. As an use-case of our visualization techniques, the same

dashboard has been implemented to work with IRIS dataset, which can be found

here2.

5.1 Requirements

Domain experts from the psychiatry department helped us understand the data and

identify the requirements expected from this data visualization system. We used to

have regular weekly meetings to discuss the progress and develop ideas that could

be implemented into a system. Due to Covid-19 restrictions imposed on everyone,

these meetings were primarily online, with only a few occasions where in-person

meetings were possible. The requirements resulting from brainstorming sessions with

domain experts over these regular weekly meetings and discussions with supervisors,

colleagues in the Visual Analytics and Visualization Lab 3 and friends eventually led

to the ideas behind this work.

The research questions described in Section 1.1 translates to the technical require-

ments (R1-R4) as follows:

1https://github.com/mohd-muzamil/flaskDashboard.git
2https://github.com/mohd-muzamil/IrisDashboard.git
3https://fpaulovich.wixsite.com/paulovich
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• (R1): The ability to manually explore feature subset selection to examine if

it can help distinguish healthy participants from those diagnosed with a men-

tal illness. We attempted to solve this task using C1 and C2 described in

Section 1.2 under thesis contributions.

• (R2): The potential to use machine learning algorithms to group participants

based on their mobile usage and behavioural patterns. C2 described in Sec-

tion 1.2 was the implementation of this requirement.

• (R3): The capability to select an individual participant and compare its fea-

tures with a selected subgroup or remainder of the participant group. This

requirement was implemented as part of C2, described in Section 1.2.

• (R4): The capability to visualize raw sensor data that allows recognition of be-

havioural patterns that might indicate physical activity or sleep. C3 described

in Section 1.2 attempts to implement this requirement.

5.2 Data Preprocessing

Visualization Dashboard is designed to identify individual participants’ behavioural

patterns and usage similarities w.r.t each other and other groups. Since the data on

the MongoDB server is in NoSQL format, it had to be preprocessed in multiple steps

to make it dashboard-ready.

Below is the list of data files that were available for analysis:

• CSV file containing demographic information and mental health labels of all the

participants in PROSIT study. Attributes: [”participantId”, ”age”, ”gender”,

”device type”, ”label1”, ”label2”]

• Access to MongoDB server, which hosts all the sensor data from the PROSIT

study. This database has data from both Android and iOS devices. Data was

stored in different MongoDB databases based on the study type or period when

data was collected.

For file naming convention, the names of the raw data files were same as the name

of the attribute which represented that data in mongoDB database. This naming

convention helped us keep a track of data that exists within each data file.
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Figure 5.1: Block level diagram showing preprocessing steps needed to make the
data Dashboard ready. (Color-coding: Yellow - Preprocessing step, Light Green -
Intermediate files, Dark Green - Final preprocessed files, Red - Filtering)
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Fig. 5.1 shows block level processing steps required to make the raw data dash-

board ready. As seen in the figure, preprocessing is done in 8 steps: in Step1, we

merge the two CSV file containing demographic information of all the participants.

First file being merged in STEP 1 as shown in Fig. 5.1 contains the demographics

and mental health labels of the participants in PROSIT study. The attributes in this

files are as given below:

[”participantId”, ”age”, ”gender”, ”device type”, ”label1”, ”label2”]

Here, device type indicates whether participant used an Android or iOS device dur-

ing study. label1 represents a four-category value indicating the symptoms identified

during clinical assessment. label2 is a binary value representing the diagnosis identi-

fied for the participant. label1 and label2 values are label encoded and true meaning

of these value is unknown to us.

In STEP 2 as shown in Fig. 5.1, the data needed for analysis and visualization is

fetched from MongoDB server using python scripts having pymongo DB connectors

and reformatted into CSV from JSON format. This reformatting was needed since

we were using pandas library for data manipulation and preprocessing. Although

pandas data frame could read the data directly from the original JSON documents

in MongoDB, we decided not to use this approach and go with the idea where we

create a reformatted CSV copy of MongoDB data on the same server which hosts

the database and clean the data in these files for further processing. This initial

preprocessing method allowed us to fetch data from multiple databases and collections

inside a database, then merge them all to make further preprocessing easier.

In STEP 3 as shown in Fig. 5.1, the raw CSV data files are processed so that

the newly generated data files can be used to plot a radial time chart. The raw data

from the accelerometer, gyroscope, brightness, and sleep noise sensors are cleaned

and aggregated over one minute and saved in CSV files while preprocessing. There

is a filtering step before the data gets used in the dashboard. Filtering is performed

to exclude data from participants who were only in the study for 14 days or less.

The decision to filter out such participants was made after discussions with domain

experts and supervisors. More details about radial time chart can be seen under the

https://pandas.pydata.org
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Visualisation techniques section below.

In STEP 4 as shown in Fig. 5.1, Lock state.csv data which represents the raw

CSV data of screen lock state in iOS is used to extract screen usage related features.

In the case of Android data, power state.csv data is used to extract the same. Below

is the list of screen-related features which were extracted using this data.

1. Number of screen locks in a day

2. Time in hours when the device screen was first unlocked in a day

3. Time in hours when the device screen was last locked in a day

4. Maximum duration in minutes where the screen was in continuous unlock state

5. Total duration in minutes of screen unlock duration

In STEP 5 as shown in Fig. 5.1, Call.csv data which represents the raw CSV

data of call related logs in iOS is used to extract a set of calling features. In case

of Android data, calls callDate callDurationS callType phoneNumberHash.csv data

is used to extract the same. Below is the list of call-related features which were

extracted using this data.

1. Number of missed calls in a day

2. Number of dialled calls in a day

3. Number of incoming calls in a day

4. Minimum duration in minutes of any incoming call in a day

5. Maximum duration in minutes of any incoming call in a day

6. Total duration in minutes of all incoming calls in a day

7. Number of outgoing calls in a day

8. Minimum duration in minutes of any outgoing call in a day

9. Maximum duration in minutes of any outgoing call in a day

10. Total duration in minutes of all outgoing calls in a day
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11. Total number of any type of calls in a day

12. Total duration in minutes of time spent on calls in a day

In STEP 6 as shown in Fig. 5.1, Accelerometer.csv, Gyroscope.csv, Brightness.csv

data which represents the raw CSV data for iOS participants is combined together

and used to extract a set of sleep related features. In case of Android data, ac-

celerometer m s2 x y z.csv, gyroscope rad s x y z.csv data is used to extract the

same. Screen brightness data is not captured in Android devices due to technical

reasons. Below is the list of sleep related features which were extracted using this

data.

1. Starting time of sleep in hour of the day

2. Ending time of sleep in hour of the day

3. Total sleep duration in hours

In STEP 7 as shown in Fig. 5.1, the extracted screen usage, calling, and sleep-

related features are merged and filtered to generate a Features.csv file which will be

fed into the dashboard.

In STEP 8 as shown in Fig. 5.1, the raw sensor data, which is preprocessed to

remove duplicates and aggregate over 10 minutes time blocks is filtered for specific

participants and fed into the dashboard.

In total, we extracted 20 features representing a participant’s daily behaviour. Out

of these 20, 5 features are screen usage related, 12 features are calling related, and 3

features are sleep-related. We chose to pre-process iOS and Android data separately

due to a difference in the format in which data was kept for both participant device

types. Also, during the development of this thesis, we experimented with extracting

mobility-related features using the GPS coordinates of the participants. Due to the

sensitivity of the dataset and the precision of the recorded GPS coordinates, it was

decided not to use any GPS characteristics in the analysis. As a result, this has been

left out of future development. These three categories of behavioural features are

combined and filtered to remove participants with less than 14 days of data. The

resulting dataset is stored as a Features.csv file, which will be used directly to plot

visualizations on the dashboard.
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5.3 Visualization techniques and design

Different visual components and their interactions were designed to meet the require-

ments listed in Section 5.1.

5.3.1 Design Goals

The design goals that were considered during the development of the visual system

are listed below.

• (G1): Project all the participants in an overview plot that allows groups or

cluster formations based on similarities in smartphone usage behaviour.

• (G2): Encode additional information within the overview plot to create visual

markers that can provide a brief insight into the participant’s features. The

traditional approach of just using a dot or circle can be replaced with a custom

glyph that presents this overview type. G1 & G2 design goals will tend to

requirements R1 & R2 described in Section 5.1.

• (G3): Ability to allow for the selection of different participants or participant

groups to narrow the scope of the analysis.

• (G4): Present a detailed view to provide an in-depth analysis of the data

representing individual participants. This can be done by visualizing the sub-

selected features representing participants and allowing the user to compare the

feature of individuals w.r.t the remainder of the participant groups. G3 & G4

design goals will tend to requirement R3 described in Section 5.1.

• (G5): Visualize the raw data that was used to compute the extracted feature

values and allow the user to validate the correctness of the computed feature

value.

• (G6): Allow interactivity to filter the visualization of this raw data for a specific

period during the study period. G5 & G6 design goals will tend to requirement

R4 described in Section 5.1

Fig. 5.2 illustrates the dashboard implemented as part of this thesis. Dashboard

consists of three Views each meant to accomplish the design goals mentioned above.
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Glyph View(Fig. 5.2 2 ) implements a Glyph based Scatter Plot which achieves de-

sign goals G1, G2 and G3. Aggregated Features View(Fig. 5.2 7 ) implements

a Parallel Co-ordinate chart which achieves design goals G4. Radial View(Fig. 5.2

5 ) implements a Radial Time Chart that achieves design goals G5 & G6. The

dashboard also consists of a Menu(Fig. 5.2 1 ) which allows the user to select mul-

tiple options that vary the settings inside these views. Most important is the Feature

selection drop-down, which allows users to select from a list of available features that

represent behaviour of individual participants and generate a DR projection in Glyph

View based on these selection. User can also choose from T-SNE or PCA type of DR

technique from this Menu.

Figure 5.2: Annotated snapshot of proposed data visualization system with PROSIT
dataset. Sidebar (1) has multiple options to sub-select feature combinations, alter the
parameters to KNN classifier, select a DR method, and change few visual settings.
User can select from 4 different Class Labels which colour codes the glyphs. Glyph
View (2) projects the datapoint on a 2D space in the form of a flower or polygon glyph.
Radial View (5) renders the continuous mobile sensor data over concentric circles to
identity routine behavioural patterns. Radial View (6) also consists of a brush filter
to interact and with PCP feature View to filter individual participants data. PCP
feature View (7) has two different options to show either aggregated features of all
the participants or daily features of individual selected participant.
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5.3.2 Glyph based Scatter Plot

Scatter plots are ideal for showing overview of all the datapoints in a single chart.

It uses two Cartesian coordinate values (x, y) to decide the position of the point

over the chart. In case of high dimensional data, DR techniques can be used to

reduce the larger number of dimensions to two dimensions which can then be used

to identify the position of points over the chart. This approach allows the user to

view the overall structure of the datapoints relative to each other. DR technique is

usually combined with classification to colour code the data points to identify similar

participant groups [17]. More details about this can be found in Section 2.2 which

describes briefly about DR and Section 2.3 which describe briefly about classification

techniques. DR technique combined with KNN classification to classify participants

based on its neighbours was the implementation of design goal G1 mentioned in

Section 5.3.1.

In our visual system, we decided to use t-SNE and PCA as a choice of DR tech-

niques. t-SNE works well in preserving both the local and global structure of the

data by retaining the data’s significant features [95], which is crucial to identify clus-

ters and similar user groups. PCA on the other hand tries to preserve the global

structure of data which is sometimes necessary to view the overall structures within

the data. Also, most of the time, data points on scatter plots are represented using

dots or circles, which do not convey any information. Often colour-coding the dat-

apoint representations is used to indicate some feature, but the shape of the data

point itself does not indicate any additional meaning. We were interested in using

the shape of each DR projection of data points to represent meaningful information

that can be used in the analysis. This was mentioned in design goal G2 described

in Section 5.3.1. The design of the glyphs-based scatter plot used in this thesis was

inspired by work by Dietrich et al. [56]. Glyphboard interface is based on mapping

each data item to a colour-coded glyph whose two-dimensional position on the plot is

computed using DR. Fig. 5.3 shows the two different types of glyphs patterns used to

represent 5-dimensional data in the Glyphboard interface. However, Fig. 5.4 shows

two different types of glyphs, i.e. Flower glyph and Polygon glyph, used to represent

the sub-selected features representing an individual participant’s smartphone usage

behaviour. In visualizing huge data sets, we need to reduce the size of glyphs to
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Figure 5.3: Glyphs used in Glyphboard interface by Dietrich et.al[56]

Figure 5.4: Flower glyphs and Polygon glyphs used in this thesis to represent individ-
ual participants. Shape of glyphs is indicative of sub-selected features representing
individual participant’s smartphone usage. In case of flower glyphs, the length of
each petal represents the normalized feature value, and in case of polygon glyph,
the distance of each edge from its center represents the normalized feature value of
respective data instance.

remove occlusion that may occur with a high number of participants. To tackle this

problem, our interface has an input slider in the menu that can be used to vary the

size of each of the glyphs. We also have a brushing feature that allows the user to

zoom into a specific region of interest, and the glyph outside the interested region

will be eliminated from the visual canvas. A subset of participants in interested re-

gion can then be selected using lasso selection feature of the tool. This feature was

implemented keeping design goal G3 mentioned in Section 5.3.1.

5.3.3 Parallel Co-ordinate Chart (PCP)

Historically, the role of visualization has been to facilitate discovery and understand-

ing of high-level structure of the data in ways impossible by direct examination of
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Figure 5.5: PCP charts implemented in our visual system. 2 PCP charts; one in
the top visualizes mean aggregated feature values for individual participants over
complete study period, and one in bottom illustrates daily-wise feature values of
selected participant.

the data themselves. Increasingly, however, visualizations must also serve as effective

interface to access details and refined statistical features of the data [31]. Parallel co-

ordinates is a methodology for visualizing N-dimensional geometry and multivariate

problems. Parallel coordinates transform multivariate relations into 2-D patterns, a

property that is well suited for visual data exploration and analysis [52]. Parallel

coordinate charts are usually used as an ideal supplement to the scatter plot DR

mappings of high dimensional data. Where the scatter plots project an overview of

the global attributes, PCP gives insights into the local attributes. The pattern found

while analyzing PCP charts can help explain why two points are closer or farther

from each other in a DR mapped glyphs scatter plot shown in Section 5.3.2. Fig. 5.5

illustrates the PCP charts developed as part of this visual analytic system. This

visualization implements the design goal G4 mentioned in Section 5.3.1.

5.3.4 Radial Time Chart

The approach we took for analysis was to implement DR coupled with KNN clas-

sification to identify similar participant groups based on smartphone usage. Since

our data does not have features that can directly be used for analysis we need the

part where features have to be extracted from raw data using simple algorithms.

These features are then analyzed to identify behaviour of individual participants and

compare the same with other participant groups. The quality or accuracy of these

extracted features are very important here and since our data had lots of missing

values, we needed a way to visually see the raw data for any participant and then

cross-verify or edit the feature values extracted by generic algorithms. This approach
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(a) (b)

(c) (d)

Figure 5.6: Screenshot illustrating Radial time chart implemented in this thesis. (a)
shows four smartphone sensor’s data (lockstate, accelerometer, gyroscope, brightness)
visualized for complete study duration. (b) shows feature to brush filter data to
visualize only one week’s of data (day1-day7). (c) shows only accelerometer and
gyroscope data for second week (day8-day14). (d) shows the imputed lock state data
visualizing the time periods when the mobile screen was unlocked and being used.
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adds a positive feedback where the user of visual system can use visualization charts

to improve the accuracy of these engineered features. This is specifically true in case

of sleep related features. As shown in Fig. 5.1 STEP 6 of data preprocessing dealt

with extracting sleep related features.

The relationship of insomnia to psychiatric disorders is important for several rea-

sons. Sleep disturbances may be an early sign or even the cause of some psychiatric

disorders. A study by Daniel et.al. [37] which analysed data from 7954 adults indi-

cated that more than 57% of those with insomnia and 64% of those with hypersomnia

had a psychiatric diagnosis compared with 24.9% of those without a sleep complaint

during 18-month study period. Other studies have indicated that about 21% and 13%

of those with insomnia had symptoms resembling major depression and generalized

anxiety, respectively [74]. Another study by Neckelmann et.al [72] researched about

relationship of insomnia to the development of anxiety disorders and depression. Re-

sults from this study were consistent with earlier studies that suggested insomnia

being a risk factor for the development of anxiety disorders.

Literature confirms the known fact that irregular sleeping routines highly correlate

with mental instability which could be indicative of mental health disorders. Also

extracting sleep related features is easier using mobile sensing data as the user ideally

do not use their smart phones during sleep. The algorithm that we used in our

feature engineering of sleep combined accelerometer, gyroscope, and screen brightness

data to identify time blocks of non usage periods and then combine these non usage

time blocks to estimate the sleep start, sleep end and sleep duration. Though this

algorithm works well in ideal usage scenariOS combined with high quality of data

logging, we observed that with PROSIT data we were observing significantly higher

or inconsistent sleep features. We needed a visualization that allowed us to view the

raw data and use this raw data to intuitively justify the extracted sleeping features and

change them if the algorithm overestimated or underestimated sleep due to various

reasons involving inconsistent data.

We developed radial time chart that allows users of visual system to select the raw

data that they are interested using checkbox buttons present in the Menu and analyse

the quality of features extracted so that they can justify the outliers seen in glyphs

scatter plot. Extensive research online revealed that radial charts are particularly
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useful for time series data, since they allow to visualize cyclical or seasonal trends

that is seen in nature and in turn in human behaviour [105, 87, 35]. This cyclical

behaviour is also famously known as circadian rhythm which is a natural, internal

process as a result of evolution that regulates the synchronization of biological and

behavioral processes to the external temporal environment. Meaning, it regulates

sleep–wake cycle and repeats roughly every 24 hours [100]. The developmental goal

of radial time chart was to allow the user to visualize all those mobile sensor data that

would indicate non usage or usage and help identify sleeping patterns and how these

patterns fluctuate over the course of study period. Fig. 5.6 illustrates the radial time

chart developed as part of this thesis to identify and validate sleep features. This

visualization implements the design goal G5. i.e. sleep start time, sleep end time

and sleep duration. Fig. 5.6(a)-(d) illustrate the implemented features in the visual

system to filter the timeline and select the data within a specific duration belonging

to the study duration. This feature implements the design goal G6 mentioned in

Section 5.3.1.



Chapter 6

Use Case

This chapter shows our visual approach’s utility in exploring a given dataset using

hypothetical scenarios. We presents two usage scenarios to illustrate how our visual

approach may be used to examine data to execute the following tasks.

6.1 Usage Tasks

1. (T1): Feature sub-selection to explore the different combinations of features

that possibly create distinct, visually separated subgroups with similar data

points.

2. (T2): Compare an individual data point’s characteristics to those of the rest

of the group or a previously chosen subgroup.

3. (T3): Identify an outlier or data points near the boundaries separating two

subgroups.

4. (T4): Assess the accuracy of the extracted sleep-related features by eyeballing

raw mobile sensor (brightness, accelerometer, and gyroscope) data patterns on

a radial time chart (This specific scenario only applies to the PROSIT dataset,

which has continuous time series mobile sensor data).

We start by presenting a simple introductory scenario involving the analysis of the

well-known IRIS dataset [6], followed by a scenario of analyzing the PROSIT dataset.

In both scenarios, we introduce John, a hypothetical user of the proposed tool.

6.2 Usage Scenario 1: Exploring Iris Dataset

John works as an analyst in a research team specializing in data analytics for mental

healthcare. The company’s R&D team has proposed a new data visualization system

46
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to help analysts explore a given dataset about patients’ daily behaviour and make

decisions about developing intelligent ML-based applications that mental health pro-

fessionals can recommend as a supplement to therapy. John was tasked to assess the

efficacy of this new tool for exploratory data analysis (EDA). John chose the IRIS

dataset for testing since it is perhaps the best-known dataset in the pattern recogni-

tion literature. This data set contains three classes of 50 instances each, where each

class refers to a type of iris plant. One class is linearly separable from the other two;

the latter are not linearly separable from each other.

Figure 6.1: Annotated snapshot of proposed data visualization system with IRIS
dataset. Sidebar (1) has multiple options to sub-select feature combinations, alter the
parameters to KNN classifier, select a DR method, and change few visual settings.
Glyph View (2) projects the datapoint on a 2D space in the form of a glyph.

John loads the IRIS dataset into the tool, and Fig. 6.1 shows the first look John

observes on the screen. John notices that there are several options available in the

sidebar (Fig. 6.1 1 ). John then focuses his attention on Glyph View (Fig. 6.1 2 )

of the dashboard. He notices two significant clusters of data points. First one be-

ing Setosa flowers (Fig. 6.1 3 ) and second one being Versicolor (Fig. 6.1 4 ) and

Virginica (Fig. 6.1 5 ) flowers. He also notices that a few of the glyphs have differ-

ent coloured outer strokes (Fig. 6.1 6 ) representing mislabelled data points from a

KNN classifier. John shifts his attention to Feature View (Fig. 6.1 8 ), which is a



48

parallel coordinate plot having colour-coded lines representing individual data points.

John also observes that each axis on the PCP plot has a rectangular colour-coded

bar (Fig. 6.1 9 ) which represents the importance of that feature to distinctively

separate data points into subgroups. The color-coded feature importance value of

which is shown over a legend in (Fig. 6.1 10 ). John quickly notices that petal length

is the most important feature that can be used to classify the IRIS dataset, closely

followed by petal width. John also notices that sepal length and sepal width have a

lower importance score and hence cannot be used to make distinct subgroups based

on flower type.

Figure 6.2: Annotated snapshot of glyph projections after only three features were
selected from feature sub-selection, with a K parameter value of 5 for a KNN classifier
and PCA as DR technique.

To test usage task T1 described under Section 6.1, John clicks on Feature Se-

lection drop-down from sidebar (Fig. 6.1 1 ) and selects three random features to

explore how the projections change in the Glyph View. He also increases the k param

for KNN classifier to 5 and selects PCA from 2D projection Menu option. Fig. 6.2

shows the visualizations resulting from this selection. The individual glyphs over the

Glyph view now have only three petals, and the PCP plot in the Feature view also

has three axes representing data from three pre-selected attributes. John observes

that with this combination of feature subselection, petal width has significantly higher
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importance in classifying subgroups out of the three feature selections.

Figure 6.3: Annotated snapshot showing the changes in Glyph View and Feature
View after few of the data points were selected using Lasso selection.

To test usage task T2 & T3 described under Section 6.1, John now uses the

Lasso selection tool to pre-select some of the data points from the central region of

PCA projections. He notices that the PCP plot in Feature View instantly updates

to show only these pre-selected data points. Fig. 6.3 1 shows the glyphs selected

using lasso selection and Fig. 6.3 2 shows their respective data instances in PCP

feature view. The position of glyphs over the Glyph view allows John to identify

similar data points. John notices that the datapoint placed far away from any cluster

represents dissimilar data points that may indicate an outlier. Also, the difference in

Stroke colour for some of the glyphs indicates that these data points may lie in the

boundary regions separating two distinct groups.

6.3 Usage Scenario 2: Exploring PROSIT Dataset

Having tested the visual tool with IRIS dataset, John feels confident about the tool

since the findings from the visual exploration matches the preconceived knowledge

about IRIS dataset. John now proceeds to use this tool to explore PROSIT dataset

to understand mobile usage behaviour of different patients. John loads the PROSIT
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dataset into the tool, and Fig. 5.2 shows the first look John observes on the screen. He

notices that there are three new options available in the Menu as seen in (Fig. 5.2 1 )

to select the Class Label , Mobile Sensors and type of PC Plot. John also observes

Radial View as seen in (Fig. 5.2 5 ) which renders raw mobile sensor data. This

view also comes with a brush filtering feature as seen in (Fig. 5.2 6 ) to control the

data being rendered in Radial View.

John is interested to explore the smartphone screen usage behaviour of partici-

pants of different age groups. This represents usage task T1 described under Sec-

tion 6.1, which is to sub-select features for data exploration. From the Menu options,

John selects three features ’No of Unlocks’, ’Max On time’, ’Total On time’ and

changes the Class Label from Label2 to Age. He also changes the Glyph type from

Flower to Polygon. Fig. 6.4 shows the first look of these selections from the Menu op-

tions. He notices that the participants near top right corner region marked as Fig. 6.4

1 have higher values for screen usage features compared participants in bottom near

left corner marked as Fig. 6.4 2 .

Figure 6.4: Annotated snapshot showing the resulting view from the dashboard when
analyst selects 3 screen usage related features, with a selection to view polygon shaped
glyphs.

John is now interested to see the screen usage behaviour of different age groups.

He now wants to only see data belonging individual age groups. To do this, he clicks
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(a)

(b)

Figure 6.5: Snapshots from the dashboard illustrating utility of tool to filter out
subgroups belonging to same category. In this case Age group. Fig.a shows screen
usage related data for Adults(25-64) age group. Fig.b. shows screen usage related
data for Youth(15-24) age group.
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on the legend on the top right corner of Glyph View marked as Fig. 5.2 4 . Fig. 6.5

shows two different views he sees when he clicks on different legend buttons on the

screen. John notices that there is no distinct user behaviour for all the participants

in the same age group. Distribution of screen usage behaviour is almost identical

for both Adults and Youth for users in this dataset, indicating that screen usage

behaviour of participants in this user group doesn’t depend on the age group of a

person.

John now focuses on clusters which are formed on the projections and lasso se-

lects one such cluster and compares the screen usage features of these sub-selected

participants with a a participant in a different cluster. Circles with Gray fill colour

in Fig. 6.6 1 shows the sub-selected participants in one cluster and glyph with

Dark outer boundary circle in Fig. 6.6 2 highlights individual participant selected

from a different cluster. John also observes that Dark line in PCP view as shown

in Fig. 6.6 3 represents the features of individual participant and it can be seen

that this participant has significantly higher no of unlocks values compared to lasso

selected participants in different cluster. This usage task represents T2 mentioned in

Section 6.1.

Figure 6.6: Snapshots from the dashboard illustrate a usage scenario where an analyst
selects a subgroup using lasso selection and compares the features of a subgroup with
features of individual participants from another cluster.
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John now focuses on Sleep analysis and wants to assess the quality of sleep features

extracted from the preprocessing algorithm. He now selects ’Sleep Start Time’, ’Sleep

End Time’, ’Sleep Duration’ from Feature Selection drop-down in the Menu and

changes the Class Label from Age to Label2 which represents mental health label.

John also toggles button to select type of PC plot from Aggregate to Individual.

This will change the PC plot and show features belonging to participants selected

in Glyph View. Fig. 6.7.Fig.a 1 shows the participant selected for Sleep Analysis.

John focuses his attention on Fig. 6.7.Fig.a 2 which shows a pattern in accelerometer

and gyroscope data. By eye balling over this pattern in Radial View, John estimates

that selected participants usual sleeping time is from 2AM until 9AM. John looks

at estimated sleep start time (Fig. 6.7.Fig.a 3 ), sleep end time(Fig. 6.7.Fig.a 4 )

and sleeping hrs(Fig. 6.7.Fig.a 5 ) from preprocessing algorithm. It can be seen that

majority of lines in PCP plot cross over around 2 for sleep start time and around 9

for sleep end time with a majority of estimated sleep duration ranging anywhere from

5hours to 10hours. John also explores the filtering capability of Radial view to see

data only for a some days during his study period. To do this, John drags the Brush

filtering feature as shown in Fig. 6.7.Fig.b 3 and notices that only data for these

filtered dates is show over the Radial View (Fig. 6.7.Fig.b 3 ). John also notices

that lines over PC plot also get update to show only data belonging to these filtered

dates (Fig. 6.7.Fig.b 4 ). This usage task represents T4 described in Section 6.1.

By exploring interactive visualizations presented over Glyph View, Radial View

and PC plots, John can understand individual profile of a participant under study

and compare it’s behavioural indicators with the remainder of the group or lasso

selected participant group. From the analysis, John observes some of the mental

health markers indicated in the literature and correlates them to the participants in

PROSIT. Using this tool, John could filter out individual participants’ sensor data and

behavioural features and see how these features varied throughout the study duration.

John noticed that some participants diagnosed with mental illness had higher screen

usage and irregular sleep or activity patterns. Some participants also had fewer

incoming and outgoing calls and calling duration, which might indicate depression

and isolation from friends and family. John sees the Visualization dashboard’s value

in viewing participants’ overall mobile usage and identifies those with unhealthy or
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(a)

(b)

Figure 6.7: Snapshots from the dashboard illustrate the tool’s utility of Radial View
to assess sleep-related features. Fig.a shows mobile sensor data visualized over a
Radial view for the entire time of the participant’s study period. Fig.b. shows mobile
sensor data visualized over a Radial view for a brush-filtered period.
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irregular smartphone usage, which might indicate anxiety or depression.



Chapter 7

Conclusion

In this study, we developed a data visualization system to explore behavioural pat-

terns extracted from mobile sensing data collected as part of the PROSIT project.

We formulated our design goals to maximize the potential of visualization and ma-

chine learning to highlight critical mental health indicators. Both approaches help to

identify similar user groups and individual daily behavioural patterns. Further, we

drafted two usage scenarios to demonstrate the usability of this tool using the IRIS

dataset and behavioural features extracted from the PROSIT dataset. In the follow-

ing sections, we outline some of the limitations of this work and future developments,

including preprocessing and visualization.

7.1 Limitations and Future Work

7.1.1 Data preprocessing

Preprocessing has been a major challenge with the PROSIT dataset. Much research

was conducted to learn about features that can be extracted using mobile sensing

data that strongly correlate with mental health and behavioural issues [48, 83, 89].

A significant amount of research described excessive screen time as compulsive be-

haviour and linked it to a few depressive symptoms [65, 91]. Irregular sleeping rou-

tines and reduced physical activity have also been strongly linked with mental illness

[30, 78, 79, 94]. Extracting high-quality screen usage and sleep-related features like

sleep duration, sleep start and end time, and sleep latency which is the length of time

a person takes to fall asleep, using algorithms on mobile sensor data has also been

difficult. A few reasons like missing data, irregular mobile usage behaviour of different

participants, and change in timestamps post-midnight made it challenging to design

a generic algorithm that can extract the above features for all the participants. These

56
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concerns prompted the development of a radial chart-based visualization to help un-

derstand sleep behaviour by plotting continuously recorded data from mobile sensors

like accelerometer and gyroscope. As part of future work, a utility similar to ac-

tive learning can be developed where a learning algorithm can interactively query a

user to label new data points with the desired outputs. In this tool users can be

asked to visually analyze these continuous sensor data over Radial View and edit the

sleep-related features, which can recursively improve the process of sleep detection.

Some research [83] also indicates a strong correlation between depressive symptoms

and features extracted from GPS data. Although some work in this area was done

during this thesis, it was not implemented due to the sensitivity of the GPS dataset.

High-quality physical movement-related features from GPS data can add immense

value to mental health analysis.

The proposed visual approach strongly depends on the quality of extracted fea-

tures since these features are used to generate projections to identify similar partici-

pant groups. Improved algorithms to extract research-backed behavioural indicators

are crucial to designing an intelligent system that can indicate mental health. Al-

though much effort was put in this direction, there is further scope to improve the

preprocessing algorithms to extract quality features that can improve the analysis

and can also be used to build a prediction model that can support intervention.

7.1.2 Scalability and Performance

We have utilized glyphs-based scatter plots and parallel coordinate plots to represent

multidimensional data in our approach. Although this method works well when there

are quite a few dimensions, it is not scalable. Both glyphs and PCP plots will get

cluttered if the size of dimensions increases to more than 50 features. Some studies

have engineered over 1000 features to train models that can predict participants’

personalities based on smartphone usage [89]. In cases where the dataset has many

features, this approach might prove less valuable, and other solutions like matrix-

based visual techniques might be more relevant.

When this thesis was written, the PROSIT project collected well over 2500 partic-

ipants as part of various research studies. Participants were recruited for 4-6 weeks,

and their smartphone usage data included events-based data like call logs, screen
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lock/unlock logs and continuous sensor-based data like accelerometer and gyroscope.

This data was stored in a secure server at Dalhousie University and access to the same

was controlled. The number of data records collected from mobile sensors was in the

hundreds of millions. For example, the file size of accelerometer data for roughly 1000

participants was well over 15GB. This data had to be preprocessed and engineered to

display charts on the dashboard, and due to the enormous file size, there is a slight

lag in rendering the same. Future work can include big data solutions for preprocess-

ing and improving the rendering of data over the dashboard to improve scalability

regarding the number of participants that can be analyzed using this approach.

With the help of visualization combined with feature engineering and machine

learning, we attempted to build an analytic system that can aid with exploring mobile

sensing data. Feature engineering was a significant challenge in this thesis as the

quality of these features represents a participant’s behaviour. We also acknowledge

the lack of formal user testing of the interface and methods used in our tool. We were

not able to conduct standard user testing due to insufficient time. This evaluation

can be conducted in two parts. First, interviews with domain experts from clinical

psychology about the usability of this tool to identify mental health of a participant

based on their behavioural indicators. Second, a user study can be designed and

conducted with a group of non-expert volunteers, to assess the usability of the tool to

interact with the data and identify patterns. Users can be briefed about the tool and

can be asked to answer a set of questionnaires than can assess ease of usability, possible

improvements and cognitive load of exploring patterns. Most ideas implemented in

this thesis were well researched and user-tested in their original papers, cited in

Chapter 3 and Chapter 5, the novelty of this thesis was to put together various

existing techniques in a unique way to help solve a bigger problem of leveraging data

visualization and machine learning to identify mental health.

The scope of ideas that can be implemented using mobile sensing data is vast,

and much more can be achieved. This thesis was initial exploratory research and

hopefully will provide reference to researchers who’ll further work with the PROSIT

dataset.
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Appendix A

Implementation Detail

As part of this thesis, we developed an interactive visualization system for analyz-

ing data collected during PROSIT projects. Tech stack in web app development

usually has the client-side (front-end) and server-side (back-end) parts. Because of

the development flexibility that these front-end technologies provide, we decided to

go ahead with the plan of creating a web application. HTML/CSS combined with

JavaScript and d3.js [3] were suitable for building custom dashboard templates and

visualizations needed for this thesis. We also needed a Back-End server that could

serve the processing needs required for different custom visualizations. Flask [5] was

the preferable choice for this purpose. Flask is lightweight and is often referred to

as a microframework. It also has a shorter learning curve, making it the ideal fit to

our tech stack. For all the preprocessing needs, we used the pandas [9] framework,

a fast, powerful, flexible and easy-to-use open-source data analysis and manipulation

tool built on top of the Python programming language. Table A.1 shows the list of

technologies/frameworks/Programming languages used in the implementation of our

visual system.
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SL
No

Architecture Tech stack Usage description

1 HTML/CSS/JavaScript front-end User Interface(UI) de-
velopment

2 Bootstrap [1] front-end input features
3 front-end bootstrap-multiselect [2] front-end dropdown feature
4 Jquery [7] Event handling and client-server

data connectivity
5 d3.js [3] Custom charting/visualization
6 Python3 [11] Data preprocessing and data ma-

nipulation at Back-end
7 back-end pandas [9] Data preprocessing and feature

Engineering
8 scikit-learn [12] Implementation of ML algorithms
9 Distance Grid(DGrid) [4] Removal of overlap on DR glyphs

scatter plot

Table A.1: Tech stack: list of technologies/frameworks/programming languages used
in development of visual system
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