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Abstract

Data in marine ecology are often characterized by substantial observation noise,
patchiness in sampling coverage, and complex dynamics. Statistical techniques for
analyzing these data need to account for complicated data generating mechanisms
while still being computationally tractable. In this thesis we develop statistical models
(in a maximum likelihood framework) that account for these difficulties to address
two important questions in marine ecology: how can we infer an individual animal’s
behaviour from observing only their movement? how can we use observations of fish
presence, counts, and/or abundance from scientific surveys to gain insight into the
spatio-temporal dynamics of the fish population?

Standard hidden Markov models (HMMs) for inferring behaviour from animal move-
ment paths are shown to perform poorly when the movement includes autocorrelation
not accounted for by the HMM framework. We develop an extension of the HMM that
can account for this additional autocorrelation and provide diagnostics for determining
when the autocorrelation is present. We analyze the movement paths of two grey seals
to further validate our new modelling framework.

Scientific surveys often use a stratified random sampling design to generate data with
good spatial coverage over multiple decades with hundreds of spatially referenced
observations per year. These datasets are too large to be analyzed with traditional
methods, so we adapt the nearest neighbour Gaussian process, a modern advance
in computationally efficient spatial modelling, for use within a hierarchical spatio-
temporal generalized linear mixed modelling framework. We analyse two real datasets:
Carolina wren counts in the state of Missouri, Haddock survey data obtained on the
Scotian Shelf, off Nova Scotia.

After developing our spatio-temporal model framework for a univariate response,
we investigate how to generalize it to a multivariate response variable. Such data
often arises in fisheries surveys wherein fish of different age-classes are counted.
Specifically, we introduce a cross-sectional copula for our spatio-temporal nearest
neighbour Gaussian process and study the behaviour of the copula and inference
procedure through simulations.

xii
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0.1 Note on Notation

We use the following conventions:

• Scalars and univariate random variables will be given non-bold letters e.g. k for
a scalar, Yi for a single data point

• Vectors or matrices will be given bold letters e.g. β for a vector of regression
coefficients, Σ for a covariance matrix

• Functions will be given non-bold letters e.g. Wt (s) for the spatio-temporal
process indexed by time t and location s. An exception will be when we want to
emphasize that we are evaluating the function at each element of a vector and
returning a vector, e.g. Wt (s1:3) which is the vector [Wt (s1) , Wt (s2) , Wt (s3)].

• Random variables will be given uppercase letters; realizations from random
variables will be given lowercase letters e.g. Wt (si) for the random variable at
time t and location si, wt (si) when conditioning on the value of that random
variable
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Chapter 1

Introduction

Many ecological phenomena are inseparably linked to their environment. At the
individual level an animal’s movement is motivated by the environment they are
moving through and the ecological niches they prefer to inhabit [Shepard et al., 2013].
At the population level the cumulative effect of every individual’s movements is scaled
up to produce an ever-changing spatial distribution of abundance [Morales et al., 2010,
Michelot, 2019]. Observing either an individual’s movement path or a population’s spa-
tial distribution of abundance is difficult in a marine environment where the deep water
makes exhaustive data collection impossible. Accordingly, statistical methods for ana-
lyzing the data we are able to collect must be able to account for these difficulties in or-
der to answer the scientific questions asked of them [Mills Flemming and Field, 2014].

Statistical models for movement ecology answer questions such as “what is the home
range of this particular community?" or “how can we recover a highly detailed movement
path from a sample of inaccurately observed locations?" The one we will focus on
here is “what does an animal’s movement tell us about the underlying behaviour
driving that movement?" Statistical models used to answer this question have to
accurately capture the biology in order to accurately infer animal behaviour from
their movement. For example foraging behaviour is associated with tortuous, erratic
movement while transiting behaviour is associated with steady and directed movement
[Whoriskey et al., 2017]. These inferences are complicated by available data being
opportunistic in nature where locations are only sampled when an animal is at or near
the surface of the water. The data are then prone irregular sampling with both long
stretches of time with no sampled locations and short durations of time with many
observations. Most methods for inferring behaviour from movement are some form
of hidden Markov model and require isochronal observations. Linear interpolation of
the observed locations is a common method to coerce the data to be regularly timed,
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however the interpolation procedure must be accounted for by the inference procedure
[Glennie et al., 2022].

Irregular sampling appears in data for the spatial distribution of fish populations
as well, although in a different form. These data often come from general scientific
surveys which follow a geographically-stratified random sampling scheme, repeated
at the same time every year but with a different sampling of locations [Smith, 1999].
Each sample location within a year is carried out by a single fishing set from which
is recorded the total number, the total weight, and the presence or absence in the
sample of a wide variety of species. These data can be used by themselves to produce
complete maps of the predicted spatial distribution of a species, combined with data
on the total commercial catch to estimate the total population abundance, or used
with auxiliary information to estimate the growth characteristics of species through
an age length key [Kristensen et al., 2014, Babyn et al., 2021]. Traditional statistical
methods for spatio-temporal data are not immediately applicable for fisheries surveys.
The random sampling scheme is incompatible with state-space methods which require
a set of fixed monitoring stations that do not change from year to year. In addition the
surveys collect large amounts of data, sometimes reaching hundreds of observations
per year and often spanning multiple decades.

Modern statistical methods for both animal movement and population distributions
are available that overcome the above issues, although the animal movement literature
is more well-developed than the spatio-temporal species distribution literature. The
spatio-temporal species distribution literature lags behind in part because the statistical
machinery used is more specialized and more technical than that used in animal
movement. In this thesis we continue the development of these modern methods. Both
methods build on the historical methods, particularly true for the spatio-temporal
distribution modelling, so we first give a history of these methods.

1.1 1963 - 1985 : The Principles of Geostatistics

Sunday 01 December, 1963. The eighth issue of Volume 58 of the journal Economic
Geology is published. It offers a smattering of papers. Most are field reports on
the geology of different mines or mining districts. A few give details of geochemical
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reactions. One of them was a short twenty page article by Georges Matheron entitled
Principles of Geostatistics [Matheron, 1963]. In it Matheron introduced the variogram
and the spatial prediction technique known as kriging and with those he had introduced
the new field of geostatistics. (The field of geostatistics had already coalesced into a
distinct field of statistics through the work of geological research groups in France.
Matheron’s 1963 article is the first appearance of these techniques in the English
language. Being an overview of the existing techniques in a single collection, the
article acts as a convenient starting point for the field of geostatistics.)

Matheron first introduces a regionalized variable, an early name for what we now call
a spatial random field, defining it simply as “an actual function, taking a definite
value in each point of space." These regionalized variables could be represented as
realized values from a collection of correlated random variables, one for each point
s of space. The locations s are points in Rd, and typically d = 2 for (projected)
geographic data. Matheron implicitly assumes two things about the spatial random
field. First that E [W (s + h) −W (s)] = 0 for any location s and any separation
vector h which, pathologies aside, implies that the mean of each individual W (s1)
is the same as any other W (s2). Second that the variance of the difference between
two regionalized variables is a function solely of their separation and not their actual
location, Var [W (s + h) −W (s)] = 2γ (h). These two properties taken together are
known as intrinsic stationarity. The function 2γ (h) is known as the variogram.

After introducing the variogram Matheron discusses simple kriging, which is the
procedure of finding the best linear unbiased predictor of some unobserved regionalized
variable W (s0) as a function of the observed regionalized variables W (s1), ... , W (sn).
While Matheron does not quite detail the math relying instead on pre-computed tables,
the variogram is used to obtain the coefficients ai in said linear predictor

Ŵ (s0) =
n∑︂

i=1
ai (s0)W (si) . (1.1)

The variogram provides a way to calculate the coefficients ai (s0) for any location of
interest s0. Thus kriging provides an interpolation method to produce a complete
spatial map of the predicted regionalized variables, with guarantees under certain
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conditions that the predicted map is the best that one could feasibly produce.

A few years later Matheron extended simple kriging to universal kriging by allowing
the mean of the regionalized variables to depend on external variables or covari-
ates. The method was first published as a book in French, and soon after was
packaged as an article for English speaking audiences with the help of C.J. Huijbregts
[Matheron, 1969, Huijbregts and Matheron, 1971]. In essence universal kriging works
by first de-trending the regionalized variables by fitting a linear or polynomial regres-
sion relating the regionalized variables to the covariates and then performing simple
kriging on the residuals of that regression. Matheron noted that some of the covariates
used in the universal kriging model could themselves be regionalized variables.

His next contribution was to formalize the notion of pairs (or more) of regionalized
variables using intrinsic random functions [Matheron, 1973]. While the appearances
of intrinsic random functions in 1973 marked the first multivariate geostatistics, the
method was not very practical due to the arcane mathematical machinery involved.
In 1979 Matheron simplified the intrinsic random function approach into the friendlier
cokriging technique [Matheron, 1979]. Cokriging augments simple kriging (or universal
kriging) by treating a target variable and covariates all as regionalized variables. In ad-
dition to each regionalized variable having its own variogram, each pair of regionalized
variables has a covariogram γi,j (h) = E [(Wi (s + h) −Wj (s)) (Wj (s + h) −Wj (s))].
The variograms and covariograms are then used to find the best linear unbiased
predictors of all the regionalized variables, although typically only the single target
variable was of interest. Many covariates could be sampled more easily than the target
variable and co-kriging allowed all of the covariate data to be used to predict the
target variable even in cases where the target variable and covariates were not sampled
in the same location.

While Matheron was developing cokriging another statistician at the same institution
was improving universal kriging in a slightly different way. The same year that
Matheron published his cokriging report, J.P. Delhomme published kriging with
external drift in a technical report [Delhomme, 1979]. Instead of using covariograms to
describe the relationship between different regionalized variables, Delhomme adjusted
the linear regression equation of universal kriging to adjust predictions of the target
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regionalized variable by accounting for the spatial structure of the covariate regionalized
variable. Cokriging and kriging with external drift would eventually be found out to
be equivalent parametrizations of the same technique. Cokriging focussed on joint
specification of the multiple regionalized variables while kriging with external drift
focussed on the conditional model of the target regionalized variable given the covariate
regionalized variables.

Following the parallel development of cokriging and kriging with external drift at the
Paris School of Mines, a doctoral student at the school developed the final classical
approach to multivariate geostatistics. In his 1985 thesis H. Wackernagel introduced
the linear model of coregionalization, which he published in English three years later
[Wackernagel, 1985, Wackernagel, 1988]. While the main formulation of the linear
model of coregionalization was in terms of linear combinations of variograms, Wack-
ernagel also gave a more interpretable formulation in terms of linear combinations
of independent regionalized “factor" variables. In this way the linear model of core-
gionalization translates a principal component analysis into the multivariate spatial
setting.

By this time mining companies had been using kriging methods quite frequently, a
fact which did not sit well with everybody. A war between Matheron’s camp and
the anti-krigers came to a head in 1986 when the journal Mathematical Geography
invited both sides to submit pamphlets arguing the case for or against the use of
kriging in mining operations. From Matheron’s camp came A.G. Journel who we will
meet momentarily. From the anti-krigers came G.M. Philip and D.F. Watson. Given
the nature of the invitation, Philip and Watson’s diatribe against kriging was cast
in purposefully provocative style. I can only do it justice by providing an extended
quote.

The terms “unbiased," “optimal," “best estimator," “minimum variance,"
“tree grade," etc. scatter their writings like confetti... How can an observa-
tion have a “variance"? How can a mining block have a “variance" different
from that of a deposit? How can mineral grades have an infinite “variance"?
How can accuracy and precision be thought synonymous? Why is a linear
method of estimation thought to be good? How can arcane concepts
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such as “one-dimensional Brownian movement" and “microergodicity" have
relevance to ore deposit assessment? How can stationarity in grade values
of an ore deposit be assumed? And so on...

[...]

For a growing understanding of geostatistics served to show us that geo-
statistical estimation is a sham–an expensive computer guessing game
which is unscientific in its approach, based on statistical misconceptions,
claims the world, and provides merely a bad result. That we write so
acerbically is because we resent the time that we have wasted upon it.
[Philip and Watson, 1986]

Of great concern to Philip and Watson were the “probabilistic trappings" of the
variogram. They argue that a variogram could be useful if it were adapted as merely
a local deterministic smoothing function. Only time would tell if Philip and Watson
would successfully divorce mining operations from variograms and their probabilistic
trappings.

1.2 1983 - 1989 : Probabilistic Geostatistical Models

A variogram for a regionalized variable implies a covariance function for the regionalized
variable C (h) = Cov [W (s) , W (s + h)], and best linear unbiased prediction (with
squared error loss) implies an underlying Gaussian distribution. Prediction of regional-
ized variables using a variogram can thus be recast as the conditional distribution of a
Gaussian probabilistic model. To see how assume that the unobserved regionalized vari-
able W (s0) and the observed regionalized variables W (s1:N) = [W (s1) , ..., W (sn)]T

have a joint multivariate normal distribution

⎡⎣ W (s0)
W (s1:N)

⎤⎦ ∼ MVN
⎛⎝⎡⎣0

0

⎤⎦ ,
⎡⎣ Σ0,0 Σ0,1:N

ΣT
0,1:N Σ1:N,1:N

⎤⎦⎞⎠ , Σi,j = C (h = si − sj) (1.2)



7

Then the conditional distribution of the unobserved variable given the observed
variables is

W (s0)
⃓⃓⃓

w (s1:N) ∼ N
(︂
Σ0,1:NΣ−1

1:N,1:Nw (s1:N) ,Σ0,0 − Σ0,1:NΣ−1
1:N,1:NΣT

0,1:N

)︂
(1.3)

The conditional mean is a linear combination of the observed regionalized variables with
the linear coefficients given by the corresponding elements of the vector Σ0,1:NΣ−1

1:N,1:N .
These coefficients are the same coefficients that give the best linear unbiased predictor
obtained from the original variogram.

Most if not all of Matheron’s work on kriging had rejected the notion of using a
full probabilistic model for the regionalized variables. His techniques were instead
motivated by intrinsic stationarity and the best linear unbiased prediction criteria.
The first mention of the connection between variograms, kriging, and the multivariate
normal distribution that I can find in the literature is in a 1978 geostatistical textbook
by A.G. Journel and C.J. Huijbregts [Journel and Huijbregts, 1978]. Even if the
connection had not been explicitly mentioned in the literature before this book, the
result was almost certainly previously known to geostatisticians.

The recasting of regionalized variables, variograms, and kriging into multivariate
Gaussian distributions, covariance functions, and conditional distributions would
eventually pave the way for full probabilistic modelling in geostatistics. In 1984
K.V. Mardia and R.J. Marshall published Maximum Likelihood Estimation of Models
for Residual Covariance in Spatial Regression, what should be considered a landmark
paper but is often overlooked, in Biometrika [Mardia and Marshall, 1984]. They
bring the concept of a Gaussian process into the geostatistical literature, replace the
independent and identically distributed residuals of the linear regression model with
spatially-correlated residuals, and provide some consistency and asymptotic normality
results for maximum likelihood estimation of the spatial covariance function.

The Gaussian process formalizes the notion of Matheron’s regionalized variables.
Mathematically a Gaussian process is a collection of random variables {W (s) ; s ∈ S}
indexed by some set S. In the spatial setting S is just the set of spatial coordinates in
R2 or more rarely R3, although as we will see it can be extended to include coordinates
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in space and time. To form a Gaussian process the collection of random variables
must have the property that any finite subset of random variables has a jointly normal
distribution. A Gaussian process is parameterized by a mean function and covariance
function. The mean function µ (s) gives the mean of each W (s) as a function of s
including the possibility of W (s) depending on spatially-referenced covariates. The
covariance function C (s1, s2) encodes the first law of geography: “everything is related
to everything else, but near things are more related than distant things" [Tobler, 1970].
There are many classes of covariance functions but by far the most famed covariance
function in all of geostatistics is the Matérn covariance function

Cν (s1, s2) = Cν(d = ||s1 − s2||) = σ2 21−ν

Γ(ν)

(︄√
2ν d
ρ

)︄ν

Kν

(︄√
2ν d
ρ

)︄
(1.4)

originally derived in 1960 by B. Matérn [Matérn, 1960]. The Matérn covariance
function has three parameters: the marginal variance σ2, the smoothness ν, and the
spatial range ρ. Γ is the gamma function and Kν is the modified Bessel function of
the second kind.

After introducing the Gaussian process Mardia and Marshall write down the log-
likelihood for observations coming from such a process. Letting w (s1:n) be the data
collected at locations s1, ..., sn, the log-likelihood is simply the joint (log) density of
their multivariate normal distribution

ℓ (θ; w (s1:n)) = −1
2 logdetΣ1:n − 1

2
[︂
(w (s1:n) − µ (s1:n))T Σ−1

1:n (w (s1:n) − µ (s1:n))
]︂

(1.5)
where µ (s1:n) = [µ (s1) , ..., µ (sn)]T and as in Equation 1.2, Σi,j = C (h = si − sj).
After discussing some of the computational aspects of computing this likelihood
function some asymptotic normality and weak consistency results are proven for both
the regression coefficients and the covariance function parameters.

Unfortunately it quickly became apparent maximum likelihood estimation for these
models exhibited some significant flaws. The inversion of a dense n × n covariance
matrix proved to be computationally prohibitive with simulation experiments in the
Mardia and Marshall paper limited to just 10 locations of observed data. More
seriously, J.J. Warnes and B.D. Ripley almost immediately found the maximum



9

likelihood function of the covariance function to be prone to multimodality and
would sometimes give non-sensical parameter estimates [Warnes and Ripley, 1987]. In
1987 Mardia quickly responded to concerns of multimodality by introducing a profile
likelihood to estimate the parameters of the spatial covariance function. By estimating
the regression coefficients and marginal variance as a deterministic function of the
spatial range parameter he was able to produce a unimodal profile log-likelihood of
the spatial range parameter and achieve a well-behaved maximum likelihood estimate
of the model parameters [Mardia and Watkins, 1989].

1.3 1993 - 1998 : Spatio-Temporal Analysis and Hierarchical Models

Early techniques for analyzing spatio-temporal data grew out of the time series
literature instead of the geostatistics literature. The data for these early models nearly
always consisted of repeated measurements at a set of fixed monitoring stations leading
to a time series at each monitoring station location. For example one of the simplest
spatio-temporal models is the spatio-temporal autoregressive (of order 1,1) model

yt+1 = ϕ · yt + ψ · Vyt + ϵt (1.6)

where ϕ is a temporal autocorrelation parameter, ψ is a spatial autocorrelation
parameter, V is spatial weight matrix, and ϵt is white noise error. The spatial
weight matrix was typically estimated through the empirical cross-correlation function,
and it is analogous to the variogram. A 1975 paper by R.L. Martin and J.E. Oep-
pen provides a brief contemporaneous review of these time series-centric methods
[Martin and Oeppen, 1975].

The first geostatistical approach to analyzing spatio-temporal data came in a 1983
paper by B.P. Eynon and P. Switzer, simply titled The Variability of Rainfall Acidity
[Eynon and Switzer, 1983]. They write the observed rainfall acidity pH (t, s) at time t
and location s as the sum of four components, a deterministic trend µ (t, s) taking into
account e.g. seasonality, an autocorrelated spatial process W (s), an autocorrelated
temporal process Y (t), and residual white noise ϵ (t, s)

pH (t, s) = µ (t, s) + w (s) + y (t) + ϵ (t, s) . (1.7)



10

To estimate the parameters of this model Eynon and Switzer first fit the deterministic
trend µ (t, s) using least squares. Then the residuals ˜︃pH (t, s) = pH (t, s) − µ̂ (t, s)
were taken as estimates of the combined effect of the spatial, temporal, and white
noise components. An empirical variogram was estimated for y (t) by looking at
the differences in residual rainfall acidity between two different times at the same
location ˜︃pH (t, s0) − ˜︃pH (t+ ∆t, s0). An empirical variogram was estimated for w (s)
in a similar fashion by looking at differences in residual rainfall acidity between two
different locations at the same point in time.

Because Eynon and Switzer’s model parameterized w (s) and y (t) with variograms they
were able to produce predicted maps of rainfall acidity for multiple years. Previous
spatial methods could of course accomplish the same thing by analyzing each year
of data separately, possibly using a single variogram across years. The new spatio-
temporal method allowed one year’s predicted map to be informed by all the observed
data instead of just the observations made within that same year.

By the early 90s Gaussian processes had supplanted the variogram as the default
tool for geostatistics. Accordingly, focus was shifted from estimating a variogram
to modelling a covariance matrix. Early work in this area reformulated Eynon and
Switzer’s rainfall acidity model to have a single combined spatio-temporal process
with a separable spatio-temporal covariance function. A spatio-temporal covariance
function is an extension of the spatial covariance function to additionally allow for a
time index

C ((s1, t1) , (s2, t2)) = Cov [W (s1, t1) , W (s2, t2)] (1.8)

A separable spatio-temporal covariance function can be factored as a product of a
purely spatial covariance function and a purely temporal covariance function

C ((s1, t1) , (s2, t2)) = Cs (s1, s2) · Ct (t1, t2) . (1.9)

The covariance matrix for observations from a general spatio-temporal Gaussian
process would have been computationally prohibitive. A separable covariance function
allowed the covariance matrix to be factored similarly to the covariance function itself,
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and in doing so provided a cheap way to compute the inverse of the covariance matrix

Σ−1 = (Σs ⊗ Σt)−1 =
(︂
Σ−1

s ⊗ Σ−1
t

)︂
. (1.10)

There are three covariance matrices involved: the full covariance matrix Σ is a ST×ST
matrix, Σs is a S × S spatial covariance matrix, Σt is a T × T temporal covariance
matrix, and ⊗ is the Kronecker matrix product. This factorization is only possible
when there are repeated observations for S fixed locations at T points in time.

Separable covariance functions proved to be incredibly useful. In 1993 Mardia and
C. Goodall published Spatial-Temporal Analyses of Multivariate Environmental Moni-
toring Data in which they analyzed multivariate spatio-temporal data using a separable
covariance function and maximum likelihood inference [Mardia and Goodall, 1993].
Their covariance function further extended the spatio-temporal covariance function to
include multiple different variables, and their covariance matrix factored into three
terms

Σ = Σs ⊗ Σt ⊗ ΣV . (1.11)

A year later the same authors gave a completely different technique to analyze
multivariate spatio-temporal data by adapting the machinery of state-space models
and the Kalman filter to geostatistical models [Goodall and Mardia, 1994]. Before
deriving the spatio-temporal state-space model they introduce the general state-space
model

Xt = HYt + ϵt (1.12)

Yt = PYt−1 + ηt (1.13)

State-space models were originally invented in 1960 to solve the problem of recon-
structing the movement path of an object from noisy observations of the object’s
location at regular intervals. In this scenario Yt comprises the coordinates of the
object’s true location at time t with movement determined by the transition matrix
P, Xt are the noisy observations related to the true locations by the observation
matrix H, and ϵt and ηt are both Gaussian noise. The original goal of the state-space
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model was to recover the true locations Yt from the observations Xt, a task which
was accomplished by the Kalman filter [Kalman, 1960]. Goodall and Mardia used this
existing machinery but ripped the movement path reconstruction interpretation away
from the model. They formulate their spatio-temporal state-space model as

Wt (s) = H (s) Yt + ϵt (s) (1.14)

Yt = PYt−1 + ηt (1.15)

Now Yt is a (multivariate) time series which represents the global year-to-year changes
in the (multivariate) spatio-temporal variable Wt (s). In the spatio-temporal state-
space model the static observation matrix H is replaced by a spatially-varying version
H (s), which gives local adjustments to the global year-to-year changes in Yt. In
addition to the spatially-varying observation matrix the residuals ϵt (s) are allowed to
be spatially correlated, however ϵt1 (s) and ϵt2 (s) are independent whenever t1 ̸= t2.
After modifying the state-space model they present the spatio-temporal Kalman filter
which combines kriging with the ordinary Kalman filter to provide predictions of Wt (s)
at any point in time and space. Importantly the spatio-temporal Kalman filter is the
first technique for analyzing spatio-temporal data that allowed the locations and even
number of observations to change from one year to the next, allowing for applications
more complicated than repeated measurements of fixed monitoring stations.

The spatio-temporal Kalman filter was an ingenious bit of handiwork, but the presen-
tation of the spatio-temporal state-space model was awkward. In their 1998 paper
Hierarchical Bayesian Space-Time Models C.K. Wikle, L.M. Berliner, and N. Cressie
adopted the framing of hierarchical Bayesian time series models, which had been
codified two years prior by Berliner [Wikle et al., 1998, Berliner, 1996]. Hierarchical
Bayesian models are a more general formulation of state-space models, which allowed
spatio-temporal geostatistical models a cleaner description. The basic ingredients of a
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hierarchical Bayesian model are the different levels of the hierarchy

Stage 1 [data | process, parameters] (1.16)

Stage 2 [process | parameters] (1.17)

Stage 3 [parameters] (1.18)

Square brackets are a shorthand notation for the probability density, for example
[process | parameters] signifies the probability density for the conditional distribution
of the “process" given the parameters. As the name implies hierarchical Bayesian
models were originally limited to Bayesian statistical methods, hence stage 3 represents
the prior distributions placed on the model parameters. However frequentist methods
can still be used to estimate the model parameters, in which case one would simply
remove stage 3 of the hierarchy. Stage 2, often known as the process model, is used
to model the behaviour of some spatio-temporal variable. Stage 1, often known as
the measurement or observation model, is used to model the variability inherent in
collecting data from the process.

Wikle, Berliner, and Cressie use the hierarchical Bayesian framework to construct
a general example model for analyzing spatio-temporal data. They start with the
observation model [Yt (si) | µt (si) , θ] and give the standard example of the data
Yt (si) being conditionally independent of all other data given the mean µt (si) and
the observation variance parameter σ2

y

Yt (si) | µt (si) , θ ∼ N
(︂
µt (si) , σ2

y

)︂
. (1.19)

They note that the locations of the observations Y do not need to coincide with the
locations used to model the mean process µt (s), all that is needed is a probabilistic
model to connect the two. In fact they suggest that the values of µ need only be
known on a regular grid. (This off-handed remark would prove to be an especially
prophetic one. In modern geostatistics it is almost an unspoken assumption that a
grid or more generally a mesh is used when modelling the process.)

They then move on to the process model [µt (s) | m (s) , β (s) , Wt (s) , θ] decom-
posing the mean process µt (s) as the sum of contributions from a spatially-varying
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but deterministic mean function m (s), a spatially-varying but deterministic temporal
trend M (t; β (s)), and a mean-zero spatio-temporal process Wt (s). A sub-stage in
the process model is used to model the spatio-temporal process Wt (s). For their
example model they use the same process equation as the general state-space model
where Wt (s) is treated as repeated measurements from a number of fixed sites, where
the fixed sites include all of the observation locations. All together their example
model is

Yt (si) | µt (si) , θ ∼ N
(︂
µt (si) , σ2

y

)︂
(1.20)

µt (s) | m (s) , β (s) , Wt (s) = m (s) +M (t; β (s)) +Wt (s) (1.21)

Wt (s) | Wt−1 (s) = PWt−1 (s) + ηt (1.22)

ηt ∼ N
(︂
0, σ2

wI
)︂

(1.23)

The same year as the hierarchical Bayesian spatio-temporal model was introduced,
P. Diggle, J. Tawn, and R. Moyeed introduced the geostatistical generalized linear
model [Diggle et al., 1998]. These two models now form the bedrock for nearly all
modern geostatistical modelling. They also brought new attention to the field of
geostatistics, and the body of literature quickly grew to a staggering size which I will
not attempt to cover here. Instead the relevant references will be given as needed in
the remainder of this thesis.

1.4 Overview of the Thesis

Chapter 2 builds on the body of literature related to animal movement. The general
state-space model was an early model in analyzing marine animal movement tracks,
where the main goal of the analysis was to recreate the movement path of an animal
given noisy observations of their locations collected from Argos satellites or GPS
pings. Eventually those recreated tracks were used to relate the characteristics of an
animal’s movement with their behaviour such as foraging or migrating. The hidden
Markov model was introduced as a way to predict these behaviours from the animal’s
movement. Using the state-space terminology the process of the hidden Markov model
was a sequence of behavioural states, and the observations consisted of the animal’s
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movement characteristics. One of the assumptions for a hidden Markov model is that
the movement characteristics at time t are conditionally independent of the movement
characteristics at all other times given the behavioural state at time t. I show that
this assumption is often violated in marine animal movement. I offer a diagnostic tool
to detect when this assumption is violated, and extend the hidden Markov model used
in animal movement studies to account for the lack of conditional independence in
movement behaviours. This work has been published along with a fledgling R package
in [Lawler et al., 2019].

Chapters 3 and 4 together are situated in the species distribution modelling literature,
with the motivating data coming from scientific surveys of fish populations. Most
statistical models for fish populations have not taken into account any spatial informa-
tion, instead focusing on estimating and predicting the total biomass of a fish stock
and the population dynamics of the stock from year to year. State-space models are
now commonly used to analyze fisheries data for these purposes, having been adapted
from the location estimation task to instead estimating the true population biomass
given noisy observations from scientific surveys and reported values of commercial
catch [Aeberhard et al., 2018]. While the fisheries community has long recognized
the value that incorporating spatial information in these statistical models would
give, only recently has the statistical machinery caught up to allow such analyses to
be performed [Berger et al., 2017]. These spatio-temporal analyses are still far less
developed compared to their purely-temporal counterparts, and instead of replacing
state-space methods they complement them. The current main use of spatio-temporal
fisheries models is to apply them to fisheries-independent surveys and produce pre-
dicted maps of an index of abundance and then aggregate the predicted maps to
yearly indices. Since these methods produce predictions of an index of abundance,
the maps are useful for identifying geographic areas with relatively high or relatively
low abundance but are not suitable for estimating the total biomass in the fishery.

In addition to producing indices of abundance, spatio-temporal modelling can be
used to identify hotspots of other quantities. For example the work in this thesis
was motivated by joint work with Isabelle Jubinville, in which we applied spatio-
temporal models to identify hotspots of skate and ray bycatch in an Atlantic Canadian
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groundfish fishery [Jubinville et al., 2021]. In this work we produced spatio-temporal
maps of relative abundance for three bycaught skate species and ten target species
using data from fisheries-independent surveys. We then overlaid these predicted maps
to identify areas at high risk of bycatch, which was defined as areas with high relative
abundance of a bycaught species and a high abundance of the group of target species
(and vice versa). We also gave a proof-of-concept validation of these predictions using
fisheries-dependent data where we found that, under certain conditions, the bycatch
risk predictions from the fisheries-independent data were significant in predicting the
amount of bycatch in the commercial catch.

In Chapter 3 I develop a new spatio-temporal geostatistical modelling framework that
is highly flexible and takes advantage of recent advances in computationally efficient
spatial modelling. The major innovation comes in the form of a spatio-temporal version
of a nearest-neighbour Gaussian process, and is formulated to be easily extendable
past a standard spatio-temporal geostatistical model. As a significant component of
this chapter I created an easy-to-use R package that implements this new modelling
framework and makes it accessible to a wide audience. The modelling framework and
package provide a quick method for producing maps of predicted species abundance
from large datasets, such as the ones we used in identifying bycatch risk hotspots.
Part of this chapter has been submitted for publication and is pending peer review.

Chapter 4 extends the univariate model of the previous chapter to a multivariate
model through the novel use of cross-sectional copulas in a geostatistical setting. In our
bycatch risk work we analyzed each species individually and composited the resulting
maps into a prediction of bycatch risk. This procedure assumes the different species
are independent of each other, a strong assumption which is almost certainly not true
in nature. By explicitly modelling the dependence between species we can quantify the
dependence between species and in doing so hopefully obtain more accurate and more
precise predictions of the index of abundance for each species. Cross-sectional copulas
provide an almost trivial and computationally efficient way to model the dependence
between species. To extend the univariate model using copulas, we first compute a
version of one-step-ahead quantiles for each of the spatio-temporal random effects in
the univariate model for each species. The one-step-ahead distributions for the random
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effects are already computed when evaluating the likelihood function for the univariate
models, so computing these quantiles does not add any significant computational
burden. Then at each location and time where we have a random effect, we collect
the corresponding quantiles for each species and place a multivariate distribution on
those quantiles to model the dependence structure between species. We explore the
behaviour of the multivariate model with an extended simulation study.



Chapter 2

The Conditionally Autoregressive Hidden Markov
Model (CarHMM): Inferring Behavioural States
from Animal Tracking Data Exhibiting
Conditional Autocorrelation

2.1 Abstract

One of the central interests of animal movement ecology is relating movement char-
acteristics to behavioural characteristics. The traditional discrete-time statistical
tool for inferring unobserved behaviours from movement data is the hidden Markov
model (HMM). While the HMM is an important and powerful tool, sometimes it
is not flexible enough to appropriately fit the data. Data for marine animals often
exhibit conditional autocorrelation, self-dependence of the step length process which
cannot be explained solely by the behavioural state, which violates one of the main
assumptions of the HMM. Using a grey seal track as an example, along with multiple
simulation scenarios, we motivate and develop the conditionally autoregressive hidden
Markov model (CarHMM), which is a generalization of the HMM designed specifically
to handle conditional autocorrelation.

In addition to introducing and examining the new CarHMM, we provide guidelines for
all stages of an analysis using either an HMM or CarHMM. These include guidelines
for pre-processing location data to obtain deflection angles and step lengths, model
selection, and model checking. In addition to these practical guidelines, we link
estimated model parameters to biologically meaningful quantities such as activity
budget and residency time. We also provide interpretations of traditional “foraging"
and “transiting" behaviours in the context of the new CarHMM parameters.

18
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2.2 Introduction

The study of animal movement is fundamental to ecology because it is inherently
linked to critical processes that scale from individuals to populations and communities
to ecosystems [Hooten et al., 2017a]. Rapid technological advancements over the past
several decades have given rise to a variety of electronic tracking devices that can
remotely monitor animals in challenging environments [Hussey et al., 2015] as well as
an assortment of statistical methods for analyzing the resulting (big) movement data.

Statistical models for animal movement data are most commonly formulated in discrete
time [Hooten et al., 2017b], and are increasingly aimed at inferring behavioural “states"
from observed tracks. In this context, the data (called tracks, or location data)
generally consist of a regularly observed time series of locations of an animal. Inferring
behavioural states from location data was initially made possible by a proposal in
[Morales et al., 2004] to transform the data into a bivariate series of step lengths and
deflection angles. In their example, they use characteristics of the step length and
deflection angle series to determine when an elk is in an “encamped" state and when
it is in an “exploratory" state.

There are many different ways to estimate behavioural states from this type of tracking
data. While traditionally achieved using likelihood methods (frequentist or Bayesian),
any unsupervised classification method can be used. Some examples are mixture
models [Morales et al., 2004], clustering models, and k-means clustering [Curry, 2014].
If researchers have actually observed an animal’s behaviour at some points in time
(for example through recorded video), then any supervised classification method could
also be used.

The work of [Morales et al., 2004] along with that of [Jonsen et al., 2005] popular-
ized the state-switching model framework into the de facto way of analysing ani-
mal movement data in discrete time [McClintock et al., 2012, Whoriskey et al., 2017,
Patterson et al., 2017]. While not all animal movement models which incorporate
state-switching into the movement process have distinct behavioural states, the ones
that do generally fall under the hidden Markov model (HMM) framework. These
models assume that there are underlying behaviours driving the animal movement
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process [Michelot et al., 2016].

Hidden Markov models for animal movement have a number of desirable properties:
they have an easily computable likelihood which is typically fast to optimize, the
model parameters have clear interpretations, and they can fairly easily handle different
types of data (including missing data) in the same model [Zucchini et al., 2016]. The
baseline formulation of the HMM has a few key assumptions: the underlying state
process is assumed to form a Markov chain, and the observed step lengths and
deflection angles are conditionally independent given the behavioural state.

The effect of various violations of these assumptions are discussed in [Pohle et al., 2017].
They found that neglecting a semi-Markov state process (which directly models
state residency time), a higher order Markov chain for the behavioural process, or
violations of conditional independence can introduce bias to parameter estimates and
favour models which have more behavioural states than actually exist. Semi-Markov
state processes are also considered in [Langrock et al., 2012] while higher order state
processes are presented in [Zucchini et al., 2016].

The papers in the recent Journal of Agricultural, Biological, and Environmental
Statistics special edition on animal movement also started to address other problems
associated with the discrete-time model framework in general, such as telemetry error,
irregularly spaced data, and occasional missing data [McClintock, 2017], the temporal
scale and resolution of the behaviours involved in the data [Leos-Barajas et al., 2017],
and choosing the number of behavioural states to use [Pohle et al., 2017]. Methods
for assessing goodness of fit for animal movement models were discussed in
[Potts et al., 2014], wherein they found that none of the 20 highest cited papers
at the time tested goodness of fit to the data. Since then, the moveHMM
[Michelot et al., 2016] and momentuHMM [McClintock and Michelot, 2018] R pack-
ages have implemented easy to use residuals, although the use of residuals in the
literature is still uncommon, or at least under-reported.

The current paper introduces a conditionally autoregressive hidden Markov model
(CarHMM) that does not require the assumption of conditional independence of
the movement process given the behavioural process. We do this by introducing an
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autocorrelation parameter in the step length distribution of the traditional HMM
(such as that implemented in [Michelot et al., 2016]). The use of an autocorrelated
step length process was also present in a continuous-state model for estimating the
effect of environmental covariates on behavioural memory in [Forester et al., 2007].

Throughout, we provide general practice guidelines wherever possible. Since analyses
of animal movement typically use offline data, we propose standardizing the observed
step lengths by dividing by the mean observed step length. This allows comparison of
models across data sources, animals, species, etc. We use a lag-plot of step length for
determining if the conditional autocorrelation is necessary, and note its possible use
to help in choosing the number of behavioural states to use. In the case of irregularly
observed tracks, we also discuss how to choose an appropriate interpolation time
step for the model, as well as how to deal with extensive missing data by grouping
observations.

In Section 2.3, we present the formulation of the model including computation of the
likelihood and give references for the theoretical properties. Section 2.4 discusses the
biology associated with specific transformations of the model parameters. Section
2.5 deals with pre-processing the locations by choosing a time step and dealing with
missing data, as well as model selection and validation. Both Section 2.4 and Section
2.5 are useful for most types of discrete-time models, including the HMM and the
CarHMM. Section 2.6 presents four short simulation studies. Section 2.7 demonstrates
best practice for using the CarHMM through the analysis of a male grey seal.

2.3 CarHMM Formulation

We assume that the data consist of a set of step lengths d(t,t+1) between locations
at time t to t + 1 and deflection angles θt between locations at times t − 1, t, and
t+ 1. Locations are assumed to be observed on a discrete and evenly spaced time grid.
Here, step lengths measure the distance between consecutive locations, and deflection
angles measure the angular change in direction between three locations. We discuss
observations which are irregularly spaced in Section 2.5.1.

We introduce a behavioural state process Bt which is a Markov chain on a finite set of
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states {1, ..., k}. Thus the distribution for Bt is completely determined by the value
bt−1 of Bt−1 and the transition probability matrix A. The (i, j)th entry ai,j of A gives
the probability of transitioning from state i to state j. We assume (other choices are
possible) that the initial distribution of the behavioural state Markov chain is given
by the stationary distribution δ, which is the vector such that δA = δ and ∑︁i δi = 1.

Given the behavioural state at time t, the step length at time (t, t+ 1) and deflection
angle at time t are assumed to be conditionally independent of all other observations
and behavioural states, with the key exception that step length at time (t, t+ 1) is
allowed to be dependent on step length at time (t− 1, t). A first order autoregressive
process is assumed for step lengths d(t,t+1). While any valid distributions can be used,
in this presentation we assume a gamma (Γ) distribution for step lengths and a wrapped
Cauchy (WC) distribution for deflection angles θt. A Γ

[︂
(1 − ϕ) · µRL + ϕ · d(t−1,t), σ

]︂
distribution has mean µ = (1 − ϕ) · µRL + ϕ · d(t−1,t) > 0 (reversion level µRL > 0,
autocorrelation 0 < ϕ < 1) and standard deviation σ > 0, with the more traditional
shape and scale parameters being (µ/σ)2 and σ2/µ, respectively. The WC (c, ρ)
distribution has center c ∈ [−π, π] and concentration ρ ∈ (0, 1) with density function

f (θ; c, ρ) = 1
2π · 1 − ρ2

1 + ρ2 − 2ρ · cos (θ − µ) . (2.1)

In cases where we have all of the data before analysis (i.e. we are not streaming
the data), we standardize all step lengths by dividing by the observed mean step
length. This removes units (for example, kilometers) and standardizes parameter
interpretation across data sources, animals, species, etc. Comparison of standardized
parameter estimates across data sources is dependent on many factors, including the
temporal resolution of each data source, choices made during the model procedure, and
the biology/ecology of the animals being compared. Conditional on the mean observed
step length, dividing by the mean does not alter parameter inference since dividing a
gamma distribution by a (non-zero) constant results in another gamma distribution.
In practice, we store the observed mean step length so we can un-standardize later if
desired. For the rest of the paper, we will assume that the symbol d(t,t+1) stands for
standardized step length.
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With all of the terms now defined, the CarHMM is formulated as

Location: xt+1 = xt + d(t,t+1) · H (θt) ·
[︂
d−1

(t−1,t) · (xt − xt−1)
]︂

Action: d(t,t+1) | Bt = b ∼ Γ
(︂
(1 − ϕb) · µRL,b + ϕb · d(t−1,t), σb

)︂
θt | Bt = b ∼ WC (cb, ρb)

Behaviour: Pr [Bt = j | Bt−1 = i] = aij, i, j ∈ {1, 2, ..., k}

Initial Conditions: Pr [B1 = i] = δi,
d(0,1) is fixed from the data as the
first observed step length.

(2.2)

Although the locations xt themselves do not enter the likelihood for the model directly,
we include the “Movement" equation to show the connection between the locations and
the step lengths and deflection angles. In this equation, H (θt) represents the change
in direction at time t. If, as we strongly recommend, the coordinates are latitude-
longitude pairs, then the equation as given is more of a symbolic representation. The
fully written equation is based on spherical geometry. If the coordinates are projected,
then H can be written as a standard 2 × 2 rotation matrix.

The likelihood is computed as the matrix product

L = δL
(︂
d(1,2), θ1

)︂
AL

(︂
d(2,3), θ2

)︂
A · · · L

(︂
d(n,n+1), θn

)︂
1k×1 (2.3)

where L
(︂
d(t,t+1), θt

)︂
is the diagonal matrix

Diag
[︂
f
(︂
d(t,t+1), θt | Bt = 1

)︂
, ..., f

(︂
d(t,t+1), θt | Bt = k

)︂]︂
, (2.4)

and 1k×1 is a vector of ones. Since d(t,t+1) and θt are considered conditionally inde-
pendent given the behavioural state, their joint probability density function is the
product of the individual densities. In practice, we compute the log-likelihood using
forward recursion with scaling as presented in Section 3.2 of [Zucchini et al., 2016].

When the autocorrelation ϕb is fixed at 0 for all b, the CarHMM reduces to a standard
HMM. In addition, when ϕb is fixed at 1 for all b, it is possible to show that the
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CarHMM reduces to a component-wise relative of the hidden Markov movement model
of [Whoriskey et al., 2017] though the details will not be shown here. Further, other
generalizations to the standard movement HMM such as adding a semi-Markov state
process could be applied to the CarHMM.

When using the Γ distribution µRL,b must be non-negative and ϕb must be within the
unit interval. Another useful choice of distribution for step length is the log-normal
distribution, where the log of the step length has mean (1 −ϕb) ·µRL,b +ϕb · d(t−1,t). In
this case the parameters are unrestricted. However to ensure the step length process
is stable, it is sufficient (but not necessary) that the estimates satisfy

⃓⃓⃓
ϕ̂b

⃓⃓⃓
< 1 for all b.

If this is not the case it may be a sign of numerical instability in the optimizer.

We use the maximum likelihood framework; the parameters to be estimated are µRL,b,
ϕb, σb, cb, ρb for b ∈ 1, ..., k giving 5k parameters for the “Action" distribution, and
the off-diagonal transition probabilities ai,j for i, j ∈ 1, ..., k, i ≠ j giving k · (k − 1)
parameters for the “Behaviour" distribution, for a total of k2 + 4k parameters. The
remaining transition probabilities are not free parameters since the row sums of A
must equal 1. The unobserved behavioural states Bt are predicted using the well
known Viterbi algorithm, see e.g. [Zucchini et al., 2016].

Identifiability of models in the Markov-switching autoregressive class, which includes
the CarHMM, is proven in [Douc et al., 2004], with consistency and asymptotic nor-
mality of the ML estimates when using the log-normal distribution resulting from the
same paper. Consistency and asymptotic normality when using the Γ distribution is
studied in [Ailliot, 2006]. One notable consistency condition is that the entries of A
must be strictly positive for parameter estimation to be consistent. If any estimated
value is close to zero, this could be a sign of having too many states in the model,
unless there is a biologically meaningful reason for including the extra state.

2.4 Interpretation of CarHMM Parameters

Here we discuss the concepts of activity budget, behavioural residency time, and mean
reversion level. These are all obtained as transformations of the model parameters
and are related to the biology of the animal.
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Both activity budget and behavioural residency time can be obtained from the
transition probability matrix A. The stationary distribution δ itself can be interpreted
as an activity budget, where the ith entry of δ gives the expected proportion of time
that the animal spends in the ith behavioural state. For example, the activity budget
can give estimates of the proportion of time spent transiting as compared to foraging.

Behavioural residency time is the amount of time that an animal will remain in a
given behavioural state before switching to a different state. These can be modelled
explicitly using semi-Markov state processes, though in our case they follow a geometric
distribution [Langrock et al., 2012]. For a geometric distribution, the expected number
of time steps spent in state i is given by Et(state i) = 1 / (1 − pi,i). When converted
to real time units (hours, minutes, etc.) by multiplying by the chosen time step,
this value gives an estimate of the time scale of the behaviour being modelled and is
important in giving biologically meaningful interpretations to the behavioural states.

Since the step length process within a given behavioural state follows a first-order
autoregressive process, the parameter µRL,b gives the reversion level of the process for
a given state. The mean reversion level is defined to be the expected value of step
length as the time spent within the behavioural state approaches infinity.

µRL,b = lim
t→∞

E

(︄
D(t,t+1)

⃓⃓⃓⃓
⃓Bt′ = b ∀ t′ ≤ t

)︄
. (2.5)

Within each behavioural state this value acts as an attractor in the step length
distribution. Thus consecutive step lengths in the same behavioural state will tend to
converge on this value, with the strength of attraction being inversely proportional to
ϕb and proportional to the distance of the previous step length to µRL,b.

One of the attractive features of hidden Markov models for movement data is the con-
nection between the underlying behavioural state of the Markov chain with behaviours
exhibited by the animal. While the connection between the behavioural state in the
model and the behaviours exhibited by the animal is sometimes tenuous, it can be
useful to label the behavioural states of the model. Two common “behaviours" used in
the HMM context are “foraging" and “transiting" (quotations are used to emphasise
that these labels may not reflect actual behaviour).
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In the standard HMM, foraging is typically characterized by short step lengths and
diffuse deflection angles. Transiting is typically characterized by long step lengths and
deflection angles concentrated at zero degrees. We can update these behaviours in the
CarHMM framework. Here foraging is characterized by short step lengths with little
autocorrelation along with diffuse deflection angles. Transiting is characterized by
longer and highly autocorrelated step lengths along with deflection angles concentrated
at zero degrees.

2.5 Data Inspection and Model Checking

2.5.1 Pre-Processing Locations

When dealing with marine animal tagging data the observed locations are typically
not on a regular time grid. In order to use the CarHMM, we linearly interpolate
the observed locations to a regular time grid. An alternative is to use the multiple
imputation approach proposed in [McClintock, 2017]. However even when using this
multiple imputation approach one must choose a sensible time grid.

Interpolation requires making a few decisions such as: how are observations which are
very far apart in time (long stretches of missing data) dealt with? and, what is the best
time step (the time between points on the temporal grid) to use for the interpolation?
We deal with the first by splitting the track into separate groups whenever the time
between consecutive observations is greater than some cutoff level, which we call the
group cutoff level. After defining the time step, which we require to be the same for
all groups, and the group cutoff level the observed locations are interpolated within
their separate groups on to the regular time grid. The interpolated locations are then
processed to obtain the deflection angles and step lengths which enter the likelihood.

There are two metrics we propose to help in choosing a time step and group cutoff
level: the proportional sample size

nprop = # interpolated locations
# observed locations (2.6)
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and the adjusted proportional sample size

nadj = # interpolated locations − 2 · # groups
# observed locations − 2 . (2.7)

The first is designed to preserve the number of locations in the track, while the second
is designed to preserve the number of data points which enter the likelihood.

To choose a (heuristically) best time step and group cutoff level, we recommend:

1. restrict the time step to be somewhere between the median and 3rd quartile of
the observed time differences in the original data;

2. for whichever time step is chosen, restrict the group cutoff level to be no more
than twice the time step (and no less than the time step itself);

3. with the above restrictions, set up a grid of time steps and group cutoff levels
and compute nprop and nadj for each point in the grid. Choose whichever makes
both nprop and nadj as close to 1 as possible.

We follow these guidelines in choosing the time step for the best practice analysis
of Section 2.7. These guidelines are meant to avoid both over-smoothing the data
(and therefore losing information) by choosing too large a time step, or inadvertently
replicating the data by choosing too small a time step. Values of nprop or nadj less
than one are indicators of over-smoothing while values greater than one are indicators
of data replication.

A brief experiment suggested that interpolation (either linear interpolation or with
a variety of different splines) may introduce a significant amount of autocorrelation
in the step lengths. Further investigation is needed to determine the exact effects
of interpolation. Whether most of the autocorrelation is inherent to the track or is
introduced by interpolating the locations, accounting for it in the model (such as the
CarHMM does) is necessary.

Once the locations are interpolated and grouped with a regular time step, they are
processed to obtain deflection angles and step lengths. These should be obtained
from unprojected coordinates so that both the deflection angles and step lengths
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are accurate throughout the spatial extent of the data. The model is fitted to all
of the grouped data in a single likelihood, assuming that groups are independent of
each other and that the groups share the same true parameters. Within a group, the
first step length of that group is taken to be the initial condition for the step length
autoregressive process, and the initial distribution of the underlying state is always
taken to be the stationary distribution.

2.5.2 Model Selection

We consider two components to model selection for the CarHMM: deciding whether
to use the HMM or the CarHMM (i.e., whether to fix ϕb = 0 or not), and choosing
the number of behavioural states.

First we introduce the lag-plot, an exploratory graphic useful for understanding the
nature of any autocorrelation present in the step length process. The lag-plot at lag
k is a kernel-density plot of d(t,t+1) against d(t−k,t+1−k). Examples of these plots are
given in Figure 2.3 of Section 2.6. These lag-plots give a more detailed description of
the autocorrelation than the simple autocorrelation function, and have a couple of
immediately helpful uses.

Most importantly in the current case, by examining a lag-plot at lag 1, it can be
possible to determine which of the HMM and CarHMM is more appropriate for the
data. These plots show the different types of autocorrelation present within the HMM
and CarHMM, compared with a real dataset. The HMM plot will have a pattern of
distinct circular droplets along the line y = x, a result of the autocorrelation in the
behavioural states, while the CarHMM plot will have an elongated smear along the
line y = x, due to the within-state autocorrelation in step lengths.

In ideal cases, the lag-plot at lag 1 may also suggest the number of states exhibited in
the data. Particularly for data with HMM-like autocorrelation, the number of distinct
droplets corresponds to the number of distinct states. This becomes more complicated
with more latent states and with more CarHMM-like autocorrelation. Choosing the
number of states to use is a notoriously difficult problem, with traditional metrics
such as AIC and BIC generally selecting too many states to be biologically meaningful.
For in-depth discussion, we refer the reader to [Pohle et al., 2017]. A recommended
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starting point is to use as few states as necessary to achieve an adequate fit.

Other uses of the lag-plot include comparing the autocorrelation characteristics of
different time step choices. For example, we could test the intuitively attractive idea
that a short time step results in step lengths with high within-state autocorrelation,
while a long time step results in step lengths with low within-state autocorrelation.
Further, with multi-state models the traditional autocorrelation function can do a
poor job of quantifying the autocorrelation. The lag-plot includes more detail such
that the characteristics of each state can be discerned.

2.5.3 Residuals

For model checking we follow the probability scale residuals of [Shepherd et al., 2016]
and in particular use one-step-ahead forecast residuals. Here, the forecast distribution
for step length is a mixture of gamma distributions with means (1 − ϕb)µRL,b+
ϕbd(t−1,t), standard deviations σb, and mixture rates given by the bth

t−1 row of A.

If we have specified the model structure correctly then these residuals should be
uniformly distributed on (-1,1) and exhibit no autocorrelation. Further, they should
have this property within each behavioural state, though small sample size can be
a problem here. Departures from a uniform distribution can be detected by looking
at a quantile-quantile (Q-Q) plot of the residuals. Residual autocorrelation can be
identified in plots of the autocorrelation function of these residuals, or in lagplots such
as those proposed for model selection.

2.6 Simulation Study

To address the performance and properties of the new CarHMM model, we present
brief vignettes of four simulation studies. First, we investigate the effect of track
length. Second, we look at the effect of within-state autocorrelation. The third study
looks at the effect of the transition probabilities. The fourth and final study compares
the regular HMM and the CarHMM. When simulating data we simulate both the
underlying behavioural state and observed data from scratch. We do not reuse the
behavioural states estimated from original data.
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The main metric we use to assess these simulations is the interquartile range (first and
third quartiles) of the state estimate error. For a particular track, the state estimate
error is the percentage of state estimates which do not agree with the true simulated
state. The quartiles are then computed over e.g. 50 simulations under the same model.

To account for numerical instability in the maximization of the likelihood, our fitting
procedure for these studies attempts to fit the model to each simulated track at most
10 times, with different random starting values each time, until the model converges. If
the model does not converge successfully on any of those 10 attempts, we remove that
particular track from consideration. We also remove tracks which give unreasonable
parameter estimates (in particular, any model fit which gives a stationary distribution
with an entry less than 0.01), or estimates which give clear signs of numeric instability
(deflection angle concentration less than 10−3, or a transition probability matrix with
any row having all equal entries). When using real data we can tweak exactly how we
optimize the likelihood (change various control parameters, pick starting values, etc.)
so this practice is not an inherent shortcoming of the model or fitting method.

The Viterbi algorithm is currently the most common way to estimate behavioural
states in HMM-like models. Briefly, the algorithm takes as input parameter point
estimates and the observed data, and outputs the most likely sequence of behavioural
states as a point estimate. With the Viterbi algorithm, the accuracy of the state
estimates is dependent on the amount of overlap of the state-dependent distribution.
If two states have significant overlap, the Viterbi algorithm will perform much worse
than if the two states were distinct.

At no point are standard errors of parameter estimates or uncertainty statements
about the behavioural states considered. Because of this, any error in the parameter
estimates directly translates to a source of error in the state estimates, with no hope
of correcting for the uncertainty in the parameter estimates. Because the Viterbi
algorithm only gives the most likely sequence of behavioural states with no uncertainty
estimates, the estimated behavioural states must be interpreted with care. In addition
to the tenuous connection between the behavioural state labels and the biology, there
is the additional problem that we do not know how likely the most likely behavioural
state path is. Simulations, such as the ones below, can help determine how much error
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to expect. However, since the actual states are unobserved, it is not possible to know
the actual error rate.

2.6.1 Effect of Track Length

Figure 2.1: The top panel gives the bias for simulated tracks of different lengths under
the same parameters, for both a two- and three-state model. The important feature is
that the bias for all parameters converges to zero (∼500 locations), showing that the
parameters can be successfully estimated given a long enough track. The bottom two
panels give the state estimate error five number summary (min, median, max, and
quartiles). Each track length used 50 simulations. In both the two state model and
the three state model, the median error rate quickly stabilizes (∼250 observations for
the two state model, ∼500 for the three state model), but does not converge to zero.

In practice, one would hope that collecting more data (i.e. longer animal tracks)
would decrease the amount of error in both parameter estimates and state estimates.
Simulations suggest that, while error in parameter estimates will decrease with longer
track lengths, there is an inherent amount of error to be expected in behavioural state
estimates that cannot be overcome with increased track length.

Figure 2.1 shows the bias and state estimate error for two different models. Here we
compute bias as the median difference, across simulations, of parameter estimates from
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the true parameter. The two state model is a HMM which takes (slightly modified)
parameters estimated from an elk dataset analyzed in the vignette for the R package
moveHMM [Michelot et al., 2016]. The three state model is a CarHMM which takes
parameters estimated from a grey seal dataset (different from the one presented in
Section 2.7). The parameters for both models can be found in Table 2.1 and Table
2.2, respectively.

Two State Elk Parameters
d(t,t+1) State 1 State 2 θt State 1 State 2 A p·,1 p·,2
µRL,b 3.364 0.355 c 0 0 p1,· 0.75 0.25

ϕb 0 0 ρ 0.228 0.6 p2,· 0.15 0.85
σ 4.329 0.378

Table 2.1: Parameters for the two state elk simulations. Low autocorrelation is 0.1,
medium autocorrelation is 0.4, high autocorrelation is 0.85. These parameters are
slightly modified from the original source, the vignette to the R package moveHMM
[Michelot et al., 2016].

Three State Seal Parameters
d(t,t+1) State 1 State 2 State 3 θt State 1 State 2 State 3
µRL,b 0.202 0.998 2.091 c 0 0 0

ϕb 0.04 0.429 0.945 ρ 0.209 0.681 0.867
σ 0.157 0.529 0.235

A p·,1 p·,2 p3,·
p1,· 0.848 0.142 0.005
p2,· 0.065 0.754 0.164
p3,· 0.005 0.164 0.831

Table 2.2: Parameters for the three state seal simulations.

Figure 2.1 shows that collecting more and more data for a single track is not effective
past a certain point. For the remaining simulation studies we use track lengths of
1,000. We report the first and third quartiles of the state estimate error, which Figure
2.1 suggests will have stabilized at this track length.

2.6.2 Effect of Autocorrelation

The accuracy of the Viterbi algorithm depends heavily on the amount of overlap of the
state-dependent distributions. Recall that the mean of the step length distribution is
given by (1 − ϕ) ·µRL + ϕ · d(t−1,t). Consider the autocorrelation ϕ as a weight between
µRL, which will depend on the state at time t, and d(t−1,t), which does not. If ϕ is close
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State 2
Low Med High

Low (0.131, 0.148) [4] (0.111, 0.128) [2] (0.074, 0.087) [0]
State 1 Med (0.139, 0.161) [5] (0.082, 0.098) [0]

High (0.209, 0.240) [0]

Table 2.3: First and third quartiles for the state estimate error for different combina-
tions of low, medium, and high autocorrelation. The number in square brackets gives
the number of simulations which did not converge, out of 100 simulations.

State 2 (ϕ = 0.892)
0.5 0.6 0.7 0.9

0.5 (0.214, 0.234) [1] (0.204, 0.227) [0] (0.188, 0.207) [1] (0.125, 0.154) [2]
State 1 0.6 (0.226, 0.240) [3] (0.204, 0.223) [2] (0.194, 0.210) [0] (0.127, 0.147) [2]

(ϕ = 0.407) 0.7 (0.224, 0.245) [2] (0.207, 0.223) [2] (0.196, 0.218) [2] (0.115, 0.134) [0]
0.9 (0.213, 0.242) [6] (0.179, 0.226) [6] (0.154, 0.180) [1] (0.082, 0.104) [2]

Table 2.4: The row and column headings give the probability of staying within the
given state from one time to the next. First and third quartiles for the state estimate
error. The number in square brackets gives the number of simulations which did not
converge, out of 20 simulations. The amount of error decreases as the probability of
remaining in state 2 increases. The error is not significantly affected by the probability
of remaining in state 1.

to one in two states with drastically different µRL, then the two states will overlap
since µRL is essentially irrelevant in both states.

Table 2.3 shows the state error rate for a two state model with different amounts
of autocorrelation (each state taking either a low, medium, or high amount). The
parameters are modified from the same elk example used in Section 2.6.1. Overall
we see that increasing the autocorrelation of both states leads to an increase in the
amount of state estimate error, while differentiating the amount of autocorrelation
between the two states leads to a decrease in the amount of error.

2.6.3 Effect of Transition Probabilities

Unlike in the standard HMM, the observed state-dependent distributions for the
CarHMM are indirectly affected by the transition probabilities of the underlying
behavioural states. States with low autocorrelation act as anchors in the step length
series, while states with high autocorrelation tend to wander. The longer that an
animal is in a state with high autocorrelation (by having a high probability of remaining
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Two State Model
Simulated Model HMM CarHMM
Fitted HMM (0.120, 0.138) [8] (0.434, 0.474) [0]
Model CarHMM (0.125, 0.145) [7] (0.072, 0.083) [0]

Three State Model
Simulated Model HMM CarHMM
Fitted HMM (0.044, 0.058) [15] (0.373, 0.445) [30]
Model CarHMM (0.047, 0.060) [3] (0.157, 0.186) [2]

Table 2.5: First and third quartiles for the state estimate error. The number in
square brackets gives the number of simulations which did not converge, out of 100
simulations. When the data is simulated with no within-state autocorrelation, the
HMM and the CarHMM have essentially the same error rate. However, when the
data is simulated with within-state autocorrelation, the HMM performs very poorly
compared to the CarHMM.

in the same state), the more we expect that step length series to wander.

Figure 2.2 gives observed step length distributions for a variety of different transition
probabilities. Table 2.4 gives state estimate error under the same variety of transition
probabilities. We see that the probability of remaining in state 2 (with high auto-
correlation) affects the state estimate error, as this probability is what determines
how free the second state is to wander. The more that the high autocorrelation state
drifts away from the mean of the low autocorrelation state (from left to right in the
table), the less overlap there is in their distribution, which increases the accuracy of
the Viterbi algorithm. The parameters can be found in Table 2.6.

2.6.4 Comparison of HMM and CarHMM

To show the importance of accounting for conditional autocorrelation in the data, we
simulate data under both the HMM and the CarHMM and fit both the HMM and
CarHMM to each simulation. We use parameters from two different datasets: the
“Low-High" two state parameters from the elk track considered in subsection 2.6.2,
and three state parameters estimated from the grey seal track analyzed in Section 2.7.
The parameters for the models can be found in Table 2.1 and Table 2.7 respectively.
Figure 2.3 shows example lag-plots under the HMM and the CarHMM for the three
state model. As mentioned earlier, these plots can help in model selection.
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Table 2.5 shows the state estimation error rate for the four different scenarios. The
CarHMM is just as effective as the HMM when fitted to HMM data with no conditional
autocorrelation. However, the two-state HMM (∼ 40 − 45% error) performs only
slightly better than random guessing (50% error) when fitted to CarHMM data with
conditional autocorrelation. We expect this amount of error to persist across models
that have at least one state with significant autocorrelation. The three-state HMM
has the same problem, although performs much better than the ∼66% error expected
from random guessing.

These simulations raise interesting questions about the validity of previous research
utilizing hidden Markov models with irregularly timed data, especially since we
suspect a non-trivial amount of autocorrelation is introduced through interpolating
the locations to a regular grid. However, we only mention this point and leave the
discussion for another time.

Computation Time and Implementation

All simulations were computed on a laptop running Linux with a quadcore Intel
Core i7-7500U CPU with 8GB of RAM. To compare the computation speed of the
HMM with the CarHMM, we timed how long it took to fit a three state HMM
and a three state CarHMM 100 times to the seal data in Section 2.7. We also
timed how long it took to simulate and refit 100 simulations from each model. The
HMM averaged 2.43 seconds per fit, and an additional 0.77 seconds per simulation.
The CarHMM averaged 2.37 seconds per fit, and an additional 1.23 seconds per
simulation. The difference in computation time between the two models is essentially
negligible. Our implementation of the CarHMM uses the R package Template Model
Builder [Kristensen et al., 2016], which allows for fast computation through automatic
differentiation. It also has the ability to fix parameters at given values, allowing our
HMM and CarHMM implementation to be identical. Our implementation and other
functional tools discussed earlier are available as an R package at the first author’s
GitHub page. This package also includes the data used in Section 2.7.
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2.7 Best Practice Analysis of a Male Grey Seal Track

In this section we demonstrate what we now consider to be basic best practice for
analyzing animal movement data and reporting subsequent results.

The data are a subset of a male grey seal track on the Scotian shelf, analyzed
previously in [Whoriskey et al., 2017]. The seal was tracked using GPS with negligible
observation error. Due to some data collection issues (the median time differences
abruptly change without explanation) we will look at only the final 3,158 locations
with time differences having a mean, median, and 3rd quartile of 100, 64, and 122
minutes, respectively.

First, one must choose values for the time step and group cutoff. To do this, set
up a grid of values where the time step ranges from 60 minutes to 120 minutes by
increments of 3 minutes, and the group cutoff ranges from the time step to twice the
time step in increments representing 5% of the time step. This range of values for the
time step is chosen to range approximately from the median to the 3rd quartile. Refer
to Section 2.5.1 for more detail.

Both metrics for choosing a good time step and group cutoff discussed in Section
2.5.1 chose an optimal time step of 66 minutes and group cutoff of 132 minutes. The
resulting interpolated track consists of 3,129 locations in 251 groups with nprop = 0.991
and nadj = 0.832. The mean of the unstandardized step lengths is 2.10 kilometres per
time step (1.91 km/hr).

The most useful plot of the data is the lag-plot of d(t,t+1) vs. d(t−1,t) and is shown
as part of Figure 2.4. This plot shows the smeared texture that is characteristic of
the CarHMM. The residuals for a two state CarHMM have autocorrelation on the
border of significance. Neither a three state or a four state CarHMM give improved
residuals (not shown). The data nor any of the residuals showed evidence of long-term
seasonality. Given no other reason to choose a specific number of states, we recommend
using the least number of states which you feel accurately describe the data.

We also remind the reader that behavioural state labels such as “foraging" and
“transiting" may not be reflective of the actual biology.
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Two State “Best Practice" Seal Parameters
d(t,t+1) State 1 State 2 θt State 1 State 2 A p·,1 p·,2
µRL,b 0.552 1.731 c 0 0 p1,· 0.826 0.174

ϕb 0.407 0.892 ρ 0.508 0.858 p2,· 0.12 0.88
σ 0.351 0.244

Table 2.6: Parameter estimates for a male grey seal track using the two state CarHMM.
These parameters are also used for the two state simulations studying the effect of the
transition probabilities.

Two state model The parameter estimates are given in Table 2.6. State 2 is
interpretable as a “transiting" behaviour. The autocorrelation parameter (ϕ2 = 0.89)
and concentration parameter (ρ2 = 0.86) are suitably high, and the standard deviation
(σ2 = 0.244; σ2/µRL,2 = 0.14) is suitably low. A map of the state estimates in Figure
2.5 also indicates a “transiting" behaviour.

State 1 does not have as clear an interpretation. It may be tempting to label it a
“foraging" behaviour to complement the “transiting" behaviour of State 2, however the
parameter estimates for State 1 do not fully support this view. The autocorrelation
parameter (ϕ1 = 0.41) is not close to 0 and the concentration parameter (ρ1 = 0.51) is
higher than expected. Further, the map of the state estimates shows that some of the
behaviour picked up by this state does not have traditional “foraging" characteristics.
This suggests that State 1 may be picking up two distinct behaviours. We believe
these behaviours may be a “foraging" behaviour and a “large area search" behaviour,
although many other possibilities may exist. For this reason, we suggest using a third
state to further differentiate these behaviours.

Three state model The parameter estimates are given in Table 2.7. State 1 is
closer to a “foraging" behaviour than it was in the two state model, and a map of
the state estimates places State 1 where we might a priori expect “foraging" to take
place based solely on the locations. State 3 is archetypal “transiting" behaviour with
both ϕ3 and ρ3 close to 1. Based on the transition probabilities which do not allow
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Three State CarHMM Parameter Estimates
d(t,t+1) State 1 State 2 State 3 θt State 1 State 2 State 3
µRL,b 0.398 1.291 2.074 c -0.129 -0.050 0.002

ϕb 0.277 0.781 0.961 ρ 0.402 0.780 0.906
σ 0.279 0.318 0.164

A p·,1 p·,2 p·,3
p1,· 0.713 0.287 0.000
p2,· 0.149 0.797 0.054
p3,· 0.000 0.120 0.880
δ 0.264 0.508 0.228

Table 2.7: Parameter estimates for a male grey seal track using the three state
CarHMM.

transitions between State 1 and State 3, one would label State 2 a “transitional"
behaviour. Based on parameter estimates and the map of the state estimates given in
Figure 2.6 there is no reason to believe that a fourth state is needed.

The expected residency times are: 3.48 timesteps (3 hr 50 min) for the “foraging"
behaviour; 4.93 timesteps (5 hr 25 min) for the “transitional" behaviour; and 8.33
timesteps (9 hr 10 min) for the “transiting" behaviour. The expected activity budget
gives 26.4% of the seal’s time spent “foraging", 22.8% of its time spent “transiting", and
50.8% of its time transitioning between the two. A simulation study of 93 convergent
simulations out of 100 gave first and third quartiles of the state estimate error as
(20.5%, 22.9%).

2.8 Discussion

We have introduced the conditionally autoregressive hidden Markov model (CarHMM)
for highly accurate tracking data as an alternative to both the HMM originally devel-
oped in [Morales et al., 2004] and the HMMM documented in [Whoriskey et al., 2017].

Subjective choices are often involved during data processing and model fitting. When
fitting discrete-time movement models, the choice of time step often depends on the
discrete behaviour of interest as well as the observation frequency [Breed et al., 2012].
We propose a statistic to help the user choose a time step based on producing a roughly
similar number of interpolated locations and data points as the original tracking data
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set. This could be combined with the multi-scale model of [Leos-Barajas et al., 2017]
to study the discrete behaviour of interest. We have additionally proposed a method
to deal with long periods of missing data. In some formulations of the HMM, a missing
location enters the joint likelihood by including the contribution of the underlying
behavioural state Markov chain (A in our formulation above) while removing the
observation contribution for that location (L in our formulation) [Zucchini et al., 2016].
We instead decided to split the track into multiple groups for compartmentalized
model fitting, and offered metrics for choosing how to perform this partition. Frequent
long periods of missing data can be common in marine environments.

The CarHMM draws a new link between HMMs and the DCRWS model of
[Jonsen et al., 2005]. Within the marine context, the two most commonly sought-after
behavioural states are foraging and transiting. These states are typically assumed to
follow an area-restricted search pattern, whereby foraging patches are characterized
by shorter step lengths occurring in diffuse directions, and are interspersed with
periods of directed travel consisting of longer step lengths directed straight ahead
(see e.g. [Whoriskey et al., 2017]). While these states can be directly inferred from
the state-dependent distributions of the HMM, the interpretation of these state
estimates resulting from the DCRWS is less straightforward. Within the DCRWS,
the main parameter influencing the step lengths is an autocorrelation term (γ).
Usually (again see e.g. [Whoriskey et al., 2017]), high γ values are interpreted as
highly persistent movement (indicative of transiting) and low γ values constitute
highly random movement (representing foraging). As a result, transiting and foraging
are not necessarily delineated by longer and shorter step lengths. The CarHMM
combines the two approaches such that we now have a clear interpretation of the step
lengths but can still account for the fact that some animals will tend to move in a
similar (or dissimilar) manner across time. These properties make the CarHMM a
useful model for linking movement data to behavioural characteristics.
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Figure 2.2: The row and column headings give the probability of staying within the
given state. State 1 has low autocorrelation, state 2 has high autocorrelation. The
density becomes more tightly spread along the line y = x as the data remains in state
2 longer, as well as becoming less concentrated at any particular mean value.
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Figure 2.3: Lagplots for simulated HMM and CarHMM data. The three states of
the HMM data are clearly shown by the three droplet patterns caused by the lack
of within-state autocorrelation. The CarHMM does not clearly show the number of
states, but shows the characteristic smeared line of the within-state autocorrelation.
One can compare these plots to lag-plots of real data to help determine an appropriate
model for the data.

Figure 2.4: Map and lag plot of the grey seal track used in the best practice case
study. Grey seals are large marine predators found in the North Atlantic ocean that
are commonly observed travelling hundreds of kilometres to forage. This grey seal
came from the Sable Island colony of Eastern Canada.
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Figure 2.5: Map of the male grey seal track with state estimates from the two state
CarHMM.



43

Figure 2.6: Map of the male grey seal track with state estimates from the three state
CarHMM.



Chapter 3

Species Distribution Modelling with Spatio-Temporal
Nearest-Neighbour Gaussian Processes

3.1 Abstract

1. Spatio-temporal datasets that are difficult to analyze are common in ecological
surveys. There are software packages available to analyze these datasets, but
many of them require advanced coding skills. There is a growing need for easy
to use packages that researchers can use to analyze common ecological datasets.

2. We develop a particular generalized linear mixed model for spatio-temporal point-
referenced data that is flexible enough to accommodate data from most ecological
surveys while being structured enough to facilitate analyses without advanced
coding. Our implementation in the staRVe package uses a computationally
efficient version of a nearest neighbour Gaussian process enabling analysis of
relatively large datasets.

3. A brief simulation study shows our model produces accurate predictions and
forecasts, while a tutorial analysis of a Carolina wren survey suggests a recom-
mended workflow for analyses. We also analyze a more complicated scientific
survey of haddock to showcase the capabilities of our model.

4. Our model and package are tools that can easily be added to researchers’ workflow
to help make sense of data from ecological surveys. We emphasize the ability
of our model to create useful visualisations of data which can then lead to
identification of important trends in species distributions.

44
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3.2 Introduction

Spatio-temporal datasets that are difficult to analyze are common in ecological surveys.
Such surveys typically record either the count, weight, or simply presence or absence of
a species observed within a small spatial transect. To track the health of the population
through time surveys are typically repeated at the same time every year. This leads
to data that represent points in continuous space and discrete time. In some surveys
the same spatial transects are sampled every year, although others such as marine
surveys use a stratified random sampling design which leads to different transects
being sampled every year. Repeated transect designs are much easier to analyze and
associated spatially explicit statistical models have a relatively long history in the
literature. The stratified random sampling designs have traditionally been modelled
on aggregate by discarding the spatial information, with spatially explicit models
appearing only recently. Statistical models for both types of sampling design, however,
rely in some form on Gaussian processes.

Gaussian processes underlie nearly all statistical modelling of spatial data so we briefly
review the recent literature and relevant software. A Gaussian process is a (possibly
infinite) collection of random variables where any finite subset has a multivariate
normal distribution, and can be fully specified by a mean function and covariance
function. Fitting models with a Gaussian process is computationally challenging,
and recent applied interest in analyzing large spatial or spatio-temporal datasets has
led to theoretical innovations making these models computationally tractable. Many
of these innovations introduce different ways to approximate a Gaussian process –
either by approximating the process itself or by imposing a low-rank condition on
the covariance matrix. Examples of methods that approximate the process are the
stochastic partial differential equation (SPDE) approach [Lindgren et al., 2011] and
the nearest-neighbour Gaussian process [Datta et al., 2016]. Low-rank methods in-
clude fixed-ranked kriging [Cressie and Johannesson, 2008] and the predictive process
[Banerjee et al., 2008]. An enjoyable case-study competition between a wide variety
of these methods is described in [Heaton et al., 2018].

Some of the aforementioned examples have existing and well-developed R packages.
However due to their flexibility they often require expert knowledge of R to correctly
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code the desired model. Perhaps the most widely used package for spatial ecology is
R-INLA [Lindgren and Rue, 2015], which implements the SPDE approach mentioned
earlier. Another popular package in spatial ecology is Template Model Builder,
or TMB [Kristensen et al., 2016]. While TMB is not connected with any particular
Gaussian process approximation, it takes advantage of the Laplace approximation and
automatic differentiation for fast optimization of a user-coded likelihood function, and
was developed with spatial applications in mind.

The R-INLA and TMB packages are quite flexible, but require the user to spend
a significant amount of time learning how to code the model or likelihood func-
tion. What is currently missing is a suite of more specialized R packages that
are easy to use in specific domains. A few of these packages already exist, such
as LatticeKrig [Nychka et al., 2016] for purely spatial data or SpatioTemporal

[Lindström et al., 2013] for fitting Gaussian spatio-temporal processes using basis
functions. For more case-specific packages that support spatial analyses we have
Hmsc [Tikhonov et al., 2020] for multi-species community data and the VAST pack-
age [Thorson and Barnett, 2017] which is popular in fisheries research and supports
spatio-temporal data.

To the above literature we add a new dynamic spatio-temporal model with its own
flavour of modelling. Our model uses a new spatio-temporal version of the nearest
neighbour Gaussian process, and is implemented using the TMB package to provide
computationally fast inference, simulations, and predictions. This framework is specific
enough to admit a user-friendly interface with little advanced programming knowledge
required. At the same time many applied examples fit the continuous-space discrete-
time data description giving the package wide applicability. Examples include daily
ozone levels, yearly cancer incidence levels, and the ecological examples we explore in
this paper. Our initial motivating domain in fisheries research also gives our package
its acronym: Spatio-Temporal Analysis of Resarch VEssel data, or staRVe.
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3.3 Methods and Materials

3.3.1 Modelling Framework

We assume that we have univariate spatio-temporally referenced point data in contin-
uous space s ∈ Rd (or a connected subset of Rd) and discrete time t ∈ N.

Our model can be written in the familiar generalized linear mixed model framework:

Yi | µi ∼ fθ (yi;µi) (3.1)

µi | w = g−1 (Xiβ + Ziw) (3.2)

where Yi is the ith observation of the response variable, fθ (yi;µi) is a response
distribution depending on parameters θ with mean µi, g−1 is an inverse link function,
Xi is the ith row of a design matrix for fixed effects/covariates with coefficients β,
and Zi is the ith row of a design matrix for random effects given by w. To remove
identifiability issues between an intercept term in X and the mean of the random
effects w, we exclude the intercept term in X [Ogle and Barber, 2020]. For notational
simplicity, we replace the design matrix Z with indices specifying the time point and
location, so that an observation Yi,t (si) at time point t and location si is dependent on
the random effect wt (si). With this change we write the spatio-temporally referenced
model as

Yi,t (si) | µi,t (si) ∼ fθ (yi,t (si) ; µi,t (si)) (3.3)

µi,t (si) | wt (s) = g−1 (Xiβ + wt (si)) (3.4)

We note that Xi may be spatially and/or temporal referenced, however we can still
associate such a covariate with an observation Yi,t (s) so we leave that possibility
implicit in the notation. It remains to specify the distribution for the random effects
Wt (s).

The spatio-temporal random effects

We model our spatio-temporal random effects as a time series of spatial fields, or a
spatial field that evolves over time, using a two-level hierarchical specification. The
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’temporal’ level in the hierarchy models the global temporal evolution of the random
effects. The ’spatial’ level in the hierarchy models the spatial variation in the random
effects, or more precisely, it models the spatial variation in how each location evolves
from one time to the next.

The ’temporal’ level is specified as a simple autoregressive order 1, or AR(1), process.
Specifying a set of temporal random effects ϵ, with a random effect ϵt for each time
point in the model, we have

ϵ ∼ N
(︄
µ,

σ2

1 − ϕ2Σ

)︄
where Σij = ϕ||i−j||. (3.5)

where µ is the mean of the process, σ2 is the one-step-ahead temporal variance Var [ϵt],
and ϕ is the correlation between adjacent times Cor [ϵt+1, ϵt].

Moving to the ’spatial’ level of the hierarchy, the Gaussian process (GP) is a ubiquitous
choice for any spatial process due to its attractive stochastic properties. A Gaussian
process is a generalization of a multivariate normal random variable to infinite dimen-
sion, where any finite subset has a multivariate normal distribution. However, the
computation cost in evaluating the likelihood for a Gaussian process is prohibitive even
for modestly sized datasets. We use a nearest-neighbour Gaussian process (NNGP)
as a computationally efficient alternative [Datta et al., 2016]. A GP is described
completely by a mean function m (s) : Rd → R that gives the mean at each location s,
and a covariance function C (s1, s2) :

(︂
Rd,Rd

)︂
→ R+. The covariance function encodes

Tobler’s first law of geography that “everything is related to everything else, but near
things are more related than distant things" [Tobler, 1970]. Additionally the NNGP
requires a directed acyclic graph to be specified on a set of random effect nodes, acting
much like the mesh used in the R-INLA package.

We have a different spatial process at each time point, so we index these random effects
by both time and space Wt (s) and model them through their conditional distributions:

Wt (s) | wt−1 (s) , ϵ ∼ NNGP (mt (s) , C (s1, s2)) . (3.6)

The ’temporal’ level in our hierarchy is used to inform the mean function at each time
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point such that
mt (s) = ϕ · (wt−1 (s) − ϵt−1) + ϵt, (3.7)

ensuring that the temporal evolution at any specific location follows an AR(1) process.
The time series at each location are spatially correlated, the strength of which is
described by the covariance function.

The Matérn covariance function is the most widely used covariance function in the
literature, containing many special cases such as the exponential. Here we present
only the exponential covariance function for simplicity.

C (s1, s2) = τ 2ρ Exp
[︄
−||s1 − s2||

d̄
· 1
ρ

]︄
. (3.8)

We estimate the spatial standard deviation parameter τ and spatial range parameter
ρ. The average distance d̄ between ’connected’ random effect nodes in the directed
acyclic graph is included to standardise parameter estimates for datasets with different
spatial scales (technically, it is the spatial scale of the random effect nodes that is
standardised).

The spatial range parameter ρ is nominally the distance at which locations become
approximately spatially uncorrelated, that is ρ is defined to be the distance between
two locations such that C (||s1 − s2|| = ρ) ≈ 0.05. The range parameter is weakly
estimable but strictly speaking it is unidentifiable with a mostly flat profile likelihood,
and does not affect inference of other model parameters nor prediction of the random
effects [Zhang, 2004]. Since estimating the parameter is fairly difficult a common
approach is to fix the value of the ρ to be some large value, which can in some cases
provide predictions that are nearly as good as they would be if the true value of ρ
were known [Kaufman and Shaby, 2013]. When possible though, we still recommend
trying to estimate ρ via maximum likelihood.

We give a more complete description of our model in Appendix A.

The log-likelihood function
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Writing the complete model, we have

Yi,t (si) | µi,t (si) ∼ fθ (yi,t (si) ; µi,t (si)) (3.9)

µi,t (si) | wt (s) = g−1 (Xiβ + wt (si)) (3.10)

Wt (s)
⃓⃓⃓

{wt−1 (s) , ϵ} ∼ NNGP (ϕ · (wt−1 (s) − ϵt−1) + ϵt, C (s1, s2)) (3.11)

ϵ ∼ N
(︄
µ,

σ2

1 − ϕ2Σ

)︄
where Σij = ϕ||i−j||. (3.12)

The mean for the initial spatial field is spatially constant and equal to ϵ1, and the
covariance function for the initial spatial field is identical but scaled by a factor of
1/ (1 − ϕ2).

We proceed with maximum likelihood inference and write the joint log-likelihood
function as ℓJ (Θ) = ℓy (Θ) + ℓw (Θ) where ℓy (Θ) is the likelihood contribution from
the response distribution and ℓw (Θ) is the likelihood contribution from the random
effects in both the ’temporal’ and ’spatial’ levels of the hierarchy. We integrate out
the random effects and use the restricted or marginal likelihood function

L (Θ) =
∫︂

Exp [ℓJ (Θ)] dW =
∫︂

Exp [ℓy (Θ) + ℓw (Θ)] dW. (3.13)

The above integral is computed using the Laplace approximation as implemented in
the R package TMB [Kristensen et al., 2016]. We obtain maximum likelihood estimates
Θ̂ (with standard errors) for the parameters Θ = {θ, β, µ, ϕ, σ2, τ, ρ}. Predictions
(with standard errors) for the random effects Wt (s) and ϵ are then obtained by
maximizing the joint likelihood ℓJ

(︂
Θ̂
)︂

with respect to the random effects.

Predictions

A common task in spatial and spatio-temporal statistics is to predict the random
effects and response mean at unobserved locations or forecasting into future times.
We obtain predictions in three steps: first the random effects, then the linear predictor
including the covariates, and finally the response mean after applying the link function.
These predictions are easily obtained from our model coupled with the functionality
in the TMB.
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To our joint likelihood ℓJ (Θ) we add another contribution ℓp (Θ), the conditional
distribution of the random effects at the prediction locations given the random effects
in ℓJ (Θ). These conditional distributions share the same mean and covariance function
as the nearest-neighbour Gaussian process, so in essence we are adding locations to
the likelihood of the spatio-temporal nearest-neighbour Gaussian process used in ℓw.
The predicted value for Wt (s) is then taken to be the mode of ℓJ

(︂
Θ̂
)︂

+ ℓp

(︂
Θ̂
)︂

as a
function of wt (s), and the standard errors are computed from the hessian evaluated
at the mode. This is essentially a plug-in estimate using the maximum likelihood
estimates Θ̂, but since we take the predictions directly from the likelihood function all
uncertainty in parameter estimation is propagated to the predictions of the random
effects [Zheng and Cadigan, 2021].

With a new set of covariates X, regression coefficient estimates, and predicted random
effects we obtain the linear predictor

Xβ̂ + ŵt (s) , (3.14)

Finally, the predicted response means are found by applying the inverse link function
g−1

[︂
Xβ̂ + ŵt (s)

]︂
.

3.3.2 Simulations

To develop an understanding of our model framework we visualise data simulated
from different scenarios within it. By visualising these simulations we help develop
an intuition for parameter interpretation and the performance of the package. Our
scenarios are

1. spatial simulations with no observation error

2. spatio-temporal simulations with Gaussian response

3. spatio-temporal simulations with Poisson response

We take the simulation design used by [Zhang, 2004] and adapt it to visualise our
model in the spatio-temporal setting. We simulate random effects on a grid covering
the unit square, with points at (0.1 ∗ x, 0.1 ∗ y) for x, y ∈ 0, 1, ..., 10 and (0.1 ∗ x+
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0.05, 0.1 ∗ y + 0.05) for x, y ∈ 0, 1, ..., 9 for a total of 221 locations. We also simulate
random effects on a transect covering (0.387, 0.01 ∗ y) for y ∈ 0, ..., 100. This study
design is shown in Figure For our two spatio-temporal scenarios we simulate data for
ten years. We then apply the inverse link function to the simulated random effects to
get the expected value for each data point, then simulated data from the corresponding
response distribution. The data for scenario 1 are taken to be the simulated random
effects, which corresponds to a scenario of no observation error.

Figure 3.1: Location design for the simulation studies. Locations in black constitute
data locations. Locations in red are not included as data when fitting the model, and
predictions within each year are made for these locations.

We then fit a model to the simulated data on the grid, and use the fitted model to
produce predictions for the transect. In the case of no observation error, such as our
purely spatial example, our model gives an exact interpolation procedure, thus the
predictions are guaranteed to be equal to the true values at locations where data are
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observed. The transect we are giving predictions for is within the spatial extent of the
data but does not coincide with any of the data locations, so within the transect the
guarantee given by exact interpolation does not apply. In the two spatio-temporal
scenarios we fit the model using data from years one through eight and then use
the fitted model to forecast predictions into years nine and ten. For all scenarios we
simulate with the spatial range ρ = 0.3 and estimate it via maximum likelihood.

Spatial simulations with no observation error

We simulate a realization of the Gaussian random effects, without observation error,
and for a single year. Since µ only shifts the data up or down we let µ = 0. The
temporal parameters ϕ and σ do not enter the model since there is only a single year
of observations. The only remaining parameter in this scenario is the spatial standard
deviation τ . We simulate the random effects using the value τ = 1. To see the effect
of τ on the model we fix the estimated value of τ at three pre-selected values τ = 0.5,
1, and 2. We then use the fitted model to produce predictions for the transect and
compare the point predictions and standard errors to see the effects of τ .

Spatio-temporal simulations with Gaussian response

We simulate a realization of a dataset using a Gaussian response distribution with eight
years of data to fit the model, and an additional two years to forecast predictions. We
set the temporal autocorrelation parameter ϕ = 0.5 and response standard deviation
σobs = 2. The mean µ is still equal to zero. We simulate data under four different
spatio-temporal characteristics, the combinations of low or high spatial variance (τ = 1
and τ = 3) and low or high temporal variance (σ = 5 and σ = 15). Unlike in the
previous section we fit all models using maximum likelihood, and plot the predicted
mean and 95% confidence band only for ML parameter estimates. We predict and plot
the random effects instead of the data to remove the observation noise when plotting
the simulated data.

Spatio-temporal simulations with Poisson response

We replace the Gaussian response distribution of the previous simulation settings with
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a Poisson distribution. When plotting we convert the random effects to the response
scale so the simulations and predictions shown represent the spatio-temporally varying
rate parameter of a Poisson distribution. We set the autocorrelation parameter ϕ = 0.5
and spatial standard deviation σ = 0.5. We then simulate data under four different
combinations: low or high spatial variance (τ = 0.05 and τ = 0.2) and low or high
global mean (µ = log 8 and µ = log 15).

Interpreting the plots

We plot only the transect instead of the whole domain, which allows us to include
multiple years of the same transect in a single plot. The transect is labeled from south
(S) to north (N) corresponding to the points (0.387, 0) and (0.387, 1) respectively.
When plotting multiple years of the same transect, we paste the transect corresponding
to year t at the end of the transect for year t− 1. The years are labelled and separated
into vertical bands by a dashed line. The spatial variability is the amount of variation
the plot exhibits within each vertical band (i.e., the south-to-north transect within a
particular year). The temporal variability is the amount of variation the plot exhibits
from one vertical band to the next (i.e., the evolution of the transect from one year to
the next).

3.3.3 Carolina Wren Survey

We analyze a dataset containing the number of sightings of Carolina wren Thryothorus
ludovicianus recorded once a year along spatial transects in Missouri, U.S.A taken
from the package STRbook [Zammit-Mangion, 2020], which in turn was modified from
[Pardieck et al., 2017]. This analysis is meant to demonstrate the oft-unreported
typical steps – from model fitting and checking to predictions and interpretation – and
to highlight some of the surrounding R packages that our implementation is enhanced
by.

The Carolina wren dataset is stored using the “simple features" open standard for
spatial vector data as implemented in the R package sf [Pebesma, 2018]. We could
not find the coordinate reference system used for this data, so for demonstrative
purposes we assume it is WGS84. The staRVe package does not require projected
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geographic data so we leave the data unprojected. The dataset has 783 observations
across 21 years, ranging from 1994 to 2014. The same locations are surveyed every
year, however there are some missing observations which have been removed from the
dataset. Without these missing data, there is a median 36 observations per year, with
as few as 26 and as many as 45.

Our initial model for this dataset uses a Poisson distribution with the canonical log
link function. The convergence message is “relative convergence", so we are confident
that we have found a local maximum of the log-likelihood function. With ecological
count data it is usually a good idea to check for over- or under-dispersion of the data
relative to the fitted model. While over- or under-dispersion can be caused by any
number of model mis-specifications, the easiest one to check is for mis-specification
of the response distribution. We use quantile residuals provided by the DHARMa

package, which uses simulations to construct a parametric bootstrap estimator of
the cumulative distribution function (CDF) for each data point [Hartig, 2020]. If
the model and response distribution are correct then the residuals from the DHARMa

package will be uniformly distributed on the interval [0,1].

For our analysis we simulate 100 set of observations from the fitted model to construct
the bootstrap CDF. We then simulate one set of observations each from a model
with a Poisson response distribution, an over-dispersed negative binomial response
distribution, and an under-dispersed Conway-Maxwell-Poisson response distribution.
The Conway-Maxwell-Poisson distribution can be seen as a generalized version of
the Poisson distribution that can exhibit both under- and over-dispersion and has
been used in a variety of applications [Sellers et al., 2012]. To ensure we are checking
only the response distribution we simulate new observations conditional on the fitted
random effects and parameters, so that all of the simulated datasets share the same
spatio-temporal pattern as the Carolina wren dataset. Quantile residuals for the
Carolina wren dataset and each of the different response distributions are computed
relative to the Poisson model, i.e. using the bootstrap CDF from the fitted model.
Through this procedure we have four sets of residuals: one set where we know the
model is correct (Poisson simulation), one set where we know the data is over-dispersed
relative to the model (negative binomial simulation), one set where we know the data
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is under-dispersed relative to the model (Conway-Maxwell-Poisson simulation), and
the final set of residuals coming from the real data set. We then compare the residuals
from the Carolina wren dataset to the residuals coming from the simulated datasets
to determine whether the data exhibit under- or over-dispersion relative to the fitted
model using the Poisson distribution.

After checking the fitted model we inspect the parameter estimates to get a general
sense of spatio-temporal behaviour of the random effects and which covariates, if
included, have significant effects. With those general impressions in mind we then
create a spatio-temporal map of the response mean as an important visualisation of the
data and fitted model. We produce a smooth map by predicting the response mean on
a raster using the procedure detailed in Section 3.3.1, and using the raster data format
supplied by the raster package [Hijmans, 2020]. The final graphic is produced using
the raster predictions as a data layer in the tmap package [Tennekes, 2018], though
the raster could also be exported to an external GIS program.

3.3.4 Haddock Survey

To showcase the flexibility of our model we analyze a fairly complex dataset from a
long running scientific survey on the Scotian shelf. The survey spans the years of 1982
to 2016 with between 114 to 235 observations each year, except for one year with
30 observation, for a total of 6,259 observations across 35 years. Each observation
represents a scientific survey vessel fishing set along a spatial transect, from which we
take the total biomass of haddock that is caught along that transect. The transect
locations are selected each year by a stratified random sampling scheme so the locations
are not repeated from one year to the next. We fit a tweedie model to the data then
use the fitted model to forecast a predicted map of relative density for 2017. We
also include maps of predicted density for the years 2014-2016 to provide the recent
context of the fishery. These maps could then be used to help determine a management
strategy for the haddock fishery.

Without additional external information our scientific survey data is only able to
produce prediction of relative density, and not absolute density. That is, we can produce
predictions whose spatial pattern should match the spatial pattern of abundance but
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is only proportional to the true abundance. To reliably produce predictions of absolute
density an estimate of a catchability parameter is typically needed, which requires
either a separate experiment or additional data such as total amount of commercial
catch with additional modelling.

The tweedie response distribution provides a continuous probability density function
for non-zero observations and a point mass at zero to account for the zero-inflation
typical of fisheries data [Foster and Bravington, 2013]. The tweedie distribution is a
member of the exponential family of distributions whose mean/variance relationship is
governed by the power law Var [Y ] = σ2 E [Y ]p where σ2 is the dispersion parameter
and p is the power parameter. We include the area swept by each fishing set as an
offset term for the mean to account for differences in fishing effort between different
observations.

3.4 Results

3.4.1 Simulations

Our brief simulation study shows that our model provides useful predictions with
generally good point estimates and close to nominal 95% confidence intervals. As
would be expected, forecast predictions are much more inaccurate than within-sample
years but the confidence intervals are still close to nominal. We interpret the plots
of the simulations below to give an idea how the model parameters affect the model
behaviour.

Spatial simulations with no observation error

True Scenario 1 Scenario 2 Scenario 3
spatial std. dev. τ 1.00 0.500 (0.000) 1.000 (0.000) 2.000 (0.000)
spatial range ρ 0.3 5.467 (13.529) 0.621 (0.425) 0.094 (0.014)
global mean µ 0.0 -0.167 (0.174) -0.207 (0.334) -0.613 (0.260)

Table 3.1: Simulation parameters and estimated values (with standard errors) for the
spatial simulation scenario.

Simulations and model predictions are shown in figure 3.2. The upper panel shows
the predicted mean for the random effects with a 95% confidence band around the
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Figure 3.2: Simulated random effects (red) along the transect (0.387, y) for y ∈ [0, 1].
The spatial variance used to simulate the random effects is τ = 1. Predictions (top,
black) and standard errors (bottom) for the random effects are obtained using different
values of τ . A 95% confidence band (grey) is shown around the predicted mean when
predicting under the same value of τ used to simulate the random effects.

predictions made using τ = 1, and the bottom panel shows the prediction standard
error. The mean predictions are nearly identical when using τ = 0.5, τ = 1, or τ = 2.
The bottom panel shows that the scale of the standard errors is directly proportional
to the spatial standard deviation parameter. For example the 95% confidence band
under τ = 2 is twice as wide as the 95% confidence band using τ = 1, and four times
as wide as the 95% confidence band using τ = 0.5.

Spatio-temporal simulations with Gaussian response

Simulations and fitted model predictions are shown in figure 3.3. The spatial and tem-
poral variance parameters clearly affect the right components of the model behaviour.
A larger spatial variance corresponds to larger peaks and valleys within each year
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Figure 3.3: 10 years of simulated (red) and predicted (black) random effects along the
transect (0.387, y) for y ∈ [0, 1] in a spatio-temporal model with a Gaussian response
distribution. We have a 2 x 2 design with low and high spatial variance (bottom and
top row, respectively) and low and high temporal variance (left and right column,
respectively). The last two panels in each plot correspond to years 9 and 10. The
fitted model did not include data from these years, so come as forecast predictions
from the fitted model.

while a larger temporal variance exhibits bigger jumps in the overall mean between
years.

Spatio-temporal simulations with Poisson response

Simulations and fitted model predictions are shown in figure 3.4. The spatial variance
acts the same as in the Gaussian case. A larger average intensity exhibits a larger
mean and increased overall variability, behaviour which is due to the log link function
used.

3.4.2 Carolina Wren Survey

The first attempt Poisson model successfully converged to a local maximum of the log-
likelihood function, so we proceed to model validation. The Q-Q plot of the Carolina
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True τ = 3, σ = 5 τ = 3, σ = 15 τ = 1, σ = 5 τ = 1, σ = 15
spatial std. dev. τ – – 3.837 (0.211) 3.729 (0.241) 1.351 (0.170) 1.195 (0.142)
spatial range ρ 0.3 0.286 (0.060) 0.265 (0.060) 0.232 (0.065) 0.345 (0.117)
ar1 corr. ϕ 0.5 0.481 (0.038) 0.498 (0.042) 0.509 (0.066) 0.509 (0.078)
ar1 std. dev. σ – – 3.369 (0.988) 10.362 (2.656) 5.199 (1.339) 13.097 (3.320)
global mean µ 0.0 -0.262 (1.933) -10.477 (5.705) 5.192 (2.884) -7.852 (7.239)
response std. dev. σobs 2.0 1.894 (0.124) 2.082 (0.126) 1.987 (0.057) 2.078 (0.051)

Table 3.2: Simulation parameters and estimated values (with standard errors) for the
spatio-temporal simulation with Gaussian response.

True µ = 2.08, τ = 0.2 µ = 2.71, τ = 0.2 µ = 2.08, τ = 0.05 µ = 2.71, τ = 0.05
spatial std. dev. τ – – 0.251 (0.023) 0.209 (0.014) 0.077 (0.035) 0.084 (0.019)
spatial range ρ 0.3 0.297 (0.090) 0.387 (0.112) 0.147 (0.092) 0.214 (0.091)
ar1 corr. ϕ 0.5 0.515 (0.072) 0.462 (0.066) 0.485 (0.226) 0.239 (0.190)
ar1 std. dev. σ 0.5 0.580 (0.152) 0.743 (0.190) 0.467 (0.141) 0.304 (0.077)
global mean µ – – 1.781 (0.328) 2.569 (0.396) 1.940 (0.253) 2.915 (0.133)

Table 3.3: Simulation parameters and estimated values (with standard errors) for the
spatio-temporal simulation with Poisson response.

wren residuals is shown in Figure 3.5 alongside the residuals for simulated Poisson data,
over-dispersed negative binomial data, and under-dispersed Conway-Maxwell-Poisson
data. The Q-Q plot of the Carolina wren residuals most closely resembles the Q-Q
plot of the under-dispersed Conway-Maxwell-Poisson residuals, which suggests that
the Carolina wren data exhibits under-dispersion relative to the Poisson model. We
refit the data using a Conway-Maxwell-Poisson distribution which also successfully
converges. The Conway-Maxwell-Poisson distribution is under-dispersed when the
dispersion parameter is less than 1, over-dispersed when it is greater than 1, and
becomes a (equidispersed) Poisson distribution when it is equal to 1. The dispersion
parameter is estimated to be 0.7919 with a standard error of 0.101 which confirms our
suspicion of under-dispersion. Estimates of all model parameters are given in Table
3.4. Maps of the predicted mean intensity and standard errors are given in Figures
3.6 and 3.7, respectively.

Interpretation

Missouri lies at the north-eastern edge of the Carolina wren’s habitat range, and our
analysis here seems to agree. Figure 3.6 shows two population centers that are fairly
stable throughout the years studied. The first group lives in the south-eastern corner
of the state, with the Mississippi River to the east and Mark Twain National Forest
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Figure 3.4: 10 years of simulated (red) and predicted (black) response mean along the
transect (0.387, y) for y ∈ [0, 1] in a spatio-temporal model with a Poisson response
distribution. We have a 2 x 2 design with low and high spatial variance (bottom
and top row, respectively) and low and high average intensity (left and right column,
respectively).

to the north-west of the population center. The second population is present in the
south-west corner of the state, on the northern edge of the Ozarks. The predictions for
this second population seem to be driven by observations at a single survey location
with high counts. Given the observations at this particular location are fairly unique,
it would be worth investigating if the wren population is actually abundant at this
location or if we are observing higher counts due to a particularly skilled bird watcher.
A log of the bird watcher names could identify if the same person ran the survey at
that location each year, while a second independent survey could be used to try and
validate the results from this dataset.

The model predictions show some interesting dynamics in the first eleven years. From
1994 to 1997 the wren population is not very abundant, but seems to move south
from around the St. Louis area to the south-eastern corner of the state. Then the
population flourishes, and the sub-population north of the Ozarks appears as well.
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Figure 3.5: Q-Q plot comparing residual patterns for data sources with possible under-
or over-dispersion. The observed dataset has residuals consistent with under-dispersion.
The over-dispersed data come from a negative binomial response distribution with
(over-)dispersion parameter of 1.5. The under-dispersed data come from a Conway-
Maxwell-Poisson distribution with a dispersion parameter of 0.5.

But disaster strikes! Between the survey in 2000 and the one in 2001, the Carolina
wren population seems to completely vanish. By 2006 the population has recovered
and stays fairly stable until 2011. Within these years, the south-eastern population
and the Ozark population are not completely distinct groups as they are connected
by a moderately abundant band across the Mark Twain National Forest. In 2011 the
population contracts spatially and wrens are seen in very low number everywhere
except the south-eastern population, which is concentrated in a smaller geographic area
than seen in the any of the previous years. From 2011 to 2014 the Ozark population
recovers once more and the south-eastern population shifts slightly northwards by
about 50 kilometres, from the Sikeston area to the Cape Girardeau area.

A few questions arise from the above observations. What caused the sudden population
crash in 2001? Was the decline in 2011 due to a similar cause? What caused the
subsequent population recoveries? While our fitted model may not be able to answer
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Estimate Standard Error
(log) global mean µ 1.8659 0.5879
AR(1) correlation ϕ 0.9250 0.0221
temporal std. dev. σ 0.7535 0.1907
spatial std. dev. τ 0.4649 0.0681
spatial range ρ 72.9335 25.0282
CMP dispersion 0.7919 0.1010

Table 3.4: Parameter estimates for Conway-Maxwell-Poisson model fitted to the
Carolina wren dataset

these questions, it does provide a useful visualisation of the data that prompts us to
ask these questions in the first place. If we had included environmental covariates
such as ground cover (forest, urban, farmland, etc.) or rainfall in the analysis, we
might be able to explore the causes of the above behaviours more closely.

3.4.3 Haddock Survey

Estimate Standard Error
(log) global mean µ -4.8936 0.6844
AR(1) correlation ϕ 0.9536 0.0071
temporal std. dev. σ 0.8200 0.1859
spatial std. dev. τ 1.5037 0.0651
spatial range ρ 35.0967 2.7712
tweedie dispersion 3.7144 0.1007
tweedie power 1.5750 0.0065

Table 3.5: Parameter estimates for tweedie model fitted to the haddock survey

Estimates of the model parameters are given in Table 3.5. Maps of the predicted
density and standard errors in the years 2014 to 2017 are given in Figures 3.8 and 3.9,
respectively. First we look at the predictions in the non-forecast years, 2014 to 2017.
The maps show three discrete populations. The most prominent is a large population
centred just south of the southwestern tip of Nova Scotia that spreads north along
the coastline and into the Bay of Fundy in the later years. There seems to be a large
population at the very southeastern edge of the study area in 2014, but since it is on
the edge of the study area we don’t feel it appropriate to interpret that prediction
with this particular set of data. The third population is directly south of Cape Breton
and just west of Sable Island, the small sliver of land seen in the open ocean. This
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population is a fair bit smaller than the first population both in geographical area
occupied and in peak density, but the population seems to be fairly stable during
the three years. The area between the first and third populations is not completely
uninhabited by haddock, so while these two populations do seem to be distinct we
might still expect some movement of individuals between the two populations. Of
course it is impossible to say for sure if this individual movement is occurring and an
animal movement study or a capture-recapture study would be more appropriate to
answer that question. A genetic study would also show if these two populations are
indeed distinct.

The forecast into the next year (2017) looks nearly identical to the map from 2016, but
this is expected since the model uses an AR(1) structure and the AR(1) correlation
was estimated to be very high at +0.95. Arguably the forecasted standard errors
are the more interesting part of the projections since they allow use to quantify how
sure we are of the predictions. The standard errors for the historically (at least from
2014-2016) uninhabited areas are very close to zero, so the model is fairly confident
that new populations will not spontaneously arise from nowhere. The standard errors
for the population centres are higher, so while the model projects the population
centres to be fairly stable it does not rule out the possibility of fairly dramatic changes
in density in those areas.

Disregarding any insights we would gain from looking further back than 2014, we
identify the emerging hotspot in the Bay of Fundy as an area of particular management
interest. The two main populations discussed above have a historical record which
shows they are fairly stable and so management of those areas probably does not need
to be altered much. The new hotspot in the Bay of Fundy doesn’t have the same
longevity and deserves more thought. If conservation is the goal, would it be worth
spending the resources to designate that area as a temporary fisheries closure to try
and protect the new population? Or will the haddock have moved back to the main
population in a year and those resources would be better spent elsewhere? If fishing
is the goal, is the allure of a high-risk high-reward area close to the shoreline enough
to drag part of the fishing fleet away from the more stable areas that are farther out
in the ocean? No statistical model can answer these questions, but the visualisations
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certainly provide a useful starting point for identifying areas of interest and directions
for future studies.

3.5 Discussion

The emergence and importance of citizen science in ecology, the ubiquity of atmospheric
raster data from satellite images, and the desire to understand complex geographical
processes have created a huge collection of spatio-temporally referenced point data.
While these datasets can be quite complex, they are often conceptually similar and
are too numerous for each researcher to have to implement their own model from
scratch. We have introduced a new modelling framework that can be used for common
ecological survey data, expanding the toolbox available to researchers.

The structure of our modelling framework provides access to simulation-based methods
for model interpretation and validation which is otherwise quite difficult for spatio-
temporal data. We showed one method for checking the response distribution using
simulation methods but the fitted model could also have other problems such as
collinearity in covariates, a mis-specified structure for the temporal random effects,
an incorrect spatial covariance function, and more. The relevant literature is rather
undeveloped and there are not many common practices, but the method we use for the
response distribution could potentially be modified to inspect other parts of the model.
The general procedure would be simulating datasets from multiple alternative models
including the fitted model, and comparing the residuals from the original dataset to
those of the simulated datasets. Future research could focus on which alternative
models to use and how to compare between them in order to check for validity of the
temporal and spatial structures assumed in the model.

We end with a discussion of data sources and applications that could benefit from
our modelling framework. Additional modelling may be necessary to fully capture
the intricacies of each dataset, for example preferential sampling in the citizen science
eBird database may be too important to ignore, however the modelling presented here
represents an important first step for providing a easy-to-use modelling tool.

eBird
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A real-time, online checklist program, eBird has revolutionised the way that the
birding community reports and accesses information about birds. eBird provides rich
data with basic information on bird abundance and distribution at a variety of spatial
and temporal scales. eBird is one of the largest and fastest growing biodiversity data
resources in existence.

This data enables us to look at population changes over space and time. If we consider
data from Nova Scotia, Canada, there are about 25,000 checklists provided by about
600 observers on a yearly basis with about 350 species reported annually. A particular
question of interest relates to changes in abundance of particular species over time
and space in response to climate change. For species such as boreal chickadee and
Bicknell’s thrush where Nova Scotia is at the southern limit of their range, anecdotal
evidence shows these species much less abundant in southern Nova Scotia in recent
years. In addition Bicknell’s thrush is a bird of the highlands and boreal forest. With
the models proposed in this paper we can answer important questions about their
population trends temporally and spatially.

Disease Mapping

Disease mapping has its own set of complications – preferential sampling and privacy
concerns among them – but the basic scenario is similar to the Carolina wren analysis.
We refer to [Giorgi et al., 2018] for an introduction to spatio-temporal models for
disease prevalence. The model they explore is a binomial GLMM which can be fit
using the staRVe package.

Many disease prevalence datasets must comply with privacy regulations, and thus
are typically reported as areal data. However following [Giorgi et al., 2018] these
areal data can sometimes be treated as point-referenced data. Their example samples
individual villages and treats each village as a single point. In this case the size of the
village is small compared to the distance between villages, which allows them to treat
the observations as point data.

In other cases where data is point-referenced but still restricted by privacy concerns
the data are usually available to only a small set of specialists, perhaps containing no
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dedicated statisticians. Our package could serve a vital role here in supplying an easy
to use method with little advanced coding necessary.

Fisheries Science

The original motivating example for our development of the staRVe package is the
analysis of fisheries data in Atlantic Canada, so we add to some of the more general
ideas introduced in our analysis of haddock. Imagine we had collected data on lobster
abundance off the coast of Maine and discovered a potential northward shift which
could have huge economic consequences. A large enough shift north or east, even in
the range of 150km, could see the lobster stock cross international boundaries from
Maine in the United States to New Brunswick and Nova Scotia in Canada, making the
lobster unavailable to American fishers (but available to Canadian fishers). Identifying
the causes of these shifts can help determine if they are likely to be temporary or
permanent. In addition, reliable forecasts of lobster stock behaviour are invaluable
in planning any stock management strategies, ecosystem protection, or economic
decisions in response to these changes.
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Figure 3.6: Model-based predictions of mean intensity for all years of the Carolina
wren dataset.
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Figure 3.7: Model-based standard errors for predicted mean intensity for all years of
the Carolina wren dataset.
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Figure 3.8: Model-based predictions of relative density for 2014-2017 of the haddock
survey.
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Figure 3.9: Model-based standard errors of predicted relative density for 2014-2017 of
the haddock survey.



Chapter 4

From Fish to Fishes: A Multivariate Extension to the staRVe
Model Using Copulas

4.1 Introduction

Age-structured populations. Catch and bycatch. Predator and prey. Many ecological
questions involve more than just a single element of interest. The dynamics of spawning
stock biomass depend on the growth of young fish into mature adults. Population
centers of at-risk species aren’t necessarily in danger of bycatch unless a commercially
valuable species also inhabits the same area. Prey species decline when their predators
abound.

Modelling the individual elements of these phenomena separately from each other
clearly misses an essential part of the ecology. For example estimates of spawning stock
biomass will be improved by incorporating data on juveniles so that the dynamics of
ageing are captured. In addition to their multivariate nature, ecological phenomena
evolve over time and space. With any two features – multivariate, spatial, temporal –
the literature is vast with multiple decades of research. The supporting literature for
multivariate spatio-temporal modelling – with all three types of dependence – is much
smaller and still in active development [Wikle, 2015, Zammit-Mangion et al., 2015,
Salvaña and Genton, 2020].

In this paper we present a simple yet flexible way to extend a univariate spatio-
temporal model into a multivariate one. We accomplish this using copulas, which tie
together arbitrary univariate models through their quantiles. Quantiles are nearly
trivial to compute for the multivariate normal distribution once the precision matrix
is known making our method natural for many current spatio-temporal models that
work directly with the precision matrix, such as the stochastic partial differential

73
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equation approach [Lindgren et al., 2011]. Quantiles are also easy to compute when
the dimension of the multivariate normal distribution is small and the covariance matrix
is known, making models which use one-step-ahead conditional distributions such as
nearest neighbour Gaussian processes another viable candidate for our copula approach
[Datta et al., 2016]. Copulas have only very recently started to appear in the statistical
ecology literature, for example [Anderson et al., 2019] and [Liebscher et al., 2022].
Anticipating some unfamiliarity we provide a brief introduction to copulas before
utilizing them to extend the staRVe model, which synergises well with the needs of a
copula.

4.1.1 Crash Course on Copulas

A copula is a joint probability distribution whose marginal distributions are uniformly
distributed on the unit interval. However this simple definition doesn’t quite do
them justice. Since the quantiles of any (continuous) random variable are uniformly
distributed on the unit interval, copulas can be used to model the dependence structure
between random variables. Depending on the particular marginal distributions of the
random variables, describing their joint relationship directly can be difficult.

To see a concrete example of copulas, we can write the joint density of a set of
correlated standard normal random variables in two ways:

f1(x) = det (2πΣ)− 1
2 Exp

[︃
−1

2xTΣ−1x
]︃

(4.1)

f2(x) =
(︃

det (2πI)− 1
2 Exp

[︃
−1

2xT Ix
]︃)︃(︃

det (Σ)− 1
2 Exp

[︃
−1

2xT
(︂
Σ−1 − I

)︂
x
]︃)︃
(4.2)

The standard form f1 contains both the standard normal marginal distributions as
well as the correlation matrix (Σ) in a single term. The second form f2 factors the
joint density into the marginal distributions on the left and their dependence structure
or correlation on the right. Both f1 and f2 describe exactly the same joint distribution
but conceptually f2 handles the correlation separately from the marginal distributions,
which is the same compartmentalization that copulas achieve. In fact, if q is a vector
of Uniform[0, 1] quantiles and Φ is the standard normal distribution function then
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replacing x with Φ−1 (q) in the second factor of f2 gives us the density of the Gaussian
copula

cGaus (q) = det (Σ)− 1
2 · Exp

[︃
−1

2Φ−1 (q)T ·
(︂
Σ−1 − I

)︂
· Φ−1 (q)

]︃
(4.3)

where Σ is a correlation matrix.

Copulas have been used fairly extensively in the econometrics literature. We will focus
on a paper by [Patton, 2006] which develops the foundation for our extension to the
staRVe model. In its simplest form the paper introduces cross-sectional copulas for
modelling dependence between two autoregressive order 1, or AR(1), Gaussian time
series. There are three components to this model:

1. The marginal AR(1) process of X:

Xt|xt−1 ∼ N
(︂
ϕxxt−1, σ

2
x

)︂
(4.4)

2. The marginal AR(1) process of Y :

Yt|yt−1 ∼ N
(︂
ϕyyt−1, σ

2
y

)︂
(4.5)

3. The cross-sectional copula for the dependence between X and Y :

⎡⎣q (Xt)
q (Yt)

⎤⎦ ∼ cGaus (ρ) (4.6)

where q (Xt) = Φ
(︂

Xt−ϕxxt−1
σx

)︂
is the Uniform[0, 1] quantile corresponding to

Xt|xt−1 (similarly for q (Yt)) and cGaus (ρ) is the bivariate Gaussian copula with
correlation parameter ρ.

For this particular example you could write the model equivalently as

⎡⎣Xt

Yt

⎤⎦ |

⎡⎣xt−1

yt−1

⎤⎦ ∼ MVN

⎛⎝⎡⎣ϕxxt−1

ϕyyt−1

⎤⎦ ,
⎡⎣ σ2

x ρσxσy

ρσxσy σ2
y

⎤⎦⎞⎠ . (4.7)
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Scenario 1 Scenario 2 Scenario 3 Scenario 4
X Y X Y X Y X Y

mean µ 0.00 0.00 0.00 0.00 0.00 -1.0 0.00 2.0
autocorrelation ϕ 0.95 0.95 0.95 0.95 0.95 0.0 0.95 0.9
forecast std. dev. σ 0.40 0.40 0.40 0.40 0.40 0.3 0.40 1.0
copula family Independence Gaussian Gaussian Gumbel
copula parameter – – 0.90 0.90 4.00

Table 4.1: Parameter values used to simulate dependent time series. All series are
simulated from a Gaussian AR(1) series except for Y in scenario 4, which is simulated
from a Gamma AR(1) series. Scenario 1 uses the independence copula, scenarios 2
and 3 use a Gaussian copula, and scenario 4 uses a Gumbel copula.

However the copula formulation is much more flexible. You could change the distribu-
tion of Xt to a Gamma distribution without worrying about the other two components,
or change Y to follow an ARIMA(1,1,1) process, or change the copula to a Student’s
t copula. On the other hand the multivariate normal formulation is locked in to have
normal marginals and a Gaussian joint distribution with linear correlation.

A few simulated pairs of time series are shown in figure 4.1. The first scenario consists
of realizations X and Y that are independent and identically distributed Gaussian
AR(1) series; the second scenario has X and Y highly dependent with a Gaussian
copula, and simulated from identically distributed Gaussian AR(1) series; the third
has X and Y highly dependent with a Gaussian copula, but simulated from two
different Gaussian AR(1) series; and to showcase the versatility of copulas the fourth
has X and Y highly dependent with a Gumbel copula, X is simulated from a Gaussian
AR(1) series, and Y is simulated from a Gamma AR(1) series and then shifted down
for better visualisation. The parameter values used are given in Table 4.1. The
cross-correlation functions Cor [Xt+k, Yt] are shown in figure 4.2.

The first pair is given as a reference for independent time series. Since the AR(1)
distributions are identical and the copula correlation is very high the two simulated
realizations track each other very closely with only a few small differences. The
cross-correlation function between X and Y shows a marginal correlation between Xt

and Yt close to the copula correlation ρ = 0.9.

The third pair shows how the copula correlation between Xt|xt−1 and Yt|yt−1 differs
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Figure 4.1: A few examples of AR(1) time series. For each scenario, X is shown as a
solid line and Y is shown as a dashed line. Scenario 1: Independent and identically
distributed Gaussian AR(1) series; Scenario 2: Gaussian copula and identically
distributed marginal Gaussian AR(1) series; Scenario 3: Gaussian copula with two
different marginal Gaussian AR(1) series; Scenario 4: Gumbel copula with a marginal
Gaussian AR(1) series (X) and a marginal Gamma AR(1) series (Y).



78

Figure 4.2: Cross-correlation function between two time series for (left) identically
distributed AR(1) processes with ρ = 0.9 and (right) differently distributed AR(1)
processes with ρ = 0.9. The blue dotted line is the threshold of statistical significance
for the 95% confidence band.
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from the marginal correlation between Xt and Yt. The two simulated realizations
don’t track each other like the second pair did but a crest (dip) in X happens at
the same time as a crest (dip) in Y, and the two series are clearly highly dependent.
However, the cross-correlation function points out a very weak, almost negligible,
marginal correlation between Xt and Yt.

The fourth pair shows just one example of how the flexibility of copulas can lead
to behaviour that is difficult to model by directly specifying a joint distribution for
the two time series. The Gamma distribution with its positive skew allows for the
occasional large increase with a gradual decrease down to a constant minimum level,
behaviour which would be uncharacteristic of a Gaussian distribution. Then the
Gumbel copula has a property called upper tail dependence which means, colloquially,
that extreme increases will occur in both time series at the same time. The dependence
between the two series is not as strong when the series are either relatively constant
or decreasing than it is when the two series are increasing. The behaviour produced
by the Gumbel copula cannot be accurately captured by the linear correlation of a
Gaussian copula.

Copula models are incredibly flexible due to their modular nature, which allows for
the separation of the marginal behaviours from their dependence structure. Even
with Gaussian marginal distributions a copula model is not restricted to a Gaussian
copula. One could use e.g. a Student’s t copula, a Gumbel copula, or a Clayton copula.
There are a few other reasons why copulas are useful. As we saw above it is possible,
and often easy, to simulate from a copula. You can estimate a copula either jointly
with the marginal distributions or post-hoc after the marginal distributions have been
estimated. The only real restriction for copulas are that quantiles need to be easily
computable from the marginal processes.
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4.2 Cross-Sectional Copulas for the staRVe Model

The univariate staRVe model takes the form of a hierarchical generalized linear mixed
model

Yi,t (si) | µi,t (si) ∼ fθ (yi,t (si) ; µi,t (si)) (4.8)

µi,t (si) | wt (s) = g−1 (Xiβ + wt (si)) (4.9)

Wt (s)
⃓⃓⃓

{wt−1 (s) , ϵ} ∼ NNGP (ϕ · (wt−1 (s) − ϵt−1) + ϵt, C (s1, s2)) (4.10)

ϵ ∼ N
(︄
µ,

σ2

1 − ϕ2Σ

)︄
where Σij = ϕ||i−j||. (4.11)

where i indexes the observation, t indexes time, and s indexes location. The spatio-
temporal random effects Wt (s) within a single year follow a nearest neighbour Gaussian
process and each individual location follows an AR(1) process across years. A nearest
neighbour Gaussian process requires a set of nodes S at which the random effects are
located, and we use the same random effect locations every year. If an observation
location does not coincide with a random effect location we add another random effect
node at that observation location, but only for the year in which that observation is
present.

To convert the univariate model to a multivariate model we will introduce a dependence
structure between the spatio-temporal random effects of the various response variables.
The observation locations of the different response variables do not need to be the
same, though clearly the estimation of the dependence between variables will be
improved if they are observed together. We will however require that the random
effect locations S of the various response variables are identical.

We first describe how to standardize the spatio-temporal random effects after which
their quantiles are trivially computed. Then we write the likelihood of the multivariate
staRVe model, and explore the behaviour of a bivariate model under various simulation
scenarios.
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4.2.1 Spatio-Temporal Random Effects to IID Standard Normal Random
Effects

In order to compute the likelihood of the staRVe model, we have a series of univariate
one-step-ahead distributions for each individual random effect Wt (si) |wt−1 (δsi) where
δsi is the set of nearest neighbours of location si. This one-step-ahead distribution is

Wt (si)
⃓⃓⃓

{wt−1 (δsi) , ϵ} ∼ N
(︂
mt (si) + c⊤Σ−1 (wt (δsi) − mt (δsi)) , τ 2ρ− c⊤Σ−1c

)︂
(4.12)

where mt (s) = ϕ · (wt−1 (s) − ϵt−1) + ϵt, ϕ a temporal autocorrelation parameter, c
is the cross-covariance matrix between Wt (si) and Wt−1 (δsi), Σ is the covariance
matrix of Wt−1 (δsi), and τ and ρ are spatial correlation parameters. This conditional
distribution is already computed when evaluating the likelihood so it is trivial to
standardize Wt (si) and compute the its quantile like we did with X and Y in section
4.1.1. We let

q (Wt (si)) = Φ
⎛⎝Wt (si) −

[︂
mt (si) + c⊤Σ−1 (wt (δsi) − mt (δsi))

]︂
√︂
τ 2ρ− c⊤Σ−1c

⎞⎠ (4.13)

and similarly defined for the realized quantile q (wt (si)). Because these quantiles
are computed relative to the one-step-ahead conditional distributions the entire set
of quantiles across all years and random effect locations will be independent and
uniformly distributed on the unit interval [Rosenblatt, 1952, Dawid, 1984]. If we had
used the marginal distribution of Wt (si) ∼ N (mt (si) , τ 2ρ) to compute the quantiles,
then the quantiles would be spatially correlated and would be inappropriate to use in
a cross-sectional copula between variables.

4.2.2 Multivariate staRVe Model

The multivariate extension to the staRVe model follows naturally now that we have
independent quantiles for the random effects. Just as we did in section 4.1.1 we
split the model into components. The marginal components for each variable are all
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univariate staRVe models

Yi,t,v (si) | µi,t,v (si) ∼ fθ,v (yi,t,v (si) ; µi,t,v (si)) (4.14)

µi,t,v (si) | wt,v (si) = g−1 (Xi,vβv + wt,v (si)) (4.15)

Wt,v (s)
⃓⃓⃓

{wt−1,v (s) , ϵv} ∼ NNGP (ϕv · (wt−1,v (s) − ϵt−1,v) + ϵt,v, Cv (s1, s2))
(4.16)

ϵv ∼ N
(︄
µv,

σ2
v

1 − ϕ2
c

Σv

)︄
where Σij,v = ϕ||i−j||

v . (4.17)

where v indexes the variable. The response distributions, covariates, and spatial
and temporal correlation parameters can all be changed to whatever best suits each
individual variable. The copula component is given by

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q (Wt,1 (s))
q (Wt,2 (s))

...
q (Wt,V (s))

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼ c (ρc) (4.18)

where c (ρc) is some choice of copula with parameters ρc describing the dependence
between variables. We require the random effect locations S of each variable to be
identical so that the log-likelihood of the copula component can be computed. When
computing the log-likelihood function ℓc for the copula component of the model there
will be a single term for each location and time point pair, that is

ℓc =
∑︂
si∈S

T∑︂
t=0

log fc

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

q (wt,1 (si))
q (wt,2 (si))

...
q (wt,V (si))

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , ρc

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (4.19)

The one-step-ahead distributions for Wt,v (si) |wt−1,v (δsi) were already computed
for the univariate staRVe model, so following section 4.2.1 computing the quantiles
q (wt,v (si)) comes with negligible additional computational burden. Additionally the
computational cost to evaluate the log-likelihood of the copulas can be very cheap
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compared to the cost of evaluating the rest of the likelihood function. For example the
Gaussian copula comes with complexity O (V 3) needed to invert a correlation matrix,
which for small V (V ≈ 15) is not problematic. Memory issues can quickly rear their
head as the number of variables increase but this is due to having a set of random
effects for all of the different variables and unrelated to the copula itself.

4.3 Spatial Simulations

4.3.1 Description of Simulation Scenarios

We follow the same general framework as the simulations in Chapter 3, which was
adapted from [Zhang, 2004]. We simulate random effects and observations for two
dependent variables X and Y on a grid covering the unit square, with points at
(0.1∗x, 0.1∗y) for x, y ∈ 0, 1, ..., 10 and (0.1∗x+0.05, 0.1∗y+0.05) for x, y ∈ 0, 1, ..., 9
for a total of 221 locations. We also simulate random effects and observations for
X and Y on a transect covering (0.387, 0.01 ∗ y) for y ∈ 0, ..., 100. We fit a model
using the various subsets of the simulated data, and then predict values of X for the
transect.

Scenarios 1 through 5 investigate the effects of removing observations of X near the
prediction locations, including observations of Y at the predictions locations, and of
analyzing X by itself or incorporating Y either through a copula or as a linear fixed
effect. We simulate a single dataset that will be reused for scenarios 1 through 5 so
that we can isolate the effects of the incorporating the second variable and changing
which data locations are available for each variable. We then fit two models for each
scenario: the first model includes only the data for X while the second model includes
the copula and uses the data for both X and Y . All the parameters of the models
are estimated via maximum likelihood. In each scenario the predictions for the joint
model are compared to the predictions from the univariate model.

In scenario 1 we establish the baseline performance of the model. The model is
fitted using data for both X and Y at the grid locations, so that X and Y are always
observed together. The data for scenario 2 is the same as the data for scenario 1 except
we remove observations of X in a buffer of radius 0.1 around the prediction locations.
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For this scenario, the 42 observations within the vertical band 0.287 < x < 0.487 only
include observations of Y . Scenarios 3 and 4 are identical to scenario 1 but in addition
to observations of X and Y at each of the grid locations, we include observations of
Y at the prediction locations. These two scenarios are designed to test the effect of
including these observation locations as part of the persistent graph or as part of the
transient graph (see Chapter 3). In scenario 3 the persistent graph does not include
the prediction locations so that the random effects used to predict X are the random
effects on the grid, and the predictions of X are only tangentially informed by the
observations of Y at the prediction locations In scenario 4 the persistent graph does
include the prediction locations so that the random effects used to predict X include
the random effects of the prediction locations, which are informed directly by the
additional observations of Y . Briefly breaking from the copula approach, scenario
5 incorporates Y as a linear covariate for X instead of modelling them jointly but
otherwise is identical to scenario 4.

In scenario 6 we alter scenario 4 by comparing how the predictions of X are affected
by changes in the response distribution of Y . We change the distribution of Y to
either a Gaussian response, a Gamma response, a Poisson response, or a Bernoulli
response. To do this we keep the random effects and observations of X the same as
they were in the previous scenarios. We preserve the spatial structure of the random
effects of Y , but change their global mean (by adding or subtracting a constant to
each random effect) and magnitude (by multiplying all of the random effects by a
constant). We first normalize the random effects by subtracting their sample mean
and then divide by their sample standard deviation, then scale and shift them to
their new mean and standard deviation. We then simulate a new set of observations
conditional on these shifted and scaled random effects to produce observations for the
different response distributions of Y . We choose the scaling and shifting parameters
to achieve fairly informative but realistic looking data.

The parameters used for simulations of X are global mean µ = 0, spatial standard
deviation τ = 1, spatial range ρ = 0.2, and response standard deviation σ = 1. For
Y the parameters are global mean µ = 3, spatial standard deviation τ = 1, spatial
range ρ = 0.6, and response standard deviation σ = 0.4. We use a bivariate Gaussian
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copula with correlation parameter ρc = 0.75 so that the random effects of X and Y

are strongly correlated.

For scenario 6 the Gaussian random effects are unchanged. The Gamma random effects
are scaled to have sample standard deviation 1 and sample mean 2, and the response
distribution has observation variance σ = 0.4 similar to the Gaussian response. The
Poisson random effects are scaled to have sample standard deviation 2 and mean 1.
The Bernoulli random effects are scaled to have sample standard deviation 2.5 and
sample mean −0.2

4.3.2 Results

Scenario 1: In Which X and Y Observed Together on a Grid

Figure 4.3: X and Y are observed together at the grid locations. The true simulated
values of X at the prediction locations are shown in red. The predicted mean is shown
in black with a 95% confidence band marked in grey.

The predictions under the univariate model for X are not changed by including data
for Y in this scenario. This is not entirely surprising, since copulas are designed so
that they do not interfere with the marginal distributions of the individual variables.
While the predictions of X are not affected, the copula parameter was estimated at
ρ̂c = 0.658 with a standard error of 0.073 which shows the dependence between X

and Y can be accurately estimated in this ideal scenario.

Scenario 2: In Which X Loses Its Integrity

The predictions of X using the univariate model are considerably less accurate than
they were in scenario 1, however the loss of accuracy from removing observations
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Figure 4.4: X and Y are observed together at the grid locations, but the 42 observations
of X within a distance of 0.1 of the prediction locations are removed.

near the prediction locations is offset by a corresponding increase in the standard
errors for prediction. The joint model for X and Y gives somewhat more accurate
predictions than those for the univariate model, however they are not quite as good as
the predictions for X in scenario 1. While extra data of Y can compensate for missing
data in X, the observations of Y do not provide as much information as the data
for X even with the strong dependence between X and Y . The copula parameter is
estimated at ρ̂c = 0.722 with a standard error of 0.071, so despite some missing data
the dependence between X and Y can still be estimated.

Scenario 3: In Which Y is Observed at the Prediction Locations

Figure 4.5: X and Y are observed together at the grid locations, and additional data
for Y is included at the prediction locations. The persistent graph does not include
the prediction locations.

The predictions of X are not changed by including data for Y at the prediction
locations, at least when the persistent graph does not include the prediction locations.
The copula parameter is estimated at ρ̂c = 0.679 with a standard error of 0.069, which
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is slightly closer to the true value than the estimate from scenario 1.

Scenario 4: In Which the Prediction Locations are Added to the
Persistent Graph

Figure 4.6: X and Y are observed together at the grid locations, and additional
data for Y is included at the prediction locations. The persistent graph includes the
prediction locations.

In opposition to scenario 3, the predictions of X are greatly improved by including
the data for Y at the prediction locations when the persistent graph includes the
prediction locations. The resulting predictions are more jagged than the predictions
under the univariate model, which is more realistic-looking behaviour under the
simulation scenario. In particular, the copula model in this scenario gives the first
set of predictions that able to capture the sharp increase from X ≈ 0 to X ≈ 3
and immediate decrease from X ≈ 3 to X ≈ −3 just to the left of the center of the
prediction locations. The copula parameter is estimated at ρ̂c = 0.662 with a standard
error of 0.068.

Scenario 5: In Which Y is Used as a Linear Predictor

The results for this scenario are essentially identical to the results from scenario
4. This is more or less expected since we simulated the data using a Gaussian
copula. A Gaussian copula gives rise to linear correlations as the dependence structure,
so a linear regression should be able to identify this relationship between X and Y .
However, the difference between the copula approach and the linear regression approach
becomes clear when comparing parameter estimates. The regression parameter for Y
is estimated at β̂ = 0.334 with a standard error of 0.039. Clearly the linear relationship
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Figure 4.7: Y is included as a linear covariate in the model for X instead of modelling
X and Y jointly through a copula. X and Y are observed together at the grid locations,
and additional data for Y is included at the prediction locations. The persistent graph
includes the prediction locations.

between X and Y is statistically significant but it is more difficult to use this regression
coefficient to determine how closely related X and Y are, particularly in the context
of spatial regression. The copula parameter estimated in scenario 4 is much easier to
interpret since it is independent of the marginal distributions of X and Y .

Scenario 6: In Which Y has a Change of Costume

A major benefit of using copulas on the spatio-temporal random effects is that the
response distribution of any of the response variables can be non-Gaussian and the
approach still works. While there are some slight differences between them the
predictions for the Gaussian, the Gamma, and the Poisson models are very similar
with predictions that are quite close to the true simulated values. The Bernoulli model
gives predictions that are virtually identical to the predictions under the univariate
model in scenario 4, which does show that not all the different types of data for Y
are able to lend enough information to X to significantly improve predictions. The
Bernoulli model likely struggles because it is difficult to give precise estimates of the
underlying spatio-temporal random field from data that consists strictly of 0s and 1s.

Encouragingly though, the copula parameter was able to be estimated under each of
the models including the Bernoulli model. For the Gaussian model the estimate is
ρ̂c = 0.662 with a standard error of 0.068, the Gamma model gives an estimate of
ρ̂c = 0.656 with a standard error of 0.069, the Poisson model gives an estimate of
ρ̂c = 0.648 with a standard error of 0.073, and the Bernoulli model gives an estimate
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Figure 4.8: Scenario 6: The response distribution of Y is changed to either a Gaussian,
a Gamma, a Poisson, or a Bernoulli distribution. X and Y are observed together at
the grid locations, and additional data for Y is included at the prediction locations.
The persistent graph includes the prediction locations.

of ρ̂c = 0.653 with a standard error of 0.115

4.4 Discussion

The copula approach to generalizing a univariate spatio-temporal model to a multi-
variate one is quite promising. While the simulations here only cover a purely spatial
setting, the fact that the copula operates independently from the marginal distributions
of each individual variable suggests that the results for the spatial setting will transfer
easily to the spatio-temporal setting. Importantly, simulation scenarios 4 and 6 show
that the copula approach can use additional data from auxiliary variables to improve
predictions for a target variable and that many different response distributions can be
used for the auxiliary variables. Despite the very good results from scenario 4, scenario
3 shows that the benefits of the extra data are only gained when the persistent graph
includes the locations of the extra data. This suggests that the design of the persistent
graph and transient graph needs to be looked at again and altered, particularly in the
context of producing good predictions.
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Comparing a copula approach with a regression approach shows that the prediction
results are nearly identical, at least when a Gaussian copula is used. However
the benefits of the copula approach are still apparent when trying to interpret the
parameters governing the relationship between X and Y . The copula parameter is
more interpretable than the regression parameter when trying to estimate how closely
interdependent X and Y are, but comes at the cost of having to specify a model for
the auxiliary variable Y . For future research, it will be interesting to see if the problem
of spatial confounding in the regression approach can be solved by using the copula
approach instead. Briefly, spatial confounding appears when a spatially-referenced
covariate is colinear or correlated with the spatial random effects in a spatial regression
[Paciorek, 2010]. When this is the case, the regression coefficients may be different in
the spatial regression than they were in an ordinary linear regression and it is unclear
which estimates should be used. Restricted spatial regression has been suggested as a
solution to this problem, but restricted spatial regression has been studied and seen
to perform poorly [Khan and Calder, 2020]. Since the copula approach estimates the
marginal spatial structure of each variable completely separately from the dependence
between variables, it seems a promising avenue forward for incorporating auxiliary
variables in the presence of spatial confounding.

While effective, the dependence structures that copulas provide can be rather opaque
and may not lend themselves to direct modelling of biologically important processes
such as aging and survival. For example the copula structure presented here would
not directly connect the number of fish in a cohort at year 1 with the number of fish
in the same cohort the next year, even though those two number are very closely
related. These processes could be modelled as part of the mean structure within a
single variable or as a transition matrix to provide a more mechanistic model for the
dependence between variables. The mechanistic description could then be used in
addition to the copula approach to provide more accurate predictions and to infer a
more mechanistic relationship between variable at the same time.



Chapter 5

Conclusion

5.1 CarHMM

The CarHMM for animal movement introduced in Chapter 2 has its origins in early
behavioural state models such as [Morales et al., 2004] and [Jonsen et al., 2005], and
directly responds to more recent models such as moveHMM [Michelot et al., 2016]
and HMMM [Whoriskey et al., 2017] which together formalized the hidden Markov
model as a key framework for linking animal movement and behaviour. The latter
papers provided software that allowed practitioners to apply hidden Markov models for
animal movement, however extensions to these models had already been discussed in
the literature. Many of these extensions focussed on the dynamics of the behavioural
state process, for example by explicitly modelling the amount of time spent in a
particular behavioural state or by including a second layer of long-term behaviours
[Langrock et al., 2012, Leos-Barajas et al., 2017]. The extensions provide important
flexibility needed to capture a better description of the behaviours and motivations of
an animal.

The CarHMM extends the hidden Markov model in a different direction by addressing
the dynamics of the movement process. We showed that movement data originating
from marine species can include additional autocorrelation in the step lengths that
needs to be accounted for in order to accurately classify an animal’s behavioural
state from its movement data. Lagplots between consecutive step lengths can easily
diagnose when the conditional autocorrelation is present in the data, and residual
analysis can show if a fitted model has accounted for that extra structure in the data.
The CarHMM introduces a simple-in-form generalization to a regular HMM, and thus
is able to take advantage of all the tools developed for HMMs. These include the
Viterbi algorithm for decoding the most likely sequence of behavioural states, forward
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recursion for computing the log-likelihood, and easily computable residuals for model
checking. Further, the improvements made by including conditional dependence in
the step lengths can easily be combined with other alterations of the HMM like those
mentioned above.

However, the CarHMM is still susceptible to many of the problems inherent to
other hidden Markov models for animal movement. The behaviours estimated from
the statistical model are idealized mathematical behaviours that may or may not
correspond to the actual behaviours driving animal movement. Without additional
confirmation through additional data sources such as video evidence, depth data,
or body monitoring data such as heart rate, we cannot say for certain whether the
mathematical behaviour we describe as “foraging" is actually a foraging behaviour.
Different qualitative behaviour may drive similar-looking quantitative movement
patterns.

Our model also assumes regularly timed location data with negligible observation error,
which in practice is rarely the case particularly for marine species. The data we analyzed
were accurate, however were irregularly spaced in time. We dealt with this through a
rather simple linear interpolation, and although we gave some metrics to help guide
this linear interpolation a more sophisticated approach is desired. Our generalization
to the hidden Markov model could be applied to the multiple imputation approach to
fitting hidden Markov models with observation error introduced in [McClintock, 2017].

Finally, determining the number of behavioural states to include in a hidden Markov
model is already a difficult task [Pohle et al., 2017]. The lagplots we introduced make
it possible to determine the number of behavioural states from data simulated from a
hidden Markov model with a small number of states, however for data coming from
a model with more states or coming from the CarHMM identifying the number of
behavioural states to use seems to be an impossible task.

5.2 staRVe

After hierarchical Bayesian space-time models [Wikle et al., 1998] and geostatistical
generalized linear mixed models [Diggle et al., 1998] popularized the use of spatial



93

statistics, researchers quickly found that blunt application of these models was com-
putationally intractable for datasets of real interest. Intense effort went into computa-
tionally efficient alternatives to Gaussian process modelling and kriging, the results of
which are neatly summed up in [Heaton et al., 2018]. Some of these computationally
efficient alternatives are able to be embedded in larger models. In the staRVe model
introduced in Chapter 3 and further developed in Chapter 4 we use one of the more
recent alternatives, the nearest-neighbour Gaussian process, to model spatio-temporal
variation. In order to accommodate the study design typical of ecological survey data,
sometimes fixed monitoring stations and often a geographically stratified random sam-
pling design, we introduced a tailored spatio-temporal version of the nearest-neighbour
Gaussian process. Embedding this spatio-temporal nearest-neighbour Gaussian process
in a generalized linear mixed model framework allows us to give quick inference and
accurate predictions of spatio-temporal species distributions from presence/absence
data, count data, and weight data.

With future research in mind we formulated the staRVe model to be easily extensible.
After developing the staRVe model for univariate data we introduced cross-sectional
copulas to be able to analyze multiple data streams in the same model and to infer
dependence between variables. While the development and study of the multivariate
extension are still in their early stages, the simulations shown in Chapter 4 are
promising. The simulations show that the dependence between variables can be
accurately estimated, and that data-rich variables can be used to improve predictions
of data-poor variables. However, the simulations shown were limited in scope. Scenarios
that need to be studied before declaring the copula approach a success include fully
spatio-temporal data, data where observations of the different variables are never or
only rarely co-located, more than two variables being analyzed, and classes of copulas
other than the Gaussian copula.

Multivariate modelling is also closely linked with spatial confounding, the phenomenon
where regression coefficient estimates are affected when the covariate is spatially struc-
tured and correlated with the spatial pattern of the response variable [Paciorek, 2010].
A few solutions to the problem of spatial confounding have been published recently,
however some so-called solutions such as restricted spatial regression have been shown
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to give poor inference [Khan and Calder, 2020] and other solutions based on adjusting
a least squares or maximum likelihood estimator are either computationally intractable
for modern datasets or are not directly applicable to spatial random effects embedded
as part of a larger model [Chiou et al., 2019]. Other promising methods for accounting
for spatial confounding first explicitly model the covariate as a spatial process and
then feed the (hopefully) spatially-independent residuals into the regression equation
in place of the original covariate [Thaden and Kneib, 2018, Dupont et al., 2022]. Our
copula approach for multivariate data is very similar to these latter methods, as the
dependence between variables is modelled on the spatially-independent quantiles of the
random effects. With the amount of attention spatial confounding has been given in
the contemporary literature, the possibility of using copulas to alleviate such problems
should be explored.

In addition to further testing the capabilities of the copula approach for multivariate
data, other properties of the staRVe model should be investigated. This is especially
important when comparing staRVe to some of its immediate competitors such as
R-INLA [Lindgren and Rue, 2015] and VAST [Thorson and Barnett, 2017], both of
which have been established in the literature long enough to have accepted best
practices. The main choices that a user of the staRVe model and package have to make
relate to the graph used for the nearest-neighbour Gaussian process. The original
paper introducing the nearest-neighbour Gaussian process suggests that inference using
a nearest-neighbour Gaussian process with k ≈ 15 nearest neighbours is effectively as
good as inference using a normal Gaussian. But the number of neighbours is not the
only choice to make, and computational efficiency will be improved by decreasing the
number of neighbours used. Computational gains made by decreasing the number of
neighbours used could allow more locations to be used in the persistent graph and
thus allow for better spatial resolution in the model. Thus a study investigating the
benefits, disadvantages, and tradeoffs of the number of neighbours and the choice and
density of locations in the persistent graph is important in understanding how to best
use the staRVe model.

In tandem with deciding how best to choose the set of locations for the persistent
graph for a given dataset, determining optimal study design for scientific surveys will
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be useful for ecologists regardless of which particular model is used to analyze the
data. Particularly in the context of fisheries science, the accepted best practice for
study design is the geographically stratified random sampling of locations within each
year that was used for the haddock example we analyzed, where the locations sampled
are different from year to year. Another study design is the use of fixed monitoring
stations where the same locations are sampled every year. A simulation study used
to determine how these sampling designs affect inference of model parameters and
predictions of spatio-temporal dynamics will provide useful guidance to ecologists and
fisheries managers on how to collect data as effectively as possible. Because of the
limitations of the fixed monitoring station design, geographically stratified random
sampling is better able to detect shifts in the spatial distribution of a species. However,
because the locations sampled change from year to year it makes intuitive sense that
a fixed station design will give better estimates of parameters related to temporal
variability and thus improved forecasts of the species distribution into future years.
Given the monetary (and sometimes ecological) cost of collecting data for scientific
surveys in fisheries, ecologists should be guided by an understanding the relative
merits of a fixed station design, a geographically stratified design, or possibly a mixed
design with some fixed monitoring stations and some additional stratified random
sampling.

The final avenue of future research we will mention here is creating a fisheries-specific
version of the staRVe model for use in stock assessment. Historically stock assessment
models have been limited to purely temporal models [Aeberhard et al., 2018], although
recently there has been increased attention paid to extend assessment models to include
spatial information, see for example [Cadigan et al., 2017]. Some of the hallmarks of
a fisheries stock assessment model include the abilities to model multiple age classes
(including ageing of a cohort from one year to the next, and the number of recruits
introduced into the population each year), to incorporate external information to
help estimate natural mortality, and to simultaneously model data from commercial
catch and from scientific surveys. Incorporating both commercial catch and scientific
surveys is already possible through the copula approach for multivariate analysis.
Modelling the ageing and recruits will require adaptation of the equations used in the
temporal setting to be applicable in the spatio-temporal setting. Such adaptation may
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be as simple as having each location in the persistent graph follow the same ageing
and recruit equations typically used in temporal models, but likely will require more
sophisticated approaches to account for dispersal of fish within each age class between
years. There are likely many examples in addition to ageing that will complicate the
transition from temporal stock assessment models to spatio-temporal stock assessment
models. However, there is clear recognition in the scientific community that spatial
structure is vitally important in assessing the health of a fish population and so this
transition should be made as soon as possible.
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Appendix A

Technical Details for the staRVe Model

A.1 More Details on the NNGP Log-Likelihood

Here we detail the computation of the log-likelihood contribution ℓw (Θ) for the spatio-
temporal nearest-neighbour Gaussian process (NNGP), in particular the “spatial"
level of the hierarchy. We note that there are modelling choices that could have been
made differently from the ones we have implemented and describe below. We made
our choices based on a combination of model simplicity, computational efficiency, and
personal preference. The original paper introducing the NNGP in a spatial context is
[Datta et al., 2016], and to learn more about the broader class of probabilistic graphical
models we suggest [Koller and Friedman, 2009]. We provide a visual introduction to
a spatial NNGP in Figure A.1.

A Gaussian process is a (possibly infinite) collection of random variables, where any
finite subset of that collection has a multivariate normal distribution. In the spatial
context, a Gaussian process is specified completely by a mean function and a covariance
function. Throughout this section we speak of the locations and the random effects at
those locations interchangeably. For inference we look at the joint distribution of the
observed locations and any additional locations we want to include.

We start by defining the nearest neighbour Gaussian process in the purely spatial case.
Evaluating the joint density of a regular Gaussian process for even a moderately sized
number of locations is computationally challenging because it requires computing the
inverse of the covariance matrix. Using basic rules of conditional probabilities, we can
factor the joint density as a product of (univariate) conditional densities:

f (W (s1:N)) = f1 (W (s1)) ·
N−1∏︂
i=1

fi+1 (W (si+1) | W (s1:i)) (A.1)
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Figure A.1: Graphical model representation of the steps for computing the likelihood
of a nearest neighbour Gaussian process using k = 3 nearest neighbours. (a.) There
are 7 observed locations, with the value of each observation given by the colour of
each circle. (b.) Order the observed locations. Observations that are close in space
should be close together in the ordering. In this example we put the locations in
increasing order from left to right. (c.) Find the joint multivariate normal distribution
for the first k = 3 locations implied by the mean function and covariance function.
(d.) Compute the conditional distribution of the 4th location given its k = 3 nearest
neighbours that came before it in the ordering, in this case locations 1, 2, and 3.
(e.) Compute the conditional distribution of the 5th location given its k = 3 nearest
neighbours that came before it in the ordering, in this case locations 2, 3, and 4.
(f.) Continue with the conditional distributions for each of the remaining locations: in
this example the conditional distribution of location 6 given locations 3, 4, and 5; and
the conditional distribution of location 7 given locations 3, 5, and 6. (g.) We want to
predict the value of the spatial field at a new unobserved location. (h.) The predictive
distribution of the new location is the conditional distribution of that location given
the k = 3 nearest observed locations, regardless of where those locations fall in the
ordering, in this case locations 3, 4, and 5.
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where we write W (s1:i) to mean random variables at the first i locations of
the multivariate normal variable. This isn’t immediately useful, as the term
fN

(︂
W (sN) | W

(︂
s1:(N−1)

)︂)︂
is almost as computationally expensive to compute as

the full joint density.

However, the nearest neighbour Gaussian process imposes a set of conditional inde-
pendence constraints. These constraints allows us to replace the conditioning set
W (s1:i) with a much smaller one, which drastically reduces the computational burden
of computing the densities. To describe the conditional independence constraints we
introduce a set of reference locations Sper and give them an order. In our implemen-
tation the first location in the order is arbitrary, and subsequent locations in the
order are taken to be whichever as yet unordered location is closest to any location
that is already ordered. A location s in Sper is conditionally independent of all other
locations, given the k geographically closest locations in Sper that came before it in
the order. A location s not in Sper is conditionally independent of all other locations,
given the k geographically closest locations in Sper regardless of the order. We call
these “k closest locations" the parents of s, or δs for short, and choose k to be some
small number e.g., k = 15.

Given a set of observed locations and user-chosen Sper we encode the above conditional
independence constraints in a directed acyclic graph (DAG) named G. The vertices of
the graph are the set of all locations considered. There is a directed edge from vertex
i to vertex j iff si is a parent of sj.

With these conditional independence constraints, the joint density of locations s1:N

and reference locations Sper is

f (W (s1:N) , W (Sper)) =
∏︂

s∈Sper

fs (W (s) | W (δs)) ·
N∏︂

i=1
fi (W (si) | W (δsi)) . (A.2)

Thus G also describes the series of conditional densities used to compute the joint
density.

We generalise the above to our spatio-temporal setting by creating a graph Gt for each
time point t which is split in two parts: the persistent graph Gper corresponding to
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the reference locations Sper, and the transient graphs Gtrans,t encoding the parents δsi

of the observed locations at time point t. Since the reference locations do not change
from year to year, the persistent graph Gper and thus the conditional independence
constraints and density factorization are the same from year to year. Combined with
property that Gaussian conditional variances do not depend on the realised value of the
random variables conditioned upon, this allows us to cache most of the computations
used in computing the likelihood for the persistent graph. The transient graphs Gtrans,t

can change from year to year since different locations may be observed, but a location
s will have the same parents every year.

We split the computation of ℓw (Θ) into contributions ℓper (Θ) from the reference
locations and ℓtran (Θ) from the observed locations.

A.1.1 Persistent Graph Log-Likelihood

Here we describe the conditional distributions used for the reference locations and
persistent graph. We recall our notation that Wt (s) is the random effect at time point
t and location s. We also use Wt (δs) to be joint random effects at the locations in
δs. As a reminder the “temporal" level in the model hierarchy defines a set of purely
temporal random effects defined by

ϵ ∼ N
(︄
µ,

σ2

1 − ϕ2Σ

)︄
where Σij = ϕ||i−j||. (A.3)

An equivalent formulation that will be useful later is

ϵt |ϵt−1 = ϕ · ϵt−1 + (1 − ϕ)µ+ νt (νt ∼ N (0, σ2))

ϵ1 = µ+ ν1 (ν1 ∼ N
(︂
0, σ2

1−ϕ2

)︂
)

For presentation purposes we use the exponential covariance function

C (s1, s2) = τ 2ρ Exp
[︄
−||s1 − s2||

d̄
· 1
ρ

]︄
, (A.4)

but any Matérn covariance function can be used.
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At the initial time point t = 1 we assume a constant marginal mean equal to ϵ1. The
conditional distribution for W1 (si) is

W1 (si)
⃓⃓⃓

w1 (δsi) , ϵ ∼ N
(︂
ϵ1 + c⊤Σ−1 (w1 (δsi) − ϵ1) , τ 2ρ− c⊤Σ−1c

)︂
(A.5)

where δsi is the set of parents of si in Gper, c⊤ is the cross-covariance vector between
W1 (si) and W1 (δsi), Σ is the covariance matrix of W1 (δsi), and τ 2ρ is the marginal
spatial variance. In the spatial statistics literature, the above conditional mean and
variance are known as the kriging mean and variance. The likelihood for the first k
random effects in the persistent graph is computed through their joint distribution

W1 (s1:k) ∼ N (ϵ1, Σ) , (A.6)

where here Σ is the covariance matrix of W1 (s1:k).

For times t > 1 we define the spatial marginal mean (but conditioned on previous
times) of Wt (s) to be mt (s) = ϕ · (wt−1 (s) − ϵt−1) + ϵt. This mean function gives a
marginal AR(1) process to each location, see Section A.3 Using this mean function
mt (s) = ϕ · (wt−1 (s) − ϵt−1) + ϵt, the conditional distribution for Wt (si) is then

Wt (si)
⃓⃓⃓

wt−1 (δsi) , ϵ ∼ N
(︂
mt (si) + c⊤Σ−1 (wt (δsi) − mt (δsi)) , τ 2ρ− c⊤Σ−1c

)︂
.

(A.7)
As in the case for t = 0, the likelihood for the first k random effects in the persistent
graph is computed through their joint distribution

Wt (s1:k) ∼ N (ϕ · (wt−1 (s1:k) − ϵt−1) + ϵt, Σ) . (A.8)

There is a subtle identifiability issue related to the first k random effects in the
persistent graph of each year, which we solve in an admittedly strange-looking fashion.
The identifiability issue arises because the spatial range parameter ρ is unidentifiable
and contributes to the marginal spatial variance τ 2ρ. Both the marginal spatial
variance and the temporal variance (by virtue of ϵt appearing in the mean of the
spatial random effects) control the total variance of the first k random effects, so the
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unidentifiability of ρ creeps in to cause the spatial variance to be unidentifiable. To
deal with these crossed wires we temporarily use a different value of ρ for the first
k random effects, choosing the value that sets the marginal variance equal to the
average conditional spatial variance of the remaining random effects in the persistent
graph. This forces the spatial component of the variance for the first k random effects
to be similar in magnitude to the spatial component of the variance for the remaining
random effects, and results in the temporal variance being identifiable.

A.1.2 Transient Node Log-Likelihood

The conditional distributions for the observation locations and transient graphs require
only a small change from the distributions in Section A.1.1. Since a location s observed
at time point t may not have been observed at time point t − 1, we don’t have a
random effect wt−1 (s) explicitly modelled to use in mt (s) = ϕ · (wt−1 (s) − ϵt−1) + ϵt.

We replace wt−1 (s) with the predictor

w̃t−1 (s) = c⊤Σ−1wt−1 (δsi)
c⊤Σ−11 (A.9)

where 1 is a vector of ones. This prediction is the best linear unbiased predictor of
the mean of the process Wt−1 (δs) in an ordinary kriging framework [Cressie, 1990].
Since this is a weighted average of wt−1 (δs), it is a local estimator of the mean. The
conditional distribution is then

Wt (s)
⃓⃓⃓

wt (δs) , ϵ ∼ N
(︂
m̃t (si) + c⊤Σ−1 (wt (δs) − mt (δs)) , σ2

s − c⊤Σ−1c
)︂

(A.10)
where m̃t (s) = ϕ · (w̃t−1 (s) − ϵt−1) + ϵt.



112

A.2 More Details on Predictions

We expand on our description of our prediction procedure given in the main text. Our
aim is to produce predictions for the random effect Wt (s), the linear predictor on the
link scale Lt (s), and the response mean µt (s) at some unobserved spatial location s
and time point t. Since there is uncertainty involved in the inference of the random
effects and fixed parameters Θ = {θ, β, ϕ, µ, σ2, τ 2, ρ} we also want to propagate
this uncertainty to our prediction standard errors.

A.2.1 The Random Effects

The predictive distribution for the new random effect Wt (si) is the same as the
conditional distributions we used for the observation locations in Section A.1.2, namely

Wt (s)
⃓⃓⃓

{wt (δs) , ϵ} ∼ N
(︂
m̃t (si) + c⊤Σ−1 (wt (δs) − mt (δs)) , σ2

s − c⊤Σ−1c
)︂

(A.11)
where m̃t (s) = ϕ · (w̃t−1 (s) − ϵt−1) + ϵt. To the joint likelihood ℓJ (Θ) we add a
likelihood contribution ℓp (Θ) using the above conditional distribution. The predicted
value for Wt (s) is then taken to be the mode of ℓJ

(︂
Θ̂
)︂

+ ℓp

(︂
Θ̂
)︂

as a function of wt (s),
and the standard errors are computed from the hessian evaluated at the mode. This is
essentially a plug-in estimate using the maximum likelihood estimates Θ̂, but since we
take the predictions directly from the likelihood function all uncertainty in parameter
estimation is propagated to the predictions.

A.2.2 The Linear Predictor

Having estimates and standard errors for Ŵ t (si) and β̂ and having a set of prediction
covariates X, we can easily find the predictions and standard errors for the linear
predictor

L̂t (s) = Xβ̂ + ŵt (si) (A.12)

Var
[︂
L̂t (s)

]︂
= X Var

[︂
β̂
]︂

X⊤ + Var [ŵt (si)] (A.13)

In the variance calculation we are assuming the estimator β̂ is uncorrelated with
ŵt (s). Note that this assumption may not be true when the corresponding covariate
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X is spatially or spatio-temporally structured [Paciorek, 2010, Chiou et al., 2019].

A.2.3 The Response Mean

Our last objective is to predict the response mean µ̂t (s) = g−1
[︂
L̂t (s)

]︂
. Letting

h (x) = (g−1)′′ (x) be the second derivative of g−1 (x), we apply a second-order Taylor
approximation variance of g−1

[︂
L̂t (s)

]︂
:

E
[︂
g−1

(︂
L̂t (s)

)︂]︂
≈ g−1

(︂
L̂t (s)

)︂
(A.14)

Var
[︂
g−1

(︂
L̂t (s)

)︂]︂
≈ g−1

(︂
L̂t (s)

)︂2
· Var

[︂
L̂t (s)

]︂
+ 1

2 · h
(︂
L̂t (s)

)︂2
· Var

[︂
L̂t (s)

]︂2
(A.15)

A.2.4 Prediction Intervals for New Observations

Keeping with accepted practice for generalized linear models we do not attempt
to create prediction intervals for new observations. While computing closed form
prediction intervals is relatively straightforward for a Gaussian response distribution
such intervals either may not make sense, in the case of the Bernoulli distribution,
or may not have a closed form, as in the case of a Poisson distribution. However
observations are assumed conditionally independent of all other observations given
the covariates and spatio-temporal random effects. The predicted response mean and
estimated response distribution parameters are all that are needed to produce proba-
bility statements for any particular new observation, including prediction intervals,
which could be found either from the density function of the response distribution or
through simulations of new observations conditional on the fitted random effects.
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A.3 Distributional Properties for the staRVe Model

To describe the distributional properties of the staRVe model it suffices to show the
distributional properties of the spatio-temporal random effects. The properties of
the temporal random effects are evident directly from the specification, and given
the spatio-temporal random effects the conditional independence assumption for the
observations makes their properties known from standard generalized linear mixed
model theory. First we give the marginal forecast distribution of the spatial field
Wt (s) | wt−1 (s) by marginalizing out the temporal random effects from the conditional
distribution directly modelled Wt (s) | {wt−1 (s) , ϵ}. Using these marginal forecast
distributions, we then show that the spatio-temporal random effects have the same
probabilistic model as a particular separable spatio-temporal model.

Lemma 1. Assume we have the joint distribution ϵ ∼ N
(︂
µ,

σ2
t

1−ϕ2Σ
)︂

where Σij =
ϕ||i−j||, and the conditional distributions

⎡⎣W1,1

W1,2

⎤⎦ | ϵ1 ∼ N
⎛⎝ϵ1,

σ2
s

1 − ϕ2

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
and

⎡⎣W2,1

W2,2

⎤⎦ |

⎧⎨⎩
⎡⎣w1,1

w1,2

⎤⎦ , ϵ2, ϵ1

⎫⎬⎭ ∼ N
⎛⎝ϵ2 + ϕ

⎛⎝⎡⎣w1,1

w1,2

⎤⎦− ϵ1

⎞⎠ , σ2
s

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠ ,
where f (d) is the spatial correlation function evaluated at the distance d between W·,1

and W·,2.

Then marginalizing out ϵ gives the distributions

⎡⎣W1,1

W1,2

⎤⎦ ∼ N
⎛⎝⎡⎣µ

µ

⎤⎦ , σ2
t

1 − ϕ2 + σ2
s

1 − ϕ2

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
and

⎡⎣W2,1

W2,2

⎤⎦ |

⎡⎣w1,1

w1,2

⎤⎦ ∼ N
⎛⎝µ+ ϕ

⎛⎝⎡⎣w1,1

w1,2

⎤⎦− µ

⎞⎠ , σ2
t + σ2

s

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
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Proof. The joint distribution of ϵ is well known as an AR(1) structure, so that
we have ϵ1 ∼ N

(︂
µ,

σ2
t

1−ϕ2

)︂
and ϵ2|ϵ1 ∼ N (µ+ ϕ (ϵ1 − µ) , σ2

t ) , and also ϵ2 − ϕϵ1 ∼
N ((1 − ϕ)µ, σ2

t ) .

Note that we can define
⎡⎣W1,1

W1,2

⎤⎦ = ϵ1 + ν1 where ν1 ∼ N
⎛⎝0, σ2

s

1 − ϕ2

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
and ν1 is independent of ϵ1. Since this is a sum of independent normal random
variables, we have

⎡⎣W1,1

W1,2

⎤⎦ ∼ N
⎛⎝⎡⎣µ

µ

⎤⎦ , σ2
t

1 − ϕ2 + σ2
s

1 − ϕ2

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠ .

Similarly we can define

⎡⎣W2,1

W2,2

⎤⎦ |

⎡⎣w1,1

w1,2

⎤⎦ = ϵ2 + ϕ

⎛⎝⎡⎣w1,1

w1,2

⎤⎦− ϵ1

⎞⎠+ ν2 where ν2 ∼ N
⎛⎝0, σ2

s

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
and ν2 is independent of ϵ1 and ϵ2. Re-arranging terms we have

ϵ2 + ϕ

⎛⎝⎡⎣w1,1

w1,2

⎤⎦− ϵ1

⎞⎠+ ν2 = ϵ2 − ϕ (ϵ1) + ϕ

⎡⎣w1,1

w1,2

⎤⎦+ ν2

= µ− ϕµ+ ζ + ϕ

⎡⎣w1,1

w1,2

⎤⎦+ ν2

where ζ ∼ N (0, σ2
t ),

= µ+ ϕ

⎛⎝⎡⎣w1,1

w1,2

⎤⎦− µ

⎞⎠+ ζ + ν2
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and thus
⎡⎣W2,1

W2,2

⎤⎦ |

⎡⎣w1,1

w1,2

⎤⎦ ∼ N
⎛⎝µ+ ϕ

⎛⎝⎡⎣w1,1

w1,2

⎤⎦− µ

⎞⎠ , σ2
t + σ2

s

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
which completes the proof

Lemma 2. A spatio-temporal Gaussian process where 1.) any pair of random variables
at the initial time point has joint distribution

⎡⎣W1,1

W1,2

⎤⎦ ∼ N
⎛⎝⎡⎣µ

µ

⎤⎦ , σ2
t

1 − ϕ2 + σ2
s

1 − ϕ2

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
where f (d) is the spatial correlation function evaluated at the distance d between W1,1

and W1,2, and 2.) any pair of random variables at any subsequent time points at the
same locations as W1,1 and W1,2 has joint distribution

⎡⎣Wt,1

Wt,2

⎤⎦ |

⎡⎣wt−1,1

wt−1,2

⎤⎦ ∼ N
⎛⎝µ+ ϕ

⎛⎝⎡⎣wt−1,1

wt−1,2

⎤⎦− µ

⎞⎠ , σ2
t + σ2

s

⎡⎣ 1 f (d)
f (d) 1

⎤⎦⎞⎠
and 3.) any random effect at time t is conditionally independent of all random effects
at time t − 2 and earlier given all random effects at time t − 1, is equivalent to a
separable spatio-temporal Gaussian process with

1. constant marginal mean µ′ = µ

2. marginal variance σ′2 = (σ2
t + σ2

s)/(1 − ϕ2),

3. temporal correlation function C ′
t (∆t) = ϕ||∆t||, and

4. spatial correlation function C ′
s (d) = (σ2

t + σ2
sf (d))/(σ2

t + σ2
s).

Proof. Let
[︂
W2,1 W2,2 W1,1 W1,2

]︂T
be random effects where the subscript t, s in-

dexes time and location, respectively, with the distance between locations 1 and 2
being equal to d. A separable spatio-temporal model for these random effects is given
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in general by
⎡⎢⎢⎢⎢⎢⎢⎢⎣

W2,1

W2,2

W1,1

W1,2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ∼ N

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

µ2,1

µ2,2

µ1,1

µ1,2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , σ
′2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 C ′
s(d) C ′

t(1) C ′
t(1)C ′

s(d)
C ′

s(d) 1 C ′
t(1)C ′

s(d) C ′
t(1)

C ′
t(1) C ′

t(1)C ′
s(d) 1 C ′

s(d)
C ′

t(1)C ′
s(d) C ′

t(1) C ′
s(d) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎠ .

We immediately have the marginal joint distribution

⎡⎣W1,1

W1,2

⎤⎦ ∼ N
⎛⎝⎡⎣µ1,1

µ1,2

⎤⎦ , σ′2

⎡⎣ 1 C ′
s(d)

C ′
s(d) 1

⎤⎦⎞⎠ ,
and without showing the straightforward but cumbersome details of the conditional
normal calculations, the conditional joint distribution

⎡⎣W2,1

W2,2

⎤⎦ |

⎡⎣W1,1

W1,2

⎤⎦ ∼ N
⎛⎝⎡⎣µ2,1

µ2,2

⎤⎦+ C ′
t(1)

⎛⎝⎡⎣w1,1

w1,2

⎤⎦−

⎡⎣µ1,1

µ1,2

⎤⎦⎞⎠ , σ′2 (1 − C ′
t(1)2)

⎡⎣ 1 C ′
s(d)

C ′
s(d) 1

⎤⎦⎞⎠ .

For E
[︃[︂
W1,1 W1,2

]︂T ]︃
to be the same between the initial model and the separable

model we must have µ1,1 = µ1,2 = µ. For E
[︃[︂
W2,1 W2,2

]︂T
|
[︂
W1,1 W1,2

]︂T ]︃
to be the

same, we must have

µ2,1 + C ′
t(1) (w1,1 − µ1,1) = µ+ ϕ (w1,1 − µ)

for all values of w1,1. Letting w1,1 = 0 and substituting µ1,1 = µ we have µ2,1−C ′
t(1)µ =

µ − ϕµ. Now let w1,1 = 1 to get (µ2,1 − C ′
t(1)µ) + C ′

t(1) = (µ− ϕµ) + ϕ, and thus
C ′

t(1) = ϕ. Substituting C ′
t(1) = ϕ into E

[︃[︂
W2,1 W2,2

]︂T
|
[︂
W1,1 W1,2

]︂T ]︃
for the

separable model gives µ2,1 = µ2,2 = µ.

Moving to the covariance matrices, for Var
[︃[︂
W1,1 W1,2

]︂T ]︃
to be the same we compare

entries of the respective covariance matrices and must have

σ2
t + σ2

s

1 − ϕ2 = σ′2
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which gives our expression for σ′2, and

σ2
t

1 − ϕ2 + σ2
s

1 − ϕ2f(d) = σ′2C ′
s(d).

Substituting σ′2 = (σ2
t + σ2

s)/(1 − ϕ2) and rearranging gives

C ′
s(d) = σ2

t + σ2
sf(d)

σ2
t + σ2

s

,

which completes the specification of the separable spatio-temporal model.

Straightforward calculations show that Var
[︃[︂
W2,1 W2,2

]︂T
|
[︂
W1,1 W1,2

]︂T ]︃
is the

same for both models. Less straightforward but doable calculations for

Var
[︃[︂
W3,1 W3,2

]︂T
|
[︂
W2,1 W2,2 W1,1 W1,2

]︂T ]︃

show that
[︂
W3,1 W3,2

]︂T
is conditionally independent of

[︂
W1,1 W1,2

]︂T
given[︂

W2,1 W2,2

]︂T
. Since the covariance matrix is invariant with respect to shifts in time,

the conditional independence holds any three adjacent time points. The conditional
independence and the above calculations also ensure that the conditional distributions[︂
Wt,1 Wt,2

]︂T
|
[︂
Wt−1,1 Wt−1,2

]︂T
is the same between the two models. With the

marginal joint distribution for the first time point and conditional joint distributions
for subsequent time points identical between the models, the proof is complete.

Lemmas 1 and 2 show that if the staRVe model used a regular Gaussian process
instead of a nearest-neighbour Gaussian process that the spatio-temporal random
effects in the staRVe model are equivalent to spatio-temporal random effects with a
separable covariance function. However the modification the staRVe model uses to
turn a Gaussian process into a nearest neighbour Gaussian process can be applied
identically to the Gaussian process with separable covariance function, including which
locations and times are nearest neighbours of other locations and times. Thus:

Theorem 1. The spatio-temporal random effects of the staRVe model have the same
distributional properties as a spatio-temporal nearest neighbour Gaussian process whose
covariance function is that given in Lemma 2.



Appendix B

An Introduction to the staRVe Package

B.1 Introduction

set . seed (4326)
l ibrary ( staRVe )
#> Loading requ i r ed package : s f
#> Linking to GEOS 3 . 8 . 0 , GDAL 3 . 0 . 4 , PROJ 6 . 3 . 1

The staRVe package implements a spatio-temporal GLMM for analyzing discrete-
time, continuous-space data. Throughout this vignette we will refer to the time unit
as year/yearly, although any other regular unit (daily, monthly, etc.) can be used.
Functionality include maximum likelihood inference, model-based spatial interpolation
and forecasting and hindcasting, and simulations. The sf and raster packages are
tightly integrated into the staRVe package, allowing users to easily incorporate the
staRVe package into their existing workflows.

The spatio-temporal GLMM is structured as a hierarchical model with 3 levels:

1. an observation equation describing the response distribution and covariate effects
2. a first level of random effects describing the value of an unobserved spatio-

temporal process, and
3. a second level of random effects describing how the spatial surface changes as a

whole from year to year.

B.2 Data

The staRVe package expects data to be a sf data.frame with point geometries. See the
sf package. The point geometries can have any valid geographic coordinate reference
system, projected or unprojected, latitude/longitude or eastings/northings, or have

119
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no coordinate reference system if the locations are not geographically referenced. In
addition to the geometry column the sf data.frame should also include a response
variable, the year of the observation, and optionally any covariates desired. The
bird_survey dataset included in the staRVe package is an example of the necessary
data format.

data ( b i rd_survey )
b i rd_survey
#> Simple f e a t u r e c o l l e c t i o n wi th 783 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom
#> 1 4 1994 POINT ( −89.24779 36.82526)
#> 2 2 1994 POINT ( −90.74799 36.59369)
#> 3 8 1994 POINT ( −91.68653 36.86373)
#> 4 6 1994 POINT ( −93.9101 36.66086)
#> 5 15 1994 POINT ( −94.23886 36.56423)
#> 6 2 1994 POINT ( −89.52656 37.30663)
#> 7 17 1994 POINT ( −90.30749 37.25986)
#> 8 7 1994 POINT ( −91.55293 37.37596)
#> 9 13 1994 POINT ( −91.42393 37.90398)
#> 10 10 1994 POINT ( −92.0354 37.7511)

The ‘bird_survey’ data holds the results of a yearly survey of Carolina wren in the
Missouri, USA. The number of individual birds (species: Carolina wren) encountered
is stored in the ‘cnt’ column. The year that each observation was taken in stored in
the ‘year’ column. The location of each observation, taken as the centroid of transect,
is given in the ‘geom’ column.

b i rd_survey<− subset ( b i rd_survey , year >= 2005)
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B.2.1 Creating and Fitting a Model

The ‘prepare_staRVe_model’ function uses a supplied sf data.frame to create a
‘staRVe_model’ object.

b i rd_model<− prepare_staRVe_model(
cnt ~ time ( year ) ,
data = bird_survey ,
d i s t r i b u t i o n = " po i s son "

)

The first argument supplied to ‘prepare_staRVe_model’ is a formula, similar those
used in calls to ‘lm’ or ‘glm’. Formulae used here need to have a special syntax,
described more thoroughly in Section B.8.1. The response distribution must also
be specified, defaulting to a Gaussian distribution. The available response distribu-
tions are described in Section B.8.2 and can also be viewed in your R session with
the command ‘get_staRVe_distributions(“distribution”)’. Optional arguments for
prepare_staRVe_model are described in the help file for the function.

The new staRVe_model object is shown below.

b i rd_model
#>
#> An o b j e c t o f c l a s s " staRVe_parameters "
#> S l o t " covar iance_f unc t i on " :
#> [ 1 ] " e xponen t i a l "
#>
#> S l o t " s p a t i a l_parameters " :
#> $cnt
#> par se f i x e d
#> sd 0.0 0 FALSE
#> range 0.0 0 FALSE
#> nu 0.5 0 TRUE
#>
#>
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#> S l o t " time_parameters " :
#> $cnt
#> par se f i x e d
#> mu 0 NA FALSE
#> ar1 0 NA FALSE
#> sd 0 NA FALSE
#>
#>
#> S l o t " response_d i s t r i b u t i o n " :
#> [ 1 ] " po i s son "
#>
#> S l o t " response_parameters " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#> S l o t " l i n k_f unc t i on " :
#> [ 1 ] " l o g "
#>
#> S l o t " f i x e d_e f f e c t s " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#>
#> Data
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
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#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :
−89.2478 ymax : 40.47128

#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom
#> 422 1 2005 POINT ( −95.23445 40.46577)
#> 417 7 2005 POINT ( −95.03312 40.02546)
#> 402 5 2005 POINT ( −94.66548 39.65398)
#> 415 7 2005 POINT ( −94.50103 39.39702)
#> 416 3 2005 POINT ( −94.14222 40.10026)
#> 392 3 2005 POINT ( −94.1192 37.1404)
#> 420 4 2005 POINT ( −94.10504 38.66985)
#> 384 11 2005 POINT ( −93.9101 36.66086)
#> 391 7 2005 POINT ( −93.85185 37.77059)
#> 397 2 2005 POINT ( −93.84015 38.19498)

s p a t i a l_parameters ( b i rd_model)$cnt [ " range " , " par " ]<− 80
s p a t i a l_parameters ( b i rd_model)$cnt [ " range " , " f i x e d " ]<− TRUE

The individual components of a ‘staRVe_model” object are explained in the following
sections. For now, note the columns labelled ’par’ in the ‘time_parameters’, ‘spa-
tial_parameters’, ‘response_parameters’, and ‘fixed_effects’ slots (the latter two of
which have 0 rows in this particular model). These are the parameter values for the
model. The ‘staRVe_fit’ function finds the maximum likelihood (ML) estimates of
these parameters. The parameter values in the staRVe_model object will be the
starting values used when finding the ML estimate. Details for changing these values
is given in Section B.4.

b i rd_model<− staRVe_f i t (
b i rd_model ,
s i l e n t=T

)

The output of the ‘staRVe_fit’ function is a ‘staRVe_model_fit’ object.
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b i rd_model
#>
#> [ 1 ] " r e l a t i v e convergence (4) "
#>
#> An o b j e c t o f c l a s s " staRVe_parameters "
#> S l o t " covar iance_f unc t i on " :
#> [ 1 ] " e xponen t i a l "
#>
#> S l o t " s p a t i a l_parameters " :
#> $cnt
#> par se f i x e d
#> sd 0.5522385 0.04145799 FALSE
#> range 80.0000000 0.00000000 TRUE
#> nu 0.5000000 0.00000000 TRUE
#>
#>
#> S l o t " time_parameters " :
#> $cnt
#> par se f i x e d
#> mu 2.0066523 0.3639902 FALSE
#> ar1 0.9235844 0.0316828 FALSE
#> sd 0.3816032 0.2212175 FALSE
#>
#>
#> S l o t " response_d i s t r i b u t i o n " :
#> [ 1 ] " po i s son "
#>
#> S l o t " response_parameters " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
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#>
#> S l o t " l i n k_f unc t i on " :
#> [ 1 ] " l o g "
#>
#> S l o t " f i x e d_e f f e c t s " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#>
#> Data
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom
#> 422 1 2005 POINT ( −95.23445 40.46577)
#> 417 7 2005 POINT ( −95.03312 40.02546)
#> 402 5 2005 POINT ( −94.66548 39.65398)
#> 415 7 2005 POINT ( −94.50103 39.39702)
#> 416 3 2005 POINT ( −94.14222 40.10026)
#> 392 3 2005 POINT ( −94.1192 37.1404)
#> 420 4 2005 POINT ( −94.10504 38.66985)
#> 384 11 2005 POINT ( −93.9101 36.66086)
#> 391 7 2005 POINT ( −93.85185 37.77059)
#> 397 2 2005 POINT ( −93.84015 38.19498)

A ‘staRVe_model_fit’ object is a ‘staRVe_model’ object with some extra functionality
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providing tracing information (such as the parameter estimator covariance matrix,
optimizer convergence, among other) and model-based predictions.

B.3 The staRVe Model Object

In this section we detail the various components of the ‘staRVe_model’ and
‘staRVe_model_fit’ classes. The staRVe package makes use of S4 classes. Users who
are unfamiliar with S4 can think of an S4 class as a list, but elements of the list are
accessed or modified using functions instead of the ‘$’ or ‘[[’ syntax.

B.3.1 Parameter Estimates

convergence ( b i rd_model)
#> [ 1 ] " r e l a t i v e convergence (4) "

The convergence message is only available after fitting a model. Some of the con-
vergence messages that indicate successful convergence of the optimization routine
are

• “X-convergence (3)”
• “Relative convergence (4)”
• “Both X- and relative convergence (5)”

Some messages that indicate the optimization routine failed to converge are

• “Singular convergence”
• “false convergence”
• “function evluation limit reached”

See ‘?nlminb’ and the PORT routines documentation for more details.

parameters ( b i rd_model)
#> An o b j e c t o f c l a s s " staRVe_parameters "
#> S l o t " covar iance_f unc t i on " :
#> [ 1 ] " e xponen t i a l "
#>
#> S l o t " s p a t i a l_parameters " :
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#> $cnt
#> par se f i x e d
#> sd 0.5522385 0.04145799 FALSE
#> range 80.0000000 0.00000000 TRUE
#> nu 0.5000000 0.00000000 TRUE
#>
#>
#> S l o t " time_parameters " :
#> $cnt
#> par se f i x e d
#> mu 2.0066523 0.3639902 FALSE
#> ar1 0.9235844 0.0316828 FALSE
#> sd 0.3816032 0.2212175 FALSE
#>
#>
#> S l o t " response_d i s t r i b u t i o n " :
#> [ 1 ] " po i s son "
#>
#> S l o t " response_parameters " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#> S l o t " l i n k_f unc t i on " :
#> [ 1 ] " l o g "
#>
#> S l o t " f i x e d_e f f e c t s " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
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The parameters hold the parameter values/estimates, the standard errors of the
parameter estimates (for a fitted model), and whether the parameters are held fixed in
the model. These quantities are held in the ‘par’, ‘se’, and ‘fixed’ columns, respectively.
The spatial covariance function, response distribution, and link function used are also
part of the parameter descriptions. The parameters are split into groups according to
the different conceptual parts of the model.

covar iance_function ( b i rd_model)
#> [ 1 ] " e xponen t i a l "
s p a t i a l_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> sd 0.5522385 0.04145799 FALSE
#> range 80.0000000 0.00000000 TRUE
#> nu 0.5000000 0.00000000 TRUE

The spatial parameters describe the spatial covariance function for each response
variable. The staRVe package uses a Matérn covariance function with the following
parameters:

• sd: a scale parameter. Higher values correspond to spatial surfaces with larger
peaks and lower valleys. Must be greater than 0.

• range: a range parameter. Typically interpreted as the distance by which two
locations need to be separated to be approximately uncorrelated.

• nu: a smoothness parameter. Higher values correspond to smoother spatial
surfaces. The smoothness parameter is only estimated when the covariance
function is ‘matern’. Must be greater than 0.

time_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> mu 2.006652 0.363990 FALSE
#> ar1 0.923584 0.031683 FALSE
#> sd 0.381603 0.221218 FALSE
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The time parameters describe the temporal structure of the random effects. An
autoregressive order 1 AR(1) model is used:

• mu: A mean parameter. The overall mean or the baseline level of the random
effects.

• ar1: A correlation parameter. Higher values correspond to adjacent years being
more highly correlated. Must be between -1 and +1.

• sd: A scale parameter. Higher values correspond to more year-to-year variation.
Must be greater than 0.

response_d i s t r i b u t i o n ( b i rd_model)
#> [ 1 ] " po i s son "
response_parameters ( b i rd_model)
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )

The response parameters describe e.g. the observation error, overdispersion, etc. The
specific parameters depend on the response distribution used and are described in
Section B.8.2.

f i x e d_effects ( b i rd_model)
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )

The fixed effects describe the effects of covariates, as in a generalized linear model. A
description of including covariates in a staRVe analysis is given in Section B.7.

B.3.2 Random Effect Predictions

time_ef fects ( b i rd_model)
#> s t a r s o b j e c t wi th 2 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median Mean 3rd Qu.

Max .
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#> w 1.8029336 1.9524988 1.9773845 2.0001214 2.0835892
2.1469207

#> se 0.1354262 0.1829776 0.2140345 0.2091062 0.2409867
0.2626483

#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
#> year 1 10 2005 1 NA FALSE NULL
#> v a r i a b l e 1 1 NA NA NA FALSE cnt

The time effects are non-spatial random effects that describe the year-to-year change
of the spatio-temporal random effects. Higher predicted values of the time effects
correspond to years with a higher yearly mean, but the time effects themselves are
not interpretable as yearly means. The main purpose of the time effects is to induce a
specific correlation structure in the spatio-temporal random effects.

random_effects ( b i rd_model)
#> s t a r s o b j e c t wi th 3 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median Mean 3rd Qu.

Max .
#> w 0.0571734 1.2907434 1.8610282 1.8200177 2.3879034

3.6965094
#> se 0.1390956 0.2317796 0.3151041 0.3574349 0.4570183

0.9009029
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t
#> geom 1 63 NA NA WGS 84 TRUE
#> year 1 10 2005 1 NA FALSE
#> v a r i a b l e 1 1 NA NA NA FALSE
#>

va lue s
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#> geom POINT ( −89.2478 36.8253) , . . . ,POINT ( −95.2345
40.4658)

#> year

NULL
#> v a r i a b l e

cnt

These random effects describe a spatial surface that varies from year to year. The
locations of the random effects act like the nodes in a mesh used in the R-INLA package,
or basis functions used in a spline model. The spatial surface at new locations are
predicted using the values of these random effects. Since the same random effect
locations are repeated at every time point they form a data cube, and we hold the
random effect in a stars object.

B.3.3 Data

data_p r e d i c t i o n s ( b i rd_model)
#> An o b j e c t o f c l a s s " staRVe_p r e d i c t i o n s "
#> S l o t " p r e d i c t i o n s " :
#> s t a r s o b j e c t wi th 2 dimensions and 6 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median Mean 3rd

Qu. Max .
#> w 0.0571734 1.430851 1.973692 1.947796

2.531512 3.696509
#> w_se 0.0571734 1.430851 1.973692 1.947796

2.531512 3.696509
#> l i n e a r 0.0571734 1.430851 1.973692 1.947796

2.531512 3.696509
#> l i n e a r_se 0.0571734 1.430851 1.973692 1.947796

2.531512 3.696509
#> response 1.0605700 8.464193 21.215507 41.498566

52.858235 315.683102
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#> response_se 0.0605869 8.513740 24.388735 51.448540
65.259989 416.969502

#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
#> i 1 404 1 1 NA FALSE NULL
#> v a r i a b l e 1 1 NA NA NA FALSE cnt
#>
#> S l o t " l o c a t i o n s " :
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom
#> 422 1 2005 POINT ( −95.23445 40.46577)
#> 417 7 2005 POINT ( −95.03312 40.02546)
#> 402 5 2005 POINT ( −94.66548 39.65398)
#> 415 7 2005 POINT ( −94.50103 39.39702)
#> 416 3 2005 POINT ( −94.14222 40.10026)
#> 392 3 2005 POINT ( −94.1192 37.1404)
#> 420 4 2005 POINT ( −94.10504 38.66985)
#> 384 11 2005 POINT ( −93.9101 36.66086)
#> 391 7 2005 POINT ( −93.85185 37.77059)
#> 397 2 2005 POINT ( −93.84015 38.19498)

The data used in the model holds the data supplied to ‘prepare_staRVe_model’, and
is held in a ‘staRVe_predictions’ object. The ‘predictions’ slot contains a stars object
for the random effect predictions (w), the response mean before applying the link
function (linear), and the response mean after applying the link function (response).
Standard errors are also given for these predictions. The ‘locations’ slot contains an sf
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object with columns for the response variable, any covariates, and the year column.

dat ( b i rd_model)
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom
#> 422 1 2005 POINT ( −95.23445 40.46577)
#> 417 7 2005 POINT ( −95.03312 40.02546)
#> 402 5 2005 POINT ( −94.66548 39.65398)
#> 415 7 2005 POINT ( −94.50103 39.39702)
#> 416 3 2005 POINT ( −94.14222 40.10026)
#> 392 3 2005 POINT ( −94.1192 37.1404)
#> 420 4 2005 POINT ( −94.10504 38.66985)
#> 384 11 2005 POINT ( −93.9101 36.66086)
#> 391 7 2005 POINT ( −93.85185 37.77059)
#> 397 2 2005 POINT ( −93.84015 38.19498)

The ‘locations’ slot can be easily accessed through the ‘dat’ function.

tmp<− cbind (
do . ca l l (cbind , p r e d i c t i o n s ( data_p r e d i c t i o n s ( b i rd_model) )

[ , , 1 ] ) ,
dat ( b i rd_model)

)
colnames (tmp) [ 1 : 6 ]<− c ( "w" , "w_se " , " l i n e a r " , " l i n e a r_se " , "

r e sponse " , " r e sponse_se " )
tmp
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 8 f i e l d s
#> Geometry type : POINT
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#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> w w_se l i n e a r l i n e a r_se response

response_se cnt year
#> 422 1.182316 1.182316 1.182316 1.182316 5.541796

5.026848 1 2005
#> 417 1.712440 1.712440 1.712440 1.712440 13.668978

14.905105 7 2005
#> 402 1.802291 1.802291 1.802291 1.802291 15.911438

17.702799 5 2005
#> 415 2.034726 2.034726 2.034726 2.034726 23.486400

27.274030 7 2005
#> 416 1.331535 1.331535 1.331535 1.331535 7.143872

6.925622 3 2005
#> 392 1.854636 1.854636 1.854636 1.854636 17.378065

19.542885 3 2005
#> 420 1.888163 1.888163 1.888163 1.888163 18.385112

20.810472 4 2005
#> 384 2.340759 2.340759 2.340759 2.340759 38.850897

47.026920 11 2005
#> 391 1.995752 1.995752 1.995752 1.995752 22.010749

25.397791 7 2005
#> 397 1.528492 1.528492 1.528492 1.528492 9.997779

10.378214 2 2005
#> geom
#> 422 POINT ( −95.23445 40.46577)
#> 417 POINT ( −95.03312 40.02546)
#> 402 POINT ( −94.66548 39.65398)
#> 415 POINT ( −94.50103 39.39702)
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#> 416 POINT ( −94.14222 40.10026)
#> 392 POINT ( −94.1192 37.1404)
#> 420 POINT ( −94.10504 38.66985)
#> 384 POINT ( −93.9101 36.66086)
#> 391 POINT ( −93.85185 37.77059)
#> 397 POINT ( −93.84015 38.19498)

The rows of ‘predictions’ are in the same order as the rows of ‘locations’.

B.3.4 Settings

s e t t i n g s ( b i rd_model)
#> An o b j e c t o f c l a s s " staRVe_s e t t i n g s "
#> S l o t " formula " :
#> cnt ~ t ime ( year )
#>
#> S l o t "n_ne ighbours " :
#> [ 1 ] 15
#>
#> S l o t " p_f a r_ne ighbours " :
#> [ 1 ] 0
#>
#> S l o t " d i s t ance_un i t s " :
#> [ 1 ] "km"
#>
#> S l o t "max_d i s t ance " :
#> [ 1 ] In f
#>
#> S l o t " obs_dag_method " :
#> [ 1 ] " s tandard "
#>
#> S l o t " e x t r a s " :
#> l i s t ( )
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The call to ‘prepare_staRVe_model’ can include various options that tweak the
behaviour of the data pre-processing step. Some of these options are stored as slots in
model settings:

• formula: this is the formula supplied to ‘prepare_staRVe_model’
• n_neighbours: the maximum number of parents that each node in the directed

acyclic graph
• p_far_neighbours: the percentage of parents of each node that should be

randomly selected, or the percentage of parents of each node that are not nearest
neighbours

• distance_units: units used for distance calculations. All distances in the
model (for example max_distance, init_range, and graph distances) have these
units.

• max_distance: the maximum distance that a location is allowed to be from
nearest-neighbour parents

• obs_dag_method: either “standard” or “inla.mesh”, depending on how the
directed acyclic graph was constructed

• extras: extra settings that are currently only used if the obs_dag_method is
“inla.mesh”

B.4 Modifying a staRVe Model

s p a t i a l_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> sd 0.5522385 0.04145799 FALSE
#> range 80.0000000 0.00000000 TRUE
#> nu 0.5000000 0.00000000 TRUE

covar iance_function ( b i rd_model)<− " matern32 "

s p a t i a l_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
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#> sd 0.0 0 FALSE
#> range 0.0 0 FALSE
#> nu 1.5 0 TRUE

Changing the covariance function also resets the spatial parameters, and updates the
value of nu to reflect the specific covariance function as a special case of the Matérn
covariance.

s p a t i a l_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> sd 0.0 0 FALSE
#> range 0.0 0 FALSE
#> nu 1.5 0 TRUE
time_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> mu 2.0066523 0.3639902 FALSE
#> ar1 0.9235844 0.0316828 FALSE
#> sd 0.3816032 0.2212175 FALSE

time_parameters ( b i rd_model)$cnt [ c ( "mu" , " ar1 " ) , " par " ]<− c
( 1 0 , 0 . 7 5 )

s p a t i a l_parameters ( b i rd_model)$cnt [ " range " , " par " ]<− 80
s p a t i a l_parameters ( b i rd_model)$cnt [ " range " , " f i x e d " ]<− T

s p a t i a l_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> sd 0.0 0 FALSE
#> range 80.0 0 TRUE
#> nu 1.5 0 TRUE
time_parameters ( b i rd_model)
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#> $cnt
#> par se f i x e d
#> mu 10.0000000 0.3639902 FALSE
#> ar1 0.7500000 0.0316828 FALSE
#> sd 0.3816032 0.2212175 FALSE

You can change the parameter values by accessing the relevant set of parameters,
and changing the ‘par’ column of that data.frame. Parameter values can be set to
any numeric value, but values outside the valid range will be replaced with a default
value when fitting, simulating from, or predicting using the model. For example a ‘sd’
(standard deviation) parameter must be positive; if it is set to a negative value then a
default of +1 will be used instead. You can also change the ‘se’ and ‘fixed’ columns in
the same way.

response_d i s t r i b u t i o n ( b i rd_model)
#> [ 1 ] " po i s son "
response_parameters ( b i rd_model)
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
l ink_function ( b i rd_model)
#> [ 1 ] " l o g "

response_d i s t r i b u t i o n ( b i rd_model)<− " gauss ian "

response_d i s t r i b u t i o n ( b i rd_model)
#> [ 1 ] " gauss ian "
response_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> sd 0 0 FALSE
l ink_function ( b i rd_model)
#> [ 1 ] " i d e n t i t y "
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Changing the response distribution will automatically update the response parameters,
and will change the link function based on the valid range of the response mean for
that distribution. In the example above, the response distribution was changed from a
Poisson distribution with no parameters and log link to a Gaussian distribution with
a standard deviation parameter and identity link.

l ink_function ( b i rd_model)
#> [ 1 ] " i d e n t i t y "

l ink_function ( b i rd_model)<− " l o g i t "

l ink_function ( b i rd_model)
#> [ 1 ] " l o g i t "

The link function can be changed to any implemented link function, even if it may give
out of range predictions for the response distribution used in the model. For example
an identity link is allowed to be used with a Poisson response distribution even though
an identity link may result in predictions with a negative mean. Non-standard link
functions should be used with caution, but are sometimes more desirable depending
on the specific situation.

dat ( b i rd_model)
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom
#> 422 1 2005 POINT ( −95.23445 40.46577)
#> 417 7 2005 POINT ( −95.03312 40.02546)
#> 402 5 2005 POINT ( −94.66548 39.65398)
#> 415 7 2005 POINT ( −94.50103 39.39702)
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#> 416 3 2005 POINT ( −94.14222 40.10026)
#> 392 3 2005 POINT ( −94.1192 37.1404)
#> 420 4 2005 POINT ( −94.10504 38.66985)
#> 384 11 2005 POINT ( −93.9101 36.66086)
#> 391 7 2005 POINT ( −93.85185 37.77059)
#> 397 2 2005 POINT ( −93.84015 38.19498)

dat ( b i rd_model)$ e l e v<− rnorm(nrow( dat ( b i rd_model) ) )

dat ( b i rd_model)
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 3 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom e l e v
#> 422 1 2005 POINT ( −95.23445 40.46577) −1.3221890
#> 417 7 2005 POINT ( −95.03312 40.02546) 0.9720445
#> 402 5 2005 POINT ( −94.66548 39.65398) 0.7193741
#> 415 7 2005 POINT ( −94.50103 39.39702) 0.8373455
#> 416 3 2005 POINT ( −94.14222 40.10026) 0.6659404
#> 392 3 2005 POINT ( −94.1192 37.1404) −0.6571608
#> 420 4 2005 POINT ( −94.10504 38.66985) −0.9045444
#> 384 11 2005 POINT ( −93.9101 36.66086) −0.5842451
#> 391 7 2005 POINT ( −93.85185 37.77059) 1.3389180
#> 397 2 2005 POINT ( −93.84015 38.19498) 1.1219474

You can easily modify the data in a ‘staRVe_model’ object, adding columns for new
variables or rows for additional observations, amending data entries, or removing
observations when cross-validating. Since ‘dat(bird_model)’ is an ‘sf’ object you can
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use spatial operations such as spatial joins or intersections to assist in adding new
data.

formula ( b i rd_model)
#> cnt ~ t ime ( year )
f i x e d_effects ( b i rd_model)
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )

formula ( b i rd_model)<− cnt~ e l e v+time ( year )

formula ( b i rd_model)
#> cnt ~ e l e v + time ( year )
f i x e d_effects ( b i rd_model)
#> $cnt
#> par se f i x e d
#> e l e v 0 NA FALSE

The model formula for including covariates such as the newly created ‘elev’ variable
will be explained later. Any variables used in the new formula must be present in the
data held in the staRVe_model object, so add them before changing the formula. The
fixed effects parameters will be automatically updated to reflect the new formula.

s p a t i a l_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> sd 0.0 0 FALSE
#> range 80.0 0 TRUE
#> nu 1.5 0 TRUE
graph ( b i rd_model)
#> $ p e r s i s t e n t_graph
#>
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#> [ 1 ] "A d i r e c t e d a c y c l i c graph wi th 49 nodes , wi th an
median in−degree o f 15 . "

#> [ 1 ] "The average edge d i s t ance i s 112.2km. "
#>
#> $ t r a n s i e n t_graph
#>
#> [ 1 ] "A d i r e c t e d a c y c l i c graph wi th 404 nodes , wi th an

median in−degree o f 1 . "
#> [ 1 ] "The average edge d i s t ance i s 0km. "
distance_un i t s ( b i rd_model)<− " f t "
s p a t i a l_parameters ( b i rd_model)
#> $cnt
#> par se f i x e d
#> sd 0.0 0 FALSE
#> range 262467.2 0 TRUE
#> nu 1.5 0 TRUE
graph ( b i rd_model)
#> $ p e r s i s t e n t_graph
#>
#> [ 1 ] "A d i r e c t e d a c y c l i c graph wi th 49 nodes , wi th an

median in−degree o f 15 . "
#> [ 1 ] "The average edge d i s t ance i s 368123.15 f t . "
#>
#> $ t r a n s i e n t_graph
#>
#> [ 1 ] "A d i r e c t e d a c y c l i c graph wi th 404 nodes , wi th an

median in−degree o f 1 . "
#> [ 1 ] "The average edge d i s t ance i s 0 f t . "

The distance units used in calculations can be changed to any valid distance unit
provided by the ‘units’ package. Distances are standardized within the model so
changing the distance units should not affect inference or predictions.
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B.5 Predictions

Once a staRVe model has been fit, you can then use the ‘staRVe_predict’ function
to predict the mean value of the response variable at unobserved locations and years.
This allows us to fill in the gaps and produce smooth maps of the response variable
and forecast those maps into the future (or the past). Predictions can be made as
individual locations or as a raster.

B.5.1 Point Predictions

pred_points<− s t_sample (
s t_as_s f c ( s t_bbox ( b i rd_survey ) ) ,
s i z e = 25

)
pred_points<− s t_s f (geom = pred_points , year=rep (2012 :2016 ,

each=5) )
pred_points
#> Simple f e a t u r e c o l l e c t i o n wi th 25 f e a t u r e s and 1 f i e l d
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.1653 ymin : 36.1487 xmax :

−89.41267 ymax : 40.43233
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> year geom
#> 1 2012 POINT ( −93.44969 37.48708)
#> 2 2012 POINT ( −92.76769 36.7374)
#> 3 2012 POINT ( −89.66307 36.49022)
#> 4 2012 POINT ( −89.41267 36.74711)
#> 5 2012 POINT ( −95.1653 40.43233)
#> 6 2013 POINT ( −91.23448 36.59283)
#> 7 2013 POINT ( −94.56619 36.1487)
#> 8 2013 POINT ( −92.09355 38.93433)
#> 9 2013 POINT ( −89.75907 36.99413)
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#> 10 2013 POINT ( −89.79193 37.16898)

We first randomly sample a small number of points for predictions each year, and
store those points as an sf data.frame. The prediction locations can be the same every
year or they can be different, and the years of the predictions can be different from
those in the original data.

s f_pred<− staRVe_predict (
b i rd_model ,
pred_points

)
s f_pred
#> An o b j e c t o f c l a s s " staRVe_p r e d i c t i o n s "
#> S l o t " p r e d i c t i o n s " :
#> s t a r s o b j e c t wi th 2 dimensions and 6 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median Mean 3rd

Qu. Max .
#> w 0.5778759 1.3982734 1.8673959 1.8267373

2.2084364 3.2386205
#> w_se 0.2205018 0.3062865 0.4562022 0.4713493

0.6400974 0.7676515
#> l i n e a r 0.5778759 1.3982734 1.8673959 1.8267373

2.2084364 3.2386205
#> l i n e a r_se 0.2205018 0.3062865 0.4562022 0.4713493

0.6400974 0.7676515
#> response 1.9800204 4.4580421 7.1448397 8.5969414

9.7274763 26.1184036
#> response_se 0.8849767 1.9462821 2.9582826 3.3045932

4.3035790 6.1377897
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
#> i 1 25 1 1 NA FALSE NULL
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#> v a r i a b l e 1 1 NA NA NA FALSE cnt
#>
#> S l o t " l o c a t i o n s " :
#> Simple f e a t u r e c o l l e c t i o n wi th 25 f e a t u r e s and 1 f i e l d
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.1653 ymin : 36.1487 xmax :

−89.41267 ymax : 40.43233
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> year geom
#> 1 2012 POINT ( −93.44969 37.48708)
#> 2 2012 POINT ( −92.76769 36.7374)
#> 3 2012 POINT ( −89.66307 36.49022)
#> 4 2012 POINT ( −89.41267 36.74711)
#> 5 2012 POINT ( −95.1653 40.43233)
#> 6 2013 POINT ( −91.23448 36.59283)
#> 7 2013 POINT ( −94.56619 36.1487)
#> 8 2013 POINT ( −92.09355 38.93433)
#> 9 2013 POINT ( −89.75907 36.99413)
#> 10 2013 POINT ( −89.79193 37.16898)

The output is a staRVe_predictions object with two slots, a ‘locations’ slot contain-
ing an sf data.frame with any covariates used, the year, and the geometry, and a
‘predictions’ slot containing a stars object with attributes for:

• The spatio-temporal random effects w, and their standard errors w_se
• The response mean before applying the link function linear, and their standard

errors linear_se
• the response mean after applying the link function response, and their standard

errors response_se

These predictions can be converted to a single sf data.frame fairly easily.
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tmp<− cbind (
do . ca l l (cbind , p r e d i c t i o n s ( s f_pred ) [ , , 1 ] ) ,
l o c a t i o n s ( s f_pred )

)
colnames (tmp) [ 1 : 6 ]<− c ( "w" , "w_se " , " l i n e a r " , " l i n e a r_se " , "

r e sponse " , " r e sponse_se " )
tmp
#> Simple f e a t u r e c o l l e c t i o n wi th 25 f e a t u r e s and 7 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.1653 ymin : 36.1487 xmax :

−89.41267 ymax : 40.43233
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> w w_se l i n e a r l i n e a r_se response

response_se year
#> 1 1.8955527 0.2865756 1.8955527 0.2865756 6.929549

1.9462821 2012
#> 2 2.2084364 0.3062865 2.2084364 0.3062865 9.528385

2.8522875 2012
#> 3 2.5666439 0.4376121 2.5666439 0.4376121 14.268937

5.9651965 2012
#> 4 2.9497886 0.3030083 2.9497886 0.3030083 19.978828

5.9194043 2012
#> 5 0.5778759 0.4710997 0.5778759 0.4710997 1.980020

0.8849767 2012
#> 6 2.0253056 0.3628616 2.0253056 0.3628616 8.077346

2.8389970 2013
#> 7 1.4405066 0.4669391 1.4405066 0.4669391 4.683191

2.0765062 2013
#> 8 1.3647773 0.3618615 1.3647773 0.3618615 4.171164

1.4622734 2013
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#> 9 2.8740004 0.2918432 2.8740004 0.2918432 18.461819
5.2767688 2013

#> 10 3.2386205 0.2205018 3.2386205 0.2205018 26.118404
5.6904033 2013

#> geom
#> 1 POINT ( −93.44969 37.48708)
#> 2 POINT ( −92.76769 36.7374)
#> 3 POINT ( −89.66307 36.49022)
#> 4 POINT ( −89.41267 36.74711)
#> 5 POINT ( −95.1653 40.43233)
#> 6 POINT ( −91.23448 36.59283)
#> 7 POINT ( −94.56619 36.1487)
#> 8 POINT ( −92.09355 38.93433)
#> 9 POINT ( −89.75907 36.99413)
#> 10 POINT ( −89.79193 37.16898)

B.5.2 Raster Predictions

library ( r a s t e r )
#> Loading requ i r ed package : sp
pred_r a s t e r<− r a s t e r (

b i rd_survey ,
nrow = 5 ,
ncol = 5

)
pred_r a s t e r
#> c l a s s : RasterLayer
#> dimensions : 5 , 5 , 25 (nrow , ncol , n c e l l )
#> r e s o l u t i o n : 1.197331 , 0.8703872 ( x , y )
#> ex t en t : −95.23445 , −89.24779 , 36.11935 , 40.47128 (

xmin , xmax , ymin , ymax)
#> crs : +pro j=l o n g l a t +datum=WGS84 +no_de f s
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To predict a raster for a smooth prediction surface you can supply a raster object from
the ‘raster’ package. The ‘staRVe_predict’ function handles rasters by extracting the
centroid of each raster cell and giving point predictions at those centroids.

staRVe_predict (
b i rd_model ,
pred_r a s t e r

)
#> s t a r s o b j e c t wi th 4 dimensions and 6 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median Mean 3

rd Qu. Max .
#> w 0.1615796 1.2324019 1.8309501 1.7339035

2.2950971 3.3125145
#> w_se 0.2479852 0.3589512 0.4197384 0.4126651

0.4536496 0.6910432
#> l i n e a r 0.1615796 1.2324019 1.8309501 1.7339035

2.2950971 3.3125145
#> l i n e a r_se 0.2479852 0.3589512 0.4197384 0.4126651

0.4536496 0.6910432
#> response 1.3424364 3.7481071 6.7117281 7.6227424

10.4576359 28.4854183
#> response_se 0.6431953 1.5589156 2.5806644 2.7841798

3.7161660 7.6652846
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t

va l u e s x/y
#> x 1 5 −95.2344 1.19733 WGS 84 FALSE

NULL [ x ]
#> y 1 5 40.4713 −0.870387 WGS 84 FALSE

NULL [ y ]
#> year 1 10 2005 1 NA NA

2005 , . . . , 2014
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#> v a r i a b l e 1 1 NA NA NA NA
cnt

The output is a stars object with predictions at each raster location and every year.

pred_r a s t e r [ ]<− 0
pred_r a s t e r [ 3 , 3 ]<− NA
pred_r a s t e r
#> c l a s s : RasterLayer
#> dimensions : 5 , 5 , 25 (nrow , ncol , n c e l l )
#> r e s o l u t i o n : 1.197331 , 0.8703872 ( x , y )
#> ex t en t : −95.23445 , −89.24779 , 36.11935 , 40.47128 (

xmin , xmax , ymin , ymax)
#> crs : +pro j=l o n g l a t +datum=WGS84 +no_de f s
#> source : memory
#> names : l a y e r
#> va lue s : 0 , 0 (min , max)
as . matrix ( pred_r a s t e r )
#> [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]
#> [ 1 , ] 0 0 0 0 0
#> [ 2 , ] 0 0 0 0 0
#> [ 3 , ] 0 0 NA 0 0
#> [ 4 , ] 0 0 0 0 0
#> [ 5 , ] 0 0 0 0 0
pred_out<− staRVe_predict (

b i rd_model ,
pred_r a s t e r

)
pred_out$response [ , , 1 , 1 ]
#> [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ] [ , 5 ]
#> [ 1 , ] 4.881666 8.163354 7.295701 7.391376 8.414994
#> [ 2 , ] 3.682900 5.169961 5.692919 14.923899 11.632753
#> [ 3 , ] 3.548757 5.856864 NA 10.854109 7.546488
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#> [ 4 , ] 5.332430 6.682625 13.862354 10.150499 11.357214
#> [ 5 , ] 7.864344 8.895579 11.347361 14.763676 12.048752

If the supplied raster has values, then predictions will only be made at cells that are
not NA. See ‘?raster::mask’ for details on creating raster with NAs.

staRVe_predict (
b i rd_model ,
pred_r a s t e r ,
time = 2015:2019

)
#> s t a r s o b j e c t wi th 4 dimensions and 6 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median Mean 3

rd Qu. Max . NA' s
#> w 0.5570024 1.3213114 1.7767307 1.7402417

2.1608859 3.215017 5
#> w_se 0.4142825 0.6395741 0.7250052 0.7219626

0.8223665 0.971460 5
#> l i n e a r 0.5570024 1.3213114 1.7767307 1.7402417

2.1608859 3.215017 5
#> l i n e a r_se 0.4142825 0.6395741 0.7250052 0.7219626

0.8223665 0.971460 5
#> response 2.0947640 4.7463053 7.5401192 8.4564559

10.4040055 27.040819 5
#> response_se 1.2097661 3.1631306 4.5959377 5.2098173

6.5891112 13.678664 5
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t

va l u e s x/y
#> x 1 5 −95.2344 1.19733 WGS 84 FALSE

NULL [ x ]
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#> y 1 5 40.4713 −0.870387 WGS 84 FALSE
NULL [ y ]

#> year 1 5 2015 1 NA NA
2015 , . . . , 2019

#> v a r i a b l e 1 1 NA NA NA NA
cnt

For raster predictions an additional ‘time’ option is available to specify which years to
make predictions for, with the default behaviour being to predict every year between
the earliest and latest year in the original dataset.

B.6 Simulation

Any ‘staRVe_model’ object can simulate new realizations of both the random effects
and observations. You can simulated from an already fitted model, or by first defining
a new model from scratch.

sim_model<− prepare_staRVe_model(
cnt~time ( year ) ,
b i rd_survey ,
d i s t r i b u t i o n=" po i s son " ,
f i t=T

)
sim_model<− staRVe_s imulate ( sim_model)
sim_model
#>
#> [ 1 ] " r e l a t i v e convergence (4) "
#>
#> An o b j e c t o f c l a s s " staRVe_parameters "
#> S l o t " covar iance_f unc t i on " :
#> [ 1 ] " e xponen t i a l "
#>
#> S l o t " s p a t i a l_parameters " :
#> $cnt
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#> par se f i x e d
#> sd 0.4892491 NA FALSE
#> range 154.7750060 NA FALSE
#> nu 0.5000000 NA TRUE
#>
#>
#> S l o t " time_parameters " :
#> $cnt
#> par se f i x e d
#> mu 2.238773344 NA FALSE
#> ar1 0.933426418 NA FALSE
#> sd 0.000111516 NA FALSE
#>
#>
#> S l o t " response_d i s t r i b u t i o n " :
#> [ 1 ] " po i s son "
#>
#> S l o t " response_parameters " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#> S l o t " l i n k_f unc t i on " :
#> [ 1 ] " l o g "
#>
#> S l o t " f i x e d_e f f e c t s " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
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#>
#> Data
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> cnt year geom
#> 422 31 2005 POINT ( −95.23445 40.46577)
#> 417 21 2005 POINT ( −95.03312 40.02546)
#> 402 13 2005 POINT ( −94.66548 39.65398)
#> 415 23 2005 POINT ( −94.50103 39.39702)
#> 416 18 2005 POINT ( −94.14222 40.10026)
#> 392 23 2005 POINT ( −94.1192 37.1404)
#> 420 22 2005 POINT ( −94.10504 38.66985)
#> 384 19 2005 POINT ( −93.9101 36.66086)
#> 391 18 2005 POINT ( −93.85185 37.77059)
#> 397 26 2005 POINT ( −93.84015 38.19498)

Passing a fitted staRVe model to ‘staRVe_simulate’ simulates new time effects, new
random effects, and new observations, using the parameter estimates (or whichever pa-
rameter values are current). The output of ‘staRVe_simulate’ is itself a ‘staRVe_model’
object. The parameter values are the same as those of the supplied model, however
all standard errors have been replace with NA. The time effects, random effects, and
observations in the output are the simulated values. No record of the previous values
are stored.

sim_df<− s t_as_s f (
data . frame (

y = 0 ,
t = rep ( 1 : 5 , each=16) ,
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ycoord = rep ( 1 : 4 , 4 ) ,
xcoord = rep ( 1 : 4 , each=4)

) ,
coords = c ( " ycoord " , " xcoord " )

)
sim_df
#> Simple f e a t u r e c o l l e c t i o n wi th 80 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : 1 ymin : 1 xmax : 4 ymax : 4
#> CRS: NA
#> F i r s t 10 f e a t u r e s :
#> y t geometry
#> 1 0 1 POINT (1 1)
#> 2 0 1 POINT (2 1)
#> 3 0 1 POINT (3 1)
#> 4 0 1 POINT (4 1)
#> 5 0 1 POINT (1 2)
#> 6 0 1 POINT (2 2)
#> 7 0 1 POINT (3 2)
#> 8 0 1 POINT (4 2)
#> 9 0 1 POINT (1 3)
#> 10 0 1 POINT (2 3)

sim_model<− prepare_staRVe_model(
y~time ( t ) ,
sim_df ,
d i s t r i b u t i o n = " gauss ian " ,
f i t = F

)

To simulate from a completely new model you first have to create a template sf
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data.frame. The template data.frame needs to contain a column for the response
variable, a column for any covariates desired, a column for the time variable, and a
geometry column. The values in the response variable column are irrelevant however
the covariate values will be the ones used in the model, the time and geometry columns
are also used to set up the spatio-temporal layout of the simulations. The sf data.frame
constructed above consists of a 4x4 grid (16 points) replicated over 5 years.

time_parameters ( sim_model)$y [ c ( "mu" , " ar1 " , " sd " ) , " par " ]<− c
( 1 0 , 0 . 7 , 1 )

s p a t i a l_parameters ( sim_model)$y [ c ( " sd " , " range " ) , " par " ]<− c
( 2 , 0 . 5 )

response_parameters ( sim_model)$y [ " sd " , " par " ]<− 0 .5
sim_model<− staRVe_s imulate ( sim_model)
sim_model
#>
#> An o b j e c t o f c l a s s " staRVe_parameters "
#> S l o t " covar iance_f unc t i on " :
#> [ 1 ] " e xponen t i a l "
#>
#> S l o t " s p a t i a l_parameters " :
#> $y
#> par se f i x e d
#> sd 2.0 NA FALSE
#> range 0.5 NA FALSE
#> nu 0.5 NA TRUE
#>
#>
#> S l o t " time_parameters " :
#> $y
#> par se f i x e d
#> mu 10.0 NA FALSE
#> ar1 0.7 NA FALSE
#> sd 1.0 NA FALSE
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#>
#>
#> S l o t " response_d i s t r i b u t i o n " :
#> [ 1 ] " gauss ian "
#>
#> S l o t " response_parameters " :
#> $y
#> par se f i x e d
#> sd 0.5 NA FALSE
#>
#>
#> S l o t " l i n k_f unc t i on " :
#> [ 1 ] " i d e n t i t y "
#>
#> S l o t " f i x e d_e f f e c t s " :
#> $y
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#>
#> Data
#> Simple f e a t u r e c o l l e c t i o n wi th 80 f e a t u r e s and 2 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : 1 ymin : 1 xmax : 4 ymax : 4
#> CRS: NA
#> F i r s t 10 f e a t u r e s :
#> y t geometry
#> 1 11.518110 1 POINT (1 1)
#> 5 12.138294 1 POINT (1 2)
#> 9 11.746391 1 POINT (1 3)
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#> 13 10.835629 1 POINT (1 4)
#> 2 11.809868 1 POINT (2 1)
#> 6 11.390783 1 POINT (2 2)
#> 10 11.392126 1 POINT (2 3)
#> 14 10.754744 1 POINT (2 4)
#> 3 9.380358 1 POINT (3 1)
#> 7 12.269180 1 POINT (3 2)

Once a staRVe model is created from the template data, the parameter values and other
model options (such as the covariance function, link function, response distribution,
etc.) need to be set to their desired value.

B.6.1 Simulating Random Effects and Observations

time_ef fects ( sim_model)
#> s t a r s o b j e c t wi th 2 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 9.325 Mode : l o g i c a l
#> 1 s t Qu . : 9.730 NA' s :5
#> Median : 9.940
#> Mean :10 .202
#> 3rd Qu. : 1 0 . 4 7 4
#> Max . :11 .543
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
#> t 1 5 1 1 NA FALSE NULL
#> v a r i a b l e 1 1 NA NA NA FALSE y
random_effects ( sim_model)
#> s t a r s o b j e c t wi th 3 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 5.995 Mode : l o g i c a l
#> 1 s t Qu . : 9.211 NA' s :80
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#> Median :10 .028
#> Mean :10 .055
#> 3rd Qu. : 1 1 . 2 9 5
#> Max . :12 .492
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t

va l u e s
#> geom 1 16 NA NA NA TRUE POINT (1 1)

, . . . ,POINT (4 4)
#> t 1 5 1 1 NA FALSE

NULL
#> v a r i a b l e 1 1 NA NA NA FALSE

y
head ( dat ( sim_model)$y )
#> [ , 1 ]
#> [ 1 , ] 11.51811
#> [ 2 , ] 12.13829
#> [ 3 , ] 11.74639
#> [ 4 , ] 10.83563
#> [ 5 , ] 11.80987
#> [ 6 , ] 11.39078
sim_model<− staRVe_s imulate (

sim_model
)
time_ef fects ( sim_model)
#> s t a r s o b j e c t wi th 2 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 8.759 Mode : l o g i c a l
#> 1 s t Qu . : 9.123 NA' s :5
#> Median : 9.194
#> Mean : 9.505
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#> 3rd Qu . : 9.948
#> Max . :10 .503
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
#> t 1 5 1 1 NA FALSE NULL
#> v a r i a b l e 1 1 NA NA NA FALSE y
random_effects ( sim_model)
#> s t a r s o b j e c t wi th 3 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 6.224 Mode : l o g i c a l
#> 1 s t Qu . : 8.488 NA' s :80
#> Median : 9.472
#> Mean : 9.482
#> 3rd Qu. : 1 0 . 4 7 5
#> Max . :12 .777
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t

va l u e s
#> geom 1 16 NA NA NA TRUE POINT (1 1)

, . . . ,POINT (4 4)
#> t 1 5 1 1 NA FALSE

NULL
#> v a r i a b l e 1 1 NA NA NA FALSE

y
head ( dat ( sim_model)$y )
#> [ , 1 ]
#> [ 1 , ] 6.820019
#> [ 2 , ] 9.606529
#> [ 3 , ] 10.048682
#> [ 4 , ] 8.637561
#> [ 5 , ] 8.360983
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#> [ 6 , ] 9.829688

The default behaviour for simulations is to simulate new time effects, new random
effects, and new data. We show only the first few of each to show their difference
before and after simulations.

B.6.2 Simulating Only Observations

time_ef fects ( sim_model)
#> s t a r s o b j e c t wi th 2 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 8.759 Mode : l o g i c a l
#> 1 s t Qu . : 9.123 NA' s :5
#> Median : 9.194
#> Mean : 9.505
#> 3rd Qu . : 9.948
#> Max . :10 .503
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
#> t 1 5 1 1 NA FALSE NULL
#> v a r i a b l e 1 1 NA NA NA FALSE y
random_effects ( sim_model)
#> s t a r s o b j e c t wi th 3 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 6.224 Mode : l o g i c a l
#> 1 s t Qu . : 8.488 NA' s :80
#> Median : 9.472
#> Mean : 9.482
#> 3rd Qu. : 1 0 . 4 7 5
#> Max . :12 .777
#> dimension ( s ) :
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#> from to o f f s e t d e l t a r e f s y s po in t
va l u e s

#> geom 1 16 NA NA NA TRUE POINT (1 1)
, . . . ,POINT (4 4)

#> t 1 5 1 1 NA FALSE
NULL

#> v a r i a b l e 1 1 NA NA NA FALSE
y

head ( dat ( sim_model)$y )
#> [ , 1 ]
#> [ 1 , ] 6.820019
#> [ 2 , ] 9.606529
#> [ 3 , ] 10.048682
#> [ 4 , ] 8.637561
#> [ 5 , ] 8.360983
#> [ 6 , ] 9.829688
sim_model<− staRVe_s imulate (

sim_model ,
c o n d i t i o n a l=T

)
time_ef fects ( sim_model)
#> s t a r s o b j e c t wi th 2 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 8.759 Mode : l o g i c a l
#> 1 s t Qu . : 9.123 NA' s :5
#> Median : 9.194
#> Mean : 9.505
#> 3rd Qu . : 9.948
#> Max . :10 .503
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
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#> t 1 5 1 1 NA FALSE NULL
#> v a r i a b l e 1 1 NA NA NA FALSE y
random_effects ( sim_model)
#> s t a r s o b j e c t wi th 3 dimensions and 2 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> w se
#> Min . : 6.224 Mode : l o g i c a l
#> 1 s t Qu . : 8.488 NA' s :80
#> Median : 9.472
#> Mean : 9.482
#> 3rd Qu. : 1 0 . 4 7 5
#> Max . :12 .777
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t

va l u e s
#> geom 1 16 NA NA NA TRUE POINT (1 1)

, . . . ,POINT (4 4)
#> t 1 5 1 1 NA FALSE

NULL
#> v a r i a b l e 1 1 NA NA NA FALSE

y
head ( dat ( sim_model)$y )
#> [ , 1 ]
#> [ 1 , ] 6.423825
#> [ 2 , ] 9.059653
#> [ 3 , ] 10.961186
#> [ 4 , ] 8.742246
#> [ 5 , ] 8.405299
#> [ 6 , ] 9.495317

Simulations of only new data, conditional on the existing time effects and random
effects, can be made by giving the ‘conditional=T’ option. Note that the time effects
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and random effects are the same before and after simulation, but that the response
variable is different.

B.7 Including Covariates

B.7.1 Creating a Model

bi rd_survey$ e l e v<− rnorm(
nrow( b i rd_survey )

)
b i rd_survey$temp<− rnorm(

nrow( b i rd_survey )
)

First we add two dummy covariates ‘elev’ and ‘temp’ to our original data.

b i rd_model<− prepare_staRVe_model(
cnt ~ e l e v+temp+time ( year ) ,
b i rd_survey ,
d i s t r i b u t i o n = " po i s son " ,
f i t = T

)

f i x e d_effects ( b i rd_model)
#> $cnt
#> par se f i x e d
#> e l e v 0.03690417 0.02610423 FALSE
#> temp 0.03256844 0.02531721 FALSE
dat ( b i rd_model)
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 4 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
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#> F i r s t 10 f e a t u r e s :
#> e l e v temp cnt year

geom
#> 422 −1.70221026 1.0958843 1 2005 POINT ( −95.23445

40.46577)
#> 417 1.34828796 2.1010647 7 2005 POINT ( −95.03312

40.02546)
#> 402 0.39185501 0.7861318 5 2005 POINT ( −94.66548

39.65398)
#> 415 −0.89223203 0.9132973 7 2005 POINT ( −94.50103

39.39702)
#> 416 0.34172737 0.4733139 3 2005 POINT ( −94.14222

40.10026)
#> 392 −2.27217139 0.8688053 3 2005 POINT ( −94.1192

37.1404)
#> 420 −0.34456416 −1.0913277 4 2005 POINT ( −94.10504

38.66985)
#> 384 0.70189276 0.5817127 11 2005 POINT ( −93.9101

36.66086)
#> 391 −0.08886507 −0.1119984 7 2005 POINT ( −93.85185

37.77059)
#> 397 −0.06566962 −0.1125152 2 2005 POINT ( −93.84015

38.19498)

The estimates for the covariate effects are given in the fixed effects parameters. Offset
terms can be included by setting ‘fixed=TRUE’ for that covariate in the fixed effects
parameters. All covariates that are named in the model formula are also present in
the data stored in the staRVe_model object.

b i rd_model<− prepare_staRVe_model(
cnt ~ I ( abs ( temp) )+poly ( e lev , 2 ) + time ( year ) ,
b i rd_survey ,
d i s t r i b u t i o n = " po i s son " ,
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f i t = T
)

More complex covariate effects such as interaction terms, transformations, and poly-
nomial functions can be included in the model formula.

f i x e d_effects ( b i rd_model)
#> $cnt
#> par se f i x e d
#> I ( abs ( temp ) ) 0.004984383 0.04346838 FALSE
#> po ly ( e l ev , 2)1 0.718185714 0.50600637 FALSE
#> po ly ( e l ev , 2)2 −0.295383191 0.49307979 FALSE
dat ( b i rd_model)
#> Simple f e a t u r e c o l l e c t i o n wi th 404 f e a t u r e s and 4 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.23445 ymin : 36.11935 xmax :

−89.2478 ymax : 40.47128
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> temp e l e v cnt year

geom
#> 422 1.0958843 −1.70221026 1 2005 POINT ( −95.23445

40.46577)
#> 417 2.1010647 1.34828796 7 2005 POINT ( −95.03312

40.02546)
#> 402 0.7861318 0.39185501 5 2005 POINT ( −94.66548

39.65398)
#> 415 0.9132973 −0.89223203 7 2005 POINT ( −94.50103

39.39702)
#> 416 0.4733139 0.34172737 3 2005 POINT ( −94.14222

40.10026)
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#> 392 0.8688053 −2.27217139 3 2005 POINT ( −94.1192
37.1404)

#> 420 −1.0913277 −0.34456416 4 2005 POINT ( −94.10504
38.66985)

#> 384 0.5817127 0.70189276 11 2005 POINT ( −93.9101
36.66086)

#> 391 −0.1119984 −0.08886507 7 2005 POINT ( −93.85185
37.77059)

#> 397 −0.1125152 −0.06566962 2 2005 POINT ( −93.84015
38.19498)

B.7.2 Point Predictions

bi rd_model<− prepare_staRVe_model(
cnt ~ e l e v+temp + time ( year ) ,
b i rd_survey ,
d i s t r i b u t i o n = " po i s son " ,
f i t = T

)

pred_points$ e l e v<− rnorm(nrow( pred_points ) )
pred_points$temp<− rnorm(nrow( pred_points ) )
pred_points
#> Simple f e a t u r e c o l l e c t i o n wi th 25 f e a t u r e s and 3 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.1653 ymin : 36.1487 xmax :

−89.41267 ymax : 40.43233
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> year geom e l e v temp
#> 1 2012 POINT ( −93.44969 37.48708) −1.3105843 −1.6585110
#> 2 2012 POINT ( −92.76769 36.7374) −0.3320745 −0.6631657
#> 3 2012 POINT ( −89.66307 36.49022) 2.0318708 0.4648332
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#> 4 2012 POINT ( −89.41267 36.74711) 0.9529447 −2.2180651
#> 5 2012 POINT ( −95.1653 40.43233) −1.1302198 −2.1743246
#> 6 2013 POINT ( −91.23448 36.59283) −0.4650467 0.9670220
#> 7 2013 POINT ( −94.56619 36.1487) 1.3268975 −0.3559770
#> 8 2013 POINT ( −92.09355 38.93433) −0.5159771 0.6772537
#> 9 2013 POINT ( −89.75907 36.99413) −1.6592957 0.1270728
#> 10 2013 POINT ( −89.79193 37.16898) 1.0610343 1.1181849

The code above creates an sf data.frame with covariate values at all prediction locations,
in every year for which we want predictions. More locations or years can be supplied,
only the locations/years that are needed will be used.

staRVe_predict (
b i rd_model ,
pred_points

)
#> An o b j e c t o f c l a s s " staRVe_p r e d i c t i o n s "
#> S l o t " p r e d i c t i o n s " :
#> s t a r s o b j e c t wi th 2 dimensions and 6 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median Mean 3

rd Qu. Max .
#> w 0.5619715 1.4077200 1.8651499 1.8303675

2.2344000 3.2606559
#> w_se 0.2010697 0.2856713 0.4525358 0.4867302

0.7098073 0.8741451
#> l i n e a r 0.4494473 1.4170646 1.7876059 1.8217022

2.2005468 3.3362301
#> l i n e a r_se 0.2049178 0.2887172 0.4531565 0.4884664

0.7099041 0.8743883
#> response 1.7621981 4.7266634 6.4909149 8.7339936

11.0950042 28.7031925
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#> response_se 0.8284835 1.9753874 3.1227205 3.3958283
4.6894352 7.3238130

#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t va l u e s
#> i 1 25 1 1 NA FALSE NULL
#> v a r i a b l e 1 1 NA NA NA FALSE cnt
#>
#> S l o t " l o c a t i o n s " :
#> Simple f e a t u r e c o l l e c t i o n wi th 25 f e a t u r e s and 3 f i e l d s
#> Geometry type : POINT
#> Dimension : XY
#> Bounding box : xmin : −95.1653 ymin : 36.1487 xmax :

−89.41267 ymax : 40.43233
#> Geodet ic CRS: WGS 84
#> F i r s t 10 f e a t u r e s :
#> year geom e l e v temp
#> 1 2012 POINT ( −93.44969 37.48708) −1.3105843 −1.6585110
#> 2 2012 POINT ( −92.76769 36.7374) −0.3320745 −0.6631657
#> 3 2012 POINT ( −89.66307 36.49022) 2.0318708 0.4648332
#> 4 2012 POINT ( −89.41267 36.74711) 0.9529447 −2.2180651
#> 5 2012 POINT ( −95.1653 40.43233) −1.1302198 −2.1743246
#> 6 2013 POINT ( −91.23448 36.59283) −0.4650467 0.9670220
#> 7 2013 POINT ( −94.56619 36.1487) 1.3268975 −0.3559770
#> 8 2013 POINT ( −92.09355 38.93433) −0.5159771 0.6772537
#> 9 2013 POINT ( −89.75907 36.99413) −1.6592957 0.1270728
#> 10 2013 POINT ( −89.79193 37.16898) 1.0610343 1.1181849

Covariates are given to the ‘staRVe_predict’ function as a third argument, separately
from the sf data.frame holding the observation locations. The output is the same
as predictions without covariates, but the covariates used are also included in the
resulting sf data.frame.

B.7.3 Raster Predictions
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pred_r a s t e r<− r a s t e r (
b i rd_survey ,
nrow = 5 ,
ncol = 5

)
r a s t e r_e l e v<− s tack ( lapply (min( b i rd_survey$year ) : 2019 ,

function ( year ) {
band<− pred_r a s t e r
band [ ]<− rnorm( n c e l l ( band ) )
names( band )<− paste0 ( "T" , year )
return ( band )

}) )
r a s t e r_temp<− s tack ( lapply (min( b i rd_survey$year ) : 2019 ,

function ( year ) {
band<− pred_r a s t e r
band [ ]<− rnorm( n c e l l ( band ) )
names( band )<− paste0 ( "T" , year )
return ( band )

}) )
pred_covar<− l i s t (

e l e v = r a s t e r_e lev ,
temp = r a s t e r_temp

)
pred_covar
#> $ e l e v
#> c l a s s : RasterStack
#> dimensions : 5 , 5 , 25 , 15 (nrow , ncol , n c e l l , n l ay e r s )
#> r e s o l u t i o n : 1.197331 , 0.8703872 ( x , y )
#> ex t en t : −95.23445 , −89.24779 , 36.11935 , 40.47128 (

xmin , xmax , ymin , ymax)
#> crs : +pro j=l o n g l a t +datum=WGS84 +no_de f s
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#> names : T2005 , T2006 , T2007 , T2008 ,
T2009 , T2010 , T2011 , T2012 , T2013 ,
T2014 , T2015 , T2016 , T2017 , T2018 ,
T2019

#> min va l u e s : −2.015260 , −1.155031 , −3.418857 , −2.062440 ,
−1.518286 , −1.957272 , −2.600349 , −1.742927 , −2.254533 ,
−1.757465 , −2.662935 , −1.916323 , −1.714059 , −1.912300 ,
−2.004042

#> max va l u e s : 1.895613 , 1.574167 , 1.537536 , 1.605621 ,
1.845269 , 1.249079 , 1.440349 , 1.403905 , 1.843411 ,
2.197493 , 1.855871 , 2.438909 , 1.775691 , 2.286333 ,
2.742359

#>
#>
#> $temp
#> c l a s s : RasterStack
#> dimensions : 5 , 5 , 25 , 15 (nrow , ncol , n c e l l , n l ay e r s )
#> r e s o l u t i o n : 1.197331 , 0.8703872 ( x , y )
#> ex t en t : −95.23445 , −89.24779 , 36.11935 , 40.47128 (

xmin , xmax , ymin , ymax)
#> crs : +pro j=l o n g l a t +datum=WGS84 +no_de f s
#> names : T2005 , T2006 , T2007 , T2008 ,

T2009 , T2010 , T2011 , T2012 , T2013 ,
T2014 , T2015 , T2016 , T2017 , T2018 ,
T2019

#> min va l u e s : −2.211060 , −2.030086 , −2.222009 , −2.118209 ,
−1.847952 , −2.085452 , −2.822138 , −3.701192 , −1.474486 ,
−2.303146 , −2.639094 , −2.298241 , −1.420547 , −1.350512 ,
−2.093928
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#> max va l u e s : 2.219493 , 1.490701 , 2.165628 , 2.040302 ,
1.842104 , 1.729857 , 1.938088 , 1.379020 , 2.884803 ,
2.630402 , 1.032724 , 1.767252 , 1.460482 , 2.863586 ,
2.086351

Covariates for raster predictions need to be supplied in a specific format: a list with
a named element for each covariate. The elements need to have the same name as
the covariate. Each covariate element needs to be a raster with the same geometry
(dimensions, resolution, extent, coordinate reference system) as the raster template
for the prediction locations. Each layer of the covariate raster must correspond to a
single year and be named “T####” where #### is replaced with the year. The
leading “T” in each layer name is necessary, and needs to specifically be a capitol “T”.
For example, the layer “T2005” gives the covariate values for the year 2005. Extra
years of covariate values can be supplied, the ‘staRVe_predict’ function will only use
the years for which predictions are made.

staRVe_predict (
b i rd_model ,
pred_r a s t e r ,
pred_covar ,
time = min( b i rd_survey$year ) :2019

)
#> s t a r s o b j e c t wi th 4 dimensions and 8 a t t r i b u t e s
#> a t t r i b u t e ( s ) :
#> Min . 1 s t Qu. Median

Mean 3rd Qu.
#> w −0.04336930 1.2066847 1.832483172

1.73390918 2.2751983
#> w_se 0.23212793 0.3772480 0.451334089

0.53356075 0.6358433
#> l i n e a r −0.04674833 1.2116741 1.837925553

1.73221998 2.2792946
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#> l i n e a r_se 0.23233494 0.3781776 0.453049988
0.53501874 0.6363145

#> response 1.11659634 4.0766160 7.268342018
8.12886303 11.0473781

#> response_se 0.60197806 1.8885849 3.203611374
3.77791871 4.8931177

#> e l e v −3.41885710 −0.5830220 −0.006813093
−0.01892806 0.6426037

#> temp −3.70119214 −0.7568049 −0.005274774
−0.03041850 0.6593663

#> Max.
#> w 3.339845
#> w_se 1.178643
#> l i n e a r 3.323359
#> l i n e a r_se 1.180056
#> response 29.652344
#> response_se 16.176172
#> e l e v 2.742359
#> temp 2.884803
#> dimension ( s ) :
#> from to o f f s e t d e l t a r e f s y s po in t

va l u e s x/y
#> x 1 5 −95.2344 1.19733 WGS 84 FALSE

NULL [ x ]
#> y 1 5 40.4713 −0.870387 WGS 84 FALSE

NULL [ y ]
#> year 1 15 2005 1 NA NA

2005 , . . . , 2019
#> v a r i a b l e 1 1 NA NA NA NA

cnt

Covariates are supplied to ‘staRVe_predict’ the same way as they were for point
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predictions. The raster list for the covariates is supplied as a third argument. The
output is the same as raster predictions without covariates, but the resulting raster
for each year has an additional layer containing the covariate values.

B.8 Options

B.8.1 Formula Syntax

A model formula specifies the response variable, the covariate effects, the temporal
structure, and the spatial structure. Put together a model formula should have this
general format:

response ~ c o v a r i a t e s + sample . s i z e ( . . . ) + time ( . . . ) + space
( . . . )

Some options to the individual terms in the above model formula can be specified, as
described below.

• covariates: Covariate effects can be specified as they would be in a typical call
to ‘lm’ or ‘glm’. Can be omitted from the formula if no covariates effects are
desired.

• sample.size(. . . ): Used only for specific response distributions, for example
the binomial distribution. A single variable name should be supplied. Can be
omitted from the formula, and sample sizes are assumed to be equal to 1 for all
observations.

• time(. . . ,type=): The name of the column holding the time information should
be given. Valid options for the type option are:

– independent: Each year in the model is assumed to be independent. The
‘ar1’ time parameter is fixed at 0.

– ar1 (default): An autoregressive order 1 model is used. The ‘ar1’ time
parameter is freely estimated.

– rw: A random walk is used. The ‘ar1’ time parameter is fixed at 1.
• space(. . . covariance=,nu=): The name of the covariance function should

be given to the covariance argument. If using the ‘matern’ covariance function,
supplying a value to the nu option fixes the smoothness parameter nu at that
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value. Can be omitted from the formula, in which case the default exponential
covariance function will be used.

B.8.2 Response Distribution

get_staRVe_d i s t r i b u t i o n s ( " d i s t r i b u t i o n " )
#> d i s t r i b u t i o n d i s t r i b u t i o n

d i s t r i b u t i o n
#> " gauss ian " " po i s son " " nega t i v e

b inomia l "
#> d i s t r i b u t i o n d i s t r i b u t i o n

d i s t r i b u t i o n
#> " b e r n o u l l i " "gamma" "

lognormal "
#> d i s t r i b u t i o n d i s t r i b u t i o n

d i s t r i b u t i o n
#> " binomia l " " atLeastOneBinomial " "

compois "
#> d i s t r i b u t i o n
#> " tweed ie "

• gaussian: Used for continuous data. Random effects and covariates determine
the mean.

– Parameters
∗ sd: standard deviation of response variable.

– Default link: identity
• gamma: Models strictly positive continuous data. Random effects and covariates

determine the mean.
– Parameters

∗ sd: standard deviation of response variable.
– Default link: log

• lognormal: Models strictly positive continuous data. Random effects and
covariates determine the mean.

– Parameters



175

∗ sd: standard deviation of the log of response variable.
– Default link: log

• tweedie: Models non-negative continuous data with a point mass at zero.
Random effects and covariates determine the mean. The relationship between
the mean and variance is given by V ar(Y ) = σ2µp.

– Parameters
∗ dispersion: The parameter σ2 above.
∗ power: The parameter p above.

– Default link: log
• poisson: Models non-negative integer data. Random effects and covariates

determine the intensity/mean.
– Parameters

∗ N/A
– Default link: log

• negative binomial: Model non-negative integer data with possible overdisper-
sion. Random effects and covariates determine the mean.

– Parameters
∗ overdispersion: Values >1 correspond to overdispersion.

– Default link: log
• compois: Models non-negative integer data with possible over- or underdisper-

sion. Random effects and covariates determine the mean.
– Parameters

∗ dispersion: Values <1 correspond to underdispersion. Values >1
correspond to overdispersion

– Default link: log
• bernoulli: Models binary data. Random effects and covariates determine the

probability of success.
– Parameters

∗ N/A
– Default link: logit

• binomial: Models the number of successes in k IID Bernoulli trials. Random
effects and covariates determine the probability of success in a single trial. The
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number of trials k is specified through the ‘sample.size’ term in the model
formula.

– Parameters
∗ N/A

– Default link: logit
• atLeastOneBinomial: Models the probability of observing at least one success

in k IID Bernoulli trials. Random effects and covariates determine the probability
of success in a single trial. The number of trials k is specified through the
‘sample.size’ term in the model formula.

– Parameters
∗ N/A

– Default link: logit

B.8.3 Link Functions

get_staRVe_d i s t r i b u t i o n s ( " l i n k " )
#> l i n k l i n k l i n k
#> " i d e n t i t y " " l o g " " l o g i t "

• identity
– Range (-∞,∞)

• log:
– Range [0,∞)

• logit:
– Range [0,1]

B.8.4 Spatial Covariance Function

All covariance functions currently available are special cases of the Matérn covariance
function.

get_staRVe_d i s t r i b u t i o n s ( " covar iance " )
#> covar iance covar iance covar iance covar iance
#> " exponen t i a l " " gauss ian " " matern " " matern32 "
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• exponential
– Smoothness parameter nu = 0.5

• matern32
– Smoothness parameter nu = 1.5

• gaussian
– Limit of Matérn covariance function as nu→ ∞

• matern
– General covariance function with a freely estimated smoothness parameter

nu. Evaluation is very slow compared to the named special cases.

B.8.5 Holding Parameters Fixed

parameters ( b i rd_model)
#> An o b j e c t o f c l a s s " staRVe_parameters "
#> S l o t " covar iance_f unc t i on " :
#> [ 1 ] " e xponen t i a l "
#>
#> S l o t " s p a t i a l_parameters " :
#> $cnt
#> par se f i x e d
#> sd 0.5522385 0.04145799 FALSE
#> range 80.0000000 0.00000000 TRUE
#> nu 0.5000000 0.00000000 TRUE
#>
#>
#> S l o t " time_parameters " :
#> $cnt
#> par se f i x e d
#> mu 2.0066523 0.3639902 FALSE
#> ar1 0.9235844 0.0316828 FALSE
#> sd 0.3816032 0.2212175 FALSE
#>
#>
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#> S l o t " response_d i s t r i b u t i o n " :
#> [ 1 ] " po i s son "
#>
#> S l o t " response_parameters " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#> S l o t " l i n k_f unc t i on " :
#> [ 1 ] " l o g "
#>
#> S l o t " f i x e d_e f f e c t s " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )

time_parameters ( b i rd_model)$cnt [ " ar1 " , " par " ]<− 0
time_parameters ( b i rd_model)$cnt [ " ar1 " , " f i x e d " ]<− T
bird_model<− staRVe_f i t ( b i rd_model , s i l e n t=T)

parameters ( b i rd_model)
#> An o b j e c t o f c l a s s " staRVe_parameters "
#> S l o t " covar iance_f unc t i on " :
#> [ 1 ] " e xponen t i a l "
#>
#> S l o t " s p a t i a l_parameters " :
#> $cnt
#> par se f i x e d
#> sd 1.112652 0.05371455 FALSE
#> range 80.000000 0.00000000 TRUE
#> nu 0.500000 0.00000000 TRUE
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#>
#>
#> S l o t " time_parameters " :
#> $cnt
#> par se f i x e d
#> mu 2.019741 e+00 0.08374696 FALSE
#> ar1 0.000000 e+00 0.00000000 TRUE
#> sd 5.548022 e−05 0.07227968 FALSE
#>
#>
#> S l o t " response_d i s t r i b u t i o n " :
#> [ 1 ] " po i s son "
#>
#> S l o t " response_parameters " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )
#>
#>
#> S l o t " l i n k_f unc t i on " :
#> [ 1 ] " l o g "
#>
#> S l o t " f i x e d_e f f e c t s " :
#> $cnt
#> [ 1 ] par se f i x e d
#> <0 rows> ( or 0− l e n g t h row . names )

You can hold parameters fixed during model fitting. Instead of being estimated the
parameter value held in the staRVe model will be assumed “true”. In the example
above the ar1 parameter is held fixed at 0, setting up each year in the model to be
independent of the other years. You can set as many parameters as you want to be
held fixed, however the random effects cannot be fixed to particular values. A model
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with all parameters held constant can still be fitted with the ‘staRVe_fit’ function,
in which case the time effects and random effects will be estimated along with their
standard errors.
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