ASSESSMENT OF COVID-19 BARRIER EFFECTIVENESS USING PROCESS SAFETY TECHNIQUES

by

Lauren Elizabeth Turner

Submitted in partial fulfilment of the requirements for the degree of Master of Applied Science

at

Dalhousie University Halifax, Nova Scotia May 2022

Dalhousie University is located in Mi'kma'ki, the ancestral and unceded territory of the Mi'kmaq. We are all Treaty people.

© Copyright by Lauren Elizabeth Turner, 2022

Dedicated to

All the frontline workers of the COVID-19 pandemic.

|--|

List of Tables	vii
List of Figures	viii
Abstract	xii
List of Abbreviations Used	xiii
Acknowledgements	XV
Chapter 1 Introduction	
1.1 COVID-19 Pandemic	
1.2 Scope of Work	
1.3 Motivation	
1.4 Objectives	
1.5 Hierarchy of Controls	
1.6 Bow Tie Diagrams	7
1.7 Human Behaviour and Human an	d Organization Factors8
1.8 Bow Tie ISD Protocol	
1.9 Industrial Involvement in Researc	h 11
1.10 Organization of Thesis Document	
Chapter 2 Background	
2.1 Application of bow ties in healthc	are14
2.1.1 Patient Safety in ICU	

2.1	1.2 Surgical Instrument Retention	15
2.1	1.3 Anaesthesia	16
2.1	1.4 Primary Healthcare	16
2.1	1.5 Medication	17
2.1	1.6 COVID-19 Pandemic	18
2.2	Application of Bow Ties as Communication Tools	19
Chapter	3 IWK Bow Tie	21
3.1	Bow Tie Scope	21
3.2	Bow Tie Development	21
3.3	Barrier Evaluation	24
3.3	B.1 Barrier Categorization with Respect to the Hierarchy of Controls	24
3.3	3.2 Evaluation of Degradation Factors	28
3.3	3.3 Evaluation of Degradation Factor Controls	34
3.4	Results and Discussion	38
3.5	Recommendations	40
Chapter	4 BCFSC Bow Tie	42
4.1	Bow Tie Scope	42
4.2	Bow Tie Development	42
4.3	Barrier Evaluation	44
4.3	B.1 Barrier Categorization with Respect to the Hierarchy of Controls	45

4.3.2 Evaluation of Degradation Factors
4.3.3 Evaluation of Degradation Factor Controls
4.4 Results and Discussion
4.5 Recommendations
Chapter 5 Chemical Process Industry Barriers
5.1 Scope 64
5.2 Barrier Identification and Evaluation
5.2.1 Barrier Categorization with Respect to the Hierarchy of Controls
5.2.2 Evaluation of Degradation Factors
5.2.3 Evaluation of degradation factor controls
5.3 Results and Discussion
Chapter 6 Bow Tie Communication Tools
6.1 Communication Tool Objectives
6.2 Communication Tool Development
Chapter 7 Conclusions and Future Work
References
Appendix A IWK Health Centre Bow Tie Diagram
Appendix B BCFSC Wood Pellet Facility Bow Tie Diagram
Appendix C Capture-Create-Channels Matrix
Appendix D Communication Tool for IWK Executives/Leadership

Appendix E Communicatio	n Tool for IWK	Frontline Workers		65	,
-------------------------	----------------	-------------------	--	----	---

List of Tables

Table 1-1. Common HOF categories and corresponding guidewords/phrases (adapted from CCPS/EI, 2018) 9
Table 3-1. IWK Health Centre COVID-19 barriers (categorized with respect to the HOC)
Table 3-2. IWK Health Centre COVID-19 barriers and corresponding degradation factors (categorized with respect to the HOF categories)
Table 3-3. IWK Health Centre COVID-19 barrier degradation factors and corresponding degradation factor controls (categorized with respect to the HOC) 35
Table 3-4. Additional COVID-19 barriers/degradation factor controls that could be considered by the IWK Health Centre (categorized with respect to the HOC)
Table 4-1. BCFSC wood pellet facility COVID-19 barriers (categorized with respect to the HOC) 45
Table 4-2. BCFSC wood pellet facility COVID-19 barriers and corresponding degradation factors (categorized with respect to the HOF categories)
Table 4-3. BCFSC wood pellet facility COVID-19 barrier degradation factors and corresponding degradation factor controls (categorized with respect to the HOC) 55
Table 4-4. Additional COVID-19 barriers/degradation factor controls that could be considered by the BCFSC wood pellet facility (categorized with respect to the HOC) 63
Table 5-1. Sarnia refinery COVID-19 barriers (categorized with respect to the HOC) 66
Table 5-2. Sarnia refinery COVID-19 barriers and corresponding degradation factors (categorized with respect to the HOF categories)
Table 5-3. Sarnia refinery COVID-19 barrier degradation factors and corresponding degradation factor controls (categorized with respect to the HOC)
Table C-1. IWK IPAC bow tie communications ideas

List of Figures

Figure 1-1. The hierarchy of controls as understood in the context of PSM
Figure 1-2. The hierarchy of controls as presented by BC health officials (McElroy, 2020)
Figure 1-3. The hierarchy of controls as presented by CCOHS (CCOHS, 2020)7
Figure 1-4. A standard bow tie diagram (CCPS/EI, 2018)
Figure 1-5. ISD protocol for BTA (Rayner Brown et al., 2021) 11
Figure 3-1. Excerpt of bow tie diagram representing a patient or family member at the IWK Health Centre in acute care contracting COVID-19
Figure 4-1. Excerpt of bow tie diagram representing a staff member at a BCFSC wood pellet facility contracting COVID-19
Figure A-1. IWK Health Centre COVID-19 bow tie diagram part 1
Figure A-2. IWK Health Centre COVID-19 bow tie diagram part 2
Figure A-3. IWK Health Centre COVID-19 bow tie diagram part 3
Figure A-4. IWK Health Centre COVID-19 bow tie diagram part 4
Figure A-5. IWK Health Centre COVID-19 bow tie diagram part 5
Figure A-6. IWK Health Centre COVID-19 bow tie diagram part 6
Figure A-7. IWK Health Centre COVID-19 bow tie diagram part 7
Figure A-8. IWK Health Centre COVID-19 bow tie diagram part 8
Figure A-9. IWK Health Centre COVID-19 bow tie diagram part 9
Figure A-10. IWK Health Centre COVID-19 bow tie diagram part 10
Figure A-11. IWK Health Centre COVID-19 bow tie diagram part 11
Figure A-12. IWK Health Centre COVID-19 bow tie diagram part 12 100
Figure A-13. IWK Health Centre COVID-19 bow tie diagram part 13 101
Figure A-14. IWK Health Centre COVID-19 bow tie diagram part 14 102
Figure A-15. IWK Health Centre COVID-19 bow tie diagram part 15 103

Figure A-16. IWK Health Centre COVID-19 bow tie diagram part 16 104 Figure A-17. IWK Health Centre COVID-19 bow tie diagram part 17 105 Figure A-18. IWK Health Centre COVID-19 bow tie diagram part 18 106 Figure A-19. IWK Health Centre COVID-19 bow tie diagram part 19 107 Figure A-20. IWK Health Centre COVID-19 bow tie diagram part 20 108 Figure A-21. IWK Health Centre COVID-19 bow tie diagram part 21 109 Figure B-1. BCFSC wood pellet facility COVID-19 bow tie diagram part 1 110 Figure B-2. BCFSC wood pellet facility COVID-19 bow tie diagram part 2 111 Figure B-3. BCFSC wood pellet facility COVID-19 bow tie diagram part 3 112 Figure B-4. BCFSC wood pellet facility COVID-19 bow tie diagram part 4 113 Figure B-5. BCFSC wood pellet facility COVID-19 bow tie diagram part 5 114 Figure B-6. BCFSC wood pellet facility COVID-19 bow tie diagram part 6 115 Figure B-7. BCFSC wood pellet facility COVID-19 bow tie diagram part 7 116 Figure B-8. BCFSC wood pellet facility COVID-19 bow tie diagram part 8 117 Figure B-9. BCFSC wood pellet facility COVID-19 bow tie diagram part 9 118 Figure B-10. BCFSC wood pellet facility COVID-19 bow tie diagram part 10 119 Figure B-11. BCFSC wood pellet facility COVID-19 bow tie diagram part 11 120 Figure B-12. BCFSC wood pellet facility COVID-19 bow tie diagram part 12 121 Figure B-13. BCFSC wood pellet facility COVID-19 bow tie diagram part 13 122 Figure B-14. BCFSC wood pellet facility COVID-19 bow tie diagram part 14 123 Figure B-15. BCFSC wood pellet facility COVID-19 bow tie diagram part 15 124 Figure B-16. BCFSC wood pellet facility COVID-19 bow tie diagram part 16 125 Figure B-17. BCFSC wood pellet facility COVID-19 bow tie diagram part 17 126 Figure B-18. BCFSC wood pellet facility COVID-19 bow tie diagram part 18 127 Figure B-19. BCFSC wood pellet facility COVID-19 bow tie diagram part 19 128

Figure B-20. BCFSC wood pellet facility COVID-19 bow tie diagram part 20 129 Figure B-22. BCFSC wood pellet facility COVID-19 bow tie diagram part 23 131 Figure B-23. BCFSC wood pellet facility COVID-19 bow tie diagram part 23 132 Figure B-24. BCFSC wood pellet facility COVID-19 bow tie diagram part 24 133 Figure B-25. BCFSC wood pellet facility COVID-19 bow tie diagram part 25 134 Figure B-26. BCFSC wood pellet facility COVID-19 bow tie diagram part 26 135 Figure B-28. BCFSC wood pellet facility COVID-19 bow tie diagram part 28 137 Figure B-30. BCFSC wood pellet facility COVID-19 bow tie diagram part 30 139 Figure B-31. BCFSC wood pellet facility COVID-19 bow tie diagram part 31 140 Figure B-32. BCFSC wood pellet facility COVID-19 bow tie diagram part 32 141 Figure B-34. BCFSC wood pellet facility COVID-19 bow tie diagram part 34 143 Figure B-35. BCFSC wood pellet facility COVID-19 bow tie diagram part 35 144 Figure B-36. BCFSC wood pellet facility COVID-19 bow tie diagram part 36 145 Figure B-37. BCFSC wood pellet facility COVID-19 bow tie diagram part 37 146 Figure B-38. BCFSC wood pellet facility COVID-19 bow tie diagram part 38 147 Figure B-39. BCFSC wood pellet facility COVID-19 bow tie diagram part 39 148 Figure B-40. BCFSC wood pellet facility COVID-19 bow tie diagram part 40 149 Figure B-41. BCFSC wood pellet facility COVID-19 bow tie diagram part 41 150 Figure B-42. BCFSC wood pellet facility COVID-19 bow tie diagram part 42 151 Figure B-43. BCFSC wood pellet facility COVID-19 bow tie diagram part 43 152 Figure B-44. BCFSC wood pellet facility COVID-19 bow tie diagram part 44 153

Figure B-45. BCFSC wood pellet facility COVID-19 bow tie diagram part 45 15
Figure B-46. BCFSC wood pellet facility COVID-19 bow tie diagram part 4615
Figure B-47. BCFSC wood pellet facility COVID-19 bow tie diagram part 4715
Figure B-48. BCFSC wood pellet facility COVID-19 bow tie diagram part 4815

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a respiratory illness called the novel coronavirus 2019 (COVID-19). COVID-19 was declared a pandemic on March 11, 2020.

Bow tie analysis (BTA) was applied to analyze the hazard of SARS-CoV-2 for three receptor groups: patient or family member at the IWK Health Centre in acute care, staff member at a British Columbia Forest Safety Council (BCFSC) wood pellet facility, and staff member at the Suncor refinery in Sarnia, Ontario. An inherently safer design (ISD) protocol for process hazard analysis (PHA) was used as a guide for evaluating COVID-19 barriers, and additional COVID-19 controls were recommended. Furthermore, two communication tools were developed from the IWK bow tie diagram to disseminate the research findings.

This research provides lessons learned about the barriers implemented to protect people from contracting COVID-19 and their corresponding degradation factors and degradation factor controls, and about the use of bow tie diagrams as communication tools. This research has also developed additional example-based guidance that can be used for the COVID-19 pandemic or future respiratory illness pandemics. Recommended future work is the application of BTA to additional industries, the consideration of ISD principles in other control types in the hierarchy of controls (HOC), and further consideration of human behaviour and human and organizational factors (HOF) in BTA.

List of Abbreviations Used

ADE	Adverse Drug Effect
AIIR	Airborne Infection Isolation Room
BASES	Bluewater Association for Safety, Environment, and Sustainability
BC	British Columbia
BCCDC	British Columbia Centre for Disease Control
BCFSC	British Columbia Forest Safety Council
BTA	Bow Tie Analysis
CAER	Sarnia-Lambton Community Awareness and Emergency Response
CCOHS	Canadian Centre for Occupational Health and Safety
CCPS	Center For Chemical Process Safety
CDC	Centres for Disease Control and Prevention
COVID-19	Novel Coronavirus 2019
СРІ	Chemical Process Industry
CVC	Central Venous Catheterization
EI/CCPS	Energy Institute/Centre for Chemical Process Safety
EVS	Environmental Services
FLRA	Field Level Risk Assessment
HAS	Health and Safety Association
HOC	Hierarchy of Controls
HOF	Human and Organizational Factors
HVAC	Heating, Ventilation, and Air Conditioning
ICU	Intensive Care Unit

IEC	Sarnia-Lambton Industrial Educational Cooperative
IOGP	International Association of Oil & Gas Producers
IPAC	Infection Prevention and Control
ISD	Inherently Safer Design
NMM	Non-Medical Masks
NS	Nova Scotia
NSERC	Natural Sciences and Engineering Research Council of Canada
NSHA	Nova Scotia Health Authority
NSNU	Nova Scotia Nurses' Union
OHSW	Occupational Health, Safety, & Wellness
PCR	Polymerase Chain Reaction
РНА	Process Hazard Analysis
РНАС	Public Health Agency of Canada
PPE	Personal Protective Equipment
PSM	Process Safety Management
SARS-CoV-2	Severe Acute Respiratory Syndrome Coronavirus 2
SHEA	Society for Healthcare Epidemiology of America
SLEA	Sarnia-Lambton Environmental Association
UPP	Universal Pandemic Protections
WHO	World Health Organization
WPAC	Wood Pellet Association of Canada

Acknowledgements

I would like to thank Dr. Paul Amyotte for the opportunity to work on this research with him. I gratefully acknowledge NSERC for funding this research through an Alliance grant with official research partnership from the Nova Scotia Health Authority. I would also like to extend thanks to Kayleigh Rayner Brown, Dr. Peter Vanberkel, and Dr. Faisal Khan for their involvement and feedback on this research. I would also like to acknowledge the IWK IPAC team, Bill Laternus, Karen Brandt, and Chantal Lancaster for their support in my research activities.

Thank you to my parents, Kim and Glenn, and to my sister, Emily, for their continued support and for welcoming me back home during these unprecedented times.

Chapter 1 Introduction

This chapter, based on (Turner et al., 2021) with relevant excerpts, provides an overview of the COVID-19 pandemic, the scope of work, motivation, and objectives of this research, and an introduction to the hierarchy of controls (HOC), bow tie diagrams, and the inherently safer design (ISD) protocol for process hazard analysis (PHA). The industrial involvement in this research and the organization of this thesis document are also described.

1.1 COVID-19 Pandemic

The novel coronavirus 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Burak et al., 2021). SARS-CoV-2 was identified in December 2019. Common symptoms of COVID-19 include cough, congestion or runny nose, diarrhea, fever or chills, headache, muscle or body aches, nausea or vomiting, new fatigue, new loss of taste or smell, shortness of breath or difficulty breathing, and sore throat. While some people with COVID-19 experience no symptoms or have mild illness, severe cases can lead to respiratory failure, long-lasting damage to the lungs and heart, nervous system problems, kidney failure, and death (Sauer, n.d.).

The first case of COVID-19 in Canada was confirmed on January 25, 2020 (Burak et al., 2021). On January 28, 2020, The COVID-19 outbreak was declared a public health emergency of international concern by the World Health Organization (WHO). This label indicated that COVID-19 was an "extraordinary event that constitute[s] a public health risk to other States through the international spread of disease" (Ducharme, 2020a). On March 11, 2020, WHO declared COVID-19 a pandemic; at this time, there were over 118,000

cases in over 110 countries and territories, and sustained risk of continued global spread (Ducharme, 2020b). There have been several COVID-19 variants due to significant mutations of the SARS-CoV-2 virus. As of February 2022, the following variants, considered to be variants of concern, have been detected in Canada: Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617), and Omicron (B.1.1.529). Evidence has demonstrated that these variants are more transmissible than the original virus, and/or have an impact on the effectiveness of COVID-19 vaccines (Government of Canada, 2022). SARS-CoV-2 is the hazard of global concern with respect to this pandemic (Rayner Brown, VanBerkel, et al., 2021).

WHO Director-General Dr. Tedros Adhanom Ghebreyesus said, "This is not just a public health crisis, it is a crisis that will touch every sector" (Ducharme, 2020b). The pandemic has disrupted supply chains and business operations across all industrial sectors. In the spring 2021 months, more than twenty outbreaks occurred at oilsands worksites and camps in Alberta, Canada, and the two largest outbreaks resulted in nearly 3,000 cases of COVID-19 (Yourex-West, 2021).

The risk of acquiring COVID-19 continues to drive unprecedented measures worldwide to prevent contact with SARS-CoV-2, and to protect against the potentially severe consequences of illness. To design an effective pandemic risk reduction strategy, the risk posed by the SARS-CoV-2 must be identified and analyzed. Additionally, effective communication of public health measures from decision-makers and public experts is a critical component of a pandemic response (Rayner Brown, VanBerkel, et al., 2021). For example, inconsistent public health guidelines and recommendations of using face masks

to prevent the spread of COVID-19 have resulted in confusion and stigmatization toward wearing masks during the pandemic (Tso & Cowling, 2020).

1.2 Scope of Work

The scope of this research is the COVID-19 pandemic, with an emphasis on the province of Nova Scotia (NS), Canada, and the risk of individuals acquiring the SARS-CoV-2 virus.

1.3 Motivation

The current research was motivated by the need for comprehensive hazard analysis of the unique threat of COVID-19 and effective communication of risk reduction measures during a pandemic.

1.4 Objectives

The first objectives of this research were to identify virus threats and likelihood of infection, and to evaluate current prevention and mitigation measures using a process hazard analysis (PHA) technique known as bow tie analysis (BTA). Another research objective was to explore additional measures based on inherently safer design (ISD) and the hierarchy of controls (HOC). The final research objectives were to efficiently communicate the project findings and to provide guidance for making risk-based decisions regarding the selection of the most effective COVID-19 safety measures.

1.5 Hierarchy of Controls

The hierarchy of controls (HOC) describes the preferred order of consideration for risk reduction measures. From most to least effective, this order is: inherently safer design (ISD), passive engineered safety, active engineered safety, and administrative safety (Kletz & Amyotte, 2010). Figure 1-1 illustrates the HOC as it is understood in the context of process safety management (PSM).

Figure 1-1. The hierarchy of controls as understood in the context of PSM

ISD controls aim to eliminate or reduce the hazards associated with a set of conditions using four main principles: minimization, substitution, moderation, and simplification. Minimization (sometimes referred to as intensification) involves reducing the quantity of hazardous material contained in a process or plant. Substitution involves replacing the hazardous material or process with an alternative that is less hazardous. Moderation involves the use of less hazardous or less energetic process conditions and is largely composed of attenuation and limitation of effects. Simplification involves reducing or eliminating unnecessary complexities and includes the concept of error tolerance (CCPS, 2020).

Add-on safety devices are categorized as engineered controls (Kletz & Amyotte, 2010). Passive engineered safety controls do not require initiation beyond the undesired event itself. Active engineered safety controls depend on hazard detection, initiation, and support systems. Procedural safeguards are categorized as administrative controls (CCPS, 2020).

It must be noted that ISD, engineered safety, and administrative safety work in cooperation to reduce risk; ISD is not a stand-alone concept. Also, the importance of engineered and administrative safety is not invalidated by the HOC; the risk assessment process must incorporate consideration of all control measures (Kletz & Amyotte, 2010).

According to Rayner Brown, VanBerkel, et al. (2021), incorporating the ISD principles with an ISD mindset may improve other types of controls in the HOC. For example, with respect to the COVID-19 pandemic, maintaining physical distance of 2 m when outside the home has characteristics of the ISD principle of moderation in the form of limitation of effects; maintaining 2 m of distance reduces the likelihood of transmitting the virus to someone else or contracting the virus from an infected individual. However, this barrier is implemented by administrative means and is easily defeated if individuals do not comply. In the context of this research, in addition to the controls as described by the HOC, administrative barriers and controls with characteristics of ISD principles are considered and they are categorized as "administrative (with aspects of ISD)". This distinction aims to highlight the incorporation of the ISD principles while clearly stating that the controls are administrative safety.

Within the context of the COVID-19 pandemic, the HOC has been referred to in several resources. In May 2020, a "hierarchy of controls... for reducing transmission hazards" was presented by health officials in British Columbia (BC), Canada. As illustrated in Figure 1-2, this hierarchy presents the following controls, in order of most to least effective: physical distancing, engineered safety, administrative safety, personal protective equipment (PPE)

(McElroy, 2020). Similarly, Johns Hopkins University in Baltimore, MD used a "modified hierarchy of controls" to represent their COVID-19 mitigation measures (Johns Hopkins University, 2020).

Figure 1-2. The hierarchy of controls as presented by BC health officials (McElroy,

2020)

The HOC was also used by the Canadian Centre for Occupational Health and Safety (CCOHS) to categorize COVID-19 safety measures for workplaces. As illustrated in Figure 1-3, this hierarchy presents the following controls, in order of most to least effective: elimination, substitution, engineered safety, administrative safety, and PPE and non-medical masks (NMM) (CCOHS, 2020).

Figure 1-3. The hierarchy of controls as presented by CCOHS (CCOHS, 2020)

1.6 Bow Tie Diagrams

Bow tie analysis (BTA), or the bow tie methodology, is a barrier-based risk management tool (Rayner Brown, Hastie, et al., 2021). It is becoming more prevalent as a PHA tool (Anderson et al., 2016), and demonstrates how threats can lead to the loss of control of a hazard and how this unsafe condition can develop into undesired consequences (Rayner Brown, Hastie, et al., 2021). Bow tie diagrams are excellent visualization and communication tools (Anderson et al., 2016) that can support the analysis, management, and communication of both process and non-process industry risks (CCPS/EI, 2018). A standard bow tie diagram is illustrated in Figure 1-4.

Figure 1-4. A standard bow tie diagram (CCPS/EI, 2018)

Bow tie diagrams are composed of eight elements: a hazard, a top event, threats, consequences, prevention barriers, mitigation barriers, degradation factors (also referred to as escalation factors), and degradation factor controls. The hazard is a potentially harmful operation, activity, or material. It provides clarity on the source of risk and defines the scope of the bow tie diagram. The top event describes the loss of control of the hazard. Threats are the potential causes of the top event, and consequences are the unwanted outcomes of the top event that can lead to damage or harm. Barriers are the measures that can prevent the threats from causing the top event or mitigate the consequences. Degradation factors are the conditions that reduce the effectiveness of the barriers, and degradation factor controls maintain the barriers by helping to defeat the degradation factors (CCPS/EI, 2018).

1.7 Human Behaviour and Human and Organization Factors

The International Association of Oil & Gas Producers (IOGP) defines human factors as "the term used to describe the interaction of individuals with each other, with facilities and equipment, and with management systems" (CCPS/EI, 2018, p. 69). IOGP also states that

the working environment and culture both influence this interaction. In BTA, human and organizational factor (HOF) issues can appear in several elements: as part(s) of prevention and mitigation barriers, degradation factors, and as part(s) of degradation factor controls. Human behaviour can have both positive (expected and exemplary behaviours) and negative (human error and violations) aspects. Bow tie diagrams typically address human error and violations and organizational factors in degradation factors (CCPS/EI, 2018). In the context of the COVID-19 pandemic, many degradation factors are related to human behaviour and HOF (Rayner Brown, VanBerkel, et al., 2021).

The common HOF categories of degradation factors are slips and lapses, mistakes, unintended violation, situational violations, organizational optimizing, personal optimizing, and recklessness (Rayner Brown, VanBerkel, et al., 2021). Table 1-1 lists the common HOF categories and the corresponding guidewords/phrases that describe them. Categorizing degradation factors with respect to the common HOF categories can help identify degradation factor controls (Rayner Brown, VanBerkel, et al., 2021). Recklessness, slips and lapses, and mistakes can be difficult to treat in bow ties, so degradation factors in these categories are generally not generated during workshop brainstorming (CCPS/EI, 2018).

 Table 1-1. Common HOF categories and corresponding guidewords/phrases
 (adapted from CCPS/EI, 2018)

HOF Category	Guideword/phrase
Slips and lapses	"Oops"
Mistakes	"I thought I did it the right way"
Unintended violation	"I was not aware"
	"I did not understand"
Situational violation	"I cannot get the job done if I follow the rules, but I did
	the job anyway"
Organizational optimizing	"It was better for the company to do it that way"

HOF Category	Guideword/phrase
Personal optimizing	"It suited me better to do it that way"
Recklessness	"I did not think or care about the consequences"

1.8 Bow Tie ISD Protocol

PHA provides an opportunity to explicitly consider ISD within the framework of PSM. A protocol was previously developed by Dalhousie University researchers to integrate ISD into BTA (as a PHA tool). This protocol includes the use of a collection of specific, practical applications of ISD, referred to as example-based guidance, to identify ISD opportunities within the bow tie (Rayner Brown, Hastie, et al., 2021). This protocol is shown in Figure 1-5.

Figure 1-5. ISD protocol for BTA (Rayner Brown et al., 2021)

1.9 Industrial Involvement in Research

This research is part of a collaborative Natural Sciences and Engineering Research Council of Canada (NSERC) Alliance grant. Official research partnership involves Dalhousie University and Memorial University of Newfoundland, and official industry partnership includes the Nova Scotia Health Authority. Additional partnerships with the IWK Health Centre and the BC Forest Safety Council (BCFSC) have been developed, and online COVID-19 resources for a Bluewater Association for Safety, Environment, and Sustainability (BASES) member facility have been used.

It must be noted that this project was proactive and did not arise in response to any specific outbreak occurrences. Rather, it was developed from the perspective of quality improvement through the preventative analysis of a hazard.

1.10 Organization of Thesis Document

The first two chapters describe the background of the COVID-19 pandemic, the hierarchy of controls, bow tie diagrams, the bow tie ISD protocol, and the applications of bow tie diagrams in healthcare and as communication tools. The next four chapters describe the research with the IWK Health Centre and the BCFSC, the research on the BASES member facility COVID-19 barriers, and the research on bow tie communication tools. Finally, the document closes with conclusions and recommendations for future work.

The thesis structure is as follows:

Chapter 1 presents an introduction to the project, along with the background information for the motivation, scope, and objectives of the research.

Chapter 2 describes the review of literature on the application of bow tie analysis in healthcare, and the application of bow tie diagrams as communication tools. A selection of case studies of the use of bow ties in various healthcare settings, including the COVID-19 pandemic, are outlined. The visual characteristics of bow tie diagrams are described, and the concept of a one-page document based on a COVID-19 bow tie diagram is introduced.

Chapter 3 describes the development of a bow tie diagram for a COVID-19 scenario at the IWK Health Centre, the evaluation of the COVID-19 barriers, and the recommendation of additional COVID-19 controls.

Chapter 4 describes the development of a bow tie diagram for a COVID-19 scenario at a BCFSC facility, the evaluation of the COVID-19 barriers, and the recommendation of additional COVID-19 controls.

Chapter 5 describes the identification of COVID-19 barriers, and corresponding degradation factors and degradation factor controls for a BASES member facility, and the evaluation of the COVID-19 barriers.

Chapter 6 describes the development of communication tools from the IWK Health Centre bow tie described in Chapter 4.

Chapter 7 provides the summary and conclusions of this thesis, and recommendations for future work.

Chapter 2 Background

This chapter, based on (Turner et al., 2021) with relevant excerpts, provides background information on various applications of the bow tie methodology in the healthcare industry, and on the use of bow tie diagrams as communication tools.

2.1 Application of bow ties in healthcare

The bow tie methodology is an increasingly popular PHA tool and is often employed in high-hazard industries. However, BTA has also been successfully used in medical safety applications (Ward et al., 2016).

2.1.1 Patient Safety in ICU

As compared to other non-critical hospital settings, the occurrence of serious adverse events and medical errors that threaten patient safety in an intensive care unit (ICU) setting is more frequent. A study published in 2016 (Abdi et al., 2016) used the bow tie methodology to analyze risks threatening patient safety in an ICU. The study was conducted for a 12-bed semi-closed medical ICU in a teaching hospital between late 2011 and early 2014.

The bow tie diagrams were developed by a multidisciplinary safety management team consisting of four physicians, five nurses, and one top management representative. One of the physicians was the team leader, and the bow tie methodology was initially presented to the team members by a facilitator.

Previous studies have expressed a need for context-specific PHA tools for healthcare settings. Teams that have applied BTA to healthcare settings reported several issues regarding the application, including the need for a knowledgeable facilitator. To increase

the adaptability of the methodology, Abdi et al. (2016) defined unit-specific top events and used a healthcare-specific classification for threats.

They found that the bow tie methodology is a feasible tool for proactive risk management in an ICU. The bow tie diagrams allowed team members to generate practical solutions to address deficiencies and promoted the clinicians' awareness regarding errors and conditions that might create undesired issues within their practice. The visualization of the diagrams also facilitated comprehension of the required barriers for safer operations in the ICU. However, BTA was determined to be time-consuming, with the reliability of the outputs depending on the reliability of the inputs. In general, the study found BTA to be capable of being a useful tool in ICU safety improvement programs (Abdi et al., 2016).

2.1.2 Surgical Instrument Retention

Research presented in 2016 applied the bow tie methodology to analyze the risk of surgical instrument retention (Ward et al., 2016). Although it is a rare occurrence, surgical instrument retention following central venous catheterization (CVC) presents a significant risk. CVC is a widely used medical procedure, but the risks of guidewire retention following the procedure are not as low as reasonably practicable (Chatzimichailidou et al., 2018).

For this research, the top event was defined as a guidewire being retained inside a patient. Several design solutions were identified, resulting in five additional prevention barriers and six mitigation barriers. The team found the links between the bow tie diagram elements to be helpful, and the diagram itself to be useful in identifying further opportunities for safety improvements. This research found that BTA is an effective tool to systematically display and examine the threats, consequences, and prevention and mitigation barriers associated with an incident of guidewire retention. It also expresses that perhaps bow tie diagrams can be an effective communication tool. Bow ties were thus determined to be useful as a proactive tool to examine where gaps exist in broader issues with guidewire use in CVC procedures (Ward et al., 2016).

2.1.3 Anaesthesia

Due to the complex interaction of multiple hazards, and the potential for serious adverse outcomes, risk management is an important aspect of anaesthesia practice. A study published in 2016 applied the bow tie methodology to the analysis of risks associated with anaesthesia (Culwick et al., 2016).

The work identified several potential uses for bow tie diagrams in anaesthesia risk management including understanding risks, teaching risk management, demonstrating risk management strategies, proactively identifying weaknesses in risk management, and investigating clinical incidents. Clinical risk management in anaesthesia currently includes predominantly retrospective and reactive tools; BTA is a useful tool to proactively identify and understand risks as well as investigate incidents. Additionally, bow tie diagrams facilitate teaching and multidisciplinary discussions regarding risk analysis, helping healthcare professionals to understand and respond to challenges (Culwick et al., 2016).

2.1.4 Primary Healthcare

Primary healthcare relies on a variety of measures to manage risks to patient health and/or safety. A 2016 research paper reported an informal evaluation that explored the potential benefits of the application of the bow tie methodology to primary healthcare (McLeod & Bowie, 2018).

At least five potential benefits were identified, including improved recognition and understanding of barriers, raised awareness in the healthcare community and with stakeholders of the effectiveness of the barriers, understanding degradation factors and the required degradation factor controls, knowing who is responsible for the implementation, support, and maintenance of barriers and degradation factor controls, and awareness of how decisions and actions can cause barriers and degradation factor controls to fail. The evaluation determined that BTA has the potential to be applied to the risk management of serious events in primary healthcare.

Even though there are clear potential benefits, the evaluation reported concerns about the practicality and logistics of implementing the bow tie methodology in healthcare. Although the methodology seems relatively easy to implement, some of the terminology and concepts may not be intuitive to healthcare professionals. To be capable of developing bow tie diagrams to an adequate quality standard without relying on supports from external sources like external facilitators, training, supports, and resources would be required for the primary healthcare community (McLeod & Bowie, 2018).

2.1.5 Medication

Adverse drug effects (ADEs) occur frequently, and many are the result of systematic medication errors and organizational failure. Many healthcare organizations are working to improve patient medication safety. A study published in 2009 applied the bow tie methodology to prospective analysis of medication risks. The study was performed between January and December 2005 in a large teaching hospital and a large general hospital (Wierenga et al., 2009).

To determine the top events specific to medication safety, an external safety expert interviewed an internal medicine physician, a surgeon, a paediatrician, two nurses, two hospital pharmacists, and a pharmacy technician. At one hospital, multidisciplinary teams consisting of physicians, nurses, and pharmacists were organized to develop the bow tie diagrams. At the other hospital, the bow tie diagrams were developed by the departments of internal medicine and surgery.

The study found BTA to be an appropriate tool for prospective analysis of medication safety risks in a hospital. It gave team members insight into medication-related risks, increased safety awareness, and motivated team members to prioritize potential safety improvements. However, team members found the large amount of information collected in the bow tie diagrams difficult to interpret, and the bow tie methodology to be time consuming (Wierenga et al., 2009).

2.1.6 COVID-19 Pandemic

In April 2020, the Energy Institute/Centre for Chemical Process Safety (EI/CCPS) published a white paper demonstrating the use of bow tie analysis to model and communicate hazardous scenarios regarding contracting COVID-19 (Manton et al., 2020). This fundamental document provided validation for the work being undertaken at that time by a joint Dalhousie/Memorial research team (Rayner Brown, VanBerkel, et al., 2021). Since early 2020, bow tie diagrams concerned with the prevention and control of COVID-19 have been developed from different perspectives (CGE Risk, 2021). Rayner Brown, VanBerkel, et al. (2021) developed bow tie diagrams to model a scenario associated with contracting COVID-19 for the following specific receptor groups: immunocompromised individual, resident in a long-term care facility, primary care giver, grocery store employee,

paramedic, nurse, elementary school student, hair salon patron (based on guidance in the province of Nova Scotia, Canada), and fitness studio patron (also based on guidance in the province of Nova Scotia, Canada).

2.2 Application of Bow Ties as Communication Tools

As a visual tool, bow tie diagrams can communicate hazardous scenarios to a range of audiences at all levels of an organization (Rayner Brown, VanBerkel, et al., 2021). They are suitable to be displayed on posters to highlight key risk control concerns (Lewis & Smith, 2010), and they have been found to enhance communication about risk awareness and management in stakeholder groups (Gerkensmeier & Ratter, 2018).

Bow tie diagrams can meet the risk communications needs for many different audiences, including design teams (capital projects), regulators, contractors, management, local community, top management, and the workforce. For different audiences, and for different applications, bow tie diagrams can be presented in different formats (CCPS/EI, 2018):

- The Introductory Level only shows the hazard, top event, threats, and consequences.
- The Standard Bow Tie Level (without degradation factors) shows the information of the introductory level and adds the prevention and mitigation barriers, degradation factors, and degradation factor controls; this format is the most common.
- For the Standard Bow Tie Level (with degradation factors), the level of display would depend on the needs of the audience; the extra information in this level can add complexity to the diagram.

- The Enhanced Standard Bow Tie Level (with metadata) shows the information of the previous level and displays the relevant metadata beneath each barrier; examples of metadata include barrier type, barrier functionality, and criticality.
- The Multi-Level Bow Tie Format shows the lower-level controls that support the standard bow tie degradation factor controls; these controls are not shown in standard bow tie diagrams, but they are important controls.

Bow tie software, including BowTie XP (the software used by the research team) can support different levels of display without permanently deleting any elements or details. This facilitates matching the display to the needs of a particular audience (CCPS/EI, 2018). However, when presenting bow tie diagrams in documents or in print, it can be difficult to include information above the standard bow tie level (without degradation factors) while maintaining the readability of the diagram.

Regarding the COVID-19 pandemic, bow tie diagrams are an excellent communication tool to disseminate key safety information to a workforce. Risktec has proposed that information for each barrier on a COVID-19 bow tie diagram could be easily communicated to workers in a one-page summary. This one-pager could include the following information: what the barrier is, what it does, how it performs, how it is tested, where workers can find documents with further information, and who workers can contact for further information (Risktec, n.d.).

Chapter 3 IWK Bow Tie

This chapter, based on Turner et al. (2021) with relevant excerpts, describes the research performed in collaboration with the IWK Infection Prevention and Control (IPAC) team. The chapter provides details of the bow tie scope; the development of the bow tie diagram; the evaluation of the barriers, degradation factors, and degradation factor controls; the results and conclusions of this research; and recommended additional barriers and degradation factors that could be considered by the IPAC team.

3.1 Bow Tie Scope

The scope of the bow tie diagram was defined by the hazard and top event. Using terminology that follows the accepted distinction between COVID-19 and SARS-CoV-2, the hazard was "Novel coronavirus in human population", with the top event specific to a receptor group at the IWK Health Centre contracting COVID-19 (Rayner Brown, VanBerkel, et al., 2021).

Input from the IPAC team helped further define the top event. Based on team roles and responsibilities, and the organization of the facility, the specific receptor group was defined as patient and family in acute care. Therefore, the top event was "Patient and family in IWK Health Centre in acute care contracts COVID-19". The IWK Health Centre, located in Halifax, Nova Scotia, is a tertiary women's and children' health centre.

3.2 Bow Tie Development

The bow tie diagram was developed through collaborative workshops with the IPAC team. Two workshops took place in-person (on-site) in April 2021 and July 2021. Workshop personnel consisted of the IPAC team (four registered nurses, two specialists in
performance improvement, a director, and a physician director), a scribe assistant (current author), and an experienced facilitator/scribe. One of the performance improvement specialists organized and scheduled the workshops. The facilitator/scribe lead the workshops and recorded the bow tie elements. The scribe assistant recorded any assumptions made during the workshops and documented additional discussions and items of interest. The IPAC team members provided expert input.

During the first workshop, the facilitator/scribe introduced the IPAC team members to the bow tie methodology and bow tie diagram elements. The IPAC team defined the top event, listed all possible threats and consequences, and began identifying prevention and mitigation barriers. A second workshop was initially scheduled for later in April 2021, but due to a third wave of COVID-19 cases in Nova Scotia and the resulting lockdown, the session was delayed until July 2021.

During the second workshop, the team reviewed the work that had been done during the first workshop and finished identifying prevention and mitigation barriers. Due to the limited time available for the workshop, the team listed only the degradation factors and controls specific to the IWK Health Centre. Following the workshops, the bow tie diagram was updated by the scribe assistant to include degradation factors and controls for common barriers (Rayner Brown, VanBerkel, et al., 2021). Due to space considerations, Figure 3-1 shows an excerpt of the bow tie diagram, including the hazard, top event, threats, and consequences. The full bow tie diagram is given in Appendix A.

Figure 3-1. Excerpt of bow tie diagram representing a patient or family member at

the IWK Health Centre in acute care contracting COVID-19

3.3 Barrier Evaluation

The objectives of this research include evaluating prevention and mitigation measures currently in place, and exploring additional measures based on inherently safer design (ISD) and the hierarchy of controls (HOC). This barrier evaluation methodology is based on the ISD protocol for bow tie analysis (BTA) protocol developed by Rayner Brown, Hastie, et al. (2021), as previously described in Chapter 1. The first step is to examine and categorize the barriers with respect to the HOC. The next step is to evaluate the degradation factors and degradation controls. The final step is to use example-based guidance and supporting literature to identify additional barriers and degradation factor controls based on ISD and the HOC.

3.3.1 Barrier Categorization with Respect to the Hierarchy of Controls

To begin the barrier evaluation for the IWK bow tie diagram, the identified barriers were categorized with respect to the HOC. As described in Chapter 1, the types of controls in the HOC are ISD, passive engineered, active engineered, and administrative. Table 3-1 provides the COVID-19 barriers currently in place at the IWK Health Centre in acute care. In Table 3-1, the barriers are organized in the order in which they first appear in the bow tie diagram, as read from top-left to bottom-right.

Table 3-1. IWK Health Centre COVID-19 barriers (categorized with respect to the HOC)

Barrier	Barrier Type
Immunization of team members that are vaccine-	Passive Engineered
eligible	
Exclusion of IWK team members who were in	Administrative (with aspects of
moderate or high-risk exposure settings	ISD)
Exclusion of any IWK team members with COVID-	Administrative (with aspects of
19 from work/health centre	ISD)

Barrier	Barrier Type
Self-monitor for COVID-19 symptoms and follow-	Administrative
up with IWK Occupational Health, Safety, &	
Wellness (OHSW)	
Medical grade face mask worn by IWK team	Administrative
members	
Practice good hand-hygiene at 4 Moments	Administrative
Restricted access to communal areas (e.g., access to	Administrative (with aspects of
playrooms, closed kitchenette, laundry room)	ISD)
Pre-screening for planned visits to determine if	Administrative (with aspects of
patient has an exposure risk	ISD)
Door screening questions to determine if patient or	Administrative (with aspects of
family member/support person has an exposure risk	ISD)
Single patient rooms assigned for both inpatient and	Administrative (with aspects of
pediatric ambulatory care asymptomatic patients	ISD)
Physical distancing in public areas and, when	Administrative (with aspects of
possible, during assessments	ISD)
Limitations around day passes (exceptions only)	Administrative (with aspects of
	ISD)
Use of additional precautions based on risk	Administrative
assessment, including use of airborne infection	
isolation room (AIIR), as required (e.g., exposure	
history)	
Universal pandemic protections (UPP) worn by all	Administrative
direct care providers	
Medical grade face mask worn by patient in public	Administrative
areas and, when possible, during assessments	
Practice good hand hygiene and sneeze/cough	Administrative
etiquette	
Universal COVID-19 testing for all admissions and	Administrative
prior to all surgical procedures	
Routine cleaning and disinfection of high-touch	Administrative
surfaces and infection control practices (e.g.,	
decontamination of equipment)	
Pre-screening for planned visits and re-book if	Administrative (with aspects of
patient meets screening criteria and appointment is	ISD)
non-urgent	
Door screening questions and alert care area for	Administrative (with aspects of
direct placement for symptomatic patients	ISD)
Single patient rooms assigned and designated rooms	Administrative (with aspects of
on inpatient wards for symptomatic patients	
Restrictions in place for public area access; isolation	Administrative (with aspects of
of patient and family/support person in room and	19D)
escorted through hospital	
Support persons restrictions	Administrative (with aspects of
	ISD)

Barrier	Barrier Type
Pre-screening for planned visits to determine if	Administrative (with aspects of
support person has an exposure risk; instructed to	ISD)
find alternate if they meet the criteria	
Complete pre-travel, pre-screening form for	Administrative (with aspects of
contractors developed with IWK Occupational	ISD)
Health, Safety, & Wellness (OHSW) and quarantine	
if deemed necessary	
Exclusion of contractors who were in moderate or	Administrative (with aspects of
high-risk exposure settings	ISD)
Exclusion of any contractors with COVID-19 from	Administrative (with aspects of
work/health centre	ISD)
Additional screening and additional COVID-19	Administrative
testing for contractors	
Recommendation that patients do not go to gallery	Administrative (with aspects of
space	ISD)
Shutdown gallery lounge space for Ronald	Administrative (with aspects of
McDonald and food pickup moved to internal	ISD)
screened area	
Food services closed during times of high-risk	Administrative (with aspects of
	ISD)
Gift shop services offered online instead of in-person	Administrative (with aspects of
	ISD)
Additional cleaning of gallery and dedicated	Administrative
Environmental Services (EVS)	
Communication to community partners to	Administrative
discourage visits to food vendors in gallery	
Contact tracing and testing in partnership with	Administrative
Public Health and Occupational Health, Safety, &	
Wellness (OHSW)	
Minimize the number of people caring for the patient	Administrative (with aspects of
at a given time	ISD)
COVID-19 testing for identification and isolation of	Administrative
patients	
Limited public access to health centre	Administrative (with aspects of
	ISD)
No entry by independent contractors to COVID-19	Administrative (with aspects of
patient rooms	ISD)
Hospitalization, including therapeutics (e.g.,	Administrative
medication) and supportive management (e.g.,	
ventilators, hydration)	
Limitations on number of team members in area,	Administrative (with aspects of
including staggering breaks	ISD)
The Good Neighbour Protocol to facilitate sharing of	Administrative
human resources among local health centres	
Access to provincial PPE resources	Administrative

Barrier	Barrier Type
Sourcing of alternative PPE and approval programs	Administrative
for alternates	
PPE inventory access control	Administrative
Re-use of reusable PPE (e.g., gowns)	Administrative
Critical supply list projections to communicate	Administrative
supplies and any shortages, including quality	
assurance checks on products, PPE dashboard, and	
communications with supplier	
PPE coordinator role to take inventory of PPE in	Administrative
units during periods of high demand	
Track usage of N95 respirators to replenish supplies	Administrative
Planning for N95 reprocessing if needed during	Administrative
periods of high demand	
Exception process for support person/family for	Administrative
critical situations (i.e., pediatric patient with no	
alternate) with Director approval	
Encourage patients and family/support persons to	Administrative
use electronic modes of communication (iPads	
available to borrow), meal cards provided, free Wi-	
Fi access	
Pandemic education	Administrative
Rapid communication and response to personnel	Administrative
emails	
Leadership support and team leads strategize with	Administrative
key leaders to support team members, including	
effective communication and clear executive	
involvement and direction	
Town halls for IWK team members	Administrative
Maintain confidentiality of IWK patients	Administrative
Monitor media and provide proactive press releases;	Administrative
communication efforts	
Active social media presence	Administrative
Address potential perception/reputation issues	Administrative
proactively in government updates	

IWK team members are the only group included in the immunization barrier because immunization for patients, family members/support persons, and the public is a public health measure that the IWK Health Centre cannot control. Additionally, this bow tie diagram was developed before the province of Nova Scotia began requiring proof of vaccination for discretionary activities in October 2021, and for certain groups including healthcare workers in November 2021 (Petracek, 2021).

The 4 Moments of hand hygiene describe when, while providing direct care, healthcare professionals should wash their hands. These moments are (Public Health Ontario, n.d.):

- 1. Before initial patient/patient environment contact
- 2. Before aseptic procedure, like changing a dressing or drawing blood
- 3. After body fluid exposure risk (and after glove removal)
- 4. After patient/patient environment contact

The Good Neighbour Protocol is an agreement that was signed by healthcare unions, including the Nova Scotia Nurses' Union (NSNU), in response to the H1N1 pandemic. The agreement aims to preserve health services and protect healthcare workers in the event of emergencies, such as pandemics and natural disasters. The purpose of the protocol is to facilitate, in the event of an emergency, the sharing of human resources among jurisdictions (NSNU, n.d.).

3.3.2 Evaluation of Degradation Factors

The next step was to evaluate the degradation factors identified for each barrier. In the context of the COVID-19 pandemic, many degradation factors are related to human behaviour and human and organizational factors (HOF). As described in Chapter 1, the common HOF categories of degradation factors are slips and lapses, mistakes, unintended violation, situational violations, organizational optimizing, personal optimizing, and recklessness (Rayner Brown, VanBerkel, et al., 2021). Table 3-2 provides the COVID-19

barriers currently in place at the IWK Health Centre in acute care and the corresponding

degradation factors.

Barrier	Degradation Factor	Degradation Factor Category
Immunization of team members that are vaccine- eligible	Vaccine hesitancy	Personal optimizing
Exclusion of IWK team members who were in moderate or high-risk exposure settings	IWK team member not honest about travel history or symptoms	Personal optimizing
Self-monitor for COVID- 19 symptoms and follow- up with IWK	IWK team member not honest about travel history or symptoms	Personal optimizing
Occupational Health, Safety, & Wellness (OHSW)	Contractor not honest about travel history or symptoms	Personal optimizing
Medical grade face mask worn by IWK team members	Face mask worn improperly	Unintended violation, mistake, situational violation, or personal optimizing
Practice good hand- hygiene at 4 Moments	Procedure not followed due to work demands (e.g., too busy, hands are too full)	Situational violation
	Procedure not followed due to skin breakdown	Situational violation
	Misperception of when hand hygiene is required (e.g., did not touch anything)	Unintended violation or mistake
	Forgetfulness	Slip or lapse
	Poor leadership example (e.g., if one senior person does not follow procedure, junior person does not)	Situational violation
	Complacency	Personal optimizing

Table 3-2. IWK Health Centre COVID-19 barriers and corresponding degradation
factors (categorized with respect to the HOF categories)

Barrier	Degradation Factor	Degradation Factor
		Category
Pre-screening for planned	Unable to contact/reach	Situational violation
visits to determine if	patient	
patient has an exposure	Using out of date script,	Situational violation
risk	or ad-libbing	
	Unaware that	Unintended violation
	interpretation services are	
	needed	
	Limited resources; time	Unintended violation
	and staffing challenges	
	(including staff turnover)	
Door screening questions	Patient not honest about	Personal optimizing
to determine if patient or	travel history or	
family member/support	symptoms	
person has an exposure	Support person/family not	Personal optimizing
risk	honest about travel	
	history or symptoms	
	Pediatric patient has no	Situational violation
	alternate support person	
	Door screening not	Organizational optimizing
	performed at night-time	D 1
	Visitor tailgates or	Personal optimizing or
	circumnavigates door	recklessness
Single patient rooms	Financial pressure to open	Organizational optimizing
and radiatria ambulatory	the warded room	
and pediatric ambulatory		
patients		
Physical distancing in	Difficulty managing	Situational violation
public areas and when	traffic	
possible during	Physical distancing not	Unintended violation
assessments	followed	mistake or personal
	lonowed	ontimizing
		optimizing

Barrier	Degradation Factor	Degradation Factor
		Category
Use of additional	Door to AIIR propped	Unintended violation,
precautions based on risk	open due to lack of	mistake, or situational
assessment, including use	understanding or work	violation
of airborne infection	demands	
isolation room (AIIR), as	AIIR preventative	Unintended violation,
required (e.g., exposure	maintenance not	mistake, organizational
history)	completed (e.g.,	violation, situational
	pressures, filters,	violation, or personal
	maintain higher levels of	optimizing
	air exchanges)	
	Incorrect risk assessment	Unintended violation or
	(e.g., should be using	mistake
	additional precautions	
	when not)	
Universal pandemic	PPE shortage	Situational violation
protections (UPP) worn by	PPE worn improperly	Unintended violation,
all direct care providers		mistake, situational violation,
		or personal optimizing
Medical grade face mask	Face mask worn	Unintended violation,
worn by patient in public	improperly	mistake, or personal
areas and, when possible,		optimizing
during assessments		
Practice good hand	Proper hand washing	Unintended violation,
hygiene and sneeze/cough	method not followed	mistake, situational violation,
etiquette		or personal optimizing
Universal COVID-19	False negative COVID-19	Situational violation
testing for all admissions	test results (Flanagan,	
and prior to all surgical	2021)	
procedures		
Routine cleaning and	Proper cleaning	Unintended violation,
disinfection of high-touch	procedure not followed	mistake, or personal
surfaces and infection		optimizing
control practices (e.g.,		
decontamination of		
equipment)	N 1 1	
Pre-screening for planned	Patient not honest about	Personal optimizing
visits and re-book if	travel history or	
patient meets screening	symptoms	
criteria and appointment is		
non-urgent	Definition of the test	Demonstration in the
Door screening questions	Patient not nonest about	Personal optimizing
and alert care area for	travel nistory or	
direct placement for	symptoms	
symptomatic patients		

Barrier	Degradation Factor	Degradation Factor
		Category
Single patient rooms	Financial pressure to open	Organizational optimizing
assigned and designated	the warded room	
rooms on inpatient wards		
for symptomatic patients	T 1'1' + '1 +'C	
Support persons	Inability to identify	Situational violation
restrictions	support persons, leading	
	to too many people in	
	health centre	D 1 4: : :
Complete pre-travel, pre-	Contractor not nonest	Personal optimizing
screening form for	about travel history or	
contractors developed with	symptoms	
IWK Occupational Health,		
Safety, & weilness		
(OHSW) and quarantine if		
Evaluation of contractors	Contractor not honost	Danganal antimizing
up were in moderate or	contractor not nonest	Personal optimizing
high risk exposure settings	symptoms	
Additional corponing and	False pagative COVID 10	Situational violation
additional COVID 10	tast regults (Elanagan	Situational violation
testing for contractors	2021)	
Solf monitor for COVID	WK toom mombor or	Porsonal ontimizing
10 symptoms and follow	contractor not honest	r ersonar optimizing
up with IWK	about travel history or	
Occupational Health	symptoms	
Safety & Wellness	symptoms	
(OHSW)		
Recommendation that	Patient does not follow	Personal optimizing or
patients do not go to	recommendation and goes	recklessness
gallery space	to gallery	
Additional cleaning of	Proper cleaning	Unintended violation.
gallery and dedicated	procedure not followed	mistake, organizational
Environmental Services	1	violation, situational
(EVS)		violation, or personal
		optimizing
Contact tracing and testing	False negative COVID-19	Situational violation
in partnership with Public	test results (Flanagan,	
Health and Occupational	2021)	
Health, Safety, &		
Wellness (OHSW)		

Barrier	Degradation Factor	Degradation Factor
		Category
Minimize the number of	Teaching health centre,	Organizational optimizing
people caring for the	need to accommodate	
patient at a given time	students and residents	
	Nurses are usually	Organizational optimizing
	assigned 3-4 patients	
	An allied health team	Organizational optimizing
	includes many members	
	Food services usually	Organizational optimizing
	delivers food directly to	
	patients	
COVID-19 testing for	False negative COVID-19	Situational violation
identification and isolation	test results (Flanagan,	
of patients	2021)	
The Good Neighbour	Difficulty sharing human	Situational violation
Protocol to facilitate	resources due to staff	
sharing of human	shortages at all health	
resources among local	centres	
health centres		
Re-use of reusable PPE	Central laundry down;	Situational violation
(e.g., gowns)	unable to provide	
	reusable PPE	
Pandemic education	Misinformation driving	Unintended violation or
	fear and anxiety	situational violation
	Overwhelming amount of	Situational violation
	information, and	
	management of change;	
	need to rapidly evolve	
	and adapt	
	Challenges with working	Situational violation
	through science in real-	
	time; understanding the	
	situation as it evolves;	
	dealing with uncertainty	

Vaccine hesitancy is defined as "delays in accepting or refusing vaccines despite the availability of vaccination services" (MacDonald & Dubé, 2018). There are many different reasons underlying vaccine hesitancy, even within a given province or territory. Vaccine

hesitancy also tends to occur in pockets or clusters, like in religious communities or groups focused on natural medicine (MacDonald & Dubé, 2018).

In this context, to "tailgate" means to enter the health centre unauthorized behind an authorized visitor. Tailgating (also known as piggybacking) can be either forced or accidental. A common workplace example of tailgating is an employee holding the door open for a visitor, allowing the unauthorized visitor access to the building (Meesons, n.d.).

Polymerase chain reaction (PCR) tests are considered our best tool for determining if someone has COVID-19; however, the tests are not accurate in 100% of cases. False positive results, where a patient tests positive despite not having COVID-19, are very rare while false negative results, where a patient tests negative despite having COVID-19, are more common. One cause of false negative results is that the patient is either too early or too late in their illness to test positive. Another cause is that the collected sample was too small, or the virus was not present at the point of collection (Flanagan, 2021).

3.3.3 Evaluation of Degradation Factor Controls

The next step in the barrier evaluation was to evaluate the identified degradation factor controls. Similar to the barriers, these were categorized with respect to the HOC. Table 3-3 provides the COVID-19 barrier degradation factors currently in place at the IWK Health Centre in acute care and the corresponding degradation factor controls.

Table 3-3. IWK Health Centre COVID-19 barrier degradation factors and corresponding degradation factor controls (categorized with respect to the HOC)

Degradation Factor	Degradation Factor	Degradation Factor
	Control	Control Type
Vaccine hesitancy	Education and outreach	Administrative
	(advertising, social media	
	campaigns) (MacDonald &	
	Dubé, 2018)	
	Target under-immunized	Administrative
	sub-groups with tailored	
	interventions (MacDonald	
	& Dubé, 2018)	
	Remind team members by	Administrative
	text, email, or mail as	
	appropriate (MacDonald &	
	Dubé, 2018)	
Face mask worn	Pandemic education on	Administrative
improperly	proper use of PPE	
Misperception of when	Education	Administrative
hand hygiene is required	Supervision and training;	Administrative
(e.g., did not touch	on-the-spot feedback	
anything)		
Poor leadership example	Auditing	Administrative
(e.g., if one senior person	Education	Administrative
does not follow procedure,		
junior person does not)		
Complacency	Auditing	Administrative
	Supervision and training; on-the-spot feedback	Administrative
Unable to contact/reach	Call patient back; try again	Administrative
patient	Layers of	Administrative
	protection/multiple checks	
	(at door and clinic)	
Using out of date script, or	Most up-to-date script kept	Administrative
ad-libbing	online/on Intranet site	
Unaware that interpretation	Better flags for	Administrative
services are needed	interpretation services in	
	system	
Limited resources; time	Volunteer recruitment	Administrative
and staffing challenges		
(including staff turnover)		
Visitor tailgates or	Visual cues and signage	Administrative (with
circumnavigates door		aspects of ISD)
screening		

Degradation Factor	Degradation Factor	Degradation Factor
	Control	Control Type
Financial pressure to open	Consultation with IPAC	Administrative
the warded room	team	
Difficulty managing traffic	Decreased number of	Administrative (with
	people in health centre	aspects of ISD)
	Capacity limits for	Administrative (with
	elevators	aspects of ISD)
	Communications with	Administrative (with
	surrounding area to	aspects of ISD)
	encourage public to avoid	
	health centre (when not	
	needed	
	Health centre doors locked	Administrative
	Assessment of waiting area	Administrative (with
	and capacity limits put in	aspects of ISD)
	place	
	Shutdown food services	Administrative (with
	during key times	aspects of ISD)
	Physical distancing	Administrative (with
	markers/cues on floor	aspects of ISD)
	(Rayner Brown,	1 ,
	VanBerkel, et al., 2021)	
	Posters, easily accessible	Administrative (with
	and downloadable	aspects of ISD)
	(signage) (Rayner Brown,	
	VanBerkel, et al., 2021)	
	Separate entrances for	Administrative (with
	children's and women's	aspects of ISD)
	patients	
Physical distancing not	Physical distancing	Administrative (with
followed	markers/cues on floor	aspects of ISD)
	(Ravner Brown.	mF ···· ,
	VanBerkel, et al., 2021)	
	Posters, easily accessible	Administrative (with
	and downloadable	aspects of ISD)
	(signage) (Ravner Brown,	"Perre ,
	VanBerkel, et al., 2021)	
	Education (Rayner Brown	Administrative
	VanBerkel, et al., 2021)	
Door to AIIR propped	Education	Administrative
open due to lack of	Education	
understanding or work		
demands		

Degradation Factor	Degradation Factor	Degradation Factor
Incorrect risk assessment	Education of the person	Administrative
$(e \sigma should be usin \sigma)$	performing the risk	Administrative
additional precautions	assessment (online learning	
when not)	package, onboarding.	
	orientation)	
	Auditing	Administrative
PPE worn improperly	Pandemic education on	Administrative
	proper use of PPE	
Proper hand washing method not followed	Education, training	Administrative
Proper cleaning procedure not followed	Education, training	Administrative
Inability to identify support	Bracelet system for support	Administrative (with
persons, leading to too	persons who are allowed	aspects of ISD)
many people in health centre	onsite	
Patient does not follow	Physical distancing	Administrative (with
recommendation and goes	markers/cues on floor	aspects of ISD)
to gallery	(Rayner Brown,	
	VanBerkel, et al., 2021)	
	Gallery seating areas	Administrative (with
	removed, and picnic tables	aspects of ISD)
	added outside	
Teaching health centre,	Encouragement to not take	Administrative (with
need to accommodate	entire team into rounds	aspects of ISD)
students and residents	(only 2-3 team members)	
Nurses are usually assigned	Nurses assigned to a	Administrative (with
3-4 patients	COVID-positive patient	aspects of ISD)
	will only work with	
	COVID-positive patients	
	that shift (could only be I	
An allied health team	Encouragement of care that	Administrative (with
includes many members	can be provided without	aspects of ISD)
	direct contact	
Food services usually	Food tray drops at nurses'	Administrative (with
delivers food directly to	station and nurses deliver	aspects of ISD)
patients	food to patients	1 /
-	-	

Degradation Factor	Degradation Factor	Degradation Factor
		Control Type
Difficulty sharing human	Training and onboarding so	Administrative (with
resources due to staff	unregulated persons can	aspects of ISD)
shortages at all health centres	help (i.e., pop-up COVID- 19 testing)	
	Elevate medical students	Administrative (with
	and nursing students to	aspects of ISD)
	perform other work	
	Early licensing of medical	Administrative (with
	students and nursing	aspects of ISD)
	students to increase	
	workforce	
	Re-education fees waived	Administrative (with
	for healthcare workers	aspects of ISD)
	coming out of retirement	
Central laundry down;	Switch to single-use PPE	Administrative (with
unable to provide reusable	from existing suppliers, or	aspects of ISD)
PPE	source appropriate	
	alternates at different	
	suppliers	
Misinformation driving	Peer-to-peer supports	Administrative
fear and anxiety	available	
	"Mythbuster" responses	Administrative
	developed for new	
	pandemic information that	
	could be misinterpreted	
Overwhelming amount of	Face-to-face support	Administrative
information, and	available in real-time	
management of change;	Clear communication,	Administrative
need to rapidly evolve and	emails; Intranet website	
adapt		

3.4 Results and Discussion

Almost all the COVID-19 barriers identified in this bow tie diagram were administrative, and many of these administrative barriers were identified to have aspects of ISD. As described in Chapter 1, it should be noted that although the barriers incorporate ISD principles, they are still administrative. For the barriers that were administrative (with aspects of ISD), most were rooted in the strategy of minimization and the rest were rooted in the strategy of moderation. There was one passive engineered barrier, and none of the identified barriers were active engineered or ISD. Due to the research team's understanding that many COVID-19 barriers rely on human behaviour (Rayner Brown, VanBerkel, et al., 2021), it was expected that most of the barriers identified in this bow tie diagram would be categorized as administrative or administrative (with aspects of ISD). These results show the importance of considering HOF in bow tie diagrams for COVID-19 scenarios, and the benefit of using an ISD mindset (Rayner Brown, VanBerkel, et al., 2021) to incorporate the ISD principles and concepts into barriers of other levels in the HOC (like administrative controls).

Of the identified degradation factors that were related to human behaviour and HOF, the most common categories were situational violation and personal optimizing. The next most common category was unintended violation, followed by mistakes, organizational optimizing, and recklessness and slips and lapses. Situational violations can be described as "I cannot get the job done if I follow the rules, but I did the job anyway", and personal optimizing can be described as "It suited me better to do it that way" (CCPS/EI, 2018, p. 7). With these two categories as the most common, it could be understood that many degradation factors in this bow tie diagram are the result of the COVID-19 barriers being inconvenient or less attractive than the way things were done before the COVID-19 pandemic. Additionally, IWK team members, patients, and family/support persons may be unaware that their actions are degrading the effectiveness of the barriers. These results show the importance of communicating how the COVID-19 barriers fit into the routines of the IWK team members, patients, and family/support persons and how these barriers can fail.

All the degradation factor controls identified in this bow tie were categorized as administrative or administrative (with aspects of ISD). As with the barriers, it was expected that most of the degradation factor controls would be categorized as administrative or administrative (with aspects of ISD). This seems reasonable given that many of the degradation factors were related to human behaviour and HOF.

3.5 Recommendations

Following the bow tie workshops, the IPAC team members were asked the following questions:

- Does the IPAC team have any resources they can share regarding recommended COVID-19 barriers for healthcare settings? This could include resources regarding identifying which barriers to implement, and resources on barriers focused on ISD.
- Are there any barriers that the IPAC considered that were not implemented? If yes, why were they not implemented?
- Does the IPAC team have any additional COVID-19 barriers that they would recommend?

The IPAC team stated that, in addition to extrapolation of what they already knew regarding infection prevention and control safety measures, the team had several meetings with the Nova Scotia Health Authority (NSHA) and attended webinars from the Society for Healthcare Epidemiology of America (SHEA). For more information regarding COVID-19 safety measures, the IPAC team recommended reviewing resources from the Centres for Disease Control and Prevention (CDC) and the Public Health Agency of Canada (PHAC).

Several resources from the CDC (CDC, 2020a, 2020b, 2021a, 2021b, 2021c, 2021d, 2021e) and the PHAC (Government of Canada, 2020) were reviewed and compared to the barriers and degradation factor controls identified in the bow tie diagram. Additionally, other resources considered for this research (BCCDC, 2020) and the lived experiences of the researchers were considered and compared to the bow tie diagram. The following table, Table 3-4, lists additional barriers or degradation factor controls that could be considered by the IWK Health Centre to prevent and mitigate the spread of COVID-19. These barriers and degradation factor controls were also categorized with respect to the HOC. It should be noted that although these controls do exist at the IWK Health Centre, they were not identified for the specific receptor group investigated.

Table 3-4. Additional COVID-19 barriers/degradation factor controls that could be considered by the IWK Health Centre (categorized with respect to the HOC)

Control	Control Type	Reference
When possible, conduct	ISD (Minimization)	(CDC, 2020;
appointments over the telephone (or		Government of Canada,
other telehealth resources) to reduce		2020)
the number of in-person patients		
Place physical barriers (e.g.,	Passive engineered	(BCCDC, 2020; CDC,
plexiglass) in waiting areas		2021b)
Maintain adequate ventilation in	Passive engineered	(CDC, 2021)
single rooms or wards for COVID-19		
patients (60 L/s per patient)		
When possible, avoid procedures that	Administrative	(CDC, 2021)
can generate fine aerosols	(with aspects of	
	ISD)	
Develop and maintain a	Administrative	(CDC, 2020)
communication plan for IWK team		
members, patients, and the		
community (could include virtual		
town halls, daily communications		
with local leadership, calls with		
partners, emails and phone		
conferences with team members, and		
media briefs)		

Chapter 4 BCFSC Bow Tie

This chapter describes the research performed in collaboration with the British Columbia Forest Safety Council (BCFSC). It provides details of the bow tie scope; the development of the bow tie diagram; the evaluation of the barriers, degradation factors, and degradation factor controls; the results and conclusions of this research; and recommended barriers and degradation factor controls from the provinces of Nova Scotia (NS) and British Columbia (BC).

4.1 Bow Tie Scope

As with the bow tie diagram described in Chapter 3, the scope of this bow tie diagram was defined by the hazard and top event. Using terminology that follows the accepted distinction between COVID-19 and SARS-CoV-2, the hazard was "Novel coronavirus in human population" (Rayner Brown, VanBerkel, et al., 2021). BCFSC is the Health and Safety Association (HSA) for the forest sector in British Columbia, Canada; the British Columbian forest sector includes forest harvesting, sawmills, and wood pellet manufacturing. Based on the Dalhousie research team's previous research collaboration with BCFSC and the Wood Pellet Association of Canada (WPAC) (WPAC, n.d.), wood pellet manufacturing facilities were identified as an area of interest and the top event was defined as "Staff member at wood pellet facility contracts COVID-19".

4.2 Bow Tie Development

The bow tie diagram was developed through a "single-analyst" approach by two Dalhousie researchers, including the current author. In this thesis, a "single-analyst" approach describes developing the bow tie without the direct input of the industry partner as in a

collaborative workshop. The researchers collected COVID-19 resources available online from the BCFSC, British Columbia Centre for Disease Control (BCCDC), and WorkSafeBC (BCCDC, 2020; BCFSC, 2020a, 2020b, 2020c, 2020d, 2020e, 2020f, 2020g, 2020h, 2020i, 2020j, 2021; WorkSafeBC, 2020) and reviewed them prior to developing the bow tie.

The researchers met virtually in June 2021 over Microsoft Teams. The bow tie diagram was developed primarily using the resources from the BCFSC, degradation factors and controls for common barriers (Rayner Brown, VanBerkel, et al., 2021), and recommended barriers and degradation factor controls from the provinces of Nova Scotia and British Columbia.

The bow tie diagram was reviewed by a BCFSC representative in October 2021, who provided expert input and clarification on the implementation of COVID-19 barriers in BCFSC wood pellet facilities. Due to space considerations, Figure 4-1 shows an excerpt of the bow tie diagram, including the hazard, top event, threats, and consequences. The full bow tie diagram is available in Appendix B.

Figure 4-1. Excerpt of bow tie diagram representing a staff member at a BCFSC wood pellet facility contracting COVID-19

4.3 Barrier Evaluation

As previously discussed, the objectives of this research include evaluating prevention and mitigation measures currently in place, and exploring additional measures based on inherently safer design (ISD) and the hierarchy of controls (HOC). This barrier evaluation methodology, as described in Chapter 3, was based on the ISD protocol for bow tie analysis (BTA) (Rayner Brown, Hastie, et al., 2021).

4.3.1 Barrier Categorization with Respect to the Hierarchy of Controls

To begin the barrier evaluation for the BCFSC bow tie diagram, the barriers were categorized with respect to the HOC. Table 4-1 provides the COVID-19 barriers identified for the BCFSC wood pellet facility bow tie diagram. Many of the barriers are both prevention and mitigation barriers, and therefore appear on both sides of the bow tie diagram. Many also appear in several threat and consequence lines. In Table 4-1, the barriers are organized in the order in which they first appear in the bow tie diagram, as read from top-left to bottom-right.

 Table 4-1. BCFSC wood pellet facility COVID-19 barriers (categorized with respect to the HOC)

Barrier	Barrier Type
Install physical barriers where feasible when 2 m physical	Passive Engineered
distance between workers is not possible (i.e., plastic	
partition, hanging tarp)	
Vaccination for staff members who are vaccine-eligible	Passive Engineered
Work from home when feasible	Administrative (with
	aspects of ISD)
Work alone when feasible	Administrative (with
	aspects of ISD)
Assess whether task is critical; delay work within 2 m if	Administrative (with
task deemed not critical	aspects of ISD)
When feasible, limit duration of exposure/working within	Administrative (with
2 m (i.e., less than 30 minutes)	aspects of ISD)
Work in pods; organize small groups of workers	Administrative (with
consistently working together (i.e., cohort)	aspects of ISD)
Stagger start times, stop times, and breaks to reduce	Administrative (with
congregation/congestion of workers	aspects of ISD)
Use only your own designated/dedicated tools when	Administrative (with
possible	aspects of ISD)

Barrier	Barrier Type
Complete pre-shift screening (e.g., temperature	Administrative (with
monitoring) and pre-task health assessment	aspects of ISD)
Complete healthy worker assessment, which might	Administrative (with
include not coming in contact with another person that has	aspects of ISD)
COVID-19 symptoms in the past 10 days	
COVID-19 testing of potential or symptomatic individuals	Administrative (with
to prevent transmission	aspects of ISD)
Supervisor oversight and sign-off on critical tasks. These	Administrative (with
higher risk activities may require additional monitoring	aspects of ISD)
More planning during and tooly activities to answer that all	A deministratives (with
tools and processes are well thought out to minimize the	Administrative (with
amount of time workers are in close provimity	aspects of ISD)
Assess whether meetings need to take place face-to-face:	Administrative (with
consider using alternative forms of meetings when	aspects of ISD)
feasible (i.e., teleconferencing, video meetings)	
Ensure there are hand washing or sanitization facilities	Administrative (with
available and close to the activity so that workers can	aspects of ISD)
wash hands prior to the activity	1 /
Maintain 2 m of physical distance	Administrative (with
	aspects of ISD)
Cleaning and infection control practices (e.g.,	Administrative
decontamination of equipment, cleaning of high-touch	
surface areas)	
Good hand hygiene and cough/sneeze etiquette (i.e.,	Administrative
handwashing, avoid touching face, sneeze into elbow)	
Wear face mask or covering in common indoor areas of	Administrative
workplace unless there is a physical barrier between	
Workers	
Consider wearing additional PPE (i.e., N95 Respirator,	Administrative
and goggles food shield with sofety glasses non	
nermeable gloves)	
Complete field level risk assessment (FLRA) form before	Administrative
performing work within 2 m	
Workplace COVID-19 education, training, and signage	Administrative
Assess whether external auditor must visit site; consider if	Administrative (with
audit can be completed using alternative forms of	aspects of ISD)
meetings when feasible (i.e., teleconferencing, video	1
meetings)	
Minimize in-person/on-site document review during	Administrative (with
audits. Auditors can take pictures of documentation or	aspects of ISD)
receive most of the documentation for review prior to	
visiting site	

Barrier	Barrier Type
Only one external auditor permitted on-site at a time;	Administrative (with
minimize number of visitors	aspects of ISD)
Auditor should use their own office supplies	Administrative (with
	aspects of ISD)
Auditor should handle material (i.e., paper) with gloves,	Administrative (with
disinfect, and place in storage for 24 hours	aspects of ISD)
Screening questions for auditors; auditors should follow	Administrative (with
travel protocols (i.e., monitor health and exposures 14	aspects of ISD)
days prior to visiting site)	
Auditor has a disinfection kit that can be used during	Administrative (with
travel and on-site audit activities (i.e., bottled water, dry	aspects of ISD)
towels, disinfection wipes or spray, masks, latex gloves,	
alcohol-based hand sanitizer, large and small Ziploc bags)	
Pre-arrange safe places for interviews; consider doing	Administrative (with
them outside when possible	aspects of ISD)
Auditor should not eat or drink with host personnel at any	Administrative (with
time and should only use their personal food, drink, and	aspects of ISD)
utensils	
Complete Site Pre-Visit Assessment for auditors	Administrative
Complete field level risk assessment (FLRA) form before	Administrative
performing audit activity	
Auditor must wear face-shield, or mask and eye	Administrative
protection, and impervious gloves in addition to the	
required site PPE. Other PPE considerations include N95	
respirator, half mask respirator with current fit testing,	
shaved face and goggles, face shield with safety glasses,	
and non-permeable gloves	
Assess whether visit on-site is necessary	Administrative (with
	aspects of ISD)
Screening questions; visitors and contractors should	Administrative (with
follow travel protocols (i.e., monitor health and exposures	aspects of ISD)
14 days prior to visiting onsite)	
Quarantine or isolate if confirmed positive case	Administrative (with
	aspects of ISD)
Auditor should immediately withdraw from site and	Administrative (with
contact BCFSC if there is any evidence of virus activity	aspects of ISD)
on-site or indications of infections on-site	
Hospitalization	Administrative
Cross-training for all positions at wood pellet facility	Administrative
Increase finished product inventories for short term (to fill	Administrative
orders)	
Strategic alliances to fill orders with product from other	Administrative
producers	

4.3.2 Evaluation of Degradation Factors

The next step was to categorize the degradation factors with respect to the common human and organizational (HOF) categories. As previously discussed, the common HOF categories of degradation factors are slips and lapses, mistakes, unintended violation, situational violations, organizational optimizing, personal optimizing, and recklessness (Rayner Brown, VanBerkel, et al., 2021). Table 4-2 provides the COVID-19 barriers identified for the wood pellet facility and the corresponding degradation factors that are related to HOF.

Barrier	Degradation Factor	Degradation Factor
Install physical barriers where feasible when 2 m physical distance between workers is not possible (i.e., plastic partition, hanging tarp)	Difficulty accommodating barrier in facility space; need to ensure barrier does not impede egress and safe working space	Organizational optimizing or situational violation
	Barrier could impede heating, ventilation, and air conditioning (HVAC) and airflow if not placed or designed properly	Situational violation or mistake
	Barrier materials could be difficult to obtain and/or expensive	Organizational optimizing
	Worker could go around barrier if not designed or placed properly; need to have good ergonomics	Personal optimizing, situational violation, or recklessness
	Barrier not maintained or installed properly, so it falls or has gaps	Organizational optimizing

 Table 4-2. BCFSC wood pellet facility COVID-19 barriers and corresponding degradation factors (categorized with respect to the HOF categories)

Barrier	Degradation Factor	Degradation Factor
		Category
Vaccination for staff members	Vaccine hesitancy	Personal optimizing
who are vaccine-eligible	Vaccine is less effective if	Situational violation
	partially vaccinated, or if	or unintended
	exposed to COVID-19	violation
	within 14 days of	
	vaccination	
	Resource limitations (e.g.,	Situational violation
	staff or vaccine supply)	
Assess whether task is critical;	Incorrect assessment (e.g.,	Unintended violation
delay work within 2 m if task	task deemed critical when it	or mistake
deemed not critical	is not)	
When feasible, limit duration of	Acceptable time window	Situational violation
exposure/working within 2 m	for close contact could vary	or unintended
(i.e., less than 30 minutes)	based on different factors	violation
	(e.g., distance or	
	Differentee des te	
stagger start times, stop times,	Difficulty due to	Organizational
and breaks to reduce	operational demands (i.e.,	optimizing
workers	need a certain number of	
workers	once)	
Use only your own	Limited workplace supply	Organizational
designated/dedicated tools	of tools	ontimizing
when possible		optimizing
Complete pre-shift screening	Worker could be	Situational violation
(e.g., temperature monitoring)	asymptomatic or develop	or unintended
and pre-task health assessment	symptoms later in shift	violation
Complete healthy worker	Delay in knowing that	Situational violation
assessment, which might	worker was in close contact	or unintended
include not coming in contact	with someone who	violation
with another person that has	subsequently tested	
COVID-19 symptoms in the	positive; delay in knowing	
past 10 days	of potential COVID-19	
	exposure	
COVID-19 testing of potential	Widespread, rapid,	Situational violation
or symptomatic individuals to	asymptomatic COVID-19	
prevent transmission	testing (i.e., pop-up centres	
	like Nova Scotia)	
	unavailable or low testing	
	capabilities	
	Worker may not have been	Unintended violation
	instructed to self-isolate	or mistake
	while waiting for test	
	results	

Barrier	Degradation Factor	Degradation Factor
		Category
Supervisor oversight and sign-	Supervisors are busy and	Organizational
off on critical tasks. These	carry most of the	optimizing or
higher risk activities may	responsibilities of activities;	situational violation
require additional monitoring	difficulty dedicating extra	
during the task to minimize	time for review due to	
potential exposures	operational demands	
	Complacency	Personal optimizing
More planning during pre-task	Difficulty dedicating extra	Organizational
activities to ensure that all tools	time for review due to	optimizing or
and processes are well thought	operational demands, or if	situational violation
out to minimize the amount of	tasks are time sensitive	
time workers are in close	No extra time for review	Situational violation
proximity	during emergencies	
Ensure there are hand washing	Cold weather (seasonal)	Situational violation
or sanitization facilities	reduces feasibility of	
available and close to the	temporary hand washing	
activity so that workers can	stations	
wash hands prior to the activity	Hand washing station runs	Situational violation
	out of supplies (i.e., water,	
	soap, towels)	
	Limited facility spacing and	Situational violation
	difficulty finding a safe	
	location for hand washing	
	station	
Maintain 2 m of physical	Difficulty maintaining 2 m	Situational violation
distance	physical distance during	
	maintenance activities	
	Difficulty judging 2 m	Unintended violation
	distance	or mistake
Cleaning and infection control	Run out of cleaning	Situational violation
practices (e.g., decontamination	supplies	
of equipment, cleaning of high-		
touch surface areas)		
Good hand hygiene and	Proper hand hygiene	Unintended violation,
cough/sneeze etiquette (i.e.,	method not followed	mistake, situational
handwashing, avoid touching		violation, or personal
tace, sneeze into elbow)		optimizing
Wear face mask or covering in	Face mask worn improperly	Unintended violation,
common indoor areas of		mistake, situational
workplace unless there is a		violation, or personal
pnysical barrier between		optimizing
workers		

Barrier	Degradation Factor	Degradation Factor
		Category
Consider wearing additional	Run out of PPE supplies	Situational violation
PPE (i.e., N95 Respirator, half	PPE is different or out of	Unintended violation
mask respirator with current fit	the norm; confusion of	or mistake
testing, shaved face and	when to wear or how to	
goggles, face shield with safety	wear	
glasses, non-permeable gloves)	Fit test expired, or worker	Situational violation
	was never fit tested	
	Personnel do not want to	Personal optimizing
	wear PPE (i.e.,	
	uncomfortable, makes task	
~ 1	more difficult)	
Completion of field level risk	Difficulty dedicating extra	Organizational
assessment (FLRA) form	time for review due to	optimizing or
before performing work within	operational demands, or if	situational violation
2 m	tasks are time sensitive	TT ' 4 1 1 ' 1 4'
	Criteria for judging task	Unintended violation
	criticality is subjective; no	or mistake
Workplace COVID 10	Difficulty revising	Unintended violation
advention training and signage	documents/signage based	Unintended violation
cudeation, training, and signage	on changes to guidelines	
	and case numbers	
	Signage becomes damaged	Unintended violation
	in manufacturing	or situational violation
	environment	
	Difficulty performing	Situational violation
	training in timely manner	or organizational
	with limited number of	optimizing
	people in meetings	1 0
Assess whether external auditor	Criteria for judging audit	Unintended violation
must visit site; consider if audit	criticality is subjective; no	or mistake
can be completed using	criteria listed in guidelines	
alternative forms of meetings	Technological challenges	Situational violation
when feasible (i.e.,	associated with	
teleconferencing, video	teleconferencing (i.e.,	
meetings)	internet connection), or out	
	of date equipment for	
	teleconferencing	

Barrier	Degradation Factor	Degradation Factor
		Category
Minimize in-person/on-site	Difficulty planning and	Organizational
document review during audits.	managing time to send	optimizing or
Auditors can take pictures of	documentation ahead of	situational violation
documentation or receive most	audit, or communicating to	
of the documentation for	personnel what	
review prior to visiting site	documentation is required	
	for audit	
Only one external auditor	Difficulty coordinating and	Organizational
permitted on-site at a time;	arranging audits with	optimizing
minimize number of visitors	operation demands if a	
	completed	
	More than one audit	Unintended violation
	scheduled at once: accident:	or mistake
	miscommunication	of mistake
	Difficulty rescheduling	Situational violation
	audit due to on-site	
	infection activity	
Auditor should use their own	Difficulty	Personal optimizing
office supplies	bringing/traveling with	or situational violation
	office supplies; auditor runs	
	out of office supplies	
Auditor should handle material	Not followed because	Unintended violation,
(i.e., paper) with gloves,	auditor forgot, or auditor	organizational
disinfect, and place in storage	urgently needs to look at	optimizing, situational
for 24 hours	document	violation, or slip or
	A 1'4 111	
Screening questions for	Auditor could be	Unintended violation
auditors; auditors should follow	asymptomatic of develop	
health and exposures 14 days	Auditor not honost about	Porsonal ontimizing
prior to visiting site)	travel history or symptoms	or recklessness
Auditor has a disinfection kit	Disinfection kit runs out of	Unintended violation
that can be used during travel	supplies	ommended violation
and on-site audit activities (i.e.,	Difficulty	Personal optimizing
bottled water. dry towels.	bringing/traveling with	r ensenar optimizing
disinfection wipes or spray,	disinfection kit	
masks, latex gloves, alcohol-		
based hand sanitizer, large and		
small Ziploc bags)		

Barrier	Degradation Factor	Degradation Factor
		Category
Pre-arrange safe places for	Difficulty performing	Situational violation
interviews; consider doing them	interviews outside due to	
outside when possible	weather conditions	
	Difficulty finding extra	Situational violation
	space for interviews	
	Available space is limited	Situational violation
	by equipment needed to	
	perform interview (i.e.,	
	electricity, seat, desk)	
Auditor should not eat or drink	Limited areas in facility	Situational violation
with host personnel at any time	that are safe for eating	
and should only use their	Difficulty	Personal optimizing
personal food, drink, and	bringing/traveling with	
utensils	personal food, drink, and	
	utensils	
Complete Site Pre-Visit	Auditor not honest about	Personal optimizing
Assessment for auditors	travel history or symptoms	or recklessness
Complete field level risk	Difficulty dedicating extra	Organizational
assessment (FLRA) form	time for review due to	optimizing or
before performing audit activity	operational demands, or if	situational violation
	tasks are time sensitive	
	Criteria for judging task	Unintended violation
	criticality is subjective; no	or mistake
Auditor must weer face shield	Run out of DDE supplies	Situational violation
Auditor must wear face-smeld,	Run out of PPE supplies	Uninter ded violation
impervious gloves in addition	the normal confusion of	or mistalea
to the required site PPF. Other	when to wear or how to	of mistake
PPE considerations include	when to wear of now to	
N95 respirator half mask	Fit test expired or if	Situational violation
respirator with current fit	someone was never fit	Situational violation
testing, shaved face and	tested and they need to be	
goggles, face shield with safety	fit tested now	
glasses, and non-permeable	Personnel do not want to	Personal ontimizing
gloves	wear PPE (i e	r ersoner optimizing
6	uncomfortable, makes task	
	more difficult)	
Screening questions: visitors	Visitor/contractor could be	Unintended violation
and contractors should follow	asymptomatic or develop	
travel protocols (i.e., monitor	symptoms later in visit	
health and exposures 14 days	Visitor/contractor is not	Personal optimizing
prior to visiting onsite)	honest about travel history	or recklessness
	or symptoms	

Barrier	Degradation Factor	Degradation Factor
		Category
Quarantine or isolate if	Quarantine/isolation	Personal optimizing,
confirmed positive case	guidelines not followed	unintended violation,
	because it is difficult for	mistake, or
	individuals to quarantine or	recklessness
	isolate by themselves;	
	misunderstanding of	
	guidelines; lack of support	
	to take time off work;	
	guidelines not followed	
	deliberately	
Auditor should immediately	Difficulty detecting virus	Situational violation
withdraw from site and contact	activity or infections	
BCFSC if there is any evidence	without widespread testing	
of virus activity on-site or		
indications of infections on-site		
Hospitalization	Resource/bed shortages	Situational violation
	Individual does not get to	Unintended violation
	hospital in time due to a	
	very sudden onset of	
	serious symptoms	
	Individual cannot afford	Situational violation
	ambulance fees	
	Individual does not go to	Personal optimizing,
	hospital because they do	unintended violation,
	not have support or	or mistake
	childcare at home, not able	
	to leave to go to hospital;	
	individual may think they	
	are not that sick	

In the province of Nova Scotia, pop-up testing sites offer on-site rapid antigen testing (also called point-of-care testing) services and take-home rapid antigen testing kits. Testing is available to all ages and no screening or assessment is required, but supply is based on availability so testing kits are limited to one per person. The pop-up sites visit areas across the province that have limited access to COVID-19 testing or that have an increased rate of COVID-19 cases (Nova Scotia Health, n.d.).

4.3.3 Evaluation of Degradation Factor Controls

The next step in the barrier evaluation was to evaluate the degradation factor controls. Similar to the barriers, these were categorized with respect to the HOC. Table 4-3 provides the COVID-19 barrier degradation factors and the corresponding degradation factor controls.

Degradation Factor	Degradation Factor Control	Degradation Factor Control Category
Difficulty accommodating barrier in facility space; need to ensure barrier does not impede egress and safe working space	Identify and select the appropriate type of barrier for application, if feasible, for space	ISD (simplification)
Barrier could impede heating, ventilation, and air conditioning (HVAC) and airflow if not placed or designed properly	Consult an HVAC specialist to ensure that HVAC is running properly and is balanced correctly for the space	Administrative
Barrier materials could be difficult to obtain and/or expensive	Supply chain management	Administrative
Worker could go around barrier if not designed or placed properly; need to have good ergonomics	Identify and select the appropriate type of barrier for application, if feasible, for space	ISD (simplification)
Barrier not maintained or installed properly, so it falls or has gaps	Use a robust design with right materials for application that would be easy to maintain and will not fall easily	ISD (simplification)

Table 4-3. BCFSC wood pellet facility COVID-19 barrier degradation factors and corresponding degradation factor controls (categorized with respect to the HOC)

Degradation Factor	Degradation Factor	Degradation Factor
	Control	Control Category
Vaccine hesitancy	Education and outreach	Administrative
	(e.g., advertising, social	
	media campaigns)	
	Target under-immunized	Administrative
	sub-groups with tailored	
	interventions (MacDonald	
	& Dubé, 2018)	
	Host vaccine clinic on-site	Administrative (with
		aspects of ISD)
	Allow workers time off to	Administrative
	get vaccinated	
	Remind patients by text,	Administrative
	email, or mail as	
	appropriate (MacDonald &	
	Dubé, 2018)	
Vaccine is less effective if	Follow protocols and	Administrative
partially vaccinated, or if	public health guidelines	
exposed to COVID-19		
within 14 days of		
vaccination		
Resource limitations (e.g.,	Support from other groups	Administrative
staff or vaccine supply)	(i.e., military, Red Cross)	
Incorrect assessment (e.g.,	Education, training	Administrative
task deemed critical when it	Auditing	Administrative
is not)		
Acceptable time window	Minimize close contact as	Administrative (with
for close contact could vary	much as possible in all	aspects of ISD)
based on different factors	circumstances	
(e.g., distance or		
transmissibility of virus)		
Difficulty due to	Management of change	Administrative
operational demands (i.e.,	Workers allowed to take	Administrative
need a certain number of	breaks/lunch at their own	
people to be working at	discretion	
once)	Workers allowed to take	Administrative (with
	lunch in cars	aspects of ISD)
Limited workplace supply	It feasible, purchase more	Administrative
of tools	tools	
Worker could be	Workers self-monitor for	Administrative
asymptomatic or develop	COVID-19 symptoms and	
symptoms later in shift	tollow all protocols	
	Facilitate the process for	Administrative (with
	workers to report if they	aspects of ISD)
	are feeling unwell	

Degradation Factor	Degradation Factor Control	Degradation Factor Control Category	
Delay in knowing that worker was in close contact with someone who subsequently tested positive; delay in knowing of potential COVID-19 exposure	Workers self-monitor for COVID-19 symptoms and follow all protocols	Administrative	
Widespread, rapid, asymptomatic COVID-19 testing (i.e., pop-up centres like Nova Scotia) unavailable or low testing capabilities	Point-of-care diagnostic testing for remote, rural, and Indigenous communities (BCCDC, 2021)	Administrative (with aspects of ISD)	
Worker may not have been instructed to self-isolate while waiting for test results	Workers follow COVID-19 protocols and guidelines	Administrative	
Supervisors are busy and carry most of the responsibilities of activities; difficulty dedicating extra	Leadership support and strong COVID-19 safety culture to hold supervisors to high standards	Administrative	
time for review due to operational demands	Management of change	Administrative	
Complacency	Leadership support and strong COVID-19 safety culture to hold supervisors to high standards	Administrative	
	Audits	Administrative	
Difficulty dedicating extra	Management of change	Administrative	
time for review due to operational demands, or if tasks are time sensitive	Leadership support and strong COVID-19 safety culture to emphasize importance of this	Administrative	
	Process is mainly automatic	Administrative	
Cold weather (seasonal) reduces feasibility of	Install hand washing stations inside facility	Administrative	
temporary hand washing stations	Strategically install hand sanitizer stations indoors	Administrative (with aspects of ISD)	
Hand washing station runs out of supplies (i.e., water,	Use hand sanitizer as a back-up	Administrative (with aspects of ISD)	
soap, towers)	Supply chain management	Administrative	
Degradation Factor	Degradation Factor	Degradation Factor	
-------------------------------	-----------------------------	-------------------------------	--
	Control	Control Category	
Limited facility spacing and	Strategically install hand	Administrative (with	
difficulty finding a safe	sanitizer stations indoors	aspects of ISD)	
location for hand washing			
station			
Difficulty maintaining 2 m	Workers wear face masks	Administrative	
physical distance during	and follow other protocols		
maintenance activities			
Difficulty judging 2 m	Floor or ground markings	Administrative (with	
distance	TT (aspects of ISD)	
	Use common measurement	Administrative (with	
	aids (i.e., length of a 2-	aspects of ISD)	
	fridae ata)		
Pup out of clooping	Supply chain management	Administrativa	
supplies	Supply chain management	Administrative	
Proper hand hygiene	Education, training	Administrative	
method not followed	_		
Face mask worn improperly	Education	Administrative	
Must remove mask when	Workers follow other	Administrative	
eating and drinking	protocols and guidelines		
Run out of PPE supplies	Supply chain management	Administrative	
PPE is different or out of	Education and training	Administrative	
the norm; confusion of			
when to wear or how to			
wear			
Fit test expired, or worker	Fit test program	Administrative	
was never fit tested	management	A during interactions (arrith	
Personnel do not want to	bigh quality DDE that is	Administrative (with	
wear FFE (i.e.,	more comfortable to wear	aspects of ISD)	
more difficult)	and more suitable for tasks		
Difficulty dedicating extra	Management of change	Administrative	
time for review due to	Leadership support and	Administrative	
operational demands, or if	strong COVID-19 safety		
tasks are time sensitive	culture to emphasize		
	importance of this		
Criteria for judging task	Education, training	Administrative	
criticality is subjective; no			
criteria listed in guidelines			
Difficulty revising	Management of change	Administrative	
documents/signage based			
on changes to guidelines			
and case numbers			

Degradation Factor	Degradation Factor Control	Degradation Factor	
Signage becomes damaged	Use communication tools	Administrative (with	
in manufacturing	that are rugged and place	aspects of ISD)	
environment	them in appropriate		
	locations		
Difficulty performing	Use virtual meetings and	Administrative (with	
training in timely manner	emails to communicate	aspects of ISD)	
with limited number of	important information		
people in meetings with	Provide one-on-one	Administrative	
limited number of people at	education & training		
once in meeting			
Technological challenges	It feasible, buy up-to-date	Administrative (with	
associated with	teleconference equipment	aspects of ISD)	
internet connection) or out	and install		
of data aquinment for			
teleconferencing			
Difficulty planning and	Project management	Administrative	
managing time to send	gg		
documentation ahead of			
audit, or communicating to			
personnel what			
documentation is required			
for audit			
Difficulty coordinating and	Project management	Administrative	
arranging audits with			
operation demands if a			
number of audits must be			
completed		A 1 • • , ,•	
Auditor not honest about travel history or symptoms	Code of ethics signed by auditors	Administrative	
5 5 1	Auditor could not be	Administrative	
	allowed to perform future		
	audits		
Difficulty performing	If interviews must be	Passive Engineered	
interviews outside due to	completed indoors, ensure		
weather conditions	HVAC/ventilation is		
	sufficient; open window		
	Follow other protocols and	Administrative	
	guidelines		
Available space is limited	If interview must be	Passive Engineered	
by equipment needed to	completed indoors, ensure		
perform interview (i.e.,	HVAC/ventilation is		
electricity, seat, desk)	sufficient; open window		

Degradation Factor	Degradation Factor	Degradation Factor	
	Control	Control Category	
Limited areas in facility that are safe for eating	Follow other protocols and guidelines	Administrative	
Visitor/contractor could be asymptomatic or develop symptoms later in visit	Visitors/contractors self- monitor for COVID-19 symptoms and follow all protocols	Administrative	
	Facilitate process for visitors/contractors to report if they are feeling unwell	Administrative (with aspects of ISD)	
Quarantine/isolation guidelines not followed because it is difficult for	Education and enforcement of quarantine/isolation guidelines	Administrative	
individuals to quarantine or isolate by themselves; misunderstanding of guidelines; lack of support to take time off work; guidelines not followed deliberately	Support from government, workplace, friends, and family	Administrative	
Difficulty detecting virus activity or infections without widespread testing	Point-of-care diagnostic testing for remote, rural, and Indigenous communities (BCCDC, 2021)	Administrative (with aspects of ISD)	
Resource/bed shortages	Support from other groups (i.e., military, Red Cross)	Administrative	
	Eliminate or postpone non- essential services	Administrative (with aspects of ISD)	
	Share resources with other jurisdictions, travel (i.e., nurses, medical supplies)	Administrative	
	Use triage and prioritize patients	Administrative	
Individual cannot afford ambulance fees	Waive ambulance fee for COVID-19 patients (Gorman, 2021)	Administrative (with aspects of ISD)	

In May 2021, the Nova Scotia government waived ambulance fees for people in COVIDrelated emergencies. This decision, made during the province's third wave of COVID-19, followed reports that several people did not call for help due to concerns about the cost; the ambulance fee for Nova Scotians with a valid health card is \$146.55 (Gorman, 2021).

The BCCDC provides guidance for using point-of-care testing (also known as rapid testing) to "assist with the diagnosis of symptomatic individuals within rural, remote, First Nations and Indigenous communities in B.C. where laboratory-based diagnostic testing is not readily available" (BCCDC, 2021). This guidance recognizes that remote, rural, First Nations and Indigenous communities experience challenges and barriers in accessing laboratory-based testing and care (BCCDC, 2021).

4.4 Results and Discussion

Almost all the COVID-19 barriers identified in this bow tie diagram were administrative, and many of these administrative barriers were identified to have aspects of ISD. As described in Chapter 1, it should be noted that although the barriers incorporate ISD principles, they are still administrative. For the barriers that were administrative (with aspects of ISD), most were rooted in the strategy of minimization, and some were rooted in the strategies of simplification, moderation, and substitution. There were two passive engineered barriers, and none of the identified barriers were active engineered or ISD. Due to the research team's understanding that many COVID-19 barriers rely on human behaviour (Rayner Brown, VanBerkel, et al., 2021), it was expected that most of the barriers identified in this bow tie diagram would be categorized as administrative. These results show the importance of considering HOF in bow tie diagrams for COVID-19 scenarios, and the benefit of using an ISD mindset (Rayner Brown, VanBerkel, et al., 2021) to incorporate the ISD principles and concepts into barriers of other levels in the HOC (like administrative controls).

Of the identified degradation factors that were related to human behaviour and HOF, the most common category was situational violation. The next most common category was unintended violation, followed by personal optimizing, mistakes, organizational optimizing, recklessness, and slips or lapses. Situational violations can be described as "I cannot get the job done if I follow the rules, but I did the job anyway" (CCPS/EI, 2018). With this category as the most common, it could be understood that many degradation factors in this bow tie diagram are the result of the COVID-19 barriers being inconvenient, or the result of situations that are out of the staff members' control. Additionally, wood pellet facility staff members may be unaware that their actions are degrading the effectiveness of the barriers. These results show the importance of communicating how the COVID-19 barriers fit into the routines of staff members and how these barriers can fail, and the benefit of working to make the COVID-19 barriers as convenient as possible.

Most of the degradation factor controls identified in this bow tie were categorized as administrative, and many of these administrative controls were identified to have aspects of ISD. As with the barriers, it was expected that most of the degradation factor controls would be categorized as administrative or administrative (with aspects of ISD). This also seems reasonable given that many of the degradation factors were related to human behaviour and HOF. Two of the degradation factor controls were identified as passive engineered and three of the degradation factor controls were identified as ISD, adhering to the strategy of simplification. These ISD degradation factor controls demonstrate overcoming the degradation factors by helping to make the barriers more robust.

4.5 Recommendations

As described in Section 4.2, the development of this bow tie diagram included recommended barriers and degradation factor controls from the provincial governments of Nova Scotia and British Columbia. These recommendations are listed in the following table, Table 4-4. It should be noted that these measures may be in place in the BCFSC wood pellet facilities, but they were not identified in the BCFSC COVID-19 resources available at the time of the workshop.

Table 4-4. Additional COVID-19 barriers/degradation factor controls that could be considered by the BCFSC wood pellet facility (categorized with respect to the HOC)

Control	Control Type	Reference
Waive ambulance fee for	Administrative (with	(Gorman, 2021)
COVID-19 patients	aspects of ISD)	
(Gorman, 2021)		
Pop-up testing centres like	Administrative (with	
in Nova Scotia	aspects of ISD)	
Point-of-care diagnostic	Administrative (with	(BCCDC, 2021)
testing for remote, rural,	aspects of ISD)	
and Indigenous		
communities		

Chapter 5 Chemical Process Industry Barriers

This chapter describes the research performed regarding COVID-19 safety measures in the chemical process industry (CPI). It provides details of the research scope; the identification of barriers, degradation factors, and degradation factor controls; the evaluation of the barriers, degradation factors, and degradation factor controls; and the results and conclusions of this research.

5.1 Scope

Even though a bow tie diagram was not prepared, the scope of this analysis was similarly defined by the hazard and top event. As with the bow tie diagrams described in Chapters 3 and 4, the hazard was "Novel coronavirus in human population" (Rayner Brown, VanBerkel, et al., 2021). Identified through the Dalhousie research team's CPI network, the Bluewater Association for Safety, Environment, and Sustainability (BASES) facilitates the exchange of information in the Sarnia-Lambton area of Ontario to protect workers, the public, and the environment. BASES is supported by the members of three organizations: the Sarnia-Lambton Community Awareness and Emergency Response (CAER), the Sarnia-Lambton Industrial Educational Cooperative (IEC), and the Sarnia-Lambton Environmental Association (SLEA) (BASES, n.d.-b). The BASES Member Directory (BASES, n.d.-a) currently lists 26 members, including several companies in the Sarnia refining and petrochemical sectors (BASES, n.d.-c). A search into the publicly available online COVID-19 resources of BASES members in the Sarnia-Lambton Petrochemical and Refining Complex (Sarnia-Lambton Economic Partnership, n.d.) revealed many Suncor COVID-19 guidelines and protocols. Therefore, the top event was defined as "Staff member at Suncor refinery in Sarnia, Ontario contracts COVID-19".

5.2 Barrier Identification and Evaluation

The COVID-19 barriers in place at the Suncor refinery in Sarnia, Ontario, were identified through the publicly available online Suncor COVID-19 resources, including guidelines and protocols. The corresponding degradation factors and degradation factor controls were identified using the same online resources, degradation factors and controls for common barriers (Rayner Brown, VanBerkel, et al., 2021), and knowledge previously accumulated during this research.

The objectives of this research include evaluating prevention and mitigation measures currently in place, and exploring additional measures based on inherently safer design (ISD) and the hierarchy of controls (HOC). As before, this barrier evaluation methodology was based on the ISD protocol for bow tie analysis (BTA) (Rayner Brown, Hastie, et al., 2021). The first step is to examine and categorize the barriers with respect to the HOC. The next step is to evaluate the degradation factors and degradation controls (Rayner Brown, Hastie, et al., 2021).

5.2.1 Barrier Categorization with Respect to the Hierarchy of Controls

To begin the barrier evaluation for the identified COVID-19 barriers, the barriers were categorized with respect to the HOC. Table 5-1 provides the COVID-19 barriers identified for the Suncor refinery in Sarnia. Many of the barriers, if presented in a bow tie diagram, would be both prevention and mitigation barriers and would, therefore, appear on both sides of the bow tie diagram.

Barrier	Categorization	Reference
Staff complete pre-access self	Administrative (with	(Suncor, n.da)
assessment prior to reporting	aspects of ISD)	(Suncor, 2020d)
to site		
Transition staff levels to	Administrative (with	(Suncor, n.db)
essential personnel only at all	aspects of ISD)	
operations and offices (until		
further notice)		
*Note: essential means "those		
who absolutely need to be		
there to do their job and keep		
critical operations running		
safely and reliably"		
Additional screening	Administrative (with	(Suncor, n.db)
measures and compulsory	aspects of ISD)	
self-isolation measure for		
employees who have traveled		
outside of their country of		
residence or been exposed to		
confirmed COVID-19 cases		
Increased cleaning and	Administrative	(Suncor, n.db)
sanitization protocols		
Staff members participate in	Administrative	(Suncor, n.db)
temperature screening at site		(Suncor, 2020e)
Wherever possible, maintain	Administrative (with	(Suncor, 2020c)
physical distancing of 2 m (6	aspects of ISD)	(Suncor, 2020b)
II) between workers		
Hold meetings via	ISD (Substitution)	(Suncor, 2020c)
leams/Skype or telephone		
Instead of in-person	A 1 * * 4 4*	
Practice good hand hygiene	Administrative	(Suncor, 2020c)
and sneeze/cough etiquette		
Wherever possible, avoid	Administrative (with	(Suncor, 2020c)
race-to-race engagements with	aspects of ISD)	
Wherever rescible evoid	A deministrativa (with	(Sumaan 2020a)
wherever possible, avoid	Administrative (with	(Suncor, 2020c)
Wherever reaging answer	A dministrative (with	(Sumaan 2020a)
graatings are touchloss	Administrative (with	(Suncor, 2020c)
Wherever possible implement	A dministrative (with	$(Supcor 2020_{0})$
measures to limit contact	aspects of ISD)	(Suncor, 2020C)
during meals and breaks		
during means and breaks		

Table 5-1. Sarnia refinery COVID-19 barriers (categorized with respect to the HOC)

Barrier	Categorization	Reference
Limit mass gatherings per	Administrative (with	(Suncor, 2020c)
guidance from regional health	aspects of ISD)	
authority		
Contractors conduct pre-	Administrative (with	(Suncor, 2020a)
access self assessment prior to	aspects of ISD)	
reporting to site		
Contractors participate in	Administrative	(Suncor, 2020a)
temperature screening at site		
Contractors report	Administrative	(Suncor, 2020a)
symptomatic or confirmed		
COVID-19 positive test		
results and close contact with		
a confirmed COVID-19 case		

5.2.2 Evaluation of Degradation Factors

The next step was to evaluate the degradation factors. As previously discussed, in the context of the COVID-19 pandemic, many degradation factors are related to human behaviour and human and organizational factors (HOF). The common HOF categories of degradation factors are slips and lapses, mistakes, unintended violation, situational violations, organizational optimizing, personal optimizing, and recklessness (Rayner Brown, VanBerkel, et al., 2021). Table 5-2 provides the COVID-19 barriers identified for the Suncor refinery in Sarnia and the corresponding degradation factors that are related to HOF.

 Table 5-2. Sarnia refinery COVID-19 barriers and corresponding degradation factors (categorized with respect to the HOF categories)

Barrier	Degradation Factor	HOF Category	Reference
Staff complete pre-	Worker is	Situational	(Suncor, n.da)
access self	asymptomatic	violation	(Suncor, 2020d)
assessment prior to reporting to site	Worker not honest about travel history or symptoms	Personal optimizing	

Barrier	Degradation Factor	HOF Category	Reference
Transition staff	Remote access	Situational	(Suncor, n.db)
levels to essential	connection issues	violation	
personnel only at all			
operations and			
offices (until further			
notice)		D	(2 1 1)
Additional	Worker not honest	Personal	(Suncor, n.db)
screening measures	about travel history or	optimizing	
and compulsory	exposure history		
self-isolation			
measure for			
baya travalad			
outside of their			
country of residence			
or been exposed to			
confirmed COVID-			
19 cases			
Increased cleaning	Proper cleaning	Unintended	(Suncor, n.db)
and sanitization	procedure not	violation, mistake,	(
protocols	followed	situational	
1		violation, or	
		organizational	
		optimizing	
Staff members	Worker is	Situational	(Suncor, n.db)
participate in	asymptomatic	violation	(Suncor, 2020e)
temperature	Proper temperature	Unintended	(Suncor, n.db)
screening at site	screening procedure	violation, mistake,	(Suncor, 2020e)
	not followed	situational	
		violation, or	
		organizational	
		optimizing	
Wherever possible,	Physical distancing	Situational	(Suncor, 2020c)
physical distancing	between workers not	violation	(Suncor, 2020b)
of 2 m (6 ft)	possible	TT ' 4 1 1	
between workers	Physical distancing		(Rayner Brown,
	not followed	violation, mistake,	vanBerkel, et al.,
		or personal	2021)
Hold mostings via	Pamata agagas	Situational	(Sum cor 2020c)
Teams/Skype or	connection issues	violation	(Suncor, 2020C)
telephone instead of		violation	
in-person			
In Person			

Barrier	Degradation Factor	HOF Category	Reference
Practice good hand	Proper hand washing	Unintended	(Suncor, 2020c)
hygiene and	procedure not	violation, mistake,	
sneeze/cough	followed	situational	
etiquette		violation, or	
		personal	
		optimizing	
Limit mass	Regional health	Unintended	(Suncor, 2020c)
gatherings per	authority guidance not	violation, mistake,	
guidance from	followed	situational	
regional health		violation, or	
authority		organizational	
		optimizing	
Contractors conduct	Contractor not honest	Personal	(Suncor, 2020a)
pre-access self	about travel history or	optimizing	
assessment prior to	symptoms		
reporting to site			

5.2.3 Evaluation of degradation factor controls

The next step in the barrier evaluation was to evaluate the degradation factor controls. Similar to the barriers, these were categorized with respect to the HOC. Table 5-3 provides the COVID-19 barrier degradation factors and the corresponding degradation factor controls identified for the Suncor refinery in Sarnia.

Degradation Factor	Degradation Factor	Degradation	Reference
	Control	Factor Control	
		Туре	
Proper cleaning	Education, training	Administrative	(Suncor, n.db)
procedure not			
followed			
Proper temperature	Education, training	Administrative	(Suncor, n.db)
screening procedure			(Suncor, 2020e)
not followed			
Physical distancing	Adjust work plan to	Administrative	(Suncor, 2020c)
between workers not	include Physical	(with aspects of	(Suncor, 2020b)
possible	Distancing	ISD)	
	Requirements (e.g.,		

Table 5-3. Sarnia refinery COVID-19 barrier degradation factors and	
corresponding degradation factor controls (categorized with respect to the HOC)

	one worker instead of		
	two)		
	Apply physical	Passive	(Suncor, 2020c)
	barriers (e.g.,	Engineered	(Suncor, 2020b)
	plexiglass, cubicles, welding curtains)		
	Plan work to	Administrative	(Suncor, 2020b)
	minimize time and	(with aspects of	
	number of workers	ISD)	
	required	,	
	Adjust working	Administrative	(Suncor, 2020b)
	conditions or worker	(with aspects of	
	positions so that	ISD)	
	workers are not face-		
	to-face		
	Use PPE along with	Administrative	(Suncor, 2020b)
	other controls		
	wherever possible		
Physical distancing	Education	Administrative	(Rayner Brown,
not followed			VanBerkel, et al.,
	× ·· · · · ·		2021)
	Visual cues and	Administrative	(Rayner Brown,
	signage	(with aspects of	VanBerkel, et al.,
D 1 1 1		ISD)	2021)
Proper hand washing	Education, training	Administrative	(Suncor, 2020c)
followed			
Ionowed			
Degradation Factor	Degradation Factor	Degradation	Reference
	Control	Factor Control	
		Туре	
Regional health	Education, training	Administrative	(Suncor, 2020c)
authority guidance	Signage	Administrative	(Rayner Brown,
not followed		(with aspects of	VanBerkel, et al.,
		ISD)	2021)

5.3 Results and Discussion

Almost all the COVID-19 barriers identified in this bow tie analysis were administrative, and many of these administrative barriers were identified to have aspects of ISD. The barriers that were administrative (with aspects of ISD) were rooted in the principles of minimization and moderation; since the hazard (novel coronavirus in human population) cannot be eliminated, these administrative barriers incorporate minimization by aiming to minimize the number of people on-site, and they incorporate moderation through the limitation of effects (transmission of COVID-19). There was one ISD barrier, adhering to the principle of substitution, and none of the identified barriers were passive engineered or active engineered. It should be noted that, when employing the principle of substitution, the risks associated with the substitution must be identified and assessed. For example, substituting in-person meetings for teleconferencing and allowing staff introduces new challenges relate to remote access. As previously discussed, it was expected that most of the barriers identified would be categorized as administrative (Rayner Brown, VanBerkel, et al., 2021). These results show the importance of considering HOF in COVID-19 bow tie analysis, and the benefit of incorporating the ISD principles and concepts into barriers of other levels in the HOC (like administrative controls) using an ISD mindset (Rayner Brown, VanBerkel, et al., 2021).

Of the identified degradation factors that were related to human behaviour and HOF, the most common category was situational violation. The next most common categories were unintended violation, mistakes, personal optimizing, and organizational optimizing. None of the identified degradation factors were categorized as recklessness or slips or lapses. Situational violations can be described as "I cannot get the job done if I follow the rules, but I did the job anyway" (CCPS/EI, 2018). With this category as the most common, it could be understood that many degradation factors identified are the result of the COVID-19 barriers being inconvenient, or the result of situations that are out of the refinery staff

members' control. These results show the importance of communicating how the COVID-19 barriers fit into the routines of refinery staff members and how these barriers can fail, and the benefit of working to make the COVID-19 barriers as convenient as possible.

Most of the degradation factor controls identified in this bow tie analysis were categorized as administrative, and many of these administrative controls were identified to have aspects of ISD. As with the barriers, it was expected that most of the degradation factor controls would be categorized as administrative or administrative (with aspects of ISD). This also makes sense given that many of the degradation factors were related to human behaviour and HOF. One of the degradation factor controls was identified as passive engineered, and none were identified as ISD or active engineered.

Chapter 6 Bow Tie Communication Tools

This chapter describes the communication tools based on the bow tie diagram developed in collaboration with the IWK. The IWK bow tie diagram is described in Chapter 3 of this thesis document. The current chapter provides the detailed objectives and development of two communication tools: one for IWK leadership and executives, and one for frontline IWK team members.

6.1 Communication Tool Objectives

As there is a need for effective communication of risk reduction measures during a pandemic, an objective of this research is to develop ways to disseminate the results. The IWK Infection Prevention and Control (IPAC) team expressed interest in producing communication tools for different stakeholders from the bow tie diagram that was developed.

One communication tool that was developed is a document for IWK executives and leadership. The objectives of this document are to introduce the bow tie methodology and its potential uses at the IWK health centre and demonstrate the success of the COVID-19 barriers that were implemented. This document may also be summarized by the IPAC team in a presentation aimed at senior leaders responsible for IWK policy decisions. It is being developed in collaboration with a science communications specialist and a graphic designer.

The other communication tool that was developed is a one-page document or poster for frontline IWK team members, similar to the Center for Chemical Process Safety (CCPS) Process Safety Beacon. The Process Safety Beacon is a one-page monthly newsletter that aims to deliver process safety messages to manufacturing personnel such as plant operators (CCPS, n.d.). It is also intended to include photographs or other graphics so that it will draw attention if posted on a bulletin board. To fit this format, the Beacon cannot be more than about 300 words (Kletz & Amyotte, 2019). Each Beacon presents a real-life incident, describes the lessons learned from the incident investigation, and details practical means to prevent the occurrence of a similar incident at the reader's plant (CCPS, n.d.). Frontline workers are the target audience for the Beacon, and it focuses on suggested actions that frontline workers can do within the scope of their jobs. While managers and other technical staff may read the Beacon, it is not written for them (Kletz & Amyotte, 2019). The objective of this document is to communicate to frontline IWK team members the effectiveness of the health centre's COVID-19 barriers and why they were implemented.

6.2 Communication Tool Development

Communication tools were first discussed as a potential product of the IWK COVID-19 bow tie diagram during the first bow tie workshop in April 2021. Following this first bow tie workshop, researchers from Dalhousie University, including the current author, met with one of the IWK continuous improvement specialists to further discuss the communication tools. Using a Capture-Create-Channels matrix developed by K. Rayner Brown (personal communication, April 21, 2021), which is included in Appendix C, the two target audiences were identified: IWK leadership and executives, and IWK frontline team members. This matrix also helped identify the aforementioned objectives for the two communication tools.

Next, researchers from Dalhousie University, including the current author, met with a science communications specialist to discuss employing their services to develop the

communication tools. This meeting helped identify the type of tools (i.e., multi-page document, poster, presentation) that could meet the objectives.

A summary document was developed and distributed to the science communications specialist and the IWK continuous improvement specialist. This summary document included an introduction to bow tie analysis, a review of previous applications of bow ties as communication tools, an introduction to the CCPS Process Safety Beacon, and the objectives of the IWK bow tie communication tools. Following the distribution of this document, the current author met with the science communications specialist and the IWK continuous improvement specialist to discuss the formal development of the communication tools. The next step was for the science communications specialist to interview the current author and the IWK continuous improvement specialist; this interview was held virtually on January 5, 2022.

Following the interview, the science communications specialist developed the document for IWK executives and leadership. After review and revision by the current author, the document was sent to the graphic designer. The graphic designer drafted and revised the document based on comments from the current author and the Dalhousie research team. This document for IWK executives and leadership is included as Appendix D. The fourpage document introduces the bow tie methodology and the bow tie diagram elements, discusses a previous application of bow ties in healthcare, discusses the current research and collaboration with the IWK Health Centre, summarizes a threat line ("Contract virus from asymptomatic patient"), and discusses some potential next steps of this research and collaboration. The threat "Contract virus from asymptomatic patient" was highlighted in this document as the current author thought it to be the threat that best showed the robustness of the COVID-19 safety measures implemented at the IWK Health Centre by the IPAC team. Additionally, as this document is intended for leadership and executives, detailed information on the research collaboration and research funding is included.

The science communications specialist developed the first draft of the one-page document, or poster, for frontline IWK team members by trimming down the four-page document. Next, the current author reviewed and revised the draft to ensure the required technical content was included and that the format included elements of the Process Safety Beacon (i.e., action items for frontline workers). Following the review and revision by the current author, the document was sent to the graphic designer. Like the four-page document, the graphic designer drafted and revised the document based on comments from the current author and the Dalhousie research team. This one-page document, or poster, for frontline IWK team members is included as Appendix E. This document briefly introduces the bow tie methodology and the bow tie diagram elements, summarizes the current research and collaboration, provides an excerpt of the IWK Health Centre COVID-19 bow tie diagram, and lists some barriers and degradation factor controls that are related to frontline team member behaviour and actions. Following the Beacon format, this document is about 300 words long, includes eye-catching graphics and images (like smaller bow tie diagrams), and includes barriers and degradation factor controls as action items that the IWK frontline team members can consider within the scope of their work.

Chapter 7 Conclusions and Future Work

In conclusion, bow tie analysis (BTA) has been applied to conduct comprehensive hazard analysis of the threat of contracting COVID-19 for three receptor groups of interest: patient or family member at the IWK Health Centre in acute care, staff member at a British Columbia Forest Safety Council (BCFSC) wood pellet facility, and staff member at the Suncor refinery in Sarnia, Ontario. An inherently safer design (ISD) protocol for process hazard analysis (Rayner Brown, Hastie, et al., 2021) was used as a guide for evaluation of the identified COVID-19 barriers, and additional COVID-19 controls have been recommended. Furthermore, two communication tools were developed from the IWK bow tie diagram to effectively disseminate the findings of this research to two target audiences: IWK leadership and executives, and IWK frontline team members.

Following the bow tie methodology, likely threats that could lead to a patient or family member at the IWK Health Centre in acute care, or staff member at a BCFSC wood pellet facility receptor groups contracting COVID-19 were identified. These threats described contracting the virus from other groups at these locations including team/staff members, patients, auditors, visitors, and external contractors.

Using a barrier evaluation methodology based on the ISD protocol for BTA (Rayner Brown, Hastie, et al., 2021), the current prevention and mitigation measures for the three receptor groups of interest were evaluated. This evaluation provided the following lessons learned:

• Most of the COVID-19 barriers identified were administrative, and many of these administrative barriers were determined to have aspects of ISD. If the hazard itself

cannot be directly minimized (or eliminated), substituted, moderated, or simplified, the controls that remain are passive engineered, active engineered, and, primarily, administrative safety. It is important to use an ISD mindset (Rayner Brown, VanBerkel, et al., 2021) to incorporate the ISD principles into controls of other levels in the HOC (like administrative controls). It is also important to note that, although they have aspects of ISD, administrative controls such as physical distancing are easily defeated and are the least effective type of control.

- Most of the COVID-19 degradation factors identified were related to human behaviour and human and organization factors (HOF); it is important to consider HOF in BTA for COVID-19 scenarios. The most common HOF category was situational violation, which can be described as "I cannot get the job done if I follow the rules, but I did the job anyway" (CCPS/EI, 2018). It is important to communicate how the COVID-19 barriers fit into the routines of staff members and how these barriers can fail, and to make COVID-19 barriers as convenient as possible.
- Like the barriers, most of the COVID-19 degradation factor controls identified were administrative, and many of these administrative controls were determined to have aspects of ISD. It is important to note that, for degradation factors related to human behaviour and HOF, the corresponding degradation factor controls are usually administrative.

Additional COVID-19 prevention and mitigation measures based on ISD and the HOC were identified for the patient or family member at the IWK Health Centre in acute care or a staff member at a BCFSC wood pellet facility receptor groups. These additional measures

were identified using recommended industry resources, provincial health resources, and the lived experiences of the researchers. While these measures may be in place at these facilities, it is important to note them so that they are recorded and can be considered for the COVID-19 pandemic or future respiratory illness pandemics.

Two communication tools were developed from the IWK bow tie diagram: a four-page document for IWK leadership and executives and a one-page document, or poster, for IWK frontline team members. It is important to note that the information included in a communication tool, and the presentation of that information, must be adjusted to fit the communication needs of the intended audience. For example, the document for IWK leadership and executives included a summary of the barriers, degradation factors, and degradation factor controls in place to prevent the threat of contracting COVID-19 from an asymptomatic patient, while the document for IWK frontline workers highlighted barriers and degradation factor controls that are within the scope of their work.

By identifying and presenting COVID-19 barriers, degradation factors, and degradation factor controls, this research has developed additional example-based guidance that can be used for the COVID-19 pandemic or future respiratory illness pandemics. Furthermore, this research presents a methodology for evaluating the effectiveness of barriers. This provides guidance for making risk-based decisions regarding the selection of the most effective COVID-19 safety measures.

Research is currently being performed by Dalhousie researchers to quantify bow tie diagrams and/or the bow tie methodology. This research is using the bow tie diagram developed in collaboration with the IWK as a case study.

79

One recommendation for future work is the application of BTA to additional non-chemical process industries (CPI). The current research, in addition to studies such as those summarized in Section 2.1, demonstrates successful application of the bow tie methodology to analyze a non-CPI hazard (contracting COVID-19) in non-CPI facilities (health centre and wood pellet facility). BTA could be a valuable hazard analysis tool for a variety of industries; however, further research is needed to identify and understand the challenges related to introducing BTA in different industries, and to develop example-based guidance for these industry applications.

Another recommendation for future work is the consideration and incorporation of ISD principles in other levels of the HOC. This research has demonstrated, and highlighted the importance of, using an ISD mindset to incorporate ISD principles in administrative controls. However, administrative safety is only one of the other levels of the HOC; how might the ISD principles might be incorporated in passive and active engineered controls? Further research could explore, and develop example-based guidance of, passive and active engineered safety controls with aspects of ISD.

A final recommendation for future work is further consideration and incorporation of human behaviour and HOF in BTA. The current research demonstrated the importance of considering human behaviour and HOF in BTA for COVID-19 scenarios. Additionally, as stated in Section 1.7, degradation factors in the categories of recklessness, slips and lapses, and mistakes are difficult to treat in bow tie diagrams, so they are generally not identified during bow tie workshops (CCPS/EI, 2018). Further research could explore best practices for incorporating human behaviour and HOF in bow tie diagrams, explore the challenges

related to treating HOF degradation factors in bow tie diagrams, and provide guidance for considering human behaviour and HOF in BTA.

References

- Abdi, Z., Ravaghi, H., Abbasi, M., Delgoshaei, B., & Esfandiari, S. (2016). Application of Bow-tie methodology to improve patient safety. *International Journal of Health Care Quality Assurance*, 29(4), 425–440. https://doi.org/10.1108/IJHCQA-10-2015-0121
- Anderson, D., Caulfield, M., Ramsden, M., Pettitt, G., & Sarstedt, M. G. (2016). The use of bow ties in process safety auditing. *Institution of Chemical Engineers Hazards* 26, 1–8.
- BC Forest Safety Council (BCFSC). (2020a). *Biological Hazard Management Plan: BC Phase 3-Travel Permitted Outside of Own Community.* https://www.bcforestsafe.org/wp-content/uploads/2021/03/sc_EA-BiologicalHazardManagementPlan.docx
- BC Forest Safety Council (BCFSC). (2020b). COVID-19 and Management of Change. https://www.bcforestsafe.org/wp-content/uploads/2021/03/BCFSCCOVID-19AndManagementOfChange.pdf
- BC Forest Safety Council (BCFSC). (2020c). COVID-19 Enhanced Surface Cleaning and Disinfecting. https://www.bcforestsafe.org/wpcontent/uploads/2021/03/BCFSCCOVID-19_hrvtSurfaceCleaningAndDisinfecting.pdf
- BC Forest Safety Council (BCFSC). (2020d). COVID-19 Site Pre-Visit Assessment. https://www.bcforestsafe.org/wp-content/uploads/2021/03/sc_EA-SitePre-VisitAssessment.docx
- BC Forest Safety Council (BCFSC). (2020e). External Auditor Guidnce Protocol for COVID-19: Restarting External Audits (BC Phase 3). https://www.bcforestsafe.org/wp-content/uploads/2021/03/sc_EA-BCPhase2GuidanceProtocol.docx
- BC Forest Safety Council (BCFSC). (2020f). *Field Level Risk Assessment*. https://www.bcforestsafe.org/wp-content/uploads/2021/03/sc_EA-FieldLevelRiskAssessment.docx
- BC Forest Safety Council (BCFSC). (2020g). *Health Screening Self-Assessment*. https://www2.bcforestsafe.org/files/sc EA-HealthScreeningAssessment.docx
- BC Forest Safety Council (BCFSC). (2020h). *Industrial Camps Order from the Provincial Health Officer*. https://www.bcforestsafe.org/wpcontent/uploads/2021/03/BCFSCIndustrialCampsOrderPHO.pdf

- BC Forest Safety Council (BCFSC). (2020i). *The Hierarchy of Control to support essential work within 2m*. https://www.bcforestsafe.org/wpcontent/uploads/2021/03/BCFSCCOVID-19_hrvtTheHierarchyOfControlToSupportEssentialWorkWithin2M.docx
- BC Forest Safety Council (BCFSC). (2020j). WSBC Guide to reducing the risk of COVID-19. https://www.bcforestsafe.org/wp-content/uploads/2021/03/BCFSCCOVID-19.pdf
- BC Forest Safety Council (BCFSC). (2021). COVID-19 Exposure Control Plan Template. https://www.bcforestsafe.org/wpcontent/uploads/2021/03/BCFSCCOVID-19ExposureControlPlanTemplate.docx
- Bluewater Association for Safety, Environment, and Sustainability. (BASES). (n.d.-a). *BASES Member Directory*. Retrieved March 9, 2022, from https://lambtonbases.ca/directory/
- Bluewater Association for Safety, Environment, and Sustainability. (BASES). (n.d.-b). Bluewater Association for Safety, Environment, and Sustainability. Retrieved April 11, 2022, from https://lambtonbases.ca/
- Bluewater Association for Safety, Environment, and Sustainability. (BASES). (n.d.-c). *Working in the Sarnia Refining & Petrochemical Sectors*. Retrieved March 9, 2022, from https://lambtonbases.ca/workplace-health-safety/working-in-sarnia/
- British Columbia Centre for Disease Control (BCCDC). (2020). Protecting Industrial Camp Workers, Contractors, and Employers Working in the Agricultural, Forestry, and Natural Resource Sectors During the COVID-19 Pandemic. http://www.bccdc.ca/Health-Info-Site/Documents/COVID_public_guidance/Allsector-work-camps-guidance.pdf
- British Columbia Centre for Disease Control (BCCDC). (2021). Interim Guidance on Point-of-Care Diagnostic Testing for Remote, Rural and Indigenous Communities. http://www.bccdc.ca/Health-Professionals-Site/Documents/Guidance_POC_Diagnostic_Testing_Remote_Rural_Indigenous.pd f
- Burak, K. W., Law, S., Rice, C., Hu, J., Fung, C. I., Woo, A. K. H., Fonseca, K., Lang, A. L. S., Kanji, J. N., & Meatherall, B. L. (2021). COVID-19 outbreak among physicians at a Canadian curling bonspiel: a descriptive observational study. *CMAJ Open*, 9(1), E87–E95. https://doi.org/10.9778/cmajo.20200115

Canadian Centre for Occupational Health and Safety (CCOHS). (2020). COVID-19: Workplace Health and Safety Guide. http://publications.gc.ca/collections/collection_2021/cchst-ccohs/CC273-2-20-2eng.pdf

- Center for Chemical Process Safety/Energy Institute (CCPS/EI). (2018). Bow Ties in Risk Management: A Concept Book for Process Safety. John Wiley & Sons Inc.
- Center for Chemical Process Safety (CCPS). (n.d.). *Process Safety Beacon*. Retrieved November 2, 2021, from https://www.aiche.org/ccps/process-safety-beacon
- Center for Chemical Process Safety (CCPS). (2020). *Guidelines for Inherently Safer Chemical Processes: A Life Cycle Approach* (3rd ed.). American Institute of Chemical Engineers.
- Centers for Disease Control and Prevention (CDC). (2020a). Management of Visitors to Healthcare Facilities in the Context of COVID-19: Non-US Healthcare Settings. https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-us-settings/hcf-visitors.html
- Centers for Disease Control and Prevention (CDC). (2020b). *Ten Ways Healthcare Systems Can Operate Effectively during the COVID-19 Pandemic Operations for Healthcare Systems*. https://www.cdc.gov/coronavirus/2019-ncov/hcp/ways-operateeffectively.html
- Centers for Disease Control and Prevention (CDC). (2021a). COVID-19 Overview and Infection Prevention and Control Priorities in non-US Healthcare Settings. https://www.cdc.gov/coronavirus/2019-ncov/hcp/non-ussettings/overview/index.html#r1
- Centers for Disease Control and Prevention (CDC). (2021b). Interim Infection Prevention and Control Recommendations for Healthcare Personnel During the Coronavirus Disease 2019 (COVID-19) Pandemic. https://www.cdc.gov/coronavirus/2019ncov/hcp/infection-control-recommendations.html
- Centers for Disease Control and Prevention (CDC). (2021c). Operational Considerations for the Identification of Healthcare Workers and Inpatients with Suspected COVID-19 in non-US Healthcare Settings. https://www.cdc.gov/coronavirus/2019ncov/hcp/non-us-settings/guidance-identify-hcw-patients.html
- Centers for Disease Control and Prevention (CDC). (2021d). *Steps Healthcare Facilities Can Take to Stay Prepared for COVID-19*. https://www.cdc.gov/coronavirus/2019ncov/hcp/steps-to-prepare.html
- Centers for Disease Control and Prevention (CDC). (2021e). *Strategies to Mitigate Healthcare Personnel Staffing Shortages*. https://www.cdc.gov/coronavirus/2019ncov/hcp/mitigating-staff-shortages.html
- CGE Risk. (2021). Application of the bowtie model in normalized epidemic prevention and control. https://www.cgerisk.com/2021/04/application-of-the-bowtie-model-innormalized-epidemic-prevention-and-control/

- Chatzimichailidou, M. M., Ward, J., Horberry, T., & Clarkson, P. J. (2018). A Comparison of the Bow-Tie and STAMP Approaches to Reduce the Risk of Surgical Instrument Retention. *Risk Analysis*, 38(5), 978–990. https://doi.org/10.1111/risa.12897
- Culwick, M. D., Merry, A. F., Clarke, D. M., Taraporewalla, K. J., & Gibbs, N. M. (2016). Bow-tie diagrams for risk management in anaesthesia. *Anaesthesia and Intensive Care*, 44(6), 712–718. https://doi.org/10.1177/0310057x1604400615
- Ducharme, J. (2020a). The Coronavirus Outbreak Is Now a Public Health Emergency of International Concern. Here's What That Means. *TIME*. https://time.com/5774747/coronavirus-who-public-health-emergency/
- Ducharme, J. (2020b). World Health Organization Declares COVID-19 a "Pandemic." Here's What That Means. *TIME*. https://time.com/5791661/who-coronavirus-pandemic-declaration/
- Flanagan, R. (2021, January 10). Fact check: How accurate are PCR tests for the novel coronavirus? CTV News. https://www.ctvnews.ca/health/coronavirus/fact-checkhow-accurate-are-pcr-tests-for-the-novel-coronavirus-1.5257357
- Gerkensmeier, B., & Ratter, B. M. W. (2018). Multi-risk, multi-scale and multistakeholder – the contribution of a bow-tie analysis for risk management in the trilateral Wadden Sea Region. *Journal of Coastal Conservation*, 22(1), 145–156. https://doi.org/10.1007/s11852-016-0454-8
- Gorman, M. (2021, May 5). Waiving ambulance fee for COVID-related emergency calls could lead to more changes. *CBC News*. https://www.cbc.ca/news/canada/nova-scotia/health-care-covid-19-ambulance-fees-emergencies-zach-churchill-1.6013728
- Government of Canada. (2020). COVID-19 pandemic guidance for the health care sector. https://www.canada.ca/en/public-health/services/diseases/2019-novel-coronavirus-infection/health-professionals/covid-19-pandemic-guidance-health-care-sector.html
- Government of Canada. (2022). COVID-19 variants of concern. https://www.sacisc.gc.ca/eng/1615991390358/1615991423624
- Johns Hopkins University. (2020). Public Health Principles for a Phased Reopening During COVID-19: Guidance for Governors. https://www.centerforhealthsecurity.org/our-work/pubs_archive/pubspdfs/2020/200417-reopening-guidance-governors.pdf
- Kletz, T., & Amyotte, P. (2019). Opportunities for Reflection. In What Went Wrong? -Case Histories of Process Plant Disasters and How They Could Have Been Avoided (6th ed., pp. 537–562). Elsevier.

- Kletz, T., & Amyotte, P. R. (2010). *Process Plants: A Handbook for Inherently Safer Design* (2nd ed.). CRC Press/Taylor & Francis.
- Lewis, S., & Smith, K. (2010). Lessons Learned from Real World Application of the Bow-Tie Method (No. 6; Global Congress on Process Safety).
- MacDonald, N. E., & Dubé, E. (2018). Addressing vaccine hesitancy in immunization programs, clinics and practices. Canadian Paediatric Society. https://www.cps.ca/en/documents/position/vaccine-hesitancy-in-immunizationprograms
- McElroy, J. (2020, May 4). B.C. health officials believe personal interactions can eventually double without resurgence of COVID-19. *CBC News*. https://www.cbc.ca/news/canada/british-columbia/b-c-health-officials-believe-personal-interactions-can-eventually-double-without-resurgence-of-covid-19-1.5554868
- McLeod, R. W., & Bowie, P. (2018). Bowtie Analysis as a prospective risk assessment technique in primary healthcare. *Policy and Practice in Health and Safety*, *16*(2), 177–193. https://doi.org/10.1080/14773996.2018.1466460
- Meesons. (n.d.). *What is Tailgating*? Retrieved April 6, 2022, from https://www.meesons.com/what-is-tailgating/
- Nova Scotia Health. (n.d.). COVID-19 Rapid Testing. Retrieved April 16, 2022, from https://www.nshealth.ca/service-details/COVID-19 Rapid Testing
- Nova Scotia Nurses' Union (NSNU). (n.d.). *The Good Neighbour Protocol*. Retrieved April 6, 2022, from https://www.nsnu.ca/GoodNeighbourProtocol
- Petracek, H. (2021, October 5). Mandated measures driving up vaccinations in Nova Scotia. *CTV News Atlantic*. https://atlantic.ctvnews.ca/mandated-measures-drivingup-vaccinations-in-nova-scotia-1.5612426
- Public Health Ontario. (n.d.). Your 4 Moments for Hand Hygiene. Retrieved April 6, 2022, from https://www.publichealthontario.ca/-/media/documents/9/2008/4-moments-poster-series.pdf?la=en
- Rayner Brown, K., Hastie, M., Khan, F. I., & Amyotte, P. R. (2021). Inherently Safer Design Protocol for Process Hazard Analysis. *Process Safety and Environmental Protection*, 149, 199–211.
- Rayner Brown, K., VanBerkel, P., Khan, F. I., & Amyotte, P. R. (2021). Application of bow tie analysis and inherently safer design to the novel coronavirus hazard. *Process Safety and Environmental Protection*, 152, 701–718. https://doi.org/10.1016/j.psep.2021.06.046

- Risktec. (n.d.). *COVID-19: Pandemic management using bowtie analysis*. Retrieved June 4, 2021, from https://risktec.tuv.com/risktec-knowledge-bank/auditing/pandemic-risk-management/
- Sarnia-Lambton Economic Partnership. (n.d.). *Petrochemical and Refining Complex*. Retrieved November 30, 2021, from https://www.sarnialambton.on.ca/key-sectors/petrochemical-and-refined-petroleum
- Sauer, L. M. (n.d.). What is Coronavirus? Johns Hopkins Medicine. Retrieved February 26, 2021, from https://www.hopkinsmedicine.org/health/conditions-anddiseases/coronavirus
- Suncor. (n.d.-a). Resources for Employees, Contractors and Suppliers. Retrieved November 30, 2021, from https://www.suncor.com/en-ca/covid19/resources-foremployees
- Suncor. (n.d.-b). *Responding to COVID-19*. Retrieved November 30, 2021, from https://www.suncor.com/en-ca/covid19

Suncor. (2020a). Contractor Requirements for Managing COVID-19 Cases. https://sustainability-prd-cdn.suncor.com/-/media/project/suncor/files/covid-19/covid-19-contractor-case-reportingen.pdf?modified=00010101000000&la=en&hash=88A6CF5CE159274A836D54C9 031867C5CCE10F96&_ga=2.34976424.885748078.1647029616-759225015.1647029616

Suncor. (2020b). COVID-19 Controls and PPE for Activities Without Physical Distancing. https://sustainability-prd-cdn.suncor.com/-/media/project/suncor/files/covid-19/covid-19-controls-and-ppe-for-activitieswithout-physical-distancingen.pdf?modified=00010101000000&la=en&hash=F45F651303E45F3D6A28A254F B6CDCF552FE0C46&_ga=2.30127414.88574807

Suncor. (2020c). Physical Distancing Protocol. https://sustainability-prdcdn.suncor.com/-/media/project/suncor/files/covid-19/covid-19-physical-distancingprotocolen.pdf?modified=00010101000000&la=en&hash=84DDDFDAB379099C7B2019A E5891470B169BD864&_ga=2.265442694.885748078.1647029616-759225015.1647029

Suncor. (2020d). *Pre-Access Self-Assessment Protocol*. https://sustainability-prdcdn.suncor.com/-/media/project/suncor/files/covid-19/covid-19-pre-access-selfassessment-protocolen.pdf?modified=00010101000000&la=en&hash=268DDBA85DC083B11ED3785 165E97F596799B021&_ga=2.265442694.885748078.1647029616-759225015. Suncor. (2020e). Temperature Screening Protocol. https://sustainability-prdcdn.suncor.com/-/media/project/suncor/files/covid-19/covid-19-temperaturescreening-protocolen.pdf?modified=00010101000000&la=en&hash=FFA574D126373A450FB6CEB5 2670F24FD26C1D2C&_ga=2.261404932.885748078.1647029616-759225015.16470

- Tso, R. V., & Cowling, B. J. (2020). Importance of Face Masks for COVID-19: A Call for Effective Public Education. *Clinical Infectious Diseases*, 71(16), 2195–2198. https://doi.org/10.1093/cid/ciaa593
- Turner, L., Rayner Brown, K., Vanberkel, P., Khan, F., & Amyotte, P. (2021). Assessment of COVID-19 Barrier Effectiveness Using Process Safety Techniques. 2021 Mary Kay O'Connor Process Safety Symposium.
- Ward, J., Chatzimichailidou, M. M., Horberry, T., Teng, Y.-C., & Clarkson, J. (2016). Guidewire Retention after Central Venous Catheterisation: Prevention and Mitigation using Bow-Tie Analysis. Proceedings of the International Conference on Ergonomics and Human Factors.
- Wierenga, P. C., Lie-A-Huen, L., de Rooij, S. E., Klazinga, N. S., Guchelaar, H.-J., & Smorenburg, S. M. (2009). Application of the Bow-Tie Model in Medication Safety Risk Analysis: Consecutive Experience in Two Hospitals in the Netherlands. *Drug Safety*, 32(8), 663–673.
- Wood Pellet Association of Canada (WPAC). (n.d.). Critical Control Management. Retrieved April 7, 2022, from https://www.pellet.org/critical-control-management/
- WorkSafeBC. (2020). *Remote Interview Options*. https://www.bcforestsafe.org/wpcontent/uploads/2021/03/sc_EA-SitePre-VisitAssessment.docx
- Yourex-West, H. (2021, May 11). Inside the oilsands site that has seen Canada's largest workplace COVID-19 outbreak. *Global News*. https://globalnews.ca/news/7852937/oil-sands-site-canada-largest-workplace-covidoutbreak/

Appendix A IWK Health Centre Bow Tie Diagram

Figure A-1. IWK Health Centre COVID-19 bow tie diagram part 1

Figure A-2. IWK Health Centre COVID-19 bow tie diagram part 2

Figure A-3. IWK Health Centre COVID-19 bow tie diagram part 3

Figure A-4. IWK Health Centre COVID-19 bow tie diagram part 4

Figure A-5. IWK Health Centre COVID-19 bow tie diagram part 5

Figure A-6. IWK Health Centre COVID-19 bow tie diagram part 6

Figure A-7. IWK Health Centre COVID-19 bow tie diagram part 7

Figure A-8. IWK Health Centre COVID-19 bow tie diagram part 8

Figure A-9. IWK Health Centre COVID-19 bow tie diagram part 9

97

Figure A-10. IWK Health Centre COVID-19 bow tie diagram part 10

Figure A-11. IWK Health Centre COVID-19 bow tie diagram part 11

Figure A-12. IWK Health Centre COVID-19 bow tie diagram part 12

100

Figure A-13. IWK Health Centre COVID-19 bow tie diagram part 13

Figure A-14. IWK Health Centre COVID-19 bow tie diagram part 14

Figure A-15. IWK Health Centre COVID-19 bow tie diagram part 15

Figure A-16. IWK Health Centre COVID-19 bow tie diagram part 16

Figure A-17. IWK Health Centre COVID-19 bow tie diagram part 17

Figure A-18. IWK Health Centre COVID-19 bow tie diagram part 18

Figure A-19. IWK Health Centre COVID-19 bow tie diagram part 19

Figure A-20. IWK Health Centre COVID-19 bow tie diagram part 20

Figure A-21. IWK Health Centre COVID-19 bow tie diagram part 21

109

Figure B-1. BCFSC wood pellet facility COVID-19 bow tie diagram part 1

Figure B-2. BCFSC wood pellet facility COVID-19 bow tie diagram part 2

Figure B-3. BCFSC wood pellet facility COVID-19 bow tie diagram part 3

Figure B-4. BCFSC wood pellet facility COVID-19 bow tie diagram part 4

Figure B-5. BCFSC wood pellet facility COVID-19 bow tie diagram part 5

Figure B-6. BCFSC wood pellet facility COVID-19 bow tie diagram part 6

Figure B-7. BCFSC wood pellet facility COVID-19 bow tie diagram part 7

Figure B-8. BCFSC wood pellet facility COVID-19 bow tie diagram part 8

Figure B-9. BCFSC wood pellet facility COVID-19 bow tie diagram part 9

Figure B-10. BCFSC wood pellet facility COVID-19 bow tie diagram part 10

Figure B-11. BCFSC wood pellet facility COVID-19 bow tie diagram part 11

Figure B-12. BCFSC wood pellet facility COVID-19 bow tie diagram part 12

Figure B-13. BCFSC wood pellet facility COVID-19 bow tie diagram part 13

Figure B-14. BCFSC wood pellet facility COVID-19 bow tie diagram part 14

Figure B-15. BCFSC wood pellet facility COVID-19 bow tie diagram part 15

Figure B-16. BCFSC wood pellet facility COVID-19 bow tie diagram part 16

Figure B-17. BCFSC wood pellet facility COVID-19 bow tie diagram part 17

Figure B-18. BCFSC wood pellet facility COVID-19 bow tie diagram part 18

Figure B-19. BCFSC wood pellet facility COVID-19 bow tie diagram part 19

Figure B-20. BCFSC wood pellet facility COVID-19 bow tie diagram part 20

Figure B-21. BCFSC wood pellet facility COVID-19 bow tie diagram part 21

Figure B-22. BCFSC wood pellet facility COVID-19 bow tie diagram part 23

Figure B-23. BCFSC wood pellet facility COVID-19 bow tie diagram part 23

Figure B-24. BCFSC wood pellet facility COVID-19 bow tie diagram part 24

Figure B-25. BCFSC wood pellet facility COVID-19 bow tie diagram part 25

Figure B-26. BCFSC wood pellet facility COVID-19 bow tie diagram part 26

Figure B-27. BCFSC wood pellet facility COVID-19 bow tie diagram part 27

Figure B-28. BCFSC wood pellet facility COVID-19 bow tie diagram part 28

Figure B-29. BCFSC wood pellet facility COVID-19 bow tie diagram part 29

Figure B-30. BCFSC wood pellet facility COVID-19 bow tie diagram part 30

Figure B-31. BCFSC wood pellet facility COVID-19 bow tie diagram part 31

Figure B-32. BCFSC wood pellet facility COVID-19 bow tie diagram part 32

141

Figure B-33. BCFSC wood pellet facility COVID-19 bow tie diagram part 33

Figure B-34. BCFSC wood pellet facility COVID-19 bow tie diagram part 34

Figure B-35. BCFSC wood pellet facility COVID-19 bow tie diagram part 35

Figure B-36. BCFSC wood pellet facility COVID-19 bow tie diagram part 36

Figure B-37. BCFSC wood pellet facility COVID-19 bow tie diagram part 37

Figure B-38. BCFSC wood pellet facility COVID-19 bow tie diagram part 38

Figure B-39. BCFSC wood pellet facility COVID-19 bow tie diagram part 39

Figure B-40. BCFSC wood pellet facility COVID-19 bow tie diagram part 40

Figure B-41. BCFSC wood pellet facility COVID-19 bow tie diagram part 41

Figure B-42. BCFSC wood pellet facility COVID-19 bow tie diagram part 42

Figure B-43. BCFSC wood pellet facility COVID-19 bow tie diagram part 43

Figure B-44. BCFSC wood pellet facility COVID-19 bow tie diagram part 44

Figure B-45. BCFSC wood pellet facility COVID-19 bow tie diagram part 45

Figure B-46. BCFSC wood pellet facility COVID-19 bow tie diagram part 46

Figure B-47. BCFSC wood pellet facility COVID-19 bow tie diagram part 47

Figure B-48. BCFSC wood pellet facility COVID-19 bow tie diagram part 48

Appendix C Capture-Create-Channels Matrix

Note:

- 1. Enter your name in the far-left column
- 2. If any items are time-sensitive; enter that information

Usage Notes:

- KRB Two areas of focus/two target audience
 - Leadership (Board and VPs)
 - Frontline team members

Name	Capture	Create	Channels
	Developed bow tie diagram Fundamentals of bow tie analysis, and how it can be leveraged by IWK; what benefit does it have. Appreciation for the kinds of work, and all the things IPAC has done, through COVID-19 pandemic. Demonstrating successes. Looking to educate in order to recognize the successes of IPAC,	 Presentation by Dr. Comeau Introduction to BTA Bow tie diagram developed Demonstrate defense in depth (wide variety of barriers, not only relying on ADM controls, also engineered like negative pressure room) Demonstration of results; no hospital acquired COVID-19 	Presentation to leadership

Table C-1. IWK IPAC bow tie communications ideas

effectiveness of program, pride in successes and efforts. Identifying gaps for continuous improvement, justifying additional asks (i.e., CAPEX or OPEX) in the future. Understanding of critical barriers.	 Pandemic response unit; part of activities Showcasing proper level of rigor 	
[Park for time-being]	Voice-over video	
Basics of bow ties, COVID-19 barriers, for front-line workers	Communications and tools for frontline personnel. One-pager crew talk factsheet	
Communication and education of COVID-19 barriers; justifying the reasoning behind decisions that are made. Demonstrating effectiveness of barriers, defense in depth, safety and effectiveness of barriers. Sufficiency of barriers. Encourage, demonstrate logical choice of barriers. Make people	Crew talk factsheet	

	•	r
feel safe so they can perform their job well. Demonstrate rigorous approaches. Improve stakeholder buy in for programs and procedures that are in place. Instill confidence in barriers through education.		
	Large prints (using Visio)	
	Bow tie graphics in Visio, with and without degradation factors and controls - Create different iterations of bow ties for different audiences and purposes	
Hierarchy of controls		

Appendix D Communication Tool for IWK Executives/Leadership

Preventing the Spread of COVID-19 with Bow Ties

WHAT'S A BOW TIE?

A bow tie goes beyond just identifying the risk. It's a visual tool that shows how a hazard could lead to a dangerous event like an explosion or fire or viral outbreak at a given location. It allows us to assess how dangerous situations may arise and determine what controls we need to have in place in order to manage the risk. Bow ties are used across chemical, aviation, manufacturing, and other sectors around the world and are gaining in popularity in the health sector. The purpose of the bow tie in the context of IWK is to disseminate key safety information to the workforce, support risk management decisions and ultimately to avoid the top event: spread of COVID-19 at IWK.

Preventing the Spread of COVID-19 with Bow Ties 1|4

KEEPING FRONTLINE WORKERS SAFE

Work on bow ties began at IWK Health Centre in 2021 and was inspired by a white paper Bow Ties in Risk Management published by the UK Energy Institute and the Center for Chemical Process Safety. Researchers in the Department of Process Engineering and Applied Science at Dalhousie University have also done extensive work in this field, much of which has been applied to chemical and manufacturing sectors across Canada.

The work was initiated through a partnership between Dalhousie University and Memorial University of Newfoundland and the Nova Scotia Health Authority to obtain a grant from the Natural Sciences and Engineering Research Council of Canada (NSERC) to support research into how bowties could support hospital workers. They then reached out to the IWK team who were keen to explore the concept, which lead to workshops with the IWK team and development of the bow ties. A study published in 2016 in the International Journal of Health Care Quality Assurance, Application of Bow-tie Methodology to Improve Patient Safety, used bow ties to analyze risks threatening patient safety in ICU, looking at a 12-bed semi-closed medical ICU between 2011 and 2014. The study found that bow ties are a feasible tool for proactive risk management in an ICU. Bow Ties:

- Allowed team members to generate practical solutions to address deficiencies;
- Promoted the clinicians' awareness regarding errors and conditions that might create undesired issues;
- Facilitated understanding of the required barriers for safer operations; and
- Highlighted that the bow ties can be time consuming and the reliability of the outputs depend on the reliability of the inputs.

Preventing the Spread of COVID-19 with Bow Ties 2|4

BOW TIES AT IWK

Bow ties can be very complex given the multitude of risk scenarios and decisions that are made along every step that could lead to a top event. The workshop participants identified six threats that could lead to the top event: spread of COVID-19 at IWK. The table below is a summary of one of the scenarios that was developed.

THREAT: Contract virus from asymptomatic patient

Barrier	Degradation Factor(s)	Degradation Factor Control(s)	
Restricted communal areas (e.g., access to playrooms, closed kitchenette, laundry room)			
Pre-screening for planned visits; determine if patient has an exposure risk	Uable to contact/reach patient	 Call back; don't just try once Layers of protection/multiple checks; checks at door and clinic 	
	Using out of date script, or ad libbing	Most up to date script kept online/on Intranet site	
	Unaware that interpretation services are needed	Better flags in system	
	Limited resources; time and staffing challenges (incl. staff turnover)	Volunteer recruitment	
Door screening questions; determine if patient or visitor an exposure risk	Patients not honest about travel history or symptoms	_	
	No door screening at night-time	_	
	Tailgating/circumnavigating	Visual cues and signage	
Physical distancing in public areas and when possible during assessments	Difficulty managing traffic	 Decreased number of people in health centre/building Elevator limits Communications with surrounding 	
		areas to encourage people to avoid	
		Locked doors	
		 Assessment of waiting area and limits put in place 	
		 Shut down food services during key times 	
		 Physical distancing markers Posters, easily accessible and downloadable 	
		 Flow of traffic; separate entrances for childrens and womens patients 	
	Not followed	Visual cues on floor and signageEducation	

CONTINUED ON NEXT PAGE

Preventing the Spread of COVID-19 with Bow Ties 3|4

THREAT: Contract virus from asymptomatic patient (continued)

Barrier	Degradation Factor(s)	Degradation Factor Control(s)	
Limitations around day passes (exceptions only)			
Use of additional precautions based on risk assessment, including use of	Door to AllR propped open due to lack of understanding or work demands	Education	
Alir, as required (e.g., exposure history)	AIIR PM not completed (e.g., pressures, filters, maintain higher levels of air exchanges)	_	
	Incorrect risk assessment	 Education of the person performing the RA; online learning package, onboarding, orientation Auditing 	
UPP worn by all direct care providers	PPE shortage		
	Worn improperly	Pandemic education on proper use of PPE	
Medical grade face mask worn by	Proper procedure not followed	Education, training	
patient in public areas and when possible during assessments	Worn improperly	Pandemic education on proper use of PPE	
Practice good hand hygiene and sneeze/cough etiquette	Proper method not followed	Education, training	
Routine cleaning and disinfection of high-touch surfaces and infection control practices (e.g. decontamination of equipment)	Proper procedure not followed	Education, training	
Universal testing for all admissions and prior to all surgical procedures	False negative test results	_	

NEXT STEPS

Not only will bow tie analysis help protect team members, patients, and visitors, it will provide additional assurance that the necessary steps and control measures are in place to ensure their safety. It may also help to alleviate staffing shortage in certain units where other team may be hesitant to assist. The bow ties will initially be communicated to the Infection Prevention and Control and Patient Safety teams. Next steps will be to create strong, simple and effective visuals for teams, patients and visitors to communicate the steps being taken to prevent the spread of COVID-19 and keep everyone's loved ones safe.

FOR MORE INFORMATION

Name Title Email

Preventing the Spread of COVID-19 with Bow Ties 4|4

Appendix E Communication Tool for IWK Frontline Workers

Preventing the Spread of COVID-19 with Bow Ties

WHAT'S A BOW TIE?

A bow tie goes beyond just identifying the risk. It's a visual tool that shows how a hazard could lead to a dangerous event like a viral outbreak at a given location. It allows us to assess how dangerous situations may arise and determine what controls we need to have in place to manage the risk.

Not only will bow tie analysis help protect team members, patients and visitors, it will provide additional assurance that the necessary steps and control measures are in place to ensure their safety.

PROMOTING A SAFE WORK ENVIRONMENT

Based on workshops with the IWK IPAC team, transmission of COVID-19 to IWK team members was identified as a potential consequence.

The IPAC team has implemented many barriers to protect IWK team members from contracting COVID-19 but there are steps we can all take. It is also important to understand that barriers can degrade, and control factors are needed to maintain their effectiveness.

Reducing the risk: a team effort

- 1 Get vaccinated against COVID-19 if you are vaccine eligible
- 2 Maintain 2 m of physical distance in public areas and when possible during assessments
- 3 Use additional precautions based on risk assessment (e.g., patient exposure history)
- 4 Practice good hand hygiene
- 5 Have a buddy for PPE donning and doffing to prevent self-contamination
- 6 Perform contact tracing and testing in partnership with Public Health and IWK Occupational Health, Safety, & Wellness (OHSW)
- 7 Wear all required universal pandemic precautions when providing direct care
- 8 Consult with the IPAC team if you have any questions