SHIGELLA FLEXNERI REQUIRES THE HOST SCAFFOLD PROTEIN RACK1 TO MODULATE ACTIN POLYMERIZATION, PROMOTING INFECTION

by

Karla Valenzuela

Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia
April 2022

© Copyright by Karla Valenzuela, 2022
TABLE OF CONTENTS

LIST OF TABLES ..vi

LIST OF FIGURES .. vii

ABSTRACT ...x

LIST OF ABBREVIATIONS USED .. xi

ACKNOWLEDGEMENTS ..xiv

CHAPTER 1 INTRODUCTION ...1

1.1 Overview ..1

1.2 *Shigella* and shigellosis ..2

1.3 *Shigella flexneri* pathogenesis ..4

1.4 *Shigella* life cycle within the epithelial cell ..6

1.4.1 The making of an invasive pathogen ..6

1.4.2 Invasion of the epithelial cell ..8

1.4.3 Vacuolar escape ...13

1.4.4 Establishment of a replicative niche within the epithelial cell ..16

1.4.5 Actin-based motility and cell-to-cell spreading ..24

1.5 Receptor for activated C kinase 1, a scaffolding protein involved in diverse functions30

1.5.1 Cell signalling and ribosome interaction ...30

1.5.2 RACK1’s role in autophagy ..31

1.5.3 RACK1’s role in apoptosis ...33

1.6 RACK1 and cytoskeleton dynamics ...34

1.6.1 RACK1 and cell migration ...34

1.6.2 RACK1’s interactions with the cytoskeleton ...36
1.7 RACK1’s roles in pathogenesis ... 37
1.8 Rationale, hypothesis, and objectives .. 42

CHAPTER 2 MATERIALS AND METHODS ... 44

2.1 Bacterial strains and growth conditions .. 44
 2.1.1 *Shigella flexneri* .. 44
 2.1.2 *Escherichia coli* .. 45
2.2 Mammalian cell lines and growth conditions .. 50
2.3 Molecular biology techniques ... 51
 2.3.1 Polymerase chain reaction (PCR) .. 51
 2.3.2 Agarose gel electrophoresis ... 51
 2.3.3 Nucleic acid purification ... 52
 2.3.4 Competent *E. coli* and heat shock transformation 52
 2.3.5 Competent *Shigella* and transformation by electroporation 53
 2.3.6 Plasmid construction .. 53
2.4 Protein techniques .. 58
 2.4.1 Preparation of whole-cell lysates .. 58
 2.4.2 Protein quantification and sample preparation 58
 2.4.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 58
 2.4.4 Western blotting and relative protein expression quantification 59
 2.4.5 Co-immunoprecipitation for mass spectrometry 60
 2.4.6 Coomassie and silver stain ... 61
2.5 RACK1 knockdown and stable/transient reporter cell lines 64
 2.5.1 Lentiviral production .. 64
 2.5.2 Lentiviral transduction of target cells .. 64
 2.5.3 Transient expression of fluorescently tagged proteins 66
2.6 Proliferation assay (MTT) ... 66
2.7 Gentamycin protection assay .. 67
2.8 *Shigella* infection of *Drosophila melanogaster* 67
2.9 Cell death evaluation

2.9.1 Annexin V apoptosis assay using flow cytometry

2.9.2 Cytotoxicity detection assay

2.10 Immunofluorescence of fixed samples and data analysis

2.10.1 Immunofluorescence

2.10.2 Analysis of intracellular replication in fixed samples

2.10.3 Targeting of Shigella by guanylate-binding proteins (GBPs)

2.10.4 Analysis of actin tails in fixed samples

2.10.5 Quantification of Arp2 recruitment to Shigella

2.11 Live-cell imaging and data analysis

2.11.1 Live-cell imaging of Shigella entry and vacuolar escape in HeLa cells

2.11.2 Evaluation of ΔicsA Shigella entry to HeLa cells

2.11.3 Evaluation of entry foci dynamics

2.11.4 Evaluation of Shigella’s intracellular motility

2.11.5 RACK1 localization during Shigella infection

2.11.6 LC3 targeting of Shigella

2.11.7 Aqueous two-phase (ATP) infection system

2.11.8 Modified plaque assay

2.11.9 Real-time monitoring of Shigella cell-to-cell spreading

2.12 Characterizations of the role of RACK1 in actin cytoskeleton dynamics

2.12.1 Analysis of actin polymerization and depolymerization using actin-binding drugs

2.12.2 Fluorescence Recovery After Photobleaching (FRAP)

CHAPTER 3 RESULTS

3.1 RACK1 silencing and characterization

3.2 RACK1 modulates Shigella infection of HeLa cells and Drosophila melanogaster

3.2.1 Silencing RACK1 impairs Shigella growth in HeLa cells

3.2.2 RACK1 silencing protects Drosophila melanogaster from Shigella infection
3.2.3 Steps of Shigella intracellular life cycle studied in this project 113
3.3 RACK1 silencing reduces Shigella invasion of HeLa cells 115
3.4 Study of the role of RACK1 in vacuolar escape 126
3.5 Study of RACK1 functions during Shigella intracellular replication and cell death induction ... 133
3.6 RACK1 silencing affects actin tail polymerization 142
3.7 RACK1 silencing inhibits Shigella cell-to-cell spreading 151
3.8 RACK1's role in actin cytoskeleton dynamics 159

CHAPTER 4 DISCUSSION ... 170
4.1 RACK1 promotes Shigella infection in vitro and in vivo 171
4.2 Shigella requires RACK1 to manipulate the host actin cytoskeleton 175
 4.2.1 RACK1 promotes Shigella invasion of HeLa cells 175
 4.2.2 RACK1 is not involved in Shigella vacuolar escape 179
 4.2.3 RACK1 silencing does not impact Shigella intracellular replication or apoptosis inhibition ... 182
 4.2.4 RACK1 promotes Shigella actin tail polymerization, actin-mediated motility and cell-to-cell spreading ... 184
4.3 RACK1 plays a role in actin filament turnover 191
4.4 Model of RACK1 function in Shigella infection 195
4.5 Concluding remarks and further work ... 199

APPENDIX A Media, buffers, and other solutions 201

APPENDIX B Fiji macros and R scripts .. 203

APPENDIX C Supplementary figures ... 228

BIBLIOGRAPHY ... 231
LIST OF TABLES

Table 2.1. Bacterial strains used in this study...46
Table 2.2. Plasmids used in this study ...47
Table 2.3. Oligonucleotides used in this study ..56
Table 2.4. Antibodies and fluorescent dyes used in this study63
Table 2.5. Microscopes used in this study and its specifications.................................88
Table 3.1. Percentage of Shigella targeted by GBP1 in control (NS) and RACK1-KD (KD-92) HeLa cells treated with IFN-γ or Ruxolitinib (RUX).136
Table 3.2. Cytoskeleton related proteins identified as RACK1 binding partners by Co-IP-MS..164
LIST OF FIGURES

Figure 1.1. *Shigella* secretes T3SS effectors that trigger profuse actin polymerization leading to epithelial cell invasion. .. 12

Figure 1.2. *Shigella* escapes the endocytic vacuole generating membrane remnants that trigger xenophagy. .. 19

Figure 1.3. *Shigella* induces actin polymerization to form an actin tail which mediates intracellular motility.. 28

Figure 3.1.1. RACK1 expression silencing using shRNAs delivered by lentiviruses.94
Figure 3.1.2. HeLa cells differentially maintain RACK1 silencing efficiency..........95
Figure 3.1.3. RACK1 silencing affects cell proliferation but not cell size.................96
Figure 3.1.4. RACK1 expression was silenced in CaCo-2 but not in HT-29 cells.........97
Figure 3.2.1. Standardization of HeLa cells infected by *Shigella flexneri*.................103
Figure 3.2.2. RACK1 silencing inhibits *Shigella* growth in HeLa cells....................105
Figure 3.2.3. *Shigella* growth impairment was confirmed in RACK1-KD cells using an aqueous two-phase (ATP) infection system...107
Figure 3.2.4. Stable RACK1 overexpression promotes *Shigella* growth in HeLa cells. ...108
Figure 3.2.5. Transient RACK1 overexpression promotes *Shigella* growth in HeLa cells. ..109
Figure 3.2.6 RACK1 silencing protects *Drosophila melanogaster* from *Shigella* infection. ...111
Figure 3.2.7. Critical steps of *Shigella* intracellular life cycle studied in this project.114
Figure 3.3.1. RACK1 is recruited to *Shigella*’s entry focus in HeLa cells...............119
Figure 3.3.2. RACK1 silencing increases entry foci duration but does not affect foci area or fluorescence intensity

Figure 3.3.3. Silencing RACK1 reduces the actin polymerization rate to Shigella’s entry focus

Figure 3.3.4. Knocking down RACK1 expression reduces Shigella entry into HeLa cells

Figure 3.4.1. RACK1 does not localize to the Shigella containing vacuole, and it is not required for vacuolar escape

Figure 3.4.2. Evaluation of endocytic markers and LC3 recruitment to Shigella

Figure 3.5.1. RACK1 does not play a role in Shigella’s intracellular replication

Figure 3.5.2. Silencing of RACK1 expression does not affect Shigella-induced cell death

Figure 3.5.3. Targeting of Shigella by guanylate-binding protein (GBP) 1 and 4 is not affected by RACK1 silencing

Figure 3.6.1. RACK1 does not localize to Shigella’s actin tail, but it is required for efficient actin tail polymerization

Figure 3.6.2. RACK1 silencing impairs actin tail elongation

Figure 3.6.3. Knocking down RACK1 expression reduces Shigella’s actin-mediated motility

Figure 3.7.1. Plaque assay procedure and data analysis

Figure 3.7.2. Methocel efficiently restricts Shigella diffusion through the media reducing secondary plaque formation

Figure 3.7.3. RACK1 silencing reduces the plaque area formed by Shigella in HeLa and CaCo-2 cells

Figure 3.7.4. Shigella requires RACK1 for efficient cell-to-cell spreading in HeLa cells
Figure 3.8.1. Study of RACK1 interactome in Shigella-infected HeLa cells..............163

Figure 3.8.2. RACK1 is not required for Arp-2 recruitment to Shigella.165

Figure 3.8.3. Filamentous-actin (F-actin) aggregate formation is reduced in RACK1-KD cells treated with jasplakinolide...166

Figure 3.8.4. Cytochalasin D (CytoD) mediated disruption of filamentous actin (F-actin) is not affected by RACK1 silencing. ...167

Figure 3.8.5. RACK1 silencing affects actin turnover in membrane ruffles but not in stress fibres...168

Figure 4.1. Model of RACK1 function in Shigella infection.197
ABSTRACT

Shigella flexneri, the causative agent of the acute diarrheal disease shigellosis, manipulates the host actin cytoskeleton to infect intestinal epithelial cells (ECs). *Shigella* secretes bacterial effectors into the EC cytoplasm, inducing actin polymerization at the entry site. After cell invasion, *Shigella* escapes the endocytic vacuole accessing the cytoplasm, where the pathogen polymerizes an actin tail acquiring actin-mediated motility. Propelled by the actin tail, *Shigella* generates a bacterium-containing membrane protrusion that infects neighbouring cells. The receptor for activated C kinase 1 (RACK1) is a scaffolding protein that provides a platform for protein-protein interactions playing pivotal roles in host cell homeostasis. However, the role of RACK1 in bacterial pathogenesis is unclear. RACK1 binds to the focal adhesion kinase and actin-binding proteins, allowing proper focal adhesion assembly and cell migration; thus, I hypothesized that RACK1 promotes *Shigella*-mediated induction of actin polymerization. Live-cell microscopy and automated image data analysis were used to characterize the role of RACK1 in *Shigella* infection. I found that RACK1 silencing in HeLa cells reduced the yield of *Shigella* recovered from within ECs, due to cell invasion impairment and cell-to-cell spreading inhibition. RACK1 was recruited to the entry focus promoting *Shigella*-mediated induction of actin polymerization and internalization. RACK1 also promoted actin tail polymerization and actin-mediated motility, resulting in effective cell-to-cell spreading. In contrast, RACK1 silencing did not affect *Shigella*’s escape from the vacuole or intracellular replication. Moreover, RACK1 depletion in *Drosophila melanogaster* enterocytes reduced mortality of *Shigella*-fed flies. Furthermore, RACK1 silencing inhibited jasplakinolide-induced actin polymerization and reduced actin turnover in membrane ruffles but not in stress fibres. In conclusion, I report a novel function of RACK1 promoting *Shigella* invasion and spreading in ECs and colonization of *Drosophila*’s intestine. My findings also suggest RACK1 function in actin polymerization is not restricted to *Shigella* infection.
LIST OF ABBREVIATIONS USED

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>Degrees Celsius</td>
</tr>
<tr>
<td>A</td>
<td>Amperes</td>
</tr>
<tr>
<td>Abl</td>
<td>Abelson Murine Leukemia Kinase</td>
</tr>
<tr>
<td>Afal</td>
<td>Afimbrial Adhesin From E. coli</td>
</tr>
<tr>
<td>ANOVA</td>
<td>Analysis Of Variance</td>
</tr>
<tr>
<td>Arp2/3</td>
<td>Actin-Related Protein 2/3 Complex</td>
</tr>
<tr>
<td>ATP</td>
<td>Aqueous Two-Phase Infection System</td>
</tr>
<tr>
<td>Blast</td>
<td>Blasticidin</td>
</tr>
<tr>
<td>Cdc42</td>
<td>Cell Division Control Protein 42</td>
</tr>
<tr>
<td>CFU</td>
<td>Colony-Forming Units</td>
</tr>
<tr>
<td>Co-IP</td>
<td>Co-Immunoprecipitation</td>
</tr>
<tr>
<td>CytoD</td>
<td>Cytochalasin D</td>
</tr>
<tr>
<td>DAPI</td>
<td>4',6-Diamidino-2-Phenylindole, Dihydrochloride</td>
</tr>
<tr>
<td>dsRED</td>
<td>Discosoma sp. Red Fluorescent Protein</td>
</tr>
<tr>
<td>EC</td>
<td>Epithelial Cell</td>
</tr>
<tr>
<td>EEA1</td>
<td>Early Endosome Antigen</td>
</tr>
<tr>
<td>F-actin</td>
<td>Filamentous Actin</td>
</tr>
<tr>
<td>FAK</td>
<td>Focal Adhesion Kinase</td>
</tr>
<tr>
<td>FBS</td>
<td>Fetal Bovine Serum</td>
</tr>
<tr>
<td>FI</td>
<td>Fluorescence Intensity</td>
</tr>
<tr>
<td>FRAP</td>
<td>Fluorescence Recovery After Photobleaching</td>
</tr>
<tr>
<td>G-actin</td>
<td>Globular Actin</td>
</tr>
<tr>
<td>Gal-3</td>
<td>Galectin-3</td>
</tr>
<tr>
<td>GAPs</td>
<td>GTPase-Activating Proteins</td>
</tr>
<tr>
<td>GBPs</td>
<td>Guanylate-Binding Proteins</td>
</tr>
<tr>
<td>GEFs</td>
<td>Guanine Nucleotide Exchange Factors</td>
</tr>
<tr>
<td>GFP</td>
<td>Green Fluorescent Protein</td>
</tr>
<tr>
<td>GTPase</td>
<td>Guanosine Triphosphatase</td>
</tr>
<tr>
<td>h</td>
<td>Hours</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>HEPES</td>
<td>4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid</td>
</tr>
<tr>
<td>HRP</td>
<td>Horseradish Peroxidase</td>
</tr>
<tr>
<td>IcsA</td>
<td>Intracellular Spread A</td>
</tr>
<tr>
<td>IF</td>
<td>Immunofluorescence</td>
</tr>
<tr>
<td>IFN-γ</td>
<td>Interferon-Gamma</td>
</tr>
<tr>
<td>Jasp</td>
<td>Jasplakinolide</td>
</tr>
<tr>
<td>KD</td>
<td>Knock Down</td>
</tr>
<tr>
<td>LB</td>
<td>Lysogeny Broth</td>
</tr>
<tr>
<td>LC3</td>
<td>Microtubule-Associated Protein 1A/1B-Light Chain 3</td>
</tr>
<tr>
<td>LDH</td>
<td>Lactate Dehydrogenase</td>
</tr>
<tr>
<td>LSM</td>
<td>Laser Scanning Microscopy</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen-Activated Protein Kinase</td>
</tr>
<tr>
<td>mCherry</td>
<td>Monomeric Cherry</td>
</tr>
<tr>
<td>min</td>
<td>Minutes</td>
</tr>
<tr>
<td>MOI</td>
<td>Multiplicity Of Infection</td>
</tr>
<tr>
<td>MS</td>
<td>Mass Spectrometry</td>
</tr>
<tr>
<td>MTT</td>
<td>3-[4,5-Dimethylthiazol-2-Yl]-2,5-Diphenyltetrazolium Bromide</td>
</tr>
<tr>
<td>N-WASP</td>
<td>Neuronal-Wiskott Aldrich Syndrome Protein</td>
</tr>
<tr>
<td>ns</td>
<td>Not Significant</td>
</tr>
<tr>
<td>OD</td>
<td>Optical Density</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate-Buffered Saline</td>
</tr>
<tr>
<td>PEI</td>
<td>Polyethyleneimine</td>
</tr>
<tr>
<td>PMN</td>
<td>Polymorphonuclear Leukocyte</td>
</tr>
<tr>
<td>pOrange</td>
<td>Orange Fluorescent Protein</td>
</tr>
<tr>
<td>Puro</td>
<td>Puromycin</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene Difluoride</td>
</tr>
<tr>
<td>Rab11</td>
<td>Ras-Associated Binding</td>
</tr>
<tr>
<td>Rac1</td>
<td>Ras-Related C3 Botulinum Toxin Substrate 1</td>
</tr>
<tr>
<td>RACK1</td>
<td>Receptor for Activated C Kinase 1</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of Interest</td>
</tr>
<tr>
<td>SCV</td>
<td>Shigella Containing Vacuole</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>SFs</td>
<td>Stress Fibres</td>
</tr>
<tr>
<td>shRNA</td>
<td>Short Hairpin RNA</td>
</tr>
<tr>
<td>Src</td>
<td>Sarcoma Tyrosine Kinase</td>
</tr>
<tr>
<td>T3SS</td>
<td>Type 3 Secretion System</td>
</tr>
<tr>
<td>TSB</td>
<td>Tryptic Soy Broth</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>WB</td>
<td>Western Blot</td>
</tr>
<tr>
<td>WT</td>
<td>Wild Type</td>
</tr>
<tr>
<td>X</td>
<td>Times</td>
</tr>
<tr>
<td>Δ</td>
<td>Delta</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

During my Ph.D., I have been fortunate to be surrounded by friends and mentors who supported me and made my learning journey very enjoyable and fulfilling. I want to thank my supervisor, Dr. Zhenyu Cheng and co-supervisor, Dr. John Rohde, for their constant support and guidance. To my committee members, Dr. John Archibald, Dr. Song Lee, and Dr. James Fawcett thank you for sharing your expertise with me and helping me focus my research efforts. Special mention to Dr. Rohde and Dr. Lee for always having a door open for a quick chat. Your experience and insight were very helpful to my thesis project and my career development.

To past and present members of the Cheng Lab, thank you for your friendship and support through the highs and lows of completing my Ph.D. I could not have asked for better lab mates. I also want to thank my family for their endless encouragement and love. Thank you for believing in me.

Lastly, I would like to acknowledge the funding agency Agencia Nacional de Investigación y Desarrollo, for providing a four-year scholarship (folio 72160538). I also like to acknowledge MITACS for providing a scholarship to go to Pasteur Institute (Paris) and learn the live-cell imaging used throughout this study.
CHAPTER 1 INTRODUCTION

1.1 Overview

Infectious diseases are caused by pathogenic microorganisms, from which bacterial infections remain a substantial cause of morbidity and mortality. These infections are commonly transient in a healthy host or are treated with antibiotics. The host’s innate immune system recognizes the invading pathogen, triggering antimicrobial and inflammatory responses upon bacterial colonization. Innate immune cells, such as macrophages and neutrophils, perform the clearing of most intruders. However, some bacterial pathogens have evolved mechanisms to survive and even replicate inside these cells.

Intracellular bacteria can cause acute or persistent infections characterized by immune evasion and sophisticated modulation of the host cell machinery. For example, *Shigella flexneri*, the causative agent of the acute diarrheal disease shigellosis, thrives inside macrophages and epithelial cells. To invade and replicate intracellularly, *Shigella* extensively manipulates host functions. This pathogen targets the host cytoskeleton, exploiting actin polymerization to invade cells. After cell invasion, *Shigella* escapes the containment of the phagocytic vacuole, accessing the cytoplasm where nutrients are readily available. However, in the cytoplasm, *Shigella* faces immune surveillance mechanisms that trigger autophagy and apoptosis. Thus, *Shigella* must replicate without disturbing host cell function and actively inhibit cytoplasmic surveillance. Nevertheless, the most surprising mechanism of *Shigella* pathogenesis is the ability to induce polymerization of an actin tail that confers intracellular motility and mediates cell-to-cell spreading.

Despite extensive study of *Shigella* pathogenesis, the puzzle of *Shigella*-host interactions is far from complete. Most studies have been restricted to characterizing how *Shigella* escapes immune recognition. However, there is a lack of understanding regarding *Shigella*‘s reliance on the host factors that maintain cell homeostasis. One such host factor is the Receptor for Activated C Kinase 1 (RACK1). As a scaffold protein, RACK1
participates in numerous aspects of cellular function in eukaryotic organisms, such as protein shuttling, protein activity stabilization, and signalling. In mammals, RACK1 has been shown to promote hepatitis C viral translation. Protein-protein interaction screenings have shown secreted effectors of the intracellular bacteria Yersinia, Mycobacterium, and Helicobacter bind to RACK1, exerting various functions. Moreover, RACK1 is required for innate immune pathway activation in Caenorhabditis elegans infected with Shigella.

Shigella's fine-tuning of cellular function results from millions of years of adaptation to humans. In the present study, I seek to understand the role of the highly conserved host scaffold protein RACK1 in Shigella infection. In the introductory chapter, I describe in detail the intracellular life cycle of Shigella and how this pathogen modulates the host actin cytoskeleton. Then, I provide a brief review of the known RACK1 functions, highlighting the importance of RACK1 in cytoskeleton homeostasis, followed by a summary of RACK1's functions in host-pathogen interactions. Finally, I state my hypothesis and specific objectives of this project.

1.2 Shigella and shigellosis

Members of the genus Shigella are the causative agents of shigellosis, an acute intestinal infection. Shigellosis is a self-limited disease, the symptoms of which can range from mild watery diarrhea to severe inflammatory dysentery characterized by intense abdominal cramps, fever, blood and mucus in the stools (dysentery). However, shigellosis may become life-threatening for patients with a weakened immune system or if adequate medical care is unavailable, causing high mortalities. According to global disease burden estimates, Shigella is the second leading cause of diarrhea mortality in all age groups. Children younger than five years and adults older than 70 years are at a higher risk of dying from shigellosis. Increased shigellosis morbidity among men who have sex with men has been reported. Morbidity is also common among travellers returning from developing countries (traveller’s diarrhea).
Lack of sanitation and hygiene systems in developing countries and natural disaster areas create optimal conditions for *Shigella* spreading. Most shigellosis cases are sporadic in industrialized countries. Outbreaks are often caused by asymptomatic carriers with poor personal hygiene handling food. Shigellosis is transmitted through the fecal-oral route and contaminated water or food consumption. The infection dose of *Shigella* is as low as ten bacteria; thus, transmission in crowded or poor sanitation settings is highly effective. The fact that humans are the only natural reservoir for *Shigella* implies that an asymptomatic percentage of the population maintains the global burden of shigellosis.

The genus *Shigella*, composed of non-motile, non-sporulating Gram-negative rods, is part of the large Enterobacteriaceae family. There are four *Shigella* species divided into serotypes based on their O-antigen: *S. flexneri* and *S. boydii* with 19 serotypes each, *S. dysenteriae* with 15 serotypes, and *S. sonnei* with one serotype. *S. flexneri* is the most prevalent species in developing countries, whereas *S. sonnei* is predominant in industrialized countries. Although *S. dysenteriae* is rarely isolated nowadays, this species caused epidemics characterized by severe disease and high mortalities. *S. dysenteriae* serotype 1 produces Shiga toxin, a potent virulence factor that halts protein synthesis, leading to the destruction of endothelial cells and subsequent dysentery. A further complication caused by Shiga toxin-producing *S. dysenteriae* is the development of Haemolytic-Uremic Syndrome (HUS), characterized by hemolysis and renal failure with about a 36% mortality rate. Post-reactive arthritis is another complication of shigellosis, occurring in 2 to 7% of people infected with *S. flexneri*. Joint inflammation can last for months or years and, in some cases, lead to chronic arthritis.

Shigella species are becoming alarmingly more resistant to the first and second-line treatments of ciprofloxacin and azithromycin, respectively. Resistance genes from other enteropathogens have been found in *Shigella* species, suggesting horizontal transfer in the human gut. In particular, *S. sonnei* has been shown to rapidly acquire and disseminate resistance genes through mobile genetic elements. The emergence of multidrug-resistant *Shigella* strains presents a significant public health challenge and underpins the growing need for vaccines against *Shigella* infections. Unfortunately, despite multiple
trials, no vaccine against shigellosis has been approved yet. The wide variety of Shigella serotypes and their differential geographical distribution complicates vaccine development. In this regard, S. flexneri, S. sonnei and the potentially epidemic S. dysenteriae type 1 strains should most critically be included in a polyvalent formulation. Delivery of effective and cheap Shigella vaccines could control shigellosis independently of health infrastructure improvements in developing countries, halting the spread of multidrug resistance among enteropathogens.

1.3 Shigella flexneri pathogenesis

Most of what is known regarding Shigella pathogenesis mechanisms is derived from studies of S. flexneri. This species was the second member of the Shigella genus described, initially reported by Simon Flexner in 1900. More than 100 years later, S. flexneri continues to be a primary etiological agent of foodborne diarrhea. The pathogenicity of S. flexneri (hereafter referred to as Shigella) is driven by its ability to invade the colonic epithelium. But first, Shigella circumvents host barriers such as stomach acid, the microbiota, and the mucus layer of the intestine. Acid resistance is given by the regulator rpoS. Evidence shows that Shigella species produce colicins, antibacterial proteins that reduce E. coli competition in the gut. Secretion of mucinase and neuraminidase could alter mucus integrity, although the role of these enzymes in Shigella virulence is not well characterized.

After crossing the mucus layer, Shigella targets specialized epithelial cells (ECs) called microfold (M) cells. The primary function of M cells is to sample and transport antigens by transcytosis (vesicular transport) from the intestine lumen to the lymphoid cells underneath the epithelium. Shigella exploits the transcytosis function of M cells to access the subepithelial space and invade colonic ECs through the basolateral end. It was recently confirmed that Shigella also invades the cytoplasm of M cells, spreading directly from their cytosol to neighbouring enterocytes. In the subepithelial space, resident macrophages phagocytose Shigella. Yet, instead of degrading the incoming pathogen, infected macrophages become factories for Shigella replication because Shigella exits the
phagosome to replicate in the macrophage’s cytoplasm, triggering rapid lytic cell death releasing *Shigella* to infect colonic ECs 45.

In macrophages, *Shigella* triggers a newly characterized form of cell death denominated pyroptosis 46–48. This inflammatory cell death mechanism involves inflammasome-mediated activation of the protease caspase-1 48,49. Cytoplasmic *Shigella* is recognized by the NLRC4/NLRP3-inflammasomes, leading to caspase-1 activation and subsequent processing of Gasdermin D (GSDMD), interleukin-1β (IL-1β) and interleukin-18 (pro-IL-18) 50–52. Cleaved GSDMD targets the cellular membrane, assembling into a permeability pore and causing cell lysis 53. When macrophages lyse, *Shigella* and the pro-inflammatory cytokines IL-1β and IL-18 are released. Both cytokines contribute to the acute inflammatory response characteristic of Shigellosis 54,55. IL-18 promotes the production of interferon-gamma (IFN-γ) from natural killer (NK) lymphocytes. IFN-γ is essential for the control of *Shigella* infection in mice 56. Whereas IL-1β facilitates *Shigella* infection progression as shown in rabbits treated with an IL-1 receptor antagonist 55. Moreover, IL-1β−/− mice infected with *Shigella* present less inflammation and minor *Shigella* invasion of tissue 54. These findings suggest that inflammation in response to *Shigella* infection initially promotes further bacterial spreading in the colonic epithelium.

Profuse polymorphonuclear leukocyte (PMN) recruitment to the site of infection is one of the hallmarks of Shigellosis 57. Macrophage-released IL-1β starts the PMN influx 55. However, most PMN infiltration is triggered by IL-8 released from *Shigella*-infected epithelial cells 58,59. PMNs arrive at the basolateral side of the epithelium and migrate into the intestine lumen, where they ingest and destroy bacteria 60,61. Paradoxically, PMNs arrest further *Shigella* translocation into the subepithelial space while simultaneously enabling bacterial translocation without the need for M cells 62,63. This is due to PMN releasing proteolytic enzymes, such as myeloperoxidases, that actively destroy tissue 64. *Shigella* exploits the damage induced by PMNs to further invade the epithelium 63. It has been reported that *Shigella* finely tunes PMN recruitment by secreting a serine protease that functions as a PMN chemoattractant and the effector proteins OspB, OspC1 and OspZ to promote PMN migration 65–68. On the other hand, *Shigella* represses PMN recruitment by
dampening transcription of IL-8 and other genes involved in immune responses by the action of the bacterial effector OspF. Shigella cannot escape the phagosome within PMNs, and PMN extracts effectively kill Shigella in vitro. Therefore, PMNs not only contribute initially to the severe tissue damage characteristic of shigellosis but eventually, PMNs tilt the balance towards Shigella elimination, resolving the infection in healthy individuals.

In summary, macrophage inflammatory cell death (pyroptosis), the release of pro-inflammatory cytokines (IL-1β, IL-18, IL-8), and concomitant PMN-mediated epithelium damage are essential for the establishment of infection. Moreover, the severe tissue destruction observed in Shigella-infected patients results mainly from the damage to the epithelium caused by the acute inflammatory response.

1.4 Shigella life cycle within the epithelial cell

1.4.1 The making of an invasive pathogen

Shigella species are traditionally classified by their biochemical properties and serological reactivity. However, comparative genomics shows that Shigella species are specialized lineages derived from the gut commensal Escherichia coli, perhaps the species classification is obsolete. It was estimated by phylogenetic analysis of eight housekeeping genes that three major clusters of Shigella evolved separately within the last 35,000 to 270,000 years. S. sonnei belongs to a newer group outside of the major three clusters that diverged in the 17th century and rapidly adapted to humans living in the developed world. What makes Shigella an invasive pathogen is also answered by comparative genomics. Consecutive genetic events where Shigella acquired a large virulence plasmid and chromosomal pathogenicity islands led to the evolution of invasive Shigella species. In the process, Shigella also disposed of genetic loci that attenuated virulence or were no longer needed for intracellular life, such as cadA and ompT. The surface protease OmpT attenuates virulence by interfering with the expression of the motility protein IcsA, and cadA encodes a lysine decarboxylase that inhibits Shigella’s
enterotoxic activity. In this manner, *Shigella* species became highly specialized, human-specific pathogens tailored to interact with the host intestinal mucosa.

Shigella’s ability to invade ECs is mainly determined by its virulence plasmid pWR100. The genes necessary for invasion are within a 31-kb region of the plasmid, which encodes all the components required to assemble a type III secretion system (T3SS) and most of the proteins secreted by this machinery. T3SSs are needle-like apparatuses spanning the membranes of pathogenic Gram-negative bacteria that allow injection of effector proteins into the host cell cytosol. *Shigella*’s T3SS protein components are encoded in the pWR100 by the mxi/spa (membrane expression of ipa/surface presentation of ipa) operon. Significantly, assembly and activation of the T3SS are tightly regulated by a repressor histone-like nucleoid structure (H-NS), and three transcription factors named virulence gene F (VirF), VirB, and MxiE. Temperatures above 32 °C trigger the release of H-NS from *virF* permitting VirF expression. VirF controls the expression of VirB which subsequently activates the expression of the mxi/spa operon and the invasion plasmid antigen (ipa) genes ipaABCD. The protein products of the mentioned operons are the building blocks of the T3SS. The mxi-spa T3SS structure consists of a cytoplasmic C-ring, a basal body (MxiD/G/J) crossing inner and outer membranes, the rod (MxiI) and the needle (MxiH). The translocator proteins IpaB and IpaD assemble at the tip of the needle. Regulation of T3SS protein synthesis ensures the apparatus is not assembled before encountering the host.

Once the T3SS is assembled, host membrane sensing is the cue that triggers secretion. Transcriptional reporters of T3SS secretion demonstrated that the T3SS is under on-off regulation during the various stages of *Shigella*’s intracellular life cycle. Upon membrane sensing by IpaB at the tip of the T3SS, IpaB inserts its C-terminus domain in the host cell membrane triggering the secretion of IpaC, which is also inserted forming the translocon. After the invasion of the EC, *Shigella* continuously secret effectors while within the vacuole. The T3SS becomes inactive after vacuolar escape until *Shigella* reencounters the host membrane due to intracellular motility.
Through the active T3SS, *Shigella* injects approximately 30 effector proteins into the host cytosol that trigger bacterial uptake by the EC and interfere with many other cell signalling pathways. The T3SS effectors can be classified according to the timing of gene expression. The first group of effectors is produced independently of the T3SS activation and includes IpaA/B/C/D, IcsB, invasion plasmid gene (Ipg)B1/2, IpgD, outer *Shigella* protein (Osp)C2-4, OspD1/2. The second group of effectors is expressed under non-secreting conditions and upregulated after T3SS activation. These genes encode OspB, OspC1, OspF, and VirA effectors. The expression of a third group is triggered by T3SS activation and comprises OspD3, OspE1/2, OspG, IpaH1/2, IpaH4.5, IpaH7.8 and IpaH9.8. VirB is the central transcription regulator of the first group of secreted effectors, while the second and third group expression is MxiE dependent. Functionally, the first set of effectors mainly induces actin cytoskeleton reorganization to promote bacterial invasion of ECs. They are followed by the second and third group, which modulate cell death and dampen innate immune responses.

1.4.2 Invasion of the epithelial cell

Shigella invades colonic ECs from their basolateral side, but contrary to most invasive pathogens, *Shigella* lacks any classical adhesin. The absence of dedicated bacterial attachment proteins most likely accounts for *Shigella*’s moderate capacity to invade cultured cells *in vitro*. However, *Shigella* is a highly efficient invasive pathogen *in vivo*. Hence, *Shigella* must deploy alternative strategies to attach to ECs. The outer membrane protein intracellular spread A (IcsA), whose primary role is to confer actin-mediated motility, has been shown to react to bile salts and become adhesive in a T3SS dependent manner. Recently, a specific adhesion domain that binds to an unidentified host receptor was found in IcsA; deletion of this region reduced *Shigella* invasion. Moreover, cholesterol-rich areas of the EC membrane, where the two receptors Cluster of Differentiation 44 (CD44) and α5β1 integrin are found, serve as sites for *Shigella* binding. IpaB, IpaC, and IpaD, located at the tip of the T3SS, directly bind to α5β1, and IpaB interacts with CD44. Antibody-mediated blocking of the IpaB-CD44 interaction inhibits *Shigella* entry into HeLa cells. Sensing the host membrane by the tip complex
activates the T3SS, leading to IpaB-IpaC insertion into the host membrane forming a pore, denominated translocon, through which bacterial effectors are secreted into the host cytoplasm93,97,106.

Shigella extensively manipulates the host cytoskeleton as part of its strategy to invade cells. Translocation of pre-formed bacterial effectors triggers actin polymerization, resulting in filamentous (F-) actin accumulation and extensive membrane ruffling at the entry site (entry foci, Figure 1.1). To achieve this, *Shigella* effectors hijack the function of Rho (Ras homologous) small GTPases, tyrosine kinases, and actin-binding proteins107–109. The Rho family of small GTPases are core regulators of actin cytoskeleton rearrangements and are tightly regulated. Small GTPases function as molecular switches that alternate between the GTP-bound active and GDP-bound inactive forms. Guanine nucleotide exchange factors (GEFs) activate small GTPases, whereas GTPase-activating proteins (GAPs) inactivate them110. Activation of the Cell division control protein 42 (Cdc42), Rac1 (Ras-related C3 botulinum toxin substrate 1) and RhoA small GTPases trigger the assembly of cytoskeletal structures, such as filopodia, lamellipodia and stress fibres111. Upon translocon assembly in the host cell membrane, the C-terminus of IpaC indirectly activates Cdc42 and Rac1, triggering actin polymerization112–114. In addition, IpaC binds to and activates the sarcoma (Src) tyrosine kinase, which phosphorylates the actin-binding protein cortactin (Figure 1.1). Active cortactin forms a complex with the adapter protein Crk (chicken tumour virus number 10 regulator of kinase), triggering binding and activation of the Actin-related protein 2/3 (Arp2/3) complex115,116. The Arp2/3 complex is an actin nucleator that promotes actin filament branching, creating actin networks underneath the cell membrane (Figure 1.1)117.

The Abelson murine leukemia (Abl) kinase, another host tyrosine kinase involved in actin dynamics, is activated during the initial stages of *Shigella* infection, although no bacterial effector has been found to directly target Abl118. Activated Abl phosphorylates Crk, possibly facilitating cortactin-mediated actin polymerization (Figure 1.1)115,118. Moreover, the T3SS effectors IpgB1 and IpgB2 mimic the function of GEFs to further induce actin polymerization by maintaining Rac1, Cdc42 and RhoA in their active state.
VirA, described initially as a cysteine protease that severs microtubules, has also been linked to *Shigella* entry. VirA induces membrane ruffles in a Rac1 dependent manner, promoting invasion. However, instead of a protease, VirA functions as a GAP to inactivate Rab1, although how Rab1 inactivation promotes *Shigella* invasion is unclear.

Besides GTPases and kinases, *Shigella* also targets the membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) via the secreted effector IpgD. PIP2 is one of seven phosphoinositides. These phospholipids regulate remodelling of the actin cytoskeleton and other cellular functions by acting as a platform for protein recruitment to intracellular membranes. IpgD is an inositol 4-phosphatase that hydrolyzes PIP2 to produce phosphatidyl-inositol 5-phosphate (PI5P). Accumulation of PI5P disconnects the subcortical actin cytoskeleton from the membrane, thereby promoting membrane ruffling. *Shigella* also regulates Ca2+ signalling through the function of IpgD. PIP2 is the precursor of inositol 1,4,5-trisphosphate (IP3), regulating cytoplasmic Ca2+ levels. IpgD-mediated depletion of PIP2 results in a decrease of IP3 production, leading to inhibition of Ca2+ release from the endoplasmic reticulum. Additionally, *Shigella* restricts diffusion of preformed IP3 by enrichment of IP3 receptors at the entry site, triggering long-lasting local Ca2+ responses. These local Ca2+ signals are involved in *Shigella* entry as demonstrated by impaired *Shigella* actin foci formation in cells treated with a Ca2+ chelator.

F-actin polymerization is a highly dynamic process correlated with actin disassembly. *Shigella*-induced entry foci rely on rapid polymerization and depolymerization of actin. Therefore, *Shigella* uses one more tool from its repertoire to regulate actin depolymerization. The T3SS effector IpaA binds to vinculin, an actin-binding protein enriched at cell-matrix adhesion complexes called focal adhesions. Active vinculin binds to the actin filament barbed end, preventing actin polymerization (capping activity). IpaA possesses three regions that strongly bind to vinculin, activating its capping function as demonstrated by increased F-actin depolymerization in vitro and in vivo. IpaA deletion reduces *Shigella* invasion ten times compared to the wild-type.
bacterium, confirming actin depolymerization's critical role in regulating membrane protrusions during *Shigella* entry137.

The focal adhesion protein, talin, is also targeted by IpaA143. Talin binds to integrins and vinculin, connecting the two to strengthen focal adhesions144. One of the three vinculin-binding domains of IpaA also binds talin suggesting a competitive interaction between IpaA, talin and vinculin145. Talin is enriched around *Shigella* at the entry site in an IpaA dependent manner, and silencing talin reduces *Shigella* invasion145. Interestingly, talin is predominantly found at the filopodial tip during *Shigella* infection145. This observation supports previous findings that suggest *Shigella* invades cells from the apical side146. Filopodial capture has been observed \textit{in vitro}. Polarized intestinal epithelial cells initially capture *Shigella* through filopodia, which then retract, bringing *Shigella* close to the cell body, where invasion proceeds146. Taken together, *Shigella* promotes F-actin foci formation and membrane remodelling, forcing uptake by epithelial cells through complex and coordinated processes involving numerous effectors.
Figure 1.1. *Shigella* secretes T3SS effectors that trigger profuse actin polymerization leading to epithelial cell invasion.

Sensing the host membrane by the translocon tip activates the T3SS, leading to IpaB-IpaC insertion into the host membrane forming a pore, through which bacterial effectors are secreted into the cytoplasm. These effectors trigger actin polymerization, resulting in filamentous (F-) actin accumulation (magenta) and extensive membrane ruffling at the entry focus. Actin polymerization is initiated by the T3SS effector IpaC, indirectly activating the small GTPases Cdc42 and Rac1. These GTPases activate N-WASP leading to Arp2/3 complex recruitment and polymerization of branched actin filaments. The T3SS effectors IpgB1 and IpgB2 maintain Rac1 and Cdc42 in a GTP-bound active state, enhancing actin polymerization. IpaC also interacts with the kinase Src which phosphorylates (P) the actin-binding protein cortactin. Active cortactin forms a complex with the adapter protein Crk following Crk activation by the kinase Abl. The cortactin-Crk complex recruits and activates Arp2/3. Actin turnover during invasion is regulated by the effector IpaA which binds to the actin-binding protein vinculin. Active vinculin binds to the actin filament barbed end (capping activity), promoting actin depolymerization and maintaining the globular (G) actin pool. The bacterial inositol 4-phosphatase IpgD hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce phosphatidyl-inositol 5-phosphate (PI5P). Accumulation of PI5P in the cell membrane promotes membrane ruffling.
1.4.3 Vacuolar escape

In contrast to most intracellular bacterial pathogens, *Shigella* escapes the vacuole shortly (less than 10 min) after cell invasion to replicate in the cytoplasm. Despite the substantial study of *Shigella*’s mechanisms of pathogenesis, the vacuolar rupture process remains poorly understood. Insertion of the T3SS translocon, formed by IpaB and IpaC, into the vacuolar membrane has been suggested as a mechanism of vacuolar damage (Figure 1.2). Indeed, insertion of the translocon proteins in the membrane of red blood cells exposed to *Shigella* induces hemolysis. Given that IpaB and IpaC are absolutely required for invasion, their role in vacuolar escape is hard to dissect from the entry process. Nevertheless, *in vitro* studies demonstrated that purified IpaB and IpaC disrupt lipid vesicles.

Evidence supports a decisive role of IpaC in membrane lysis, as the heterologous expression of IpaC in the normally membrane-bound intracellular pathogen *Salmonella* leads to lysis of the vacuole. Since macrophages phagocytose bacteria, infection of macrophages permits evaluation of bacterial vacuolar escape of the otherwise invasion deficient ΔipaB mutant. Surprisingly, ΔipaB *Shigella* remains trapped inside the phagosome, but it can still replicate inside it. Macrophage infection could also be used to study ΔipaC *Shigella*, but this mutant shows reduced macrophage invasiveness, suggesting that IpaC directs *Shigella* entry into macrophages. A newer study demonstrated that the ΔipaB mutant vacuolar exit is not entirely abrogated but delayed. Similar results were found with a ΔipaH7.8 *Shigella* strain. IpaH7.8 is a ubiquitin ligase secreted through the T3SS with a significant role in macrophage cell death induction.

Innovative techniques such as time-lapse microscopy, small interfering RNA (siRNA) screens, and fluorescent reporters have shed light on *Shigella*’s vacuolar escape mechanisms. The fact that no specific *Shigella* effector mutation completely abolishes vacuolar escape suggests this process is multifactorial, and perhaps host mechanisms are involved. Indeed, the knockdown of 32 host factors decelerates vacuolar rupture. The most remarkable are endocytic markers Ras-associated binding (Rab) 5, Rab11 and early endosome antigen (EEA1), revealing a pivotal role of endocytic pathways in vacuolar
escape154. Rab5 and Rab11 belong to the Rab family of small GTPases, which bind and control most intracellular vesicle trafficking155. Rab5 tags early endosomes (EEs), phagosomes, and macropinosomes mediating the maturation of these compartments, whereas Rab11 regulates vesicular trafficking from EEs to the endocytic recycling compartment (ERC)155,156. Massive accumulation of Rab11 positive vesicles follows \textit{Shigella} entry into epithelial cells along with transient recruitment of Rab5 EEs154.

Descriptions of galectin-3 (Gal-3) as a novel tool to spot vacuolar lysis helped decipher the dynamics of Rab5 recruitment to \textit{Shigella}147,157,158. Gal-3 is a cytosolic protein, constitutively expressed in myeloid and ECs, that binds to exposed glycans in damaged membranes such as those induced by \textit{Shigella}'s vacuolar escape (Figure 1.2)159. Time-lapse microscopy experiments confirmed Rab5 and Rab11 positive vesicles are found in the vicinity of the \textit{Shigella}-containing vacuole (SCV) before Gal-3 recruitment154,160. Since phosphoinositides recruit Rab11 to vesicular membranes, the inositol 4-phosphatase IpgD was hypothesized as the \textit{Shigella} effector modulating Rab11 positive vacuoles161. An IpgD deletion mutant and a phosphatase inactive IpgD mutant failed to recruit Rab11 positive vesicles154. Furthermore, both mutants showed delayed Gal-3 recruitment, demonstrating that the IpgD dependent Rab11 recruitment is required for efficient rupture of the SCV (Figure 1.2)154,162. Later reports identified the Rab11 positive vesicles as macropinosomes formed due to \textit{Shigella}'s massive membrane ruffle induction that fuse back into the membrane, taking up extracellular fluid (Figure 1.2)160,162.

A study using large volume correlative focused ion beam imaging coupled to scanning electron tomography (C-FIB/SET) revealed the ultrastructure of the invasion site microenvironment162. Initially, the vacuolar membrane tightly encloses \textit{Shigella} in a compartment separated from the surrounding Rab11-tagged macropinosomes162. Subsequently, \textit{Shigella} damages the vacuolar membrane, triggering Gal-3 recruitment accompanied by macropinosome binding to the damaged SCV160,162. Macropinosome attachment to the SCV membrane is facilitated by the exocyst complex, a multi-protein complex directing secretory vesicle transport163. Rab11 relocates the exocyst complex to the macropinosomes to tether them to the SCV proximity160. The macropinosomes then
assist *Shigella* exit from the SCV, followed by vacuole fragmentation into membrane remnants that quickly lose Gal-3 signal 158,160.

A newly identified *Shigella*-induced structure was recently characterized in detail. Rapid time-lapse imaging revealed that a thick actin-rich cage, coined as a cocoon, assembles around the SCV after internalization by ECs (Figure 1.2) 154,162. *Shigella* actively induces actin polymerization of the cocoon, and its disassembly precedes vacuolar escape 158,164. The actin cocoon is found in only 20% of WT *Shigella*, whereas > 80% of ΔipgD *Shigella* are trapped inside the cocoon and show vacuolar escape impairment 154. This finding supported the idea that actin cocoon polymerization was a host-induced event to restrict vacuolar escape. However, it was later shown that cocoon assembly-disassembly around the SCV is induced by *Shigella* and a crucial step required for efficient vacuolar escape 164.

The T3SS effector IcsB, a fatty acyltransferase, was identified as the primary regulator of cocoon assembly (Figure 1.2) 165,164. IcsB mediates Cdc42 recruitment to the SCV. Subsequently, Cdc42 activates the Neuronal-Wiskott Aldrich syndrome protein (N-WASP) coupled to the Transducer of Cdc42-dependent actin assembly (Toca-1) protein. Then the Cdc42-N-WASP-Toca-1 complex triggers actin nucleation through the Arp2/3 complex (Figure 1.2) 164. The cocoon then disassembles right before Gal-3 recruitment 158,164. Although bacteria associated with cocoons take longer to escape the vacuole, they are more efficient in disentangling from the vacuole’s membrane remnants and becoming motile afterwards 164. Conversely, similar to ΔipgD, the ΔicsB mutant shows more cocoon-positive bacteria along with delayed vacuolar escape 164. Thus, other bacterial effectors and possibly host proteins are involved in actin cocoon polymerization. Furthermore, ectopic expression of IcsB promotes actin cytoskeleton disassembly in HeLa cells, suggesting that deletion of IcsB and possibly IpgD likely interferes with actin cocoon turnover 165. The role of the actin cocoon in *Shigella* pathogenesis and the precise mechanisms involved in its polymerization-depolymerization remain to be fully characterized.
Consequently, these findings expose a complex mechanism underlying *Shigella* vacuolar escape that implicates mechanical damage of the membrane by insertion of the IpaB-IpaC translocon followed by IpgD-mediated subversion of the vesicular trafficking regulators Rab11 and exocyst to gain access to the host cytosol efficiently. Furthermore, a newly described mechanism of vacuolar escape regulation, the actin cocoon, facilitates recycling and removal of the SCV membrane remnants from *Shigella*.

1.4.4 Establishment of a replicative niche within the epithelial cell

Shigella establishes its replicative niche in the cytoplasm of ECs, where they are out of sight from the innate immune system (e.g., PMNs). However, ECs are armed with defence mechanisms against intracellular pathogens, such as endocytic degradation, autophagy recognition, pathogen-induced inflammatory responses, and the last resource, cell death. *Shigella* has evolved mechanisms to escape or counteract these antimicrobial defences and keep its replicative niche from cell death long enough to ensure replication.

As detailed in the previous section, *Shigella* stays inside the SCV for a short time, during which, *Shigella* actively blocks the endocytic maturation process (Figure 1.2). IpgD produces PI5P at the entry site, which accumulates in endosomal membranes, blocking the binding of late markers such as the Lysosomal-Associated Membrane Protein 1/2 (LAMP-1/2). SCV targeting by the early marker EEA-1 has not been reported suggesting *Shigella* halts maturation early after uptake. The ultimate escape from endocytic degradation is to exit the vacuole. However, SCV rupture and release of membrane remnants generate danger signals that trigger autophagy responses (Figure 1.2). A selective form of autophagy denominated xenophagy sequesters invading pathogens inside membranous compartments called autophagosomes that later fuse with lysosomes to degrade their content. Xenophagy senses the damaged SCV and membrane remnants as they become ubiquitinated by the ubiquitin-ligase Leucine-Rich Repeat and Sterile Alpha Motif Containing 1 (LRSAM1, Figure 1.2). The autophagy receptors sequestosome 1 (p62) and nuclear dot protein 52 (NDP52) then bind to the ubiquitinated membranes and recruit the canonical autophagy markers microtubule-associated protein 1 light chain 3
(LC3) and autophagy-related 5 (Atg5) to initiate autophagosome formation (Figure 1.2) \(^{167,168,171,172}\). Likewise, the recruitment of galectins to damaged membranes triggers autophagy \(^{159}\). Galectin-3, -8 and -9 bind to damaged SCVs, from which galectin-8 recruits NDP52 and LC3 \(^{157,173}\). Although the role of galectin-3 and -9 in host defence against *Shigella* is not clear, it has been shown that galectin-3 accumulation to damaged phagosomes containing the foodborne pathogen *Listeria monocytogenes* suppresses galectin-8 recruitment and autophagy activation \(^{174}\).

Shigella has developed strategies to escape xenophagy recognition. The secreted effectors VirA and IcsB act synergistically to antagonize this process (Figure 1.2), as demonstrated by the increased number of LC3-positive SCVs found in single and double mutants of VirA and IcsB \(^{167,172}\). Also, SCVs formed in these mutants are less likely to be targeted by galectin-3 and more often associated with the lysosomal marker LAMP-2 than the WT strain \(^{172}\). VirA functions as a GAP for Rab1 and IcsB is a fatty acyltransferase that inactivates Rho-GTPases. Therefore, these two effectors likely impair LC3 recruitment by blocking actin-based processes regulated by Rho-GTPases. Indeed, Leu *et al.* showed that IcsB modifies the Charged Multivesicular Body Protein 5 (CHMP5) involved in the sorting of endosomal cargo (Figure 1.2). Fatty acylation of CHMP5 by IcsB blocked LC3 recruitment to the SCV \(^{165}\). LC3 recruitment occurs exclusively on the SCV but not in cytosolic bacteria; thus, IcsB localization to the SCV membrane could modify membrane identity by inactivating RhoGTPase. \(^{172}\) The Δ*virA* and Δ*icsB* mutants seem to be trapped for a more extended period within the SCV, probably due to a lack of RhoGTPase inactivation leading to LC3 accumulation and increased susceptibility to lysosomal degradation. Toca-1 recruitment to the SCV is IcsB dependent and associated with less LC3 targeting (Figure 1.2), although the mechanism of LC3 displacement is not known \(^{175}\). It is thought that polymerization of an actin cocoon around the SCV, a process that relies on IcsB-mediated Toca-1 recruitment, physically blocks LC3 targeting \(^{164}\). Furthermore, deletion of the canonical autophagy-related protein Atg16L1 enhances *Shigella* killing by macrophages. The mechanism behind this phenotype is that non-selective autophagy, mediated by Atg16L1, reduces antibacterial oxidative stress in the cytoplasm of macrophages, decreasing microbicidal capacity \(^{176}\).
It is plausible that Rab1 promotes the targeting of SCVs by xenophagy in epithelial cells since Rab1 is required for autophagosome assembly upon autophagy induction \(^{177}\). Therefore, the inactivation of Rab1 by VirA through its GAP activity could allow *Shigella* to escape xenophagy recognition \(^{127}\). This possibility is supported by the recently described global inhibition of trafficking pathways exerted by VirA and IpaJ \(^{178}\). Like VirA, IpaJ also modifies small-GTPases, with the difference that IpaJ removes the myristoyl group of the ADP-ribosylation factor (ARF1) thus inhibiting the myristoyl-mediated association of ARF1 with ER and Golgi membranes. Releases ARF1 from the Golgi membranes result in Golgi fragmentation and inhibition of the general secretory pathway \(^{179,180}\). Through inactivating ARF1 and Rab small GTPases families, VirA and IpaJ freeze vesicular trafficking (Figure 1.2) \(^{178}\).

Once in the cytosol, *Shigella* starts replicating and hijacks the host actin polymerization machinery to enable actin-based motility. However, the host can recognize the curvature of replicating bacteria via septins and trap them inside septin cages blocking actin tail polymerization (Figure 1.2) \(^{181,182}\). Septins are cytoskeleton proteins that assemble to form filaments, bundles and rings implicated in cell division \(^{183}\). Although septin cage entrapment of *Shigella* correlates with LC3 binding, it is unclear whether these LC3-positive cages are formed before or after vacuolar rupture \(^{181,182}\). Moreover, in the absence of IcsB, *Shigella* appears more frequently associated with septin structures, whereas the outer membrane IcsA promotes septin binding \(^{181,184}\). Likewise, IcsA is recognized by Atg5, potentially triggering xenophagy, but IcsB masks the Atg5 binding site on IcsA, thereby inhibiting recognition (Figure 1.2) \(^{167}\). IcsA mediates the polymerization of an actin tail at one pole of the bacterium, allowing intracellular motility \(^{185}\). It was shown that septins reduce the number of tailed *Shigella* possibly by binding and blocking the function of IcsA \(^{181,184}\). Septins also reduce inflammation and are required for neutrophil-mediated immunity in a zebrafish model of *Shigella* infection \(^{186}\). Nevertheless, the role of septin-mediated restriction of *Shigella*’s intracellular growth and motility requires further study.
Figure 1.2. *Shigella* escapes the endocytic vacuole generating membrane remnants that trigger LC3 recruitment.

Upon entry, *Shigella* remains within the *Shigella*-containing vacuole (SCV) for a short time before exiting into the cytoplasm. Massive accumulation of Rab11 positive macropinosomes follows *Shigella* entry into epithelial cells. IpgD hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) to produce phosphatidyl-inositol 5-phosphate (PI5P), promoting macropinosome formation and Rab11 recruitment. IpgD-mediated accumulation of PI5P also blocks binding of the endosomal markers EEA1 and LAMP 1/2. After internalization, an actin cocoon (magenta) assembles around some of the SCVs. Cocoon formation is IcsB-dependant, resulting in Cdc42-N-WASP-Toca-1 recruitment and subsequent Arp2/3 mediated actin polymerization. The cocoon then disassembles before *Shigella* damages the SCV possibly by IcsB mediated inactivation of Cdc42. The T3SS translocon, formed by IpaB and IpaC, is the primary mechanism used by *Shigella* to damage the SCV. Galectin-3 (Gal3) binds to exposed glycans in damaged SCVs and membrane remnants hence its use as a vacuolar escape reporter. As *Shigella* exits the SVC, membrane remnants are generated triggering LC3 recruitment. The ubiquitin-ligase LRSAM1 ubiquitinates membrane remnants. Then the xenophagy receptors p62 and NDP52 bind to the ubiquitinated membranes and recruit the LC3. *Shigella* blocks LC3 recruitment to the damaged SVC using the effectors VirA and IpaJ. These effectors inactivate several Rab small GTPases, including Rab1, freezing vesicular trafficking and reducing LC3 targeting. IcsB localizes to the SCV membrane where it modifies CHMP5, a host protein involved endosomal cargo sorting, thereby blocking LC3 targeting of the SCV. Cytoplasmic *Shigella* is recognized by the cytoskeleton proteins septins, which bind to dividing bacteria blocking actin mediated motility. The outer membrane protein IcsA, which mediates actin-tail polymerization, promotes septin binding to dividing bacteria in the host’s cytosol. The canonical autophagy marker Atg5 also binds to IcsA. *Shigella* counteracts septin and autophagy recognition by masking IcsA with IcsB.
In contrast to the rapid cell death induced in macrophages, *Shigella* strives to protect its replicative niche inside ECs. Bacteria-induced cell death can be classified into apoptosis, necrosis, necroptosis (programmed necrosis) and pyroptosis. Apoptosis is defined as a non-lytic non-inflammatory process mediated by caspase activation. Morphologically, apoptosis is characterized by membrane blebbing, nucleus fragmentation and the formation of apoptotic bodies that are cleared by phagocytic cells. On the other hand, necrosis, necroptosis and pyroptosis are pro-inflammatory lytic processes characterized by cell membrane rupture and cytoplasm leakage. Thus, their progression can be assessed utilizing cell-impermeable DNA binding dyes and the release of cellular contents, including lactate dehydrogenase (LDH). Necrosis and necroptosis are caspase-independent forms of cell death triggered by toxins, hypoxia, and other cell-damaging insults. In contrast, pyroptosis is mainly induced by pathogens that activate inflammasome assembly and caspase activity.

Shigella infection damages the host-cell DNA, activating the transcriptional factor proto-oncogene p53, inducing apoptosis. This cell death pathway is mediated by the initiator caspases 2, 8, and 9, which cleave and activate the executioner caspases 3, 6, and 7. Moreover, the lipopolysaccharide (LPS) of *Shigella* binds to caspases-3 and-7 via O-antigen moiety, blocking apoptosis. *Shigella* delivers the effector OspC1 to further inhibit apoptosis by blocking caspase-8 activation. Indirectly, IpgD inhibits apoptosis as demonstrated by the less caspase-3 activation found in cells overexpressing IpgD and treated with the apoptosis inducer staurosporine.

A programmed form of necrosis denominated necroptosis is triggered when the first-line apoptotic cell death responses fail. The key regulators of necroptosis are the serine/threonine kinase receptor-interacting protein (RIPK)1 and RIPK3. They phosphorylate the mixed lineage kinase domain-like protein (MLKL), which oligomerizes, forming a pore in the cellular membrane. Active caspase-8 not only activates downstream caspase-3/7 but also cleaves RIPK1 and RIPK3, blocking necroptosis. OspC1 mediated inactivation of caspase-8 thus also relieves the blockade of necroptosis.
Shigella subsequently delivers the protease OspD3 to antagonize necroptosis activation by RIPK1/RIPK3 degradation \(^{192}\).

Pyroptosis can be dependant (canonical) or independent (non-canonical) of inflammasome activation. Inflammasomes are multimolecular complexes activated by pattern recognition receptors (PRRs) in response to pathogen-associated molecular patterns (PAMPs) detection \(^{196}\). Inflammasome activation leads to caspase-1 activation, which cleaves pro-IL-1\(\beta\) or pro-IL-18, resulting in the secretion of the mature cytokines. Active caspase-1 also cleaves the executor protein GSDMD, which oligomerizes to form pores in the cell membrane, inducing cell lysis \(^{196}\). Inflammasome independent pyroptosis is mediated by caspase-4/5. IFN-\(\gamma\)–induced guanylate-binding proteins (GBPs) act as PRRs targeting the LPS of intracellular bacteria \(^{197}\). GBP coating of bacterial surface triggers recruitment and activation caspase-4/5, which subsequently cleave GSDMD but not pro-IL-1\(\beta\)/pro-IL-18 \(^{196,197}\). The T3SS rod component MxiI induces inflammasome-caspase-1 activation and rapid lysis of macrophages \(^{198}\). Remarkably, *Shigella* further promotes macrophage pyroptosis by inducing the formation of IpaB channels in the cell membrane, suggesting macrophage lysis is desirable for infection \(^{199}\). In contrast, *Shigella* actively safeguards its replicative niche within ECs. *Shigella* antagonizes the non-canonical pathway by delivering the T3SS effector OspC3 \(^{200,201}\). This effector inactivates caspase-4 by ADP-riboxanation \(^{202}\). Moreover, the E3 ubiquitin ligase IpaH7.8 ubiquitylates GSDMD, targeting it for degradation, thus impairing both canonical and non-canonical pathways \(^{203}\). *Shigella* secretes IpaH9.8, another ubiquitin ligase that targets the pyroptosis upstream ligand GBP1 for degradation via Lys48-linked ubiquitination \(^{204,205}\).

Other *Shigella* effectors involved in maintaining epithelial niche integrity include OspF, OspG, OspZ, OspI and IpaH1.4/2.5. These effectors interfere with nuclear factor kappaB (NF-\(\kappa\)B)-dependent production of IL-8, a potent PMN chemoattractant, thus dampening intestinal inflammation and EC damage. OspF is a phosphothreonine lyase, which irreversibly dephosphorylates mitogen-activated protein kinases (MAPKs) p38 and ERK, preventing access of NF-\(\kappa\)B to the IL-8 promoter \(^{69,206}\). The ubiquitin ligases IpaH1.4/2.5 target the Linear Ubiquitin chain Assembly Complex (LUBAC) enzymatic
center HOIP for proteasomal degradation. Reduced LUBAC activity results in a lack of RIPK1 and NEMO (IKKγ) ubiquitination, thereby interfering with NF-κB activation207. De Jong et. al also found that IpaH1.4 cooperates with OspI, a glutamine deamidase, to inhibit the activity of the E2 ubiquitin-conjugating enzyme UBC13 to further suppress NF-κB activation207,208. Moreover, the methyltransferase OspZ inhibits NF-κB activation and nuclear translocation by modifying upstream regulators209. Lastly, the effector OspG inhibits ubiquitylation and proteasomal degradation of the inhibitor of NF-κB type α (IκBα), thereby dampening NF-κB responses210,211. The multiple effectors that \textit{Shigella} employs to subvert the NF-κB pathway demonstrate the central role of NF-κB in innate immune responses against intracellular pathogens.

To summarize, \textit{Shigella} escapes LC3-mediated xenophagy by exiting SCV and quickly peeling off vacuolar membrane remnants. The secreted effectors VirA, IpaJ and IcsB are critical for efficient escape and vesicular trafficking modulation. Cytoplasmic \textit{Shigella} faces entrapment by septins and Atg5-dependent xenophagy, but IcsB antagonizes Atg5 binding to IcsA. \textit{Shigella} safeguards its cytosolic niche by counteracting cell death mechanisms triggered by the presence of PAMPs in the cytosol. \textit{Shigella} antagonizes apoptosis, necrosis-necroptosis, and pyroptosis in ECs, while pyroptosis is actively induced in macrophages. \textit{Shigella} uses a myriad of effectors to modulate these processes. IpgD, VirA, OspC1 and \textit{Shigella}’s LPS inhibit apoptosis. OspD2 inhibits VirA-mediated necrosis, and OspD3 antagonizes OspC1’s indirect induction of necroptosis. Pyroptosis is differentially regulated depending on the cell type. The T3SS components MxiI and IpaB promote rapid pyroptosis in macrophages. In contrast, OspC3 and the ubiquitin ligases IpaH7.8 and IpaH9.8 impair pyroptosis to maintain ECs integrity. Furthermore, \textit{Shigella} uses the effectors OspF, OspG, OspZ and IpaH9.8 to circumvent the activation of pro-inflammatory responses-mediated through the NF-κB and MAPKs pathways. The multiple mechanisms that \textit{Shigella} uses to target various host functions during its life cycle in the cytoplasm demonstrate a long coevolutionary process, where \textit{Shigella} adapted to escape host recognition to allow for unnoticed replication and spread to other cells.
1.4.5 Actin-based motility and cell-to-cell spreading

After cell invasion, *Shigella* rapidly escapes from the phagocytic vacuole into the cytosol, inducing actin polymerization to form an actin tail that confers intracellular motility. The adhesin IcsA, which localizes to one pole of the bacterium, mediates actin tail formation by recruitment and activation of N-WASP and the Arp2/3 complex (Figure 1.3). The actin tail allows bacteria to engage the host cell membrane, forming *Shigella*-containing protrusions. These protrusions are endocytosed by neighbouring cells. After the invasion of a second cell, *Shigella* escapes a double-membrane vacuole in a T3SS dependent manner to reach the cytoplasm. Following these events, *Shigella* starts a new replication cycle, actin-based motility and cell-to-cell spread.

The molecular mechanisms enabling actin tail polymerization of *Shigella* and other intracellular pathogens have been studied extensively. Ogawa *et al.* reported in the 1960s that when *Shigella* entered cells, it exhibited vigorous directional movements; this observation was surprising at the time, given that *Shigella* is described as non-motile. It was not until the 1980s that genetic studies identified *Shigella*’s outer membrane protein IcsA, also known as VirG, as the central mediator of actin tail polymerization and bacterial motility.

The *icsA* gene is located on the *Shigella* virulence plasmid. It encodes a 120-kDa outer membrane protein composed of three domains: a secretion signal peptide, a passenger domain located on the cell surface and the β-domain that anchors the protein to the outer membrane. The T3SS does not mediate IcsA translocation across the membrane. Instead, IcsA is an autotransporter protein secreted by the Sec-pathway into the periplasm. From there, the β-domain inserts into the outer membrane, mediating translocation of the passenger domain to the bacterial surface. Interestingly, IcsA preferentially localizes to the old pole of the bacterium; as *Shigella* divides, IcsA is expressed in opposite poles of the daughter cells. Cleavage and release of the passenger domain, mediated by the protease IcsP (SopA), determine the unipolar localization of IcsA and proper intracellular motility. When exposed to the host cell cytosol, surface-bound IcsA...
recruits and activates the actin polymerization machinery and catalyzes the directed elongation of an actin tail.

Shigella utilizes pre-existing host cell pathways of actin nucleation, polymerization, and cross-linking to induce actin-based motility. Knowing the essential components that mediate actin filament polymerization helps better understand how bacteria hijack this process. Actin exists in two forms, monomeric globular (G-) actin polymerizes into filamentous (F-) actin. Actin nuclei are trimers of G-actin, from which actin nucleation starts *de novo* to form a filament. F-actin filaments are polar; they have a fast-growing barbed end where ATP-bound G-actin monomers are added and a slow-growing pointed end from which ADP-bound G-actin is dissociated. Thus, actin filaments are maintained in a dynamic equilibrium of polymerization and depolymerization. Regulatory proteins are required to retain this equilibrium. For example, profilin prevents actin monomer self-nucleation, and cofilin stimulates ADP-actin dissociation at the pointed end of the filament, promoting depolymerization.

Actin filaments are stabilized by capping proteins that bind either the barbed or pointed end. *De novo* actin polymerization is unfavourable and inhibited by profilin. Therefore, actin polymerization must be stimulated by actin-nucleating proteins. The best-characterized actin-nucleator is the Arp2/3 complex composed of seven subunits, among which the Arp2 and Arp3 subunits are structurally similar to actin. Arp2/3 activity is regulated by nucleation-promoting factors such as N-WASP. Under nonpolymerizing conditions, N-WASP is maintained in an autoinhibited conformation stabilized by intramolecular contacts. Rho family GTPases, such as Cdc42, relieve N-WASP autoinhibition. Active N-WASP then recruits and activates the Arp2/3 complex, which binds to the side of a filament, initiating nucleation of branched filaments to form networks.

In vitro reconstitution of actin polymerization using purified proteins determined the essential proteins for *Shigella* motility. Globular (G-) actin, N-WASP, Arp2/3, cofilin and capping protein are the minimum requirement for actin-tail polymerization and movement.
of an *E. coli* strain expressing IcsA. However, other host proteins are required for more efficient actin tail polymerization and intracellular motility. For example, it was thought that IcsA binding to N-WASP was sufficient for its activation. It was later demonstrated that IcsA mainly mediates the recruitment of N-WASP to one pole of the bacterium, and it is Toca-1 that relieves N-WASP autoinhibition (Figure 1.3).

Toca-1’s recruitment to *Shigella* is IcsA independent, while an unknown T3SS effector mediates Toca-1 recruitment to the bacterium’s surface before bacterial motility starts. Given that IcsB recruits Cdc42, which activates N-WASP with the help of Toca-1, to induce the polymerization of actin cocoons around the SCV, IcsB may be the effector that recruits Toca-1 to IcsA. This is very likely since IcsB directly binds Toca-1 in vitro, and both proteins colocalize around *Shigella* early during infection. Given that IcsB is not required for actin tail polymerization but interacts with IcsA, IcsB may have a role in the process that leads to N-WASP recruitment and activation. After N-WASP-Act2/3-mediated actin polymerization, Toca-1 is no longer required for the subsequent maintenance of active N-WASP or actin tail elongation. The importance of Toca-1 for efficient actin tail polymerization was demonstrated in Toca-1-depleted cells, where the percentage of *Shigella* that forms normal-appearing actin tails was markedly reduced.

Furthermore, the activity of Bruton’s tyrosine kinase (Btk) and Abelson tyrosine kinase (Abl) is required to phosphorylate N-WASP (Figure 1.3), promoting its recruitment to *Shigella*. Depleting these two host kinases reduces the percentage of bacteria with actin tails. Similarly, the expression of an N-WASP mutant lacking its profilin binding leads to an 80% reduction in actin tail formation by *Shigella*. As mentioned, profilin is an actin monomer-binding protein that delivers G-actin to the site of actin polymerization. Thus, the functional interactions of profilin with N-WASP and G-actin are critical for *Shigella* actin-based motility. In addition, the T3SS-secreted effector VirA was shown to destabilize the dense microtubule network in the cytoplasm, promoting *Shigella* motility. It was initially reported that VirA was a cysteine protease that directly degraded α-tubulin. Later reports challenged this assumption, demonstrating that

purified VirA does not cleave tubulin. The mechanism by which VirA contributes to *Shigella* spreading remains to be identified.

Motile *Shigella* reaches the cell periphery, deforming the plasma membrane to form bacteria containing protrusions (Figure 1.3). These protrusions project into neighbouring cells, collapsing into a membrane-bound compartment endocytosed by the target cell. Although protrusion formation is a critical step in cell-to-cell spread and a key mechanism to escape immune recognition, this process is not as well characterized as other steps in *Shigella*’s life cycle. Membrane protrusion formation seems to result solely from the force developed by the actin tail that deforms the plasma membrane. However, it has been shown that the Diaphanous-related formins Dia1 and Dia2 are required for efficient protrusion development but not for actin tail polymerization. These formins are effectors for Rho small GTPases and stimulate polymerization of unbranched actin filaments. Dia1/Dia2 may promote *Shigella* protrusions by mediating parallel nucleation of several unbranched actin filaments, similar to the process that initiates filopodia, thereby increasing pushing efficiency.

Myosin-X, an unconventional myosin that promotes filopodia formation, is recruited to *Shigella* containing protrusions. Silencing of Myosin-X reduces the length but not the number of protrusions. Moreover, cell-to-cell spreading is impaired, but cell invasion was not affected, indicating that shorter protrusions are less likely to infect neighbouring cells. For efficient cell-to-cell spreading, *Shigella* also relies on myosin IIA and its specific kinase, myosin light chain kinase (MLCK). Interestingly, myosin IIA filaments are found at the bases of myosin X-induced filopodia, where they mediate filopodia stability. Collectively, these observations suggest that *Shigella* hijacks the filopodia machinery to induce long and stable protrusions.
Figure 1.3. *Shigella* induces actin polymerization to form an actin tail which mediates intracellular motility.

Shigella’s outer membrane protein, IcsA, localizes to one pole of the bacterium, mediating actin tail (magenta) formation. IcsA recruits N-WASP, which is activated by Toca-1. The host kinases Btk and Abl phosphorylate (P) N-WASP, enhancing its activation. Active N-WASP then recruits and activates the Arp2/3 complex mediating polymerization of branched actin filaments (magenta). The newly formed actin filaments are stabilized by capping proteins. Cofilin severs filaments and stimulates globular (G) actin dissociation promoting filament depolymerization. G-actin is stabilized by profilin, which binds to N-WASP, delivering actin monomers to the site of actin polymerization. The T3SS-secreted effector VirA promotes *Shigella* motility by an unknown mechanism resulting in microtubules destabilization. The actin tail allows bacteria to engage the host cell membrane, forming *Shigella*-containing protrusions.
Shigella manipulates cortical tension at cell junctions, preferentially generating protrusions in areas where three or four cells join \(^{215}\). An early study showed that E-cadherin, a significant component of the intermediate cellular junctions, is involved in *Shigella* cell-to-cell spreading \(^{245}\). Other junction proteins, such as connexin 26, play essential roles in *Shigella* invasion and movement into adjacent epithelial cells \(^{246}\). *Shigella* uses the secreted effector IpaC to destabilize cell junctions and facilitate spreading. IpaC interacts with β-catenin, a protein that interacts with cadherin to form tight adherent junctions, leading to β-catenin phosphorylation by an unknown kinase. β-catenin phosphorylation destabilizes the functional cadherin complex, perturbing cell-to-cell adhesion \(^{247}\). Moreover, *Shigella* expressing an IpaC mutant that cannot interact with β-catenin is defective in protrusion formation and cell-to-cell spread \(^{248}\).

T3SS activity is absolutely required for cell invasion and vacuolar escape. Studies have shown that the T3SS is also necessary for efficient protrusion formation \(^{216}\). T3SS function is triggered by membrane contact; thus, *Shigella’s* actin-mediated motility facilitates close interaction between the bacterium and the cell membrane to activate secretion \(^{97}\). Subsequently, *Shigella* containing protrusions recruit and activate tyrosine kinase signalling in a T3SS dependent manner \(^{216}\). The activity of the kinases STK11 and PIK3C2A then mediate the resolution of protrusions into a vacuole-like structure \(^{249,250}\). For this, protrusion “stems” collapse most likely due to actin tail polymerization termination. The specific T3SS effectors involved in tyrosine kinase signalling during protrusion progression have yet to be elucidated.

The uptake of *Shigella* containing vacuole-like structures is mediated by clathrin-dependent endocytosis \(^{215}\). The canonical function of clathrin is to mediate the uptake of small particles in the cell \(^{251}\). Although it is recruited to other bacteria, it remains unclear how clathrin function assists the uptake of *Shigella* containing protrusions \(^{252}\). The membrane remodelling protein epsin-1 and the GTPase Dynamin2 also facilitate uptake of *Shigella* by an undefined mechanism \(^{215,253}\). Notably, actin tail independent infections (primary infections) are different from actin tail mediated infections (secondary infections). The SCV formed in primary infected cells is composed of a single membrane derived from
the host plasma membrane, while in secondary infections, *Shigella* must break through a two-membrane SCV. One membrane is derived from the primary infected cell, and the second membrane derives from the secondary infected cell. The same effectors involved in escaping a single membrane SCV participate in *Shigella* escape from double-membrane compartments. However, IcsB and VirA seem to play a more prominent role in escaping from membrane compartments formed during cell-to-cell spread.

1.5 Receptor for activated C kinase 1, a scaffolding protein involved in diverse functions

1.5.1 Cell signalling and ribosome interaction

The Receptor for Activated C Kinase 1 (RACK1) belongs to the tryptophan-aspartate repeat (WD-repeat) family of proteins. These proteins comprise polypeptide domains of 40–60 amino acids, in which each repeat folds into a four-stranded antiparallel β-blade. The seven-bladed β-propeller conformation that RACK1 adopts facilitates interactions with various protein partners concurrently. As a scaffold protein, RACK1 participates in numerous aspects of cellular function in eukaryotic organisms. RACK1 was initially described as a PKC anchoring protein, from which it acquired its name. The interaction between these two proteins stabilizes PKC in its active conformation. RACK1 acts as a shuttling protein, moving PKC to where its substrates are located. Similarly, RACK1’s scaffolding function integrates many other kinase signalling pathways critical for fundamental cellular activities. For example, RACK1 binds several MAPKs, including the extracellular signal-regulated kinase 1 (ERK1), P38 and c-Jun N-terminal kinase (JNK). These kinases are activated upon stress, cytokines, and growth factors. Modulation of MAPK by RACK1, including their stabilization, subcellular localization, and association with their substrates, makes this scaffold protein a pivotal regulator of cellular homeostasis.

RACK1 interacts with cytoplasmic tails of several membrane receptors, facilitating signal transduction pathways. For example, RACK1 functions as an adaptor for growth factor receptor I (IGF-1R) signalling. RACK1 is associated with the signal transducer and
activator of transcription factor 3 (STAT3) and IGF-1R upon insulin activation. Active STAT3 mediates the expression of genes related to cell growth. RACK1 also binds the β integrin receptor, bridging signalling between IGF-1R and integrins, thereby influencing cell migration. The RACK1-integrin interaction also promotes cell survival pathways, the recruitment of several PKC isoforms and MAPK activation. More details about the role of RACK1 in integrin-mediated signalling will be discussed in the following sections.

The best characterized RACK1 partnership is with the ribosome. Structural studies identified RACK1 as a component of the ribosome, demonstrating that RACK1 integrates to the 40S ribosomal subunit. Blades 1–4 of RACK1 bind to the ribosomal protein S17 and 18S ribosomal RNA (rRNA). RACK1 does not mediate ribosome stability or integrity; instead, RACK1 recruits different translation control factors to the ribosome. For example, the recruitment of activated PKC leads to increased translation, because PKC phosphorylates the anti-association factor eIF6, relieving translational repression. Likewise, RACK1 binding to the ribosome leads to efficient recruitment of the eukaryotic initiation factor 4E (eIF4E), which mediates cap-dependent translation initiation. The interaction of RACK1 with the ribosome also regulates ribosome subcellular localization. RACK1 binding to β-integrins has been suggested to relocate ribosomes to focal adhesions. Another crucial regulatory role of RACK1-ribosome interaction is demonstrated by the expression of a RACK1 mutant unable to bind the ribosome, resulting in selective translation of mRNAs of genes that induce autophagy.

1.5.2 RACK1’s role in autophagy

Autophagy is an evolutionarily conserved cellular process that degrades long-lived proteins and damaged organelles collected within double-membraned vacuoles fused with lysosomes. The first step in autophagy is the formation of a phagophore, a small vacuole that subsequently expands and surrounds a portion of the cytoplasm and cellular organelles. The phagophore then closes, forming a double-membraned structure denominated autophagosome, which then fuses with lysosomes to degrade the cargo. The progression
of these steps is regulated by autophagy (Atg) related proteins that function in an organized sequential manner. Autophagy is induced by various stressors, such as nutrient starvation, hypoxia, oxidative stress, and pathogen infection.

The role of RACK1 in autophagy signalling is only beginning to be understood. The first indication that RACK1 function could be related to autophagy came from the finding that RACK1 deficiency in hepatocytes leads to lipid accumulation in the liver. RACK1 is essential for development; therefore, studying the various functions of this protein in animal models is challenging. An alternative is to create conditional knockouts targeting RACK1 expression in specific organs. RACK1 knockout in the liver results in increased accumulation of lipids in the cytoplasm of hepatocytes and tumorigenesis. This phenotype is consistent with that observed in autophagy-deficient Vps34−/− livers. Lipid accumulation was associated with an increment in polyubiquitinated proteins and p62. Moreover, co-immunoprecipitation analysis identified various Atg proteins, Beclin-1 and Vps34, as RACK1 interactors. The adenylate-activated protein kinase (AMPK) is an autophagy regulator that mediates ULK activation. It was discovered that RACK1 is a substrate of AMPK. RACK1 phosphorylation by AMPK promotes its binding to Beclin-1, resulting in the assembly of the autophagy-initiation complex. RACK1 also interacts with Atg proteins downstream of the Beclin-1/Vps34 complex. RACK1 is recruited to the Atg12-Atg5-Atg16 complex by interacting with Atg5 upon starvation. Cells expressing a RACK1 mutant that could no longer bind to Atg5 display less LC3 positive puncta under starvation, confirming the RACK1-Atg5 interaction is necessary for starvation-induced autophagy.

Abnormal expression of RACK1 has been linked to cancer development. Since RACK1 depletion leads to autophagy inhibition, the expected outcome is an accumulation of damaged organelles and protein aggregates, which are known to create an environment for cancer initiation. Moreover, accumulation of p62 and deletion of Beclin-1 are related to cancer development. Conversely, RACK1 overexpression is also linked to malignancy. Analysis of RACK1 expression in colon cancer patients showed progressive RACK1 overexpression, which correlated with significantly poorer overall survival. The study
demonstrated that RACK1-induced autophagy increases colon cancer cell proliferation, suggesting that RACK1 acts as an oncogene in colonic cells. Autophagy alterations have been found in many cancers; the impact of RACK1 regulation in these alterations remains to be revealed291.

1.5.3 RACK1’s role in apoptosis

Apoptosis is a crucial process for tissue homeostasis, triggered by many insults, such as DNA damage, \(\gamma\)-irradiation, oncogene activation and growth factor withdrawal. Activation of the apoptotic program leads to caspase-mediated proteolysis, nuclear condensation, cell shrinkage and membrane blebbing. The dying cell becomes fragmented into apoptotic bodies quickly phagocytosed by surrounding macrophages. There are two major apoptosis programs in the cells denominated extrinsic and intrinsic pathways. The extrinsic pathway is triggered by events outside the cell and is mediated by death-promoting receptors. Fas, death receptor 4 (DR4) and DR5, and TNF receptor (TNF-R1) are the primary receptors involved in the extrinsic pathway. Activation of these receptors leads to the processing of pro-caspases-8/-10 into the initiator caspases-8/-10. The initiator caspases then activate the effector caspases-3/-6/-7, triggering apoptosis. In contrast, the intrinsic pathway is triggered by intracellular events and is controlled by a series of specific death-promoting molecules released from damaged mitochondria. Mitochondrial permeability is regulated by members of the Bcl-2 family of proteins composed of pro- and anti-apoptotic members. These proteins regulate the release of cytochrome-c, a component of the mitochondrial inner membrane. Cytochrome-c associates with the apoptosis-protease activating factor 1 (Apaf-1) in the cytoplasm, which leads to initiator caspase-9 activation. Caspase-9 subsequently activates the effector caspases-3/-6/-7.

RACK1 exerts pro- and anti-apoptosis effects, depending on cellular conditions, tissue type or interacting partner. For example, RACK1 induces apoptosis of human colon cells by regulating members of the Bcl-2 family of proteins. RACK1 inhibits the expression of anti-apoptotic Bcl-2 and Bcl-XL and upregulates pro-apoptotic Bim. RACK1 also mediates translocation of Bax, another pro-apoptotic Bcl-2 family member, to the
mitochondria. Bim induces the oligomerization of Bax at the mitochondria, destabilizing its membrane. Additionally, Bcl-XL sequesters Bax to prevent its oligomerization, but RACK1 disrupts this association and releases Bax. Thus, RACK1 promotes apoptosis by downregulating Bcl-XL, blocking Bax/Bcl-XL association and upregulating Bim. RACK1-mediated Bax oligomerization is required to activate the intrinsic pathway in staurosporine-treated cells. RACK1 was shown to promote apoptosis in intestinal epithelia after irradiation and in breast cancer.

Conversely, another group demonstrated that RACK1 forms a complex with dynein light chain 1 (DLC1), sequestering BimEL, a Bim isomer, in the presence of apoptosis-inducing agents. RACK1 also promotes proteasome-mediated degradation of BimEL, inhibiting apoptosis in breast cancer cells. More evidence of the anti-apoptotic role of RACK1 was found by Subauste et al. The protease activating factor-1 (Fem1b) is a pro-apoptotic protein that interacts with the death receptors Fas and TNF-R1, activating the extrinsic pathway. RACK1 binds to Fem1b, promoting its ubiquitination and concomitant degradation by the proteasome. Accordingly, RACK1 downregulation leads to Fem1b-mediated apoptosis in colon cancer cells. Furthermore, RACK1 counteracts the apoptotic effect of the adenoviral E1A protein. Although RACK1 directly interacts with E1A, the mechanism of how RACK1 interferes with E1A-mediated apoptosis is unknown. Other reports link RACK1 downregulation to apoptosis induction in different contexts. Taken together, RACK1 plays differential roles in apoptosis, manipulating the intrinsic and extrinsic pathways. Hence, the outcome of RACK1 activity depends on the cellular context and the proteins targeted.

1.6 RACK1 and cytoskeleton dynamics

1.6.1 RACK1 and cell migration

RACK1 scaffolding of signalling proteins and membrane receptors is crucial for cell migration, adhesion, and proliferation. RACK1 regulation of these processes has been extensively studied in cancer development. RACK1 is upregulated in many cancers, promoting cell proliferation by diverse mechanisms that involve MAPK signalling.
modulation, preferential translation of factors involved in growth, enhancement of GSK3β, among others. One of the hallmarks of cancer cells is that they have the potential to metastasize. This process requires loss of matrix adhesion and cell-cell contacts, allowing cells to leave their original tissue. Cell migration is also a physiological process essential for development and tissue homeostasis.

The cell migration process involves dynamic reorganization of the cytoskeleton to form leading-edge protrusions that firmly attach to the substrate as the cell tail detaches from the extracellular matrix and retracts. Protrusion of a leading-edge is driven by actin polymerization of branched filaments catalyzed by the ARP2/3 complex under the regulation of the Rho GTPases Rac1 and Cdc42. As the cell senses the extracellular matrix (EM), nascent focal adhesions (FAs) assemble. FAs are the mechanical link between the cell and the EM, and integrins initiate their assembly. Attachment of the integrins’ extracellular domain to EM ligands triggers integrin clustering on the cell surface. Subsequently, the integrins’ cytoplasmic domains recruit the scaffold paxillin, the actin-binding proteins talin, α-actinin and vinculin, and signalling kinases. Talin and vinculin link the cytoplasmic domain of the integrins to thick bundles of F-actin called stress fibres, and α-actinin stabilizes this interaction by cross-linking actin filaments. Paxillin functions as a platform for Src family kinases (Src and Fyn) and the focal adhesion kinase (FAK). These kinases regulate the assembly of FAs by phosphorylating multiple integrin-associated proteins. FAs are active sites for actin polymerization controlled by Rac1, Rho and Cdc42. Mature FAs generate forces to pull the cell forward; as the leading edge protrudes, FAs at the rear must disassemble to continue cell movement.

RACK1 is a crucial regulator of FA assembly mainly by interacting with FAK and Src. RACK1 is recruited to the cell’s membrane upon IGF-IR activation, where it binds to integrins, facilitating downstream signalling that culminates in FA assembly. FAK docks to the nascent FA by binding to blades I and III of RACK1’s seven-blade β-propeller. RACK1 binding to FAK is required for FAK phosphorylation, suggesting that RACK1 facilitates the interaction between FAK and its regulators. For example, phosphorylated Erb-B2 receptor tyrosine kinase 2 (pErbB2) binds to RACK1 to activate FAK and promote
cell migration in non-small cell lung cancer cells. Similarly, RACK1 binds to FAK upon PKC activation and recruits the cyclic AMP phosphodiesterase 4D5 (PDE4D5). The FAK/RACK1/PDE4D5 complex keeps cAMP levels low in the nascent FA periphery, promoting FA stabilization and cell polarization. RACK1, vimentin, and FAK form an intermolecular complex required for endothelial cell invasion in response to growth factors. Vimentin is a member of the intermediate filament family that strengthens the FA by forming physical links. Vimentin is also required to recruit and activate Rac1 for actin polymerization. Furthermore, RACK1 regulates FA assembly by shuttling Src kinases to their site of action. Src and Fyn kinase's activity is inhibited by RACK1 binding. Src release from RACK1 sequestration is mediated by IGF-IR and results in Src activation. Active Src phosphorylates and fully activates FAK, promoting FA assembly. Taken together, the ability of RACK1 to interact with many members of the FA complex enables the regulation of cell adhesion and migration.

1.6.2 RACK1’s interactions with the cytoskeleton

Although RACK1 has been shown to interact with cytoskeleton-related proteins, RACK1’s modulation of cytoskeleton dynamics is not well understood. Up or down-regulation of RACK1 expression alters cell morphology and the cytoskeleton. Transient overexpression of RACK1 in Chinese hamster ovary (CHO) cells increases the number of stress fibres and FAs, leading to inhibition of cell migration on fibrinogen-coated coverslips. Moreover, the expression of a C-terminus truncated version of RACK1 missing the Src/integrin-binding domain induces loss of central focal adhesions and stress fibres. Likewise, the interaction between RACK1 and Src is required for actin ring formation in osteoclasts. Other members of the Src kinase family are regulated by RACK1 activity. For example, the Lck kinase, which regulates cytoskeletal rearrangement in response to T-cell activation, is an interacting partner of RACK1. Lck kinase binds to RACK1 regardless of its activation state, but only in the presence of active Lck does the F-actin bundling protein α-actinin binds to the RACK1-Lck complex. The implications of this interaction in cytoskeleton rearrangements are unknown.
It has been shown that RACK1 maintains the integrity of cortical F-actin in mast cells. RACK1 silencing in these cells causes changes in cell morphology, which appear more rounded. Also, F-actin forms large aggregates throughout the cell cortex in response to antigen stimulation. Silencing RACK1 in mast cells increases the G-actin/F-actin ratio in response to antigen, suggesting RACK1 regulates actin polymerization or depolymerization. RACK1 localizes with F-actin bundles in neuronal cells, and axon extension relies on RACK1 activity. Furthermore, RACK1 has been found to colocalize or interact with other cytoskeleton-related proteins, such as vinculin, plectin and kindlin-3. Still, the physiological significance of these findings is not well understood, although most of these proteins are involved in cell adhesion.

1.7 RACK1’s roles in pathogenesis

Like in the other cellular processes discussed in the previous sections, RACK1 plays differential roles in pathogenesis. RACK1 displays pro- or anti-pathogen functions depending on the cellular context and pathogen nature. The RACK1 protein of eukaryotic pathogens generally contributes to virulence. Asc1, a RACK1 homolog of the opportunistic pathogen Candida albicans, is required for adhesion, growth, and hyphal development in vitro. Pseudohyphae are crucial for tissue invasion, thus not surprisingly, deletion of the Asc1 gene abolishes C. albicans pathogenicity in a mouse model. In the yeast-like pathogen Cryptococcus neoformans, RACK1 homolog Gib2 is required for growth and full virulence in mice. Like its mammalian counterpart, Gib2 interacts with proteins that regulate cAMP signalling, such as PKC, the adenyl cyclase Cac1 and the small GTPase Ras1. The cAMP pathway is critical for synthesizing C. neoformans virulence factors melanin and capsule. In Plasmodium falciparum, the causal agent of malaria, RACK1 is required for asexual replication within erythrocytes. It was shown that ectopic expression of Plasmodium’s RACK1 (PfRACK1) in human embryonic kidney (HEK-293) cells impairs Ca²⁺ signalling, suggesting secretion of PfRACK1 could be a virulence strategy to modulate host functions. Although Plasmodium possesses an apical secretory apparatus, secretion of PfRACK1 was not confirmed. The parasite Leishmania major encodes four copies of the Leishmania RACK1 (LACK) gene. A minimum of two copies...
are required for robust virulence in vivo. LACK is essential for efficient cytochrome-c oxidase activity and ATP synthesis when these parasites are exposed to the host’s temperature. Conversely, LACK is highly immunogenic, inducing the production of protective cytokines in patients with active leishmaniasis. Therefore, LACK1 has been proposed as a vaccine candidate.

On the other hand, viruses have a reduced genome that compels them to an exclusively intracellular replication cycle as they are unable to synthesize proteins. Since RACK1 is a ribosomal protein required to regulate translation, it is not surprising that viruses target RACK1 to facilitate the translation of viral mRNAs. RACK1 is necessary for cap-independent Internal Ribosome Entry Site (IRES)-mediated translation by some RNA viruses, although RACK1 participates in cap-dependent translation in the host. During infection, viruses impair the host cell cap-dependent translation and promote viral RNAs translation using IRES elements. The first report linking RACK1 to viral replication came from the study of picorna-like Drosophila C virus (DCV) and hepatitis C virus (HCV). Infection of RACK1-depleted flies by DCV is impaired, and viral loads are reduced. Likewise, RACK1 silencing in Huh7.5.1 liver cells strongly impairs HCV replication. The effect of RACK1 on IRES-mediated translation of HCV mRNAs was confirmed using an IRES luciferase reporter. Similar findings were reported in other IRESs-containing viruses, such as poliovirus (PV) and encephalomyocarditis virus (EMCV), suggesting that the need for RACK1 is broadly conserved among these viruses. Another ingenious strategy used by viruses to exploit the host translation machinery was found in the Vaccinia virus (VacV), a dsDNA virus that replicates exclusively in the cytoplasm. VacV mRNAs contain a 5’-poly(A) leader that confers translational advantage not mediated by IRES. An undetermined VacV kinase phosphorylates the flexible loop domain of RACK1, modifying its charge to mimic plant RACK1. In plants, this RACK1 loop is negatively charged and acts as a natural translation enhancer for mRNAs with 5’-poly(A) leaders. Therefore, VacV modifies mammalian RACK1 to mimic its plant counterpart, biasing ribosome selectivity towards viral mRNAs.
The role of RACK1 in viral infection is not restricted to translation. Many viral proteins bind to RACK1 to exploit various host functions. For example, RACK1 interacts with the influenza A virus (IAV) matrix protein M1351. This viral protein is required for IAV budding from the plasma membrane of infected cells352. RACK1 interaction with M1 is required for M1 phosphorylation putatively by PKC or other host kinases351. Moreover, mutation of residue 16 of M1 prevents its interaction with RACK1 impairing the release of IAV particles353. RACK1 is also a pro-viral factor for insect-borne viruses, including Zika virus (ZIKV), West Nile Virus (WNV), Dengue Virus (DENV), Powassan Virus (POWV) and Langat Virus (LGTV). Silencing of RACK1 drastically reduces infective viral particle release in cells infected with these viruses. Likewise, RACK1 is required for SARS-CoV-2 replication, demonstrating that RACK1 functions are hijacked by a wide range of RNA viruses354. Furthermore, it was found that RACK1 interacts with the non-structural protein 1 (NS1) of ZIKV and DENV355. NS1 remodels the endoplasmic reticulum membrane to form the viral replication complex, a membranous structure where the viral genome replicates356. RACK1 silencing markedly reduces the number of viral replication complexes formed. This effect is not related to viral protein translation, suggesting the interaction of RACK1 with N1 regulates assembly of the replication complex354.

Less is known about the role of RACK1 in bacterial infections. A few reports described RACK1 interactions with secreted bacterial effectors found by yeast two-hybrid screenings. The enteropathogen \textit{Yersinia pseudotuberculosis} can replicate within macrophages and epithelial cells. However, after a few rounds of intracellular replication \textit{Y. pseudotuberculosis} replicates extracellularly. This pathogen uses a T3SS to translocate \textit{Yersinia} outer proteins (Yops) into the cytoplasm of macrophages to avoid phagocytosis357. Among these effectors, YopK was found to interact with RACK17. YopK finely regulates the translocation of other effectors to the right amount358. Overexpression of this effector causes secretion inhibition, whereas deletion results in uncontrolled secretion, causing cell cytotoxicity358. Interestingly, RACK1 silencing promotes bacteria internalization. The authors hypothesized that in the absence of RACK1, YopK is unable to control effector translocation into the host cell to antagonize internalization. However, this hypothesis was not confirmed7. Similarly, the vacuolating toxin VacA secreted by
Helicobacter pylori, the causal agent of stomach ulcers, binds to RACK1. VacA enhances the pathogenicity of this pathogen and contributes to the development of gastric adenocarcinoma. Although the biological significance of VacA-RACK1 interaction has not been explored, *H. pylori* downregulate RACK1 expression by an unknown mechanism. RACK1 downregulation leads to activation of the NF-κB pathway, which is crucial for *H. pylori*-induced inflammation and carcinogenesis.

Recent findings suggest that mammalian RACK1 participates in innate immune responses against bacterial pathogens. Qu et al. reported that RACK1 acts as an endogenous host sensor for *Mycobacterium tuberculosis*. This pathogen targets macrophages to establish its replicative niche. However, RACK1 binds to *M. tuberculosis* secreted effector EST12, triggering cell death by pyroptosis, thereby halting intracellular replication. The EST12-RACK1 complex triggers NLRP3 inflammasome assembly and activation, which leads to caspase-1/GSDMD-mediated cell death and interleukin-1β releasing. Importantly, activation of this pathway results in mycobacterial clearance in mice. Another report supports these findings, showing that RACK1 is required for NLRP3 assembly in response to LPS stimulation in macrophages.

Of interest for this thesis, RACK1 has been linked to *Shigella* infection before. It was demonstrated that RACK1 is required for *Caenorhabditis elegans* innate immunity against *Shigella*. *C. elegans* worms succumb to *Shigella* infection after 6 days of exposure, and death occurs regardless of the presence of an alternative food source. Moreover, *Shigella* proliferates in the guts of infected worms. RACK1 deletion significantly increases the bacterial load in the gut, and the mutant worms die earlier than control worms. The immune response in *C. elegans* is mainly mediated by MAPKs. Interestingly, RACK1 deletion leads to downregulation of MAPK expression in *Shigella*-infected worms. Also, activation of the MAPK pathway and expression of the antimicrobial peptide NLP-29 are inhibited. P38 MAPK regulates the expression of NLP-29. Therefore, RACK1 regulates MAPK expression and activation, resulting in the expression of downstream mediators that establish an immune response against *Shigella* infection. RACK1’s function in plants supports these findings. *Arabidopsis* contains three copies of RACK1, all of which function
as a scaffold for the MAPK pathway. Secreted protease IV of *Pseudomonas aeruginosa* activates host sensors in the surface of *Arabidopsis* leaves, triggering a G protein complex-MAPK cascade that culminates in immune responses such as oxidative burst. The G protein complex, composed of Gα, Gβ, and Gγ subunits, assembles at the membrane after sensor activation. RACK1 forms a complex with the Gβ subunit and the MAPK/ MAPKK/ MAPK downstream kinases. RACK1 communicates the G complex signal to the first kinase upon protease IV exposure. As the kinases become active, they are released from RACK1 binding to execute downstream functions. Furthermore, RACK1 binds to Rac1, RAR1 and SGT1, assembling into a complex located at the plasma membrane. This complex regulates innate immunity in rice, triggering ROS production to fight invading pathogens. In agreement, rice and maize plants overexpressing RACK1 show fewer symptoms caused by fungal pathogens demonstrating the protective role of RACK1.

To conclude, RACK1 is a crucial mediator of virulence in pathogenic fungi and parasites. While RNA viruses exploit RACK1 translational function to promote viral replication, the role of RACK1 in bacterial pathogenesis is more complex. *Yersinia* and *Helicobacter* target RACK1 to promote pathogenesis, unlike *Mycobacterium*, which triggers immune responses through RACK1-mediated recognition. RACK1’s function as a defence molecule against pathogens has been well described in plants. It seems that RACK1 might have a similar role in mammalian organisms as it is involved in inflammasome assembly. However, the functions of RACK1 in host-pathogen interactions remain poorly understood.
1.8 Rationale, hypothesis, and objectives

Despite extensive study of *Shigella* pathogenesis mechanisms, shigellosis is still a significant contributor to the global diarrhoeal disease burden. There are no approved vaccines against *Shigella*, and antibiotic resistance is rising. The myriad of strategies used by this pathogen to invade the colonic epithelia, subvert immune surveillance, and replicate intracellularly is astonishing. However, many gaps in the mechanisms *Shigella* uses to exploit host pathways remain unaddressed. Most research on *Shigella* pathogenesis has focused on bacterial factors involved in invading epithelial cells. However, the host factors and pathways *Shigella* hijacks to invade and spread in epithelial cells are not fully understood.

The role of scaffold proteins in coordinating cellular signalling events makes them a target for invasive pathogens. Given that RACK1 participates in numerous aspects of cellular function in eukaryotic organisms, we thought to evaluate its role in *Shigella* infection. RACK1 has been linked to pro- and anti-pathogenic responses. For example, mammalian RACK1 promotes viral replication, while RACK1 enables immune responses against bacterial pathogens in plants. Moreover, RACK1 has been linked to immune responses against *Shigella* infection in *C. elegans*. As explained in previous sections, *Shigella* exploits the host’s actin cytoskeleton, targeting many actin polymerization regulators to invade the cell. Polymerization of an actin tail is pivotal for bacterial intracellular motility and cell-to-cell spread. The fact that RACK1 is an essential player in focal adhesion assembly and actin cytoskeleton dynamics makes this protein an excellent candidate to be targeted by *Shigella*. Understanding the strategies *Shigella* uses to modify the cytoskeleton is crucial for developing treatments that halt invasion and cell-to-cell spreading.
Hypothesis

RACK1 promotes *Shigella*-mediated induction of actin polymerization leading to efficient invasion and cell-to-cell spreading.

Objectives

1. Characterize the effect of RACK1 silencing on *Shigella* infection in HeLa cells and the model organism *Drosophila melanogaster*.

2. Evaluate the role of RACK1 in the main steps of *Shigella*’s intracellular life cycle, including cell invasion, vacuolar escape, intracellular replication, actin tail polymerization and cell-to-cell spreading.

3. Evaluate the impact of RACK1 silencing on actin polymerization dynamics.
CHAPTER 2 MATERIALS AND METHODS

2.1 Bacterial strains and growth conditions

2.1.1 *Shigella flexneri*

Shigella flexneri M90T and its derivatives (Table 2.1) harbouring the pWR100 virulence plasmid were used in this thesis\(^{367}\). M90T was collected by Dr. Samuel Formal and first described by Dr. Philippe Sansonetti\(^{79}\). The *Shigella* mutant Δ*icsA* is derived from M90T where *icsA* was replaced by a tetracycline resistance cassette (Table 2.1). This mutant cannot spread in epithelial cells\(^{185}\). Thus, Δ*icsA* *Shigella* was used to evaluate bacterial invasion and intracellular replication. M90T and Δ*icsA* *Shigella* harboured the afimbrial adhesin gene (*afaI*) from *E. coli*\(^{368}\). The *afaI* gene confers *Shigella* with much higher invasion abilities in epithelial cells\(^{103}\). A faster invasion was desirable to facilitate time-lapse experiments. AfaI was expressed alone (pBR322-AfaI plasmid, Table 2.2) or fused to dsRED (pBR322-AfaI-dsRED plasmid, Table 2.2) to make the strains fluorescent (Table 2.1). *S. flexneri* strains were grown in TSA (BD Bacto™ Tryptic Soy Broth, Cat. No. 21182) supplemented with 15 g/L agar (BioShop, Cat. No. AGR003), 100 μg/mL ampicillin (Sigma Cat. no. A9393, Appendix A) and 0.02% (w/v) congo red (Sigma Cat. No. C6277) to select for functional T3SS system (red colonies). TSA plates were incubated for 15 to 20 h at 37 °C.

For infections, one to three congo red positive *Shigella* colonies were inoculated into 5 mL of TSB (BD Bacto™ Tryptic Soy Broth, Cat. No. 21182) supplemented with 100 μg/mL ampicillin and grown for 15 to 20 h (overnight) with shaking (200 rpm). The next day, a subculture was prepared by innoculating 200 μL of overnight culture into 5 mL of fresh TSB supplemented with ampicillin (100 μg/mL) and grown at 37 °C with shaking until an optical density (OD) of 0.4-0.6 was reached (measured at the wavelength 600 nm, OD\(_{600}\)). To prepare the inoculum, 1 mL of *Shigella* subculture was washed once by centrifugation at 5000 x g for 1 min (Hettich Mikro 20) with prewarmed (37 °C) PBS (Phosphate-Buffered Saline, Appendix A). Afterward, the culture was diluted in
prewarmed (37 °C) Dulbecco's Modified Eagle Medium (DMEM, Wisent, Cat. No. 319-005-CL) to the desired multiplicity of infection (MOI) per cell. It is estimated that a culture of E. coli that has reached an OD$_{600}$ = 0.5 has approximately 5 x 108 bacteria/mL. Thus, to infect 1x106 cells with an MOI of 10, an inoculum containing 1x107 bacteria was prepared.

2.1.2 Escherichia coli

The E. coli strains used in this study were DH5α and Stbl3™. DH5α was used for general cloning and plasmid storage. Stbl3 was used for cloning, and lentiviral plasmid production as this strain reduces the frequency of homologous recombination of unstable regions such as the long terminal repeats found in lentiviral plasmids. Both bacterial strains were grown at 37 °C on Lysogeny broth (LB, BioShop, Cat. No. LBL407) or LB solidified with 15 g/L agar. Ampicillin (100 μg/mL) or kanamycin (Sigma, Cat. No. K1377-5G, 50 μg/mL) was added to the medium for plasmid selection. Carbenicillin (Thermo Fisher Scientific, Cat. No. BP26485, 100 μg/mL) was used instead of ampicillin when growing Stbl3 transformed with lentiviral plasmids because this antibiotic is more stable and allows higher plasmid yield. Frozen stocks of all strains were maintained at -80 °C in TSB or LB supplemented with 25% glycerol (Sigma, Cat. No. G5516).
<table>
<thead>
<tr>
<th>Bacterial strain</th>
<th>Characteristics</th>
<th>Source</th>
<th>In this study referred as</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shigella flexneri M90T</td>
<td>M90T-Sm serotype 5a (GenBank #CM001474.1) carrying the pWR100 plasmid (GenBank #AL391753.1)</td>
<td>Onodera et al.</td>
<td>M90T Shigella</td>
</tr>
<tr>
<td>Shigella flexneri M90T Afal</td>
<td>Harbours pBR322-AfaI plasmid</td>
<td>Labigne-Roussel et al.</td>
<td>WT Shigella or Shigella</td>
</tr>
<tr>
<td>Shigella flexneri M90T Afal-dsRED</td>
<td>Harbours pBR322-AfaI-dsRED plasmid</td>
<td>This study</td>
<td>dsRED-WT Shigella</td>
</tr>
<tr>
<td>Shigella flexneri M90T ΔicsA</td>
<td>Derivative from M90T. icsA was replaced with a tetracycline resistance gene tetRA (icsA::tetRA)</td>
<td>Sidik et al.</td>
<td>ΔicsA Shigella</td>
</tr>
<tr>
<td>Shigella flexneri M90T ΔicsA Afal-dsRED</td>
<td>Harbours pBR322-AfaI-dsRED plasmid</td>
<td>This study</td>
<td>dsRED-ΔicsA Shigella</td>
</tr>
<tr>
<td>Escherichia coli DH5α</td>
<td>F-, Δ*(argF-lac)169, φ80dlacZ58(M15), ΔaphoA8*, glnX44(AS), ΔdeoR481, rfbC1, gyrA96(NalR), recA1, endA1, thiE1, hsdR17</td>
<td>Cheng et al.</td>
<td>DH5α</td>
</tr>
<tr>
<td>Escherichia coli Stbl3™</td>
<td>F- glnV44 recA13 mcrB mrr hsdS20[rB-, mB-] ara-14 galK2 lacY1 proA2 rpsL20 xyl-5-leu mtl-1</td>
<td>Thermo Fisher Scientific, Cat. No. C737303</td>
<td>Stbl3</td>
</tr>
<tr>
<td>Plasmid name</td>
<td>Selection markers</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>pLKO.1-Puro</td>
<td>Ampicillin and puromycin</td>
<td>Addgene, Cat. No. 10878</td>
<td></td>
</tr>
<tr>
<td>pLKO.1-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>Addgene, Cat. No. 26655</td>
<td></td>
</tr>
<tr>
<td>pLKO.1-NS-Blast*</td>
<td>Ampicillin and blasticidin</td>
<td>Addgene, Cat. No. 26701</td>
<td></td>
</tr>
<tr>
<td>pLKO.1-NS-Puro*</td>
<td>Ampicillin and puromycin</td>
<td>Addgene, Cat. No. 162011</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-92-Puro</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-93-Puro</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-94-Puro</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-95-Puro</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-71-Puro</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-74-Puro</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-80-Puro</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-92-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-93-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-94-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>Plasmid name</td>
<td>Selection markers</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-95-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-71-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-74-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLKO.1- shRNA-80-Blast</td>
<td>Ampicillin and blasticidin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pEGFP-N1</td>
<td>Kanamycin</td>
<td>Clontech, Cat. No. 6085-1</td>
<td></td>
</tr>
<tr>
<td>pEGFP-C1</td>
<td>Kanamycin</td>
<td>Clontech, Cat. No. 6084-1</td>
<td></td>
</tr>
<tr>
<td>pEGFP-N1-RACK1</td>
<td>Kanamycin</td>
<td>This study (Constructed by Yunnuo Shi)</td>
<td></td>
</tr>
<tr>
<td>pEGFP-C1-RACK1</td>
<td>Kanamycin</td>
<td>This study (Constructed by Yunnuo Shi)</td>
<td></td>
</tr>
<tr>
<td>pLJM1-empty-puro</td>
<td>Ampicillin and puromycin</td>
<td>Addgene, Cat. No. 91980</td>
<td></td>
</tr>
<tr>
<td>pLJM1-GFP-RACK1</td>
<td>Ampicillin and puromycin</td>
<td>This study (Constructed by Yunnuo Shi)</td>
<td></td>
</tr>
<tr>
<td>pLJM1-RACK1-GFP</td>
<td>Ampicillin and puromycin</td>
<td>This study (Constructed by Yunnuo Shi)</td>
<td></td>
</tr>
<tr>
<td>pLJM1-RACK1</td>
<td>Ampicillin and puromycin</td>
<td>This study</td>
<td></td>
</tr>
<tr>
<td>pLJM1-EGFP</td>
<td>Ampicillin and puromycin</td>
<td>Addgene, Cat. No. 19319</td>
<td></td>
</tr>
<tr>
<td>pLV-F-tractin-GFP</td>
<td>Ampicillin and puromycin</td>
<td>Dr. Roy Duncan, Dalhousie University</td>
<td></td>
</tr>
<tr>
<td>pLJM1-EGFP-LC3</td>
<td>Ampicillin and blasticidin</td>
<td>Dr. Craig McCormick, Dalhousie University</td>
<td></td>
</tr>
<tr>
<td>pLV-F-tractin-mCherry</td>
<td>Ampicillin</td>
<td>Addgene, Cat. No. 85131</td>
<td></td>
</tr>
<tr>
<td>Plasmid name</td>
<td>Selection markers</td>
<td>Source</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>pBR322-AfaI</td>
<td>Ampicillin</td>
<td>Dr. Jost Enninga, Pasteur Institute, France</td>
<td></td>
</tr>
<tr>
<td>pBR322-AfaI-dsRED</td>
<td>Ampicillin</td>
<td>Rey et. al. 44</td>
<td></td>
</tr>
<tr>
<td>pOrange-Galectin3</td>
<td>Kanamycin</td>
<td>Ray et. al. 147</td>
<td></td>
</tr>
<tr>
<td>pEGFP-Actin</td>
<td>Kanamycin</td>
<td>Ray et. al. 147</td>
<td></td>
</tr>
<tr>
<td>pOrange-Actin</td>
<td>Kanamycin</td>
<td>Ehsani et.al. 158</td>
<td></td>
</tr>
<tr>
<td>psPAX2</td>
<td>Ampicillin</td>
<td>Addgene, Cat. No. 12260</td>
<td></td>
</tr>
<tr>
<td>pMD2.G</td>
<td>Ampicillin</td>
<td>Addgene, Cat. No. 12259</td>
<td></td>
</tr>
</tbody>
</table>

* Negative control (shRNA with a nonsense / scrambled sequence)
2.2 Mammalian cell lines and growth conditions

Cell lines used in this study were the human cervical epithelial carcinoma-derived cell lines HeLa Tet-Off (Takara Cat. No. 631156) and HeLa WT (ATCC Cat. No. CCL-2). Also, the human colon epithelial carcinoma cell lines CaCo-2 (ATCC Cat. No. HTB-37) and HT-29 (ATCC Cat. No. HTB-38) were used, along with the human embryonic kidney HEK-293 cell line (ATCC Cat. No. CRL-3216). HeLa Tet-Off cells harbour a tetracycline (Tet)-regulated transactivator that allows inducible tetracycline expression. However, HeLa Tet-Off cells were not used for inducible protein expression; they were used for shRNA-mediated RACK1 silencing. HeLa Tet-Off, HeLa WT, CaCo-2 and HT-29 cells were used for *Shigella* infections, and HEK-293 cells were used to produce lentiviral particles. All cell lines were cultured in DMEM supplemented with 10% heat-inactivated fetal bovine serum (FBS, Wisent, Cat. No. 080450) at 37 °C with 5% CO₂. Cells were passaged before reaching 100% confluency by adding 0.5 mL of 0.05% trypsin-EDTA (Wisent, Cat. No.325-042-CL) to T-25 flasks incubating at 37 °C until cells were dislodged from the flask. Cell suspensions were subsequently diluted to the desired cell density. Cells were not passaged more than 12 to 15 times to maintain experimental consistency and avoid cell line aberrations. A master stock set of 15 cryotubes of each cell line was prepared in DMEM supplemented with 10% DMSO (BioShop, Cat. No. DMS666.100) and stored in a liquid nitrogen container. Also, detection of *Mycoplasma* was performed every time a new cryotube was thawed from the liquid nitrogen storage as follows. Cells were fixed for 15 min with 4% paraformaldehyde (PFA, EM Sciences, Cat. No. 157-8-100) diluted in PBS. Next, the cells were stained with 100 ng/mL 4′,6-diamidino-2-phenylindole (DAPI, Invitrogen, Cat. No. D3571) for 10 min followed by microscopic observation (EVOS FL Auto 2). If cells presented DAPI+ (DNA) staining in the cytoplasm, they were considered contaminated and immediately discarded.
2.3 Molecular biology techniques

2.3.1 Polymerase chain reaction (PCR)

PCR amplifications were routinely carried out using 2X GoTaq®Green Master Mix (Promega, Cat. No. M7122) or Platinum Pfx DNA Polymerase (Invitrogen, Cat. No. 11708) following manufacturer’s instructions. All oligonucleotides used as PCR primers and for lentivirus construction were synthesized by Integrated DNA Technologies, Inc. (IDT); their sequences are specified in Table 2.3. PCR primers were re-suspended in nuclease-free water (Invitrogen, Cat. No. 10977) to a concentration of 100 μM (frozen stock) and then diluted to a working solution concentration of 10 μM. A typical 25 μL PCR reaction consisted of 12.5 μL of 2X GoTaq®Green Master Mix (Promega, Cat. No. M7122), one μL of each primer working solution, 1 to 2 μL of template DNA, and nuclease-free water up to 25 μL. For colony PCR, single colonies of *E. coli* transformants were suspended in 50 μL of sterile ddH₂O and heated at 95 °C for 5 min in the thermocycler (Biometra T1) and centrifuged at 16000 x g (MIKRO 20, Hettich) for 1 min. Later, one μL of supernatant was used as a DNA template in PCR reactions.

2.3.2 Agarose gel electrophoresis

Electrophoresis of DNA was performed as follows: 1% agarose gels were made by dissolving 0.5 g of agarose (Thermo Fisher Scientific, Cat. No. BP160) in 50 mL of 1X TAE buffer (appendix A). Three μL of RedSafe (FroggaBio, Cat. No. 21141) were added to the melted agarose before pouring into a gel trail with a comb in place. PCR samples were directly loaded, whereas restriction digestion samples were mixed with 6X loading buffer (NEB, Cat. No. B7024S) before loading. The samples were subjected to electrophoresis at 100 Volts for 20 to 30 min. The ChemiDoc™ Imaging System (Bio Rad Laboratories Inc.) was used for DNA visualization and imaging.
2.3.3 Nucleic acid purification

Plasmid DNA purification (Wizard®PlusSV Miniprep DNA kit, Cat. No. A1465), DNA purification from agarose gels and PCR amplicon cleaning (Wizard® SV Gel and PCR Clean-Up System, Cat. No. A9282) were carried out using commercial kits from Promega as described by the manufacturer. According to the manufacturer's instructions, total RNA was isolated from HeLa Tet-Off cells using an RNeasy Mini Kit (Qiagen, Cat. No. 74104). Removal of contaminating DNA from RNA samples was performed using the DNA-free kit from Invitrogen™ (Cat. No. AM1906). An iScript cDNA synthesis kit (Bio-Rad, Cat. No. 1708891) was used to obtain the complementary DNA (cDNA) that was then used to amplify RACK1 using the primer pairs RACK1_F-Sall/RACK1_R- XbaI or RACK1_F- NheI/RACK1_R- PstI (Table 2.3). Plasmid DNA and cDNA concentrations were measured using a Nano-drop instrument (Thermo Fisher Scientific, Cat. No. ND-ONEC-W).

2.3.4 Competent E. coli and heat shock transformation

A single colony of the desired E. coli strain from a fresh LB agar plate culture was inoculated into 5 mL of LB and grown overnight at 37 °C with shaking (200 rpm). From the overnight culture, 500 μL were used to inoculate 50 mL of sterile pre-warmed LB. The culture was incubated at 37 °C with shaking until OD_{600} reached ~0.4. Then, the culture was transferred to a pre-chilled 50 mL tube and incubated on ice for 10 min, followed by centrifugation at 4000 x g (Hettich UNIVERSAL 32R) for 10 min at four °C. The supernatant was discarded, and bacterial cells were resuspended with 30 mL of a pre-chilled solution containing 80 mM MgCl₂ and 20 mM CaCl₂. The cell suspension was spun down by centrifugation at 4000 x g for 10 min at four °C, and the supernatant was discarded. The pellet was resuspended with 2 mL of pre-chilled CaCl₂ (0.1 M). Then, 0.5 mL of 80% sterile glycerol was carefully mixed in. The competent cells were stored at -80 °C as 100 μL aliquots. For heat shock transformation, one to three μL of plasmid DNA (~ 400 ng) were added to each tube of competent E. coli and incubated on ice for 20 min. Each transformation tube was heated at 42 °C on a dry bath (Mandel) for 90 sec and immediately placed on ice for 2 min. Next, 0.5 mL of warm LB was added to each tube and incubated
at 37 °C in a shaker incubator for 45 min. After this time, 100 μL of transformed cells were spread over an LB agar plate containing the appropriate antibiotic selection. Also, five μL of transformed bacteria were inoculated on a plain LB plate as the control for growth and the rest of the cells were inoculated on a second selection plate. All dishes were incubated overnight at 37 °C. The next day, single colonies were streaked on fresh selection plates or inoculated into 5 mL of LB supplemented with the corresponding antibiotic to make frozen glycerol stocks. Transformants were confirmed by colony PCR (section 2.3.1) and sequencing was done at GENEWIZ.

2.3.5 Competent Shigella and transformation by electroporation

A congo-red positive colony of the desired Shigella strain was inoculated into five mL TSB and incubated at 37 °C overnight with shaking (200 rpm). Then, the overnight culture was diluted 1 in 50 with TSB and incubated at 30 °C until OD$_{600}$ reached 0.5 (~ 4 h). The culture was placed on ice for 10 min, and then the bacteria were harvested by centrifugation at 3000 x g for 10 min at four °C. The pellet was washed three times with ice-cold ddH$_2$O. After the final centrifugation, the bacteria were resuspended in 200 μL of ice-cold ddH$_2$O. Two μL of pBR322-AfaI-dsRED or pBR322-AfaI plasmids (Table 2.2) were added to 50 μL of bacteria suspension and transferred to a chilled 0.1 cm gap electroporation cuvette (Thermo Fisher Scientific, Cat. No. FB101). The cells were electroporated using program Ec1 (1.8 kV for 2.5 msec) of the Power-Pac 200 (Bio-Rad). Immediately after, 500 μL of warm TSB were added to the cuvette, the content was carefully mixed and transferred to a two mL centrifuge tube. The transformed bacteria were incubated at 37 °C with gentle shaking (100 rpm) for one h; then, 100 μL were plated on congo red TSA plates with ampicillin (100 μg/mL) selection. The next day, congo-red positive colonies were selected, resuspended in fresh TSB supplemented with 25% glycerol, and stored at -80 °C.

2.3.6 Plasmid construction

A lentiviral system delivered short hairpin (sh) RNAs into cells to decrease RACK1 expression. Sequences of seven non-overlapping shRNAs (Table 2.3) targeting different
regions of RACK1 mRNA (NM_006098.4) were obtained from The RNAi Consortium (TRC) portal (http://www.broadinstitute.org/rnaipublic/gene/search). These shRNA sequences were designed to have the following configuration. Forward and reverse oligos pair with each other and result in two overhangs containing restriction sites for AgeI (forward) and EcoRI (reverse) that can be ligated to a pLKO vector (Table 2.2). Oligos were ordered from IDT (minimum synthesis, standard desalting) and re-suspended in nuclease-free water to obtain a 100 μM stock. Annealing of oligos was performed by mixing 1.5 μL of forward oligo (100 μM), 1.5 μL of reverse oligo (100 μM), five μL of 10X, NEB buffer 2 (Cat. No. B7002S), and 42 μL of nuclease-free water. This mixture was incubated for four min at 95 °C, 10 min at 70 °C, and then left to cool down in the thermocycler overnight. Next, the annealed oligos were ligated into lentiviral pLKO vectors containing either puromycin (pLKO.1-Puro, Table 2.2) or blasticidin (pLKO.1-Blast, Table 2.2) selection markers and transformed into E. coli as follows.

First, the plasmids were digested with AgeI (NEB, Cat. No. R3552S) and EcoRI (NEB, Cat. No. R3101S). The digestion mix was made by adding 10 μg of plasmid DNA, 20 μL of 10X Cutsmart buffer (NEB, Cat. No. B7204S), four μL of each digestion enzyme (10 units/μL), and nuclease-free water up to 200 μL. This mixture was incubated at 37 °C for three h and afterward separated on a 1% agarose gel to purify the digested plasmid. Second, a ligation reaction was set by mixing one μL of annealed oligos, 20 ng of digested plasmid, two μL of 10X ligase buffer (NEB, Cat. No. B0202S), one μL of T4 DNA ligase (NEB, Cat. No. M0202S) and nuclease-free water up to 20 μL. The ligation mixture was incubated overnight at 16 °C followed by enzyme inactivation by heating the mixture at 65°C for 10 minutes. Finally, three μL of ligation reaction were transformed into competent Stbl3 cells by heat shock (section 2.3.4). Transformants were inoculated in two mL of LB broth supplemented with carbenicillin (100 μg/mL) and incubated overnight. The next day the plasmids were purified with a miniprep kit (section 2.3.3). In total 14 constructs, containing shRNAs were generated to silence RACK1. Seven carried a puromycin cassette, and the other seven had the blasticidin cassette for antibiotic selection (Table 2.2). All plasmids generated were confirmed by Sanger sequencing (GENEWIZ) using the Human U6_F primer (Table 2.3).
GFP tagged versions of RACK1 were constructed to evaluate the subcellular localization of RACK1 in fixed and live cells. RACK1 was PCR amplified from HeLa cDNA using primer pair RACK1_F-SalI/RACK1_R- XbaI (Table 2.3) and high-fidelity Platinum Pfx DNA polymerase following the manufacturer’s instructions. RACK1 was cloned into pEGFP-C1 and pEGFP-N1 (Table 2.2) to obtain N-terminus and C-terminus GFP-tagged versions of RACK1 (pEGFP-N1-RACK1 and pEGFP-C1-RACK1, Table 2.2). For this, pEGFP-C1, pEGFP-N1 and RACK1 amplicon were digested with SalI (NEB, Cat. No. R3138S) and XbaI (NEB, Cat. No. R0145S), and then ligated with T4 DNA ligase overnight at 16 °C. After heat inactivation at 65°C for 10 minutes, three µL of the ligase mixture were transformed into competent DH5α. Transformants were confirmed by colony PCR (section 2.3.1).

The GFP-tagged versions of RACK1 were subcloned into the mammalian expression plasmid pLJM1 (Table 2.2). For this, the plasmids pEGFP-N1-RACK1 and pEGFP-C1-RACK1, and pLJM1 were digested with NheI and XbaI and separated in a 1% agarose gel. The digested pLJM1 plasmid, EGFP-RACK1, and RACK1-EGFP fragments were gel purified and ligated overnight to generate the plasmids pLJM1-GFP-RACK1 and pLJM1-RACK1-GFP (Table 2.2). The ligation mixtures were transformed into Stbl3, and positive transformants were screened by colony PCR. Additionally, an untagged version of RACK1 was constructed as follows. RACK1 gene was PCR amplified from pEGFP-RACK1 plasmid using primers RACK1_F_NheI and RACK1_R_PstI (Table 2.3). The PCR product was digested with NheI and PstI (NEB, Cat. No.: R3131S and R0140S, respectively) and cloned into pLJM1 to generate pLJM1-RACK1 (Table 2.2). All plasmids were verified by sequencing (GENEWIZ).
<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence 5' to 3'</th>
<th>Restriction site</th>
</tr>
</thead>
<tbody>
<tr>
<td>shRNA-92_F</td>
<td>CCGGTACCCTGGGTGTGTGCAAAATACTCGAGTATTTGCAACACACCCAGGGTATTTTTG</td>
<td>AgeI</td>
</tr>
<tr>
<td>shRNA-92_R</td>
<td>AATTCAAAAAATACCTGGGTGTGTGCAAAATACTCGAGTATTTGCAACACACCCAGGGTATTTTTG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>shRNA-93_F</td>
<td>CCGGGATGTGGTTATCTTCTCAGATCTCGAGATCTGAGATCTGAGAATAACCACATCTTTTTTG</td>
<td>AgeI</td>
</tr>
<tr>
<td>shRNA-93_R</td>
<td>AATTCAAAAAAGATGTGGTTATCTTCTCAGATCTCGAGAATAACCACATCTTTTTTG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>shRNA-94_F</td>
<td>CCGGGAGATGAGCCAGGCCATGTATATCTGAGAATAACATGGCCTGAGCCTCTCTTCAGCCTTTTTTG</td>
<td>AgeI</td>
</tr>
<tr>
<td>shRNA-94_R</td>
<td>AATTCAAAAAAGATGTGGTTATCTGAGAATAACATGGCCTGAGCCTCTCTTCAGCCTTTTTTG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>shRNA-95_F</td>
<td>CCGGCAAGCTGAAGACCAACCACATCTCGAGATGATGATGGTGTTCTCTAGCTTTTTTG</td>
<td>AgeI</td>
</tr>
<tr>
<td>shRNA-95_R</td>
<td>AATTCAAAAAACAAGCTGAAGACCAACCACATCTCGAGATGATGATGGTGTTCTCTAGCTTTTTTG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>shRNA-80_F</td>
<td>CCGGCAGACTCTGTTTGCTGGTATCTCAGAGATGATGATGGTGTTCTCTAGCTTTTTTG</td>
<td>AgeI</td>
</tr>
<tr>
<td>shRNA-80_R</td>
<td>AATTCAAAAAACAGACTCTGTTTGCTGGTATCTCAGAGATGATGATGGTGTTCTCTAGCTTTTTTG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>shRNA-71_F</td>
<td>CCGGGATCTGGGATTTAGAGGGAAACTCGAGTTTCCCTCTAAATCCACAGATCTTTTTTG</td>
<td>AgeI</td>
</tr>
<tr>
<td>shRNA-71_R</td>
<td>AATTCAAAAAAGATCTGGGATTTAGAGGGAAACTCGAGTTTCCCTCTAAATCCACAGATCTTTTTTG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>shRNA-74_F</td>
<td>CCGGTAGAGATGAGCCAGGCCATCTCAGAGATGATGATGGTGTTCTCTACAGCTTTTTTG</td>
<td>AgeI</td>
</tr>
<tr>
<td>shRNA-74_R</td>
<td>AATTCAAAAAATCGAGGATAAGACCATCATCTCAGAGATGATGATGGTGTTCTCTACAGCTTTTTTG</td>
<td>EcoRI</td>
</tr>
<tr>
<td>Name</td>
<td>Sequence 5' to 3'</td>
<td>Restriction site</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>Human U6_F</td>
<td>GACTATCATATGCTTACCGT</td>
<td>none</td>
</tr>
<tr>
<td>RACK1_F-SalI</td>
<td>ATTAGTCGACATGACTGAGCAGATGACCC</td>
<td>SalI</td>
</tr>
<tr>
<td>RACK1_R-XbaI</td>
<td>TAAATTCTAGACTAGCGTGTCGAATGGGTC</td>
<td>XbaI</td>
</tr>
<tr>
<td>RACK1_F-NheI</td>
<td>ATTAGCTAGCATGACTGAGCAGATGACCC</td>
<td>NheI</td>
</tr>
<tr>
<td>RACK1_R-PstI</td>
<td>ATTACTGCAGTTAGCGTGTCGAATG</td>
<td>PstI</td>
</tr>
<tr>
<td>Fly RACK1 F</td>
<td>TTCGAGCGACACACACTAAGGA</td>
<td>none</td>
</tr>
<tr>
<td>Fly RACK1 R</td>
<td>GACACGATCTGACGTTATCG</td>
<td>none</td>
</tr>
<tr>
<td>Fly_Rpl23 F</td>
<td>GACAACACCGGAGCAGAACC</td>
<td>none</td>
</tr>
<tr>
<td>Fly Rpl23 R</td>
<td>GTTTGCGCTGCGAATAACCAC</td>
<td>none</td>
</tr>
</tbody>
</table>
2.4 Protein techniques

2.4.1 Preparation of whole-cell lysates

Cells were harvested by trypsinization and washed two times with PBS. Then, 200 μL of lysis buffer (2% SDS w/v, 50mM Tris/HCl pH 7.4) were added per million cells. Cell lysates were heated for five min at 95 °C (Standard Heatblock, VWR) and placed on ice before sonication for 30 sec at 25 watts, amplitude 40 (Sonics & Materials, Ultrasonic Processor VC50-1). Finally, the lysates were cleared by spinning down the debris at 15,000 x g for 10 minutes at four °C (Eppendorf, 5424R). Supernatants were transferred to new tubes and stored at -20 °C.

2.4.2 Protein quantification and sample preparation

Protein concentration was quantified using the BCA Protein Assay Kit (Thermo Fisher Scientific, Cat. No. 23225) following the manufacturer’s instructions. Briefly, samples were diluted 1 in 2 (<1x10⁵ cells) or 1 in 10 (>1x10⁶ cells) with PBS. Then, 25 μL of each sample and each bovine serum albumin (BSA) standard, with concentrations ranging from 25 to 2000 μg/mL, were pipetted into a 96-well microplate. Then, 200 μL of working reagent were added to each well, and the microplate was incubated at 37 °C for 30 min. Absorbance at 562 nm was measured on a microplate reader (MBI, Asys UVM 340). The protein concentration of each sample was calculated using the BSA standard curve. Samples for electrophoresis were prepared by mixing 4:1 with 5X-SDS-PAGE loading buffer (320mM Tris-HCl pH 6.8, 40% glycerol, 8% SDS, bromophenol blue 0.02% w/v) and heated at 95 °C for 5 min in a thermoblock (Standard Heatblock, VWR).

2.4.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)

Polyacrylamide gels (5% stacking gel and a 12% resolving gel, appendix A) were placed into an electrophoretic chamber (Mini-PROTEAN Tetra Cell from Bio-Rad) filled with 1X running buffer (25mM Tris, 250mM glycine, 0.1% SDS). Between 2.5 μg to 15
μg of protein (depending on protein expression levels) were loaded into separate wells along with three μL of protein ladder (Bio-Rad, Cat. No. 1610393). Proteins were separated first at 60 V (Bio-Rad PowerPac Basic Power Supply) for 15 min to facilitate protein migration into the stacking gel, and then at 150 V for one h (until the bromophenol blue dye front reaches the gel’s bottom). After electrophoresis, the gel was stained with Coomassie blue stain or prepared for western blotting analysis.

2.4.4 Western blotting and relative protein expression quantification

Proteins were transferred from polyacrylamide gels to PVDF membranes (Bio-Rad, Cat. No. 1620177) using the Trans-Blot Turbo Transfer System from Bio-Rad (Cat. No.1704150). First, PVDF membranes were immersed in 95% ethanol until the membranes became translucent, and then, equilibrated for 5 min with 1X Trans-Blot® Turbo™ Transfer Buffer (Bio-Rad, Cat. No. 10026938). The transfer was performed using the Turbo Protocol (25 V, 1.3 A, 7 min run for RACK1, tubulin, and actin detection) or the 1.5 mm GEL protocol (2.5 A, up to 25 V, 10 min run for all other proteins detected in this study). After protein transfer, the PVDF membranes were removed from the cassette and rinsed briefly in Tris Buffered Saline with Tween 20 (TBST, 50 mM Tris-HCl pH 7.4, 150mM NaCl, 0.1% v/v Tween 20). In some instances, the membranes were stained for 10 min with Ponceau S (Allied Chemical, Cat. No.628, appendix A) to visualize protein bands. Then, the Ponceau S staining was removed by washing the membranes with PBS. Next, the membranes were incubated with blocking solution (5% skim milk dissolved in TBST) for one h, followed by overnight incubation at four °C with primary antibody (diluted in 5% BSA [BioShop, Cat. No. ALB003] in TBST). The next day, and after three washes with TBST, the membranes were incubated with the corresponding secondary HRP-bound antibodies (diluted in 5% BSA in TBST) for one h. Table 2.4 shows a list of antibodies used in this project. Proteins were detected using 1 mL of luminol-based Clarity Western ECL Substrate (Bio-Rad, Cat. No. 1705061), following manufacturer instructions. Chemiluminescence detection was performed using a ChemiDoc Imaging System.

Fiji software (version 2.3.0)372 was used to quantify relative protein expression from western blots. For this, an equal size region of interest (ROI) was outlined around each
protein band (samples and loading controls) and background. Next, the mean intensity was measured using the ROI manager. An inverted intensity number was calculated by taking 255 (the maximum brightness value) and subtracting the measured mean intensity value (i.e., 255-value). Then, the background was subtracted from all values to obtain net intensities. The final relative quantification values were calculated by dividing the net intensity of the target band by the net intensity of the loading control. Of note, various loading controls were used for different western blots. This is because at the beginning of the project we did not have antibodies to detect tubulin or actin. Therefore, PonceauS dye or Coomassie-stained gel were used as loading controls to do the quantification. When these dyes were used, a prominent section of the blot or gel was selected to calculate relative expression.

2.4.5 Co-immunoprecipitation for mass spectrometry

Co-immunoprecipitation (Co-IP) using an anti-RACK1 antibody was performed to capture interacting proteins from HeLa cells infected with *Shigella*. WT HeLa cells were seeded on 15 cm culture plates and grown until ~80% confluence was reached. The monolayers were infected with WT *Shigella* (MOI 10) for 1.5 h. A set of cells was left uninfected as a control. After the infection, the cells were washed once with PBS and treated with 2 mL of trypsin for five min. The cells were then transferred to centrifuge tubes and washed two times by centrifugation at 1000 x g for five min. The supernatant was discarded, and the cells were resuspended in 2 mL of RIPA buffer (Santa Cruz, Cat. No. sc-24948) and passed 20 times through a needle (21 gauge). The lysates were homogenized by rotation for 15 min at four °C; then, cell debris was removed by centrifugation at 15,000 x g for 10 min at four °C. The protein concentration of the samples was determined using a BCA kit (section 2.4.2). Before the Co-IP, a pre-clearing step was performed by incubating 1.5 mg of protein of each sample (infected and uninfected cells) with four µg (10 µL) of IgG (Santa Cruz, Cat. No. sc-2025) and 40 µL of A/G PLUS-Agarose (Santa Cruz, Cat. No. sc-2003) for 30 min at four °C with rotation. The agarose beads were spun down at 1000 x g for 5 min at four °C. The supernatants of each sample were then separated into two tubes and incubated overnight at four °C with either 10 µL of anti-RACK1
antibody or 5 µL of IgG (control) antibody. The next day, 20 µL of A/G PLUS-Agarose beads were added to the samples and incubated for two h, at four °C with rotation. The beads were captured by centrifugation (1000 x g for 5 min at four °C) and washed four times with RIPA buffer. Finally, the beads were resuspended in 40 µL 2X SDS-PAGE loading buffer, and 10 µL were separated on two 12% polyacrylamide gels (section 2.4.3). One gel was stained with Coomassie dye to identify areas of the gel that were then excised and sent to the Taplin Biological Mass Spectrometry Facility for protein identification. The second gel was stained with silver stain for more sensitive detection of the proteins pulled down in the Co-IP.

Additionally, RACK1 interaction with Arp2, identified by mass spectrometry, was confirmed by targeted Co-IP. Briefly, 1 mg of protein (unused protein from the infections) was subjected to Co-IP using anti-RACK1 as bait. Then, the A/G PLUS-Agarose beads were washed by centrifugation and mixed with SDS-PAGE loading buffer. After polyacrylamide gel separation, the proteins were transferred to PVDF membranes and probed with anti-Arp2 (Table 2.4).

2.4.6 Coomassie and silver stain

Imperial™ Protein Stain, a Coomassie R-250 dye-based reagent, was used for protein visualization in polyacrylamide gels. After electrophoresis, the gels were washed three times for 5 minutes with distilled water and incubated for one h with Imperial™ Protein Stain (Thermo Fisher Scientific, Cat. No. 24615). The gels were incubated with water overnight to reduce the background. Gel images were captured using a ChemiDoc Imaging System. For silver stain, the polyacrylamide gels were fixed (50% methanol, 10% acetic acid in water) for 30 min and then incubated with 50% methanol for 15 min. After five washes with water, the gels were incubated with a 0.2 g/L sodium thiosulfate (Sigma, Cat. No. 217247) solution for one minute, then washed three times with water. The gels were afterward equilibrated with 0.2% silver nitrate (Sigma, Cat. No. 209139) for 30 minutes and briefly washed three times before developing with a 0.02% formaldehyde (Thermo Fisher Scientific, Cat. No. F79-1), 3% sodium carbonate (Sigma, Cat. No. 230952) solution.
for 10 min. The reaction was stopped by transferring the gel to a 40 mM EDTA (Sigma, Cat. No. E9884) solution.
Table 2.4. Antibodies and fluorescent dyes used in this study

<table>
<thead>
<tr>
<th>Name</th>
<th>Dilution and application</th>
<th>Source and Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-Actin-HRP</td>
<td>WB: 1/2000</td>
<td>Santa Cruz, sc-47778</td>
</tr>
<tr>
<td>Anti-Arp2</td>
<td>IF: 1/100, WB: 1/1000</td>
<td>Santa Cruz, sc-166103</td>
</tr>
<tr>
<td>Anti-Armadillo</td>
<td>IF: 1/100</td>
<td>DSHB, N27A1</td>
</tr>
<tr>
<td>Anti-EEA1</td>
<td>WB: 1/1000, IF: 1/100</td>
<td>Santa Cruz, sc-137130</td>
</tr>
<tr>
<td>Anti-LAMP1</td>
<td>WB: 1/1000, IF: 1/100</td>
<td>Santa Cruz, sc-20011</td>
</tr>
<tr>
<td>Anti-LC3</td>
<td>IF: 1/100</td>
<td>Novus Biotech, NB100-2220</td>
</tr>
<tr>
<td>Anti-GBP 1</td>
<td>IF: 1/100</td>
<td>Santa Cruz, sc-53857</td>
</tr>
<tr>
<td>Anti-GBP 4</td>
<td>WB: 1/1000, IF: 1/100</td>
<td>Novus Biotech, H00115361-B01P</td>
</tr>
<tr>
<td>Anti-mouse-Alexa-488</td>
<td>IF: 1/1000</td>
<td>Molecular Probes, R37120</td>
</tr>
<tr>
<td>Anti-mouse-Alexa-555</td>
<td>IF: 1/1000</td>
<td>Invitrogen, A32727</td>
</tr>
<tr>
<td>Anti-mouse-HRP</td>
<td>WB: 1/10000</td>
<td>Bio-Rad, 170-5047</td>
</tr>
<tr>
<td>Anti-rabbit-Alexa-488</td>
<td>IF: 1/1000</td>
<td>Invitrogen, A11008</td>
</tr>
<tr>
<td>Anti-rabbit-HRP</td>
<td>WB: 1/3000</td>
<td>Bio-Rad, 170-6515</td>
</tr>
<tr>
<td>Anti-RACK1</td>
<td>WB: 1/2000, IF: 1/100</td>
<td>Santa Cruz, sc-17754</td>
</tr>
<tr>
<td>Anti-RACK1-Alexa-647</td>
<td>IF: 1/100</td>
<td>Santa Cruz, sc-17754 AF647</td>
</tr>
<tr>
<td>Anti-rat-Alexa-555</td>
<td>IF: 1/1000</td>
<td>Invitrogen, A-21434</td>
</tr>
<tr>
<td>Anti-Tubulin-HRP</td>
<td>WB: 1/5000</td>
<td>Santa Cruz, sc-8035</td>
</tr>
<tr>
<td>DAPI (5 µg/µL)</td>
<td>Live-cell imaging: 1/2000, IF:1/50000</td>
<td>Invitrogen, D3571</td>
</tr>
<tr>
<td>Phalloidin-Alexa-555</td>
<td>IF: 1/100</td>
<td>Invitrogen, A34055</td>
</tr>
<tr>
<td>Phalloidin-Alexa-647</td>
<td>IF: 1/100</td>
<td>Invitrogen, A22287</td>
</tr>
</tbody>
</table>

HRP: horseradish peroxidase, WB: western blot. IF: immunofluorescence
2.5 RACK1 knockdown and stable/transient reporter cell lines

2.5.1 Lentiviral production

Stable RACK1 knockdown (RACK1-KD) cells and stable reporter cell lines were generated using lentiviral particles. The second-generation lentivirus system used was composed of the following plasmids: pMD2.G for expression of the cell attachment and fusion protein derived from Vesicular stomatitis virus (VSV-G), psPAX2 for expression of the HIV genes (Gag, Pol, Rev, and Tat) required for successful packaging, and a transfer plasmid (pLJM1 or pLKO.1) containing the construct of interest, the resistance cassette for selection and a packaging signal (Table 2.2). HEK-293T cells (1 x 10^6) were plated on 10 cm tissue culture dishes and grown until they reached 70-80% confluency. Transfection reactions were prepared by adding three µg of RACK1 knockdown plasmid (e.g., pLKO.1-shRNA-92-Puro) or pLJM1-GFP (transfection efficiency control), two µg of psPAX2, and one µg of pMD.2G to 500 µL of OptiMEM (Gibco, Cat. No. 31985-062). In a second tube, 18 µL of polyethyleneimine (PEI 1 mg/mL pH 7.0, Sigma, Cat. No. 765090) was added to 500 µL of OptiMEM. Both mixtures were gently mixed before slowly adding the plasmid mixture to the tube with PEI. The transfection mixture was incubated at room temperature for 20 min. After this time, HEK-293T cells were washed once (very gently) with 10 mL of PBS, and then 8 mL of serum-free, antibiotic-free DMEM was added. In a dropwise manner, 1mL of transfection mixture was added to each plate and gently mixed with swirling motion. The cells were incubated at 37 °C with 5% CO₂ for four to six hours before adding 1 mL of FBS. After 48h of transfection, the lentiviral particles were harvested by aspirating the media with a syringe. Cell debris was eliminated by filtering the media through a 0.45 µM syringe filter (Polyethersulfone). Lentiviruses carrying the plasmids pLJM1-GFP-RACK1, pLJM1-RACK1-GFP, pLJM1-RACK1, pLJM1-EGFP, pLV-F-tractin-GFP, and pLV-F-tractin-mCherry were generated using this protocol. Lentiviruses were stored as single-use aliquots (1 mL) at -80 °C.

2.5.2 Lentiviral transduction of target cells

Between 2.5 to 5.0 x 10^4 target cells were seeded on each well of a 12-well plate. The next day, the cells media was replaced with 1 mL/well of DMEM containing eight µg/mL
polybrene (Hexadimethrine bromide, Sigma, Cat. No. 107689) and 10% FBS. The lentiviruses were placed on a 37 °C dry bath until thawed. Then, 1 mL of lentivirus was added to the first well and gently mixed three times before transferring 1 mL to the next well, generating 1 in 2 serial dilutions (from 1/2 to 1/32). One well was left un-transduced to test antibiotic selection efficacy. After 24 (HeLa) or 48 h (Caco-2 and HT-29) of transduction, the cells media was replaced by DMEM with 10% FBS and puromycin (Gibco, Cat. No. A11138-03) or blasticidin (Gibco, Cat. No. A11139-03).

The optimal antibiotic concentration was determined beforehand by exposing the target cells to various concentrations of selection antibiotic. The minimum concentration of puromycin that resulted in the complete death of HeLa cells after 24 h was 1 μg/mL; for Caco-2 and HT-29 cells, 2 μg/mL resulted in total death after 48 h. Blasticidin selective concentration was 4 μg/mL for all cell lines but took 4 to 5 days to induce complete death. Lentiviral insertion in the cell’s genome confers resistance to antibiotic selection. Thus, when cell death was observed in the un-transduced control well, the lentiviral dilution that caused approximately one-third of the cells to survive (still attached to the well) was identified. These cells were harvested by trypsinization and transferred to a six-well plate to generate a stable cell line. In this manner, most cells will only have one integration event. Two sets of putative RACK1 knockdown cells (with puromycin or with blasticidin resistance) were generated using this protocol. RACK1 silencing was confirmed by western blotting in only three out of the seven cell lines generated. Thus, the stable RACK1-KD cell lines named KD-92, KD-94 and KD-95 were selected for further analysis.

Additionally, cell lines carrying non-sense shRNAs (pLKO.1-NS-Blast or pLKO.1-NS-Puro) and cells stably expressing fluorescent proteins were generated using this protocol. The reporter proteins used for stable expression were RACK1-GFP, GFP-RACK1, GFP and GFP-LC3. Also, the F-tractin probe fused to GFP or mCherry was utilized to detect filamentous actin.
2.5.3 Transient expression of fluorescently tagged proteins

Three transfection reagents were used following manufacturer’s instructions. FuGENE (Promega, Cat. No. E2311) transfection reagent was used when two plasmids were transfected (e.g., pOrange-Galectin3 and pEGFP-Actin) and X-tremeGENE (Sigma, Cat. No. 6365779001) was used for single plasmid transfections. Lipofectamine 2000 (Thermo Fisher Scientific, Cat. No. 11668019) was used to transfect pLJM1-GFP-RACK1 and pLJM1-RACK1-GFP into HeLa cells. Twenty-four hours before transfection, cells were seeded to obtain ~50-60% confluency. The transfection mixture contained 3.6 μL of transfection reagent and 0.8 μg of plasmid DNA added to 120 μL of OptiMEM. After incubation for 20 min at room temperature, five μL of the transfection mixture were added to 96-well plates, 15 μL to 4-well dishes or 100 μL to 12-well plates. Transfected cells were incubated 48 h before use to allow optimal transgene expression.

2.6 Proliferation assay (MTT)

The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide, Sigma, Cat. No. 475989) assay was utilized to measure cellular proliferation of RACK1-KD cells. The principle of this assay is that viable cells reduce MTT to formazan crystals that can be dissolved using DMSO generating a coloured solution. The darker the solution, the higher the number of metabolically active cells. The assay was performed as follows. NS (nonsense shRNA), KD-92, KD-94, and KD-95 cell lines were seeded in a 96-well plate (2000 cells/well). After 24, 48, 72, 96, 120, and 144 hours of incubation, the medium was removed and replaced with 100 μL of fresh DMEM. Wells containing media only were included to measure background. Ten μL of 12 mM MTT solution were added to test wells, and the plate was incubated at 37 °C for 4 hours. Subsequently, 75 μL of medium were removed from the wells and discarded. Then, 50 μL of DMSO were added to each well to dissolve the formazan crystals formed. After incubation for 10 min at 37 °C, absorbance was read at 540 nm on a microplate reader (MBI, Asys UVM 340).
2.7 Gentamycin protection assay

This assay was used to evaluate *Shigella* growth in epithelial cells. Target cells (2.5 x10^5 cells/well) were seeded in 12-well plates. The following day, the cells were infected with 1 mL/well of bacterial inoculum at the desired MOI. The plate was left at room temperature (*Shigella* does not invade cells at this temperature) for 10 min to synchronize the infection. Then, the plate was incubated at 37 °C for 30 min. Afterward, the monolayers were washed once with PBS and treated for 15 min with DMEM supplemented with gentamycin (100 µg/mL) to eliminate extracellular bacteria. After 3 washes with PBS, the cells were lysed with 200 µL of NP-40 buffer (0.1% NP40, 50 mM Tris-HCl pH 7.5, 5 mM EDTA, 10% glycerol, 100 mM NaCl) for 5 min with slow shaking. The lysates were then transferred to a 96-well plate and serially diluted (1/10, 1/100, and 1/1000) using TSB. Ten µL of each dilution were plated on rectangular LB plates and incubated overnight at 37 °C. When several time points of infection were evaluated, the cells were incubated with DMEM after gentamycin treatment for the duration of the infection time (e.g., three h) and lysed as described. Pictures of the LB plates were taken after 24 h, which were used to count colony-forming units (CFU) using the cell counter tool from Fiji software. The CFU counting was normalized by the total protein concentration on each well. For this, the infected cells lysates were diluted 1 in 2 with PBS and assayed using the BCA kit (section 2.4.2).

2.8 Shigella infection of Drosophila melanogaster

Fly experiments were performed by Dania Shikara and Dr. Francesca Di Cara. Wild type flies W1118 Mex-Gal4 (a kind gift from Prof. Carl Thummel, University of Utah) and W1118 Mex-Gal4 RACK1-RNAi were used as control and experimental strains, respectively. RACK1 was depleted only in enterocytes using the RNAi stock 38198 from Bloomington Drosophila Stock Center. RACK1 silencing was confirmed using qPCR. Briefly, fly guts were embedded with TRIzol reagent (Thermo Fisher) and snap-frozen in liquid nitrogen. Total RNA was extracted using the RNeasy-Micro Kit (Qiagen) following the supplied protocol. RNA was reverse transcribed using the iScript cDNA Synthesis kit (Bio-Rad), and the synthesized cDNA was used for qPCR using the SYBR-Green PCR master mix (Kapa Biosystems) using a Realplex qPCR machine (Eppendorf). Samples were
normalized to Rpl23 gene expression using the 2-ΔΔCT method. Forward and reverse primer sequences used in qRT-PCR are shown in Table 2.3. Age-matched female and male flies (20 per group) were used to measure fly survival. Crosses were kept at 25°C and then moved to 29°C for the oral infections. The bacterial inoculum used to infect the flies was prepared by spinning down a same day 500 mL culture of dsRED-WT Shigella with OD_{600}=0.5. The bacterial cells were then washed once with PBS and resuspended in 10 mL of 5% sucrose to obtain a concentrated inoculum with an approximate OD_{600} = 25. Twenty flies were fed on filter paper soaked in 5% sucrose (control) or 5% sucrose containing dsRED-WT Shigella. Flies were transferred to fresh vials every two days, and the number of dead flies was determined daily.

Additionally, immunofluorescence of fly guts was performed as follows. The guts were fixed in 4% paraformaldehyde diluted in PBS for 30 min, washed three times in PBST (PBS containing 0.3% Triton X-100), followed by blocking at room temperature in 5% goat serum diluted in PBST for one h. An anti-armadillo antibody was used for immunolabeling fly enterocytes. This antibody was incubated for 16 h at four °C diluted 1:10 in 5% normal goat serum. Then, the guts were incubated with anti-mouse bound to Alexa-488 (Table 2.4) for two hours at room temperature. Finally, guts were mounted in Prolong Gold Antifade. After 24 h curation, the samples were imaged using a confocal microscope (Zeiss LSM 880, Table 2.5). Z-stacks composed of 15 slices, separated by 1 µm, were captured with 20X magnification. Survival analysis was performed using R packages “survival” and “survminer”. Statistical differences were calculated using a log-rank test (survdiff function).

2.9 Cell death evaluation

2.9.1 Annexin V apoptosis assay using flow cytometry

HeLa cells with or without RACK1-KD were seeded at 80-90% confluency (~5x10^5 cells/well) in 12-well plates. After 24 h, the cells were left uninfected or infected for 30 min with dsRED-WT Shigella (MOI 10) and then treated with gentamycin (100 µg/mL) for 15 min. Afterwards, the cells were carefully washed three times with pre-warmed (37
°C) PBS and incubated with fresh DMEM for 12 h at 37 °C and 5% CO₂. HeLa cells treated for 30 min with 0.88 mM hydrogen peroxide (H₂O₂, Thermo Fisher Scientific, Cat. No. H325500) were the positive control for apoptosis. After infection or H₂O₂ treatment, the cells were collected by trypsinization and washed three times with ice-cold PBS. Cells were then resuspended in 1X Annexin binding buffer (BD Bioscience, Cat. No. 556547) to obtain ~1x10⁵ cells in 100 µL. Subsequently, the cells were stained for 15 min (at room temperature and protected from light) with 3 µL of Annexin V conjugated to FITC (BD Bioscience, Cat. No. 556547) to detect apoptotic cells, and 0.5 µL of 7-AAD (7-Aminoactinomycin D, Cayman Chemical, Cat. No. 11397) dye to identify membrane-permeable cells. After staining, the cells were diluted by adding 400 µL of 1X binding buffer. Apoptotic cells were immediately detected using a CytoFlex flow cytometer (Beckman Coulter, USA), equipped with a 50 mW 488 nm blue laser. The three fluorescent markers used were all excited with the 488 nm laser. The Annexin V-FITC signal was detected using a 525/40 emission bandpass filter, dsRED was detected using a 585/42 bandpass filter, and 7-AAD was detected using a 690/50 bandpass filter. Compensation of the fluorescent signals was performed using CytoFlex’s operating software, CytExpert, using single stained controls for Annexin-FITC and 7-AAD, where cell death and apoptosis were induced by treating the cells with H₂O₂. The compensation control for dsRED was a sample of dsRED-WT Shigella diluted in PBS. Data were analyzed with FCS Express (De Novo Software, USA). Cells were identified using an initial side scatter plot (SSC) versus forward scatter (FSC). After which, potential double-cell events were removed from the analysis using a pulse-geometry gate (FSC height versus FSC area). Uninfected fully stained (Annexin V and 7-AAD) cells were utilized as gating and biological controls to identify Shigella infected cells, thus containing the dsRED signal. Apoptotic and necrotic cells were identified by plotting 7-AAD versus Annexin V-FITC.

2.9.2 Cytotoxicity detection assay

The Cytotoxicity Detection Kit (Sigma, Cat. No: 04744926001 - Roche) was used to evaluate cytotoxicity and cell lysis caused by Shigella. This assay measures lactate dehydrogenase (LDH) activity released from the cytosol of damaged cells into the
supernatant. The supernatants from infected and uninfected cells used in the Annexin V-7AAD assay (section 2.9.1) were collected. Any cell or cell debris was removed from the culture medium by centrifugation at 1000 x g for 5 min. Uninfected cells from each condition (control and RACK1-KD) were collected to determine the maximum LDH produced. Following the manufacturer’s instructions, 100 µL of infected (sample) and uninfected (low LDH control) supernatants were plated in triplicate on a 96-well plate. Also, 100 µL of cells (high LDH control) and 100 µL of DMEM (background control) were plated. Five µL of lysis solution were added to the high LDH control wells and incubated at room temperature for 15 min with gently shaking. To determine LDH activity, 100 µL of the reaction mixture (for one reaction: 2.2 µL of catalyst mixed with 97.8 µL of dye solution) was added to each well. The plate was incubated for 10 min at room temperature, protected from light, and then the reaction was stopped by adding 50 µL of stop solution. The plate was shaken for 10 seconds before reading the absorbance at 492 nm. To determine the percentage of cytotoxicity caused by *Shigella*, the average absorbance value of the background control was subtracted from the average absorbance values of the samples, high and low controls. Then, the values were entered in the following equation:

\[
Cytotoxicity (\%) = \frac{\text{sample} - \text{low control}}{\text{high control} - \text{low control}} \times 100
\]

2.10 Immunofluorescence of fixed samples and data analysis

2.10.1 Immunofluorescence

Immunofluorescence staining was used in this study to evaluate the role of RACK1 at various steps during the infection process. With this purpose, infections were designed to capture *Shigella*’s early (entry to the host cell and vacuolar escape) and late infection events (actin tail polymerization and protrusion formation). Twelve mm round glass coverslips (VWR, Cat. No. 89015-725) were sterilized by autoclaving and placed on 4-well plates (Thermo Fisher Scientific, Nunc™, Cat. No. 144444). To improve cell attachment to the coverslip, they were coated with 20 µg/mL fibronectin (100 µL/coverslip). Sigma,
Cat. No. F1141) for one h, at room temperature. Fibronectin was then removed, and 2.5 x 10^5 cells were added to each well. Target cells were incubated for 24 h before infection. For early event evaluation, cells were infected with the desired *Shigella* strain (e.g., dsRED-WT) using an MOI of 50 for 30 min at 37 °C with 5% CO_2_. After this time, the cells were carefully washed three times with PBS and fixed for 20 min with freshly diluted 4% PFA (in PBS). For late event evaluation, infections were carried out by adding an MOI of 10 to the cells and incubating for 30 min at 37 °C, followed by gentamycin (100 µg/mL) treatment for 15 min. The cells were carefully washed three times with PBS, fresh media was added before continuing the infection for 2 hours at 37 °C with 5% CO_2_. Next, the cells were washed once with PBS and fixed with 4% PFA for 20 min. After fixation, the coverslips were washed three times with PBS and incubated with 250 µL of permeabilization solution (0.25% v/v Triton X-100 in PBS) for 10 min at room temperature. After three washes with PBS, the coverslips were incubated with 250 µL of blocking solution (1% BSA w/v and 0.3 M glycine in PBST [0.1% v/v Tween 20 in PBS]) for 30 min at room temperature. Primary antibodies were diluted in 1% BSA in PBST (as indicated in Table 2.4), and 100 µL drops were placed on a parafilm-covered dish. Each coverslip was carefully placed (cells facing down) on the antibody drop and incubated overnight in a humid chamber at four °C. The following day, the coverslips were put back on the 4-well plate and washed three times with PBST. As before, the coverslips were placed on drops containing the corresponding secondary antibodies bound to Alexa-488 or Alexa-555 (see Table 2.4 for dilutions) and incubated at room temperature for two h. Detection of RACK1 using anti-RACK1-Alexa-647 did not require a secondary antibody as it is already bound to a fluorophore. In some instances, phalloidin bound to Alexa-555 or Alexa-647 was added to the secondary antibody mixture to stain filamentous actin (F-actin). Subsequently, the coverslips were washed three times with PBST and incubated with 250 µL of DAPI (Table 2.4) for 20 min at room temperature. After three washes with PBST, the coverslips were mounted on glass slides using 3 µL of ProLong Diamond Antifade Mountant (Molecular Probes, Cat. No. P36965) and left overnight at room temperature for curation. The samples were stored at -20 °C until visualization was performed using various fluorescent microscopes (see Table 2.5).
2.10.2 Analysis of intracellular replication in fixed samples

\(\Delta ic\text{s}A \) *Shigella* was used to evaluate intracellular replication in control and RACK1-KD cells because this strain cannot form actin tails \(^{185}\). Therefore, the number of bacteria found inside cells reflects intracellular replication only, not secondary infections. For this experiment, cells expressing F-tractin-GFP (binds to actin) were infected with dsRED-\(\Delta ic\text{s}A \) *Shigella* (MOI 10) for 30 min and then treated with gentamycin (100 \(\mu \text{g/mL} \)) for 15 min. The cells were incubated at 37 \(^\circ \text{C} \) with 5% CO\(_2\) for three h before fixing as described in 2.10.1. Z-stacks composed of 6 slices 0.8 \(\mu \text{m} \) apart were captured at 63X magnification with a confocal microscope (Zeiss LSM 880 AxioObserver, Table 2.5).

Given that \(\Delta ic\text{s}A \) *Shigella* replicates to high numbers in the cytoplasm of infected cells, enumeration of individual bacteria was not possible. Instead, the area inside the cell occupied by bacteria and their fluorescence intensity (FI) was measured. For this, an automatic segmentation method was used (an example of the script can be found in Appendix B.1). First, the images were separated into two channels, one corresponding to cells (F-tractin-GFP) and one to bacteria (dsRED-\(\Delta ic\text{s}A \) *Shigella*). Independent average intensity z-projections were generated with the bacteria and cells z-stacks. To identify bacteria, background (rolling = 50) was subtracted, then a Gaussian blur (sigma = 2) filter was applied to the dsRED image projection. Next, this image was converted to a binary mask using Huang’s threshold method with default values. The cells outlines were manually drawn using the polygon selection tool. A mask was created using the outlines of the cells. Then the bacteria and cells masks were used to identify particles (bacterial clusters) on each cell using Fiji’s Speckle inspector plug-in (Fiji’s BioVoxxel Toolbox). The ROI manager measured the area occupied by bacterial clusters and the area of the cells. The speckle inspector also assigned a cell ID number to each bacterial cluster. The FI of the clusters was also measured from the original average projection image of bacteria. These data were analyzed in R. The sum of the area occupied by bacterial clusters identified on each cell was normalized by the cell’s area to account for cell size variability. The FI of bacteria was not normalized as the images were taken using the same microscope settings. Statistical differences between RACK1-KD and NS cells were evaluated using a Wilcoxon test.
2.10.3 Targeting of *Shigella* by guanylate-binding proteins (GBPs)

GBP1 and GBP4 are interferon-gamma (IFN-γ) induced proteins that bind to cytosolic *Shigella*, blocking actin-based motility. GBPs association with *Shigella* in control and RACK1-KD cells was evaluated. HeLa cells expressing F-tractin-GFP were seeded in 12 mm rounded glass coverslips (1.5 x 10^5 cells/coverslip). After 24 h, the cells were treated with one ng/mL of IFN-γ (Abcam, Cat. No. ab259377) or with one µM of Ruxolitinib (RUX, Selleckchem, Cat. No. S1378), which is an IFN-γ signalling inhibitor. Untreated cells were incubated with DMEM only. After 16 h of treatment, cells were infected with WT *Shigella* (MOI 50) for 30 min followed by gentamycin (100 µg/mL) treatment for 15 min. Subsequently, the cells were carefully washed three times with warm PBS and incubated at 37 °C and 5% CO2 for 3 h. After this time, the cells were fixed and immunolabeled as described in 2.10.1 using DAPI (for DNA), anti-GBP1 or anti-GBP4 antibodies and their corresponding secondary antibodies (Table 2.4). Nine tiles composed of z-stacks (5 slices, 0.5 µm apart) with 10% overlap were captured per condition (untreated, IFN-γ and RUX) at 63X magnification using a confocal microscope (Zeiss LSM 880, Table 2.5).

To identify GBP1 positive (GBP1+) *Shigella* (GBP4 targeting was not quantified), the images were analyzed in Fiji as follows. All bacteria were identified from the average projections of the DAPI channel. Before bacterial segmentation, the background was subtracted (rolling = 50), and the Mean filter (radius = 2) was applied. The images were then converted into binary masks using Huang’s thresholding with default settings. The masks were next used to count all bacteria using Fiji’s Analyze particles tool. The particle size was set to 20 to 500 pixels to exclude nuclei (DAPI stains bacteria and cell nuclei), keeping only bacteria. Similarly, GBP1+ *Shigella* were identified from the average projection of the GBP1 channel (Alexa-555). Background subtraction (rolling = 50), Mean (radius = 2) and Gaussian blur (sigma = 2) filters, and RenyiEntropy threshold were applied to the images. More details on the Fiji macro can be found in Appendix B.2. The number of GBP1+ bacteria was obtained by running the Analyze
particles tool with default settings. Statistical significance was tested in R using a two-way analysis of variance (ANOVA).

2.10.4 Analysis of actin tails in fixed samples

Shigella modulates the host actin cytoskeleton machinery to induce actin tail polymerization. Actin tail number and morphology were evaluated to assess if RACK1 plays a role in actin tail polymerization. RACK1-KD and control HeLa cells expressing F-tractin-GFP (binds actin) were infected with dsRED-WT *Shigella* and fixed as described in 2.10.1 (late infection steps). Z-stacks were acquired at 63X magnification containing six slices, 1.2 µm apart, using a confocal microscope (Zeiss LSM 880 AxioObserver, Table 2.5). Average projections of the top 4 slices were generated in Fiji. The bottom (closer to glass) slices were not included in the projection to avoid stress fibre interference in the analysis. The number of bacteria with and without actin tail was manually noted. Also, Fiji’s polygon selection tool was used to manually define regions of interest (ROIs) around tails that were then added to the ROI manager. The following measurements were chosen from Fiji’s analysis tab: area, mean FI, circularity \((\frac{4\pi}{area/\text{perimeter}^2})\), and Feret’s diameter. Then, these parameters were measured using the ROI manager. The data generated was entered in R for further analysis and plotting. Statistical differences between control and RACK1-KD were analyzed using the Wilcoxon rank-sum test (Wilcoxon test) for tail’s area, mean FI, and Feret’s. Unpaired two-tail student’s t-test (t-test) was used to evaluate the number of tailed bacteria. The statistical test was chosen based on the data distribution.

2.10.5 Quantification of Arp2 recruitment to *Shigella*

Shigella exploits the function of the Arp2/3 complex to trigger actin tail polymerization. Given that RACK1 was found to interact with Arp2, the role of RACK1 on Arp2 recruitment to *Shigella’s* actin tail was assessed. For this, control (NS) and RACK1-KD (KD-92) HeLa cells infected with dsRED-WT *Shigella* (MOI 10) for two h were fixed and immunolabeled with DAPI and anti-Arp2. Images were taken on a Zeiss...
710 confocal with 63X magnification. The number of Arp2 positive (Arp2+) Shigella were manually quantified.

2.11 Live-cell imaging and data analysis

Live-cell fluorescent microscopy was used extensively in this study. Live observation of Shigella infection provided spatial and dynamic information that could not be captured by solely evaluating fixed samples. This included entry foci formation dynamics, vacuolar escape, and intracellular motility assessed in the context of RACK1 silencing. Also, RACK1 subcellular localization during Shigella infection and LC3 (Microtubule-associated protein 1A/1B-light chain 3) targeting of bacteria were evaluated by live-cell imaging. Similarly, live microscopy was used to study Shigella growth and cell-to-cell spreading in cell monolayers using an aqueous two-phase (ATP) infection system and a modified plaque assay, respectively. To follow target proteins in real time, host cells were either transiently transfected with plasmids expressing a fluorescent fusion of the protein of interest (e.g., pEGFP-Actin), or the cells were stably transfected by lentiviruses (e.g., F-tractin-GFP).

For all live-cell imaging experiments, dishes and plates were coated with 20 µg/mL of fibronectin for one h. Infections were performed using WT, dsRED-WT, or dsRED-ΔicsA Shigella. During imaging, the cells were maintained in FluoroBrite DMEM (Gibco, Cat. No. A1896701) since this medium confers very low background fluorescence enhancing the signal-to-noise ratio of fluorophores. To preserve cell viability in long-term imaging experiments (>10h), FluoroBrite was supplemented with four mM L-glutamine (Wisent, Cat. No. 609-065-EL), ten µM HEPES (Gibco, Cat. No. 15630080) and 10% FBS (FluoroBrite complete). Live-cell imaging was performed using various microscopy configurations detailed in Table 2.5. Before analysis, all images were converted to 8-bit Tagged Image File Format (TIFF). Images and statistics were analyzed using Fiji (version 2.3.0) and R (version 4.1.1). The following sections describe the experimental approaches and the data analysis performed. Script examples can be found in appendix B.
2.11.1 Live-cell imaging of *Shigella* entry and vacuolar escape in HeLa cells

To study the role of RACK1 in entry and vacuolar escape, 6 x 10³ cells/well of RACK1-KD or control HeLa were seeded on black 96-well plates (Thermo Fisher Scientific, Cat. No. 165305) and transfected with pOrange-Galectin3 (Gal-3, vacuolar rupture reporter) and pEGFP-Actin. After 48 h, the cells media was replaced by 50 µL of FluoroBrite. Infection was carried out by adding 50 µL of WT *Shigella* inoculum (MOI 10) right before image capture. Cells were imaged every 1 minute for 1.5 h at 37 °C and 5% CO₂ using a widefield microscope (Nikon Eclipse Ti, Table 2.5) with 40X magnification.

Because non-fluorescent bacteria were used in these experiments, the study of the early steps in *Shigella*’s infection cycle was through visualization of *Shigella*’s effects on the cell. These effects were evidenced by actin polymerization induction (detected with F-tractin-GFP) and damage of the vacuole (detected by Gal-3 recruitment). Gal-3 was used to confirming invasion as it only binds to the vacuole once it is damaged by *Shigella*. The number of infected cells was calculated by identifying HeLa cells with at least one Gal-3 positive (Gal-3+) signal by the end of imaging time. Similarly, the number of Gal-3 positive bacteria per cell was manually enumerated.

To analyze the early steps of infection, *Shigella* entry, vacuolar escape and actin tail polymerization where manually noted as follows. The time of *Shigella* entry was defined as the time (in the video) where the first signs of actin cytoskeleton reorganization induced by *Shigella* could be recognized (F-actin-GFP enrichment). After bacterial invasion, the recruitment of Gal-3 to the damaged *Shigella*-containing vacuole marked the time of vacuolar escape. Then, the first signs of actin polymerization in one pole of the bacterium (actin node time) and the time when actin tail elongation was first observed were also recorded (actin tail time). These time points were used to compare the early steps of bacterial infection in control and RACK1-KD cells as follows: escape time equalled to Gal-3+ time minus entry time; actin node time equalled to actin node time minus Gal-3+ time; and actin tail time was calculated by subtracting the Gal-3+ time from the actin tail time.
2.11.2 Evaluation of ΔicsA Shigella entry to HeLa cells

The ΔicsA Shigella strain was used to evaluate bacterial entry. This strain cannot spread from cell to cell due to a lack of actin tail polymerization reflecting the number of primary infected cells. For this experiment, 2.5 x 10⁴ RACK1-KD or control HeLa cells stably expressing F-tractin-GFP were seeded on black 96-well plate wells. After 24 h, the cells were infected with 100 µL of dsRED-ΔicsA Shigella. The inoculum was prepared by diluting an OD₆₀₀ = 0.5 subculture 100 times in DMEM. The infection was carried out for 30 min at 37 °C with 5% CO₂, followed by 15 min of gentamycin (100 µg/mL) treatment. After this time, the cells were carefully washed three times with warm PBS, and 100 µL of fresh FluoroBrite was added to each well. The infected cells were incubated for 4 hours at 37 °C with 5% CO₂ before imaging using a widefield microscope (AxioObserver, see Table 2.5) at 10X magnification. To image a large field of view (>50% of the well’s area), 16 smaller images referred to as tiles were captured. These tiles were imaged individually and later combined via stitching to a larger image using Zeiss Zen Black software.

Since the ΔicsA strain does not spread to other cells, the bacteria replicate to high numbers inside infected cells. As the cells become full of fluorescent bacteria, they are easily recognizable and counted by automatic segmentation. The area of 10 randomly chosen HeLa cells was measured using the F-tractin-GFP signal to identify the cell’s body. The average area of these cells (400 pixels) was used as the threshold to select infected cells from the image channel corresponding to bacteria (dsRED). Any dsRED structure smaller than 400 pixels was not counted as an infected cell. The images were processed as follows. Background (rolling = 50) was subtracted from the dsRED images, and then a Gaussian Blur filter was applied (sigma = 5). This image was then transformed into a binary mask (default threshold) and used to calculate the number of infected cells by running the Analyze particles tool (size threshold = 400 to infinity, circularity = 1.2-1, exclude on edge). The output containing the number of infected cells per image was then transferred to R, where statistics were calculated using a t-test.
2.11.3 Evaluation of entry foci dynamics

Shigella induces host actin polymerization at the entry site, forming an F-actin-rich entry focus leading to bacterial uptake. RACK1’s role in actin focus formation and actin polymerization dynamics at the entry site was assessed as follows. RACK1-KD and control cells (1x10^5 cell/well) expressing F-tractin-GFP were seeded on 4-well 35 mm glass-bottom dishes (Greiner BioOne, Cat. No. 627870). The next day, the cell’s media was replaced by 400 µL of FluoroBrite. A dsRED-WT *Shigella* inoculum was prepared by diluting a fresh culture (OD_{600} = 0.5) 10 times with prewarmed (37 °C) PBS. Image acquisition started immediately after infecting the cells with 100 µL of inoculum per well. Z-stacks (4 slices, 1.2 µm) were captured at 63X magnification every 2 minutes for two h at 37 °C with 5% CO2 using a confocal spinning disk (Zeiss Axio Observer Z.1 with Axiocam camera, Table 2.5).

Since F-actin was labelled with F-tractin-GFP, and *Shigella* expressed the dsRED marker, entry foci dynamics were easily tracked in the time-lapses captured. Entry foci were identified by increased F-actin enrichment around dsRED-WT *Shigella* over time. For this, average intensity z-projections of all z-stack image sequences were generated in Fiji. The background value, calculated by measuring FI in a cell-free area, was subtracted from the images. Then, the most extensive area reached by the entry focus was encircled using the oval selection tool and added to the ROI manager. Then, the area and FI (mean grey value) of the ROI (entry focus) was measured (Multi Measure) starting from the first signs of actin enrichment around *Shigella* until the FI returned to the basal level. The output of this analysis contained a series of area, mean FI and time values for each entry foci. These data were transferred to R to do statistical analyses. Of note, the area of the ROI was the same at all time points measured on a specific focus.

The mean FI of each focus at the time points measured was averaged and normalized by subtracting the lowest FI encountered in each data set (control and RACK1-KD). The area of each focus was calculated from the original ROI size as it reflects the most extensive area reached by the entry focus. The duration of each focus was calculated by multiplying the number of time points by 2 min (frame acquisition time). Then, statistical differences
in these parameters (mean FI, area, and duration of foci) between RACK-KD and control cells were analyzed using Wilcoxon test as the data was not normally distributed. Finally, the rate of actin polymerization at the entry foci was calculated using the R package “growthrates” (version 8.2). This package was initially designed to determine bacterial growth rates. The functions were adapted to use the increment in FI observed on each infection focus to estimate actin polymerization's mumax (maximum polymerization rate) using a logistic model (grow_logistic function). The equation used was

\[
y = \frac{(K \cdot y_0)}{(y_0 + (K - y_0) \cdot \exp(-mumax \cdot time))}
\]

With K being the maximum FI, y0 was the lowest FI, and mumax was the maximum actin polymerization rate. The fitting of the FI curves by the model was visually verified, and curves not well described by the model were eliminated from the final data set. Differences in actin polymerization rates observed in control versus RACK1-KD cells were analyzed using Wilcoxon test. More details can be found in Appendix B.5.

2.11.4 Evaluation of Shigella’s intracellular motility

Shigella induces actin-tail polymerization at one pole of the bacterium, which confers intracellular motility 223. For these experiments, 1x10^5 F-tractin-GFP HeLa cells (control and RACK1-KD) were seeded in 4-well 35 mm glass-bottom dishes. A day after, the medium was replaced with 450 µL of FluoroBrite, and the infection was carried out by adding 50 µL of dsRED-WT *Shigella* (OD_{600} = 0.5 culture diluted 1 in 10 with PBS). Z-stacks (5 slices, 1 µm) of the cells were captured at 63X magnification every 30 sec to 1 min (indicated on figure legends) for two h at 37 °C and 5% CO_2 using a spinning disk microscope (Zeiss Axio Observer Z.1, with Evolve camera, Table 2.5).

The intracellular movements of dsRED *Shigella* propelled by fluorescently labelled actin tails (F-tractin-GFP) were recorded from the time-lapse images captured using Fiji software tools. For this, the z-stacks time-lapse images were transformed into average intensity projections. The first 2 (bottom) slices of the z-stack were not included in the projection to avoid stress fibre interference. Then, bacterial movements were manually recorded using Fiji’s Manual Tracking tool. Trajectories were recorded for as long as
the bacterium was still visible but stopped when the bacterium was out of view or divided. The data generated by the tracking tool consisted of a series of x/y coordinates. The distance between x/y coordinates at two given time points was measured by the formula: $d = \sqrt{(x2 - x1)^2 + (y2 - y1)^2}$.

In R, the trajectories were analyzed with the “trajr” package (version 1.4.0)374. This package was not developed to characterize bacterial motility but to describe animal behaviour. However, some of the functions provided in the trajr package were useful to characterize Shigella’s trajectories. The TrajBuild function was used to import trajectories from multiple files and create a data frame containing a list of bacterial trajectories. Then, the function TrajDerivatives was used to calculate speed. The sinuosity index of the trajectories was calculated using TrajSinuosity2. This index describes how tortuous a trajectory is; thus, a low index indicates a more direct trajectory. Only trajectories with lengths ranging between 30 to 80 µm, which represented trajectories in the interquartile range of the data, were included in the sinuosity calculation. TrajDirectionalChange was used to measure the directional change (DC) of each pair of consecutive points in a trajectory from which the mean DC was calculated. A final index denominated tumbling time was generated using the function TrajSpeedIntervals. This function determines the time intervals within a trajectory where the trajectory speed is lower than a defined threshold. The minimum speed threshold (0.02 µm/sec) was defined as the mean of the values from the first quartile speed value in each data set (experiments 1 to 3). Then, the mean tumbling time was calculated from the output generated by the TrajSpeedIntervals function. Statistical differences between control and RACK1-KD were tested by Wilcoxon test for mean speed and mean tumbling time and t-test for DC and sinuosity. More details can be found in Appendix B.6.

2.11.5 RACK1 localization during Shigella infection

GFP-tagged versions of RACK1 were used to assess RACK1 subcellular localization during Shigella infection. Detection of actin was also desirable to study RACK1’s interplay with the actin cytoskeleton. Therefore, HeLa cells stably expressing GFP-RACK1/F-
tractin-mCherry or RACK1-GFP/F-tractin-mCherry were seeded on 4-well bottom glass dishes (1x10^5 cells/well). One day later, the medium was replaced with 400 µL of FluoroBrite. Infection was carried out by inoculating 100 µL (for early events) or 50 µL (for late events) of a WT *Shigella* culture diluted ten times in DMEM. Cells were imaged every 1 (tail localization) or 2 (entry foci localization) minutes for two h at 37 °C with 5% CO₂ using a spinning disk confocal microscope (Zeiss AxioObserver Z.1 with Evolve camera, Table 2.5). The time-lapse images were taken as zStacks (6 slices, 0.9 µm apart) with 63X magnification.

To evaluate if RACK1 co-localizes to *Shigella* at any point during infection, RACK1 recruitment to entry foci and actin tails were measured using Fiji. First, the z-stack time-lapses were transformed to average projections. To assess RACK1 recruitment to entry foci, an elliptical ROI was drawn around *Shigella*‘s entry point and the changes in fluorescence intensity over time were measured. FI corresponding to GFP-tagged RACK1 and F-tractin-mCherry that labels F-actin was measured. RACK1 localization to actin tails at any point during actin mediated motility was assessed by measuring RACK1 FI in the area occupied by actin tails.

2.11.6 LC3 targeting of *Shigella*

The autophagy marker, microtubule-associated protein 1A/1B-light chain 3 (LC3), has been reported to target the *Shigella*-containing vacuole. The vacuolar escape reporter Gal-3 was used to visualize LC3 co-localization with damaged *Shigella*-containing vacuoles. To test if RACK1 mediates binding of LC3 to the vacuole, RACK1-KD or control HeLa cells stably expressing GFP-LC3 were seeded on 4-well bottom glass dishes (5x10^4 cells/well) and transfected with pOrange-Galectin3 (Gal-3). After 48 h, the medium was replaced with 400 µL of FluoroBrite, and the cells were infected with 100 µL of WT *Shigella* diluted ten times in PBS. ZStacks (17 slices, 0.2 µm) were captured every 1 min for 1.5 h using 60X magnification with a spinning disk microscope (Delta vision, Table 2.5) equipped with temperature (37 °C) and atmosphere control (5% CO₂). For data analysis, the z-stack time-lapse images were transformed into z-projections. Then, LC3 and
Gal-3 positive bacteria were manually enumerated using Fiji’s cell counter tool. Statistical analyses were performed in R using a t-test.

2.11.7 Aqueous two-phase (ATP) infection system

Bacterial growth kinetics in HeLa cells was evaluated by live microscopy using an aqueous two-phase (ATP) infection system. Contrary to the gentamycin assay, the ATP method provides higher throughput, and bacterial growth can be recorded more often and for longer incubation times. Also, in this method, both the cells and bacteria were fluorescently labelled, thereby facilitating live observation of bacterial growth. HeLa cells stably expressing F-tractin-GFP were seeded on 96-well plates (Falcon, Cat. No. 353072) and grown to 100% confluency. On the day of infection, the cells were overlaid with 10% polyethylene glycol (PEG, Sigma, Cat. No. 94646). Then, a culture of dsRED-WT *Shigella* (OD$_{600}$ = 0.5) was resuspended in 10% Dextran T500 (DEX, Pharmacosmos, Cat. No. 551005009007). The cells were infected with 0.5 µL of the DEX-bacteria mixture spotted in the center of each well by a robot (Biomek 4000). DEX and PEG do not mix, generating a physical barrier that maintains the bacterial inoculum on a discrete area of the cell monolayer and slows down the infection. The was incubated for one h at 37 °C. Then, the monolayers were washed carefully with pre-warmed (37 °C) PBS and incubated with DMEM containing gentamycin (100 µg/mL) for 15 min. The medium was then replaced with FluoroBrite complete supplemented ampicillin (100 µg/mL) to maintain bacterial fluorescence. Tiled images covering 50% of the well’s area were taken every 15 min for 12 hours with 10X magnification at 37 °C and 5% CO$_2$ using an automated imager (EVOS FL Auto 2, Table 2.5).

FI increment was used to evaluate *Shigella* growth in the cell monolayer. For this, the time-lapse images corresponding to the dsRED channel (bacteria) were separated from the cells’ channel (F-tractin-GFP). The DEX-PEG interphase restricted *Shigella* infection to a discrete area of the monolayer and its size was proportional to inoculum drop (0.5 µL). Thus, a circular region of interest (ROI 1) was manually assigned to the infected area, which contained the most bacteria in the last image of the video. Similarly, three smaller areas
corresponding to the background (no bacteria) were selected (ROIs 2-4). FI was measured over time in the ROIs 1 to 4 using the ROI’s manager Multi measure tool.

Additionally, the area covered by cells (available for infection) inside ROI 1 at time point 0 (first image) was measured as follows. First, brighter spots (identify cell’s center) were found using the find maxima tool (prominence = 15). Then, the original image was smoothed, and a default threshold was applied to obtain a binary mask. Next, the mask and find maxima’s output were merged using the image calculator tool. The final image created was the input for the Analyze particles tool to obtain the area and number of cells. Cell number and background (ROIs 2-4) read-outs were used to normalize the FI quantified in ROI 1 and obtain the net bacterial growth. Statistical differences between control (NS) and RACK1-KD cell lines were analyzed by pairwise comparisons at every time point using a t-test.

2.11.8 Modified plaque assay

Plaque assays are commonly used to test viral titers. As the pathogen spreads in the monolayer, it generates areas of infection called plaques that can be measured. The gold standard plaque assay method to evaluate Shigella spreading is performed using a dense agarose overlay that restricts extracellular diffusion. Then the cell monolayers are fixed and stained to visualize the plaques. In these conditions, bacterial spreading cannot be observed in real-time. Thus, modifications were made to allow live observation of Shigella-induced plaques and cell death without disturbing the cell monolayers. For the modified plaque assay, cells expressing F-tractin-GFP (HeLa and HT-29) or GFP alone (CaCo-2) were seeded in black 96-well plates and grown to confluency. The monolayers were subsequently infected with a low MOI (OD600 0.5 diluted 1000 times) inoculum of dsRED-WT Shigella for 30 min (HeLa and CaCo-2) or one h (HT-29). The cells were then treated with gentamycin (100 µg/mL) diluted in DMEM for 15 min to eliminate extracellular bacteria. After three washes with pre-warmed (37 °C) PBS, the monolayers were overlaid with 0.4% Methocel A4M (Sigma, Cat. No. 94378) diluted in FluoroBrite complete supplemented with 100 µg/mL ampicillin (to maintain Shigella fluorescence), and 2.5
ng/µL DAPI (to detect cell death). Infections were carried out at 37 °C with 5% CO₂ for 10 (HeLa), 15 (CaCo-2) or 72 (HT-29) h before imaging. To image around 50% of the well’s area, 16 tiles were captured at 10X magnification using a widefield microscope (Zeiss Axio Observer Z.1, Table 2.5). Tiles were then stitched using Zeiss Zen Black software.

Shigella’s cell-to-cell spreading was determined by analyzing the formation of plaques in the cell monolayer. Since Shigella was fluorescently labelled, plaque detection was performed by automatic segmentation. The images were separated into two channels (GFP = cells, dsRED = bacteria), and the background was subtracted from the dsRED channel images (rolling = 90). Then, the filters Median (radius = 10) and Gaussian blur (sigma = 10) were applied before transforming the images into masks using the Mean thresholding method with default settings. The commands Dilate mask and Fill Holes further defined the plaques contour. The final mask images were input to the Analyze particles (size = 0.1 to infinity) tool to identify plaques outlines. The area and number of plaques per image were calculated using the ROI manager tool. More details can be found in Appendix B.3. Quantification of secondary plaques (area < 4 µm²) and statistical analysis (Wilcoxon test) were performed in R.

2.11.9 Real-time monitoring of Shigella cell-to-cell spreading

A similar setup to the one described in 2.11.8 was used in these experiments to assess Shigella cell-to-cell spreading in real-time. F-tractin-GFP HeLa cells (1 x 10⁵) were seeded in 4-well glass-bottom dishes. The next day, cells were overlaid with 0.4% Methocel diluted in FluoroBrite complete supplemented with ampicillin (100 µg/mL). One hour before imaging, the cells were infected by adding 8 µl of dsRED Shigella (OD₆₀₀ = 0.5) diluted 1000 times in PBS. The inoculum was placed in one corner of the well to allow slow diffusion of Shigella, reducing the number of infected cells. Infection foci, comprised of 1 infected cell, were located using the eyepiece of the microscope. Then, images were captured (9 tiles) at 40X magnification every 15 min for 15 h at 37 °C with 5% CO₂ using a spinning disk (Zeiss Axio Observer Z.1 with Evolve camera, Table 2.5).
Infection progression was followed over time from one initially infected cell. Since the time-lapse images were taken at high magnification, newly infected cells were quickly identified. The number of infected cells was manually noted in every time frame using Fiji’s Point tool and added to the ROI manager to be counted. The output of this analysis had the number of infected cells found at every time frame. In R, the raw number of infected cells was used to calculate the cumulative sum of infected cells. This better represented infection progression because some cells detached during infection and were no longer visible. Statistical difference between control and RACK1-KD cells was evaluated using a t-test.

2.12 Characterizations of the role of RACK1 in actin cytoskeleton dynamics

2.12.1 Analysis of actin polymerization and depolymerization using actin-binding drugs.

The actin-binding drugs Jasplakinolide (Jasp, Thermo Fisher Scientific, Cat. No. J7473) and Cytochalasin D (CytoD, Thermo Fisher Scientific, Cat. No. PHZ1063) were utilized to assess the role of RACK1 in actin dynamics. For these experiments, control and RACK1-KD HeLa cells expressing F-tractin-GFP were seeded in 4-well glass-bottom dishes (1x10^5 cells/well). After 24 h, the medium was substituted with 300 µl of FluoroBrite and incubated for 15 min in the microscope’s atmosphere-regulated chamber (37 °C, 5% CO₂) to stabilize the cells. Then, 200 µl of 0.5 µM Jasp or 200 µl of 100 µg/mL CytoD diluted in FluoroBrite were added to each well. Z-stack images (8 slices, 1µm apart) were captured at 40X magnification every 2 minutes for two h using a spinning disk microscope (Zeiss Axio Observer Z.1 with Evolve camera, Table 2.5).

Jasp and CytoD have opposite effects. Jasp is a potent inducer of actin polymerization leading to the formation of F-actin aggregates, whereas CytoD inhibits actin polymerization thereby inducing depolymerization of F-actin. Automatic segmentation was used to analyze the effects of these drugs in RACK1-KD cells (see Appendix B.4 for details). First,
F-actin aggregate polymerization was assessed in the cells treated with Jasp. Maximum projection images were generated from the z-stacks corresponding to 0 and 2 h after Jasp treatment. The background (i.e., measuring FI in a cell-free area) was subtracted from each image. Unsharp mask (radius = 1, mask = 0.6) and Median (radius = 1) filters were applied to the images before transforming them to binary using a Default threshold. Cell’s outlines were manually outlined from the original (not binary) image to create a mask. Then, both masks (cells and F-actin aggregates) were used as input for the Speckle inspector plugin. The output generated contained a set of ROIs (F-actin aggregates), indicating cell number, the number of aggregates per cell and the aggregates FI.

CytoD induces depolymerization of F-actin-rich structures such as stress fibres and cell adhesions. Thus, the slice from the z-stack that contained most stress fibres and adhesions at 0 min was selected to analyze CytoD effects on these structures after 1.5 h of treatment. Mask images were generated using the same segmentation settings for the Jasp analysis. But the detection of F-actin-rich structures was performed with the Analyze particles tool. The output generated was a list of actin-rich structures outlines used to measure the area and FI of the structures in the original image. Finally, statistical differences in the effects of the actin-binding drugs in RACK1-KD and control cells were assessed with Wilcoxon test.

2.12.2 Fluorescence Recovery After Photobleaching (FRAP)

FRAP was carried out following a protocol described by Carisey et al. Briefly, 5x10⁴ control and RACK1-KD HeLa cells were seeded in 4-well glass-bottom dishes. Transfection was carried out as described in section 2.5.3 using plasmid pEGFP-Actin (15 ng/well). After 48 h, the medium was replaced with FluoroBrite supplemented with ten µM HEPES and 10% FBS. One hour before imaging, dishes were placed in the microscope’s atmosphere-regulated chamber (37 °C with 5% CO2) to allow the medium to equilibrate. Cells expressing low, medium, and high levels of GFP-actin expression were selected using the microscope’s eyepiece. Zeiss LSM 880 confocal microscope (Table 2.5) was used here with the following settings: time series, bleaching, and regions were selected in the
software’s main menu. Images (16-bit, 512 x 512 pixels) were captured at 63X magnification using bi-directional scanning at speed 7. Pinhole size was set to 1 Airy Unit, and zoom factor was 2. The power of the 488 nm argon laser was set to 22% (gain: 652, offset: 62) during imaging and increased to 100% for the bleaching pulses. A bleaching area or ROI was defined using the regions menu. Then, three images were captured every 2 seconds, followed by bleaching the ROI for two iterations. Images continued to be captured every 2 sec for 172 sec after bleach (90 frames in total, including pre-bleach frames). Two distinct cell structures, stress fibres, and ruffles were analyzed in 25 control and 22 RACK1-KD cells.

The time-lapse images generated were analyzed in Fiji. The bleached area (ROI 1) was extracted from the image’s metadata. Then, a cell-free area was selected to calculate background (ROI 2) FI, and the whole cell’s area (ROI 3) was outlined using the polygon selection tool and added to the ROI manager. The ROI manager calculated FI of ROIs 1, 2, and 3 overtime. In R, the values in the first three rows (pre-bleach frames) were averaged. FRAP curves were normalized to obtain experimental recovery (Rnorm) values using the following formula:

$$R_{\text{norm}} = \frac{(\text{ROI 1} - \text{ROI 2})}{(\text{ROI 3} - \text{ROI 2})}$$

Rnorm curves were analyzed using the R package “Frapplot” (version 0.1.3). All FRAP curves acquired per condition (control or RACK1-KD) and cell structure (stress fibres, and ruffles) were averaged and plotted. The best-fitted curve for each data set was calculated using a non-linear least squares regression model.

$$y = ymax - (ymax - ymin) \times e^{-k \times t}$$

Where ymax is maximum FI, ymin is minimum FI, k is the slope, and t is time. FI half recovery time ($t_{1/2}$) was calculated using the function frapprocess. Statistical differences were calculated using a t-test. More details of the analysis can be found in Appendix B.7.
Table 2.5. Microscopes used in this study and its specifications

<table>
<thead>
<tr>
<th>Microscope brand and model</th>
<th>Microscope specifications</th>
<th>Camera/detectors specifications and software</th>
<th>Experiments used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeiss LSM 880 laser scanning confocal (inverted)</td>
<td>LASERS: Argon 458/488 nm, HeNe 548-633 nm, Diode 405-30. LENSES: Plan APO 20X air NA0.8, Plan APO 40X oil NA1.4, Plan APO 63X oil NA1.4. FILTERS: Zeiss 38, 46, 47, 49, 43.</td>
<td>DETECTORS: GaAsP, photomultiplier tube (PMT), AiryScan, and Transmitted light (T-PMT). SOFTWARE: Zen Black/ Zen Blue</td>
<td>- Analysis of actin tails (fixed samples) - Analysis of intracellular replication (fixed samples) - Targeting of Shigella by GBP1 - FRAP - Fly gut images</td>
</tr>
<tr>
<td>Leica TCS SP8 near super-resolution laser scanning confocal (inverted)</td>
<td>LASERS: Solid State 405, 488, 552 and 638 nm Spectral Viewing System. LENSES: HC Plan APO CS2 63X oil NA1.4. FILTERS: DAPI/FitC/TXRED, GFP, Rhod_LP.</td>
<td>DETECTORS: PMT and Hybrid Detectors (HyD). SOFTWARE: LASX</td>
<td>- RACK1 localization to entry and tail (fixed samples) - RACK1 and Gal-3 colocalization - RACK1 and GBP4 colocalization</td>
</tr>
<tr>
<td>Microscope brand and model</td>
<td>Microscope specifications</td>
<td>Camera/ detectors specifications and software</td>
<td>Experiments used for</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Zeiss Axio Observer Z.1 spinning disk confocal (inverted)</td>
<td>LASERS: 405, 488, 561 and 639 nm.</td>
<td>CAMERAS: Axiocam MRm (1388 x 1040 pixels), Evolve 512 Delta EMCCD Camera</td>
<td>- Evaluation of entry foci dynamics (Axiocam)</td>
</tr>
<tr>
<td></td>
<td>LENSES: Plan APO 40X oil NA1.4, Plan APO 63X oil 1.4.</td>
<td>(16um x 16 um pixel area) with high-speed imaging (67 fps).</td>
<td>- Evaluation of Shigella’s intracellular motility (Evolve)</td>
</tr>
<tr>
<td></td>
<td>FILTERS: Zeiss 49, 38 and 77</td>
<td>SOFTWARE: Zen Black</td>
<td>- RACK1 localization to entry and tail (Evolve)</td>
</tr>
<tr>
<td></td>
<td>LIGHT SOURCE: Zeiss Colibri 5.</td>
<td>- ΔicsA entry</td>
<td>- Shigella’s cell-to-cell spreading</td>
</tr>
<tr>
<td></td>
<td>LENSES: Plan NEOFLUAR 10X NA0.3, EC Plan NEOFLUAR 20X NA 0.5.</td>
<td>SOFTWARE: Zen Blue 3.0</td>
<td>- Jasp and CytoD analysis (Evolve)</td>
</tr>
<tr>
<td></td>
<td>FILTERS: DAPI/GFP/CY3/CY5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nikon Eclipse Ti widefield (inverted)</td>
<td>LIGHT SOURCE: Tiliuminator EPI.</td>
<td>CAMERA: CoolSNAP HQ2 monochrome.</td>
<td>- Live-cell imaging of Shigella entry and vacuolar escape in HeLa cells</td>
</tr>
<tr>
<td></td>
<td>LENSES: Pan Fluor DIC 40X NA 0.75.</td>
<td>SOFTWARE: NIS-Elements AR</td>
<td></td>
</tr>
<tr>
<td>Microscope brand and model</td>
<td>Microscope specifications</td>
<td>Camera/ detectors specifications and software</td>
<td>Experiments used for</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------------------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Delta vision spinning disk (inverted)</td>
<td>LIGHT SOURCE: InsightSSI. LENSES: Olympus Plan ApoN 60X NA 1.42. FILTERS: FITC, TRITC</td>
<td>CAMERA: PCO Edge CMO. SOFTWARE: DeltaVision experiment designer 6.5.2</td>
<td>- LC3 targeting of Shigella</td>
</tr>
<tr>
<td>EVOS FL Auto 2</td>
<td>LIGHT SOURCE: LED LENSES: 10X FILTERS: DAPI, GFP, YFP</td>
<td>High-sensitivity 1.3 MP CMOS monochrome</td>
<td>- Mycoplasma tests - ATP infection system</td>
</tr>
</tbody>
</table>
CHAPTER 3 RESULTS

Chapter three summarizes the main findings of this project divided into eight sections that align with the project’s objectives. The first section established a cell line infection model to evaluate RACK1’s roles in *Shigella* infection. In section two, I used the established cell line model and the model organism *Drosophila melanogaster* to study the effects of RACK1 silencing on *Shigella* infection (Objective 1). *Shigella* must invade epithelial cells to access their cytoplasm, where it replicates and induces actin-based motility. Therefore, I systematically evaluated how RACK1 influences the main steps of *Shigella*’s intracellular life cycle. Sections three and four describe the study of RACK1 function in *Shigella* entry into HeLa cells and vacuolar escape (Objective 2). Then, in section five, I assessed the involvement of RACK1 in intracellular replication of *Shigella* and cell death induction. In sections six and seven I studied the role of RACK1 in actin tail polymerization and cell-to-cell spreading (Objective 2). Finally, I attempted to decipher the mechanisms by which RACK1 manipulates actin cytoskeleton dynamics in section eight (Objective 3).

3.1 RACK1 silencing and characterization

The main objective of this project was to characterize how RACK1 controls the establishment of *Shigella* infection. Since *Shigella* is a strict human pathogen, finding a suitable model to study *Shigella* pathogenesis is challenging. The available animal models to study *Shigellosis* do not fully recapitulate many pathogenicity aspects such as characteristic diarrhea. Mouse, rat, and rabbit models are naturally resistant to oral *Shigella* infection and require extensive pre-treatment to allow colonization 380. Therefore, I started my project by implementing a suitable human cell line model to study RACK1 functions during *Shigella* infection. Epithelial cell lines, such as HeLa, are among the most used models in the study of *Shigella* pathogenesis 381. *Shigella* efficiently invades and replicates inside HeLa cells 382. Conveniently, HeLa cells present a relatively large cytoplasmic space and are very flat, facilitating microscopic observation of structures in a single focal plane. Also, these cells are fast-growing (doubling time ~ 24 hours) and can be efficiently
transfected to enable genetic studies. Hence, HeLa cells were the primary model used in my project to study RACK1-Shigella interplay.

RACK1 expression was silenced using short-hairpin (sh) RNAs delivered by lentiviruses. Seven shRNAs were designed to target non-overlapping regions of the RACK1 mRNA. Three of the shRNAs successfully inhibited RACK1 expression in HeLa Tet-off cells (Figure 3.1.1). These shRNAs targeted the center of the mRNA sequence from nucleotide positions 504 to 761 and were used to generate the stable RACK1-knockdown (KD) cell lines KD-92, KD-94, and KD-95 (Figure 3.1.1). The stability of RACK1 silencing in HeLa Tet-off and HeLa WT was evaluated after 2, 3, and 4 cell passages. RACK1 expression levels remained significantly lower than the control shRNA (NS) in HeLa Tet-off cells in all cell passages tested (Figure 3.1.2 A-B). Unexpectedly, RACK1 expression in WT HeLa cells returned to normal levels in the fourth passage even under antibiotic selection (Figure 3.1.2 A and C). The Tet-Off strain is a HeLa HtTA-1 derivate that expresses a tetracycline (Tet)-regulated transactivator for inducible protein expression. This cell line was not transfected with a vector containing a tetracycline-responsive promoter. Therefore, the Tet-Off system should not be active and should not affect the silencing. However, heterogeneity between HeLa cell line variants is well documented, perhaps explaining the varying capacity to maintain RACK1 knockdown observed in WT and Tet-off HeLa strains. Given that HeLa Tet-off (HeLa hereafter) maintained RACK1 silencing for longer, it was the cell line of choice for most experiments in this project. Also, HeLa Tet-off RACK1-KD-92 was selected for further experiments because this cell line consistently showed lower RACK1 expression levels than KD-94 and KD-95 (Figures 3.1.1 C, 3.1.2 B). A HeLa Tet-off cell line transduced with a nontargeting shRNA (NS) was used as a control for RACK1 expression.

Considering that RACK1 is involved in cell growth, the effect of RACK1 silencing in cell proliferation was evaluated. The proliferation rates of KD-92, KD-94 and KD-95 HeLa cell lines were significantly lower than the nontargeting control (NS) cells, as shown by the MTT assay (Figure 3.1.3 C). Moreover, RACK1-silenced cells exhibited cell adhesion impairment. Although not quantified, RACK1-KD cells were consistently loosely
attached to cell culture dishes and easily detached during washes. This phenotype is not surprising since RACK1 regulates focal adhesion assembly \(^{328}\). Cell adhesion was improved when treating dishes with fibronectin before experiments. The adhesion impairment might result in cell rounding. Therefore, the effect of RACK1 silencing in cell size was evaluated. Area measurements of cells grown in glass coverslips treated with fibronectin showed that RACK1 depletion in KD-92 did not impact cell size compared to the NS control (Figure 3.1.3 D).

Shigella targets the human colonic epithelium \(^{385}\). Therefore, RACK1 expression silencing was attempted in the biologically relevant cell lines CaCo-2 and HT-29. The same lentiviruses used to silence RACK1 in HeLa were utilized to transduce CaCo-2 and HT-29 cells. While KD-92 and KD-95 shRNAs significantly reduced RACK1 expression in CaCo-2 cells (Figure 3.1.4 A-B), RACK1 silencing was unsuccessful in HT-29 cells despite several attempts (Figure 3.1.4 C-D). In general, both cell lines were more resistant to transduction than HeLa cells. For example, CaCo-2 cells transduced with F-tractin-GFP (binds to F-actin) were no longer susceptible to transduction to knock down RACK1 (data not shown). Also, RACK1 silencing substantially impaired CaCo-2 cells’ growth rate. For example, reaching 100% cell confluency took double the time compared to control (NS) CaCo-2 cells (data not quantified). Because of these limitations, CaCo-2 cells were unsuitable for evaluating actin dynamics during *Shigella* infection in RACK1-KD cells. However, the ability of CaCo-2 cells to spontaneously form an enterocyte-like confluent monolayer was desirable to assess *Shigella* cell-to-cell spreading \(^{381}\). The cells must be fluorescent for the spreading experiments to allow focal plane calibration during automatic image acquisition. To solve the problem of CaCo-2 double transduction impairment, I silenced RACK1 first. Then 48 h before infection, the cells were transduced with lentiviruses carrying GFP alone (pLJM1-EGFP). Although the transduction efficiency was low, it was enough to visualize the cells.
Figure 3.1.1. RACK1 expression silencing using shRNAs delivered by lentiviruses.
A. Diagram showing the seven regions in the RACK1 mRNA targeted by shRNAs. Numbers above grey boxes indicate shRNA identifier number. B. Western blot analysis of RACK1 expression. HeLa cells transduced with lentiviruses harbouring seven shRNAs (shown in A) were harvested, lysed, and analyzed by western blotting using an anti-RACK1 antibody. Cells transduced with a non-targeting shRNA (NS) were used as the control. Ponceau S staining was the loading control. C. Relative expression of RACK1. Protein expression was quantified (see methods section 2.4.4) from the western blot shown in B and normalized to the loading control.
Figure 3.1.2. HeLa cells differentially maintain RACK1 silencing efficiency.

A. Western blot analysis of RACK1 expression in HeLa cells after various passages. HeLa Tet-off and wild-type (WT) cells were transduced with lentiviruses to silence RACK1 expression (KD-92, KD-94, and KD-95). NS cells were transduced with a non-targeting shRNA. After passages 2, 3, and 4, cells were collected, lysed and assayed by western blot. Ponceau S or tubulin was used as the loading control. RACK1 silencing is more stable in HeLa Tet-off than wild-type (WT) cells. RACK1 relative expression analyses in HeLa Tet-off (B) and WT HeLa (C). The bar plots show protein expression levels quantified from the western blots in A, RACK1 expression was normalized to loading control expression. Bars are means calculated from the three passages above and error bars denote standard deviation (SD), unpaired t-test. ns = not significant p>0.05, **p < 0.01.
Figure 3.1.3. RACK1 silencing affects cell proliferation but not cell size.

A. Confirmation of RACK1 silencing by western blotting. Protein extracts from RACK1-knockdown (KD) HeLa Tet-off cells were immunolabeled using an anti-RACK1 antibody. Coomassie staining was the loading control. B. RACK1 relative expression analysis from the western blot shown in A. C. Cell proliferation curve. MTT, a colorimetric assay, was used to evaluate cell proliferation of RACK1-KD (KD-92, KD-94, and KD-95) and control (NS) cells at various time points. The line graph depicts absorbance at 540 nm (Abs540) normalized to Abs540 at day 1. Error bars are SD from 4 replicates. Statistical differences were evaluated at every time point comparing NS to each RACK1-KD using unpaired t-test; only significant differences are marked, *** p < 0.001, ****p < 0.0001. D. Cell area quantification. Control (NS) and RACK1-KD (KD-92) cells were fixed and stained with phalloidin-Alexa-555. The size of cells was measured using Fiji software. Dots inside the boxplots represent the area of cells from 3 independent experiments. Numbers under the boxplots correspond to the number of cells analyzed. Unpaired t-test. ns = not significant p>0.05.
Figure 3.1.4. RACK1 expression was silenced in CaCo-2 but not in HT-29 cells. Evaluation of RACK1 silencing by western blotting. CaCo-2 and HT-29 cells were transduced with lentiviruses to knock down RACK1 expression. Protein extracts from CaCo-2 (A) and HT-29 cells (C) were immunolabeled using an anti-RACK1 antibody. Tubulin was the loading control used. RACK1 relative expression analysis of CaCo-2 (B) and HT-29 (D) cells. Bar plots show fold change over NS protein expression levels (relative to tubulin). Bar height is the mean calculated from the western blots above and two other blots (not shown) from separate cell passages. Error bars are SD, unpaired t-test. ns = not significant p>0.05, *p < 0.05.
3.2 RACK1 modulates *Shigella* infection of HeLa cells and *Drosophila melanogaster*

3.2.1 Silencing RACK1 impairs *Shigella* growth in HeLa cells

We decided to use *Shigella flexneri* (*Shigella* hereafter) as the model strain in this project because most of the current knowledge on mechanisms underlying *Shigella* pathogenesis derives from studies of this species. First, it was crucial to evaluate the optimal conditions for *Shigella* infection in HeLa cells before the possible effects of RACK1 silencing could be studied. The gentamycin protection assay was employed to analyze *Shigella*’s capacity to invade, multiply intracellularly and spread in the HeLa cell monolayer. These three steps in the *Shigella* infection cycle result in bacterial growth, which can be evaluated by counting colony-forming units (CFU). In the gentamycin assay, infected cells are treated with gentamycin to eliminate extracellular *Shigella*. Then, the host cells are lysed, and the number of intracellular bacteria is quantified as CFUs (Figure 3.2.1 A-B).

Various infection times, dish sizes and multiplicity of infection (MOI) ratios were evaluated to identify the optimal conditions to analyze *Shigella* growth. The MOI ratio represents the number of bacteria per host cell in a given infection setup. An MOI of 1 implies one bacterium will infect one cell, but this depends on the time allowed for infection. As shown in Figure 3.2.1 C, the CFU/mL recovered from cells seeded in a 96-well plate and infected with MOI 50 and 100 were not different before four hours post-infection, indicating that the cells became saturated with higher MOIs, and bacterial internalization was similar. The sharp increase in CFU observed after five h of infection using MOI 100 reflects exponential intracellular replication and cell-to-cell spreading of *Shigella* (Figure 3.2.1 C). If incubated longer, a similar trend should be observed with MOI 10 and 50. As expected, higher CFU were recovered from cells grown in a bigger well-size plate (12-well, Figure 3.2.1 D). With this setting, similar CFUs were recovered after one h of infection from MOI 1 and 10, suggesting there is not much cell-to-cell spreading at this time.
Consistent with a higher MOI, more bacteria were recovered after 2 and 3 h of infection from cells infected with MOI 10 than from MOI 1 (Figure 3.2.1 D). The growth curve obtained from MOI 10 in a 12-well plate setting reflected exponential intracellular replication and gradual cell-to-cell spreading of *Shigella* in a convenient time frame (Figure 3.2.1 D). Hence, the standard condition used for most experiments was as follows: cells seeded in 12-well plates were infected with an MOI of 10 for 30 min, treated with gentamycin and lysed every hour up to 3 or 4 hours to recover intracellular bacteria. Notably, the WT *Shigella* strain (M90T) used in this study expresses the adhesive fimbrial AfaI protein from *Escherichia coli* carried in the pBR322-AfaI plasmid. *Shigella* strains expressing AfaI bind to the host cell with high efficiency, explaining why a low bacterial MOI was enough to obtain prolific infection in only half an hour (Figure 3.2.1 D).

An Δ*i*csA mutant strain harbouring the pBR322-AfaI plasmid was utilized in this study. IcsA is an outer membrane protein that localizes to one pole of *Shigella*, where it induces actin tail polymerization. The Δ*i*csA mutant can invade cells and replicate, but it cannot polymerize actin tails or spread to neighbouring cells. Infection condition standardization for the Δ*i*csA mutant revealed rapid intracellular replication (Figure 3.2.1 E). Cells infected with MOI 50 or 10 yielded similar CFU after one h of infection, suggesting similar invasion rates. However, after two h, Δ*i*csA *Shigella* rapidly replicates intracellularly, reaching higher CFUs in the cells infected with MOI 50 than with MOI 10. The yield of bacteria recovered at 2 and 4 h post-infection with MOI 50 was similar, probably due to cell lysis induced by high numbers of Δ*i*csA in the cytoplasm. The content of lysed cells is lost in the gentamycin assay washes before adding NP40 buffer (see methods section 2.7) hence the apparent lack of growth after four h of infection (Figure 3.2.1 E). Since MOI 10 shows gradual growth of the Δ*i*csA strain, this condition was used for most experiments involving Δ*i*csA *Shigella*. Furthermore, actin-tail polymerization was confirmed by immunofluorescence of HeLa cells infected with an MOI 10 of WT or Δ*i*csA *Shigella*. As shown in Figure 3.2.1 F, WT *Shigella* induced polymerization of prominent actin tails at two hours post-infection. In contrast, the cell infected with Δ*i*csA appeared full of bacteria that are not associated with actin tails (Figure 3.2.1 F).
Next, the role of RACK1 in *Shigella* growth was evaluated. Western blot analysis demonstrated effective silencing of RACK1 expression in the RACK1-KD stable cell lines KD-92, KD-94 and KD-95 compared to control NS cells (Figure 3.2.2 A). Growth curves determined by gentamycin protection assay showed significantly less CFU of *Shigella* recovered per µg of protein from RACK1-KD than from NS cells 2 and 3 h post-infection (Figure 3.2.2 B). As mentioned in section 3.1, RACK1-KD cells exhibit impaired adhesion; thus, the CFU counting was normalized by total protein concentration per well to account for cell number fluctuations. The *Shigella* growth inhibition phenotype observed in RACK1-KD cells was reproduced in four separate experiments (Supplementary Figure 2, Appendix C). The complementation of this phenotype was assessed by introducing an extra copy of *RACK1* into the genome of the KD-92 cells using lentiviruses. RACK1 gene expression, driven by the cytomegalovirus (CMV) promoter, was sufficient to re-establish RACK1 expression to NS levels in the KD-92 cell line (Figure 3.2.2 C-D). Rescuing RACK1 expression led to the recovery of the *Shigella* growth defect observed in RACK1-KD cells (Figure 3.2.2 E).

To further confirm the phenotype of defective *Shigella* growth observed in the RACK1-KD cells, fluorescent quantification of bacterial proliferation was evaluated using an aqueous two-phase (ATP) infection system followed by live-cell imaging. Briefly, a 0.5 µL droplet of dsRED-WT *Shigella* suspended in dextran (DEX) was inoculated into F-tractin-GFP (labels F-actin) HeLa cells covered with polyethylene glycol (PEG)-rich media (Figure 3.2.3 A). The DEX-PEG interface generated a physical barrier between the cells and the bacterial inoculum, slowing the infection rate. It also allowed spatially distinct localization of the infection area defined by the size of the droplet. After one hour of infection, the DEX-PEG mixture was removed, and the cells were treated with gentamycin to eliminate extracellular bacteria. Then, the defined infection area was imaged every 15 min for 12 h (Figure 3.2.3 A). The fluorescence intensity (FI) increment overtime was used to report the growth of *Shigella*. Figure 3.2.3 B shows example images of a typical ATP time-lapse experiment. A low fluorescent signal corresponding to *Shigella* was observed.
after 240 min of infection. As *Shigella* multiplied and spread in the cell monolayer, the FI signal increased, showing prominent areas of infection after 585 min (Figure 3.2.3 B).

Shigella growth curves in RACK1-KD (KD-92, KD-94, KD-94) HeLa cells were determined using the ATP system. Consistent with the gentamycin assay results, less *Shigella* growth was observed in RACK1-KD cell lines than in control (NS) cells (Figure 3.2.3 C). The growth curves of *Shigella* in RACK1-KD cells appeared flat and slightly shifted to the right compared to NS, indicating a slower replication rate or a spreading impairment (Figure 3.2.3 C). Although the ATP methodology had limited sensitivity at low bacterial concentrations (all growth curves were flat the first 200 min), assessing *Shigella*’s growth through FI allowed better quantification of bacterial growth kinetics than with the gentamycin assay as more time points can be evaluated. In addition to the temporal resolution, the 96-well format of the ATP assay presented the advantage of high throughput and supported multi-channel measurements (e.g., F-tractin-GFP and dsRED).

Interestingly, although not statistically significant, an increase in *Shigella* growth was observed in control (NS) cells harbouring an extra copy of *RACK1* (Figure 3.2.2 E). This finding prompted the investigation of RACK1 overexpression effects on *Shigella* infection. Stable RACK1 expression of GFP-tagged and untagged versions of RACK1 was achieved by lentivirus transduction. Surprisingly, HeLa cells expressing GFP-tagged versions of RACK1 showed similar expression levels to cells transduced with the GFP control construct (Figure 3.2.4 A-B). HeLa cells carrying the untagged version of RACK1 showed marked overexpression suggesting the GFP tag interferes with RACK1 expression (Figure 3.2.4 A-B). Also, when monitoring GFP fluorescence in the cells transduced with GFP-tagged RACK1, rapid fluorescence loss after cell passages was observed (data not shown). Loss of fluorescence suggests that the population of cells that did not integrate the fluorescent copy of RACK1 or did not express the extra copy proliferated better, ultimately outgrowing the cells expressing GFP-tagged RACK1. Another explanation for the low level of total RACK1 expression obtained could be a miscalculation of the total levels of GFP-bound RACK1 due to overexposure of the band corresponding to endogenous RACK1.
HeLa cells stably expressing the GFP-bound and untagged RACK1 were infected with *Shigella*, and growth was determined by gentamycin protection assay. Significantly more *Shigella* was recovered from cells expressing untagged RACK1 compared to the GFP control after 3 h (Figure 3.2.4 C). Even though the cells transduced with GFP-RACK1 and RACK1-GFP showed close to basal levels of RACK1 in the western blot, significantly more *Shigella* was recovered from them than from the GFP-only control (Figure 3.2.4 B-C). These data suggest that increasing RACK1 expression levels is beneficial and promotes *Shigella* growth.

Still, overexpression of GFP-tagged RACK1 was desirable to monitor expression levels by fluorescent signal in living cells. Thus, HeLa cells were transfected with the high expression plasmid pEGFP harbouring N- and C- terminus tagged versions of RACK1. Forty-eight hours after transfection, these cells were infected with *Shigella*, and growth was evaluated by gentamycin assay. RACK1 protein expression was assessed by western blot. For this, the protein extracts from three separate experiments were pooled before RACK1 immunodetection. As shown in Figure 3.2.5 A and B, only cells transfected with RACK1-GFP showed higher expression levels than control cells treated with transfection reagent alone. Consistent with the results observed in cells stably expressing RACK1 (Figure 3.2.4), transient overexpression of GFP-tagged RACK1 promotes *Shigella* growth (Figure 3.2.5 C). Again, the expression of both GFP-tagged versions of RACK1 resulted in significantly higher *Shigella* yield, despite basal RACK1 levels found in cells transfected with GFP-RACK1 (Figure 3.2.5 C). Pooling the cell lysates from infections performed on separate days might not accurately represent the levels of RACK1 expression. Together, the RACK1 silencing, and overexpression experiments suggest that *Shigella* has evolved a mechanism to manipulate RACK1 function to establish a replicative niche within epithelial cells.
Figure 3.2.1. Standardization of HeLa cells infected by *Shigella flexneri*.

A. Experimental design of the gentamycin protection assay. HeLa cells (green) were incubated with bacteria (red) for 30 minutes to allow for infection, then were treated with gentamycin (100 µg/mL) to eliminate extracellular bacteria. After cell lysis, the samples were serially diluted and inoculated on LB agar plates. B. Example LB plate showing *Shigella* growth after 24 h. Colony-forming units (CFU) were enumerated in the last two rows (dilutions 1 in 100 and 1 in 1000) and averaged. C and D. Standardization of the gentamycin assay using different multiplicities of infection (MOIs) and plate formats. HeLa Tet-off cells seeded in a 96-well plate (C) or 12-well plate (D) were infected with WT *Shigella* as described in A. CFU per mL were calculated at various time points. Time in the x-axis is time post initial infection. Thus, time 0 represents the number of bacteria that invaded the cells after 30 min of infection. Error bars in C are standard deviation (SD) from three replicates. Error bars in D are SD from two replicates. E. Standardization of Δ*icsA* *Shigella* infection. The graph shows growth curves of Δ*icsA* in HeLa Tet-off cells seeded in a 12-well plate and infected with MOI 1 and 10 as described in A. Error bars are SD from three replicates. Time in the x-axis is time post initial infection. F. Confocal images of HeLa cells infected with WT (top) and Δ*icsA* *Shigella* (bottom). Cells infected with an MOI of 10 were fixed after two h post-infection and labelled with DAPI (cyan) and phalloidin-Alexa-555 (magenta). Actin tails (white arrowhead) are formed by WT *Shigella* but not by the Δ*icsA* strain. Scale = 10 µm.
Figure 3.2.2. RACK1 silencing inhibits *Shigella* growth in HeLa cells.

A. Confirmation of RACK1 silencing by western blotting. Protein extracts from RACK1-KD (KD-92, KD-94 and KD-95) and control (NS) HeLa cells were immunolabeled using anti-RACK1. Anti-Tubulin and anti-Actin antibodies were used as loading controls. **B.** Growth curves determined by gentamycin protection assay. RACK1-KD and control (NS) cells were infected with WT *Shigella* (MOI 10), treated with gentamycin (100 µg/mL) and lysed at various time points to quantify intracellular bacteria. Colony-forming units (CFU) were divided by total protein concentration to normalize differences in cell number. Significantly less *Shigella* was recovered from RACK1-KD than NS cells after 2 and 3 h. The growth curves shown are from one representative experiment out of 4 (Supplementary Figure 1, Appendix C). Error bars represent SD from one experiment in triplicate. Unpaired t-test *p < 0.05, ***p < 0.001. **C.** RACK1 expression restoration by introducing an extra copy of the *RACK1* gene. Protein extracts from NS and KD-92 cells transduced with lentiviruses carrying the RACK1 gene (pLJM1-RACK1) were immunoblotted with anti-RACK1 and anti-Tubulin (loading control). **D.** Relative expression quantification. The bar graph shows RACK1 relative expression quantified from the western blot in C, and two other experiments (not shown). Error bars are SD. Unpaired t-test *p < 0.05. **E.** Restoration of *Shigella* growth in RACK1-KD cells by introducing an extra copy of *RACK1*. *Shigella* growth was evaluated by gentamycin protection assay after two h of infection. The bar graph shows the fold change in CFU per µg of protein (CFU/µg). Results represented as mean ± SD from 3 independent experiments. Unpaired t-test *p < 0.05.
Figure 3.2.3. *Shigella* growth impairment was confirmed in RACK1-KD cells using an aqueous two-phase (ATP) infection system.

A. Diagram of the ATP infection method. Target cells (expressing F-tractin-GFP) seeded in black 96-well plates and overlaid with polyethylene glycol (PEG) were infected with dsRED-WT *Shigella* resuspended in dextran (DEX). DEX and PEG generate a physical barrier restricting the infection to a discrete area. After one h of infection, the cells were treated with gentamycin (100 µg/mL) for 15 min and then overlaid with the low background media FluoroBrite. Infection progression was recorded by time-lapse microscopy using an EVOS imager. Images were taken every 15 min for 12 h, at 10X magnification. B. Photomicrographs of NS cells stably expressing F-tractin-GFP (binds to actin) infected with dsRED-WT *Shigella* at 240 min (left) and 585 min (right) after infection. The top row shows images of bacteria coloured in cyan, and the bottom row shows merged images of cells (actin in magenta) and bacteria. Scale bar = 1 mm. C. *Shigella* growth curves in HeLa cells determined by ATP infection system coupled to time-lapse microscopy. RACK1-KD (KD-92, KD-94, KD-94) and control (NS) cells stably expressing F-tractin-GFP were infected with dsRED-WT *Shigella* as described in A. Bacterial fluorescence intensity (FI) fold change was quantified as a proxy to evaluate bacterial growth and normalized to the number of HeLa cells available for infection at time 0. Results represented as mean ± SD from three separate experiments. * Indicate time points where growth difference was statistically significant. Unpaired t-test **p < 0.01.
Figure 3.2.4. Stable RACK1 overexpression promotes *Shigella* growth in HeLa cells. RACK1 overexpression was obtained in HeLa cells by transducing with lentiviruses harbouring GFP-tagged versions of RACK1 (pLJM1-GFP-RACK1, pLJM1-RACK1-GFP) or untagged RACK1 (pLJM1-RACK1). Cells transfected with GFP alone (pLJM1-EGFP) were used as basal expression control. *Shigella* growth in these cells was assessed by gentamycin assay after three h of infection. **A.** Western blot analysis of infected cell lysates showing RACK1 detection using anti-RACK1. The loading control was Coomassie staining of the SDS-PAGE gel used for protein transference. **B.** Relative expression quantification from western blot in A. The bar plot shows RACK1 protein levels relative to loading control. Protein quantification corresponding to GFP-tagged RACK1 (top band in lanes 1 and 2 shown in A) was added to wild-type RACK1 (bottom band in lanes 1 and 2 shown in A) to obtain total expression levels. **C.** *Shigella* growth in cells stably overexpressing RACK1. Bars show CFU/mg represented as mean ± SD from three replicates of one experiment. Unpaired t-test *p < 0.05, **p < 0.01.
Figure 3.2.5. Transient RACK1 overexpression promotes *Shigella* growth in HeLa cells.

Transient overexpression of RACK1 was achieved by transduction of HeLa cells with pEGFP-C1-RACK1 (GFP-RACK1) or pEGFP-N1-RACK1 (RACK1-GFP). Cells treated only with lipofectamine (transduction reagent) were the negative control. After 48 h, these cells were infected with WT *Shigella* and growth was assessed using the gentamycin assay. A. Western blot analysis of RACK1 overexpression in infected cell lysates. Tubulin was the loading control. B. Bar plot of RACK1 relative expression quantification from western blots in A. Protein quantification corresponding to GFP-tagged RACK1 (top band in lanes 1 and 2 shown in A) was added to wild-type RACK1 (bottom band in lanes 1 and 2 shown in A) to obtain total expression levels. These values were normalized to the loading control. C. *Shigella* growth in cells transiently overexpressing RACK1. Growth is shown as CFU/mg fold change. Error bars are SD from three separate experiments. Unpaired t-test *p < 0.05.
3.2.2 RACK1 silencing protects *Drosophila melanogaster* from *Shigella* infection

Shigella and other human enteropathogens can cause intestinal pathology in flies \(^{386,387}\). There is considerable conservation between mammalian and *Drosophila* intestinal physiology \(^{388}\). Thus, flies have become a useful model to study intestinal infections \(^{389}\). I used the fly gut model to study the role of RACK1 during *Shigella* infection *in vivo*. Because RACK1 is essential at multiple steps of *Drosophila* development \(^{390}\), RACK1 expression was knocked down only in enterocytes. Real-time PCR confirmed RACK1 silencing (Figure 3.2.6 A). Flies were fed with dsRED-WT *Shigella* mixed in sucrose or sucrose alone for 19 days. RACK1-KD and control flies started to succumb to the infection after ten days (Figure 3.2.6 B). The mortalities observed in the RACK1-KD flies were similar to those fed with sucrose only. Survival probability analysis revealed that control flies had a lower survival probability than RACK1-KD flies (Figure 3.2.6 B).

Microscopic analysis of the midguts of infected control flies revealed distortion of the digestive tract with lumen dilation and bacterial accumulation. Also, the epithelial lining appeared thinner in some areas (Figure. 3.2.6 C). The guts from infected RACK1-KD flies appeared less colonized by *Shigella* with a smaller lumen space and tissue dysplasia (Figure. 3.2.6 C). I also evaluated if *Shigella* invaded the enterocytes of flies. Optical sections of 2.5 μm (z-stack slice = 0.25 μm) were examined to determine the spatial localization of bacteria. *Shigella* was found attached to the luminal border of the enterocytes in control (Figure 3.2.6 D, black arrowhead) and RACK1-KD flies but not within the cells. Given this result, the mechanism behind the resistance of RACK1-KD flies to *Shigella* infection must not involve cell invasion. The proliferation of enteric epithelial cells in flies is characteristic of cell differentiation in response to infection \(^{391}\). Perhaps, the tissue dysplasia observed in RACK1-KD indicates a more efficient innate immune response is established in RACK1-KD guts. Nevertheless, the reduced mortality and less bacterial colonization observed in RACK1-KD flies indicate a pivotal role of RACK1 during *Shigella* colonization of the fly intestine.
Figure 3.2.6 RACK1 silencing protects *Drosophila melanogaster* from *Shigella* infection.

RACK1 was depleted in *D. melanogaster* enterocytes using RNAi. Control and RACK1-KD age-matched female and male flies were fed on filter paper soaked in 5% sucrose (sugar) or 5% sucrose containing dsRED-WT *Shigella* (OD$_{600}$ = 25). The number of dead flies was determined daily. **A.** Quantification of RACK1 mRNA transcript levels in control and RACK1-KD fly guts. Results are shown as fold change relative to control. Bars are mean ± SD from one experiment in triplicate. **B.** Kaplan-Meier survival curve of *D. melanogaster* following infection with *Shigella*. Survival probability was analyzed using the log-rank test. n = starting number of flies. **C-D.** Representative confocal micrographs of *D. melanogaster* guts. Fly guts were fixed and immunolabeled with anti-armadillo to label enterocytes (magenta). Z-stacks were captured on a confocal Zeiss 880. **C.** Maximum projection images of guts from control (top row) and RACK1-KD (bottom row) flies fed with *Shigella* (cyan, left column) and fed with sugar only (right column). The images are maximum projections from z-stacks (18 to 20 slices, 1 µm apart) captured with 20X magnification. The white arrowhead indicates an area with thinner epithelial lining accompanied by bacterial accumulation. Scale bar = 100 µm. **D.** Orthogonal view of an infected gut from a control fly. The image shows XZ and YZ planes (depth 2.5 µm) of the point indicated in the 2D image (yellow lines intersection). This image was captured with 63X magnification. *Shigella* (cyan) appears confined to the gut lumen (black arrowhead). Scale bar = 10 µm.
3.2.3 Steps of *Shigella* intracellular life cycle studied in this project.

Shigella’s ability to establish an intracellular life cycle depends on several bacterial and host cell functions \(^9^5\). First, internalization by epithelial cells (ECs) requires the action of T3SS effectors that trigger profuse actin polymerization and membrane ruffling forming an entry focus that leads to bacterial uptake (Figure 3.2.7 a). Then, *Shigella* rapidly damages the bacterium-containing vacuole and escapes into the cytoplasm, where it replicates (Figure 3.2.7 b and c). Avoidance of EC defense mechanisms, such as apoptosis or autophagy, is crucial to allow intracellular replication (Figure 3.2.7 c). Subsequently, *Shigella* hijacks the host’s actin cytoskeleton machinery to acquire intracellular motility. Through the action of its adhesin IcsA, *Shigella* induces actin polymerization at one pole of the bacterium, forming an actin-tail that propels *Shigella* through the cytoplasm (Figure 3.2.7 d). Motile *Shigella* eventually encounters the EC plasma membrane inducing the formation of a membrane-bound cell extension called protrusion. Finally, neighbouring cells endocytose bacteria-containing protrusions, from which *Shigella* escapes and continues its replicative cycle (Figure 3.2.7 e). The following sections (3.3 to 3.7) focus on understanding how RACK1 facilitates the establishment of *Shigella’s* intracellular life cycle. RACK1’s role in each step described in Figure 3.2.7 (a-e) was systematically assessed mainly by fluorescence microscopy techniques including immunofluorescence and live-cell imaging.
Figure 3.2.7. Critical steps of Shigella intracellular life cycle studied in this project.

(a) Shigella (cyan) invades epithelial cells by injecting T3SS effectors into the host cell cytosol, inducing profuse actin polymerization and plasma membrane remodelling. Localized actin polymerization sites, called filamentous-actin (F-actin, magenta) foci, lead to membrane ruffling around Shigella internalizing the bacterium. (b) Shortly after entry into the primarily infected cell (left), Shigella damages the membrane of the phagocytic vacuole escaping to the cytoplasm where it proliferates (c). Shigella is a non-motile bacterium but can acquire actin-based motility. (d) Shigella induces actin polymerization in one pole of the bacterium, forming an actin node that elongates to form a prominent actin-tail. When motile Shigella reaches the cell periphery, it deforms the plasma membrane forming a membrane protrusion that projects into an adjacent cell (right). (e) The membrane protrusion is endocytosed by the neighbouring cell, which becomes secondarily infected as Shigella escapes the vacuole and continues its replicative cycle. The role of RACK1 (green) in Shigella’s life cycle was assessed, evaluating each critical step (a-e) shown in this diagram.
3.3 RACK1 silencing reduces *Shigella* invasion of HeLa cells

Shigella triggers membrane ruffling and profuse actin polymerization, forming an entry focus to invade epithelial cells. This process is mediated by multiple bacterial and host cell factors. Hence, the entry focus is the first critical step where *Shigella* could encounter RACK1. Confocal images of HeLa cells infected with *Shigella* and immunolabeled with anti-RACK1-Alexa-647 were captured to evaluate RACK1 localization to entry foci. The images revealed that RACK1 was enriched around *Shigella* in the entry focus and that RACK1 and actin seem to partially co-localize (Figure 3.3.1 A, inset). Similar results were observed when analyzing time-lapse infections of HeLa cells stably expressing GFP-tagged RACK1 and F-tractin-mCherry (binds to F-actin). HeLa cells expressing high and low levels of the fluorescently tagged proteins were imaged to avoid the chance of misinterpreting channel crosstalk (bleed-through) as RACK1 localization. Figure 3.3.1 B shows selected images from a time-lapse of a HeLa cell expressing low levels of F-tractin-mCherry and high levels of RACK1-GFP being infected with *Shigella*. Although the bacterium was not fluorescently labelled and could not be seen, enrichment of actin and RACK1 around *Shigella* was evident (Figure 3.3.1 B, yellow arrows). In this set of images, F-actin assembled around *Shigella*, forming a tight actin envelope previously described as an actin cocoon. This structure was observed in a low percentage (~25%, data not shown) of invading *Shigella*; thus, the nature and dynamics of actin cocoon formation were not evaluated in this project.

Quantification of FI increment over time in a region of interest (ROI, green and red ovals in Figure 3.3.1 B) around *Shigella* showed that RACK1 is recruited early to the entry focus and remains there even after the actin signal starts declining (Figure 3.3.1 C, 720 sec). To further confirm that RACK1 localizes around *Shigella* during entry, HeLa cells expressing RACK1-GFP were infected with dsRED fluorescent bacteria. Z-stacks were used to generate a Simulated Fluorescence Process (SFP) volume image. For this analysis, an algorithm transforms the fluorescent signal into a distribution of fluorescent dye, computing a 2D image that shows the data as it would have appeared in reality (with
shadows and lights). Figure 3.3.1 D shows an SFP volume image where RACK1 accumulates (appears brighter) around *Shigella*.

Since RACK1 is recruited to the entry focus, I next evaluated the effect of RACK1 silencing on *Shigella* invasion of HeLa cells. *Shigella* induces actin polymerization at the entry site, resulting in filamentous (F)-actin accumulation in F-actin foci structures. The F-actin focus increase in size over time until *Shigella* is internalized, followed by F-actin focus depolymerization, and recovering of plasma membrane basal state (Figure 3.3.2 A). The dynamics of *Shigella*-induced entry foci were studied by time-lapse imaging using F-tractin as a live-cell actin reporter. F-tractin is a peptide derived from the rat neuronal inositol 1,4,5-triphosphate 3-kinase A (ITPKA) that binds actin filaments. *HeLa* cells expressing F-tractin bound to GFP were infected with fluorescent *Shigella* (dsRED-WT *Shigella*). The most extensive area reached by the entry focus was encircled to create an ROI (Figure 3.3.2 A). The area and average FI inside that fixed-size ROI (e.g., white circle in Figure 3.3.2 A) were measured from the first signs of actin polymerization around *Shigella* until the FI returned to basal level (more details in methods section 2.11.3).

Measurements of foci area showed no significant differences between RACK1-KD (154±113 µm²) and control cells (137±133 µm², Figure 3.3.2 B). The FI of the focus represents the amount of F-actin polymerized around *Shigella* during entry. I calculated the average FI from the FI measured at each time point (more details in methods section 2.11.3). There was no significant difference between the foci FI in control (17.2±10.6 a.u.) and KD-92 cells (15.4±10.7 a.u., Figure 3.3.2 C). However, when analyzing the actin foci FI increment over time, it was evident that the foci formed in RACK1-KD cells reached maximum fluorescence later than NS cells (Figure 3.3.2 D). Also, the FI curves appeared shorter in the control cells (Figure 3.3.2 D). Thus, I quantified the duration of actin foci. As suspected, the foci lasted significantly longer in RACK1-KD cells (11.1±7.02 min) than in control cells (6.29±4.19 min, Figure 3.3.2 E). Similar FI and area of the foci in KD-92 and NS cells but longer foci duration in KD-92 cells indicates there might be a size or actin accumulation threshold necessary for bacterial internalization. In RACK1-KD cells, this threshold takes longer to be achieved, suggesting RACK1 regulates actin foci dynamics.
To further understand how RACK1 modulates foci formation, I quantified the rate of F-actin polymerization at the entry site. The increment in actin FI over time observed on each infection focus was utilized to estimate the actin polymerization maximum rate using a logistic model (more details in methods section 2.11.3). Figure 3.3.3 A shows an example of an entry focus FI curve (dots) and its best-fitted curve (blue line), from which the maximum rate of actin polymerization was calculated. The logistic regression analysis revealed a modest but significant reduction in the rate of actin polymerization in KD-92 cells (0.0085±0.007 sec⁻¹) compared to NS (0.0121±0.008 sec⁻¹, Figure 3.3.3 B), suggesting that RACK1 enhances actin polymerization around bacteria during entry. The slower rate of F-actin polymerization could also be interpreted as a reduced F-actin polymerization rate. This finding is consistent with the extended focus duration observed in RACK1-KD cells (Figure 3.3.2 E). A slow rate of F-actin polymerization could extend entry foci duration until enough actin polymerization has occurred before Shigella is internalized, also explaining the similar average FI of foci observed in Figure 3.3.2 C.

RACK1 silencing negatively impacted actin foci formation dynamics, which could reduce bacterial internalization. To determine if RACK1 silencing impairs invasion, I evaluated the number of infected cells in RACK1-KD and control (NS) HeLa cells. Given that the Shigella strains used in this project expressed the E. coli adhesin AfaI, binding to a cell or even actin foci formation might not necessarily reflect internalization. To distinguish bacteria adhered to the cell surface from bacteria truly internalized, I used galectin-3 (Gal-3) as a marker of invasion. Gal-3 is recruited around the Shigella-containing vacuole (SCV) when the bacterium damages the vacuolar membrane to access the cytoplasm. HeLa NS and KD-92 expressing F-tractin-GFP, and fluorescent Gal-3 were infected with WT Shigella, and time-lapse videos were recorded for 1.5 h. Microscopy images confirmed that fluorescently tagged Gal-3 accumulates around damaged SCVs, revealing how the vacuolar membrane attaches tightly around the bacterium (Figure 3.3.4 A, arrowhead). A cell was classified as infected if it had at least one Gal-3+ bacterium over the course of the time-lapse captured. KD-92 cells (62.1±16.4%) showed ~17% fewer infected cells than control cells (78.6±12.5%, Figure 3.3.4 B). Quantification of the number
of Gal-3+ bacteria per cell confirmed the reduction of *Shigella* invasiveness observed in RACK1-KD cells. NS cells had, on average, 3±2 Gal+ *Shigella* per cell, whereas KD-92 had 2±1 Gal+ bacteria per cell (Figure 3.3.4 C).

Quantifying Gal-3+ *Shigella* does not distinguish between primary and secondary infections. Secondary infections happen when *Shigella* invades a neighbouring cell through actin tail mediated membrane protrusion formation. I utilized the Δ*icsA* *Shigella* strain, which is deficient in cell-to-cell spread, to evaluate if RACK1 silencing affected primary bacterial invasion. RACK1-KD and control HeLa cells stably expressing F-tractin-GFP were infected with dsRED-Δ*icsA* *Shigella* for 30 min before eliminating extracellular bacteria with gentamycin. The infected cells were incubated for four h to allow enough time for *Shigella* to replicate intracellularly before imaging. Given that Δ*icsA* cannot spread to neighbouring cells, this strain replicates to high numbers in the cytoplasm making infected cells easily identifiable by automatic segmentation (see methods 2.10.2). The number of infected cells was significantly reduced in the KD-92 cell line (~12% fewer infected cells) compared to the NS control (Figure 3.3.4 D), indicating that RACK1 enhances primary infection of HeLa cells. The study of secondary infections resulting in cell-to-cell spreading will be presented in section 3.7.

In summary, RACK1 localization to *Shigella*’s entry site promoted efficient actin polymerization and invasion. When RACK1 expression was silenced, fewer infected cells and fewer *Shigella* per cell were found. Moreover, RACK1 mediated the primary invasion of HeLa cells. These findings suggest that the impairment of *Shigella* invasion observed here contributes to lower CFU recovered from HeLa cells as described in section 3.2.
Figure 3.3.1. RACK1 is recruited to *Shigella*’s entry focus in HeLa cells.

A. Confocal images showing RACK1 localization around bacteria during entry. HeLa cells expressing F-tractin-GFP (actin) infected with WT *Shigella* (MOI 50) were fixed and stained with DAPI to mark DNA and anti-RACK1-Alexa-647. Cells were imaged at 63X magnification with a Leica TCS SP8 microscope. The top row presents individual channels, which are merged in the images in the second row. White arrowheads highlight two entry foci. The white box marks an inset region of interest (ROI) with an entry focus; scale bar = 10 µm. **B.** Selected confocal images from a time-lapse showing RACK1 and actin recruitment to *Shigella*’s entry site (yellow arrowhead). HeLa cells expressing RACK1-GFP and F-tractin-mCherry were infected with WT *Shigella* (MOI 50). Images were captured every 1 min with a 63X objective on a Zeiss spinning disk microscope. Yellow arrowheads highlight the initiation of an entry site. Green and red ovals highlight an ROI around the entry focus. Scale bar = 10 µm. **C.** Quantification of fluorescence intensity (FI) fold change over time in the ROI (*Shigella*’s entry site) shown in B. Simultaneous recruitment of RACK1 (green) and actin (red) to the entry site was observed. **D.** Simulated Fluorescence Process (SFP) volume view of a confocal image generated with Huygens Software. The image, captured on a Zeiss spinning disk with a 63X objective, shows a HeLa cell expressing RACK1-GFP (green) invaded by dsRED-WT *Shigella* (red). Scale bar = 10 µm.
Figure 3.3.2. RACK1 silencing increases entry foci duration but does not affect foci area or fluorescence intensity.

A. Confocal images from a time-lapse showing actin polymerization to *Shigella*’s entry site. HeLa cells stably expressing F-tractin-GFP (binds to actin, shown in magenta) were infected with dsRED-WT *Shigella* (MOI 10, shown in cyan). Z-stack images (4 slices, 1.2 µm apart) were captured every 2 min with a 63X objective on a Zeiss spinning disk microscope. The figure shows a maximum projection of the original Z-stack. The white dotted-line ovals mark a region of interest (ROI) enclosing the boundaries of the entry focus at its maximum size. Scale bar = 10 µm. B-E. Analysis of entry foci dynamics. NS and KD-92 cells expressing F-tractin-GFP and infected with dsRED-WT *Shigella* (MOI 10) were imaged as described in A. Entry foci were identified by the profuse recruitment of actin to the site of bacterial entry. B. Maximum area of entry foci. As shown in A, the foci area was determined by arbitrarily fitting an oval (ROI) around the foci when it reached its maximum area. Dots inside the boxplot represent individual foci. C. Average fluorescence intensity (FI) of entry foci. Actin FI of foci was measured over time within the assigned ROI’s area (as shown in A). The FI from each time frame was averaged and normalized by subtracting the lowest FI encountered in each data set (NS and KD-92). Each dot in the boxplot represents the FI of one entry focus. a.u. = arbitrary units. D. Graph shows actin FI change over time of the entry foci analyzed in B and C. E. Foci duration calculated from the curves shown in D. Numbers under the box plots in B, C and E are the foci analyzed and correspond to one experiment out of three (Supplementary Figure 2, Appendix C). Statistical differences in B, C and E, were calculated by Wilcoxon-test; ns = not significant p>0.05, ****p < 0.0001.
Figure 3.3.3. Silencing RACK1 reduces the actin polymerization rate to *Shigella*’s entry focus.

A. Example of the analysis of one entry focus using a logistic model to describe the rate of actin polymerization. Pink dots denote the actual fluorescence intensity (FI) value at each time point. The maximum rate (max. rate) of actin polymerization was calculated as the slope of the fitted curve (blue line). a.u.=arbitrary units

B. Boxplots showing the maximum rate of actin polymerization to entry foci calculated as described in A. Each dot represents the actin polymerization rate of one entry focus. Numbers under the box plots are the foci analyzed and correspond to one experiment out of three (Supplementary Figure 2, Appendix C). Wilcoxon-test *p < 0.05.
Figure 3.3.4. Knocking down RACK1 expression reduces *Shigella* entry into HeLa cells.

A. Image of a HeLa cell stably expressing F-tractin-GFP (green) and transfected with pOrange-Galectin3 (Gal-3, red). Gal-3 is a marker for vacuole lysis. Damage to the vacuole membrane by *Shigella* triggers the recruitment of Gal-3 around the bacterium (arrowhead).

B and **C.** Evaluation of *Shigella* entry in Hela cells. RACK1-KD (KD-92) and control (NS) cells transiently co-expressing galectin3-orange and pEGFP-Actin were infected with WT *Shigella* (MOI 50). Images were taken every 1 min for 1.5 h on a Nikon widefield microscope with a 40X objective. **B.** Boxplots depicting percentage (%) of infected cells per field of view. Cells with at least one Gal-3 positive bacterium observed over the course of the video (1.5 h) were considered infected. Each dot represents the % of infected cells found in one field of view (a total of 12 videos for each condition). The total number of cells analyzed from 3 separate experiments is indicated under the plots. Unpaired t-test *p < 0.05. **C.** Boxplots show the number of Gal-3 positive bacteria found per cell. Numbers under the boxplots indicate the number of infected cells analyzed and pooled from 3 separate experiments. Statistical differences were calculated with Wilcoxon-test; ****p < 0.0001. **D.** Quantification of the number of cells infected with ΔicsA *Shigella*. The ΔicsA strain cannot spread from cell to cell, better reflecting the number of infected cells. NS and KD-92 cells expressing F-tractin-GFP were infected with dsRED-ΔicsA *Shigella* for four h and then imaged on a Zeiss widefield AxioObserver with 10X magnification. Error bars are SD from one experiment performed in triplicate. Unpaired t-test ***p < 0.001.
3.4 Study of the role of RACK1 in vacuolar escape

I started by assessing if RACK1 is recruited to *Shigella*-containing vacuole (SCV). Shortly after host cell invasion, *Shigella* damages the endocytic vacuole, triggering the recruitment of Gal-3, after which the bacterium accesses the cytoplasm. Hence, Gal-3 accumulation was used as a vacuolar damage reporter and to visualize the vacuole. RACK1 was immunodetected using anti-RACK1-Alexa-647. Confocal images of *Shigella* infected cells showed that RACK1 did not co-localize with Gal-3+ SCV (Figure 3.4.1 A).

To determine if RACK1 participates in vacuolar escape, RACK1-KD and control (NS) HeLa cells transfected with pOrange-galectin-3 were infected with *Shigella* and analyzed by time-lapse microscopy. The images in Figure 3.4.1 B show a typical sequence of events observed at early infection stages. First, *Shigella* induces actin polymerization at the entry site (marked as entry time, 0 min). Then Gal-3 is recruited to the damaged *Shigella*-containing vacuole (5 min). *Shigella* induces actin polymerization at one pole of the bacterium forming an actin “node” that elongates into an actin tail (10-19 min). As the bacterium becomes motile, it peels off and moves away from the vacuolar membrane remnants (19.5-20.5 min). These events mark significant milestones for *Shigella*’s intracellular life cycle. Thus, they were used to compare infection dynamics in RACK1-KD and NS cells. The vacuolar escape time (Gal-3+ time minus entry time), actin node (node time minus Gal-3+ time), and actin tail time (actin tail elongation minus Gal-3+ time) were calculated. As shown in Figure 3.4.1 C, there was no significant difference in vacuolar escape time observed in control cells (8.42±5.2 min) and RACK1-KD cells (8.4±5.6 min). Similarly, there was no difference in node time (NS=10.9±7.7 min, KD-92=11.7±7.6 min) and actin tail time (NS=16.6±10.4 min, KD-92=17.7±10.6 min), suggesting that RACK1 is not involved in the early stages of infection that occur after *Shigella* entry foci mediated internalization (Figure 3.4.1 C).

Markers of endocytic trafficking play a vital role in the early step of *Shigella* invasion into epithelial cells leading to vacuolar rupture. Thus, I evaluated if the tethering protein Early Endosomal Antigen 1 (EEA-1) and the Lysosomal-Associated Membrane Protein 1
(LAMP-1) were recruited to the SCV. Consistent with early vacuolar escape, EEA1 association with *Shigella* was rarely found (Figure 3.4.2 A, top row) and LAMP1 was not associated at all with the SCV (Figure 3.4.2 A, middle row). Therefore, these markers were not used for further experiments.

The microtubule-associated protein light-chain 3 (LC3) is an autophagy marker recruited to *Shigella* vacuolar membrane remnants. LC3 targeting leads to autophagosome formation, which captures and degrades the membrane remnants. Confocal images of HeLa cells infected with *Shigella* confirmed LC3 recruitment to *Shigella* (Figure 3.4.2 A, lower row). Given that RACK1 participates in autophagosome biogenesis, I thought RACK1 could play a role in recruiting LC3 to the SCV. Therefore, I evaluated LC3 targeting to Gal-3+ SCV and membrane remnants in RACK1-silenced and control HeLa cells. These cells expressed GFP-LC3 and Gal-3-Orange and were infected with WT *Shigella*. Live-cell confocal microscopy confirmed LC3 recruitment to Gal-3+ SCVs. In this experiment, *Shigella* was not fluorescently labeled, but if there was LC3 binding to cytosolic *Shigella* or to the SCV before Gal-3 targeting, an LC3+ bacterial shape should appear. No such structures were observed in any of the videos captured. Only Gal-3+/LC3+ SCVs and membrane remnants were found (Figure 3.4.2 B), suggesting cytoplasmic *Shigella* is not targeted by LC3. The time-lapses also showed that LC3+ structures resembling vesicles were recruited to the LC3+/Gal3+ SCV. These vesicles remained close to the LC3+/Gal3+ membrane remnants after the bacterium exited the vacuole and until the Gal-3 signal disappeared (Figure 3.4.2 B, yellow arrowheads). This approach also demonstrated that LC3 targeted less than 27% of all Gal-3+ SCVs (Figure 3.4.2 C). Furthermore, high variability was observed in the frequency of LC3+/Gal3+ SCVs found in control (NS) cells. Half of the cell population analyzed (2 fields of view) showed around 25% of LC3+/Gal3+ SCV, and the other half showed as low as 10% LC3+/Gal3+ SCVs (Figure 3.4.2 C). Although the differences were not statistically significant, there was a reduction in LC3 recruitment to Gal-3+ *Shigella* in RACK1-KD cells (11.7±3.4%) compared to control (18±9.2%, Figure 3.4.2 C). Although 80 and 57 Gal3+ bacteria were analyzed in the NS and KD-92 cells respectively, it is important to note that these values are the results of only one experiment comprising four fields of view per condition (Figure
3.4.2 C). Thus, more experiments need to be performed to elucidate the role of RACK1 in LC3 targeting and possibly autophagy during *Shigella* infection.

To summarize, the time for *Shigella* to escape the SCV, to form an actin node and the time to start actin tail elongation was not altered in RACK1-silenced cells. Furthermore, RACK1, EEA1 and LAMP1 did not colocalize with the SCV. RACK1 seems to play a role in LC3-tagging of *Shigella*’s vacuole membrane remnants, but the results were not definitive. Thus, I can conclude that RACK1 does not modulate the escape of Shigella from the endocytic vacuole.
Figure 3.4.1. RACK1 does not localize to the *Shigella* containing vacuole and does not affect vacuolar escape.

A. Confocal image of a HeLa cell transfected with pOrange-Galectin3 (Gal-3, red) and infected with WT *Shigella*. The cells were fixed after infection and stained with DAPI (blue) and anti-RACK1-Alexa-647 (green). Scale bar = 10 µm. B. Selected widefield images from a time-lapse showing entry, vacuolar escape, and actin tail formation. RACK1-KD (KD-92) and control (NS) HeLa cells transfected with pEGFP-Actin (green) and Gal-3 (red) were infected with WT *Shigella* (MOI 50). Images were taken every 30 sec for 1.5 h on a Nikon Eclipse widefield with a 40X objective. The arrowhead indicates an entry focus at time 0 where profuse actin polymerization can be observed. Gal-3 recruitment to the damaged *Shigella*-containing vacuole (SCV) marks vacuolar escape time (5 min). Actin accumulation in a pole of the bacterium indicates actin node formation (10 min), which gradually elongates, forming an actin tail (13 to 20.5 min). As *Shigella* becomes motile, it peels off Gal-3+ SCV membrane remnants (19.5 min). Scale bar = 5 µm. C. Schematization of the successive steps shown in B (top row) and quantification of early infection events (bottom row). Escape time was calculated by subtracting the entry time from the vacuole escape time (left boxplot). The center plot shows the actin node formation time minus vacuole escape time. The right plot shows actin tail elongation minus vacuole escape. Numbers under boxplots represent the number of events evaluated. Statistical significance was determined from three independent experiments combined. Wilcoxon-test; ns = not significant p>0.05.
Figure 3.4.2. Evaluation of endocytic markers and LC3 recruitment to Shigella.

A. Confocal images of HeLa cells infected with WT *Shigella* (MOI 50) for one h. After fixation, the cells were stained with DAPI (cyan), phalloidin-Alexa-555 (grey) and anti-EEA1, anti-LAMP1 or anti-LC3 (red). Images were captured on the Zeiss 710 confocal. The yellow arrowheads show EEA-1 targeting (top row) and LC3 targeting (bottom row) to one bacterium. Scale bar = 10 µm. B. LC3 colocalizes to Gal-3 positive *Shigella*. HeLa cells stably expressing GFP-LC3 and transfected with pOrange-Galectin3 (Gal-3, red) were infected with WT *Shigella*. Z-stacks (17 slices, 0.2 µm) were captured every 1 min for 1.5 h on the Delta vision spinning disk with 60X magnification. The panel shows a maximum projection of time-lapse images where LC3 (green) colocalizes with Gal-3 positive membrane remnants (red) generated when *Shigella* escapes the vacuole. The arrowheads mark LC3+ vesicle-like structures. Scale bar = 5 µm. C. RACK1 silencing does not impact LC3 localization to *Shigella*. RACK1-KD (KD-92) and control (NS) HeLa cells co-expressing GFP-LC3 and pOrange-Gal-3 were infected and imaged as described in B. Each dot in the boxplot represents the percentage of double-positive (LC3+ and Gal-3+) *Shigella* found in one field of view from one experiment. Numbers under the plots show the quantity of Gal-3+ bacteria evaluated. Unpaired t-test; ns = not significant p>0.05.
3.5 Study of RACK1 functions during *Shigella* intracellular replication and cell death induction

The establishment of an intracellular replicative niche requires extensive modulation of host cell functions. After escape into the cytosol, *Shigella* is protected from phagocytic degradation and gains access to many nutrients promoting bacterial replication. However, cytoplasmic *Shigella* faces specific host defence mechanisms. Cell death by apoptosis is a well-established host defence mechanism that eliminates infected cells resulting in pathogen elimination. In this section, I studied the role of RACK1 during *Shigella’s* intracellular replication and cell death inhibition. First, RACK1 recruitment to cytoplasmic *Shigella* was assessed. HeLa cells were infected with fluorescent *Shigella* for 2 h before confocal imaging to ensure enough bacteria had reached the cytoplasm and started replication. The images showed no co-localization between RACK1 and the bacterium (Figure 3.5.1 A). A fluorescence intensity profile, along a line drawn across a bacterium, showed no RACK1 enrichment in the proximity of *Shigella* (Figure 3.5.1 B).

Then, to study the role of RACK1 in intracellular bacterial replication, HeLa cells were infected with the Δ*icsA* mutant. As explained before, *icsA* deletion prevents cell-to-cell spread, thereby simplifying the analysis of intracellular replication. The number of bacteria found inside cells reflects intracellular replication only, not secondary infections. After three hours of infection, HeLa cells appeared full of dsRED-Δ*icsA Shigella* (Figure 3.5.1 C). In most cells, it was difficult to distinguish individual bacterial cells to enumerate them. I addressed this issue by measuring the area occupied by bacterial clusters inside each cell and used this measurement as a proxy for bacterial replication. When comparing RACK1-KD with control cells, no significant differences were found in the area covered by Δ*icsA Shigella* (NS=0.09±0.07 µm², KD-92=0.111±0.07 µm², Figure 3.5.1 D). I also measured the FI of the bacterial clusters as a complementary measurement to estimate intracellular growth. Similar to the bacterial clusters’ area analysis, the FI of bacterial cells showed no significant differences between RACK1-KD and NS cells (NS=171±194 a.u., KD-92=124±115 a.u., Figure 3.5.1 E). These findings indicate that RACK1 silencing does not affect *Shigella* intracellular replication.
Host cell death is an essential immune mechanism against intracellular pathogens. Pathogen-induced cell death may occur by apoptosis (programmed, non-lytic) or necrosis (inflammatory, lytic) \(^{189}\). *Shigella* actively controls the timing of epithelial cell death, delaying apoptosis and necrosis to allow enough time for intracellular replication \(^{396}\). Given that RACK1 has pro-apoptotic functions \(^{292,397}\), I evaluated if RACK1 protects HeLa cells from *Shigella*-mediated cell death inhibition. If that is the case, then control cells should have more apoptotic cells upon *Shigella* infection than RACK1-KD cells. Apoptosis and necrosis were measured by flow cytometry using annexin V-FITC and 7AAD double staining. Cells undergoing early and late stages of apoptosis are detected by Annexin V, whereas 7AAD stains necrotic and late apoptotic cells. I evaluated these parameters at various time points (data not shown) and found 12 h post-infection with MOI 10 showed enough apoptotic cells to allow detection of any differences between RACK1-KD and control cells. Most cells in the uninfected NS control sample were alive (>95%, Figure 3.5.2 A, left). Whereas in the infected sample 44.57% of cells were alive, 36.66% were early apoptotic, 10.89% were late apoptotic, and only a small fraction was necrotic (7.89%, Figure 3.5.2 A, right). When analyzing these parameters in RACK1-silenced cells, only KD-95 cells showed a significant reduction in the percentage of late apoptotic cells (Figure 3.5.2 C). No significant differences were observed in necrotic and early apoptotic cells (Figure 3.5.2 B and D). Lastly, *Shigella*-induced cell cytotoxicity was assessed by detecting the release of lactate dehydrogenase (LDH) into the media. Again, no significant differences were found between RACK1-KD and control cells (Figure 3.5.2 E).

Pyroptosis, a different form of pro-inflammatory cell death induced by *Shigella*, facilitates bacterial egress from macrophages and subsequent invasion of enterocytes \(^{50,52}\). Once *Shigella* reaches the cytoplasm of epithelial cells, the bacterium is targeted by IFN-\(\gamma\)-induced guanylate-binding proteins (GBPs), which bind the bacterial surface \(^{205}\). GBPs promote caspase-4 activation inducing pyroptosis. However, *Shigella* uses the T3SS effector OspC3 to dampen caspase-4 activation, thereby inhibiting pyroptosis \(^{201}\). I first evaluated whether RACK1 colocalizes with GBPs and *Shigella* by immunofluorescence. Confocal images showed no co-localization between RACK1 and GBP4 but confirmed
GBP4 targeting of *Shigella* even without IFN-γ induction (Figure 3.5.3 A). Since GBP1 binds directly to LPS, initiating the hierarchical recruitment of GBP4 and other GBPs\(^{205}\).

I evaluated GBP1 recruitment to *Shigella* in RACK1-KD and control cells treated with IFN-γ after 3 h of infection. Figure 3.5.3 B confirms previously reported GBP1 binding to *Shigella* in IFN-γ induced HeLa cells\(^{205}\). Quantification of GBP1+ bacteria showed an expected increment of ~7% more GBP1 targeting in NS cells treated with IFN-γ compared to untreated (Table 3.1, Figure 3.5.3 C). In KD-92 cells GBP1 targeting increased from 2.2% in untreated cells to 15.6% in IFN-γ treated cells (~13% more, Table 3.1). However, there were no significant differences in GBP1 targeting between RACK1-KD cells and control (NS) cells even after IFN-γ induction (Figure 3.5.4 C). Treatment with Ruxolitinib, an IFN-γ signalling inhibitor, did not alter GBP1 recruitment to *Shigella* in either cell line (Figure 3.5.3 C).

The results presented in this section showed that RACK1 silencing did not affect *Shigella’s* intracellular replication. RACK1 was not enriched around cytoplasmic *Shigella* and when evaluating ΔicsA replication within HeLa cells, no difference was found in the area occupied by ΔicsA *Shigella* in RACK1-KD and control cells. WT *Shigella* induced apoptosis in HeLa cells after 12 h of infection. However, RACK1 silencing did not affect apoptosis induction except for the KD-95 cell line that showed fewer apoptotic cells. Likewise, no differences were found in *Shigella*-induced LDH release. Furthermore, GBP1 and GBP4 recruitment to cytoplasmic *Shigella* was not affected by RACK1 silencing. Therefore, I conclude that *Shigella*’s intracellular replication and modulation of host cell death is not mediated by RACK1.
Table 3.1. Percentage of *Shigella* targeted by GBP1 in control (NS) and RACK1-KD (KD-92) HeLa cells treated with IFN-γ or Ruxolitinib (RUX).

<table>
<thead>
<tr>
<th>Condition</th>
<th>%GBP1+ Shigella</th>
<th>Standard deviation</th>
<th>Total bacteria analyzed</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS/untreated</td>
<td>3.9</td>
<td>1.6</td>
<td>1523</td>
</tr>
<tr>
<td>NS/IFN-γ</td>
<td>11</td>
<td>2.6</td>
<td>1192</td>
</tr>
<tr>
<td>NS/RUX</td>
<td>3.7</td>
<td>2.2</td>
<td>1522</td>
</tr>
<tr>
<td>KD-92/untreated</td>
<td>2.2</td>
<td>1.6</td>
<td>1368</td>
</tr>
<tr>
<td>KD-92/IFN-γ</td>
<td>15.6</td>
<td>4.8</td>
<td>849</td>
</tr>
<tr>
<td>KD-92/RUX</td>
<td>4.2</td>
<td>2.3</td>
<td>906</td>
</tr>
</tbody>
</table>

*Percentages are from three replicates of one experiment.
Figure 3.5.1. RACK1 does not play a role in Shigella’s intracellular replication.

A. Average projection micrograph showing a HeLa cell infected with Shigella. Two h post-infection with dsRED-WT Shigella (MOI 10, red), the cells were fixed and immunolabeled with anti-RACK1-Alexa-647 (grey). Z-stacks images (15 slices, 0.25 µm apart) were captured on a Leica SP8 confocal with a 63X objective. A yellow segment marks the area measured in the intensity profile shown in B. The dotted blue line highlights the cell’s area. Scale bar = 10 µm. B. Line intensity profile to analyze RACK1 localization around Shigella. The graph shows fluorescence intensity (FI) values in the line segment drawn across a bacterium (yellow line in A) for dsRED and RACK1 channels. The dotted blue line marks the average FI of RACK1 in the whole cell area (shown in A). C-E. Control (NS) and RACK1-KD (KD-92) HeLa cells stably expressing F-tractin-GFP were infected with dsRED-ΔicsA Shigella (MOI 10) for three h before fixing. Z-stacks (6 slices 0.8 µm) were captured at 63X magnification with a Zeiss LSM 880 confocal. C. Maximum projection micrograph showing an NS HeLa cell infected with ΔicsA Shigella. Scale bar = 15 µm. D. Quantification of ΔicsA Shigella intracellular growth. ΔicsA replicated rapidly to high numbers making individual bacteria enumeration impractical. Thus, the area covered by bacteria on each cell was quantified instead. Each dot represents the area of bacteria quantified in one cell. E. Quantification of the total bacterial fluorescence intensity (FI) per cell. FI was used as a proxy to evaluate ΔicsA Shigella growth. Dots represent the sum of bacterial FI found on each cell. Numbers under the boxplots in D and E are the number of cells analyzed from two separate experiments. Wilcoxon test; ns = not significant p>0.05.
Figure 3.5.2. Silencing of RACK1 expression does not affect Shigella-induced cell death.

A-D. RACK1-KD (KD-92, KD-94, KD-95) and control (NS) HeLa cells were infected with dsRED-WT *Shigella* (MOI 10) for 12 h. Uninfected cells were used to measure basal levels of apoptosis. Apoptosis was measured by flow cytometry using annexin V-FITC and 7AAD double staining. A. Pseudocoloured density plots showing uninfected (right) and infected (left) single-cell events found in NS cells. In each plot quadrant, top-left shows necrotic cells (annexin−, 7AAD+); top-right shows late apoptotic cells (annexin+, 7AAD+); bottom-left shows viable cells (annexin−, 7AAD−), and bottom-right shows early apoptotic cells (annexin+, 7AAD−). Bar graphs show fold change of early apoptotic (B), late apoptotic (C) and necrotic (D) cells found in infected RACK1-KD cells over uninfected control. Results represented as mean ± SD of four independent experiments. More than 10,000 events per cell line were analyzed in each experiment. Unpaired t-test; ns = not significant p>0.05, *p<0.05. E. Evaluation of cytotoxicity induced by *Shigella*. LDH release was analyzed in supernatants collected from the cells infected as described in A-D. The bar plot shows the mean ± SD of three independent experiments. Unpaired t-test; ns = not significant.
Figure 3.5.3. Targeting of *Shigella* by guanylate-binding protein (GBP) 1 and 4 is not affected by RACK1 silencing.

A. Confocal micrographs of a HeLa cell infected with WT *Shigella* (MOI 10). Cells infected for three h were fixed and stained with DAPI (blue), anti-RACK1-Alexa-647 and anti-GBP4. The image was captured on a Leica SP8 confocal with 63X magnification. Scale bar = 10 µm. B. Confocal micrograph of a HeLa cell infected with WT *Shigella*. The cells were treated with Interferon-gamma (IFN-γ, 1 ng/mL) for 16 h before *Shigella* infection. After three h of infection, the cells were fixed and stained with DAPI, anti-GBP1 and phalloidin-Alexa-555. The micrograph was captured on the Zeiss 880 confocal with 63X magnification. Scale bar = 10 µm. C. Quantification of GBP1 positive *Shigella*. Control and RACK1-KD HeLa cells stably expressing F-tractin-GFP were treated with IFN-γ (1 ng/mL), Ruxolitinib (RUX, 1 µM) for 16 h or left untreated. The cells were subsequently infected with WT *Shigella* (MOI 50) for three h, fixed, and stained with DAPI and anti-GBP1. Z-stacks (5 slices, 0.5 µm apart) were captured at 63X magnification on a Zeiss 880 confocal. The bar plot shows the mean ± SD of one experiment in triplicate, where more than 900 bacteria were counted per group. Statistical significance was tested using a two-way analysis of variance (ANOVA) followed by Tukey HSD (Honest Significant Differences) for multiple pairwise-comparison between group means. Only significant differences are shown; **p<0.01, ****p<0.0001.
3.6 RACK1 silencing affects actin tail polymerization

Given that RACK1 was involved in actin polymerization during *Shigella* invasion of HeLa cells, I sought to investigate the role of RACK1 in actin tail formation. First, I evaluated whether RACK1 is recruited to *Shigella*’s actin tail. After careful analysis of various experiments, including live microscopy of cells expressing RACK1-GFP (data not shown) and confocal imaging of fixed samples, no co-localization between the actin tail and RACK1 was found (Figure 3.6.1 A). Since RACK1 and actin are recruited to the entry focus without clear colocalization, I thought RACK1 could promote actin tail polymerization even though it does not colocalize with the tail. The effect of RACK1 silencing on actin tail polymerization was evaluated by infecting control and RACK1-KD HeLa cells expressing F-tractin-GFP (binds F-actin) with dsRED-WT *Shigella* for three h to allow actin tail formation. As suspected, many *Shigella* inside control cells had polymerized an actin tail, while in KD-92 cells, most *Shigella* appeared untailed (Figure 3.6.1 B). Quantification of tailed and untailed bacteria confirmed this observation. A bacterium was counted as tailed when the actin tail was elongated; bacteria with actin nodes were not considered tailed (see figure 3.4.1 B-C for reference on the actin node). On average, 42.4% (±15.1%) of bacteria were associated with an actin tail in control cells, the percentage of tailed bacteria was 41.5% less in KD-92 cells (24.8±12.5%, Figure 3.6.1 C). These findings indicate that RACK1 promotes for actin tail polymerization.

Furthermore, I quantified the area and FI of the actin tails. For this analysis, all actin structures associated with *Shigella* were manually outlined, including actin nodes, and short and long actin tails. The tails’ area among *Shigella* infecting RACK1-KD cells was significantly reduced compared with tails formed in control cells. On average, actin tails in control cells were 3.89±3.21 µm² while in KD-92, they were 1.97±1.7 µm² (Figure 3.6.1 D). Nevertheless, the average fluorescence intensity of the tails was similar in both conditions (NS=3.28±2.1 a.u., KD-92=3.2±1.8 a.u., Figure 3.6.1 E). I analyzed if there was any correlation between the area and the average FI of the tails. Interestingly, in KD-92 cells the area of the tails showed a weak negative correlation to the FI (r= -0.22, p=0.0003),
thus smaller tails showed a slight tendency to be brighter (Figure 3.6.1 F). The correlation was not significant in NS cells ($r = -0.11$, $p = 0.08$, Figure 3.6.1 F).

Analysis of the tail’s area does not provide information about the tail’s shape. For example, a long and thin tail could have the same area as a short and thick tail. I wanted to know if RACK1 silencing, apart from inducing a reduction of tailed bacteria, also affected the shape of the tails. Therefore, I used the shape descriptors circularity and Feret’s diameter to evaluate *Shigella*’s tail shapes. The Feret’s diameter was defined as the longest distance between two points along the tail’s boundary (Figure 3.6.2 A). Actin tails formed in NS cells (4.91±3.2 µm) had a significantly higher Feret’s diameter than tails in KD-92 cells (3±1.9 µm), indicating that actin tails are longer in control cells (Figure 3.6.2 A). Similar results were obtained when testing tail circularity. This shape parameter measures the level of roundness. A circularity value of 1.0 describes a perfect circle, whereas values closer to 0.0 indicate an elongated shape. Most of the actin tails polymerized in NS cells had a circularity value lower than 0.25, which indicates an elongated shape (Figure 3.6.2 C). Whereas in RACK1-KD cells, two populations of tails were found. A small population of elongated tails (circularity ~0.3) and a second larger population with a more rounded shape (circularity ~0.6, Figure 3.6.2 C). In sum, these analyses showed fewer bacteria associated with actin tails in RACK1-KD cells, and these tails were smaller and less elongated than the tails formed in control cells.

To explore the actin tail defect observed in RACK1-KD cells, I evaluated bacterial motility by live-cell imaging. I reasoned that a reduction in the number of tails and polymerization of shorter tails should directly impact intracellular motility. To assess this, F-actin-GFP-HeLa cells (NS and KD-92) infected with *Shigella* were imaged every 60 sec for two h. Bacteria movements were manually tracked (trajectories), as explained in Figure 3.6.3 A. Briefly, a series of x,y coordinates were manually recorded at every time frame in the time-lapse movie. Using these data points, distance and speed were calculated for every segment on each trajectory (Figure 3.6.3 A). Visual inspection of the tracks displayed in an x,y coordinate plot (starting point 0,0) readily showed distinct patterns in the bacterial trajectories recorded in NS and KD-92 cells (Figure 3.6.3 B). *Shigella*
trajectories in control cells were more linear and appeared more dispersed from the center of the plot than trajectories in RACK1-KD cells (Figure 3.6.3 B). The trajectories’ colours in Figure 3.6.3 B reflect the mean speed of the trajectories ranging from dark blue (slow) to red (fast). Most trajectories in the control cells were light blue to yellow, indicating more rapid movements than the trajectories found in KD-92 cells, which were mostly dark blue. On average, the speed of Shigella in NS cells was 0.045±0.021 μm/sec, whereas the speed in RACK1-KD cells was 0.03±0.021 μm/sec (Figure 3.6.3 B-C).

Parameters such as sinuosity index and directional change have been applied to characterize movement paths of animals and bacteria. The sinuosity index describes a trajectory’s tortuosity, integrating changes of direction and step lengths (distance) between them. A trajectory with a low sinuosity index indicates a more direct trajectory than one with a high index. Longer trajectories are inevitably more tortuous than very short trajectories. Therefore, sinuosity was calculated only for trajectories with lengths between 30 to 80 μm. Surprisingly, Shigella trajectories were significantly more tortuous in RACK1-KD cells (0.81±0.26) than in control cells (0.71±0.23, Figure 3.6.3 D). Directional change (DC) indicates how much (in degrees) the bacterium changes its direction of movement. DC differs from sinuosity as it is based solely on direction changes and does not take step length into account. Although no significant differences were found in the DC of trajectories in control and RACK1-KD cells, the data showed high variability in Shigella’s trajectories ranging from straight (mostly linear, DC= 5.8°/min) to convoluted (non-linear, 37.2°/min), with an average DC of 21.6±6.1°/min in control cells (Figure 3.6.3 E).

The large variability in DC values observed in Shigella trajectories prompted the analysis of tumble events. Tumbles are stop events characteristic of bacterial motility that result in an erratic change of the trajectory’s direction. Tumbling events in Shigella’s trajectories were identified by setting a minimum speed threshold (0.02 μm/sec). Figure 3.6.3 F shows two representative Shigella trajectories of similar length from NS and KD-92 cells, highlighting tumbling events (black outlined dots). The NS trajectory has fewer stop events (6 stops out of 14 steps) than the KD-92 (10 stops out of 17 steps) trajectory.
Interestingly, tumbling events were followed by a decrease in speed (more than one tumble) without abrupt changes in the direction of movement in both trajectories (Figure 3.6.3 F). Analysis of run events (speed > 0.02 µm/sec) followed by one or more tumbles showed that *Shigella* trajectories in RACK1-KD cells are interrupted by significantly longer pauses (more than one tumble) compared with control cells (Figure 3.6.3 G). On average, *Shigella* expends 3.6±3 min tumbling in control cells; this time doubled in KD-92 cells (6.6±5 min, Figure 3.6.3 G). During trajectory recording, I observed that bacterial motility stops when *Shigella* loses or reduces the length of its tail (data not shown). To resume movement, *Shigella* must induce actin tail polymerization again. Thus, longer tumbling events are consistent with the actin-tail polymerization defect found in RACK1-KD cells (Figures 3.6.1 C and 3.6.3 G).

In summary, *Shigella* polymerized fewer actin tails in RACK1-KD cells, which were smaller and less elongated than in control cells. Thereby, *Shigella* moved at a slower speed. RACK1 silencing also increased the time *Shigella* expended tumbling due to actin-tail shortening or actin-tail loss. Prolonged tumbling made the trajectories more convoluted (higher sinuosity). These experiments showed that RACK1 promotes *Shigella* actin-tail polymerization and perhaps also to re-polymerize (or maintain) the tail to resume movement after tumbling events.
Figure 3.6.1. RACK1 does not localize to *Shigella*’s actin tail, but it promotes actin tail polymerization.

A. Photomicrograph of a HeLa cell stably expressing F-tractin-GFP infected with dsRED-WT *Shigella* (cyan). After fixation, the cells were immunolabeled with anti-RACK1-Alexa-647 (green) and imaged with a Leica SP8 confocal. A bacterium associated with a long actin tail (magenta) is visible at the center of the cell. B-F. RACK1-KD (KD-92) and control (NS) HeLa cells expressing F-tractin-GFP were infected with dsRED-WT *Shigella* (MOI 10) for three h and then fixed. Z-stacks (6 slices, 1.2 µm) were acquired at 63X magnification on a confocal Zeiss 880. B. Representative confocal images of control (NS) and RACK1-KD (KD-92) cells infected with dsRED-WT *Shigella*. Green arrowheads indicate bacteria (cyan) associated with actin tails (magenta). C. Percentage of tailed *Shigella* per field. Each dots represent the percentage of tailed bacteria found per field of view (image). Numbers under the boxplots are total bacteria counted, pooled from four separate experiments. Unpaired t-test **p < 0.01. The tails’ area (D) and mean fluorescence intensity (FI; E) were determined by manually outlying actin tails. Dots inside the box plots un number underneath represent individual tails pooled from three separate experiments. Wilcoxon-test; ns = not significant p>0.05, **** p < 0.0001. F. Linear correlation analysis between area and FI of the tails shown in D and E. Regression lines are shown for each group. r = Pearson’s correlation coefficient.
Figure 3.6.2. RACK1 silencing impairs actin tail elongation.
A-C. RACK1-KD (KD-92) and control (NS) HeLa cells expressing F-tractin-GFP were infected with dsRED-WT Shigella (MOI 10) for three h and then fixed. Z-stacks (6 slices, 1.2 µm) were acquired at 63X magnification on a confocal Zeiss 880. Actin tails were manually outlined using Fiji software. A. Schematic of Feret’s diameter calculation. Feret’s diameter is the longest distance between two points along a region of interest boundary. Diagrams of bacteria with short (top) and long (bottom) actin tails are shown. Outlines of the actin tails are presented on the right. The red segments represent Feret’s diameter. B. Boxplots showing the Feret’s diameter of actin tails calculated as shown in A. Dots inside the boxplot and number underneath represent actin tails analyzed from three separate experiments. C. Density plot of actin tails circularity. Circularity was calculated with $circularity = 4\pi(area/perimeter^2)$. A circularity value of 1.0 indicates a perfect circle. As circularity approaches 0.0, it indicates an increasingly elongated shape. Diagrams of bacteria exemplify tail shapes with high (right) and low (left) circularity. $n =$ number of tails analyzed. Dashed lines indicate means. Statistical differences in B and C were calculated with Wilcoxon-test; **** $p < 0.0001$.

![Figure 3.6.2](image-url)
Figure 3.6.3. Knocking down RACK1 expression reduces Shigella’s actin-mediated motility.

A. Schematics illustrating trajectory tracking. A typical Shigella (cyan) trajectory displays multiple direction changes and actin-tail (magenta) lengths. Bacterial positions were recorded as x,y coordinates (black dots inside bacteria) in every time frame (equal time intervals). The distance between two points was calculated as \(d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \). The black arrow indicates movement direction, and the red arrow indicates time progression. Distance and time were used to calculate segment speed.

B-G. F-tractin-GFP control (NS) and RACK1-KD (KD-92) HeLa cells were infected with dsRED-WT Shigella. Z-stack images (5 slices, 1 µm) were captured every 60 sec for two h on a Zeiss spinning disk with 63X magnification. Bacterial trajectories were manually tracked, as explained in A, using Fiji and characterized using the “trajr” package in R (see methods section 2.11.4 for details).

B. Shigella trajectories in NS (left) and KD-92 (right) cells. Trajectories were shifted to originate from point (0,0) in the coordinate plot. Colours represent trajectories’ mean speed (µm/sec).

C. Trajectories’ mean speed. Dots inside the boxplots and numbers underneath represent trajectories analyzed from three experiments. Wilcoxon-test; **** p < 0.0001.

D. Sinuosity index of Shigella trajectories. The sinuosity index describes how tortuous a trajectory is. A low index indicates a more direct trajectory. Trajectories with lengths between 30 to 80 µm were analyzed (n below boxplots). The dots show trajectories’ indexes from three independent experiments. Unpaired t-test; ** p < 0.01.

E. Trajectories’ mean directional change (DC). The DC of each pair of consecutive points in a trajectory was measured to calculate the mean DC. The trajectories analyzed were the same as shown in D (n below boxplots).

F. Example of two bacterial trajectories from NS and KD-92 cells. Dots are x,y positions with equal time frame intervals. Segments represent the distance between two points. Black outlined dots indicate positions where the speed was lower than 0.02 µm/sec (tumbling).

G. Trajectories tumble time. The tumble analysis identified transitions between high-speed movements to slow movements. A minimum speed threshold of 0.02 µm/sec was defined to identify trajectory segments where bacterial motility was slow (tumbling). Trajectories with one or more tumbling events were selected, and the mean time bacteria remained in this stationary state was quantified. Dots are trajectories from three experiments. Numbers under boxplots represent trajectories with one or more tumble events. Wilcoxon-test; **** p < 0.0001.
3.7 RACK1 silencing inhibits *Shigella* cell-to-cell spreading

Shigella relies on actin-tail polymerization for bacterial motility within infected cells and cell-to-cell spreading. When tailed bacteria reach the cell’s periphery, they push the membrane out, forming *Shigella*-containing membrane protrusions that extend into adjacent cells. These protrusions are subsequently endocytosed by neighbouring cells resolving into double-membrane vacuoles, from which *Shigella* escapes. Therefore, I assessed whether the intracellular motility impairment observed in RACK1-KD cells affects *Shigella* cell-to-cell spreading.

Plaque-based assays are commonly used to determine the titer of lytic viruses. This methodology has been previously adapted to study *Shigella* cell-to-cell spreading. As *Shigella* spreads in the cell monolayer, it forms areas of infection called plaques. The size of the plaques reflects the efficiency of bacterial spreading. In the standard plaque assay, the cells are covered with a dense agarose overlay after infection to restrict diffusion in the media of free *Shigella* thereby promoting direct cell-to-cell spreading. After incubation for 72 h, the cells are fixed and stained with Giemsa to visualize the plaques. The agarose overlay prevents time-lapse analysis of bacterial spreading, and excessive manipulation (fixing/staining) disturbs the plaques. I developed a modified plaque assay to solve these impediments and allow live observation of *Shigella* cell-to-cell spreading. Briefly, cell monolayers stably expressing F-tractin-GFP were infected with a low MOI of dsRED-WT *Shigella* for 30 min (Figure 3.7.1 A). Methocel, a non-toxic, transparent polymer that becomes increasingly viscous at temperatures higher than 29 °C, was used as the overlay to restrict *Shigella*’s extracellular diffusion. The modified assay did not require fixation or staining steps for plaque visualization since both the cells and bacteria were fluorescent (Figure 3.7.1 A-B). Thus, imaging of the plaques could be performed at various time points. Plaque boundaries were identified using automatic segmentation, as shown in Figure 3.7.1 B (see section 2.11.8 for detailed methodology). Areas of infection less than four µm² (average area of one HeLa cell) away from primary plaques (area > 4µm²) were classified as secondary plaques, resulting from *Shigella*’s diffusion in the media rather than cell-to-cell spreading (Figure 3.7.1 B).
Shigella formed plaques in HeLa cell monolayers regardless of the presence of Methocel after ten h and 20 h of infection (Figure 3.7.2 A). However, the monolayers that were not overlaid with Methocel showed more secondary plaques (area < 4µm²) compared to Methocel treated cells after 20 h (Figure 3.7.2 A-B). The number of secondary plaques in the cells treated with Methocel at ten h was reduced by 50% after 20h due to small plaque “fusion” into one bigger plaque. This effect was not observed in no-Methocel conditions (Figure 3.7.2 B). The area of primary plaques formed in cells overlaid with Methocel (176±15.5 um²) at ten h post-infection was smaller than in no-Methocel conditions (213±9.1 um²), indicating some degree of cell-to-cell spreading restriction caused by the overlay (Figure 3.7.2 C). However, after 20 h of infection, the plaques formed under Methocel (366±56.1 um²) were significantly bigger than those in no-Methocel (134±60) monolayers which is consistent with a reduction in the number of secondary plaques (Figure 3.7.2 B-C). Bigger plaques resulted from fewer bacteria diffusing away into the media of Methocel overlaid cells, therefore limiting spread to a cell-to-cell modality only. These findings validated the use of Methocel to restrict convection flows in the culture medium, preventing secondary plaque formation while allowing *Shigella* cell-to-cell spreading.

The modified plaque assay method was used to assess plaque formation in the colonic epithelial cell lines CaCo-2 and HT-29. As *Shigella* spreads in the monolayer, the cell’s membrane permeability is compromised, causing cell death. Thus, the otherwise cell-impermeant DNA dye DAPI was added to the overlay medium to detect dead cells. The plaques formed in HT-29 cells after 20 h of infection were similar in size to those generated in HeLa cells after ten h, showing that *Shigella* spreading in HT-29 cells is considerably slower (Figure 3.7.3 A). Moreover, after 72 h of infection, the size of the plaques in HT-29 increased considerably, and a prominent halo of DAPI+ nuclei surrounded the plaques indicating *Shigella* causes massive cell death in HT-29 cells (Figure 3.7.3 A). *Shigella* disseminated at a similar rate in HeLa and CaCo-2 cells. After 10 h of infection, the plaques generated in HeLa cells had an average size of 0.132±0.11 mm², while in CaCo-2 cells the plaques were 0.313±0.24 mm² after 15 h of infection (Figure 3.7.3 B). Although this was
not quantified, *Shigella* seems to induce a more extensive zone of cell death in CaCo-2 than in HeLa cells (Figure 3.7.3 A). Given that RACK1 silencing was successful only in HeLa and CaCo-2 cells (Figure 3.1.4), I evaluated the role of RACK1 in *Shigella* spreading using these cell lines. Conveniently, the 96-well format of the modified plaque assay allowed simultaneous analysis of control (NS), KD-92, KD-94, and KD-95 cell lines. Of note, secondary plaques were not included in this analysis. The plaques’ areas were significantly reduced in all three HeLa and CaCo-2 RACK1-KD cell lines (Figure 3.7.3 B). These findings reveal an impairment of *Shigella* cell-to-cell spreading in RACK1-KD cells consistent with a defect in actin tail polymerization and reduced actin-mediated motility.

Taking advantage of the transparent nature of Methocel, I captured time-lapse images of infected cells overlaid with Methocel at high magnification (40X) to follow infection progression. *Shigella* spreading to neighbouring cells was assessed manually over time, starting from one infected cell (i.e., infection focus, Figure 3.7.4 A). *Shigella* infected a new HeLa cell every 15 to 30 min during the first 3 hours of infection. After this time, *Shigella*’s spreading slowed down, infecting a new cell every 45 min to one h (Figure 3.7.4 A). Analysis of the cumulative number of infected cells recorded over ten h of infection showed a significant reduction of *Shigella*’s cell-to-cell dissemination in RACK1-KD cells (Figure 3.7.4 B). Together, the plaque assay and time-lapse spreading results are consistent with RACK1 having a pivotal role in actin tail polymerization, leading to efficient *Shigella* spreading in epithelial cells.
Figure 3.7.1. Plaque assay procedure and data analysis.

A. Diagram of the plaque assay methodology. Cells expressing a fluorescent probe (e.g. F-tractin-GFP) seeded in black 96-well plates to 100% confluency were infected with dsRED-WT *Shigella* (OD$_{600}$ = 5x10$^{-4}$) for 30 min. The cells were treated with gentamycin (100 µg/mL) to eliminate extracellular bacteria for 15 min. The monolayers were overlaid with 0.4% Methocel diluted in FluoroBrite supplemented with DAPI to identify dead cells. After 10 to 20 h of infection, images were captured at 10X magnification using a Zeiss widefield microscope. Methocel addition to the monolayers restricts the diffusion of bacteria in the media, promoting cell-to-cell spreading. Areas of bacterial dissemination are called plaques. B. Plaque assay data analysis workflow. In this example, the top micrograph shows HeLa cells expressing F-tractin-GFP (binds to F-actin) infected with dsRED-WT *Shigella*. Preprocessing of the image involves splitting channels (middle row images) and modifying the image corresponding to bacteria (dsRED channel) to detect the plaques (bottom row) by automatic segmentation. Areas of infection smaller than the average area of one cell (4 µm2) were considered secondary plaques and were not included in the plaque area quantification analysis. The inset image shows primary plaques (red arrowheads) and secondary plaques (green arrowheads). Yellow outlines show the plaques’ perimeter. Scale bar of images = 1mm, inset = 100 µm)
Figure 3.7.2. Methocel efficiently restricts *Shigella* diffusion through the media reducing secondary plaque formation.

F-tractin-GFP expressing HeLa cells were infected with dsRED-WT *Shigella* for 30 min. The cells were then treated with gentamycin (100 µg/ml) for 15 min before overlaying them with 0.4% Methocel diluted in FluoroBrite, supplemented with DAPI (0.1 ng/mL) or with FluoroBrite alone. The monolayers were imaged 10 and 20 h post-infection on a widefield Zeiss Z1 with 10X magnification. As *Shigella* infects the cell monolayer, it forms areas of infection called plaques. The area of the plaque is proportional to the spreading capacity of *Shigella*. A. Widefield micrographs of *Shigella* plaques formed on HeLa cells (cells are not shown), after 10 (top row) and 20 h (middle row) of infection in the presence of Methocel (left column) or without Methocel (right column). The last row contains inset images highlighting primary (red outlines) and secondary plaques (green outline). Scale bar = 1mm. Bar plots showing number of secondary plaques (B) and area of primary plaques (C) formed by *Shigella* in cells with or without Methocel after 10 and 20 h of infection. The bars show mean ± SD from one experiment in triplicate. Statistical significance was tested with two-way ANOVA followed by Tukey HSD; ns = not significant *p* > 0.05, *p* < 0.05, **p** < 0.01.
Figure 3.7.3. RACK1 silencing reduces the plaque area formed by *Shigella* in HeLa and CaCo-2 cells.

Bacterial spreading was analyzed using the modified plaque assay. Cells expressing F-tractin-GFP (HeLa, HT-29) or GFP (CaCo-2) were infected with dsRED-WT *Shigella* and overlaid with 0.4% Methocel supplemented with DAPI (0.1 ng/mL). The cells were imaged 10 (HeLa), 15 (CaCo-2), 20 and 72 (HT-29) h post-infection on a widefield Zeiss Z1 with 10X magnification. A. Representative images showing *Shigella* plaques formed on HT-29, HeLa, and CaCo-2 cells (green). *Shigella* plaques (red) appear surrounded by dead cells (blue). Infection length is indicated at the top of each image. Scale bar = 200 µm. B. Boxplots show the plaque areas formed in HeLa (left) and CaCo-2 cells (right). *Shigella*’s plaque boundaries were identified by automatic segmentation using Fiji. Numbers under the boxplots show plaque number. Dots are plaques from one out of three experiments (Supplementary Figure 3, Appendix C). Wilcoxon-test; **p < 0.01, ****p < 0.0001.
Figure 3.7.4. RACK1 enhances *Shigella* cell-to-cell spreading in HeLa cells.
A. Time-lapse confocal images of HeLa cells infected with dsRED-WT *Shigella*. Infected cells overlaid with 0.4% Methocel were imaged every 15 min for ten h on a Zeiss spinning disk with 40X magnification. Infection spreading was quantified by noting the number of infected cells at each time point, starting from one single infected cell (0 min). Bacteria are shown in red and cells in grey (cells expressing F-tractin-GFP that binds to actin). Yellow outlines highlight infected cells. The line plot shows the progression of *Shigella* spreading in three infection foci, including the one shown in the images.
B. Line plot showing the cumulative number of infected cells over time. Control and RACK1-KD HeLa cells were infected as in A. The number of infected cells found at each time point was used to calculate the cumulative sum of infected cells. The spreading curves are shown as mean ± SD from three experiments, where 19 (NS = 10, KD-92 = 9) infection foci were analyzed. Unpaired t-test; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, only significant points shown.
3.8 RACK1's role in actin cytoskeleton dynamics

Type 3 secreted effectors promote *Shigella* infection through direct interaction with an extensive array of host proteins. I used co-immunoprecipitation (Co-IP) coupled to mass spectroscopy (MS) to test if RACK1 interacts with *Shigella* secreted proteins. I pulled down RACK1 interacting proteins from *Shigella*-infected and uninfected HeLa cells using an anti-RACK1 antibody. Silver staining of the Co-IP product showed no apparent differences between infected and uninfected cells (Figure 3.8.1 A). Before sending the samples for MS analysis, RACK1 interacting proteins were excised from a Coomassie-stained gel discarding the antibody’s heavy and light chains (Figure 3.8.1 B). Although no interactions were found between RACK1 and any *Shigella* protein in the conditions tested, the MS analysis identified 19 cytoskeleton-related proteins as RACK1 interacting partners (Table 3.2), several of which have been implicated in *Shigella* infection. For example, binding of the secreted effector IpaC to the intermediate filament protein vimentin allows a conformational change on IpaC required for efficient T3SS activation. Silencing of non-muscle myosin heavy chain IIA in HeLa cells reduces *Shigella* cell-to-cell spreading. Moreover, actin and actin-binding proteins (ABPs) are critical for *Shigella* invasion and actin-mediated motility. In particular, Arp2, part of the actin nucleator Arp2/3 complex, is essential for bacterial entry and for actin tail assembly. *Shigella* invasion depends on membrane ruffling mediated by Arp2/3 dependent actin polymerization. Activation of the Arp2/3 complex during entry is facilitated by cortactin Cdc42 and Rac proteins. Once in the cytoplasm, *Shigella*’s surface protein IcsA recruits N-WASP, subsequently activating the Arp2/3 complex stimulating actin tail polymerization.

RACK1 interaction with the Arp2/3 complex could therefore promote actin-tail polymerization. Co-IP followed by immunoblot showed that RACK1 weakly interacts with Arp2 (Figure 3.8.2 A). To facilitate data analysis, I evaluated if RACK1 silencing impairs Arp2 localization to *Shigella*’s surface but not to the entry focus. Confocal imaging of HeLa cells infected with dsRED-WT *Shigella* and immunolabeled with anti-Arp2 confirmed Arp2/3 complex recruitment to *Shigella*’s tail (Figure 3.8.2 B). Of note, the samples analyzed here were counter stained with DAPI only, actin was not labeled. Given that actin
tails were not visible, I enumerated Shigella that were associated to any Arp2+ structure. However, no significant differences were found in the percentage of Arp2+ bacteria in RACK1-KD cells compared to control. From the bacteria analyzed, 47.1±18.8% and 48.5±15.7% were associated with Arp2 in NS and KD-92 cells, respectively (Figure 3.8.2 C). This result indicates that RACK1 is not involved in Arp2/3 recruitment to the actin-tail.

Considering the findings shown in the previous sections, RACK1 is likely a regulator of actin cytoskeleton dynamics. Thus, I evaluated if RACK1 plays a role in actin polymerization independent of Shigella. Drugs that manipulate actin polymerization are routinely used to study cytoskeleton dynamics 405,406. Thus, the actin-binding compounds jasplakinolide (Jasp) and cytochalasin D (CytoD) were utilized to gain more insight into the role of RACK1 in actin polymerization. These drugs modulate actin filament polymerization. The synthesis of actin filaments involves simultaneous actin polymerization and depolymerization. For this, ATP-bound G-actin monomers are added to the filament’s fast-growing barbed end while ADP-bound G-actin is dissociated from the slow-growing pointed end 226,227. Thus, actin filaments are maintained in a dynamic equilibrium of polymerization and depolymerization, also known as actin filament turnover.

Jasp inhibits filament depolymerization and induces actin polymerization into F-actin amorphous aggregates 407. Treatment with 0.2 µM Jasp for two h caused the formation of multiple actin aggregates throughout the cytoplasm in control and RACK1-KD HeLa cells (Figure 3.8.3 A). If RACK1 facilitates actin polymerization, RACK1 silenced cells should be less susceptible to the effect of Jasp. Indeed, the aggregates formed in RACK1-KD seemed less abundant than those formed in NS cells (Figure 3.8.3 A). Automatic segmentation was used to detect the F-actin aggregates. Although this approach failed to identify very dim aggregates, most actin puncta were detected and analyzed (Figure 3.8.3 B). The segmentation analysis showed that the total area of F-actin aggregates per cell was significantly reduced in RACK-KD conditions. On average, the total aggregate area found in an NS cell was 41±31 µm², whereas in a KD-92 cell the F-actin aggregate area was reduced to 29.7±26 µm² (Figure 3.8.3 C). Similarly, the aggregates’ FI was decreased
significantly in KD-92 (44±30.3 a.u.) compared to NS cells (56.5±35.6 a.u., Figure 3.8.3 D). Again, the number of aggregates per cell was reduced in KD-92 cells, consistent with an impairment in actin polymerization. An average of 14±9 actin aggregates were found per NS cell, and 10±7 aggregates were found per KD-92 cell (Figure 3.8.3 E). These data show that RACK1 promotes Jasp-induced actin polymerization.

CytoD, a fungal toxin, stimulates actin depolymerization and blocks polymerization by binding to the actin filament barbed end 406. Like Jasp, CytoD treatment (40 µg/mL) disrupted the cytoskeleton, forming small actin aggregates, but stress fibre disassembly was the most dramatic effect (Figure 3.8.4 A). I reasoned if RACK1 promotes actin depolymerization, actin filaments should be preserved in RACK1-KD cells treated with CytoD. No readily apparent differences were observed in CytoD treated control and RACK1-D cells (Figure 3.8.4 A). Nevertheless, segmentation was performed to identify F-actin-rich structures such as stress fibres and cell adhesions (Figure 3.8.4 B). Quantification showed no significant difference in the area (NS = 6.8±7.5 µm², KD-92 = 6.7±6.9 µm²) and FI (NS = 2.8±0.23 a.u., KD-92 = 2.8±0.22 a.u.) of F-actin-rich structures found in control and RACK1-KD cells (Figure 3.8.4 C-D), suggesting that RACK1 is not involved in CytoD mediated actin depolymerization.

Fluorescence recovery after photobleaching (FRAP) has been widely used to analyze the dynamics of actin polymerization 408. FRAP measures the diffusion kinetics of a fluorescently-tagged protein of interest after photobleaching with a high-power laser. HeLa cells transfected with GFP-actin were bleached in a rectangular region of interest (ROI), and the fluorescence recovery was followed by time-lapse imaging (Figure 3.8.5 A). FRAP was assessed in two characteristic actin-rich cellular structures, stress fibres and membrane ruffles (Figure 3.8.5 A). GFP-actin fluorescence was fast to recover in membrane ruffles; actin filaments were visible six seconds after bleaching indicating fast actin turnover. In contrast, stress fibre fluorescence took longer to be recovered (180 sec), indicating these structured have a slower actin turnover rate (Figure 3.8.5 A).
Next, I evaluated the turnover of actin filament assembly in RACK1 silenced cells. Analysis of the fitted recovery curves obtained from membrane ruffles revealed faster actin turnover in control than in RACK1-KD cells (Figure 3.8.5 B). A significant difference was confirmed by calculating the halftime of recovery ($t_{1/2}$), which was 11.3 ± 4.6 sec for NS cells and 30.2 ± 8.2 sec for KD-92 cells (Figure 3.8.5 C). On the other hand, no significant difference was found in stress fibre actin turnover in NS ($t_{1/2} = 16.1\pm9.3$) and KD-92 ($t_{1/2} = 20\pm11.3$) cells (Figure 3.8.5 D-E). Furthermore, the recovery curves confirmed a slower actin turnover in stress fibres than in membrane ruffles (Figure 3.8.5 B-D).

To recapitulate the data presented in this section, RACK1 binds to actin cytoskeleton-related proteins involved in Shigella infection, from which the RACK1-Arp2 interaction was confirmed. However, localization of the actin nucleator Arp2/3 complex to Shigella’s actin tail was not regulated by RACK1. Thus, the actin tail defect observed in RACK1-silenced cells might not be dependent on Arp2/3 binding to the tail. Actin binding drugs revealed that RACK1 promotes actin polymerization but not depolymerization. FRAP experiments supported these findings showing significant actin-turnover inhibition in RACK1-KD cells.
Figure 3.8.1. Study of RACK1 interactome in *Shigella*-infected HeLa cells.

WT HeLa cells uninfected or infected with WT *Shigella* (MOI 10) for 1.5 h were lysed. The protein extracts were subjected to co-immunoprecipitation (Co-IP) using 10 µL of anti-RACK1 antibody or 5 µL of IgG (control) antibody. After Co-IP, equal amounts of protein were separated by SDS-PAGE. A. Silver-stained gel showing detection of the proteins pulled down in the Co-IP. B. Coomassie-stained gel showing the excised gel sections (red rectangles) analyzed by mass spectrometry. The light and heavy chains of anti-RACK1 antibody were discarded.
<table>
<thead>
<tr>
<th>Actin and ABPs</th>
<th>Microtubules and intermediate filaments</th>
<th>Motors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filamin-A (6)</td>
<td>Tubulin alpha-1A (3)</td>
<td>Myosin heavy chain 9 (1)</td>
</tr>
<tr>
<td>Alpha-actin-2 (5)</td>
<td>Tubulin beta-2A (1)</td>
<td>Myosin heavy chain 7 (1)</td>
</tr>
<tr>
<td>Cofilin 1 (2)</td>
<td>Tubulin beta-3 (1)</td>
<td>Unconventional myosin-IXa (1)</td>
</tr>
<tr>
<td>F-actin-capping protein subunit beta (2)</td>
<td>Tubulin beta-1 (1)</td>
<td></td>
</tr>
<tr>
<td>F-actin-capping protein subunit alpha-1 (1)</td>
<td>Tubulin beta-4A (1)</td>
<td></td>
</tr>
<tr>
<td>Alpha-actinin-4 (1)</td>
<td></td>
<td>Vimentin (1)</td>
</tr>
<tr>
<td>Beta-actin (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arp2 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Profilin-1 (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinculin (1)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of unique peptides are shown in parenthesis.
ABPs: actin binding proteins
Figure 3.8.2. RACK1 is not required for Arp-2 recruitment to Shigella.

A. Confirmation of RACK1-Arp2 interaction. HeLa cell lysate was subjected to co-immunoprecipitation (Co-IP) using anti-RACK1. The immunoprecipitated proteins were analyzed by western blotting using anti-Arp2. **B-C.** Control (NS) and RACK1-KD (KD-92) HeLa cells infected with dsRED-WT Shigella (MOI 10) for two h were fixed and immunolabeled with DAPI and anti-Arp2. Images were taken on a Zeiss 710 confocal with 63X magnification. **B.** Confocal micrograph showing an infected HeLa cell. The two yellow arrowheads indicate Shigella (red) associated with Arp2 (green) at one pole. Scale bar = 10 µm. **C.** Quantification of the percentage of Arp2 positive (%Arp2+) Shigella. Dots represent %Arp2+ bacteria found per image from three experiments (55 images per condition). The total number of bacteria analyzed is shown at the base of the boxplots. Unpaired t-test; ns = not significant p>0.05.
Figure 3.8.3. Filamentous-actin (F-actin) aggregate formation is reduced in RACK1-KD cells treated with jasplakinolide.
Control (NS) and RACK1-KD (KD-92) HeLa cells expressing F-tractin-GFP were treated with 0.2 µM of the actin-stabilizing toxin jasplakinolide (Jasp). Z-stack images (8 slices, 1µm apart) were captured before and after two h of treatment on a Zeiss Z.1 spinning disk with 40X magnification. A. Representative maximum projection images of cells treated with Jasp at 0 and 2 h. F-actin is shown in grey. Scale bar = 50 µm. B. Example of F-actin aggregate segmentation. F-actin (grey) aggregates (red outlines) were detected using Fiji’s automatic segmentation. Cell outlines (green) were manually drawn. Scale bar = 30 µm. C. Total F-actin aggregates area per cell. Each dot represents the sum of the actin aggregate areas on each cell. D. Total fluorescence intensity (FI) per cell. The aggregate FI was normalized to the average FI of cells before the addition of Jasp. Dots represent the sum of the aggregate FI found per cell. E. Number (#) of F-actin aggregates per cell. Numbers under the boxplots in C, D and E indicate the number of cells analyzed from 2 independent experiments. Wilcoxon-test; ***p<0.001, ****p<0.0001.
Figure 3.8.4. Cytochalasin D (CytoD) mediated disruption of filamentous actin (F-actin) is not affected by RACK1 silencing.

Control (NS) and RACK1-KD (KD-92) HeLa cells expressing F-tractin-GFP were treated with 40 µg/mL of CytoD. Z-stack images (10 slices 0.54 µm apart) were captured before and after 1.5 h of treatment on a Zeiss Z.1 spinning disk with 40X magnification. A. Representative images of cells treated with CytoD at 0 and 1.5 h. The images show F-actin-rich structures such as stress fibres and cell adhesions. Scale bar = 50 µm. B. Example image of the automatic segmentation performed to identify F-actin-rich structures (red outlines). The focal plane containing more stress fibres and adhesions was analyzed from each image. Scale bar = 20 µm. Area (C) and fluorescence intensity (FI, D) quantification of F-actin-rich structures. FI was normalized to the average FI of cells before the addition of CytoD. Numbers under the boxplots indicate the number of F-actin-rich structures detected by segmentation on four fields of view. Data shown in C and D are from 1 experiment. Wilcoxon-test; ns = not significant p>0.05.
Figure 3.8.5. RACK1 silencing affects actin turnover in membrane ruffles but not in stress fibres.

Fluorescence Recovery After Photobleaching (FRAP) was performed in control (NS) and RACK1-KD (KD-92) HeLa cells transfected with pEGFP-Actin. A Zeiss LSM 880 confocal was used to capture three images before bleaching a region of interest (ROI), then images were captured every 2 sec for 180 sec. Stress fibres and ruffles were imaged in 25 NS and 22 RACK1-KD cells. A. Selected confocal images from a time-lapse showing FRAP of EGFP-Actin. Red ROIs show the bleached area in a membrane ruffle (top row) and a stress fibre region (bottom row). A whole-cell area ROI (yellow) was defined to measure fluorescence loss due to imaging. A cell-free area was selected to calculate the background (green ROI). Scale bar = 10 µm. EGFP-Actin fluorescence recovery over time in membrane ruffles (B) and stress fibres (D) from NS and KD-92 cells. Solid lines represent best-fit curves for the data calculated using a non-linear least squares regression model. Ribbons show the ±SD of the samples analyzed. C and E. Box plots show the bleached region’s time to recover half of its final fluorescence intensity. The half time was calculated from the data shown in B (ruffles) and D (stress fibres). Numbers under the boxplots represent the number of cells analyzed per condition. Unpaired t-test; ns = not significant p>0.05, ****p<0.0001.
CHAPTER 4 DISCUSSION

Shigella is a strictly human pathogen that subverts the host’s cell machinery to support its intracellular lifestyle. Through its T3SS, *Shigella* secretes bacterial effectors that manipulate the host cytoskeleton, forming an F-actin-rich entry focus, which facilitates bacterial internalization. After escape from the *Shigella*-containing vacuole (SCV), this pathogen replicates in the cytoplasm and induces IcsA-mediated actin tail polymerization. Polymerization of an actin tail is pivotal for bacterial intracellular motility and cell-to-cell spread. RACK1, a host scaffold protein, participates in numerous aspects of cellular function in eukaryotic organisms, including cell signalling, proliferation, and migration. RACK1’s role in cytoskeleton dynamics is not well understood. Nevertheless, the current literature shows that RACK1 is a crucial player in focal adhesion assembly, interacting with various actin-binding proteins. Therefore, it is possible RACK1 participates during *Shigella* infection. I hypothesized that *Shigella flexneri* requires RACK1 to manipulate actin cytoskeleton dynamics, leading to efficient invasion and cell-to-cell spreading. To test this hypothesis, I aimed to characterize the effect of RACK1 silencing on the intracellular growth of *Shigella* in HeLa cells and colonization of the *Drosophila melanogaster* intestine. I systematically evaluated the role of RACK1 in the main steps of *Shigella*’s life cycle within HeLa cells, including cell invasion, vacuolar escape, intracellular replication, actin tail polymerization and cell-to-cell spreading. Lastly, I focused on understanding the general impact of RACK1 silencing on cellular actin polymerization dynamics without *Shigella* infection.

Herein, I found that silencing RACK1 inhibited *Shigella* growth in HeLa cells due to impaired bacterial invasion and cell-to-cell spreading. Accordingly, RACK1 overexpression in HeLa cells resulted in higher *Shigella* yield. Surprisingly, RACK1 silencing protected flies from *Shigella* infection by an unidentified mechanism. Live-cell microscopy analysis of epithelial cells infected with *Shigella* showed that RACK1 localization to the entry focus is crucial for efficient actin polymerization around *Shigella* to facilitate efficient invasion. However, bacterial escape from the SCV, intracellular replication and modulation of host cell death were not affected by RACK1. Although
RACK1 did not colocalize with *Shigella*’s actin tail, RACK1 promoted actin tail polymerization and elongation, which mediated swift intracellular motility and allowed efficient cell-to-cell spreading. Furthermore, co-IP coupled to mass spectrometry analysis revealed the interaction of RACK1 with many cytoskeleton-related proteins, prompting the study of actin dynamics. Treating cells with actin-binding drugs revealed that RACK1 promotes actin polymerization but not depolymerization. FRAP experiments supported these findings showing that RACK1 enables normal actin-turnover. Together these results are consistent with RACK1 having a pivotal role in actin cytoskeleton modulation, leading to efficient *Shigella* invasion, and spreading in epithelial cells.

4.1 RACK1 promotes *Shigella* infection *in vitro* and *in vivo*

My thesis work focused on characterizing the role of RACK1 in the interactions between *Shigella* and epithelial cells. Given that RACK1 is an essential protein, highly expressed in most tissues \(^{409}\), knockout of the RACK1 gene cannot be achieved in most eukaryotic organisms \(^{284,390,410}\). Instead, I silenced the expression of RACK1 in various epithelial cell lines using shRNAs. However, HeLa cells quickly regained basal expression levels and silencing RACK1 in HT-29 cells was unsuccessful (Figures 3.1.2 and 3.1.4). Moreover, cells transfected with a high expression plasmid carrying RACK1 under the control of the CMV promoter, only showed modestly increased RACK1 expression (Figure 3.2.5), suggesting the cellular level of RACK1 is tightly regulated. Indeed, an aberrant expression of RACK1 has been linked to many cancers \(^{289}\). RACK1 promotes cell proliferation and metastasis in multiple myeloma and breast, liver and prostate cancers \(^{306,411,304,412}\). Consistent with these findings, RACK1 silencing in HeLa cells reduced cell proliferation (Figure 3.1.3 C).

A growing body of evidence shows that RACK1 plays an essential role in viral pathogenesis. RACK1 is required for viral translation, replication, and release of many RNA viruses \(^{348,353,354}\). However, only a few reports have linked RACK1 to bacterial infections in mammals. Protein-protein interaction screenings have shown bacterial secreted effectors bind to RACK1. For example, the vacuolating toxin VacA of *H. pylori* binds to RACK1, but the outcome of this interaction was not well-characterized \(^{9}\).
Moreover, RACK1 binds to the *Mycobacterium tuberculosis* secreted effector EST12, activating the NLRP3 inflammasome and pyroptosis. Significantly, RACK1-mediated recognition of EST12 reduces mycobacterial loads within macrophages and mice lungs. These findings are supported by Duan et al., showing that RACK1 knockdown (KD) impairs NLRP3 assembly, attenuating caspase-1 activation and IL-1β secretion induced by ATP in LPS-primed macrophages. In contrast to *Mycobacterium*, *Shigella* promotes macrophages cell death by pyroptosis. *Shigella* activates NLRP3 or NLRC4 inflammasomes via the T3SS effectors IpaH4.5 and IpaH7.8, and the T3SS components MxiH and MxiI. Inflammasome activation leads to caspase-1-mediated pyroptosis releasing intracellular bacteria and promoting massive tissue inflammation, which benefits *Shigella*’s invasion of the epithelium.

In this work, I found RACK1 promotes the growth of *Shigella* in HeLa cells. RACK1 silencing reduced the number of colony-forming units (CFU) recovered from cell lysates, whereas RACK1 overexpression increased bacterial burden in HeLa cells (Figures 3.2.2 to 3.2.5). This was an interesting phenotype, given that the evidence mentioned above points towards RACK1 functioning as a defence molecule. I did not assess the role of RACK1 in macrophages infected with *Shigella*, but it is possible that *Shigella* exploits RACK1-mediated activation of NLRP3 to promote pyroptosis in these cells.

Furthermore, RACK1 silencing in *Drosophila* enterocytes reduced fly mortality caused by *Shigella* infection (Figure 3.2.6), suggesting RACK1 plays a pro-virulence role. This finding contrasts with the protective function RACK1 exerts in *Caenorhabditis elegans* infected with *Shigella*. In this model, worms showed total mortality after six days of feeding with live *Shigella*. Infection of flies with *Shigella* was not as lethal, only inducing mortality after ten days of feeding with *Shigella* (OD₆₀₀ = 25). A significant reduction of survival probability compared to sugar-fed flies was found after 15 days of *Shigella* feeding. In our model, RACK1 silencing increased the survival probability of flies fed with *Shigella* to control levels (Figure 3.2.6 B). In contrast, partial deletion of RACK1 in *C. elegans* reduces survival probability and increases *Shigella* CFU recovered from infected worms. Also, RACK1 deletion reduces P38 and JNK MAPKs activation resulting in
NLP-29 antimicrobial peptide downregulation. These results suggest RACK1-mediated regulation of NLP-29 expression is responsible for the innate immune response against Shigella infection in C. elegans. In Drosophila, the immune deficiency (Imd) pathway controls the production of antimicrobial peptides (AMPs). Interestingly, the Ras/MAPK pathway inhibits Imd, subsequently limiting AMPs production. Thus, the RACK1-MAPKs interaction might have differential functions depending on the organism, promoting AMP production in worms while inhibiting AMPs in flies. In that scenario, silencing RACK1 in flies could reduce Ras/MAPK-mediated Imd inhibition resulting in increased AMPs production and resistance to infection.

Microscopic analysis of infected control fly guts showed Shigella accumulation in the lumen of the intestines without invasion of enterocytes (Figure 3.2.6 C-D). Similar findings were reported in C. elegans, suggesting that worm and fly death is not mediated by Shigella invasion of epithelial cells and is most likely caused by bacterial accumulation and possible blockage of the intestine. The lack of invasion observed was expected due to the experimental conditions used. Infections were carried out at 29 °C; at this temperature, Shigella’s T3SS is not active due to the H-NS repressor inhibiting activation of the transcriptional cascade that culminates with T3SS assembly and activation.

Although Shigella did not invade the epithelium, guts from RACK1-KD flies infected with Shigella showed signs of tissue hyperplasia and intestinal lumen reduction, which was occupied by fewer bacteria than in control guts (Figure 3.2.6 C). Intestinal hyperplasia is characteristic of tissue regeneration induced by injury or infection in Drosophila guts. Feeding flies with Pseudomonas aeruginosa causes intestinal stem cell (ISC) expansion to rebuild the damaged epithelium. Drosophila wingless (Wg) and Janus kinase (JAK)/Signal Transducer and Activator of Transcription (STAT) pathways control ISC proliferation. It has been reported that RACK1 sequesters inactive STAT in a complex with viral proteins, blocking downstream signalling in human cell lines infected with the measles virus. Thus, RACK1 silencing in Drosophila could make STAT available for activation, resulting in JAK/STAT-mediated ISC proliferation.
Notably, dysfunction in the Wnt pathway, Wg’s human counterpart, is related to colorectal cancer development \(^\text{420}\). Moreover, RACK1 degradation has been shown to induce hyperactivation of the Wnt/\(\beta\)-catenin signalling pathway in gastric cells, promoting cancer progression \(^\text{421,422}\). Therefore, RACK1 is a negative regulator of this pathway. Silencing RACK1 expression in flies could promote ISC proliferation via overstimulation of the Wg pathway protecting the flies from *Shigella*-induced damage of the gut epithelium. RACK1 is also a negative regulator of Wnt/\(\beta\)-catenin signalling in zebrafish \(^\text{421}\). The zebrafish model has emerged as an attractive alternative to study shigellosis since the major pathogenic events observed in humans are recapitulated, including epithelial cell invasion, macrophage cell death and inflammatory destruction of the host epithelium \(^\text{423}\). Also, RACK1 silencing can be easily achieved using morpholino oligonucleotides, and the optical clarity of embryos allows non-invasive real-time imaging \(^\text{421,424}\). Again, the temperature of infection most likely inhibits T3SS activity in the zebrafish model. Thus, the validity of any non-mammalian model used to study *Shigella* pathogenesis is questionable.

In summary, Although *Shigella* did not invade *Drosophila* enterocytes, RACK1-KD in the fly gut resulted in reduced mortality. Moreover, less *Shigella* was recovered from RACK1-KD HeLa cells due to invasion and cell-to-cell spreading impairment. These results support the hypothesis that *Shigella* benefits from RACK1’s function to promote infection in epithelial cells and flies. However, the fly results must be interpreted with caution as the T3SS, pivotal for mammalian infection is not active at temperatures lower than 32 °C. Nevertheless, these findings raise questions about which of the many known functions of RACK1 and which of its interacting partners are involved in the pro-bacterial activity of RACK1 in mammalian epithelial cells. To answer these questions, I systematically evaluated the role of RACK1 on the critical steps of *Shigella*’s intracellular life cycle.
4.2 *Shigella* requires RACK1 to manipulate the host actin cytoskeleton

4.2.1 RACK1 promotes *Shigella* invasion of HeLa cells

Induction of entry focus formation in epithelial cells (ECs) is the first step where *Shigella* come into close contact with the host cell. *Shigella* injects type 3 secretion system (T3SS) effectors that stimulate profuse actin polymerization and membrane ruffling culminating with bacterial internalization. IpaB and IpaC constitute the primary *Shigella* effectors that trigger the concerted steps, leading to bacterial entry. These proteins are situated at the tip of the T3SS and assemble into the translocon, a multimeric structure within the host plasma membrane. Following membrane insertion of the translocon, IpaC interacts with the intermediate filament protein vimentin, stabilizing the translocon and triggering effector secretion through the translocon pore. Vimentin has been shown to interact with RACK1, an interaction also found in this work (Table 3.1), to form a complex with the focal adhesion kinase (FAK) promoting focal adhesion (FA) assembly and cell adhesion. Vimentin is also required to recruit and activate Rac1 for actin polymerization in the FA. The early recruitment of RACK1 to the *Shigella* entry site reported here (Figure 3.3.1 B) could therefore facilitate IpaC and vimentin interaction, promoting bacterial secretion and subsequent entry foci formation.

IpaC also recruits the Src kinase to the entry site, and its activation allows phosphorylation of cortactin. Active cortactin forms a complex with Crk, an adapter protein activated by Abl, another host tyrosine kinase required for *Shigella* invasion. The cortactin-Crk complex triggers Arp2/3 activation and subsequent polymerization of branched actin filaments. IpaC further promotes actin polymerization and membrane ruffling by indirectly activating the small GTPases Cdc42 and Rac1. Additionally, *Shigella* secrets IpgB1 and IpgB2, effectors that mimic guanine nucleotide exchange factors (GEFs), to maintain Cdc42 and Rac1 in an active state. The recruitment and activation of these host factors by *Shigella* effectors generate profuse local actin polymerization required for invasion.
Since RACK1 was recruited around *Shigella* during cell invasion (Figure 3.3.1 B), it is possible RACK1 is involved in actin foci formation. Indeed, when analyzing entry foci dynamics, I found that the actin foci lasted on average 6.29±4.19 min. This result is consistent with a previous study that reported the foci reached maximum actin fluorescence intensity (FI) in ~ 7 min \(^{158}\). Silencing RACK1 increased entry foci duration to an average of 11.1±7.02 min. However, the area and FI of the foci were not affected by RACK1-KD. It is possible that the area and FI were similar to control cells because *Shigella* may require a minimum size or amount of actin accumulation in the entry site to promote invasion. Thus, in RACK1-KD cells, the foci duration was extended until the minimum size or FI level was reached. A limitation of the analysis used here is that only the maximum area and average FI of the foci were calculated (see methods section 2.11.3 for details). Instead, a segmentation algorithm that detected the area occupied by the foci at all time points rather than measuring only the maximum area could have given more accurate information about foci size progression. Also, measurements of the cumulative FI of the foci over time could show the total amount of actin recruited. On the other hand, the lack of similar analysis in the literature to compare these findings highlights the poor understanding of the modifications of actin cytoskeleton dynamics induced by *Shigella* during cell invasion.

RACK1 is a known regulator of Src and other members of the Src kinase family, such as Fyn and Lck \(^{266,321-323,330}\). RACK1 binding stabilizes these kinases in their inactive form while shuttling them to their site of action. For example, the release of Src from RACK1 sequestration enables kinase activation and phosphorylation of FAK, leading to FA assembly \(^{266,270}\). Furthermore, the FAK-Src complex promotes the activation of Rac1 and Cdc42, inducing actin polymerization \(^{426}\). RACK1 interaction with Src also mediates the formation of an actin ring required for osteoclasts adhesion to bone \(^{329}\). Overexpression of RACK1 missing the Src-binding domain causes a loss of central FAs and actin stress fibres in CHO cells, suggesting RACK1-Src interaction is critical for actin cytoskeleton homeostasis \(^{328}\). Perhaps it is through its interaction with Src that RACK1 promotes actin polymerization during *Shigella* invasion, probably enabling the phosphorylation of Src substrates at the entry focus. In support of this hypothesis, measurements of F-tractin-GFP FI changes around *Shigella* during entry revealed a significant reduction in the rate of actin
polymerization in RACK1-silenced cells compared to control (Figure 3.3.3). In this analysis, I measured the increment of FI arbitrary units per time frame on each focus and determined the maximum actin polymerization rate using a logistic regression model. Although this methodology is not the most appropriate to measure actin polymerization, the reduction in actin polymerization rate found in RACK1-KD cells (Figure 3.3.3 B) suggests RACK1 promotes actin polymerization. The link between RACK1, Src and actin polymerization during *Shigella* invasion remains to be confirmed by further studies.

Analyses of actin polymerization rate are usually performed *in vitro* using purified components (e.g. actin, actin nucleator, ATP, etc.) or cell extracts. Although the methodology used here is not the most appropriate to measure actin polymerization I could speculate *in vitro* measurements of actin polymerization rates in the presence of RACK1 should increase the rate of filament elongation. Although in the co-IP experiment, actin was found as an interacting partner of RACK1, only partial colocalization between RACK1 and actin was observed in the entry focus (Table 3.1 and Figure 3.3.1 A). Previous studies support the lack of RACK1 and actin colocalization. Interestingly, RACK1 is a substrate of Abl kinase. RACK1 phosphorylation by Abl promotes FAK activation, indicating that RACK1 activity is tightly regulated during FA assembly and possibly during *Shigella*-induced actin polymerization. Therefore, a whole lysate extract should be used instead of purified components to study the actin polymerization rate *in vitro* since the action of RACK1 seems to be mediated by secondary players rather than by direct binding to actin.

Another critical *Shigella* effector required for invasion is IpaA, which binds to the FA components vinculin and talin. The IpaA-vinculin interaction promotes actin depolymerization at *Shigella’s* entry site, enhancing actin turnover. Deleting *IpaA* reduces bacterial internalization by 20% after 30 min of infection, while vinculin overexpression increases bacterial internalization up to 10 times in HeLa cells. Although deficient in internalization, the ΔipaA mutant induces actin foci at a frequency similar to WT *Shigella*. When Tran Van Nhieu *et al.* analyzed the percent of bacteria associated with actin foci, they found WT *Shigella* colocalized with actin foci during the first 15 minutes.
of infection. No actin foci-associated bacteria were found after 30 min of infection. However, the ΔipaA mutant remained associated with actin foci after 30 min of infection, suggesting an extension in foci duration \(^{137}\). These findings are consistent with my observations in RACK1-KD cells, where the entry foci lasted longer. I believe longer foci duration caused a reduction in the number of infected cells and the number of internalized bacteria (Gal3+ Shigella) per cell (Figure 3.3.4 B-C). Notably, I found that RACK1 interacts with vinculin (Table 3.1), an interaction validated by Filho \textit{et al.} showing RACK1 binds to vinculin upon mast cell activation \(^{326}\). Filho \textit{et al.} suggested the RACK1-vinculin interaction could mediate antigen-induced F-actin rearrangements \(^{326}\). Perhaps the interaction of RACK1 with vinculin mediates IpaA-induced actin rearrangements facilitating \textit{Shigella} invasion.

Interestingly, the bacterial pathogen \textit{Yersinia pseudotuberculosis} which also uses a T3SS to translocate effector proteins into host cells, secretes the effector YopK which interacts with RACK1. This interaction promotes the phagocytosis resistance of \textit{Y. pseudotuberculosis} \(^{7}\), a process called antiphagocytosis required to escape destructiopoln by macrophages. YopK regulates translocation of other bacterial effector that impair actin cytoskeleton rearrangements blocking phagocytosis \(^{429}\). In contrast, \textit{Shigella} uses T3SS effectors to induce invasion of host cells, a process that involves profuse actin polymerization promoted by RACK1 (Figures 3.3.2-3). Perhaps the interaction between RACK1 and YopK inhibits phagocytosis by blocking RACK1-mediated actin polymerization. Although our Co-IP coupled to MS analysis did not yield any \textit{Shigella} effectors as RACK1 interactor, \textit{Yersinia} and \textit{Shigella} directly or indirectly exploit RACK1 activity to promote pathogenesis.

Given that many host proteins targeted by \textit{Shigella} are interacting partners of RACK1, it is not surprising RACK1 silencing results in actin polymerization defects and invasion impairment. \textit{Shigella} hijacks the same pathways and protein components involved in FA assembly. Thus, evaluating Src, Cdc42, Rac1 and vinculin recruitment and activation in RACK1-silenced cells during \textit{Shigella} infection would be of great interest to elucidate the mechanism underlying RACK1’s control of \textit{Shigella}’s entry foci. More importantly, the invasion defect observed in RACK-KD cells might contribute to the growth defect
found in the gentamycin assay (Figure 3.2.2 A), as a lower invasion rate could slow down primary and secondary infections. Additionally, I used a ΔicsA mutant of Shigella which cannot spread from cell to cell, thus facilitating evaluation of primary infected cells. Similar to WT Shigella, ΔicsA infected fewer RACK1-KD cells than control cells showing primary infection of HeLa cells relies on RACK1-dependant actin foci polymerization (Figure 3.3.4 D).

4.2.2 RACK1 is not involved in Shigella vacuolar escape

The mechanisms used by Shigella to escape the containment of the endocytic vacuole are not well understood. Insertion of the IpaB-IpaC translocon into the vacuolar membrane has been suggested as the primary mechanism. While IpaC has a predominant role since expression of IpaC by the normally membrane-bound intracellular bacterium Salmonella leads to vacuolar lysis. However, no single Shigella effector deletion completely abolishes vacuolar escape, underlining the multifactorial nature of the process. On the other side, many host factors assist vacuolar rupture. The most remarkable are the endocytic markers Rab5, Rab11 and EEA1, revealing a pivotal role of vesicle trafficking and the endocytic pathway in vacuolar escape. However, Shigella actively blocks the endocytic maturation process by secreting the inositol 4-phosphatase IpgD, which induces PI5P accumulation in endosomal membranes, blocking the binding of the endosome markers EEA1 and LAMP-1/2. Consistent with these findings, Shigella was rarely found in association with EEA1 (Figure 3.4.2 A, top row), and no association of LAMP1 was observed here (Figure 3.4.2 A, middle row). However, one limitation of this experiment is that the cells were not pre-treated with chloroquine to inhibit endosome-lysosome fusion and subsequent loss of LAMP1 signalling. Other authors have reported around 20% of LAMP-1 colocalization with Shigella in chloroquine-treated macrophages. Thus, I might have missed the LAMP1 targeting of SCVs in HeLa cells.

Massive accumulation of Rab11 positive macropinosomes follows Shigella entry into epithelial cells along with transient recruitment of Rab5 vesicles. Recruitment of galectin-3 (Gal-3), a host protein that binds to exposed glycans, to the SCV marks initial
damage to the vacuolar membrane \(^{157,159}\). Just before Gal-3 recruitment, the Rab11 positive macropinosomes bind to the SCV, suggesting they trigger vacuolar damage \(^{154,160}\). *Shigella* uses IpgD to promote macropinosome formation and vacuolar escape, as demonstrated by a phosphatase inactive IpgD mutant that fails to recruit Rab11-macropinosomes and shows delayed escape time \(^{154,162}\). However, since the macropinosomes do not fuse with the SCV, it is unclear how they promote escape \(^{162}\). After vacuolar damage, *Shigella* exits from the SCV, followed by vacuole fragmentation into membrane remnants that quickly lose Gal-3 signal \(^{158,160}\).

I investigated whether RACK1 was required for the early events of *Shigella*’s infection cycle following internalization. Although RACK1 did not colocalize with Gal-3+ SCVs (Figure 3.4.1 A), I sought to assess whether RACK1 silencing affects vacuolar escape. For this, I used live-cell microscopy to capture the dynamics of *Shigella* infection steps right after internalization. No significant difference was detected in the time needed for *Shigella* to escape the SCV between control and RACK1-KD cells (Figure 3.4.1 C). On average, the SCV turned positive for Gal-3 8.42±5.2 min after entry foci initiation in both control and RACK1-KD cells. This result aligns with several studies that report vacuolar escape occurs between 7 to 10 min after *Shigella* is internalized by HeLa cells \(^{158,154,164,147}\). I also measured the time between Gal-3 recruitment and the first signs of actin polymerization at one pole of the bacterium. *Shigella* induced the formation of an actin node after ~11 min in control cells and after ~12 min in RACK1-KD cells (Figure 3.4.1 B-C). The actin node then elongated to form an actin tail in ~ 17 min in control cells and ~18 min in RACK1-KD cells (Figure 3.4.1 B-C). Similarly, Ray et al. reported that *Shigella* triggers actin tail polymerization ~19 min after internalization \(^{147}\). While no significant differences were found between control and RACK1-silenced cells, it was interesting to see that the early events in the *Shigella* life cycle follow a reproducible timeline.

The membrane remnants generated after *Shigella* exits the SCV act as danger signals triggering autophagy \(^{167,168}\). Xenophagy, a selective form of autophagy, captures invading pathogens inside autophagosomes that fuse with lysosomes to degrade their content \(^{169}\). Ubiquitinated Gal-3+ SCVs and membrane remnants are recognized by the xenophagy
receptors p62 and NDP52, which subsequently recruit the canonical autophagy marker LC3
168,171,172. Given that RACK1 participates in autophagosome biogenesis 285, I sought to
evaluate if RACK1 played a role in recruiting LC3 to the SCV. But first, I assessed if LC3
colocalized with Shigella. Confocal imaging of infected Hela cells confirmed LC3
colocalization with Shigella (Figure 3.4.2 A, lower panel). Then, I performed live imaging
on Shigella-infected cells expressing GFP-LC3 and Gal-3-Orange. LC3 was associated
with SCVs as soon as the vacuoles turned Gal-3 positive (Figure 3.4.2 B, 0 min), but LC3
was not recruited to cytosolic bacteria. A critical limitation of this experiment is that
Shigella was not fluorescently labelled. Thus, the possibility of LC3 binding to cytosolic
bacteria could not be discarded entirely. However, Campbell-Valois et al. supports my
findings. Using a Shigella strain expressing a transcription-based secretion activity reporter
(TSAR), the authors showed that LC3 is only recruited around secreting bacteria within
vacuoles and not cytoplasmic Shigella 172.

The time-lapses also showed LC3+ vesicles were recruited to the LC3+/Gal3+ SCV
and seemed to engulf Gal-3+ membrane remnants (Figure 3.4.2 B, 10 min). This
observation suggests LC3+ membrane remnants are cleared by autophagy. However, only
18% of all Gal-3+ SCVs were targeted by LC3 (Figure 3.4.2 C). Thus, an alternative
mechanism must remove the membrane remnants generated after Shigella exits the SCV.
Another possibility is that Shigella inhibits LC3 binding to the SCV. Indeed, VirA and IcsB
act synergistically to antagonize LC3 binding to the SCV, as demonstrated by the increased
number of LC3-positive and LAMP-2-positive SCVs found in VirA and IcsB single and
double mutants 167,172.

When analyzing the effect of RACK1-KD in LC3 targeting, I found a reduction in
the percentage of LC3+/Gal3+ SCVs (~12%) compared to control (~18%, Figure 3.4.2 C).
Although this difference was not statistically significant, RACK1 may promote LC3
localization to the SCV. Notably, high variability was observed in the frequency of
LC3+/Gal3+ SCVs found in control cells. Since I only conducted this experiment once, due
to time constraints, I cannot draw any conclusions about the role of RACK1 in LC3
targeting to SCVs.
4.2.3 RACK1 silencing does not impact *Shigella* intracellular replication or apoptosis inhibition

One of the hallmarks of *Shigella* infection is its ability to replicate to high numbers within epithelial cells without impacting the host cell’s energy production, despite ongoing pyruvate and amino acid exploitation by *Shigella* \(^{382,394}\). RACK1 has been linked to amino acid metabolism in yeast \(^{432}\). Therefore, a reduction in nutrient availability might have caused the growth defect of *Shigella* observed in RACK1-KD cells. The \(\Delta ic{s}A\) mutant has been used before to test intracellular replication since this deletion prevents spread between host cells, simplifying the analysis of bacterial replication \(^{394}\). \(\Delta ic{s}A\) *Shigella* grew to high numbers in the cytoplasm of infected cells, rendering individual cell counting impractical (Figure 3.5.1 C). Thus, I evaluated intracellular bacteria total area and FI as a proxy of bacterial growth. No significant difference was found in these two parameters between RACK1-KD and control cells (Figure 3.5.1 D-E), indicating RACK1 does not affect intracellular replication. While similar image-based approaches have been used before to quantify intracellular bacteria replication \(^{433,434}\), this could also be done by staining with bromodeoxyuridine (BrdU). This thymidine analogue is incorporated into replicating DNA and has been used to evaluate *Listeria monocytogenes* intracellular growth \(^{435}\).

Active bacterial replication in the cytoplasm leads to the accumulation of PAMPs recognized by the inflammasome triggering cell death. Using a complex array of effectors, *Shigella* antagonizes apoptosis, necrosis-necroptosis, and pyroptosis of epithelial cells. IpgD, VirA, OspC1 and *Shigella’s* LPS block apoptosis by inhibiting caspase-8 and caspase-3 activation \(^{135,191–193}\). *Shigella* regulates cell death timing by secreting OspD2 and OspD3. OspD2 inhibits VirA-mediated necrosis and OspD3 antagonizes OspC1’s indirect induction of necroptosis \(^{192,436}\). Furthermore, *Shigella* uses the effectors OspC3 and the ubiquitin ligases IpaH7.8 and IpaH9.8 to impair pyroptosis, maintaining epithelial cell integrity to safeguard its intracellular replication niche \(^{200,201,203,204}\). RACK1 has both pro- and anti-apoptosis functions, depending on cellular conditions or interacting partners \(^{289}\). Thus, I evaluated whether RACK1 had a role in *Shigella*-mediated inhibition of cell death pathways.
Flow cytometry analysis of apoptosis and necrosis was performed using annexin V-FITC-7AAD double staining. Except for KD-95, no significant differences were found in cell death levels induced by *Shigella* in RACK1-KD cells compared to control cells (Figure 3.5.2). KD-95 showed fewer late apoptotic cells than control cells, suggesting RACK1 may have a pro-apoptotic role during *Shigella* infection. However, it is difficult to draw any conclusions since none of the other parameters, including cell cytotoxicity, were altered (Figure 3.5.2). A limitation of these experiments was the length of infection. *Shigella* did not induce detectable apoptosis earlier than 12 h after infection. After such a long incubation time, intracellular bacterial numbers were probably very high, rendering the cells prone to lysis and agglomeration. Lysed cells were lost, and cell clusters were not included in the analysis, possibly underestimating the levels of apoptosis in KD-95 cells. A better approach would be to evaluate earlier events in cell death, such as caspase activation. The use of *Shigella* mutants defective in cell death inhibition could be helpful too. For example, OspC3 modifies caspase-4, blocking its activation and subsequent cleavage of the pore-forming protein GSDMD which triggers pyroptosis. In contrast, a ΔospC3 mutant induces GSDMD cleavage detectable by western blotting. Similarly, a ΔospC1 mutant has been used to evaluate apoptosis by detection of caspase-8 cleavage, which is usually absent in cells infected by the WT strain.

Cytosolic *Shigella* is also targeted by IFN-γ–induced GBPs, which promote caspase-4 activation, leading to pyroptosis. I evaluated whether RACK1 was involved in GBP binding to *Shigella*. When treating cells with IFN-γ, a modest increment in GBP1 binding to *Shigella* was observed in RACK1-KD cells compared to control (Figure 3.5.3 C, Table 3.1). However, this was not statistically significant, confirming that RACK1 is not involved in *Shigella*-mediated inhibition of cell death pathways. Conversely, I found 3.9% of *Shigella* were GBP1+ in untreated control cells, which increased to 11% in IFN-γ treated cells (Table 3.1). Most studies report between 30 to 40% of GBP1 targeting after IFN-γ induction. This discrepancy was probably due to the longer infection time used here; most studies measure GBP targeting one h after infection. Here I infected the cells for three h before GBP1 immunostaining. The low percentage of GBP1+ bacteria might indicate...
Shigella manages to escape GBP recognition. Indeed, Wandel et al. showed that Shigella uses IpaH9.8, an E3 ubiquitin ligase, to target GBPs for degradation by the proteasome.

4.2.4 RACK1 promotes Shigella actin tail polymerization, actin-mediated motility and cell-to-cell spreading

After escape from the SCV, Shigella induces actin polymerization at one pole of the bacterium, forming an actin node that quickly elongates into an actin tail (Figure 3.4.1 B). The actin tail confers actin-mediated motility and allows bacteria to engage the host cell membrane, forming Shigella-containing protrusions that infect neighbouring cells. The molecular mechanisms enabling actin tail polymerization have been extensively studied in Shigella and other cytoplasmic pathogens. Shigella’s outer membrane protein IcsA is the central mediator of actin tail polymerization and bacterial intracellular motility. IcsA preferentially localizes to the old pole of the bacterium, where it recruits the actin polymerization machinery.

The essential proteins required for in vitro IcsA-mediated actin polymerization are N-WASP, Arp2/3, coflin and ADF/capping protein. In the cell, the nucleation promoting factor N-WASP remains in an auto-inhibited stage established by intramolecular interactions between the verprolin homology-cofilin-acidic (VCA) domain and the GTPase binding domain (GBD). Activation is usually mediated by Cdc42, which binds to the GBD to release the VCA domain. Likewise, IcsA binds to the GBD, displacing the VCA domain, which activates the actin polymerization complex Arp2/3. Then, the active Arp2/3 complex binds to the side of an actin filament, initiating actin polymerization, forming a branch. Both Cdc42 and IcsA mediated actin polymerization require the binding of Toca-1 to N-WASP to increment actin polymerization efficiency. The recruitment of Toca-1 to Shigella’s surface preceding actin tail polymerization seems to be mediated by IcsB. Profilin, an actin monomer-binding protein, also binds to N-WASP, promoting actin tail polymerization. Moreover, phosphorylation of N-WASP by Bkt and Abl kinases prompts N-WASP recruitment to Shigella and actin tail polymerization. Therefore, aside from the minimum requirements for in vitro polymerization, many host
factors are required for *Shigella*-mediated actin tail polymerization *in vivo*, and most converge on N-WASP activity modulation.

Given that RACK1 promoted efficient actin focus formation during *Shigella* invasion, I hypothesized that RACK1 was also needed for actin tail polymerization. Indeed, when I evaluated the number of *Shigella* associated with actin tails, I found a significant reduction in the percentage of tailed bacteria in RACK1-KD cells compared to control. On average, 42.4% of *Shigella* were associated with actin tails in control cells, which was reduced to 24.8% when RACK1 expression was silenced (Figure 3.6.1 B-C). Other studies have reported between 30 to 41% of tailed *Shigella* in HeLa cells and up to 60% in mouse-embryo fibroblasts (MEFs)\cite{175,205,440}. Reduction in the percentage of tailed bacteria has been related to various host factors. For example, Toca-1 silencing leads to 28% less tailed *Shigella*\cite{235}. Transient expression of a truncated N-WASP without the profilin-binding site reduces actin tails to 12%\cite{237}.

Shigella infecting MEFs from mice lacking Abl kinase induce 55% fewer actin tails than Abl+ MEFs\cite{440}. Burton *et al.* reported that Abl phosphorylates N-WASP, promoting actin tail polymerization. Interestingly, *Shigella* infecting cells expressing an N-WASP mutant lacking the Abl-phosphorylation site form abnormal actin tails ~3 µm shorter than tails formed in MEFs expressing WT N-WASP\cite{440}. Although I used a different method to measure the length of the tails, a comparable reduction in tail length was observed here. In RACK1-KD cells, *Shigella* polymerized less elongated tails, ~2 µm shorter than those formed in control cells (Figure 3.6.2). RACK1 is phosphorylated by Abl, which promotes RACK1 association with FAK and subsequent focal adhesion assembly\cite{271}. Therefore, it is plausible that Abl-mediated phosphorylation of RACK1 enhances RACK1 activity during actin tail polymerization.

Given that RACK1 is a known kinase scaffold\cite{5}, RACK1 could also stabilize active Abl and shuttle the kinase to its active site, facilitating N-WASP phosphorylation. In this scenario, RACK1-KD cells would behave like Abl null cells. Indeed, as in Abl null cells, fewer *Shigella* were associated with actin tails and the tails formed were shorter in RACK1-
KD cells (Figure 3.6.1-2). Furthermore, and in agreement with the invasion impairment observed in RACK1-KD cells (Figure 3.3.4 B-C) in this study, Shigella invasion is also reduced in Abl null MEFs, which was due to decreased Crk phosphorylation. Active Crk binds to cortactin, triggering Arp2/3-mediated actin polymerization and subsequent Shigella internalization. Thus, Abl controls Shigella entry and actin tail polymerization by phosphorylating Crk and N-WASP, respectively. Assessment of N-WASP and Crk phosphorylation in RACK1-KD cells could help decipher the role that RACK1 plays in modulating Abl function during Shigella infection.

Another intracellular pathogen that also induces actin tail polymerization is Listeria monocytogenes. The intracellular life cycles of Shigella and Listeria are very similar. However, the mechanism used for actin tail polymerization is quite different. Listeria uses ActA, which mimics N-WASP, to directly activate the Arp2/3 complex initiating actin polymerization. Given that RACK1 regulation of actin polymerization seems to be related to Abl-mediated phosphorylation of N-WASP, I suspect RACK1 might not promote polymerization of Listeria’s tails.

The Arp2/3 complex is essential for Shigella entry and actin tail assembly. Depleting the Arp2/3 complex from platelet extracts completely abolishes actin tail formation by E. coli expressing IcsA, while tail polymerization and motility are rescued by adding purified Arp2/3 complex. Here I found RACK1 interacts with Arp2, one of the seven subunits forming the Arp2/3 complex (Figure 3.8.2 A). Immunofluorescent detection of Arp2 (Figure 3.8.2 B) confirmed previous observations describing the Arp2/3 complex localizes throughout the length of Shigella’s actin tail. Then, I evaluated whether RACK1 silencing impairs Arp2 localization to Shigella but found no significant difference in the percentage of Arp2+ bacteria in RACK1-silenced cells compared to control cells (Figure 3.8.2 C). Moreover, RACK1 did not colocalize with the actin tail (Figure 3.6.1 A), suggesting the role of RACK1 in actin tail polymerization is indirect and does not involve Arp2/3 recruitment to Shigella.

Having determined that actin tail polymerization is impaired in RACK1-KD cells, I investigated whether the observed reduction in tail length could affect Shigella’s
intracellular motility. Understanding the actin-mediated motility behaviour of *Shigella* could also provide information on how the tail determines the bacterial path and speed. Most descriptions of bacterial movement patterns use models that do not accurately describe intracellular motility, such as *E. coli* and other extracellular flagellated bacteria \(^{443}\). Among actin-propelled bacteria, *Listeria monocytogenes* has been widely used to describe actin tail polymerization dynamics and motility \(^{444}\). Unfortunately, the study of *Shigella*‘s actin-mediated movements has been neglected, probably because *Shigella* is not motile in Xenopus egg extracts, which is a commonly used experimental system for actin-based motility \(^{445}\).

Live-cell imaging was used here to characterize *Shigella*‘s actin-mediated intracellular motility. I manually tracked bacterial trajectories by following *Shigella*‘s movements along the focal plane. The recorded trajectories were then used to analyze various parameters, including speed, sinuosity, and directional change of *Shigella* trajectories. There is significant variability in the rate of *Shigella* movement reported in the literature, mainly depending on experimental settings and cell types. In infected cells, *Shigella* moves at a speed between 0.05 to 0.43 µm/sec, the lowest was in HT-29 cells, while the highest speed was found in Vero cells \(^{225,236,237,440,441,446}\). *E. coli* expressing IcsA moves at an average speed of 0.14 µm/sec in Xenopus egg extract, similar to the rates documented for *Listeria* (0.2 µm/sec) in the same experimental settings \(^{113,441}\). In this work, the speed of *Shigella* in control HeLa cells was 0.045±0.02 µm/sec (Figure 3.6.3 B-C). This is seven times slower than the speed reported in HeLa cells by Mostowy et al. (0.32 µm/sec) and comparable to the rates described in *Shigella* infecting HT-29 cells \(^{181,236}\). The discrepancy of my findings with those described in the literature could be due to the methodology used here. I measured the average speed of trajectories recorded from images taken every 1 min for two h. Consequently, the trajectories were recorded over many time frames, whereas Mostowy et al. measured *Shigella* speed from trajectories followed for 1 to 10 min (images were taken every 10 sec) \(^{181}\). In this manner, the authors probably missed low-speed intervals commonly observed in *Shigella* trajectories (Figure 3.6.3 F).
Although there was substantial variability in the speed of the trajectories analyzed, RACK1 silencing significantly reduced the speed of *Shigella*’s actin-mediated motility (Figure 3.6.3 B-C). This was not surprising since a reduction in tail length has been shown to minimize speed \(^{440}\). Moreover, the bacterial trajectories generated in RACK1-KD cells were less dispersed than in control cells (Figure 3.6.3 B), suggesting less continuous (intermittent) movements. Therefore, I evaluated if RACK1 silencing correlated with intermittent low-speed intervals. For this, I empirically determined a threshold speed (0.02 \(\mu \text{m/sec} \)) by analyzing time points where *Shigella* showed little to no displacement. These low-speed intervals were called tumble events, and faster speed intervals were called run events. Tumbling events are characteristic of flagellated bacteria motility, resulting in an erratic change in the trajectory’s direction \(^{400}\). Conversely, in *Shigella* trajectories, tumbling events were followed by a decrease in speed (more than one tumble) without abrupt changes in the direction of movement (Figure 3.6.3 F). When comparing tumble times in control and RACK1-KD cells, *Shigella* trajectories from RACK1-KD cells were interrupted by significantly more tumbling events (Figure 3.6.3 G). These interruptions should directly impact speed, as demonstrated by analysis of *Listeria* trajectories in bovine brain extracts artificially thickened with methylcellulose to slow bacterial motility \(^{447}\).

During trajectory recording, I observed that bacterial motility stopped when *Shigella* lost or reduced the length of its tail and resumed movement when the tail elongated again (data not shown). This observation, along with the increased tumble event frequency found in RACK1-silenced cells, suggests RACK1 mediates actin tail elongation, reducing the time *Shigella* expends tumbling. Less tumbling probably results in more linear trajectories. I tested this by determining trajectory sinuosity and average directional change (DC). As suspected, the sinuosity index was significantly lower in control cells than in RACK1-KD cells (Figure 3.6.3 D). This means the trajectories were less tortuous in control cells. I could have done a correlation analysis to confirm the link between less tumbling and low sinuosity index. In contrast to the sinuosity results, there were no significant differences in the average DC of trajectories recorded in control and RACK1-KD cells (Figure 3.6.3 E). Interestingly, high variability in the trajectories’ DCs was found, suggesting *Shigella* trajectories experience random changes in direction probably determined by physical
obstacles and host cell boundaries. This has been demonstrated in *Listeria* trajectories. Motile *Listeria* colliding with mitochondria results in directional changes and more convoluted trajectories than bacteria moving in mitochondria-free domains. Therefore, it is possible *Shigella* loses/shortens its tail upon mitochondria encounter, and RACK1 mediates actin tail re-polymerization/elongation helping *Shigella* resume motility.

Furthermore, it has been reported that the natural variation in *Listeria* trajectory speed arises from temporal fluctuations in actin tail density. Quantification of actin tail FI could be used to determine the relative density of the tail and correlate it to speed changes during bacterial trajectories. Although I did not measure actin tail fluorescence in the time-lapse experiments, I was able to quantify the average FI of actin tails in fixed samples. Surprisingly, no significant differences were found in the tail’s FI measured in control and RACK1-KD cells (Figure 3.6.1 E). I also quantified the tail’s area and found a significant reduction in the size of the tails formed in RACK1-KD cells compared to control cells (Figure 3.6.1 D). Moreover, a weak negative correlation between tail area and FI was found in RACK1-KD cells, suggesting smaller tails tend to be more fluorescent. However, this correlation was not significant in control cells (Figure 3.6.1 F). It is challenging to interpret these findings since I only calculated the average FI per tail and not the total FI per tail.

From the tail’s area calculations and trajectory speed results, I could predict that smaller tails, although probably denser (higher FI), provide less propelling force than longer and dimmer tails. Studies of *Listeria*’s actin tails support this hypothesis. Soo and Theriot reported a negative correlation between speed and tail density. The authors observed that as the *Listeria* trajectory speed increased, the density (FI) of the tail decreased, and the tail stretched further behind the bacterium (tail elongation). Thus, the length of the actin tail positively correlates to bacterial speed, while the tail’s density negatively correlates to speed. These findings agree with the observations reported here. Longer tails and higher speed trajectories were found in control cells, whereas shorted tails and slower speed trajectories were observed in RACK1-KD cells (Figures 3.6.2 and 3.6.3 C). Measurement of the FI variations of the actin tail during *Shigella* trajectories will clarify the correlations between actin tail density and its propelling force.
Shigella can access the cytosol of adjacent cells without transiting through the extracellular milieu. Propelled by an actin tail, Shigella deforms the host cell’s membrane forming a bacteria-containing protrusion that projects into neighbouring cells. As the protrusion moves away from the primary infected cell, it collapses and resolves into a membrane-bound compartment endocytosed by the target cell. To gain access to the cytoplasm of the secondary infected cell, Shigella escapes a double-membrane vacuole derived from the primary and secondary infected cells’ membranes. Given that cell-to-cell spreading relies on actin-based motility, I suspected RACK1-KD silencing would also impair spreading as Shigella’s motility was impaired in these cells. Therefore, I assessed Shigella’s cell-to-cell spread using a modified plaque assay.

Plaque-based assays are commonly used to determine the titer of lytic viruses and have been adapted to assess Shigella cell-to-cell dissemination. As Shigella spreads in a confluent cell monolayer, it forms areas of infection called plaques. The size of the plaques correlates with the efficiency of bacterial spreading. I improved the classical plaque assay by using the nontoxic polymer Methocel instead of a dense agarose overlay to restrict bacterial extracellular dissemination. The translucent nature of Methocel allowed live-cell imaging of the infected monolayers without disturbing Shigella’s plaques with cumbersome fixing and staining procedures. In addition, the 96-well format of the modified assay provided high throughput screenings capabilities. Most analyses of Shigella cell-to-cell spreading found in the literature used the classical plaque assay that requires longer infection times (48-72 h) to visualize the plaques after Giemsa staining. Since I imaged Shigella plaques using a microscope, less incubation time was required to obtain prominent plaques. Consequently, the plaque size reported by other authors is significantly bigger than what I report here. For example, Duncan-Lowey et al. reported an average plaque area of ~0.6 mm² for CaCo-2 cells and ~0.35 mm² for MEFs after 48 h of infection with Shigella. With the methodology developed here, Shigella plaques formed in HeLa cells had an average area of 0.132±0.11 mm² after ten h of infection; and the plaques formed in CaCo-2 cells were 0.313±0.24 mm² after only 15 h of infection (Figure 3.7.3 B). Thus,
aside from the advantages of live-cell imaging and high throughput, the modified plaque assay conveniently reduced experiment time.

Having determined the best conditions for the modified plaque assay, I then assessed the impact of RACK1 silencing on the ability of *Shigella* to form plaques in HeLa and CaCo-2 cells. Consistent with a defect in intracellular motility, the plaque area was significantly reduced in all three HeLa and CaCo-2 RACK1-KD cell lines analyzed (Figure 3.7.3 B). To further confirm these findings, I captured high magnification time-lapse images of infected HeLa cells overlaid with Methocel and manually followed cell-to-cell spreading that originated from one infected cell. *Shigella* infected a new cell every 15 to 30 min during the first 3 hours of infection. After this time, *Shigella*'s spreading rate slowed down, infecting a new cell every 45 min to one h (Figure 3.7.4 A). To my knowledge, this is the first time the rate of *Shigella* spreading has been characterized in this manner. A study assessing *Listeria* spreading, with similar imaging resolution as used here, reported a small percentage of bacteria infecting far away cells. These “pioneer” bacteria determined the size of the infection plaque. I did not observe such pioneer behaviour in *Shigella* infected monolayers. This might be due to the Methocel restricting the diffusion of extracellular bacteria in the media, which probably better represents the gradual spreading of *Shigella* in the colonic epithelium. Furthermore, consistent with the plaque assay results, the cumulative number of infected cells over ten h of infection was significantly reduced in RACK1-KD cells compared with control (Figure 3.7.4 B). Together, these results are consistent with a pivotal role of RACK1 in actin tail modulation, leading to efficient *Shigella* spreading in epithelial cells.

4.3 RACK1 plays a role in actin filament turnover

The actin cytoskeleton is a complex network in the cell’s cytoplasm, exerting various functions, including cell motility, cell division, endocytosis, and vesicular trafficking. The building block of the actin cytoskeleton is globular (G) actin that assembles into polar double helix filaments (F-actin). The resulting filaments have a fast-growing barbed end where ATP-bound G-actin monomers are added and a slow-growing pointed end from
which ADP-bound G-actin is dissociated. \(^{226,227}\) De novo F-actin polymerization starts with a nucleation phase where a G-actin trimer or nucleus is formed. Nuclei assembly triggers rapid filament elongation that stabilizes after reaching a steady-state equilibrium between polymerization and depolymerization. \(^{226}\) De novo filament formation is kinetically unfavourable, yet actin filaments in live cells polymerize and depolymerize very rapidly. F-actin turnover is regulated by a large group of actin-binding proteins (ABPs) classified according to their functions. These include G-actin binding proteins, actin nucleators, and severing and capping proteins. \(^{455}\) Monomer binding proteins such as profilin maintain a pool of unpolymerized actin and inhibit actin nucleation. \(^{456}\) Profilin function is counteracted by actin nucleators, such as the Arp2/3 complex and formins, which initiate branched and unbranched filaments, respectively. \(^{117,240}\) Capping proteins bind and stabilize filaments while severing proteins, such as ADF/cofilin, break filaments generating two uncapped ends available for rapid polymerization. \(^{457,458}\)

The results from *Shigella* invasion, actin tail polymerization, intracellular motility, and cell-to-cell spreading analyses suggest that RACK1 is likely a regulator of actin cytoskeleton dynamics during *Shigella* infection. This raised the question of whether RACK1’s function is specific to *Shigella*-mediated manipulation of the actin cytoskeleton or responds to other actin polymerization inducers. Actin turnover can be pharmacologically manipulated using actin binding drugs, such as jasplakinolide (Jasp) and cytochalasin D (CytoD). \(^{406,377,459}\) Conversely, Jasp induces actin filament stabilization *in vitro*, while *in vivo* it disrupts actin filaments, inducing polymerization of G-actin into amorphous aggregates. \(^{377,407}\) As reported in the literature, treatment with 0.2 µM Jasp caused the formation of multiple actin aggregates throughout the cytoplasm of HeLa cells. \(^{407,460}\) I quantified the number of aggregates, total aggregate area, and their total FI per cell to assess the extent of actin polymerization induction. Upon Jasp treatment, RACK1-KD cells developed fewer actin aggregates than control cells, and the aggregates were smaller and dimmer, indicating they contained less F-actin. \(^{407,460}\) Therefore, RACK1 silencing rendered the cells less susceptible to the effects of Jasp, suggesting RACK1 promotes actin polymerization. This observation was consistent with the actin polymerization impairment observed in RACK1-KD cells infected with *Shigella*.
To assess if RACK1 also regulates actin depolymerization, I treated the cells with CytoD, a fungal toxin that binds to the filament’s barbed end, preventing actin filament elongation. Since depolymerization is not inhibited, the net effect of CytoD treatment is actin depolymerization. Small actin aggregates or puncta were formed after CytoD treatment, but disassembly of stress fibres and cell adhesions was the most prominent effect (Figure 3.8.4 A). Other studies have described similar results, reporting a significant cell size reduction after long-term treatment with CytoD. Given that the cells were treated for only 1.5 h, I measured the area and FI of F-actin-rich structures but not the size of the cells. I reasoned that if RACK1 participates in actin depolymerization, RACK1-silenced cells should maintain more F-actin-rich structures than control cells. No significant differences were found in the area and FI of F-actin-rich structures left after CytoD treatment in control and RACK1-KD cells (Figure 3.8.4 C-D), suggesting that RACK1 is not involved in CytoD mediated actin depolymerization.

Furthermore, I used fluorescence recovery after photobleaching (FRAP) to evaluate actin polymerization dynamics in real-time. In FRAP, the protein of interest is tagged to a fluorophore, whose fluorescence is irreversibly photobleached within a discrete region using a high-power laser. The fluorescence is recovered over time as new fluorescent proteins replace the bleached ones. Here I used GFP-tagged actin to quantify the rate of fluorescence recovery in control and RACK1-KD cells. F-actin assembles into complex structures ranging from rapidly polymerizing branched networks found in membrane protrusions (membrane ruffles) to more stable thick actin bundles called stress fibres (SFs). Thus, I evaluated actin turnover in SFs and ruffles to capture slow and rapid actin polymerization processes. As expected, GFP-actin fluorescence was recovered faster in membrane ruffles than in SFs (Figure 3.8.5 A). The halftime of recovery ($t_{1/2}$) was 11.3 ± 4.6 sec for membrane ruffles and 16.1 ± 9.3 sec for SFs. Similar $t_{1/2}$ times have been reported by other authors validating my results.

Interestingly, when I assessed the turnover of actin filament assembly in RACK1-silenced cells, I found a significant increase in fluorescence recovery times in ruffles but
not in SFs compared to control cells (Figure 3.8.5 C and E). The ruffle results were consistent with a defect in actin polymerization in RACK1-KD cells. Another explanation of the slower actin turnover observed in RACK1-KD is that the lack of RACK1 promoted filament stabilization. A Jasp control could help elucidate the role of RACK1 in actin turnover.

The similar turnover rates observed in SFs from control and RACK1-KD cells were intriguing, especially because RACK1 overexpression has been reported to increase the number of SFs in CHO cells \(^{327}\). SF polymerization is controlled by the small GTPase RhoA and its effectors Rho-associated protein kinase (ROCK) and Dia1 \(^{466,467}\). ROCK inhibits ADF/cofilin-mediated disassembly of filaments, while the formin Dia1 facilitates the polymerization of long non branched actin filaments \(^{467,468}\). There are conflicting reports about the link between RACK1 and RhoA. In breast cancer cells, RACK1 was shown to promote migration through interaction with RhoA and activation of the RhoA/Rho kinase pathway \(^{469}\), while RACK1 silencing in Jurkat cells does not affect RhoA activation. This indicates RACK1-mediated regulation of RhoA is cell type specific.

In contrast to SFs, rapid plasma membrane movements such as those found in ruffles are governed by Abl and Src kinases \(^{470,471}\), and involve Cdc42/Rac1-mediated activation of N-WASP \(^{472}\). Active N-WASP subsequently activates the Arp2/3 complex promoting actin polymerization in membrane ruffles. Since RACK1 is a substrate and regulates Abl and Src activation \(^{271,473,328,474}\), RACK1 activity likely promotes actin turnover in highly dynamic structures rather than stable ones. Additionally, Abl and Src are involved in \textit{Shigella} entry to host cells, and Abl is required for actin tail polymerization \(^{116,118,425,440}\). Therefore, RACK1 likely promotes actin polymerization during \textit{Shigella} infection through Cdc42/Rac1-N-WASP rather than RhoA GTPase. It is also possible Src and Abl promote N-WASP activation thereby increasing actin polymerization rate. Overall, the actin-binding drug experiments revealed that RACK1 promotes actin polymerization but not depolymerization. FRAP analysis supported these findings showing significant actin-turnover inhibition of membrane ruffles in RACK1-KD cells.
4.4 Model of RACK1 function in *Shigella* infection

In conjunction with previous reports of RACK1 functions and *Shigella* regulation of host factors, my thesis results led me to propose a model of RACK1's role during *Shigella* infection. As schematized in Figure 4.1, (a) *Shigella* induces profuse actin polymerization and membrane ruffling, forming an F-actin entry focus leading to bacterial uptake by epithelial cells (ECs). RACK1 activity promotes fast actin polymerization at the entry foci, probably through its interaction with Abl and Src kinases. Active Src contributes to *Shigella* entry by activating cortactin while Abl phosphorylates Crk. Active Crk binds active cortactin leading to Arp2/3-mediated actin polymerization of branched networks. These networks rapidly deform the membrane, forming membrane ruffles that engulf the bacterium. (b) After internalization, *Shigella* remains in the vacuole for ~8 min before damaging the vacuole’s membrane and escaping to the cytoplasm peeling off the membrane remnants. (c) In the cytoplasm, *Shigella* induces actin polymerization at one pole of the bacterium forming an actin node that elongates into an actin tail conferring intracellular motility. RACK1 promotes actin tail polymerization and tail elongation. The mechanism here could also be mediated by RACK1-Abl interaction since Abl is required for actin tail polymerization. Abl phosphorylates N-WASP, enhancing its activation, leading to recruitment of the Arp2/3 complex inducing actin tail elongation. (d) Motile *Shigella* encounters obstacles in the cytoplasm such as mitochondria or the cell’s membrane leading to actin tail loss and tumbling behaviour. A nonmotile bacterium can either replicate or re-polymerize and elongate a new actin tail to resume movement. Here, the activity of RACK1 is also needed, as demonstrated by the increased tumbling time found in RACK1-KD cells. (e) As *Shigella* elongates its tail, propulsion force accumulates in the bacterium's back pole, eventually deforming the EC’s membrane to form a bacterium containing membrane protrusion. This protrusion is then endocytosed by a neighbouring cell. In RACK1-KD cells, *Shigella* cannot elongate its tail as efficiently as in control cells. Short-tailed bacteria are probably less likely to accumulate enough force to form protrusions, which in consequence impairs cell-to-cell spreading. (f) Notably, RACK1 regulation of actin polymerization is not restricted to *Shigella* infection. RACK1 mediates Jasplakinolide-induced polymerization of actin aggregates. Additionally, as demonstrated by FRAP
experiments, RACK1 regulates actin turnover in membrane ruffles, likely involving Src and Abl kinases signalling.
Figure 4.1. Model of RACK1 function in *Shigella* infection.

Diagram describing the various steps during *Shigella*’s intracellular replication cycle where RACK1 is involved. **a.** RACK1 (green) is recruited to the entry focus promoting actin polymerization, likely by interacting with Src and Abl. These kinases phosphorylate (P) cortactin and Crk, respectively. The cortactin-Crk complex activates Arp2/3-mediated actin polymerization of branched filaments. **b.** The bacterium rapidly escapes from the *Shigella*-containing vacuole (SCV), generating membrane remnants. **c.** RACK1 promotes actin tail polymerization and elongation, probably by facilitating Abl-mediated phosphorylation of N-WASP. Active N-WASP recruits the Arp2/3 complex to one pole of the bacterium inducing actin tail polymerization. **d.** As *Shigella* rapidly moves through the cell’s cytoplasm, it encounters mitochondria which could slow down motility by inducing actin tail shortening or actin tail loss. **e.** Untailed *Shigella* replicates and induces actin tail polymerization, requiring RACK1 to regain motility. **f.** Aside from infection, RACK1 promotes actin turnover in membrane ruffles, which is likely mediated by Abl and Src kinases. Similarly, RACK1 facilitates jasplakinolide (Jasp)-induced polymerization of F-actin aggregates.
4.5 Concluding remarks and further work

Considering the burden of diarrhoeal diseases in low- to middle-income countries, understanding how one of the most prevalent causal agents, the strictly human pathogen bacterium *Shigella*, invades, replicates and spreads in the intestine is essential. Here I provide new insights into *Shigella*'s mechanisms to subvert the host actin cytoskeleton. I hypothesized that *Shigella flexneri* exploits the host scaffold protein RACK1 to manipulate actin cytoskeleton dynamics leading to efficient invasion and spreading. To test this hypothesis, I systematically investigated the role of RACK1 in all the critical steps of *Shigella*'s intracellular life cycle.

Using advanced microscopy techniques and automated image data analysis, I characterized yet another function of the already multifunctional RACK1. I discovered that RACK1 promotes *Shigella* growth in HeLa cells and mediates colonization of *Drosophila*’s intestine. An in-depth analysis of *Shigella* infection dynamics revealed that RACK1 is recruited to the entry site, and it is required for *Shigella*-mediated induction of actin polymerization at the entry focus promoting bacterial internalization. RACK1 also promoted actin tail polymerization and tail elongation enhancing *Shigella*’s intracellular motility. Efficient actin tail elongation ensures the bacterium engages the host cell membrane with enough force to form *Shigella*-containing protrusions allowing infection of neighbouring cells. Pharmacologically induced actin polymerization demonstrated that RACK1's role in actin polymerization is not specific to *Shigella* infection. FRAP experiments further confirmed that RACK1 promotes actin turnover in rapidly polymerizing membrane ruffles. In contrast, RACK1 was not required for *Shigella* escape from the vacuole, intracellular replication, LC3 targeting blockage and cell death inhibition.

Although the mechanism by which RACK1 stimulates actin polymerization was not identified, I propose RACK1 promotes actin polymerization through its interaction with the kinases Abl and Src. These two kinases are involved in *Shigella* internalization, and Abl is also required for actin tail polymerization. The use of RACK1 mutants lacking the Src and Abl binding domains could confirm the direct link between RACK1 interaction
with these kinases and actin dynamic modulation. Since RACK1 is a known kinase regulator, future experiments should also evaluate Abl and Src activation in RACK1 silenced cells. For this, phosphorylation of the Src substrate cortactin and Abl substrate Crk can be assessed using commercially available antibodies. Actin polymerization in vitro using whole cell lysates could be used to confirm RACK1’s observed increases of actin polymerization rates. Given that Shigella hijacks the same pathways and protein components involved in focal adhesion assembly, evaluating FAK, Cdc42, Rac1 and vinculin activation in RACK1-silenced cells during Shigella infection would further elucidate the mechanism underlying RACK1 control of Shigella-induced actin polymerization.

Overall, this work shows how Shigella relies on the scaffold protein RACK1, a regulator of many key signalling pathways, to invade and spread in epithelial cells. Therefore, RACK1 could be a potential drug target to control Shigella colonization of the colonic epithelium. A possibility supported by the colonization impairment observed in Drosophila intestines depleted of RACK1 expression. Finally, this research also provides new assays and data analysis methodologies to study Shigella infection and actin cytoskeleton dynamics.
APPENDIX A MEDIA, BUFFERS, AND OTHER SOLUTIONS

Antibiotics:
Ampicillin: 100 μg/mL diluted in 70% ethanol (EtOH, Sigma, Cat. No. A9518-5G)
Kanamycin: 50 μg/mL diluted in ddH2O
Carbenicillin: 100 μg/mL in ddH2O
Gentamycin: 100 μg/mL diluted in ddH2O

1X Phosphate-Buffered Saline (PBS)
140 mM NaCl (BioShop, Cat. No. SOD004.205)
3 mM KCl (Sigma, Cat. No. 7447-40-7)
8 mM Na2HPO4 (BioShop, Cat. No. SPD579.500)
1 mM KH2PO4 (Sigma, Cat. No. P5655-500G)
Adjust pH to 7.4

50X TAE buffer
242 g Tris-base (Life technologies, Cat. No.15504-020)
57.1 mL glacial acetic acid (Fisher Scientific, Cat. No. A38-212)
100 mL 0.5M EDTA, pH 8 (Anachemie, Cat. No. 37560-300)
ddH2O to 1 litre
Dilute to 1X before use.

12% resolving gel for SDS-PAGE
For 1 mini gel of 1 mm (7.5 mL)
3.2 mL ddH2O
1.8 mL of 1.5 M Tris-HCl pH 8.8 (Fisher Scientific, Cat. No. BP153-500)
2.25 mL of 40% w/v Acrylamide/Bis-acrylamide [37.5:1] (BioShop, Cat. No. ACR005.502)
75 mL of 10% SDS (Fisher Scientific, Cat. No. BP166100)
75 mL of 10% ammonium persulfate (APS, Fisher Scientific, Cat. No. BP179-100)
7.5 μL of N- Tetramethylethlenediamine (TEMED, Sigma, Cat. No. 110-18-9)
4% Stacking gel for SDS-PAGE
For 2 mini gels of 1 mm (3 mL)
1.9 mL ddH2O
750 μL of 0.5 M Tris-HCl pH 6.8
300 μL of 40% w/v Acrylamide/Bis-acrylamide [37.5:1]
30 μL of 10% SDS
30 μL of 10% APS
3 μL of TEMED

10 X Ponceau S
For 100 mL:
2 g Ponceau S (Allied Chemical, Cat. No. 628)
30 g trichloroacetic acid (Sigma, Cat. No. T9159-100G)
30 g sulfosalicylic acid (Sigma, Cat. No. 304851-84-1)
Add ddH2O up to 100 mL
APPENDIX B FIJI MACROS AND R SCRIPTS

B.1. Fiji Macro for section 2.10.2: Analysis of intracellular replication in fixed samples

The following macro was executed in Fiji to measure the area covered by $\Delta icsA$ Shigella and fluorescence intensity.

//First prep the images by converting to .tiff

//then run this to make average projections of the cells and bacteria channels separately
//run as a chunk from line 9 to 21
//change line 19, see below

//newArray = newArry(nImages);
for (i=0; i<nImages; i++) {
 selectImage(i+1);
 imgArray[i] = getImageID();
}

//now we have a list of all open images, we can work on it:
for (i=0; i< imgArray.length; i++) {
 selectImage(imgArray[i]);
 // INSERT MACRO HERE
 run("8-bit");
 run("Duplicate...", "duplicate channels=1"); //change here for cells channel = 1 or bacteria channel = 2
 run("Z Project...", "projection=[Average Intensity]";
}

//close all images that won’t be needed, keep the AVE proj

//Manually outline cells to create a mask:
//using the Polygon tool select the area of complete cells, do not include incomplete cells.
//example
t makePolygon(444,13,412,5,219,0,209,12,217,45,205,80,225,104,260,127,301,137,416,95,427,67);
roiManager("Add"); //add to ROI manager
// do the same with all the cells

//in the ROI manager, measure area and mean grey value of all cells, and save results
roiManager("Measure");
saveAs("Results", "/home/karla/Documents/880/IcsA_06.05.2021_3h/cells_area_FI/CellsAVE_NS_IcsA_5.csv");

//transform the cell’s ROIs into a mask to be used with the speckle inspector tool
selectWindow("AVG_NS_IcsA-3h_5-1"); //with the cell's mask selected
run("Binary (0-255) mask(s) from Roi(s)", "show_mask(s) s save_in=/home/karla/Documents/SpinningDisk_Dal/20201215/Jasp_exp3_p2/Masks/ s suffix=[] save_mask_as=tif rm=[RoiManager[size=8, visible=true]]");
run("Invert"); //to select cells not background in next step
For the bacteria segmentation:
Select the AVERAGE image and run this to make a mask
make sure to test the threshold that fits best
from line 45-55
run("Duplicate...", " ");
run("Subtract Background...", "rolling=50");
run("Gaussian Blur...", "sigma=2");
//run("Threshold...");
resetThreshold();
//setAutoThreshold("Huang dark no-reset"); //For 06.05 expt
setAutoThreshold("Li dark"); //For 09.05 expt
setOption("BlackBackground", false);
run("Convert to Mask");
run("Set Measurements...", "area mean display redirect=None decimal=4");
run("Analyze Particles...", "display summarize add");

now input the cells and bacteria mask into the speckle inspector tool
primary = cells mask
secondary = bacteria mask
run("Speckle Inspector", "primary=Masks secondary=AVG_NS_IcsA-3h_5-1 redirect=None show=secondary secondary_object");
roiManager("Show All");

manually eliminate any bacteria outside the cells if any
example below
roiManager("Select", 63);
roiManager("Delete");

select the original AVERAGE image of the bacteria and apply the ROIs
at this point each ROI (bacteria clump) will have a cell number assigned
ROI manager run measure area and mean grey value, then save the data
roiManager("Show All");
roiManager("Measure");
saveAs("Results",
"/home/karla/Documents/880/IcsA_06.05.2021_3h/Speckles_area_FI/speckle_NS_IcsA_5.csv");
run("Close All");

do the same with all images
End of script
B.2. Fiji Macro for section 2.10.3: Targeting of *Shigella* by guanylate-binding proteins (GBPs).

The following macro was executed in Fiji to measure the number of all bacteria and the number of GBP+ bacteria.

```java
//first define the preprocessing steps
//For the GBP1 positive bacteria --> channel 2
run("Duplicate...", "duplicate channels=2");
run("Subtract Background...", "rolling=50");
run("Mean...", "radius=2");
run("Gaussian Blur...", "sigma=1");

//setThreshold(27, 255);
setOption("BackgroundColor", false);
setAutoThreshold("RenyiEntropy dark no-reset");
run("Convert to Mask");
run("Analyze Particles...", "exclude clear summarize add"); //remove "clear" when running in batch!!!

//Bacteria segmentation to do the counting
//For all the bacteria --> DAPI channel
//set up the code to get the best segmentation
run("Duplicate...", "duplicate channels=1");
run("Grays");
run("Subtract Background...", "rolling=50");
run("Mean...", "radius=2");

//setThreshold(19, 255);
setAutoThreshold("Huang dark no-reset");
setOption("BackgroundColor", false);
run("Convert to Mask");

//Adjust the size here to obtain only bacteria not nucleus
run("Analyze Particles...", "size=20-500 pixel exclude clear summarize add");
//remove "clear" when running in batch!!!

//For the GBP+ bacteria --> GBP+ use red channel
//set up the code to get the best segmentation
run("Duplicate...", "duplicate channels=1");
run("Grays");
run("Subtract Background...", "rolling=50");
run("Mean...", "radius=2");

//setThreshold(19, 255);
setAutoThreshold("Huang dark no-reset");
setOption("BackgroundColor", false);
run("Convert to Mask");
run("Analyze Particles...", "size=0-inf pixel exclude clear summarize add");
//remove "clear" when running in batch!!!
```
// RUN MACRO BATCH
// Insert the above steps to obtain data for GBP+ bacteria first and then all bacteria
// clear the results table of any previous measurements
run("Clear Results");
// The next line prevents ImageJ from showing the processing steps during
// processing of a large number of images, speeding up the macro
setBatchMode(true);
// Show the user a dialog to select a directory of images, make sure the directory only has the required images. Other files make macro fail
inputDirectory = getDirectory("Choose a Directory of Images");
// Get the list of files from that directory
fileList = getFileList(inputDirectory);
for (i = 0; i < fileList.length; i++)
{
 processImage(fileList[i]);
}
setBatchMode(false); // Now disable BatchMode since we are finished
updateResults(); // Update the results table so it shows the filenames
// Show a dialog to allow user to save the results file
outputFile = File.openDialog("Save results file");
// Save the results data
saveAs("results", outputFile);
function processImage(imageFile)
{
 // store the number of results before executing the commands
 prevNumResults = nResults;
 open(imageFile);
 // Get the filename from the title of the image that's open
 // We do this instead of using the imageFile parameter
 filename = getTitle();
 // Copy here the parameters set to segment the bacteria e.g.
 // For all bacteria --> DAPI channel
 run("Duplicate...", "duplicate channels=1");
 run("Grays");
 run("Subtract Background...", "rolling=50");
 run("Mean...", "radius=2");
 setThreshold(19, 255);
 setAutoThreshold("Huang dark no-reset");
 setOption("BlackBackground", false);
 run("Convert to Mask");
 // Adjust the size here to obtain only bacteria not nucleus
 // ONLY GET THE SUMMARY DATA
 run("Analyze Particles...", "size=20-500 pixel exclude summarize add");
 // Now loop through each of the new results
 for (row = prevNumResults; row < nResults; row++)
 {
 setResult("Filename", row, filename);
 }
 close("*"); // Closes all images
// end of script
B.3. Fiji Macro for section 2.11.8: Modified plaque assay.
This macro was executed in Fiji to measure the area of the plaques formed by *Shigella* in HeLa and CaCo-2 cells.

```java
// batch mode of a directory of images
run("Clear Results"); // clear the results table of any previous measurements
// The next line prevents ImageJ from showing the processing steps during
// processing of a large number of images, speeding up the macro
setBatchMode(true);
// Show the user a dialog to select a directory of images
// have only images on the directory, other files make macro fail
inputDirectory = getDirectory("Choose a Directory of Images");
// make sure the directory only has the required images
// Get the list of files from that directory
// NOTE: if there are non-image files in this directory, it may cause the macro to crash
fileList = getFileList(inputDirectory);
for (i = 0; i < fileList.length; i++)
{
    processImage(fileList[i]);
}
setBatchMode(false); // Now disable BatchMode since we are finished
updateResults(); // Update the results table so it shows the filenames

// Show a dialog to allow user to save the results file
// outputFile = File.openDialog("Save results file");
// Save the results data
// saveAs("results", outputFile);
function processImage(imageFile)
{
    // store the number of results before executing the commands, so we can add
    // the filename just to the new results
    prevNumResults = nResults;
    open(imageFile);
    // Get the filename from the title of the image that's open for adding to
    // the results table
    // We do this instead of using the imageFile parameter so that the directory
    // path is not included on the table
    filename = getTitle();
    // if using an image stack, add "stack" at the end where indicated
    // subtract background depending on images
    run("Subtract Background...", "rolling=50 stack"); // stack
    run("Maximum...", "radius=5 stack"); // stack
    run("Median...", "radius=10 stack"); // stack
    run("Gaussian Blur...", "sigma=15 stack"); // stack
```
// change the threshold settings according to data
// MinError --> HeLa plaques
Huang --> CaCo plaques, depends on plaques

setOption("BlackBackground", true);
run("Convert to Mask", "method=MinError background=Dark calculate black");
// this one was too permissive
run("Convert to Mask", "method=Huang background=Dark calculate black"); // this method worked well for caco expts 28.05 and 25.05
run("Convert to Mask", "method=Default background=Dark calculate black"); //default worked better for 15.05
run("Dilate", "stack"); // "stack"
run("Fill Holes", "stack"); // "stack"
run("Duplicate...", "duplicate");
run("Subtract Background...", "rolling=90 stack");
run("Median...", "radius=10 stack");
run("Gaussian Blur...", "sigma=10 stack");
run("Convert to Mask", "method=Mean background=Dark calculate");
run("Dilate", "stack");
run("Dilate", "stack");
run("Fill Holes", "stack");

// You should adjust the size input according to the sizes of nuclei in your images
// run("Analyze Particles...", "size= 1-Infinity circularity=0-1.00 summarize add stack");

run("Analyze Particles...", "size= 0.1-Infinity circularity=0-1.00 exclude summarize add stack");

// Now loop through each of the new results, and add the filename to the "Filename" column
for (row = prevNumResults; row < nResults; row++)
{
 setResult("Filename", row, filename);
}
close("*"); // Closes all images
} // end of script
This macro was used to segment F-actin aggregates and F-actin-rich structures in cells treated with Jasp and CytoD.

```java
//open Max projection version of the video
//duplicate last time point of the video

//KD92 images show slower actin polymerization thus the Factin normal structures (stress fibers)
//are picked up by the segmentation
//substract different values and use different threshold to efficiently pick up real Factin speckles
run("Duplicate...", " ");
run("Subtract...", "value=25"); //12 for images 9-12
run("Unsharp Mask...", "radius=1 mask=0.60");
run("Median...", "radius=1");

setAutoThreshold("Li dark");
setAutoThreshold("Default dark");
setThreshold(30, 255);//25 for images 9-12
run("Convert to Mask");

//manually make mask of cells and transform to mask
run("Binary (0-255) mask(s) from Roi(s)", "show_mask(s)")
run("Invert"); // to get the cells in black
//save mask of cells

//open all videos and run this
//make sure the videos are set in the last time point
imgArray = newArray(nImages);
for (i=0; i<nImages; i++) {
    selectImage(i+1);
    imgArray[i] = getImageID();
}
//now we have a list of all open images, we can work on it:
for (i=0; i< imgArray.length; i++) {
    selectImage(imgArray[i]);
    // INSERT MACRO HERE
    run("Duplicate...", " ");
    run("Subtract...", "value=25"); //12 for images 9-12 //25 for images 13-16
    run("Unsharp Mask...", "radius=1 mask=0.60");
    run("Median...", "radius=1");

    setAutoThreshold("Li dark");
    setAutoThreshold("Default dark");
    setThreshold(30, 255);//25 for images 9-12 //30 for images 13-16
    run("Convert to Mask");
}
```
// use the "Speckle Inspector" to analyze the F-actin granules
run("Speckle Inspector", "primary=mask_14_cells.tif secondary=mask_14_granules.tif redirect=None show=secondary speckle statistic secondary_object");

// open the AVERAGE projection version of the video and duplicate the last time point
// use the ROIs from the inspector to measure area and mean FI of all the granules inside the cells selected in the cells mask
// save the results
selectWindow("Jasp-0.2uM_exp3-p2_t2h.czi - Jasp-0.2uM_exp3-p2_t2h.czi #14_14-1.tif"); // ave projection
roiManager("Show All");
roiManager("Measure");
saveAs("Results", "/home/karla/Documents/SpinningDisk_Dal/20201215/Jasp_exp3_p2/Results_granules_NS-14.csv");

// use the inspector again to measure the speckles and classify them using a size threshold
// first only select the granules bigger than 25 pixels
run("Speckle Inspector", "primary=mask_14_cells.tif secondary=mask_14_granules.tif redirect=None min_secondary_size=25 show=secondary speckle statistic secondary_object");
close();
// copy the data from the speckle list only and save

// repeat selecting the granules smaller than 25
run("Speckle Inspector", "primary=mask_14_cells.tif secondary=mask_14_granules.tif redirect=None max_secondary_size=25 show=none speckle statistic"
// for determining the FI at time point 0 of the treated cells
// open all the time 0 images
// run:
imgArray = newArray(nImages);
 for (i=0; i<nImages; i++) {
 selectImage(i+1);
 imgArray[i] = getImageID();
 }
// now we have a list of all open images, we can work on it:
 for (i=0; i< imgArray.length; i++) {
 selectImage(imgArray[i]);
 // INSERT MACRO HERE
 // run("Duplicate...", ");
 // run("Images to Stack", "name=Stack_AVE_t0 title=[] use");
 }

// SAVE THE STACK
saveAs("Tiff",
 "/home/karla/Documents/SpinningDisk_Dal/20201215/Jasp_exp3_p2/AVE_proj/Stack_AVE_t0.tif");
run("Close All");

// Prepare the stack for segmentation
run("Duplicate...", ");
run("Subtract...", "value=2 stack");
run("Gaussian Blur...", "sigma=2 stack");
// use the weka segmentation tool to segment the cells and then transform it to a mask
call("trainableSegmentation.Weka_Segmentation.trainClassifier");
call("trainableSegmentation.Weka_Segmentation.getResult");
selectWindow("Classified image");
run("Convert to Mask", "method=Huang background=Dark calculate");
run("Watershed", ");

// generate the ROIs and apply them to the AVE images of time point 0
run("Analyze Particles...", "clear add stack");
selectWindow("Stack_AVE_t0.tif");
roiManager("Show All");
roiManager("Measure");
saveAs("Results", "/home/karla/Documents/SpinningDisk_Dal/20201211/Jasp-0.2_p3/Results_cells_t0.csv");
run("Close All");

// script ends here
B.5. R script for section 2.11.3: Evaluation of entry foci dynamics.
This script describes how to calculate actin polymerization to the entry foci using the package “growthrates”.

```r
#install.packages("growthrates")
library(growthrates) # To calculate actin recruitment
library(tidyverse) # data handling
library(ggthemes) # aesthetics
library(ggpubr) # plots
library(reshape2) # data handling
library(cowplot) # visualization of multiple plots in one page
#-----------------------------------------------------------------------------------
# Determine maximum growth rates by nonlinear fits for a series of experiments
# NS Data
splitted.data <- multisplit(Mean1 ~ time | Label, data = FociNS)
## show which experiments are in splitted.data
names(splitted.data)
## get table from single experiment
dat <- splitted.data[["AVG_Entry_12-1-2.tif"]]
fit0 <- fit_spline(dat$time, dat$Mean1)
fit1 <- all_splines(Mean1 ~ time | Label, data = FociNS, spar = 0.1)
res_fit1 = results(fit1)
fit0
## initial parameters
p <- c(coef(fit0), K = max(dat$Mean1))
# use the lowest mean value of the group as y0
p2 <- c(y0 = 4, mumax = 0.003091225, K = max(dat$Mean1))
# avoid negative parameters
lower = c(y0 = 1, mumax = 0.00001, K = 1)
upper = c(y0 = 1, mumax = 0.1, K = 64)
## fit all models
fit2 <- all_growthmodels(Mean1 ~ time | Label, data = FociNS,
                         FUN = grow_logistic,
                         p = p,
                         lower = lower,
                         ncores = 2)
res_fit2 <- results(fit2)
plot(res_fit1$mumax, res_fit2$mumax, xlab="smooth splines", ylab="logistic")
```
experimental: nonlinear model as part of the formula

```r
fit3 <- all_growthmodels(Mean1 ~ grow_logistic(time, parms) | Label,
data = FociNS,
p = p,
lower = lower,
ncores = 2)
```

```r
par(mfrow = c(6, 5))
par(mar = c(2.5, 4, 2, 1))
plot(fit3)
dev.off()
res_fit3 = results(fit3)
plot(res_fit2$mumax, res_fit3$mumax, xlab="smooth splines", ylab="logistic")
```

fix some strange fittings by changing the min y

```r
p2 <- c(y0 = 2, mumax = 0.003091225, K = max(dat$Mean1))
fit4 <- all_growthmodels(Mean1 ~ grow_logistic(time, parms) | Label,
data = FociNS,
p = p2,
lower = lower,
ncores = 2)
```

```r
par(mfrow = c(4, 4))
par(mar = c(2.5, 4, 2, 1))
plot(fit4)
dev.off()
res_fit4 = results(fit4)
```

Determine maximum growth rates by nonlinear fits for a series of experiments
KD data

```r
splitted.data_kd <- multisplit(Mean1 ~ time | Label, data = Foci92)
```

show which experiments are in splitted.data

```r
names(splitted.data_kd)
```

get table from single experiment

```r
dat_kd <- splitted.data_kd[["AVG_Entry_8-1-1.tif"]]
dat_kd
fit0_kd <- fit_spline(dat_kd$time, dat_kd$Mean1)
fit1_kd <- all_splines(Mean1 ~ time | Label, data = Foci92, spar = 0.1)
res_fit1_kd = results(fit1_kd)
```
initial parameters

p_kd <- c(coef(fit0_kd), K = max(dat_kd$Mean1))

use the mumax value from p_kd
p_kd2 <- c(y0 = 3, mumax = 6.148241e-04, K = max(dat_kd$Mean1))

find the highest Mean value in the Foci92 data to determine upper K

avoid negative parameters

lower_kd = c(y0 = 1, mumax = 0.00001, K = 1)
upper_kd = c(y0 = 1, mumax = 0.1, K = 67)

fit all models

fit2_kd <- all_growthmodels(Mean1 ~ time | Label, data = Foci92,
FUN=grow_logistic,
 p = p_kd, lower = lower_kd, ncores = 2)
par(mfrow =c(4, 4))
par(mar =c(2.5, 4, 2, 1))
plot(fit2_kd)
dev.off()
res_fit2_kd <- results(fit2_kd)
dev.off()
plot(res_fit1_kd$mumax, res_fit2_kd$mumax, xlab="smooth splines", ylab="logistic")

experimental: nonlinear mode

fit3_kd <- all_growthmodels(Mean1 ~ grow_logistic(time, parms) | Label, data = Foci92,
 p = p_kd, lower = lower_kd, ncores = 2)
par(mfrow =c(6, 4))
par(mar =c(2.5, 4, 2, 1))
plot(fit3_kd)
dev.off()
res_fit3_kd = results(fit3_kd)

fit4_kd <- all_growthmodels(Mean1 ~ grow_logistic(time, parms) | Label, data = Foci92,
 p = p_kd2, lower = lower_kd, ncores = 2)
par(mfrow =c(4, 4))
par(mar =c(2.5, 4, 2, 1))
plot(fit4_kd)
dev.off()
res_fit4_kd = results(fit4_kd)
Compare the results

Fit 3 with grow_logistic
boxplot(res_fit3$mumax, res_fit4_kd$mumax)
ggdensity(res_fit3,
 x = "mumax",
 add = "mean", rug = TRUE)
)
wilcox.test(res_fit3$mumax, res_fit4_kd$mumax)
t.test(res_fit3$mumax, res_fit4_kd$mumax)
wilcox.test(res_fit3$y0, res_fit3_kd$y0)
t.test(res_fit3$y0, res_fit3_kd$y0)

Fit 4 for kd and fit 3 for NS work better, they have better fits
boxplot(res_fit3$mumax, res_fit4_kd$mumax)
wilcox.test(res_fit3$mumax, res_fit4_kd$mumax)
 # p-value = 0.006447
t.test(res_fit3$mumax, res_fit4_kd$mumax)
 # mean of x mean of y
 # 0.023924372 0.008920061

make the plot
res_fit3 = res_fit3 %>% mutate(ID = "NS")
res_fit4_kd = res_fit4_kd %>% mutate(ID = "KD-92")

merge the data frames using the functions
ALL_gr = bind_rows(res_fit3, res_fit4_kd)
ggdensity(ALL_gr,
 x = "mumax",
 add = "mean", rug = TRUE,
 color = "ID", palette = c("#00AFBB", "#E7B800")
)
wilcox.test(mumax ~ ID, ALL_gr) # p-value = 0.006447

END OF SCRIPT
B.6. R script for section 2.11.4: Evaluation of Shigella’s intracellular motility.
The script below describes how the trajr package was used to analyze Shigella trajectories.

```r
library(tidyverse) # for data handling
library(trajr) # to analyze trajectories
library(ggpubr) # for plotting
library(reshape2) # for data handling
library(ggthemes) # for aesthetics
library(dplyr) # for data handling

### Movement analysis of data from 10052021, dsRED Shigella

# import data
setwd("~/Documents/SpinningDisk_Dal/dsRED_tails/20210510/ManualTrack") # desktop computer
NS_08 = read.csv("Results from WT_exp4_2h_10052021_08 in µm per sec.csv", header = TRUE)
NS_07 = read.csv("Results from WT_exp4_2h_10052021_07 in µm per sec.csv", header = TRUE)
NS_03 = read.csv("Results from WT_exp4_2h_10052021_03 in µm per sec.csv", header = TRUE)
KD_01 = read.csv("Results from WT_exp4_2h_10052021_01 in µm per sec.csv", header = TRUE)
KD_02 = read.csv("Results from WT_exp4_2h_10052021_02 in µm per sec.csv", header = TRUE)

# Modify the track.n number so then files can be merged and have unique track IDs
NS_08$Track.n. = sub("^", "08_", NS_08$Track.n.)
NS_07$Track.n. = sub("^", "07_", NS_07$Track.n.)
NS_03$Track.n. = sub("^", "03_", NS_03$Track.n.)
KD_01$Track.n. = sub("^", "01_", KD_01$Track.n.)
KD_02$Track.n. = sub("^", "02_", KD_02$Track.n.)

# MERGE THE FILES
# To join two data frames (datasets) vertically, use the rbind function. The two data frames must have the same variables, but they do not have to be in the same order.
NS_ALL = rbind(NS_08,NS_07,NS_03)
KD_ALL = rbind(KD_01,KD_02)

# Scale data frame to dimensions in um and time in sec
# remember to change this depending on video information
# time interval: 121.50 sec
# pixel size: 0.2116403 um
pixel <- function(x, na.rm=FALSE) (x*0.2116403)
Interval = 121.50 # sec
Scaled_NS = NS_ALL %>%
  mutate_at(c("X","Y"), pixel, na.rm = TRUE) %>%
group_by(Track.n.) %>%
dplyr::mutate(time = Interval*seq_len(n()))
```

Scaled_KD = KD_ALL %>%
 mutate_at(c("X","Y"), pixel, na.rm = TRUE) %>%
 group_by(Track.n.) %>%
 dplyr::mutate(time = Interval*seq_len(n()))

#CREATE THE FILES
Split by track id
splited_NS <- split(Scaled_NS, Scaled_NS$Track.n.)
splited_NS[[1]]
splited_92 <- split(Scaled_KD, Scaled_KD$Track.n.)
splited_92[[2]]

#Prep the data for the Traj package
Save the files --> set new directory as working directory if necessary
setwd("~/Documents/SpinningDisk_Dal/dsRED_tails/20210510/ManualTrack/Trajectories/")
lapply(names(splited_NS), function(x){
 write_csv(splited_NS[[x]], path = paste(x, ".csv", sep = ""))
})
lapply(names(splited_92), function(x){
 write_csv(splited_92[[x]], path = paste(x, ".csv", sep = ""))
})

#put the name of the files on a list
namesoffilesNS = names(splited_NS) %>% paste(".csv", sep = "")
namesoffiles92 = names(splited_92) %>% paste(".csv", sep = "")
namesoffilesNS
namesoffiles92

#make a function to read multiple files into Traj
readMultiple = function(namesoffiles){
 coords = read.csv(namesoffiles, stringsAsFactors = FALSE)
}

#import the data as one Traj object with multiple trajectories
csvStruct = list(x = 3, y = 4, time = "time") #x = "X", y = "Y" remember to change
time2 by time only
rootDir = "." #means here, or change if necessary
1/Interval
0.008230453 --> fps
Traj_NS = TrajsBuild(namesoffilesNS,
 fps = 0.008230453,
 spatialUnits = "um",
 timeUnits = "s",
 csvReadFn = readMultiple,
 csvStruct = csvStruct,
 rootDir = rootDir,
 smoothP = NULL,
 smoothN = NULL)

Traj_NS[[1]]
TrajLength(Traj_NS[[1]])
TrajStepLengths(Traj_NS[[1]])
Traj_92 = TrajsBuild(namesoffiles92,
 fps = 0.01698081,
 spatialUnits = "um",
 timeUnits = "s",
 csvReadFn = readMultiple,
 csvStruct = csvStruct,
 rootDir = rootDir,
 smoothP = NULL,
 smoothN = NULL)

Traj_92[[1]]

Characterize the trajectories using several indexes

quantile(ALL_Traj$Mean_speed)
0% 25% 50% 75% 100%
0.006762468 0.017164745 0.029539614 0.045563595 0.158410984
min(ALL_Traj$Mean_speed)
0.006762468

quantile(ALL_Traj_2$Mean_speed)
0% 25% 50% 75% 100%
0.003280733 0.021555177 0.034339456 0.044735459 0.149112101
min(ALL_Traj_2$Mean_speed)
0.003280733

quantile(ALL_Traj_3$Mean_speed)
0% 25% 50% 75% 100%
0.005703551 0.024409148 0.038360517 0.054051642 0.150957673
min(ALL_Traj_3$Mean_speed)
0.005703551

(0.017164745+0.021555177+0.024409148)/3
#0.02104302

Max_tumbling_speed = 0.02104302 # um/sec

Longest_tumbling = function(Traj){
 Intervs = TrajSpeedIntervals(Traj,slowerThan = Max_tumbling_speed, fasterThan = NULL)
 # returns time of longest interval or 0 if there is no intervals lower than threshold
 max(c(0, Intervs$duration))
}

mean_tumbling = function(Traj){
 Intervs = TrajSpeedIntervals(Traj,slowerThan = Max_tumbling_speed, fasterThan = NULL)
 # returns the average length of the intervals
 mean(Intervs$duration)
}

#if running this again remember to create a "Traj" object
Make a function to analyze trajectories
batch_fx = function(Traj){
 derivs = TrajDerivatives(Traj) # this outputs 4 vectors -> speed, speedTimes, acceleration and accelerationTimes
 # a list for all single value outputs:
 Steps = TrajStepLengths(Traj)
 list(
 TrajVelocity = TrajLength(Traj)/TrajDuration(Traj),
 Mean_Vel = TrajMeanVelocity(Traj),
 Longest_tumbling = Longest_tumbling(Traj), # output: duration in sec
 Mean_tumbling = mean_tumbling(Traj),
 Mean_speed = mean(derivs$speed), # output: speed in um/sec
 sd_speed = sd(derivs$speed),
 Min_speed = min(derivs$speed),
 Max_speed = max(derivs$speed),
 var_speed = var(derivs$speed),
 Length = TrajLength(Traj), # outputs sum of all distances in every step ()
 Step = mean(Steps),
 var_step = var(Steps),
 Mean_acce = mean(derivs$acceleration),
 var_acce = var(derivs$acceleration),
 sin = TrajSinuosity(Traj), # this requires a constant step length
 sin2 = TrajSinuosity2(Traj),
 straightness = TrajStraightness(Traj), # value between 0 (infinitely tortuous) to 1 (a straight line)
 # should only be used to compare the tortuosity of random walks consisting of a similar number of steps
 DC_mean = mean(TrajDirectionalChange(Traj)),
 DC_sd = sd(TrajDirectionalChange(Traj)) # the angular change (in degrees)
 between any two points in the trajectory, divided by the time difference between the two points.DC mean and standard deviation of trajectories can be used as index values of non linearity and irregularity respectively)
)
}

Make a data frame with all the stats
call TrajsMergeStats, which returns a data frame that contains a row for each trajectory and a column for each index.
summ_indices_NS = TrajsMergeStats(Traj_NS, batch_fx)
summ_indices_92 = TrajsMergeStats(Traj_92, batch_fx)

give IDs to the data to merge it
summ_indices_NS = summ_indices_NS %>% mutate(ID = "NS")
summ_indices_92 = summ_indices_92 %>% mutate(ID = "KD")

merge the data
ALL_Traj = bind_rows(summ_indices_NS, summ_indices_92)

REPLACE the NaN values by 0, NaN resulted in the trajectories that didn't have any tumbling intervals
ALL_Traj$Mean_tumbling = replace(ALL_Traj$Mean_tumbling, ALL_Traj$Mean_tumbling == "NaN", 0)

Drop the NAs
ALL_Traj = ALL_Traj %>% drop_na

END OF SCRIPT

This script was used to do the FRAP analysis. Only the ruffle analysis is shown below but the same procedure was used to analyze stress fibres.

```r
# install.packages("frapplot")
library(frapplot)
# install.packages("xts") # THIS TO HANDLE TIME DATASETS
library(xts)
library(tidyverse)
library(ggpubr)
library(reshape2)
library(ggthemes)

Modifications of formula

frapprocess2 <- function(ds, time_points) {
  # validate input
  if(!is.list(ds) || is.null(names(ds))) {
    stop("Dataset should be a list of matrices containing data of each group. Each item in the list has a name that identifies the group.")
  }
  else {
    len.x <- length(time_points)
    for (i in 1: length(ds)) {
      name <- names(ds)[i]
      len <- length(ds[[i]])

      if(!is.matrix(ds[[i]])) {
        stop(sprintf("Each item in the list is a matrix. Each column contains data from one cell/sample. The %dth item of the list named %s is not a matrix.", i, name))
      }
      else if(len %% (len.x+1) != 0) {
        stop(sprintf("The number of rows in the %dth item of the list named %s does not match the length of the time_points provided. The matrix needs %d rows which is 1 + length(time_points).", i, name, len.x+1))
      }
    }

    if(!is.matrix(ds[[i]])) {
      stop(sprintf("Each item in the list is a matrix. Each column contains data from one cell/sample. The %dth item of the list named %s is not a matrix.", i, name))
    }
    else if(len %% (len.x+1) != 0) {
      stop(sprintf("The number of rows in the %dth item of the list named %s does not match the length of the time_points provided. The matrix needs %d rows which is 1 + length(time_points).", i, name, len.x+1))
    }
  }

  group_names <- names(ds)
  num <- length(group_names)

  # normalize data
  for (i in 1: num) {
    cur <- ds[[i]]
    normalized <- t(t(cur)/cur[1,])
    ds[[i]] <- normalized[-1]  # NORMALIZED DATA FRAME
  }
}
```
calculate sample mean and standard deviation
sample_means <- matrix(0, nrow = length(time_points), ncol = num)
sample_sd <- matrix(0, nrow = length(time_points), ncol = num)

for (i in 1 : num){
 sample_means[, i] <- rowMeans(ds[[i]])
 for (j in 1 : length(time_points)){
 sample_sd[j, i] <- sd(ds[[i]][j,])
 }
}

non-linear curve fitting
result <- data.frame(group_names = group_names,
 ymax = rep(0, num),
 ymin = rep(0, num),
 k = rep(0, num),
 halftime = rep(0, num),
 tau = rep(0, num),
 total_recovery = rep(0, num),
 total_recovery_sd = rep(0, num))

mod <- vector("list", num)
parameter <- vector("list", num)
details <- vector("list", num)

for (i in 1 : num){
 cur_dataframe <- data.frame(time = time_points, FR = sample_means[, i])
 c.0 <- max(cur_dataframe$FR) * 1.1
 model.0 <- lm(log(c.0 - FR) ~ time, data = cur_dataframe)
 start <- list(a = exp(coef(model.0)[1]), b=coef(model.0)[2], c=c.0)
 mod[[i]] <- nls(FR ~ c - a * exp(b * time),
 data = cur_dataframe, start = start)
 details[[i]] <- summary(mod[[i]])

 # calculate ymax, ymin, k, tau
 # convert to formula: y = ymax+ (ymin-ymax) * exp(-k * t)
 ymax <- coef(mod[[i]])[3]
 ymin <- coef(mod[[i]])[3] - coef(mod[[i]])[1]
 k <- coef(mod[[i]])[2] * (-1)

 halftime <- 1 / k * log(2)
 tau <- 1 / halftime

 total_recovery <- (ymax - ymin) / (1 - ymin)

 a.sd <- details[[i]]$coefficients[1, 2]
 b.sd <- details[[i]]$coefficients[1, 2] + details[[i]]$coefficients[3, 2]

 sdtemp <- sqrt((a.sd / (ymax - ymin))^2
 + (b.sd / (1 - ymin))^2
 - 2 * a.sd * b.sd / (ymax - ymin) / (1 - ymin))
 total_recovery_sd <- total_recovery * sdtemp
copy the results
result[i, "ymax"] <- ymax
result[i, "ymin"] <- ymin
result[i, "k"] <- k
result[i, "halftime"] <- halftime
result[i, "tau"] <- tau
result[i, "total_recovery"] <- total_recovery
result[i, "total_recovery_sd"] <- total_recovery_sd

output <- list(time_points = time_points, summary = result,
 sample_means = sample_means, sample_sd = sample_sd, model = mod,
 details = details, normalized = ds)

return (output)

#frapprocess is the original formula
#frapprocess2 also outputs the corrected curves

#FRING Expt 04092021
#entering the data from ruffle

setwd("~/Documents/FRAP/EXP3_04092021/ruffle/")
#First KD data
KD_files = list.files(".", pattern= "Results-92*", full.names = F)
KD_files

KD_List = lapply(KD_files, read.csv)
KD_List

KD_Rnorm = lapply(KD_List,
 function(x){
 x%>% mutate(Rnorm=(.Mean.Shape.0.0.-.Mean.Shape.0.3.)/(.Mean5 -.Mean.Shape.0.3.))
 })
KD_Rnorm

KD_Rnorm = lapply(KD_Rnorm,
 function(x){
 x = x[-c(1,2),]
 })

length(KD_Rnorm[[1]])
#60 #12 cells
#Make a matrix with the lists
KD_Rnorm = unname(matrix(unlist(KD_Rnorm),ncol = 12, nrow = 60))
#enter NS data
NS_files = list.files(".", pattern= "Results-NS*", full.names = F)

NS_List = lapply(NS_files, read.csv)
NS_List = lapply(NS_List, setNames, COLNAMES)
COLNAMES = c(".X", ".Mean.Shape.0.0.", ".Mean5", ".Mean.Shape.0.3.")
colnames(NS_List[[2]])

NS_List = lapply(NS_List, function(x)
 x%>% mutate(Rnorm=(.Mean.Shape.0.0. -.Mean.Shape.0.3.)/(.Mean5 -.Mean.Shape.0.3.))
)

NS_Rnorm = lapply(NS_List,
 function(x){
 x %>%
 select(Rnorm)%>%
 slice(1:62)
 }
)

NS_Rnorm = lapply(NS_Rnorm,
 function(x){
 x = x[-c(1,2),]
 }
)

length(NS_Rnorm[[1]])
#60
#make matrix
NS_Rnorm = unname(matrix(unlist(NS_Rnorm),ncol = 13, nrow = 60))

#JOIN THE NS and KD MATRICES
Rnorm_all = list(NS = NS_Rnorm, KD = KD_Rnorm)

#eliminate some cells because the data is not good
Rnorm_all = exclude(Rnorm_all, group = "KD", cols = 9)

#make time points column
(60-2)*2
time_points = seq(0,116, 2)
time_points
length(time_points) #59

#run the FRAPPROCESS function
Results <- frapprocess(Rnorm_all, time_points) #vector of time or create a sequence with seq()
#view the results
Results$summary
Results$details
Results

x=seq(0,58,1)
DF = as.data.frame(Results$sample_means)
ggplot(DF, aes(x)) +
 geom_line(aes(y = V1, colour = "NS")) +
 geom_line(aes(y = V2, colour = "KD"))
#DO STATS

DF_stats = data.frame(as.data.frame(Results$sample_means),
 as.data.frame(Results$sample_sd),
 time=c(time_points))

colnames(DF_stats) = c("NS_m","KD_m","NS_sd","KD_sd", "time")

n_NS = length(Rnorm_all["NS"])[1,]
n_KD = length(Rnorm_all["KD"])[1,]

pvalue = NULL
for(i in 1:nrow(DF_stats)) {
 row <- rownames(DF_stats[i,])
 # do stuff with row
 stats = t.test2(DF_stats[i,1], DF_stats[i,2], DF_stats[i,3], DF_stats[i,4], n_NS, n_KD)
 print(stats)
 pvalue = as.data.frame(rbind(pvalue,stats))
}

colnames(pvalue) <- c("Difference of means", "Std Error", "t", "pvalue")

pvalue = pvalue %>% mutate(signif = ifelse(pvalue <= 0.0001, "****",
 ifelse(pvalue <= 0.001, "***",
 ifelse(pvalue <= 0.01, "**",
 ifelse(pvalue <= 0.05, "*", "ns"))))))

###
#use the output of frapprocess2 to make data frames with the normalized data
#--- RUFFLE---------------------
Results_2 <- frapprocess2(Rnorm_all, time_points)

Results_2$summary

NS_norm = as.data.frame(Results_2[["normalized"]]["NS])
NS_norm = NS_norm %>% mutate(time=time_points)
NS_norm_lg = melt(NS_norm, id.vars = "time")
ggplot(data = NS_norm_lg, aes(x=time, y=value)) + geom_line(aes(colour=variable))

#create line plot for each column in data frame
ggplot(Results_2[["normalized"]], aes(time, value)) +
 geom_line() +
 facet_wrap(vars(variable), ncol = 3)

KD_norm = as.data.frame(Results_2[["normalized"]]["KD])
KD_norm = KD_norm %>% mutate(time=time_points)
KD_norm_lg = melt(KD_norm, id.vars = "time")
ggplot(data = KD_norm_lg, aes(x=time, y=value)) + geom_line(aes(colour=variable))

#create line plot for each column in data frame
ggplot(KD_norm_lg, aes(time, value)) +
 geom_line() +
 facet_wrap(vars(variable), ncol = 3)
#------------------------FINAL PLOT------------------------
#RUFFLE
DF_stats
time_points
Results$summary
Results$model

FITTED_NS_ruffle = nls(DF_stats$NS_m ~ c - a * exp(b * DF_stats$time), start =
list(a=max(DF_stats$NS_m)-min(DF_stats$NS_m), b=-0.06469 , c = max(DF_stats$NS_m)),
data=DF_stats)
plot(DF_stats$NS_m)
lines(predict(FITTED_NS_ruffle))
model_mean_NS_ruff = predict(FITTED_NS_ruffle)

FITTED_KD_ruffle = nls(DF_stats$KD_m ~ c - a * exp(b * DF_stats$time), start =
list(a=max(DF_stats$KD_m)-min(DF_stats$KD_m), b=-0.02236 , c = max(DF_stats$KD_m)),
data=DF_stats)
plot(DF_stats$KD_m)
lines(predict(FITTED_KD_ruffle))
model_mean_KD_ruff = predict(FITTED_KD_ruffle)

#use either means or fitted_m as y to get the plots
#ggplot(data=plot_df_ruffle,
aes(x=time, y=fited_m)) +
geom_line(aes(color = factor(ID)), size=1) +
geom_ribbon(aes(ymin=means-SD, ymax=means+SD, fill=factor(ID)),
alpha=0.2,size=0.1)+
scale_color_manual(breaks=c("NS_m","KD_m"),
labels=c("NS", "KD-92"),
values=c("#F8766D","#00BFC4"))+
scale_fill_manual(breaks=c("NS_m","KD_m"),
labels=c("NS", "KD-92"),
values=c("#F8766D","#00BFC4"))+
#scale_x_continuous(breaks=seq(0, 125, 20))+
xlim(0,118)+
ggtitle(label="Ruffle")+
labs(x = "Time (sec)", y = "Normalized intensity")+
theme_classic()+
theme(
 plot.title = element_text(size=25, face="bold", hjust = 0.5),
 axis.text.y=element_text(size=23, face="bold", margin = margin(r = 10,
 l = 0)),
 axis.text.x = element_text(size = 20, colour = "black"),
 axis.title.x =element_text(size=23, face="bold", margin = margin(r = 10,
 l = 0)),
 axis.text.x = element_text(size = 20, colour = "black",margin = margin(t
 = 10)),
 axis.line = element_line(size = 1),
 axis.ticks = element_line(size = 1),
 legend.position="top",
 legend.title=element_blank(),
 legend.text = element_text(size = 18,face = "bold"))
use the normalized data to obtain the half time
#---RUFFLE

NS_norm[,1]
Results$model

#do some testing
FITTED = nls(NS_norm$V1 ~ c - a * exp(b * NS_norm$time), start =
list(a=max(NS_norm$V1)-min(NS_norm$V1), b=-0.06469, c = max(NS_norm$V1)),
data=NS_norm)
plot(NS_norm$V1)
lines(predict(FITTED))
out = data.frame(coef = coef(FITTED),)
FITTED

NS_norm[,1]

#make a fx to calculate the half times of each curve
coefs= NULL
batch_fx = function(df,b){
 time= df$time
 df = select(df, -time)
 for(i in 1:ncol(df)) {
 #mean <- mean(df[,i])
 results = nls(df[,i] ~ c - a * exp(b * time),
 start = list(a=max(df[,i])-min(df[,i]), b=b, c = max(df[,i])))
 #coefs = coef(results[[i]])[2] * (-1))
 abc <- coef(results)#[2] * (-1)
 #print(k)
 coefs = as.data.frame(rbind(coefs,abc))
 k = coefs$b * (-1)
 halftime = 1 / k * log(2)
 }
 return(halftime)
}

#get the value of b from the model made with the average curve
Results$model #for NS ruffle b = -0.06469, for KD b = -0.02236
halftime_NS = batch_fx(NS_norm,-0.06469)
halftime_KD = batch_fx(KD_norm,-0.02236)

KD_norm
t.test(halftime_NS,halftime_KD)
make the ½ time plots
---- RUFFLE -1/2 time

```r
length(halftime_NS)#13
length(halftime_KD)#11

half_time_ruffle = data.frame(
    ID = c(rep("NS",13), rep("KD",11)),
    half_time = c(halftime_NS,halftime_KD))

half_time_ruffle%>% filter(half_time <80)%>%
group_by(ID)%>%
dplyr::summarise(
    N = n(),
    MEAN = mean(half_time),
    SD = sd(half_time)
)

stat.test <- compare_means(
    half_time ~ ID, data = half_time_ruffle%>% filter(half_time <80),
    ref.group = "NS",
    method = "t.test",
    paired = F)

stat.test = stat.test %>% mutate(y.position = 45)

ggboxplot(data= half_time_ruffle%>% filter(half_time <80), #get rid of outlayer
    x= "ID", y="half_time",
    color = "ID",
    add = "jitter",
    add.params = list(jitter = 0.2, size = 4, alpha = 0.5),
    width = 0.5,
    size = 1.2,
    order = c("NS", "KD"),
    bxp.errorbar = F)+
ggtitle(label="Ruffle")+
ylab("FI half recovery time (sec)")+
scale_x_discrete(labels=c("NS"="NS", "KD"="KD-92"))+
annotate( "text",
    x = c("NS","KD"),
    y = 2,
    label = c(13,11),
    size = 6, color = "#575757", fontface =2)+
theme(
    plot.title = element_text(size=25, face="bold", hjust = 0.5),
    axis.title.y=element_text(size=23, face="bold", margin = margin(r = 10, l = 0)),
    axis.text.y = element_text(size = 20, colour = "black"),
    axis.title.x=element_blank(),
    axis.text.x = element_text(size = 24, face="bold", colour = "black",margin =
        margin(t = 10)),
    axis.line = element_line(size = 1),
    axis.ticks = element_line(size = 1),
    legend.position="none")+
stat_pvalue_manual(stat.test, label = "p.signif", tip.length = 0, size = 8,
    bracket.size =0.8)
```

#END OF SCRIPT
Supplementary Figure 1. RACK1 silencing inhibits *Shigella* growth in HeLa cells. A-C. Growth curves determined by gentamycin protection assay. RACK1-KD and control (NS) cells were infected with WT *Shigella* (MOI 10), treated with gentamycin (100 µg/mL) and lysed at various time points to quantify intracellular bacteria. Colony-forming units (CFU) were divided by total protein concentration to normalize differences in cell number. The growth curves shown are from three separate infection experiments.
Supplementary Figure 2. RACK1 silencing increases entry foci duration but does not affect foci area or fluorescence intensity. NS and KD-92 cells expressing F-tractin-GFP and infected with dsRED-WT *Shigella* (MOI 10) were imaged every 2 min with a 63X objective on a Zeiss spinning disk microscope. Entry foci were identified by the profuse enrichment of F-actin to the site of bacterial entry. Two independent experiments are shown in A and B. From left to right: entry foci dynamics were assessed by measuring foci area, average fluorescence intensity (FI), foci duration, FI change over time and actin polymerization rate (see methods section 2.11.3 for details). Dots in the boxplots represent separate entry foci. a.u. = arbitrary units. Statistical differences were calculated by Wilcoxon-test; ns = not significant p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001
Supplementary Figure 3. RACK1 silencing reduces the plaque areas formed by *Shigella* in HeLa and CaCo-2 cells. Bacterial spreading was analyzed using the modified plaque assay. HeLa cells expressing F-tractin-GFP and CaCo-2 expressing GFP alone were infected with dsRED-WT *Shigella* and overlaid with 0.4% Methocel. The cells were imaged 10 (HeLa) or 15 (CaCo-2) hours post-infection on a widefield Zeiss Z1 with 10X magnification. **A.** Boxplots showing the area of plaques formed in HeLa in two experiments. **B.** Boxplots showing the area of plaques formed in CaCo-2 cells in two experiments. *Shigella*'s plaque boundaries were identified by automatic segmentation using Fiji. Numbers under the boxplots show plaque number. Wilcoxon-test; ns=not significant, * p<0.05, **p<0.01.

344. Cardenas, D. _et al._ LACK, a RACK1 ortholog, facilitates cytochrome c oxidase subunit expression to promote _Leishmania_ major fitness. _Molecular Microbiology_ **96**, 95–109 (2015).

408. Hardy, L. R. Fluorescence recovery after photobleaching (FRAP) with a focus on F-actin. *Curr Protoc Neurosci Chapter 2*, Unit 2.17 (2012).

