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Abstract

It is estimated that the number of connected IoT (Internet of Things) devices and

sensors will grow to around 125 billion by the end of this decade, up from an estimated

21 billion this year. IoT promises enormous benefits in several applications such

as smart homes, smart cities, smart environment, agriculture, critical infrastructure

control, and smart health. However, as the number of IoT devices increases and more

information is shared among IoT devices, providing security becomes a top concern

for researchers and developers. IoT devices have low power, and limited computing

and storage capabilities, thus making them vulnerable to several attacks.

The objective of this thesis is to propose Raspberry House, a security gateway

for detection and prevention of intrusions on IoT devices. Specifically, the gateway

targets one of the major attacks on IoT devices, namely, Denial of Service (DoS), at

the data link, network, transport layers and the system security level. The proposed

gateway has been implemented using Raspberry Pi 3B+ and experimental analysis

has been carried out against several DoS attacks, such as the deauthentication attack,

SYN flood attack, ICMP flood attack, and the bash fork bomb attack. The results

show that the Raspberry House can detect, alert, and prevent these DoS attacks in

real time, and is particularly applicable to small IoT devices with resource constraints.

x



Acknowledgements

I would like to express my deepest and sincere gratitude to my supervisor, Prof. Srini-

vas Sampalli, for his guidance, support, encouragement and patience during my study

and for providing all the necessary opportunities to make this work possible.

I am extremely grateful to Prof. Hiroyuki Ohno (Kanazawa University, Japan)

for his support and guidance in the implementation of this research. His expertise in

IoT devices and attention to details have greatly improved this research.

I am very appreciative of Darshana, Richard, Mahdieh, and Nupur’s continuous

support and encouragement.

Last but not least, I want to thank the members of MYTech Lab for their patience

and infinite kindness, and thank them for their consistent presence whenever I needed

them.

xi



Chapter 1

Introduction

According to the latest report from Juniper Networks Research, the total number

of connected IoT sensors and devices is set to exceed 50 billion by the end of 2022,

up from an estimated 21 billion in 2018 [10]. This number is expected to grow to

125 billion by 2030, which means that each IoT user is expected to have around 15

connected devices [11].

IoT devices use embedded systems such as processors, sensors, and actuators to

collect, send, and process data obtained from the environment [12, 13]. These devices

share the sensor data they collect by connecting to IoT gateways or other edge devices,

and this data will be analyzed locally or sent to the cloud for analysis [13]. IoT

devices can also communicate with other IoT devices, share valuable information

with applications, and take actions based on the acquired information [12, 14]. In

addition, these devices can automate different tasks, which enables physical objects

to take action without any human intervention [14].

IoT brings enormous benefits to several applications. For example, smart agri-

culture can use the rainfall, humidity, temperature, and soil oxygen content collected

by sensors to monitor soil quality and make decisions based on the results to achieve

efficient use of water, electricity and other resources [7, 15]. Smart transportation col-

lects and transmits data through embedded sensors, actuators and other IoT devices,

providing users with real-time traffic conditions and helping them plan their journey

path to avoid traffic jams and hazardous conditions [7, 16]. Smart homes allow users

to control IoT devices through the network remotely. For instance, they can monitor

room temperature and the power consumption of smart appliances through applica-

tions, thereby reducing resource waste [12, 7]. In the area of healthcare, implantable

and wearable smart health devices collect the patient’s heart rate, blood pressure and

other health indicators, and send this data to an application that healthcare profes-

sionals can check, enabling healthcare professionals to improve existing services based

1
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on the real-time data obtained, helping them to make better decisions [7]. With the

popularity of the IoT in the market, organizations and companies are increasingly

using IoT to improve operational efficiency. They use automated tasks to provide

customers with better services, improve decision-making and increase the business

value [7, 17]. IoT also reduces labour costs and generates more revenue. In addition,

since technicians can access information on any IoT device anytime, anywhere, they

can continuously improve communication between connected IoT devices.

However, as the number of IoT devices increases and more information is shared

among such devices, they become more vulnerable to cyber-attacks. Attackers can

exploit security vulnerabilities in IoT infrastructures to perform complex cyber at-

tacks. These cyber-attacks include Denial of Service (DoS) attacks, man-in-the-

middle (MITM) attacks, replay attacks, routing attacks, data breaches, and security

and privacy threats. The limited resources of small IoT devices make it difficult to

build security protection measures in small IoT devices, making them more vulnerable

to various attacks. Attackers can exploit vulnerabilities in IoT systems to manipulate

the system’s data, thus making it unusable [16, 18, 19].

IoT has low power and limited computing and storage capabilities, making it easy

for attackers to use these flaws to access network data such as homes and businesses

[17]. In addition, due to profit-driven choices and lack of relevant legislation, many

manufacturers do not provide users with patches and updates after the product is

produced, leading to IoT device security risks. For example, since IoT devices such

as routers cannot be updated regularly, they are vulnerable to botnets. Moreover,

due to the rapid development of smart healthcare, attackers on medical IoT devices

can lead to leakage of patient medical data or even loss of life.

1.1 DoS Attacks on IoT

Denial of Service (DoS) is one of the most common IoT attacks. In 2016, the Mirai

attacks attracted widespread public attention [20]. Attackers used poorly secured IoT

devices to infiltrate the Domain Name Server (DNS) provider Dyn and attack many

websites [20], which is one of the largest distributed denial of service (DDoS) attacks,

which infected around 2.5 million internet-connected devices and caused Dyn to lose

nearly 8% of its customers [14, 17].
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A DoS attack [7, 21] typically floods the target host or network by sending multiple

requests until the target fails to respond or crashes due to traffic overload, preventing

legitimate users from accessing expected services or resources. Furthermore, it can

slow down or disable services. According to Vaadata’s report [22], DoS attacks are

one of the most frequently occurring attacks in IoT. In addition, according to Tsiatsis

et al. [23], DoS attacks are the most common and easiest attacks on IoT systems

and are defined as attacks that undermine the ability of the network or system to

perform expected tasks. For example, a DoS attack can undermine the wireless

network of enterprise IoT devices, causing business disruption, lost revenue from

system downtime, or even damage to a brand’s reputation. DoS attacks can also

continue for weeks or even months, causing IoT devices to fail to run continuously.

1.2 Strategies for Mitigating IoT DoS Attacks

Previous research has focused on a number of strategies for DoS attack detection and

prevention on IoT devices.

Kajwadkar and Jain [24] propose a novel solution to detect DoS attacks against

restricted devices. Detection occurs in the early stages of the border router node,

ensuring that no network devices in any IoT network are harmed. The detection

method includes two stages, the primary stage and the secondary stage. In the

primary stage, the source IP and packet size are checked, and the algorithm decides

whether the source is a confirmed threat or suspicious. The second stage verifies the

legitimacy of the suspicious input.

Mubarakali et al. [25] propose a machine learning SDN model based on the SVM

algorithm. The controller in the proposed model is responsible for collecting the flow

table status data on the network traffic switches and then uses the support vector

machine (SVM) algorithm to extract twice-characteristic values related to DDoS at-

tacks for traffic evaluation and DDoS attack detection. The results show that the

proposed model can effectively detect DDoS attacks with a low false-positive rate.

Anirudh et al. [26] propose a honeypot model to mitigate DoS attacks launched

on IoT devices. In the proposed model, the honeypot is used in the online server as a

decoy for the main server so that DoS attacks are forwarded to this decoy protecting

the target server to mitigate the attacks to the intended target server. The protection
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is achieved by tracking attackers and tracing their activities to study further and

analyze them to prevent future attacks.

Chifor et al. [27] propose a lightweight security mechanism for addressing DoS at-

tacks in IoT publish-subscribe applications. The authors protect the message brokers

against quality-of-service (QoS) based DoS attacks by designing an extensible secu-

rity framework. Although the proposed framework helps to orchestrate IoT network

applications from a security perspective, it suffers from the disadvantage of dealing

with single authority management for trusted devices.

Mamun [28] builds an example of real-time integration of IoT sensors and the

IOTA Tangle to improve the security of IoT infrastructure while testing the efficiency

of the network. The results show that although the IOTA Tangle has not yet been

deployed on a large scale to IoT devices and is still in an immature development stage,

it has the potential to create a new dimension to secure IoT devices.

Among the above studies, most of them focus on the detection methods of DoS

attacks against IoT devices. Although some of these studies provide the mitigation

strategy, it can only be run after extensive simulation testing since it requires collect-

ing more elements such as protocols and the packet size.

1.3 Research Problem

The research problems are as follows.

• Since most DoS attacks occur at the network layer and transport layer, many

studies only focus on DoS attacks at these two layers. However, with the popu-

larity of wireless local area networks (WLANs), many IoT devices are connected

wirelessly and transmit messages. The rapid growth of wireless network deploy-

ments has attracted attackers to target them [29, 30]. The data link layer in

wireless networks is more vulnerable to DoS attacks such as deauthentication

attacks due to unprotected management frames [30]. Therefore, researchers also

need to focus on DoS attacks at the data link layers of the TCP/IP model.

• System security level DoS attacks such as bash fork bomb can make the system

overloaded and unable to respond to any input, so researchers also need to
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consider Intrusion Detection System (IDS) and Intrusion Prevention System

(IPS) for system security level DoS attacks.

• Since small IoT devices such as Microcontroller Units (MCUs) are inexpensive

and easy to use, they are the first choice for labs and some enterprises’ research

institutions. However, small IoT devices are inherently resource-constrained,

i.e., they have limited processing speed, storage capacity, and communication

bandwidth [31]. Therefore, it is not easy to build and run the IDS and IPS.

• Furthermore, the solutions proposed by most of the research are limited to

detecting DoS attacks in IoT without providing prevention solutions.

• As pointed out by Zachariah et al., Castellanos et al. and Gloria et al. [32, 33,

34], IoT-enabled IDS and IPS devices proposed in existing research work are

expensive and inconvenient to carry.

The aforementioned research gaps form the motivation for this thesis.

1.4 Objectives

IoT devices have low power and limited computing and storage capabilities, thus

making them vulnerable to several attacks. This thesis aims to design, implement,

and test a gateway called Raspberry House, a security gateway for detecting and pre-

venting intrusions on IoT devices. Specifically, the gateway targets one of the major

attacks on IoT devices, namely, Denial of Service (DoS), at the data link, network,

transport layers and the system security level. The proposed gateway has been im-

plemented using Raspberry Pi 3B+, and experimental analysis has been carried out

against several DoS attacks, such as the deauthentication attack, SYN flood attack,

ICMP flood attack, and the bash fork bomb attack. In addition, the proposed IoT

gateway is based on shell scripts, and in order to enable it to run detection and

prevention mechanisms autonomously, our research also considers the use of systemd

services. The results show that the Raspberry House can detect, alert, and pre-

vent these DoS attacks in real-time, particularly applicable to small IoT devices with

resource constraints.
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1.5 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 provides the background work

that helps to understand the proposed approach. Chapter 3 introduces the literature

survey involved in the research and the research gaps. Chapter 4 discusses the design

of the Raspberry House framework, Raspberry House IDS and IPS design, and the

evaluation design of the Raspberry House. Chapter 5 and Chapter 6 describe the

experimental implementation and evaluate the performance of the proposed approach.

Chapter 7 summarizes the contributions of this thesis and discusses future work.



Chapter 2

Background

This chapter provides the background in the following areas that are necessary for

the rest of the thesis:

• IoT Architecture

• DoS Attack Types

• Raspberry Pi Gateway Components

• Snort Security Tools

2.1 IoT Architecture

The IoT network needs to integrate all resources, hardware, software, and systems

into a framework to form an integrated, reliable, and cost-effective solution [7, 16, 8].

Therefore, each IoT architecture needs to be developed according to its function and

implementation in different domains, i.e., there is no single, standard-defined IoT

architecture [8, 35]. Nevertheless, the foundation of each IoT architecture and its

general data processing flow is roughly the same [8]. [7, 8, 36, 6] describes the typical

IoT layered protocol stack and architecture. Iqbal et al. [8] outline the characteristics

of IoT security and propose a general IoT architecture and IoT protocol stack. Swamy

and Kota [7] summarize the architecture of IoT and its current status and analyze

the status of the communication standards and application layer protocols used in

IoT. Bouaouad et al. [36] analyze different IoT architectures and their layers in the

cloud environment and determine the key layers to define a complete and detailed

architecture. Al-Fuqaha et al. [6] discuss the overall architecture of IoT and its

security issues. The three-layer and five-layer architectures are the most prominently

used in these studies. Figure 2.1 shows the five-layer architecture. The three-layer

7
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architecture is a subset of the five layers. A brief description of each layer is given

below.

Figure 2.1: IoT Five Layer Architecture [6]

• Perception Layer

The perception layer, also called the sensor layer, is the physical layer of the

IoT architecture [6]. It is responsible for using sensors and embedded systems

to identify objects and collect data from them [6].

• Network Layer

The network layer carries and transmits the data collected by the sensors in a

wired or wireless manner [7]. It is also responsible for connecting various smart

objects, network devices and servers.

• Middleware Layer

The middleware layer or service management layer has features such as data

storage, computation, processing, and analysis [6].

• Application Layer

The application layer manages all application processes based on the informa-

tion obtained from the middleware layer. This layer is the interface between

IoT devices and networks, interacting with users [6].
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• Business Layer

The business layer manages the entire IoT system, which involves constructing

flowcharts, graphs, analyzing results, and improving IoT devices [6].

Figure 2.2: Four Stages of IoT Architecture [7, 8]

Figure 2.2 shows the four stages of IoT Architecture. As shown in Figure 2.2, data

is the basis of every IoT system and can be provided by connected IoT devices [37].

An important feature of the sensors is the ability to convert information obtained

from the outside world into data for analysis [38, 39, 40]. The actuator can transform

the data generated by IoT devices into physical actions by cooperating with sensors

[40, 41].

The gateway and data acquisition system (DAS) provides the necessary connection

nodes to connect the remaining layers. Furthermore, the DAS collects raw data from

sensors and converts it from an analog format to a digital format [42]. Then the DAS

aggregates and formats the data and sends the data to the following processing stage

through the gateway [42, 43].

Before entering the data center or cloud, digitized and aggregated IoT data needs

to be processed to reduce its size further [44]. As part of preprocessing, edge systems

can provide faster response time and greater flexibility in the processing and analysis

of the IoT data [44, 45, 46].

The primary process of the final stage takes place in the data center or cloud. Data

centers or cloud-based systems are designed to use powerful data analysis engines and

machine learning mechanisms to store, process, and analyze large amounts of data to

gain deeper insights [45, 47, 48].
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2.2 Different Types of DoS Attacks

We introduce different types of DoS attacks according to each layer of the TCP/IP

model to provide a clear understanding of DoS attacks.

DoS attacks can cause physical media to be disabled or manipulated maliciously

at the physical layer, making it unavailable to users [49]. For example, the use of

low-power micro-jammers to transmit wireless jamming signals to disrupt wireless

communications maliciously, pull patch cords, and brute force or shutdown network

devices are all DoS attacks at the physical layer [50]. Standard physical layer DoS

attacks include jamming, node destruction and interference [51].

The data link layer ensures that data is efficiently transmitted to the physical

layer. The primary communication protocol of this layer is the IEEE802 standards,

such as IEEE802.11 (WiFi) and IEEE802.3(Ethernet) [49]. Therefore, DoS attacks

at this layer are usually aimed at data frame detection, media access control, data

stream multiplexing and error control [50]. Attacks at the data link layer include Con-

tent Address Table (CAM) exhaustion, Address Resolution Protocol (ARP) spoofing,

MAC address spoofing, deauthentication attack, disassociation attack, etc.

Network layer DoS attacks are the injection of more traffic into the victim network

than it can handle, which causes the victim network to start responding slowly or

drop some packets [49]. However, the loss of packets can lead to an overflow of

retransmission requests and extra traffic that can make the network unavailable to

legitimate users [49, 50]. Network layer DoS attacks include ICMP flooding, Sybil

attack, hello flooding, wormhole attack, smurf attack, etc.

The transport layer is susceptible to DoS attacks in the form of flooding by gen-

erating and transmitting large amounts of traffic to prevent the network’s availability

of services or resources for legitimate users [50]. In addition, a large amount of traffic

can quickly consume device resources, especially for small IoT devices that are highly

constrained, resulting in a decrease in the overall utility of the system [23]. DoS

attacks at the transport layer include the abuse of TCP and UDP protocols to flood

resources in the network, such as SYN floods and UDP floods [50].

Since most protocols in the application layer are built on a client-server model,

where the server helps legitimate users to achieve a specific service and the client is

a procedure of requesting services from the server [50]. Therefore, DoS attacks at



11

the application layer can be accomplished by sending a large number of legitimate

requests to the server until the server is swamped. This attack can make a server

very busy without breaking it, making it inaccessible to legitimate users. DoS attacks

at the transport layer include HTTP GET flooding, HTTP POST flooding, PUSH

flooding, HEAD flooding, SMTP Mail Flooding, etc [49].

In addition to DoS attacks against the TCP/IP model, DoS attacks at the system

security level also deserve the attention of researchers. DoS attacks at the system

security level mainly refer to the failure of the system to run properly by overloading

shared resources or services. For example, a DoS attack at the system security level

can generate multiple processes in parallel that fill up the disk so that the system can

no longer support any processes or cannot execute any instructions, thereby turning

down the entire system. System security level DoS attacks include bash fork bomb,

inode problems, etc.

Table 2.1 shows the possible attacks based on the above classification criteria.

This thesis focus on designing IDS and IPS for the proposed gateway to effectively

defend against DoS attacks at the data link layer, network layer and transport layer

in the TCP/IP model. In addition, we also consider the system security level IDS

and IPS for the proposed gateway, so it can also effectively prevent system-level DoS

attacks. We now highlight four major attacks that are central to this thesis.

2.2.1 Deauthentication Attack

An Access Point (AP) is the bridge that connects traffic between client devices and

other devices on the network. In order to be able to connect to an access point (AP),

the client must have established a connected state before it can start exchanging data

messages [29]. The following are the three 802.11 connection states [52]:

• Unauthenticated and Unassociated

• Authenticated but Unassociated

• Authenticated and Associated

The client and AP will exchange a series of 802.11 management frames for enter-

ing the authenticated and associated state. Figure 2.3 shows the 802.11 association

process.
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Table 2.1: Possible DoS Attacks in IoT

Classification Criteria Attacks

TCP/IP Model Application Layer

HTTP GET flooding
HTTP POST flooding
PUSH flooding
HEAD flooding
SMTP Mail Flooding

Transport Layer
SYN flood attack
UDP flood attack

Network Layer

ICMP flooding
Sybil attack
Hello flooding
Wormhole attack
Smurf attack

Data Link Layer

CAM exhaustion
ARP spoofing
MAC address spoofing
Deauthentication attack
Disassociation attack

Physical Layer
Jamming
Node destruction
Interference

System Security Level
Bash fork bomb
Inode problem
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Figure 2.3: 802.11 Association Process

First, the access point periodically sends a beacon frame to announce its presence.

When a client wants to join a network, it sends a probe request to discover 802.11

networks in its proximity. The AP receives the probe request and checks whether

the client has at least one commonly supported data rate. If they have a compatible

data rate, AP will send a probe response advertising the SSID, supported data rates,

encryption types, and other 802.11 capabilities of the AP [29, 30, 53].

Then, the client and AP authenticate by exchanging messages. The client selects

a compatible network from the probe responses it receives, and once a compatible

network is found, the client will attempt low-level 802.11 authentication with the

compatible AP [53]. The AP receives the authentication frame and authenticates any

client attempting to join the network. After the client is authenticated, the client and

AP are authenticated but not yet associated [29].

Next, the client confirms the AP to associate with, and it will send an association
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Table 2.2: Sub-types of Management Frames

Type Value Type Description Subtype Value Subtype Description

0000 Association Request
0001 Association Response
0010 Re-association Request
0011 Re-association Response
0100 Probe Request
0101 Probe Response
1000 Beacon

1001
Announcement Traffic
Indication Massage

(ATIM)
1010 Disassociation
1011 Authentication
1100 Deauthentication

00 Management Frame

1111 Reserved

request to that AP. After receiving the association request, the AP will check whether

it has the capabilities to respond [53]. After the confirmation, it will create an as-

sociation ID for the client and respond with an association response and a success

message that grants the client access [29, 53].

Finally, the client can successfully associate with the AP and start data trans-

fer. It is worth noting that if the wireless network requires WPA/WPA2 or 802.1X

authentication, the client will not be able to send data until dynamic keying and

authentication have occurred after the 802.11 association is complete [29].

When clients wish to disconnect from the AP, they need to send a deauthentication

frame to the AP. However, according to the 802.11 networking standard, deauthen-

tication or disassociation frames are unencrypted and do not require authentication.

Therefore, an attacker can use this to easily spoof a client or AP’s MAC address to

generate deauthentication packets on behalf of the client or AP [29, 53]. Deauthenti-

cation frames belong to the category of management frames, and Table 2.2 shows all

12 management frame subtypes identified by the 802.11 standards [30, 53].

2.2.2 ICMP Flooding Attack

Internet Control Message Protocol (ICMP) is a network layer protocol that network

devices use to communicate [54, 55]. An ICMP flood DoS attack, also known as a
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Ping flood attack, is a typical DoS attack in which an attacker attempts to flood

a target device by using ICMP echo-request packets [13]. ICMP echo-request and

echo-reply messages are used to ping network devices to diagnose the device’s health

and connectivity and the connection between the sender and the device [56, 55].

In this type of attack, the attacker floods the target with request packets, and

the network is forced to respond with the same number of reply packets. As a result,

both the incoming and outgoing channels of the network are overwhelmed, causing

normal network activity to be interrupted, the target device inaccessible to normal

traffic, and significant bandwidth consumed [56, 55]. As a Ping Flood attack floods

the target device’s network connection with fake traffic, legitimate requests cannot

get through, resulting in a DoS attack on legitimate users [56].

2.2.3 SYN Flooding Attack

TCP SYN flood (aka SYN flood) is a DoS attack designed to exploit the TCP three-

way handshake to consume resources on a target server and make it slow or unrespon-

sive to legitimate traffic [57, 58]. It can target any system connected to the Internet

and provides Transmission Control Protocol (TCP) services such as web servers, email

servers, etc [57].

Figure 2.4 shows the process of establishing a standard TCP ”three-way hand-

shake” between client and server [57].

• First, the client requests to initiate a TCP connection by sending an SYN

(Synchronization) message to the server.

• The server receives the message and responds to the client by sending an SYN-

ACK (Synchronization Acknowledgment) message to the client.

• Finally, the client responds with an ACK (Acknowledgement) message and es-

tablishes the connection. After completing this packet sending and receiving

series, the TCP connection can send and receive data.

The SYN flood attack is a TCP state exhaustion attack that attempts to consume

the connection state tables in many infrastructure components, such as firewalls. In

an SYN flood attack, the attacker uses a fake IP to act as a client, sending repeated
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Figure 2.4: TCP Three-Way Handshake Process

TCP SYN connection requests at a higher rate than the target server can process.

The following lists three common SYN flood attacks [57, 58].

• Direct SYN Flood Attack: As shown in Figure 2.5, The attacker sends mul-

tiple SYN requests to the target server using its IP address. The target server

responds to the SYN request with the SYN-ACK packet. However, instead of

sending the expected ACK response, the attacker continues to send new SYN

requests, which causes the target server to keep waiting for an ACK of its SYN-

ACK packet, leaving more and more links half-open [58]. Eventually, as the

server’s connection overflow table fills up, the target server becomes inoperable

or crashes and rejects legitimate client requests.

• SYN Spoofed Attack: It is easy to detect in a direct SYN flood attack since

the attacker uses his/her IP address. To avoid this, attackers send SYN packets

using the spoofed IP address. As shown in Figure 2.6, after the server receives

the spoofed SYN packets, it responds with SYN-ACK packets and waits for

ACK response. However, the attacker will not send the ACK to the target

server. In addition, to ensure that the spoofed IP address never responds to the



17

Figure 2.5: Direct SYN Flood Attack

SYN-ACK sent by the target server, the attacker uses the unused IP address.

• DDoS SYN attack: As shown in Figure 2.7, in the DDoS SYN attack, the

attacker sends SYN packets to the target server by controlling a botnet con-

sisting of multiple hijacked computers, making the target server inaccessible to

legitimate users.

2.2.4 Bash Fork Bomb

The fork bomb is a DoS attack designed to consume the system resources. Fork bombs

can be written in different programming languages, such as Python. In this thesis,

we use the bash fork bomb. Figure 2.8 shows the process of the fork bomb attack,
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Figure 2.6: SYN Spoofed Attack

where the attacker first creates a self-replicating child process through malicious code.

The processes recursively fill the entire available system resources, which causes the

system to slow down or crash due to resource starvation [59, 60].

2.2.5 inode Problem

Linux file systems use inodes to store information about files, directories, and devices.

Inodes are the basis of the Linux file system. Inodes manage metadata about files and

are an important part of the inner workings of Linux. All files in any Linux directory

have a filename and an inode number, and users can retrieve the file’s metadata

by referencing the inode number. Metadata includes file type, permissions, owner

ID, group ID, file size, last access time, last modification time, soft/hard links, and
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Figure 2.7: DDoS SYN Attack
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Figure 2.8: Fork Bomb Attack

access control lists. Therefore, an attacker can consume all the free inodes on the

disk by creating a large number of temporary empty folders. Most systems ignore

this seemingly normal behaviour of creating empty folders. Since this behaviour is

difficult to detect, an attacker can create temporary empty folders until all free inodes

on the system disk are consumed. Thus, new files cannot be created. If the supply of

available inodes is exhausted, the system cannot allocate new files even if disk space

is available.

2.3 Raspberry Pi Gateway Components

2.3.1 Raspberry Pi

As shown in Figure 2.9, the Raspberry Pi is a low-cost, credit-card-sized single-board

computer designed to teach programming skills, build hardware projects, perform

home automation, and explore industrial applications of computer technology [61].

According to Amazon, the Raspberry Pi 3B+ used in this thesis only costs $79 CA

[62]. It is based on the Linux operating system and provides general-purpose input

and output (GPIO) pins that allow users to control electronic components for physical

computing and exploration of the IoT. Linux is an open-source operating system (OS)

that connects a computer’s hardware and software programs.
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Figure 2.9: Raspberry Pi 3B+ Dimensions

We choose to use Raspberry Pi as the gateway because of its simplicity and secu-

rity. Compared to Windows, whose source code is inaccessible to users, Linux is based

on a multi-user architecture. Therefore, it is more stable than single-user OS such as

Windows. Since Linux is community-driven and regularly monitored by developers

worldwide, any new problems that arise can be resolved within a short period of time,

and necessary patches can be provided at any time.

2.3.2 Raspberry House

The latest version of Raspberry Pi already has onboard wireless capabilities, which

can act as many different devices. In our previous work [63], we have built Rasp-

berry House as an IoT gateway using a Raspberry Pi 3B+. Raspberry House is an

IoT security framework, and it can generate a private network and assign private

IP addresses to small IoT devices so that the devices will not be exposed to outside

networks. We have also implemented the wireless firmware update of the IoT devices
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inside the gateway. Therefore, all the IoT devices inside the gateway can be updated

synchronously without connecting them to the USB interface, which saves time. Fur-

thermore, we have considered that in practical scenarios, each organization may invest

in a large number of IoT devices to use, and these IoT devices may be distributed

all over the world. Therefore, we need to consider the communication between IoT

devices. In order to ensure that the communication is secure, we have tested TLS

encryption technology, SSH port forwarding and cloud services, analyzed the security

of IoT device communication and given suggestions for different environments.

2.3.3 MQTT

The publish/subscribe-based Message Queuing Telemetry Transport (MQTT) proto-

col is popular in IoT. MQTT, Message Queuing Telemetry Transport, is a lightweight

IoT messaging protocol used to collect the measurement data from remote sensors

and send it to the server via TCP [16, 64]. It uses a publish/subscribe (pub/sub)

technology and allows simple data flow between different devices. The pub/sub model

is based on an MQTT broker. Clients can publish a message on a topic or subscribe

to a particular topic through the broker. Furthermore, topics represent the destina-

tion address for a message sent by the MQTT broker. The client who subscribes to

a topic will receive all the published messages [65].

It also supports low-bandwidth and high-latency networks to minimize network

bandwidth and equipment resources [16]. Although MQTT supports lightweight com-

munication, it also has some limitations. Since it only supports TCP, which is limited

by the network, packet loss frequently occurs [12].

2.3.4 systemd

When a Linux system boots up, systemd provides a standard procedure for controlling

programs, including starting daemons on demand, mount and automatic mount point

maintenance, the network stack, cron-style job scheduler, and process tracking using

Linux control groups, etc [1]. Many Linux distributions use systemd to manage system

settings and services. Raspberry Pi OS from the Jessi versions supports systemd. As

shown in Figure 2.10, we use the latest version (i.e. Buster) of Raspberry Pi OS in

this thesis, which supports systemd.
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Figure 2.10: Raspberry Pi OS

SysVinit is an init system that predates systemd and uses a simplified method to

start services. SysVinit leaves a lot to be desired [1]. For example, since shell scripts

in SysVinit are executed line by line, system services are not executed in parallel,

resulting in slow startup times. While systemd is backward compatible with SysVinit

scripts, systemd is designed to replace these older ways of getting Linux systems

running. systemd is able to start services in parallel and provides dependency-based

service control logic to reduce startup time. In addition, systemd provides a tool called

systemctl designed to interact with processes controlled by systemd. For example,

systemctl can check the status of units and targets, as well as start and stop the

services.

systemd introduces the concept of systemd units, which organize tasks into com-

ponents called units, and groups of units into targets that can be used to create

dependencies on other system services and resources [1]. Table 2.3 provides the com-

plete systemd unit types [1].

2.3.5 ATtiny85

The ATtiny85 microcontroller is a RISC architecture-based AVR microcontroller

manufactured by Microchip. The ATtiny85 is a low-power small microcontroller with

2096-byte flash memory and 512-byte EEPROM memory [66, 67]. In addition, it is

popular for its small size and low cost. Figure 2.11 shows the USB-equipped Digispark

ATtiny85 microcontroller used in this thesis (left) and its length and width (right)

measured using the iPhone’s Measure app. As shown in Figure 2.11, the length of the
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Table 2.3: systemd Unit Types [1]

Unit Type File Extension Description

Service Unit .service
A system service, defines how to manage
service daemons controlled by systemd.

Socket Unit .socket

An interprocess communication socket,
contains information about local

interprocess communication or network
sockets in Linux systems.

Target Unit .target

A group of systemd units, used to
provide synchronization between

unit files during startup, and can also be
used as a medium for extending
the scope by specifying targets as

other targets.
Device Unit .device A device file recognized by the kernel.

Mount Unit .mount
A mount point for attaching filesystems

controlled by systemd.

Automount Unit .automount
A automount point for attaching filesystems

controlled by systemd.

Timer Unit .timer
A systemd timer, schedules the activation

of other units.

Swap Unit .swap
Describes a memory swap partition, can be

a swap device or a swap file.

Path Unit .path
A file or directory in a file system, defines
paths that activate other services when files

in the path are modified.

Slice Unit .slice

A group of hierarchical organizational units
for managing system processes, used in

conjunction with cgroups to group processes,
daemons, services into a hierarchical tree

to manage resources.
Scope Unit .scope An externally created process.

Snapshot Unit .snapshot A saved state of the systemd manager.
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ATtiny85 microcontroller is approximately 2cm, and the width is slightly less than

2cm.

Figure 2.11: ATtiny85 (left) and Its Dimensions (right)

The ATtiny85 is the smallest microcontroller in the ATMEL AVR family, with a

lower pin count for connecting different devices or sensors [67]. It has eight pins, and

six are used for programmable input/output (I/O) [66]. Although it only has eight

pins, it can perform almost everything a simple microcontroller can. For example, in

this thesis, we use its security features to make it act as a watchdog timer. Moreover,

it has utility in automation and other embedded systems, making it flexible and

reliable.

2.4 Snort

Snort is a powerful open-source Intrusion Detection System (IDS) and Intrusion Pre-

vention System (IPS) that provides real-time network traffic analysis and packet

logging [2]. Snort enables network administrators to detect a variety of attacks and

probes, such as Denial of Service (DoS) and Distributed DoS (DDoS) attacks, Com-

mon Gateway Interface (CGI) attacks, buffer overflows, stealth port scanning, etc.

Snort creates a series of rules to define malicious network activity, identify malicious

packets and send alerts to users. Furthermore, Snort can be used as a packet sniffer

like tcpdump, a packet logger, a network file logging device, or a robust network

intrusion prevention system [2].

As shown in Table 2.4, Snort has three different modes, i.e., packet sniffer, packet

logger, and Network Intrusion and Prevention Detection System (NIPDS).
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Table 2.4: Snort Modes [2]

Snort Mode Description

Packet Sniffer
Read IP packets and display them to the user on

its console.

Packet Logger

Log all IP packets accessing the network, so that
network administrators can check who has accessed
their network, and the operating system and protocol

they are using.

NIPDS
(Network Intrusion and
Prevention Detection

System)

Packets that are considered malicious are logged
according to the preset characteristics of malicious
packets defined in Snort rules, and actions are taken

according to the rules set by the network
administrator.

2.4.1 Snort Rules

Snort uses a rule-based language to perform protocol analysis and content search/matching.

The rule syntax includes the rule headers and rule options. In this thesis, we run Snort

in inline mode and use the Snort rules built by ourselves to detect and prevent DoS

attacks at the network and transport layers.

Snort rule headers include rule actions, protocols, IP addresses, port numbers and

direction operators [2, 3].

• The rule action tells Snort what to do when it finds a packet that matches the

rule conditions. Table 2.5 summarizes the Snort actions.

• Snort currently analyzes four protocols for suspicious behaviour, i.e. TCP, UDP,

ICMP, and IP. There may be more in the future, such as ARP, OSPF, RIP, etc.

• The next part of the rule header deals with the IP address for a given rule.

Snort does not provide a mechanism for hostname lookup for IP address fields

in the configuration file. An address consists of a straight numeric IP address

and a CIDR block.

• The next part is port information for a given rule. Port numbers can be specified

in several ways, including ports, static port definitions, ranges, and negation.

• Direction operator -> Indicates the direction of the traffic to which the rule

applies. The IP address and port number on the left side of the direction
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Table 2.5: Snort Rule Actions [2, 3]

Rule Action Description
alert

(default action)
Generate alerts using the selected
alerting method, and log packets.

log
(default action)

Log the packet.

pass
(default action)

Ignore the packet.

drop
(with inline mode)

Block and log the packet.

reject
(with inline mode)

Block and log the packet.
If the protocol is TCP, send a

TCP reset message; if the protocol
is UDP, send an ICMP port

unreachable message.
sdrop

(with inline mode)
Block the packet but do not log it.

Note: we can also define our own rule types and
associate one or more output plugins with them.

operator are considered to be the traffic from the source host, while the address

and port number on the right side of the direction operator is the destination

host.

Rule options form the core of Snort’s intrusion detection engine, which is easy to

use, powerful, and flexible. The semicolon separates the Snort rule options (;) and

rule option keywords are separated from their arguments by a colon (:). There are

four Snort rule options categories: general, payload, non-payload and post-detection.

In this thesis, we focus on the general and post-detection rule options. The main rule

options we use in this thesis are described below [3].

• msg: msg belongs to the general category, the message sent to the sysadmin if

the rule is triggered.

• sid: sid belongs to the general category, used to identify Snort rules uniquely.

This information enables the output plugin to identify the rules easily. In addi-

tion, this option should be used with the rev keyword. The SIDs less than 100

are reserved for future use; between 100 and 999999 are rules included in the

Snort distribution; SIDs greater than 999999 are used for local rules.
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• rev: rev belongs to the general category. The rev keyword is used to identify

revisions of Snort rules uniquely. Revisions, along with Snort rule ID, allow

signatures and descriptions to be refined and replaced with updated information.

This option should be used with the sid.

• classtype: classtype belongs to general category. The classtype is used to

classify the rule as detecting attacks belonging to a more general type of attack

class. Snort provides a default set of attack classes to be used by the default set

of rules. The default attack classifications are listed in Table 2.6 and Table 2.7.

• detection filter: detection filter belongs to the post-detection category. De-

fines a rate that a source or destination host must exceed before a rule can

generate an event.

– Track <by src / by dst>: rate is tracked either by source IP address or

destination IP address, which means count is maintained for each source’s

unique IP address or each destination IP address. If we have multiple

source hosts like DDoS, we need to track by destination.

– count <c>: The maximum number of rule matches in s seconds allowed

before the detection filter limit to exceeded. C must be nonzero.

– seconds <s>: Time over which count is accrued. The value must be

nonzero.

2.4.2 Snort inline mode

The Snort 4.0 package offers a new mode of operation called Inline IPS Mode, which

we use in our thesis. Snort inline IPS Mode allows drop rules to trigger. In inline

mode, Snort builds a bridge between two network segments and is responsible for

passing traffic between the network segments. It can inspect the traffic it passes

through and drops suspicious traffic.
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Table 2.6: Snort Attack Classifications [4]

Classtype Description Priority

attempted-admin
Attempted administrator

privilege gain
High

attempted-user
Attempted user
privilege gain

High

inappropriate-content
Inappropriate content

was detected
High

policy-violation
Potential corporate
privacy violation

High

shellcode-detect
Executable code was

detected
High

successful-admin
Successful administrator

privilege gain
High

successful-user
Successful user
privilege gain

High

trojan-activity
A network Trojan

was detected
High

unsuccessful-user
Unsuccessful user
privilege gain

High

web-application-
attack

Web application attack High

attempted-dos Attempted DoS Medium

attempted-recon
Attempted

information leak
Medium

bad-unknown Potentially bad traffic Medium

default-login-attempt
Attempt to login by a
default username and

password
Medium

denial-of-service
Detection of a
DoS Attack

Medium

misc-attack Misc attack Medium

non-standard-
protocol

Detection of a
non-standard

protocol or event
Medium

rpc-portmap-decode
Decode of an
RPC Query

Medium

successful-dos DoS attack Medium
successful-recon-

largescale
Large scale

information leak
Medium

successful-recon-
limited

Information leak Medium
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Table 2.7: Snort Attack Classifications (cont’d.)

Classtype Description Priority
suspicious-filename-

detect
A suspicious filename

was detected
Medium

suspicious-login
An attempted login
using a suspicious

username was detected
Medium

system-call-detect
A system call was

detected
Medium

unusual-client-
port-connection

A client was using
an unusual port

Medium

web-application-
activity

Access to a potentially
vulnerable web
application

Medium

icmp-event Generic ICMP event Low
misc-activity Misc activity Low

network-scan
Detection of a
network scan

Low

not-suspicious Not suspicious traffic Low
protocol-command-

decode
Generic protocol
command decode

Low

string-detect
A suspicious string

was detected
Low

unknown Unknown traffic Low

tcp-connection
A TCP connection

was detected
Very
low



Chapter 3

Literature Review

This chapter discusses the related research on IoT security approaches against DoS

attacks. Following a comprehensive evaluation of recent publications in this area, we

have highlighted the main contributions of each related paper and compared them

with our thesis. Table 3.1 and Table 3.2 show the contribution of this paper compared

with other research papers in this area. In addition, we also present other possible

research on IoT security solutions related to our thesis.

3.1 Comparative Study of Current Security Schemes for DoS Attacks

Since the increasing number of IoT devices and the latency-related issues in accessing,

processing and storing data using cloud computing in IoT systems, Ullah et al. [68]

propose a method for detecting and preventing internal and external DoS attacks in

the fog layer of IoT systems, i.e., alight method. The proposed method is designed

to protect fog-based alarm systems using fewer resources. This method is able to

identify SYN flood attacks in the fog computing layer in real-time and avoid the attack

by adding the intruder’s device information to the blocking table (i.e. blacklist).

However, the proposed method only detects and protects against one kind of DoS

attack.

Simadiputra and Surantha [69] propose a secure and efficient Raspberry-Pi-based

gateway for smart home IoT architecture, namely Rasefiberry. The proposed gateway

has a security application and an intelligent encryption algorithm for files. In addition,

the researchers use Snort as the intrusion detection system (IDS) of the proposed

gateway and openHab as its application. The researchers evaluate Snort’s ability to

detect cyber DoS attacks and compare the efficiency of the well-known encryption

algorithms. The results show that the Rasefiberry architecture can successfully handle

the lightweight security program and the Openhab smart home gateway program.

The Snort IDS proposed in this paper can only detect DoS attacks against the IoT

31
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Table 3.1: Comparison of Raspberry House with Other Related Research

Research Work
Raspberry

House

Ullah
et al.
[68]

Simadiputra
& Surantha

[69]

Aung &
Thant
[30]

Real Time
Detection

C C C C

IDS Against
System Level
DoS Attack

C × × ×

IDS Against
Data Link
Layer DoS
Attack

C × × C

IDS Against
Network Layer
DoS Attack

C × C ×
IDS in IoT

IDS Against
Transport Layer

DoS Attack
C C C ×

Real Time
Prevention

C C × ×

IPS Against
System Level
DoS Attack

C × × ×

IPS Against
Data Link
Layer DoS
Attack

C × × ×

IPS Against
Network Layer
DoS Attack

C × × ×
IPS in IoT

IPS Against
Transport Layer

DoS Attack
C C × ×

IPS in IoT
IPS Against

Transport Layer
DoS Attack

C C × ×

IDS/IPS Design
for Internal DoS

C C C C

Alert User Approach C × × ×
IDS/IPS Built for

Resources Constraint
IoT Devices

C × C ×

×: Not Covered C: Covered
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Table 3.2: Comparison of Raspberry House with Other Related Research (cont’d.)

Research
Work

Zhang &
Sampalli

[53]

Nguyen
et al.
[70]

Java-
nmardi
et al.
[71]

Binu
et al.
[72]

Mariam
& Negash

[73]

Real Time
Detection

× C C C ×

IDS Against
System Level
DoS Attack

× × × × ×

IDS Against
Data Link
Layer DoS
Attack

× × × C ×

IDS Against
Network Layer
DoS Attack

× × × C ×

IDS in IoT
IDS Against
Transport
Layer
DoS Attack

× × C C C

Real Time
Prevention

C × C C ×

IPS Against
System Level
DoS Attack

× × × × ×

IPS Against
Data Link
Layer DoS
Attack

C × × C ×

IPS Against
Network Layer
DoS Attack

× × × C ×

IPS in IoT
IPS Against
Transport
Layer
DoS Attack

× × C C ×

IDS/IPS
Design for
Internal DoS

C C × × ×

Alert User
Approach

C × × × ×

IDS/IPS Built
for Small IoT
Devices

C × × C ×

×: Not Covered C: Covered
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network layer and transport layer protocols, and the authors do not provide IPS in

their proposed IoT gateway to prevent DoS attacks.

Kristiyanto et al. [52] use external penetration testing to analyze deauthentica-

tion attacks on IoT-based IEEE802.11 connections, aiming to analyze the security

level of IEEE802.11 (i.e. WiFi) connections against IoT device-based deauthentica-

tion attacks. The results show that the deauthentication attacks result in a loss of

communication between the test target and the gateway, but the test target’s media

access control (MAC) is still registered on the gateway. In this paper, the authors

list some mitigation strategies, but they do not apply them in this paper.

The link layer in wireless networks is vulnerable to DoS attacks due to unpro-

tected management frames. Therefore, Aung and Thant [30] propose an approach

to detect and mitigate the wireless link layer attack (i.e., the WLLA algorithm),

aiming to detect masqueraded DoS attacks using active and passive fingerprinting

methods. The proposed algorithm is implemented in a real-time setup using Python

network programming under the Kali Linux environment. The results show that the

proposed algorithm can detect wireless link layer DoS attacks. Furthermore, the au-

thors indicate that they would consider using the prevention and auditing modules

for management frames in their future research.

Zhang and Sampalli [53] propose a client-based IPS for IEEE802.11 wireless LAN

to prevent Mac layer DoS attacks. The proposed system helps clients distinguish be-

tween legitimate and forged management frames using a MAC filtering mechanism.

Moreover, the proposed solution is a lightweight solution that does not require signifi-

cant changes to existing standards or the use of cryptography. Although the proposed

scheme can protect wireless clients from DoS attacks of management frames initiated

at the MAC layer, the authors did not consider the IDS and IPS approach for other

DoS attacks.

Nguyen et al. [70] propose a lightweight DNN-based Network Intrusion Detection

System (NIDS) (i.e., Realguard) for IoT gateways, aiming at running directly on local

gateways and protecting internal IoT devices. The proposed system can accurately

detect multiple network attacks in real-time with a small amount of computation.

However, the proposed attack detection model must be frequently retrained to main-

tain high accuracy, which will consume a lot of computational and network resources
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to deploy and update the model.

Javanmardi et al. [71] propose a security-driven task scheduling method (i.e.,

FUPE) for SDN-based IoT-Fog networks. FUPE is a security-aware task scheduler

in IoT fog networks, which aims to efficiently assign IoT end-user tasks to fog devices

in SDN architecture. The results show that FUPE can optimize network and com-

puter resource utilization while blocking TCP SYN flood attacks to prevent resource

exhaustion. Although the authors only consider TCP SYN flood attacks in this pa-

per, in future work, the authors show that they will use FUPE to prevent other DoS

attacks such as ICMP flood attacks.

Binu et al. [72] propose an SDN-based IoT DoS attack dynamic detection and

mitigation scheme to detect three common DoS attacks: deauthentication, TCP SYN

flood, and Ping of Death. The authors use Mininet to simulate an entire system

capable of detecting highly accurate attacks using the SVM algorithm and mitigating

malicious traffic within seconds by implementing new rules in the SDN controller. The

proposed system effectively mitigates DoS attacks in the TCP/IP model. However,

DoS attacks that occur at the system level are not considered.

Mariam and Negash [73] evaluate the performance of machine learning algorithms

to detect SYN flood attacks. The classification model was trained and tested using

a packet capture dataset collected from the Ethiopian Telecom network by generat-

ing and capturing packets using the Hping3 and Wireshark. The authors use four

classification machine learning algorithms to test: Naive Bayes, Adaptive Booster

(AdaBoost), J48, and Artificial Neural Network (ANN). The results show that the

J48 model can detect SYN flood attacks more effectively than the other three mod-

els. The authors conclude that they will study IDS and IPS methods for DoS attacks

against other protocols in future work.

3.2 IoT Gateway Design

Shang et al. [74] propose a novel configurable smart IoT gateway. The proposed

smart IoT gateway can support Ethernet, 3G and RS485 bus for data communi-

cation with the common network. Users can choose different data communication

interfaces according to their specific needs. In addition, the gateway has unified ex-

ternal interfaces, which are suitable for flexible software development. It has flexible
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protocols to convert different sensor data into a uniform format. The results show

that the proposed gateway has better scalability and flexibility, and it is a low-cost

gateway. However, the proposed gateway does not support WiFi communication, and

it does not include any security policy.

Glória et al. [34] propose an IoT gateway for creating a smart swimming pool ded-

icated to real-time monitoring and remote control of a swimming pool. The proposed

gateway is designed using Raspberry Pi. The gateway allows bidirectional communi-

cation and data exchange between the user and the sensor network implemented in

the environment using Arduino. However, the proposed gateway only serves a specific

application and does not provide security functions.

Zachariah et al. [75] propose an IoT gateway architecture that uses a generic

IoT gateway as a software service on modern smartphones to provide generic and

ubiquitous Internet access to Bluetooth Low Energy (BLE)-connected IoT devices.

The proposed IoT gateway uses wireless communication protocols for specific applica-

tions, which provides a scalable alternative to application-specific gateway structures.

The proposed IoT gateway utilizes smartphones as IPv6 routers for less resource con-

strained endpoints and as a BLE proxy.

3.3 IDS for DoS/DDoS Attacks in IoT Security

Chen et al. [76] propose an ML-based IoT DDoS attack detection system to prevent

DDoS attacks in IoT gateways. The proposed system is a multilayer DDoS detection

system including IoT devices, IoT gateways, SDN switches and cloud servers. The

authors extract the characteristics of four DDoS attacks and launch DDoS attacks

from eight smart poles. The research results show that the proposed system can

detect DDoS attacks and block malicious devices.

Gupta et al. [77] propose a machine learning-based attack detection method

to identify attack traffic in the Consumer Internet of Things (CIoT). The proposed

method uses a low-cost machine learning classifier to detect attacks on the local router.

The authors record normal and attack traffic patterns by simulating IoT networks

and use six machine learning classifiers to detect them based on the prepared dataset.

The results show that the proposed method achieves an accuracy of 0.97–0.99, and it

also acts as a mitigation strategy by filtering out attack traffic on the local router.
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Ferrag et al. [78] propose a DDoS attack IDS based on three deep learning mod-

els, which are convolutional neural network (CNN), deep neural network (DNN) and

recurrent neural network (RNN), aiming to provide performance evaluation and com-

parative analysis between machine learning and deep learning methods in Agricul-

ture 4.0 network. The authors use the CIC-DDoS2019 dataset and the TON IoT

dataset and study the performance of each model inside two classification types. The

results show that deep learning techniques are more accurate than other machine

learning strategies.

Nie et al. [79] propose a secure social IoT intrusion detection based on collabo-

rative edge computing. The authors use a feature selection module to process col-

laborative edge network traffic and design an intrusion detection system for a single

attack based on a generative adversarial network (GAN). It has been verified that

the proposed method can effectively perform intrusion detection.

SaiSindhuTheja and Shyam [80] propose an efficient meta-heuristic OCSA algo-

rithm based on feature selection and Recurrent Neural Network (RNN) for DoS at-

tack detection in a cloud computing environment. The proposed algorithm combines

opposition-based learning (OBL) and the crow search algorithm (CSA), selects the

feature, and then uses RNN to classify the selected features. The authors use the

KDD Cup 99 dataset to conduct experiments. The experimental results show that

the proposed algorithm is better than existing algorithms in terms of Precision, Re-

call, F-Measure and Accuracy.

Since DDoS attacks are one of the major security threats to cloud computing,

Velliangiri et al. [81] propose a DDoS attack detection scheme to detect intruder nodes

in cloud environments. The proposed solution is based on a Taylor-Elephant Herd

optimized Deep Belief Neural Network (TEHO-DBN) classifier and compared with

Neural Network (NN), Ensemble, Support Vector Machine (SVM), Elephant Herd

Optimisation (EHO) algorithms. The results show that the proposed TEHO-based

Deep Belief Network (DBN) classifier improves the performance with an accuracy of

0.83.

Sousa et al. [82] propose IDS-IoT, an IDS for IoT DoS attacks, designed to detect

specific DoS attacks, including SYN flood, land attack, ICMP flood, smurf attack,

and UDP flood. The results show that the proposed IDS-IoT achieves good results
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in detecting the types of attacks implemented, with no false-positive events observed

during testing. The limitations of IDS-IoT are that it needs to capture a large number

of packet characteristics for analysis, which leads to high operating costs and limited

attack types detected.

3.4 IPS for DoS/DDoS Attacks in IoT Security

Mihoub et al. [83] propose an architecture for DoS/DDoS attack detection and mit-

igation in IoT using the looking-back-enabled machine learning technique to detect

and mitigate DoS/DDoS attacks in IoT. The proposed architecture is able to detect

and mitigate DoS/DDoS attacks against TCP, UDP and HTTP protocols and is eval-

uated on the Bot-IoT dataset. The evaluation results show that the random forest

classifier with looking-back-enabled achieves 99.81% accuracy.

Saxena and Dey [84] propose a data packet tracing approach based on a third-

party auditor (TPA) to prevent DDoS attacks using a collaborative cloud computing

approach. The authors use the Weibull distribution to analyze the source of DDoS

attacks and obtain the availability, reliability, and median lifetime of DDoS defence

in a cloud environment. Moreover, the proposed approach also solves the problem of

IP spoofing. The authors use an application based on the Hadoop and MapReduce

framework to test this approach. The proposed approach can effectively mitigate and

prevent DDoS attacks compared with other existing approaches. In addition, the

proposed approach reduces the overhead of cloud users.

Kumar and Amin [85] propose a blockchain and software-defined networking

(SDN) approach to mitigate DDoS attacks. SDN’s ability to fully authenticate and

filter traffic provides an appropriate mechanism for authenticating legitimate users.

In addition, SDN also has the ability to enforce rules on the SDN controller. For

example, if the IP address is not authenticated, the SDN drops all requests from that

IP address, which is very helpful in mitigating attacks. The results show that the

proposed solution can effectively mitigate DDoS attacks.
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3.5 Research Gaps

In this related work section, we found many IoT gateways that lack security functions,

making them vulnerable to attack. Many techniques exist to identify IoT security

vulnerabilities, learn attacker behaviour, and continuously monitor IoT devices to

detect and prevent DoS attacks against IoT devices. However, some approaches do

not seem to be generic enough to address the heterogeneity of the IoT paradigm. Fur-

thermore, although IDS techniques in the IoT field demonstrate advanced progress,

some of these methodologies leave room for further research. Indeed, relying only on

IDS mechanisms to monitor DoS attacks is not very effective, as they can only detect

limited attacks. Therefore, the research community has received attention from the

study of how to provide effective IPS technologies. However, the existing research

on IPS technologies for DoS attacks is far less than the research on IDS technologies

because the heterogeneity of the IoT paradigm makes it impossible to implement the

complex IPS technology on resource-constrained IoT devices.

In addition, we found that most of the IDSs and IPSs for IoT DoS attacks are

based on machine learning approaches. The proposed machine learning approaches

first need to capture normal and malicious packets and construct a dataset for training

purposes. They will then train the dataset using various machine learning algorithms

to improve the accuracy of capturing malicious packets (i.e., improving the IDS accu-

racy). Therefore, researchers spend a lot of time upfront to generate the dataset and

select parameters to optimize algorithms, which will result in high operating costs,

time costs and resource usage. Furthermore, many IDS and IPS approaches can only

be run once, which is not perfect for IoT gateways: we need the proposed IDS and

IPS to run automatically when the IoT gateway is powered and easy to operate.

3.6 Contributions

The main contribution of this thesis is to provide researchers with a novel approach

for intrusion detection and prevention of DoS attacks on IoT devices. We added

security functions to the proposed IoT gateway (i.e. Raspberry House) to improve

its security. In addition, the proposed intrusion detection and prevention approaches

are compatible with resource-constrained IoT devices. The proposed IDS and IPS
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methods are mainly based on shell scripts and systemd services, and take into account

DoS attacks in various scenarios, including but not limited to SYN flood attacks,

ICMP flood attacks, Deauthentication attacks, and bash fork bomb. Since no training

on a dataset is required, our new method requires less time cost than the machine

learning approach. Moreover, since we use systemd services, the proposed IDS and

IPS methods can run automatically after powering up the Raspberry House. We

tested the average delay of the proposed IDS and IPS methods at a given time for

reference by other researchers. Finally, we provide researchers with suggested optimal

IPS solutions for different DoS attacks for their further study.



Chapter 4

Proposed Raspberry House Design

This chapter proposes a general gateway framework for IoT systems that can provide a

secure communication environment for small IoT devices connected to it. In addition,

the proposed gateway is able to detect and prevent different kinds of DoS attacks and

alert the administrator in real-time. The Raspberry House gateway design in this

thesis consists of three parts. The first part is the architecture design of Raspberry

House; the second part is the design of IDS and IPS in Raspberry House; the third

part is the testing of Raspberry House IDS and IPS security based on Kali Linux

tools; the last part summarizes the advantages of the designed architecture.

4.1 Raspberry House Architectural Design

Our design goal is to design an IoT gateway with accessibility and low cost. The pro-

posed Raspberry House is designed for small IoT devices to provide a secure network

environment for the devices connected to it and to be able to detect and prevent in-

ternal DoS attacks. In addition, in order to improve its utilization, Raspberry House

has the characteristics of small size and easy portability.

Figure 4.1 shows the architectural design of the Raspberry House. We have con-

figured the Raspberry House as an IoT gateway in our previous research [63], which

can separate the internal network from the external network, i.e. generate private

network IP addresses and assign them to small IoT devices connected to it. There-

fore, all the small IoT devices connected to it are in a private network, and there is no

way for external networks to bypass the Raspberry House and connect to the small

IoT devices.

The Raspberry House authentication feature integrates IoT gateway authentica-

tion and logging into the Raspberry House using SSH. Users from the Internet or

small IoT devices must enter their user credentials, i.e., user ID and password, to

access and connect to the gateway. If user credential verification fails, the user must

41
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Figure 4.1: Raspberry House Architecture Design
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enter the password again until they enter the correct password and user ID. Further-

more, the administrator can log into the Raspberry House system using SSH with

their hostname and password, therefore, the administrator does not need to login to

Raspberry House using an external monitor, keyboard and mouse.

The Raspberry House uses the TLS protocol so that every message sent will pass

a message authentication code (MAC) to check the integrity of the message. More-

over, the protocol can use the public key to verify the identity of the communicating

party and, if necessary, the identities of both parties. In addition, considering that

Raspberry House may manage a large number of IoT devices in the future, Raspberry

House also provides a secure cloud service.

This research mainly focuses on the design of Raspberry House’s intrusion detec-

tion and prevention system, which aims to protect IoT devices from DoS attacks. We

introduce the design of IDS and IPS in the next section.

4.2 Raspberry House IDS and IPS Design

The intrusion detection and prevention system we designed can operate autonomously

and generate real-time feedback when the Raspberry House is powered, which means

that even if the administrator does not log into the Raspberry House, the IDS and

IPS can still operate. Since all the IDS and IPS we designed are based on shell scripts,

in order to be able to make them run autonomously when the Raspberry House is

powered on, we need to design the systemd services to start the IDS and IPS services

in parallel. We divide the IDS design and IPS design into two parts for a detailed

description.

4.2.1 Raspberry House IDS Design

For the IDS at the data link layer, we wrote a Python script in a Linux environment

designed to monitor all wireless traffic to detect deauthentication attacks at the data

link layer. Before running this Python script, we need a shell script to start the mon-

itor mode of the Raspberry House and read all network traffic of the wireless devices

connected to it and all interfaces. Algorithm 1 shows the algorithm of the proposed

Python script to detect deauthentication packets. The Python script first continu-

ously captures real-time packets to detect any data transfer or network activity. The
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captured traffic is then analyzed. If a WiFi (IEEE802.11) packet in the data link layer

is captured, the capture date-time is recorded and converted into a UNIX timestamp,

packet type, and packet subtype. If the packet type is a management frame and the

packet subtype is a deauthentication frame, then the script detects a deauthentication

packet. Furthermore, we can detect other DoS attacks at the data link layer, such as

disassociation attacks by changing the subtype of the detect packets in the Python

script. Finally, the script prints out the captured packet information for subsequent

use.

Algorithm 1 Detect Deauthentication Packets

Input: Run the Python script.

Output: the date time, UNIX timestamp and attacked MAC address if deauthenti-

cation attack detected.

1: Configure monitor mode

2: Detect data link layer attack()

3: Monitor Packets (p)

4: if Monitored packets is in Layer of Dot11 then

5: Formate datetime: formattime

6: Convert datetime to UNIX timestamp: unixtime

7: type = p.getlayer(Dot11).type

8: subtype = p.getlayer(Dot11).subtype

9: end if

10: if type==0 and subtype==12 then

11: Set macaddr equal to the attacked MAC address with all capital letter

12: Print formattime + unixtime + ”Deauth Detect Against Mac Addr” +

macaddr

13: end if

After a deauthentication packet is detected, we will publish the packet information

on a topic using the MQTT broker in one shell script and then use the pub/sub mode

to subscribe to the same topic and get the detected packet information in another

shell script. Moreover, for security, we use the local MQTT broker to publish and

subscribe messages to reduce the risk of eavesdropping. If a message is received

from an MQTT publisher, then a malicious packet has been detected, so our IDS
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will generate an alert message and send the alert to the administrator via email or

Twitter message. In addition, a LED connected to the Raspberry House will blink

to alert the user that an intrusion has been detected.

For network and transport layers IDS, we use the Snort ruleset to detect the DoS

attacks, which can reduce processing speed and RAM usage load. Snort rules are di-

vided into three categories: community ruleset, subscriber ruleset, and custom ruleset

(i.e., local rules). The community ruleset is a GPLv2 Talos certified ruleset, free and

open to all users, without any Snort subscriber ruleset licensing restrictions. The

community ruleset can detect most attacks on the network and transport layers, but

it is relatively weak due to the simple parameter setting. Subscriber ruleset is devel-

oped, tested, and approved by Cisco Talos. Subscriber ruleset includes community

ruleset and requires users to pay for use but will update rules without delay. Custom

rules mean that users can define Snort rules for intrusion detection and prevention

according to their own needs. The rules need to be defined by users without any

cost. Since our research goal is to set up a secure and low-cost gateway, in this thesis,

we use the free default Snort community rules and custom Snort rules to effectively

detect DoS attacks against the network layer and transport layer.

Since Snort is able to detect suspicious behaviour for both network layer and

transport layer protocols (i.e., IP, ICMP, TCP, and UDP), this thesis uses it as the

IDS for the network and transport layers. We write a shell script to publish the Snort

detection results to an MQTT topic through the local MQTT broker and create

another shell script that acts as a subscriber to collect the information published

on the topic. After detecting suspicious traffic, the publisher will publish it on the

relevant topic, and after the subscriber receives the detection results, an alert will

be generated and sent to the administrator through email and Twitter messages.

Moreover, a LED connected to the Raspberry House will blink to alert the user that

an intrusion has been detected.

We use the watchdog timer for system security level IDS to detect suspicious

traffic. A Watchdog Timer (WDT) is used to monitor system programs to see if

they are out of control or have stopped running [86, 87]. The Raspberry House

communicates with the watchdog timer at a set interval to indicate that it is still

working normally. If Raspberry House does not output a signal, outputs too many
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signals, or outputs a different signal than the preset pattern, the watchdog timer will

detect that the Raspberry House system is malfunctioning and send a reset signal to

Raspberry House. The Raspberry Pi 3B+ offers a built-in watchdog timer service,

but consider that there is no guarantee that a failing Raspberry House will be able to

monitor itself and detect failures when it is only monitored by the built-in watchdog

timer. Therefore, for the system level IDS design, we also propose the use of the

external watchdog timer that runs independently, aiming to add an extra layer of

security to the Raspberry House. This thesis uses the ATtiny85 board as the external

watchdog timer. After a system anomaly is detected, administrators receive security

alerts via email and Twitter messages for further action.

4.2.2 Raspberry House IPS Design

For the IPS design of the data link layer, for illustration purposes, we use the deau-

thentication attack as an example of a data link layer DoS attack. However, this

IPS can be implemented on other DoS attacks against IEEE802.11 wireless networks,

such as disassociation attacks. The deauthentication attack is a destructive technique

against wireless connections that prevents IoT devices from connecting to the Rasp-

berry House. Since the network does not validate incoming frames, if the attacker

keeps sending deauthentication requests, the user cannot reconnect to Raspberry

House for a long time.

A common way to prevent such an attack is to use Protected Management Frames

(PMF, AKA 802.11w) [88], that is, add a hash and a signature to the management

frame, but small IoT devices do not support 802.11w due to their limited resources.

Therefore, we propose a shell script as IPS. When a deauthentication attack is de-

tected, the IPS in the Raspberry House will be triggered if the deauthentication pack-

ets received by the Raspberry House exceed a defined threshold. The proposed IPS

will block the WiFi interface and then re-enable the WiFi interface after a predefined

interval. If the deauthentication packets are still received after unblocking the WiFi

interface, then the IPS will repeat the above operation until the Raspberry House

no longer receives any deauthentication packets. After our IPS blocks the Raspberry

House’s WiFi interface, the attacker cannot continue to send deauthentication packets

to the target network because the attacker cannot find the target.
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For the network layer and transport layer IPS, we use Snort’s inline mode and

custom ruleset for implementation. When Snort is in inline mode, it acts as an IPS,

allowing drop rules to be triggered. In inline mode, Snort builds a bridge between two

network segments and is responsible for passing traffic between the network segments.

It can detect passing traffic, as well as suspicious drop traffic. In order to create a

bridge between two network segments, Snort needs to have two network interfaces,

each on different network segments. We will configure these interfaces in the promis-

cuous mode without IP addresses. When Snort is running, it will check the traffic on

each interface, detect the packets against the rules we defined, drop malicious packets

as defined in the rules, or send them to another interface without making any modifi-

cations. Therefore, Snort network segments must belong to the same logical subnet.

Since the Snort application is responsible for bridging (i.e., passing traffic between

the two network segments), if Snort is not running, the two network segments will not

be able to communicate through the Snort system. The IPS we designed uses Snort

inline mode and custom Snort rules to detect and drop malicious packets defined in

the rules to protect small IoT devices connected to the Raspberry House from the

DoS attack.

We use watchdog timers as the system security level IPS. After detecting an

anomaly, the watchdog timer sends a reset signal to the Raspberry House to reboot

it. For system security level DoS attacks, we have designed three watchdog timers,

namely built-in watchdog timer (hardware watchdog) and external watchdog timer

(gentle watchdog timer and delayed watchdog timer). Table 4.1 explains the proposed

watchdog timer schemes. Figure 4.2 shows the workflow of the external watchdog

timer (WDT). The built-in watchdog timer is achieved using the watchdog timer

functionality provided in the Raspberry Pi SoC (system on a chip), and we will detail

how we download and configure it to the Raspberry House in the next chapter. The

built-in watchdog timer prevents attacks such as the bash fork bomb attack that are

easily detected by the system and cause the system to slow down or crash. For the

gentle watchdog timer and the delayed watchdog timer, we designed a shell script

that will check the specified GPIO pins on the Raspberry House and run different

watchdog timers depending on the state of the pins. The gentle watchdog timer can

be used for DoS attacks that are not easily detected, such as attacks against inodes.
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Table 4.1: Description of the Proposed Watchdog Timer (WDT) Schemes

WDT Type Description

Built in WDT

When the DoS attacks make Raspberry House
freeze and are easily detected, the hardware
watchdog will restart the Raspberry House automatically
after a predefined interval.

Gentle WDT

When DoS attacks which make Raspberry House
freezes, but difficult to be detected immediately, the
gentle WDT will restart Raspberry House automatically
after a predefined interval.

Delayed WDT

The delayed WDT will run when the DoS attack is
massive and sustained. It will restart the Raspberry
House automatically after a predefined interval
(the time interval will be relatively long compare to the
other two WDT since it will restart the Raspberry House
after the large amount DoS attacks).

The delayed watchdog timer can be used to detect massive and sustained DoS attacks.

Table 4.2 summarizes the IDS and IPS designs proposed in this thesis.

4.3 Raspberry House IDS and IPS Evaluation Design

This thesis uses Kali Linux based tools to test the security of Raspberry House IDS

and IPS. Figure 4.3 shows the evaluation design scheme for our research. We use

Kali Linux based PC as the attacker for DoS attacks. Kali Linux comes pre-installed

with most of the security applications for penetration testing. The applications used

in this thesis are the aircrack-ng suite and hping3 command to run flood-type DoS

attacks to test the IDS and IPS performance at the data link layer, network layer,

and transport layer. For system security level IDS and IPS, we use the system level

penetration test commands on the Raspberry House to test.

4.4 Advantages of The Designed Architecture

The following are the advantages of the designed architecture proposed in this thesis.

• The proposed Raspberry House can provide a secure environment for IoT re-

searchers/engineers.
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Table 4.2: Proposed Raspberry House’s IDS and IPS Design

DoS Attacks on... IDS Design IPS Design

Data Link
Layer

- Develop a Python script
to detect the DoS attacks
against IEEE802.11
network. The malicious
packets can be detected
based on the type and
subtype of their frames.
- Blink LED to notify
the user.
- Send alert through
email and twitter to
the user.

Block the WiFi interface
for a predefined interval
and then unblock the
WiFi interface. Repeat
the above operation
until the Raspberry House
no longer receives any
malicious packets.

Network
Layer &
Transport
Layer

- Use community ruleset
and custom rules to detect
the attacks.
- Blink LED to notify
the user.
- Send alert through
email and twitter to
user.

Use inline mode and
custom rules to drop the
malicious packets.

System
Security
Level

- Design different kinds
of WDT (built-in WDT,
gentle WDT, and
delayed WDT) to detect
the DoS attacks based on
the serious of the attacks.
- Send alert through
email and twitter to
the user.

The WDTs will reboot
Raspberry House with
different predefined intervals
to prevent DoS attacks.
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Figure 4.2: External WDT Workflow
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Figure 4.3: Raspberry House IDS and IPS Evaluation Design

• The proposed Raspberry House can detect and prevent DoS attacks in real-time

to enhance the security of small IoT devices which connect to it.

• The proposed Raspberry House considers IDS and IPS against DoS attacks in

the data link layer, network layer and transport layer of the TCP/IP model.

• Moreover, the proposed Raspberry House considers IDS and IPS against DoS

attacks at the system security level.

• The proposed Raspberry House considers the severity of DoS attacks and de-

cides on preventive measures based on severity, improving system efficiency.
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• The proposed Raspberry House can send alerts to users through email and

Twitter when a DoS attack is detected.

• The proposed Raspberry House is low cost and easy to carry to ensure that

most IoT researchers can afford it and use it to work anywhere.



Chapter 5

Experimental Implementation

5.1 Raspberry House Architecture Implementation

Figure 5.1 shows the implementation of the proposed scheme. A Raspberry Pi 3B+,

Ethernet cable, USB to Ethernet adapter, Micro SD card, SD card reader, universal

PCB board, USB WiFi adapter and MacBook Pro (server) as the hardware to imple-

ment the Raspberry House; ATtiny85 board as the hardware implementing external

watchdog timers (gentle WDT and delayed WDT); attacker using Raspberry Pi 4

with Kali Linux system as the malicious PC; NodeMCU board and Grove Beginner

Kit for Arduino (GBKA) as our small IoT device. In addition, due to the resource

constraints of the research, there is only one small IoT device, but Raspberry House

can accept multiple Internet devices connecting to it.

As shown in Part A, we use MacBook Pro as a server and used the Ethernet

interface of the Raspberry Pi to connect to the MacBook Pro with an Ethernet

cable. The server uses a wireless connection to the home router in Part B. The

home router is then connected to the Internet. In this way, we have made a gateway

in the gateway, which enhances the security of small IoT devices connected to our

gateway. In addition, as shown in Part C, we plugin the universal printed circuit board

(PCB) onto the Raspberry House because we need to use the LEDs on it to indicate

different DoS attacks. Universal PCB is an environmental sensor board module for

Raspberry Pi (B+/2/3) that integrates Bosch’s environmental sensor “BME280” and

an illuminance sensor. There are also three push button switches, three LEDs, and an

IR LED mounted on the board, which is handy when making a stand-alone device.

Furthermore, it also has a terminal to connect to the “AQM1248A Small Graphic

LCD Panel” as an option. As shown in Figure 5.2, we use the stacking headers to

connect the universal PCB and Raspberry House. The upper blue colour board is

the universal PCB, and the lower board is Raspberry House.

In Part D, we use the WiFi interface of the Raspberry House to connect small IoT

53
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Figure 5.1: Connection of Raspberry House
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Figure 5.2: Connection Between Raspberry House and Universal PCB

devices. This thesis uses NodeMCU and Grove Beginner Kit (GBKA) as a small IoT

device. GBKA is an all-in-one kit designed to provide users with an Arduino program-

ming study. The kit is powered by an Arduino compatible board (Seeeduino Lotus)

and ten additional Grove Arduino sensors, all integrated on one board, which fulfills

our needs for different kinds of small IoT devices in this thesis. Figures 5.3 and 5.4

show the hardware overview of GBKA and its size in detail [9]. However, GBKA

does not offer wireless connectivity. We need small IoT devices to be able to connect

to the secure wireless network provided by the Raspberry House. Therefore, we use

NodeMCU to achieve this purpose. NodeMCU board includes ESP8266 with a WiFi-

enabled chip. ESP8266 is a low-cost WiFi chip developed using the Espressif system’s

TCP/IP protocol. Furthermore, both GBKA and NodeMUC can be programmed us-

ing the Arduino IDE. Part E shows that NodeMCU and GBKA are connected via

software serial to transmit data. Since GBKA uses 5v and NodeMCU uses 3v3, we

need a logic level converter for voltage conversion. The specific connections are shown

in Table 5.1.

As shown in Part F, the USBWiFi adapter we use to monitor the network traffic is

Alfa AWUS036NHA Wireless B/G/N USB Adaptor, and we connect it to Raspberry

House using a USB cable. In Part G, we use Kali Linux based Raspberry Pi 4 as the
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Figure 5.3: Hardware Overview of GBKA [9]

Figure 5.4: GBKA Dimensions [9]

malicious PC to perform the DoS attacks. Since we use a headless Raspberry Pi (i.e.,

it does not connect to the keyboard, mouse, and monitor), we enable USB to TTL

connection on Raspberry Pi 4 (i.e. attacker PC). Therefore, we can communicate with

Raspberry Pi 4 on our Macbook Pro. Moreover, as shown in Part H, we use jumpers

to connect ATtiny85 and the universal PCB. In this research, ATtiny85 works as the
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Table 5.1: Pin Assignments Between GBKA and NodeMCU

GBKA Logic Level Converter NodeMCU
Ground (GND) GND (5V) GND (3V3) GND
5V 5V 3V3 3V3
RX pin HV2 LV2 TX pin
TX pin HV1 LV1 RX pin

external WDT.

Regarding the software part, we need to install the Raspberry Pi Operating System

(OS) with desktop and recommended software on the Raspberry House. Figure 2.10

shows the operating system we use in our Raspberry House.

5.2 Enable USB to TTL Connection on Attacker PC

In this thesis, we use a USB to TTL serial cable, which is smaller and lighter than

older serial cables. TTL stands for Transistor-Transistor Logic, a digital logic solution

for processing and interpreting information. This serial connection is a traditional

hardware connector that has been used for decades. Serial communication takes place

over serial cables and is a linear form of data transmission, which means it sends data

bit by bit through a communication port like a USB. It is a straightforward way of

communication with a transmitter and receiver and is one of the most simple ways

to communicate with a device.

In order to enable this USB to TTL functionality on the attacker computer (Rasp-

berry Pi 4), we need to prepare the following hardware:

• A Raspberry Pi 4.

• A Micro-SD card with Linux distribution.

• A USB-to-TTL serial cable to connect Raspberry Pi 4 to our Macbook Pro.

• A Macbook Pro with an open USB port to communicate with the Pi through

the cable
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5.2.1 Install prerequisites on Raspberry Pi 4

Raspbian is the default operating system for the Raspberry Pi, and Raspbian has a

Pi module called raspi-config which can help us easily enable the necessary settings

we need. Therefore, we first need to install the raspi-config on our Raspberry Pi 4.

5.2.2 Enabling Connection on Raspberry Pi 4

After installing raspi-config on the Raspberry Pi 4, we will start connecting the UART

cable to the Raspberry Pi 4’s GPIO pins. Make sure that our Pi is not powered on

and has the Micro-SD card inserted (inserting the SD card is optional). As shown

in Figure 5.5, break out our serial cable and connect the following cables to the

appropriate pins.

• We use the USB power supply in this thesis, so we ignore the power lead.

• Connect TXD cable to RXD on the Raspberry Pi 4.

• Connect RXD cable to TXD on the Raspberry Pi 4.

• Connect GND cable to GND on the Raspberry Pi 4.

5.2.3 Start The UART Connection

After we insert the micro-SD card into the Raspberry Pi 4, both our Macbook Pro

and Raspberry Pi 4 are ready to communicate. To test it, we can open a terminal

and enter the following command on the Macbook Pro terminal:

$ sudo screen /dev/tty.usbserial-ttyUSBport number 115200

In addition, 115200 is the speed since more bits are to be transmitted when we

enable the connection.

After executing the screen command, we can boot the Raspberry Pi 4. As shown

in Figure 5.6, we successfully connect to the Raspberry Pi 4 on our Macbook Pro

terminal using a UART connection.

At this point, we can quickly and easily power and log into the Raspberry Pi 4

from our Macbook Pro without the need for peripheral devices.
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Figure 5.5: Headless Kali Linux UART Connection

Figure 5.6: UART Connection Result

5.3 Raspberry House IDS and IPS Implementation

In this section, we will detail the implementation of IDS and IPS. Our IDS and IPS are

based on shell scripts, Snort and WDT, and every shell script’s running information
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Table 5.2: Summary of the Systemd Services and Shell Scripts we used in thesis

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

mosquitto

Run mosquitto
(MQTT broker)
in the
background.

- network
(.target)

mosquitto-
wrapper

Run mosquitto
based on its
configuration file.

enable-
USBadapter

Enable USB
WiFi Adapter as
monitor mode to
monitor the
network traffic.

- network
(.target)

enableAdapter

Enable the
wireless interface
of USB WiFi
adapter as the
monitor mode
to monitor the
network traffic.

MF PUB

Run Python
script which can
detect the
deauthentication
(deauth) packets
and publish to
Topic A with
local MQTT
publisher
(mosquitto pub).

- network
(.target)
- mosquitto
- MF IDS
- MF IPS
- MF kotori-
otokoAlert
- MF
emailAlert

- printDeauth.py
- MF Python

- printDeauth.py:
Python script uses
to detect the
deauth packets.
- MF Python: a
shell script to
publish the result
of printDeauth.py
to Topic A using
local MQTT
publisher
(mosquitto pub)

will be stored in logs for future analysis. Moreover, to enable these shell scripts to

run automatically when the Raspberry House is powered, we use the systemd service.

Table 5.2 – 5.11 lists all the systemd services created in this thesis and the shell scripts

used by the services.

As shown in the table, we need to use the mosquitto service for the data link

layer, network layer and transport layer IDS and IPS. Since data link layer IDS and

IPS are based on the Python script (printDeauth.py) and a shell script to detect

and prevent the DoS attacks, and the network layer and transport layer are based on

Snort to detect and prevent the DoS attack, we create two MQTT topics for these

services. Table 5.12 classifies the services based on the MQTT topic name.
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Table 5.3: Summary of the Systemd Services and Shell Scripts we used in thesis

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

MF IDS

IDS for deauth
attacks, which
will blink the
red LED on
universal PCB
after receive
deauth packets.

- network
(.target)
- mosquitto

- MF Blink

Use local MQTT
subscriber
(mosquitto sub) to
subscribe Topic A.
If receive the deauth
packets, then blink
the red LED on
universal PCB.

MF IPS

IPS for deauth
attacks, which
will block the
WiFi interface
of Raspberry
House.

- network
(.target)
- mosquitto

- disableWiFi
- MF IPS

- disableWiFi: block
WiFi interface of
Raspberry House, and
unblock it after 15
seconds.
- MF IPS: use
mosquitto sub to
subscribe Topic A.
If the deauth packets
received is greater
than 5 (threshold),
then start to run
disableWiFi.sh.



62

Table 5.4: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

MF kotori-
otokoAlert

Alert admin.
through twitter
message when
get deauth
attack.

- network
(.target)
- mosquitto

- kotoriotokoAlert
- MF kotoriotoko
Alert

- kotoriotoko
Alert:
send a twitter alert
to the administrator
with the type of the
DoS attack (deauth
attack) and the
timestamp.
- MF kotoriotoko
Alert:
use mosquitto sub to
subscribe Topic A.
If receive any deauth
packets, then run
kotoriotokoAlert.sh.

MF
emailAlert

Alert admin.
through email
when get
deauth attack.

- network
(.target)
- mosquitto

- emailAlert
- MF emailAlert

- emailAlert: send
an email alert to
the administrator
with the type of
the attack (deauth
attack) and the
timestamp.
- MF emailAlert:
use mosquitto sub
to subscribe
Topic A. If
receive any deauth
packets, then run
emailAlert.sh.
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Table 5.5: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

snort PUB

Run Snort to
catch the
network layer
attack (ICMP
flood attack
as an example
in this thesis),
and transport
layer attack
(SYN flood
attack as an
example in
this thesis).
Then publish
the results to
Topic B using
local MQTT
broker
(mosquitto pub).

- network
(.target)
- mosuiqtto
- SYN twit-
terAlert
- SYN em-
ailAlert
- SYN blink
- ICMP tw-
itterAlert
- ICMP em-
ailAlert
- ICMP blink

snort pub

Run Snort with its
configuration in
inline mode to
capture any
malicious packets
defined in
community ruleset
and custom rules
(SYN flood attack
and ICMP flood
attack). Then drop
the packets defined
in custom rules.
Publish the results
to Topic B
using local MQTT
publisher
(mosquitto pub).

SYN blink

If receive any
SYN flood DoS
attack, then
blink the blue
LED on
universal PCB.

- network
(.target)
- mosquitto

SYN Blink

Use local MQTT
subscriber
(mosquitto sub) to
subscribe Topic B.
If receive the SYN
flood attack, then
blink the blue LED
on universal PCB.
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Table 5.6: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

SYN
twitterAlert

Alert admin.
through
twitter
messages
when get
SYN flood
attack.

- network
(.target)
- mosquitto

- SYNtwitter
- SYN twitter-
Alert

- SYNtwitter: send a
twitter alert to the
administrator with the
type of the DoS attack
(SYN flood attack)
and the timestamp.
- SYN twitterAlert:
use mosquitto sub to
subscribe Topic B.
If receive any SYN
flood DoS attack, then
run SYNtwitter.sh

SYN
emailAlert

Alert admin.
through
email
when get
SYN flood
attack.

- network
(.target)
- mosquitto

- SYNemail
- SYN email-
Alert

- SYNemail: send an
email alert to the
administrator with the
type of the DoS attack
(SYN flood attack)
and the timestamp.
- SYN emailAlert:
use mosquitto sub to
subscribe Topic B.
If receive any
SYN flood DoS attack,
then run SYNemail.sh
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Table 5.7: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

ICMP blink

If receive any
ICMP flood
DoS attack,
then blink the
green LED on
universal PCB.

- network
(.target)
- mosquitto

- ICMP Blink

Use local MQTT
subscriber
(mosquitto sub)
to subscribe
Topic B. If receive
the ICMP flood
attack, then blink
the green LED
on universal PCB.

ICMP
twitterAlert

Alert admin.
through twitter
message when
get ICMP
flood attack.

- network
(.target)
- mosquitto

- ICMPtwitter
- ICMP twitter
Alert

- ICMPtwitter:
send a twitter
alert to the
administrator with
the type of the
DoS attack (ICMP
flood attack)
and the timestamp.
- ICMP twitterAlert:
use mosquitto sub to
subscribe Topic B. If
receive any ICMP
flood DoS attack,
then run
ICMPtwitter.sh
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Table 5.8: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

ICMP
emailAlert

Alert admin.
through email
when get
ICMP
flood attack.

- network
(.target)
- mosquitto

- ICMPemail
-ICMP emailAlert

- ICMPemail: send
an email alert to
the administrator
with the type of the
DoS attack (ICMP
flood attack) and
the timestamp.
- ICMP emailAlert:
use mosquitto sub to
subscribe Topic B.
If receive any ICMP
flood DoS attack,
then run
ICMPemail.sh

5.3.1 Data Link Layer IDS and IPS Implementation

For the IDS implementation of the data link layer, we created a shell script named

enableAdapter.sh to make the USB WiFi adapter monitor network traffic, and

used Python 2.7 to implement the deauthentication packet detection script men-

tioned in the design section. The USB WiFi adapter used in this experiment is

the AWUS036NHA model of the Alfa brand. This model is an IEEE 802.11b/g/n

wireless USB adapter and supports wireless data encryption using 64/128-bit WEP,

WPA, WPA2, TKIP, and AES. In addition, this model uses 2.4GHz wavelength and

supports MINO (multiple input multiple outputs) high-speed transmission TX data

rate up to 150 Mbps.

enableAdapter.sh uses aircrack-ng to monitor network traffic. Aircrack-ng is

a complete set of tools for assessing the security of WiFi networks. It can monitor

the network traffic, implement attacks such as replay attacks, deauthentication, fake

access points and others via packet injection, check WiFi cards and driver capabilities,

and crack such as WEP and WPA PSK (WPA 1 and 2). All aircrack-ng tools are

command lines, allowing for heavy scripting. Many GUIs take advantage of this

feature. It mainly works on Linux but can also work on Windows, macOS, FreeBSD,
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Table 5.9: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

WDTgpio-
Setup

Service to
setup all
GPIO pins
on
Raspberry
House
at startup.

N/A WDTgpioSetup

- Set initial mode of all
GPIO pins for attack
notification to OUT
mode. (i.e., red LED pin
which indicate deauth
attack, green LED pin
which indicate ICMP
flood attack, and blue
LED pin which indicate
SYN flood attack).
- Set the initial mode of
GPIO pin A which work
to generate the heart
beat pulse on
Raspberry House and
send to WDT built by
ATtiny85 to OUTPUT
HIGH.
- Set the initial mode
of the GPIO pin B
which work as a switch
between gentle WDT
(when it set to HIGH)
and delayed WDT
(when it set to LOW)
to OUTPUT HIGH.
- Set the initial mode
of the GPIO pin C
which will receive the
signal from ATtiny85
WDT (i.e. if it goes
LOW level, then reboot
Raspberry House)
to INPUT PULLUP.
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Table 5.10: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

kickWDT

Use GPIO
pin A on
Raspberry
House to
generate
heart beat
pulse and
send to
WDT built
by ATtiny85.

- network
(.target)
- mosquitto

kickWDT

Start the heart beat
pulse on Raspberry
House. The purpose
of this is that if the
pulse is different
than the defined one,
which means the
system does not run
as normal, then the
external WDT built
by ATTiny85 will
start to run based on
the state of GPIO
pin B and GPIO
pin C.

watchdog

The built in
(hardware)
WDT on
Raspberry
House.

multi-user
(.target)

N/A N/A
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Table 5.11: Summary of the Systemd Services and Shell Scripts we used in thesis
(cont’d.)

Service
Name

(.service)
Description

Run After
(.service)

Shell Script
Used By This
Service (.sh)

Description

WDT-
notification

Run the
external
WDT
built by
ATtiny85,
and send
alert to
Admin
through
twitter
message
and email.

- network
(.target)
- WDTgpio-
Setup

WDTdelayed

Check the WDT GPIO
pin C, if its state has
been turned to LOW
level (which means the
gentle WDT start to
run) for 6 seconds,
then start the gentle
WDT. Meanwhile,
check the GPIO pin
which control the
delayed WDT (GPIO
pin B), if its state has
been turned to LOW
also for 6 seconds,
then start the delayed
WDT, otherwise
remain run gentle
WDT. Before the
external WDT start
reboot Raspberry
House, it will send an
alert to the
administrator through
email and twitter
message with the
type of the external
WDT (gentle or
delayed WDT) and
the timestamp.
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Table 5.12: Classify Services Based on MQTT Topic

MQTT Topic
wen/data1 wen/data2

MF IDS.service snort PUB.service
MF IPS.service ICMP blink.service
MF PUB.service SYN blink.service
MF kotoriotokoAlert.service ICMP emailAlert.service
MF emailAlert.service SYN emailAlert.service

ICMP twitterAlert.service
SYN twitterAlert.service

mosquitto.service (used in both topics)
*Notice: the service to setup GPIO pins of Raspberry House
(WDTgpioSetup.service) and enable the USB WiFi adapter
to monitor the network traffic (enableUSBadapter.service)
do not need MQTT service to transfer data.
In addition, the services for WDT (watchdog.service,
WDTnotification.service, and kickWDT.service) also do
not need to use MQTT service.

OpenBSD, NetBSD, as well as Solaris and eComStation 2.

When first trying to use the airmon-ng tool to set the wireless network interface

on the USB WiFi adapter to monitor mode, errors about the process interfering with

the monitor mode occur. Therefore, we have to kill them before moving forward.

Airmon-ng offers a command to kill them all easily:

$ airmon-ng check kill

Then, enable monitor mode on the wireless interface of the USB WiFi adapter by

using the following command:

$ airmon-ng start wlan1

In this case, wlan1 is the wireless interface of the USB WiFi adapter. When

we run this command on Raspberry House, it will return a confirmation, as shown

in Figure 5.7, to show us that we successfully enable the wlan1 interface to work as

monitor mode. As shown in Figure 5.8, the Mode of the wlan1 interface is Monitor.

In addition, we will save the running information of enableAdapter.sh to a

log file for future research analysis. Therefore, the content of enableAdapter.sh is

shown in Figure 5.9.

To be able to enable the script to run autonomously when the Raspberry House is
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Figure 5.7: Monitor Mode Setup Result

Figure 5.8: Monitor Mode Interface Chckeing

powered, we need the systemd service for this purpose. Figure 5.10 shows the service

configuration for enableAdapter.sh. The Description is the purpose of the service,

and we want to set our USBWiFi adapter to monitor mode after the network is set up.

In addition, we set the Type of the service to simple, i.e. the service manager will

consider the unit started immediately after the main service process has been forked

off. It is expected that the process configured with ExecStart is the main process of

the service. The ExecStart is the path of the program we want to run in our service.

We want our service always to run when the Raspberry House is powered since we

need to monitor the network traffic to capture the malicious packets. Furthermore,

we set WantedBy equal to multi-user.target. multi-user.target usually defines

a system state where all network services are up, and the system will accept logins.

However, no local GUI is started, which is the typical default system state for a
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Figure 5.9: Content of enableAdapter.sh

server system, possibly a rack-mounted headless system in a remote server room (i.e.

it tells systemd that this service should be started as part of normal system start-up,

whether or not a local GUI is active).

Figure 5.10: Content of enableAdapter.service

Then we create another shell script named MF Python.sh that uses the local

mosquitto pub (i.e. MQTT broker tool) to publish the results of the Python script

on a topic and then subscribe to the same topic in other shell scripts. When the

Python script detects the deauthentication packets, we use msmtp and kotoriotoko
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Table 5.13: The Functionality Provided By The Kotoriotoko [5]

Function Detail

Posting

- Tweet
- Retweet
- Cancel a tweet
- Like
- Unlike

Tweets Viewing
- View Somebody’s timeline
- Search tweets by keywords

User Controlling

- Follow somebody
- Unfollow somebody
- List users who you following
- List users who you are followed
- View Somebody’s info

Direct Message Managing

- Send
- Receive
- Delete
- List

Other functions
- View trend list
- Gather tweets in bulk continuously

to send alerts to users in the form of emails and Twitter, and blink the red LED

on the universal PCB. The mosquitto client version we used in this thesis is version

1.4.10. The msmtp is an SMTP client that can be used to send mail from MUA (mail

user agent). It transmits the message to the SMTP server in default mode, which

delivers the final delivery (e.g. at free mail providers). By using configuration files, it

can be easily configured to use different SMTP servers with different configurations,

which makes it ideal for mobile clients. msmtp is free software and runs on a variety

of platforms. The msmtp we use in this thesis is version 1.8.19, and we enable TLS

encryption in its configuration file to ensure the security of the email. Kotoriotoko is a

command set for operating Twitter [5], makes the users possible to operate Twitter on

the command-line interface (CLI). Therefore, other applications on UNIX can operate

Twitter more easily. Table 5.13 shows the functionality provided by the Kotoriotoko

command. Our research uses it to send messages to Raspberry House’s users to alert

them to the type of DoS attack with a timestamp.

For the IPS implementation of the data link layer, after the Python script detects

the deauthentication packets and publishes them to a specific topic, we create a shell
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script named MF IPS which uses mosquitto sub to subscribe to that topic and check

the received packets. If the number of deauthentication packets it received is greater

than the threshold (we set the maximum deauthentication packets we accept to 5),

we start the shell script to block the WiFi interface of Raspberry House. There are

many ways to block the wireless interface. In our research, we use the rfkill tool to

enable and disable the wireless device (i.e. the WLAN interface of Raspberry House).

Rfkill is a subsystem in the Linux kernel that provides an interface through which

radio transmitters in a computer system can be queried, activated, and deactivated.

When transmitters are deactivated, they can be placed in a state where software can

respond to them (soft block) or in which software cannot respond (hard block).

5.3.2 Network Layer and Transport Layer IDS and IPS Implementation

We use Snort inline mode and rules to detect and prevent the DoS attacks for net-

work and transport layer IDS and IPS implementation. We use Snort custom rules

(as shown in Figure 5.11) along with community rules to help detect and drop the

malicious packets of network layer attacks (ICMP flood DoS attack as an example in

this thesis) and transport layer attacks (TCP SYN flood DoS attack as an example

in this thesis).

Figure 5.11: Raspberry House Custom Snort Rules

We need to use Snort inline mode to trigger drop rules in our custom rules to

prevent DoS attacks. In this thesis, enforcing Snort running inline (IPS) with DAQ

AFPacket requires four significant configuration changes as follows:

• Configuring Snort policy to run inline (config option within Snort.conf).

• Configuring DAQ AFPacket to run inline (config option within Snort.conf, can

be passed during runtime).

• Forcing Snort to run in inline mode with the -Q command line runtime argument.
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• Modifying the rules to drop traffic on matches, i.e., changing “alert” to “drop”

in the rules.

In addition, running Snort as an IPS with DAQ AFPacket does not require chang-

ing the iptables rules since Snort handles dropping the traffic. Moreover, when run-

ning Snort as an IPS with DAQ AFPacket, Snort itself bridges the interfaces used on

the fly. No prior interface bridging/bonding is required.

5.3.3 System Security Level IDS and IPS Implementation

The system security level IDS and IPS implementation is based on the watchdog

timer (WDT). We use the bash fork bomb as an example of system level attack in

this thesis and design three WDTs (i.e., built-in WDT, gentle WDT and delayed

WDT) to detect and prevent these attacks. The external WDT (i.e. gentle WDT

and delayed WDT) built on ATtiny85 refers to the miniWDT on GitHub [89].

Following are the steps to enable Raspberry House built-in WDT.

• First, we need to activate watchdog hardware in Raspberry House.

• Then, we need to install the software side of this to communicate with the

watchdog.

• We need to configure the watchdog to respond to events. We edit the watchdog.conf

file in etc directory, and uncomment the following two lines.

max-load-1 = 24

watchdog-device = /dev/watchdog

Since we want our built-in WDT to start 15 seconds after detecting the DoS

attacks, we add one more line to the watchdog.config:

watchdog-timeout = 15

Note that the 15 seconds we set is the maximum value for hardware watchdog

timeout.

• Then, we enable the watchdog service by using the following command.

$ sudo systemctl enable watchdog

$ sudo systemctl start watchdog



76

Table 5.14: Pin Assignments of the ATtiny85 and the Raspberry House

ATtiny85 Raspberry House
Raspberry House GPIO

Pin Initial Mode

Pin0 GPIO A in Table 5.6
mode: OUTPUT
logic level: HIGH

Pin1
(on board LED)

N/A N/A

Pin2 GPIO B in Table 5.6
mode: OUTPUT
logic level: HIGH

Pin3 RUN pin header
N/A

(Run pin header is a direct
connect to reset Raspberry House)

Pin4 GPIO C in Table 5.6 mode: INPUT PULLUP
5V 5V N/A
GND GND N/A

We check the status of the watchdog.service by using the following command.

$ sudo systemctl status watchdog

As shown in Figure 5.12, we successfully enable the built in WDT on Raspberry

House

Figure 5.12: Built in WDT Service Status

Table 5.14 lists the pin assignments of the ATtiny85 (i.e. external WDT) and the

Raspberry House initial GPIO modes and levels (states).

First, we start a heartbeat pulse on Raspberry House GPIO A using kickWDT.service.

The ATTiny85 will detect if the received heartbeat pulse is the same as the defined

interval (the defined heartbeat pulse is 1Hz, duty 30%, negative logic). If it is the

same, it proves that the Raspberry House is working normally; if the heartbeat pulse

received by ATTiny85 is different from the defined heartbeat pulse, it means that

the Raspberry House system may be under a DoS attack which causes the system to
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run slowly (such as the inode problem mentioned previously) or breaks it. When an

anomaly is detected, i.e., the pulse is not sent from Raspberry House through the pin0

for more than T0 seconds, ATtiny85 will set pin4 to LOW and start gentle WDT,

which will restart Raspberry House after T1 seconds. In order to restart Raspberry

House, ATtiny85 will push its pin3, which is connected to the Raspberry House run

pin header, to reset Raspberry House. In addition, it will check the state of pin2: if

the state is still the same as the initial state (i.e. LOW), then ATiny85 will run as

a gentle WDT (i.e.reboot Raspberry House after T1 seconds); otherwise, it will run

as a delayed WDT (i.e., reboot Raspberry House after T2 seconds). Note that T2 is

greater than T1 to meet our design purpose.

On the Raspberry House side, we design a WDTnotification.service. In this ser-

vice, the Raspberry House will first check the state of GPIO C: if ATtiny85 sets it

to LOW for more than 6 seconds, then it means the gentle WDT would run. Mean-

while, if the state of GPIO B is set to LOW for more than 6 seconds, it means

Raspberry House would run delayed WDT instead of gentle WDT. If any WDT is

active, Raspberry House will send an alert to the administrator with the WDT type

and a timestamp through both Twitter messages and email.

5.3.4 Evaluation Scenario Implementation

The DoS attacks in this thesis for penetration testing using the Kali Linux is deau-

thentication attack, ICMP flood attack and SYN flood attack. We install the Kali

Linux system on Raspberry Pi 4 and set it as the attacker’s malicious system. We

use the aircrack-ng suite to perform the deauthentication attack and use hping3 to

perform ICMP/SYN flood attacks. For the system security level attack, we perform

the bash fork bomb on Raspberry House to test the performance of WDTs.



Chapter 6

Experimental Results and Evaluation

This chapter presents experimental results to validate whether Raspberry House’s

IDS and IPS can effectively detect DoS attacks simulated by a malicious PC.

The results show that Raspberry House can detect deauthentication attacks via

a Python script (Figure 6.1). This thesis uses the aircrack suite to simulate a deau-

thentication attack. We first start monitor mode on our malicious PC through the

airmon-ng command, then use the airodump-ng command to scan WiFi networks

to find our target, and finally perform the deauthentication attack by using the

aireplay-ng command to send thousands of deauthenticate frames to keep anyone

from reconnecting to the Raspberry House. The deauthentication attack overloaded

the Raspberry House wireless interface performance approximately 1 minute after

execution. We ended the deauthentication attack before the Raspberry House’s wire-

less interface hung due to a request overflow. The average delay for Raspberry House

to detect deauthentication packets is about 5.3 milliseconds. After the Raspberry

House detects the deauthentication attack, the red LED on the universal PCB blinks

to indicate the deauthentication attack and an alert is sent to the administrator via

email and Twitter messages in real-time with the timestamp of the attack and type

of the attack (as shown in Figure 6.2 and Figure 6.3). After detecting that the deau-

thentication packets exceed the threshold, the IPS service of the Raspberry House

will start a cycle to block its WLAN interface for a preset interval for prevention

purposes (as shown in Figure 6.4 and Figure 6.5). After confirming that there are

no new deauthentication packets, the service will reopen the WLAN interface of the

Raspberry House.

Raspberry House can detect ICMP flood attacks as well as SYN flood attacks

through Snort community rules and Raspberry House custom rules. After the Rasp-

berry House detects the above two attacks, the green LED on the universal PCB

blinks to indicate the ICMP flood attack, whereas the blue LED on the universal

78
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Figure 6.1: Deauthentication Attack Detection Results

Figure 6.2: Deauthentication Attack Alert Through Email

Figure 6.3: Deauthentication Attack Alert Through Twitter Message

PCB blinks to indicate the SYN flood attack, and an alert is sent to the adminis-

trator through email and Twitter messages in real-time with the timestamp of the

attack and type of the attack (as shown in Figure 6.6 - Figure 6.9).

Then we use Snort inline mode and Raspberry House custom rules to prevent

ICMP flood attacks as well as SYN flood attacks. In this thesis, the ICMP flood

attack and the SYN flood attack are all made using the hping3 command on the ma-

licious PC. The results show that in the 5-minute test, the Raspberry House hardware

performance is not affected by the ICMP flood attack or SYN flood attack, and drop

rules can be triggered in Snort inline mode to drop malicious packets from the attack

source (as shown in Figure 6.10 and Figure 6.11). Moreover, the delay of each ICMP
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Figure 6.4: Normal Interfaces on Raspberry House

Figure 6.5: Raspberry House Interfaces Under Deauthentication Attack
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Figure 6.6: ICMP Flood DoS Attack Alert Through Email

Figure 6.7: ICMP Flood DoS Attack Alert Through Twitter Message

Figure 6.8: SYN Flood DoS Attack Alert Through Email

Figure 6.9: SYN Flood DoS Attack Alert Through Twitter Message

flood DoS attack to trigger the drop rule is about 9 milliseconds for another ICMP

flood DoS attack, and the delay of each SYN flood DoS attack to trigger the drop

rule is about 13 milliseconds for another SYN flood DoS attack.

IDS and IPS use Raspberry House’s hardware WDT and external WDTs (i.e.

gentle WDT and delayed WDT) to catch and prevent the bash fork bomb attack. The
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Figure 6.10: ICMP Flood DoS Attack IPS Drops Malicious Packets

Figure 6.11: SYN Flood DoS Attack IPS Drops Malicious Packets

test results show that the bash fork bomb attack will immediately shut down or hang

the Raspberry House. After executing the bash fork bomb attack, compared to the

other two WDTs, the hardware watchdog can immediately detect the system anomaly

of the Raspberry House and restart the Raspberry House after 15 seconds (as shown

in Figure 6.12). To test the performance of the other two WDTs, we did a GPIO test

on the Raspberry House (i.e., change the state of the GPIO pin corresponding to the

target WDT to make it run). The results show that after confirming that the state

of the target Raspberry House GPIO pin was changed for at least 6 seconds, either

the gentle WDT or the delayed WDT was initiated depending on which GPIO pin

state was changed.

Gentle WDT will wait for 6 seconds after detecting an anomaly of the Raspberry

House system (such as an inode problem) to confirm that the state of the correspond-

ing GPIO pin is not changed by accident. (delayed WDT uses the same method to

detect its corresponding GPIO state). After confirming the Raspberry House GPIO

pin status, if the gentle WDT is enabled, the Raspberry House will be restarted after

60 seconds (as shown in Figure 6.13); if the delayed WDT is enabled, the Raspberry

House will be restarted after 120 seconds (as shown in Figure 6.14). In addition,

an alert is sent to the administrator through email and Twitter messages in real-

time with the timestamp and type of the external WDT (as shown in Figure 6.15 –

Figure 6.18).

As mentioned in Chapter 3, many related studies only consider IoT IDS and ignore
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Figure 6.12: WDTs Test Result of Bash Fork Bomb Attack

Figure 6.13: Gentle WDT Result
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Figure 6.14: Delayed WDT Result

Figure 6.15: Gentle WDT Alert Through Email
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Figure 6.16: Gentle WDT Alert Through Twitter Message

Figure 6.17: Delayed WDT Alert Through Email

Figure 6.18: Delayed WDT Alert Through Twitter Message

IPS. Therefore, this thesis focuses on IPS solutions based on different DoS attacks.

Table 6.1 summarizes the DoS attacks covered in this thesis and the Raspberry House

IPS approaches and shows our recommended IPS approach for different DoS attacks.

After detecting the deauthentication attack, we can use a shell script to block or

unblock the Raspberry House WLAN interface or use WDTs to reboot Raspberry

House after T seconds to prevent the deauthentication attack (T depends on the

type of WDT we used). However, the best choice we recommend to prevent the

deauthentication attack is to block the wireless interface of the Raspberry House for

a certain time interval, since the deauthentication attack only affects the wireless

connection between small IoT devices and Raspberry House, and the time interval

for blocking the wireless interface of Raspberry House is shorter than restart time of

WDTs, which will help Raspberry House to return to normal in a short time.

For both SYN flood DoS attack and ICMP flood DoS attack, we can use Snort

inline mode along with custom Snort rules to drop the malicious packets or use WDTs
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Table 6.1: Raspberry House IPS Recommendation

Snort
custom
rules
&

inline
mode

Block &
unblock
wlan

interface of
Raspberry

House

Raspberry
House
built in

(hardware)
WDT

Raspberry
House
gentle
WDT

Raspberry
House
delayed
WDT

Deauth-
entication
Attack
(Manag-
ement
Frame
Attack)

C
best choice

C

ICMP
Flood
Attack

C
best choice

C

SYN Flood
Attack

C
best choice

C

Bash Fork
Bomb
Attack

C
best choice

C C

Other
continuous
flood type
DoS attacks

C C
C

best choice

Other
‘gentle’ DoS
attack such
as inode
problem

C
best choice

C

C: covered
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to reboot Raspberry House after T seconds (T depends on the type of WDT we used)

to prevent SYN flood DoS attack and ICMP flood DoS attack. The best choice

we recommend to prevent SYN flood DoS attack and ICMP flood DoS attack is to

run Snort in inline mode and use custom Snort rules to drop the malicious packets

defined in the rules. The reason for choosing the Snort approach as the best IPS for

both attacks is that Snort drops malicious packets directly from the attacker’s source

without affecting the Raspberry House’s hardware performance. Therefore, We do

not need to waste time using WDTs to reboot the Raspberry House.

For system security level DoS attacks like the bash fork bomb, we can use all types

of WDTs as IPS. However, the best choice we recommend is to use the built-in WDT,

as it responds the fastest when all three WDTs are enabled simultaneously (as shown

in Figure 6.12). We recommend using the gentle WDT when a DoS attack looks like

the normal way (such as consuming all the free inodes on the disk by creating a large

number of temporary empty folders) and is difficult to detect using the built-in WDT

since even if the heartbeat pulse sent by the Raspberry House has slight deviation, the

gentle WDT also kicks in immediately. Finally, for the DoS attacks that will perform

for a long time, the delayed WDT is the best choice because it has the longest time

interval before resetting the Raspberry House compared to the other two WDTs.

Since this thesis aims to design a portable and low-cost IoT gateway, we need

to ensure that the proposed Raspberry House is affordable for most IoT researchers

or engineers. The total cost to build the system is $188CA, including Raspberry Pi

3B+ Extreme Kit $99CA, universal PCB $26CA, ATtiny85 board $3CA, and USB

WiFi adapter $60CA. Note that all hardware we used in this thesis was bought from

Amazon Canada.
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Conclusion and Future Work

7.1 Conclusion

This thesis aims to create a secure and efficient IoT gateway for those IoT researchers

and engineers to enable them to work on IoT devices in a secure network environ-

ment. The proposed Raspberry House handles DoS attacks on IoT devices, which is

also efficient for small IoT devices with limited performance, such as GBKA. In our

research, we use Raspberry Pi 3B+ to build the proposed gateway (i.e., Raspberry

House) and investigate the security of Raspberry House. In addition, the Raspberry

House security parameters were tested by simulating the most commonly performed

DoS attacks against the Raspberry House network to show whether the Raspberry

House IDS and IPS can detect and prevent these attacks in real-time. Furthermore,

we summarize the DoS attacks proposed in this thesis and the feasible IPS and pro-

vide readers with our suggested optimal solutions for different DoS attacks. The

results show that Raspberry House IDS and IPS can detect, alert and prevent DoS

attacks proposed in this thesis in real-time, including deauthentication attack, SYN

flood DoS attack, ICMP flood DoS attack and bash fork bomb attack. Moreover,

Raspberry House is very economical, costing only $188CA.

7.2 Discussion

Given the current state of the Raspberry House, it has the potential to expand further.

The researchers can use other kinds of Linux based single boards instead of Rasp-

berry Pi to build the Raspberry House, since currently there are multiple single boards

which can work the same as Raspberry Pi, such as banana pi. In addition, since our

IDS and IPS and based on shell script, which is portable and sustainable compared

to C++ and other programming approaches. The researchers can easily move our

IDS and IPS approach to other Linux based single boards. The reason we choose to
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use Raspberry Pi in our thesis is that Raspberry Pi is one of the famous boards and

is easy to buy.

Moreover, it is possible that the attacker only attacks the IoT devices such as

the NodeMCU board used in our thesis. However, the NodeMCU board cannot send

alerts to the administrator as this would be too heavy for it to process. Therefore,

the administrator cannot take any action when under the DoS attack.

Furthermore, even if the WiFi connection between our IoT devices and Raspberry

House is able to be attacked by attackers (i.e., the attacker can perform DoS attacks

on the IoT devices), our Raspberry House system can detect the anomaly and cut off

the connection between IoT devices and Raspberry House. For example, Raspberry

House can use WDTs to reboot itself after an interval Therefore, the attacker cannot

find the target anymore.

7.3 Future Work

In future work, we plan to duplicate Raspberry House in various research environ-

ments to test how well Raspberry House can work in different network environments.

In addition, we plan to implement more lightweight IoT gateway applications dedi-

cated to low-performance IoT devices to further improve the performance of Rasp-

berry House. Furthermore, we plan to design other IDS and IPS for Raspberry House

to prevent other common types of IoT attacks, such as Man-in-the-Middle attacks,

making our Raspberry House more robust.
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