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Abstract

Diabetes Mellitus (DM) is a chronic health condition that affects multiple organs and
is associated with significant morbidity and mortality. The reasons underlying the
relative progression rate of DM remain poorly understood, and as such, its impact
on different organs needs to be closely monitored. The management of diabetes re-
quires periodic pathology investigations and physician examinations to manage the
disease’s progression. The ability to predict the temporal progression of the disease
for a patient can significantly impact therapeutic choices and improve outcomes. This
thesis presents investigations in stratifying diabetes patients based on their pathology
test results in terms of temporally salient patient clusters. We investigated machine
learning-based clustering methods and applied them to time-series data of pathology
tests and their results to generate patient clusters. We applied an ensemble clustering
approach where multiple base clustering algorithms were combined to generate a clus-
ter ensemble that resulted in grouping the patients in three top-level clusters. Using
the clusters, we generated patient phenotypes comprising clinical characteristics that
are then used to develop classification-based prediction models to predict the disease’s
temporal progression and suggest the potential pathology tests. A key feature of this
research is the generation of patient clusters without patient demographics and only
using pathology test data for identifying the phenotypes. The ability to predict and
understand disease progression will lead to novel personalized medicine for managing
patients with diabetes.
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Chapter 1

Introduction

Diabetes is a global epidemic growing rapidly worldwide. As per the International
Diabetic Federation, 463 million individuals were affected by diabetes in 2019, a
figure that has significantly multiplied over the last 20 years, with projections of 578
million by 2030 and 700 million by 2045 [41]. Diabetes has the potential to cause
numerous health complications, including ketoacidosis, Nerve disease, Kidney disease,
eye disease, stroke, cardiovascular disease, and other complications [23]. Furthermore,
persons with diabetes are at a higher risk of contracting infections. Many people with
diabetes can delay the onset of complications with proper treatment and lifestyle
modifications. To keep their health in check, diabetic individuals are subjected to a
multitude of checkups regularly, including blood tests, eye, and dental exams, kidney
functionality tests, and electrocardiogram [77]. Furthermore, the frequency of these
tests may vary from patient to patient, depending on the physician’s judgment and
the patient’s visit habits. Healthcare facilities collect these test reports digitally as
Electronic Health Records(EHRs).

A typical EHR may contain demographic data, lab results from blood work or
other tests, diagnostic imaging reports, medication history, immunization records,
and discharge notes from any hospital stays. The adaption of EHR has brought an
unprecedented amount of clinical information available for research. Analyzing EHRs
provides the potential to improve patient care, improve the understanding of disease
and clinical phenotypes, and generate knowledge for clinical decision support [49, 83].
These vast data require the use of data-driven approaches that can make sense of such
large amounts of data, efficiently explaining possible latent associations and disease
characteristics.

Moreover, the growing diabetes population demands the effective utilization of
these EHRs in detecting the adverse effects of diabetes at an early stage. Many
patients lose their life due to diabetic complications that may lead to multi-organ
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and systemic injury, which impairs the quality of their life. The main issue with
diabetic complications is that they are undetected in the early stages and can only be
diagnosed if the patient exhibits symptoms [82]. Identifying the population at high
risk of developing such complications can help intervene in preventative care early,
thereby reducing the death rate. One possible way of identifying such individuals is
by closely monitoring their disease progression using their pathological reports. For
instance, a test called A1C can hint at the onset of micro-vascular complications [5].
Arguably, predicting these health consequences among the diabetic population before
the patients get these tests done can reduce the healthcare burden of diabetes and
its long-term complications and improve care pathways and prevention.

A significant volume of longitudinal data is accumulated for a diabetes patient
spanning multiple years. Machine learning algorithms provide a viable approach to
analyzing patient data to determine the progression of the disease and stratify patients
accordingly to streamline their treatment. Machine learning aims to develop computer
systems that can learn and respond from their prior observation. Machine learning
is applied in various aspects of diabetes evaluation ranging from early prediction of
the disease and complications to its management and other related clinical traits.
Its insights also help clinicians promote disease awareness to afflicted individuals and
establish peer support groups where they may closely monitor patients with similar
health concerns and provide tailored care to those who are afflicted. The primary
step to acquiring these benefits using machine learning is subtyping or phenotyping
the patients using the data available.

EHR phenotyping is the process of identifying the individuals with a specific clin-
ical condition or trait that may be ascertained via a computerized query from large
quantities of imprecise clinical patient data and classifying them accordingly into
retrospective cohorts. Phenotyping is the basis of translational research, compara-
tive effectiveness studies, clinical decision support, and population health analyses
using routinely collected EHR data [26]. Various machine learning approaches, espe-
cially cluster analysis, are applied for effective phenotype identification [98]. Cluster
analysis assists in discovering key trends among patients through effective grouping
using the key features available in the data. There are numerous successful ap-
plications of clustering in identifying distinct diabetes phenotypes with unique risk
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profiles [39, 113, 22, 19]. Our study uses various clustering algorithms to identify the
underlying pattern in the diabetes EHRs and group the patients to determine disease
progression at a group level.

1.1 Research Objective

The project’s primary objective is to analyze the information contained in EHRs to
assist in the long-term management of diabetic patients; in particular, this thesis aims
to group patients based on their clinical characteristics to identify patient phenotypes
that can help understand the progression of diabetes and the incidence of diabetes-
related complications in different patient groups. Diabetes patients undergo routine
pathology tests to monitor the severity of the disease. The underlying approach is to
perform a data-driven analysis of the time-series of pathology test results, conducted
over a period of time for a patient, to abstract a temporal progression pattern of
the disease and then group patients with similar disease trajectories to understand
the underlying clinical characteristics of each patient group in order to develop pa-
tient phenotypes for different patient groups. We have also extended the research
to predict the value of pathology test results before taking the test itself using the
phenotypes identified and the knowledge obtained from the given data using clas-
sification techniques. This thesis will attempt to answer the following clinical and
technical questions:
Diabetes related clinical questions:

• Is it possible to generate clinically meaningful patient groups on the basis of
pathology test results without the use of demographic information?

• What pathology tests distinguish the different patient groups?

Machine learning related technical questions:

• In detecting clusters from diabetes data, is the consensus function more re-
silient and efficient than individual clustering models? If that is the case, which
consensus function is beneficial?

• Which imputation approach effectively substitutes the best value for the dia-
betic patients’ missing temporal characteristics?
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• Which classification model can successfully learn the diabetes dataset’s cluster-
ing structure and forecast the clusters of unknown patients?

1.2 Research Problem

A significant amount of research is conducted on a wide range of EHRs that comprise
vital signs, test ordering trends, or discharge summaries. The majority of the data
also includes demographic information about the patients. Despite the lack of patient
specifics, our primary goal is to identify diabetes phenotypes using only routine labo-
ratory results of diabetes patients—i.e. without the use of clinical attributes; we aim
to group diabetes patients. After finding distinct phenotypes, we aim to predict the
phenotype of a new incoming patient based on their pathology test results in order
to identify the disease trend for this patient and also the pathology tests that need
to be prescribed based on a cohort level analysis.

1.3 Research Approach

To generate patient phenotypes based on a time series of pathology test results, we
have investigated machine learning methods for clustering and classification. Our
research approach is (a) to investigate and apply ensemble clustering methods, i.e. a
combination of multiple clustering methods to generate consensus-based clusters to
derive patient phenotypes based on time-series data, and (b) to investigate and apply
classification methods to the clustered data to develop diabetes progression prediction
models that can be used on new patients to stratify their diabetes progression.

Our approach involves (a) processing time-series data, comprising multiple data
types and collection frequency, for clustering algorithms; (b) imputation of missing
values in a time-series; (c) exploring ensemble clustering methods and investigating
the efficacy of different consensus functions, and (d) exploring various classification
models and identifying the algorithm that can predict the clusters of patients with
greater accuracy.

After preprocessing the data, the data is split into two cohorts where cohort1 or
the base cohort, possesses patients who have taken all the considered pathological
tests and cohort2, or the incomplete set, includes patients who have taken at least
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one of the considered tests. The cohorts are separated so that none of the patients
overlap in both cohorts. Meaning if ten tests are considered, the base cohort will
have records of the patients who have undergone all the ten tests more than once,
whereas an incomplete set will contain patients who have taken up to nine of the ten
considered tests leaving nulls at the results of the tests that are not taken. Various
imputation techniques are explored to replace the nulls in the incomplete set, and
a feasible method is selected. After cohort separation, the base cohort is used for
finding phenotypes, whereas patients in the incomplete set are assigned to groups
using classification models. A broad range of clustering models was investigated to
identify a superior one that can find clusters from the first cohort’s data. Together
with the labels created, the first cohort data serves as the training source for the
classification model, which subsequently assigns patients from the second cohort and
new patients to the clusters.

As an outcome, we can identify diabetes patient phenotypes from test results and
predict disease progression trends in new patients based on their available pathology
test results.

1.4 Contribution

The main contribution of this thesis include:

• We have introduced a pipeline for discovering patient characteristics and evalu-
ating disease progression from unstructured diabetes data that combines unsu-
pervised and supervised learning approaches, namely consensus clustering and
classification models.

• Investigation and identification of a feasible consensus function to cluster high-
dimensional time-series diabetes data to uncover the crucial tests that distin-
guish patients into different peer groups.

• Assessing various classification algorithms and identifying the best one that
effectively learns the properties of the clusters formed by consensus function
and can assign the new patients to appropriate clusters.
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1.5 Thesis Organization

The remainder of the thesis is structured as follows: Chapter 2 starts by explaining
phenotypes and the application of machine learning in it, followed by the explanation
of previous works done on diabetes diagnosis and progression. It also presents the
literature review of essential topics employed in the study, such as cluster analysis,
cluster ensembles, cluster validation metrics, imputation, and classification. Chap-
ter 3 presents the dataset employed along with the methods followed in the study.
Chapter 4 gives a detailed description of the methods used to achieve our aim. The
parameter settings and outcomes obtained at each stage are described in Chapter 5.
Finally, Chapter 6 wraps up the work by highlighting limitations and future work.



Chapter 2

Background and Related Work

This chapter reviews phenotyping in general and the use of machine learning al-
gorithms for phenotyping. Next, we will present an overview of the application of
machine learning models for diabetes management. We will discuss cluster analysis
and consensus clustering methods and review data science methods applied in our
research.

2.1 Phenotyping in Machine Learning

A phenotype is the physical or biological representation of a particular attribute
in an organism, such as a disease, height, or blood type, that is impacted by ge-
netic information and environmental circumstances [90]. In biomedical research, a
phenotype is a clinical condition, characteristic or a set of features that are found
more often in individuals with a disease or condition than in the general population.
The primary source for analyzing these phenotypes in healthcare is electronic health
records (EHRs). Several national efforts, including eMERGE, SHARP and PGRN,
have demonstrated the applicability of EHR towards high-throughput phenotype ex-
traction [70]. The eMERGE (Electronic Medical Records and Genomics) network
is an academic medical centre collaboration that develops generalizable EHR phe-
notypic definitions for genome-wide association research using shared clinical data
sets [26]. eMERGE is responsible for an extensive catalogue of phenotypes, including
hypothyroidism, type 2 diabetes, atrial fibrillation, and multiple sclerosis [26].

The earliest approach to phenotyping is via manual chart review, typically per-
formed by thorough searching of clinical documents, laboratory, and medication in-
formation by individuals with medical domain knowledge. With the rapid increase in
the adaption of EHRs, a large volume of data becomes available to the experts mak-
ing the analysis process complex and time-consuming. Efforts were made to reduce
the manual intervention made by the experts in identifying the phenotypes from the
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EHRs. Identifying the phenotypes solely from the ancillary data sources without the
review or interpretation of clinicians is called a computable phenotype [90].

Machine learning (ML) is the most sought-after approach to identifying com-
putable phenotypes from structured and unstructured EHRs [21]. ML is a computa-
tional discipline that creates algorithms that allow computers to use large amounts
of data to build predictive models or recognize complex patterns or characteristics
within data. Computable phenotype definitions using electronic health record data
(EHR) have been published on common conditions like chronic obstructive pulmonary
diseases (COPD), bipolar disorders, heart diseases, and more. There are two types
of machine learning approaches: supervised and unsupervised. The input data in
supervised learning are labelled, and the system must learn a pattern to predict the
intended output from these data. Support Vector Machine (SVM), Decision Tree, and
logistic regression approaches are the most commonly utilized supervised techniques
in the literature [21].

In 2007, one of the first uses of machine learning for phenotyping was published
by Huang et al. [59]. Using a cohort of diabetic patients and controls, the authors
employed FSSMC (feature selection via supervised model construction). They man-
ually distilled an initial set of 410 structured variables down to 47 features. They
ran FSSMC to rank the features in order of importance. They then evaluated the
performance of three machine learning classifiers, namely naïve Bayes, C4.5 and IB1,
in identifying diabetic patients. They determined the features that had the highest
performance and selected those features as the most relevant ones.

Another example of supervised learning in phenotype classification is the work
of Wright et al. [114], who have used the SVM-based approach for classifying EHR
progress notes about diabetes. They retrieved 2000 EHR progress notes from patients
with diabetes at the Brigham and Women’s Hospital (1000 for training and 1000
for testing) and another 1000 notes from the University of Texas Physicians (for
validation). They manually annotated all notes, trained an SVM using a bag of
words approach and then used the SVM on the testing and validation sets. The
evaluation of their model was carried out in the Area under the curve (AUC) and F
statistics. Their model was highly generalizable to different datasets.

In another phenotyping work carried out by Zhou [117] and his colleagues, decision
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trees identified patients with rheumatoid arthritis. They identified eight distinct
predictors related to diagnostic codes for rheumatoid arthritis, medication codes for
disease-modifying anti-rheumatic drugs, and the absence of alternative diagnoses such
as psoriatic arthritis. The proposed data-driven method was performed, and the
expert clinical knowledge-based methods.

Supervised strategy, however, is dependent on annotated training and testing sets
for model building and validation, which are costly, complicated, and time-consuming
to create by domain experts. Labelled data also has the disadvantage of not being
transferable across institutions and being unable to be shared according to HIPAA
(Health Insurance Portability and Accountability Act) restrictions [26]. Without the
requirement for expert input or labelled samples, unsupervised learning approaches
can uncover patterns that, when combined, produce a compact and helpful portrayal
of the original data. However, due to the absence of stated ground truth in these
groups, result verification for phenotypic groups with this technique is difficult. With
the availability of massive volumes of unlabeled data, this approach has lately gained
favour.

Hripcsak et al. [49] used the phrase "high-throughput phenotyping" in 2013, de-
scribing a fundamental change toward customized phenotypes carefully created from
individual data sets and toward the automated synthesis of thousands of phenotypes
in a scalable manner with minimum human supervision. An example of phenotyp-
ing on unlabeled data is Siroux et al. [99], where they used a model-based clustering
method to identify asthma phenotypes among the adult population and reported four
distinct phenotypes. Using the latent class analysis approach, they used 19 factors to
determine four asthma phenotypes. These included personal characteristics, asthma
symptoms, exacerbations, therapy, age of asthma onset, allergic features, lung func-
tion, and airway hyperresponsiveness. They stated that their phenotypes discrim-
inated populations in terms of quality of life and blood eosinophil and neutrophil
counts, leading to better identification of asthma risk factors.

Jess [97] and his colleagues ensembled three clustering algorithms and identi-
fied four distinct subtypes of Pervasive Developmental Disorder(PDD). They applied
kmeans, hierarchical clustering and EM clustering on 358 PDD patients and identi-
fied four clusters that roughly correspond to three main subtypes of PDD: Autism,
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PDD-NOS and Asperger’s syndrome.
Even though the unsupervised method tried to form groups among the patient

population, the experts need minimal intervention to validate the correctness of
the phenotypes. To reduce the need for intervention, Henderson et al. [58] created
PheKnow- Cloud, a platform that lets researchers analyze phenotypes generated us-
ing previously accessible methodologies utilizing medical literature. It matches the
candidate phenotype with the synonyms of related biomedical vocabularies and per-
forms a co-occurrence search on PubMed Central’s open access subset, using them
to build sets of evidence for user-supplied candidate phenotypes. Thus, reducing the
number of candidate phenotypes must be manually reviewed by medical experts.

Thus, ML, be it supervised or unsupervised is the most predominant approach
applied to EHRs for identifying valuable patterns from the data. These approaches
can minimize the work required from clinical domain specialists since it eliminates
the necessity for their intervention throughout the process [21]. Because of their
ability to identify patients using observational research and clinical trials, computable
phenotypes are desirable to the rare disease community. However, the quality of the
phenotypes discovered is limited by the available data quality.

2.2 Diabetes Progression

Diabetes is a chronic disease in which the body cannot absorb and utilize sugar
(glucose) from the diet, resulting in elevated blood glucose levels (hyperglycemia).
Complications caused by diabetes often lead to physical, psychological, and func-
tional impairments. As a serious health concern, diabetes has been declared a global
epidemic by the WHO due to its rapidly increasing incidence [17]. Owing to its con-
sequences, early-stage detection of diabetes is needed, and in this context, EHRs play
a crucial role in keeping track of patients’ health conditions. Recently, many research
studies have been carried out on these clinical data predominantly by applying ma-
chine learning and data mining techniques. Machine learning is a sub-field of artificial
intelligence that uses algorithms to generate predictions based on previously collected
data. Clustering and classification are the two popular machine learning techniques
commonly used for analyzing medical records. These techniques are comparatively
more efficient in handling complex data than traditional statistical approaches. It is
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applied to diabetes EHRs to estimate disease probability prediction, screening, diag-
nosis, treatment guidance, and complication management [17]. While most problems
require professional guidance, some diabetes management challenges can be handled
with data processing corresponding to the research’s aim. ML can be applied ex-
tensively to genomic data EHR data of diabetic patients for diagnosing the disease
and predicting the onset of complications like nephropathy and retinopathy. This
can be done by grouping the patients based on their medical records using various
phenotyping algorithms.

Numerous studies have focused on identifying subgroups in the diabetes popula-
tion. This phenotyping not only assists in the identification of subgroups within the
population but also aids in the identification of patient groups that require targeted
interventions [63, 112]. The dataset in all research generally comprises n patient
records, each represented by a p-dimensional feature vector. These feature values
reflect patient characteristics that may differ depending on the data source. In this
part, we reviewed prior research that used cluster analysis and classification methods
on diverse diabetes datasets.

The research carried out by Deepti and Dilip [100] identified the patients with
the probable onset of diabetes. They conducted experiments on Pima Indians Dia-
betes Database by comparing three classification algorithms, including SVM, NB and
DT, to forecast the likelihood of diabetes in patients with maximum accuracy. The
attributes number of time pregnant, plasma glucose concentration, diastolic blood
pressure, skinfold thickness, 2-hour serum insulin, BMI, diabetes pedigree function,
age and class’ 0’ or’ 1’ were used. Their experiments concluded that NB predicted the
chance of diabetes with maximum accuracy. Another research by Perveen et al. [86]
AdaBoost and bagging ensemble with decision tree as a base learner to identify di-
abetes mellitus using diabetes risk factors. They utilized demographic information,
vital signs and lab values for their analysis and applied these classification models
to three ordinal adult groups in the Canadian Primary Care Sentinel Surveillance
network. Experimental result shows that the overall performance of the AdaBoost
ensemble method is better than bagging and standalone decision tree.

The investigation of different diabetes datasets conducted by Ahlqvist [19] and
his colleagues revealed five repeatable clusters. Each cluster differed in disease course
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and risk of diabetic complications. They utilized k-means and hierarchical clustering
on 8980 newly diagnosed diabetes patients from three independent diabetes cohorts:
the Scania Diabetes Registry, ANDIU, and DIREVA, using six variables as features:
GAD-antibodies, age at diagnosis, BMI, HbA1c, HOMA2-B, and HOMA2-IR. Anjana
et al. [22] divided the Asian Indian population’s type 2 diabetes patients into four
groups. They chose 19,084 people with type 2 diabetes (aged 10–97 years) who
had diabetes for less than five years and used k-means clustering with the following
variables: age at diagnosis, BMI, waist circumference, glycated hemoglobin, serum
triglycerides, serum high-density lipoprotein cholesterol, and C peptide (fasting and
stimulated). Both studies stated that their findings could identify individuals at a
higher risk of diabetic kidney disease and retinopathy. They concluded that this
stratification might eventually aid in early treatment for patients who would benefit
the most, thereby representing a first step toward precision medicine in diabetes.

Apart from phenotyping the patients based on various characteristics related to
diabetes, researchers have used the information related to the complications caused by
diabetes like heart disease, eye damage, kidney damage, and nerve damage to classify
the patients. Ernande and her colleagues [39] established distinct categories of type
II diabetic (T2DM) people based on echocardiographic characteristics because they
suspected that T2DM would change heart structure and functions. They utilized
agglomerative hierarchical clustering on echocardiograph characteristics from type II
diabetes individuals who did not have overt heart disease. Their research revealed
three distinct groups of individuals with varying cardiac problems. Like Ernande,
Chul Won et al. [113] used hierarchical clustering to identify three patient categories
based on diabetic peripheral neuropathy. Sawacha et al. [93] concentrated on diabetic
foot problems, a severe consequence of diabetes caused mainly by peripheral neuropa-
thy. They categorized the data among patients using walking patterns (biomechanical
data). K-means cluster analysis categorized 20 nondiabetic and 46 diabetic patients
with and without peripheral neuropathy.

According to Abhari et al. [17], classification is the most sought-after method for
diabetes analysis, especially SVM and NB. They also state that the most common
application of machine learning for diabetes was screening and diagnosis, followed by
complication diagnosis. Also, there is only a little application of clustering in diabetes
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research, predominantly using single clustering methods. Our research evaluates the
performance of the cluster ensemble techniques with conventional single clustering
models for finding the phenotypes of diabetes patients. Also, from the past research, it
is evident that most of the research was carried out using the original features available
in the dataset. Our research stands apart by utilizing the temporal characteristic of
the pathological report as a feature instead of using the report itself. Thus, we have
built a novel method for analyzing diabetes data.

2.3 Cluster Analysis

Cluster analysis is a powerful statistical technique of data processing that unveils
the hidden pattern by grouping data objects with similar characteristics into homo-
geneous clusters while improving heterogeneity across the clusters [72]. These data
objects are usually represented by features or attributes, which is key to identify-
ing similarities and dissimilarities. Cluster analysis has been widely applied in a wide
range of disciplines, including data mining, pattern recognition, machine learning, im-
age processing, bioinformatics, web cluster engines, and many more [29]. Exploratory
Data Analysis(EDA), statistical analysis, anomaly detection, customer segmentation,
computer vision, recommendation systems, and spatial clustering are some instances
where clustering is helpful [74].

Over the years, several clustering algorithms have been developed using different
measurements of distance or similarity and objective functions that produce a different
results on the same data [43, 107]. Some of the typical cluster models include con-
nectivity models, centroid models, distribution models, density models, fuzzy models
and model-based clustering.

Connectivity or hierarchical clustering is based on the fundamental principle that
objects are more connected to items close to them than objects further away. These
algorithms use distance to connect "objects" to generate "clusters." There are two
approaches to this process. In the first technique, the algorithm divides data elements
into distinct clusters and arranges them based on distance criteria. Another way is for
the algorithm to select all data entities into a particular cluster and then aggregate
them based on the distance criterion because the distance function is a subjective
choice based on user criteria. Hierarchical clustering is simple and does not require
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apriori knowledge of the number of groups. Easy to implement across various forms
of data and known to provide robust results for data generated via multiple sources.
Hence it has a wide application area. The main output, a dendrogram, is more
appealing and easier to understand. The biggest downside of this approach is that
it requires a considerable number of arbitrary judgments and struggles to deliver the
optimal outcome when the input data is vast and multidimensional as it has high time
complexity. This algorithm also fails to handle outliers and noise. The algorithms that
follow hierarchical clustering are agglomerative and divisive clustering algorithms.

Centroid-based clustering is one of the most successful and basic methods of con-
structing clusters and allocating data points. Each cluster is defined and represented
by a central vector, which may or may not be a part of the dataset, and data points
near these vectors are assigned to the relevant clusters. Using various distance met-
rics, these clustering algorithms iteratively estimate the distance between the clusters
and the characteristic centroids. The critical drawback here is that we must spec-
ify the number of clusters or the central vectors before allocating data points to the
vectors. Also, this model cannot be applied to categorical data and fails to handle
outliers. Despite its shortcomings, Centroid-based clustering has shown to be su-
perior to Hierarchical clustering when working with massive datasets and is much
faster than other algorithms. Furthermore, due to their ease of implementation and
interpretation, these algorithms have a broad range of applications, including mar-
ket segmentation, customer segmentation, text topic retrieval, picture segmentation,
and much more. Some of the centroid models are k-means, k-medoids and affinity
propagation.

Compared to the prior models dependent on distance metrics, the Density-based
clustering model considers the density. It considers clusters as the densest region
in a data space, separated by areas of lower object density. While most clustering
models assume that the data is devoid of noise and the shape of the cluster formed is
geometrical, the density-based model forms clusters in arbitrary shapes by successfully
handling outliers or noise. The drawback of this model is that it does not apply to
datasets with varying densities or if the data is too sparse. Some example algorithms
that are density-based include OPTICS and DBSCAN.

Distribution Models consider probability as a metric for clustering the data. It
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creates and groups data points based on their likelihood of belonging to the same
probability distribution in the data. It is closely related to statistics as data points
are studied under this method to trace their generation or origination point. These
models have a prominent advantage over density and centroid models in terms of
flexibility, correctness and shape of the cluster formed. Distribution models are not
preferred if the distribution of the input data points is unknown or not clear. A
prominent example of a distribution model is the gaussian mixture model.

Fuzzy clustering makes a distance-based cluster assignment similar to centroid-
based clustering but with the difference that it assigns data points to more than one
cluster. It is based on the idea that some data inputs may have features that overlap
and so assign a data point to more than one cluster based on the parameters of the
different clusters. It has a greater convergence rate and works well on highly correlated
or overlapped data where centroid models cannot offer ideal results. However, the
model gets slower if the data is large and cannot handle outliers. Like centroid-based
models, this model also requires the number of centroids to be specified apriori.

Among various clustering models mentioned above, we have equipped k-means,
k-medoids, affinity propagation and the Gaussian mixture model in our study. The
reason for choosing these particular algorithms is explained in section 4.2. A detailed
explanation of each algorithm selected is provided below:

K-means clustering

K-means clustering is a fundamental and widely used unsupervised learning technique,
particularly in data mining and statistics. As a partitioning method, it aims to
arrange data points into groups depending on the number of clusters, denoted by the
variable k. The value of k is typically unknown in advance and must be chosen by
the user. K-means produces its final grouping using an iterative refinement approach
based on the number of clusters provided by the user. Initially, k-means selects k mean
values of k clusters, known as centroids, at random and finds the nearest data points
of the selected centroids to generate k clusters. The approach repeatedly recalculates
the revised centroids for each cluster until it reaches a single optimum value. Because
numerical data is utilized to derive the mean value, K-means clustering is best suited
for numerical data.
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The k-means method splits a dataset into k groups using the following steps [115]:

1. Based on the predetermined value of k, K points are randomly initialized as
cluster centroids.

2. Each data point in the data set is allocated to the nearest centroid by distance
to generate the k clusters. In order to calculate the distance between each
data point and the initialized centroids, the Euclidean distance is employed.
Although there are many different metrics for determining the closest distance,
we chose the Euclidean distance since earlier research on clustering analysis
produced excellent results using the Euclidean distance.

3. The centroid of each cluster is computed based on the points assigned to that
cluster.

4. Steps (2) and (3) are repeated until no data points change their clusters.

Suppose N = {x1, ...., xn} is the data set to be clustered. The Euclidean distance
between two data points X1 and X2, each represented by a p-dimensional vector, X1

= (X11 , X12 , ....X1p) and X2 = (X21 , X22 , ....X2p) is defined as follows:

dist_Euc(X1, X2) =

⌜⃓⃓⎷ p∑︂
i=1

(X1i
−X2i

)2 (2.1)

The algorithm iteratively shifts data points across clusters by reducing the sum of
squared distances from each point to its centroid, represented by J. We can calculate
the sum of squared distances of the ith among C clusters as follows:

Di =
∑︂

X∈Ci

dist_Euc(X, Yi)2 (2.2)

where, dist_Euc(X, Yi) is the Euclidean distance from a data point X in Ci to
Ci’s centroid Yi. Thus the sum of squared distances for all the k clusters is defined
as :

D =
k∑︂

i=1
Di (2.3)
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K-means is a widely used unsupervised learning algorithm as it is fast, robust, and
easier to understand. Many researchers utilized k-means in their study and achieved
significant results[40, 108].

Partitioning Around Medoids

K-medoids also referred to as Partitioning Around Medoids (PAM), is a centroid-
based partitioning method similar to k-means that searches the data for k-centroids
(or k-medoids) assigns each data object to the nearest medoid to construct clusters.
This approach needs the user to define the number of clusters before executing the
algorithm. In contrast to the k-means method, k-medoids select real data points as
centroids, allowing for higher interpretability of cluster centers than k-means, which
does not need the center of a cluster to be one of the input data points. It includes
greedy search, which is faster than exhaustive search [89]. A dissimilarity matrix is
used to reduce the total dissimilarity between the centroids of each cluster and its
members. The dissimilarity of the medoid (Ci) and an object (Pi) can be computed
using E = |Pi − Ci|. The cost of k-medoids is given as

c =
∑︂
Ci

∑︂
Pi∈Ci

|Pi − Ci| (2.4)

The PAM algorithm’s overall procedure is divided into the Build Phase (steps 1-3)
and the Swap Phase (steps 4 & 5). This algorithm comprises the following steps:

1. Choose k data objects to become the medoids or utilize the objects supplied as
the medoids.

2. Compute the dissimilarity matrix if it was not provided;

3. Assign every object to its closest medoid;

4. For each cluster, determine whether any of the cluster’s objects reduces the aver-
age dissimilarity coefficient; if so, choose the entity that reduces this coefficient
the most as the medoid for this cluster.

5. If at least one medoid has changed, go to (3); otherwise, stop the algorithm.
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Some of the research that benefited from this algorithm are [27, 34, 64, 18]. This algo-
rithm’s key advantages are that it is quick, simple, and less sensitive to outliers [10].

Affinity Propagation

Affinity Propagation(AP) is based on the concept of "message passing" that does
not require the number of clusters to be provided prior to starting the process [47].
It represents each data point as a node in a network, with all data points sending
messages to all other data points. The willingness of the points being exemplars is
the focus of these communications. Exemplars are data points that best describe the
other data points and are the most important in their cluster. There can be just
one exemplar in a cluster. Two types of real-valued signals are repeatedly exchanged
between data points during the clustering process until a high-quality collection of
exemplars and appropriate clusters forms [47]. These messages are saved in two
separate matrices:

1. The "responsibility" matrix R ,r(i, k), indicate how well-suited xk is to serve as
the example for xi in comparison to other possible exemplars for xi.

2. The "availability" matrix A , a(i, k), shows how "appropriate" it would be for
xi to choose xk as its exemplar, taking otherpoints’ preferences for xk as an
exemplar into consideration.

Both matrices are initialized to all zeroes and are updated by the algorithm iteratively.

Responsibility update: r(i, k)← s(i, k)−max
k′ ̸=k

{a(i, k′) + s(i, k′)} (2.5)

where, s(i,k) is the similarity between the samples i and k.

Availability update: a(i, k)← min(0, r(k, k) +
∑︂

i′ /∈i,k & i ̸=k

max(0, r(i′, k)) (2.6)

Iterations are performed until the cluster boundaries stay intact after a certain number
of iterations or a preset number of iterations is attained. The exemplars are selected
from the final matrices as those with a positive ’responsibility + availability’ for
themselves [1]. Some of the previous works that successfully incorporated this model
are [116, 38, 37].



19

Gaussian Mixture Model

Gaussian Mixture Model(GMM) with Expectation-Maximization(EM) is a proba-
bilistic model-based clustering algorithm that assumes the data to be a mixture of
various Gaussian distributions and tries to group the data points that belong to the
same distribution. Here, each cluster is modelled according to a different Gaussian
distribution instead of selecting clusters by "nearest" centroids [50]. Then, for each
cluster, we estimate gaussian distribution characteristics such as mean and variance,
as well as cluster weight. We can determine the probability of each data point belong-
ing to each cluster after learning the parameters for each data point. This approach is
flexible because, unlike other methods, it soft-assigns objects to clusters rather than
hard-assigning them, implying that each data point might have come from any of the
distributions with a matching probability. A latent variable is introduced to estimate
such a model, identifying the gaussian that created the given data point. The EM
method is used to estimate this latent variable, which consists of two steps [9]: The
Expectation step, the E step, computes the expectation of the component assigned
to the cluster for the given mean, variance, and weight and a Maximization step, M
step, that maximizes the expectation calculated in the E step. The overall process of
this model is as follows:

1. Set the parameters (mean and variance) for each k Gaussian distribution.

2. Calculate the probability density for each feature vector under each of the k
clusters, using the Gaussian distribution’s probability density function for each
cluster.

3. Using the probability densities derived in Step (2) re-estimate the parameters
for each of the k Gaussian distributions.

4. Iterate through Steps 2 and 3 until convergence is reached.

The data’s probability(or likelihood), given the parameters, is maximized by updating
the mean and variance of the Gaussian distribution for each cluster in step (3). The
better the clustering model fits the data, the higher the likelihood. The starting
values determine the EM algorithm’s maximum convergent value supplied to the
parameters in step (1). The optimum found by EM dramatically depends on the
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initialized parameters and picking the solution that yields a higher likelihood. One of
the main advantages of this model is that it is flexible and performs soft clustering.
Some of the successful research that used GMM can be found in [88, 111, 109].

All these algorithms have their strength and weakness due to the complexity of
the information and differ mainly in input parameters, like the number of clusters,
optimization/construction criterion, termination condition, proximity measure, and
much more. These clustering algorithms produce different clustering results for the
same dataset due to differences in their clustering technique. [20]. According to
the "no-free-lunch theorem," every algorithm performs equally well when averaged
across all possible situations meaning there is no single clustering algorithm that
performs best for every dataset [91, 68]. Also, there are no clear guidelines to follow
for choosing individual clustering algorithms for a given problem [20]. According to
the impossibility theorem [66], no single clustering method meets the fundamental
assumptions of data clustering, notably scale-invariance, consistency, and richness,
thus making it impossible to develop a generalized framework of clustering methods.
In order to overcome these hurdles, researchers have proposed an exceptional concept
of clustering called ensemble clustering, which will be elaborated in section 2.4.

2.4 Cluster Ensemble

Ensemble learning is a generic machine learning method that tries to improve perfor-
mance by integrating outcomes from several models. Ensemble members, the models
that contribute to the ensemble, can be of the same or various kinds, and they can
be trained on the same or separate training data. Ensemble learning aims to combine
weak learners to make one strong learner. The results of the ensemble members can
be aggregated using statistics like the mode or mean or more advanced approaches
that decide how far to consider each member and under what situations. The primary
reason for utilizing ensemble models is to minimize generalization error while boosting
model performance and robustness. The ensemble method was firstly introduced and
well-studied in supervised learning fields [20]. Inspired by the success of the ensemble
approach in the supervised learning field, numerous research has been performed in
recent years to create clustering ensemble techniques [102, 103]. Ensemble clustering
is a technique of combining several clustering results into the final clusters, using a



21

consensus function, without gaining access to the algorithms or features [54]. It is
also known as Consensus clustering or Clustering Aggregation. The cluster ensemble
problem is more complex than the classifier ensemble problem. One reason is that
there is no previous information with which the algorithm can identify the actual
cluster structure, and there is no "ground truth" to confirm the clustering outcome.
Furthermore, no cross-validation approach can be used to tweak the clustering algo-
rithm’s parameters; therefore, there are no suggestions to help the user choose the
best clustering algorithm for a specific dataset. Another issue is that the number of
clusters created by different clustering methods may differ.

J Ghosh and A Acharya [52] highlighted that there are numerous justifications
for implementing clustering ensembles, which are substantially greater than those for
employing a classification ensemble, where the primary goal is to improve prediction
accuracy. Some of these motivations include:

1. Improving cluster quality compared to clusters produced by different clustering
methods.

2. Knowledge reuse: In some applications, various partitions may exist, which may
be merged to provide a final clustering result. This produces a more consolidated
clustering result; Several examples are provided in [101]

3. Generating robust clustering solution, i.e., being able to provide good results
across an extensive range of datasets.

Among these objectives, improving the quality of the clustering result is the most
widely accepted one. The clustering quality is usually measured with a numerical
measurement to assess different aspects of cluster validation [67]. Section 2.5 reviews
some of these in detail. The ensemble clustering has the capacity to produce a better
outcome in terms of consistency, Robustness, Novelty, and stability [20, 107].

Cluster ensemble is a two-step process: the generation step, where the clusterings
need to be combined, is generated, and the consensus step, where certain consensus
functions are applied to combine the clustering results. Figure 2.1 shows the general
architecture of ensemble clustering where the input is the dataset, and the output is
the ensembled cluster assignments. Vega-Pons and Ruiz-Shulcloper [107] stated that
since there are no restrictions on how the generating stage should be carried out,
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Figure 2.1: General process of cluster ensemble [107]

different strategies can be used. Several generation approaches have been utilized
in the literature to create members for an ensemble; further explanation of these
techniques can be found in section 2.4.1. A clustering ensemble’s success is dependent
on selecting a consensus function that can increase the quality of the final clustering
solution. Several consensus functions have been proposed in the literature, some of
which will be described in section 2.4.2

2.4.1 Ensemble Generation Methods

A generative mechanism comprises several techniques that might result in various
individual clusters of a given dataset. Regardless of obtaining base clusterings with
the required diversity and quality, main diversity is discovered in many ways. There
are no restrictions on how the base clusters must be collected, such as if various
single clustering methods or one algorithm with variable parameter settings must be
used. Researchers select the generation technique depending on the type of data or
the application being used. Depending on the purpose of the research, the generation
mechanism can be carried out primarily using any of the following strategies [101, 71]:

1. For the same data set, employ the same algorithm with the different parameters
or initial conditions.

2. For the same data set, employ the different algorithms.

3. For the subsets, carry out the clustering respectively.
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4. For the same data set, carry out the clustering in different feature spaces based
on different kernels.

On the other hand, N. Iam-On and S. Garrett [61] classified the cluster generation
step into five categories, namely homogeneous ensemble, random-k, data subspace/
subsample, heterogeneous ensemble, and mixed heuristics. While the first four types
are similar to the strategies stated in [101, 71], the mixed heuristics is the combination
of any of the strategies mentioned above.

The majority of the research on ensemble clustering equip one of the ensemble
generation methods mentioned above. One such example is the work of Strehl and
Ghosh [101] where they used random feature subspaces for high-dimensional data
and created members for each of the data subspaces. Members were also formed by
picking distinct subsets of items for each member. This approach was denoted as
object distribution, and it was used for large amounts of data. Fern and Brodley [42]
created members by randomly projecting items into distinct subspaces and using the
Expectation-Maximization method (EM) on these subspaces. Topchy et al. [79] pro-
posed a robust and stable resampling(or bootstrapping) method, especially sampling
with replacement, by investigating the effectiveness of a bootstrapping technique in
conjunction with several combination algorithms. They have chosen k-means for
bootstrapping with random restart due to their lower computational complexity. On
the other hand, Monti et al. [81] used the bootstrap technique with different clustering
algorithms, including k-means, model-based Bayesian clustering, and self-organizing
map. The main reason was to determine the optimal number of clusters obtained
while running the clustering algorithms multiple times to examine the boundaries,
cluster number, and membership. K-means seems to be the most popular algorithm
for generating members with random-k initializations due to their low computational
complexity [20]. Another popular strategy is using different clustering algorithms for
each member of ensemble data where all the algorithms may complement one another.
H Mannila et al. [53] used the Single, Average, Ward, and Complete linkage methods
and k-means to generate ensemble members.

In conclusion, as shown here, no one clustering technique is commonly employed,
and there are no generally agreed-upon criteria for selecting the best one [20]. Our
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study utilizes subsampling techniques on heterogeneous as well as homogeneous clus-
tering algorithms for generating the ensemble data.

2.4.2 Consensus Function

A consensus function is the most crucial component in ensemble clustering as it
combines the output of n individual clusters {C1, C2,...Cn} to a single final clus-
tering result C. According to Vega-Pons and Jose Ruiz-Shulcloper [107], object co-
occurrence and median partition are the two main approaches in consensus functions.
Median partition-based approach groups the data points of different partitions by
their similarity index and forms the new partitions based on the medians of the data
points of previous partitions. It treats the ensemble as an optimization problem.
Some of the approaches based on this method include the genetic-based method,
Kernel-based method, and Non-Negative Matrix Factorization-based method [20].
The co-occurrence-based technique counts the presence of an item in one cluster or
the occurrence of two objects in the same cluster and creates the final clustering re-
sult through a polling system among the objects. Some of the techniques that use
this approach are Relabelling and Voting method, Co-association matrix, and the
Hypergraph partitioning based method [20].

Hypergraph partitioning method proposed by Strehl and Ghosh [101] where the
clusters are picturized as the edges of the graph and vertices correspond to the items to
be grouped, and each hyperedge specifies a set of objects belonging to the same clus-
ters. The consensus clustering problem is thus simplified to determining the minimum
cut of a hypergraph. Based on this concept, they proposed three consensus functions:
the cluster-based similarity partitioning algorithm (CSPA), the hypergraph partition-
ing algorithm (HGPA), and the meta-clustering algorithm (MCLA). While the CSPA
generates a graph from the similarity matrix and clusters it using the METIS method,
the HGPA and MLCA generate hypergraphs with each member represented by a hy-
peredge [51]. The main difference between HGPA and MLCA is that HGPA directly
partitions the hypergraph at the minimal possible hyperedge number. In contrast,
MLCA generates the similarity score using the Jaccard index, represents the scores
as edges, and then partitions the graph using these newly computed similarity scores
using HMETIS method [20].
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The voting approach, also called the direct or relabeling approach, attempts to
solve the correspondence problem between the labels of the generated cluster results
and then applies the simple voting procedure to determine the final cluster assign-
ments. The technique resolves the correspondence problem by relabeling the labels
based on a defined reference point, which might be drawn from one of the ensem-
bles created or from a new clustering of the dataset [51]. The study by Dudoit and
Fridly [36] deduced a consensus function that is similar to the bagging process( plu-
rality voting) used in classification ensembles. They assumed that all members have
the same number of clusters. By applying the plurality voting process, they obtained
the final clustering result, with the same number of clusters as the members.

The co-association matrix is a pairwise similarity-based method. Here, the label
correspondence problem is avoided by mapping the ensemble members to the new
representation, the similarity matrix computed between pairs of objects in terms of
their togetherness across all ensemble members [46]. Fred and Jain obtained the fi-
nal partition by applying single and average linkage hierarchical algorithms to the
co-association matrix. While the co-association matrix seems to help capture the
information available in the ensemble members, it only captures the pairwise rela-
tionship between the objects. Wang et al. [110] proposed Probability Accumulation
(PA) which extends the Co-association method by considering the cluster size and
the dimensions of the objects within the data when calculating the Co-association
matrix. Iam et al. [61] proposed a link-based similarity measure(LCE) where they
used various similarity matrices like Connected–Triple-based similarity (CTS) and
SimRank based similarity (SRS).

Apart from the consensus functions mentioned above, there are numerous other
functions out in the literature. Among all, we have equipped five specific consen-
sus functions, namely CSPA, LCA, LCE, kmodes, and majority voting, which are
discussed below:

Cluster-based Similarity Partitioning Algorithm(CSPA)

The cluster-based similarity partitioning algorithm (CSPA) developed by Strehl and
Ghosh [101] signifies clustering as a relationship between the objects in the same
cluster by measuring the pairwise similarity between the objects, which is then used
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to recluster the objects. It creates a hypergraph from the cluster labels, with the
number of frequencies of two objects gathered in the same clusters treated as the
weight of each edge. A n x n binary similarity matrix is built from the network for
each grouping, with two items having a similarity of 1 if they are in the same cluster
and 0 otherwise. A single sparse similarity matrix S from r such similarity matrices
of various clusterings is obtained by:

S = 1
r

HH+ (2.7)

The final similarity matrix is used to recluster the objects, which is done using
METIS(Multiway Spectral Clustering Method) algorithm due to its robust and scal-
able property.

K-modes

The K-Modes algorithm, presented by Haung [60] extends the K-Means approach
to both numerical and categorical domains. The k-modes approach employs a basic
matching dissimilarity measure to minimize the clustering cost function, replaces
cluster means with modes, and employs a frequency-based mechanism to update
modes throughout the clustering process. These changes ensure that the clustering
process converges on a local minimum outcome. The matching dissimilarity matrix
is defined as: Let X and Y be two data objects with m attributes each. The total
mismatches of the respective characteristics of two objects define the dissimilarity
measure d(X, Y) between X and Y. Lower mismatch indicates that the objects are
similar. Mathematically, it can be defined as:

d(X, Y ) =
m∑︂

j=1
δ(xi, yi) (2.8)

where,

δ(xi, yi) =

⎧⎪⎪⎨⎪⎪⎩
0, (xj = yj)

1, (xj ̸= yj)
(2.9)

The overall procedure followed in k-modes is as follows:

1. Choose K unique objects as initial modes at random, one for each cluster.
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2. Allocate an object to the cluster whose mode is the closest to it in terms of
dissimilarity.

3. Each cluster’s mode is updated based on the frequency of the data items in the
same cluster.

4. Retest the dissimilarity of objects against the current modes once all objects
have been assigned to clusters. If it is discovered that an item’s closest mode
belongs to a different cluster than its current one, reallocate the object to that
cluster and update the modes of both clusters.

5. Repeat (3) until no object causes the clusters to change.

Latent Class Analysis(LCA)

LCA is a promising statistical strategy for examining multidimensional data. It al-
lows researchers to capture the association that exists among observed categorical
indicators through a set of unobserved latent classes [78]. In the literature, LCA is
referred to in different ways: Latent Structure Analysis, Mixture Likelihood Cluster-
ing, Model-based Clustering, Mixture-model Clustering, Bayesian classification, and
Latent Class Cluster Analysis [95]. This model assumes that by considering mea-
surement error, categories of latent variables could explain the correlation between
indicator variables. Using several iterations, LCA compares the frequency of response
patterns for each identified latent class. As a result, LCA calculates some statistics
that help to select the best model. These statistics are G2, Akaike information crite-
rion (AIC), Bayesian information criterion (BIC) [16]. For these statistics, the smaller
value shows a better model fit. Finally, a model with the smallest values of AIC or
BIC might be selected. Like k-means, LCA divides the data to maximize intra-cluster
differences and minimize inter-cluster differences. Despite the models like k-means
where the decision is arbitrary or subjective, LCA facilitates statistical evaluation
leading the result to be less subjective [95].

A significant difference between standard cluster analysis techniques and LCA is
that LCA is a model-based clustering approach where a statistical model is postulated
for the population from which the sample under study is taken [55]. It assumes that a



28

mixture of underlying probability distributions generates the data. When maximum-
likelihood is used for parameter estimation, the model maximizes the log-likelihood
function and finds the optimal solution. Another advantage of LCA is that the model
is flexible to distribution and scaling of the variables [55] i.e., it can handle both
simple and complicated distributional forms of variables, and its result remains the
same irrespective of whether the variables are normalized or not.

Link-Based Cluster Ensemble(LCE)

Iam-On et al.[61] analyzed the problem of degradation associated with clustering
quality and presented a link-based algorithm that improves the matrix computation
for finding the unknown elements in the dataset using cluster ensemble similarity. It
significantly extends the hybrid bipartite graph formulation (HBGF) technique by
applying a graph-based consensus function to an improved cluster association ma-
trix instead of the conventional binary cluster-association matrix. The focus has
shifted from revealing the similarity among data points to estimating those between
clusters accurately and inexpensively. For evaluating the similarity between the ob-
jects, Iam-on established three different similarity measures, which can perform with
substantially fewer unknown entries as compared to conventional co-association ma-
trix [62]. They are connected-triple-based similarity (CTS), SimRank-based similarity
(SRS), and approximate SimRank-based similarity (ASRS). SRS extends the scope
of similarity estimation beyond the local context of adjacent neighbours, with the
assumption that neighbours are similar if their neighbours are similar as well. Here,
a similarity measure between any pair of vertices can be computed through the iter-
ative refinement process. Let SRS(a,b) be the initial SRS matrix, representing the
similarity between any pair of data points or any two clusters in the ensemble. For
a=b, SRS(a,b)=1. Otherwise,

SRS(a,b) = DC

|Na||Nb|
∑︂

a′∈Na

∑︂
b′∈Nb

SRS(a’,b’), (2.10)

where DC is the constant decay factor within the interval (0, 1], Nx is the neighbour
set whose members are directly linked to vertices.

ASRS, a variation of the SRS, improves the applicability and efficiency of the SRS
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approach by removing the iterative process of similarity refinement.
Clustering the data using LCE involves the following main steps[61]:

1. Creating base clusterings to form a cluster ensemble

2. Generating a refined cluster-association matrix using a link-based similarity
algorithm.

3. Producing the final data partition by employing the spectral graph partitioning
technique as a consensus function.

Majority voting

Hanan G.Ayad and Mohamed S.Kamel [24] proposed a consensus clustering technique
of cumulative voting in which they compared with a bipartite-based consensus algo-
rithm with the inference that the voting technique had better accuracy, stability, and
estimation of the actual number of clusters than the other. They considered this cu-
mulative voting as a regression problem with linear computational complexity. Their
method provided a probabilistic vote for each object on which cluster they should
belong in the ensemble result. They are then thresholded to identify each object’s
membership in the ensemble clusters. This approach necessitates the employment of
a mapping function between the selected reference member and the other members
for which the information bottleneck concept was applied. The primary function of
cumulative voting follows two approaches relabeling and aggregation of the consen-
sus partition [24]. In relabeling, the most appropriate relabeled partitions are taken.
The problem was viewed as a supervised learning problem with continuous response
variables leading to a soft relabeled partition. In aggregation, the ensemble partition
is run multiple times with random ordering.

2.5 Cluster Validation

Even though numerous clustering techniques are used in data mining, there is a need
to evaluate the quality of the cluster to find the one that performs best for the input
data despite the unavailability of class information. Validation methods are required
to resolve the following situations [67]:
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1. Determining correct the number of clusters;

2. Evaluating how well the clustering solution fits the given data without any
external reference;

3. Comparing the results of cluster analysis to externally known results, such as
labels;

4. Comparing two sets of cluster results to determine the better;

Internal and external validation techniques are the two sorts of validation proce-
dures [57]. External validation compares the clustering result to a reference result
that serves as the ground truth. If the result is comparable to the reference, we con-
sider it to be a better clustering. This validation is easy when the similarity between
two clusterings is well-defined; nevertheless, the fundamental drawback is that the
reference result is not supplied in most real-world situations. As a result, external
assessment is primarily utilized for synthetic data and fine-tuning clustering methods.
Internal validation assesses the validity of the clustering by comparing it to the result
itself, i.e., using just internal data and no external reference. It may also be used to
calculate the optimal number of clusters for a given piece of data. This is considerably
more realistic and efficient in many real-world circumstances since it does not rely
on any presumed outside references, which are not always possible to get. With the
massive rise in data quantity and dimensionality, it is not easy to assert that ground
truth knowledge is available. In this study context, we did not have the ground truth
partition of the data to which we could compare our solution.

Most of the internal validation indices are based on two criteria: compactness and
separation. [67, 57]. The Compactness metric evaluates how closely data points in a
cluster are clustered. The clustered points are meant to be connected by sharing a
similar characteristic representing a meaningful practice pattern. Distances between
in-cluster nodes are typically used to determine compactness. The variance, i.e., the
average distance to the mean, is a typical technique for evaluating compactness to
determine how objects are bound together with their mean as its centre [57]. The
Separation metric evaluates how distinct the discovered clusters are from one another.
A separate cluster that is dispersed among the rest correlates to a particular pattern.
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Distances between objects, like compactness, are commonly employed to quantify sep-
aration, for example, pairwise distances between cluster centers or pairwise minimum
distances between items in distinct clusters [57]. The internal validation metrics used
in the study that is based on the above criteria are the Silhouette index, Dunn in-
dex, Calinski Harabarz, Compactness, and Connectivity. These indices are discussed
briefly below:

Calinski Harabarz(CH)

The CH Index is a measure of how similar an object is to its cluster (Compactness)
compared to other clusters (separation) [57]. The distances between data points in
a cluster and its cluster centroid are used to assess compactness. In contrast, the
distance between cluster centroids and the global centroid estimates separation. The
degree of separation, or how far away the cluster centers are, is represented by the
numerator of the CH. At the same time, compactness, or how close the in-cluster
objects are grouped around the cluster center, is represented by the denominator.
The CH index for K number of clusters on a dataset D =[d1, d2, d3, ..., dN ] is defined
as,

CH =
[︄∑︁K

k=1 nk ∥ ck − c ∥2

K − 1

]︄
/

[︄∑︁K
k=1

∑︁nk
i=1 ∥ di − ck ∥2

N −K

]︄
(2.11)

where, nk and ck are the no. of points and centroid of the kth cluster respectively, c is
the global centroid, N is the total no. of data points. Higher the value of this index
indicates that the clusters are well separated.

Dunn Index

Dunn index identifies sets of clusters that are compact, with a small variance between
members of the cluster, and well separated, where the means of different clusters are
sufficiently far apart, as compared to the within cluster variance [62]. Dunn index
ranges from zero to infinity and higher the value, better is the clustering.

Dunn Index = min
1≤i≤c

{︄
min

1≤j≤c,j ̸=i

{︄
δ(Xi, Xj)

max1≤k≤c{∆(Xk)}

}︄}︄
(2.12)
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where, δ(Xi, Xj) is the intercluster distance between the cluster Xi and Xj and ∆(Xk)
is the intracluster distance of the cluster Xk.

Silhouette Index

Similar to the previous metrics, the Silhouette index also evaluates the compactness
and separation of the clusters. The silhouette index indicates the average distance to
objects in the same cluster and the distance in the alternate clusters. The silhouette
index is calculated as:

S(i) = (b(i)− a(i))/(max{a(i), b(i)}) (2.13)

where a(i) represents the average dissimilarity of ith item to all other objects in the
same cluster and b(i) represents the average dissimilarity of ith object to all objects
in the nearest cluster.

The silhouette range lies between -1 and 1; high values represent good clustering
with no overlaps between the clusters [13]. If the silhouette value is close to 1, the
sample is well-clustered and already assigned to a very appropriate cluster. If the
silhouette value is close to zero, the sample is located equally far from both clusters,
indicating overlapping clusters. If the silhouette value is close to –1, the sample is
misclassified and placed between the clusters.

Compactness

This metrics measures the closeness of the objects with the same cluster. It has value
between 0 and infinity and the lower value of compactness indicates better clustering.
Nguyen and Caruana[84] computed compactness as follows:

Compactness = 1
N

K∑︂
k=1

nk(
∑︂

xx,xj ξiCk
d(xi,xj )

nk(nk − 1)/2) (2.14)

where d(xi, xi) is the distance between Xi and xj, N is the number of data points,
whereas K denotes the number of clusters.
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Connectivity

Connectedness refers to the amount to which observations are grouped in the same
cluster as their nearest neighbours in the data space, and it is assessed in this context
by the connectivity. [30]. The value of connectivity is computed using the below
equation:

Connectivity =
N∑︂

i=1

L∑︂
j=1

xi,nni(j) (2.15)

Where N is the total number of records considered, L denotes the number of nearest
neighbours considered, and (nni(j)) is the distance of the jth nearest neighbour to the
object i.

The value of xi,nni(j) will be zero if i and j are from the same cluster and 1/j if
other wise.

2.5.1 Finding optimal number of clusters

In an unsupervised learning problem, the target variable is not known, so it is essential
to determine the optimal number of clusters that can be formed in the given dataset.
This metric is evaluated using the silhouette method, elbow method, BIC and PAC
scores. These measures are introduced below in detail.

The elbow method is the most common method for determining the optimal num-
ber of clusters. It works by calculating the Sum of Squared Errors(SSE) for each
value of k and then plotting a line chart with the calculated values.SSE is the sum
of the squared differences between each observation and its group’s mean. It may be
measured using any distance metric to measure variance within a cluster. If all exam-
ples inside a cluster are identical, the SSE is equal to zero.[6]. If the line chart looks
like an arm, then the "elbow" on the arm is the optimal value of k as it represents the
k value where the SSE is low.

Bayesian information criterion (BIC) score is a method for scoring a model which
is using the maximum likelihood estimation framework(e.g., GMM). The BIC statistic
is calculated as follows:

BIC = (k ∗ ln(n))− (2 ln()L) (2.16)
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where L is the model’s maximal likelihood function, k is the number of parameters,
and n is the number of records. The BIC considers both the fit of the model to the
data and the complexity of the model. The lower the BIC score, the better is the
model.

Cumulative Distribution Function(CDF) plots histogram ranging from 0 to 1 using
consensus matrix to identify the optimal number of clusters and assess the stability
of the clusters[81]. For the histogram given, the CDF defined over the interval [0,1]
is defined as follows:

CDF(c) =
∑︁

i<j l{M(i, j) ≤ c}
N(N − 1)/2 (2.17)

where 1... denotes the indicator function,M(i, j) denotes entry (i, j) of the consensus
matrix M, and N is the number of rows (and columns) ofM.

The CDF graph curves illustrate a step function across 0, a flat line passing be-
tween 0 and 1, and a second step function around 1. If the curve gradually climbs and
constitutes a different shape, then the clusters formed lack stability characteristics. If
the CDF curves form a bimodal shape, it estimates the presence of significant clusters.
The lower left portion represents sample pairs rarely clustered together; the upper
right portion represents those almost always clustered together, whereas the middle
portion represents those with occasional co-assignments in different clustering runs.
To capture the features of CDF curves, Senbabaoğlu et al. [96] introduced a new index
called Proportion of Ambiguous Clustering(PAC) which is defined as the fraction of
sample pairs with consensus index values falling in the intermediate sub-interval (x1,
x2) ∈ [0, 1]. A low value of PAC indicates a flat middle segment, allowing inference
of the optimal K by the lowest PAC.

2.6 Data Imputation

Many clinical research datasets have a significant percentage of missing values, which
are generally represented as blanks, NaNs, or other placeholders, which directly im-
pacts their use with machine learning algorithms to provide better results. As a
result, it is critical to analyze the impact of missing data [80]. Rubin [92] formulated
three possible missing data mechanisms: Missing Completely at Random (MCAR),
Missing at Random (MAR), and Missing Not at Random (MNAR). MCAR is the
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highest level of randomization, implying that the missing value pattern is entirely
random and does not depend on any variable that may or may not be included in
the analysis. The observed information in the dataset determines the likelihood of
missing data in MAR. It indicates that the likelihood of missingness is determined by
the observed information but not by the unseen component. In this case, the pattern
of missing data may be deduced from the observed values in the dataset. Missingness
in MNAR is influenced by unobserved data rather than observable data. When data
is MNAR, the likelihood of missing data is proportional to the value of the missing
data [65]. The missing data pattern is not random and is not predictable based on
the observed values of the other variables in the dataset.

One fundamental approach for working with incomplete datasets is to ignore/delete
entire rows or columns with missing values. However, this comes at the price of poten-
tially crucial data being lost. When the dataset includes a limited number of missing
values, this strategy is suitable. There are two methods for disregarding missing data:
listwise deletion and pairwise deletion [65]. The listwise deletion method eliminates
any observations that have missing values for any variable of interest. As a result, this
technique restricts the analysis to instances for which all values are observed, which
frequently leads to skewed estimates and loss of precision. [94]. In pairwise deletion,
we analyze all instances that include the variables of interest. It does not exclude the
whole record but instead uses as much data from each unit as feasible. The advantage
of this technique is that it preserves as much data as possible for analysis, even if
some of its variables have missing values. The disadvantage of this technique is that
it employs a different sample size for each variable. [94].

A preferable method is to impute the missing values or predict them from the
known portion of the data [56]. Numerous imputation approaches seek to offer an
accurate estimation of population characteristics to maintain the power of data mining
and data analysis tools. The amount of missing data determine the optimal solution
for missing data. Although there is no rule for determining what proportion of missing
data is unacceptable, it is always best to compare findings before and after imputation
if more than 25% of the data is missing. [65].

There are two types of data imputation methods: single imputation methods
and multiple imputation methods. The Single Imputation Method entails imputing
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one reasonable value for each missing value of a specific variable in the dataset and
then analyzing as if all data had been seen initially. Imputation with the constant,
Mean Imputation, Imputation with distributions, Regression Imputation, and kNN
Imputation are some common single data imputation methods. [65]. The precision
is exaggerated in the single imputation technique since it is assumed that the sin-
gle imputation value is correct. There can, however, never be complete confidence
regarding the correctness of imputed data. As a result, uncertainty about these im-
puted values must be included in missing data techniques [73]. Instead of replacing
each missing observation with a single value, multiple imputations replace several
probable values to represent uncertainty about the correct values to impute. As a re-
sult, the Multiple Imputation technique produces "m" distinct complete datasets with
observed and imputed values. One such method is Multiple Imputation by Chained
Equations(MICE), which works under the assumption that the data are missing at
random. Implementing MICE when data are not MAR could result in biased esti-
mates [25].

Several research has been conducted to determine the most effective data impu-
tation strategy. Kyureghian et al. [69] performed a study that evaluated imputation
strategies by assessing the inaccuracy of predicting missing data and parameter esti-
mations from later regression analysis. The paper’s findings demonstrate that mul-
tiple imputation approaches provide the best coverage of parameter estimations and
dependent variable prediction. For gene expression data, Troyanskaya et al. [103] com-
pared k-nearest neighbour imputation to mean imputation and singular-value decom-
position (SVD). Their analysis revealed that the KNN impute method outperforms
the mean imputation and SVD methods. Malarvizhi and Thanamani [75] discovered
that median or standard deviation substitution outperforms mean substitution in a
comparative analysis of single imputation techniques. Penone et al. [85] evaluated the
performance of four approaches for estimating missing values in trait databases (K-
nearest neighbour, multivariate imputation by chained equations (MICE), missForest
and Phylopars) and tested whether imputed datasets retain underlying relationships
in the life-history trait datasets.

Although there are various ways for data imputation, it is also critical to un-
derstand and assess the performance of different imputation methods on the source
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data to utilize the right approach when doing data mining tasks. Though some work
has been done to examine the performance of various imputation methods, we in-
tend to examine the performance of different imputation methods that use single and
multiple imputation methods, namely mean imputation, median imputation, mode
imputation, kNN imputation, constant imputation, and multiple imputations with
various regression models on our data in this study. A detailed explanation of the
imputation techniques used in this study is presented in the rest of this section.

2.6.1 Univariate Imputation

Simple (or) univariate imputer imputes the values in the i-th feature dimension using
only non-missing values in that feature dimension. We have utilized SimpleImputer
class from sklearn for this purpose. This class imputes the missing value with the
provided constant value or uses the column’s statistics in which the missing values
are located. The commonly used statistics in SimpleImputer are: mean, median,
and mode. This study evaluated the effect of imputing the missing value with mean,
median, mode, and constant values.

2.6.2 KNN Imputation

KNN imputer scans a dataset for k nearest rows to the row with missing values. The
neighbours’ features are averaged evenly or weighted by distance to each neighbour.
If a sample lacks more than one attribute, the neighbours may change based on the
particular feature being imputed. When fewer than n neighbours are available, the
training set average is used during imputation. Suppose at least one neighbour with
a known distance, the remaining neighbours’ weighted or unweighted average will
be utilized during imputation. We have utilized KNNImputer class from sklearn for
this purpose. After evaluating several values for the number of neighbours, we have
selected five as the number of neighbours.

2.6.3 Multivariate Imputation

Multiple imputations estimate imputation by modelling each feature with missing
values as a function of other attributes. It does so in an iterated round-robin method,
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with each step selecting a feature column with null as output y and the remaining fea-
ture columns as inputs X. For knowing y, a regressor is fitted on (X, y). The regressor
is then used to anticipate the missing y values. This process is done iteratively for
each feature and then repeated for n imputation rounds provided by the user. The
last imputation round results are returned. We have used IterativeImputer class with
various regressors such as Bayesian ridge, decision trees, and gaussian process in our
study for evaluation. The function of this class is inspired by the MICE package [25],
but it varies in that it returns the outcome of the most recent imputation rather than
multiple imputations.

2.6.4 Performance Evaluation

The most common evaluation metrics used are raw Bias, percent bias, coverage rate,
average width, and root mean square error(RMSE) [105]. Among them, we have
utilized RMSE to evaluate the performance of the imputation techniques. It evaluates
the accuracy and precision of the predicted value by comparing the predicted value
with the actual value. RMSE is computed as follows:

RMSE =
√︄∑︁N

i=1(predictedi − actuali)2

N
(2.18)

where N is the number of non-missing data points.

2.7 Data Classification

Classification is a supervised pattern recognition problem in which unknown exam-
ples are categorized into pre-existing categories or classes. In other words, each data
item in the supplied dataset has a class label, which is often assigned by an expert
or derived from prior knowledge. As a result, the entire set is divided into various
subgroups known as classes. With the help of these pre-categorized training datasets,
classification models estimate the likelihood or probability that the future dataset will
fall into one of the predetermined categories. Similar to clustering, classification has
a wide range of application domains, including computer vision, handwriting recog-
nition, speech recognition, geostatistics, drug discovery and development, document
classification, and much more [35]. There are several classification models used in
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the literature. We chose Support Vector Machines, Gaussian Naive Bayes, Decision
Tree, Random Forest and KNeighbors classifier in this study. A detailed description
of these algorithms is present below:

The rest of this section provides a detailed description of the classification algo-
rithms used in this study.

2.7.1 Support Vector Machines

Support Vector Machine is a supervised machine learning model used for classification
and regression. In SVM, each data point is mapped to an n-dimensional space, where
n is the number of features. The goal is to create the best line or decision boundary
that can segregate n-dimensional space into classes while maximizing the marginal
distance for both classes and minimizing the classification errors[104]. This best
decision boundary is called a hyperplane. A class’s marginal distance is the distance
between the decision hyperplane and its nearest instance, a member of that class.
Thus for classifying the data using SVM, each data point is plotted as a point in
an n-dimension space, with the value of each feature being the value of a specific
coordinate. Then a hyperplane that differentiates the classes by a maximum margin
is identified to group the data.

2.7.2 Gaussian Naive Bayes

The Bayes theorem is the foundation of the Naive Bayes classification algorithm.
This theorem can characterize the likelihood of an occurrence depending on prior
knowledge of the event’s circumstances[7]. One assumption taken in this model is
the strong independence assumptions between the features. That is, these classifiers
assume that the value of one characteristic is independent of the value of any other
feature and that the presence or absence of one feature has no effect on the presence
or absence of any other feature. It forecasts membership probabilities for each class,
such as the likelihood that a given record or data point belongs to a specific class.
The most accurate class is the one with the highest probability. This classification
model is used when the dimensionality of the inputs is high. Gaussian Naive Bayes
is a variant of Naive Bayes that follows Gaussian normal distribution and supports
continuous data. This approach creates a simple model by assuming that the data is
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described by a gaussian distribution with no covariance between the dimensions. This
model is fit by comparing the mean and standard deviation of the points within each
label. The probability of an attribute x for the class y with mean σ2

y and variance µy

is computed as follows:

P (xi | y) = 1√︂
2πσ2

y

exp
(︄
−(xi − µy)2

2σ2
y

)︄
(2.19)

2.7.3 KNeighbors Classifier

The k-Nearest Neighbor (KNN) algorithm is one of the most widely used classification
algorithm due to its simplicity and easy implementation. It is an instance-based
learning algorithm as it does not learn weights from training data like model-based
algorithms but uses the entire training set to predict the class of the unseen data[8].
It is also called a lazy learning algorithm as it postpones the learning process from the
training data until the prediction is required for the new instances[8]. This method
assumes that similar objects exist nearby and assumes the similarity between the new
data and the available neighbours before assigning the new data to the class based
on the majority vote from its neighbours. The similarity is measured in terms of
distance, where the distance metric like euclidean, Minkowski, and manhattan can be
used. The K in KNN represents the K neighbours for voting, and selecting different
K values produces different classification results.

2.7.4 Decision Trees

A decision tree is a graphical depiction of the design process used to decide the class
of a given feature. Each tree node can be either a leaf node containing a class name or
a decision node containing an attribute test with many branches to another decision
tree for each potential attribute value. In short, it is a graphical representation for
getting all the possible solutions to a problem based on given conditions. A decision
tree asks a yes or no question and divides the tree into sub-trees based on the answer.
It is named a decision tree because, like a tree, it begins with the root node and
then develops on subsequent branches to form a tree-like structure. The essential
advantage of employing decision trees is that they are simple to grasp since they
resemble human decision-making capacity. The decision tree is implemented using
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the ID3(Iterative Dichotomiser 3) algorithm, which divides the dataset based on the
attribute and the right place to stop splitting[4]. This algorithm uses a top-down
greedy approach to build the trees where it selects the best feature at each step using
information gain. Information Gain computes the decrease in entropy (the measure of
disorder in the target feature of the dataset) and assesses how effectively a particular
feature separates or classifies the target classes. The feature with the most significant
Information Gain is chosen as the best. The entropy is computed as follows:

Entropy(S) = −
n∑︂

i=1
pi(log2 pi) (2.20)

where pi is the probability of choosing class i and n is the number of classes. Using
the entropy the information gain of the feature A is computed as :

IG(S,A) = Entropy(S)−
∑︂

((|Sv|/|S|) ∗ Entropy(Sv)) (2.21)

Where Sv is the set of rows in S for which the feature column A has value v, |SV | is
the number of rows in Sv, and likewise |S| is the number of rows in S. The procedure
of determining the feature with the highest IG and making it a node is repeated until
we have exhausted all features or the decision tree includes all leaf nodes.

2.7.5 Random Forest

A random forest (RF) is an ensemble classifier made up of numerous Decision Trees.
Deep decision trees frequently result in overfitting the training data, leading to a
significant variance in classification results for a bit of change in the input data[104].
They are pretty sensitive to their training data, which renders them prone to making
mistakes on the test dataset. A random forest’s decision trees are trained using
different sections of the training dataset. The sample’s input vector must be sent
down with each decision tree in the forest to categorize a new sample. Each decision
tree then evaluates a distinct segment of the input vector and returns a categorization
result. The forest then chooses the categorization with the most’ votes’. Since this
algorithm considers the outcomes from many different decision trees, it can reduce
the variance resulting from considering a single decision tree for the same dataset.

There have been numerous researches involving classification models for pattern
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recognition, especially with the diabetes dataset. Some of them are listed as follows:
Amol et al. [28] used MLP to classify retinal images in detecting diabetic retinopathy,
one of the severe conditions caused by diabetes. The model classified the retinal im-
ages as normal or abnormal. The training and cross-validation rates by the MPL were
100% for the detection of normal and abnormal retinal images. Pethunachiyar [87]
classified diabetes patients and identified patients with early stages of diabetes using
the support vector machine model(SVM). The author used kernel-based SVM with
linear, polynomial, and radial kernel parameters and found SVM with linear function
to be more accurate in classifying the data. Maniruzzaman et al. [76] used a ma-
chine learning paradigm to classify and predict diabetes. They utilized four machine
learning algorithms, i.e., naive Bayes, decision tree, AdaBoost, and random forest, for
diabetes classification. They applied the models to a US-based National Health and
Nutrition Survey data of diabetic and nondiabetic individuals and achieved promising
results for a Random Forest classifier.

The presence of various classifiers in the literature necessitates the evaluation
metrics to assess their performance in finding the optimal classifier for the particular
dataset. The correct evaluation of learned models is one of the most critical issues
in pattern recognition. One side of this evaluation can be based on statistical signifi-
cance and confidence intervals when we claim that one method is superior to another.
The other side of evaluation relies on which metric is used to evaluate a learned
model. These measures are calculated by comparing the expected class label to the
problem’s predicted class label. Evaluation metrics are critical in measuring classifi-
cation performance and directing classifier modelling. Standard metrics for assessing
classification prediction models, such as classification accuracy or classification error,
are frequently employed. Standard metrics perform well for the majority of issues,
but they make certain assumptions about the problem.[14]. As a result, an assess-
ment metric that best conveys what is relevant about the model or forecasts must be
chosen, which makes selecting model evaluation metrics difficult. When the class dis-
tribution is skewed, this issue becomes significantly more difficult. The reason for this
is that when classes are uneven and exceptionally substantially lopsided, many of the
conventional measurements become inaccurate or even deceptive.[14]. Therefore we
have carefully chosen precision, recall,f-score and AUC-ROC curves as the evaluation
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metrics that work well with imbalanced classes. Ferri et al. [45] classified various eval-
uation metrics into three sets, namely qualitative, ranking, and probability metrics.
Qualitative metrics( e.g., accuracy, F1-measure, kappa statistic) are used to minimize
the number of errors caused by the model. Probabilistic metrics(e.g., mean absolute
error, mean squared error, LogLoss) are primarily used to check the reliability of the
classifiers where it not only measures when the model fails but also checks whether
it has selected the wrong class with a high or low probability. Rank metrics(e.g.,
ROC curve, ROC Analytics) are more concerned with evaluating classifiers based on
how effective they are at separating classes. We used precision, recall, f1-score, and
AUC-ROC to evaluate the classification models among these evaluation metrics.

Precision is a measure that quantifies the amount of valid optimistic predictions
made, i.e., it informs us how many predicted samples are relevant, i.e., our errors in
identifying a sample as correct if it is not valid. When reducing false positives is the
goal, precision is calculated. It is calculated as the ratio of accurately anticipated
positive instances divided by the total number of positive examples predicted.

precision = TruePositives

TruePositives + FalsePositives
(2.22)

Recall, sensitivity, or true positive rate is a measure that quantifies the amount
of correct positive predictions produced out of all possible positive predictions. In
contrast to precision, which only comments on the accurate positive predictions out of
all positive predictions, recall indicates missing positive predictions. When reducing
false negatives is the goal, recall is calculated. In the case of uneven learning, recall
is often employed to assess minority class coverage.

recall = TruePositives

TruePositives + FalseNegatives
(2.23)

The F-score combines accuracy and recalls into a single metric that incorporates
both features in a balanced manner. This measure is appropriate for unbalanced
classification, and its value spans from [0,1], where 1 represents a perfect result and
0 represents a catastrophic failure.

f-score = 2 ∗ Precision ∗Recall

Precision + Recall
= 2 ∗ TP

2 ∗ TP + FP + FN
(2.24)
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The metrics precision, recall, and f-score are computed using the functions provided
by the sklearn metrics package.

The ROC (Receiver Operating Characteristic) curve, which is a valuable tool for
forecasting the likelihood of a binary event, represents the false positive rate vs. the
true positive rate (sensitivity) for various threshold values ranging from 0.0 to 1.0.
The false-positive rate is also known as the inverted specificity. Specificity is defined
as the sum of true negatives and false positives divided by the total number of true
negatives.

specificity = TrueNegatives

TrueNegatives + FalsePositives
(2.25)

False Positive Rate = 1− specificity (2.26)

The Area Under the Curve (AUC) measures a classifier’s ability to discriminate
between classes and summarise the ROC curve. The greater the AUC, the better the
model’s ability to differentiate between positive and negative classifications. When
AUC = 1, the classifier can successfully distinguish all Positive and Negative class
points. If, on the other hand, the AUC was 0, the classifier would forecast all Negatives
as Positives and all Positives as Negatives. When AUC1 is 0.5, there is a good
possibility that the classifier will discriminate between positive and negative class
values. This is due to the classifier’s ability to recognize more True positives and True
negatives than False negatives and False positives. When AUC = 0.5, the classifier
cannot differentiate between Positive and Negative class points. The classifier predicts
either a random class or a constant class for all data points. The ROC curve, which is
often used for binary classification issues, may be extended to multi-class situations
by employing the one vs. all technique[2]. This method fits one classifier per class,
with each classifier fitting against all other classes.

2.8 Summary

We covered the history of the critical ideas utilized in this chapter. A variety of
problems with clustering algorithms have been described in the literature, includ-
ing that various clustering structures can be obtained by single clustering methods
with varied parameters or many algorithms. The clustering ensemble approach is
developed to solve the inherent problems with single clustering methods. It is the
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technique of merging a collection of partitions created from the same data to produce
a single better data partition. The clustering ensemble’s core process consists of two
significant steps: creation and consensus. The generation phase generates several en-
semble members from the same data, merged in the consensus step using a consensus
function. According to the review, the consensus function is the essential component
in a clustering ensemble since it decides whether or not an ensemble is successful.
We looked at some of the most frequent consensus functions in the literature. This
chapter also covers the necessity for cluster validation and the many validation ap-
proaches utilized in the literature. We then overviewed the basics of classification
models and their evaluation metrics. We have also examined the impact of miss-
ing values in datasets and methods for improving the loss. We end the chapter by
discussing various clustering applications in diabetes control.



Chapter 3

Data Description and Methodology

This chapter presents the dataset being used and the research methodology for this
study.

3.1 Dataset Description

The dataset used in this study contains 1,209,502 rows that present the results of
around 940 unique laboratory tests performed on 7726 diabetic individuals over six
months from January to June of 2017. It is time-series data containing the date
and time when the patients took a particular test. It also includes other information
such as the unique patient number, medical record number, patient visit number,
examination code, examination name and hospital information. We decided to move
forward with just the patient ID, exam name, result of the tests, and the timestamp
from all the available features. A detailed description of the features present in the
dataset, along with a sample record, is provided in the table 3.1

Attribute Description Type Sample
ETPR_PT_NO Unique patient identity

number
Numbers 832176

EXM_NM Name of the test Characters Urea Nitrogen,
Blood(BUN)

BRFG_DTM Date and time of the test
taken

Timestamp 2017-02-20 09:30:36

RESULT Result of the test taken Numbers 10.5

Table 3.1: Description of the Dataset

The distribution of the tests taken across the timeframe is presented in Figure 3.1.
From the plot, we could infer that the highest and the least amount of tests were taken
in May and June months, respectively. Figure 3.2 shows the distribution of the count
of unique tests taken by the patients. By visualizing this plot, we could infer that not
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Figure 3.1: Distribution of tests over time

Figure 3.2: Distribution of the number of unique tests taken by a patient

all the patients have taken all the 940 tests as the maximum number of unique tests
taken by an individual did not exceed 220. Figure 3.3 shows the patient numbers
who have taken a higher number of unique tests.

We observed that most of the patients had taken specific tests repetitively daily
by analyzing the dataset further. Some patients have taken the same test multiple
times on the same day. Furthermore, the number of tests performed on each patient
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Figure 3.3: Patient numbers and the maximum number of unique tests taken by them

and their frequency in the observed period differ from person to person. Thus, these
observations depict that the data points are sparse in a time series.

Test Patient
count

Repeats

AGAP 5254 233
Alanine Transferase(SGPT) 4635 176
Aspartate Aminotransferase (SGOT) 4653 176
Carbon Dioxide Level (CO2) 5267 237
Chloride Level, Serum (Cl Level) 5267 234
Creatinine Level, Serum 5414 237
Haematocrit (Hct) 5007 208
Hemoglobin (Hgb) 5007 210
MCHC 5004 208
MCV 5004 208
MPV 5004 208
Magnesium(Mg) Level, Serum 4639 181
Platelet Count (Plt Count) 5003 208
Potassium Level, Serum (K Level) 5338 238
RBC 5005 208
RDW 5004 208
Sodium Level, Serum (Na Lvl) 5267 239
Urea Nitrogen, Blood(BUN) 5365 236
White Blood Cell Count (WBC Count) 5004 206
eGFR 4764 277

Table 3.2: Twenty most common tests among the patients with the count of the
maximum number of unique patients attempted it and its highest repetitions on a
single patient.

Since most of the tests were rarely taken by the patients, we have narrowed down
the dataset and worked with up to 20 most frequently taken tests which are listed in
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Figure 3.4: Minimum and Maximum result observed for considered tests

table 3.2. We chose 20 tests because further tests reduced the overall count of the
patients who took the filtered tests. That is, when we considered 20 frequent tests,
we were left with 1001 patients who have taken all the 20 tests, whereas if we consider
the top 30 frequently taken tests, we are left with just 81 patients who have taken
all the considered 30 tests. Table 3.2 also contains the maximum number of times
an individual took the test. The minimum and maximum RESULT values of each of
the considered tests can be seen in Figure 3.4. Using these top 20 tests, we created
three distinct data subsets: Dataset 1 includes patients who have taken at least one
of the top ten tests, Dataset 2 includes patients who have taken at least one of the
subsequent ten top tests, and Dataset 3 includes patients who have taken at least one
of the top twenty regularly taken tests. These three subsets are used for identifying
patient phenotypes. Thus, the final dataset considered contains 20 most commonly
taken tests and the records of the patients who have taken them. Figure 3.5 presents
sample of the final data.

3.2 Research Methodology

The study comprises four phases: data preparation, clustering, data imputation, and
classification. Figure 3.6 depicts the methodology followed in the project.

The data preparation phase comprised the following tasks:

• Data pre-processing: The raw time-series laboratory data of diverse dia-
betic patients are analyzed in this step for any discrepancies such as undesired
columns, duplicate, irrelevant, or incomplete records, which are then removed
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Figure 3.5: A glimpse of the final dataset being used in the study

from the dataset. The outcome of this step is a cleaned dataset with no dis-
crepancies in the data.

• Data Transformation: Since the distribution of data points in the time series
is sparse, the cleaned data are resampled and interpolated. These preprocessed
and transformed data are then used to extract characteristics and are considered
the dataset’s new features. The characteristics computed are mean, slope, peak
to peak distance, variance and mean absolute change.

• Data partitioning: Once the data is regularized and transformed, the next
step is to partition the data into two cohorts: base set(cohort1) and incomplete
set(cohort2). The cohorts are separated based on the tests considered. The base
set contains data of patients who have undergone all the considered tests more
than once, whereas an incomplete set contains records of patients who have
taken at least one of the considered tests. For example, If we have considered
20 tests, a patient in the base set would have taken all the 20 tests at least
once, whereas a patient in the incomplete set would have many null entries as
its patients have not have undergone all but at least one of the 20 tests. The
base set is used for identifying patient phenotypes as it possesses results for all
the considered tests, whereas the incomplete set is used for cluster prediction,
where the missing outcomes of the unattempted tests are imputed using the
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Figure 3.6: Research methodology of the project

known values. The main reason for data partitioning is to utilize the available
data effectively.

The clustering phase possess the following steps:

• Conventional clustering: In this step, clustering algorithms such as K-
means, Affinity Propagation, Partitioning Around Medoids, and Gaussian Mix-
ture Models are applied to the base set for grouping the data based on their
temporal characteristics.

• Ensemble clustering: Ensemble clustering: Here, we subsample the base set
by randomly picking 80% from it and then apply the above-mentioned clustering
methods iteratively for n number of times. The cluster assignments made by
individual algorithms for each recursion are ensembled using various consensus
functions like CSPA, kmodes, majority, LCA, and LCE. This step is carried out
to improve the performance of the model.

• Cluster Validation: The quality of the clusters formed by individual cluster-
ing algorithms and various consensus functions are evaluated in this step. Since
the actual labels of the data are unknown, we used internal evaluation metrics
to assess the quality of the data partitions as it relies only on the information
in the data. We also investigated and applied various assessment metrics to
identify the optimal number of clusters ’k’. The ’k’ groups formed by the opti-
mal clustering method represent the phenotype of the diabetes patients for the
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considered tests. After identifying the patient phenotypes, the clustered first
cohort data is subjected to training the classification models.

The imputation phase involves the following steps:

• Data Imputation: The second cohort data cannot be grouped due to the
vast number of missing entries. To prepare the data for cluster prediction, we
employed the imputation approach to replace nulls with predicted values. We
used a variety of imputation approaches for this goal, such as basic imputa-
tion techniques (zero, mean, or median imputation), iterative imputation (with
various regression models), and k- nearest neighbour imputations.

• Evaluation: To impute the incomplete set close to the base set data, we have
evaluated the considered imputation strategies on the base set by randomly
removing its entries and identifying the one which imputes the missing value
of the base set with minimal error. The efficacy of each technique is measured
using Root Mean Square Error (RMSE), and the option with the lowest error
rate is chosen. Finally, the selected imputation technique is applied to the
incomplete set to fill its missing values. This non-null dataset is then sent to
the project’s next step to categorize then into relevant classes.

The final step, Data classification, involves the below steps:

• Model Training: Since the values in the second cohort are not 100 percent
accurate, the imputed data from the second cohort cannot be grouped in the
same way as the data from the first cohort. As a result, we employ a classifica-
tion strategy to separate the patients in the second cohort, where the clustered
first cohort is utilized for training and validating the models. One significant
difficulty with training classification models with data from the first cohort is
that the clusters formed are imbalanced, implying that the class distribution
is not uniform. Most machine learning algorithms perform poorly, particularly
when learning minority classes, since there are too few instances for the model
to understand the decision boundary successfully [28]. We used the Synthetic
Minority Oversampling Technique(or SMOTE) to oversample minority classes
to address this issue. Before oversampling, the base set data is split into the
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train and test sets and the SMOTE is applied just on the training set. The
oversampled training data is then used to train Support Vector Machine, Gaus-
sian Naïve Bayes, KNeighbors classifier, Decision Trees and Random Forest
classification models.

• Model Evaluation and prediction: The models trained on the base set are
then evaluated by making it to predict the test set clusters, and its prediction
correctness is evaluated using precision, recall, f1-score and ROC-AUC valida-
tion measures. The identified best model is then used to forecast the disease
progression of incomplete set patients by assigning them to appropriate clusters.

Thus, as a result, all the available patients in the dataset are grouped based on
their temporal characteristics. While base set patients serve as the base for identifying
distinct phenotypes, assigning the incomplete set patients will help us predict a value
for the test that the incomplete set patient has not taken yet. This predicted value, in
turn, will help decide if the patient needs to take a particular that he missed taking,
i.e. a patient might need immediate attention if the predicted value of a test is beyond
its normal range. Thereby, this will help us predict the progression of the disease.



Chapter 4

Methods

This chapter discusses the machine learning methods employed in our research. Sec-
tion 4.1 outlines the data preparation steps carried out to make the data ready for
analysis. Following this, Section 4.2 discusses our cluster analysis methods to iden-
tify the patient phenotypes among diabetes patients. Finally, sections 4.3 and 4.4
illustrates how imputation techniques are applied to the base dataset to perform
classification for tracking disease progression among diabetes patients.

4.1 Data Preparation

This section discusses the steps taken to prepare the data for analysis.

4.1.1 Data Preprocessing

Data preprocessing is the preliminary step in data mining that takes all of the avail-
able information and transforms it into cleaner information that is more suitable for
the study. Data-collection procedures are frequently poorly managed, resulting in
out-of-range values, missing data, etc. Analyzing data that has not been thoroughly
checked for such issues can produce deceptive results [44]. Thus, analyzing data qual-
ity should be the foremost step before running any analysis. The most crucial stage
of preprocessing is to get rid of bad records. Bad records here refer to duplicates,
irrelevant entries, and missing values. Deleting random data without proper knowl-
edge of the dataset might affect the overall informativeness of the data. Hence, care
must be taken while cleaning the data.

The diabetes dataset considered in this study contains some duplicate entries
dropped during cleaning. The features like patient number (ETPR_PT_NO), exam-
ination name (EXM_NM), timestamp (BRFG_DTM), and Results (RESULT) are
the main focus of the study. The features other than the primary ones are dropped
from the dataset. The RESULT column being the main feature, seems to possess
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many null entries. These patients with no RESULT values are removed from the
dataset. Also, a few duplicate exam names are suffixed with special characters ’%’ and
’#’. While looking into it, we found that both of the values represent the test result
except that ’%’ is the value in percentage whereas ’#’ is the numerical value. Since
the remainder of the test results is represented using numerical, we have dropped the
records suffixed with ’%’ and removed the ’#’ character from the EXM_NM. After
cleaning the dataset, we are now left with 7485 unique patients and 510 examination
names.

As discussed earlier in section 3.1, since many of the tests are not taken by a
majority of the patients, we have shrunk our dataset by selecting up to 20 most
commonly present tests. A test is considered common if it occurs at least once in
a maximum number of individuals. Using these popular tests, we have filtered the
dataset by retaining the patients that have taken at least one of these tests. Thus,
after filtering the data based on EXM_NM, we had 3281 patients who took at least
one of the considered tests. The tests considered are mentioned in Table 3.2. The
next step in preparing the data would be to compute temporal characteristics from
the dataset. To do so, the data should be in a regularized time series as is required
by the package that we use for temporal feature computation. However, the cleaned
dataset possesses sparse data in the time series as the time when the patients took the
test is irregular. Thus, we used resampling and interpolation techniques to regularise
the frequency of the tests in the data.

Changing the frequency of time series observations is referred to as resampling,
and there are two types of it: upsampling and downsampling [31]. Upsampling is
used when the data frequency has to be increased, such as from minutes to seconds,
and downsampling is used when the data frequency needs to be decreased, such as
from days to months. Our data have some tests are taken daily and some monthly.
Reducing the frequency from daily to monthly may eliminate many entries, so we
decided to increase the frequency by converting the data to a daily basis. The resam-
pled data has an entry for each day between the first and the last date a particular
test was taken. After resampling, we could see that the resampled rows have a null
value in the RESULT column, which are then filled using interpolation.

Interpolation is a technique for generating new data points from a set of data
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Figure 4.1: Trend comparison of a patient’s AGAP result before and after resampling
and interpolation

points [31]. There are various types of interpolation, namely Linear, Multivariate,
Nearest Neighbor, Polynomial, and Spline. We have used linear interpolation to fill
out NaNs in the data. Linear interpolation creates a continuous function of discrete
data by creating a straight line between the available data. The data is interpolated
so that if there are multiple occurrences of the same test on the same day, they are
combined using the median of the results. If there is a big gap between the tests,
a straight line is drawn, and points on the line are considered the result. In this
way, we tried to maintain the original trend of the results after processing. We used
resample and interpolate function from the Pandas.series library. Figure 4.1 shows
the frequency of AGAP tests taken by a patient before and after resampling and
interpolation. Care must be taken while regularizing the data as it may add noise
while computing the features like variance and mean absolute change. We may use
the original sparse data to compute the features if the calculated feature does not
assume equal spacing in time. In our case, we equipped ’linear_trend’ function to
compute the slope from the result, which assumes the data to be uniformly sampled.
So, we used interpolated data to compute features with such assumptions, whereas
we used the original data to compute the other features like mean, mean absolute
change, peak to peak distance and variance. Thus, this preprocessed data is then
used to calculate temporal features, which are then used in the subsequent processes.
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4.1.2 Computing Temporal Characteristics

The most crucial step in the data preparation is computing temporal characteristics
as they are used as the new features of the dataset in the subsequent processes. The
primary purpose of computing temporal characteristics is to extract the pattern and
trend in the result column over time in numerical format. Also, from the perspective
of pattern recognition, it is much more efficient and effective to characterize the time
series concerning the distribution of data points, correlation properties, stationarity,
entropy, and nonlinear time series analysis [48]. For this purpose, we have equipped
a python based machine learning library named ’tsfresh’(Time Series FeatuRe Ex-
traction on the basis of Scalable Hypothesis tests) [33]. This package automatically
calculates 794 meaningful time series characteristics from a typical time-series pan-
das data frame. Apart from these predefined features, the package also provided the
facility to include a custom feature. We have extracted five different features for
each of the unique tests taken by the patients, among which four are predefined, and
one is a custom user-defined characteristic. The features calculated in this study are
described below:

1. Slope: This feature is computed using the ’linear_trend_timewise’ module
from the library. It calculates a linear least-squares regression for the values of
the time series versus the sequence from 0 to length of the time series minus
one [15]. This feature uses the time series index to fit the model, a Date-
Time datatype. Hence, we have restructured our base data frame and made
BRFG_DTM the index. It returns five different attributes, among which we
have picked ’slope’ for further analysis;

2. Peak to Peak distance: This is a custom feature computed using the ’sim-
ple’ feature property of the custom feature generation facility provided by the
package. It is the absolute value of the difference between the maximum value
(max) and minimum value (min) in the time series (i.e. the absolute difference
between max peak and min peak);

3. Mean: It is the mean value of each observed test result;

4. Variance: It is the variance observed on individual test results;
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5. Mean Absolute Change: It provides the mean over the absolute differences
between subsequent time points that is the mean of daily differences;

Figure 4.2: Data frame before and after feature calculations.

Similar to slope, the values mean, variance and mean absolute change are com-
puted using predefined functions. The extracted features are represented by a design
matrix where rows represent individual samples and columns represent the extracted
features. In our case, the rows represent individual patients, and the columns repre-
sent the temporal features computed for each test taken by the patients, i.e., if we are
to consider the top 10 tests, we would end up having 10*5 columns for each patient.
Using this package, we computed the temporal features for all the three subsets, i.e.,
top 10 tests subset, next 10 tests subset and top 20 tests subset. Figure. 4.2 presents
the sample of the original and transformed dataset. The next step after data frame
transformation is separating the data into cohorts.

4.1.3 Cohort Separation

The new dataset with temporal characteristics as features has few null entries in
various columns for all three subsets because the considered patients do not take
those specific tests. Retaining these records with missing values in the dataset during
analysis can lead to incorrect results. Hence, we divided the dataset into two cohorts
where one cohort owns patients with no null entries meaning retaining the patients
who have undergone all of the selected tests. To understand this cohort separation
better, let us consider a sample where we are analyzing AGAP, RBC, and WBC tests
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in the dataset. The corresponding pre-processed dataset will contain the temporal
features of individuals who have had all three tests at least once within the period
under consideration. This cohort is the primary source for identifying the typical
phenotypes of patients by applying clustering models, as these models perform better
with complete cases. Hence, we refer to this cohort as a base set.

After removing the base set from the data, we can see that each patient misses at
least one of the test outcomes, leaving null entries for those who have not performed
tests. Another cohort is separated from this missing data called the incomplete set,
which contains the records of patients who have taken at least one of the considered
tests. Let us consider the same three tests under consideration and two patients, one
who has taken just AGAP but not RBC and WBC and another who has not taken
any of the considered tests. In this case, we include the patient with just AGAP
results in this second cohort and filter the other patient as including him will leave
us with just the empty row for the considered tests. Figure 4.3 represents the sample
discussed. Thus, the data in both cohorts are not overlapping and are distinct from
one another. Similar to the sample explained above, we divided the data in each
subset into two non-overlapping cohorts.

Figure 4.3: Cohort separation sample

After splitting the data, the data in each cohort is standardized, removing the
mean and scaling to unit variance. Standardization/feature scaling is said to be
a common requirement for many machine learning models as they might act up if
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the individual features do not more or less look like standard normally distributed
data [3]. To standardize our data, we have utilized the scikit-learn Standard Scaler
library, which normalized our data so that the features are centred around 0 and have
a standard deviation of 1. After standardization, the cohorts with no null entries,
i.e., base set, are used for identifying the typical phenotypes of patients by applying
clustering models. On the other hand, the data in the incomplete set is imputed and
then sent for classification.

4.2 Data Clustering

After separating the data into cohorts, the cohort with no null values, i.e., base set,
undergoes the clustering process to group the patients based on temporal charac-
teristics of the results from the considered tests. We evaluated the performance of
individual clustering algorithms and cluster ensembles and used the best to group
our data. For this purpose, we have equipped the DiceR(diverse cluster ensemble in
R) package [32]. This package guides the user through generating diverse clusterings,
ensemble formation, and algorithm selection to attain the final consensus solution.

DiceR performs clustering using the subsampling technique, where the clustering
algorithms are applied iteratively to a random portion of the data. It provides prede-
fined functions to access around 15 clustering algorithms and five different consensus
functions. The consensus functions available in this framework are Cluster-based Sim-
ilarity Partitioning Algorithm(CSPA), K-modes, Latent Class Analysis(LCA), Link-
based Cluster Ensemble(LCE), and majority voting.

After carefully evaluating various basic clustering algorithms, we selected k-means,
k-medoids(partitioning around medoids), affinity propagation, and the Gaussian mix-
ture model for our cluster analysis. The evaluation was done using various internal
evaluation indices to see how separated the clusters were. Additionally, we have also
checked the stability of the groups by running the same clustering models multi-
ple times on the same data to see if the clusters assigned are consistent. We have
evaluated other algorithms, including DBSCAN, spectral clustering, fuzzy clustering,
and agglomerative clustering. We dropped DBSCAN as it marked most of the data
points as outliers. The other not selected algorithms had poor internal validation
metrics compared to the algorithms chosen for our data. We have equipped all the
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five consensus functions in our study.
Since poor-performing algorithms can degrade the performance of a cluster en-

semble [32], the package includes a method for including just the top N performing
algorithms in the ensemble. It also provides visual and analytical evaluation strate-
gies that assist the user in assessing their final result. The package includes numerous
internal and external validity metrics for determining the quality of the clusters. Since
our data is unsupervised, we have evaluated the cluster outputs using just the inter-
nal evaluation metrics. The package provides 16 internal evaluation metrics imported
from clValid, clusterCrit, and LinkClue packages. Our study used silhouette score,
Dunn index, Compactness, Connectivity, and Calsinki Harabarz from the package.
Additionally, it assists the user in finding the optimal number of clusters using the
proportion of ambiguous clustering (PAC) metric. It provides graphical displays of
cumulative distribution function (CDF) graphs, the relative change in area under
CDF curves, heatmaps, and cluster assignment tracking plots for further analysis of
the clusters.

This framework incorporates the whole clustering process into a single function
called ’dice()’ that wraps the cluster analysis with the evaluation process. Before
processing the data using this function, the user must select the clustering algorithms,
distance metrics, consensus functions, and cluster sizes they desire to evaluate. This
function takes the data frame with rows as samples and columns as features as input
and processes it as mentioned in the Figure4.4.

A detailed explanation of the flowchart is given below:

1. Every base algorithm selected by the user is iteratively applied to several subsets
of data, each consisting of 80% of the original observations. The user must
specify the number of iterations that need to be carried out. The result is an
array of clustering assignments computed across cluster sizes, algorithms, and
subsamples of the data.

2. As a result of subsampling, not every sample is included in each clustering pro-
cess, leaving some records without any assignments, which are then completed
using the k-nearest neighbour imputation predefined in the function.

3. The completed array with multiple cluster assignments is then evaluated using
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Figure 4.4: Flowchart of the process carried out by dice function[32]

internal evaluation metrics, and the results of top N algorithms are selected for
the ensemble process.

4. The selected algorithm’s cluster assignments are then combined using the con-
sensus functions.

5. The cluster assignments made by the consensus functions are then evaluated
using the internal evaluation metrics.

6. After evaluation, the metrics are returned in output and a rank of the consensus
functions based on their performance.

From the output of the dice function, we can compare the performance of classical
clustering algorithms with the ensemble functions and infer the best algorithm for
our data. After identifying the best algorithm for our data, we have applied the
algorithm to our data to find the patient phenotypes. The parameter description of
the dice function is provided in the table 4.1. The parameter setting of this function
is presented in section 5.1.
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Parameter Description
data dataframe with rows as samples and columns as variables
nk number of clusters ; can be a single integer or a range of

integers
reps number of iterations i.e. number of times random subsamples

should be picked by the function
algorithms single or a vector of clustering algorithms for performing con-

sensus clustering
k.method a method to choose k when no reference class is given. The

default method used is PAC to choose the best k(s).
nmf.method specify NMF-based algorithms to run. Default are the

"brunet" and "lee" algorithms.
hc.method agglomeration method for hierarchical clustering. By default,

the "average" approach is utilised.
distance a vector of distance functions like Euclidean, Manhattan,

spearman, minkowski. Defaults to "euclidean".
cons.funs consensus functions to use.
sim.mat similarity matrix to be used . default are are "cts", "srs", "asrs"
seed random seed for knn imputation reproducibility
trim logical; if TRUE, algorithms with low internal indices will be

pruned
reweigh logical; if TRUE, after removing bad performers, each algo-

rithm is reweighted based on its internal indices.
n a number indicating the top n methods to maintain after re-

moving the weak performers via Rank Aggregation
evaluate logical; if TRUE internal validity indices are returned
plot logical; if TRUE, heatmap of ranked algorithms vs. internal

validity indices is plotted.

Table 4.1: Parameter description of dice function[11]

4.2.1 Performance Evaluation

Since the data we use for the analysis are not provided with actual labels, we have
chosen five internal evaluation metrics to evaluate our final clusters. They depend
only on the information in the data. The metrics assessed are Calinski Harabarz,
Dunn index, Silhouette score, Compactness, and Connectivity. The metrics selected
best evaluate the clusters’ Compactness, Connectivity, and separation. Also, we have
used the proportion of ambiguous clustering(PAC), elbow method, BIC scores and
silhouette method to determine the best number of clusters that can be formed from
the data. Finally, after evaluating and identifying the best model for the data, we
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visualized the clusters obtained by reducing the data to two dimensions.

Finding optimal K value

Because the number of clusters discovered in the dataset is unknown, it is necessary to
determine the ideal number of clusters that best organize the unsupervised data. For
this purpose, we have used the elbow method, silhouette method, and BIC(Bayesian
Information Criterion) score along with the PAC score provided by diceR on the
considered clustering algorithms. We considered the k values ranging from 2 to 8 for
our evaluation. We ran the elbow and silhouette methods using k-means and PAM to
determine optimal k values and used BIC to find the optimal k-value for the GMM
model. Table 4.2 shows the various methods used for each clustering model to find the
optimal number of clusters. We used python implementation of these functions from
the sklearn library for evaluation. The silhouette method considers the silhouette
score calculated for each k value by the clustering models. It considers the k-value
with a higher silhouette score optimal as it better groups the data into compact and
well-separated clusters.

Model Method
k-means silhouette method , elbow method, PAC
PAM or k-medoids silhouette method , elbow method, PAC
GMM BIC, PAC
AP PAC

Table 4.2: Methods used to identify optimal k-value for each models

Cluster visualization

After identifying the best model and clustering the data, we visualized the clusters on
a two-dimensional space using t-distributed stochastic neighbour embedding(t-SNE).
It is a nonlinear dimensionality reduction approach for displaying high-dimensional
data by assigning a position to each data point in a two- or three-dimensional map. [106].
This technique models each high-dimensional object to a lower-dimensional point so
that nearby points model similar objects, and dissimilar objects are modelled by dis-
tant points with high probability. This process would help us visualize how compact
and separate each cluster are from one another.
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4.3 Data Imputation

The data in the incomplete set have null entries across the dataset as it contains
data of the patients who have not taken at least one of the considered tests. As a
result, while computing the temporal characteristics, the tests that the patient did
not take will have a void entry. Since the dataset with the null entries cannot produce
efficient results, we processed incomplete set with imputation techniques to fill the
null values. Imputation is a strategy for retaining most of the data/information in
a dataset by replacing missing data with some substitute value. There are various
imputation techniques available in the literature, among which we have chosen uni-
variate, multivariate, or iterative and kNN imputation techniques. We evaluated the
performance of these selected techniques on the base set data before applying it to
the incomplete set. We used the cross-validation technique(repeated kfold) to utilize
the available data efficiently. The k-fold cross-validation procedure divides a limited
dataset into k non-overlapping folds. Each fold in the k folds is allowed to be used as
a held back test set, while all other folds collectively are used as a training dataset.
A total of k models are fit and evaluated on the k hold-out test sets, and the mean
performance is reported. In repeated kfold, the kfold process is repeated n times,
and the mean of the runs is reported as performance. The entire evaluation process,
which is carried out using python functions provided by the scikit learn’s package, is
presented in Figure 4.5.

The evaluation process is carried out using python’s sklearn package and is as
follows:

1. The base set data with no null values is standardized and is split into train and
test sets using repeated fold.

2. The test set is masked where a random percent of entries are changed to null
entries.

3. The train set is used to fit the model where the model learns the pattern in the
data.

4. The masked test set is then imputed using the trained model.
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Figure 4.5: Evaluation process of Imputation models

5. The masked imputed test set is then evaluated against the original test set,
i.e., before masking, and the error rate is computed using Root Mean Square
Error(RMSE).

6. Steps (2) to (5) are repeated five times as the number of repeats in repeated
kfold was set to 5.

The process from steps (1) to (5) is repeated thrice as we evaluated the imputation
models against 10%,20%, and 30% masked data and carried out for all the considered
imputation techniques. The final error rate is computed by averaging the RMSE of
all three runs. The algorithm with the least error rate is trained on the base set
and applied to the incomplete set data. For computing the RMSE scores, we have
equipped the mean_square_error function from sklearn’s metrics library.
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4.4 Data Classification

The imputed incomplete set, which is not assigned to any clusters defined by the
clustering models, is now set to the appropriate cluster using the classification models.
The classification models considered are support vector machine(SVM), Gaussian
Naive Bayes, KNeighbous classifier, decision trees, and random forest. The main
advantage of using imputation and classification is to understand the progression
of the disease among the patients by guessing the result of the tests and assigning
them to appropriate peer groups. Similar to imputation techniques, the classification
models are evaluated and trained on a base set and applied to an incomplete set. The
classification process is performed using the scikit learn package implementations.
The data classification process in this study follows the below flow:

1. Base set is split into train and test sets using repeated stratified Kfold.

2. The training set is oversampled using SMOTE as it is imbalanced.

3. The oversampled training set is grouped using considered classification models.

4. The assignment by the classification model is evaluated against the true clus-
ter assignment(here, assumptions made by the clustering model) using several
evaluation metrics like precision, recall, f-score, and ROC-AUC curves.

5. The model with better evaluation metrics is selected and then applied to the
incomplete set data.

We split the data into train and test sets using the repeated stratified kfold strategy,
which separates the dataset in that each fold has the same proportion of observa-
tions with the given label. After retaining the same proportion of observations, we
have applied SMOTE(Synthetic Minority Oversampling Technique) to oversample
the minority classes per training set of each repeat. These techniques are beneficial
as we deal with imbalanced class distributions. The classification models, evaluation
metrics, and the kfold methods were imported from the predefined python’s sklearn
packages, whereas SMOTE is imported from the imblearn python package. We have
equipped the ROCAUC function that is provided by the Yellowbrick library in our
study for evaluation[12].



Chapter 5

Experimental Results

This chapter presents the results of all of the procedures depicted in Figure 3.6 on
these subsets and explanations for different decisions made along the way. We exam-
ined the top 20 commonly discovered tests to categorize the patients, as mentioned in
Section 4.1. After preprocessing the entire dataset, we ran three different experiments
with subsets of data partitioned by these specified tests. The first subset includes pa-
tients who have taken at least one of the first ten tests among the top 20, whereas the
second subset would possess the records of the patients who have taken the last 10
of the top 20 commonly occurring tests, as mentioned in table 3.2. The third subset
retains the data of patients who took at least one of the 20 tests considered. The
total number of patients present in these subsets is 2252, 2314, and 2381. The tables
5.1,5.2 and 5.3 presents the summary of each test in each of the three subsets divided.

Tests Top 10 tests subset
Mean SD Min Median Max

AGAP 12.87 3.23 0 12 42
Carbon Dioxide Level (CO2 Level) 22.51 4.06 5 23 47
Chloride level, Serum(Cl Level) 104.4 6.05 54 104 149
Creatinine Level, Serum 126.21 155.8 21 73 1733
Haematocrit(Hct) 0.333 0.072 0.11 0.33 0.66
Hemoglobin(Hgb) 108.06 23.89 36 105 213
Potassium Level, Serum(K Level) 4.15 0.59 1.8 4.1 8.1
RBC 3.73 0.89 1.26 3.65 6.98
Sodium Level, Serum(Na Level) 135.68 4.9 114 136 180
Urea Nitrogen, Blood(BUN) 7.49 6.13 0.5 5.5 44.6

Table 5.1: Statistics of the result of the tests present in the top 10 tests subset

We subjected each subset to the clustering procedure from which we selected the
subset with better phenotypes to undergo further processes. Section 5.1 presents
the results of the cluster analysis which is followed by the results of imputation and
classification in Sections 5.2 and 5.3 respectively.
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Tests Next 10 tests subset
Mean SD Min Median Max

Alanine Transferase(SGPT) 51.1 127.4 5 24 3882
Aspartate Aminotransferase(SGOT) 48.26 134.76 5 23 4031
MCHC 323.71 13.84 252 324 366
MCV 91 7.9 58 90.9 124
MPV 8.75 1.37 5.7 8.7 16.6
Magnesium(Mg) Level, Serum 0.77 0.12 0.28 0.76 1.53
Platelet count (Plt Count) 205.55 132.71 5 189 1812
RDW 16.5 2.8 10.9 15.9 33.1
White Blood Cell Count(WBC Count) 7.3 7.9 0.05 5.98 200.52
eGFR 80.85 40.2 3 81 220

Table 5.2: Statistics of the result of the tests present in the next 10 tests subset

Tests Top 20 tests subset
Mean SD Min Median Max

AGAP 12.76 3.17 0 12 42
Alanine Transferase(SGPT) 52.6 131.45 5 24 3882
Aspartate Aminotransferase(SGOT) 49.78 138.98 5 23 4031
Carbon Dioxide Level (CO2 LeveL) 22.53 3.87 6 23 39
Chloride level, Serum(Cl Level) 104.25 5.83 78 104 149
Creatinine Level, Serum 130.08 154.58 28 78 1733
Haematocrit(Hct) 0.332 0.07 0.11 0.32 0.66
Hemoglobin(Hgb) 107.44 23.89 36 104 213
MCHC 323.7 13.93 252 324 366
MCV 91.13 7.96 58 91 124.2
MPV 8.78 1.38 5.7 8.7 16.6
Magnesium(Mg) Level, Serum 0.77 0.12 0.28 0.76 1.48
Platelet count (Plt Count) 200.95 131.2 5 183 1812
Potassium Level, Serum(K Level) 4.16 0.59 1.8 4.2 8.1
RBC 3.67 0.87 1.26 3.58 6.98
RDW 16.5 2.8 10.9 15.9 33.1
Sodium Level, Serum(Na Level) 135.39 5 114 136 180
Urea Nitrogen, Blood(BUN) 7.82 6.17 0.5 5.9 44.6
White Blood Cell Count(WBC Count) 7.31 8.08 0.05 5.96 200.52
eGFR 80.3 40.74 3 80 220

Table 5.3: Statistics of the result of the tests present in the top 20 tests subset
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5.1 Clustering Results

Once the data preprocessing is carried out on the whole dataset, we divided the
dataset into subsets and computed temporal characteristics for each subgroup. Based
on the selection of tests to be considered and the availability of their results, the co-
horts are separated. The clustering process is carried out solely on base set data: the
non-imputed data with no null entries. It is the temporal features of the patients who
have taken all the considered tests of each subset. The number of unique patients
present in the base set of the three subsets is 1466, 1110 and 1001, respectively. We
carried out the entire clustering process using the dice function from the R package
’DiceR’. This function, by default, splits the data 80:20 ratio and applies clustering
algorithms on 80% of the data for the number of repetitions mentioned by the user.
We considered the 20 repetitions in the experiment where the considered clustering
algorithms cluster 20 different fragments of the same data. We have used this sub-
sampling method to generate our cluster ensembles. In contrast, we obtained the
individual clustering results by applying the algorithm to the data in a conventional
way using the function’ consensus_cluster’. This function outputs cluster assignments
across subsamples and algorithms for different clusters where the user can predefine
the subsampling ratio. To make the clustering conventionally, we have chosen the
sampling ratio as 100:0. Throughout the process, we have considered the potential
cluster numbers ranging from 2 to 8. We have compared four different ensemble clus-
ter assignments, each formed upon the top 1,2,3 and 4 clustering algorithms. The
parameter setting of the dice function is presented in the table 5.4. The remaining
parameters were set to their default values. Following are the cluster analysis results
for the various subsets:

5.1.1 Result of top 10 tests subset

This subset contained the top 10 most commonly taken tests by the patients. The
tests considered are AGAP, Carbon dioxide level, serum chloride level, serum cre-
atinine level, hematocrit, hemoglobin, serum potassium level, RBC, serum sodium
level and blood urea nitrogen. After preprocessing and separating the cohorts, we
assessed the base set data for identifying the optimal k-value using the elbow method,
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Parameter Values
data subset1 or subset2 or subset3
nk 2 to 8
reps 20
algorithms km, pam, ap, gmm
nmf.method brunett, lee
distance euclidean, manhattan.
cons.funs majority, CSPA, LCE, kmodes, LCA
sim.mat cts, srs, asrs
seed 1
trim TRUE
reweigh TRUE
n 1,2,3,4
evaluate TRUE
plot TRUE

Table 5.4: Parameter setup of dice function

BIC scores. Figures 5.1and 5.2 show the elbow curve and BIC scores indicating the
number of clusters to use for the dataset.

Figure 5.1: Elbow method indicating optimal k value using kmeans and kmedoids on
the top 10 tests subset

From the plots, we could see that the kmeans and GMM model have the optimal
value at k=3, whereas the kmedoids have the optimal k value at k=2. To further
evaluate the optimal number of clusters, we computed PAC scores for the range of k
values using the four considered clustering algorithms. Table 5.5 shows that k=2 has
the lowest average PAC score, followed by k=3, indicating that they are the better
number of clusters for the dataset. The next step was to compare the silhouette score
of all the clustering methods across various k values and find the optimal clusters.
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Figure 5.2: Bayesian Information Criterion(BIC) score of Gaussian Mixture
Model(GMM) indicating optimal k value for top 10 tests subset

Table 5.6 shows the internal evaluation metrics like calinski harabasz, Dunn index,
silhouette score, compactness and connectivity of the clustering algorithms for various
k values. From the table, we could infer that k=2 has the highest silhouette score
indicating that dividing the data into two clusters forms a better clustering solution.

K PAM
Eu-
clidean

PAM
Man-
hattan

AP GMM KM Average
PAC

2 0.06 0.20 0.23 0.08 0.02 0.12
3 0.14 0.19 0.32 0.11 0.05 0.16
4 0.16 0.27 0.29 0.11 0.09 0.18
5 0.17 0.29 0.30 0.16 0.18 0.22
6 0.19 0.28 0.26 0.18 0.20 0.22
7 0.15 0.21 0.24 0.20 0.19 0.20
8 0.15 0.15 0.21 0.23 0.24 0.20

Table 5.5: Proportion of Ambiguous Clustering(PAC) scores for each k on top 10
tests subset

Thus, from all the considered measures for finding an optimal number of clusters,
we concluded the best groups for the top 10 tests subset to be k=2 and k=3. Us-
ing these k values, we have applied the consensus functions on clustering results and
compared their performance to the conventional clustering performance. We have
generated cluster ensembles by combining the results of n different algorithms exe-
cuted for 20 repetitions on the same data using consensus functions. Table 5.7 show
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K best alg CH D S CP C
2 KM 372.46 0.03 0.31 6.76 170.41
3 KM 228.27 0.02 0.25 6.47 538.19
4 PAM_E 152.27 0.02 0.10 6.66 553.36
5 KM 118.98 0.01 0.08 6.40 543.52
6 AP 97.00 0.01 0.02 6.32 1081.67
7 PAM_E 82.45 0.01 -0.11 6.24 1439.25
8 PAM_E 67.13 0.01 -0.06 6.71 1675.66

Table 5.6: Best algorithm for each k values on top 10 tests subset

the internal evaluation metrics of the two best consensus functions for the considered
k values and n values. Here, n is the number of clustering algorithms combined to
form the ensembled result, and it ranges from 1 to 4. For instance, if the n value is
1, the consensus function considers the results of only the top-performing clustering
algorithm and combines its results from 20 repetitions. When the value of n is 4,
the consensus function combines the cluster assignments of all the four algorithms we
considered and generates a single cluster assignment from it. Along with the n value,
we have also mentioned the best performing algorithms considered by the consensus
functions for generating ensembled results.

n K Best consensus CH D S CP C
1[km] 2 majority 429.71 0.04 0.32 6.77 158.58

LCE 416.15 0.04 0.32 6.77 161.24
3 majority 307.91 0.04 0.27 6.60 192.76

LCA 274.77 0.04 0.27 6.63 207.39
2[km,ap] 2 LCE 372.15 0.04 0.28 6.76 170.49

majority 359.76 0.03 0.28 6.76 204.43
3 majority 223.84 0.03 0.20 6.70 226.69

kmodes 229.91 0.02 0.21 6.54 524.69
3[km,ap,pam] 2 majority 342.54 0.03 0.26 6.76 247.17

kmodes 342.39 0.03 0.25 6.76 248.70
3 majority 213.26 0.03 0.17 6.66 526.75

kmodes 229.55 0.02 0.15 6.52 748.92
4[all] 2 majority 354.48 0.03 0.24 6.75 232.08

kmodes 354.48 0.03 0.24 6.75 232.08
3 majority 229.87 0.02 0.11 6.45 525.55

LCE 219.10 0.02 0.10 6.45 521.95

Table 5.7: Performance metrics of various consensus functions for each n and k values
considered on the top 10 tests subset
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From the tables 5.6 and 5.7, we concluded the following:

• The quality of the ensemble decreases with the increase in the number of best-
performing algorithms considered(i.e., n), indicating that combining the results
of different algorithms reduced the quality of the ensembles.

• The consensus function ’majority’ is the best performing function as it tops
almost all the experiments.

• We inferred the order of the algorithms based on their performance using the
order in which the function considered the algorithms. The rank of the algo-
rithm is as follows: kmeans, AP, PAM/kmedoids and GMM. This indicates that
kmeans is the best individual clustering algorithm that effectively separates the
data into clusters.

• By comparing the performance of individual and ensemble clustering, we could
say that the ensembles have the upper hand in forming clusters within the data.

• Though the cluster value k = 2 produces better internal evaluation indices,
the centroid models such k-means are convex and isotropic because of inertia,
always converge and remain optimal at lower cluster values. Thus, we have
considered k=3 as the optimal number of clusters.

Thus, we have considered the ensemble results generated by the majority con-
sensus function at k=3 and n=1 as the optimal solution. To visualize the clusters
formed by this method, we have then reduced the dimensions of the top 10 tests sub-
set using the t- distributed stochastic neighbour embedding(tSNE) technique from
python. Figure 5.3 presents the clusters using the two-dimensional plot along with
the proportion of patients available per cluster.

Using the groups formed by the optimal cluster model, we plotted a heat map
figure 5.4 that represents the characteristics of the patients in each cluster. Here, the
features refer to the pathology test results that distinguish the groups. This heatmap
presents the average of the results of each considered test. From the plot, we can see
that the tests serum creatinine level, hemoglobin and blood urea nitrogen are the key
attributes that distinctly identify the clusters. The results of the other seven tests
remain the same across the groups.
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Figure 5.3: Proportion and Visualization of clusters formed on top 10 tests subset

Figure 5.4: Comparison of feature values across the 3 clusters formed on top 10 tests
subset

5.1.2 Results of next 10 tests subset

This subset contains the next ten commonly occurring tests among the patients. The
tests included are Alanine Transferase, Aspartate Aminotransferase, MCHC, MCV,
MPV, serum magnesium level, platelet count, RDW, white blood cell count and
eGFR. The processing of the subset with the next 10 tests is similar to the process
carried out on the top 10 tests subset. Figures 5.5 and 5.6 shows the optimal number
of clusters possible on the data using kmeans, kmedoids and GMM models. We can
observe that the elbow method indicates the optimal k value as 3 and 5 while applying
it using kmeans and kmedoids, respectively. In contrast, the BIC score is the lowest
at k=3, indicating a better k value while applying the GMM model.
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Figure 5.5: Elbow method indicating optimal k value using kmeans and kmedoids on
the next 10 tests subset

Figure 5.6: Bayesian Information Criterion(BIC) score of Gaussian Mixture
Model(GMM) indicating optimal k value for next 10 tests

K PAM
Eu-
clidean

PAM
Man-
hattan

AP GMM KM Average
PAC

2 0.09 0.23 0.14 0.07 0.07 0.12
3 0.22 0.24 0.22 0.18 0.05 0.18
4 0.33 0.27 0.25 0.20 0.14 0.24
5 0.28 0.16 0.35 0.24 0.19 0.24
6 0.29 0.26 0.29 0.17 0.24 0.25
7 0.28 0.26 0.29 0.23 0.18 0.25
8 0.25 0.27 0.27 0.18 0.31 0.26

Table 5.8: Proportion of Ambiguous Clustering(PAC) scores for each cosidered k
values on next 10 tests subset



77

Since we received different k values for other algorithms, we investigated it fur-
ther by evaluating all the algorithms’ PAC scores and silhouette scores for all the
considered k values. Table 5.8 shows the PAC scores from which we could infer that
the PAC scores increase with the increase in the k value. We could see that the
smallest PAC for the PAM with euclidean distance, PAM with Manhattan distance,
AP, GMM, and KM are at k=2,k=5,k=2,k=2, and k=3, respectively.

K Best alg CH D S CP C
2 KM 185.80 0.03 0.30 6.76 170.41
3 KM 106.04 0.03 0.27 6.77 390.23
4 KM 97.94 0.02 0.12 6.68 452.43
5 KM 66.78 0.02 -0.07 6.62 428.66
6 GMM 47.42 0.02 -0.10 6.61 1436.26
7 GMM 39.39 0.01 -0.11 6.60 1646.42
8 KM 41.16 0.02 -0.09 6.39 956.14

Table 5.9: Best algorithm for each k values using next 10 tests data

From the table 5.9 that shows the metrics of the best clustering algorithm for
each considered k value, we could say that the silhouette score is the highest when
the number of clusters is small and vice versa. We could also see that the kmeans
algorithm performed better for most k values. Thus, from all the measures of identi-
fying the optimal number of clusters, we narrowed down our k values to be 2,3 and
5.

Following the evaluation for the k value, we applied the dice function to the
data for generating cluster ensembles. Table 5.10 shows the internal metrics of the
consensus functions that performed better for the k values that were narrowed down.
Apart from evaluating the process for just the filtered k value, we have assessed the
ensemble performance of all the k values that were initially considered.

n K Best consensus CH D S CP C
1[km] 2 majority 186.09 0.04 0.31 6.94 204.02

LCA 186.81 0.04 0.31 6.92 204.96
3 majority 135.37 0.03 0.29 6.74 291.37
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LCA 135.07 0.03 0.27 6.63 332.30
5 majority 120.85 0.04 -0.08 6.50 361.89

LCE 102.71 0.02 -0.06 6.54 443.95
2[km,ap] 2 majority 181.75 0.03 0.31 6.91 226.95

kmodes 173.99 0.03 0.30 6.90 241.95
3 majority 100.02 0.03 0.20 6.83 453.29

kmodes 105.62 0.02 0.18 6.78 534.62
5 majority 77.44 0.03 -0.07 6.63 412.89

kmodes 68.67 0.02 -0.04 6.62 812.00
3[km,ap,pam] 2 majority 188.90 0.03 0.23 6.80 259.87

kmodes 187.51 0.04 0.22 6.94 292.05
3 majority 102.66 0.02 0.11 6.77 519.40

kmodes 106.79 0.02 0.11 6.74 519.30
5 majority 69.20 0.02 -0.07 6.63 563.53

LCE 70.98 0.02 -0.08 6.56 787.09
4[all] 2 majority 176.41 0.03 0.19 6.92 237.92

kmodes 175.68 0.03 0.19 6.89 258.51
3 majority 95.03 0.02 0.09 6.57 519.98

LCA 93.43 0.02 0.06 6.56 665.86
5 majority 70.16 0.02 -0.05 6.59 588.45

LCE 71.40 0.02 -0.08 6.55 786.79

Table 5.10: Performance metrics of various consensus functions for each n and k
values considered on the next 10 tests subset

Following are the inferences made from the clustering results:

• Similar to the top 10 tests subset, the quality of the clusters decreases as we
include more algorithms for ensemble clustering. That is, the performance is
better for the lower values of n.

• ’Majority’ and ’kmodes’ are the most successful consensus functions that pro-
duced better results.
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• Based on the order of trimming of the poor algorithms made by the dice func-
tion, we could say that GMM was the least performing algorithm as the function
did not pick it unless all the four algorithms were included. The rank of the
algorithms based on the trimming made by the dice function is kmeans, AP,
PAM and GMM, respectively.

• As seen in the previous experiment, ensemble clustering has higher internal
metrics than conventional clustering.

• Among the filtered k values, we have decided to go forward with k = 3 as it has
better metrics than k = 5 and slightly decreases its performance compared to
k=2.

Figure 5.7: Proportion and Visualization of clusters on next 10 tests subset

Figure 5.8: Comparison of feature values across the 3 clusters formed on next 10 tests
subset

Thus we grouped the data with the next 10 tests into three clusters by applying
the majority voting consensus function on the results of kmeans algorithms that were
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iteratively applied 20 times. Figure 5.7 presents the proportion of the clusters formed
as well as the visual representation of the clusters using dimensionally reduced next
10 tests data.

From the clusters formed, we identified the pathological tests that uniquely dif-
ferentiate each cluster by averaging the results of each test. Figure 5.8 presents the
average result values of each test under each cluster. The heatmap shows that the
tests Alanine Transferase, Aspartate Aminotransferase and platelet count have signif-
icant changes across the clusters. In contrast, the white blood cell count and eGFR
have slight differences across the clusters.

5.1.3 Results of top 20 tests subset

This subset is the combination of both the top 10 tests and the next 10 tests subset in
terms of the pathology tests, i.e., the patients in the base set of this subset will have
taken all the tests selected in the top 10 tests subset and next 10 tests subset, thus
making this subset a refined version of other subsets with fewer patients than them.
As mentioned earlier, since the same procedure is followed across various subsets,
the first step is to identify the optimal number of clusters for the data. Figures 5.10
and 5.10 portrays the selection of optimal k value by elbow method and BIC scores
computed using kmeans, kmedoids and GMM models. Table 5.11 presents the PAC
scores of unique algorithms for various k values. The average PAC score is low for
k=2, indicating a better number of clusters. We have obtained the optimal k values
from all three methods as 2 and 3. We then applied each of the clustering methods
to the data separately for each value of k and computed the internal metrics using
its output which is presented in the table 5.12. From this table, we concluded that
kmeans is the better performing algorithm for most of the k values and the quality of
the clusters. Also, based on the silhouette score mentioned in the table, we could infer
the better clustering at k=2. Thus, after summarising the results of all the methods
that obtained optimal k values, we concluded the optimal number of clusters as 2 and
3.

With these observed k values, we have generated cluster ensembles using the dice
function. This function combined the cluster results of various algorithms repeatedly
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Figure 5.9: Elbow method indicating optimal k value using kmeans and kmedoids on
top 20 tests subset

Figure 5.10: Bayesian Information Criterion(BIC) score of Gaussian Mixture
Model(GMM) indicating optimal k value for top 20 tests subset

K PAM
Eu-
clidean

PAM
Man-
hattan

AP GMM KM Average
PAC

2 0.03 0.01 0.10 0.13 0.00 0.05
3 0.28 0.27 0.15 0.20 0.02 0.19
4 0.35 0.21 0.34 0.11 0.08 0.22
5 0.27 0.24 0.25 0.15 0.08 0.20
6 0.26 0.19 0.20 0.30 0.18 0.28
7 0.26 0.16 0.20 0.48 0.06 0.23
8 0.25 0.16 0.21 0.47 0.25 0.27

Table 5.11: Proportion of Ambiguous Clustering(PAC) scores on for each k values on
the top 20 tests subset
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K Best alg CH D S CP C
2 KM 185.80 0.03 0.36 9.84 139.79
3 KM 106.04 0.03 0.22 9.63 223.37
4 KM 93.94 0.02 0.12 9.76 452.43
5 KM 88.17 0.03 0.06 9.39 557.43
6 PAM_E 53.45 0.03 0.04 9.62 545.11
7 PAM_M 51.29 0.02 -0.08 9.60 977.20
8 KM 42.37 0.03 -0.03 9.47 775.04

Table 5.12: Best algorithm for each k values using top 20 tests subset

applied to various data fragments and combined it according to the value of n pro-
vided. Here, n is the number of the top algorithms to be considered for generating
ensembles. We ran this experiment by varying the n value from 1 to 4 and com-
pared the performance of various consensus functions. Table 5.13 displays two best
performing consensus functions for each k and n values.

n K Best consensus CH D S CP C
1[km] 2 majority 218.89 0.04 0.38 10.05 137.95

kmodes 219.13 0.05 0.38 10.04 131.91
3 majority 150.13 0.05 0.25 9.77 226.55

kmodes 149.84 0.05 0.25 9.78 226.67
2[km,ap] 2 majority 182.71 0.04 0.34 6.98 197.76

kmodes 180.79 0.03 0.33 6.90 223.67
3 LCA 119.80 0.04 0.21 10.00 167.63

majority 131.18 0.04 0.18 9.84 280.21
3[km,ap,pam] 2 majority 176.31 0.03 0.32 6.91 243.43

kmodes 175.68 0.03 0.32 6.89 258.51
3 majority 111.11 0.04 0.12 9.98 238.43

LCE 121.81 0.03 0.07 9.79 401.73
4[all] 2 majority 176.41 0.03 0.32 6.92 237.92

LCE 174.90 0.03 0.19 6.90 241.73
3 majority 106.80 0.04 0.08 9.59 416.96

LCA 102.97 0.03 0.10 9.55 514.80

Table 5.13: Performance metrics of various consensus functions for each n and k
values considered on top 20 tests subset

Hence, from the individual and ensemble clustering results, we had a similar con-
clusion when compared with the previous subsets and are the following:

• Combining the results of kmeans from multiple runs had better performance
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than combining the results of all the algorithms.

• The consensus function ’majority’ outperformed all other consensus functions
in all the experiments.

• kmeans is selected as the top-performing algorithm for each increment of n.

• By comparing the performance metrics of individual clustering and ensembles,
we could see that the ensembles have the upper hand over the conventional
clustering algorithms.

• Among k=2 and k=3, we considered k = 3 as the optimal value for the same
reason mentioned in the inference of top 10 tests subset results.

Finally, we clustered the top 20 tests’ data using the majority voting function at
k=3 and n = 1. The proportion of the clusters and two-dimensional representation
of the clustered data is presented in Figure 5.11. The clusters obtained are then
used to extract each cluster’s key features. For this, we took the cluster assignments
and mapped them with the original data to obtain the actual result value of each
pathological test. These original values are then averaged per test and cluster and are
then represented as a heatmap in figure 5.12 for easier comparison. This plot shows
that the tests Alanine Transferase, Aspartate Aminotransferase, serum creatinine
level, hemoglobin, platelet count, blood urea nitrogen and eGFR have significant
changes across the clusters.

Figure 5.11: Proportion and Visualization of clusters on top 20 tests subset
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Figure 5.12: Comparison of feature values across the 3 clusters formed on top 20 tests
subset

5.1.4 Summary of cluster analysis

From all the three subsets experimented with, we made the following conclusions from
the whole clustering experiment:

• ’kmeans’ is the best suited individual clustering algorithm, whereas’ majority
voting’ is the best performing consensus function for the data.

• The best number of clusters in all the three subsets is k = 3.

• The most significant tests that differentiate the clusters in the top 10 tests’
subset are AGAP, Carbon dioxide level, serum creatinine level, hematocrit,
hemoglobin, RBC and blood urea nitrogen.

• In the next subset, i.e., the next 10 tests subset, Alanine Transferase, Aspartate
Aminotransferase, MCV, MPV, platelet count, RDW, WBC and eGFR tests
can be used to distinctly identify patients of each cluster.

• The tests AGAP, Alanine Transferase, Aspartate Aminotransferase, carbon
dioxide, serum creatinine level, hematocrit, hemoglobin, MCV, MPV, magne-
sium level, platelet count, RBC, RDW, blood urea nitrogen, WBC and eGFR
can all clearly distinguish the subgroups of the top 20 tests.
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• Because all the tests that made a difference in the top 10 and next 10 tests
subsets are included in the top 20 tests subset, we may consider the outcomes
of the top 20 considered tests to be the prominent phenotypes because they
mainly encompass the patterns seen in the other two subgroups.

• The target clusters formed at each subset have an uneven distribution of patients
making the clusters imbalanced.

• Among the three clusters formed in the top 10 tests’ subset, the patients in the
third cluster seem to have the highest mean values for serum creatinine level and
blood urea nitrogen and the lowest value for the Hemoglobin test. In contrast,
the patients in the second cluster are contradictory to the third cluster with the
lowest creatinine and urea nitrogen levels and highest hemoglobin levels.

• We can infer from the clusters formed on the subset of the next 10 tests that
patients in cluster 3 have higher alanine and aspartate levels and lower platelet
count and eGFR, which appears to contradict the second cluster, which has
lower alanine and aspartate levels and higher platelet count and eGFR.

• Among the three clusters formed in the top 20 tests’ subset, the patients in the
first cluster have the highest mean values significantly for Alanine Transferase,
Aspartate Aminotransferase, serum creatinine level, and blood urea nitrogen,
the lowest value for eGFR and hemoglobin test.

• In contradiction to the first cluster of the top 20 tests’ subset, the second cluster
has the lowest average values for Alanine Transferase, Aspartate Aminotrans-
ferase, serum creatinine level and blood urea nitrogen. It has the highest average
results for platelet count, hemoglobin and eGFR tests.

• We might deduce that the top 20 tests subset covers the patterns of the top 10
and next 10 tests’ subsets based on the cluster patterns found from the mean
of the actual test results of all three subsets.

Hence, we decided to move forward with the top 20 tests’ subset with these obser-
vations as it is a combined inference of all the subsets. Some observations from the
phenotypes noted for the top 20 tests are:
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• Patients in cluster1 may face serious diabetic complications like ketoacido-
sis(higher AGAP), liver problem(more elevated alanine transferase and aspar-
tate aminotransferase), kidney problem(higher creatinine) and anemia(Higher
MCHC, MCV) comparing patients from other groups.

• Patients in cluster2 may be anemic(higher MCHC), may have heart prob-
lems(more elevated hematocrit, lung problem, hemoglobin, platelet count, RBC
and RDW) and may have mild kidney damage(higher eGFR) when compared
to the patients in other clusters.

• Patients in cluster3 may face mild kidney damage due to higher eGFR results.

• We could also make an assumption from the frequency of the tests taken by
patients in cluster1 is that they may be inpatients(i.e., patients admitted within
the facility) as they have taken almost all the considered tests multiple times
daily for several successive days.

Apart from investigating just the 20 common tests, we extended our investigation
of phenotypes to other tests available especially focusing on the common diabetics-
specific tests. Following are the commonly ordered tests we considered where the first
two are the glucose-related tests, and the last two are the urine-related tests :

1. Glucose Level, Random ( Blood Sugar)

2. Glucose Level, Fasting ( FBS)

3. Hemoglobin A1C ( Hgb A1C)

4. UA Blood

5. UA Glucose

Figure 5.13 presents the mean, minimum value, maximum value, median value and
standard deviation of the results of these selected diabetes-related tests. This figure
shows that the patients in each cluster are distinguishable using these diabetes-related
tests.

By further analyzing the nature of these test results on the identified patient
groups, we inferred the following observations on the identified phenotypes:
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Figure 5.13: Statistics of the diabetes-related tests for each clusters

• The random glucose level seems to increase in the cluster1 patients, whereas it
declines with time for the cluster2 and cluster3 patients.

• The fasting glucose level decreased over time for most of the patients in cluster1,
whereas it increased in cluster2 and cluster3.

• The hemoglobin A1C value increased with respect to time for most of the pa-
tients in cluster1, which is the opposite for the patients in cluster2. We couldn’t
observe any specific trend among the patients in cluster3 as they seemed to have
not taken this test frequently, with most of the patients attempting the test ex-
actly once.

• The Urine Analysis(UA) Blood seems to have the same range of value in all
three clusters. But it seems to increase with time for the patients in cluster2
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and decrease for those in cluster1 and cluster3.

• The Urine Analysis(UA) Glucose results seemed to increase with time for in-
dividuals in cluster1. In contrast, its trend is inconclusive in the other two
clusters, as most patients appeared to have taken the test exactly once.

Finally, from the temporal characteristics of the top 20 tests’ subset, we inferred
the following:

Figure 5.14: Table indicating increase or decrease in the mean of slopes of top 20
tests’ subset

We used the slope computed for individual patients for each of the 20 tests consid-
ered to identify the change in the results of the tests concerning time. By averaging
the slopes of each patient in each cluster, we were able to deduce an overall rise
or reduction in each of the test outcomes. Figure 5.14 shows the average slopes of
each test across each cluster. The indicator column indicates the overall increase or
decrease in the slope of each test using blue and red blocks, respectively.
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From the indicators, we could see that the tests AGAP, Hct, Hgb, Plt count and
RBC have a decline in the slope across clusters, indicating that the patients in the
considered period showed an overall decrease in the test results irrespective of their
clusters. On the other hand, the tests Cl level, MCV, MPV, RDW and Na Level
had an increase in the value of the results over time irrespective of the clusters. The
remaining tests, SGPT, SGOT, CO2 level, creatinine level, MCHC, Mg level, K level,
BUN, WBC count, and eGFR, are crucial for each cluster since it differs among the
clusters.

Figure 5.15: Average of the amount of change in the results over time in each cluster
of top 20 tests’ subset

The following inference is obtained using each patient’s mean absolute change
values to identify the overall change in the results concerning time. For this, similar
to slopes, we computed the mean absolute change of each patient’s results over time,
which are then averaged for the cluster assignment of the patients. Figure 5.15 shows
the average change in the results over time in each cluster using a three-dimensional
bar plot.
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This chart shows that the patients in cluster 1 have the most significant change
in most tests, especially for SGPT, SGOT, creatinine level, MCHC, Plt count, and
eGFR. In contrast to cluster 1, patients in cluster 2 faced the lowest change in their
test results than patients in other clusters.

Figure 5.16: Range of the average result values over time in top 20 tests’ subset

We also compared the overall range of results by averaging the mean of the result
value of each patient. We did this by first calculating the mean of each patient’s test
results, then determining the lowest and maximum of each test across each cluster.
Figure 5.16 represents the range of the mean result values of each cluster using a
grouped box plot. The figure shows that the tests AGAP, CO2 Level, Cl Level,
MCHC, MCV, MPV, Mg Level, Na Level and eGFR have almost the same results
value across the clusters. The tests SGPT, SGOT, creatinine level, Hgb, Plt count
and WBC count are comparable across clusters as the range of the results have
significantly differed among the cluster.

Apart from these temporal characteristics, we have tabulated the maximum time
an individual repeated a test in the considered interval in Table 5.14. The table
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Tests Cluster1 Cluster2 Cluster3
AGAP 233 56 110
SGPT 69 56 92
SGOT 69 56 94
CO2 Level 237 56 111
Cl Level 234 56 111
Creatinine Level 237 56 111
Hct 105 56 141
Hgb 105 56 141
MCHC 105 56 141
MCV 105 56 141
MPV 105 56 141
Mg Level 137 57 99
Plt Count 105 56 133
K Level 238 56 112
RBC 105 56 141
RDW 105 56 141
Na Level 239 56 111
BUN 236 56 111
WBC Count 105 56 141
eGFR 277 56 113

Table 5.14: Maximum repeats of each test by a single patient in the top 20 tests’
subset

shows that eGFR is the maximum repeated test taken 277 times by a patient in
cluster 1. In contrast, Hct, Hgb, MCHC, MCV, MPV, RBC, RDW and WBC counts
were the most frequently taken tests taken 141 times by a patient in cluster 3 in the
considered interval. The patients in cluster2 have undergone almost all of the tests
for a maximum of 56 repetitions.

We also used the incomplete set of the top 20 tests’ subset to find the percentage
of patients who have missed taking each of the considered tests. Figure 5.17 compares
the missing percentage of each test across each cluster.

From the plot, we can see that the bars of the tests Hct, Hgb, MCHC, MCV, MPV,
Plt count, RBC, RDW and WBC look identical. After additional investigation, we
discovered that these tests are ordered together regardless of clusters, i.e., a patient
who missed MCV is likely to have missed MPV, MCHC, Hgb, Hct, platelet count,
RBC, RDW, and WBC tests.
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Figure 5.17: Percentage of patients who have missed taking each test per cluster in
incomplete data of top 20 tests subset

Thus, from all the observations, we conclude that we have successfully divided
the data into meaningful clusters. These clusters are then equipped for our further
analysis.

5.2 Imputation Results

The imputation process is carried out on the top 20 tests’ subset, i.e., the data of
patients who have taken all the top 20 most frequently occurring pathological tests.
After processing the base set of this data and identifying the phenotypes, we are
then processing the incomplete set of data to estimate the disease progression of its
patients. Since there are many void entries in the top 20 tests’ subset, we imputed
the null values with non-null entries using univariate multivariate and knn imputation
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techniques. In particular, they replaced the void entries using mean, median, and
zero strategies of univariate imputation. In the case of multivariate imputation, we
have used Bayesian ridge, decision tree and gaussian process regressors with iterative
imputation function in python. To evaluate the accuracy of these techniques before
applying them to incomplete set data, we have used these imputation techniques to
the randomly masked base set data. As the highest proportion of missing values in a
column of this subset’s incomplete set is 27 percent, we randomly voided the base set
records in 10, 20, and 30 percent. We repeated the entire evaluation process using
RepeatedKFold with five repetitions and splits, and the metric used for evaluation is
Root Mean Square Error.

Model Strategy RMSE for each percentage missing
10% 20% 30%

Simple Imputation Mean 0.27 0.40 0.50
Median 0.28 0.41 0.51
Zero 0.27 0.40 0.50

Iterative imputation Bayesian Ridge 0.13 0.24 0.32
Decision Tree 0.23 0.37 0.47
Gaussian Process 0.26 0.39 0.48

kNN imputation 0.18 0.27 0.36

Table 5.15: Root Mean Square Error(RMSE) values computed by applying various
imputation techniques on the masked test set

Figure 5.18: Comparison of the performance of different imputation techniques

Table 5.15 and Figure 5.18 presents the RMSE values of each imputation tech-
niques for various percent of missing values. From them, we could infer that the
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iterative imputation with Bayesian ridge regressor performed better than any other
imputation technique. Hence, using this technique, we trained the imputer with the
base set data, transformed the incomplete set data into non-null data and made the
data ready for the classification process.

5.3 Classification Results

The main aim of the classification task was to assign the imputed incomplete set to
appropriate clusters that are formed on the base set. This process aims to identify the
cluster to which a particular patient might belong if he had attended the considered
tests. We might also use this assignment to predict the approximate result value of
the considered pathology tests that the patient did not encounter in the given period.
We carried out the classification process using the entire data of the top 20 tests’
subset, i.e., we have utilized the base set and the incomplete set for classification.
In order to train a classification algorithm for predictive analysis, we need a dataset
labelled by experts. We treated the labels acquired using the clustering models as
the original labels and utilized them for training the classification models because the
data we used for our research was not labelled.

We tested SVM, GNB, KN, DT, and RF models on our labelled base data to
find the best classification model for our data. Using a repeated stratified kfold cross
validator, we divided the data into train and test sets. The base set was divided
into five-folds and repeated three times. Once the data is split, each training fold
is oversampled using SMOTE to balance the dataset. The oversampled train data
is then used to train the selected models, and the test data are used for prediction.
The predicted labels of the test set by the model and the actual label are used to
evaluate the models’ performance. The metrics used for evaluation are precision,
recall and score. The results of each fold and repeat were recorded and then averaged
to determine the models’ overall performance.

Table 5.16 shows the precision-recall and score obtained by applying the consid-
ered algorithms on the top 20 tests’ subset base set. In addition to these scores, we
compared the performance of the models using the confusion matrix and the ROC
curves. We observed that the SVM outperformed all other models from these evalu-
ation metrics. Hence, we considered SVM for classifying our data. Figure 5.19 shows
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Models Precision Recall fscore
SVM 97.35 97.00 97.07
GNB 92.95 90.91 91.50
KN 96.36 95.90 96.01
DT 91.83 91.61 91.67
RF 95.52 95.40 95.40

Table 5.16: Performance comparison of classification models

the confusion matrix and ROC curve of SVM model.

Figure 5.19: Confusion Matrix and ROC curve of Support Vector Machine(SVM)
model on base set of top 20 tests subset

For cluster prediction, we trained the SVM model using the entire data of the base
set and predicted the clusters of the imputed incomplete set. Figure 5.20 shows the
proportion of the incomplete set of patients assigned to each cluster via the predictions
of classification models.

From the labels obtained using classification, we can tell if a patient needs to take
a particular test based on the average value in the cluster to which he is assigned. This
can, in turn, help the doctors predict the disease’s progression among the patients.
This average test result also reduces the unnecessary laboratory utilization as the
patients attend the tests that are assumed to be essential. Below are some examples
from the incomplete set explaining the significance of predicting the clusters of the
patients.
Sample 1:

Let us consider the patient with patient number 5023. This patient has taken
11 out of 20 tests that we considered. Figure 5.21 and Table 5.17 show the original
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Figure 5.20: Proportion of incomplete set patients per cluster

data and the list of the tests along with the number of repetitions done by the
patient, respectively. The temporal characteristics are calculated using the tsfresh
package from the original data. Figure 5.22 is the snippet of the computed temporal
characteristics.

Figure 5.21: Sample original records with result of patient 5023

Figure 5.22: Snapshot of the temporal characters computed by tsfresh for 5023 patient

From Figure 5.22, we could see that the temporal features for WBC count are
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EXM_NO No. of times taken
AGAP 2
Alanine Transferase ( SGPT) 2
Aspartate Aminotransferase ( SGOT) 2
Carbon Dioxide Level ( CO2) 2
Chloride Level, Serum ( Cl Level) 2
Creatinine Level, Serum 2
Magnesium( Mg) Level, Serum 2
Potassium Level, Serum ( K Level) 2
Sodium Level, Serum ( Na Lvl) 2
Urea Nitrogen, Blood( BUN) 2
eGFR 2

Table 5.17: Tests taken by patient 5023 and the number of times the tests are repeated

populated as NaN by tsfresh as this patient did not attempt this test. We could
also see that the slope, mean absolute change, peak to peak distance and variance
computed for AGAP is ’0’ as this patient did not see any change in their result. These
computed temporal features are then standardized and used to predict the cluster this
patient belongs to. The classification model assigned this patient to cluster 2. Using
the inference Figure 5.12, we could say that this patient might get the following results
for the unseen tests:

Tests Avg. result in cluster 2
Haematocrit (Hct) 0.392
Hemoglobin (Hgb) 128
MCHC 325
MCV 89.4
MPV 8.48
Platelet count (Plt Count) 231
RBC 4.42
RDW 15.1
White Blood Cell Count (WBC Count) 6.8

Table 5.18: Forecasted results for tests unseen by patient 5023

This predicted value may help the physicians decide if the patient needs to undergo
these tests. It may also help them to personalize the care given to the patient as they
can foresee the onset of any complications using the predicted values and cluster
characteristics.



98

Sample 2:

Let us consider a patient with patient number 92255. This patient has seen all the
20 tests of our interest. Based on our illustrations, this patient must belong to the
base set. However, this patient has taken nine tests just once, making the temporal
characteristics except for the mean value NaN as there is no change in the results in
the considered interval. Since the base set was filtered with non-null constraint, this
patient was left out of the base set and was assigned to clusters using the classification
model. Figure 5.23 and Table 5.19 are the sample and statistics of this patient’s data
respectively.

Figure 5.23: Snapshot of original records of the patient 92255

After applying the tsfresh, we used the temporal features to assign this patient
to the clusters. Figure 5.24 is a glimpse of the temporal features computed for this
patient.

Figure 5.24: Snapshot of the temporal characters computed by tsfresh for patient
92255
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EXM_NM No. of times taken
AGAP 1
Alanine Transferase ( SGPT) 2
Aspartate Aminotransferase ( SGOT) 2
Carbon Dioxide Level ( CO2) 1
Chloride Level, Serum ( Cl Level) 1
Creatinine Level, Serum 1
Haematocrit ( Hct) 2
Hemoglobin (Hgb) 2
MCHC 2
MCV 2
MPV 2
Magnesium( Mg) Level, Serum 1
Platelet count (Plt Count) 2
Potassium Level, Serum ( K Level) 1
RBC 2
RDW 2
Sodium Level, Serum ( Na Lvl) 1
Urea Nitrogen, Blood( BUN) 1
White Blood Cell Count (WBC Count) 2
eGFR 1

Table 5.19: Tests taken by the patient 92255 and the number of times the tests are
repeated.

Our classification model assigned this patient to the cluster 2. From Figure 5.12
we could see that the average values of each test and the original values of this patient
mentioned in Figure 5.23 is approximately equal to each other proving the patient to
be a good fit for the cluster.

Sample 3:

Let us consider the patient with the patient number 3029990. This patient has
just taken one test out of twenty considered pathological tests throughout the time
window. Figure 5.25 shows the entire data of this patient. Computing temporal
features resulted in the data with nulls for all other tests except eGFR. Figure 5.26
is the snapshot of the temporal features.

These temporal characters are then imputed using the base set and then assigned
to a cluster by the classification model. This patient was assigned to cluster 1 by
our trained classification model. Using the inferences of cluster 1, the physicians can
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Figure 5.25: Original data of patient 3029990

Figure 5.26: Snapshot of the temporal characters computed by tsfresh for patient
3029990

assess the patient’s condition and take the necessary steps to check the complications.
Sample 4:

Let us consider the patient with patient number 71916. This patient has taken
just the eGFR test, similar to the patient in sample 3, but unlike sample 3, this
patient has taken the test just once. Figure 5.27 is the data of this patient.

Figure 5.27: Original data of patient with patient number as 71916

Figure 5.28: Snapshot of the temporal characters computed by tsfresh for patient
71916

The temporal features computed using this data will possess most of the values as
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NaN as we have very minimal data. To assign this patient to a cluster, we imputed
the temporal features using a base set to make the data similar to the base set. The
classification model assigned this patient to cluster 2.

Thus, these samples show us how a new patient or existing patient can be assigned
to the clusters despite the tests not attempted by them.



Chapter 6

Conclusion

This chapter gives an overall view of the thesis, including the outcomes, limitations
and possible future works.

6.1 Summary

The main focus of this thesis is to identify the phenotypes of diabetes patients by ef-
fectively utilizing the diabetes pathology data without any demographic information.
For this purpose, we have investigated various clustering models and used ensemble
clustering to group the patients. We have utilized the temporal laboratory data of
diabetes patients from King Fahad Hospital. This data held the results of various
pathology taken by diabetes patients from January 2017 to July 2017. Despite the
absence of additional information about the patients, we proceeded with the research
with just four original features: ETPR_PT_NO (patient number), EXM_NM (exam
name) and BRFG_DTM (date-time when the test was taken) and RESULTS (out-
come of lab test conducted). Among all the exams available in the data, we used the
top 20 frequently occurring tests among the patients since the minimal population
just took many tests. We then filtered the entire data and retained the patients who
had witnessed at least one of the 20 commonly occurring tests. We considered 20 as
taking more than 20 common tests reduced the data available for research.

The next step we carried out was to split the data into three subsets based on
the tests taken by the patients’ top 10, next 10 and top 20 tests. There was a
need to regularize the subsets as the data was sparse. To normalize the filtered
time-series data using resampling and interpolation technique which was followed by
computing the temporal features using the tsfresh package from the regularized data.
The computed temporal features seemed to have many null entries as there were a
missing few tests. This temporal feature set was then divided into the base set and
incomplete set depending on the presence of void entries in a patient’s record, i.e., if

102
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a patient has taken all the tests of interest more than once in the considered interval,
he is considered under base set, and if a patient at least one of the considered tests or
has not taken all the tests more than once, the details of this patient is saved under
incomplete set.

The base set is then grouped and analyzed using AP, k-means, GMM and PAM
clustering algorithms. Several consensus functions such as CSPA, k-modes, LCA,
LCE, and majority voting were applied to the base set. Their performance was
compared against each other and the single clustering algorithms using several internal
evaluation metrics. From the metrics, we found that the best k value for our data
was k= 3. We also discovered that consensus clustering had better performance
over individual clustering algorithms. For our data, k-means was the best individual
clustering algorithm, and majority voting was the best consensus function. Based on
our analysis, we used the cluster assignments made by the majority voting function as
our diabetes phenotypes. The pathology that distinguishes each cluster are Alanine
Transferase, Aspartate Aminotransferase, serum creatinine level, hemoglobin, platelet
count, blood urea nitrogen and eGFR.

The next goal of our thesis was to predict the progression of the disease among
the new patients by utilizing the observed phenotypes. For this, we have utilized
the incomplete set of data. This incomplete set was imputed using the base set
by iterative imputation technique with Bayesian Ridge regressor as it excelled in
performance compared to others we considered. The imputed data was then assigned
to appropriate clusters using classification models. We evaluated SVM, GNB, KNC,
DT and RF classifiers and utilized SVM as this had higher performance than others.
By combining the classification and clustering, we utilized the available dataset and
effectively grouped all the patients of interest. Using the characters of the clusters,
the physician can predict the progression of the disease among the patients in the
incomplete set. The physician can also order the tests that the patient might not
have taken, depending on the cluster he falls under. This, in turn, will prevent
overutilization or improper utilization of laboratories. Thus, using our methodology,
we could conclude that we could generate meaningful phenotypes using EHRs without
demographic information.
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6.2 Limitations

Even though our model had some significant advantages, it faced the following draw-
backs:

• Using diceR for cluster analysis was computationally expensive as it needed
more space and time to cluster our data. The system crashed several times
while running multiple algorithms together and increasing our k value. We had
to run each experiment individually, which cost us time.

• The interpretation of the clusters was limited to the observations we did on
data available for the research but was not focused on the clinical aspects of
diabetes as we had limited features available.

6.3 Future Work

One possible future work could be to interact and gain knowledge from the domain
experts in interpreting our clusters and revising the phenotypes’ outline based on the
clinical significance. We could also get the domain experts to provide class labels
to the patients to tune the model’s performance by comparing our assignments with
their labels using external validation metrics.
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