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ABSTRACT 

Improvements to public health strategies surrounding vaccination against mutating 
respiratory pathogens requires a more in-depth understanding of the host factors driving viral 
evolution. In this thesis, I used informatic pipelines to investigate the impact of specific host 
immunity on viral mutation across influenza virus proteins and antigenic differences in the SARS-
CoV-2 spike proteins across circulating variants. Using a mouse model of previous influenza virus 
infection and vaccination, I characterized viral mutations present in the lungs of mice at 
heterologous challenge and found that strain-specific immune responses facilitated the greatest 
degree of mutation. My in-silico analysis of SARS-CoV-2 antigenicity suggested changes in B cell 
epitopes and conservation of T cell epitopes. I propose that the infection and vaccination history 
of the host dictates the capacity for viral mutation at infection through elicitation of specific immune 
mechanisms. Additionally, I present an analysis pipeline that could be leveraged in next-
generation vaccine design against respiratory viruses.  
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CHAPTER 1 INTRODUCTION 

Pathogens and their hosts are constantly engaged in an evolutionary arms race. The 

immune response of a host is continually at odds with the goal the pathogen – survival – which 

pushes the pathogen to adapt. In parallel, host immune mechanisms detect changes on the 

pathogen and mount novel immune responses, again generating new selective pressures for the 

pathogen. Such is the case for influenza viruses and coronaviruses, which continue to appear in 

seasonal and pandemic variations and are constantly adapting to host immunity. This has been 

a significant public health issue for many years that is yet to be solved. Although our knowledge 

of viral evolution and effective vaccine formulations has improved tremendously in recent 

decades, we are still unable to be one step ahead of emerging viruses, which can have 

devastating consequences on the order of millions of deaths.  

Current public health strategies such as seasonal influenza virus surveillance focus on 

detecting antigenic changes on viral proteins as they appear [1]. Our knowledge of factors that 

drive a virus to evolve, together with our ability to associate novel mutations that help the virus 

evade the host immune response, is limited. In the following section, I introduce the knowledge 

related to how influenza viruses and coronaviruses evolve in the context of the host immune 

system. 

1.1 Introduction to influenza viruses 

Despite recurrent vaccination, infections caused by influenza viruses (commonly known 

as “the flu”) continue to place a heavy burden on public health. Seasonal epidemics caused by 

influenza virus infect an estimated 5-10% of adults and 20-30% of children annually [2]. 

Symptoms of infection are highly variable, ranging from mild upper respiratory tract illness to multi-
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organ failure and death, and the ultimate outcome depends on a number of host and viral factors 

[3,4].  

Influenza viruses are negative-sense, single-stranded RNA viruses belonging to the 

Orthomyxoviridae family of viruses [5]. Of the four types of influenza viruses (types A through D),  

[5], only types A and B circulate seasonally in humans, and only type A has historically caused 

pandemics [6]. Type A influenza viruses are further subtyped by the external and immunologically 

dominant glycoproteins hemagglutinin (HA) and neuraminidase (NA), of which 18 HA (H1-H18) 

and 11 NA (N1-N11) molecules have been identified [7]. Type B viruses are not categorized by 

subtypes but instead are defined by two lineages, B/Victoria and B/Yamagata, each of which is 

also comprised of antigenically evolving strains [8].  

 Influenza A viruses are spherical, enveloped viruses covered in membrane proteins HA, 

NA, and matrix 2 (M2) [5].  The viral membrane or envelope is supported by the matrix 1 (M1) 

protein, with the segmented RNA genome and nucleocapsids inside [9].  The eight segments of 

single-stranded, negative-sense RNA encode for at least eleven different viral proteins: HA, NA, 

M1, M2, nucleoprotein (NP), non-structural protein 1 (NSP1), nuclear export protein (NEP), 

polymerase acidic protein (PA), polymerase basic protein 1 (PB1), and polymerase basic protein 

1-F2 (PB1-F2) [10]. Each segment is contained in a rod-shaped, viral ribonucleoprotein (vRNP) 

complex that contains viral RNA wrapped around copies of NP, as well as the heterotrimeric viral 

RNA polymerase made of PA, PB1, and PB2 [11]. A schematic of the influenza A virion is shown 

in Figure 1.1. The general function of the eleven proteins encoded on the eight influenza virus 

genome segments are summarized in Table 1.1. 
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Figure 1.1 Schematic of influenza A virus structure. 
Influenza A viruses are spherical, enveloped viruses covered with membrane proteins 
hemagglutinin (HA) neuraminidase (NA), and the matrix 2 ion channel (M2). The viral envelope 
is supported by the matrix 1 (M1) protein, and the eight segments of RNA are found inside 
wrapped around viral nucleoprotein (NP) to form the viral ribonucleoprotein (vRNP) complex. 
Influenza viral RNA polymerase is a complex comprised of polymerase basic 1 (PB1), polymerase 
basic 2 (PB2), and polymerase acidic (PA). Non-structural protein 1 (NSP1) and nuclear export 
protein (NEP) are essential for viral replication and protecting the virus from host immunity.  
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Table 1.1 Genes encoded on all eight influenza A virus segments and the function of the 
transcribed proteins [5]. 

Segment ORF length 
(nt) Protein Main functions 

1 2280 Polymerase basic 2 
(PB2) 

RNA polymerase component, cap binding, initiates 
transcription 

2 2274 Polymerase basic 1 
(PB1) 

RNA polymerase component, RNA chain elongation, 
endonuclease, initiates transcription and replication 

  Polymerase basic 1-F2 
(PB1-F2) RNA polymerase component, pro-apoptotic activity 

3 2151 Polymerase acidic (PA) RNA polymerase component, proteolytic activity 

4 1701 Hemagglutinin (HA) Receptor binding and fusion, major antigen 

5 1497 Nucleoprotein (NP) RNA binding, synthesis, and nuclear export 

6 1410 Neuraminidase (NA) Virion release 

7 982 Matrix 1 (M1) Interacts with vRNPs and surface glycoproteins, virion 
assembly and budding, nuclear export 

  Matrix 2 (M2) Ion channel, virion assembly and budding 

8 844 Non-structural 1 (NS1) Interferon antagonist 

  Nuclear export protein 
(NEP) Nuclear export of vRNPs 

 

Hemagglutinin and neuraminidase glycoproteins dominate the virion surface and are 

present at an approximately four to one ratio, respectively [5]. Due to their essential role in the 

influenza viral infection process and their prevalence on the virion surface, HA and NA and are 

the main targets for host neutralizing antibodies, and HA is the main component of seasonal 

influenza virus vaccines  [12–14].  Several influenza vaccine platforms are currently in use, 

including inactivated (IIV), live-attenuated (LAIV), recombinant, and adjuvanted vaccines. 
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1.2 Introduction to coronaviruses 

Viruses of the Coronaviridae family are enveloped, positive-sense RNA viruses that are 

categorized into four lineages referred to as Alpha-, Beta-, Delta- and Gammacoronaviruses [15]. 

Like influenza viruses, human coronaviruses (hCoVs) circulate seasonally and cause a broad 

range of respiratory clinical symptoms [16]. In most cases, infection with seasonal coronaviruses 

such as hCoV-OC43 and hCoV-HKU1 (Betacoronaviruses) or hCoV-NL63 and hCoV-229E 

(Alphacoronaviruses) are generally mild for most people infected and lead to a disease that 

resembles the common cold [17]. Other coronaviruses have been shown to be more highly 

pathogenic: Middle Eastern respiratory syndrome coronavirus (MERS-CoV) and severe acute 

respiratory syndrome coronavirus (SARS-CoV) of the Betacoronavirus lineage can cause severe 

lung pathology and death in many cases [18]. More recently, a highly contagious cousin of SARS-

CoV, coined SARS-CoV-2, has caused a major pandemic of a magnitude never seen before in 

human history. As of October of 2021, 242 million cases of coronavirus disease of 2019 (COVID-

19) have been reported, and over 4.92 million deaths worldwide have been attributed to the virus 

[19]. 

 Coronaviruses are single-stranded RNA viruses that, unlike influenza viruses which have 

a segmented genome, contain a single genomic segment [20]. Specifically, the SARS-CoV-2 

genome is approximately 29.6 kilobases in length and encodes six open reading frames (ORFs) 

[20,21] (Figure 1.2). First is ORF1ab, which comprises nearly two-thirds of the entire genome 

and encodes a large polyprotein (polyprotein 1ab) that is later cleaved into 16 non-structural 

proteins (nsps), named nsp1 to nsp16 [21] (Figure 1.2B). The remainder of the genome encodes 

several structural proteins: the spike (S) protein, which exists as trimers on the virion surface and 

is responsible for binding host receptors [22,23]; the envelope (E) protein, which is also present 

on the virion surface and is required for virion assembly, release and pathogenesis [24,25]; the 
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membrane (M) protein, which helps shape the virion and bind the nucleocapsid (N) protein 

[26,27]; and N, which binds and packages viral RNA and is critical to viral replication [28] (Figure 

1.2). 

 

 

Figure 1.2 The structure of the SARS-CoV-2 virion and genome.  
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enveloped, positive-sense 
RNA virus. (A) The virion is comprised of the host cell membrane-derived envelope with the spike 
(S), membrane (M), and envelope (E) proteins present on the surface. The spike protein is divided 
into two functionally distinct subunits, referred to as S1 and S2; S1 contains the receptor binding 
domain, and S2 comprises the transmembrane domain. The RNA genome is organized by binding 
of the nucleocapsid (N) to viral RNA. (B) The SARS-CoV-2 genome is 29.6 kilobases in length 
and encodes six open reading frames (ORFs). During viral infection, ORF1ab is transcribed first 
to yield polyprotein1ab that is later cleaved into 16 non-structural proteins (nsps), named nsp1 to 
nsp16. The remainder of the genome encodes several structural proteins which are S, E, M, and 
N. This figure is modified from [20].  

Despite the prevalence of seasonal coronavirus infections in humans, vaccination against 

coronaviruses has not previously been a standard public health practice. However, the 

emergence of the COVID-19 pandemic stimulated the development and widespread distribution 

of several coronavirus vaccine platforms. Host infection with SARS-CoV-2 is initiated by a 

transmembrane, homotrimeric fusion glycoprotein referred to as the spike protein [29]. 
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Vaccination efforts have greatly revolved around the spike protein as an immunogenic target 

[30,31], since antibody binding to spike effectively blocks viral entry into host cells and suppresses 

viral infection [32]. Several spike-based vaccine candidates are already in distribution, such as 

the Pfizer-BioNTech (BNT162b2) and Moderna (mRNA-1273) mRNA vaccines, as well as the 

adenovirus vector vaccines from Johnson and Johnson (JNJ-78436735/Ad26.COV2.S) and 

Oxford-AstraZeneca (AZD1222/ChAdOx1) [33,34]. Both vaccine platforms have been shown to 

elicit B cell and T cell specific immunity [35,36]. 

1.3 The first host-pathogen interaction: viral infection 

The dynamic interplay between host and virus begins with viral infection. When a virus 

enters a susceptible host, the virus introduces its genetic material into host cells and takes control 

of the host’s replication machinery to generate more virus particles. The specific proteins involved 

in viral replication, and the ways in which a virus can stimulate or evade the host immune system, 

are dependent on the type of virus. Both influenza viruses and coronaviruses encode several viral 

proteins that are necessary for viral replication while also being key players in the host-virus 

interaction. Thus, the process of viral replication with influenza viruses and coronaviruses, as well 

as the structure and function of key immunologically dominant proteins, will be described here. 

1.3.1 Infection with influenza virus 

Infection with influenza A viruses (IAVs) begins when N-acetylneuraminic (sialic) acid 

residues on host cells are recognized by the virus [5]. Infectious particles are endocytosed when 

HA spikes on the virion surface attach to the alpha-2,3- and alpha-2,6-glycosidic linkages present 

on human respiratory epithelial cells, which facilitates viral entry into the cell [5]. Once inside an 

endocytic vesicle, the low endosomal pH triggers conformational changes on viral HA that expose 
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the viral fusion peptide (FP) on the HA molecule, prompting the fusion of the viral envelope with 

the host endosomal membrane to form a pore [37]. In parallel, ions are pumped through the viral 

M2 ion channel into the virion, which acidifies the virion and releases vRNPs into the host cell 

[5,37]. Now the vRNPs follow nuclear localization signals to the host cell nucleus, where viral RNA 

polymerase synthesizes mRNA and complementary RNA from the negative-sense viral RNA [38]. 

The mRNA is then 5’-capped and 3’-polyadenylated and can be exported and translated in the 

same manner as host mRNAs [39]. The export of mRNA from the nucleus is regulated by viral 

matrix-1 (M1) and nuclear export protein (NEP) [39]. Synthesized viral proteins in the cytosol are 

transported to the host plasma membrane via the secretory pathway [40]. Accumulation of viral 

HA, NA, and M1 at the host plasma membrane induces a curvature in the membrane that 

ultimately “buds” off to form the virion once the internal viral proteins and the viral genome have 

been incorporated [9]. The virion is considered fully infectious once a full genome is acquired. 

Current findings suggest that IAVs use selective genome packaging to ensure a fully infectious 

virion [41].  

After budding, sialidase activity in the NA protein facilitates release of the virion from the 

host cell [9].  The released virion moves between cells of the respiratory epithelium, where NA 

continues to play a role in viral infectivity by cleaving sialic acid residues from mucins to prevent 

IAV interactions that would limit cell binding [9]. 

In humans, seasonal influenza viruses lead to pathology primarily limited to the respiratory 

epithelium, mostly regulated by the host inflammatory response to the virus [4]. Clinical symptoms 

of seasonal influenza virus infection in humans vary widely from mild symptoms (fatigue, 

coughing, fever) to lower respiratory tract infection, such as bronchitis or complicated pneumonia, 

possibly lead to multi-organ failure and death [42]. Physiological failure of the lungs can occur 

due to airway obstruction, loss of alveolar structure, degradation of the lung extracellular matrix, 

and epithelial cell death [4]. 
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As HA and NA are the most antigenically relevant influenza virus proteins with respect to 

influenza virus evolution and vaccine design, I will describe the structure of each glycoprotein in 

more detail. Hemagglutinin is a homotrimeric protein, and each subunit monomer is made up of 

two domains referred to as HA1 and HA2 [43]. Importantly, the HA1 domain contains the antigenic 

sites of HA [44]. The HA1 domain is mostly composed of antiparallel beta-sheets and makes up 

the globular “head” region of the protein, HA2 is comprised of three alpha helices, one from each 

monomer, and is described as the “stalk” of the protein [45]. The alpha helices are connected by 

a flexible loop referred to as Loop B, which spans residues 59 to 76 (H1 numbering) [46]. The HA 

monomer can be further defined by distinct subdomains: the globular head of HA1 contains the 

N-terminal F’ subdomain (residues 1-41), a vestigial esterase subdomain (residues 42-109 and 

263-272), and importantly, the receptor binding domain (RBD) of HA (residues 110-262) [43]. The 

stalk region of HA, which is highly conserved among influenza A viruses, is composed of the F’ 

(273-330) and F (348-515) subdomains, the fusion peptide (331-347), a transmembrane domain 

(516-537), and a cytoplasmic domain at the C-terminus of HA2 (538-552) [43]. Due to the role of 

HA in the infection process, the HA protein is the main antigenic component of current influenza 

vaccines. 

The other external glycoprotein, NA, has enzymatic activity and is mainly important in the 

final stage of infection where it functions to release the virion from the host cell surface through 

cleavage of sialic acid residues [47]. Neuraminidase is a homotetramer that resembles a 

mushroom shape. One influenza virion typically contains 40-50 tetramers [48,49]. The 3D 

structure of NA is comprised of a highly conserved cytoplasmic tail [50], a hydrophobic 

transmembrane domain predicted to form an alpha-helix [50,51], a variable “stalk” region, and a 

“head” domain that has enzymatic activity [22]. The NA head is comprised of anti-parallel beta-

sheets that are connected by loops of variable lengths [48]. Although NA can be found in current 
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influenza virus vaccines, its presence is not regulated, as vaccine potency is based on the HA 

protein [52]. 

1.3.2 Infection with coronaviruses 

Although the process of infection with coronaviruses varies slightly by taxa, all human 

coronavirus infections follow a similar sequence of events. Like influenza virus infections, 

coronavirus infection is initiated when an external viral glycoprotein binds a receptor present on 

the host cell. All human coronaviruses use the spike glycoprotein to bind host cell receptors, but 

the specific receptor depends on the specific coronavirus; for example, SARS-CoV-2 spike binds 

Angiotensin-converting enzyme-2 (ACE2), while MERS -CoV uses dipeptidyl peptidase 4 (DPP4) 

[53]. The expression of these specific host receptors on different cell and tissue types generally 

dictates viral tropism. However, this is not perfectly straightforward: although ACE2 is expressed 

throughout the entire respiratory tract, SARS-CoV-2 mostly replicates in the upper respiratory 

tract and is easily transmitted [54,55], while SARS-CoV mainly infects the lower respiratory tract 

and is less transmissible [56,57]. 

The spike protein of SARS-CoV-2 mainly binds ACE2 on bronchial epithelial cells and type 

II pneumocytes [58–60]. Spike is divided into two functionally distinct subunits, referred to as S1 

and S2 [53]. The S1 subunit is exposed on the virion surface and contains the receptor binding 

domain, while S2 comprises the transmembrane domain which contains the heptad repeats and 

fusion peptide [53]. Once inside the host cell, proteases cleave the S protein to allow fusion to the 

endosome [61], after which the virus is uncoated and its genetic contents enter the host cytoplasm 

[17]. There the first open reading frame, ORF1ab, is transcribed to yield a polyprotein that is later 

cleaved into several non-structural proteins, namely nsp1 to nsp16 [17]. The remaining ORFs are 

then transcribed in double-membrane vesicles associated with the host endoplasmic reticulum 
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(ER), which help protect viral RNA and sub-genomic RNA from innate immune sensors prior to 

translation [62]. Finally, the viral proteins including the M, E, N, and S proteins are assembled at 

the ER-Golgi intermediate compartment, and the virion buds out of the host cell [63,64]. Studies 

on SARS-CoV have shown that the E, N, and M proteins are all required for the assembly and 

subsequent release of viral particles [65]. 

1.4 The host strikes back: immune responses to viral infection 

The host recognizes the virus through activation of the immune system. The immune 

response to viruses is initially characterized by broad, non-specific antiviral mechanisms, followed 

by the development of antigen-specific adaptive immunity. Host immunity is in large part 

responsible for the pathology observed during viral infection and dictates the severity of infection. 

Furthermore, the specificity of the immune response, as discussed later in the context of influenza 

virus, can apply selective pressure on viral proteins that help drive viral evolution. It is therefore 

important to understand the immune mechanisms at play throughout a viral infection and how the 

host interacts with specific viral proteins. 

1.4.1 Introduction to innate immunity 

When a virus interacts with a host, it first activates the innate immune system. Innate 

immunity refers to non-specific defense mechanisms that are germline encoded and activated by 

conserved features of microbial pathogens, called pathogen-associated molecular patterns 

(PAMPS) [66]. These PAMPs are detected by pattern recognition receptors (PRRs), which 

initiates pro-inflammatory and antiviral innate immune responses [66,67]. Several types of PRRs 

exist which recognize different microbial components. In the context of a viral infection, PRRs 
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such as the Toll-like receptors (TLRs), the NOD-like receptors (NLRs), and the RIG-I-like 

receptors (RLRs) are capable of binding viral nucleic acids [67].  

Activation of PRRs by viral components (such as nucleic acids) stimulates the production 

of type I interferons (IFN) [67]. Interferons are produced by several cell types including 

macrophages, dendritic cells, and pneumocytes and are essential to inducing an antiviral state in 

neighbouring cells [67]. Interferons stimulate the production of hundreds of interferon-stimulated 

genes (ISGs) such as MX1 [68], protein kinase R (PKR), and zinc antiviral protein (ZAP), which 

collectively interfere with viral RNA nuclear import, mRNA synthesis, protein synthesis, and cause 

viral RNA degradation [69]. Along with initiating the interferon pathway, PRR activation generates 

cytokines and chemokines that serve to recruit innate immune cells to the site of infection. Cells 

of the innate immune system include granulocytes (neutrophils, basophils, and eosinophils), and 

the mononuclear cells (monocytes, mast cells, and macrophages). These cells can have 

phagocytic activity that function to non-specifically ingest material and trigger an innate immune 

response such as inflammatory response or antiviral response. Granulocytes release granules, 

which have the capacity to kill pathogens, extracellularly or intracellularly. In response to influenza 

virus infection, neutrophils, monocytes, and natural killer cells typically migrate to the airway in 

response to chemokines to clear virally infected or dead cells [67,70]. Phagocytosis of infected 

cells by alveolar macrophages and neutrophils is an important mechanism of viral clearance [71]. 

Additionally, phagocytic cells can process viral components and present them on their surface to 

stimulate T cells, as described in the next section [72]. 

1.4.2 Introduction to adaptive immunity 

In contrast to innate immunity, adaptive immune responses are highly specific to a given 

pathogen. The components of a pathogen that have the potential to stimulate the immune 
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response are called antigens, and the region of the antigen that specifically binds receptors on 

adaptive immune cells are called epitopes [72]. The adaptive immune system is primarily 

mediated by T and B lymphocytes and antigen presenting cells (APCs). [72]. Lymphocytes 

recognize antigens on their T cell receptors (TCRs) or immunoglobulins (Igs) for T cells and B 

cells, respectively. Antigen-presenting cells include cells capable of presenting antigen such as B 

cells, macrophages, and dendritic cells. 

 T cells play several roles in innate and adaptive immune activation, including recognizing 

and killing virally-infected cells, as opposed to simply removing extracellular pathogens [72]. T 

cells with cytotoxic function are generally characterized as CD8+ T cells, and are present at high 

proportions in peripheral and non-lymphoid tissues [73]. Another class of T cells, referred to as 

helper T cells (CD4+), play an essential role in lymphocyte maturation, macrophage activation, 

and activation of cytotoxic T cells [74]. Depending on specific signals, activated helper T cells 

differentiate into several sub-classes that interact with the immune system in different ways: naïve 

helper cells can become Th1 or Th2 effector cells, which mainly help defend against intracellular 

and extracellular pathogens, respectively [74]; Th17 cells help mediate infections that Th1 and 

Th2 cells are not well-suited for, such as some extracellular bacteria and fungi [75]; and follicular 

helper T cells (Tfh) are required for germinal centre reactions [76]. 

T cells interact closely with APCs, which can present peptide fragments on host major 

histocompatibility complex (MHC) molecules to engage with the T cell receptor. T cell receptor 

engagement initiates activation of the T cell leading to clonal expansion, release of specific 

cytokines, or T cell killing [73–75]. Together, the MHC molecules combined with the viral peptide 

form the epitope for T cell receptors [72]. There are two classes of MHC molecules, MHC class I 

and MHC class II. It is important to note that MHC molecules, otherwise known as human 

leukocyte antigens (HLAs), are highly polymorphic in the human population. For MHC class I, 

major HLAs are found on three loci: these are HLA-A, HLA-B, and HLA-C, of which thousands of 



 14 

alleles exist for each [77]. According to the ImMunoGeneTics HLA database, there are 23,002 

different possible HLA class I alleles [78]. For MHC class II, HLAs of types DP, DR, DQ, DO, and 

DM have approximately different 8673 alleles [78]. A single MHC molecule of either class can 

bind several microbe-derived peptides, leading to great variation in possible TCR epitopes that 

can be generated from a single MHC; however, peptides can only bind certain MHCs, meaning 

that certain microbial antigens are therefore HLA-restricted [72,77]. Despite this large variability 

in HLAs, peptide binding data is typically only available for common and well-documented HLA 

alleles, which is described as being alleles present at > 0.0001 per 1,500 people [79]. These are 

only a fraction of the HLA haplotypes; for example, for HLA-A, HLA-B, HLA-C, and DRB1 loci, 

only 27-30% of these were considered common and well-documented [80]. This HLA restriction 

along with limited peptide binding data makes it difficult to generalize peptide-based therapeutics 

across populations or predict T cell epitopes. A solution to this is to identify peptides present on 

HLA supertypes, which are clusters of several HLA alleles that can bind the same peptide 

sequence [81–83]. This allows one to reduce the variability in HLA molecules and determine 

microbial peptides that have maximum population coverage [82]. 

The source of the peptide determines the class of MHC molecule on which it is presented, 

and thereby the T cell subset that will interact with it: when viral proteins are phagocytosed, 

digested, and then presented on the cell surface, they bind MHC class II molecules and stimulate 

CD4+ T cells; when peptides are synthesized within an infected cell, they are presented on MHC 

class I molecules and stimulate CD8+ T cells [72]. In the context of viral infection, CD8+ T cells 

are cytotoxic in nature and their stimulation leads to lysis of the infected cell [72]. CD4+ T cells (T 

helper cells, as introduced previously) do not directly kill virus but are necessary for optimizing 

adaptive immune responses, such as antibody production [72]. 

 Antibodies are produced by B lymphocytes, which are defined by their specific Igs [72]. 

The Igs on the B cell surface serve as functional antigen receptors that recognize specific 
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epitopes. Tremendous variation exists for B cell receptors, which are analogous to T cell receptors 

[72]. B cell receptors are comprised of antigen-specific membrane Ig regions, and heterodimers 

of Ig-alpha and Ig-beta, the intracellular domains that initiate signal transduction and antigen 

binding [84]. B cell receptors can mutate to bind antigen more specifically through the process of 

affinity maturation [85,86].  Along with better binding affinity, B cell maturation often involves class 

or isotype switching, in which the type of immunoglobulins produced by the B cell switch from the 

IgM or IgD present on naïve B cells to IgA, IgG, or IgE [72]. Different classes of immunoglobulins 

serve different functions in response to infection, and class-switched, affinity-matured B cells are 

essential to efficient humoral responses and establishing B cell memory [72]. Because production 

of IgM is typically associated with immature B cells, and IgG, IgA, and IgE are associated with 

mature B cells, a secondary exposure to an antigen typically shows early production of the latter 

antibody isotypes [72]. 

1.4.3 Immune response to influenza virus infection 

The early stages of influenza virus infection are defined by the antiviral response and 

innate immunity [87]. When influenza viruses enter airway epithelial cells through binding of either 

a-2,3- or a-2,6-glycosidic linkages [88], intracellular host PRRs are activated. Within the host 

endosome, TLR3 and TLR7 recognize double-stranded and single-stranded RNA, respectively 

[89]. In the cytoplasm, RIG-I, melanoma differentiation-associated gene 5 (MDA5), and NOD2 

also detect viral RNA [90–93] (Figure 1.3). Binding to PRRs stimulates the production of type I 

and type III IFNs as well as initiate other components of the immune response. For example, 

NLRs are key components of the inflammasome complex [92], and TLR7 activation helps mediate 

B cell responses against influenza virus [94]. In the first several hours after infection, airway 

epithelial cells also strongly upregulate pro-inflammatory cytokines such as interleukin (IL)-6, 
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CCL5, CXCL10, IL-8, TNF-a, and CCL2 [95,96]. Cytokine production recruits leukocytes, in 

particular monocytes from the bloodstream, to the airway microenvironment [97]. Additionally, 

alveolar macrophages primary producers of TNF-alpha during influenza virus infection amplify the 

expression of the other proinflammatory cytokines [98] (Figure 1.3). 

 

 

Figure 1.3 Features of the immune response during influenza virus infection. 
Influenza viruses are first detected when viral RNA binds host PRRs in the host endosome (TLR3, 
TLR7) and cytoplasm (RIG-1, MDA5, NOD2). Within a few hours, infected epithelial cells strongly 
upregulate proinflammatory cytokines IL-6, CCL5, CXCL10, IL-8, TNF-alpha, and CCL2, which 
serve to recruit leukocytes to the site of infection. In parallel, alveolar macrophages produce TNF-
alpha and amplify cytokine production. Type I and II interferons are also produced, and ISGs such 
as MX1, PKR, and ZAP are upregulated to impede viral replication. To stimulate adaptive 
immunity, antigen-presenting cells present viral peptides to T cells: internally derived peptides are 
presented on MHC class I and stimulate CD8+ T cells to perform cytotoxic effector functions, 
while phagocytosed antigens are presented on MHC class II and stimulate CD4+ T cells. B cell 
receptors bind viral antigen directly as well as presenting peptides on MHC class II. Signals from 
CD4+ T cells at antigen binding stimulates antibody production by B cells. 
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This early cytokine production is important to initiating adaptive immune mechanisms 

against influenza viruses. For example, type I interferon signalling directly stimulates B cells and 

CD8+ T cells [99,100]. Other studies have pointed to the NLRP3 inflammasome complex as 

necessary for optimal IgM, IgG, and IgA responses in the serum and nasal mucosa [101]. 

Neutralizing IgG antibodies against influenza viruses are often strain-specific and directed at the 

HA RBD, especially after seasonal vaccination [102]. Internal influenza virus proteins, which have 

greater similarity among strains, are also important targets of the host adaptive immune response. 

Immunity elicited toward the nucleocapsid protein of the virus can induce CD8+ and CD4+ T cell 

responses with the ability to cross-react with antigenically similar as well as distant influenza 

viruses [103–105].  

1.4.4 Immunity at SARS-CoV-2 infection 

As described in the context of influenza virus immune responses, the immune response 

against SARS-CoV-2 is initiated by binding of viral RNA to host PRRs TLR3, TLR7, RIG-I, MDA5, 

and NLRP3 [17]. This binding typically viral infections elicit the production for type I and type III 

interferons, downstream interferon stimulated genes, and other proinflammatory cytokines which 

are key to regulating both the innate and adaptive immune response. For SARS-CoV-2 infection, 

the early host transcriptional response has been described as “imbalanced”, as production of 

proinflammatory IL-1, IL-6, and CXCLs are fairly robust, while induction of IFNs and ISGs is 

delayed [106].  

Effective adaptive immune responses against SARS-CoV-2 are important indicators of 

disease outcomes. During a SARS-CoV-2 infection, CD8+ T cells have shown reactivity to the 

spike, membrane, and other ORF proteins [107], and these T cell responses are maintained over 

time [108]. The CD4+ T cell responses against SARS-CoV-2 are correlated with production of 
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neutralizing antibodies, as affinity-matured B cells require T cell help [76,109]. Neutralizing 

antibodies against SARS-CoV-2 are primarily directed against the spike RBD [110,111], as has 

been shown for SARS-CoV [112]. RBD-specific IgA and IgG are consistently produced in 

response to SARS-CoV-2 infection, while IgM production is inconsistent in acute and 

convalescent SARS-CoV-2 patients [109,113]. Antibodies (IgA, IgG, and IgM) are also typically 

produced against the nucleocapsid protein [109] 

1.5 Evading the host: viral evolution 

The basic principle of evolution– survival of the fittest – applies to viruses as well. Viruses 

possess a remarkable ability to mutate and evolve over time. When selection pressure is applied, 

such as antigen-specific immune responses or introduction into a new host, many viruses are 

capable of adaptation. This is an important part of host-pathogen interactions at the molecular 

level but also a substantial public health issue. 

Influenza viruses are prone to genetic variability through two mutational mechanisms: 

antigenic shift and antigenic drift [5] (Figure 1.4). Antigenic drift is the accumulation and retention 

of viral mutations during replication, whereas antigenic shift is the swapping of viral genomic 

segments between different viruses as they infect the same cell at the same time [5]. Antigenic 

shift can yield novel influenza viruses with pandemic potential and cause increased morbidity in 

populations that have not previously been exposed [114–116]. Although antigenic drift only yields 

point mutations, it can cause extensive antigenic diversity and is responsible for recurring 

seasonal epidemics [117]. 
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Figure 1.4 Influenza viruses evolve through antigenic shift and drift. 
Genetic variability of influenza viruses occurs through two mutational mechanisms, antigenic shift 
and drift. The segmented genome of influenza viruses facilitates antigenic shift, which occurs 
when genome segments are swapped when two influenza viruses co-infect a cell. Antigenic shift 
has been observed in influenza A viruses and can lead to dramatic genomic changes that give 
the novel influenza virus pandemic potential and cause significant morbidity and mortality. 
Smaller-scale changes in the genome occur in antigenic drift, which refers to accumulation of 
point mutations on influenza virus proteins (HA and NA) that are retained and eventually change 
viral antigenicity. The consequence of antigenic drift is recurring seasonal epidemics and 
continuous reformulation of influenza virus vaccines. 

For the HA protein, point mutations are concentrated across the HA1 segment [118,119]. 

Studies have shown that positive selection of HA mutations is ongoing and occurs rapidly, often 

resulting in simultaneous mutations at antigenic sites that quickly increase in frequency [44]. From 

1968 to 2010, 85.5% of amino acid substitutions in the major epidemic influenza strains were 

clustered in the five antigenic sites [120], designated Sa, Sb, Ca1, Ca2, and Cb [121]. The HA 

gene of H3 tends to evolve more quickly compared to other hemagglutinin subtypes such as H1 
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strains, as mutations happen more frequently and new variants emerge more rapidly [122,123]. 

The resulting “drifted” virus can be antigenically distinct to allow reinfection of the host through 

evasion of previously acquired immunity. Drifted viruses can also elicit cross-protective responses 

if there are epitope similarities in viral proteins of the first and sequential virus [124].  Importantly, 

this means that the host and influenza viruses will interact several times over the host’s life along 

with potential vaccination events, leading to continual refinement of the immune system [125,126]. 

1.5.1 Measuring viral evolution through sequencing 

Where viruses such as influenza type A and B viruses and SARS-CoV-2 are constantly 

evolving for various reasons, it is exceptionally important to detect changes in viral protein 

sequence. Nucleic acid sequencing technologies have improved tremendously in the past decade 

and during pandemics and seasonal epidemics. For example, several HA mutations were 

identified during the 2009 H1N1 pandemic, some of which were associated with increased fatality. 

A low-frequency amino acid substitution on the HA receptor binding domain was associated with 

increased disease severity in H1N1pdm09-infected patients [127,128]. Additionally, sequenced 

influenza viruses from patient isolates provide insight on the dominant viral strains the following 

season. The ability to understand and predict mutations across HA is therefore invaluable to 

designing well-matched vaccine formulations.  

The use of viral genome sequencing has allowed scientists to understand the mechanisms 

driving mutations in the HA gene as well as the rest of the genome. These mutations may give 

insight into which viruses evade pre-existing immunity from previous infection of seasonal 

vaccination. Next-generation sequencing (NGS) has been employed to identify host immune 

factors that drive mutation of HA. For example, one study of sequenced H3N2 from infected 

patient isolates found significantly increased amino acid changes across HA1 in influenza 
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vaccinated patients compared to infected-unvaccinated patients [129]. Another study by Parisi 

and colleagues yielded a model to demonstrate how heterogeneity in HA-directed antibodies 

drives specific mutations in influenza A viruses following virus infection [130]. 

1.6 The consequences of viral evolution: variants of SARS-CoV-2 

In January 2020, sequencing led to the identification of the SARS-CoV-2 virus within ten 

days of the novel virus being reported [131]. The importance of viral sequencing as an 

investigative and predictive tool has been shown clearly throughout the ongoing SARS-CoV-2 

pandemic. Early in the pandemic, SARS-CoV-2 spike containing an aspartic acid to glycine switch 

at position 614 (D614G) in the receptor-binding domain (RBD) rapidly became the dominant 

circulating virus [132]. This substitution has since been shown to stabilize the protein trimer, 

thereby increasing viral infectivity and fitness [133,134]. Although vaccine research readily 

adapted to the mutation and incorporated D614G spike into vaccine formulations, the virus has 

continued to change. In the past year, several variants of SARS-CoV-2 have emerged that have 

raised concerns about the effectiveness of the developed SARS-CoV-2 vaccine platforms that 

are currently in use [135]. The World Health Organization currently designates a SARS-CoV-2 

variant a “variant of concern” (VOC) when the variant demonstrates one of the following traits: 

increased virus transmission; increase in virulence; change in clinical disease presentation; or 

decrease in effectiveness of countermeasures (13). This is in contrast to a “variant of interest” 

(VOI), which is defined as a variant causing significant community transmission or appearing in 

multiple clusters, in addition to containing mutations that may affect transmissibility and disease 

severity, or effectiveness of therapeutics and diagnostics [136]. Some variants are also under 

surveillance, which means that they may pose a future risk, but phenotypic evidence of increased 

risk is lacking [136]. 
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The first VOC identified was lineage B.1.1.7 reported in the UK in December of 2020 [137]. 

Now designated Alpha, the variant was modeled to have an increased reproduction number 

compared to original SARS-CoV-2 Wuhan virus, which accounts for an estimated 30%-90% 

increase in transmissibility [138,139]. Increased rates of hospitalization and mortality have also 

been reported for infections caused by the Alpha variant, although supporting evidence is limited 

[140,141]. Notably, Alpha contains more lineage-defining mutations than are typically seen [142]. 

The variant contains 17 mutations (14 non-synonymous point mutations and three deletions): 

eight mutations are contained within the spike protein and include D614G, a N501Y mutation in 

the receptor-binding domain of spike, a deletion at position 69-70, and a P681H mutation near 

the S1/S2 cleavage site [143]. Current evidence suggests that Alpha is still susceptible to 

neutralization by antibodies elicited by natural infection and ancestral spike vaccines [144–147], 

although some RBD-specific monoclonal antibody titers may be reduced [144,145]. 

A second VOC originally designated lineage B.1.351 and now referred to as the Beta 

variant was detected in South Africa in October of 2020 [148,149]. Similar to Alpha, Beta has 

shown a marked increase in transmissibility compared to original SARS-CoV-2, with current 

estimates around 25% [139]. Beta has eight mutations in the spike protein, including the lineage-

defining mutations K417N, E484K, and N501Y [148,149]. In particular, this observation 

represents the first instance of the E484K mutation in a variant of concern, which is thought to 

impact the binding of neutralizing antibodies [150]. Beta has shown reduced susceptibility to 

antibodies elicited after natural infection [151], vaccination [147], and treatment with monoclonal 

antibodies bamlanivimab, estesevimab, and imdevimab [152]. However, individuals vaccinated 

with COVID-19 vaccines developed against the Wuhan virus appear to remain protected against 

severe disease [151]. 

Another significant VOC, referred to as Gamma or previously as lineage P.1, was 

identified in Brazil in late 2020 [153]. Sequencing analysis found 17 amino acid changes, three 
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deletions, and four synonymous mutations in the spike protein, along with a four-nucleotide 

insertion. The Gamma lineage shares several of the same spike mutations present in the Beta 

lineage, including RBD substitutions K417N, E484K, and N501Y, suggesting convergent 

evolution of these separate lineages [153]. Gamma is observed to be more transmissible than 

Alpha and Beta, and 38% more transmissible than the original Wuhan SARS-CoV-2 [139]. Some 

reports have also suggested increased rates of hospitalization and mortality in healthy individuals 

[154]. 

October of 2020 also saw the emergence of the B.1.617 lineage in India, which is 

comprised of three sub-lineages designated B.1.617.1 (Kappa), B.1.617.2 (Delta), and B.1.617.3 

[155]. Preliminary data speculated that some B.1.617 sub-lineages had an increased transmission 

rate [139], reduced effectiveness of treatment with the monoclonal antibody bamlanivimab, and 

reduced neutralization from convalescent and Pfizer-BioNTech (BNT612b) vaccine sera  

[148,152]. A P681R mutation near the furin cleavage site of the spike protein in all B.1.617 

lineages is suggested to increase the infectivity of the variant, resulting in enhanced 

transmissibility [156]. The other two characteristic spike substitutions L452R and E484K, found 

only in variants of interest B.1.617.1 (Kappa) and B.1.617.3, are hypothesized to reduce 

neutralization by monoclonal antibodies [155,156]. Of the B.1.617 sub-lineages, the Delta variant 

has raised concerns in recent months due to a significantly increased transmission rate 

(97%)[139], increased hospitalization and death rates [157], and an increased risk of reinfection 

[158]. The Delta variant has 15 lineage-defining mutations, including the spike mutations G142D, 

L452R, P681R, and T478K (the latter which is not found in the other B.1.617 sub-lineages) [159]. 

Other variants of interest include the Epsilon or B.1.429 lineage identified in California 

[160] and the mink-related (Cluster 5) lineage detected in Denmark in June of 2020, which also 

have several non-synonymous mutations compared to the original SARS-CoV-2 reference 

sequence [161]. The mink-related variant has been suggested as a potential spillover threat with 
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minks acting as viral reservoir, as mink farmers have frequent interaction with the animals. 

However, at this time, spread of the mink-related variant to humans has been rare [162].   

The mutations identified so far across SARS-CoV-2 variants are predicted to affect several 

key functions of the virus, such as causing increased viral binding to the host receptor ACE2 or 

entry augmentry factors [163] thereby increasing viral infectivity [133], or by impacting viral 

susceptibility to host immune responses such as neutralizing antibodies [132]. At this time, it 

seems that current vaccines are still protective from severe disease in SARS-CoV-2 variants of 

concern. However, it is unclear whether future variants will be inhibited by previously acquried 

immunity. Furthermore, as vaccine effectiveness is dependent on the recognition of viral proteins 

by antigen-educated T and B cells, mutations influencing T and B cell epitopes in new SARS-

CoV-2 variants may have significant effects on the performance of vaccines that were originally 

developed toward original SARS-CoV-2. The ability to rapidly detect SARS-CoV-2 mutations by 

viral sequencing during the pandemic has been essential to determining mutation-associated 

changes in transmissability, pathogenicity, and antigenicity. 

1.7 Maintaining immunity against evolving viruses 

Evolution of viruses in animal reservoirs has been responsible for the emergence of novel 

human viruses with pandemic potential. However, as demonstrated throughout the SARS-CoV-2 

pandemic, the continual evolution of viruses already circulating in the human population poses 

several challenges. In a single “season”, mutation of immunodominant viral proteins can lead to 

changes in viral transmissibility and pathogenicity, as well as decreased effectiveness of 

vaccines. As with influenza viruses, continual antigenic changes on vaccine antigens necessitate 

new vaccine formulations each flu season, which is further complicated by the infection and 

vaccination history of the host. 
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1.7.1 Seasonal influenza virus vaccination 

A recurring consequence of antigenic drift is the need to reformulate influenza virus 

vaccines. Current seasonal influenza vaccines contain concentrated HA protein, and even small 

changes at these antigenic sites can lead to evasion of the hosts’ previously acquired neutralizing 

antibodies, allowing reinfection of a previously-immune host [124]. Influenza vaccine research 

continues to focus on development of universal vaccines that will provide broad protection across 

influenza viruses. However, the World Health Organization currently selects IAV and IBV strains 

to be included in seasonal formulations, basing their prediction on strains circulating in the 

previous flu season [164].   

Several influenza vaccine platforms are currently in use, including inactivated, live-

attenuated, recombinant, and adjuvanted vaccines. Inactivated vaccines are administered 

intramuscularly and are available in trivalent and quadrivalent formulations [12]. Trivalent 

inactivated influenza vaccines are composed of the two IAV strains currently circulating in humans 

(H1N1 and H3N2), and only one IBV strain (either Yamagata or Victoria lineage), while 

quadrivalent formulations contain two IAV strains and two IBV strains [165]. Quadrivalent 

inactivated vaccines have become increasingly popular to reduce mismatch between IBV strains 

in circulation and that which the population is vaccinated with, ultimately conferring better 

protection from influenza virus infection [166].  

Annual vaccination is the best way to prevent morbidity and mortality from infection with 

emerging influenza strains and has been recommended by the Centers for Disease Control and 

Prevention since 2010 [167,168]. However, no vaccine platform offers complete coverage against 

influenza virus because of the virus’ ability to rapidly mutate. As described in the next section, the 

immune response at vaccination is dependent on the specific immune memory of the host.  
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1.7.2 The role of previously acquired infections and vaccinations 

The dynamics of repeated infections with antigenically divergent pathogens are complex 

and incompletely understood. It is known that immunity elicited from previous influenza virus 

infection or vaccination, or preimmunity, can be beneficial or deleterious for protection from 

disease during a subsequent virus infection or vaccination event [117]. Studies have shown that 

the immune response elicited at vaccination depends on the specific antibody profile of the host 

[169]. If an individual is vaccinated with antigens similar to antibodies already in circulation, the 

result is typically a boost of these existing antibodies [170]. It seems that the induction of novel 

versus memory immune responses to vaccination is dependent on the similarity of vaccine 

antigens to what is already present in the complex adult immune system [171]. The immune 

memory of the host also impacts the broadness and magnitude of HA-specific antibodies 

generated at vaccination. For example, a study by Andrews and colleagues showed that 

individuals with low pre-existing serological titers to the vaccination strain generated broadly 

reactive antibodies against the HA stalk, while those with high pre-existing titers had a strain-

specific, HA head-dominated response [169]. Cross-reactivity studies of sequential influenza virus 

infection in mice have shown heterosubtypic cross-protection through influenza-specific non-

neutralizing IgG and CD8+ T cells when previously infected or vaccinated [172].  These 

mechanisms are especially important for cross-reactivity against influenza virus proteins apart 

from HA. Influenza virus nucleoprotein is shown to constitute a large portion of the cytotoxic T 

lymphocyte response at infection, and is therefore a primary target for cross-reactive CD8+ T cells 

at repeat infection [173,174].  

Preimmunity is further complicated by the concept of immune imprinting. When building 

an influenza virus immune history, not all infections are created equally. The significance of one’s 

first influenza virus exposure in early life on subsequent immune responses to infection and 
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vaccination has been described for decades. The term Original Antigenic Sin (OAS) was coined 

in the 1950s by Thomas Francis to describe the dominating effect of the first IAV infection on 

immune responses later in life [175]. Specifically, OAS refers to the preference of the immune 

system to recall pre-existing antibodies, rather than elicit a new response against a novel antigen 

during infection [12]. The sin in OAS highlights the possible deleterious effect of the first infection 

on subsequent immune responses, but OAS is now frequently referred to as antigenic seniority 

to capture possible protective effects as well [176].  

Imprinting has been demonstrated repeatedly in the real world as age cohorts are 

differentially impacted by emerging influenza viruses. For example, elders were least affected by 

the 2009 H1N1 pandemic due to imprinting with similar viruses in childhood [169,177]. In a study 

of pre-existing antibodies in human patients during the 2009 H1N1 pandemic, 34% of persons 

born before 1950 had relatively high antibody titers cross-reactive to the novel strain, compared 

to only 4% in those born after 1980 [178]. It is possible that we are thus able to predict which age 

population will be most affected by emerging viruses based on imprinting year [179]. Animal 

studies have shown that despite antibodies elicited during heterologous infection being primarily 

directed towards the original imprinting strain and not the challenge strain, these antibodies are 

still able to induce protection through non-neutralizing cross-reactions [180].  

1.8 Thesis aim: the intersection of host-virus interactions and viral evolution 

Humans have diverse immunological backgrounds composed of immunity acquired from 

previous infections and vaccinations, in varied combinations. This factor is highly relevant to 

emerging and re-emerging viruses, such as influenza viruses and coronaviruses. The capacity of 

the host to be reinfected with similar viruses through viral mutation or waning of short-lived 

adaptive immune responses, as well as recurrent vaccination (as seen in seasonal influenza virus 
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vaccines), means that the host and virus will have several interactions throughout a lifetime. This 

creates of complex web of several host and viral factors that intercept at a viral infection or 

vaccination event. The unique immune backgrounds present in the host contribute to the specific 

immune response elicited at an infection and vaccination, which in turn influences viral replication 

and selection of mutations. As the virus evolves, the immunodominant proteins can be recognized 

as antigenically different by the host adaptive immunity, leaving the host vulnerable to reinfection.  

 In this thesis, I aimed to investigate the bridge between the host immune background and 

the viral capacity for evolution. Immune backgrounds were developed in a C57Bl/6j mouse model 

by non-lethal infection with A/FortMonmouth/1/1947 H1N1 virus followed by vaccination with the 

2018-2019 split virion quadrivalent vaccine, resulting in four experimental groups: naïve-mock 

vaccinated, naïve-vaccinated, preimmune mock-vaccinated, and preimmune-vaccinated mice. All 

animals were then challenged with the antigenically divergent A/Mexico/4108/2009 H1N1 2009 

pandemic virus. Here I hypothesized that the polarizing immune responses elicited in each 

immune background would drive differential mutation of viral proteins. Through viral sequencing 

at infection followed by bioinformatic analysis of viral protein antigenicity, I show that differential 

vaccination and infection history in the mouse model drives different patterns in mutation across 

viral hemagglutinin, neuraminidase, nucleoprotein, and polymerase basic 1. Moreover, my host 

transcriptome analysis demonstrates early adaptive immune responses dominated by T cell-

mediated pathways in preimmune animals, compared to non-specific antiviral responses in naïve 

animals. This study strengthens the important link between host infection and vaccination history 

and immune pressures that drive antigenic drift. 

To further our understanding of mutation-associated antigenic changes, I applied my 

bioinformatic analysis pipeline to the circulating SARS-CoV-2 variants that have recently arisen. 

Using the published sequences for Wuhan SARS-CoV-2 and eight variants (Alpha (B.1.1.7), Beta 

(B.1.351), Gamma (P.1), Delta (B.1.617.2), Kappa (B.1.617.1), Epsilon (B.1.429), B.1.617.3, and 
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mink-related), I investigated how mutations across the spike protein may lead to changes in 

antigenicity with respect to B cell epitopes, CD4+ and CD8+ T cell epitopes, and spike 

glycosylation patterns. Here I show differences in predicted B cell epitopes in the S1 subunit 

across spike variants, but relative conservation of T cell epitopes. Moreover, I identified a different 

glycosylation pattern on the Gamma variant that may contribute to evasion from immunity 

established through natural infection or vaccination. 

My study of immune background-driven selection of mutation of influenza virus in a mouse 

model, as well as my bioinformatic pipeline investigating mutation-associated changes in 

antigenicity on SARS-CoV-2, are a significant contribution to our understanding of viral antigenic 

changes and how changes may be recognized by the adaptive immune system. This study 

proposes a mechanism of influenza virus mutation selection and analysis pipeline that could be 

leveraged in next generation vaccine design for influenza viruses, but also for other respiratory 

viruses such as SARS-CoV-2. 
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CHAPTER 2 MATERIALS AND METHODS 

2.1 Ethics statement 

All animal work was completed in accordance with the Canadian Council of Animal Care 

guidelines. Animal use protocols were approved by the Animal Care Committee for the Dalhousie 

University Carleton Animal Care Facility (Halifax, NS, Canada; animal ethics number 18-091). 

Animal vaccinations and viral inoculations were performed under short-term 3% isoflurane 

anesthesia to minimize distress. Animals removed for sample collection or humane endpoint 

reasons were euthanized under 5% isoflurane. 

2.2 Experimental animals 

Female C57BL/6J mice (5-8 weeks old) were obtained from Jackson Laboratories (Bar 

Harbor, MN, USA) and used in the influenza sequential infection, vaccination, and challenge study 

(described in Chapter 3). All mice were housed in HEPA-filtered cage racks adherent to ABSL2 

guidelines (Dalhousie University Carleton Animal Care Facility, Halifax, NS, Canada) in clean 

environmental conditions with controlled temperature and humidity and a 12/12 light/dark cycle.  

The mice were maintained on standard animal feed and water ad libitum.  All animal procedures 

were performed in a certified class II biological safety cabinet. Following viral infection, 

vaccination, and challenge, mice were monitored daily for weight, survival, and other clinical signs 

of illness. In accordance with the Animal Care Committee, mice were humanely euthanized if 80% 

of baseline weight was reached. 

2.3 Viruses and experimental timeline 
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All virus work was conducted in a BSL2+ facility. For use in preimmune inoculations, 

historical mouse adapted H1N1 strain A/Fort Monmouth/1/1947 was obtained from the American 

Type Culture Collection (ATCC) through Cedarlane (Burlington, ON, Canada). The challenge 

H1N1 strain A/Mexico/4108/2009 was also obtained through ATCC.  Prior to use, viral median 

tissue culture infectious dose (TCID50) and median embryo infectious dose (EID50) were 

determined through titration in embryonated chicken eggs or Madin-Darby Canine Kidney cells. 

For animal vaccination and boost, the Sanofi FLUZONE quadrivalent influenza vaccine (QIV) for 

the 2018-2019 season was used (Sanofi Canada; North York, ON, Canada). The seasonal 

vaccine contained concentrated HA proteins from H1N1 (A/Michigan/45/2015 X-275), H3N2 

(A/Brisbane/1/2018 X-311), influenza B Yamagata lineage (B/Phuket/3073/2013), and the 

influenza B Victoria lineage (B/Colorado/6/2017-like virus).  

Preimmune inoculation with A/Fort Monmouth/1/1947 was designated day 0 of the study. 

Mice were inoculated intranasally with 103.5 EID50 historical mouse adapted H1N1 (50 uL total).  

On days 60 and 74, mice were vaccinated and boosted with 50 uL of the human dose of Sanofi 

QIV in the hind caudal muscle. On day 105, mice were challenged intranasally with 106 EID50 

A/Mexico/4108/2009. 

2.4 Antibody and viral load assessment 

Prior to 2009 pandemic H1N1 challenge, hemagglutinin inhibition (HAI) titers in mouse 

serum were determined by HAI assay against preimmune (A/Fort Monmouth/1/1947) and vaccine 

(A/Mexico/4108/2009) strains. Mouse antisera were treated for a minimum of 4 hours with 

Receptor Destroying Enzyme at 37oC in a water bath. The sera were then serially diluted with 

PBS in a 96-well V-bottom plate with 8 hemagglutinin (HA) units/50 uL of antigen, then incubated 

for 15 minutes at room temperature. Turkey red blood cells were washed and diluted to 0.05% 
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(vol/vol) in PBS and 50 uL were added to each well.  The plate was incubated at room temperature 

for 30 minutes in the dark and assessed for agglutination. The HAI titer was calculated as log 

base 2 of the highest serum dilution factor required to prevent agglutination. 

 At 3 days post-challenge, live viral titer in the lungs was measured by hemagglutination 

(HA) assay. The lungs were flash frozen in liquid nitrogen at collection and homogenized for use 

in TCID50 assay prior to the HA assay. The viral load was calculated according to the Reed and 

Muench method [181]. 

2.5 RNA extraction and virus whole-genome sequencing 

Total RNA was extracted from the lungs of influenza virus-infected mice 3 days post-

infection with A/Mexico/4108/2009 using the RNeasy Mini Kit (QIAGEN, Cat. No 74004). 

According to manufacturer’s instructions, 30 mg frozen mouse lungs were lysed and 

homogenized using a high-salt buffer. Ethanol was added to the lysate to separate the cell 

contents into organic and aqueous phases. Total RNA was bound to a silica-based membrane 

using the RNeasy spin column and eluted in RNase-free water. For stock A/Mexico/4108/2009, 

RNA was extracted three separate times from the stock aliquot using an RNA-binding spin column 

as described above using the QIAamp Viral RNA Mini Kit (QIAGEN, Cat. No. 52906). For 

downstream viral sequencing, the influenza virus genome segments from lung and stock RNA 

samples were reverse-transcribed using the iScript™ Reverse Transcription Supermix for RT-

qPCR (Bio-Rad, Cat. No. 1708840) and the Uni12 primer (5’-AGC AAA AGC AGG-3’) [182] with 

priming for 5 minutes at 25oC, reverse transcription for 20 minutes at 46oC, and reverse 

transcriptase inactivation for 1 minute at 95oC (Bio-Rad thermocycler, Cat. No. 186-1096). Viral 

complementary DNA (cDNA) was then synthesized by PCR for 40 cycles using Taq polymerase 

(New England Biolabs, Cat. No. M0273) and primers containing Illumina Nextera Transposase 
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adaptors. The primers were as follows: R1-Uni12 (5’-TCG TCG GCA GCG TCA GAT GTG TAT 

AAG AGA CAG AGC GAA AGC AGG-5’) and R2-Uni13 (5’-GTC TCG TGG GCT CGG AGA TGT 

GTA TAA GAG ACA GAG TAG AAA CAA GG-3’) (adaptor and barcode oligonucleotide 

sequences from Illumina, Inc., San Diego, CA, USA). Annealing and extension steps were 

performed for 30 seconds at 55oC and 7 minutes at 72oC respectively [183]. Prior to sequencing, 

PCR products were cleaned using the QIAquick PCR Purification Kit (QIAGEN, Cat. No. 28104), 

and up to 20 pM DNA samples were used for library preparation. Libraries were sequenced by 

CGEB-IMR (Centre for Genomics and Evolutionary Biology Integrated Microbiome Resource, 

Halifax, NS, Canada) (http://cgeb-imr.ca)) in a 300 + 300 bp paired-end MiSeq run (Illumina 600-

cycle v3 kit, Cat. No. MS-102-3003). 

2.6 Host transcriptome sequencing and analysis 

Total mouse lung RNA was extracted at days 0 and 3 post-challenge using the RNeasy 

Mini Kit as described above (QIAGEN, Cat. No 74004) and purified with the QIAquick PCR 

Purification Kit (QIAGEN, Cat. No. 28104). Extracted RNA was sent to Novogene (Sacramento, 

CA, USA) for RNA sequencing. Gene expression was quantified in terms of fragments per 

kilobases mapped (FPKM). The gene expression fold-change per gene was calculated relative to 

uninfected mice, and genes were designated differentially expressed at analysis of variance 

(ANOVA) adjusted p-value < 0.05. Lists of significantly differentially expressed genes (DEGs) 

were compared across experimental groups to generate Venn diagrams using the R package 

VennDiagram (version 1.6.20).  

To analyze biological processes enriched at challenge, lists of significantly differentially 

expressed genes per experimental group (naïve-mock vaccinated, naïve-vaccinated, preimmune-

mock vaccinated, preimmune-vaccinated), were entered into the Database for Annotation, 
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Visualization and Integrated Discovery (DAVID) version 6.8 (https://david.ncifcrf.gov/home.jsp) 

functional annotation tool. The top Gene Ontology (GO) biological processes were selected and 

compared across experimental groups. Finally, GO biological processes related to antiviral 

response (GO term “defense response to virus” (GO:0051607)), T cell proliferation and 

cytotoxicity (terms “T cell-mediated cytotoxicity” (GO:0001913) and “activated t cell proliferation” 

(GO:0050798)), and the B cell response (GO terms “B cell chemotaxis” (GO:0035754), “B cell 

homeostasis” (GO:0001782), “B cell differentiation” (GO:0030183), “negative regulation of B cell 

differentiation” (GO:0045578), “B cell receptor complex” (GO:0019815), “negative regulation of B 

cell receptor signalling” (GO:0050859), “B cell apoptotic process” (GO:0001783), and “positive 

regulation of B cell proliferation” (GO:0030890)) were selected to build heatmaps in RStudio using 

the ggplot2 package (version 3.3.2). Differential expression was expressed in terms of log2(fold 

change). 

2.7 Global SNP analysis and viral sequence alignment 

For influenza virus sequence analysis, paired-end reads of variable length were imported 

into Geneious Version 2019.2.1 (Biomatters LTD) [184]. Reads were filtered and trimmed 

according to default settings, and primer sequences (R1-Uni12 and R2-Uni13 listed above) were 

removed. Within Geneious, paired reads were merged using the BBMerge too, and duplicate 

reads were removed using the DEDupe tool according to default settings. The remaining reads 

were then mapped to reference sequences for A/Mexico/4108/2009 viral segments. The 

reference sequences used for each segment alignment are as follows: PB2 (GQ379815), PB1 

(GQ149652), PA (GQ149653), HA (GQ223112), NP (GQ149655), NA (GQ149650), M2 

(GQ149657), and NEP (GQ149658). Following alignment, single nucleotide polymorphisms 

(SNPs) above 1% frequency [1] with a minimum of 5 reads supporting their discovery were 
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detected using the SNPs/variants tool in Geneious. I assessed group-specific SNPs by importing 

the consensus stock sequence into MEGAX (Molecular Evolutionary Genetics Analysis, Version 

0.1) [185], and manually inputting SNPs that were found in the majority of experimental animals, 

regardless of frequency. 

For the analysis of immune epitopes in the SARS-CoV-2 viral variants, I focused on 

analyzing the amino acid sequences acquired from public online databases. Amino acid 

sequences for the full Wuhan SARS-CoV-2 genome, as well as for SARS-CoV-2 variants D146G, 

B.1.1.7 (Alpha), B.1.351 (Beta), B.1.429 (Epsilon), P.1 (Gamma), B.1.617.1 (Kappa), B.1.617.2 

(Delta), B.1.617.3, and mink-related (Cluster 5) SARS-CoV-2, were obtained from GISAID [186]. 

The accession numbers for each full amino acid sequence are as follows: Wuhan SARS-CoV-2 

(EPI_ISL_402124), D614G (EPI_ISL_406862), B.1.1.7 (EPI_ISL_852526), B.1.351 

(EPI_ISL_864621), B.1.429 (EPI_ISL_1017160), P.1 (EPI_ISL_1171653), B.1.617.1 

(EPI_ISL_1841381), B.1.617.2 (EPI_ISL_1914598), B.1.617.3 (EPI_ISL_1939891), and mink-

related (EPI_ISL_615652). Full genome sequences were truncated to restrict our analysis to the 

spike glycoprotein. I compared variant-specific mutations across the various spike proteins by 

aligning amino acid sequences in MEGAX, with deletions denoted by dashes.  All alignment 

figures were generated in ClustalX Version 2.0 [187]. 

2.8 Modelling influenza virus and SARS-CoV-2 protein mutations 

To generate folding models of variant influenza viral proteins and SARS-CoV-2 spike 

variants based on our generated or publicly-available amino acid sequences, I used the web-

based bioinformatics server Phyre2 (Protein Homology/ analogY Recognition Engine Version 2.0 

(http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index)) in intensive modelling mode [188]. 

For SARS-CoV-2 spike variants, the following templates were applied to model the reference and 
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variant spike sequences: c7dk3B, c6vsb, c2kncA, c7a4nA, c6vsbA, c2fxpA, c3j3bG, c6vybB, 

c6zowB, c1m0jA, c1s6wA, c5h36E, c4qaeP, c3h0tC, c6wbvB, c1m4fA, c2kefA, and c4qaeR 

(Table 2.1). The model coordinate files in Protein Database (PDB) format were downloaded for 

downstream visualization and manipulation. I created structural images of each influenza viral 

protein or spike variant protein with PyMOL (The PyMOL Molecular Graphics System, Version 

2.3.5, Schrödinger, LLC).  Maximum performance quality was selected, and proteins were viewed 

as “sphere” models with the variant-defining mutations highlighted.  

 
Table 2.1 Protein database templates and % identity after modelling Wuhan SARS-CoV-2 
and nine variants of concern/interest using the Phyre2 platform. 

 Reference B.1.1.7 B.1.351 B.1.429 D614G Mink-related P.1 B.1.617.1 B.1.617.2 B.1.617.3 

c7dk3B 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

c6vsbB 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

c2kncA 68% 73% 66% 76% - 76% 75% 73% 75% - 

c7a4nA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

c6vsbA 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

c2fxpA 99% 99% 99% 99% 99% 99% 99% 99% 99% 99% 

c3j3bG 69% 70% 70% 71% 68% 71% 70% 71% - 67% 

c6vybB 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

c6zowB - 100% 100% 100% - 100% 100% 100% 100% 100% 

c1m0jA - 66% - 62% - 62% 69% 66% 56% - 

c1s6wA - - 50% - 63% - - - - 64% 

c5h36E - - - - 55% - - - - 53% 

c4qaeP - - - - - - - - 66% - 

c3h0tC - - - - - - - - 68% - 

c6wbvB - - - - - - - - 66% - 

c1m4fA - - - - - - - - 68% - 

c2kefA - - - - - - - - 68% - 

c4qaeR - - - - - - - - 66% - 

 

Next, the web-based software Missense3D (http://www.sbg.bio.ic.ac.uk/~missense3d/) 

[189] was employed to predict the structural impact of each individual variant amino acid 
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substitution.  For this analysis, either the original influenza virus protein (i.e., HA, NA, NP, or PB1) 

or Wuhan spike sequence was set as the reference, and substitutions across all protein variants 

were input manually. A cavity volume expansion or contraction of ≥ 70 Å3 was defined as structural 

damage to differentiate from minor expansions or contractions.  

A second set of protein-folding predictions was generated for each SARS-CoV-2 spike 

variant using the Swiss-Model structural bioinformatics server 

(https://swissmodel.expasy.org/interactive). Models were built based on multiple computer-

generated templates determined by BLAST-searching homologous sequences with known 

tertiary and quaternary structures [190]. The finished products were scored based on a 

Quantitative Model Energy ANalysis (QMEAN) and Global Model Quality Estimate or GMQE 

scoring system [190,191] as well as analyzed based on their agreement with Ramachandran 

plots. Models with the lowest absolute value of their QMEAN scores, highest GMQE scores, and 

highest Ramachandran agreement were kept in Protein Database (PDB) format to be further 

analyzed for each variant (Table 2.2). Each 3D model was viewed and edited in PyMol. Glycan 

additions predicted by Swiss-Model were removed from the rough trimeric models and the “A” 

chain monomer was isolated to be further analyzed from full, trimeric models.   
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Table 2.2 SWISS-Model parameters for SARS-CoV-2 spike sequences for Wuhan reference, 
D614G, Alpha, Beta, Gamma, Delta, Epsilon, Kappa, B.1.617.3, and mink-related variants. 

GISAID ID tag Variant  |Qmean| 
(Z score) 

GMQE 
(/1) 

Ramachandran 
agreement  

(%) chain "A" 

# of 
subs  

# AA’s 
deleted 

Model 
template 
SMTL ID# 

Template 
coverage  

(%) 

EPI_ISL_402124 WIV04 (ref) 1.94 0.64 93.11 0 0 7cwu.1.G 100 

EPI_ISL_406862 D614G 1.58 0.71 93.84 1 0 7krs.1.A 100 

EPI_ISL_852526 Alpha 
(B.1.1.7) 1.51 0.72 93.91 7 3 7krs.1.A 98.98 

EPI_ISL_864621 Beta 
(B.1.351) 1.62 0.71 93.74 7 3 7krs.1.A 99.45 

EPI_ISL_1171653 Gamma 
(P.1) 1.48 0.71 93.9 11 0 7krs.1.A 99.14 

EPI_ISL_1914598 Delta 
(B.1.617.2) 1.55 0.72 94.15 8 2 7krs.1.A 99.37 

EPI_ISL_1017160 Epsilon 
(B.1.429) 1.5 0.71 93.87 3 0 7krs.1.A 99.76 

EPI_ISL_1841381 Kappa 
(B.1.617.1) 1.49 0.72 93.93 7 0 7krs.1.A 99.53 

EPI_ISL_1939891 B.1.617.3 1.61 0.72 93.93 7 0 7krs.1.A 99.53 

EPI_ISL_615652 
Cluster 5 

(mink 
related) 

1.52 0.72 93.27 3 2 7krs.1.A 99.53 

 

2.9 Prediction of B cell epitopes 

Predicted B cell epitopes across influenza virus proteins and SARS-CoV-2 spike variants 

were assessed using the DiscoTope 2.0 server (http://www.cbs.dtu.dk/services/DiscoTope/_) 

[192]. Following both Phyre2 and Swiss-Model predictions for protein folding, the corresponding 

PDB file of each sequence was input to DiscoTope 2.0 using the least conservative threshold 

score of -3.7 (0.47 sensitivity, 0.75 specificity). As I found the Swiss-Model to ultimately provide 

the more accurate folding model of the SARS-CoV-2 spike protein, output obtained from the 

Swiss-Model PDB files was used to generate heatmaps of B cell epitope probability across SARS-

CoV-2 spike variant protein residues in PyMOL, with predicted epitopes in yellow. The amino acid 

number and DiscoTope score were used to map predicted B cell epitopes in RStudio (version 

3.6.1) using the ggplot2 package (version 3.3.2) [193]. 
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2.10 Variant spike glycosylation analysis 

Original Wuhan and variant amino acid sequences for SARS-CoV-2 spike were uploaded 

to the NetNGlyc 1.0 server (http://www.cbs.dtu.dk/services/NetNGlyc/) [194] to assess potential 

N-linked glycosylation sites through detection of Asn-Xaa-Ser/Thr sequons. The default threshold 

of 0.5 was used. The predicted glycosylation sites across variants were modelled again using 

PyMOL. The Glycam Glycoprotein online tool (http://glycam.org/tools/molecular-

dynamics/glycoprotein-builder/upload-pdb) [195] was used to attach representative Man9GlcNAc2 

chains to each positively predicted glycosylation site. 

2.11 Assessment of predicted T cell-binding peptides  

The likelihood of influenza virus or SARS-CoV-2 peptides being presented on mouse or 

human MHC-I molecules, respectively, was predicted using the Immune Epitope Database (IEDB) 

Analysis Resource NetMHCpan EL 4.1 (http://tools.immuneepitope.org/main/). For influenza virus 

peptide analysis, the complete amino acid sequences for reference and mutated protein 

sequences were used. Our analysis was restricted to the two HLA alleles present in our mouse 

model, which are H-2-Kb and H-2-Db. For analysis of SARS-CoV-2 MHC-I-binding peptides, the 

complete amino acid sequences for the Wuhan and variant SARS-CoV-2 spike proteins were 

used, and predicted peptides were restricted to 27 common human HLA genes to encompass 

most of the human population [81,196].  Analysis of MHC-II peptides was only performed for 

SARS-CoV-2 sequences. I applied the NetMHCII 2.3 server from DTU Health Tech and selected 

HLA-DP, HLA-DQ, and  HLA-DR alleles (http://www.cbs.dtu.dk/services/NetMHCII/) [197].  

To determine immune background- or variant-specific epitopes in influenza proteins or 

SARS-CoV-2 spike respectively, T cell epitopes (defined as unique HLA allele*peptide 

combinations) were compared in RStudio using the tidyverse package (version 1.3.0) [198]. For 



 40 

MHC-I and MHC-II analysis, high-affinity peptides were defined as those with scores falling below 

the 0.5 and 2.0 percentile ranks, respectively [199]. 

2.12 Statistical analysis 

All statistical analyses were conducted in RStudio version 3.6.1.  For normally distributed 

data, one-way analysis of variance (ANOVA) followed by Tukey’s Honest Significant Difference 

(HSD) was used to determine differences between groups. A p-value threshold of 0.05 was used. 

For determination of differentially expressed genes by RNA-sequencing, an adjusted p-value 

threshold of 0.1 was used.  All plots were generated in RStudio using the ggplot2 package version 

3.3.2. 

  



 41 

CHAPTER 3 INFLUENZA VIRUS INFECTION AND VACCINATION HISTORY DRIVES 
VIRAL MUTATIONS AT HETEROLOGOUS CHALLENGE 

3.1 Introduction to the antigenic drift problem 

Each person has a complex history of influenza virus infections and vaccinations. Although 

an individual will have several exposures to influenza viruses by adulthood, influenza viruses 

continue to evade pre-existing immunity and circulate across the globe [200]. This is due to the 

greatest challenge facing immunity against influenza viruses, which is antigenic drift [176,201–

203]. Antigenic drift refers to the accumulation of mutations on viral proteins hemagglutinin and 

neuraminidase that lead to changes in antigenicity, which are eventually sufficient to escape host 

immune memory [204]. 

Antigenic drift is typically considered a cause-and-effect relationship from the virus 

perspective, where vaccines are updated with new antigens to reflect the newly circulating strains. 

However, less attention is given to the drivers of antigenic drift. It is generally known that antigenic 

drift is the result of immune selection of viral mutations, as the immunodominant viral proteins 

hemagglutinin and neuraminidase are those that primarily undergo mutation [205–208]. Indeed, 

some studies have established the important link between strain-specific neutralizing antibodies 

and mutation of influenza virus hemagglutinin [129,205,207]. Nonetheless, our understanding of 

how previous influenza virus infection or vaccination contributes to antigenic changes remains 

limited. 

Given that adaptive immune responses are antigen-specific, and that each host has a 

unique immune history of influenza virus infections and vaccinations, I hypothesize that a host’s 

specific immune background may dictate the capacity for antigenic drift at re-exposure. It is 

important to consider how the diverse immune backgrounds that exist in the population toward 

influenza viruses, as well as the differences in immunity established through natural infection 
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versus vaccination, may drive antigenic drift in different ways. Moreover, the eight segments of 

the influenza virus genome encode at least ten different proteins that have varying levels 

immunogenicity and conservation across influenza viruses. The external proteins hemagglutinin 

(HA) and neuraminidase (NA) are rapidly mutating antigenic proteins on the virion surface; matrix 

proteins M1 and M2 interact with the virion surface and have important roles in virion assembly 

and uncoating; RNA polymerase components polymerase basic 1 (PB1), polymerase basic 2 

(PB2), polymerase basic 1-F2 (PB1-F2), and polymerase acidic (PA) are internal and responsible 

for viral transcription and replication; nucleoprotein (NP) binds viral RNA and helps facilitate 

synthesis; nuclear export protein (NEP) facilitates viral RNA export from the host nucleus; and 

non-structural protein 1 (NS1) antagonises the host interferon response. The location and 

functional roles of each protein have implications for their capacity to mutate without suffering a 

fitness cost, as well as their role as viral antigens. Thus, the goal of my study was to investigate 

how the immune background of the host contributes to patterns of mutation on the ten different 

influenza virus proteins at re-infection, and whether these mutations lead to detectable changes 

in antigenicity. Here I combined an in vivo challenge study with downstream computational 

approaches to evaluate how previous immunity can drive antigenic changes on influenza virus 

proteins. I hypothesized that at three days post-challenge, the specific infection and vaccination 

history of the mice would influence the mutations detected across influenza virus proteins, 

specifically on the HA protein. 

3.2 Study design and the preimmune-vaccinated mouse model 

To assess the influence of the host immune background on the emergence of influenza 

virus mutations during infection, I utilized lung samples generated prior to my arrival in the lab. 

We previously constructed immune backgrounds in adult C57Bl/6j mice through combinations of 
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sequential viral infection, vaccination, and heterologous challenge. A schematic of the 

experimental time course and group descriptions are shown in Figure 3.1A. For the purpose of 

this study, two distinct lineages of influenza virus were used: the first was a seasonal, historical 

H1N1 strain to be used in the initial infections (A/FortMonmouth/1/1947, herein referred to as 

FM/47), and the second was a 2009 pandemic H1N1 to be used in vaccination and challenge 

(A/Mexico/4108/2009, herein referred to as Mex/09). Previous studies by our group and others 

have confirmed that mice are susceptible to infection with Mex/09 [209–212], and FM/47 is itself 

a mouse-adapted influenza virus [213], making these appropriate strains for our purposes. 
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Figure 3.1 Developing influenza virus immune backgrounds in adult mice. 
A) At day 0 of the study, adult C57Bl/6j mice were intranasally infected with seasonal H1N1 strain 
A/FortMonmouth/1/1947 (FM/47), followed by intramuscular vaccination and boost with the 2018-
2019 quadrivalent vaccine on days 60 and 74. Mice were divided into four immune backgrounds 
depending on their infection and vaccination status: naïve-mock vaccinated, naïve-vaccinated, 
preimmune-mock vaccinated, and preimmune-vaccinated. On day 105 of the study, mice of all 
immune backgrounds were subject to a lethal dose of pandemic H1N1 strain A/Mexico/4108/2009 
(Mex/09), followed by assessment of host and virus on day 108. (B) Three days prior to challenge, 
serum was isolated from collected blood samples to quantify neutralizing antibody titers against 
FM/47 and Mex/09 viruses using a hemagglutinin inhibition assay. These assays were done to 
confirm the establishment of immune memory offered by FM/47 infection and quadrivalent 
vaccination. (C) At three days post-challenge, live viral titer was measured in the mouse lungs by 
TCID50 viral load assay with hemagglutination assessment. Figures B and C were generated 
using the ggplot2 package version 3.3.2. Groups were compared by one-way ANOVA (signif. 
codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘’ 1) and Tukey multiple comparisons of means (95% 
family-wise confidence level). *I completed the analysis and generated the plot while the data 
itself were generated by M. Francis prior to my arrival in the lab. 
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On day 0 of the study, mice were infected intranasally with FM/47 at 103.5 TCID50 and left 

to develop immune memory over two months. Mice were then vaccinated intramuscularly with the 

Sanofi Fluzone quadrivalent influenza vaccine (QIV) from 2018-2019 on day 60 and boosted on 

day 74. Specifically, the QIV contains HA proteins from the following influenza viruses: H1N1 

(A/Michigan/45/2015 X-275), H3N2 (A/Brisbane/1/2018 X-311), influenza B Yamagata lineage 

(B/Phuket/3073/2013), and influenza B Victoria lineage (B/Colorado/6/2017-like virus). One 

month after vaccination, mice were challenged intranasally with a lethal dose of Mex/09 (106 

TCID50) and assessed at three days post-challenge. Importantly, the challenge virus was 

antigenically similar to the H1 vaccine component of the vaccine, where the H1N1 FM/47 HA 

shares only 78% identity with the HA from the Mex/09 H1N1 virus.  

Here I defined these FM/47-infected mice as preimmune, as they possessed pre-existing 

H1N1 immunity to influenza virus distinct from that elicited by influenza virus vaccination. 

Conversely, mice with no previous exposure to influenza viruses were defined as naïve, and those 

exposed to the 2018-2019 vaccine were vaccinated. At Mex/09 challenge, all mice fell into one of 

four groups or immune backgrounds that mirrored the possible influenza virus infection and 

vaccination statuses of the human population: naïve-mock vaccinated, naïve-vaccinated, 

preimmune-mock vaccinated, and preimmune-vaccinated.  

As the infection and vaccination histories of each group would impose unique immune 

pressures at challenge, it was important to confirm the establishment of previous immunity from 

infection and/or vaccination by assessing the neutralizing antibody levels against the influenza 

viruses from each distinct lineage. Three days prior to Mex/09 challenge, the preimmune and 

vaccinated status of mice was confirmed by hemagglutination inhibition (HI) assay against 

preimmune (FM/47) and vaccine (Mex/09) influenza strains (Figure 3.1B). Confirming 

vaccination, naïve-vaccinated and preimmune-vaccinated mice had average log2(HI titers) of 6 

and 8 HAI units, respectively, toward Mex/09. Both preimmune groups had high HI titer against 
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the preimmune FM/47 strain (5 and 7 HAI units in preimmune-mock and preimmune-vaccinated 

groups, respectively). The presence of antibodies specific to each virus only in the mice exposed 

to the specific viral antigens demonstrated that adaptive immune responses specific to each 

influenza virus lineage had been established in the mouse model. 

3.3 Preimmune-vaccinated mice still replicate H1N1 influenza Mex/09 virus in the lungs 

Following confirmation of neutralizing antibody titers against FM/47 and Mex/09 in the 

preimmune and vaccinated animals, mice of all immune backgrounds were subject to the same 

infectious dose of Mex/09 by intranasal inoculation. Assessment of viral load in the lungs at three 

days post-challenge by TCID50 assay followed by hemagglutination assessment showed that 

productive influenza viral replication still occurred in preimmune-vaccinated mice, as well as the 

mice with other immune backgrounds (Figure 3.1C). Live viral titer in preimmune-vaccinated mice 

reached an average of 4 ± 0.33 log10TCID50 ml-1 at three days post-challenge. Additionally, all 

other mice with varying backgrounds were positive for live virus at greater degrees within the lung 

tissue (Figure 3.1C). These data suggested that despite a layered immune background, which 

included vaccination against a similar virus as the challenge strain Mex/09, replication of a subset 

of the initial viral population evaded sterilizing immunity in the preimmune-vaccinated mice. 

3.4 Combined preimmunity and vaccination decreases the frequency and number of 
influenza virus single nucleotide polymorphisms post-challenge  

Since viral replication was observed in the lungs of preimmune-vaccinated mice as well 

as in the mice of other immune backgrounds, I aimed to characterize the viral population that had 

evaded pre-existing immunity established in the mouse model with historical H1N1 virus infection 

of QIV vaccination. To catalog the viral quasispecies and variants that remained in the mice during 
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infection, Illumina MiSeq whole-viral genome sequencing was performed (Halifax, NS, CA) on 

viral RNA isolated from lung tissue at three days post-challenge. The viral sequences are 

available on the Sequence Read Archive (SRA; BioProject ID PRJNA787976; 

https://www.ncbi.nlm.nih.gov/biosample?Db=biosample&DbFrom=bioproject&Cmd=Link&LinkN

ame=bioproject_biosample&LinkReadableName=BioSample&ordinalpos=1&IdsFromResult=78

7976, see Appendix 1). Using Geneious software [184], I aligned the 50-300 base-pair reads to 

reference Mex/09 sequences for each of eight influenza virus segments encoding ten different 

proteins (Table 3.1). The reference sequences and NCBI accession numbers used for each 

alignment are as follows: polymerase basic protein 2 (PB2, GQ379815); polymerase basic protein 

1 (PB1, GQ149652); polymerase acidic protein (PA, GQ149653); hemagglutinin (HA, 

GQ223112); nucleoprotein (NP, GQ149655); neuraminidase (NA, GQ149650); matrix-2 protein 

(M2, GQ149657); and nuclear export protein (NEP, GQ149658). To determine the variation 

existing within the input virus, I sequenced our stock of Mex/09 used for mouse inoculation and 

mapped this to reference Mex/09 as well. 

Although the highest number of reads were mapped toward the 3’ and 5’ ends of the viral 

segments, 100% coverage was achieved for all segments (Table 3.1). Across experimental 

groups, the number of reads per segment was generally correlated with reference length, except 

for segments NA, M1/M2, and non-structural protein 1 (NS1). Interestingly, the number of reads 

per segment did not appear to be correlated with the viral load trends shown in Figure 3.1C. 

Sequenced stock Mex/09 yielded the highest number of reads and coverage across most 

segments compared to virus extracted from mouse lungs, as expected. 
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Table 3.1 Mean number of reads and coverage per influenza virus gene following alignment 
of viral sequences to A/Mexico/4108/2009 reference segments in Geneious. 

 

Stock Mex/09 Naïve-mock 
vaccinated Naïve-vaccinated Preimmune-mock 

vaccinated 
Preimmune-
vaccinated 

Gene Length (nt) Mean 
reads 

Mean 
coverage 

Mean 
reads 

Mean 
coverage 

Mean 
reads 

Mean 
coverage 

Mean 
reads 

Mean 
coverage 

Mean 
reads 

Mean 
coverage 

PB2 2280 152,153 36,192 116,243 18,782 144,600 22,568 156,061 19,354 201,613 26,076 

PB1 2274 111,003 18,718 78,144 10,244 122,704 17,736 94,685 9378 92,614 8949 

PA 2151 75,936 13,124 52,570 5553 19,548 1564 46,844 3716 54,251 4773 

HA 1701 42,205 5111 6787 799 11,001 1091 9939 899 5776 529 

NP 1497 6591 771 1831 206 632 74 2249 185 1375 140 

NA 1410 20,003 2382 1430 169 1904 119 1027 130 2935 410 

M1, M2 982 43,187 7426 11,507 2095 5142 942 7939 1315 13,928 2335 

NS1 844 60,291 11,449 16,024 3330 14,358 2999 17,260 3364 47,157 6245 

 

Following alignment of viral sequences to reference Mex/09, I aimed to determine whether 

novel viral mutations had appeared on influenza virus genes extracted from mouse lungs, or 

whether variants already present in the stock virus had changed in frequency. To this end, I again 

employed Geneious software to catalog the insertions, deletions, and single nucleotide 

polymorphisms (SNPs) present on the gene sequences using the SNPs/variants tool. The 

complete bioinformatic analysis pipeline is shown in Figure 3.2.  
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Figure 3.2 Bioinformatic analysis pipeline to determine influenza virus mutations, 
predicted B and T cell epitopes, and host transcriptome analysis after challenge. 
At three days post-challenge with A/Mexico/4108/2009 (Mex/09), viral RNA from mouse lungs 
was sequenced using Illumina MiSeq. Viral sequences were aligned to reference Mex/09 using 
Geneious, and SNPs and variants above 1% frequency were detected for sequences extracted 
from mice of each immune background. The gene sequences were aligned using MEGAX, and 
only SNPs found in most animals of an experimental group were retained in the sequence. To 
predict the possible structural and downstream antigenic impact of each immune background-
specific amino substitution, a representative 3D model of each HA protein was generated using 
the Phyre2 platform. Protein images were generated in PyMol to visualize the structural location 
of each mutation. The 3D model was used to predict discontinuous B cell epitopes along the viral 
proteins of each group using DiscoTope 2.0 (DTU Health Tech). Variant amino acid sequences 
were uploaded to the Immune Epitope Database NetMHCpan EL 4.1 tool to predict T cell epitopes 
binding MHC class I molecules in the mouse model. Finally, the host transcriptional response was 
investigated by RNA sequencing of mouse lung RNA. Lists of significantly differentially expressed 
genes (DEGs) for each immune background were uploaded to the Database 
for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 functional annotation 
tool to determine enriched immune pathways. Heatmaps were generated in for antiviral, T cell, 
and B cell-mediated immune response pathways using RStudio.  
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I restricted my analysis to gene variants above one percent frequency with a minimum of 

five reads supporting their discovery. Moreover, I selected only single nucleotide variants for 

downstream analysis to simplify comparisons across viral proteins. I generated Manhattan plots 

and frequency histograms to visualize the distribution of viral SNPs and their frequencies across 

groups and over viral genes (Figure 3.3). Here I detected highly significant (p << 0.05) SNPs 

across all ten influenza virus genes and across all immune backgrounds, except for M1/M2 

segment of the stock virus, and M2 gene in the naïve-mock vaccinated group (see Appendix 1 

for a complete list of all protein variants found). For HA, naïve-mock vaccinated mice had 

markedly less SNPs than the stock virus used to inoculate animals, indicating selection of variants 

adaptive to the mouse model. Naïve-vaccinated mice showed more mutations across HA 

compared to all other groups, with an increased number of SNPs that were highly significant (p 

<< 0.05). Although preimmune groups had a lower number of detectable SNPs across HA, a 

greater proportion of these SNPs were highly significant compared to the HA sequences from 

naïve mice. 
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Figure 3.3 Influenza virus gene sequences extracted from mice of different immune 
backgrounds post-H1N1challenge have significant SNPs on all viral genes. 
At three days post-challenge with A/Mexico/4108/2009 (Mex/09), viral RNA from mouse lungs 
was sequenced using Illumina MiSeq. Viral sequences were aligned to reference Mex/09 
(accession numbers as follows: PB2 (GQ379815), PB1 (GQ149652), PA (GQ149653), HA 
(GQ223112), NP (GQ149655), NA (GQ149650), M2 (GQ149657), and NEP (GQ149658) using 
Geneious, and SNPs and variants above 1% frequency were detected for sequences extracted 
from mice of each immune background. Stock Mex/09 used to inoculate animals was sequenced 
in parallel to determine the existing sequence variation. (A) The SNPs found in all ten influenza 
virus genes were visualized using a Manhattan plot to determine the number and significance (-
log10(p-value) of each mutation. (B) After translating the genetic sequence to protein sequence, 
the proportion of non-synonymous SNPs detected for each protein were categorized by their 
frequency, with frequency bins as follows: 1-15%, 15-25%, 25-50%, 50-75%, and 75-100%. The 
figure was generated using ggplot2 version 3.3.2. 

The trend of increased detectable SNPs in naive-vaccinated mice was generally 

consistent for other influenza virus genes. Nucleocapsid protein (NP) and neuraminidase (NA) 

both showed the greatest number of mutations in the naïve-vaccinated and preimmune-mock 

vaccinated groups, with the least number of SNPs detected in preimmune-vaccinated animals 

(Figure 3.3A). Similarly, polymerase basic subunits 1 and 2 (PB1 and PB2) had the greatest 

number of SNPs in naïve-vaccinated animals. For NA, selection of mutations was largely evident 

in naïve-mock vaccinated animals, as the number of SNPs greatly decreased compared to the 

stock virus used to inoculate animals. In general, I observed the greatest variation in influenza 

viral gene sequences when mice had only one prior exposure, either through previous infection 

with FM/47, or vaccination with 2009 pandemic H1N1. When preimmunity and vaccination are 

combined, or when mice have no prior exposures (i.e., naïve), the variation in viral sequences 

decreased.  

To address whether SNPs already present in the stock virus were differentially selected 

when encountering the previous immunity of each experimental group, I next examined the 

frequency distribution of SNPs across viral genes leading to amino acid changes. Since not all 

SNPs represent amino acid changes which may lead to changes in antigenicity, I used RStudio 
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to select only SNPs leading to amino acid substitution, truncation, or start codon loss across viral 

genes (Figure 3.3B). I then placed the remaining non-synonymous SNPs into one of five 

frequency bins (1-15%, 15-25%, 25-50%, 50-75%, and 75-100%) based on the percentage 

reported by Geneious and plotted the proportion falling into each bin (Figure 3.3B). Here the aim 

was to visualize whether viral genes had a smaller number of variants that increased in frequency 

in certain immune backgrounds (i.e., selective propagation of mutations), versus a greater number 

of variants that existed at lower frequencies with a relatively equal chance of existing in the viral 

population.  

As shown in Figure 3.3A, there were no M1/M2 SNPs of any frequency detected in the 

stock virus or in naïve-mock vaccinated animals (Figure 3.3B). After replicating within the mouse 

host, detectable SNPs along M1/M2 appeared in naïve-vaccinated, preimmune-mock vaccinated, 

and preimmune-vaccinated groups. However, only preimmune-mock vaccinated animals had 

M1/M2 SNPs above 15% frequency (Figure 3.3B). For HA sequences, at least one quarter of the 

total SNPs fell into the higher-frequency ranges (> 15%) by three days post-challenge for all 

experimental groups (Figure 3.3B). This proportion was even higher in the naïve-mock 

vaccinated animals, with over half of all HA SNPs occurring above 15% frequency. In the naïve-

vaccinated mice, the same proportion (approximately half) of SNPs fell into the higher frequency 

range, but unlike the naïve-mock vaccinated mice, a small subset of mutations appeared above 

75% frequency. This subset above 75% frequency was also present in preimmune-mock 

vaccinated animals. Finally, less than half of the total SNPs in the HA sequences from preimmune-

vaccinated animals fell into the 25-50% frequency range, which is comparatively lower than the 

other experimental groups (Figure 3.3B). 

For the HA gene, it seems that the presence of previous infection combined with 

vaccination, or conversely, no previous immunity against the challenge strain, is associated with 

a decrease in high-frequency variants like the trend observed in Figure 3.3A. In the previous 
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analysis combining previous infection with vaccination led to less variation along viral genes. 

Overall, this preliminary analysis suggests a relationship between the infection and vaccination 

history of the host, and potential trends for viral mutation in terms of significance and SNP 

frequency throughout the course of an influenza virus infection. 

3.5 The hemagglutinin protein shows immune background-specific mutations that may 
impact protein structure  

The HA protein on the influenza virion surface facilitates viral entry into host cells, is a 

major immunogen, and is also prone to mutation [214]. I therefore hypothesized that pre-existing 

immunity from infection and vaccination would have the greatest impact on this immunologically 

dominant surface protein, leading to mutations that alter protein shape and downstream 

antigenicity. To investigate the presence of specific mutations evading immune detection, I plotted 

the SNPs that led to non-synonymous changes in the HA amino acid sequence (Figure 3.4A). 

As expected, the stock Mex/09 virus used to inoculate animals had the greatest number of HA 

variants, and analysis after challenge in all backgrounds indicated selection in the animal model 

as evidenced by the SNP decrease in naïve-mock vaccinated mice (Figure 3.4A). However, novel 

mutations that were not detected in stock virus also emerged in naïve-mock vaccinated animals, 

suggesting the emergence due to errors in replication.  
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Figure 3.4 Naïve-vaccinated animals have the highest frequency of SNPs across influenza 
virus HA post-H1N1 challenge. 
At three days post-challenge with A/Mexico/4108/2009 (Mex/09), viral RNA from mouse lungs 
was sequenced using Illumina MiSeq and aligned to reference Mex/09 HA using Geneious (NCBI 
accession no. GQ223112). The SNPs and variants above 1% frequency were detected in all 
influenza virus genes. Stock Mex/09 used to inoculate animals was sequenced in parallel to 
determine the existing sequence variation. (A) The non-synonymous SNPs found in HA gene 
sequences after introduction to naïve-mock vaccinated, naïve-vaccinated, preimmune-mock 
vaccinated, and preimmune-vaccinated mice were plotted on the amino acid sequence number 
of HA (1 band = 1 SNP). Each line representing a mutation found per experimental group 
generated a bar-code effect for each SNP profile. The color of the band represents the relative 
frequency of each mutation among the total population of viruses sequenced in the lung. The 
figure was generated using the ggplot2 package version 3.3.2. (B) Hemagglutinin gene 
sequences from mice of each immune background were aligned using MEGAX. To better 
determine selection of non-synonymous SNPs dependent on immune background, only SNPs 
that appeared in at least two of three mice from each group were retained in the gene sequence. 
The amino acid sequences containing immune background-specific substitutions were shown 
using ClustalX in the alignment. 

Of the four immune backgrounds, the greatest number of SNPs on HA post-challenge 

were detected in naïve-vaccinated animals, with the majority in the 1-20% frequency range 

(Figure 3.3B; Figure 3.4A). Naïve-vaccinated animals had the highest density of HA mutations 

at the N-terminal F’ subdomain (amino acids 1-41, H1 numbering), the receptor binding domain 
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(110-262), and the F subdomain in the stalk region (348-515) (Figure 3.4A) [215]. Preimmune-

mock vaccinated animals had a relatively even distribution of mutations across the entire HA 

protein, while mutations in preimmune-vaccinated mice were most dense in the receptor binding 

domain (Figure 3.4A). 

To further evaluate which mutations were the result of selection pressure by the host 

immune background, I aligned the HA sequences in MEGA [185] and filtered the mutations to 

include only those shared by the majority of animals of each group (Figure 3.4B). Interestingly, 

the number of shared mutations between animals of a group was not associated with the overall 

number of SNPs that persisted in that group; for example, although preimmune-mock and 

preimmune-vaccinated animals show a similar number of SNPs across the HA gene, preimmune-

mock vaccinated animals have 5X as many shared SNPs within their group compared to 

preimmune-vaccinated mice (Figure 3.4B; summarized in Table 3.2). To determine how each of 

these mutations may impact protein structure and antigenicity, I next generated protein folding 

predictions for the HA amino acid sequences for each immune background using the Phyre2 

platform [188]. Structural information in protein database (PDB) format from Phyre2 was uploaded 

into PyMOL (The PyMOL Molecular Graphics System, Version 2.3.5, Schrödinger, LLC) to 

generate a representative 3D model containing the immune background-specific mutations for 

each group (Figure 3.5). Since only mutations shared between animals of a group were included 

in the sequence from which the folding predictions were derived, only those shared mutations are 

shown in Figure 3.5.  

One mutation in the receptor binding domain of HA, specifically D222G, was detected in 

mice of all immune backgrounds and was the only mutation common to all mice within the 

preimmune-vaccinated group (Figure 3.5). However, for each of the remaining immune 

backgrounds, group-specific mutations were identified in both the head and stalk regions of HA 

(Table 3.2). Naïve-mock vaccinated mice had several group-specific mutations in the stalk region 
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of the protein, including N38K, K40T, I427V, and H469Y, as well as L425M shared with naïve-

vaccinated mice (Table 3.2).  Group-specific mutations were also detected in the HA stalk region 

in naïve-vaccinated mice, such as K43N; however, three mutations (W150, L151P, and S183P) 

emerged in the receptor-binding domain of HA that were not found in naive-mock vaccinated 

animals (Figure 3.5; Table 3.2). Finally, preimmune-mock vaccinated mice shared only P182Q 

in the receptor-binding domain, and G350V in the protein stalk (Figure 3.5; Table 3.2).   

 

 

Figure 3.5 Folding models of immune background-specific SNPs on influenza virus 
hemagglutinin after Mex/09 challenge in mice show the highest group-specific SNPs in 
naïve-vaccinated animals. 
At three days post-challenge with A/Mexico/4108/2009 (Mex/09), the presence of viral mutations 
on ten influenza virus genes was assessed by viral RNA extraction and sequencing. The HA gene 
sequences were aligned using MEGAX, and only SNPs found in most animals of an experimental 
group were retained in the sequence. To predict the possible structural and downstream antigenic 
impact of each immune background-specific amino substitution, a representative 3D model of 
each HA protein was generated using the Phyre2 platform 
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). The protein images were generated 
in PyMol (The PyMOL Molecular Graphics System, Version 2.3.5, Schrödinger, LLC) to show 
both sphere (top) and ribbon (bottom) conformations. Only amino acid substitutions shared within 
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animals of a group were included in the protein folding predictions. Group-specific SNPs are 
highlighted in bold, and non-bolded text represents SNPs not unique to a group. 

Considering that changes in protein shape can impact immune recognition by humoral 

immune defences, I next analyzed the potential effect of each amino acid substitution on HA 

protein structure (summarised in Table 3.2). Using the Phyre2-generated PDB file for the stock 

virus as the “wild-type” HA model, each amino acid substitution was input into Missense3D [189] 

manually to estimate structural damage.  Here I found that several mutations found on HA across 

immune backgrounds had predicted structural damage with respect to protein folding (Table 3.2). 

In naïve-mock vaccinated mice, the H469Y mutation in the stalk region of HA led to contraction 

(>70Å) of the cavity found in this region. Also found in naïve-mock vaccinated mice, two 

substitutions in the F’ subdomain (N31K, N38K) and one in the fusion subdomain (I427V) were 

each predicted to expand the cavity volume (Table 3.2). Of the nine substitutions found to be 

shared between naïve-vaccinated animals post-challenge, three had substantial predicted 

structural impacts; these were K43N in the vestigial esterase domain, which was predicted to 

cause a buried residue to become exposed; S183P in the receptor binding domain, which was 

predicted to cause a buried to exposed residue switch as well as disallowed psi/phi angles; and 

N355R, which lead to a cavity contraction < 70Å (Table 3.2) [215]. Finally, three of the five 

substitutions found in preimmune-mock vaccinated animals had reported structural damage. One 

of these fell in the receptor-binding domain (P182Q) and lead to a cavity contraction < 70Å. The 

remaining two substitutions occurred in the fusion domain; G350V lead to the replacement of a 

glycine residue, and N355R lead to cavity contraction < 70Å as in the naïve-vaccinated mice 

(Table 3.2).  

Although shared mutations on HA were found within all four immune backgrounds, the 

number of shared mutations per immune background seems to follow the trend identified in the 

previous section relating to the number and frequency of SNPs. Even when examining non-
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synonymous SNPs that are shared within animals of a group post-challenge, we see that the 

greatest number of mutations occurs in naïve-vaccinated and preimmune-mock vaccinated 

animals. The least mutations were observed when previous infection and vaccination are 

combined, or when an animal has no influenza virus exposure prior to challenge. Furthermore, 

the Missense3D prediction data suggested that at least some of these group-specific mutations 

may have a structural impact on the HA protein, which has implications on downstream protein 

function and antigenicity.  
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Table 3.2 Summary of immune background-specific single nucleotide polymorphisms on 
influenza virus hemagglutinin and potential structural damage predicted by Missense3D. 

Group SNP (H1 numbering) Protein subdomain* Missense3D prediction 

Naïve-mock 
vaccinated 

N31K F’ (N-term) Expands cavity volume > 70Å 

N38K F’ (N-term) Slightly expands cavity volume < 70Å 

K40T F’ (N-term) None detected 

D222G RB Affects receptor binding 

L425M F None detected 

I427V F Expands cavity volume 

H469Y F Largely contracts cavity volume 

Naïve- 
vaccinated 

K43N VE Buried/exposed residue switch; slight cavity contraction 

W150 RB NA 

L151P RB None detected 

S183P RB Disallowed psi/phi angles; buried/exposes residue switch; 
slight cavity contraction 

D222G RB Affects receptor binding 

Y351 F NA 

N355R F Slight cavity contraction 

E356K F None detected 

L425M F None detected 

Preimmune-mock 
vaccinated 

P182Q RB Slight cavity contraction 

D222G RB Affects receptor binding (previously described) 

G350V F Replaces buried glycine residue 

N355R F Slight cavity contraction 

E356K F None detected 

Preimmune-
vaccinated D222G RB Affects receptor binding (previously described) 

*RB = receptor-binding domain; F = fusion domain; VE = vestigial esterase domain [215]. 
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3.6 Immune background-specific mutations identified in the hemagglutinin protein alter 
predicted antigenicity 

Amino acid mutations can lead to changes in antigenicity with respect to B cell epitopes 

and the specific peptides presented to host T cells. Specifically, T cell epitopes are linear peptides, 

consisting of approximately 8-11 amino acids for MHC class I, while B cell epitopes typically 

require a 3D confirmation of continuous or discontinuous amino acids for recognition [216]. Since 

both arms of the immune system are important for clearing a pathogen and establishing immune 

memory for future protection, I assessed the predicted B cell and T cell epitopes for the HA 

molecules sequenced from each immune background.  

Starting with the group-specific HA folding models generated by Phyre2, I input each 

protein sequence into the DiscoTope 2.0 server from DTU Health Tech [192] to map the 

discontinuous B cell epitopes per immune background (Figure 3.6). For this analysis, I used the 

default DiscoTope threshold of -3.7 (0.47 sensitivity, 0.75 sensitivity), which is the least 

conservative threshold for selecting B cell epitopes. As shown in Figure 3.6A, peaks appearing 

above and below the prediction threshold indicate regions that are likely and unlikely to be B cell 

epitopes, respectively. The DiscoTope scoring along the amino acid sequence associated with 

each immune background suggests that HA, with respect to B cell epitopes, had potential 

antigenic changes at three days post-challenge. As shown in Figure 3.6B, there are marked 

differences in the predicted B cell epitopes, both in the “size” of the epitope (i.e., the number of 

amino acids included in an epitope), and in the DiscoTope score (i.e., propensity to be a B cell 

epitope) when compared to the reference Mex/09 HA sequence. Differences in predicted B cell 

epitopes were evident in both the head (amino acids 42-272) and stalk (331-552) regions of the 

protein (Figure 3.6C). Specifically, the epitope appearing at residues 137-147 in the receptor-

binding domain of HA scores more highly in the naïve-vaccinated group compared to the Mex/09 

reference or the other immune backgrounds (Figure 3.6B). Other regions of the RBD, specifically 
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at residues 197-215 and 227-241, had increased DiscoTope scores in naïve-vaccinated mice 

compared to the other sequences (Figure 3.6B). Another small epitope occurring at residue 261 

was also apparent in HA from naïve-vaccinated animals only (Figure 3.6B). Other predicted 

epitope changes occurred outside of the RBD of HA. The predicted epitope at residues 405-416 

in the fusion subdomain was larger with respect to the number of amino acids included in the 

epitope in naïve-vaccinated, preimmune-mock vaccinated, and preimmune-vaccinated groups. 

Another predicted epitope region in the fusion subdomain, specifically at residues 496-505, was 

expanded in the preimmune-vaccinated group (Figure 3.6B). Taken together, my analysis of 

predicted B cell epitopes using DiscoTope showed that immune background-specific mutations 

occurring on the HA protein after challenge may lead to antigenic differences. These differences 

were most prominent in the HA of naïve-vaccinated animals and occurred in both the globular 

head and stalk regions of HA. 
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Figure 3.6 Influenza virus hemagglutinin proteins show changes in predicted B cell 
epitopes after viral replication in mice with varying immune backgrounds. 
Immune memory toward influenza viruses was established in mice by differentially infecting or 
vaccinating (preimmunity) to generate naïve-mock vaccinated, naïve-vaccinated, preimmune-
mock vaccinated, and preimmune-vaccinated animals. All mice were then subject to challenge 
with a lethal dose of Mex/09 and lung viral RNA was extracted. The RNA isolated at three days 
post-challenge was sequenced on the Illumina platform. Folding models of HA containing immune 
background-specific mutations were generated with the Phyre2 platform 
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). Surface epitopes along HA were 
predicted using DiscoTope 2.0 (DTU Health Tech) (http://www.cbs.dtu.dk/services/DiscoTope/_). 
(A) DiscoTope scores falling below (blue) and above (red) the B cell epitope prediction threshold 
of -3.7 (0.47 sensitivity, 0.75 specificity) were mapped against amino acid sequence number for 
reference Mex/09 (NCBI accession no. GQ223112) and HA extracted from mice of varying 
immune backgrounds post-challenge. (B) Only the positive B cell epitope prediction results are 
shown for greater resolution of the B cell epitope regions. Arrows highlight notable differences in 
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Naïve-mock 
vaccinated
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DiscoTope scores compared to reference Mex/09, which fall within and outside of the RBD of HA. 
C) Representative folding models of the HA protein showing predicted B cell epitopes after 
challenge in mice of different immune backgrounds were made in PyMol (The PyMOL Molecular 
Graphics System, Version 2.3.5, Schrödinger, LLC). DiscoTope scores are shown as heatmaps 
along the folded protein, with residues colored according to their predicted score: yellow indicates 
positively predicted B cell epitopes (scores > -3.7 threshold), red indicates high-scoring amino 
acids, and blue indicates low scoring regions (i.e., unlikely B cell epitopes). Figures A and B were 
generated using the R ggplot2 package version 3.3.2. 

Finally, I evaluated whether immune background-specific mutations occurred in regions 

of HA that were likely to be presented on MHC class I molecules in the mouse model, thus 

interacting with specific CD8+ T cell receptors. Using IEDB NetMHCpan EL 4.1, the highest 

scoring peptides were predicted to be on H2-Db and H2-Kb alleles that were specific to at least 

one immune background at three days post-challenge (summarized in Table 3.3). This analysis 

found several high-affinity, immune-background specific peptides across the HA protein that were 

not found in the stock Mex/09 virus.  For example, the peptide LVLLENERTL from amino acids 

443-442 (stalk region) was specific to naïve-mock vaccinated animals, while the peptide 

NAEMLILLENERTL (437-450) spanning the same region of HA scored more highly and was 

specific to naïve-vaccinated animals (Table 3.3).  Additionally, the viral sequences emerging from 

naïve-vaccinated animals contained several novel peptides in the RBD of HA (specifically 157-

168) that were not identified in the other immune backgrounds (Table 3.3).  
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Table 3.3 High-affinity MHC class I-binding peptides derived from immune background-
specific hemagglutinin protein sequences using NetMHCpan EL 4.1. 

Group Allele Location Peptide Score Percentile rank 

Stock H-2-Db 138-149 SSWPNHDSNKGV 0.223368 0.44 

Naïve-mock vaccinated 

H-2-Db 

443-452 LVLLENERTL 0.13495 0.94 

439-452 NAEMLVLLENERTL 0.16571 0.7 

41-49 VTVTHSVKL 0.165951 0.7 

438-446 YNAEMLVLL 0.181361 0.6 

207-217 SIYQNADAYVF 0.201008 0.51 

207-215 SIYQNADAY 0.269355 0.33 

207-216 SIYQNADAYV 0.389948 0.17 

444-452 VLLENERTL 0.684796 0.04 

H-2-Kb 

438-446 YNAEMLVLL 0.309654 0.81 

444-452 VLLENERTL 0.382233 0.55 

43-50 VTHSVKLL 0.435597 0.41 

41-49 VTVTHSVKL 0.794774 0.06 

Naïve- 
vaccinated 

H-2-Db 

436-444 YNAEMLILL 0.150642 0.82 

437-450 NAEMLILLENERTL 0.16571 0.7 

160-168 SFYRNLIPV 0.323185 0.23 

H-2-Kb 

436-444 YNAEMLILL 0.277149 0.95 

160-168 SFYRNLIPV 0.294991 0.87 

158-165 AKSFYRNL 0.430483 0.43 

156-165 AGAKSFYRNL 0.486693 0.34 

159-166 KSFYRNLI 0.531279 0.26 

157-165 GAKSFYRNL 0.795388 0.06 

Preimmune-mock vaccinated H-2-Db 359-367 TGMVDGWYV 0.498793 0.1 

Naïve-mock vaccinated + 
naïve- 

vaccinated 

H-2-Kb 

434-442/432-440 DIWTYNAEM 0.255978 1.1 

435-442/433-440 IWTYNAEM 0.240496 1.2 

435-443/433-441 IWTYNAEML 0.105114 3 

436-443/434-441 WTYNAEML 0.290618 0.9 

H-2-Db 
435-443/433-441 IWTYNAEML 0.035329 3.4 

436-443/434-441 WTYNAEML 0.077136 1.7 

Stock + preimmune-mock vaccinated + 
preimmune vaccinated 

H-2-Kb 
435-442 IWTYNAEL 0.337446 0.68 

434-442 DIWTYNAEL 0.374151 0.57 

H-2-Db 439-452 NAELLILLENERTL 0.16571 0.7 
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Overall, the greatest number of high-affinity, group-specific peptides were found in viral 

sequences isolated from naïve-mock vaccinated animals, with the least found from both 

preimmune groups. The presence of group-specific peptides that were likely to be presented on 

MHC class I suggested immune background-specific activation of CD8+ T lymphocytes and the 

resulting variant viruses that emerge or are propagated in the lung have a different antigenic 

signature.  

Together with my B cell epitope analysis, I found that specific immune backgrounds were 

associated with unique amino acid changes affecting predicted B cell and T cell epitopes on the 

virus. These results suggest that the immune pressure developed by specific previous encounters 

with influenza viral antigens, whether through previous infection or vaccination, can select for 

novel influenza virus variants. 

3.7 Immune background-specific mutations occur on influenza viral proteins 
nucleoprotein (NP), neuraminidase (NA), and polymerase basic 1 (PB1)  

Although HA is the immunodominant viral protein, other proteins on the surface as well as 

internal to the virion can contribute to virus antigenicity [217]. These viral proteins can be 

recognized by homologous and cross-reactive CD8+ T cells and antibodies during a subsequent 

encounter with the same or different influenza virus [173,105,218–220,103]. Because these 

proteins are potential antigenic targets at an influenza virus infection, I hypothesized that they 

may be subject to immune background-driven selection of mutations when the host is infected. 

To this end, I aimed to determine if the mutations acquired on other influenza viral proteins 

affected protein structure and antigenicity, as I had done for the HA protein in the previous section. 

My analysis focused on the nucleocapsid protein (NP), which is internal and highly conserved; 

neuraminidase (NA), an external major antigen; and polymerase basic 1 (PB1), a highly 

conserved polymerase subunit [9]. 
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As in my previous analysis of HA mutations, I first mapped the NP, NA, and PB1 

sequences extracted at three days post-challenge to Mex/09 reference segments in Geneious 

(described above). I then used the SNPs and variants tool in Geneious to identify all mutations 

occurring above 1% frequency. Next, all non-synonymous SNPs found in NP, NA, and PB1 were 

plotted along the amino acid sequence number of each protein to determine patterns across 

groups (Figure 3.7). With respect to the number of SNPs detected across immune backgrounds, 

NP showed a similar trend to HA, with the greatest number of SNPs found in naïve-vaccinated 

animals, and the least in preimmune-vaccinated animals (Figure 3.7). In contrast, NA showed the 

most detectable mutations in naïve-mock vaccinated animals, and PB1 mutations were most 

dense in naïve-vaccinated and preimmune-mock vaccinated groups (Figure 3.7). 

 

Figure 3.7 Location and frequency of SNPs on influenza virus nucleoprotein (NP), 
neuraminidase (NA), and polymerase basic 1 (PB1) amino acid sequences after Mex/09 
challenge in mice of different immune backgrounds. 
At three days post-challenge with Mex/09, viral RNA from infected mouse lungs was sequenced 
using Illumina MiSeq and aligned to reference Mex/09 NP, NA, and PB1 using Geneious (NCBI 
accession numbers GQ149655 (NP), GQ149650 (NA), and GQ149652 (PB1)). The SNPs and 
variants above 1% frequency were detected for all influenza virus genes. Stock Mex/09 used to 
inoculate animals was sequenced in parallel to determine the existing sequence variation at input. 
The non-synonymous SNPs found in NP, NA, and PB1 gene sequences after introduction to 
naïve-mock vaccinated, naïve-vaccinated, preimmune-mock vaccinated, and preimmune-
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vaccinated mice were plotted against the amino acid sequence number (1 band = 1 SNP). A 
schematic of each protein is shown where a line represents an amino acid change, generating a 
bar-code effect for each SNP profile. The color of the band represents the relative frequency of 
each mutation among the total population of viruses sequenced. The figure was generated using 
the ggplot2 package version 3.3.2.  

To further determine which mutations may have arisen from immune-background 

selection at challenge, I filtered the total mutations on NP, NA, and PB1 shown in Figure 3.7 to 

include only those shared among animals in a group (Figure 3.8) and assessed each of these 

mutations for structural impact using Missense3D (described above) (Table 3.4).  In NP, as with 

HA, I noted the greatest number of mutations in naïve-vaccinated animals (Table 3.4). These 

were R31G, D101G, D128E, and deletion of arginine at residue 441 (Table 3.4). Viral NP 

sequences from all four immune backgrounds contained a T130K mutation in the body region of 

the protein [221], which was predicted to largely expand the volume of the cavity found in this 

region (Table 3.4). Moreover, the D to E change at amino acid 128 in NP was shared among all 

groups, except for preimmune-vaccinated mice (Figure 3.8). No structural modifications were 

identified from D128E by Missense3D (Table 3.4). 
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Figure 3.8 Influenza virus nucleoprotein (NP), neuraminidase (NA), and polymerase basic 
1 (PB1) show immune background-specific mutations at Mex/09 challenge. 
At three days post-challenge with A/Mexico/4108/2009 (Mex/09), the presence of viral mutations 
on ten influenza virus genes was assessed by viral RNA extraction and sequencing. Viral 
sequences were aligned to reference Mex/09 (accession no. GQ149655 (NP), GQ149650 (NA), 
and GQ149652 (PB1)) and variants above 1% frequency were detected. Only SNPs found in 
most animals of an experimental group were retained in the amino acid sequence for downstream 
analysis. To predict the possible structural and downstream antigenic impact of each immune 
background-specific amino substitution, a representative 3D model of each NP, NA, and PB1 for 
each immune background was generated using the Phyre2 platform 
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). The protein images were generated 
in PyMol (The PyMOL Molecular Graphics System, Version 2.3.5, Schrödinger, LLC) to show 
both sphere (left) and ribbon (right) conformations. Only amino acid substitutions shared within 
animals of a group were used to generate folding predictions. *The transmembrane (stalk) domain 
of neuraminidase was not included in the model. 

Table 3.4 Summary of immune-background specific mutations detected on influenza viral 
nucleoprotein (NP), neuraminidase (NA), and polymerase basic 1 (PB1) and predicted 
structural impact at three days post-challenge. 

Nucleoprotein (NP) 

Group SNP Protein Subdomain  Missense3D prediction 

Naïve-mock vaccinated 

D101G Body None; present in stock virus 

K91R Body Slightly contracts cavity volume 

D128E Body None detected 

T130K Body Largely expands cavity volume 

Naïve- 
vaccinated 

R31G Body Slight cavity expansion 

D101G Body * 

D128E Body None detected 

T130K Body Largely expands cavity volume 

R441 Bottom/tail region NA 

Preimmune-mock vaccinated 

D101G Body * 

D128E Body None detected 

T130K Body Largely expands cavity volume 

Preimmune-vaccinated 
D101G Body * 

T130K Body Largely expands cavity volume 

Neuraminidase (NA) 

Group  SNP (N1 
Numbering) Protein Subdomain  Missense3D prediction 

Naïve-mock vaccinated  
E47G Stalk Contract cavity volume 

Q51E Stalk Expands cavity volume 
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Neuraminidase (NA) 

Group  SNP (N1 
Numbering) Protein Subdomain  Missense3D prediction 

Naïve-mock vaccinated 
C292S Head Disulfide bond breakage 

S350 Head Deletion 

Naïve- 
vaccinated  

C290S Head Disulfide bond breakage and expands cavity 
volume 

V291E Head Introduces buried hydrophilic and charged 
residue and expands cavity volume 

C292S Head Disulfide bond breakage 

Preimmune-mock vaccinated  
I38T Stalk Contract cavity volume 

C292S Head Disulfide bond breakage 

Polymerase basic 1 (PB1) 

Group SNP Protein Subdomain  Missense3D prediction 

Naïve- 
vaccinated 

L95P cRNA promoter 
binding site 

Buried proline introduced, cavity altered and 
buried/exposed switch; may affect the cRNA 

promoter binding 

M246I Putative nucleotide 
binding site No structural damage detected  

D617A 
vRNA promoter 

binding site  
(C-term) 

Salt bridge between ASP 617 and ARG 623 
disrupted; may inhibit vRNA promoter binding  

G622R 
vRNA promoter 

binding site 
(C-term) 

Exposed charge introduced; may inhibit vRNA 
promoter binding  

L624F 
vRNA promoter 

binding site 
(C-term) 

May inhibit vRNA promoter binding 

S712Y 
C-term  

(Core interaction with 
PB2) 

Expand cavity volume by 4.968 Å^3 

 

I noted several group-specific mutations across NA, including E47G and Q51E (N1 

numbering) located in the stalk domain of sequences from naïve-mock vaccinated and challenged 

mice (Table 3.4). Additionally, a V291E mutation was identified in the head domain of NA 
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extracted from naïve-vaccinated animals, and I38T in the stalk domain of NA from preimmune-

mock vaccinated animals (Figure 3.8; Table 3.4). As with HA, I detected the greatest number of 

group-specific mutations on NA from naive-vaccinated mice (Figure 3.8), where the number of 

shared mutations within a group was not associated with the total number of SNPs found in that 

group (Figure 3.7). Apart from preimmune-vaccinated mice, all groups shared NA sequences 

with a C to S substitution at amino acid 292 in the head domain. When examining structural 

impacts of each mutation using Missense3D, I found that certain group-specific substitutions on 

NA lead to possible structural damage (Table 3.4). For example, C292S present in all immune 

backgrounds was predicted to induce disulfide bond breakage; V291E in naïve-vaccinated mice 

would introduce buried hydrophilic and charged residues and greatly expand the predicted cavity 

volume; and I38T from the preimmune-mock vaccinated group would contract the NA stalk 

domain cavity (Table 3.4). 

Interestingly, only PB1 extracted from preimmune-vaccinated mice had mutations evenly 

distributed across the entire sequence. As shown in Figure 3.7, PB1 sequences isolated from 

other immune backgrounds generally had most mutations concentrated at the 3’ and 5’ region of 

the PB1 sequence, and preimmune-vaccinated mice viral sequences lacked mutations in this 

region. When accounting only for mutations shared between animals of a particular immune-

background, mutations on PB1 were only detected in the naïve-vaccinated animals (Figure 3.8). 

These mutations occurred in several functional domains of the protein, including L95P in the 

cRNA promoter binding site; M246I in the putative nucleotide binding site; and D617A in the vRNA 

promoter binding site (Figure 3.8; Table 3.4) [222]. Prediction of the amino acid substitution effect 

on protein structure using Missense3D determined that PB1 mutations induced structural 

alterations to the protein that may impact function. For example, L95P introduces a buried proline 

and causes a switch of buried/exposed residues, and D617A disrupts the salt bridge between 

ASP 617 and ARG 623 (Table 3.4). 
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Since the amino acid changes identified in NP, NA, and PB1 may impact protein structure 

and therefore recognition by the host immune system, I next aimed to determine whether the 

background-specific viral mutations would impact antigenicity with respect to B cell epitopes and 

MHC I peptide presentation (Figure 3.9). Using scores derived from DiscoTope, I plotted the B 

cell epitope score along the variant amino acid sequences for NP, NA, and PB1 for each immune 

background (Figure 3.9, Figure 3.10). For NP, there were clear differences in the height and 

width of peaks corresponding to predicted B cell epitopes in naïve-vaccinated and preimmune-

mock vaccinated hosts, specifically at residues 0-25 and 450-500 (Figure 3.9). Differences in 

predicted B cell epitopes were not observed for NA, aside from an additional peak found in viruses 

from naïve-vaccinated, preimmune-mock vaccinated, and preimmune-vaccinated groups at the 

far 5’ end of the NA sequence, which likely corresponds to the transmembrane region (Figure 

3.9).  I did not observe any differences in predicted B cell epitopes for PB1 (Figure 3.9).  
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Figure 3.9 Predicted B cell epitopes on influenza virus nucleoprotein (NP), neuraminidase 
(NA), and polymerase basic 1 (PB1) after Mex/09 challenge in mice with varying immune 
backgrounds show minimal differences between groups. 
At three days post-challenge with A/Mexico/4108/2009 (Mex/09), the presence of viral mutations 
on ten influenza virus genes was assessed by viral RNA extraction and sequencing. The 
nucleoprotein (NP), neuraminidase (NA), and polymerase basic 1 (PB1) gene sequences were 
aligned using MEGAX, and only SNPs found in most animals of an experimental group were 
retained in the sequence. To predict the possible structural and downstream antigenic impact of 
each immune background-specific substitution, a representative 3D model of each protein was 
generated using the Phyre2 platform 
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). Surface epitopes along NP, NA, 
and PB1 were predicted using DiscoTope 2.0 (DTU Health Tech) 
(http://www.cbs.dtu.dk/services/DiscoTope/_). (A) DiscoTope scores falling below (blue) and 
above (red) the B cell epitope prediction threshold of -3.7 (0.47 sensitivity, 0.75 specificity) were 
mapped against amino acid sequence number for NP, NA, and PB1 to show regions of likely and 
unlikely B cell epitopes. Epitope maps for each immune background are compared to that of the 
respective Mex/09 reference protein, which are as follows: NP (GQ149655), NA (GQ149650), 
and PB1 (GQ149652). (B) Only the positive B cell epitope prediction results are shown for greater 
resolution of the B cell epitope regions. Arrows highlight any notable differences in DiscoTope 
scores compared to reference Mex/09. All figures were generated in using the ggplot2 package 
version 3.3.2. 

Nucleocapsid protein Neuraminidase Polymerase basic 1



 73 

 

Figure 3.10 Structural models of predicted B cell epitopes for influenza virus nucleoprotein 
(NP), neuraminidase (NA), and polymerase basic 1 (PB1) after challenge in mice of varying 
immune backgrounds show minimal differences in predicted epitopes. 
Amino acid substitutions specific to immune background were assessed by aligning viral 
sequences to reference Mex/09 (NCBI accession numbers as follows: NP (GQ149655), NA 
(GQ149650), and PB1 (GQ149652)) and detecting variants above 1% frequency. Folding models 
of NP, NA, and PB1 were generated using the Phyre2 platform 
(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index), with only amino acid substitutions 
shared within animals of a group used to generate folding predictions for each viral protein. 
Surface epitopes along NP, NA, and PB1 were predicted using DiscoTope 2.0 (DTU Health Tech) 
(http://www.cbs.dtu.dk/services/DiscoTope/_) with a non-conservative prediction threshold of -3.7 
(0.47 sensitivity, 0.75 specificity). DiscoTope scores were mapped against amino acid sequence 
number of reference Mex/09 NP, NA, and PB1. DiscoTope scores are shown as heatmaps along 
the folded protein, with residues colored according to their predicted score: yellow indicates 
positively predicted B cell epitopes (scores > -3.7 threshold), red indicates high-scoring residues, 
and blue indicates low scoring regions (i.e., unlikely B cell epitopes). The protein images were 
generated in PyMol (The PyMOL Molecular Graphics System, Version 2.3.5, Schrödinger, LLC). 
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As with my analysis of HA, I then used IEDB NetMHCpan to determine changes in CD8+ T 

cell receptor recognition of NP, NA, and PB1 by analyzing the highest-scoring peptides presented 

on H2-Db and H2-Kb alleles. I found several group-specific peptides across NP, NA, and PB1, 

suggesting that variant amino acid sequences may be presented on MHC I molecules and 

differentially activate CD8+ T cells, giving the variant proteins a unique antigenic presentation. 

3.8 Transcriptomic analysis of host immunity in the lung shows polarizing immune 
responses per immune background that may drive differential viral mutation at 
challenge 

To parallel my analysis of influenza viral protein mutations at three days post-challenge, I 

characterized the host immune response in the lungs at this time point to identify the immune 

pressure exerted by each pre-existing immune background. I hypothesized that immune 

responses defined by transcriptomic analysis may give insight into the origins of the mutations 

noted in the viral proteins. To this end, RNA sequencing using the Illlumina NovaSeq 6000 

Sequencing System at Novogene (Sacramento, CA, USA) was performed on host lung RNA 

extracted three days post-challenge to sequence the transcriptome. Like the viral sequences, host 

lung transcripts were uploaded to the SRA under BioProject ID PRJNA787976 

(https://www.ncbi.nlm.nih.gov/biosample?Db=biosample&DbFrom=bioproject&Cmd=Link&LinkN

ame=bioproject_biosample&LinkReadableName=BioSample&ordinalpos=1&IdsFromResult=78

7976, see Appendix 1). Lung gene expression was quantified in terms of fragments per kilobases 

mapped (FPKM) to Mus musculus mm10 exons to calculate gene expression fold-change. I 

initially compared the significant (p-value < 0.05) differentially expressed genes (DEGs) between 

the four immune backgrounds to assess broad similarities and/or differences in the immune 

response profiles as per numbers of shared genes expressed (Figure 3.11A). At three days post-

challenge, a core 625 genes were significantly up- or down-regulated, regardless of immune 
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background, as shown in the Venn diagram (Figure 3.11A). Mice of each immune background 

had significant DEGs that were not shared with the other groups, with 227 DEGs in naïve-mock 

vaccinated, 1822 in naïve-vaccinated, 305 in preimmune-mock vaccinated, and 872 in 

preimmune-vaccinated mice (Figure 3.11A).  

 

Figure 3.11 Lungs of mice of different immune backgrounds have different gene 
enrichment profiles at three days post-Mex/09 challenge. 
Adult C57Bl/6j mice of varying immune backgrounds (naïve-mock vaccinated, naïve-vaccinated, 
preimmune-mock vaccinated, and preimmune-vaccinated) were infected with a lethal dose of 
influenza virus A/Mexico/4108/2009 (Mex/09). At three days post-inoculation, total RNA was 
extracted from mouse lungs and the host transcripts were sequenced using the Illumina platform. 
Host gene expression was quantified as fragments per kilobases mapped (fpkm), and the log2(fold 

A

B C
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change) was calculated relative to non-infected mice. Differentially expressed genes for each 
immune background were calculated by analysis of variance comparing the fold change to non-
infected control lung RNA (significance threshold p < 0.05). (A) Lists of significant differentially 
regulated genes were compared across immune backgrounds. Similarities and differences in 
gene regulation between groups are shown in a Venn diagram, indicating that the naïve-
vaccinated animals have the most non-shared differentially regulated genes. The figure was 
generated in R using the VennDiagram package version 1.6.20. (B) The lists of differentially 
regulated genes for each immune background were uploaded to The Database 
for Annotation, Visualization and Integrated Discovery (DAVID) version 6.8 functional annotation 
tool (https://david.ncifcrf.gov/home.jsp). Lists of enriched gene ontology (GO) biological 
processes were downloaded for each immune background, and the fold enrichment metric 
calculated by DAVID was plotted for each pathway. GO biological processes were loosely 
separated into “innate” or (C) “adaptive” immune pathways to more easily compare gene 
enrichment profiles across immune backgrounds. The figure was generated using ggplot2 version 
3.3.2. 

Overall, differential gene expression at challenge was least observed in naïve-mock 

vaccinated animals, with only 1621 total DEGs detected, compared to 3000-4600 DEGs in the 

other groups (Figure 3.11A). However, the majority of these DEGs (78%) were also differentially 

expressed in naïve-vaccinated animals, indicating a high degree of similarity in the immune 

response profiles, despite a large difference in the number of DEGs overall. In contrast, only 48% 

of the DEGs found in naïve-mock vaccinated animals were also found in preimmune-vaccinated 

mice, pointing to a core innate immune response shared among the animals. Naïve-vaccinated 

mice had the greatest differential gene expression at challenge, with 4680 genes differentially 

regulated relative to the baseline. When comparing the DEGs present in naïve-vaccinated 

animals to those found in the other immune backgrounds, naïve-vaccinated mice were most 

similar to preimmune-mock vaccinated animals, with 2413 (52%) of the DEGs shared between 

both groups (Figure 3.11A).  

Next, I input the DEG lists from each experimental group into The Database for 

Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/home.jsp). 

To characterize the dominant immune response pathways of each group at challenge, I used the 

functional annotation tool to perform enrichment analysis. I looked specifically at gene ontology 
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(GO) biological processes that were enriched for each group, categorizing each pathway as either 

an innate (Figure 3.11B) or adaptive (Figure 3.11C) immune response. With respect to enriched 

immune pathways at challenge, I noted distinct immune response profiles for each of the four 

immune backgrounds. With respect to innate signalling, naïve-mock vaccinated mice had a strong 

proinflammatory and antiviral response at challenge, highly enriched by monocyte chemotaxis, 

chemokine (e.g., IL-8) signalling, proinflammatory signaling (e.g., IL-1beta and IL-6), and type I 

and type II interferon response genes (Figure 3.11B). Similar to naïve-mock vaccinated animals, 

naïve-vaccinated mice had enrichment of antiviral (type 1 interferons) and inflammatory response 

genes and pathways (IL-8, IL-6, and TNF), marked by chemotaxis and cell adhesion (Figure 

3.11B). However, naïve-vaccinated mice were also enriched in toll-like receptor (TLR) signalling 

and MyD88-dependent TLR signalling pathways, which were not observed in naïve-mock 

vaccinated animals. Preimmune mice had several commonalities as well as key differences in 

innate immune involvement at challenge compared to naïve-mock and naïve-vaccinated groups. 

As found in the naïve animals, I noted enrichment of IFN-beta and -gamma production, leukocyte 

chemotaxis and cell-cell adhesion, macrophage activation, and TNF production in the preimmune 

animals (Figure 3.11B). Like the naïve-vaccinated mice, TLR signalling and MyD88-dependent 

TLR signalling transcripts were enriched in the preimmune-vaccinated animals.  

Differences were also found between the innate immune responses of the preimmune 

groups. Additional enriched pathways such as positive regulation of natural killer (NK) cell 

activation, IL-1beta, and IL-17 were noted, with concomitant negative regulation of IL-10 found 

only in preimmune-mock vaccinated mice (Figure 3.11B). Interestingly, preimmune-vaccinated 

mice displayed enrichment profiles that were distinct from the other groups and marked by 

monocyte, macrophage, neutrophil, and eosinophil chemotaxis gene enrichment (Figure 3.11B). 

Preimmune-vaccinated mice had IFN-beta enrichment at a similar magnitude to the preimmune-

mock vaccinated mice. However, the IFN-gamma and proinflammatory cytokines IL-1 and TNF 
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as well as gene for NK cell chemotaxis were more highly enriched in the preimmune-vaccinated 

animals compared to the naive-vaccinated mice (Figure 3.11B).  

Enrichment of genes for adaptive immune pathways at challenge was minimal in naïve-

mock vaccinated and naive-vaccinated animals (Figure 3.11C). This involvement was restricted 

to positive regulation of T cell-mediated cytotoxicity and T cell proliferation transcripts, which was 

most prominent in the naive-mock vaccinated animals and only moderately enriched in the naive-

vaccinated mice. In contrast, preimmune-mock vaccinated mice had widespread involvement of 

adaptive immunity (Figure 3.11C) with notable enrichment of lymphocyte chemotaxis, B and T 

cell differentiation and proliferation, and T cell-mediated cytotoxicity. Additionally, I found genes 

for cytokines regulating adaptive immune responses such as IL-12 and IL-4 to also be enriched 

in preimmune-mock vaccinated mice (Figure 3.11B and 3.11C). Preimmune-vaccinated mice had 

adaptive gene regulation that was less diverse than the other experimental groups, but more 

highly enriched than preimmune-mock vaccinated mice (Figure 3.11C). Specifically, preimmune-

vaccinated mice had strong enrichment of lymphocyte chemotaxis, positive regulation of T cell 

activation (TCR signaling and co-stimulation) and cytotoxicity, and regulation of T cell proliferation 

(Figure 3.11C). My analysis did not detect enrichment of pathways regulating B cell differentiation 

and proliferation in preimmune-vaccinated mice. 

Finally, I aimed to further describe the specific innate and adaptive immune responses in 

each group at challenge by comparing expression of genes involved in antiviral responses 

(Figure 3.12A), B cell-mediated immunity (Figure 3.12B), T cell-mediated cytotoxicity, and 

activated T cell proliferation (Figure 3.13). As with my enrichment analysis, I observed four unique 

immune response gene profiles across each of these pathways. 
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Figure 3.12 Antiviral and B cell-mediated immune pathway regulation in mouse lungs at 
Mex/09 challenge depends on immune background. 
Adult C57Bl/6j mice of varying immune backgrounds (naïve-mock vaccinated, naïve-vaccinated, 
preimmune-mock vaccinated, and preimmune-vaccinated) were infected with a lethal dose of 
influenza virus A/Mexico/4108/2009 (Mex/09). At three days post-inoculation, total RNA was 
extracted from mouse lungs and sequenced using the Illumina platform. Gene expression was 
quantified as fragments per kilobases mapped (fpkm), and the log2(fold change) was calculated 
relative to non-infected mice. (A) The log2(fold change) was plotted for the top differentially 
regulated genes for gene ontology (GO) biological process (BP) terms “defense response to virus” 
(GO:0051607), including antiviral innate immune response genes (GO:0140374). (B) Heatmaps 
were generated for genes falling under several B cell-mediated immune response pathways. The 
gene list was generated by combining genes for GO BP terms “B cell chemotaxis” (GO:0035754), 
“B cell homeostasis”(GO:0001782), “B cell differentiation” (GO:0030183), “negative regulation of 
B cell differentiation” (GO:0045578), “B cell receptor complex” (GO:0019815), “negative 
regulation of B cell receptor signalling” (GO:0050859), “B cell apoptotic process” (GO:0001783), 
and “positive regulation of B cell proliferation” (GO:0030890). The heatmaps were generated with 
ggplot2 package version 3.3.2. 

In general, the antiviral response was most uniformly up-regulated in naïve-vaccinated 

mice, with naïve-mock vaccinated and preimmune-mock vaccinated mice showing similar levels 

of antiviral gene expression to each other (Figure 3.12A). In response to challenge, all groups 

showed up-regulation of inflammatory cytokines Cxcl10, Cxcl9, and IL-6.  All groups also showed 

upregulation of key interferon-stimulated genes (ISGs), such as Oas1a and Oas3, Isg15, Rsad2, 

Mx1, Ifit2 and Ifit3, and Eif2ak2 (Figure 3.12A). However, I observed differences between groups 

in expression of certain antiviral response genes. Notably, the IFN-gamma-induced chemokine 

Cxcl10, which signals chemoattraction of macrophages, T cells, NK cells, and dendritic cells, was 

most highly up-regulated in naïve-vaccinated mice. Interferon gamma (Ifng) and IFN-gamma 

induced chemokine Cxcl9 [223,224] was most strongly up-regulated in preimmune mice, with little 

differential expression in naïve mice. Interestingly, the M-1 macrophage-recruiting protein Spon2 

[225] was highly down-regulated in naïve-mock vaccinated and preimmune-vaccinated mice. I 

also found the inflammasome component Nlrp3 [226,92] to be upregulated in naïve-vaccinated 

mice, with only minor up-regulation in preimmune-mock vaccinated mice. Other apparent 

differences in antiviral response genes may point to increased adaptive immune involvement. For 
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example, Ptrpc/Ptrcap, a regulator of B and T cell activation [227], was up-regulated in preimmune 

groups, but down-regulated or unchanged in naïve mice (Figure 3.12A). 

At challenge, all immune backgrounds showed differential expression of genes involved 

in B-cell mediated immunity (Figure 3.12B). For example, B cell chemoattractants Cxcl13 [228] 

and Xcl1 [229] were highly up-regulated in all groups, although the least up-regulation was 

observed in naïve-mock vaccinated mice. However, I found B cell genes to be most uniformly 

upregulated in preimmune animals. Both preimmune groups showed upregulation of Ighm, 

encoding the heavy chain of IgM; IL-21, which plays a key role in B cell differentiation to plasma 

cells and promotes germinal centre reactions [230]; and CD74, which regulates B cell survival 

[231] (Figure 3.12B). Interestingly, preimmune-vaccinated mice showed greatest up-regulation 

of IL-13, a central regulator of IgE synthesis [232] (Figure 3.12B). Preimmune-vaccinated mice 

showed upregulated Cd79a/b, a component of the B cell receptor complex [233], suggesting 

increased BCR signalling which was not observed in the other groups. 

Finally, I assessed expression of genes involved in T cell-mediated cytotoxicity and 

activation (Figure 3.13). All groups showed up-regulation of genes involved in T cell cytotoxicity.  

For example, I found IL-12b, a subunit of IL-12, to be highly upregulated in all groups, as well as 

granzyme B (Gzmb).  All groups also showed up-regulation of H2-M2, an MHC class I gene, as 

well as beta-2 microglobulin (B2m), an MHC class I subunit [234] where the greatest fold-change 

occurred in preimmune-vaccinated mice. However, I found key differences between groups with 

respect to genes involved in activated T cell proliferation (Figure 3.13). Activated T cell 

proliferation at challenge was most uniformly upregulated in preimmune mice. Preimmune-mock 

vaccinated mice showed strong upregulation of Ido1, which plays a role in suppressing T and NK 

cells [235,236] and generating regulatory T cells [237,238]. Both preimmune groups showed 

upregulation of Pdcd1lg2, encoding programmed cell death 1 ligand 2 which is a key costimulatory 

molecule for T cell proliferation [239]. I also noted Il27ra, which contributes to CD4+ T cell 
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differentiation to Th1 cells [240], to be upregulated in preimmune mice, and down-regulated in 

naïve-mock vaccinated mice (Figure 3.13). Cd24a, which is highly expressed in mouse activated 

T cells [241], was also upregulated in preimmune mice only. 

 

 

Figure 3.13 Preimmune-mock vaccinated animals have highest differential expression of 
genes regulating T cell-mediated cytotoxicity and activated T cell proliferation at three 
days post-Mex/09 challenge. 
Adult C57Bl/6j mice of varying immune backgrounds (naïve-mock vaccinated, naïve-vaccinated, 
preimmune-mock vaccinated, and preimmune-vaccinated) were infected with a lethal dose of 
influenza virus A/Mexico/4108/2009 (Mex/09). At three days post-inoculation, total RNA was 
extracted from mouse lungs and sequenced using the Illumina platform to define the host 
transcriptome. Gene expression was quantified as fragments per kilobases mapped (fpkm), and 
the log2(fold change) was calculated relative to non-infected mice. The log2(fold change) was 
plotted for gene ontology (GO) biological process terms “T cell-mediated cytotoxicity” 
(GO:0001913) and “activated t cell proliferation” (GO:0050798). The heatmaps were generated 
with ggplot2 package version 3.3.2. 
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The results of this enrichment and immune pathway-specific gene expression analysis 

showed polarizing immune responses across the four immune backgrounds. Here I found that 

the immune response of naïve mice at three days post-challenge is dominated by proinflammatory 

and antiviral response pathways, with naïve-vaccinated mice having the highest antiviral 

response activation of all groups. While the antiviral response is also initiated in preimmune 

animals, they quickly shift to adaptive immune mechanisms that are highly skewed toward T cell 

activation and cytotoxicity, although B cell activation was also observed.  Based on these 

differences in immune response, combined with the unique SNP profiles observed on the viral 

proteins of each group, it seems that the specific infection and vaccination status of the mice 

imposed distinct immune pressures corresponding to the mutation on HA, NP, NA, and PB1. 

 

3.9 Summary of Chapter 3 

Changing antigenicity of viral proteins is the single greatest challenge surrounding 

immunity to influenza viruses. With the goal of understanding the host’s role in antigenic drift, our 

group developed differentially infected and vaccinated mouse models to reflect the diverse 

immune backgrounds in the human population. When mice of all immune backgrounds were 

infected with a H1N1 virus heterologous to the initial historical H1N1 viral infection, but 

homologous to the H1 vaccine component, the RNA from the virus populations extracted from the 

mouse lungs three days later showed differences in mutations across both internal (NP, PB1) and 

external (HA, NA) proteins that were specific to their infection and vaccination history (Figure 

3.14). This pattern in mutation was related to the polarizing immune responses observed through 

sequencing of the host lung transcriptome. At challenge, naïve-mock vaccinated mice relied on 

non-specific proinflammatory immune mechanisms while facilitating the highest viral load and 
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driving moderate mutation of viral HA and NP. Previous vaccination primed the antiviral immune 

response in naïve-vaccinated animals, as well as improving B and T cell immune activation at 

challenge. However, the greatest number of mutations were observed across HA, NA, NP, and 

PB1 in naïve-vaccinated animals. Finally, preimmune mice have the greatest activation of 

adaptive immune mechanisms at challenge. These immune pathways were skewed toward T cell 

activation and proliferation along with early production of antibodies. Mice that are preimmune, 

but unvaccinated, showed fewer viral mutations than naïve-vaccinated mice, while combined 

preimmunity and vaccination lead to no shared mutations across viral proteins. Moreover, my 

computational analysis of predicted B cell and T cell epitopes showed that the emerged mutations 

may impact viral antigenicity. The results of this study highlight the important link between the 

infection and vaccination history of the host and the ever-changing antigenicity of influenza 

viruses. Immune memory toward specific antigens encountered through viral infection and 

vaccination form the unique immune pressures that may drive antigenic drift, possibly in 

predictable ways. 
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Figure 3.14 Previous influenza virus infection and vaccination generates selection 
pressure for influenza virus mutation at challenge. 
Immune backgrounds toward influenza viruses were established in mice through sequential 
infection with seasonal H1N1 virus A/Fort Monmouth/1/1947 followed by vaccination with 2009 
pandemic H1N1 to generate naïve-mock vaccinated, naïve-vaccinated, preimmune-mock 
vaccinated, and preimmune-vaccinated animals. Mice of all immune backgrounds were subject 
to challenge with a lethal dose of A/Mexico/4108/2009 (Mex/09), and lung RNA was extracted at 
three days post-challenge for viral and host transcriptome sequencing. Viral proteins HA, NP, NA, 
and PB1 show patterns in mutation what were specific to immune background. At challenge, 
naïve-mock vaccinated mice rely on proinflammatory innate immune mechanisms, which 
facilitated several mutations on HA (external) and NP (internal). Naïve-vaccinated mice show a 
more targeted antiviral response, greater involvement T cell cytotoxicity, and some B cell 
activation; however, this response facilitates the greatest number of mutations on external 
proteins HA and NA, as well as internal NP and PB1. Finally, preimmune mice have the greatest 
activation of adaptive immune mechanisms which are skewed toward T cell activation and 
proliferation, although antibody production was also observed. Mice that are preimmune but 
unvaccinated showed a similar pattern of viral mutation to the naïve-vaccinated mice. Combined 
preimmunity and vaccination lead to no shared mutations across viral proteins. 
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CHAPTER 4 COMPUTATIONAL ANALYSIS OF SAR-COV-2 SPIKE ANTIGENICITY    
SHOWS DIFFERENCES IN PREDICTED B CELL EPITOPES AND GLYCOSYLATION 

SITES ACROSS VARIANTS 

4.1 Introduction to vaccine effectiveness against SARS-CoV-2 variants 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the highly contagious 

respiratory virus responsible for the coronavirus disease of 2019 (COVID-19) pandemic. Efforts 

to develop effective vaccines against SARS-CoV-2 have greatly revolved around the spike 

glycoprotein as the immunogenic target [30,31], since antibody binding to spike can effectively 

block viral entry into host cells and suppresses viral infection [32]. Several spike-based vaccine 

candidates are already in distribution, such as the Pfizer-BioNTech (BNT162b2) and Moderna 

(mRNA-1273) mRNA vaccines, as well as the adenovirus vector vaccines from Johnson and 

Johnson (JNJ-78436735/Ad26.COV2.S) and Oxford-AstraZeneca (AZD1222/ChAdOx1), each of 

which features the original SARS-CoV-2 spike protein sequence derived from the early cases of 

infection [33,34].  

Over the past year, several variants of SARS-CoV-2 have emerged that have raised 

concerns about the effectiveness of SARS-CoV-2 vaccine platforms being utilized [135]. The 

World Health Organization categorizes variants as variant of concern; variant of interest; and 

variant under monitoring.  A SARS-CoV-2 variant a “variant of concern” (VOC) is defined as a 

variant that demonstrates one of the following traits: increased virus transmission; increase in 

virulence; change in clinical disease presentation; or decrease in effectiveness of 

countermeasures [136]. This is in contrast to a “variant of interest” (VOI), which is defined as a 

variant causing significant community transmission or appearing in multiple clusters, in addition 

to containing mutations that may affect transmissibility and disease severity, or effectiveness of 

therapeutics and diagnostics [136]. Variants under monitoring (VUM) are that have genetic 

signatures that suggest they pose a possible risk.  
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The first VOC identified was lineage B.1.1.7 reported in the UK in December of 2020 [137]. 

Now designated Alpha, the variant was modeled to have an increased reproduction number 

compared to original SARS-CoV-2 Wuhan virus [138,139]. Current evidence suggests that Alpha 

is still susceptible to antibodies elicited by natural infection and ancestral spike vaccines [144–

147], although some RBD-specific antibody titers may be reduced [144,145]. A second VOC 

originally designated lineage B.1.351 and now referred to as the Beta variant was detected in 

South Africa in October of 2020 [148,149]. In contrast to Alpha, Beta has shown reduced 

susceptibility to antibodies elicited after natural infection [151], vaccination [147], and treatment 

with monoclonal antibodies bamlanivimab, estesevimab, and imdevimab [152]. Another 

significant VOC referred to as Gamma (lineage P.1) was identified in Brazil in late 2020 [153]. 

Gamma was observed to be more transmissible than Alpha and Beta [139] and showed reduction 

in neutralizing antibodies obtained after natural infection, but retention of antibodies induced by 

vaccination [242]. October of 2020 also saw the emergence of the B.1.617 lineage in India, which 

is comprised of three sub-lineages designated B.1.617.1 (Kappa), B.1.617.2 (Delta), and 

B.1.617.3 [155]. Preliminary data speculated that some B.1.617 sub-lineages had reduced 

effectiveness of treatment with the monoclonal antibody bamlanivimab, and reduced 

neutralization from convalescent and Pfizer-BioNTech (BNT612b) vaccine sera [152,156]. 

Variants of interest include the Epsilon or B.1.429 lineage identified in California [160] and the 

mink-related (Cluster 5) lineage detected in Denmark in June of 2020, which also have several 

non-synonymous mutations compared to the original SARS-CoV-2 reference sequence [161]. 

The mink-related variant has been suggested as a potential spillover threat with minks acting as 

viral reservoir, although spread of the mink-related variant to humans has been rare [162].   

At this time, it is still unclear whether SARS-CoV-2 variants of concern or interest are able 

to be managed by previously-acquired host adaptive immune responses, either through natural 

infection or through vaccination. Furthermore, as vaccine effectiveness is dependent on the 
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recognition of viral proteins by antigen-educated T and B cells, mutations influencing T and B cell 

epitopes in new SARS-CoV-2 variants may have significant effects on the performance of 

vaccines that were originally developed toward original SARS-CoV-2. Here I investigated the 

predicted immune epitope changes in the identified SARS-CoV-2 variants by leveraging my 

established informative pipeline used for influenza virus analysis. I hypothesized that the variant 

SARS-CoV-2 spike sequences would show differences in predicted surface epitopes that 

correspond to the observed differences in vaccine effectiveness compared to the original Wuhan 

SARS-CoV-2. The goal of this analysis was to determine if vaccine effectiveness could be 

predicted informatically by analyzing how the specific amino acid substitutions across the SARS-

CoV-2 spike protein variants will impact antigenicity, and which arms of the immune response 

may be most affected by viral mutation. 

4.2 A computational approach to screening antigenic differences on spike 

Conducting immunological and virological analysis of a SARS-CoV-2 variant as it emerges 

to determine the effectiveness of pre-existing immunity and vaccine protection is time-consuming, 

expensive, and labor intensive. There is currently a need to perform immunological analysis of 

SARS-CoV-2 variants quickly to determine the effectiveness of existing vaccines and 

therapeutics. Therefore, I developed a bioinformatic antigenic analysis pipeline to gain a 

molecular understanding of potential vaccine performance against the new variants as a rapid 

way to screen the variants prior to complete immunological and virological analysis for the 

assessment of the threat variants may have globally. Using the Global Initiative on Sharing All 

Influenza Data (GISAID) [186] to access SARS-CoV-2 genome sequences, I compared the 

predicted antigenic profiles for Alpha, Beta, Gamma, Delta, Epsilon, Kappa, B.1.617.3, and mink-

related variant spike proteins. Because the impact of specific SARS-CoV-2 spike mutations on 
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different arms of the immune response is unclear, my analysis included: 1) prediction of the 

structural impact of variant amino acid subsitutions on the original SARS-CoV-2 spike protein; 2) 

comparision of predicted B cell epitopes along the variant spike sequences; 3) determination of 

possible glycosylation patterns along variant spike proteins; and 4) comparison of MHC class I 

and II epitopes across spike variants. I followed a similar pipeline described in Chapter 3 with 

modifications for SARS-CoV-2 specifically, including a second strategy for predicting the folding 

structure of variant spike sequences, analysis of MHC class II- binding peptides to encompass a 

possible CD4+ T cell eptiopes, and prediciton of spike glycoslation patterns that may interfere 

with antibody binding. An overview of the bioinformatic pipeline and tools used is shown in Figure 

4.1. 

 

Figure 4.1 Bioinformatic analysis pipeline to predict variant SARS-CoV-2 spike epitopes. 
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To compare the antigenicity and glycosylation of SARS-CoV-2 spike variants, the original Wuhan 
(reference) spike sequence along with nine SARS-CoV-2 variants were obtained from the GISAID 
database. The accession numbers are as follows: the original Wuhan SARS-CoV-2 reference 
sequence (EPI_ISL_402124); B.1.1.7 (EPI_ISL_852526); B.1.351 (EPI_ISL_864621); B.1.429 
(EPI_ISL_1017160); D614G (EPI_ISL_406862), P.1 (EPI_ISL_1171653), B.1.617.1 
(EPI_ISL_1841381), B.1.617.2 (EPI_ISL_1914598 ), B.1.617.3 (EPI_ISL_1939891), and the 
mink-related lineage (EPI_ISL_615652). Protein folding models were generated for each spike 
variant using Phyre2 and Swiss-Model platforms, after which discontinuous B cell epitopes were 
predicted using DiscoTope 2.0 from DTU HealthTech. To predict CD4+ or CD8+ T cell epitopes, 
the Immune Epitope Database (IMDB) NetMHC pan tools were used. Conserved and variant-
specific high-affinity MHC I and MHC II-binding peptides were identifed in RStudio. Finally, variant 
spike glycosulation was predicted using NGlyc 1.0 to determine differences in glycan binding sites 
across variants. 

4.3 Predicting structural impact of substitutions across variants 

Nine distinct SARS-CoV-2 variants, specifically D614G, Alpha (B.1.1.7), Beta (B.1.351), 

Gamma (P.1), three B.1.617 sub-lineages (includes Delta and Kappa), Epsilon (B.1.429), and the 

mink-related variant were selected along with the original Wuhan SARS-CoV-2 virus (herein 

referred to as “reference” spike) to explore antigenic differences in response to mutations within 

their surface glycoprotein. Variants were chosen for analysis according to known or predicted high 

prevalence in communities (D614G, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta and 

Kappa), or the suspected ability to cause future outbreaks (Epsilon (B.1.429), and the mink-

related variant). Using truncated full genome sequences from GISAID, I first aligned reference 

and variant spike sequences using the MEGAX alignment tool [185] to better visualize the relative 

location of sequence mutations (Figure 4.2A). Across variants, thirty-seven substitutions (S13I, 

L18F, T19R, T20N, P26S, D80A, T95I, D138Y, G142D, W152C, E156G, R190S, D215G, K417T, 

K417N, L452R, Y453F, T478K, E484K, E484Q, N501Y, A570D, D614G, H655Y, P681H, P681R, 

I692V, A701V, T716I, D950N, S982A, T1027I, Q1071H, E1072K, D1118H, V1176F, and M1229I) 

and deletions at positions 69-70, 143, 145, 157-158, and 241-243, were noted (Figure 4.2). A 

common D614G mutation was identified in all variants, and the substitution at position 501 

(N501Y) within the receptor-binding domain was shared among Alpha, Beta, and Gamma 
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lineages (Figure 4.2B). The mink-related variant contained a deletion that was also recognized 

in Alpha (B.1.1.7) at positions 69-70. Moreover, a leucine to arginine substitution at amino acid 

452 (L452R) was found in Epsilon (B.1.429) and all B.1.617 sub-lineages (Figure 4.2). Another 

mutation at position 484 substituted glutamic acid for either lysine (E484K) in Beta and Gamma 

variants, or glutamine (E484Q) in B.1.617.1 and B.1.617.3 sub-lineages. Similarly, different 

substitutions at amino acid 681 were observed in Alpha (P681H) and B.1.617 (P681R) variants 

(Figure 4.2B). 
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Figure 4.2 Amino acid sequence changes in variant and Wuhan SARS-CoV-2 spike protein 
illustrate shared and unique mutations among the variants. 
Sequences for Wuhan (reference) SARS-CoV-2 spike, as well as from nine variants (D614G, 
B.1.1.7, B.1.351, B.1.429, P.1, B.1.617 sub-lineages, and mink-related SARS-CoV-2) were 
obtained from the GISAID database and are as follows: the original Wuhan SARS-CoV-2 
reference sequence (EPI_ISL_402124); B.1.1.7 (EPI_ISL_852526); B.1.351 (EPI_ISL_864621); 
B.1.429 (EPI_ISL_1017160); D614G (EPI_ISL_406862), P.1 (EPI_ISL_1171653), B.1.617.1 
(EPI_ISL_1841381), B.1.617.2 (EPI_ISL_1914598 ), B.1.617.3 (EPI_ISL_1939891), and the 
mink-related lineage (EPI_ISL_615652). (A) Complete spike sequences were aligned using 
MEGAX. Amino acid substitutions relative to the Wuhan spike sequence are indicated with 
arrows, and sequence deletions are denoted by dashes. The figure was generated using the 
ClustalX platform. (B) A three-dimensional model of the Wuhan SARS-CoV-2 spike was 
generated using the Swiss-Model structural bioinformatics server 
(https://swissmodel.expasy.org/interactive) and shown in PyMOL (The PyMOL Molecular 
Graphics System, Version 2.3.5, Schrödinger, LLC). The frequency of amino acid substitutions 
across the nine variants are indicated by residue colors on the model to highlight convergent 
mutations. 

It is unclear how the amino acid substitutions or deletions across variants will impact 

SARS-CoV-2 spike structure and function. I therefore aimed to predict the structural impact of 

each mutation using the web-based server Missense 3D using the PDB files generated by Phyre2 

[189] (Table 4.1). Using the Wuhan SARS-CoV-2 spike as a reference, the individual amino acid 

substitutions were assessed for structural changes such as buried charged residues, disruption 

of salt bridges, and major cavity expansions or contractions. Of the thirty-seven substitutions 

spanning the nine spike variants, notable structural damage was predicted for six mutations. First, 

the aspartate to alanine switch at residue 80 (D80A) in the Beta variant was predicted to change 

a buried, charged residue to an uncharged residue and disrupt the corresponding salt bridge. 

Second was the proline to histidine/arginine switch at residue 681 (P681H/R) in the Alpha variant 

or B.1.617 sub-lineages, which was predicted to switch an uncharged, buried amino acid residue 

to an exposed, positively charged residue. Two mutations exclusive to the Gamma variant 

revealed structural damage: L18F was predicted to contract the cavity volume by 104.976 Å3, 

while D138Y contracted the cavity volume by 91.584 Å3 and disrupted the buried H-bonding, 

causing a buried amino acid to be switched to an exposed residue. Finally, two mutations 



 94 

exclusive to the B.1.617 sub-lineages, which are E484Q in Kappa and B.1.617.3, and G142D in 

Kappa and Delta, had predicted structural damage (Table 4.1). The remaining amino acid 

substitutions were not predicted to cause structural changes. Because Missense 3D evaluates 

missense mutations, the deletions appearing in Alpha, Beta, and mink-related spike were not 

assessed in this analysis. 
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Table 4.1 Missense3D-predicted structural damage and description of amino acid changes 
for spike amino acid substitutions across SARS-CoV-2 variants of concern (Alpha, Beta, 
Gamma, and Delta) and variants of interest (Epsilon, Kappa, B.1.617.3, and mink-related). 

Variant Substitution Location*  Missense3D structural damage Amino acid change 

Alpha 
(B.1.1.7) 

N501Y  RBD None detected Exposed hydrophilic to neutral 

A570D SD1 None detected Exposed hydrophobic to 
hydrophilic  

D614G SD2 None detected Exposed hydrophilic to neutral 

P681H 
Upstream of S1/S2 

cleavage site 

Switched from buried to exposed Uncharged to positively charged 

T716I  None detected 

Exposed neutral to hydrophobic 

S982A  HR1 None detected 

D1118H   SD3 None detected Both exposed hydrophilic 

Beta 
(B.1.351) 

D80A NTD 
Buried charged residue replaced 

with an uncharged; salt bridge 
disrupted  

Negatively charged switch to 
uncharged 

D215G NTD None detected 

Exposed hydrophilic to neutral D614G SD2 None detected 

N501Y 

RBD 

None detected 

K417N None detected 

Both exposed hydrophilic 

E484K None detected 

A701V Cleavage site None detected Both exposed hydrophobic 

 Gamma 
(P.1) 

L18F NTD Leads to contraction of cavity 
volume by 104.976 Å^3 Both exposed hydrophobic  

T20N NTD None detected Exposed neutral to exposed 
hydrophilic (both uncharged) 

P26S NTD None detected Both exposed neutral 

D138Y NTD 

Disrupt buried H-bond; 
contraction of cavity volume by 
91.584 Å^3; buried to exposed 

switch 

Buried negatively charged 
hydrophilic to exposed neutral 

R190S NTD None detected Exposed positively charged 
hydrophilic to buried neutral 
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Variant Substitution Location*  Missense3D structural damage Amino acid change 

K417T RBD None detected Exposed positively charged 
hydrophilic to exposed neutral 

E484K RBD None detected Both exposed hydrophilic 

N510Y RBD None detected Exposed hydrophilic to neutral 

D614G SD2 None detected Exposed hydrophilic to neutral 

H655Y SD2 None detected Exposed positively charged 
hydrophilic to neutral 

T1027I CH None detected Exposed neutral to hydrophobic 

V1176F HR2 None detected Both exposed hydrophobic  

Delta 
(B.1.617.2) 

T19R NTD No structural damage detected  Exposed neutral to hydrophilic 
(uncharged to charged) 

G142D NTD 
Buried Gly replaced with a 

charged residue; cavity volume 
contracted by 71.064 Å^3 

Buried neutral to buried 
hydrophilic  

E156G NTD No structural damage detected  Exposed hydrophilic to neutral  

L452R RBD(RBM) No structural damage detected Exposed hydrophobic to 
hydrophilic  

T478K RBD(RBM) No structural damage detected  Exposed neutral to hydrophilic 

D614G SD2 No structural damage detected Exposed hydrophilic to neutral 

P681R SD2 Buried residue switched to 
exposed 

Buried neutral to exposed 
hydrophilic (positive-charged) 

D950N  HR1 No structural damage detected  Both exposed hydrophilic 
(charged to uncharged) 

Epsilon 
(B.1.429) 

S13I SP None detected Exposed neutral to hydrophobic 

W152C NTD None detected Both exposed hydrophobic 

L452R RBD None detected Exposed hydrophobic to 
hydrophilic  

D614G SD2 None detected Exposed hydrophilic to neutral 

Kappa 
(B.1.617.1) 

T95I NTD Buried H-bond breakage Buried neutral to hydrophobic; 
both uncharged 

G142D NTD 
Buried Gly replaced with a 

charged residue; cavity volume 
contracted by 71.064 Å^3 

Buried neutral to buried 
hydrophilic  
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Variant Substitution Location*  Missense3D structural damage Amino acid change 

L452R RBD(RBM) No structural damage detected Exposed hydrophobic to 
hydrophilic  

E484Q RBD(RBM) Triggers clash alert Exposed negatively charged to 
uncharged (both hydrophilic)  

D614G SD2 No structural damage detected Exposed hydrophilic to neutral 

P681R SD2 Buried residue switched to 
exposed 

Buried neutral to exposed 
hydrophilic (positive-charged) 

Q1071H  BH No structural damage detected Both exposed hydrophilic 
(uncharged to charged)  

B.1.617.3 

T19R NTD No structural damage detected  Exposed neutral to hydrophilic 
(uncharged to charged) 

L452R RBD(RBM) No structural damage detected Exposed hydrophobic to 
hydrophilic  

E484Q RBD(RBM) Triggers clash alert Exposed negatively charged to 
uncharged (both hydrophilic)  

D614G SD2 No structural damage detected Exposed hydrophilic to neutral 

P681R SD2 Buried residue switched to 
exposed 

Buried neutral to exposed 
hydrophilic (positive-charged) 

D950N HR1 No structural damage detected  Both exposed hydrophilic 
(charged to uncharged) 

E1072K BH No structural damage detected Both exposed charged hydrophilic  

Cluster 5 
(Mink-

related) 

Y453F RBD None detected Exposed neutral to buried 
hydrophobic 

D614G SD2 None detected Exposed hydrophilic to neutral 

I692V Cleavage region None detected Both buried hydrophobic  

M1229I CT None detected Both exposed hydrophobic 

*SP = signal peptide; NTD = N-terminal domain; RBD = receptor-binding domain; RBM = receptor-binding motif; SD = subdomain; 
HR = heptad repeat; CH = central helix; CT = cytoplastic tail; BH = b-hairpin [243]. 

4.4 Predicted B cell epitopes differ across variants 

Although predicted changes in SARS-CoV-2 spike structure can help elucidate receptor 

docking as well as protein function such as membrane fusion, my interest was in understanding 

the immune system recognition of the viral variants and the stability of antigenicity across these 
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variants. Therefore, the primary goal of my analysis was to evaluate changes in spike antigenicity. 

Antibodies produced by B cells are essential to the immune memory response protecting against 

secondary exposures of a pathogen offering either complete sterilizing protection or decrease of 

disease severity. To this end, I compared the predicted B cell epitopes across reference and 

variant spike proteins to determine whether the variant viruses may present differently to host B 

cell receptors and thereby have differential recognition by secreted antibodies, which may have 

been elicited from previous exposures. Determination of discontinuous B cell epitopes on a 

protein surface first requires a three-dimensional model of a protein. Similarly as done in Chapter 

3, I generated protein-folding models for reference and variant SARS-CoV-2 spikes using both 

Phyre2 [188] and Swiss-Model [190] web-based platforms. In comparing each model prediction 

with a previously published 3D spike model from the Protein Data Bank (PDB ID: 6VSB), I found 

that Swiss-Models best approximated the actual folding of spike. Therefore, although I generated 

B cell epitope predictions for both Phyre2 and Swiss-Model, only data generated using the Swiss-

Model will be described in detail. 

To compare discontinuous B cell epitopes across SARS-CoV-2 spike variants, I used 

scores generated by the DiscoTope 2.0 server from DTU Health Tech [192]. I used the default 

DiscoTope score threshold of -3.7 (0.47 sensitivity, 0.75 specificity), which is the least 

conservative threshold for selecting B cell epitopes. In examining the positively identified epitopes 

at the -3.7 threshold, I identified a total of 26 B cell epitope sequences across all variants with 

differing predicted antigenicity and levels of conservation between the new variants of concern 

(Figure 4.3; Table 4.2; see Appendix 1). I found that changes to specific B cell epitopes occurred 

almost exclusively within the S1 subunit and protease cleavage regions of the spike protein in all 

variants. First, I noted several predicted B cell epitopes with lowered DiscoTope scores in certain 

variants, possibly suggesting decreased antigenicity in those regions. In the Alpha (B.1.1.7) and 

Epsilon (B.1.429) variants, the predicted epitope spanning residues 180-185 in the reference with 
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sequence E-G-K-Q-G-N has shrunk to include only residues 183-184 and has scored lower 

(Figure 4.3B). Two other predicted epitopes beginning at residues 72 (G-T-N) and 146 (Y-H-K-

N-N-K-S) scored lower in the Epsilon variant (Figure 4.3B). The Beta (B.1.351) variant also 

showed a lower score in the predicted epitope spanning residues 248-254 with sequence Y-L-T-

P-G-D-S (Figure 4.3B). 

I also noted regions of increased antigenicity in certain variants. The Alpha variant showed 

an additional predicted epitope spanning residues 565-568 with sequence D-I-D-D that was not 

noted in the reference spike or other variants in my analysis (Figure 4.3B). In Epsilon (B.1.429) 

and B.1.617 sub-lineages, the region spanning 455-480 showed several positively predicted 

residues that were not detected as antigenic regions in the reference spike (Figure 4.3B). Taken 

together, these results suggested that the specific amino acid substitutions in the S1 subunit of 

spike may lead to differential recognition or evasion of SARS-CoV-2 variants by specific B cell 

clonotypes elicited after infection. 
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Figure 4.3 SARS-CoV-2 variant spike proteins show differences in predicted B cell epitopes 
spanning the S1 subunit compared to the Wuhan SARS-CoV-2 sequence. 
Antigenic analysis of the spike protein of SARS-CoV-2 variants was performed using the 
DiscoTope 2.0 platform (DTU Health Tech) (http://www.cbs.dtu.dk/services/DiscoTope/_). 
Sequences were obtained from the GISAID database and are as follows: the original Wuhan 
SARS-CoV-2 reference sequence (EPI_ISL_402124); B.1.1.7 (EPI_ISL_852526); B.1.351 
(EPI_ISL_864621); B.1.429 (EPI_ISL_1017160); D614G (EPI_ISL_406862), P.1 
(EPI_ISL_1171653), B.1.617.1 (EPI_ISL_1841381), B.1.617.2 (EPI_ISL_1914598), B.1.617.3 
(EPI_ISL_1939891), and the mink-related lineage (EPI_ISL_615652). (A) DiscoTope scores 
falling below (blue) and above (red) the B cell epitope prediction threshold of -3.7 (0.47 sensitivity, 
0.75 specificity) were mapped along the amino acid sequences of reference (Wuhan) and variant 
(D614G, B.1.1.7, B.1.351, B.1.429, P.1, B.1.617 sub-lineages, and mink-related) SARS-CoV-2 
spike protein. (B) Only the positive B cell epitope prediction results are shown for greater 
resolution of the B cell epitope regions. The arrows highlight differences in predicted epitopes 
within the variants of concern compared to the reference spike protein. (C) Spike monomers with 
DiscoTope scores represented as a heatmaps were mapped along the spike protein. Predicted 
epitopes for each group are highlighted in yellow, with high scoring predicted B cell epitope 
regions shown in red, and lower predicted B cell epitope scores in blue. The image was generated 
using PyMOL (The PyMOL Molecular Graphics System, Version 2.3.5, Schrödinger, LLC). 
Figures A and B were generated using the R ggplot2 package version 3.3.2. 
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Table 4.2 Predicted B cell epitope sequences for SARS-CoV-2 spike protein using 
DiscoTope 2.0, proximity to glycosylation sites predicted using NetNGlyc 1.0, and 
sequence conservation among variants under investigation. 

# Epitope sequence 
Residue 
range on 
reference 

Proximal 
glycosylation 

sites 

Glycosylation 
prediction score 

(NetNGlyc) 

Associated 
mutation 

sites 

Sequence conserved 
in variant models? 

1 VS[GTN]G 70 - 75 N74 ++ V57 Yes 

2 YH[KNNKS]WM 145-153 N149 + Y132, W139 Yes 

3 (LXDX)EGK [QG]N 176-185 NONE N/A NONE Yes 

4 (PX)[NXV] 209-213 NONE N/A NONE Yes 

5 SYLT[PG]DXS 247-255 NONE N/A NONE Yes 

6 T 415 NONE N/A T402 Not predicted in 
reference, P.1 and mink 

7 NNXXS[KVGG]N[Y]
N 439-450 NONE N/A NONE Yes 

8 LFR[KSN]XK 455-462 NONE N/A NONE Yes 

9 IXTE 468-471 NONE N/A NONE Only in B.1.617 sub-
lineages and B.1.429 

10 SXPXN 477-481 NONE N/A 
T465 (not 
predicted 
epitope) 

Not in reference 

11 QSXGF[QPTYGV]G
Y 493-505 NONE N/A Y488 Yes 

12 [NXK]F[L]PFQQ 556-564 NONE N/A NONE Yes 

13 D[I]AD 568-571 NONE N/A A557 Yes 

14 TL 581-582 NONE N/A NONE Only in reference 

15 T[NSPRRARSV]A 678-688 NONE N/A P668 Yes 

16 [NSV]XY 703-707 NONE N/A NONE Yes 

17 [T] 716 N717 ++ T703 Not predicted in B.1.1.7 

18 [PI] 793-794 Close to N801 + NONE Yes 

19 PSXP 809-812 Close to N802 + NONE Yes 

20 [NXXYE] 914-918 NONE N/A NONE Yes 

21 QXXN 1071-1074 NONE N/A Q1058, E 
1059 

Not predicted in B.1.1.7  
mutated in B.1.617.2 

(Q1069H) 

22 [T]H** 1100-1101 close to 
N1098 + NONE Yes 

23 E 1111 NONE N/A NONE Only in B.1.617.3 

24 I 1114 NONE N/A NONE Only in B.1.1.7 and 
B.1.617.3 

25 [D] 1118 NONE N/A D1105 Yes 

26 [PLQ...] 1140-? close to 
N1134 + NONE Yes 
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4.5 The Gamma variant has additional predicted N-glycosylation sites 

Antigen glycosylation is an important factor in host immunity to pathogens. Glycosylation 

of viral envelope proteins can modify the protein such that it can increase infectivity [244] and 

shield it from host immune responses [245–247]. The spike protein of SARS-CoV-2 is known to 

be heavily glycosylated [195,248]. To assess whether spike mutations in nine SARS-CoV-2 

variants impact the predicted N-linked glycosylation sites (N-X-S/T, X ≠P), and thus possibly 

antigenicity, I used the NetNGlyc 1.0 server from DTU Health Tech 

(http://www.cbs.dtu.dk/services/NetNGlyc/) [194] with the default threshold of 0.5. The data 

derived from the server suggested that seventeen conserved locations that scored higher than 

the detection threshold were found in all variants with similar scores at sites 17, 61, 74, 122, 149, 

165, 234, 282, 331, 343, 603, 616, 717, 801, 1098, 1134, and 1194 (Table 4.3). These sites, 

excluding residue 17, have previously exhibited glycosylation in investigations of spike peptide 

glycosylation using liquid chromatography-tandem mass spectrometry [249,250].  The predicted 

site at residue 17 was not found in the Delta or B.1.617.3 variants. Notably, three additional sites 

were detected in the Gamma (lineage P.1) variant only, scoring (+) N-glycosylation results at 

positions 20, 188, and 657. Along with the three additional predicted sites, the Gamma variant 

had a higher potential glycosylation score at position 17 compared to the other variants (++ versus 

+) (Figure 4.4, Table 4.3). Of the seventeen glycosylation sites conserved across all variants, 

only 7 sites (61, 74, 234, 282, 616, 717, and 1194) had (++) or better prediction scores and were 

selected to generate the 3D structure of the spike protein with glycans for the highest specificity 

(Figure 4.4). Each sequon confirmed to carry glycosylation so far has been found to present 

multiple modified versions of Man9GlcNAc chains, with both branched and unbranched 

configurations [249,250]. No other differences were observed between the other eight variants of 

concern or interest, including D614G, Alpha, Beta, Epsilon, B.1.617 sub-lineages, and the mink-
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related variant. Based on these predictions, it seems that mutations present exclusively in the 

Gamma variant could alter the glycosylation process and possibly contribute to immune evasion 

at infection. 

 

Figure 4.4 Glycosylation sites mostly conserved among spike variants except for an 
additional site in the Gamma variant. 
N-glycosylation sites on Wuhan reference and nine variant SARS-CoV-2 amino acid sequences 
were predicted using the NetNGlyc 1.0 platform. Predicted sites were filtered to show only those 
with (++) and (+++) NetNGlyc scores, revealing seven high-scoring sites conserved across 
variants Alpha, Beta, Gamma, Delta, Epsilon, Kappa, B.1.617.3, and mink-related spike. Along 
with three additional sites not found in the other variants, the Gamma variant had a higher 
potential glycosylation score at site 17. The figure shows a representative spike monomer with 
glycans in blue, and the corresponding peptide sequence residues in red at the predicted sites. 
The model was generated in PyMOL (The PyMOL Molecular Graphics System, Version 2.3.5, 
Schrödinger, LLC). Glycosylation site 7 at residue 1194 is associated with the membrane-
spanning region of the spike protein and is not shown in this model. *Site 8 describes the 
additional high-scoring glycosylation site in the Gamma variant only. 

  



 105 

Table 4.3 N-glycosylation sites and scores predicted by NetNGlyc server (threshold 0.5) 
across wild-type and SARS-CoV-2 variant spike sequences, showing a different predicted 
glycosylation pattern on the P.1 variant. 

Site Wuhan D614G *Alpha/ 
B.1.1.7 

*Beta/ 
B.1.351 

Gamma/ 
P.1 

Delta/ 
B.1.617.2 

Epsilon/ 
B.1.429 

Kappa/ 
B.1.617.1 B.1.617.3 *Mink-

related 

17 0.6606 
(+) 

0.6606 
(+) 

0.6608 
(+) 

0.6607 
(+) 

0.6846 
(++) - 0.6508 

(+) 
0.6607  

(+) - 0.6607 
(+) 

20 - - - - 0.5781 
(+) - - - - - 

61 0.7820 
(+++) 

0.7820 
(+++) 

0.7798 
(+++) 

0.7821 
(+++) 

0.7820 
(+++) 

0.7820 
(+++) 

0.7820 
(+++) 

0.7820 
(+++) 

0.7820 
(+++) 

0.7798 
(+++) 

74 0.7192 
(++) 

0.7192 
(++) 

*0.6976 
(++) 

0.7292 
(++) 

0.7192 
(++) 

0.7192 
(++) 

0.7192 
(++) 

0.7192 
(++) 

0.7192 
(++) 

0.6976 
(++) 

122 0.6781 
(+) 

0.6782 
(+) 

0.6786 
(+) 

0.6782 
(+) 

0.6781 
(+) 

0.6782  
(+) 

0.6782 
(+) 

0.6780  
(+) 

0.6780 
 (+) 

0.6786 
(+) 

149 0.6318 
(+) 

0.6318 
(+) 

0.6260 
(+) 

0.6321 
(+) 

0.6320 
(+) 

0.6264  
(+) 

0.6604 
(+) 

0.6339  
(+) 

0.6339  
(+) 

0.6321 
(+) 

165 0.6220 
(+) 

0.6220 
(+) 

0.6223 
(+) 

0.6221 
(+) 

0.6219 
(+) 

0.6446  
(+) 

0.6220 
(+) 

0.6220 
 (+) 

0.6220  
(+) 

0.6223 
(+) 

188 - - - - 0.5272 
(+) - - - -  

234 0.7613 
(+++) 

0.7613 
(+++) 

0.7616 
(+++) 

0.7596 
(+++) 

0.7613 
(+++) 

0.7616 
(+++) 

0.7613 
(+++) 

0.7613 
(+++) 

0.7613 
(+++) 

0.7613 
(+++) 

282 0.7378 
(++) 

0.7379 
(++) 

0.7381 
(++) 

0.7381 
(++) 

0.7379 
(++) 

0.7381 
(++) 

0.7379 
(++) 

0.7377 
(++) 

0.7377 
(++) 

0.7380 
(++) 

331 0.5970 
(+) 

0.5970 
(+) 

0.5973 
(+) 

0.5976 
(+) 

0.5968 
(+) 

0.5974  
(+) 

0.5970 
(+) 

0.5972  
(+) 

0.5972  
(+) 

0.5971 
(+) 

343 0.5671 
(+) 

0.5671 
(+) 

0.5674 
(+) 

0.5674 
(+) 

0.5671 
(+) 

0.5674  
(+) 

0.5672 
(+) 

0.5671  
(+) 

0.5671  
(+) 

0.5674 
(+) 

603 0.5783 
(+) 

0.5783 
(+) 

0.5786 
(+) 

0.5786 
(+) 

0.5783 
(+) 

0.5786  
(+) 

0.5782 
(+) 0.5783 (+) 0.5783  

(+) 
0.5784 

(+) 

616 0.7163 
(++) 

0.7279 
(++) 

0.7280 
(++) 

0.7281 
(++) 

0.7279 
(++) 

0.7281 
(++) 

0.7279 
(++) 

0.7279 
(++) 

0.7279 
(++) 

0.7279 
(++) 

657 - - - - 0.5140 
(+) - - - - - 

717 0.6426 
(++) 

0.6426 
(++) 

0.6086 
(++) 

0.6426 
(++) 

0.6426 
(++) 

0.6426 
(++) 

0.6426 
(++) 

0.6426 
(++) 

0.6426 
(++) 

0.6426 
(++) 

801 0.6146 
(+) 

0.6146 
(+) 

0.6149 
(+) 

0.6148 
(+) 

0.6146 
(+) 

0.6149  
(+) 

0.6146 
(+) 

0.6147  
(+) 

0.6147  
(+) 

0.6148 
(+) 

1098 0.5496 
(+) 

0.5494 
(+) 

0.5498 
(+) 

0.5496 
(+) 

0.5496 
(+) 

0.5498  
(+) 

0.5494 
(+) 

0.5496 
 (+) 

0.5496 
 (+) 

0.5497 
(+) 

1134 0.5800 
(+) 

0.5800 
(+) 

0.5802 
(+) 

0.5802 
(+) 

0.5800 
(+) 

0.5801  
(+) 

0.5802 
(+) 

0.5800 
 (+) 

0.5800  
(+) 

0.5801 
(+) 

1194 0.6791 
(++) 

0.6790 
(++) 

0.6792 
(++) 

0.6791 
(++) 

0.6792 
(++) 

0.6791 
(++) 

0.6791 
(++) 

0.6791 
(++) 

0.6791 
(++) 

0.6790 
(++) 

* Site numbers may be shifted by 2-3 residues due to deletions 

4.6 SARS-CoV-2 glycosylation sites may interfere with antibody binding 

Along with modulating viral infectivity and sensitivity to innate immune mechanisms, 

antigen glycosylation can impact adaptive immune responses. Influenza virus hemagglutinin is a 

well-known example of antigen glycosylation interfering with the binding of neutralizing antibodies, 
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thus providing a fitness advantage to the virus [247]. With this under consideration, I aimed to 

determine whether predicted glycosylation patterns on the SARS-CoV-2 variant spike proteins 

could overlap with predicted B cell epitopes and possibly deter antibody binding. Both the 3D 

models and scored sequences obtained from DiscoTope 2.0 were observed side by side with the 

NetNGlyc glycosylation maps to examine possible interactions between regions where B cell 

epitopes and N-glycosylation sites were predicted to exist. Of the 26 B cell epitope regions 

identified across all variants, 7 of these 26 regions fell on top or close to a predicted glycosylation 

site (Table 4.3). For the purpose of this analysis, the sites 17, 61, 74, 122, 149, 165, 234, 282, 

331, 343, 603, 616, 717, 801, 1098, 1134, and 1194 identified in the previous section were 

selected as possible candidates for glycosylation sites. Across the variants, twelve mutations 

were predicted to fall within these B cell epitope regions, and only one site was shown to carry a 

mutation within a potential glycosylation site, which were mutations at sites 18 and 20 of the 

Gamma variant (Table 4.3). Other mutations within site 19 were also recorded among the Delta 

and B.1.617.3 variants; however, glycosylation of this region was shown to be unlikely. Predicted 

B cell epitopes were compared to present immunoinformatic and immunological data, where four 

were found to have confirmed antibody binding affinity including sites adjacent to residues 229, 

556, 581, and 809 [251]. All other residues predicted in this study have partial or complete 

agreement with immunoinformatic studies that used either DiscoTope 2.0 or Bepipred ([252], 

which includes [253,254] and others in a review) except for the predicted epitope next to residue 

1100.   

4.7 High-affinity MHC-I and MHC-II binding peptides are conserved across variants 

In addition to altering B cell epitopes, amino acid mutations can lead to changes in 

antigenicity with respect to the specific peptides presented to host T cells. Specifically, T cell 
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epitopes are linear peptides, consisting of approximately 8-11 amino acids for MHC-I and 13-17 

amino acids for MHC-II, while B cell epitopes typically require a 3D confirmation of continuous or 

discontinuous amino acids for recognition [216]. Since both arms of the immune system are 

important during antigen encounter, I next assessed the amino acid substitutions and deletions 

across SARS-CoV-2 variants for changes in predicted T cell epitopes that may differentially 

stimulate host CD8+ and CD4+ T cells. Using the complete amino acid sequences for reference 

and variant spike, I generated MHC-I and MHC-II binding predictions using the Immune Epitope 

Database (IEDB) Analysis Resource NetMHCpan EL 4.1 and NetMHCII 2.3, respectively. For 

MHC-I peptide analysis, I restricted my results to 27 HLA-A and HLA-B alleles to encompass most 

of the human population [196]. Human HLA-DP, HLA-DR, and HLA-DQ alleles were selected for 

MHC-II analysis (see Appendix 1 for NetMHCpan and NetMHCII output). 

Overall, I found variants to differ slightly in the number of peptides predicted to bind to host 

MHC class I molecules, but that high-affinity epitopes were mostly conserved. After filtering the 

data such that peptides with the highest MHC-I binding affinity were selected for each group 

(percentile rank < 0.5 as done in [199]), I found that the number of HLA*peptide combinations 

ranged from 903-922 across the variants, which corresponded to 420-429 unique peptides. I 

found that despite this small variability in MHC-I epitopes, the variants ranged from 93% (Alpha) 

to 99% (D614G) conservation of high-affinity MHC-I epitopes (Figure 4.5A), with 330 unique 

conserved peptides found. For relevance in the human population, I again filtered these 

conserved, high-affinity MHC-I peptides to reveal only those restricted to a minimum of three HLA 

alleles. Here I found 99 unique peptides spanning both the S1 and S2 subunits of the spike protein 

that are shared between all variants in my analysis and are predicted to bind several HLA alleles 

(Figure 4.5B) (Table 4.4).  
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Figure 4.5 High MHC I and II peptide conservation among SARS-CoV-2 variants, with the 
Gamma variant exhibiting the most diversity. 
MHC class I and II epitopes were predicted using the NetMHCpan EL 4.1 and NetMHCII 2.3 
servers on the Immune Epitope Database, respectively. High-affinity epitopes (HLA*peptide 
combinations) were defined as scores falling below percentile rank 0.5 for MHC-I, and scores 
below 2.0 for MHC-II epitopes. (A) The percentage of high-affinity epitopes shared between each 
variant and the Wuhan SARS-CoV-2 reference was calculated. (B) Of the conserved MHC-I and 
MHC-II epitopes identified, the frequency of unique peptides falling within 20-amino acid bins was 
plotted against the spike protein sequence to show epitope conservation across the protein. (C) 
The number of high-affinity epitopes specific to each variant (i.e., not shared with the Wuhan 
sequence or other variants) was identified, indicating that the Gamma and Alpha variants may 
have the most unique T cell epitope signature. The figures were generated in RStudio using the 
ggplot2 package version 3.3.2. 

Table 4.4 High-affinity conserved peptides (percentile rank < 0.5 for MHC-I and < 2.0 for 
MHC-II) occurring on a minimum of three HLA alleles for SARS-CoV-2 spike variants Alpha, 
Beta, Gamma, Delta, Kappa, Epsilon, B.1.617.3, and mink-related spike. 

MHC I peptides, minimum 3 HLA alleles 

# Start residue Peptide Score Percentile rank Alleles 

1 1016 AEIRASANL 0.676171-0.976223 0.01-0.11 HLA-B*40:01, HLA-B*44:03, HLA-
B*44:02 

2 1099 GTHWFVTQR 0.422018-0.927106 0.01-0.36 
HLA-A*31:01, HLA-A*68:01, HLA-

A*11:01, HLA-A*33:01, HLA-
A*03:01 

3 625 HADQLTPTW 0.249722-0.990462 0.01-0.45 
HLA-B*58:01, HLA-B*53:01, HLA-

B*57:01, HLA-B*35:01, HLA-
A*32:01, HLA-A*01:01 

4 896 IPFAMQMAY 0.328521-0.994479 0.01-0.43 HLA-B*35:01, HLA-B*53:01, HLA-
B*51:01 

5 458 KSNLKPFER 0.283834-0.935717 0.01-0.47 HLA-A*31:01, HLA-A*11:01, HLA-
A*30:01 

6 56 LPFFSNVTW 0.488507-0.98139 0.01-0.33 HLA-B*53:01, HLA-B*35:01, HLA-
B*51:01, HLA-B*58:01 

7 84 LPFNDGVYF 0.329782-0.984594 0.01-0.43 HLA-B*35:01, HLA-B*53:01, HLA-
B*51:01, HLA-B*07:02 

8 865 LTDEMIAQY 0.169613-0.997196 0.01-0.5 
HLA-A*01:01, HLA-A*30:02, HLA-

A*26:01, HLA-B*35:01, HLA-
B*58:01, HLA-B*53:01 

9 777 NTQEVFAQV 0.162889-0.975719 0.01-0.45 HLA-A*68:02, HLA-A*02:06, HLA-
A*26:01 

10 454 RLFRKSNLK 0.576303-0.978678 0.01-0.26 HLA-A*03:01, HLA-A*30:01, HLA-
A*11:01, HLA-A*31:01 

11 1264 VLKGVKLHY 0.153447-0.943479 0.01-0.48 
HLA-B*15:01, HLA-A*30:02, HLA-

A*32:01, HLA-A*03:01, HLA-
A*30:01, HLA-A*26:01 

12 1052 FPQSAPHGV 0.380916-0.853165 0.02-0.29 HLA-B*51:01, HLA-B*53:01, HLA-
B*07:02, HLA-B*35:01 
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MHC I peptides, minimum 3 HLA alleles 

# Start residue Peptide Score Percentile rank Alleles 

13 718 FTISVTTEI 0.332779-0.923585 0.02-0.4 
HLA-A*68:02, HLA-A*02:06, HLA-

A*26:01, HLA-A*02:03, HLA-
B*51:01, HLA-A*02:01 

14 787 QIYKTPPIK 0.631297-0.947791 0.02-0.07 HLA-A*03:01, HLA-A*30:01, HLA-
A*11:01 

15 321 QPTESIVRF 0.472976-0.947034 0.02-0.27 HLA-B*35:01, HLA-B*53:01, HLA-
B*51:01, HLA-B*07:02 

16 349 SVYAWNRKR 0.596094-0.919617 0.02-0.21 
HLA-A*31:01, HLA-A*33:01, HLA-

A*68:01, HLA-A*03:01, HLA-
A*11:01 

17 302 TLKSFTVEK 0.491043-0.926974 0.02-0.43 
HLA-A*03:01,HLA-A*30:01, HLA-

A*11:01, HLA-A*31:01, HLA-
A*68:01 

18 604 TSNQVAVLY 0.207735-0.917927 0.02-0.41 

HLA-A*30:02, HLA-A*01:01, HLA-
A*26:01, HLA-B*35:01, HLA-
B*58:01, HLA-B*57:01, HLA-

B*15:01, HLA-B*53:01 

19 269 YLQPRTFLL 0.284271-0.971198 0.02-0.33 

HLA-A*02:01, HLA-B*08:01, HLA-
A*02:03, HLA-A*02:06, HLA-
A*32:01, HLA-A*23:01, HLA-

A*24:02 

20 372 ASFSTFKCY 0.29699-0.77457 0.03-0.46 
HLA-A*30:02, HLA-B*15:01, HLA-

A*01:01, HLA-B*57:01, HLA-
B*58:01 

21 780 EVFAQVKQI 0.374701-0.865844 0.03-0.34 HLA-A*68:02, HLA-A*26:01, HLA-
B*51:01 

22 192 FVFKNIDGY 0.232971-0.869689 0.03-0.49 
HLA-A*26:01, HLA-B*35:01, HLA-

B*15:01, HLA-A*30:02, HLA-
A*01:01 

23 786 KQIYKTPPIK 0.414021-0.916015 0.03-0.4 HLA-A*03:01, HLA-A*30:01, HLA-
A*11:01 

24 821 LLFNKVTLA 0.560973-0.890132 0.03-0.19 HLA-A*02:03, HLA-A*02:01, HLA-
A*02:06 

25 229 LPIGINITRF 0.329148-0.828081 0.03-0.43 HLA-B*53:01, HLA-B*35:01, HLA-
B*51:01 

26 109 TLDSKTQSL 0.730577-0.914998 0.03-0.1 HLA-A*02:01, HLA-B*08:01, HLA-
A*02:03, HLA-A*02:06 

27 36 VYYPDKVFR 0.292317-0.892155 0.03-0.44 HLA-A*31:01, HLA-A*33:01, HLA-
A*30:01 

28 258 WTAGAAAYY 0.331721-0.842739 0.03-0.39 HLA-A*26:01, HLA-A*01:01, HLA-
A*30:02, HLA-B*35:01 

29 989 AEVQIDRLI 0.758249-0.89662 0.04-0.13 HLA-B*44:03, HLA-B*44:02, HLA-
B*40:01 

30 361 CVADYSVLY 0.456493-0.813057 0.04-0.36 
HLA-A*26:01, HLA-A*01:01, HLA-

A*30:02, HLA-B*35:01, HLA-
B*15:01 

31 725 EILPVSMTK 0.269327-0.945141 0.04-0.49 HLA-A*68:01, HLA-A*11:01, HLA-
A*03:01, HLA-A*33:01 

32 815 RSFIEDLLF 0.479418-0.933645 0.04-0.11 HLA-B*58:01, HLA-B*57:01, HLA-
A*32:01 



 111 

MHC I peptides, minimum 3 HLA alleles 

# Start residue Peptide Score Percentile rank Alleles 

33 634 RVYSTGSNVF 0.291524-0.851186 0.04-0.3 HLA-B*15:01, HLA-A*32:01, HLA-
A*24:02, HLA-A*23:01 

34 1137 VYDPLQPEL 0.479112-0.851829 0.04-0.16 HLA-A*24:02, HLA-A*23:01, HLA-
B*08:01 

35 958 ALNTLVKQL 0.165467-0.84284 0.05-0.5 HLA-A*02:03, HLA-A*02:01, HLA-
A*32:01, HLA-A*02:06 

36 1262 EPVLKGVKL 0.261209-0.740861 0.05-0.42 
HLA-B*08:01, HLA-B*07:02, HLA-

B*51:01, HLA-B*53:01, HLA-
B*35:01 

37 1048 HLMSFPQSA 0.601563-0.845506 0.05-0.17 HLA-A*02:03, HLA-A*02:01, HLA-
A*02:06 

38 41 KVFRSSVLH 0.359703-0.859868 0.05-0.33 HLA-A*03:01, HLA-A*30:01, HLA-
A*11:01, HLA-A*30:02 

39 1000 RLQSLQTYV 0.151972-0.87376 0.05-0.49 HLA-A*02:01, HLA-A*02:03, HLA-
A*02:06, HLA-A*32:01 

40 1060 VVFLHVTYV 0.162221-0.850041 0.05-0.46 
HLA-A*02:03, HLA-A*02:06, HLA-

A*68:02, HLA-A*02:01", HLA-
B*51:01, HLA-A*32:01 

41 28 YTNSFTRGV 0.346-0.823738 0.05-0.42 HLA-A*68:02, HLA-A*02:06, HLA-
A*02:03 

42 344 ATRFASVYAW 0.515027-0.954826 0.06-0.16 HLA-B*57:01, HLA-A*32:01, HLA-
B*58:01 

43 35 GVYYPDKVFR 0.330452-0.811444 0.06-0.37 
HLA-A*31:01, HLA-A*11:01, HLA-

A*68:01, HLA-A*33:01, HLA-
A*03:01 

44 878 LAGTITSGW 0.532125-0.908875 0.06-0.12 HLA-B*58:01, HLA-B*57:01, HLA-
B*53:01 

45 962 LVKQLSSNF 0.177684-0.818281 0.06-0.43 HLA-B*15:01, HLA-A*26:01, HLA-
A*32:01 

46 983 RLDKVEAEV 0.403746-0.825045 0.06-0.34 HLA-A*02:01, HLA-A*02:06, HLA-
A*02:03 

47 1185 RLNEVAKNL 0.513013-0.788651 0.06-0.16 HLA-A*02:03, HLA-A*32:01, HLA-
A*02:01 

48 1136 TVYDPLQPEL 0.210208-0.758137 0.06-0.42 
HLA-A*68:02, HLA-A*02:06, HLA-

A*02:03, HLA-A*02:01, HLA-
A*26:01, HLA-A*24:02 

49 1094 VFVSNGTHW 0.168595-0.754597 0.06-0.5 HLA-A*23:01, HLA-A*24:02, HLA-
B*58:01, HLA-B*53:01 

50 1220 FIAGLIAIV 0.501049-0.76346 0.07-0.19 HLA-A*02:03, HLA-A*02:06, HLA-
A*02:01, HLA-A*68:02 

51 339 GEVFNATRF 0.682004-0.828162 0.07-0.16 HLA-B*44:03, HLA-B*44:02, HLA-
B*40:01 

52 624 IHADQLTPTW 0.199039-0.886293 0.07-0.43 HLA-B*58:01, HLA-B*57:01, HLA-
B*53:01, HLA-A*23:01 

53 202 KIYSKHTPI 0.324637-0.553766 0.07-0.32 HLA-A*32:01, HLA-A*30:01, HLA-
A*02:03, HLA-B*08:01 
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MHC I peptides, minimum 3 HLA alleles 

# Start residue Peptide Score Percentile rank Alleles 

54 637 STGSNVFQTR 0.343407-0.89597 0.07-0.43 HLA-A*68:01, HLA-A*31:01, HLA-
A*33:01, HLA-A*11:01 

55 83 VLPFNDGVYF 0.387438-0.63303 0.07-0.44 HLA-B*53:01, HLA-B*35:01, HLA-
B*15:01 

56 320 VQPTESIVRF 0.267127-0.612597 0.07-0.39 
HLA-B*53:01, HLA-B*15:01, HLA-

A*23:01, HLA-A*24:02, HLA-
B*35:01 

57 880 GTITSGWTF 0.209008-0.811974 0.08-0.41 
HLA-A*32:01, HLA-B*58:01, HLA-

B*57:01, HLA-B*15:01, HLA-
A*23:01 

58 603 NTSNQVAVLY 0.323431-0.744843 0.08-0.38 HLA-A*01:01, HLA-A*26:01, HLA-
A*30:02 

59 464 FERDISTEI 0.23108-0.84839 0.09-0.44 HLA-B*40:01, HLA-B*44:03, HLA-
B*44:02 

60 894 LQIPFAMQM 0.20736-0.763797 0.09-0.37 HLA-B*15:01, HLA-A*02:06, HLA-
A*32:01 

61 628 QLTPTWRVY 0.177798-0.724015 0.09-0.43 HLA-A*30:02, HLA-B*15:01, HLA-
A*32:01 

62 162 SANNCTFEY 0.570386-0.753348 0.09-0.15 HLA-A*30:02, HLA-B*35:01, HLA-
A*01:01 

63 987 VEAEVQIDRL 0.205553-0.832715 0.09-0.48 HLA-B*40:01, HLA-B*44:03, HLA-
B*44:02 

64 574 DAVRDPQTL 0.336628-0.639281 0.1-0.32 HLA-B*51:01, HLA-B*53:01, HLA-
B*35:01 

65 898 FAMQMAYRF 0.226168-0.68794 0.1-0.38 HLA-B*53:01, HLA-B*35:01, HLA-
B*58:01, HLA-A*23:01 

66 1181 KEIDRLNEV 0.389617-0.808555 0.1-0.4 HLA-B*40:01, HLA-B*44:02, HLA-
B*44:03, HLA-A*02:06 

67 733 KTSVDCTMY 0.34981-0.642966 0.1-0.47 HLA-A*30:02, HLA-A*01:01, HLA-
B*58:01 

68 56 LPFFSNVTWF 0.292389-0.648367 0.1-0.47 HLA-B*53:01, HLA-B*35:01, HLA-
B*51:01 

69 249 LTPGDSSSGW 0.530312-0.6494 0.1-0.35 HLA-B*53:01, HLA-B*58:01, HLA-
B*57:01 

70 1054 QSAPHGVVF 0.219646-0.815153 0.1-0.4 

HLA-B*15:01, HLA-B*58:01, HLA-
B*35:01, HLA-B*57:01, HLA-
A*32:01, HLA-A*26:01, HLA-

B*53:01 

71 634 RVYSTGSNV 0.23705-0.543326 0.1-0.35 HLA-A*30:01, HLA-A*02:03, HLA-
A*32:01, HLA-A*02:06 

72 28 YTNSFTRGVY 0.391325-0.661513 0.1-0.18 HLA-A*01:01, HLA-A*30:02, HLA-
A*26:01 

73 304 KSFTVEKGIY 0.378169-0.653254 0.11-0.43 HLA-A*30:02, HLA-B*57:01, HLA-
B*58:01 

74 1261 SEPVLKGVKL 0.241206-0.718257 0.11-0.45 HLA-B*07:02, HLA-B*40:01, HLA-
B*44:02, HLA-B*44:03 

75 30 NSFTRGVYY 0.492899-0.597285 0.12-0.22 HLA-A*30:02, HLA-A*26:01, HLA-
A*01:01, HLA-B*35:01 

76 915 VLYENQKLI 0.171258-0.648983 0.12-0.44 HLA-A*02:03, HLA-A*02:01, HLA-
A*32:01 
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MHC I peptides, minimum 3 HLA alleles 

# Start residue Peptide Score Percentile rank Alleles 

77 529 KSTNLVKNK 0.495913-0.588891 0.14-0.26 HLA-A*30:01, HLA-A*11:01, HLA-
A*03:01 

78 1095 FVSNGTHWF 0.210819-0.431696 0.15-0.41 HLA-A*26:01, HLA-B*35:01, HLA-
B*53:01 

79 861 LPPLLTDEM 0.257301-0.608235 0.16-0.49 HLA-B*35:01, HLA-B*53:01, HLA-
B*51:01 

80 487 NCYFPLQSY 0.315549-0.605847 0.16-0.24 HLA-B*35:01, HLA-A*26:01, HLA-
A*30:02 

81 1192 NLNESLIDL 0.343239-0.618877 0.18-0.48 HLA-A*02:01, HLA-A*02:03, HLA-
A*02:06 

82 995 RLITGRLQSL 0.208067-0.576159 0.18-0.37 HLA-A*02:03, HLA-A*02:01, HLA-
A*32:01 

83 748 ECSNLLLQY 0.336613-0.378678 0.19-0.34 HLA-A*26:01, HLA-A*01:01, HLA-
B*35:01 

84 464 FERDISTEIY 0.437515-0.586808 0.2-0.35 HLA-B*44:03, HLA-B*44:02, HLA-
B*15:01 

85 424 KLPDDFTGCV 0.532999-0.562841 0.2-0.23 HLA-A*02:03, HLA-A*02:06, HLA-
A*02:01 

86 366 SVLYNSASF 0.269331-0.470989 0.21-0.38 HLA-A*32:01, HLA-A*26:01, HLA-
B*15:01, HLA-B*35:01 

87 47 VLHSTQDLF 0.191875-0.609724 0.21-0.5 HLA-B*15:01, HLA-A*32:01, HLA-
A*24:02 

88 1059 GVVFLHVTY 0.200689-0.585418 0.22-0.38 HLA-B*15:01, HLA-A*30:02, HLA-
A*26:01, HLA-A*32:01 

89 311 GIYQTSNFR 0.540742-0.587274 0.25-0.5 HLA-A*31:01, HLA-A*11:01, HLA-
A*03:01, HLA-A*68:01 

90 1093 GVFVSNGTHW 0.251174-0.757943 0.25-0.31 HLA-B*57:01, HLA-B*58:01, HLA-
A*32:01 

91 257 GWTAGAAAYY 0.218071-0.411498 0.26-0.34 HLA-A*30:02, HLA-A*01:01, HLA-
A*26:01 

92 638 TGSNVFQTR 0.397693-0.603019 0.27-0.47 HLA-A*33:01, HLA-A*31:01, HLA-
A*68:01 

93 1200 LQELGKYEQY 0.193472-0.505374 0.29-0.49 HLA-B*15:01, HLA-B*44:03, HLA-
B*44:02 

94 506 QPYRVVVLSF 0.280366-0.451783 0.29-0.45 HLA-B*07:02, HLA-B*53:01, HLA-
B*35:01 

95 879 AGTITSGWTF 0.169346-0.689438 0.31-0.44 HLA-B*57:01, HLA-B*58:01, HLA-
A*32:01 

96 869 MIAQYTSAL 0.33241-0.360459 0.31-0.43 HLA-B*08:01, HLA-A*68:02, HLA-
A*02:03, HLA-B*07:02 

97 516 ELLHAPATV 0.317281-0.356044 0.33-0.48 HLA-A*68:02, HLA-A*02:03, HLA-
A*02:01 

98 877 LLAGTITSGW 0.185323-0.633888 0.36-0.42 HLA-B*57:01, HLA-B*58:01, HLA-
A*32:01 

99 168 FEYVSQPFLM 0.21741-0.359256 0.39-0.45 HLA-A*23:01, HLA-B*40:01, HLA-
A*24:02 

MHC II peptides, minimum 3 HLA alleles 

# Start residue Peptide Affinity (nM) Percentile rank Alleles 

1 113 KTQSLLIVNNATNVV 1.5-44.3 0.01-1.9 DRB1_1302, DRB3_0202, 
DRB1_0405 

2 114 TQSLLIVNNATNVVI 1.4-44.1 0.01-1.9 DRB1_1302, DRB3_0202, 
DRB1_0405 
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MHC II peptides, minimum 3 HLA alleles 

# Start residue Peptide Affinity (nM) Percentile rank Alleles 

3 338 FGEVFNATRFASVYA 11.6-4.7 0.02-1.5 
HLA-DPA10201-DPB10101, HLA-

DPA10103-DPB10401, HLA-
DPA10301-DPB10402 

4 339 GEVFNATRFASVYAW 15.3-5.5 0.05-1.5 
HLA-DPA10201-DPB10101, HLA-

DPA10103-DPB10401, HLA-
DPA10301-DPB10402 

5 885 GWTFGAGAALQIPFA 11.8-73.9 0.08-1.9 

HLA-DQA10501-DQB10301, 
DRB1_0901, DRB1_0101, HLA-

DQA10301-DQB10302, HLA-
DQA10102-DQB10602, 

DRB1_0701 

6 511 VVLSFELLHAPATVC 2.9-41.2 0.08-1.8 DRB1_0101, DRB1_0405, HLA-
DPA10301-DPB10402 

7 884 SGWTFGAGAALQIPF 11-84.9 0.09-1.9 

HLA-DQA10501-DQB10301, 
DRB1_0901, HLA-DQA10301-
DQB10302, DRB1_0101, HLA-

DQA10401-DQB10402, 
DRB1_0701, HLA-DQA10102-

DQB10602 

8 507 PYRVVVLSFELLHAP 11.9-70.7 0.15-1.9 

HLA-DPA10301-DPB10402, HLA-
DPA10201-DPB11401, HLA-
DPA10201-DPB10101, HLA-

DPA10103-DPB10201 

9 883 TSGWTFGAGAALQIP 11.5-8.5 0.15-1.9 
HLA-DQA10501-DQB10301, 
DRB1_0901, DRB1_0701, 

DRB1_0101 

10 886 WTFGAGAALQIPFAM 15.1-66.8 0.15-1.8 

HLA-DQA10501-DQB10301, 
DRB1_0901, DRB1_0101, HLA-

DQA10102-DQB10602, HLA-
DQA10301-DQB10302 

11 814 KRSFIEDLLFNKVTL 14.4-93.3 0.25-1.2 

HLA-DPA10301-DPB10402, HLA-
DPA10201-DPB10101, HLA-
DPA10103-DPB10401, HLA-

DPA10201-DPB10501 

12 506 QPYRVVVLSFELLHA 15.2-63.8 0.25-1.4 
HLA-DPA10301-DPB10402, HLA-

DPA10201-DPB11401, HLA-
DPA10201-DPB10101 

13 34 RGVYYPDKVFRSSVL 36.9-6.9 0.25-1.8 DRB3_0101, DRB1_0401, 
DRB1_0301 

14 255 SSGWTAGAAAYYVGY 11.3-58.9 0.25-1 
DRB1_0901, HLA-DQA10501-
DQB10301, HLA-DQA10102-

DQB10602 

15 254 SSSGWTAGAAAYYVG 11-72.7 0.25-1.5 
DRB1_0901, HLA-DQA10501-
DQB10301, HLA-DQA10102-

DQB10602 

 



 115 

MHC II peptides, minimum 3 HLA alleles 

# Start residue Peptide Affinity (nM) Percentile rank Alleles 

16 761 TQLNRALTGIAVEQD 207.2-94.9 0.25-1.7 
HLA-DQA10401-DQB10402, HLA-

DQA10301-DQB10302, HLA-
DQA10501-DQB10201 

17 33 TRGVYYPDKVFRSSV 38.9-7.1 0.25-1.7 DRB3_0101, DRB1_0401, 
DRB1_0301 

18 815 RSFIEDLLFNKVTLA 15.4-66.4 0.3-1.5 
HLA-DPA10301-DPB10402, HLA-

DPA10201-DPB10101, HLA-
DPA10103-DPB10401 

19 882 ITSGWTFGAGAALQI 13.9-293.4 0.4-1.8 
DRB1_0901, HLA-DQA10501-
DQB10301, DRB1_0701, HLA-

DQA10301-DQB10302 

20 256 SGWTAGAAAYYVGYL 13.2-67.2 0.4-1.3 
DRB1_0901, HLA-DQA10501-
DQB10301, HLA-DQA10102-

DQB10602 

21 813 SKRSFIEDLLFNKVT 17.5-92.8 0.4-1.3 

HLA-DPA10301-DPB10402, HLA-
DPA10201-DPB10101, HLA-
DPA10201-DPB10501, HLA-

DPA10103-DPB10401 

22 887 TFGAGAALQIPFAMQ 21.3-86.3 0.4-1.9 
HLA-DQA10501-DQB10301, 

DRB1_0901, HLA-DQA10102-
DQB10602 

23 166 CTFEYVSQPFLMDLE 18.8-65.2 0.5-1.6 

HLA-DPA10301-DPB10402, HLA-
DPA10103-DPB10401, HLA-
DQA10501-DQB10201, HLA-
DPA10201-DPB10101, HLA-

DPA10103-DPB10201 

24 165 NCTFEYVSQPFLMDL 20.6-64.7 0.5-1.4 

HLA-DPA10301-DPB10402, HLA-
DQA10501-DQB10201, HLA-
DPA10103-DPB10401, HLA-
DPA10103-DPB10201, HLA-

DPA10201-DPB10101 

25 167 TFEYVSQPFLMDLEG 19-81.0 0.5-1.7 

HLA-DPA10301-DPB10402, HLA-
DPA10103-DPB10401, HLA-
DQA10501-DQB10201, HLA-

DPA10201-DPB10101 

26 958 ALNTLVKQLSSNFGA 21.4-85.8 0.6-1.7 DRB1_0401, DRB1_0101, 
DRB1_0802 

27 199 GYFKIYSKHTPINLV 11.5-8.5 0.6-1.6 DRB1_1101, DRB1_0701, HLA-
DPA10201-DPB11401 

28 812 PSKRSFIEDLLFNKV 104.1-42.9 0.6-1.5 

HLA-DPA10301-DPB10402, HLA-
DPA10201-DPB10101, HLA-
DPA10103-DPB10401, HLA-

DPA10201-DPB10501 
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MHC II peptides, minimum 3 HLA alleles 

# Start residue Peptide Affinity (nM) Percentile rank Alleles 

29 164 NNCTFEYVSQPFLMD 29.4-56.0 0.8-1.6 
HLA-DQA10501-DQB10201, HLA-

DPA10301-DPB10402, HLA-
DPA10103-DPB10401 

30 1091 REGVFVSNGTHWFVT 17.7-7.4 1-1.5 DRB3_0101, DRB1_1302, 
DRB3_0202 

31 53 DLFLPFFSNVTWFHA 29.1-69.5 1.1-1.6 

DRB1_0401, HLA-DPA10103-
DPB10401, HLA-DPA10201-
DPB10101, HLA-DPA10103-

DPB10201 

32 1092 EGVFVSNGTHWFVTQ 17-8.9 1.1-1.7 DRB3_0101, DRB3_0202, 
DRB1_1302 

33 54 LFLPFFSNVTWFHAI 13.3-67.6 1.1-1.8 

DRB1_0401, HLA-DPA10103-
DPB10401, DRB1_0701, HLA-
DPA10201-DPB10101, HLA-

DPA10103-DPB10201 

34 52 QDLFLPFFSNVTWFH 27.1-69.2 1.1-1.7 
HLA-DPA10103-DPB10401, HLA-

DPA10201-DPB10101, 
DRB1_0401 

 

Although there was a high amount of conservation for T cell epitopes, my analysis did 

detect several unique MHC-I-binding peptides per variant that were not predicted in the Wuhan 

reference sequence or other variants (Table 4.5). The Alpha variant had 14 unique peptides, 

corresponding to 48 predicted epitopes; the Beta variant had 17 peptides, which corresponded to 

34 epitopes; Gamma had 17 peptides, corresponding to 51 epitopes; Delta had 7 unique peptides 

(14 epitopes); Kappa had 14 unique peptides (25 epitopes); Epsilon had only 3 peptides (3 

epitopes); B.1.617.3 had 5 peptides (15 epitopes); and mink-related spike had 34 (15 epitopes) 

(Figure 4.5C, Table 4.5). I noted two epitopes occurring in the Wuhan reference sequence only, 

which corresponded to the D614G substitution present in the other spike sequences. Across 

variants, these lineage-specific peptides spanned both S1 and S2 subunits of spike. Of the high-

affinity peptides specific to the Alpha variant, less than half were in the S1 subunit, and none 

spanned the receptor binding domain of spike (Table 4.5). The B.1.617.3 lineage had all five of 

its lineage-specific MHC-I peptides falling in the S2 subunit (Table 4.5). In contrast, the remaining 
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variant- specific MHC-I-binding peptides fell heavily in the S1 subunit, with several occurring in 

the receptor-binding domain. The Beta, Kappa, Epsilon, and mink-related variants all had most of 

their lineage-specific peptides in S1, with 3/17 peptides falling in the RBD of Beta; 7/26 in the 

RBD of Gamma; 8/15 in the RBD of mink-related spike; but none in the RBD of Kappa and Epsilon 

variants (Table 4.5). Although all seven of Delta’s lineage-specific peptides fell in S1, none 

spanned the RBD. With respect to potential CD8+ T cell activation, the Alpha, Epsilon, and Kappa 

variants appear antigenically similar to reference SARS-CoV-2 across the RBD of spike. 

However, Beta, Gamma, and mink-related lineages show RBDs that may have antigenic 

distinctions from the reference. With the exception of Alpha and B.1.617.3, I found the MHC-I 

binding peptides derived from the S2 subunit of spike to be more conserved between variant and 

reference spike proteins; that is, SARS-CoV-2 spike variants may have more divergent antigenic 

presentations with respect to MHC-I epitopes derived from the S1 subunit. 
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Table 4.5 High-affinity, lineage-specific MHC-I and MHC-II peptides predicted for SARS-
CoV-2 spike variants using Immune Epitope Database tools NetMHCII 3.2 and NetMHCpan 
EL 4.1. 

  MHC class I (percentile rank < 0.5) MHC class II (percentile rank < 2.0) 

  Site Peptide Site Peptide 

Wuhan reference 
spike 

612 YQDVNCTEV 

606 NQVAVLYQDVNCTEV 

600 PGTNTSNQVAVLYQD 

601 GTNTSNQVAVLYQDV 

602 TNTSNQVAVLYQDVN 

603 NTSNQVAVLYQDVNC 

  Site Peptide Site Peptide 

Alpha (B.1.1.7) 

973 VLNDILARL 965 SNFGAISSVLNDILA 

711 IPINFTISV 709 IAIPINFTISVTTEI 

709 IAIPINFTI 710 AIPINFTISVTTEIL 

672 QTQTNSHRR 711 IPINFTISVTTEILP 

141 VYHKNNKSW 712 PINFTISVTTEILPV 

972 SVLNDILAR 713 INFTISVTTEILPVS 

674 QTNSHRRAR 699 ENSVAYSNNSIAIPI 

1110 QIITTHNTF 700 NSVAYSNNSIAIPIN 

140 GVYHKNNKSW 701 SVAYSNNSIAIPINF 

707 NSIAIPINF 136 DPFLGVYHKNNKSWM 

972 SVLNDILARL 137 PFLGVYHKNNKSWME 

676 NSHRRARSV 138 FLGVYHKNNKSWMES 

670 SYQTQTNSHR 139 LGVYHKNNKSWMESE 

708 SIAIPINFTI 140 GVYHKNNKSWMESEF 

   702 VAYSNNSIAIPINFT 

   678 HRRARSVASQSIIAY 

   1101 VTQRNFYEPQIITTH 

   1102 TQRNFYEPQIITTHN 

   129 CEFQFCNDPFLGVYH 

    130 EFQFCNDPFLGVYHK 

  Site Peptide Site Peptide 

Beta (B.1.351) 

696 LGVENSVAY 688 SIIAYTMSLGVENSV 

235 ITRFQTLHR 689 IIAYTMSLGVENSVA 

78 RFANPVLPF 690 IAYTMSLGVENSVAY 
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  MHC class I (percentile rank < 0.5) MHC class II (percentile rank < 2.0) 

 Site Peptide Site Peptide 

Beta (B.1.351) 

237 RFQTLHRSY 684 VASQSIIAYTMSLGV 

695 SLGVENSVAY 685 ASQSIIAYTMSLGVE 

208 TPINLVRGL 686 SQSIIAYTMSLGVEN 

414 NIADYNYKL 687 QSIIAYTMSLGVENS 

410 GQTGNIADY 691 AYTMSLGVENSVAYS 

212 LVRGLPQGF 207 HTPINLVRGLPQGFS 

690 IAYTMSLGV 697 GVENSVAYSNNSIAI 

215 GLPQGFSAL 698 VENSVAYSNNSIAIP 

411 QTGNIADYNY 215 GLPQGFSALEPLVDL 

694 MSLGVENSV 73 TNGTKRFANPVLPFN 

236 TRFQTLHRSY 74 NGTKRFANPVLPFND 

238 FQTLHRSYL 201 FKIYSKHTPINLVRG 

234 NITRFQTLHR   

77 KRFANPVLPF     

  Site Peptide Site Peptide 

Gamma (P.1) 

24 LPSAYTNSF 6 EMFVFLVLLPLVSSQ 

26 SAYTNSFTR 10 FLVLLPLVSSQCVNF 

1173 NASFVNIQK 1020 RAAEIRASANLAAIK 

416 GTIADYNYK 1021 AAEIRASANLAAIKM 

1020 ASANLAAIK 11 LVLLPLVSSQCVNFT 

1168 DISGINASF 12 VLLPLVSSQCVNFTN 

138 YPFLGVYYH 13 LLPLVSSQCVNFTNR 

413 GQTGTIADY 196 SEFVFKNIDGYFKIY 

417 TIADYNYKL 1019 IRAAEIRASANLAAI 

652 GAEYVNNSY 1025 RASANLAAIKMSECV 

415 TGTIADYNYK 1026 ASANLAAIKMSECVL 

133 FQFCNYPFL 1027 SANLAAIKMSECVLG 

414 QTGTIADYNY 189 QGNFKNLSEFVFKNI 

13 SQCVNFTNR 132 VVIKVCEFQFCNYPF 

1168 DISGINASFV 133 VIKVCEFQFCNYPFL 

651 IGAEYVNNSY 134 IKVCEFQFCNYPFLG 

411 APGQTGTIA 135 KVCEFQFCNYPFLGV 

1021 SANLAAIKM 136 VCEFQFCNYPFLGVY 
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  MHC class I (percentile rank < 0.5) MHC class II (percentile rank < 2.0) 

 Site Peptide Site Peptide 

Gamma (P.1) 

23 QLPSAYTNSF 137 CEFQFCNYPFLGVYY 

647 AGCLIGAEY 138 EFQFCNYPFLGVYYH 

129 KVCEFQFCNY 139 FQFCNYPFLGVYYHK 

137 NYPFLGVYY 140 QFCNYPFLGVYYHKN 

410 IAPGQTGTI 141 FCNYPFLGVYYHKNN 

136 CNYPFLGVY 142 CNYPFLGVYYHKNNK 

646 RAGCLIGAEY 143 NYPFLGVYYHKNNKS 

187 KNLSEFVFK 188 KQGNFKNLSEFVFKN 

   190 GNFKNLSEFVFKNID 

   191 NFKNLSEFVFKNIDG 

   192 FKNLSEFVFKNIDGY 

   195 LSEFVFKNIDGYFKI 

    1022 AEIRASANLAAIKMS 

  Site Peptide Site Peptide 

Delta (B.1.617.2) 

135 FCNDPFLDYY 139 PFLDYYHKNNKSWME 

149 KSWMESGVY 140 FLDYYHKNNKSWMES 

136 CNDPFLDYY 141 LDYYHKNNKSWMESG 

135 FCNDPFLDY 142 DYYHKNNKSWMESGV 

134 QFCNDPFLDY 130 VCEFQFCNDPFLDYY 

142 DYYHKNNKSW 131 CEFQFCNDPFLDYYH 

475 KPCNGVEGF 132 EFQFCNDPFLDYYHK 

    129 KVCEFQFCNDPFLDY 

  Site Peptide Site Peptide 

Epsilon (B.1.429) 

8 LPLVSIQCV 140 FLGVYYHKNNKSCME 

5 LVLLPLVSI 141 LGVYYHKNNKSCMES 

152 CMESEFRVY 142 GVYYHKNNKSCMESE 

   143 VYYHKNNKSCMESEF 

   3 VFLVLLPLVSIQCVN 

   4 FLVLLPLVSIQCVNL 

   5 LVLLPLVSIQCVNLT 

   6 VLLPLVSIQCVNLTT 

   7 LLPLVSIQCVNLTTR 

    8 LPLVSIQCVNLTTRT 
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  MHC class I (percentile rank < 0.5) MHC class II (percentile rank < 2.0) 
 Site Peptide Site Peptide 

Kappa (B.1.617.1) 

1065 VTYVPAHEK 1058 HGVVFLHVTYVPAHE 

1066 TYVPAHEKNF 1059 GVVFLHVTYVPAHEK 

89 GVYFASIEK 1060 VVFLHVTYVPAHEKN 

1064 HVTYVPAHEK 1070 AHEKNFTTAPAICHD 

142 DVYYHKNNK 1071 HEKNFTTAPAICHDG 

95 IEKSNIIRGW 89 GVYFASIEKSNIIRG 

88 DGVYFASIEK 140 FLDVYYHKNNKSWME 

135 FCNDPFLDVY 141 LDVYYHKNNKSWMES 

136 CNDPFLDVY 142 DVYYHKNNKSWMESE 

136 CNDPFLDVYY 84 LPFNDGVYFASIEKS 

138 DPFLDVYYHK 129 KVCEFQFCNDPFLDV 

92 FASIEKSNI 130 VCEFQFCNDPFLDVY 

138 DPFLDVYYH 131 CEFQFCNDPFLDVYY 

1067 YVPAHEKNF 132 EFQFCNDPFLDVYYH 

    133 FQFCNDPFLDVYYHK 

  Site Peptide Site Peptide 

B.1.617.3 

1064 HVTYVPAQK 1059 GVVFLHVTYVPAQKK 

1065 VTYVPAQKK 1060 VVFLHVTYVPAQKKN 

1066 TYVPAQKKNF 1061 VFLHVTYVPAQKKNF 

1064 HVTYVPAQKK 1070 AQKKNFTTAPAICHD 

1070 AQKKNFTTA 1071 QKKNFTTAPAICHDG 

   1072 KKNFTTAPAICHDGK 

   1062 FLHVTYVPAQKKNFT 

   1063 LHVTYVPAQKKNFTT 

    1069 PAQKKNFTTAPAICH 

  Site Peptide Site Peptide 

Mink-related  

685 VASQSVIAY 689 SVIAYTMSLGAENSV 

446 NYNYLFRLF 690 VIAYTMSLGAENSVA 

689 SVIAYTMSL 448 NYLFRLFRKSNLKPF 

684 SVASQSVIAY 449 YLFRLFRKSNLKPFE 

446 NYNYLFRLFR 450 LFRLFRKSNLKPFER 

447 YNYLFRLFR 685 VASQSVIAYTMSLGA 
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  MHC class I (percentile rank < 0.5) MHC class II (percentile rank < 2.0) 

 Site Peptide Site Peptide 

Mink-related 

451 FRLFRKSNLK 686 ASQSVIAYTMSLGAE 

687 SQSVIAYTM 687 SQSVIAYTMSLGAEN 

448 NYLFRLFRK 688 QSVIAYTMSLGAENS 

451 FRLFRKSNL 442 KVGGNYNYLFRLFRK 

1219 IAGLIAIVI 443 VGGNYNYLFRLFRKS 

1223 IAIVIVTIM 444 GGNYNYLFRLFRKSN 

681 RARSVASQSV 445 GNYNYLFRLFRKSNL 

442 KVGGNYNYLF 446 NYNYLFRLFRKSNLK 

445 GNYNYLFRLF 447 YNYLFRLFRKSNLKP 

 

With respect to MHC class II epitopes derived from the spike protein, I found similar 

numbers of high-affinity peptides across the variants (percentile rank < 2.0 as in [199]), ranging 

from 510-564 epitopes, which corresponded to 325-348 unique peptides. As with the MHC-I 

epitope analysis, the variants showed a high degree of predicted epitope conservation in MHC-II 

epitopes compared to the Wuhan reference spike, ranging from 87% conservation for Beta, to 

99% conservation for D614G (Figure 4.5A). This corresponded to 241 unique conserved 

peptides, regardless of HLA restriction. When filtered to show only epitopes presented on at least 

three HLA alleles, 34 unique conserved peptides were found which collectively spanned both the 

S1 and S2 subunits of spike (Figure 4.5B, Table 4.4). In general, I found variants to have slightly 

greater epitope conservation for MHC-I epitopes compared to MHC-II, except for the Gamma 

variant (Figure 4.5A). Notably, the Beta variant had seven percent less conservation in predicted 

high-affinity peptides for MHC-II compared to MHC-I. 

I identified several high-affinity MHC-II epitopes that were specific to each variant (Figure 

4.5C, Table 4.5). The Alpha variant had 20 unique peptides, corresponding to 32 epitopes; Beta 

had 15, corresponding to 25 epitopes; Kappa had 15, corresponding to 27 epitopes; and Gamma 

had 31, which lead to 45 unique epitopes (Figure 4.5C). The other variants had fewer lineage-
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specific peptides, with Delta, B.1.617.3, Epsilon, and mink-related spike having 8, 9, 10, and 15 

peptides respectively (Table 4.5). As noted in my MHC-I analysis, most variant-specific MHC-II 

epitopes occurred in the S1 unit of spike. However, in contrast to my MHC-I analysis, none of the 

peptides occurred in the RBD apart from the mink-related variant. Notably, the mink-related spike 

had 9/15 lineage-specific peptides occurring in the RBD (Table 4.5). 

Conservation of the top spike peptides across human HLA alleles among the reference 

and variant SARS-CoV-2 viruses suggests that cellular adaptive immune responses may still be 

effective despite the mutations. However, my analysis also indicated that lineage-defining 

mutations span sequences likely to be presented on common human HLA alleles, possibly 

leading to some variant-specific CD8+ and CD4+ T cell immunity following exposure.  

4.8 Summary of Chapter 4 

Variants of SARS-CoV-2 have several amino acid substitutions along the spike protein 

that may impact effectiveness of vaccines currently in circulation. In this study, I enlisted my 

previously developed bioinformatic pipeline to screen antigenic changes across SARS-CoV-2 

spike proteins that may impact human B cell immune responses, glycosylation patterns, and T 

cell immunity. Overall, I found broad conservation of high-affinity T cell epitopes and minimal B 

cell changes in antigenicity, but it is important to consider how these small-scale antigenic 

changes in viral proteins can still lead to evasion of the host immune system. In particular, the 

Alpha, Beta, Epsilon, and B.1.617 sub-lineages showed lowered antigenic scores for epitopes 

present in the reference spike, as well as novel antigenic sites in the N-terminal and receptor-

binding domains, which coincides with existing antibody neutralization data. I did not note 

differences in predicted B cell antigenicity for the Gamma variant but detected additional 

glycosylation sites in the S1 subunit that may explain reduced antibody titers. Moreover, the 
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Gamma variant had the greatest number of lineage-specific MHC-I and MHC-II epitopes in my 

study, which may contribute to a unique antigenic signature despite broad T cell epitope 

conservation. Finally, I noted that lineage-specific MHC-I and MHC-II peptides are heavily skewed 

toward the RBD in the mink-related variant, which may be indicative of virus adaptation to mink 

and possible escape from pre-existing immunity. These observed changes in the variants 

investigated may affect immunodominance, leading to immune skewing during reinfection or the 

generation of immunodominant B cell clonotypes, which may be unfavorable in for vaccine-

induced protection. My established pipeline can be used for the analysis of future SARS-CoV-2 

variants. 
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CHAPTER 5 DISCUSSION 

5.1 Host-pathogen interactions are a relevant public health problem 

The evolutionary battle between virus and host can have devastating consequences. 

Viruses have the capacity to gain mutations that allow evasion from previously acquired adaptive 

immunity, which is reflected in the need to reformulate influenza virus vaccinations annually, and 

potentially in the decreased neutralizing antibody titers found in some SARS-CoV-2 variants. 

Improving our understanding of the many factors driving viral mutation, as well as enhancing 

strategies to predict the specific impact of these mutations, is imperative to reducing the harmful 

impact of viral evolution. In this thesis, I investigated the impact of specific host immunity on 

influenza viral mutation across both the external and internal influenza virus proteins. Using the 

sequence and antigenic analysis pipeline generated in my study of influenza viral mutations, I 

applied this strategy to predict the antigenicity of SARS-CoV-2 spike proteins across circulating 

viral variants. 

Despite the development of the first influenza virus vaccine many decades ago, influenza 

viruses still cause significant morbidity and mortality in the human population. Antigenic drift 

remains the greatest challenge facing influenza virus vaccine development, and although it is 

generally known that viral mutation is driven by several factors, the exact mechanisms 

surrounding viral evolution remain largely unexplored in the context of host immunity driving viral 

mutation selection. My thesis provides one of the first comprehensive studies of specific host 

infection and vaccination history as a driver of influenza viral mutation. Using mice either infected 

with a historical H1N1 virus, vaccinated against 2009 pandemic H1N1, or a combination of both, 

I showed that differential stimulation of the immune system during contemporary pandemic H1N1 

infection leads to positive selection of specific mutations across influenza viral HA, NA, NP, and 

PB1. Specifically, I show that immune responses that favor unrestricted viral replication combined 
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with strain-specific humoral responses facilitates the highest rate of mutation across influenza 

virus proteins. My study informs an important aspect of host-pathogen interaction that is not 

considered in traditional vaccine design. 

My developed analysis pipeline was subsequently applied to screen antigenic changes in 

the SARS-CoV-2 spike protein between the original Wuhan viral sequence and several identified 

variants of concern or interest. I found that the nine SARS-CoV-2 variants in my investigation had 

minor, yet notable, changes in predicted antigenicity from the amino acid sequence changes. 

Notable changes were identified in the B cell epitopes of the Alpha (B.1.1.7), Beta (B.1.351), 

Epsilon (B.1.429), and B.1.617 sub-lineages, and in predicted glycosylation sites of the Gamma 

(P.1) variant. These changes may account for the decrease in neutralizing ability of convalescent 

and vaccine serum against new variants, as many of the B cell antigenic changes were identified 

in the receptor-binding domain. Additionally, I determined that the majority of predicted high-

affinity MHC class I and II peptides were conserved across the variants. These data are important 

for assessing the performance of current COVID-19 vaccines against changes in the SARS-CoV-

2 virus as they emerge, considering new vaccine formulations, and developing next-generation 

vaccine platforms.  

5.2 Influenza virus mutations are driven by specific host immunity 

Influenza virus is a single-stranded RNA virus, which mutates more rapidly than double-

stranded DNA viruses [255]. Genetic variants are first generated by errors in replication, but then 

propagated through various mechanisms such as natural selection or random genetic drift [255]. 

Selection of virus mutations is described as positive when the rate of non-synonymous mutation 

surpasses that of synonymous mutation [256]. Here I investigated non-synonymous mutations on 

influenza virus HA, NA, NP, and PB1 at homosubtypic heterologous H1N1 challenge across 
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infected and vaccinated mice. Some of these viral mutations have been previously cited as 

mutations associated with adaptation to the mouse model and were present in mice of all immune 

backgrounds. However, I present several mutations specific to infection and vaccination histories 

that are not accounted for by animal model adaptation. Given that influenza virus antigenic drift 

is the result of interaction between viral proteins and the host immune system [257], I propose 

that the specific immune memory, or lack thereof, elicited at viral challenge contributes to specific 

patterns in viral mutations.  

Along with characterization of the influenza viral SNPs and antigenicity profiles, I analyzed 

the host transcriptome by RNA sequencing to understand the corresponding host immune 

response, with the aim of characterizing immune response mechanisms that promote or restrict 

viral mutation. This immune characterization was essential to confirming the preimmune-

vaccinated mouse model along with establishing immune response profiles for each immune 

background. Before in-depth comparisons of each immune background, I confirmed that our 

mouse model of primary and sequential infection with influenza viruses share several 

transcriptional landmarks with previously published models. At primary infection with Mex/09, our 

naïve-mock vaccinated animals showed upregulated ISGs including Cxcl10, Oas1, Irf1, Rsad2, 

and proinflammatory cytokines IL-6, IL-8, and IFN-g, which was shown previously in ferrets 

infected with Mex/09 and signifies activation of antiviral responses [258]. At heterologous re-

infection, our preimmune animals showed upregulation of IgM and Cd8a. This suggests early 

induction of B and T cell-mediated immune mechanisms, which was shown at homologous re-

infection in ferrets and indicates recall of previously acquired immune memory [258].  

In the next sections, I will further describe the transcriptome response of each group and 

discuss how differential activation of innate and adaptive immune response pathways was 

associated with patterns in influenza virus mutations. 
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5.2.1 Previous vaccination drives mutation of immunodominant influenza virus 
proteins HA and NA through strain-specific adaptive immunity 

Influenza viruses have both external and internal proteins that differentially stimulate or 

suppress the host immune response (reviewed here: [259]). The viral proteins HA and NA are 

prevalent on the virion surface and are major influenza virus antigens that undergo frequent 

mutational changes [260]. The immunodominant HA protein is the primary target for host 

neutralizing antibodies generated at vaccination, and because of this host-pathogen interaction, 

HA is subject to repeated immune pressures that lead to positive selection of mutations over time 

[44]. These mutations are frequently present at well-defined antigenic sites across HA 

[44,261,262]. Several NA mutations, including G41R, V241I, and N369K have been previously 

reported in circulating human seasonal H1N1 viruses [263]. Escape mutations have also been 

well-characterized in NA in response to antiviral drugs, in particular the H274Y mutation [264,265]. 

Given their immunodominant nature and propensity to mutate, I hypothesized that HA and NA 

would show the greatest degree of viral mutation, particularly in vaccinated animals who had 

strain-specific adaptive immunity. 

The impact of previous vaccination can be best understood by comparing the 

transcriptional responses of naïve-vaccinated and naïve-mock vaccinated animals. Typically, 

influenza subunit vaccinations imbalance of more humoral activation and antibody elicitation with 

little specific cytotoxic T cell immunity gained after. In my immune analysis of the various groups, 

at three days post-H1N1 challenge, naïve-vaccinated mice had more robust activation of antiviral 

immune mechanisms compared to naïve mice. This may be explained by innate immune training, 

which describes reprogramming of innate immune cells that prime them for subsequent antigen 

encounters [39]. Innate immune training has been described in mouse models and can lead to 

enhanced activation of non-specific T lymphocytes and IFN-gamma production [39], which was 

enriched in naïve-vaccinated mice. Along with T cell cytotoxicity, naïve-vaccinated animals also 
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showed activation of humoral immunity at challenge. This adaptive immune activation from 

vaccination significantly decreased viral load in the lungs compared to mock-vaccinated animals. 

However, it seems that strain-specific adaptive immunity, in conjunction with only moderate 

restriction of viral replication, was associated with mutation of viral HA and NA. 

On HA, naïve-vaccinated animals had the highest degree of viral mutation overall as well 

as in several groups where group-specific mutations were acquired. These were most 

concentrated in the RBD of HA and were W150, L151P, and S183P, of which only S183P has 

been cited previously as a mouse-adaptive mutation [266,267]. In contrast, the RBD mutation 

P182Q was shared among preimmune-mock vaccinated animals only, indicating a mutational 

pattern distinct from naïve-vaccinated animals. Non-RBD mutations may also be of importance, 

as influenza virus cross-protection through antibodies against conserved regions of HA have been 

reported previously [268–271]. Outside of the RBD, I found two mutations specific to naïve-

vaccinated animals (K43N and Y351), and only one in preimmune-mock vaccinated animals 

(G350V). 

Given that the most RBD-specific mutations were from naïve-vaccinated animals, it seems 

that the presence of strain-specific humoral immune memory only may contribute to mutation of 

HA. These mice were vaccinated with the 2018-2019 QIV, which contains concentrated HA 

protein that is similar in sequence to the challenge strain Mex/09. In a study of H3N2 mutations 

after seasonal vaccination in humans, variants of HA were selected most often in vaccinated 

individuals [129], supporting my hypothesis that highly specific antibodies can drive mutation. 

Another study found that treatment with a monoclonal antibody against H1N1pdm09 HA drives 

mutation of HA in mice [207]. In contrast, naïve-mock vaccinated mice with no previous antibodies 

against Mex/09 showed the most mutations outside of the HA RBD, which suggests that 

unrestricted viral replication is a contributing factor to viral mutation but not in the cellular receptor 

binding site. 
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The importance of strain-specific adaptive immunity is evident when comparing HA 

mutations from naïve-vaccinated mice to those found in preimmune-mock vaccinated mice. 

Preimmune-mock vaccinated mice, which have antibodies specific to the FM/47 seasonal H1N1 

virus as well as activation of specific T cell immunity which might be more cross-reactive to various 

viral proteins, showed fewer RBD-specific mutations than naïve-vaccinated animals. It is 

important to consider that historical FM/47 and Mex/09 virus strains are not antigenically identical, 

where the two viruses only share 78% amino acid sequence similarity on HA. Drawing from 

classical immunology, it is likely that the antibodies elicited at three days post-challenge are those 

that cross-react with Mex/09, or in other words those that arise from B cell clonotypes with similar 

antigenic specificity that may or may not have now undergone affinity maturation in a germinal 

center reaction [272]. In this scenario, the FM/47 preimmune mice are limited to clonotypes that 

can cross-react with the Mex/09 RBD, resulting in a smaller repertoire compared to the BCR 

repertoires elicited in animals vaccinated against the Mex/09 RBD. A narrower repertoire of 

antibodies capable of binding the Mex/09 RBD may lead to fewer mutations on the Mex/09 RBD 

due to decreased immune pressure on the RBD.  

Compared to viral HA, NA showed less mutation overall at Mex/09 challenge. First, I found 

a C292S mutation on NA to appear in all immune backgrounds, except for preimmune-vaccinated 

mice. This mutation is in the head domain of NA, which contains the active sites for NA enzymatic 

activity. I also found that naïve-vaccinated animals had the most mutations in the NA head 

compared to the other groups. Although QIV vaccine efficacy is based on HA content, NA can still 

be present, although its presence is not regulated  [52,273,274]. Therefore, it is possible that 

antibodies generated against the NA head in naïve-vaccinated animals to then be recalled at 

challenge, leading to viral selection. However, because HA and NA are both necessary for viral 

infection, it is possible that NA mutations after vaccination exist as a compensatory mechanism 

for targeting of HA by neutralizing antibodies. The opposite scenario has been shown in the 
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literature, where mutations on HA were associated with the use of NA inhibitors [275]. 

Interestingly, in my work mutations in the NA stalk were detected in unvaccinated animals only 

(E47G and Q51E in naïve-mock vaccinated; I38T in preimmune-mock vaccinated). For 

preimmune-mock vaccinated animals, it could be the elicitation of cross-reactive immunity 

between NA of FM/47 and Mex/09 that select different mutations in the NA stalk, analogous to 

production of HA stalk-directed antibodies at heterologous influenza virus infection [218,276]. 

5.2.2 Previous infection against divergent H1N1 strain led to a high number of 
mutations but also restricted mutation of conserved influenza virus proteins 
NP and PB1  

The influenza viral nucleocapsid protein is abundant inside the virion and is essential for 

vRNA transcription [5]. As NP is relatively conserved and has previously been shown to induce 

strongly cross-reactive CD4+ and CD8+ T cells [103–105], I hypothesized that heterologous 

H1N1 challenge would elicit NP-specific immune memory that could lead to immune selection of 

mutations. Non-synonymous NP mutations have been previously reported in circulating influenza 

viruses, including V217I in H1N1pdm09 during the 2011-2012 season [263], and mutations at 

several residue positions across both H1N1 and H3N2 lineages including 33, 100, 305, and 357 

[277]. For example, the V100I mutation was shown to increase in frequency in H1N1pdm09 from 

~10% to over 80% in just seven months, indicating positive selection [277]. In my analysis, I noted 

the mutations D101G and T130K to be present in most animals at three days post-H1N1 

challenge, regardless of immune background. Like HA, NP can experience mutations when 

adapting to the mouse model; D101G represents a known adaptation of pandemic H1N1 in mice 

[267], while T130K has not been characterized previously. In my analysis, the greatest degree of 

immune background-specific mutation of NP occurred in naïve-vaccinated animals. Notably, the 

R31G and R441 persisted in naïve-vaccinated mice only, while only K91R was detected in naïve-
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mock vaccinated mice. Although I did not find these mutations previously reported, this provides 

evidence for immune selection of mutations across internal, conserved proteins, and not solely 

the external proteins cited in antigenic drift. Moreover, NP may mutate as a compensatory 

mechanism to neutralization of HA in vaccinated animals. 

 Mutations across pandemic H1N1 PB1 have also been previously reported. Starting from 

the prototype isolate A/California/04/2009, the PB1 mutations T20I, I397M, and I435V appeared 

worldwide during the 2011-2012 season [263]. Of the four immune backgrounds in our study, I 

found only naïve-vaccinated mice to have shared non-synonymous mutations across PB1. I noted  

the L95P mutation in the cRNA promoter binding site of PB1 [278], as well as D617A, G622R, 

and L624F in the vRNA promoter binding site [279], and S712Y at a core interaction site with PB2 

[280]. I did not find these mutations on PB1 to be previously reported in the literature, and 

pandemic H1N1 PB1 generally does not show adaptation in the mouse model [267]. These 

findings suggests that prior vaccination, but not previous infection, somehow influences mutations 

on PB1. It is unclear why this happens but given that mutations were found in cRNA and vRNA 

promoter binding sites, they may provide a fitness advantage when HA is targeted after 

vaccination. 

Previous infection with FM/47 seems to limit mutation of NP and PB1. At Mex/09 

challenge, preimmune-mock vaccinated animals had early activation of antiviral defense 

mechanisms, followed by strong upregulation of genes associated with specific T cell activation 

and B cell proliferation, which are thought to be protective. Having experienced intranasal 

infection with FM/47 previously, these animals likely have adaptive immune cells in the respiratory 

tract, such as resident memory T cells in the lungs, which are shown to be activated at influenza 

virus infection [105,281]. Additionally, robust T cell activation and proliferation gene signatures in 

preimmune mice are likely directed toward conserved influenza virus proteins that are targets of 

cross-reactive T cell responses, such as NP as previously shown [104,282]. Clearance by T cells 
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seems to result in lower variation to be selected by host immunity. Mutation may also be limited 

by the absence of strain-specific antibodies toward these proteins. 

5.2.3 Limited viral replication and combined humoral and T cell-mediated 
immunity restricts viral mutation 

Despite similar viral titer, preimmune-mock vaccinated and preimmune-vaccinated mice 

showed differences in immune response activation at lethal H1N1 challenge. Of all groups, 

preimmune-vaccinated mice had the greatest activation of B cell-mediated immune response 

pathways including B cell receptor signaling and B cell proliferation, as well as activated T cell 

proliferation. Given previous findings on immune imprinting, we can speculate that antibodies 

toward the FM/47 HA are still elicited despite the subsequent vaccination toward Mex/09 [283]. 

Like preimmune-mock vaccinated mice, T cell responses are likely directed toward internal 

proteins such as NP that are targets of cross-reactivity. It seems that this broader antibody 

repertoire, consisting of antibodies toward FM/47 as well as virus like Mex/09, combined with 

activation of cross-reactive T cells toward conserved proteins first encountered during FM/47 

infection boosted by secondary infection, was effective in preventing escape mutations in HA, NA, 

NP, and PB1. This finding highlights the importance of engaging T cell immunity as a means of 

removing viral variants, in addition to generating broadly cross-reactive antibodies rather than a 

narrow repertoire of strain-specific antibodies that can apply greater selection pressure. 

5.2.4 Lack of immune memory limits viral mutation in naïve animals 

Finally, my analysis of viral mutations occurring in naïve-mock vaccinated animals 

demonstrates the contribution of adaptive immune mechanisms to influenza viral evolution. At 

three days post-pandemic H1N1 challenge, naïve-mock vaccinated mice had a highly 
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proinflammatory immune response driven by macrophages and cytotoxic T lymphocytes, and high 

viral load in the lungs. Adaptive immune mechanisms, such as the elicitation of antigen-specific 

B cells, are yet not activated in these animals. In parallel, the number of group-specific SNPs 

detected on viral HA, NA, and NP are moderate, with no mutations persisting on PB1. Group-

specific mutations on HA in naïve-mock vaccinated animals most often occurred outside of the 

RBD. Therefore, it seems that unrestricted viral replication certainly leads to the emergence of 

several viral protein variants that may have occurred randomly and can persist for various reasons 

[255], but the lack of humoral or cellular immune memory in these animals serves to limit selection 

of group-specific mutations during the study timeframe. It is important to note that pre-existing 

adaptive immunity from previous infection and vaccination are absolutely essential to preventing 

severe disease in humans. Nonetheless, there is perhaps a tradeoff between highly specific 

immune responses and induction of more viral variants. 

5.3 Antigenic analysis of the SARS-CoV-2 spike protein reflects existing vaccination 
data against the variants 

Viral mutations do not always translate to antigenic differences [44,255]. When formulating 

vaccines to emerging viruses, or when considering vaccine effectiveness toward viruses that 

continue to evolve, it is essential to translate amino acid changes to possible changes in 

antigenicity. Therefore, to complement my study of host immune pressures driving antigenic drift, 

I developed an antigenic analysis pipeline to determine whether specific amino acid substitutions 

change the predicted antigenicity of a protein with respect to B cell epitopes, T cell epitopes, and 

glycosylation sites. I then applied this pipeline to SARS-CoV-2 variant spike proteins. 

 When examining each amino acid substitution across the nine SARS-CoV-2 variants for 

predicted structural change on the spike protein using Missense 3D, six substitutions had potential 

damage: these were L18F and D138Y in the N-terminal domain of Gamma variant spike; D80A 
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in the N-terminal domain of Beta; G142D in the N-terminal domain of Kappa and Delta; E484Q in 

the receptor-binding domain of Kappa and B.1.617.3; and P681H/R in Alpha and B.1.617 sub-

lineages. Several amino acid substitutions across the variants have already been functionally 

investigated and found to affect the transmissibility and antigenicity of the virus. The well-studied 

mutation D614G, which quickly became the dominant form of the virus early in the pandemic, was 

shown to enhance not only the transmissibility of SARS-CoV-2, but also receptor-binding domain-

specific antibody susceptibility and trimer stability [132–134,284], although we did not predict 

major structural impacts from D614G in our Missense3D analysis. The N501Y substitution found 

in the receptor-binding domain of Alpha, Beta, and Gamma spike has an increased ACE2 

receptor-binding affinity with or without the help of the deletion at 69-70 [43]. Additionally, SARS-

CoV-2 containing the E484K substitution (present in Beta and Gamma variants) has reduced 

antibody neutralization ability [150]. The mutation K417T present in the RBD, along with E484K 

and N501Y, is described as part of a trio of mutations that likely increase transmissibility of the 

Gamma variant [153]. The L452R mutation found in Epsilon and B.1.617 sub-lineages is said to 

confer resistance to binding by certain monoclonal antibodies [160,285] along with possibly 

increasing infectivity [286]. Other spike mutations are shown to impact viral fitness directly. The 

L18F mutation, for which we identified structural damage in our analysis of the Gamma variant, 

is said to confer a replicative advantage [287]. 

Once the variants were identified, essential studies were initiated to determine if 

antibodies elicited by vaccination or by previous infection with the original SARS-CoV-2 virus 

could neutralize the new variants. In general, vaccine-induced immunity provides more robust 

heterotypic immunity than natural infection to emerging SARS-CoV-2 variants of concern [288]. 

Neutralization assays performed across some variants with vaccine serum have indicated modest 

decreases in titers against the Alpha variant, with more pronounced losses in titer for variants 

which contain the E484K substitution (Beta and Gamma) [147]. In general, Alpha is shown to be 
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susceptible to neutralizing antibodies elicited by ancestral spike vaccines [144–147]. Vaccine 

clinical trials held in regions with high dominance of a particular variant have demonstrated similar 

findings, leading to the conclusion that vaccines have greater cross-protective immunity against 

Alpha compared to other variants, although further analysis is still needed due to small numbers 

in study participants [145,289]. My study points to additional B cell epitope changes that may 

account for these results. In my analysis for the Alpha variant, I noted a moderate decrease in the 

B cell epitope prediction score for the spike sequence spanning residues 180-185 in the N-

terminal domain, as well as an additional antigenic site spanning residues 565-568 in the RBD, 

which is proximal to the A470D mutation. This small antigenic difference in the Alpha RBD 

compared to the ancestral SARS-CoV-2 spike sequence may give insight into the finding that 

some RBD-specific antibody titers are decreased in Alpha [144,145]. However, our B cell epitope 

sequence predictions were mostly conserved between Alpha and D614G spike, suggesting that 

most antibodies elicited against the vaccine strain will likely cross-react with Alpha.  

The Beta variant was the first variant to have identified acquisition of the E484K mutation 

in the spike RBD. The E484K mutation of Beta is thought to contribute to evasion of host 

neutralizing antibodies [150] as studies have confirmed reduced susceptibility of Beta against 

antibodies elicited after natural infection [151], vaccination [147], and treatment with monoclonal 

antibodies bamlanivimab, estesevimab, and imdevimab [152]. From these data, I hypothesized 

that the E484K mutation would lead to detectable changes in predicted B cell epitopes for the 

Beta variant. However, my analysis of B cell epitopes showed no difference in the Beta RBD 

compared to our reference spike sequence proximal to the E484K substitution, although this 

analysis only indicates the presence of an epitope and not if the epitopes are the same. I noted 

antigenic changes in the N-terminal domain spanning residues 248-254 (most proximal to 

D215G), but it is unclear which mutations contribute to this, or whether it contributes to differential 
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recognition by host humoral responses. It was not revealed in my analysis how E484K may 

contribute to antibody evasion. 

I also noted several less prominent predicted B cell epitope changes for the Epsilon variant 

that may contribute to differences in antigenicity. Two antigenic regions in the N-terminal domain, 

specifically at residues 72 and 146, both proximal to known spike glycosylation sites, showed 

lower B cell epitope prediction scores in the Epsilon spike compared to the reference spike. Also, 

an additional antigenic region in the RBD at residues 455-480 was detected in Epsilon and 

B.1.617 lineages, but not in the other variants under study. Current evidence suggests moderate 

decreases in antibody titer against Epsilon in those vaccinated with a Wuhan-1 isolate–based 

messenger RNA vaccine, or in serum from convalescent individuals [290]. 

Currently, the B.1.617 lineage that emerged in India in 2020 is of particular concern. Of 

the three sub-lineages described, the Delta variant has accounted for the greatest number of 

reported cases worldwide and is suggested to have an increased secondary attack rate [291]. 

Reduction in neutralization by antibodies from vaccinated and previously infected individuals has 

been identified for the Delta variant, however this reduction is not as large as what was observed 

for the Beta variant [152,292]. In my analysis of predicted B cell epitopes, I observed minimal 

differences in antigenicity between the Delta variant and the other B.1.617 sub-lineages. Although 

the Delta variant contains the T478K substitution that is not present in the other sub-lineages, in 

addition to lacking the E484Q mutation, these changes did not lead to differences in predicted B 

cell epitopes or glycosylation sites. However, I noted that the B.1.617 lineage contained B cell 

epitope sequences not predicted in the original Wuhan lineage or the other variants of concern, 

in particular the region spanning residues 455-480 in the spike RBD. These unique B cell epitope 

sequences may account for the moderate resistance to monoclonal antibodies directed against 

spike RBD that has been reported for the Delta variant [292], but it is currently unclear whether 

this reduction is shared amongst the other B.1.617 sub-lineages. Additionally, I noted that the 
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predicted glycosylation site at position 17, which was found in all other variants including the 

Kappa variant, was not found in the Delta or B.1.617.3. Although unclear how, the lack of a 

glycosylation site at this position may impact the specific antigenicity of the Delta variant 

compared to other SARS-CoV-2 spike proteins.  

These observed changes in the variants may affect immunodominance, leading to 

immune skewing during sequential infection-reinfections or the generation of immunodominant B 

cell clonotypes, which may be unfavorable for vaccine-induced protection.  

5.4 Prediction of SARS-CoV-2 spike glycosylation sites may explain differences in 
vaccine effectiveness against the Gamma variant 

Under the hypothesis that spike protein glycosylation may impact protein folding, stability, 

and evasion of host immune responses, I aimed to compare N-glycosylation sites along the nine 

SARS-CoV-2 variants in my study. Here I found 22 predicted glycosylation sites that were 

conserved across the variants and original SARS-CoV-2 viruses. These conserved sites have 

been confirmed biologically [293]. Specifically, Watanabe and colleagues found the same 22 

glycans that were predicted in my analysis, however, with my predictions I identified three 

additional glycosylation sites that were unique to the Gamma variant at sites 20, 188, and 657. 

Given the consistency between my computational site predictions and existing biological 

characterization, support exists that the novel potential sites identified are actual glycosylation 

patterns on the Gamma variant spike. Further analysis is required to validate the N-glycosylated 

sites found exclusively in Gamma variant at sequons N20 and N188, since those sites have not 

yet been characterized. 

Increases in protein glycosylation of a virus after introduction to humans from an animal 

reservoir has been previously observed for other viruses. For example, influenza viruses that 

initially spill over into humans from animals have a relatively low number of glycosylated residues 
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within the hemagglutinin (HA) glycoprotein [294,295]. Interestingly, as the virus becomes more 

humanized and less like the virus as it existed in its original animal reservoir host, the virus gains 

mutations that facilitate glycosylation of amino acids [294,295]. The specific glycans might 

influence both innate and adaptive immune responses by affecting the spike protein binding 

through pattern recognition receptors, like collectins and other lectins, and via changing the 

accessible HLA antigens, thereby providing a fitness advantage for the virus. The glycans can 

also shield certain epitopes from antibody neutralization [293], as observed in other viruses 

including SARS-CoV-1 spike, HIV-1 envelope, influenza HA, and LASV glycoprotein [195,293]. I 

identified additional glycosylation sites in the Gamma variant only, suggesting that gaining 

glycosylation modification may not be a general strategy that is advantageous for the SARS-CoV-

2 virus as it adapts to its human host. Although I did not identify a generalized increase in 

glycosylation in the SARS-CoV-2 spike proteins of variant viruses, it will be essential to continue 

to monitor the SARS-CoV-2 spike protein for increases in glycosylation sites as it circulates in 

humans as the viruses still might utilize this strategy for host evasion. Additionally, changes in B 

cell epitopes distal to glycosylation sites may also have synergistic effects on antigenicity [296] 

which should be further explored. Identifying conserved B cell epitopes that may be impeded by 

novel glycosylation sites is essential to optimizing epitopes for vaccine formulations. 

5.5 MHC class I and II binding data suggests broad conservation of T cell epitopes 
across SARS-CoV-2 variants 

My analysis of T cell epitopes suggests that the major CD8+ and CD4+ T cell epitopes 

were conserved across SARS-CoV-2 spike variants. This data supports a similar analysis by 

Tarke and colleagues, which suggested a negligible impact of SARS-CoV-2 variants with respect 

to CD8+ T cell epitopes [297]. Additionally, their computational analysis was supported by 

experimental evidence illustrating similar CD4+ and CD8+ T cell simulation by SARS-CoV-2 
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variant peptide pools. In my study, I noted that high-affinity peptides that form the antigens for 

CD4+ and CD8+ T cell receptors are highly conserved, with MHC-I-binding peptides 93-99% 

conserved, and MHC-II peptides 87-99% conserved. The conserved peptides spanned the S1 

and S2 subunits of spike in relatively equal proportions. However, lineage-specific peptides were 

detected in each variant which may contribute to unique antigenic signatures and differentially 

stimulate host T cells. In particular, the Gamma variant had several lineage-specific epitopes that 

had the capacity to strongly bind several common MHC-I and MHC-II alleles in humans. 

Differential recognition by host T cells at infection, or altered immunodominance of specific 

peptides, may contribute to ineffective immune responses in patients previously infected with 

SARS-CoV-2 [298]. Immunodominance will be an important next step in the analysis of the 

adaptive immune response to SARS-CoV-2 variants. 

One published study showed that the SARS-CoV-2 spike protein is poorly immunogenic 

in respect to CD8+ T cells compared to other coronaviruses, since its reactivity was less than that 

of other spike proteins from the previous coronaviruses SARS-CoV-1 and MERS-CoV. Despite 

the interpretation of the authors, my work, together with the evidence that the current vaccine 

platforms can elicit strong T cell responses [35,288,297], suggests the importance of developing 

vaccines that are able to elicit T cell responses as a countermeasure for RNA viruses with a 

propensity to mutate. Additionally, a set of T cell epitopes that are highly conserved among human 

and animal coronaviruses may represent targets for the development of next-generation vaccines 

that are cross-protective against divergent coronaviruses [299]. My analysis supports the S2 

subunit of as a source of cross-reactive T cell epitopes that can be used to target SARS-CoV-2 

variants. In my analysis, the majority of variant-specific MHC-I and MHC-II-binding peptides we 

detected were derived from the S1 subunit, with greater conservation of S2 sequences. A study 

by Stoddard and colleagues demonstrated the importance of the S2 subunit as a cross-reactive 

target, where convalescent serum from SARS-CoV-2 patients had the greatest cross-reactivity 
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with endemic human coronaviruses when stimulated with peptides derived from the S2 subunit 

[300]. Moreover, S2-derived epitopes may have the greatest resilience against coronavirus 

spillover from animal reservoirs. My analysis found that the mink-related variant had the greatest 

proportion of lineage-specific MHC-I peptides occurring in the RBD compared to the other 

variants.  Unexpectedly, the mink-related spike was the only variant in my investigation to have 

lineage-specific peptides in the RBD that were predicted to bind MHC-II alleles, with 9/15 lineage-

specific peptides spanning the RBD. Although dissemination of the mink-related variant in 

humans has been limited, these data suggest that variability in the S1 subunit may impact the 

potential of future spillover into humans, either positively or negatively. Nonetheless, more work 

is needed to isolate the T cell response against SARS-CoV-2 to determine if T cells alone can 

provide cross-protection against SARS-CoV-2 variant infection or severe COVID-19 disease. 

5.6 Toward the future of vaccine design and pandemic preparedness  

The knowledge that the capacity for viral evolution is associated with the hosts’ vaccination 

and infection history can be applied to the development and refinement of future vaccines and 

vaccination regimes. First, my results suggest that naïve populations, or those unvaccinated or 

uninfected previously, experience the least restricted viral replication at challenge and contribute 

the highest frequency of variants. Although naïve hosts do not yet have specific adaptive immune 

mechanisms that can apply selective pressure, higher viral titer can allow novel mutations to 

appear that may later be selected when transferred to a vaccinated individual, for example. This 

scenario underlines the importance of early vaccination in the human population to limit viral 

replication on a population level and therefore limit the emergence of novel variants as well as 

protecting from severe disease. Furthermore, evidence supporting unrestricted viral replication as 

a driver of emerging viral variants in humans has been shown during the SARS-CoV-2 pandemic. 
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Several case studies have reported increased variability in SARS-CoV-2 gene sequences in 

immunosuppressed COVID-19 patients during chronic infection and unrestricted viral replication 

[301]. These novel variants which emerged from the immunosuppressed often had reduced 

sensitivity to neutralizing antibodies, showing that high viral replication coupled with prolonged 

viral shedding can be a source of viruses with antigenic differences. 

Second, several of the mutations in my influenza virus study appeared in the stalk domain 

of HA, which is generally conserved and is a primary target for universal influenza vaccination 

(reviewed here [302]). My results suggest that sequential infection with heterologous influenza 

viruses can select mutations across the stalk region, rendering it another target on HA that can 

influence viral escape from host immunity. This may not be solved by simply formulating seasonal 

influenza virus vaccines that are well-matched to circulating strains. Given the original antigenic 

sin hypothesis, which contends that memory of the first influenza virus infection forms the baseline 

of future immune responses against influenza viruses, contemporary infections will continue to 

stimulate immune memory from early influenza virus exposures, which may be divergent from the 

imprinting strain [303], thus stimulating antibodies against the stalk and possibly selecting 

mutations. As suggested by my analysis of SARS-CoV-2 spike variant epitopes, it seems that the 

key to conserving immunity toward influenza viruses is in stimulating cross-reactive T cell 

responses as opposed to strain-specific antibodies. 

Third, we should consider that the immune memory of the host may also play a role in 

coronavirus infections. Where human coronaviruses hCoV-NL63, -229E, -OC34 and -HKU1 

circulate seasonally and cause milder respiratory tract infections, it is possible that adaptive 

immune responses generated toward these viruses have cross-reactivity with novel coronavirus 

strains, such as the pandemic coronavirus SARS-CoV-2. Studies have shown cross-reactivity 

between seasonal coronaviruses and SARS-CoV that may prime the immune response and lead 

to early detection of antibodies [304]. Current evidence already suggests some T cell cross-
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reactivity between seasonal viruses and the more pathogenic SARS-CoV-2, including cross-

reactivity toward spike proteins [107]. It is currently unclear what role, if any, preimmunity plays in 

coronavirus evolution; however, the importance of preimmunity as a driver of viral mutation may 

be relevant beyond influenza viruses.  

Finally, computational analyses of viral proteins can be an exceptionally useful in 

formulating vaccines and in managing rapidly progressing pandemics such as SARS-CoV-2. 

Mutations do not always lead to changes in antigenicity [255]. It is therefore important to harness 

the predictive power that the decades of B and T cell receptor binding data have provided. 

Antigenic analysis strategies, such as the pipeline I developed in my study of influenza virus and 

SARS-CoV-2 variants, can allow us to predict the degree to which certain mutations will impact 

viral epitopes, as well as which arms of the immune response may be affected. Although 

computational strategies are not perfect and do not completely capture the dynamics of host-

pathogen interactions, they give us valuable leverage against emerging viruses by facilitating a 

faster response during epidemics and pandemics. Moreover, as our knowledge of viral evolution 

advances, computational methods such as machine learning can be employed to predict 

mutational patterns based on previous data [305]. 

5.7 Future directions 

The work conducted in this thesis constitutes the foundation for future studies involving 

viral evolution and prediction of viral antigenicity. There are several different avenues that can be 

explored as an immediate follow-up to my studies, with respect to both evolutionary selection 

pressures and the predictive power of antigenic analysis tools.  

Having developed a preimmune-vaccinated mouse model, we can investigate other 

variations of the sequential infection and vaccination study that will allow us to better elucidate 
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the host factors contributing to mutation. First is how the degree of similarity between sequential 

exposure events impacts the immune response and viral mutations; for example, we might use 

an H1N1 virus as the preimmune strain, but an H3N2 virus as the challenge strain. My results 

also imply that unrestricted viral replication, together with highly specific immune responses, 

facilitates the greatest degree of viral mutation. These factors may be investigated separately, 

using host-to-host transmission as a bottleneck that would provide insight into mutation 

acquisition in a real-world setting. Moreover, since immune memory as well as immune capacity 

seem to impact viral mutation, the age of the host may play a role in antigenic drift. The cross-

section between age-related immune capacity and accumulated immune memory toward viruses 

could be investigated by repeating this study with young and aged mouse models, or by 

transferring viruses from naïve mice to preimmune-vaccinated mice. This would allow us to model 

the relative contribution of infants and young children (naïve) compared to older individuals with 

accumulated immune histories (preimmune). 

My transcriptome analysis of mouse immune responses at viral challenge showed strong 

activation of B cell-mediated immunity. However, the greatest gene enrichment in preimmune 

animals was of immune pathways involving activation of cytotoxic T cells. The C57Bl/6J mouse 

model used in this study generally shows balanced Th1/Th2 responses. To conduct a more 

detailed analysis of the humoral response at heterologous challenge, such as sequencing of the 

B cell receptor repertoire, it may be useful to employ a mouse model skewed toward Th2 

responses, such as BALB/c mice. 

For analysis of SARS-CoV-2 variants, future studies should apply the computational 

predictions to biological studies, with a specific focus on immunodominance. My analysis 

identified several conserved peptides that can cross-react with many MHC-I and MHC-II alleles. 

These peptides could be used to stimulate T cells from convalescent patient serum to evaluate 

reactivity toward conserved spike epitopes, possibly providing antigenic targets for vaccines 
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directed toward stimulating T cell immunity. Moreover, the peptide libraries specific to each variant 

can be used in cell-based assays, such as enzyme-linked immune absorbent spot (ELISpot) 

assays, to investigate cross-reactivity between SARS-CoV-2 vaccines and to emerging variants. 

5.8 Conclusion 

In conclusion, my thesis has highlighted the importance of the specific host immune 

background as a driver of influenza virus evolution. Strain-specific antibody responses elicited by 

vaccination, in conjunction with only moderate restriction of viral replication, were associated with 

mutation of both external (HA and NA) and internal (NP and PB1) influenza virus proteins. I 

propose that unrestricted replication and specific immune targeting are associated with increased 

viral mutations and changes in antigenicity, as seen in the experimental groups of my influenza 

virus study as well as in the unrestricted viral replication of SARS-CoV-2 as it spread through the 

human population. In contrast, broader antibody repertoires consisting of antibodies toward 

antigenically similar and divergent influenza viruses, combined with cross-reactive T cell 

responses, serve to limit viral mutation. I also showed that existing B cell and T cell epitope 

prediction software can be leveraged during the SARS-CoV-2 pandemic to evaluate the 

antigenicity of rapidly emerging spike variants. Taken together, the results of my experimental 

model and that from viral mutations in people will contribute to our overall understanding of viral 

evolution, which can be used to better predict viral mutational patterns and design more effective 

vaccines going forward.  
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APPENDIX 1 

The following sequence data are available on the NCBI Sequence Read Repository (SRA) under 

the BioProject Accession PRJNA787976:  

• Paired end reads from Illumina MiSeq of influenza A virus at day three post-infection  

• Single end reads Illumina NovaSeq of Mus musculus lung at day three post-infection 

These files can be accessed by searching the above BioProject Accession or by the following 

link: 

https://www.ncbi.nlm.nih.gov/bioproject?LinkName=biosample_bioproject&from_uid=23894514  

 

The following raw data files are available on DalSpace: 

• Spreadsheet containing all influenza virus protein SNPs (.csv) 

• DiscoTope output for SARS-CoV-2 variant spike Swiss-Models (.txt files) 

• T cell epitope data for MHC I (NetMHCpan EL 4.1) and MHC II (NetMHCII 2.3) (.txt files) 

 

 

 

 

  
 


