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Abstract 

Atlantic Salmon populations are in decline throughout their native distribution largely due to 

poor estuarine and marine survival. Predation is a significant source of salmon smolt mortality 

during migration from freshwater to marine environments. This thesis investigates potential 

mechanisms of predation and other mortality in a population of Endangered inner Bay of Fundy 

Atlantic Salmon smolts over three years. Predated smolts were identified through the use of 

novel acoustic predation tags combined with machine learning algorithms trained to differentiate 

predator and prey behaviour. From 2017 to 2019, survival rates increased as predation rates 

decreased. Migration rate was identified as a behavioural mechanism of mortality where slower 

migrating smolts were more likely to be predated. No physiological mechanism of mortality was 

identified through analyses of host gene expression and pathogen presence. Predation of salmon 

smolts in this population is highly variable between years and appears to be more opportunistic 

than selective.  
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Chapter 1: Introduction 

Atlantic Salmon (Salmo salar) is a significant species in Canada due to their commercial 

and recreational value (ASF, 2011), spiritual importance to Indigenous Peoples (DFO, 2018a), 

and ecological role transferring nutrients between freshwater and marine environments (Jonsson 

& Jonsson, 2003). However, Atlantic Salmon population numbers have declined throughout their 

native distribution (Parrish et al., 1998). In Canada, there are 16 Atlantic Salmon designatable 

units, five of which have been assessed as Endangered under COSEWIC and one is Extinct 

(SARA, 2021). Main threats to Atlantic Salmon include environmental degradation, habitat 

fragmentation, and over-exploitation (Parrish et al., 1998; DFO, 2010). Researchers have 

identified the out-migration and early marine stages of the Atlantic Salmon life cycle as a period 

of high mortality (LaCroix, 2008; Thorstad et al., 2011; Halfyard, 2014).  

 Atlantic Salmon are primarily an anadromous species, migrating from freshwater to 

marine environments as juveniles (smolts) then returning to their natal freshwater habitats 1-3 

years later as adults to spawn (McCormick et al., 1998). Mortality is high during smolt out-

migration, potential contributing factors include water pollution, rising water temperatures, stress 

from the smoltification process, high energy expenditure required to migrate, exposure to novel 

pathogens combined with decreased immune function, and increased predator presence (Parrish 

et al., 1998; DFO, 2010; Altizer et al., 2011; Furey, 2016).  

 Predation is a significant contributor to total salmon smolt and post-smolt mortality 

(Handeland et al., 1996; LaCroix, 2008; Halfyard, 2014; Furey, 2016). However, predation is 

extremely difficult to observe in the natural environment, limiting the ability to determine the 

effect predation is having on a population or what factors may be influencing predation rates. 

One novel approach to studying predation is based on the development of acoustic predation tags 
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(InnovaSea Systems Inc., Bedford, NS), these tags can be used to track a smolt’s migration 

progress and determine if a predation event has occurred through changes in pH (Halfyard et al., 

2017).  

 This thesis will aim to quantify smolt predation rates in an Endangered Atlantic Salmon 

population and identify potential behavioural and physiological mechanisms of predation 

susceptibility by combining predation tag technology with transcriptomic analyses. 

1.1 Migration 

Migration is a specialized form of movement and a key life history strategy developed by 

species across animal taxa (Wilcove & Wikelski, 2008; Milner-Gulland et al., 2011).  Migration 

is characterized by longer and more direct movements than ranging or station keeping, initial 

suppression of responses to stimuli, unique activity during departure and arrival, cues to initiate 

departure, and specific resource allocation to support movement (Dingle, 2014). Migration has 

both genetic and adaptive components. An individual is genetically pre-disposed to migration, 

the cues that initiate migration and migratory behaviour are based in the genome (Dingle, 2014). 

Additionally, the biotic and abiotic environment to which the individual is adapted to also 

influences migratory behaviour (Dingle, 2014). For example, the age at which migration occurs 

may differ between populations based on the productivity of the starting environment and 

therefore the amount of time it takes to reach a growth threshold (Hendry et al., 2004). Exact 

timing of migration may also differ between populations and years due to differences in timing 

of environmental cues, such as temperature or photoperiod.  

Migration strategy can vary significantly between species based on the reason for 

migration, resource needs, and temporal variability in a habitat. A main cause for migration is to 
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take advantage of resources or avoid threats on different spatiotemporal scales (Wilcove & 

Wikelski, 2008; Milner-Gulland et al., 2011).  Seasonal migrations, based largely on resource 

availability, typically occur between foraging and breeding grounds (Dingle, 2014). For 

example, the Arctic tern (Stern paradisaea) annually migrates from breeding grounds in the 

Arctic to highly productive wintering feeding grounds in the Southern Ocean (Egevang et al., 

2010). The need for migration can also arise from differences in habitat and food requirements 

between juvenile and adult life stages (Milner-Gulland et al., 2011). In some amphibians, 

breeding adults migrate to aquatic habitats because water is required for their young (Dingle, 

2014). Predation risk is another cause for migration, some shorebirds migrate from temperate 

regions to the Arctic where mammalian predators are less abundant (Dingle, 2014). Species also 

conduct migrations to refugia during vulnerable periods in their life history, this includes 

waterfowl which molt flight feathers and the many insects, amphibians, reptiles, and mammals 

that have dormancy periods (Dingle, 2014). 

Diverse migration strategies also exist within species, such as partial migration, in which 

individuals of a population that typically migrate instead remain resident (Chapman et al., 2011; 

Skov et al., 2011). This migration dimorphism is largely due to the trade-offs associated with 

migration. Migration is associated with higher costs and risks than more stationary periods, but 

typically occupies a short part of the life cycle resulting in concentrated periods of mortality 

(Sergio et al., 2019). Migration is energetically expensive, can leave an organism exposed to 

novel predators and pathogens, and has the potential to delay reproduction and shorten lifespan 

(Milner-Gulland et al., 2011). However, residents may face high levels of competition and poor 

food availability resulting in reduced growth and fecundity. Therefore, migration strategy largely 

depends on balancing survival and reproductive success.  
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Worldwide, migratory species are facing population declines due to poor survival during 

outbound and/or return migrations, habitat fragmentation, and physical barriers to migration 

(Wilcove & Wilkelski, 2008). Migration poses a challenge for conservation efforts due to 

difficulties determining areas of high mortality along the migration route, determining causes of 

mortality, and protecting large geographic areas that often cross national boundaries (Wilcove & 

Wilkelski, 2008). Additionally, migration ecology can differ significantly between populations 

or stocks of the same species (Wilcove & Wilkelski, 2008). Understanding migratory behaviour 

and contributing factors is vital to improving population conservation and management.  

Salmonids (family Salmonidae) are among the most widely studied migratory animal 

taxa due to their impressive migration ecology, recreational and commercial importance, and 

significant population declines (Milner-Gulland et al., 2011). Anadromous salmonids exhibit the 

range of diverse migration strategies discussed above. For example, migration distance can vary 

widely among Canadian Atlantic Salmon populations, most of which migrate offshore to 

Greenland and the Labrador Sea, while the inner Bay of Fundy population remains coastal (DFO, 

2019a). Juvenile salmon (smolts) emigrate from oligotrophic natal freshwater environments 

when they have reached a body size or growth rate threshold in favour of highly productive 

marine environments to achieve greater growth (Hendry et al., 2004).  The downstream 

migration undertaken by smolts to reach marine feeding grounds is a major mortality bottleneck 

in the life cycle of salmonids (Thorstad et al., 2011). Partial migration is also seen in many 

salmonid species; resident individuals lack the sexual advantages (large size, courtship 

behaviour, etc.) of anadromous individuals but avoid high rates of migration mortality (Thorstad 

et al., 2011). Residency is favoured in populations or years where freshwater growth is high 

(Hendry et al., 2004).   
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The smoltification process, during which an anadromous salmonid transitions from the 

parr to smolt stage, involves several energetically expensive and stressful morphological, 

behavioural, and physiological changes for individuals to become suited for the marine 

environment. These changes include a more fusiform body shape, countershading colouring with 

silver sides, pelagic swimming, and shoaling behaviour (Thorstad et al., 2011). Several 

environmental factors control the timing of smoltification and out-migration, including 

temperature, photoperiod, and water discharge (Vollset et al., 2021; McCormick et al., 1998). 

The type and timing of environmental cues may vary among populations due to local adaptation. 

There is a physiological and environmental smolt window. The probability of marine survival 

increases when smolts are physiologically prepared for migration, and migration timing 

coincides with optimal environmental conditions (McCormick et al., 1998). Delays in migration 

lead to lower survival because migration timing is now outside the optimal environmental 

window. One of the most crucial aspects of the physiological smolt window involves a 

restructuring of osmoregulatory systems to prepare individuals for salt water. Principally, this 

leads to the development of seawater tolerance via the cellular reorganization of gill, gut, and 

kidney, and is accompanied by an increase in gill Na+/K+-ATPase activity which regulates the 

increase in plasma ions after entering salt water (Zadunaisky, 1996; Bjornsson et al., 2010). The 

transition from fresh water to salt water is extremely stressful and entering salt water before 

these osmoregulatory changes have been completed can negatively impact smolt homeostasis, 

behaviour, and survival (Handeland et al. 1996; Dieperink et al., 2002; Halfyard et al., 2012; 

Halfyard et al., 2013). The optimal smolt window and smolt survival is also affected by 

spatiotemporal differences in the abundance of predators, disease, parasites, and food availability 

(McCormick et al., 1998). 
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1.2 Predation  

Predators within many animal taxa have evolved to take advantage of seasonably 

predictable prey migrations to varying extents. The coupling of predator and prey migrations, 

defined as predator movements beyond a home range to track or intercept migrating prey, is a 

large-scale movement in response to prey influxes (Furey et al., 2018). For example, grey wolves 

(Canis lupus) will track migrating caribou (R. tarandus groenlandicus) for up to 500 km (Furey 

et al., 2018). On a smaller scale, piscine, avian, and mammalian predators are known to 

aggregate in certain areas, such as spatial bottlenecks, to take advantage of mass migrations 

(Furey et al., 2015; Daniels et al., 2019; Flavio et al., 2019). Bull Trout (Salvelinus confluentus) 

have been shown to aggregate and binge feed on pulses of Pacific salmon (Oncorhynchus spp.) 

smolts exiting the Chilko River, British Columbia (Furey, 2016). Other predators will time 

reproductive events to coincide with high prey availability (Furey et al., 2018).   

Lima and Dill (1990) reviewed the ability of animals to make behavioural decisions 

based on perceived predation risk, concluding that not only is predation a strong selective force 

over evolutionary time but also over the lifetime of an individual. Decisions on what, where, and 

when to feed are made based on trade-offs between energy gain and predation risk. This 

decision-making process often leads to diurnal feeding patterns and shifts in habitat choice to 

avoid predators. Changes in prey behaviours, such as feeding and habitat use, are an indirect 

impact of predation on individual prey (Bender, 2018). 

Similarly, predation risk largely influences migration behaviour. In recent years, barnacle 

geese (Branta leucopsis) have delayed migration from their wintering to breeding grounds to 

avoid increased predator populations at stopover sites (Jonker et al., 2010). Skov et al. (2011) 

found that in partially migrating populations of Common Bream (Abramis brama), smaller 
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individuals are more likely to migrate from lakes to streams where predation risk is lower than 

larger individuals. Salmon smolts primarily migrate at night to avoid visual predators but have 

been shown to switch to day migrations in turbid waters and towards the end of the smolt run 

(Ibbotson et al., 2011; Clark et al., 2016; Furey et al., 2016; Flavio et al., 2019). Predation has 

also been linked to the evolution of sociality (Lima & Dill, 1990). Salmon, which are territorial 

prior to the smolt stage, will synchronize their migration to travel in groups and swamp predators 

(Thorstad et al., 2011; Furey et al., 2016). Migratory prey species may also use social cues as a 

proxy for unfamiliar predator cues as they encounter new predator species along the migration 

route (Sabal et al., 2021).  

For migratory prey species, the predation landscape is spatially and temporally variable 

(Sabal et al., 2021). Variation in predator communities and habitat features along the migration 

route impact mortality risk. For example, high predator abundance in a confined habitat confers a 

high mortality risk. Antipredator response is determined by the perception of this risk and is 

balanced between the costs and benefits of the response (Sabal et al., 2021). Antipredator 

responses can have energetic costs, delay migration, and may come at the expense of feeding or 

navigation opportunities.  

Body size is one intrinsic factor that has been shown to influence predator avoidance 

behaviours and predation risk. Ibbotson et al. (2011) found that smaller Atlantic Salmon smolts 

are more likely to conduct nocturnal migrations to avoid visual predators than larger bodied 

smolts. Additionally, it has been shown that smolts of poor body condition and smaller size are 

more susceptible to predation by avian predators than larger smolts (Hostetter, 2009; Tucker et 

al., 2016). In contrast, Furey et al. (2016) found that body size was not a significant determinant 
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of predation susceptibility in Chilko salmon smolts, but predator swamping and nocturnal 

migration did effectively reduce predation risk. 

Predation events occurring during migrations can have a significant, negative impact on 

salmon population numbers, especially for endangered populations (Grout, 2006; LaCroix, 

2008). The rate of predation on salmon smolts can vary between years and rivers, as well as 

between different areas within a single river (LaCroix, 2008; Thorstad et al., 2012; Halfyard et 

al., 2013). Predation rates are often highest when down-river migrating smolts reach the head of 

tide or the estuary, due to increased physiological stress from the change in salinity and predator 

aggregations (Handeland et al., 1996; Dieperink et al., 2002; LaCroix, 2008; Thorstad et al., 

2012; Halfyard et al., 2013; Daniels et al., 2019). 

However, predation is not always detrimental to a population. The effect of predation on 

a prey population is variable depending on the circumstances (Bender, 2018). The act of 

predation can affect the individual, the population, and the community. The direct effect of 

predation on the individual, mortality or survival, is often dictated by that individual’s 

predisposition to mortality. For example, an individual with poor body condition may have a 

limited ability to flee from a predator and is therefore predisposed to mortality. Predisposition is 

a mechanism of mortality and can be based on the physiological condition of the individual as 

well as environmental conditions (Bender, 2018). When a predated individual has a 

predisposition to mortality, predation is the proximate cause of mortality, but the underlying 

factors are the ultimate cause. Compensatory predation at the population level occurs when the 

predated individuals have a high predisposition to mortality and were likely to die regardless of 

predation occurring (Bender, 2018). In this sense predation is not adding to total mortality but 

substituting other causes of mortality (Creel, 2011; Bender, 2018). In compensatory mortality 
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when predation rates increase, rates of other mortality sources decrease and vice versa (Bender, 

2018; Payton et al., 2020). Predation may benefit a prey population by removing weak or disease 

carrying individuals from a population and reducing intraspecific competition (Miller et al., 

2014; Furey, 2016; Bender, 2018; Sabal et al., 2021). If survival in a population is density-

dependent, predation is more likely to be compensatory as the removal of individuals makes 

more resources available for the surviving individuals in the population (Bender, 2018).  

Conversely, additive mortality is when predation adds to total mortality thus decreasing 

survival rates and leading to declines in population numbers (Bender, 2018). When individuals 

of high fitness that have a high probability of survival are predated, this is additive mortality 

(Payton et al., 2020). Additive mortality can still occur when there is predisposition to mortality 

if predation pressure is high due to an abundant predator population or multiple predatory species 

(Bender, 2018). There is a continuum from compensatory to additive mortality, the closer 

predation is to additive mortality, the greater the impact predation has on a population (Bender, 

2018). Strong additive mortality that drives down population numbers can destabilize a 

community (removes part of food web, ecosystem services, etc.) while compensatory mortality 

tends to bring balance to a community.  

The role of predation in applied ecology and conservation is both complex and 

controversial. Predators are a vital part of an ecosystem, providing top-down trophic control 

and/or ecosystem services (Ormerod, 2002). Predators may even be introduced to an area as a 

biological control to limit growth of a pest prey species (Ormerod, 2002). However, predators, 

either native or introduced, can also be viewed negatively when their prey is valuable to humans. 

In these cases, human intervention may be considered. A review of predator removal attempts  
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found that only 26% of cases where prey protection was the desired outcome were successful 

and typically only in the short-term (Lennox et al., 2018). Less direct methods of anti-predator 

intervention include habitat management to favour prey, exclusion of predators from certain 

areas, predator deterrents, and supplementary feeding of predators (Ormerod, 2002). Predator 

control or intervention is based off the assumption that predation is a source of additive mortality 

and that the removal of predators will increase prey population numbers (Bender, 2018; Payton 

et al., 2020). In any case, human intervention on predator-prey interactions must be considered 

carefully as unexpected outcomes with negative impacts on the ecosystem may occur.  

1.3 Gene Expression and Pathogen Presence 

Identifying common intrinsic and extrinsic factors that cause mortality or confer a 

predisposition to predation is vital for informed population management. Examining the 

expression of genes related to important physiological processes or that are markers of 

environmental stressors is one method of achieving this. The analysis of transcriptomes has 

linked gill Na+/K+-ATPase activity (osmoregulatory condition) to mortality in Atlantic Salmon 

smolt out-migrations (Stich et al., 2015) and Pacific salmon adult return-migrations (Miller et al., 

2011; Hinch et al., 2012). 

Additionally, testing for the presence of pathogens that may impact behaviour, movement 

ability, or overall health may reveal a source of increased predation susceptibility. Rhinoceros 

auklets (Cerorhinca monocerata) feed on Sockeye Salmon (Oncorhynchus nerka) smolts with 

greater pathogen diversity, pathogen load, and levels of Parvicapsula sp. than the population 

average (Miller et al., 2014). Steelhead trout (O. mykiss) in poor condition due to infections were 

highly consumed by avian predators (Hostetter, 2009). Additionally, sockeye smolts with 

infectious hematopoietic necrosis virus (IHNV) or infected by Flavobacterium psychrophilum 
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were more likely to be predated upon by Bull Trout (Furey, 2016). Behaviour, osmoregulation, 

and swim performance of fish can be impacted by pathogens, leaving an individual more 

susceptible to predation or other causes of mortality (Thorstad et al., 2012; Miller et al. 2014). In 

sea trout (Salmo trutta), parasites such as salmon lice (Lepeophtheirus salmonis) and Icthyobodo 

sp. can alter fish behaviour and are correlated to longer times spent in fresh water (Thorstad et 

al., 2015; Lennox et al., 2020).  

Migratory species are exposed to more pathogens as they travel through new and diverse 

landscapes compared to more resident species (Altizer et al., 2011). Pathogen load has also been 

found to be positively correlated with distance travelled and accumulates throughout the 

migratory period (Altizer et al., 2011; Chapman et al., 2020). For migratory birds, stop-over sites 

are pathogen hotspots due to high densities and multiple species of birds. Immunosuppression is 

common in migratory species where innate immune responses are reduced in a trade-off for 

energetic demands of migration, leaving migrants more susceptible to pathogens and associated 

physiological impacts (Altizer et al., 2011; Miller et al., 2014).  

External environmental factors are related to internal state; poor environmental 

conditions can negatively impact an individual’s physiology, which can reduce their ability to 

escape a predator and have long-term negative impacts on fitness, i.e., carryover effects 

(Midwood et al., 2015; Furey, 2016). There is increasing concern about climate change and the 

negative impacts of thermal stress on fitness as well as its effect on changing distributions and 

growth rates of pathogens and predators (Miller et al., 2014). The cumulative interaction of 

internal and external stressors, pathogen load, and predation is likely the main contributor to high 

smolt mortality (Jeffries et al., 2014; Miller et al., 2014). High water temperatures have been 

related to premature mortality of returning Sockeye Salmon adults (Miller et al., 2011). Tank 
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studies have shown that the mortality threshold for pathogen load is lower at warmer water 

temperatures, likely due to decreased host resistance and increased stress at high temperatures 

(Miller et al., 2014).  

Evaluating individual health and physiological state at the start of seaward migration 

combined with tracking both movement and survival to the early marine environment provides 

insight into delayed or sublethal effects of detrimental biotic or abiotic factors a smolt may be 

exposed to in their natal habitat. For example, the impacts of water contaminants may not be 

seen until entry into saltwater environments where there is increased stress placed on the 

osmoregulatory system (Thorstad et al., 2012). Additionally, the level of pathogenicity of some 

microbes varies between fresh and salt water, as is the case with IHNV (Miller et al., 2014). 

Factors that contribute to early marine mortality of salmon but occur in fresh water are easier to 

manage than marine threats with more immediate impact on survival. It is therefore crucial to 

identify and mitigate these factors with delayed effects to reduce mortality during the smolt and 

post-smolt stages (Thorstad et al., 2012).  

1.4 Threats to Atlantic Salmon 

Atlantic Salmon population numbers have declined throughout their native distribution 

(Parrish et al., 1998). Generally, in both Europe and North America, southern populations are at 

greater risk than northern populations. Most rivers with extirpated populations are in regions of 

high human population density (Parrish et al., 1998). In the freshwater environment, altered 

environmental conditions, water contaminants, river acidification, and barriers to fish movement 

(namely dams) negatively impact survival (Parrish et al., 1998; DFO, 2010). Threats in the 

marine environment are hypothesized to include increases in predator abundance, decrease in 

prey abundance, shifting water temperature regimes, aquaculture, and fisheries (Parrish et al., 
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1998; DFO, 2010). However, a recent review suggests that illegal, unreported, and unregulated 

fisheries are the primary cause of low adult salmon returns (Dadswell et al., 2021).  

1.5 Study System 

The Stewiacke River, Nova Scotia is one of the 50 rivers within the Endangered inner 

Bay of Fundy (iBoF) Atlantic Salmon designatable unit (DFO, 2019b). In 2010, the Stewiacke 

was one of ten rivers listed as critical freshwater habitat for Atlantic Salmon and was included as 

part of the iBoF Salmon Recovery Plan (SARA, 2010). Between the years 1980 and 2000, 

annual adult returns of iBoF salmon declined from 400,000 to 250 (SARA, 2010). The iBoF 

Atlantic Salmon commercial fishery was closed in 1985, and recreational and Aboriginal 

fisheries were closed in 1990 (SARA, 2010). In an effort to restore dwindling salmon 

abundances, Fisheries and Oceans Canada (DFO) began stocking the Stewiacke River in 2003 

with Atlantic Salmon fry produced through the Live Gene Bank (LGB) Program (DFO, 2018b). 

Cultured salmon transferred from the Coldbrook Biodiversity Facility are released at the fry 

stage to maximize wild exposure and natural selection prior to the high-risk smolt stage. The 

LGB maintains detailed pedigree records to ensure genetic diversity is maintained in stocked 

populations.  

The Stewiacke River meets the Shubenacadie River 22 km upstream from the mouth of 

the Shubenacadie River which drains into the upper Minas Basin. These rivers are heavily 

influenced by the Bay of Fundy tides, the head-of-tide is located 15 km upstream on the 

Stewiacke River. iBoF Atlantic Salmon remain within the Bay of Fundy and Gulf of Maine to 

feed, and most Stewiacke salmon return to natal streams to spawn after one winter at sea (Gibson 

et al., 2015).  
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1.5.1 Potential Predators within Study Area 

Piscine, avian, and mammalian predatory species of Atlantic Salmon smolts are found 

within the study area. In the freshwater stretches of the Stewiacke River, invasive Chain Pickerel 

(Esox niger), Smallmouth Bass (Micropterus dolomieu), and Brown Trout (Salmo trutta) are 

potential predators of smolts. Chain Pickerel was introduced to Nova Scotia in 1945 and are now 

present in over 95 water bodies across the province (Mitchell et al., 2010). The novel presence of 

Chain Pickerel is associated with decreases in fish diversity, fish abundance, and small bodied 

fishes (Mitchell et al., 2010). Smallmouth Bass was introduced in 1942, the degree to which 

salmonids make up their diet is unknown (LeBlanc, 2010). Smallmouth Bass and Chain Pickerel 

were first confirmed in the Stewiacke River in 2010 and 2014, respectively (J. MacMillan, pers. 

comm., April 2019).  

Striped Bass (Morone saxatilis) is a common predator of smolts as their upstream 

spawning migration coincides in space and time with the smolts’ out-migration (Gibson et al., 

2015; Daniels et al., 2018; Andrews et al., 2019). The tidal portion of the Stewiacke River is 

annually used as spawning habitat by Striped Bass (Bradford et al., 2015). Striped bass numbers 

have increased in the Bay of Fundy and Gulf of Maine as Atlantic Salmon populations have 

declined (Gibson et al., 2015).  

Avian predators include kingfishers (Megaceryle alcyon), cormorants (Phalacrocorax 

auritus), and mergansers (Mergus merganser) (COSEWIC, 2010). Small river mammals such as 

muskrat and mink, and marine mammals including seals are also potential predators (Cairns & 

Reddin, 2000).  
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1.6 Thesis Goals 

 The goal of this thesis is to assess the role of predation as a threat to juvenile Atlantic 

Salmon survival in the Stewiacke River, NS, and to explore intrinsic and extrinsic factors that 

may interact and contribute to smolt mortality via predation or other causes. 

 Chapter 2 explores technology and modelling based methods to identify predation of 

tagged salmon smolts. A standardized workflow is developed that other researchers can apply to 

their own study species in an effort to reduce predation bias in telemetry studies.  

 Chapter 3 explores mortality rates of out-migrating smolts in the Stewiacke River over 

three study years and investigates differences in smolt susceptibility to predation based on 

behavioural, physiological, and temporal factors.  
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Chapter 2: Application of machine learning and acoustic predation tags to classify 

migration fate of Atlantic Salmon smolts 

2.1 Introduction 

A major assumption of animal telemetry studies is that the data collected from tags 

represent the natural movements of a live individual of the study species, and not an expelled tag, 

a mortality, or the movements of a predator (Gibson at al., 2015; Klinard et al., 2019). However, 

the violation of this assumption is often not addressed, despite the negative impact it can have on 

study results, population management, and conservation efforts (Klinard & Matley, 2020). In the 

aquatic environment, predation of tagged fish presents a serious challenge to telemetry studies, 

because acoustic tags can continue to transmit through the body of the predator for as long as six 

months (Klinard et al., 2019; 2021). Therefore, failure to identify predation events of tagged 

individuals introduces a “predation bias”, such that survival rates are inflated, individual 

movement patterns (e.g. depth use, rate of travel) are calculated based on both prey and predator 

movement, and the locations of areas of high mortality are skewed (Gibson et al., 2015; Daniels 

et al., 2019; Klinard et al., 2019). Even when predation events are identified, it is often on a 

subjective basis (Perry et al., 2010; Buchanan et al., 2013), dependent on predator and prey 

behaviour being significantly different and distinguishable (Romine et al., 2014; Gibson et al., 

2015; Moxam et al., 2019), and difficult to pinpoint the time and location of mortality, hindering 

attempts to remove detections of consumed fish (Gibson et al., 2015; Daniels et al., 2018). 

Therefore, predation may reduce confidence in the conclusions of animal telemetry studies. 

Movement ecologists recognize the negative impact of predation on the interpretation of 

acoustic telemetry data and have been developing methods for identification of predation in 

order to reduce its bias on study results. Early approaches to classify predation were to gather 
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contextual information from temperature sensors to detect predation by endothermic predators 

(adult salmonids predated by seals identified by an increase in temperature; Bendall & Moore, 

2008) or depth sensors for identification through uncharacteristic swimming patterns (predatory 

Atlantic Cod and Saithe swim to significantly greater depths than juvenile salmon; Thorstad et 

al., 2012). Later, analytical methods emerged that were able to detect predation events of tagged 

fish using supervised or unsupervised machine learning approaches that identified anomalous 

movement patterns in the data suggestive of predated individuals. Researchers have previously 

tagged both prey, juvenile Atlantic Salmon (Salmo salar), and predator, Striped Bass (Morone 

saxatilis), and used either a cluster analysis (Gibson et al., 2015) or random forest (Daniels et al., 

2018) approach to identify predated salmon based on movement metrics. Klinard et al. (2021) 

used random forest to identify the species of predator responsible for consumption of each 

individual tagged Bloater (Coregonus hoyi) by tagging both prey and multiple predatory species. 

However, in some studies, it may not be logistically feasible to tag non-target species. Moxham 

et al. (2019) were able to estimate predation events on tagged bonefish (Albula spp.) using an 

unsupervised approach that did not include data from predator movements by using clustering 

methods to differentiate habitat space use and speed metrics of predated bonefish from those that 

survived following catch-and-release. Now, recent developments in acoustic tag technology have 

led to the ability to detect predation events via changes in pH that trigger a change in the unique 

ID of the tag, referred to as predation tags (Halfyard et al., 2017). Predation tags have been used 

in studies on Yellow Perch (Perca flavescens) in the Detroit River (Weinz et al., 2020), Bloater 

in the Great Lakes (Kilnard et al., 2019; 2021), and Atlantic Salmon in the Miramichi River, NB 

(Daniels et al., 2019).  
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The random forest and cluster analysis methods described above are classification 

approaches in the machine learning family, a branch of statistics that is used to predict outcomes 

from training data to in-sample or out-of-sample data (Thessen, 2016). In supervised machine 

learning (e.g., random forests), models are trained on data sets with independent and dependent 

variables, the model learns how the variables are related, and the model is then able to predict the 

dependent variable on future data sets where only the independent variables are provided 

(Thessen, 2016). Unsupervised methods (e.g., cluster analysis) find patterns among the 

independent variables to organize data based on underlying similarities in the data ascertained by 

the algorithm (Olden, 2008). Machine learning approaches are becoming increasingly used in 

ecology because they are able to model data that are non-linear, contain interacting variables, and 

have missing values, all of which are common in ecological data sets (Olden, 2008; Thessen, 

2016). Applications of machine learning in ecology include habitat modelling and species 

distribution (Cutler et al., 2007; Brownscombe et al., 2019), species identification (Tabak et al., 

2018), monitoring biodiversity (Cordier et al., 2017), and predicting the conservation status of 

species (Bland et al., 2014). The ability to make accurate ecological predictions is vital for 

informed management and decision making (Clark et al., 2001; Olden, 2008; Coreau et al., 

2009).  

Ideally, a combination of both behavioural and sensor-based methods for determining 

predation events would do much to increase confidence in fate classification of tagged fish, as 

tag sensors may sometimes fail and predator behaviours may not always be significantly 

different than prey behaviour (Weinz et al., 2020). Juvenile Atlantic Salmon (smolts) out-

migrating from the Stewiacke River, Nova Scotia present an ideal opportunity to apply this 

combined approach. Natural mortality of smolts during seaward migration is high, with predation 
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often accounting for the majority of mortalities and challenging management efforts, especially 

those that rely on fish tracking data (LaCroix, 2008; Thorstad et al., 2011; Thorstad et al., 2012). 

The Stewiacke River is dominated by Striped Bass, a common predator of Atlantic Salmon 

smolts. Salmon smolt behaviour during migration consists largely of short, linear movements 

directed downstream with some reversals during out-migration, especially when first entering the 

estuary, likely as a response to osmotic stress (Halfyard et al., 2012; Halfyard et al., 2013). The 

impact of incoming tides or hydropower backwater may also push smolts back upstream (Beland 

et al., 2001; Babin, 2019). Except for these occasional path reversals, these movements are 

distinct from the extensive and tortuous movements with frequent reversals in up and 

downstream movement exhibited by Striped Bass (Romine et al., 2014; Gibson et al., 2015; 

Daniels et al., 2018). These differences form the basis for the behavioural metrics with which we 

can distinguish live and predated smolts, conducive to supervised machine learning approaches 

to identifying predation based on movements. However, these machine learning methods have 

not been adequately tested against objective empirical data with which models can be evaluated 

and best practices developed for a workflow to identify predation of tagged fish. The 

introduction of predation sensor tags provides a unique opportunity to compare machine learning 

methods designed to identify predated Atlantic Salmon smolts using models based either solely 

on behavioural metrics (unsupervised) or informed by data obtained from predation tags 

(supervised) to determine the best method for fate classification and the value of using predation 

tags.  In this chapter, rates of estimated smolt migration survival and predation are compared 

among three approaches: modelling of behavioural metrics, tag pH sensors, and a combination of 

the two.  
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2.2 Methods  

2.2.1 Study System 

The Stewiacke River, Nova Scotia is one of 50 rivers within the inner Bay of Fundy 

(iBoF) Atlantic Salmon designatable unit (DFO, 2019b). The iBoF unit is currently listed as 

Endangered under Canada’s Species at Risk Act (SARA). Low survival during the estuarine and 

marine stages of the Atlantic Salmon life cycle is preventing population recovery (DFO, 2019a). 

Reducing adult marine mortality is challenging, therefore, identifying sources of mortality and 

quantifying predation rates of migrating smolts is vital to informing population management. 

Smolts migrate down from the Stewiacke River and its tributaries out to the Minas Basin via the 

Shubenacadie River (Fig. 2.1). The Stewiacke River is the only river in the iBoF unit that is 

confirmed as an annual spawning site for Striped Bass (Bradford et al., 2015). Striped Bass 

congregate in the tidal waters of the Stewiacke River to spawn in May-June (Bradford et al., 

2015), the same time and location as the smolt out-migration.  

2.2.2 Sampling and Tagging Procedures 

Sampling of Atlantic Salmon smolts occurred within the Stewiacke River watershed in 

three years, spanning 2017-2019, during the annual smolt run. Smolts were captured via rotary 

screw trap just downstream of the Stewiacke River head-of-tide in 2017 and just upstream of the 

head-of-tide in 2018 (<2 km apart; Fig. 2.1). In 2019, smolts were captured using a barrier fence 

on the Pembroke River, ~40 km upstream of the head-of-tide (Fig. 2.1). Both types of traps were 

checked for fish daily. Smolts were transferred from the traps to floating bins in a calm section of 

the river for holding prior to sampling and surgeries. Fifty smolts were tagged in both 2017 and 

2018; 56 smolts were tagged in 2019 (total N=156).  
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Fish were measured prior to surgery (fork length [mm], mass [g]). Only smolts longer 

than 12 cm in fork length were chosen for tagging to ensure that the recommended tag-to-body 

size ratio was not exceeded (<8% for Atlantic Salmon; LaCroix et al., 2004). The average tag-to-

body size ratio across all years was 3.0% (range 1.0-5.2%). Smolts were then anaesthetized in a 

buffered 10 mg/L solution of tricaine methanesulfonate (MS-222), until loss of equilibrium and 

spinal reflexes. A maintenance solution of buffered 5 mg/L tricaine methanesulfonate was 

circulated over the gills of the fish during surgeries. V5D-180 kHz predation acoustic 

transmitters (12.7 x 5.6 mm, 0.68 g in air; Innovasea Systems Inc., Bedford, Nova Scotia) were 

surgically inserted through a ~8 mm incision in the abdomen of smolts following standard 

procedure (Cooke et al., 2011). Incisions were closed with two single interrupted sutures. Smolts 

were returned to the floating river-side bins and held until dusk to recover from surgery before 

release just downstream from the point of capture. The average duration for the measuring and 

surgical procedures was 3.3 +/- 0.7 mins, and average recovery times were ~7 +/- 1 hrs. 

Fish collection permits were issued by Fisheries and Oceans Canada (DFO 323354). All 

fish handling and surgical procedures conformed to standards established by the Canadian 

Committee on Animal Care, via permits issued by Fisheries and Oceans Canada (Maritimes 

Region Animal Care Committee Animal Utilization Protocols 17-16, 18-13, 19-10) and by 

Dalhousie University (University Committee on Lab Animals permit 18-126). Field work was 

done in conjunction with the Mi’kmaw Conservation Group who were operating under the 

Aboriginal Fund for Species at Risk.   

2.2.3 Description of Tags and Receiver Array 

The V5D tags (Innovasea Systems Inc.) have a biopolymer coating that triggers a change 

in transmitter ID (from an even number to the next odd number) when dissolved by the stomach 
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acids of a predator, thus indicating that a predation event has occurred. It is assumed that only 

predation events by fishes will be detected using this technology because avian or semi-aquatic 

predators would more likely remove the tag from the study site (Daniels et al., 2019). The lag 

time between tag consumption and the activation of the predation signal is ~5.8 hrs at 20°C (S. 

Smedbol, InnovaSea Systems Inc., pers. comm., January 2020) or 35.4 ± 17.7 hrs at a mean 

temperature of 11.8°C (Hanssen, 2020). In addition to temperature, lag time is dependent on the 

species and size of the prey (tagged) fish, and on the species and digestion rate of the predator 

(Halfyard et al., 2017).  

Prior to tagging, an array of VR2W-180 kHz acoustic receivers (Innovasea Systems Inc.) 

was deployed along the migration route from the release/tagging site to the mouth of the 

Shubenacadie River (n=16 in 2017, n=15 in 2018, n=24 in 2019; Fig. 2.1). Supplemental 

detection data were provided by additional receivers (VR2W-180 kHz and HR2; Innovasea 

Systems Inc.) deployed in the Minas Basin (Fig. 2.1) and maintained by other researchers 

including the Ocean Tracking Network. Receivers were recovered in mid to late July of each 

year. Mobile tracking runs were periodically conducted on several river sections throughout the 

sampling period using a VR100 hydrophone (Innovasea Systems Inc.) to detect predation events 

that occurred outside of the range of stationary receivers.  

The V5D tags were programmed to transmit individual-specific coded signals every 12-

18 sec for detection on VR2W receivers in all years, and every 1.9-2.1 sec for detection on HR2 

receivers in 2018 and 2019. Tags in 2017 had an estimated battery life of 47 days, while tags in 

2018 and 2019 had a battery life of approximately 24 days due to the dual programming for both 

types of receivers.  
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2.2.4 Data Analyses 

All analyses were conducted in R 3.6.2 (R Core Team; https://www.R-project.org). 

Detections occurring before or after the study period were removed as well as detections of 

tagged fish belonging to other studies. Detections were filtered using the false_detections 

function from the glatos package (Binder & Dini, 2012). This function identifies potentially false 

detections based on the programmed time interval at which the tags emit the ID signal and the 

recorded time between detections. Detections were then plotted for each individual smolt and 

visually assessed; detections identified as potentially false by the filtering function that also 

looked improbable given the location of receivers were removed from the data set. In the case 

that a dead smolt or evacuated tag dropped within range of receiver (i.e., resulting in a 

continuous string of detections for extended periods of time), the detection data were truncated to 

the first detection at that receiver (n=3).  

2.2.5 Fate Classification 

Detection data and the V5D pH sensor were used to classify smolts as belonging to one 

of three fate groups: successful migrant, mortality, or predation. Smolts were considered to have 

successfully completed migration if the last recorded detection was either at the mouth of the 

Shubenacadie River or in the Minas Basin. Smolts were presumed to be a mortality if their last 

recorded detection occurred upstream of the Shubenacadie River mouth. This pattern of 

detections could also result from tag ejection, failure to be detected when passing receivers, or 

predation by an animal that removed the tag from the study site. Predated smolts were identified 

if the pH sensor triggered a change in tag ID. However, preliminary analysis of detection data 

revealed that some smolts identified to be successful migrants or mortalities displayed 

movements more similar to predator behaviour than migratory smolt behaviour (several reversals 

https://www.r-project.org/
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between up and downstream movement; Fig. 2.2). Consultation with the tag manufacturer 

confirmed the possibility of undetected predation events (Type II error). Additionally, a previous 

validation study has shown V5D predation tags to have only 50% accurate detection of predation 

(Hanssen, 2020). Therefore, machine learning methods were also applied to the detection data to 

classify smolt fate.  

Behavioural metrics for the machine learning models were calculated from detection data 

of both live and predated tag IDs. Only data collected from stationary receivers were used in the 

calculations. The metrics were selected based on behaviours that are expected to be significantly 

different between salmon smolts and a predator such as Striped Bass. Some of these metrics are 

adapted from Gibson et al. (2015) and Daniels et al. (2018). The chosen metrics were total 

number of detections, maximum and minimum number of detections at a single receiver, number 

of days with detections, time between release and last detection, total distance travelled (river 

km), mean and maximum upstream speed (m/s) between two consecutive receivers, mean and 

maximum downstream speed (m/s) between two consecutive receivers, total number of reversals 

in up and downstream movement, total time on Striped Bass spawning grounds, total number of 

detections above the Stewiacke River and Shubenacadie River confluence, cumulative upstream 

distance travelled (river km), mean and maximum upstream distance travelled in a single step 

(river km), migration rate (river km/day), and for 2019, maximum speed in fresh water and tidal 

water (m/s). Metrics were tested in unsupervised k-means cluster analyses and supervised 

random forest models to compare fate classification based solely on the behavioural metrics, 

classification based on behaviour but also trained on individuals with known fate, and 

classification from detections and tag sensor only. Due to differences in receiver array set-up 

between years, models were run separately for each year. Attempts to pool years by truncating 
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detection data to the smallest study area among years (2017 array) resulted in the removal of 

several individuals from the data set and did not increase model accuracy beyond what was 

generated from individual year models.  

2.2.6 Fate Classification: K-means Clustering  

 Clustering is a family of unsupervised machine learning where an algorithm is developed 

to form groups based on similarities in the data without prior identifiers (Jain, 2010; Thessen, 

2016). Therefore, the class of each group is inferred and requires context specific knowledge to 

be interpreted. Types of clustering can be categorized as hierarchical or partitional (Jain, 2010). 

Hierarchical methods create nested clusters by either merging data points into clusters 

(agglomerative) or dividing a single cluster into smaller ones (divisive). Partitional methods, 

such as k-means clustering, produce all clusters simultaneously. Clusters are formed to maximize 

similarity within clusters and minimize similarity between clusters. In k-means clustering, the 

number of clusters K is specified by the user.  

K-means clustering was performed using the kmeans function in base R. Behavioural 

metrics were centered and scaled to remove the effect of variables with larger values. Individual 

smolts were clustered into three groups (K=3) to represent the three fate classes, successful 

migrant, mortality, and predated. The fviz_cluster function was used to visualize cluster results, 

which plots observations using principal components (Kassambara & Mundt, 2019). Variable 

importance for clustering was measured by the rate at which individuals were misclassified if 

that variable was removed from the data set (misclassification rate). A higher misclassification 

rate means a variable is more important for assigning an individual to the best cluster. ANOVAs 

and Tukey tests were used to test if variables were significantly different among clusters. Each 

group was then assigned a fate based on metric means for each cluster and expected behaviour of 
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out-migrating smolts. Total distance travelled is expected to be longest in successful migrants 

that reach the Minas Basin and shortest among mortalities that die along the migration route. 

Total distance should also be long in predated smolts due the distance accumulated by the up and 

downstream movements made by predatory Striped Bass. It is expected that total time would 

follow a similar trend, with predated smolts showing less time than successful migrants due to 

the ejection of tags through the gastrointestinal tract of predators, and mortalities being detected 

for the least amount of time. Upstream speed should be fastest among predated smolts and very 

slow among successful migrants and mortalities. Similarly, upstream distance should be longest 

in predated smolts and shortest in successful migrants and mortalities because Striped Bass are 

expected to make frequent, extensive reversals in swimming direction while smolts are expected 

to conduct directed, downstream movements. 

2.2.7 Fate Classification: Random Forest 

Random forest is a supervised method of machine learning that builds upon classification 

trees by fitting many trees to a data set to increase the accuracy of classification (Cutler et al., 

2007). Each tree is fit to a bootstrapped sample of the original data set with only a subset of the 

variables considered at each node. Each observation is then classified by majority vote of all the 

trees. The random forest algorithm is first trained on a data set where the class of each 

observation is known to learn the relationship between the response and predictors, before being 

used to predict classes of new observations.  

The randomForest package and function (Liaw & Wiener, 2002) in R was used to create 

a model with fate as determined by the tag pH sensor and detection data as the response and the 

behavioural metrics as explanatory variables. Individuals with uncharacteristic smolt behaviour 

(i.e., upstream movement) were removed from the data set prior to training the algorithm (n=16 
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in 2017, n=14 in 2018, n=7 in 2019). Training data sets were therefore comprised of the 

remaining smolts in each year (n=34 in 2017, n=36 in 2018, n=9 in 2019). The migration fates of 

individuals in the training data sets are referred to as having known fates but because fates were 

determined through detection data there is still uncertainty associated with these fates due to the 

assumptions of no tag loss or failure and the potential for imperfect detection efficiency. Small 

sample size prevented cross validation with training and test data sets, therefore, out-of-bag 

(OOB) error produced from bootstrapping was used to calculate a confusion matrix and model 

accuracy. The number of trees made in the model was increased from the default 500 until OOB 

and class error rate fluctuations stabilized. The number of variables tried at each node was 

chosen based on minimizing OOB error. Due to class imbalance, the classes were assigned 

weights to penalize misclassification of underrepresented classes, class weights were chosen to 

minimize and balance class error rates (Table 2.1). The final model was then run on the 

individuals removed from the data set to predict their fates using the predict function. Variable 

importance was described by the average decline in model accuracy after permutations of that 

variable (mean decrease accuracy) and the average decrease in node purity if that variable was 

not used (mean decrease Gini). Larger values for both mean decrease accuracy and mean 

decrease Gini indicate greater variable importance. 

2.3 Results 

2.3.1 Predation Tags 

The number of tagged fish determined to be predated based on the predation sensor was 

24 (48%), 18 (36%), and 14 (25%) in 2017, 2018, and 2019, respectively. In 2019, two of the 

predation events occurred after entry into the Minas Basin and were therefore classified as 

successful migrants rather than predation.  
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2.3.2 K-means Clustering 

For each year, smolts were placed into one of three clusters (Fig. 2.3). The most important 

variables differed somewhat among years; variables with consistently high misclassification rates 

included total distance travelled, total time detected, upstream swimming speed, and upstream 

distance travelled (Figs. A1-3). These variables were significantly different (ANOVAs, Tukey 

tests) between at least two of three clusters for each year. Therefore, clusters were assigned fate 

classes based on the differences in these variables and the expected behaviour of live salmon 

smolts, dead smolts, and predators.  

For 2017, cluster 2 (n=9) had faster upstream swimming speeds, longer upstream 

distances travelled, and farther total distance travelled than clusters 1 and 3 (Fig. A4). These 

trends are more characteristic of Striped Bass movement than smolt movement, therefore, cluster 

2 was determined to represent the predated fate class (Fig. 2.4). Clusters 1 (n=36) and 3 (n=5) 

were not significantly different from each other (Tukey tests; upstream speed: t=-0.08, p=0.997; 

total distance: t=-1.16, p=0.476; upstream distance: t=-0.33 p=0.941). Based on the short total 

distance travelled (Fig. A4), both of these clusters were assigned the fate of mortality. A 

successful migrant cluster was not identified.  

The cluster plot for 2018 revealed some overlap between clusters 2 and 3 when plotted on 

the first two principal components (Fig. 2.3), however, they were significantly different from 

each other when examining variables with the highest misclassification rates (Tukey tests; total 

distance t=-10.5, p<0.001; total time t=-5.40, p<0.001). Cluster 2 (n=24) had the longest total 

time and farthest total distance (Fig. A5); therefore, it was assigned the successful migrant class 

(Fig. 2.4). In contrast to cluster 2, cluster 3 (n=23) showed the briefest total time and shortest 

distance (Fig. A5), which are metrics indicative of mortality. Cluster 1 (n=3) had intermediate 
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values between clusters 2 and 3, and total distance was greater than total time leading to the 

assignment of the predated fate to this cluster.  

In 2019, cluster 3 (n=10) had a significantly greater number of reversals (Tukey test; 

cluster 1 t=8.77, p<0.001; cluster 2 t=9.75, p<0.001), longer time on Striped Bass spawning 

grounds (Tukey test; cluster 1 t=5.29, p<0.001; cluster 2 t=5.30, p<0.001), and longer upstream 

distance travelled (Tukey test; cluster 1 t=6.48, p<0.001; cluster 2 t=7.18, p<0.001), all of which 

are behaviours indicative of predation by Striped Bass (Fig. 2.4). Cluster 2 (n=34) had the 

longest total distance (Fig. A6) and was therefore, assigned the successful migrant fate. 

Conversely, cluster 1 (n=12) had the shortest distance travelled and was identified as the 

mortality class.  

Model accuracy, calculated by the number of known fates (the fates of smolts in the data 

sets used to train the random forest models) within a cluster that matched that cluster’s assigned 

fate (Table 2.2), was 38.2%, 52.8%, and 82.4% for 2017, 2018, and 2019, respectively (Fig. 2.5). 

2.3.3 Random Forest 

In-sample prediction accuracy of random forest algorithms ranged between 81.6 and 

94.4% among years (Fig. 2.5). OOB error rates ranged from 5.6-18.4% (Table 2.1). 

Classification of the successful migrant class had 100% error rate in the 2017 model, but 0% in 

2018 and 2019. Mortality class error rates ranged from 25-43% (Table 2.1). Error rates for the 

predated class were similar in 2017 and 2018 at 4 and 5%, respectively, but was 50% in 2019.  

The most important variables in common among all years were time on Striped Bass 

spawning grounds, total distance travelled, and time detected (Figs. A10-12). Upstream speed, 

upstream distance, and number of reversals were also important variables in 2017 (Fig. A10). 
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Partial plots revealed that the probability of being classified as a successful migrant increased 

with increasing cumulative distance travelled, total time detected, and number of days detected 

(Figs. A13-18). The probability of being classified as predated increased with number of 

reversals, upstream distance travelled, upstream speed, and time spent on Striped Bass spawning 

grounds (Fig. A19-24). The trends in probability of being classified as a mortality were similar to 

those for the predated class except for time on Striped Bass spawning grounds, time detected, 

and distance travelled in which cases the trends were opposing. 

The 2017 random forest algorithm reclassified all suspect individuals (five successful 

migrants, 11 mortalities) as predated (Fig. 2.4). In 2018, two of the suspect mortalities were 

reclassified as successful migrants but these individuals were retained as mortalities in the final 

fate counts. All other suspect mortalities were reclassified as predated, but only two among eight 

suspect successful migrants were reclassified as predated (Fig. 2.4). The 2019 algorithm 

reclassified the two suspect mortalities as predated (Fig. 2.4) and three of five suspect successful 

migrants as predated.  

2.3.4 Comparison of Classification Methods 

When comparing the assigned cluster fates to the known fates of individuals within 

clusters, as determined through detection data, the accuracy was highest in 2019 because the 

majority class in each cluster was the same as the assigned cluster fate (Table 2.2). The 2018 

cluster assignments were also consistent with individual fates; however, two of the clusters were 

mostly comprised of predated smolts (Table 2.2). Cluster 1, which was assigned the predated 

fate, contained only two predated individuals while cluster 3 contained the majority of predated 

individuals (15) but was assigned a mortality fate based on the behavioural metrics. The 2017 

clusters were difficult to distinguish based on behaviour and individual fates due to the high 
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number of predation events that year, predated individuals were spread among all three clusters 

(Table 2.2). Compared to predation tag data, the cluster analysis reduced predation estimates by 

30% in 2017, 30% in 2018, and 3.5% in 2019 (Table 2.3).  

Random forest algorithms consistently increased the percent of individuals classified as 

predated and resulted in a reduction of estimated migration success and mortality classes 

compared to the numbers obtained from the predation tag sensor and detection data (Table 2.3). 

Predation rates increased by 32%, 12%, and 9% in 2017, 2018, and 2019, respectively.  

Unsupervised clustering methods are capable of fate classification but are less accurate 

than supervised methods (Fig. 2.5). On average, both machine learning approaches had higher 

accuracies than pH tag sensors alone (50%; Hanssen, 2020).  

2.4 Discussion 

This methods comparison built on previous studies to develop a standardized workflow 

for identifying predated individuals in acoustic telemetry studies (Fig. 2.6). We used tag sensor 

technology, unsupervised machine learning, and supervised machine learning to address the 

issue of “predation bias” in the field of telemetry and showed that using data collected from tag 

sensors to train supervised models provides the greatest accuracy for fate classification of tagged 

fishes (Fig. 2.5).  

Unsupervised k-means clustering had lower classification accuracy due to almost all 

clusters in all years containing a mixture of individual fates. The mortality cluster (cluster 1) in 

2019 contained an even split of mortalities and predated smolts, but the predated smolts in this 

cluster were identified in fresh water by mobile tracking and therefore the behavioural metrics 

resembled mortalities more closely than predation events detected in tidal water by stationary 
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receivers. The nature of mobile tracking downriver allows for only a few detections of a given 

tag in a single location which is insufficient to pick up distinct behaviour. Additionally, the most 

likely freshwater predators, Brown Trout (Salmo trutta) or Chain Pickerel (Esox niger), are 

relatively stationary species so detection data resemble a dropped tag or dead smolt rather than 

the active Striped Bass behaviour we were testing for. Similar to the cluster analysis, the 2019 

random forest algorithm did not successfully differentiate the six freshwater predation events 

from mortalities. 

Data from 2017 showed the greatest disparity of fate assignments amongst the three 

different classification methods (Table 2.3). In addition to overall model classification accuracy, 

balancing accuracy amongst classes is important especially for unbalanced data sets because 

models will ignore minority classes to achieve greater overall accuracy (Chen et al., 2004; 

Brownscombe et al., 2020). The small number of successful migrants compared to the number of 

mortalities and predated smolts in 2017 made it difficult for these individuals to be recognized 

by either type of machine learning approach. The few successful migrant smolts were masked in 

the cluster analysis by the behavioural characteristics of the other fate classes (Table 2.2), and 

despite the addition of class weights, the random forest model was still unable to accurately 

classify successful migrants. In contrast, the estimated percentage of successful migrants was 

relatively similar amongst all three methods in 2018 and 2019, while mortality and predation 

classes had larger disparities, especially for the 2018 cluster analysis (Table 2.3).  

The amount of time a tag is retained within a predator and continues to function can 

impact a model’s ability to accurately classify it as a predation. The retention time of tags in the 

gastrointestinal tract of predatory fishes depends on several factors including water temperature, 

predator size, prey size, and tag size (Romine et al., 2014; Halfyard et al., 2017; Daniels et al., 
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2019; Klinard et al., 2019). The longest known retention time of predation tags is over 6 months 

observed in an acoustic telemetry study of Bloater (Klinard et al., 2019; 2021). Additionally, 

acoustically tagged Rainbow Trout (Oncorhynchus mykiss) and Yellow Perch were retained in 

predatory Largemouth Bass (Micropterus salmoides) for 1.1 –11.5 days (Halfyard et al., 2017). 

In species more comparable to this study, gut retention time of tagged juvenile Chinook Salmon 

(Oncorhynchus tshawytscha) consumed by Striped Bass ranged from 1.2-2.7 days, with a 

negative relationship to water temperature (Schultz et al., 2015). Here, tags triggered as predated 

were detected for an average of 2.9 days (range 0-32.7 days). After this period, tags were either 

evacuated through the gastrointestinal tract, the predator left the study area, or the tag ceased 

signal transmissions. The longer a tag is in a predator, the easier it is to identify it as a predation 

because there will be more detections tracking predator behaviour (Daniels et al., 2018). 

Predation events where the tag is ejected quickly and distinct predator movements are not 

captured are then more likely to appear as mortalities. This is prevalent in the 2018 cluster 

analysis where 13 of the 15 predated smolts in the mortality cluster (cluster 3) had retention 

times shorter than the average 2.9 days, the same is true for 15 of the 16 predated smolts in 

mortality cluster 1 in 2017. 

The supervised random forest approach was the most accurate of the three fate 

classification methods (Fig. 2.5). This method increased estimated predation rates greatly beyond 

estimates made by the tag pH sensor alone and by the unsupervised cluster analysis, however, 

total estimated mortality only showed a large increase in 2017 (Table 2.3). The cluster analysis 

also only increased estimates of total mortality from tag sensor estimates in 2017. Predation 

accounted for a majority of all smolt mortalities (71-83%) under the random forest estimates 

while predation tag estimates showed predation as accounting for just above half of all 
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mortalities (56-67%). Whether mortality was attributable to predation or unknown causes, 

estimated total mortality did not differ greatly between methods. Both predation rates and total 

mortality decreased from 2017 to 2019 for both the random forest and tag sensor methods (Table 

2.3). The variation in estimated migration mortality rates among years could be due to a number 

of factors including changes in predator and prey abundance, changes in the timing of the Striped 

Bass spawning period, or differences in sampling methods.  

We emphasize the importance of distinguishing predation from other forms of mortality 

due to the substantial bias it introduces into telemetry study results and interpretation if not 

addressed. Previous researchers who have used classification algorithms to identify predation of 

tagged fish found that without these analyses inferences about spatial and temporal movement of 

81% of bonefish would have been biased (Moxham et al., 2019), mortality rates of salmon 

smolts in fresh water compared to the estuary were underestimated by 10% (Daniels et al., 2018), 

and survival estimates of salmon smolts were overestimated by 2.4-13.6% (Gibson et al., 2015). 

Here, even with the use of predation sensor tags, random forest models suggested survival 

estimates were overestimated by 4-10% due to undetected predation events. Therefore, 

identifying predation events in telemetry studies is vital to management not only to investigate 

sources of mortality in a population but also to ensure accurate conclusions are drawn about the 

ecology of the study species and population survival rates.  

The results presented here show that there is value in using predation tags combined with 

modelling methods to identify predated individuals (Fig. 2.6). Data including individuals with 

known fates that have been determined by detection data and a pH or other tag sensor increases 

confidence in model results and improves model accuracy. The unsupervised cluster analysis had 

model accuracies ranging from 38.2-83.4%, while the supervised random forest was 81.6-94.4% 
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accurate at in-sample fate classification (Fig. 2.5). The k-means clustering method was able to 

cluster individuals based solely on behavioural metrics, but it can be difficult to discern which 

cluster represents which fate group and the decision is likely to be subjective. Assigning fates to 

clusters was dependent on distinct and predictable predator and prey behaviour with smolts 

moving downstream and Striped Bass exhibiting multiple reversals. However, it is possible that 

smolts could exhibit upstream movement if they were being carried by the tides (Beland et al., 

2001) or as a response to osmotic stress (Halfyard et al., 2012). The random forest algorithms 

were trained on smolts of known fate and classified suspect smolts on an individual basis 

compared to the cluster analysis where smolts were classified by group, leading to a mixture of 

fates in each cluster. While random forest models were shown to be the best approach for 

identifying predation events and predicting the migration fate of smolts, these models were still 

not 100% accurate and the potential for misclassification remains.  

Differences in model results and prediction accuracies among years highlight the 

importance of having a large sample size not only for greater power in model predictions but also 

in an attempt of balancing classes for individuals of known fates. Random forests are among the 

least sensitive classification algorithms to reductions in sample size (Maxwell et al., 2018; 

Moghaddam et al., 2020), however, issues of class imbalance and potentially unrepresentative 

data remain when using small training data sets (Chen et al., 2004; Brownscombe et al., 2020). A 

recommendation for machine learning in general is to have a training sample size ten times the 

number of predictor variables, but the minimum recommended sample size for classification 

algorithms specifically is dependent on the type of data and algorithm (Indira et al., 2010; 

Maxwell et al., 2018).  
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Other considerations to optimize model performance are receiver configuration and 

coverage, which are vital to capturing the distinct behaviour needed to differentiate predator and 

prey species. The distances between receivers in a river system limits the accuracy of distance 

travelled and speed calculations because the movement of the individual between receiver 

detection ranges is unknown. It is therefore not ideal to have large gaps between receivers but the 

number of receivers available is often limited, especially for large study areas. The behavioural 

metrics required for machine learning approaches are context-specific and must be tailored to the 

prey and predator species of interest. Deciding on behavioural metrics prior to receiver 

deployment can aid in array design to ensure receiver coverage is adequate for calculating the 

necessary metrics. However, it is possible to have multiple or unknown predatory species in a 

study system, calculating metrics or concentrating receiver coverage for only one species could 

mask predation by another. Additionally, avian predation typically resembles mortalities in terms 

of detection data and could therefore not be identified here. Other researchers have identified 

avian predation by searching colonies or nesting sites for evacuated tags (Evans et al., 2012).  

For tracking salmon smolts specifically, good up and downstream receiver coverage of the river 

is important for distinguishing predator and prey movement based on smolt migration behaviour. 

Predation tags are recommended when tracking smolts due to the high predation pressure from 

various species during out-migration.  

A limitation of the modelling approaches used here is that a timestamp for the moment of 

predation is not provided. A benefit to using predation tags is that detection histories can be 

truncated to represent only movements of the live prey based on the change in tag ID and 

estimated signal lag time (Fig. 2.2). A fine scale or gridded receiver array where the position of 

the tagged fish can be triangulated allows for more accurate calculations of speed and turning 
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angle, which can be used for behavioural change point analysis. Behavioural change point 

analysis identifies significant changes in movement parameters across a time series (Gurarie et 

al., 2009) so not only can it be used for identifying predated individuals based on behavioural 

anomalies, but it can also provide a time estimate for when the predation occurred. However, 

triangulation is difficult to achieve in rivers given their size and shape.   

K-means clustering underestimated the number of predation events and due to type II 

error, the tag sensor did as well. Random forest modelling and the example workflow we 

provide, allows one to study predation by using predation tags, therefore removing the need to 

tag predators, while also accounting for sensor malfunctions. Combining acoustic tag sensors 

with supervised machine learning approaches to identify mortalities and predation events of 

tagged fishes is recommended to increase confidence in telemetry study results. 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

Tables  

Table 2.1 Random forest model metrics. Number of decision trees made (ntree), number of 

variables considered at each node (mtry), class weights assigned to mortalities, predated smolts, 

and successful migrants, respectively (claswt MPS), out-of-bag error rate (OOB error), and class 

error rate for mortalities, predated smolts, and successful migrants, respectively (class error 

MPS).  

Parameter 2017 2018 2019 

ntree 1000 1000 500 

mtry 3 3 2 

classwt c(MPS) 2, 1, 10 N/A 5, 2, 1 

OOB error 14.71% 5.56% 18.37% 

Class error c(MPS) 0.25, 0.04, 1.00 0.33, 0.05, 0.00 0.43, 0.50, 0.00 

 

 

Table 2.2 Number of individuals of each fate (predated P, other mortality M, successful migrant 

S, successful migrant or mortality suspected of being predated U) as determined by predation tag 

and detection data in each cluster. Cluster fates, in brackets, assigned based on average 

behavioural metrics of each cluster.  

 2017 2018 2019 

Fate 

assigned 

by tag 

Cluster 

1 (M) 

Cluster 

2 (P) 

Cluster 

3 (M) 

Cluster 

1 (P) 

Cluster 

2 (S) 

Cluster 

3 (M) 

Cluster 

1 (M) 

Cluster 

2 (S) 

Cluster 

3 (P) 

S 2 0 0 0 14 1 0 30 0 

M 9 0 0 0 0 3 6 1 2 

P 16 4 4 2 1 15 6 0 6 

U  10 5 1 1 9 4 0 3 2 

total 36 9 5 3 24 23 12 34 10 

 

 

Table 2.3 Percent of smolts belonging to each fate (predated P, other mortality M, successful 

migrant S) as determined by the V5D predation tag sensor and detection data, unsupervised 

cluster analysis (CA), and supervised random forest (RF). 

 2017 2018 2019 

Tag 

sensor 

CA RF Tag 

sensor 

CA RF Tag 

sensor 

CA RF 

S 14% 0% 4% 46% 48% 42% 62.5% 60.7% 57.1% 

M 38% 82% 16% 18% 46% 10% 16.1% 21.4% 12.5% 

P 48% 18% 80% 36% 6% 48% 21.4% 17.9% 30.4% 
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Figures 

 

Fig. 2.1 Map showing receiver and release site locations for each study year in the Stewiacke 

River watershed and Minas Basin, Nova Scotia, Canada. Inset shows location of study area (box) 

in relation to Nova Scotia (NS), New Brunswick (NB), and the Bay of Fundy (BoF).  
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Fig. 2.2 Plots showing detections of four individual Atlantic Salmon (Salmo salar) smolts in 

2017 representing typical migration paths of a successful migrant (S), a predated smolt (P), a 

mortality of unknown cause (M), and a smolt indicated to have successfully completed migration 

but suspected of being predated (S?). Receiver stations listed in order from release on the 

Stewiacke River (00ST) to the mouth of the Shubenacadie River (14-16SH). Receivers 07-12SH 

are upstream of the ST-SH confluence.  
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Fig. 2.3 Cluster plots for all study years showing k=3 clusters representing the three fate groups 

(mortality M, successful migrant S, predation P). Cluster colour corresponds to fate, point shape 

corresponds to cluster number. Small points are individual smolts, large points are cluster 

centroids. Clusters plotted on the first two principal components (Dim1, Dim2 [% variance 

explained]).  
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Fig. 2.4 Plots showing detections of three individual smolts in 2017, 2018, and 2019. Receiver 

stations listed in order from release on the Stewiacke River (00ST) or Pembroke River (00PB) to 

the mouth of the Shubenacadie River (14-16SH; 17-21SH; 22-25SH). Smolt 1262412 was 

classified as a successful migrant based on tag detections but classified as predated by both k-

means clustering and random forest. Smolt 1297052 was classified as a successful migrant based 

on tag detections and k-means clustering but classified as predated by random forest. Smolt 

1324762 was classified as a mortality based on tag detections but classified as predated by both 

k-means clustering and random forest. 
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Fig. 2.5 a) Rate at which V5 predation tags accurately identified predation events in Hanssen 

(2020) tank study. b) Model accuracies for k-means clustering (CA) and random forest (RF) 

models by year, mean accuracy shown by black circle. 
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Fig. 2.6 Diagram of example workflow to identify predated individuals in telemetry data using 

predation tags and a machine learning framework.  
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Chapter 3: Behavioural and physiological factors related to predation 

susceptibility of Atlantic Salmon smolts 

3.1 Introduction 

Migration is a vital life history strategy for species across animal taxa (Wilcove & 

Wikelski, 2008; Milner-Gulland et al., 2011) but is often a period of concentrated mortality for 

migrants (Sergio et al., 2019). Juvenile anadromous salmon, referred to as smolts, emigrate from 

less productive natal freshwater environments to highly productive marine environments to 

achieve greater growth (Hendry et al., 2004). Salmon populations (Salmo salar and 

Oncorhynchus spp.) have declined largely due to poor survival during seaward and return 

migrations (Wilcove & Wilkelski, 2008). Predation of smolts is considered to be a key 

contributor to out-migration mortality (LaCroix, 2008; Thorstad et al., 2012).  

Predation events occurring during migrations can have a significant, negative impact on 

salmon population numbers, especially for endangered populations (Grout, 2006; LaCroix, 

2008). The rate of predation on salmon smolts can vary among years and rivers, as well as 

among different areas within a single river (Halfyard et al., 2012). Piscine, avian, and 

mammalian predators are known to aggregate in certain areas, such as spatial bottlenecks, to take 

advantage of predictable, mass salmon migrations (Furey et al., 2015; Daniels et al., 2019; Flavio 

et al., 2019). Bull Trout (Salvelinus confluentus) have been shown to aggregate and binge feed 

on pulses of Sockeye Salmon (Oncorhynchus nerka) smolts exiting the Chilko River, British 

Columbia (Furey, 2016). Striped Bass (Morone saxatilis) aggregate in dam tailraces on the 

Merrimack River, Massachusetts to feed on Atlantic Salmon (Salmo salar) smolts (Blackwell & 

Juanes, 1998). Smaller populations of migrating salmon are not likely to attract such predator 

aggregations but are subject to more opportunistic predation (Furey et al., 2020).  
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Salmon smolt migration behaviour is largely influenced by predator avoidance strategies. 

Smolts primarily migrate at night to avoid visual predators and synchronize their migration to 

travel in groups and swamp predators (Ibbotson et al., 2011; Thorstad et al., 2011; Clark et al., 

2016; Furey et al., 2016; Flavio et al., 2019). Predator swamping is unlikely to be effective with 

small salmon populations; however, concurrent migrations of other diadromous species such as 

Alewife (Alosa psuedoharengus) may act as a prey buffer (Svenning et al., 2005; Saunders et al., 

2006; Furey et al., 2020).  

While predation is often the proximate cause of smolt mortality it may not be the ultimate 

cause because biotic and abiotic stressors can increase susceptibility to predation (Bender, 2018) 

by reducing swimming abilities and anti-predator behaviours (Handeland et al. 1996; Dieperink 

et al., 2002; Halfyard et al., 2012). Internal and external stressors that commonly confer a 

predisposition to mortality in smolts include metabolic exhaustion, physical barriers to 

migration, poor body size/condition, osmotic stress, water pollution, high water temperatures, 

and novel pathogen exposure (Wilcove & Wilkelski, 2008; Hostetter, 2009; Ibbotson et al., 

2011; Jeffries et al., 2014; Miller et al., 2014; Furey, 2016; Tucker et al., 2016; Sergio et al., 

2019). Identifying the causes, locations, timing, and magnitude of migration mortality is vital to 

improving population conservation and management (Gibson et al., 2015; Daniels et al., 2019).   

Telemetry is a useful tool for identifying migration mortalities and can reveal spatial and 

temporal hot spots of mortality (Clark et al., 2016; Furey et al., 2016; Flavio et al., 2019). Tag 

sensor technologies such as pH sensors can also distinguish between general mortality and 

predation mortality, further refining the information needed for proper population management 

(Halfyard et al., 2017, Daniels et al., 2019). Combining telemetry with transcriptomics, a method 

of studying an individual’s physiological condition through gene expression levels, provides 
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insight into potential direct and indirect (sublethal) causes of mortality (Miller et al., 2011; 

Jeffries et al., 2014; Bass et al., 2019).  The analysis of transcriptomes has linked gill Na+/K+-

ATPase activity (osmoregulatory condition) to mortality in Atlantic Salmon smolt out-migrations 

(Stich et al., 2015) and Pacific salmon (Oncorhynchus spp.) adult return-migrations (Miller et al., 

2011; Hinch et al., 2012). Transcriptomic and histological methods have also linked immune 

responses and pathogen presence to increased salmon smolt mortality through piscine and avian 

predation (Hostetter, 2009; Jefferies et al., 2014; Miller et al., 2014; Furey, 2016). 

The onset of sublethal, delayed, or carryover effects from stressors experienced in the 

natal freshwater habitat can cause mortality during out-migration (McCormick et al., 1998; 

Thorstad et al., 2012; Midwood et al., 2014; 2015; Birnie-Gauvin et al., 2021). For example, the 

impacts of water contaminants may not be seen until entry into saltwater environments where 

increased stress is placed on the osmoregulatory system (McCormick et al., 1998; Thorstad et al., 

2012). Additionally, the level of pathogenicity of some infectious agents varies between fresh 

and salt water (Miller et al., 2014). Stressors that occur in fresh water but contribute to early 

marine mortality of salmon are easier to manage than stressors occurring at sea. It is therefore 

crucial to identify and mitigate freshwater stressors with delayed effects to reduce mortality 

during smolt and post-smolt stages in an effort to maintain populations (Thorstad et al., 2012).  

 In this study, I explore the migration mortality of Atlantic Salmon smolts from the 

Stewiacke River, Nova Scotia which is part of the Endangered inner Bay of Fundy (iBoF) 

designatable unit of Atlantic Salmon. The iBoF unit declined more than 99% between the years 

of 1980 and 2000 due to overfishing, changes in environmental conditions, water contaminants, 

interactions with aquaculture, barriers to migration, and shifts in prey and predator communities 

(COSEWIC, 2006; SARA, 2010). Predation risk is particularly high for smolts in the Stewiacke 
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River primarily due to the large population of spawning Striped Bass, as well as invasive species 

such as Chain Pickerel (Esox niger), Smallmouth Bass (Micropterus dolomieu), and Brown 

Trout (Salmo trutta).  

 To better understand the mechanisms of smolt mortality in the Stewiacke River, three 

years of acoustic predation tag data and one year of transcriptomic data were used to meet the 

following objectives. 1) To quantify migration survival and predation rates across three study 

years and identify areas of high mortality/predation along the migration route. 2) To determine if 

certain migratory or predator avoidance behaviours are associated with migration fate. 3) To 

determine if physiological status or pathogen presence is associated with migration fate.   

3.2 Methods 

3.2.1 Study System  

The Stewiacke River shares its confluence with the Shubenacadie River which empties 

into the Minas Basin (Fig. 2.1). The Stewiacke and Shubenacadie Rivers are heavily influenced 

by the Bay of Fundy tides. The large tides (>10 m) cause great changes in salinity, temperature, 

water level, and turbidity over the daily tidal cycle. The head-of-tide is 30 km upstream of the 

river mouth in the Shubenacadie River and 15 km upstream of the confluence in the Stewiacke 

River. Salinity at the mouth of the Shubenacadie River ranges from 15-27 ppt over the tidal cycle 

and can be reduced to as low as 2 ppt by heavy rainfall (Martec Ltd., 2007).  

The Stewiacke River is the only river confirmed to be annually used for spawning by the 

Bay of Fundy population of Striped Bass (Bradford et al., 2015). The Atlantic Salmon smolt 

migration and Striped Bass spawning migration both occur in May-June in the Stewiacke River 

(Bradford et al., 2015; DFO, 2019b). Striped Bass spawning occurs primarily in the tidal waters 
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of the Stewiacke. Striped Bass feed heavily on Atlantic Salmon smolts and other fishes including 

Rainbow Smelt (Osmerus mordax), Alewife (Alosa pseudoharengus), Blueback Herring (Alosa 

aestivalis), and American Shad (Alosa sapidissima) (Bradford et al., 2015). Striped Bass are 

highly abundant within the Bay of Fundy and Gulf of Maine while salmon populations have 

greatly declined (Grout, 2006; Gibson et al., 2015), therefore, predator swamping strategies are 

not likely to be effective. However, Alewife and Blueback Herring may act as a prey buffer to 

out-migrating smolts because they are abundant in the area and their spawning migrations also 

peak in late May/ early June (Gibson et al., 2017). A fishing weir in the Minas Basin captured six 

Atlantic Salmon (post-smolts and adults), 1388 Striped Bass, and 350 343 Alewife and Blueback 

Herring from April to July in 2017 (Dadswell et al., 2020). Additionally, Chain Pickerel, 

Smallmouth Bass, and Brown Trout are potential predators of salmon smolts in the freshwater 

stretches of the Stewiacke River. There are also several avian predators of smolts in the area 

(SARA, 2010).  

3.2.2 Field Methods 

 Sampling procedures, acoustic tags, and receiver arrays were as described in Chapter 2 

(sections 2.2.2 and 2.2.3) with the addition of gill biopsies in 2019 for transcriptomic work. 

Immediately after surgical insertion of tags, small non-lethal gill tissue samples (approx. 1 mm, 

2-3 gill lamellae) were taken from tagged smolts (n=56). Tissue samples were preserved in 

RNAlater (Life Technologies, Grand Island, New York) and stored at -80°C until RNA 

extractions could be performed. 
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3.2.3 Laboratory Analyses  

 Preserved gill tissue samples were transported to the Genomics laboratory at DFO’s 

Pacific Biological Station in Nanaimo, BC to be processed. After thawing, RNAlater was poured 

off and tissue samples were transferred to collection microtubes. Tissue samples were 

homogenized physically using stainless steel beads and chemically with 200 µL of TRIzol for 

organic phase separation. Samples were shaken at 30 Hz for 3 min then spun down. 25 µL of 1-

bromo-3-chloropropane (BCP) was added to the homogenate followed by 1 min hand shaking, 5 

min incubation at room temperature, and 6 min centrifugation to produce an RNA aqueous layer. 

100 µL aliquots of the aqueous layer were removed and placed into 96 well plates for extraction. 

A Biomek FXP liquid handling instrument (Beckman-Coulter, Mississauga, Ontario) was used to 

clean the aqueous RNA sample by removing DNA with Turbo DNase. Samples were eluted by 

binding RNA to MagMax beads. RNA concentration was normalized to 50 ng/µL. Reverse 

transcription protocol recommended by BioMark (Fluidigm Corp., San Francisco, California) 

was followed to synthesize cDNA using 16 µL of normalized RNA, 4 µL of VILO cDNA 

MasterMix (Life Technologies), and polymerase chain reaction (PCR) cycling at 25ºC for 10 

mins, 42ºC for 60 min and 85ºC for 5 min.  

Specific target amplification (STA) of cDNA to pre-amplify genes of interest using a 200 

nM STA primer mix and PCR TaqMan Master Mix (Thermo Fisher Scientific, Waltham, 

Massachusetts) was done following BioMark protocol. The primer mix contained 4 µL of each 

100 µM primer (forward and reverse) and 688 µL of DNA suspension buffer. Amplification of 

1.3 µL of cDNA combined with 3.8 µL of the primer mix was done at 95ºC for 10 min, 14 cycles 

of 95ºC for 15 secs, 60ºC for 4 min followed by a 4ºC hold at the end of the cycle sequence. 

Leftover primers were removed with 2 µL of ExoSAP-IT High-Throughput PCR Product Clean 
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Up (MJS BioLynx Inc., Brockville, Ontario). 5 µL of sample mix (pre-amplified cDNA, 2X 

TaqMan Gene Expression MasterMix, and 20X GE Sample Loading Reagent) and 5 µL of assay 

mix (9μM primer pairs, 2μM probes, and 2X Assay Loading Reagent) were loaded onto 

Fluidigm 96.96 Dynamic Array chips to be run on a Fluidigm BioMark (Fluidigm Corp.) 

platform for real-time quantitative PCR (qPCR). Probes for each assay were previously prepared 

by dilution from 100μM to10μM in DNA suspension buffer. The BioMark platform performed 

PCRs at conditions of 50°C for 2 min, 95°C for 10 min, then 40 cycles of 95°C for 15 sec and 

60°C for 1 min.  

In total, across the 56 samples analyzed, 57 host genes were targeted under the following 

categories: smoltification, osmotic stress, general stress, stress mortality, imminent mortality, 

mortality related signature, inflammation, immune stimulation, and viral disease development 

(Table 3.1). These genes, or biomarkers, comprise the Salmon Fit-Chip, a microarray used as a 

measure of physiological fitness in salmon species (Houde et al., 2019). The presence of a 

stressor or physiological status is determined through the co-expression of biomarkers within a 

gene category. Additionally, the presence of RNA from 18 pathogenic viruses, bacteria, and 

fungal/protozoan parasite species was also tested for in duplicate assays. 

3.2.4 Statistical Analyses  

All analyses were conducted in R 3.6.2 (R Core Team; https://www.R-project.org). 

3.2.5 Statistical Analyses: Telemetry Data  

Filtering of telemetry data was as described in Chapter 2 (section 2.2.4).  

 

 

https://www.r-project.org/
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3.2.6 Statistical Analyses: Transcriptomic Data  

Cycle thresholds (Ct) were set in the middle of the log phase on the qPCR amplification 

curves using BioMark software (Fluidigm Corp., www.fluidigm.com). Assay efficiencies were 

calculated using the slope of the regression between Ct values and serial dilutions of host and 

microbial artificial positive construct (APC) DNA. Only genes with assay efficiencies between 

0.80 and 1.20 were retained in the final data set, therefore eight of the 57 genes were removed 

(Table 3.1). Amplification curves were visually assessed for abnormalities or low expression of 

reference host genes. Host gene expression was normalized using the efficiency corrected delta-

delta Ct method (Pfaffl, 2001) using the FluidFish v 2.8 package in R (Bass, 2020). Target gene 

expression levels were relative to the mean expression of three housekeeping (reference) genes 

and APC serial dilutions (control) while accounting for assay efficiency. For the pathogens, both 

duplicate assays must show positive detections for that agent to be considered present in the 

sample. Pathogen load (RNA copy number) was calculated based on APC serial dilutions and 

averaged between the two duplicates. 

3.2.7 Statistical Analyses: Migration Fate 

 The migration fate of smolts was estimated through supervised random forest modelling 

as described in Chapter 2 (sections 2.2.5 and 2.2.7). For all further analyses, detection data were 

truncated to represent movement of live smolts only. For individuals identified as predated by 

the predation tags, detections were truncated to the last detection of that individual’s even 

numbered (live) ID. For individuals classified as predated by the random forest algorithm but not 

the predation tags, detections were truncated by removing the average retention time of tags in 

predators (70 hrs) from the last known detection of that individual tag. 
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Cormack-Jolly-Seber (CJS) models were used to estimate survival (Phi) and detection (p) 

probabilities between and at receiver stations to identify areas of high mortality. CJS models 

were set so Phi and p were allowed to vary for each receiver station (Phi ~ array, p ~ array). In 

2019, the type of water (fresh water or tidal water) the station was located in was also included 

as a covariate (Phi ~ array + water, p ~ array + water). Additionally, areas of high predation were 

identified through the last known live location of predated smolts.  

3.2.8 Statistical Analyses: Migration Behaviour and Fate 

 A multinomial logistic regression was used to determine the effect of morphological, 

behavioural, and tagging factors on the probability of belonging to one of the three fate groups. 

The variables included in the model were as follows: weight (g), fork length (cm), release date 

(Julian day), release site (tidal or fresh water), tagging year, migration rate (river km/day), 

number of reversals in swimming direction, number of pauses (>24 hrs spent at the same receiver 

or between two consecutive receivers), and percent of receiver stations arrived at and departed 

from at night. Since migration success is based on detection at the mouth of the Shubenacadie 

River and behaviour is expected to change once smolts have entered the Minas Basin, only 

detections from stationary receivers within the river system were used to calculate these 

variables.  

 ANOVAs and Tukey tests were used to compare each variable between fate groups. Type 

III ANCOVAs were used for weight and fork length comparisons between years and fate groups.  

 Multinomial logistic regressions were conducted using the multinom function in the nnet 

package (Venables & Ripley, 2002) in R. Individuals not detected after release (n=8) were 

removed from the data set for this analysis. The levels of the response variable, fate, were set 
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relative to successful migrants. Alternate models were tested, swapping out co-linear variables, 

the model with the highest McFadden’s pseudo R2 was used as the global model for stepwise 

variable selection using stepAIC in the MASS package (Venables & Ripley, 2002). P-values for 

the relationship between each variable and fate level were calculated using the Wald test. The 

function allEffects in the package effects (Fox & Weisberg, 2019) was used to plot partial effect 

plots for each of the variables retained in the final model.   

3.2.9 Statistical Analyses: Physiological Status and Fate 

A MANOVA was run to determine if gene expression levels were significantly different 

between the three fate groups.  

A principal component analysis (PCA) was used to reduce dimensionality of the gene 

expression data. The PCA was run with a correlation matrix of the 49 host gene expression levels 

and the plate number each sample was run on using the princomp function in base R. Principal 

components (PCs) were retained so that cumulative variance explained was ≥ 50%. The function 

find.clusters in the adegenet package (Jombart, 2008) was used to run successive k-means 

clustering to identify the optimal number of clusters, k, in the gene expression data based on 

within sum of squares values and the number of retained components. The maximum number of 

clusters considered was one tenth of the number of observations rounded (max.n.clust=6). The 

optimal k value was selected as the value before decreases in within sum of squares values 

switched from sharp to mild declines where sharp and mild are defined by Ward’s clustering 

method. The function also determined which observations (smolts) belong in which cluster.   
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Biplots of principal components where points represent individual smolts were plotted 

and the relationships between clustered smolts, gene expression, and fate was visually assessed. 

Additional factors such as release and capture date were also assessed.  

3.3 Results 

3.3.1 Migration Fate 

 The number of smolts estimated by random forest modelling to have survived out-

migration from the Stewiacke River to the Minas Basin was lowest in 2017 (4%) and highest in 

2019 (57.1%; Table 3.2). Modeled predation rates decreased each year from 2017 to 2019, while 

rates of other mortality (avian predation, disease, stress, etc.) were relatively constant.  

Cumulative survival for the entire migration route based on CJS estimates were 10.4%, 

51.3%, and 62.6% for 2017, 2018, and 2019, respectively. These estimates are 5.5-9.3% higher 

than the observed percent of successful migrants (Table 3.2). CJS models provided survival 

estimates for river sections where detection efficiency was less than 1.0 (Table 3.3) and observed 

rates were limited to ranges. Otherwise, observed survival rates were similar to rates estimated 

by CJS models with some exceptions in 2019 towards the end of the migration route (Figs. 3.1-

3.2). There was low total survival in 2017 and high mortality observed throughout the migration 

route (steep decline in cumulative survival). 2018 survival declined at greater rates after Kent 

Farm. There was less mortality on Striped Bass spawning grounds (Eddy Pool to Moxam’s) in 

2019 than 2018 and 2017. High mortality areas in 2019 were centered around Cloverdale and 

from Moxam’s to the Minas Basin. The area around Ridge Rd and Cloverdale has low water 

flow and is where the confluence with South Branch, which is known to contain many invasive 

Chain Pickerel, is located. Areas of predation (Fig. 3.3) were consistent with areas of lower 
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survival (Figs. 3.1-3.2). The location of greatest predation was around Kent Farm which is the 

center of Striped Bass spawning grounds.  

3.3.2 Migration Behaviour and Fate 

 The multinomial logistic regression model of best fit as determined by AIC retained only 

year, migration rate, and number of reversals as explanatory variables (ΔAIC of global model = 

7.45). Probability of being a successful migrant was lowest in 2017 and highest in 2019 (Fig. 

3.4). Probability of being a predated smolt decreased with increasing migration rate (Fig. 3.4). 

Migration rate was significantly different between fate groups (p=0.004). Predated smolts had 

significantly slower migration rates than successful migrants in 2017 (p=0.016) and 2018 

(p=0.002). Migration rates were not significantly different between fate groups in 2019 (Fig. 

3.5). The probability of predation increased with increasing number of reversals (Fig. 3.4). 

Number of reversals was not significantly different between fate groups (p=0.156; Fig. 3.6).  

Release day, although not retained in the final model, was significantly different between 

fate groups with all years combined (p=0.043). On average, successful migrants were released 

later than mortalities and predated smolts. However, it was not significant when testing each year 

individually. No other variables used in the logistic regression were significantly different 

between fate groups.  

3.3.3 Physiological Status and Fate 

 There was a low detection rate for the pathogens tested in the smolts sampled in 2019. 

Only three of 18 pathogens were detected in seven of the 56 smolts (Table 3.4). No smolt had 

more than one pathogen present and pathogen loads were very low (mean 94.0, range 0.4-506.4; 

Table 3.4) in most of the infected smolts. The pathogens detected were Flavobacterium 
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psychrophilum, piscine orthoreovirus, and Piscichlamydia salmonis. F. psychrophilum causes 

bacterial cold-water disease and can induce ataxia or spiral swimming (Starliper, 2011). Piscine 

orthoreovirus causes heart and skeletal inflammation (HSMI) (Palacios et al., 2010). P. salmonis 

causes gill epitheliocystis (Draghi et al., 2004). The infected smolts carried a range of pathogen 

loads and had varying migration fates, but there was no apparent trend in the relationship 

between pathogen presence and survival, however, the small sample size limits conclusions. 

The 49 host genes quantified were not significantly different between migration fate 

groups (MANOVA: Hotelling-Lawley = 16.64 ~ F(2,53)=0.68, p=0.823). Principal components 

analysis of overall gene expression data did not reveal grouping of smolts by fate on any of the 

four PCs retained (Fig. 3.7).  Further investigation of smolts that were grouped on PCA biplots 

revealed that there is some relationship between gene expression and release (sampling) date. 

Grouping of points by release date was stronger when smolts were categorized by release week 

(week 1: May 20-27, week 2: May 28- June 3, and week 3: June 4-12; Fig. 3.8).  

K-means clustering revealed four clusters when four PCs were retained. There was some 

overlap between clusters on PCA biplots, however, cluster 4 stood out on the positive end of 

PC1, cluster 3 extended down the negative end of PC2, and cluster 2 grouped on the negative 

end of PC3 (Figs. 3.7-3.8). Individuals belonging to cluster 4 were released in week 2 (Fig. 3.8). 

However, half the smolts from week 2 were placed in cluster 2. Cluster 1 consisted of 22 of the 

24 smolts released in week 1. Individuals released in week 3 were in cluster 3.  Cluster 2 was 

predominantly comprised of smolts released in week 2 and some from week 3.  

 Only genes with loadings > |0.2| on at least one of the first four PCs were considered 

when analyzing biplots (Figs. 3.7-3.8). C-type lectin receptor A (CLEC4E), a marker of 

imminent mortality was strongly associated with the positive end of PC1 and appears to be 
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driving the grouping of cluster 4 (Fig. 3.10). However, quality control revealed a chip effect for 

plate No. 3722, and all individuals in cluster 4 were the only samples assayed on this plate. The 

seven smolts from week 2 that were in cluster 2, rather than cluster 4, were not on plate 3722. 

Plate No. was positively associated with all four PCs (Plate No. range 3718-3723). All other 

genes were associated with the negative end of PC1 (Fig. 3.9). Genes within the viral disease 

development (VDD) category were grouped on the negative end of PC2 with cluster 3 (Figs. 3.7-

3.9). Three of the seven smolts that had positive detections of pathogens were associated with 

VDD genes. Smoltification markers (one ion regulation gene and three immunity genes) were 

associated with the negative end of PC3 with cluster 2 (Figs. 3.7-3.9). 

Heat shock protein 90 (HSP90) was highly upregulated in smolts released in week 1 (Fig. 

3.10). HSP90 was positively associated with PC2 and PC4 (Fig. 3.9). Salmon hyperosmotic 

protein 21 (SHOP21), a marker of osmotic stress, was upregulated in cluster 2 (Fig. 3.10) and 

negatively associated with PC3 (Fig. 3.9). 

3.3.4 Behaviour and Physiology  

 Exploratory analysis revealed that smolts released in the first week of the sampling 

period in 2019 (May 20-27) paused before entering tidal waters and therefore took a longer time 

to reach the head-of-tide from release than smolts released in weeks 2 and 3 (Fig. 3.11). There 

was a quadratic relationship between release day and time to head-of-tide (Fig. 3.12). I 

hypothesized that this pattern could be related to osmoregulatory ability or smoltification stage, 

therefore, expression of smoltification biomarkers were compared between the three release 

weeks (Fig. 3.13). Carbonic anhydrase 4 (CA4), Na+/K+-ATPase alpha subunits 1b (NKAa1.b) 

and 1c (NKAA1C) are genes related to osmoregulation and are expected to be upregulated 

during smoltification (Seear et al., 2009; Houde et al., 2019). Interleukin-12 beta (IL12B), C-C 
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motif chemokine 4 (CCL4) and 19 (CCL19) are genes related to immunity and are expected to 

be downregulated in smolts due to an energetic trade-off between immune function and 

osmoregulation/homeostasis (Houde et al., 2019). FK506-binding protein 5 (FKBP5) is also an 

immune function gene but is expected to be upregulated in smolts (Houde et al., 2019). CA4 

expression was lower in week 1 than week 2 releases (p=0.002). NKAa1.b and NKAA1C were 

upregulated in week 1 releases (p=0.015 and p=0.007, respectively). CCL19 and CCL4 

expression was lower in week 1 releases (p=2.0-5 and p=0.0002, respectively), but IL12B 

expression was higher in week 1 releases (p=0.0004). Expression of FKBP5 was higher in week 

2 than week 1 (p=0.002) and week 3 (p=0.003) releases.  

Additionally, the same PCA and clustering methods used to analyze all biomarkers were 

applied to only the smoltification markers. Two PCs were retained, and three clusters were 

identified (Fig. 3.14). Week 1 releases were grouped into cluster 2 and loaded with IL12B, 

NKAA1C, and NKAa1.b. Weeks 2 and 3 releases were split among clusters 1 and 3 and loaded 

with the remaining genes, FKBP5, CCL19, CCL4, and CA4. 

  Environmental factors were also compared to timing of entry into tidal waters (Fig. 

3.15). It appears that peak water discharge coincides with peak movement into the head-of-tide. 

Lunar cycle and water temperature were also examined but there was no clear relationship to 

smolt movement at the head-of-tide.  

3.4 Discussion  

3.4.1 Migration Fate 

In this study we examined the river migration fate of 156 Atlantic Salmon smolts, 

sampled over three consecutive years. There was an estimated upwards trend in successful 
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migrants across the three study years that appears to be driven by a reduction in predation. 

Migration rate is a potential behavioural predictor of fate, with slower moving smolts more likely 

to be predated than faster moving smolts. There was no physiological predictor of migration 

success in the 56 fish examined in 2019.  

 Gibson et al. (2015) estimated survival of smolts in the Stewiacke River to be 41.1% in 

2008 and 19% in 2011. These rates are lower than survival estimated in 2018 and 2019 but 

greater than 2017. There is large variation in estimated survival rates in this river between years. 

Estimated predation accounted for a lower proportion of total mortality in 2008 and 2011 than 

2017-2019, this may reflect increasing predator abundance. Mortalities of unknown cause were 

still estimated to account for 16-38% of total mortalities in 2017-2019.  

Estimated survival was extremely low in 2017; however, migration success or failure was 

determined via detection at the last river receiver station located at the river mouth, which we 

know in 2019 was not 100% efficient. In 2019, some smolts passed through the Shubenacadie 

River mouth without being detected by the receivers stationed there, but smolts were later 

detected at receivers in the Minas Basin, which were not yet deployed in 2017. Detection 

efficiency at the river mouth was estimated to be 88% percent, potentially due to the spacing 

between receivers not covering the whole of the river mouth or the great changes in water flow 

throughout the tidal cycle. It is therefore possible that estimated survival might have been higher 

in 2017 if receivers had been placed in the Minas Basin at that time.  Alternatively, the 2017 

tagging site was closer to the head-of-tide and known Striped Bass spawning grounds than the 

other two study years, which could have been responsible for the high total mortality estimates 

that year. A combination of handling and osmotic stressors may have reduced the ability of 

smolts to detect and evade predators (Handeland et al. 1996; Diepernek et al., 2002; Russell et 
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al., 2012; Daniels et al., 2019). Migratory behaviour is also often affected by osmotic stress, 

leading to increased upstream movement and/or increased residency time to acclimate to the 

change in salinity (Halfyard et al., 2012; Halfyard et al., 2013). It is possible that the placement 

of the smolt wheel in 2017 and 2018 near the head-of-tide prevented tagged smolts from 

adapting their behaviour in response to osmotic stress. The first group of smolts tagged in 2019 

paused just before the head-of-tide and did not enter tidal waters prior to June 4th, potentially due 

to underdeveloped osmoregulatory ability.  

Further, 2017 smolts were released within the first week of the smolt run (May 19-27), 

and therefore it is possible that smolts from earlier in the smolt run are not as fit or encounter 

sub-optimal environmental conditions compared to smolts that begin migration later in the run. 

Release dates for 2018 and 2019 were May 24-June 15 and May 20-June 12, respectively. Stich 

et al. (2015) found that Atlantic Salmon smolt survival was highest in the middle of the run and 

when smolts arrived at the estuary in the middle of the run. Release day had an effect on 

migration fate when all years were combined but not within each year individually. This is likely 

due to the very low survival estimates and early release dates in 2017 compared to higher 

survival estimates and more spread-out release dates in 2018 and 2019.  

Additionally, smolts tagged in 2017 and 2018 could have been from a mixture of 

tributaries, whereas smolts tagged in 2019 were only from the Pembroke River. Environmental 

differences among tributaries can cause differences in the quality of smolts or the exact timing of 

migration. Whalen et al. (1999) found that Atlantic Salmon smolts in warmer tributaries 

migrated earlier and had higher Na+/K+-ATPase activity than smolts from cooler tributaries of 

the West River, Vermont. Distance of the tributary to the marine environment can also affect 

migration timing (Stich et al., 2015).  
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The large variation in estimated survival among study years may also be due to 

differences in environmental factors and migration timing of various species among years. The 

interaction between the physiological and environmental window of migration timing affects 

smolt survival (McCormick et al., 1998). Water temperature plays a role in timing smolt 

migration (Whalen et al., 1999; Jutila et al., 2005; Otero et al., 2014), is related to Na+/K+-

ATPase activity (Whalen et al., 1999; Strand et al., 2011), and can cause stress and lead to 

indirect mortality (Miller et al., 2011; Hinch et al., 2012). Water temperature also dictates the 

timing of Striped Bass spawning. The smolt run typically begins when water temperature is at 

10°C (Jutila et al., 2005; Otero et al., 2014) and temperatures must be above 13°C for Striped 

Bass spawning (Bradford et al., 2015). Higher predation rates are expected when there is a 

greater temporal overlap between the two species’ migrations. The timing of the smolt run 

appears to be consistent among study years. IBoF salmon have a later smolt run than other 

Atlantic Salmon populations (SARA, 2010) which increases the odds of direct overlap with 

Striped Bass spawning. It is likely that the benefits of the environmental conditions encountered 

at this time outweigh the risks of a high predation landscape (Sabal et al., 2021). The salmon 

population in this river is small especially compared to the number of Striped Bass and other 

predators. Therefore, typical predator avoidance strategies such as predator swamping are 

unlikely to be effective. This makes the migration timing of alternative prey species such as 

Alewife and Blueback Herring important because they can act as a prey buffer for smolts 

(Svenning et al., 2005; Saunders et al., 2006; Furey et al., 2020).  

In all years of study, the locations of high mortality along the migration route are 

consistent with locations of high predator abundance. It can thus be assumed that predation is 

playing a large role in out-migration mortality of smolts in this river system. However, other 
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rivers in the iBoF unit also experience high out-migration mortality but do not have the elevated 

predation pressure from spawning Striped Bass (SARA, 2010). Therefore, it was expected that 

predated smolts in the Stewiacke River had a predisposition to mortality and that predation in 

this system is substituting other sources of mortality (disease, heat stress, etc.) that would be the 

primary direct causes of smolt mortality in other rivers but would be indirect causes in this 

system. However, the results of this thesis do not support this because only one behavioural 

factor, slower migration rate, and no physiological factors were found to have a strong 

correlation to increased predation risk. There is also the possibility that given the high 

concentration of predators and small numbers of migrating smolts, that predators are not 

differentially selecting for weaker prey but are feeding opportunistically.  

3.4.2 Migration Behaviour and Fate 

Through multinomial logistic regression, migration rate was identified as the most 

important migratory behaviour in relation to fate. Predated smolts consistently had slower 

migration rates than successful migrants. It is possible that these smolts were experiencing stress 

or had some other underlying cause that resulted in a decreased swimming ability, making these 

smolts more vulnerable to predation. In 2017 and 2018, where the relationship between fate and 

migration rate was significant, there was a shorter distance between the release site and predator 

dominated areas than in 2019. Potentially, the predated smolts were still experiencing handling 

stress following release resulting in slower movement and a higher probability of being predated. 

Flavio et al. (2020) similarly found that smolts swam at low speeds after release then increased 

speed further away from the release site.  

Although not statistically significant, the number of reversals that smolts displayed was 

the only other behavioural variable retained in the final regression model in addition to migration 
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rate. Effect plots showed that a greater number of reversals increased the probability of a smolt 

belonging to the predated fate class. A high number of reversals in swimming direction can 

increase residency in a high predation landscape (McCormick et al., 1998; Halfyard et al., 2012). 

Reversals are also thought to be a response to osmotic stress, which is known to increase 

susceptibility to predation (Handeland et al. 1996; Dieperink et al., 2002; Halfyard et al., 2012; 

Halfyard et al., 2013) or due to upstream water flow from incoming tides (Beland et al., 2001). 

Additionally, reversals in swimming direction is a behaviour more commonly seen in spawning 

Striped Bass than salmon smolts (Romine et al., 2014; Gibson et al., 2015; Daniels et al., 2018). 

Despite the removal of post-predation detections from the dataset prior to analyses, it is possible 

that some of the reversals included in the regression were made by Striped Bass that had 

consumed tagged smolts and were detected before predation was registered.  

Factors such as smaller body size and decreased nocturnal movement which have been 

found to increase predation susceptibility in smolts (Hostetter, 2009; Ibbotson et al., 2011; Clark 

et al., 2016; Furey et al., 2016; Tucker et al., 2016; Flavio et al., 2019), were not found to be 

significant here. That body size was unrelated to fate could be due to the fact that only smolts 

longer than 12 cm were tagged to avoid exceeding maximum recommended tag burden. 

Nocturnal migration, which was not generally observed, may not have been an important factor 

because the tidal waters of the Stewiacke and Shubenacadie Rivers are very turbid reducing the 

need to avoid visual predators by travelling at night.  

The results indicate that slow migration rate and a great number of reversals in swimming 

direction increase predation susceptibility for smolts, physiological status and external stressors 

may have caused these behaviours.  
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3.4.3 Physiological Status and Fate 

 Physiological status and pathogen presence were not found to have a direct association 

with migration fate in the 56 fish assessed in 2019. The low number of detected pathogens 

limited analyses and conclusions on the relationship between migration fate and pathogen 

presence. From the information available it does not appear that the presence of pathogenic 

microbes is indicative of migration fate in the sampled smolts. These results do however show 

that there is a low occurrence of smolt infection by microbial pathogens in the Pembroke River 

which is a positive point for salmon in this system.  

Time from infection with F. psychrophilum to death is 10 days on average for juvenile 

salmonids (Holt et al. 1989). The infected smolt lived for 16.2 days prior to predation. The five 

smolts infected with P. salmonis were captured on 2019-05-21 and released on 2019-05-22. It is 

possible that transfer of this bacterium occurred while smolts were being held. The loads of all 

detected pathogens were presumably too low to have a great impact on host physiology, at least 

at the time of sampling. While the relationship between pathogen load and physiological impact 

varies by pathogen, physiological effects are typically not present below 1000 RNA copies (K. 

Miller, pers. comm., October 2021), and here, copy numbers were less than 507. There may have 

been other pathogens present that were not tested for or some pathogens may have been more 

prevalent in other areas of the body. Additionally, smolts were sampled early in the migration 

route, and pathogens are expected to accumulate throughout migration (Chapman et al., 2020). 

The PCA clustering of smolts based on CLEC4E in PC1, which can be upregulated in 

response to parasites (Robledo et al., 2018), and VDD genes along PC2 implies that there may be 

pathogens present that were not detected or were not among the 18 pathogenic species tested for. 

Cluster 3 which shows higher expression of six of the VDD genes contains three smolts that 
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tested positive for microbial pathogens, it is possible that other smolts in this cluster were also 

infected by pathogens.  

Gene expression, which was applied as a measure of physiological status, was not related 

to estimated migration fate based on PCA clustering, however, the power to detect this 

relationship was low with only 56 fish. In addition to the VDD genes (driving PC2), 

smoltification (driving PC3), thermal stress and osmotic stress markers were the genes most 

strongly associated with principal components and clusters. A relationship between gene 

expression and release date was observed and is likely a reflection of changes in environmental 

conditions and progression through the smoltification process throughout the smolt run.  

3.4.4 Behaviour and Physiology 

The observed station holding before the head-of-tide in 2019 week 1 releases appears to 

be partially related to osmoregulatory ability and smolt stage because there were differences in 

the expression of smoltification biomarkers between release weeks. Week 1 releases appear to be 

carrying a physiological signal of pre-smolts, and expression patterns in the faster moving week 

2 fish are more consistent with full smolts. Week 3 fish showed more variability and may have 

contained a more mixed group of smolt-ready fish, potentially including de-smolts. De-smolts 

are smolts that have remained in fresh water for too long during the out-migration period and 

have reverted to a physiology suited for fresh water rather than salt water (Houde et al., 2019). 

The smoltification panel of genes is designed to classify pre-smolts, full smolts, and de-smolts 

(Houde et al., 2019). Through PCA and k-means clustering, the panel successfully identified 

three clusters of smolts. The cluster comprised of week 1 smolts most likely represents pre-

smolts, but the other two clusters are a mixture of week 2 and week 3 smolts and were less easy 

to classify.  
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Whalen et al. (1999) found Na+/K+-ATPase activity increased from the pre-migratory 

period until it reached peak activity at which point 97% of smolts had initiated migration. 

Na+/K+-ATPase activity was then measured to have returned to pre-migratory levels in juveniles 

that did not migrate. There was higher expression of Na+/K+-ATPase subunits in week 1 releases 

which is consistent with expected expression of these genes in smolts that are salt water prepared 

rather than pre-smolts (Whalen et al., 1999; Strand et al., 2011; Stich et al., 2015; Houde et al., 

2019). However, Houde et al. (2019) found that NKAA1C and NKA1.b genes are not as 

consistent at classifying smoltification stage as other biomarkers (CA4 and immunity genes) 

because they also respond to temperature and may only significantly increase closer to salt water 

entry. In contrast, CA4 which is also expected to be upregulated in smolts, shows lower 

expression in week 1 releases than weeks 2 and 3, which is consistent with pre-smolts. 

Additionally, IL12B and FKBP5 expression patterns across weeks were consistent with what 

would be expected as individuals progress through smoltification stages. However, CCL4 and 

CCL19 expression patterns were not.  

Alternative explanations for this station holding are that smolts had paused migration to 

sync up with conspecifics before entering a more predator dominated field or were waiting for 

better environmental conditions (temperature, water discharge, food availability, etc.). Peak 

water discharge measured in a nearby river aligned with peak entry of smolts into tidal waters. 

Increased water discharge may be beneficial to smolts by decreasing salinity and reducing 

osmotic stress, increasing turbidity to aid in predator avoidance, and increasing current speed for 

faster migration. Furey et al. (2020) found that smolt survival was highest in fast-flowing areas 

with high turbidity. The increased current speed may have also simply pushed smolts 

downstream.  
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3.4.5 Conclusions  

From 2017 to 2019, Atlantic Salmon smolt survival in the Stewiacke River watershed 

was estimated to increase with decreasing predation rates. Predation was not the sole cause of 

mortality but was found to be the primary cause. Migration rate was an important behavioural 

predictor of fate in this system. No relationship was found between smolt physiology and 

migration fate; however, conclusions are limited due to small sample size and a single sampling 

event. There may be other host genes or pathogens that were not tested for here that are related to 

fate and predation susceptibility. The potential for interactions between external and internal 

stressors, namely osmotic stress, to be either directly or indirectly causing mortality still exists. 

Further sampling at different time points and locations along the migration route may help to 

uncover these underlying mechanisms.   
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Tables 

Table 3.1 Gene abbreviations, names, and categories (MRS mortality related signature; VDD 

viral disease development). *Removed from final analyses due to poor assay efficiency. 

Gene abbreviation Gene name Category 

78d Si:dkey-78d16.1 protein (s100v2) housekeeping 

Coil-P84_R2_tm coilin housekeeping 

MrpL40_F1_tm 39S ribosomal protein L40 housekeeping 

CA4_v1 Carbonic anhydrase 4 smoltification 

CCL19_v1 C-C motif chemokine 19 smoltification 

CCL4_v1 C-C motif chemokine 4 smoltification 

FKBP5_v1 FK506-binding protein 5 smoltification 

IL12B_v1 Interleukin-12 beta smoltification 

NKAa1.b Na/K ATPase alpha-1b (seawater) smoltification 

NKAA1C Na/K ATPase alpha-1c smoltification 

ALD1_chr3 fructose-bisphosphate aldolase A1 stress mortality 

hsp90a_15_v2* heat shock protein 90 alpha stress mortality 

B2M beta(2)-microglobulin immune stimulation 

C5aR anaphylatoxin (receptor) immune stimulation 

HEP hepcidin immune stimulation 

IFNa IFN-alpha (interferon) immune stimulation 

IGMs* immunoglobin immune stimulation 

IL15 interleukin 15 immune stimulation 

IL1B interleukin 1 beta immune stimulation 

ILIR interleukin-1 receptor complex immune stimulation 

IRF1 interferon regulatory factor 1 immune stimulation 

RIG1_MGLSYBR_1 RNA helicase RIG-1 immune stimulation 

SAA serum amyloid protein a immune stimulation 

TF* transferrin immune stimulation 

EPD_2 ependymin-2 inflammation 

ES1_1 ES1 protein homolog inflammation 

GILT_1 
gamma-interferon inducible lysosomal 

thiol reductase 
inflammation 

IL-17D* interleukin 17D inflammation 

IL11* interleukin 11 inflammation 

MMP13 matrix metalloproteinase-13  inflammation 

MMP25 matrix metalloproteinase-25 precursor inflammation 

tgfb_2 transforming growth factor beta inflammation 

ATP5G3-C 
ATP synthase lipid-binding protein, 

mitochondrial 
inflammation 

C7 complement component C7 precursor MRS 

FYB FYN-T-binding protein MRS 

HTA HIV-1 Tat interactive protein MRS 

KRT8* Cyclokeratin-8 MRS 
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Table 3.1 (cont’d) 

 
  

Gene abbreviation Gene name Category 

PRAS* 
O. mykiss G-protein(P-ras) mRNA, 

complete cds 
MRS 

RGS21 regulator of G-protein signalling 21 osmotic stress 

SHOP21 salmon hyperosmotic protein 21 osmotic stress 

AARDC_1* arrestin containing protein 1 imminent mortality 

BSG_1 (not Tuba1C) basigin imminent mortality 

CLEC4E_2 C-type lectin receptor A imminent mortality 

GLUL_1 glutamine synthetase imminent mortality 

H1F0_1 H1 histone family, member 0 imminent mortality 

IQGAP1_2 
IQ motif containing GTPase activating 

protein 1 
imminent mortality 

ODC1_2 Ornithine decarboxylase 1 imminent mortality 

TAGLN3_2 transgelin imminent mortality 

CA054694_MGL_1 mitochondrial ribosomal protein VDD 

GAL3_MGL_2 Galectin-3-binding protein precursor VDD 

HERC6_1 
probable E3 ubiquitin-protein ligase 

HERC6 
VDD 

IFI44A_MGL_2 interferon induced protein 44 VDD 

IFIT5_MGL_2 
interferon-induced protein with 

tetratricopeptide repeats 5 
VDD 

MX_ONTS antiviral protein VDD 

PXMP2[UBL1] 
Ubiqitin-like protein-1, Peroxisomal 

membrane protein 2 
VDD 

RSAD_MGB2 
radical S-adenosyl methionine domain-

containing protein 2 
VDD 

VHSVIP4_MGL_3 VHSV-inducible protein-4 VDD 

HSC70 heat shock cognate 70 protein general stress 

HSP90 heat shock protein 90 general stress 

JUNB transcription factor AP-1 general stress 

 

 

 

 

 

 

 

 



71 
 

Table 3.2 Number of smolts tagged and percent of smolts belonging to each fate group 

(successful migrant S, mortality M, predation P) by year as estimated by random forest models.  

 2017 2018 2019 

# tagged 50 50 56 

S 4% 42% 57.1% 

M 16% 10% 12.5% 

P 80% 48% 30.4% 

 

 

Table 3.3 Observed receiver station detection efficiency, PB fence [2019] and ST wheel [2017, 

2018] are release sites. See Appendix B for corresponding receiver station locations.  

Station name 2019 2018 2017 

PB fence NA NA NA 

J Graham 1 NA NA 

Gaults 1 NA NA 

Stewart Hill 1 NA NA 

Ridge Rd 1 NA NA 

Cloverdale 1 NA NA 

Brenton 

Cross 
1 NA NA 

Brenton & 

Hemlock 
1 NA NA 

Scout Ground 1 NA NA 

River Park 0.93 NA NA 

ST wheel NA NA NA 

Rockpile 1 1 1 

Eddy Pool 1 1 0.94 

Porter 1 1 1 

Trestle 1 1 NA 

Kent Farm 1 1 1 

Stewiacke 2 1 1 1 

Moxam’s 1 1 1 

Gosse Bridge 0.75 1 1 

Shubie mouth 0.88 1 NA 

Minas Basin NA NA NA 
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Table 3.4 Information on the seven smolts where pathogens were detected to be present out of 

the 56 smolts tested. Smolt ID (acoustic tag SN), pathogen species, pathogen type, smolt fate 

(successful migrant S, mortality M, predation P), and pathogen load (RNA copy number; 

calculated based on APC serial dilutions and averaged between the two duplicates). 

Smolt ID Pathogen 
Pathogen 

type 
Smolt fate 

Pathogen 

load 

1324762 
Flavobacterium 

psychrophilum 
Bacteria P 13.10 

1313439 
Piscine 

orthoreovirus 
Virus S 0.96 

1313426 
Piscichlamydia 

salmonis 
Bacteria S 133.34 

1313419 
Piscichlamydia 

salmonis 
Bacteria S 3.35 

1313422 
Piscichlamydia 

salmonis 
Bacteria P 0.52 

1313421 
Piscichlamydia 

salmonis 
Bacteria P 0.41 

1313427 
Piscichlamydia 

salmonis 
Bacteria M 506.36 
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Figures 

 

Figure 3.1 Cumulative observed smolt survival rates between receiver stations by each year. See 

Appendix B for corresponding receiver station locations. 
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Figure 3.2 Cumulative smolt survival between receiver stations estimated by Cormack-Jolly-

Seber models for each year. See Appendix B for corresponding receiver station locations. 
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Figure 3.3 Number of smolts last detected alive prior to predation at each receiver location by 

year. Receiver locations in order from release (smolt fence [2019], smolt wheel [2017, 2018]) to 

mouth of the Shubenacadie River (Black Rock and Maitland). Striped Bass spawning grounds 

are from Eddy Pool to Moxam’s. Shubie 102 and St. Andrews are above the 

Stewiacke/Shubenacadie confluence. See Appendix B for corresponding receiver station 

locations. 
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Figure 3.4 Effect plots from multinomial logistic regression: fate ~ year + migration rate + 

number of reversals.  
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Figure 3.5 Boxplots of smolt migration rate for each fate group (mortality M, predation P, 

successful migrant S) by year. Asterisks indicate fate groups that are significantly different from 

each other (p<0.05). 
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Figure 3.6 Number of reversals in swimming direction for each fate group (mortality M, 

predation P, successful migrant S) all years combined.  
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Figure 3.7 Principal components analysis of host gene expression levels in relation to migration 

fate. Principal components (PC) 1-4 shown (percent variation explained). Points represent 

individual smolts, colour coded by migration fate (mortality M, predation P, successful migrant 

S). Ellipses represent cluster as determined by k-means clustering. Black points represent 

loadings (multiplied by a factor of 10 for easy visualization) of explanatory variables (genes), 

shaped by gene category. Only variables with loadings > |0.2| were plotted for easy visualization. 
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Figure 3.8 Principal components analysis of host gene expression levels in relation to release 

week. Principal components (PC) 1-4 shown (percent variation explained). Points represent 

individual, colour coded by release week. Ellipses represent cluster as determined by k-means 

clustering. Black points represent loadings (multiplied by a factor of 10 for easy visualization) of 

explanatory variables (genes), shaped by gene category. Only variables with loadings > |0.2| 

were plotted for easy visualization. 
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Figure 3.9 Loading values for host gene expression markers on principal components 

(PC) 1 to 4 (% variance explained). Biomarkers colour coded by category: immune 

stimulation (immune stim), inflammation, mortality related signature and imminent 

mortality (mort), qPCR plate number samples were run on (Plate_No), smoltification, 

stress mortality, osmotic stress, and general stress (stress). See Table 3.1 for gene names.  
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Figure 3.10 Boxplots of expression levels for genes important for clustering on PCA (Figs. 3.7-

3.8) separated by cluster and gene category. See Table 3.1 for gene names.  
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Figure 3.11 Time from release to head-of-tide grouped by release week, only smolts that 

survived to head-of-tide were included. Release week 1 significantly different from week 2 

(p<0.001) and week 3 (p<0.001).  
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Figure 3.12 The quadratic relationship (y= -17.6x + .057x2 +1356) between release day of smolts 

and time from release to the head-of-tide. Each point represents a smolt and is colour coded by 

release week.  
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Figure 3.13 Expression of smoltification biomarkers compared between release week groups. 

Asterisks indicate weeks significantly different from each other (p<0.05). See Table 3.1 for gene 

names.  
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Figure 3.14 Principal components analysis of host gene expression levels of smoltification 

biomarkers. Principal components (PC) 1-2 shown (percent variation explained). Points represent 

individual smolt, colour coded by release week and shaped by cluster as determined by k-means 

clustering. Labels represent loadings (multiplied by a factor of 2 for easy visualization) of 

explanatory variables (gene expression). See Table 3.1 for gene names.  
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Figure 3.15 Number of smolts entering head of tide by date (bars), smolts colour coded by 

release date (Julian day). Daily water discharge (m3/s) measured in St. Andrews River (Data 

retrieved from https://wateroffice.ec.gc.ca). Average daily water temperature (°C) measured in 

Little Brook (Data collected by Mi’kmaw Conservation Group). Vertical lines show moon phase.  
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Chapter 4: Conclusion 

The goal of this thesis was to assess the role of predation as a threat to Atlantic Salmon 

(Salmo salar) smolt survival in the Stewiacke River, NS, and to uncover potential behavioural or 

physiological mechanisms of smolt mortality via predation or other causes. Atlantic Salmon in 

the Stewiacke River are Endangered and despite fry supplementation through the LGB program, 

adult return rates are low and there is no sign of population recovery (Jones et al., 2018). Low 

marine survival is seen as the greatest barrier to population recovery for numerous Atlantic 

Salmon populations including the iBoF unit (Gibson et al., 2008; Halfyard, 2014). However, 

because the marine environment poses great challenges both to observing the mechanisms of 

salmon mortality and in implementing any management/conservation measurements, this thesis 

focused on another period of high, yet more concentrated, mortality during the salmon life cycle, 

smolt out-migration. Through a combination of acoustic telemetry, transcriptomic analyses, and 

other modelling-based approaches, I aimed to determine if piscine predation was the leading 

cause of smolt mortality and how to predict if a smolt was more or less susceptible to predation.  

4.1 Summary 

 In Chapter 2, I developed a method that combined novel tag technology with machine 

learning to more accurately classify the migration fate of smolts. I compared three methods of 

fate classification (pH tag sensor, unsupervised cluster analysis, and supervised random forest) 

and determined that combining behavioural metrics and pH sensor tag data to train a random 

forest algorithm was the most accurate method for classifying smolt fate. An algorithm was 

trained for each of the three study years and then applied to smolts suspected to be predated due 

to irregular behaviour.  Classification by random forest increased estimated predation rates by 9-

32% compared to classification by tag sensor only. 
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In Chapter 3, I used the modeled fate classifications from Chapter 2 to examine trends in 

smolt survival in the Stewiacke River over three years and found that from 2017 to 2019, smolt 

survival increased as predation rates decreased. Behaviour, pathogen presence, and gene 

expression metrics were compared between migration fate groups to determine if there was a 

behavioural or physiological predictor of fate. I found that a slower migration rate was correlated 

with higher predation probability. Pathogen presence was too low for in-depth analyses but there 

was no apparent relationship to fate. Gene expression was not significantly different among fate 

groups, however, there was a relationship between gene expression and release timing. Further 

analyses of this relationship revealed that week 1 releases (smolts that migrated earlier) had 

significantly different expression of smoltification genes than week 2 and 3 releases that was 

indicative of a pre-smolt physiological signal and lower preparedness for increased salinity. 

These smolts also took a longer time to enter tidal waters, displaying the relationship between 

smolt readiness and migration behaviour.  

Based on the results presented in this thesis, predation is the leading cause of Atlantic 

Salmon smolt mortality during out-migration in the Stewiacke River. It appears that predation is 

not highly selective based on smolt characteristics, behaviour, or physiology but is rather 

opportunistic due to large predator abundance compared to a small salmon population.  

4.2 Management Implications 

Based on the results presented here, there are several potential management actions that 

might be considered to increase smolt survival by reducing predation.  

Predator culling is one option, however, past case studies have shown this method to be 

largely ineffective in the long term and there is a high risk of adverse results (Lennox et al., 
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2018). Additionally, culling would not be an option for Striped Bass, the primary predator of 

salmon smolts in this system, because they are a native species and assessed as Endangered by 

COSEWIC (COSEWIC, 2012). Sub-lethal predator intervention is also not likely a viable option 

because Striped Bass are spawning in this system at the time of the smolt run. Predator culling 

may, however, be considered for invasive predatory species in this system, Smallmouth Bass and 

Chain Pickerel, but removal of only these species would likely not significantly reduce 

predation.  

Another option is to transport smolts around areas of high predation, however, this can 

also have negative impacts on smolt physiology and behaviour. Research on the transport of 

Chinook Salmon smolts through a dam system on the Columbia River, BC has shown that post-

release mortality of transported smolts is greater than post-hydropower system mortality of 

migrating smolts (Muir et al., 2006; Halvorsen et al., 2009). Although mortality during transport 

is low, post-release mortality is high likely due to a combination of stress reducing predator 

avoidance behaviour, halted growth during transport, and earlier ocean entry than migrating 

smolts (Muir et al., 2006; Halvorsen et al., 2009). This approach would also require significant 

resource investment to capture and transport smolts.  

There is no guarantee that reducing smolt predation would translate into greater adult 

returns, which is ultimately what is needed for population recovery. Depressed population 

phenomena is one of the leading threats to iBoF salmon where small population numbers are 

resulting in decreased genetic diversity and fitness, reduced predator avoidance behaviours, and 

an increase in the negative impact of predation on populations, ultimately contributing to the 

prevention of population recovery (Amiro et al., 2008). Atlantic Salmon populations in other 

rivers in the iBoF unit, including those adjacent to the Stewiacke, have also collapsed but do not 
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have the elevated predation pressure from spawning Striped Bass and invasive predatory species 

(SARA, 2010). Therefore, additional sources of salmon mortality should be addressed to support 

smolt survival and population recovery. 

Another management approach would be to enhance/restore the ecosystem to facilitate 

Atlantic Salmon growth and health to provide the best chance of out-migration and marine 

survival. Despite gene expression profiles indicating that environmental stressors are not related 

to fate, an ecosystem-based management approach is still valuable and can promote the health of 

other freshwater and diadromous species in the system (Cowx & Gerdeaux, 2004). Examples 

include restoring river connectivity, habitat diversity, channel morphology, water flow, and 

water quality (Cowx & Gerdeaux, 2004). Actions like riparian zone enhancement are becoming 

increasingly important as water temperatures rise due to climate change (Seavy et al., 2009); 

water temperatures in the Stewiacke watershed have recently been recorded to be high enough 

(>20°C) to pose a threat to Atlantic Salmon (N. MacInnis, pers. comm., March 2021). Riparian 

zones, flood plain habitat, water flow, and river channels have been altered in some areas of the 

Stewiacke watershed due to human land use activities such as forestry, agriculture, and ATV use 

(NSFA, 2009; N. MacInnis, pers. comm., March 2021). The Stewiacke watershed is within 

Colchester County where approximately 54 000 hectares of land are used as farmland 

(Willcocks-Musselman, 2003). Pesticides and other agricultural runoff can decrease water 

quality and impair osmoregulation in Atlantic Salmon (Russell et al., 2012). Stream restoration, 

migration barrier assessments, and water quality monitoring projects are ongoing throughout the 

Stewiacke watershed by the Mi’kmaw Conservation Group, Nova Scotia Salmon Association, 

and other organizations to address these issues.  
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This study, in conjunction with others focused on adult return rates and spawning 

success, can also inform current management practices. The LGB Program has been stocking the 

Stewiacke River with salmon fry since 2003 (DFO, 2018b) and without this program salmon 

would likely be extirpated from this river (Gibson et al., 2008; Jones et al., 2018). However, with 

43-96% mortality of smolts each year and very low adult returns (Gibson et al., 2008; Jones et 

al., 2018), it is unlikely that the population will recover to a point where it is self-sustaining, thus 

consideration may be given to focusing breeding programs elsewhere. Such a decision would 

need to carefully consider the ecological and cultural impacts of the loss of salmon in this 

system.  

4.3 Limitations 

 In this thesis, I was able to successfully apply supervised and unsupervised machine 

learning methods to this data set and assess the role of behavioural metrics in relationship to fate, 

however, the small sample size (50-56 smolts/year) limited conclusions in some cases, especially 

in relation to gene expression and pathogen analyses. This was exacerbated by major changes in 

sampling and field methods between years which prevented the combination of yearly data sets 

in some cases and introduced confounding factors into examining mortality trends between 

years. While sample size is often limited by available funds and other logistics, stronger 

relationships between variables or physiological mechanisms of mortality may have been 

uncovered with a greater number of samples. In an effort to achieve this, 2019 field methods and 

study design were repeated in 2021, and these two data sets will be combined in future analyses.  

 Although confidence in classifying smolt fate was increased through the use of predation 

tags and random forest algorithms, true smolt fate is still not known with certainty. The mortality 

class is associated with the most uncertainty, as smolts in this class could have died via predation 
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(primarily avian), stress, disease, or other causes. Smolts may have also been placed in this class 

due to tag loss or malfunction. Making such assumptions about tag function and the fate of a 

tagged animal is the nature of most telemetry studies, unless recapturing the individual or tag is 

possible. Additionally, while the migration fates modeled by random forest algorithms were 

shown to be the most accurate estimates, average in-sample prediction accuracy was still less 

than 90% and there is the potential that some smolts were misclassified.  

4.4 Broader significance 

 Chapter 2 resulted in the development of a methods framework for analyzing telemetry 

data that other researchers can apply to their own data sets. While this framework may not be 

applicable in all cases (many potential predators, similar behaviour between predator and prey), 

it is a valuable tool for movement ecologists to identify and reduce predation bias, ultimately 

leading to more accurate survival estimates to inform population management. The use of 

modelling approaches in addition to predation tags is recommended because even with these 

tags, predation can be underestimated as was found here. This chapter highlights how advances 

in technology and modelling-based approaches can provide insight into predator-prey 

relationships that would otherwise be near impossible to observe.   

 This thesis focused on a single population of Atlantic Salmon; however, these methods 

can be applied to other systems and other diadromous fish species. Here, the Salmon Fit-Chip 

was successfully applied to Atlantic Salmon; whereas previously these biomarker assays were 

primarily used for Pacific salmon (Miller et al., 2011; Jeffries et al., 2014; Healey et al., 2018; 

Chapman et al., 2020). The smoltification panel of biomarkers provided the greatest insight into 

smolt physiology in this study and successfully separated pre-smolts from full smolts despite this 
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panel being developed through studies on Coho, Sockeye, and Chinook salmon (Houde et al., 

2019).  

  While few direct links were made between smolt behaviour or physiology and migration 

fate, this thesis highlights the value of combining multiple methods and technologies to examine 

the interactions between individual fish health, behaviour, and environmental conditions. 

Through the integration of novel acoustic telemetry and transcriptomic technologies, this thesis 

was able to provide a more comprehensive analysis of the smoltification process, smolt out-

migration, and predator-prey interactions.  
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Appendix A: Supplamentary Figures for Chapter 2 

 

 

Fig. A1 Variable importance for the 2017 cluster analysis as determined by the rate at which 

individuals are misclassified if that variable is removed. 
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Fig. A2 Variable importance for the 2018 cluster analysis as determined by the rate at which 

individuals are misclassified if that variable is removed. 

 



112 
 

 

Fig. A3 Variable importance for the 2019 cluster analysis as determined by the rate at which 

individuals are misclassified if that variable is removed. 
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Fig. A4 Box and whisker plots between clusters for the most important variables identified by 

misclassification rate in 2017. Values are scaled and centered.  
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Fig. A5 Box and whisker plots between clusters for the most important variables identified by 

misclassification rate in 2018. Values are scaled and centered.   
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Fig. A6 Box and whisker plots between clusters for the most important variables identified by 

misclassification rate in 2019. Values are scaled and centered.   
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Fig. A7 Receiver operating characteristic (ROC) curve with area under curve (AUC) values for 

each class; mortality (M), predated (P), and successful migrant (S) for 2017 random forest.  
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Fig. A8 Receiver operating characteristic (ROC) curve with area under curve (AUC) values for 

each class; mortality (M), predated (P), and successful migrant (S) for 2018 random forest.  
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Fig. A9 Receiver operating characteristic (ROC) curve with area under curve (AUC) values for 

each class; mortality (M), predated (P), and successful migrant (S) for 2019 random forest.  
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Fig. A10 Variable importance as measured by mean decrease accuracy and mean decrease Gini 

for 2017 random forest.  
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Fig. A11 Variable importance as measured by mean decrease accuracy and mean decrease Gini 

for 2018 random forest. 
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Fig. A12 Variable importance as measured by mean decrease accuracy and mean decrease Gini 

for 2019 random forest. 
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Fig. A13 Partial plot for total distance travelled variable. Probability of being assigned to each 

class (mortality M, predated P, successful migrant S) by 2017 random forest on a log scale with 

change in variable value. 
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Fig. A14 Partial plot for total distance travelled variable. Probability of being assigned to each 

class (mortality M, predated P, successful migrant S) by 2018 random forest on a log scale with 

change in variable value. 

 



124 
 

 
Fig. A15 Partial plot for total distance travelled variable. Probability of being assigned to each 

class (mortality M, predated P, successful migrant S) by 2019 random forest on a log scale with 

change in variable value 
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Fig. A16 Partial plot for total time detected variable. Probability of being assigned to each class 

(mortality M, predated P, successful migrant S) by 2018 random forest on a log scale with 

change in variable value. 
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Fig. A17 Partial plot for total time detected variable. Probability of being assigned to each class 

(mortality M, predated P, successful migrant S) by 2019 random forest on a log scale with 

change in variable value 
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Fig. A18 Partial plot for number of days with detections variable. Probability of being assigned 

to each class (mortality M, predated P, successful migrant S) by 2019 random forest on a log 

scale with change in variable value. 
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Fig. A19 Partial plot for number of reversals variable. Probability of being assigned to each class 

(mortality M, predated P, successful migrant S) by 2017 random forest on a log scale with 

change in variable value. 
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 Fig. A20 Partial plot for total upstream distance travelled variable. Probability of being assigned 

to each class (mortality M, predated P, successful migrant S) by 2017 random forest on a log 

scale with change in variable value. 
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Fig. A21 Partial plot for max upstream speed between two consecutive receivers variable. 

Probability of being assigned to each class (mortality M, predated P, successful migrant S) by 

2017 random forest on a log scale with change in variable value. 

 



131 
 

 
Fig. A22 Partial plot for time on Striped Bass spawning grounds variable. Probability of being 

assigned to each class (mortality M, predated P, successful migrant S) by 2017 random forest on 

a log scale with change in variable value. 
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 Fig. A23 Partial plot for time on Striped Bass spawning grounds variable. Probability of being 

assigned to each class (mortality M, predated P, successful migrant S) by 2018 random forest on 

a log scale with change in variable value. 
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Fig. A24 Partial plot for time on Striped Bass spawning grounds variable. Probability of being 

assigned to each class (mortality M, predated P, successful migrant S) by 2019 random forest on 

a log scale with change in variable value.  
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Appendix B: Receiver Locations 

Table B1 Description of receiver stations: station name/location, corresponding number on maps 

(Figs. B1 and B2), number of receivers at each station, and which study years they were 

deployed. Receiver stations upstream of the Stewiacke/Shubenacadie confluence are not listed 

because they are not considered part of the smolt migration route.  

Receiver station Number on map Number of receivers Years deployed 

J Graham 01 1 2019 

Gaults 02 1 2019 

Stewart Hill 03 1 2019 

Ridge Rd 04 1 2019 

Cloverdale 05 1 2019 

Brenton Cross 06 1 2019 

Brenton & Hemlock 07 1 2019 

Scout Ground 08 1 2019 

River Park 09 1 2019 

Rockpile 10 1 all 

Eddy Pool 11 1 all 

Porter 12 1 all 

Trestle 13 1 2018, 2019 

Kent Farm 14 1 all 

Stewiacke 2 15 1 all 

Moxam’s 16 1 all 

Gosse Bridge 17 1 all 

Shubie mouth 18 4 all 

Minas Basin NA 41 2018, 2019 
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Fig. B1 Close up of receiver stations 01-18 on the Pembroke, Stewiacke, and Shubenacadie 

Rivers. 2019 release site shown (triangle). See Table B1 for station names. Receivers in the 

Minas Basin and upstream of the Stewiacke/Shubenacadie confluence not shown, see Fig. 2.1 for 

view of whole study area.  
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Fig. B2 Close up of receiver stations 08-16 in the tidal waters of the Stewiacke River. 2017 and 

2018 release sites shown (triangles). See Table B1 for station names.  
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Appendix C: Example R Code for Chapter 2 Analyses 

 

##### Example code for k-means clustering ##### 

library(tidyverse) 

library(cluster) 

library(factoextra) 

library(ggplot2) 

library(remotes) 

devtools::install_github("o1iv3r/FeatureImpCluster") 

library(FeatureImpCluster) 

library(flexclust) 

 

#read in behavioural metrics 

metrics <- read.csv("2017 behavioural metrics cut and no VR.csv") 

 

#set seed to get same results with each run 

set.seed(41) 

 

#make tag SN row name 

metrics2 <- metrics %>% remove_rownames %>% column_to_rownames(var="tag_sn") 

 

#centers (by mean) and scales (by sd) metrics 

metrics2 <- scale(metrics2)  

 

#run k means cluster analysis 

k <- kmeans(metrics2, centers=3) #centers (k) = 3 for the 3 fate groups  
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#look at results 

k 

 

#visualize clusters  

?fviz_cluster 

fviz_cluster(k, data=metrics2, geom="point", main="2017 Cluster plot") #cluster plot 

 

#variable importance plots 

res <- kcca(metrics2,k=3) 

FeatureImp_res <- FeatureImpCluster(res,as.data.table(metrics2)) 

plot(FeatureImp_res) 

 

#make df with cluster number and tag SN 

df <- data.frame(k$cluster)  

df <- rownames_to_column(df, "tag_sn") 

#add cluster numbers to metrics df 

metrics$tag_sn <- as.character(metrics$tag_sn) 

metrics <- left_join(metrics, df) 

#save df 

 

 

##### Example code for random forest ##### 

#code adapted from https://github.com/StatQuest/random_forest_demo 

library(ggplot2) 

library(tidyverse) 

#install.packages("randomForest") 

library(randomForest) 

#install.packages("caret") 
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library(caret) 

#install.packages("ROCR") 

library(ROCR) 

#install.packages("pROC") 

library(pROC) 

 

#read in data 

data <- read.csv("2017 behavioural metrics cut and no VR.csv") 

 

#add fate column to metrics df 

f <- read.csv("2017 detections cut.csv") 

f <- f %>% select(tag_sn, fate_1) %>% distinct() 

data <- left_join(data, f) 

 

#set seed to get same results 

set.seed(41) 

 

#remove individuals with suspect fate from model training df and add to a new df 

unknown <- data %>% filter(tag_sn %in% c(1262412, 1262413, 1262414, 1262418, 1262423, 

1262432, 1262433, 1262435, 1262436, 1262439, 1262440, 1262441, 1262450, 1262455, 

1262444, 1262446)) 

data2 <- data %>% filter(!tag_sn %in% c(1262412, 1262413, 1262414, 1262418, 1262423, 

1262432, 1262433, 1262435, 1262436, 1262439, 1262440, 1262441, 1262450, 1262455, 

1262444, 1262446)) 

 

#make tag SN row name 

data2 <- data2 %>% remove_rownames %>% column_to_rownames(var="tag_sn") 

unknown <- unknown %>% remove_rownames %>% column_to_rownames(var="tag_sn") 

 

#run initial model 
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m1 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T) #default ntree=500 

m1 #look at OOB and class error 

 

#tune number of trees 

#try model with ntree=1000 

m2 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1000) 

m2 

 

#make df for changes in OOB and class error rates with change in ntree 

m2_oob_error <- data.frame( 

  Trees=rep(1:nrow(m2$err.rate), times=4), 

  Type=rep(c("OOB", "M", "P", "S"), each=nrow(m2$err.rate)), 

  Error=c(m2$err.rate[,"OOB"],  

          m2$err.rate[,"M"],  

          m2$err.rate[,"P"], 

          m2$err.rate[,"S"])) 

 

#plot df look for when error rates stabilize - if not stable at 1000 increase ntree and check again 

ggplot(data=m2_oob_error, aes(x=Trees, y=Error)) + 

  geom_line(aes(color=Type)) 

#unclear if stable at 1000, check 1500 

 

#try ntree=1500 

m3 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1500) 

m3 

 

m3_oob_error <- data.frame( 

  Trees=rep(1:nrow(m3$err.rate), times=4), 
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  Type=rep(c("OOB", "M", "P", "S"), each=nrow(m3$err.rate)), 

  Error=c(m3$err.rate[,"OOB"],  

          m3$err.rate[,"M"],  

          m3$err.rate[,"P"], 

          m3$err.rate[,"S"])) 

 

ggplot(data=m3_oob_error, aes(x=Trees, y=Error)) + 

  geom_line(aes(color=Type)) 

#this shows stable at 500 

 

#so use 1000 

 

#now tune mtry (number of variables tried at each node) at ntree=1000 

#default mtry is the square root of the number of variables 

 

#calculate OOB error for mtry 1 to 10 

oob.values <- vector(length=10) 

for(i in 1:10) { 

  temp.model <- randomForest(fate_1~., data=data2, mtry=i, ntree=1000) 

  oob.values[i] <- temp.model$err.rate[nrow(temp.model$err.rate),1] 

} 

## find the optimal value for mtry (gives lowest OOB error) 

which(oob.values == min(oob.values)) 

#2,3 both have min OOB error 

#use 3 

 

#have inbalanced classes (fate groups) so need to tune class weights 
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#run model with ntree=1000 and mtry=3 to check class error rates without class weights 

m5 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1000, mtry=3) 

m5 

 

#now try different combinations of class weights - assigned to classes in alphabetical order 

(M,P,S) 

#try to minimize and balance class error rates 

m6 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1000, mtry=3, 

classwt=c(2,1,5)) 

m6 

#same as m5 

 

m7 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1000, mtry=3, 

classwt=c(2,1,10)) 

m7 

#better 

 

m8 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1000, mtry=3, 

classwt=c(5,2,20)) 

m8 

#same as m7 

m9 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1000, mtry=3, 

classwt=c(5,2,25)) 

m9 

#same as m7 

 

m10 <- randomForest(fate_1 ~ ., data2, proximity=T, importance=T, ntree=1000, mtry=3, 

classwt=c(10,1,100)) 

m10 

#same 
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#m7 is best were getting 

#use as FINAL MODEL 

 

#ROC and AUC 

 

#make df with number of votes for each fate group by smolt 

m_v <- as.data.frame(m7$votes) 

#col 1= M, 2=P, 3=S 

 

#plot ROC curve for each class in layers 

roc(data2$fate_1, m_v$M, plot=T, legacy.axes=TRUE, percent=TRUE,  

    xlab="False Positive Percentage", ylab="True Postive Percentage", col="red",  

    lwd=4, print.auc=TRUE) 

plot.roc(data2$fate_1, m_v$P, percent=TRUE, col="blue", lwd=4,  

         print.auc=TRUE, add=TRUE, print.auc.y=35) 

plot.roc(data2$fate_1, m_v$S, percent=TRUE, col="green", lwd=4, 

         print.auc=TRUE, add=TRUE, print.auc.y=20) 

legend("topleft", legend=c("M", "P", "S"), col=c("red", "blue", "green"), lwd=4, cex=0.6) 

#use final model to predict fate class of the suspect smolts 

m7predict <- predict(m7, unknown[,-18]) #remove original fate column  

 

#add predicted fate to df 

unknown$predict_f <- m7predict 

 

#variable importance plots  

varImpPlot(m7) 
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#partial dependence plots for most important variables 

 

#pot probability of belonging to each fate class with change in variable 

#layers for each class 

partialPlot(m7, data2, total_riverkm, "P", col="blue", main="",  

            xlab="Distance travelled (river km)", ylab="class probability", ylim=c(-5.5,4)) 

partialPlot(m7, data2, total_riverkm, "M", col="red", add=T) 

partialPlot(m7, data2, total_riverkm, "S", col="green", add=T) 

legend("topright", legend=c("M", "P", "S"), col=c("red", "blue", "green"), lwd=2, cex=0.8) 
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Appendix D: Example R Code for Chapter 3 Analyses 

 

#### CJS Example Code #### 

#step 1: turn detection df into presence/absence df 

#step 2: make capture history column (series of 1s (detected) and 0s (not detected)) 

#step 3: add covariates to df with ch 

#step 4: process data (process.data(df, model="CJS")) 

#step 5: make design data (make.design.data(proc_data))and add more covariates  

#(array, water, etc.) (use PIM index) 

#step 6: check assumptions/overdispersion by calculating c-hat (release.gof(proc_data)) 

#if c-hat > 1, you have overdispersion ---> use QAICc 

#step 7: set formulas for Phi and p (ex: Phi.dot=list(formula=~1)) 

#step 8: make models (ex: mark(proc_data, data.ddl, model.parameters = list(Phi=Phidot, 

p=pdot))) 

#step 9: compare models (collect.models()) 

#step 10*: adjust c-hat for QAIC (adjust.chat(chat=, model.list=)) 

#step 11*: if AIC/QAIC values are similar for models ---> model averaging 

(model.average(model.list=)) 

#*if necessary  

 

#read in data 

data <- read.csv("2017 detections fate_rf truncated 70.csv") 

 

#STEP 1: 

#remove predated detections (odd Tag ID) 

dets <- data[data$TAG_ID_CODE %% 2 == 0, ] 

 

#function adapted from Barbosa, 2014 

https://modtools.wordpress.com/2013/04/30/splist2presabs/ 
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presabs_fxn <- function(data, sites.col, sp.col, keep.n = FALSE) { 

  # version 1.1 (7 May 2013) 

  # data: a matrix or data frame with your localities and species (each in a different column) 

  # sites.col: the name or index number of the column containing the localities 

  # sp.col: the name or index number of the column containing the species names or codes 

  # keep.n: logical, whether to get in the resulting table the number of times each species appears 

in each locality; if false (the default), only the presence (1) or absence (0) are recorded 

   

  stopifnot( 

    length(sites.col) == 1, 

    length(sp.col) == 1, 

    sites.col != sp.col, 

    sites.col %in% 1 : ncol(data) | sites.col %in% names(data), 

    sp.col %in% 1 : ncol(data) | sp.col %in% names(data), 

    is.logical(keep.n) 

  ) 

   

  presabs <- table(data[ , c(sp.col, sites.col)]) 

  presabs <- as.data.frame(unclass(presabs)) 

  if (!keep.n)  presabs[presabs > 1] <- 1 

  presabs <- data.frame(row.names(presabs), presabs) 

  names(presabs)[1] <- names(subset(data, select = sp.col)) 

  rownames(presabs) <- NULL 

  return(presabs) 

} 

 

#apply pres abs function 

#use station (receiver) number as sites.col and tag SN as sp.col 

colnames(dets) 
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presabs_df <- presabs_fxn(dets, sites.col=20, sp.col=17) 

presabs_df <- presabs_df %>% select(-X00VR) #remove mobile 

presabs_df <- presabs_df %>% select(-c( X10SH, X11SH)) #remove up confluence 

 

#make 1 col for SH mouth from the 3 recs 

  #turning single receivers in same location into station 

presabs_df <- presabs_df %>% mutate(SHmouth=X14SH+X15SH+X16SH) 

presabs_df$SHmouth <- ifelse(presabs_df$SHmouth > 0, 1, 0) 

presabs_df <- presabs_df %>% select(-c(X14SH, X15SH, X16SH)) 

 

#STEP 2: 

colnames(presabs_df) 

#paste all station detections columns into one column - capture history string 

presabs_df$ch <- do.call(paste0, presabs_df[2:10]) 

ch_df <- presabs_df %>% select(ch) 

 

#STEP 3: 

#no covariates used here (done in logistic regression) - see Step 6 

 

#STEP 4: 

library(RMark) #need to download program MARK first 

https://sites.warnercnr.colostate.edu/gwhite/program-mark/ 

 

#process data for running through MARK 

data_proc <- process.data(ch_df, model="CJS")  

 

#STEP 5:  

#if c.hat > 1 -> overdispersion  

release.gof(data_proc) 



148 
 

#c.hat = (Test2 X2 + Test3 X2)/(Test2 df + Test3 df) 

 

#STEP 6: 

#create design data file (ddl) 

data.ddl <- make.design.data(data_proc) 

 

base_mod <- mark(data_proc, data.ddl) 

 

#gives parameter index, model index, group, time and Time, and two other pairs, cohort and age. 

data.ddl$Phi 

data.ddl$p 

 

#add covariates to phi and p - array  

#use PIMS index  

#Gives index for each individual and specific surv interval or recapture occassion 

#assign each array its own number  

 

?PIMS 

PIMS(base_mod, "Phi", simplified = FALSE) #each col is survival interval 

data.ddl$Phi$par.index 

data.ddl$Phi$model.index #same as par.index but use model.index 

 

data.ddl$Phi$array[data.ddl$Phi$model.index %in% 8:36] <- 8 #surv from gosse to sh mouth 

data.ddl$Phi$array[data.ddl$Phi$model.index %in% 1] <- 1 #from release to 1st rec 

data.ddl$Phi$array[data.ddl$Phi$model.index %in% c(2,9)] <- 2 

data.ddl$Phi$array[data.ddl$Phi$model.index %in% c(3,10,16)] <- 3 

data.ddl$Phi$array[data.ddl$Phi$model.index %in% c(4,11,17,22)] <- 4 

data.ddl$Phi$array[data.ddl$Phi$model.index %in% c(5,12,18,23,27)] <- 5 
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data.ddl$Phi$array[data.ddl$Phi$model.index %in% c(6,13,19,24,28,31)] <- 6 

data.ddl$Phi$array[data.ddl$Phi$model.index %in% c(7,14,20,25,29,32,34)] <- 7 

 

data.ddl$Phi$array <- as.character(data.ddl$Phi$array) 

 

PIMS(base_mod, "p", simplified = FALSE) #each col is recapture occassion 

data.ddl$p$model.index 

 

#added to design data but not processed data 

 

#now make parameter to let p vary by each array (think i will have all 4 at SH mouth as 1 array) 

data.ddl$p$array[data.ddl$p$model.index %in% 44:72] <- 9 #sh mouth 

data.ddl$p$array[data.ddl$p$model.index %in% 37] <- 2 #1st rec 

data.ddl$p$array[data.ddl$p$model.index %in% c(38,45)] <- 3 

data.ddl$p$array[data.ddl$p$model.index %in% c(39,46,52)] <- 4 

data.ddl$p$array[data.ddl$p$model.index %in% c(40,47,53,58)] <- 5  

data.ddl$p$array[data.ddl$p$model.index %in% c(41,48,54,59,63)] <- 6 

data.ddl$p$array[data.ddl$p$model.index %in% c(42,49,55,60,64,67)] <- 7 

data.ddl$p$array[data.ddl$p$model.index %in% c(43,50,56,61,65,68,70)] <- 8 

 

data.ddl$p$array <- as.character(data.ddl$p$array) 

 

#STEP 7: 

#define formulas for survival (phi) 

Phi.dot=list(formula=~1) #constant survival 

Phi.array=list(formula=~array) 

 

#define models for detection (p) 



150 
 

p.dot=list(formula=~1) 

p.array=list(formula=~array) 

 

#STEP 8:  

#run models 

#have to make models manually with ddl to get covariates for p (not in proc data) 

base_mod <- mark(data_proc, data.ddl, model.parameters = list(Phi=Phi.dot, p=p.dot)) 

mod1 <- mark(data_proc, data.ddl, model.parameters = list(Phi=Phi.dot, p=p.array)) 

mod2 <- mark(data_proc, data.ddl, model.parameters = list(Phi=Phi.array, p=p.array)) 

 

#STEP 9: 

CJS_results <-collect.models() #gives AIC summary for model results  

CJS_results 

 

 

##### Multinomial Logistic Regression example code ##### 

 

#read in data - metrics 

d <- read.csv("all years live fate_rf trunc 70 metrics for MLR.csv") 

 

#make all NAs 0 

d[is.na(d)] <- 0 

 

d %>% filter(migration_kmday == 0) 

d2 <- d %>% filter(migration_kmday != 0) #remove individuals with no detections n=8 

 

str(d2) 

#fate is factor 
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d2$yr <- as.factor(d2$yr) #year as factor 

 

#check if vars colinear 

abs(cor(d2[c(5:7,9:13)])) 

#W-FL 

#arrive-d2epart night 

 

library(mlogit) 

?hmftest #Test the IIA hypothesis (independence of irrelevant alternatives) for a multinomial 

logit model. 

#need to prepare data 

d2m <- mlogit.data(d2, varying=NULL, choice="fate_rf", shape="wide") 

#now run model 

ml1 <- mlogit(fate_rf ~ "S" | FL_cm + release_jd2ay + release_site + yr + migration_kmd2ay + 

num_reversals +  

                d2eparted2_night + tot_num_pause, 

              data = d2m, reflevel = "S") 

 

library(nnet) 

d2$fate_ref <- relevel(d2$fate_rf, ref = "S") #set response to compare others to 

 

#leave out W and2 arrived night for first model  

m1r <- multinom(fate_ref ~  FL_cm + release_jday + release_site + yr + migration_kmday + 

num_reversals + 

                  departed_night + tot_num_pause, 

                data = d2) #set formula 

summary(m1r) 

#AIC 263.14 
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#alternative models: 

 

#swap in W and2 arrived2 

m2r <- multinom(fate_ref ~  W_g + release_jday + release_site + yr + migration_kmday + 

num_reversals + 

                  arrived_night + tot_num_pause, 

                data = d2) 

summary(m2r) 

#264.03 

 

#now swap one at a time 

m3r <- multinom(fate_ref ~  FL_cm + release_jday + release_site + yr + migration_kmday + 

num_reversals + 

                  arrived_night + tot_num_pause, 

                data = d2) 

summary(m3r) 

#AIC 264.53 

 

m4r <- multinom(fate_ref ~  W_g + release_jday + release_site + yr + migration_kmday + 

num_reversals + 

                  departed_night + tot_num_pause, 

                data = d2) 

summary(m4r) 

#AIC 262.88 

 

##m4r lowest AIC 

 

#calculate McFaddens Pseudo R2 - model fit 
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#create null model 

m0r <- multinom(fate_ref ~ 1, d2) 

m0r_ll <- logLik(m0r) 

 

#for best model 

as.numeric(1 - logLik(m4r)/m0r_ll) #0.209 

 

#compare to other models 

as.numeric(1 - logLik(m1r)/m0r_ll) #0.208 

 

as.numeric(1 - logLik(m3r)/m0r_ll) #0.203 

 

as.numeric(1 - logLik(m2r)/m0r_ll) #0.205 

 

# AIC stepwise selection - forward and backward 

library(MASS)  

summary(stepAIC(m4r, direction = "both")) #use best model 

 

#run final mod 

mfr <- multinom(formula = fate_ref ~ yr + migration_kmday + num_reversals, data = d2) 

 

#r2 

as.numeric(1 - logLik(mfr)/m0r_ll) #0.179 

 

#look at which vars sig 

#calc z score 

z <- summary(mfr)$coefficients/summary(mfr)$standard.errors 

#find p value 
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(1 - pnorm(abs(z), 0, 1))*2 #2-tailed z test, normal dist (Wald test) 

 

#plot effect plots for regression 

library(effects) 

plot(allEffects(mfr)) 

 

 

##### Example Code for PCA ##### 

library(dplyr) 

library(ggplot2) 

 

#read in data  

  #contains normalized gene expression and Plate No. (cols 5,8:56), smolt ID, migration fate 

data_g <- read.csv("2019 Transcriptomic Data 2.csv") 

 

#check assumptions of PCA 

  #independence - not a problem 

  #normal - not essential 

  #0s -> correspondence analysis 

  #outliers -> remove if error  

boxplot(data_g[,c(8:56)]) 

  #mising values -> delete or interpolate 

anyNA(data_g) 

 

#pca with correlation matrix 

pca  <- princomp(data_g[,c(5,8:56)], cor=T, scores=T) 

summary(pca) #importance of PCs - variance explained 
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#plot first two PCs 

plot(pca$scores[,1], pca$scores[,2], col=c("green", "red", "blue")[data$fate_rf], 

     xlab="PC1 (18.5%)", ylab="PC2 (13.8%)") #M=green, P=red, S=blue 

legend("topright", legend=c("M", "P", "S"), col=c("green", "red", "blue"), lwd=2, cex=0.8) 

 

#save pca scores as data frame 

scores_df <- as.data.frame(pca$scores[,1:4]) 

#add colomn for fate (grouping factor) 

scores_df <- cbind(scores_df, data_g %>% dplyr::select(fate_rf)) 

#save pca loadings as data frame 

loads_df <- as.data.frame(pca$loadings[,1:4]) 

loads_df <- rownames_to_column(loads_df) 

 

#different way to plot 

ggplot()+ 

  geom_point(scores_df, mapping=aes(Comp.1, Comp.2, col=fate_rf))+ #colour scores by fate 

  geom_point(loads_df, mapping=aes(Comp.1, Comp.2, shape=gene_cat)) #shape loadings by 

gene type 

  xlab("PC1 (18.5%)")+ 

  ylab("PC2 (13.8%)")+ 

  labs(col="fate", shape="gene type") 

 

 

##### run k-means clustering on gene data and PCA results #### 

library(adegenet) 

library(tidyverse) 

   

?find.clusters  
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clust_4pc <- find.clusters(data_g[,c(5,8:56)], #gene data matrix 

                           stat="WSS", #choose number of K clusters based within sum of squares 

                           n.pca = 4, #4 PCs retained 

                           choose.n.clust = F, #auto choose clusters 

                           criterion = "diffNgroup") #The retained K is the one before the first group 

switch from sharp to mild decreases in WSS 

#4 clusters were chosen 

 

#save results as data frame   

clusters <- as.data.frame(clust_4pc$grp) 

clusters <- rownames_to_column(clusters) 

clusters$rowname <- as.numeric(clusters$rowname) 

 

#join to PCA scores data frame 

scores_df <- left_join(scores_df, clusters %>% rename(tag_sn=rowname, 

clust_4pc=`clust_4pc$grp`)) 

 

#plot 

ggplot()+ 

  geom_point(scores_df, mapping=aes(Comp.1, Comp.2, col=fate_rf), size=2)+ 

  labs(x="PC1 (18.5%)", y="PC2 (13.8%)", col="fate", shape="gene type", fill="cluster")+ 

  geom_point(lds, mapping=aes(Comp.1, Comp.2, shape=gene_cat), size=2)+ 

  stat_ellipse(scores_df, mapping=aes(Comp.1, Comp.2, fill=clust_4pc), geom="polygon", 

alpha=0.1, type="norm")+ 

  theme_bw() 

 


