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Abstract

Stand-alone hybrid renewable energy systems (HRES) provide a viable alternative

to satisfy the energy demand of remote and isolated communities. We consider a

PV/Wind/Diesel/Battery HRES and propose a design approach that minimizes the

total setup and operations cost and maximizes the supply reliability. A finite number

of supply scenarios, extracted from a limited sample of data points through clustering,

are first used under the assumption that their probabilities are known with certainty

to solve the nominal problem. Next, the robust problem is considered by constructing

an ambiguity set, based on the Variation Distance phi-divergence, around the nomi-

nal probability distribution and minimizing the expected cost, where the expectation

is taken with respect to the worst distribution in the ambiguity set. Since the cost and

the reliability functions cannot be evaluated explicitly, they are estimated through

simulation based on certain operational rules and using solar and wind supply scenar-

ios drawn at random according to the considered probability distribution (nominal

or worst-case). To solve the problem, two novel robust simulation-optimization ap-

proaches that estimate a surrogate objective function through a classical Response

Surface Methodology (RSM) and a Global Response Surface Technique (GRST) are

proposed. The classical RSM approach uses a three-level (R-III) fractional facto-

rial design to estimate the steepest descent direction and perform a gradient search,

before using a Central Composite Design (CCD) to estimate a local quadratic ap-

proximation and find the optimum solution when the gradient becomes sufficiently

small. The GRST, on the other hand, approximates the response function over

the entire search space using a convex quadratic function and finds the optimizer

of the surrogate function, before restricting the search space around it to obtain a

better quadratic approximation and repeat the process. The results obtained from

implementing the proposed approaches on a hypothetical case study confirm their

applicability and show that the robust solutions outperform those obtained from

classical risk-neutral methods when applied with external data samples.
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Chapter 1

Introduction

With the growth in agricultural, industrial, and domestic activities, energy demand

is rapidly growing all around the world. This has meant the depletion of fossil fuels,

which is the main driving force behind the efforts to utilize renewable energy sources

more effectively [1]. Other reasons like the techno-economic advantages of renewable

energy combinations, the growing interest in sustainability and the desire to decrease

GHG emissions, have made them a viable alternative to conventional sources [2].

Renewable energy is a multidisciplinary area, and nowadays, people from different

fields are bringing in a broad range of expertise to increase the utilization of renewable

energy resources.

Hybrid renewable energy systems (HRES) combine two or more locally available

renewable energy resources such as wind, solar, biomass, and small hydro power,

together with or without conventional sources. They are particularly viable when

the costs of connection to the long-distance transmission or distribution grid are too

high. Thus, they operate in a standalone mode to meet the energy needs in rural

remote areas. Combining these renewable energy sources with back-up units can

provide a more reliable supply of electricity in all load demand conditions compared

to the single-use of such systems [3]. The cost, supply reliability, and environmental

impact, among other metrics, of HRES depend on the type, size, location and oper-

ational strategy of the system components. Hence, the topic of designing HRES has

attracted a considerable attention in the last few decades, and several methods have

been proposed for this purpose. Since wind and solar are among the most widely

available renewable energy resources, several studies have focused on designing HRES

consisting of Photo-voltaic (PV) panels and Wind Turbines, combined with conven-

tional generators, e.g., diesel generators, and energy storage, e.g., batteries, to serve

the demand reliably, efficiently and in an eco-friendly fashion [4, 5, 6, 7, 8].

Several technical and economic criteria must be considered when designing HRES.

1
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These criteria include delivering energy at optimum efficiency, GHG emissions targets

and limits, and the ability to fulfill the load demand with high reliability [2]. Power

reliability analysis is considered a major step in the system design process. Multiple

reliability indices have been proposed in the literature. Among the most widely-

used indices are the Loss of Power Supply Probability (LPSP) and the Loss of Load

Probability (LLP), both illustrate the inability of the HRES to meet the demand

load [9]. LPSP, defined as the number of times power supply was unable to meet the

demand (during certain interval) over the total number of times a power supply is

exploited, is considered as a constraint in [10, 11, 12, 13, 14], whereas LLP is used

as a reliability objective where unmet demand is divided by the total demand load

and is minimized in [15, 16, 17, 18, 19].

Moreover, cost is another primary design criterion for HRES. Renewable energy

systems generally entail high capital costs, even though they have low operation and

maintenance (O&M) costs. An economic and break-even analysis is required to de-

termine the optimum cost to achieve the least possible unit price of the HRES [3].

Several metrics have been developed to quantify the economic performance of HRES,

including the levelized cost of energy (LCE), the net present cost (NPC), the total life

cycle cost (LCC), and the annualized cost of the system (ACS). Intuitively, minimiz-

ing cost and maximizing reliability are two conflicting objectives, since additional

costly energy generation and storage capacities are needed to increase reliability.

Therefore, the aim is to find the best trade-off between these contradictory objec-

tives. There are plenty of studies in the literature that aim at minimizing cost and

maximizing reliability in standalone HRES such as [4, 20, 21, 13, 14]. However,

to the best of our knowledge, none of these studies considered the uncertainty in

probability distribution of supply power.

In this thesis, a robust methodology for designing a standalone HRES is proposed

to minimize total annual cost (TAC) while ensuring a pre-defined level of LLP. The

proposed approach focuses on implementing and extending a novel, distributionally

robust simulation-optimization model that accounts for uncertainty in the probabil-

ity of supply power data by using an ambiguity set based on phi-divergence. Since

the closed-form of the objective function is not available, two response surface meta-

models are fitted on input/output simulation data using design of experiments (DoE)
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as a surrogate function. The first approach, referred to as the classical RSM, fits a

first-order polynomial in the neighborhood of the starting point to find the steepest

descent direction. After several steps moving towards the direction, it gets close

to the neighborhood of the optimum (where the gradient becomes small). Then, a

quadratic function is fit on this neighborhood to find the optimum solution. The

second approach, referred to as the GRST, fits a convex quadratic function on the

entire search space and reduces the search space in subsequent iterations to the

neighborhood of the best solution found so far. Finally, the proposed methods are

implemented on a hypothetical case study in Ontario. In this study:

• A k-means clustering approach is applied to effectively use the available limited

time-series data in order to extract a manageable number of supply scenarios

and estimate their probability of occurrence from the historical data.

• Two metamodel approaches, namely classical RSM and GRST, are combined

for the first time with distributionally-robust optimization (DRO) to handle

the dual issue of the lack of explicit objective functional form and uncertainty

about the probability distribution of the supply scenarios by allowing these

probabilities to be perturbed within an ambiguity set to account for estimation

errors.

• An ambiguity set is build based on the Variation Distance phi-divergence, and

the proposed metamodels methods are implemented and solved on a hypo-

thetical case study for two problems: the nominal (when the probabilities of

scenarios are deterministic) and robust (when probabilities are uncertain) prob-

lem.

The remainder of this thesis is organized as follows: in Chapter 2, a brief review

of the literature related on the application of simulation optimization methods to

design HRES is presented. Chapter 3 emphasizes on the simulation, problem mod-

elling and its operational rules. Generating scenarios for the stochastic power supply

using a k-means clustering approach and a basic concept of phi-divergence are also

explained in this section. Chapter 4 explains, in detail, the two approaches proposed

to robustly design a HRES: the classical RSM and the GRST. The regression models

used to fit the input/output data in each approach are presented, along with the way
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distributional ambiguity is incorporated into the design process. In Chapter 5, the

proposed methods are applied to a case study in northwest Ontario, Canada. First,

supply scenarios are generated, then, the results obtained from the two proposed

methods are presented and compared. Finally, Chapter 6 provides the conclusion

and ideas for future research.



Chapter 2

Literature Review

A widely-used modern optimization approach which is particularly useful when the

objective function cannot be expressed analytically is Simulation Optimization (SO)

[22]. SO is the process of finding the best input variable values from all possibilities

without evaluating each of them explicitly [23]. As opposed to algebraic model-based

mathematical programming, SO does not assume that an algebraic description of

the simulation is available. The simulation may be treated as a black box that only

allows evaluating the objective and constraints for a particular input [23]. In fact,

many SO algorithmic approaches solely depend on such input-output data from the

simulation in their search for optimal input settings. This domain (SO) includes

various methodologies, as it is briefly depicted in Figure 2.1 [23].

Figure 2.1: A classification of simulation optimization approached

SO methods can be categorized into model-based and metamodel-based meth-

ods. Model-based methods include heuristic methods (GA, PSO, SA,...), gradient

5
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methods (Finite Difference Estimation, Likelihood Ratio Estimator (LR), Perturba-

tion Analysis (PA)), statistical methods (Importance Sampling, Rank and Selection,

Multiple Comparison) and commercial solvers (HOMER [24], iHOGA [25], OptQuest

[26],...)[23]. Although software programs are not specific methods by themselves,

they are programmed to solve the problem based on certain search/optimization

methods. The next subsections review some representative examples of these meth-

ods in the domain of HRES design.

2.1 Model-based Methods

Amongst all model-based simulation optimization methodologies, heuristic methods

and commercial solvers are the most-applied approaches/tools in optimizing HRES

problems. In the following subsections, representative examples from the literature

of model-based SO for designing HRES are reviewed.

2.1.1 Heuristic Methods

Heuristic methods are commonly used for HRES optimization due to the non-linear

behaviour of some of the variables involved [27]. Many of these techniques balance

exploration with exploitation, thereby resulting in efficient global search strategies.

Among the methods for optimizing HRES GA, PSO, and SA are the most commonly

used algorithms for sizing HRES [28]. The heuristic methods discussed below repre-

sent the developments in the field of direct search methods (requiring only function

values) that are frequently used for simulation optimization with a special focus on

the renewable energy system application.

• Genetic Algorithm (GA)

The GA is a stochastic global search method that imitates the natural biolog-

ical evolution metaphor. It is important to note that GA provides a number

of potential solutions to a given problem and the choice of the final solution

is left to the user [13]. This algorithm is suitable for optimizing engineering

energy systems, which are generally non-linear, and uses a statistical tech-

nique of grouping the individual based on a independent variable. It was ap-

plied in [21], [27], [18], [6], [13], [14] and [29] to find the optimal design of
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HRES, GA can also be implemented on problems with more than one objec-

tive. A Multi-Objective Genetic Algorithm (MOGA), commonly referred to

as the Non-Dominated Sorting Genetic Algorithm-II (NSGA-II), is used as an

optimization algorithm in [30], [6], [31] to find a set of equally good solutions

for the objectives as a form of a Pareto frontier. A Hybrid Optimization by

Genetic Algorithm (HOGA) software was used in [32] and [33] to design and

optimize both a PV-Diesel system and a Wind-Battery system, respectively.

• Particle Swarm Optimization (PSO)

Inspired initially by flocking birds or fishes, Particle Swarm Optimization (PSO)

is another form of evolutionary computation and is stochastic in nature, like

Genetic Algorithms. PSO has a set number of particles that move through the

different layers of the problem. This algorithm has been shown to have advan-

tages as GA without the big computational hit. Unlike in genetic algorithms

and evolutionary strategies, in PSO, there is no selection operation. PSO is im-

plemented as an optimization technique to optimize the HRES in [4, 20, 34, 19].

The energy cost is optimized in [35] using PSO and is compared with genetic

algorithm and HOMER software. Another comparative analysis of a proposed

PSO methodology with the HOMER software tool is presented in [2] for a case

study of various stand-alone HRES arrangement. As a case of more than one

objective, Baghaee et al. [36] used MOPSO algorithm to minimize costs of the

system and maximize its reliability. A dynamic multi-objective particle swarm

optimization (DMOPSO) algorithm, along with a simulation module and a

sampling average technique, are used in [37] to approximate a Pareto front

(PF) for an HRES design through a multi-objective optimization framework.

• Simulated Annealing (SA)

Simulated annealing is a stochastic search method analogous to the physical

annealing process where an alloy is cooled gradually to achieve a minimal en-

ergy state. SA avoids getting stuck in local optima (hill-climbing) and keeps

track of the best objective value overall. SA performs well on combinatorial

problems. Ekren and Ekren [38] performed Simulated Annealing (SA) algo-

rithm, which uses a stochastic gradient search for the global optimization for
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optimizing the size of a PV/wind integrated hybrid energy system with bat-

tery storage. The optimum result obtained by SA algorithm is compared with

former study’s result ([17] and [16]). Consequently, it has been shown that the

SA algorithm leads to better results than the Response Surface Methodology

(RSM). Other studies that implemented SA as an optimization algorithm are

reviewed in [1].

• Evolutionary Algorithms (EA)

Similar to GA, evolutionary strategies (ES) are algorithms that mimic the

principles of natural evolution as a method to solve parameter optimization

problems. Evolutionary Multi-Objective Algorithms (MOEAs) are applied in

numerous studies. From the MOEAs that have been developed until now, the

Strength Pareto Evolutionary Algorithm (SPEA) is one of the most efficient

algorithms. It is applied in [5], for the first time, to the multi-objective design

of isolated hybrid systems used for electricity generation. Another evolutionary

algorithm is Artificial Bee Colony (ABC). Singh and Kaushik [39] developed

an ABC algorithm to detect the optimum hybrid system configuration and

performed a comparative analysis between the ABC algorithm and HOMER for

cost-effectiveness. Singh et al. [40] also applied an ABC algorithm to provide

optimal sizing and scheduling of PV-wind-biomass systems and compared the

achieved result with results from PSO algorithm and HOMER. Queuing multi-

objective optimizer (QMOO) is another evolutionary algorithm that is used in

[41] to optimize the integrated energy systems for remote communities.

2.1.2 Commercial Solvers

Nowadays, optimal and near-optimal solutions for applications are found in min-

utes instead of performing an exhaustive examination of relevant alternatives in

days or months. Simulation programs are not methods per se and they use certain

search/optimization methods to find the best solution. OptQuest and HOMER are

two prevalent commercial solvers having special search procedures to guide a series of

simulations in renewable energy systems. OptQuest integrates simulation, an intelli-

gent search procedure called scatter search (based on Tabu Search), a mixed integer
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programming solver, and a method to configure and train neural networks. It can

handle multiple objectives and linear constraints on the input variables. In [16] and

[42], the OptQuest tool in ARENA software is used to optimize HRES. HOMER,

on the other hand, a power optimization software developed by the National Re-

newable Energy Laboratory, Golden, Colorado, USA, is the most-used optimization

software for hybrid systems. It is able to optimize hybrid systems consisting of a

PV generator, batteries, wind turbines, hydraulic turbines, AC generators, fuel cells,

electrolyzers, hydrogen tanks, AC–DC bidirectional converters, and boilers. It has

been used in [22], [43], [40], [44], [39], [45] and [46] as an optimization tool.

2.2 Metamodel-based Methods

Metamodel-based or surrogate models are simpler approximations of the system i.e.

models of the model [47]. Due to the complicated nature of HRES and the large

number of input variables, metamodels are an intuitive way to tackle the stochastic

nature of these systems. Response Surface, Kriging and Neural network methods

are amongst the most widely-used metamodels. Ohsawa et al. [48] applied neural

networks to the operation control strategies of power PV–Diesel hybrid power gen-

eration systems. Mellit et al. [49] investigated the possibility of using an adaptive

artificial neural network model for sizing stand-alone photovoltaic systems. Mellit et

al. [50] developed an artificial neural network-based genetic algorithm (ANN-GA)

model for sizing stand-alone photovoltaic systems.

2.2.1 Response Surface Methodology

Response Surface Methodology (RSM) is a widely used mathematical and statistical

method for modeling and analyzing in simulation optimization. Despite the practi-

cal use of RSM, the relevant literature is very sparse in the context of HRES. Ekren

and Ekren [17] are among the first that used RSM to optimize the sizing of an au-

tonomous PV/wind hybrid energy system with battery storage by minimizing the

system cost and loss of load probability. Later, Ekren and Ekren [51] conducted a

break-even analysis of the same system with the extension of a transmission line and

used the net present value (NPV) to compare both cases. Ren et al. [52] presented
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a simulation-based strategy for optimal design of a renewable cooling and heating

system. The computational cost of the optimization was significantly reduced by in-

tegrating an integer-based genetic algorithm (IGA) with the response surface method

(RSM) as compared to the conventional GA. None of these studies have considered

the stochastic nature of supply and demand power data. Chang and Lin[53] pro-

posed a RSM-based method, coupled with a Monte Carlo approach for the design

of hybrid renewable energy systems in uncertain environments. They considered M

power stations and N demand nodes, yet did not acknowledge the probability of

uncertain parameters. Along RSM, global response surface techniques are another

easy-to-apply metamodels. Sobester et al. [54] and Rais-Rohani et al. [55] inves-

tigated the development and applications of global response surface approximation

models and proposed a selection criterion which allows relatively precise control of

the scope of the search.

Table 2.1 summarizes the main features of the aforementioned HRES studies in

terms of their system combination, grid connectivity, objective function and their

design optimization.

Authors System Component Off-Grid MOP Objective Function Optimization Approach

PV WT DG Battery Biomass Others

[18] X X X X Yes TAC, LLP, GHG emission GA

[21] X X X X Yes LCE, LPSP GA

[30] X X X × Yes operation cost, LPSP NSGA II

[22] X X X × No LCE HOMER

[33] X X X No NPC HOGA

[43] X X X X X Yes operation cost, EIR HOMER

[45] X X X X Yes CO2 emission, operation cost HOMER

[4] X X X X X Yes LCE, LPSP PSO

[39] X X X/× No TAC, LCE ABC

[51] X X X X No NPC RSM

[41] X X X Yes CO2 emission, operation cost QMOO

[6] X X X X X Yes LCE, CO2 emission NSGA II

[5] X X X X X Yes CO2 emission, operation cost SPEA

[37] X X X X × Yes NPC, LLP, Co2 emission PSO

[48] X X X X Yes operation cost, LPSP Neural Network

Table 2.1: Summary of published studies for optimization of HRES
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2.3 Distributionally-Robust Optimization (DRO)

The intermittent and unpredictable nature of renewable energy sources is a signifi-

cant challenge, which hinders their use solely as a reliable source of power. Unfortu-

nately, SO methodologies ignore the fact that, in practice, some inputs of the given

simulation model are uncertain, so the optimum solution that is derived—ignoring

these uncertainties—may be suboptimal [56]. SO models are generally sensitive to

the simulation parameters, and to overcome this problem, they need to be hedged

against uncertainty. Various robust optimization approaches based on simulated sys-

tems were investigated by Dellino [57]. Their proposed methodology uses Taguchi’s

view of the uncertain world, but replaces its statistical techniques to tackle robust-

ness using metamodels by Kriging. Moreover, to deal with this uncertainty, different

approaches have been proposed in robust simulation optimization. Dellino et al.

[58, 59] combined Taguchi’s world view with regression metamodels in uncertain

environment by fitting two Kriging metamodels, one for the mean and one for the

variance of the response. To formulate the robust optimization problem, they con-

sider minimizing the mean, while satisfying a constraint on the standard deviation

(or vice versa). Dellino et al. [56] Also developed a ‘robust’ methodology for uncer-

tain environments which uses Taguchi’s view of the uncertain world, but replaces his

statistical techniques by Response Surface Methodology (RSM) and illustrated the

resulting methodology through inventory problems.

Robust optimization (RO) is one of the widely-used approaches to deal rigor-

ously with uncertainty in power systems [60]. Nevertheless, when it comes to HRES

planning, only a handful of robust models have been investigated in the literature.

Dragičević et al. [61] implemented a single-stage RO approach with budget uncer-

tainty sets to design a HRES that serves an autonomous telecommunication facility.

A major enhancement achieved through adaptive, two-stage RO models such as that

proposed by Billionnet et al. [7] for designing and operating a stand-alone wind-PV-

battery-diesel energy system. In their study, budget uncertainty sets were considered

for the uncertainty of demand and renewable generators’ supply that bound the de-

mand/supply cumulative deviation throughout the yearly operating cycle.

One of the main drawbacks of robust optimization methods is that the occurrence

probabilities of the uncertain parameters are not considered, and a solution is found
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based on the feasibility for all the values in the uncertainty set so that the final

solution would be over-conservative. A remedy for this concern, which has received

attention recently, is a framework referred to as DRO [62]. In DRO, the expected

value of a probabilistic cost function is optimized, where the expectation is taken with

respect to the worst-case probability distribution from a distributional ambiguity

set that is constructed based on historical data or information about the “true”

distribution. DRO provides a unifying framework for SP and RO while avoiding

some of their shortfalls, i.e. the pessimistic nature of RO as it uses the available data

more effectively. More related to the HRES planning problem, Alismail et al. [63]

proposed a two-stage DRO model for the allocation of wind farms in a multi-area

power system under uncertain wind power and generator forced outages, and used

moment-based distributional ambiguity sets.

In practice, probability distributions of parameters are not known, and only his-

torical data are available. This means that the distributions of the uncertain param-

eters are uncertain themselves. One way to define the distributionally ambiguity set

that contains the potential probability distributions of the uncertain parameters is to

implement the concept of phi-divergence [64]. Phi-divergence is a function, Iφ(p, q),

that measures the difference between two probability distributions p and q, which p is

the true unknown distribution probability and q is the nominal estimate of p. There

are several advantages to use phi-divergences. First, many common phi-divergences

are used in statistics, for instance, to conduct goodness-of-fit tests. Therefore, they

provide natural ways to deal with data and distributions. Another attractive fea-

ture of phi-divergences is that they preserve convexity, resulting in computationally

tractable models. Using phi-divergences can also be more data-driven–many since

phi-divergences use more distributional information than just the first and second

moments [65]. Moghaddam and Mahlooji [66] implemented a phi-divergence ambi-

guity set and proposed two approaches, a minimax and a chance constraint method,

to formulate the robust counterpart problem for the objective function estimated by

Kriging.

Going through the literature, phi-divergence ambiguity sets have been used in ar-

eas such as production planning [66, 67], lot-sizing [68], finance [69, 64] and inventory

control [66]. However, there has been no study so far to investigate the use of DRO
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with phi-divergence-based ambiguity sets in HRES planning. The DRO approach

used in this thesis specifically target the issue of the uncertain occurrence probabil-

ities of the supply scenarios, which can be attributed to the use of limited sample

data to construct these scenarios. Since there has been no study so far to investigate

the combination of metamodel approaches with DRO to tackle the lack of explicit

objective function and the uncertainty in the probability of supply power scenarios,

the current research will be the first to apply this concept in order to avoid the over

conservatism issue of RO by using sample of historical data to extract information

about the probability distribution of the uncertain parameters.



Chapter 3

Problem description and modelling

In this study, due to the promising and complementary nature of wind and solar,

a HRES comprises wind turbines and PV panels with energy storage and a diesel

generator to fill in the gap between supply and demand power, is considered. Due

to high costs of connection to the long-distance transmission or distribution grid,

the proposed system operates in a standalone mode to meet the energy needs in

rural remote areas. Also, the stochastic nature of input data, solar and wind, leads

to fluctuations in power production and their patterns can be clustered into finite

number of scenarios to make handling the supply data easier. In the following, the

presumed operational rules for the HRES and scenario generation using clustering

approach are presented.

3.1 Operational Rules

Every HRES requires a set of rules to be operated. These rules specify, for example,

which energy source is to be utilized when there is a mismatch between the supply

of renewable sources and the demand. The HRES under consideration is simulated

based on certain operational rules that are presumed to mimic those implemented in

reality. However, it is important to note that the mere purpose of using these rules

is to enable the estimation of the TAC of the system, and that the proposed robust

SO approaches can be used with any set of operational rules, and are not restricted

to the specific ones employed here. The set of operational strategies implemented

in this thesis are the actual operating rules used in previous studies [34, 30, 70].

The output obtained from one time interval are used as inputs for the next interval

and the model can be solved for each time step independently. Supply and demand

data time interval for the simulation is considered one hour, which is an acceptable

assumption in sizing and optimization of HRES and would reduce the solution time

significantly [33, 30, 71]. The priority of the system resources utilization is depicted

14
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Nomenclature

Indices

t ∈ T Time period

s ∈ S Scenario

Parameters

dt Demand Power at time period t (kW)

P PV
t,s PV panel power at time period t for scenario s (kW)

PWT
t,s Wind turbine Power at time period t for scenario s(kW)

qs Nominal probability of scenario s

SCbat Nominal storage capacity of a battery (kWh)

MRbat Maximum charge/discharge rate of battery (kW)

CDG,1 Initial cost of Diesel Generator ($/kW)

CDG,2 Operational cost of Diesel Generator ($/kWh)

CPV Unit cost of a PV panel ($/Unit)

CWT Unit cost of a wind turbine ($/Unit)

Cbat Cost of a battery ($/Unit)

Lbat Number of full charging cycle of a battery

ηbat Battery discharging efficiency

Variables

Dcht,s Discharging power of battery at time period t for scenario s (kW)

Cht,s Charging power of battery at time period t for scenario s (kW)

PDG
t,s Diesel generator power at time period t for scenario s (kW)

SoCt,s
Battery state of charge at the beginning of time period t

for scenario s (kWh)

UDt,s Unmet demand at time period t for scenario s (kW)

Design Variables

NPV Number of PV panels

NWT Number of wind turbines

Nbat Number of batteries

CapDG Capacity of Diesel Generator (kW)
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in Figure 3.1:

Figure 3.1: Utilization priority of system resources

i In any time interval, if the power demand exceeds the power supplied by the PV

panels and wind turbines, the power deficit is compensated, if possible, by the

batteries within their rated capacity (maximum charge/discharge rate of each

battery), and the remaining load (if any) is met using the diesel generator power.

If the remaining demand is more than the diesel generator capacity, the extra

loads are curtailed. To discourage load curtailment and ensure high reliability,

the amount of curtailed power is multiplied by a penalty factor and added to the

total cost. On the other hand, if the power supplied by the PV panels and the

wind turbines is greater than the demand, the excess energy is used to charge the

batteries if they are not full and within their charging limits, and any remaining

energy is dumped.

ii Batteries can be charged only when there is surplus power generated by PV

panels and wind turbines and are never charged using the diesel generator. Also

they cannot be charged and discharged at the same time.

iii Diesel generator can supply power only when the power discharged by the bat-

teries is not sufficient to meet the remaining demand.
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iv Curtailment of loads is not allowed when the power generated by power resources

is enough to satisfy them.

v The simulated system cannot dump the energy if any load demand is still not

satisfied.

According to the first operational rule, constraints (3.1.1) link the design variables

to the operational variables. The charging and discharging rate must not exceed

the capacity of the batteries, and state of charge must also be within the energy

storage capacity of the batteries. Maximum depth of discharge (DoD) of batteries

is considered 100%. The power supplied by the diesel generator must not violate its

rated capacity.

0 ≤ Dcht ≤MRbat ·Nbat ∀t ∈ T

0 ≤ Cht ≤MRbat ·Nbat ∀t ∈ T

0 ≤ SoCt ≤ SCbat ·Nbat ∀t ∈ T

0 ≤ P(DG)t ≤ CapDG ∀t ∈ T.

(3.1.1)

Moreover, based on the energy conservation law, the amount of energy stored in

a battery is dependent on the amount of energy in the preceding period, and the

charging/discharging during the current period. Discharge efficiency of the batteries

(ηbat) and ∆t are assumed ideal (i.e., 100%) and one-hour interval, respectively. With

that, we use the following energy conservation constraint:

SoCt = SoCt−1 + ∆t · Cht −∆t ·
Dcht
ηbat

∀t ∈ T. (3.1.2)

The first objective is to minimize the total annual cost (Y TAC). Based on Equation

(3.1.3), the first two terms represent the cost of PV panel and wind turbine instal-

lation, the third term calculates the batteries cost, assuming they can function for a

specific number of full charging cycles before replacement. The last two terms denote

two types of costs for the diesel generator: initial and operational. The initial cost of

a diesel generator is mainly dependent on its capacity and the operational cost has a

linear relationship with the power output of the diesel generator. The amortization

parameter A = ir
1−(1+ir)−n

, where ir and n are, respectively, the interest rate and the
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HRES lifetime, is multiplied by capital costs terms to calculate the annualized cost

for the diesel and renewable energy sources.

Y TAC = A · (CPV ·NPV ) + A · (CWT ·NWT ) +
(1 + ir) · Cbat
SCbat · Lbat

T∑
t=1

Cht+

A · (CDG,1 · CapDG) +
T∑
t=1

CDG,2P(DG)t + Cpenalty.

(3.1.3)

As mentioned earlier, if the demand could not be met using the available resources,

the remaining load is curtailed. To combine the two objectives into a single-objective

problem, the amount of unmet demand (UD) in every time interval is multiplied by

a penalty value (α) and added to the total cost as: Cpenalty =
∑T

t=1 UDt · α. All

together, Equation (3.1.4) links the demand and supply quantities, as follows:

dt = NPV · P PV
t +NWT · PWT

t − Cht +Dcht + PDG
t + UDt ∀t ∈ T. (3.1.4)

The second objective is to maximize the system reliability. One of the most widely-

used reliability indices is the loss of load probability (LLP) which measures the

inability of HRES to meet the system load [9]. LLP is used as the reliability objective

to be minimized in [15, 16, 17, 18, 19]. Having the amount of total and unmet demand

in hand, the value of LLP is calculated at the end of the simulation using the following

equation:

LLP =

∑T
t=1 UDt∑T
t=1 dt

. (3.1.5)

In the following, a Pseudocode for the system simulation is included to explain
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the input/output relation and operational rules in a clearer way.

1 Read: P PV
t , PWT

t , dt;

Input : NPV , NWT , Nbat, CapDG

Output: Y TAC , LLP

2 Calculate SPt = NPV · P PV
t +NWT · PWT

t ;

3 for t = 1 : T do

4 if SPt ≤ dt then

5 Dcht = min(dt − SPt, MRbat ·Nbat, Soct);

6 SoCt = SoCt−1 −Dcht;
7 PDG

t = min(dt − SPt −Dcht, CapDG);

8 UDt = dt − SPt −Dcht − PDG
t ;

9 else

10 Cht = min(SPt − dt, MRbat ·Nbat, SCbat ·Nbat − SoCt);
11 SoCt = SoCt−1 + Cht;

12 end

13 end

14 Calculate Y TAC according to Equation (3.1.3);

15 Calculate LLP according to Equation (3.1.5);

Algorithm 1: System Simulation
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3.2 Stochastic supply model

Power supplied by the PV modules and the wind turbines is intermittent and

stochastic. The power generated by a PV panel at any moment is highly variable

and difficult to predict accurately due to many factors, including: solar irradiance,

incidence angle, cleanness of the PV module surface, shading, and other technical

characteristics of the PV module. Also, the highly variable and unpredictable wind

speed plays a crucial role in determining the power output of the wind turbine gener-

ators, leading to very random patterns of power output. In an ideal condition, every

day in a year can be considered as a scenario regardless of high computational time

and cost. However, dealing with 365 scenarios results in high computational time

and complexity. Instead clustering techniques can be used to extract a small num-

ber of scenarios from the data that can be handled effectively. Upon extracting the

scenarios, each represents a possible patterns of power supply, and after calculating

the probability of each scenario, they can be incorporate in a stochastic optimization

model.

One way to define the supply scenarios and determine their probabilities is

through k-means clustering. A k-means classification algorithm iteratively tries to

partition the dataset into k pre-defined distinct non-overlapping subgroups, and in

this study, S scenarios. It is based on the minimization of an objective function

defined as [72]:

min
S∑
s=1

N∑
n=1

µns ‖xn − vs‖2, (3.2.1)

where xn is the actual power output in day n and vs is the center of scenario s. Also

µns is the assignment variable which equals 1 if the daily profile n is assigned to

cluster s and 0 otherwise. Both xn and vs are vectors consisting of 24 elements (24

hours per day). This optimization problem can be solved using a heuristic iterative

algorithm explained as follows:

1. Specify the number of scenarios and initialize the centroids by randomly se-

lecting S clusters of data points for the centroids without replacement.

2. Calculate the distance (dns) between each point in a daily profile (xn) and its
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corresponding point of cluster centroid (vs) as dns = ‖xn− vs‖1 and allocate it

to the nearest center.

3. Update the centroids using the following transformation ( j is the iteration and

[S] = 1, ..., S):

vjs =

∑N
n=1 µns · xn∑N
n=1 µns

∀s ∈ [S] (3.2.2)

4. Keep iterating between steps 2 and 3 until there is no change to the centroids

and the improvement is less than a certain tolerance ε:

|
S∑
s=1

N∑
n=1

(dj+1
ns )2 −

S∑
s=1

N∑
n=1

(djns)
2| ≤ ε. (3.2.3)

5. Calculate the probability of each scenario s as:

ps =

∑N
n=1 µns
N

∀s ∈ [S]. (3.2.4)

Since this is a heuristic method, it is very likely to converge to a local optimum. Thus,

the clustering algorithm is repeated from different initial cluster centers and the best

clustering output is declared optimum. As explained, we begin with a |S| = 2 and

increase the number of clusters incrementally until they meet the marginal reduction

in the variance condition stated in Equation (3.2.3). After determining the optimum

number of solar and wind clusters, the total number of supply scenarios is their

product.

3.3 Phi-divergence ambiguity set

It should be noted that the accuracy at which the unpredictable nature of PV and

WT power supply is captured can be improved by increasing the number of supply

scenarios. However, the use of limited data to extract these scenarios poses another

challenge related to estimating their probability distribution. Given that the number

of data points (daily profiles) in the clustering process is small, even a tiny pertur-

bation in a single data point can lead to a significant change in the probabilities

of scenarios (yet probably not much in their centroids). Hence, it is important to
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robustify the design model against ambiguity about these probabilities. One way

to capture the distributionally ambiguity is to use a phi-divergence ambiguity set.

Phi-divergences quantify the difference between a pair of non-negative vectors of the

same size, p = (p1, ..., pS)T and q = (q1, ..., qS)T where p is the unknown true proba-

bility and q is the empirical estimate of p [64]. Formally, a Phi-divergence is defined

as:

Iφ(p, q) =
S∑
s=1

qsφ(
ps
qs

) (3.3.1)

Where φ(t) is called phi-divergence function and is a convex for t ≥ 0. An ambiguity

set for p defines the family of distribution:

Pφ := {p|p ≥ 0,
S∑
s=1

ps = 1, Iφ(p, q) ≤ ρ} (3.3.2)

Table 3.1, taken from Ben-Tal et al. [64], presents the most common choices of

phi-divergence and their conjugate function.

Divergence φ(t), t ≥ 0 Iφ(p, q) φ∗(s)

Kullback-Leibler t log t− t+ 1
∑
ps log (ps

qs
) es − 1

Burg Entropy − log t+ t− 1
∑
qs log ( qs

ps
) − log (1− s), s < 1

χ2-distance 1
t
(t− 1)2 ∑ (ps−qs)2

ps
2− 2

√
1− s, s < 1

Variation Distance |t− 1|
∑
|ps − qs|

{
−1 s ≤ −1

s −1 ≤ s ≤ 1

Hellinger Distance (
√
t− 1)

2 ∑
(
√
ps −

√
qs)

2 s
1−s , s < 1

Table 3.1: Common choice of φ-divergence

Most phi-divergences do not satisfy the triangle inequality, and many are not sym-

metric in the sense that Iφ(p, q) 6= Iφ(q, p). However, one exception is the Variation

Distance or L1−distance between the vectors [73], defined as Iφ(p, q) =
∑S

s=1 |ps−qs|.
In addition to the linear structure of this function, working with the variation dis-

tance has other benefits. It allows ps = 0 for a scenario for which qs > 0, and we may

also have ps > 0 for a scenario for which qs = 0 (these situations are called respec-

tively “suppressed” and “popped” scenarios in [73]). Using the variation distance
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leads to a computationally tractable optimization model which can be solved by a

decomposition algorithm [74]. An ambiguity set based on the Variation Distance

phi-divergence is used in the next section.



Chapter 4

Solution Methodology

To solve the problem, the cost and reliability functions for each scenario needs to be

evaluated. Since there is neither a closed form expression nor an analytical method

to evaluate the TAC and reliability, they have to be estimated through simulation.

Statistical approximations, or metamodels, are used to replace the expensive and

complex existing real systems, and they yield insight into the functional relationship

between inputs and outputs data through simulation [57]. Two different metamodels

are fitted on the input/output data and their SO procedures are explained.

4.1 Classical Response Surface Methodology

The Classical RSM was introduced in 1951 by Box and Wilson [75], and was

developed for the optimization of real (physical) systems. RSM is one of the most

popular methods in simulation optimization and is a step-wise heuristic method that

estimates the best inputs combination that minimizes the given objective function.

In the final stage it predicts the goal function as a second-order metamodel based on

the inputs/output observation. In this study, a robust version of the classical RSM

is proposed along with its nominal version. The complete procedure of this method

is explained as follows [76]:

1. This approach begins by selecting a starting point. Input selection can be made

based on intuition and prior knowledge or a currently used combination in a

system.

2. The expected TAC is estimated through calculation of TAC for each scenario

(Ŷ TAC
s ), and the following optimization problem is solved to find the worst-case

distribution p:

Maxp∈Pφ

S∑
s=1

psŶ
TAC
s , (4.1.1)

24
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where the variation distance phi-divergence ambiguity set is defined as

Pφ : {ps ≥ 0 ,
∑

s∈[S] ps = 1, ‖p− q‖1 ≤ ρ}. This step is skipped when solving

the nominal problem (when there is no uncertainty about the probabilities of

scenarios) and the nominal distribution (qs), obtained from Equation (5), is

used instead. An easier approach for finding the worst-case distribution is to

simply move ρ/2 probability mass from the scenario with the lowest cost to

the scenario(s) with the highest cost. Other scenarios’ probabilities remain the

same.

3. The input/ output behavior of the simulated system is explored in the neigh-

borhood of the starting point. This behavior is approximated through the local

first-order polynomial

Ŷ TAC
s = β0,s +

n∑
i=1

βi,sXi,s + es ∀s ∈ [S], (4.1.2)

where e is the white noise assumed normally i.i.d. random variables with

a zero mean and a constant variance, e ∼ NIID(0, σ2). To estimate the

intercept (β0,s) and slope (βi,s) coefficients of the polynomial function for any

scenario, a Resolution-III design is used. In classical R-III designs, the number

of combinations is a multiple of four and in the standardized inputs Xi, ‘-’

means -1 (minimum level) and ‘+’ means +1 (maximum level). The design is

“balanced,” i.e., each column has n/2 values equal to -1. Moreover, all pairs

of columns are orthogonal. Figure 4.1 illustrates the R-III design for three

factors.
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Figure 4.1: A fractional-factorial two-level design for three variables

In this study, four input variables (Npv, Nwt, Nbat, and CapDG) are considered,

and according to Table 4.1, R-III design for four variables has eight combina-

tions.

Combination 1 2 3 4 = 1.2.3

1 - - - -

2 - - + +

3 - + - +

4 - + + -

5 + - - +

6 + - + -

7 + + - -

8 + + + +

Table 4.1: A fractional factorial design for four factors

After calculating all the eight outputs from different input combinations, the n

main effects βi can be estimated using the Least Squares (LS) method, which

gives the best linear unbiased estimator (BLUE) of

β̂ = (XTX)−1XTy, (4.1.3)

where X denotes the 8 × (4 + 1) matrix determined by the R-III design, rep-

resenting the vector with the eight simulation outputs. After fitting a plane
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for each scenario, the weighted average linear equation Ŷ TAC =
∑S

s=1 psŶ
TAC
s

(Ŷ TAC
s is a function of X) is calculated using the weights (p) from step 2.

4. A steepest descent method using the local gradient is applied to explore the next

input combination. The steepest descent direction is −∆ = −[β1, β2, β3, β4],

where the coefficients are calculated in the previous step. As we move in

the steepest descent direction for the step size t, i.e., Xnew = Xold − ∆ · t,
the new configuration (Xnew) is calculated. Unfortunately, the steepest de-

scent technique does not quantify the step size along its path. The analysts

may therefore try some intuitively selected value for the step size. To tackle

this problem, Kleijnen et al. [77] and Kleijnen [78] proposed novel techniques

called ”adapted” steepest ascent/descent combining mathematical statistics

and mathematical programming accounts for the covariances between the com-

ponents of the estimated local gradient to calculate the step size explicitly. A

simpler approached, derived from Bashiri and Samaei [79] and Kleijnen [80],

determines the initial step size of Xk based on the process characteristic and

other control variables’ step sizes are determine by

∆Xi =
∆Xk

βk
βi i = 1, . . . , n. (4.1.4)

In this study, ∆Xk
βk

is set equal to min[∆Xi
βi

i = 1, . . . , n] where ∆Xi demon-

strates the increment size of the system components which is the smallest

allowed quantity to change the component size. For example, the increment

for PV panels can be a 10kW unit, for wind turbine can be a 50kW turbine,

for batteries can be a 165kW module, and for DG can be a 10kW unit.

5. The new point (Xnew) is evaluated through simulation. If there is an im-

provement compared to the current solution, the search continues in the same

direction by setting Xnew = Xold − ∆ · 2t as the new trial point. However,

if there is no improvement (i.e., the simulation output deteriorates) the trial

point of the previous step is considered the optimal solution found until now.

6. However, it is intuitively clear that a local first-order polynomial cannot ad-

equately represent a hilltop (when searching for the maximum and, in this

study, the minimum). So in the neighborhood of the optimum, the gradient
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of first-order polynomial becomes small and shows a serious lack of fit. When

the most recently fitted first-order polynomial turns out to be inadequate, a

second-order polynomial is fitted on the subarea. To estimate this metamodel,

a combination specified by a Central Composite Design (CCD) is simulated

and the following quadratic formula is fitted:

Ŷ TAC
s = β0,s +

n∑
i=1

βi,sXi +
n∑
i=1

i∑
j=1

βij,sXiXj + es ∀s ∈ [S]. (4.1.5)

A CCD augments a Resolution-V design such that the purely quadratic effects

can be estimated. In general, a CCD adds the central point and 2n axial

points that form a star design. Wherein the coded factors, the central point

is (0,. . . ,0), and the “positive” axial point for factor i (with i = 1, ..., n) is the

point with Xi = +c and all other n − 1 factors fixed at the center and the

“negative” axial point for factor i is the point with Xi = −c and Xi′ = 0 (See

Figure 4.2 for an illustration). Selecting c = k1/2 results in a rotatable design;

Figure 4.2: Central Composite Design for three variables

i.e., this design gives a constant variance for the predicted output at a fixed

distance from the origin (so the contour functions are circles). Note that a

CCD does not give an orthogonal X; hence, the estimated parameters of the

second-degree polynomial are correlated. Note further that the central point

in the cube is replicated to estimate the common variance and to compute

the lack-of-fit F -statistic. As mentioned earlier, DOE provides designs with

three values per factor for second-order metamodel estimation. However, in
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Central Composite Designs (CCDs), there are five values per factor, which

means axial points (c = 41/2 and−c = −41/2) are also considered for a rotatable

design. The second-order polynomial in Equation (4.1.5) is nonlinear in X but

linear in β. Consequently, such a metamodel remains a linear regression model

and, again, Least Squares (LS) method would give the best linear unbiased

estimator (BLUE) of β as in Equation (4.1.3). Having four design variables, 15

coefficients of β are estimated for quadratic polynomial. Figure 4.2 illustrates

a CCD for three parameters. The weighted quadratic equation is calculated as

Ŷ TAC =
∑S

s=1 psŶ
TAC
s .

7. Using the first order optimality condition, Ŷ TAC(X) is differentiated to obtain

the gradient, which is then equated to zero. By solving four simultaneous

equations, the optimal solution and decision variables are obtained.
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For a better comprehension of the proposed classical RSM algorithm, a pseu-

docode description (Algorithm 2) and a flowchart (Figure 4.3) are presented below.

Figure 4.3: A flowchart of the Classical RSM
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1 read: Solar, wind, and demand power data for all scenarios;

input : qs

output: Ŷ TAC , Xi

2 Initialize starting points X;

3 Initialize gradient;

4 while gradient ≤ ε do

5 foreach scenario s ∈ [1, . . . , S] do Calculate

TotalAnnualCost(starting points);

6 Solve (4.1.1) to get the worst-case distribution;

7 Generate a set of sample points with R-III design;

8 for each scenario s ∈ [1, . . . , S] do

9 Calculate TotalAnnualCost function evaluation;

10 Fit a first-order polynomial;

11 end

12 Calculate the weighted average first-order equation using p;

13 Apply Steepest Descent to get a new combination X∗i ;

14 Update gradient;

15 Update Xi;

16 Replace initial points with the best combination found so far;

17 end

18 Generate a set of sample points with Central Composite Design;

19 for each scenario s ∈ [1, . . . , S] do

20 Calculate TotalAnnualCost function evaluation;

21 Fit a second-order polynomial;

22 end

23 Calculate the weighted average second-order equation;

24 Solve the second-order polynomial to get the optimal HRES combination

Xi and Ŷ TAC

Algorithm 2: Classical RSM
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4.2 Global Response Surface Technique (GRST)

Several approximation approaches have been introduced in the past to simulate

real-world examples. One of the most popular methods for using complex simulations

is the broad category of optimization algorithms based on cheap global approximation

models - often called surrogate models – of simulation. These models investigate

the unknown relationship between a set of variables and the system output and

use this training data to build a surrogate model, which is cheap to evaluate. A

detailed classification of optimization methods based on global approximation models

is provided by Jones [81]. GRST is an exploratory global approximation model, that

unlike the classical RSM described in the previous section, fits a convex second-order

polynomial on the entire search space from the beginning. The process is explained

in two phases:

1. First, an initial set of sample points is generated using some Design of Ex-

periments (DoE) technique. At this stage, the location of the points is only

required to satisfy some space-filling criterion. A wide variety of DoE methods

are available to the designer wishing to select the initial sample points. The

Latin Hypercube Sampling (LHS) is amongst the most widely used designs. It

ensures that the set of random numbers represent the real variability and new

sample points are generated by taking into account the previously generated

sample points. This sampling method is used for Monte Carlo integration. In

performing Monte Carlo simulation (MCS), it is assumed that each variable has

a uniform distribution with corresponding lower (X l
i) and upper (Xu

i ) limits

and accordingly, random sample points are generated as:

Xi = X l
i + αXu

i i = 1, ..., n, (4.2.1)

where α ∈ [0, 1] is a random number. It worth mentioning that the search space

is the same for all scenarios. Upon evaluating the cost function for the selected

random points, a convex quadratic surrogate model is fit over the feasible design

area for every scenario, Ŷ TAC
s (X), using the least square method as

min
∥∥∥Y TAC

s (X)− Ŷ TAC
s (X)

∥∥∥
2

s.t. Hs(Ŷ
TAC) is positive semi-definite(n) ∀s ∈ [S],

(4.2.2)
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which is fully quadratic with (n+1)(n+2)/2 coefficients and n is the number of

design variables. To have a convex function, the Hessian matrix of the quadratic

function (Hs(Ŷ
TAC)) must be positive semi-definite. In this approach, Ŷ TAC

is a convex function of 4 variables for a total of 15 unknown coefficients as

follows:

Ŷ TAC(X) =β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X1X2 + β6X1X3

+ β7X1X4 + β8X2X3 + β9X2X4 + β10X3X4 + β11X
2
1

+ β12X
2
2 + β13X

2
3 + β14X

2
4 .

(4.2.3)

Positive semi-definite attribute of the quadratic function Hessian matrix is

assured as:

Hs(Ŷ
TAC) =


2β11 β5 β6 β7

β5 2β12 β8 β9

β6 β8 2β13 β10

β7 β9 β10 2β14

 < 0. (4.2.4)

In the nominal problem, the objective function is defined as the weighted sum

of the S fitted surrogate functions, whose weights are the empirical occurrence

probability of supply power (q) as:

min ŶTAC(X) =
S∑
s=1

qsŶ
TAC
s (X) (4.2.5)

However, in the robust problem, the probabilities are not known in advance

and must be calculated. Using Variation Distance to define the phi-divergence

ambiguity set, the robust counterpart for Equation (4.2.5) would be:

min
X

max
p

S∑
s=1

psŶ
TAC
s (X)

s.t.
S∑
s=1

ps = 1

S∑
s=1

|ps − qs| ≤ ρ

ps ≥ 0.

(4.2.6)
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The new variable γs is defined to linearize the absolute value term |ps − qs|,
thus the inner optimization problem becomes

min
X

max
p

S∑
s=1

psŶ
TAC
s (X)

s.t.
S∑
s=1

ps = 1 → (η)

S∑
s=1

γs ≤ ρ → (δ)

− γs + ps ≤ qs → (πs)

− γs − ps ≤ −qs → (αs)

ps, γs ≥ 0.

(4.2.7)

Based on LP duality, the robust optimization problem is tractably reformulated

as:

min η + ρδ +
S∑
s=1

(qs(πs − αs))

s.t. Ŷ TAC
s (X)− η − πs + αs ≤ 0 ∀s ∈ [S]

− δ + πs + αs ≤ 0 ∀s ∈ [S]

x, δ, πs, αs ≥ 0.

(4.2.8)

2. The second phase entails restricting the search space around the optimum con-

figuration found in the previous iteration. This occurs by reducing the search

space and defining a new range for design variables based on the optimum

solution found so far. This procedure is then repeated until the termination

criterion is satisfied. A pseudocode of the GRST is provided in Algorithm 3.

Examples for termination criteria are either negligible difference between upper

and lower bound of all variables, which can be written as

|Xu
i −X l

i | ≤ ε i = 1, ..., n, (4.2.9)

or when the global optimum found converges i.e., the difference between op-

timum solutions from the previous iteration is insignificant. When the ter-

mination criterion is met, the optimal Ŷ TAC and HRES combinations Xi are

reported as the optimization results. A flowchart of the GRST is presented in

Figure 4.4.



35

Figure 4.4: A flowchart of GRST
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1 Read: Solar, wind, and demand power data for all scenarios;

Input : Nominal scenario’s probability q

Output: Ŷ TAC , Xi

2 Initialize range of design variables as

X := X ∈ Rn
+ : Xi ∈ [X l

i , X
u
i ], ∀i ∈ [1, ..., n];

3 Set X t
i =

Xl
i+X

u
i

2
and Xr

i =
Xu
i −Xl

i

2
;

4 Set X∗i = Xu
i while ‖X∗i −X t

i‖ | ≥ ε do

5 X∗i ← X t
i

6 Generate a set of sample points using LHS from the design space;

7 for each scenario s ∈ [1, . . . , S] do

8 Calculate TotalAnnualCost function of evaluation;

9 Fit a second-order surrogate function;

10 end

11 Solve the nominal problem as in (4.2.5) and robust problem as in

(4.2.8) ;

12 Xr
i ←

Xr
i

2
;

13 Update X l
i and Xu

i as X l
i = max(0, X t

i −Xr
i ) and Xu

i = X t
i +Xr

i ;

14 end

15 Report the optimal HRES combination Xi and Ŷ TAC

Algorithm 3: Global Response Surface Technique



Chapter 5

Case study and results

The proposed approaches are tested on a hypothetical case study in northwestern

Ontario, Canada, which is the province’s most sparsely-populated region.

Figure 5.1: Northwestern Ontario

Solar, wind and demand power data are extracted from the Independent Electric-

ity System Operator (IESO) data directory [82] which works closely with Ontario’s

power system. Demand data is drawn from zonal demand reports which contain

hourly zonal demands, derived from operational meters, for the 10 zones in the

province, and one-year data related to Northwest Ontario demand is separated and

exploited from January 1, 2019 to December 31, 2019. Supply power output of solar

and wind is extracted, cleaned, organized and used from Generator Output and Ca-

pability Reports [83] which provides hourly output levels, grouped by fuel type, with

a maximum output capability of 50 kW and 1 kW for wind turbines and PV panels,

respectively for the same year. Reported power is the facility’s one-hour outputs

based on demand data and total, peak and average load demand are 4,428,870kWh,

734 kW and 505 kW, respectively. The size of the community this system serves is

37
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around 50,000 people. NaS battery modules, a high-temperature rechargeable bat-

tery that uses sodium for the negative and sulfur for the positive electrode [84] are

used as storage system. High power density, long battery lifetime (usually over 10

years), high efficiency of charge/discharge (up to 90%) and fabricated from inex-

pensive materials have primarily made NaS batteries suitable for stationary energy

storage applications. The last complementary element is a diesel generator to fill the

gap between supply and demand power are also considered as resources in this study.

Other parameters used to calculate the TAC are depicted in Table 5.1. The costs

of PV panels, wind turbines and the diesel generator are obtained from Unplugged

Power Systems [85], Atlantic Canada’s leader in alternative energy and characteris-

tics related to storage system is extracted from NGK Insulator, LTD [84].

Parameter Unit Value

CPV $/kW 2000

CWT $/kW 2200

Cbat $/kW 1000

CDG,1 $/kW 350

CDG,2 $/kW 0.182

SCbat kWh 200

MRbat kW 33

Lbat Full cycle 4500

n (Useful HRES lifetime) years 20

Table 5.1: Model parameters

5.1 Generation of Supply Scenarios

Since wind and solar resources are not constantly available and predictable, they

are referred to as intermittent energy resources. Under ideal conditions, each daily

profile can be considered a separated scenario to provide a comprehensive solution

appropriate for all circumstances. However, due to the high computational complex-

ity of large input data, and the time and cost limitations, clustering method is used

to decompose the data variability into a small number of scenarios. As the num-

ber of clusters increases, the variance between the centroids and points decreases,

yet, the computational burden increases too. Therefore, it is important to select
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an appropriate number of clusters to minimize within-cluster variance while being

computationally tractable. To do this, the k-means clustering process starts with a

small number of clusters and increases it incrementally until a certain threshold is

met, namely the reduction in the variance is 10% or lower relative to the previous

number of clusters. According to Figures 5.2 (a) and (b), the clustering algorithm is

applied on both the PV panels and the wind turbine power output data using differ-

ent number of clusters ranging between 2 and 6. 1000 replications of the clustering

procedure are run in order to avoid being trapped in local optima. The optimum

number of clusters found are four and three for PV panels and wind turbines power,

respectively.

(a) PV panels (b) Wind turbine

Figure 5.2: Variance of within-cluster sums of point-to-centroid distances

Due to the negligible influence of wind speed on solar radiation [86], PV and

wind scenarios are assumed independent and Pr(scenarioij) = Pr(PV scenarioi) ·
Pr(wind scenarioj). Therefore, the PV data is clustered into four groups and the

wind data is clustered into three groups, resulting in a total of 4× 3 = 12 scenarios.

Figure 5.4 illustrates the centroids of the extracted clusters for both the PV panels

and the wind turbines power.



40

(a) PV panels (b) Wind turbine

Figure 5.3: 24-element supply power centroid extracted from the time-series data

In order to generate annual power supply data, different members (days) are

selected randomly from their assigned cluster with replacement, and placed in suc-

cession 365 times. This makes a total of 365× 24 = 8760 power output data points

with one-hour intervals. It is worth mentioning that members (days) cannot be se-

lected randomly from different clusters in scenario creation since we do not know

which probability distribution to use in advance. Figure 5.4 illustrates the yearly

power supply profiles corresponding to the extracted scenarios, which are used in

this case study.

(a) PV Panels (b) Wind turbine

Figure 5.4: Generated annual supply power output

The probability of each supply power cluster is calculated in Table 5.2, which

makes the probability of scenarios a product of the related solar and wind clusters. As

an example, the probability of Scenario 2, which uses the supply power information

of PV panels’ first cluster and wind turbine’s second cluster is the product of both
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probabilities: 0.293×0.353 = 0.103. If the solar power is categorized into four groups

of high, medium, low and very low due to solar irradiance, 107 days of the year power

generated from PV panels are at their highest level, 85 days are at medium, 82 days

are at low and 91 days are at very low level in power generation. The same conclusion

is derived for wind clusters. The extracted supply power scenarios are used as inputs

in both approaches for metamodel fitting and optimization process in the next two

subsections.

No. PV members

(out of 365)
Probability PV

No. WT members

(out of 365)
Probability WT

Cluster 1 107 0.293 64 0.175

Cluster 2 85 0.233 129 0.353

Cluster 3 82 0.225 172 0.471

Cluster 4 91 0.249 - -

Table 5.2: Number of members and probabilities of clusters
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5.2 Classical RSM Results

The simulation and optimization algorithms are coded using Matlab and run on an

Apple machine having a M1 chip with 8-core CPU, 8-core GPU and 16-core Neural

Engine. Applying classical RSM as the first method, the optimization problem (4.1.1)

is solved with Gurobi solver which uses the simplex and interior point methods for

solving linear programming problems [87]. The final quadratic function is solved

using the first order optimality condition. The design factors and levels considered

for Resolution III (R-III) and Central Composite Design (CCD) are demonstrated in

Tables 5.3 and 5.4. As an example for R-III design, if the starting point is (NPV =200,

NWT =40, Nbat =650, CapDG =600), minimum and maximum level of search space

would be (190, 38, 520, 585) and (210, 42, 715, 630), respectively. Similar calculation

is made for CCD. Also, 16 cube, 12 central and 8 axial points are the total number

of combinations used in CCD for classical RSM.

Design variables
Level

Minimum Maximum

NPV -5% +5%

NWT -5% +5%

Nbat -10% +10%

CapDG -5% +5%

Table 5.3: Factors and Levels for R-III

Design variables
Level

-2 -1 0 +1 +2

NPV -10% -5% 0 +5% +10%

NWT -10% -5% 0 +5% +10%

Nbat -20% -10% 0 +10% +20%

CapDG -10% -5% 0 +5% +10%

Table 5.4: Factors and Levels for CCD

The results of solving and optimizing each scenario separately with classical RSM
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is summarized in the next three tables for three different penalty values. To com-

bine the two objectives into a single-objective problem, these values were selected

to demonstrate the trade-off between minimizing TAC and maximizing reliability,

otherwise higher values always lead to a 100% reliability. The optimal configuration,

best TAC, computational time required for every scenario, number of iteration in

steepest descent approach, level of reliability and step size used for every scenario

in steepest descent approach are reported in the columns of Table 5.5 for a penalty

factor $40 per kWh.

Approach
Scenario #

(PV#.WT#)
NPV NWT Nbat

CapDG

(kW)
TAC

Time

(s)

No.

iteration
Reliability

Starting

point

Step

size

1 (1.1) 232 18 298 222 $159,820 10.18 9 100% [250,25,380,300] 1.4328e-03

2 (1.2) 272 33 402 183 $270,923 10.02 9 100% [300,40,500,250] 1.4337e-03

3 (1.3) 462 52 904 698 $564,582 13.22 6 100% [400,75,800,600] 0.07282

4 (2.1) 162 21 385 367 $179,243 9.69 8 100% [200,25,420,400] 1.4332e-03

5 (2.2) 236 35 337 373 $289,021 10.73 13 100% [300,45,400,400] 1.4317e-03

6 (2.3) 537 60 708 737 $600,874 9.65 7 100% [550,80,700,600] 5.0448e-03

7 (3.1) 242 20 244 353 $180,134 10.50 12 100% [300,30,300,400] 1.4291e-03

8 (3.2) 250 38 354 407 $310,120 10.21 10 100% [300,45,400,450] 1.4332e-03

9 (3.3) 687 81 1084 694 $707,362 10.08 8 100% [500,85,700,700] 4.8258e-03

10 (4.1) 263 19 265 326 $181,212 10.07 8 100% [300,25,300,350] 1.4332e-03

11 (4.2) 372 28 594 655 $284,182 10.00 7 100% [400,35,600,600] 1.8709e-03

Classical

RSM

12 (4.3) 611 70 768 396 $638,476 10.83 11 99.22% [600,80,650,850] 2.3730e-03

Table 5.5: Optimal results for each scenario with $ 40/kWh penalty value

In the classical RSM, a starting point must be selected based on prior knowledge

in order to initiate the process. Its selection depends on the intensity of input power

data, therefore, it varies for different scenarios. Scenarios with high power generated

by renewable energy sources need fewer number of PV panels and wind turbines

and accordingly, they start with smaller starting point. The number of iterations,

computational time and the step size for each scenario are highly dependent on

the starting points. The further the starting point is selected from the optimal

configuration, the more time, number of iterations and larger step size (similar to

step size of scenario 3 in Table 5.5) are needed to come closer to the final point.

The step size in the last column is calculated similar to the fourth step of classical

RSM and Equation (4). The number of energy sources during the steepest descent

approach is rounded in every iteration rather than once at the end. The optimal
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solution reported in the TAC column is without a penalty, i.e. for scenarios with

reliability less than 100%, the penalty cost is deducted from TAC and the actual cost

is presented. According to this Table 5.5, scenario nine, which uses the third cluster

of both PV panels and wind turbine power output, has the highest cost amongst all

scenarios, whereas the first scenario, which used the supply data from first cluster of

both PV panels and wind turbine power, has the lowest cost.

Approach
Scenario #

(PV#.WT#)
NPV NWT Nbat

CapDG

(kW)
TAC

Time

(s)

No.

iteration
Reliability

Classical

RSM

1 (1.1) 130 13 148 68 $138,577 13.11 14 95%

2 (1.2) 205 24 344 124 $232,021 15.09 18 95%

3 (1.3) 376 46 776 432 $561,172 10.20 12 93%

4 (2.1) 155 14 298 409 $135,294 14.07 15 94%

5 (2.2) 204 25 405 238 $263,735 17.21 23 93%

6 (2.3) 300 57 410 383 $585,712 10.39 10 94%

7 (3.1) 209 13 202 328 $177,075 15.21 19 94%

8 (3.2) 208 23 287 337 $278,461 18.31 25 93%

9 (3.3) 230 49 442 527 $691,383 19.43 28 95%

10 (4.1) 140 15 246 98 $156,023 10.61 12 94%

11 (4.2) 300 23 347 236 $272,124 11.09 12 95%

12 (4.3) 209 42 402 378 $664,463 18.23 25 94%

Table 5.6: Optimal results for each scenario with $20/kWh penalty value

Choosing a high penalty cost ($40/kWh) for unmet demand has led to 100%

system reliability for almost all the scenarios since a large penalty must be incurred

for supply deficiency. Thus, lower values ($20 and $10) of penalty per kWh are also

tested and the results are presented in Tables 5.6 and 5.7. The same starting points

are used for these two tables. We notice that due to the lower value of penalty cost,

fewer number of sources are installed and accordingly, the TAC has reduced while

the system reliability has also decreased.
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Approach
Scenario #

(PV#.WT#)
NPV NWT Nbat

CapDG

(kW)
TAC

Time

(s)

No.

iteration
Reliability

Classical

RSM

1 (1.1) 106 12 85 25 $118,899 15.21 16 83%

2 (1.2) 170 21 220 65 $213,762 16.26 20 84%

3 (1.3) 220 40 334 187 $523132 16.02 19 83%

4 (2.1) 123 13 386 20 $129,249 12.74 14 84%

5 (2.2) 102 22 297 134 $255,326 18.23 25 85%

6 (2.3) 232 55 318 135 $538,153 11.83 12 84%

7 (3.1) 163 14 107 160 $169,224 15.67 19 84%

8 (3.2) 140 21 228 148 $276,822 19.68 27 86%

9 (3.3) 208 40 303 283 $645,428 22.65 32 85%

10 (4.1) 38 13 136 45 $148,130 12.25 14 83%

11 (4.2) 232 21 332 85 $263,328 12.61 15 84%

12 (4.3) 141 30 413 256 $625,923 21.05 30 85%

Table 5.7: Optimal results for each scenario with $10/kWh penalty value

When considering no ambiguity in the probabilities of scenarios, the best system

configuration found using the classical RSM for the nominal problem consists of 404

PV panels, 27 wind turbines, 642 battery modules and a diesel generator with 655

kW capacity, resulting in a TAC of $472,365 with $40/kWh penalty cost and 99.99%

LLP. As the penalty cost is decreased, the system tendency for allowing supply

shortage increases, which leads to a TAC of $452,041 for $20/kWh penalty cost and

95.06% LLP and a TAC of $413,673 for $10/kWh penalty cost and 84.53% LLP. A

summary of the nominal problem results for different penalty values is demonstrated

in Table 5.8.

Penalty

cost
NPV NWT Nbat

CapDG

(kW)
TAC Iteration Time (s) Reliability

Starting

point

Step

size

Classical

RSM

$40/kWh 404 27 642 655 $472,364 14 389.32 99.99% [500,40,750,750] 2.85e-03

$20/kWh 322 22 405 350 $452,041 20 522.03 95.06% [500,40,750,750] 2.85e-03

$10/kWh 243 18 330 245 $413,673 25 633.29 84.53% [500,40,750,750] 2.85e-03

Table 5.8: Nominal problem optimal cost and configuration

However, when there is uncertainty, it is important to have the ambiguity set
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as small as possible but not too small. Setting ρ = 0 obtains the risk-neutral ex-

pected value minimization of a stochastic programming problem using the nominal

distribution (i.e. the phi-divergence between p and q is zero). At the other extreme,

as ρ → ∞, the ambiguity set Pφ admits all possible distributions. The worst case

among all possible distributions is to move all the probability mass to the scenario

with the highest objective function value and set the probabilities of all the other

scenarios to zero. This gives the most risk-averse approach and clearly shows the role

of ρ as a risk-level parameter [73]. In this study, the highest value considered for ρ is

2, in which case all the probability mass is guaranteed to be moved to the scenario

with the highest TAC. The idea is to select an ambiguity set to reflect the perceived

risk from the data [73]. Towards this purpose, a sensitivity analysis is performed on

different values of ρ to determine the optimal TAC found based on different sizes

of the ambiguity set. Figure 5.5 illustrates a sensitivity analysis for three different

penalty cost on ρ using the classical RSM approach.

Figure 5.5: Classical RSM: Sensitivity analysis on ρ

As explained earlier, when ρ = 0 for a $40/kWh penalty cost, TAC is $472,521

which is quite close to the nominal problem ($472,364 ), whereas as ρ approaches 2

($708,054 for ρ = 1.8), the ambiguity set admits all possible distributions and TAC

becomes close to that of the worst-case scenario, scenario 9 in Table 5.5, with TAC of

$707,362. The same explanation goes to the problems with $20/kWh and $10/kWh

penalty factors. In the case with $20 penalty cost, when ρ = 0, TAC is $452,276
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which is close to nominal problem’s TAC of $452,041. As ρ approaches 2 ($690,834

for ρ = 1.8), TAC becomes close to that of the worst scenario, scenario 9 in Table

5.6, with TAC of $691,383. The negligible difference between these values might have

various explanations. It can happen because of the random DoE in every simulation

iteration. Also, there is a possibility that the search converges to a local optimum

in some cases.

If there is no ambiguity about the probability of scenarios, the nominal problem

solution is the optimal. However, when there is ambiguity, uncertain parameters can

randomly perturb the probabilities around their nominal values. Usually, a small

value of ρ leads to a better out-of-sample performance than the stochastic solution.

In this study, considering a penalty cost of $40/kWh, the best TAC found for the

robust problem is when ρ = 0.01, leading to a TAC of is $470,473 with 414 PV panels,

28 wind turbines, 640 battery modules and a diesel generator with 712 kW capacity

and 99% system LLP. The optimal solution achieved for ρ = 0.01 and $20/kWh

penalty cost is 257 PV panels, 22 wind turbines, 450 battery modules and a diesel

generator with 347 kW capacity. TAC of this configuration is $451,138 with 94.66%

LLP. Optimal robust solutions achieved for different penalty costs are depicted in

Table 5.9.

Penalty

cost
NPV NWT Nbat

CapDG

(kW)
TAC No. iteration

Time

(s)
Reliability

Classical

RSM

$40/kWh 414 28 640 712 $470,473 14 396.96 99.99%

$20/kWh 257 22 450 347 $451,138 21 546.38 94.66%

$10/kWh 244 17 325 238 $412,212 26 650.21 84.85%

Table 5.9: Robust problem optimal cost and configuration

In order to make sure that ρ = 0.01 is the actual optimum value of ρ (i.e., it did not

happen by accident) and it outperforms the nominal solution (ρ = 0), it is necessary

to perform a paired t-test for both ρ = 0 and ρ = 0.01 to determine which value

of ρ (size of ambiguity set) gives a better expected out-of-sample performance and

leads to a lower TAC. Therefore, the confidence interval for the difference between

the two expected response, Z = µ0 − µ0.01, is constructed to determine whether the

model (no jockeying) is an accurate representation of the system and whether there
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is significant difference between TAC calculated with ρ = 0 and ρ = 0.01. µ0,j and

µ0.01,j are paired together to define Zj = µ0,j − µ0.01,j for j = 1, 2, ..., n. Zj are IID

variables and they are normally distributed. Thus confidence interval for E(Zj) is

calculated as []

Z̄(n) =

∑n
j=1 Zj

n
(5.2.1)

and

ˆV ar[Z̄(n)] =

∑n
j=1[Zj − Z̄(n)]2

n(n− 1)
. (5.2.2)

and form the (approximate) 100(1− a) percent confidence interval as:

Z̄(n)± tn−1,1−α/2

√
ˆV ar[Z̄(n)] (5.2.3)

To asses the out-of-sample performance, 10 new random supply power realizations

are generated similar to the original supply data in Section 4.1, i.e. 365 random data

points are selected from both solar and wind clusters 10 times and new scenarios are

used as simulation inputs.

j µ0,j µ0.01,j Zj

1 472,922 470,102 2,820

2 472,180 470,232 1,948

3 472,831 469,927 2,904

4 471,555 470,520 1,035

5 472,374 470,396 1,978

6 471,899 471,123 776

7 472,911 471,021 1,890

8 472,893 471,262 1,631

9 471,795 470,714 1,081

10 472,207 470,824 1,383

Table 5.10: TAC for 10 independent realizations with two ρ = 0 and ρ = 0.01, and
their differences

TACs are calculated in Table 5.10 for $40/kWh penalty cost and assuming nor-

mality of sample mean difference (data plot appears linear in Figure 5.6) and α =
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0.01, a paired-t test is carried out. The obtained Z̄(10) = 1744.6 and ˆV ar[Z̄(n)] =

51593.6 lead to the (approximate) 90 percent confidence interval [1328.2, 2160.9] for

Z = µ0−µ0.01. Thus, with approximately 90 percent confidence, it can be concluded

that µ0 differs from µ0.01, and it furthermore appears that µ0.01 is superior, since it

leads to a lower TAC (between 1328.2 and 2160.9 lower).

Figure 5.6: Classical RSM: QQ Plot for Zj

The same assumption and calculations are done with new realizations for penalty

costs of $20/kWh and $10/kWh. The calculated confidence intervals with $20/kWh

and $10/k penalty cost for mean differences, Z = µ0 − µ0.01 are [964.6, 1645.5] and

[1069.0, 1709.9], respectively, indicating the superiority of ρ = 0.01 for lowest TAC.

It is unlikely to improve one index without harming other indexes in multi-

objective optimization. In general, a solution that is optimal for one objective might

be (and usually is) poor for the other(s). In this study, when a high penalty cost

is considered for unmet demand, the system attempts to install large number of

sources and storage capacity in order to avoid shortage, which will enhance the re-

liability and increase the TAC. On the other extreme, by having no penalty cost,

TAC can be reduced to zero by not installing any resources. However, the reliability

index becomes zero, too. Therefore, the purpose is to look for “non-dominated” (or

Pareto-optimal) solutions. In brief, the Pareto-optimal solution is defined as a set

of ”non-inferior” solutions in the objective space defining a boundary beyond which

none of the objectives can be improved without sacrificing at least one of the other
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objectives. Graphically, the set of nondominated solutions constitute the Pareto

Frontier. The frontier in Figure 5.7 is constructed to illustrate the trade-off between

TAC and reliability by changing the penalty cost and observing how the cost and

reliability change. Optimal TAC derived from robust problem in Table 5.9 and their

related reliability are drawn for three different penalty cost in Figure 5.10. Based on

this Pareto Frontier, when a high value of penalty is considered for unmet demand,

the system attempts to avoid any supply deficit and installs a large number of energy

resources, which leads to high system reliability and high TAC, accordingly. As the

penalty value decreases, the system allows more demand load to remain unmet since

less money needs to be paid on account of supply deficiency. System reliability with

$40/kWh penalty value is 99.99% and TAC is $470,473 and as penalty value reduces

to $10/kWh, system reliability drops below 85% and TAC reduces to $412,212.

Figure 5.7: Classical RSM: Pareto frontier for TAC vs reliability

Based on the Pareto frontier, the decision maker decides which objective has a

higher priority in system design. If a high level of system reliability is preferred, the

analyst may neglect the correspondent high TAC. However, if the main objective is

to reduce the TAC, the decision maker can selected the desired low TAC based on

its reliability index.
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5.3 GRST Results

In performing the first step of the GRST procedure, convexity of the estimated

quadratic function is assured by using CVX [88] version 2.2, a Matlab-based modeling

system for convex optimization. Each scenario is simulated and optimized using three

different penalty costs and their optimal configuration, solution, computational time,

number of iteration and reliability are illustrated in the next three tables. Tables

5.11, 5.12 and 5.13 are calculated with $40/kWh, $20/kWh and $10/kWh penalty

cost, respectively. It can be inferred from Table 5.11 that scenario 1, which uses

cluster 1 from both the PV and wind supply power, has the lowest TAC since fewer

renewable resources are needed when a high amount of power is generated. On the

contrary, scenario 9, which uses cluster 3 from both PV and wind as inputs, has the

highest cost due to the large number of required resources. The same conclusion can

be derived from Tables 5.12 and 5.13.

Approach
Scenario #

(PV#.WT#)
NPV NWT Nbat

CapDG

(kW)
TAC

Computational

Time (s)
Iteration Reliability

GRST

1 (1.1) 122 18 278 156 $148,720 17.25 9 100%

2 (1.2) 290 33 460 186 $272,907 13.57 8 100%

3 (1.3) 330 63 792 563 $585,298 14.54 8 99%

4 (2.1) 154 18 390 303 $160,030 13.69 8 100%

5 (2.2) 214 33 373 380 $272,029 15.33 9 100%

6 (2.3) 518 68 680 585 $632,415 13.65 8 99%

7 (3.1) 252 20 255 382 $187,639 15.42 9 100%

8 (3.2) 218 35 340 427 $293,317 15.11 9 100%

9 (3.3) 466 77 664 645 $710,267 13.64 8 100%

10 (4.1) 263 18 278 340 $174,194 15.17 9 100%

11 (4.2) 395 29 587 560 $283,589 16.11 9 99%

12 (4.3) 227 60 590 718 $697,880 15.26 9 100%

Table 5.11: Optimal results for each scenario with $40/kWh penalty value

GRST terminates when the difference between the lower and upper bounds of all

the variables are negligible. Therefore, the number of iterations depends on the lower

and upper limit of variables. All the costs stated in Ŷ TAC column are actual costs i.e.

the penalty cost is deducted from TAC in scenarios with reliability less than 100%.

To hold the same initial conditions for both methods, GRST upper bound and lower
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bound for each scenario are chosen based on the starting point of that scenario, i.e.

the staring point of each scenario in classical RSM is within the staring range of

GRST. For example, if the starting point is [500, 40, 750, 750] in classical RSM, con-

sidered upper bound and lower bound for GRST are [+20%,+25%,+20%,+20%] =

[600, 50, 900, 900] and [−20%,−25%,−20%,−20%] = [400, 30, 600, 600].

Approach
Scenario #

(PV#.WT#)
NPV NWT Nbat

CapDG

(kW)
TAC

Computational

Time (s)
Iteration Reliability

GRST

1 (1.1) 90 14 154 80 $139,478 13.73 8 94%

2 (1.2) 214 24 363 136 $234,343 13.81 8 95%

3 (1.3) 294 50 450 263 $562,062 12.01 7 93%

4 (2.1) 185 14 373 56 $136,409 14.07 8 95%

5 (2.2) 102 25 332 195 $263,084 15.82 9 95%

6 (2.3) 293 58 383 275 $586,971 13.39 8 94%

7 (3.1) 152 14 253 143 $176,440 15.21 9 95%

8 (3.2) 183 25 240 168 $277,962 15.31 9 93%

9 (3.3) 256 48 430 355 $692,291 13.44 8 94%

10 (4.1) 131 14 205 108 $156,916 17.71 10 94%

11 (4.2) 267 24 337 163 $271,225 15.09 9 94%

12 (4.3) 219 42 430 342 $665,446 13.81 8 93%

Table 5.12: Optimal results for each scenario with $20/kWh penalty value

Starting with a high penalty value ($40/kWh) for unmet demand in Table 5.11

has resulted in 100% LLP for most of the scenarios since high cost must be paid as

penalty for supply deficiency. Next, smaller values ($20 and $10) of the penalty per

kWh are also tested and the results are presented in Tables 5.12 and 5.13. The same

upper bound and lower bounds for each scenario are used for these two tables, and

due to lower penalty amount, fewer number of sources are installed and accordingly,

TAC has reduced while system reliability has also decreased.
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Approach
Scenario #

(PV#.WT#)
NPV NWT Nbat

CapDG

(kW)
TAC

Computational

Time (s)
Iteration Reliability

GRST

1 (1.1) 66 12 86 30 $121,546 14.02 8 82%

2 (1.2) 195 20 250 72 $218,046 15.23 9 84%

3 (1.3) 214 39 384 205 $525,281 13.86 8 83%

4 (2.1) 115 12 393 36 $130,449 13.77 8 84%

5 (2.2) 93 21 302 114 $254,232 15.22 9 85%

6 (2.3) 243 54 325 163 $539,115 13.78 8 84%

7 (3.1) 193 12 127 60 $168,884 15.07 9 84%

8 (3.2) 152 22 225 128 $275,682 15.48 9 86%

9 (3.3) 215 40 310 270 $646,401 13.76 8 84%

10 (4.1) 56 12 146 55 $148,633 15.26 9 83%

11 (4.2) 264 20 305 106 $264,681 15.01 9 84%

12 (4.3) 125 28 430 305 $627,092 13.35 8 85%

Table 5.13: Optimal results for each scenario with $10/kWh penalty value

To solve the nominal problem, a convex quadratic function is fit on each scenario

using Equation (4.2.5) and empirical probabilities derived from clustering are used

to obtain the optimal solution and configuration as in in Table 5.14 for all the three

penalty costs.

Penalty

cost
NPV NWT Nbat

CapDG

(kW)
TAC Iteration

Computational

time (s)
Reliability

GRST

$40/kWh 432 26 662 683 $472,565 11 199 99.99%

$20/kWh 357 20 422 345 $453,499 10 209 94.46%

$10/kWh 235 17 352 256 $414,603 11 222 85.55%

Table 5.14: Nominal problem optimal cost and configuration

Similar to the classical RSM approach, a sensitivity analysis on ρ is carried out

for the second approach, GRST and is demonstrated in Figure 5.8 for three different

penalty cost. For the first penalty cost, $40/kWh, like the previous method, when

ρ = 0, there is no ambiguity and the problem is similar to the nominal (stochastic

programming) problem ($472,565) with TAC of $472,893. Whereas when ρ is ap-

proaching its maximum value of 2, the TAC becomes close to the worst scenario,

scenario 9 ($710,267), with TAC of $709,234 (ρ = 1.8). Perturbing probabilities
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around their nominal values with small ρ, the best obtained TAC is with ρ = 0.01,

which is $471,327 with 421 PV panels, 25 wind turbines, 662 battery modules and a

diesel generator with 695 kW capacity.

Figure 5.8: GRST: Sensitivity analysis on ρ

A similar explanation can be given regarding the solutions with $20/kWh and

$10/kWh penalty costs. Due to their relatively lower costs, their plots situate below

the solutions of $40/kWh and as the size of the ambiguity set increases, their TAC

increases too. For a $20/kWh penalty cost, when ρ = 0, TAC is equal to $453,293

(nominal problem = $453,499) and as ρ gets closer to 2, the problem acts like the

worst scenario ($692,291) with a TAC of $691,534 (ρ = 1.8). Moreover, with a

penalty cost of $10/kWh, TAC is $414,823 and $645,921 with ρ = 0 and ρ = 1.8,

respectively. The nominal solution and the solution with ρ = 0 and also worst

scenario solution and solution with ρ = 2, must coincide in theory. However, due to

the random nature of GRST in every iteration for Monte Carlo simulation and the

probability of approaching to local optimum, there is negligible difference (less than

0.001) between their answers. The optimal solutions found for both robust problems

are with ρ = 0.01, which has led to the lower TAC in comparison to their nominal

problem. Best solutions and configurations found for the robust problem with three

different penalty costs are summarized in Table 5.15.
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Penalty

cost
NPV NWT Nbat

CapDG

(kW)
TAC Iteration

Computational

time (s)
Reliability

GRST

$40/kWh 421 25 662 695 $471,327 10 478 100%

$20/kWh 325 19 420 360 $452,527 11 505 93.52%

$10/kWh 218 16 345 275 $413,527 10 476 84.72%

Table 5.15: Robust problem optimal cost and configuration

A similar paired t-test is conducted to make sure there is significant difference

between results of ρ = 0 and ρ = 0.01 and that ρ = 0.01 does give a better expected

out-of-sample performance and leads to a lower TAC. Therefore, a confidence interval

for the difference between two expected response, Z = µ0 − µ0.01, is constructed

similar to the previous method and µ0,j and µ0.01,j are paired together to define

Zj = µ0,j−µ0.01,j for n new realizations. Z̄(n) and ˆV ar[Z̄(n)] are calculated according

to Equations (5.2.1) and (5.2.2) and the (approximate) 100(1−a) percent confidence

interval is constructed using Equation (5.2.3).

As done previously, 10 new random supply power realizations are generated sim-

ilar to the original supply data and TACs are calculated in Table 5.16 with a penalty

cost of $40/kWh.

j µ0,j µ0.01,j Zj

1 473,150 471,430 1,720

2 473,926 472,665 1,261

3 473,204 472,169 1,035

4 472,810 471,576 1,234

5 473,332 472,383 949

6 472,007 471,523 484

7 472,763 471,274 1,489

8 473,075 471,551 1,524

9 471,906 471,032 874

10 472,769 471,795 974

Table 5.16: TAC for 10 independent realizations with two ρ = 0 and ρ = 0.01 , and
their differences
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Assuming normality of the sample mean difference (data are scattered near the

straight line in Figure 5.9) and α = 0.01, a paired t-test is carried out. The obtained

Z̄(10) = 1154.4 and ˆV ar[Z̄(n)] = 13369.5 lead to the (approximate) 90 percent

confidence interval [942.4, 1366.3] for Z = µ0 − µ0.01. Thus, with approximately 90

percent confidence, it can be concluded that µ0 differs from µ0.01, and it furthermore

appears that µ0.01 is superior, since it leads to a lower TAC (between 942.4 and 1366.3

lower). The same assumption and calculation are done with new realizations for a

penalty cost of $20/kWh and $10/kWh. The obtained confidence intervals for the

mean differences, Z = µ0 − µ0.01 are [740.1, 1489.4] and [836.2, 1545.3] for $20/kWh

and $10/kWh, respectively, indicating the superiority of ρ = 0.01 for lowest TAC.

Figure 5.9: GRST: QQ Plot for Zj

Next, a Pareto frontier is drawn to demonstrate the trade-off between TAC and

reliability. As mentioned earlier, it is unlikely to improve one objective without

harming other objectives in multi-objective optimization. Looking for Pareto-optimal

solutions, the optimal TAC deduced from the robust problem in Table 5.15 and their

corresponding LLP values are plotted for three different penalty cost values in Figure

5.10. For a high penalty value such as $40/kWh, LLP of the system is near 100%

since no unmet demand is allowed due to the high penalty price added to TAC

($471,327). As penalty value decreases, e.g. $20/kWh, less cost is charged in terms

of unmet demand. Therefore, the system allows some demand load to remain unmet

for lower TAC ($453,127 and $413,527 ) which will also results in the lower LLP
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levels of 93.52% and 84.72% for $20 and $10 penalty values. From the obtained

solutions, the designers can choose the penalty costs they consider more appropriate

to their utility.

Figure 5.10: GRST: Pareto frontier for TAC vs reliability



Chapter 6

Conclusions and future extensions

Stand-alone HRES are generally more suitable than single-source systems to sup-

ply power in off-grid applications, especially in remote areas with difficult access.

However, these systems must be designed carefully and account for the stochasticity

and uncertainty in supply data to serve the demand at high reliability and afford-

able cost. In this study, a stand-alone HRES that consists of PV panels and wind

turbines, integrated with battery storage and diesel generator, is considered to imple-

ment a cost-minimization design approach. In order to capture uncertainty in supply

power, a finite number of scenarios with uncertain probabilities are extracted from

time-series data of both solar and wind power through k-means clustering. Next,

to tackle the uncertainty in scenarios’ probability, an ambiguity set based on the

Variation Distance phi-divergence is constructed around the nominal probability of

scenarios. Since TAC and reliability functions cannot be evaluated explicitly, two

novel robust simulation-optimization methods, namely Classical RSM and GRST,

are proposed to estimate the objective function from a surrogate model and opti-

mize it. Both approaches are applied on a hypothetical case study in Northwest

Ontario, Canada and they show that classical RSM outperforms GRST and it leads

to better solutions. The presented methods are very generic and flexible as they can

be used for different applications (not only HRES design), with different objectives,

operational rules, reliability metrics, scenario generation methods, ambiguity sets,

etc.

The Classical RSM first investigates the neighborhood of the starting point by

fitting a first-order polynomial and moves towards the optimal solution in the steepest

descent direction. Then, it fits a second-order polynomial on the neighborhood of

the last-reached solution. In GRST, a second-order polynomial is fit on the entire

feasible area from the beginning, then search regions are restricted around the latest

found optimal solution. Therefore, there is a high chance that the problem does

58
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not converge to a global optimum and instead gets stuck in a local optimum. The

classical RSM is highly dependents on the starting points and design variables’ levels,

i.e., R-III and CCD levels and intervals. CCDs are rather inefficient because they

use inefficient resolution-V designs and add 2k axial points and five values per factor

result. If the better outputs seem to lie in the certain corner of Figure 4.2, then it is

efficient to simulate only the two points (−c, 0)′ and (0,−c)′ for a better estimation

of the second-order polynomial [76]. To reach the optimal solution with the classical

RSM, the analyst must have a prior knowledge regarding the system. On the other

hand, GRST is an easy-to-implement method which gives a relatively good answer

in a short time.

Using classical RSM, the optimal solutions found for the nominal problem with all

the three penalty values lead to lower TAC values in comparison to second approach,

GRST. Running a sensitivity analysis on ρ for both methods in the robust problem,

the size of ambiguity set with ρ = 0.01 leads to a lower TAC in comparison to the

nominal problem, and conducting a paired t-test proves the same outcome for out-

of-sample performance. Regarding all numerical outcomes, classical RSM has led

to better optimal solution and reliability in comparison to GRST, while the GRST

computational time is relatively shorter than classical RSM. However the results from

the two approaches are not statistically different for various penalty values and their

difference is less than 0.5%. In the end, a Pareto frontier is depicted for both methods

to illustrate the trade-off between TAC as a results of different penalty values and

the level of system reliability. According to the frontiers, as the higher reliability

index is expected from HRES, higher amount of TAC needs to be paid in order

to satisfy the expectation. On the contrary, if the analyst prefers a less expensive

HRES (lower TAC), they shall accept a reduction in system reliability. To verify

the simulation, the optimal input combinations obtained from the metamodels are

checked and compared with the simulation model output, and insignificant differences

(less than 1%) between both outputs are found.

For future studies, other sources of renewable energy such as biomass, hydro,

etc. can be used alongside / instead of PV/wind/battery/diesel system in order to

build a robust and reliable energy system. Moreover, other objectives like minimiz-

ing GHG emissions and minimizing energy losses can be considered alongside cost
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minimization and reliability maximization. Also, alternative metamodel-based ap-

proaches for simulation optimization similar to Kriging and neural network can be

implemented to estimate the objective function as a surrogate model. Finally, other

types of phi-divergence such as Kullback-Leibler, χ2 distance, can be utilized to con-

struct the ambiguity set and compared with the currently-used Variation Distance

phi-divergence.
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[32] R. Dufo-López and J. L. Bernal-Agust́ın, “Design and control strategies of pv-
diesel systems using genetic algorithms,” Solar energy, vol. 79, no. 1, pp. 33–46,
2005.
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[61] T. Dragičević, H. Pandžić, D. Škrlec, I. Kuzle, J. M. Guerrero, and D. S.
Kirschen, “Capacity optimization of renewable energy sources and battery stor-
age in an autonomous telecommunication facility,” IEEE Transactions on Sus-
tainable Energy, vol. 5, no. 4, pp. 1367–1378, 2014.

[62] E. Delage and Y. Ye, “Distributionally robust optimization under moment
uncertainty with application to data-driven problems,” Operations research,
vol. 58, no. 3, pp. 595–612, 2010.

[63] F. Alismail, P. Xiong, and C. Singh, “Optimal wind farm allocation in multi-
area power systems using distributionally robust optimization approach,” IEEE
Transactions on Power Systems, vol. 33, no. 1, pp. 536–544, 2017.

[64] A. Ben-Tal, D. Den Hertog, A. De Waegenaere, B. Melenberg, and G. Rennen,
“Robust solutions of optimization problems affected by uncertain probabilities,”
Management Science, vol. 59, no. 2, pp. 341–357, 2013.

[65] L. Pardo, Statistical inference based on divergence measures. CRC press, 2018.

[66] S. Moghaddam and M. Mahlooji, “Robust simulation optimization using ϕ-
divergence,” International Journal of Industrial Engineering Computations,
vol. 7, no. 4, pp. 517–534, 2016.

[67] Z. Wang, P. W. Glynn, and Y. Ye, “Likelihood robust optimization for data-
driven problems,” Computational Management Science, vol. 13, no. 2, pp. 241–
261, 2016.

[68] D. Klabjan, D. Simchi-Levi, and M. Song, “Robust stochastic lot-sizing by
means of histograms,” Production and Operations Management, vol. 22, no. 3,
pp. 691–710, 2013.

[69] G. C. Calafiore, “Ambiguous risk measures and optimal robust portfolios,”
SIAM Journal on Optimization, vol. 18, no. 3, pp. 853–877, 2007.

[70] C. D. Barley and C. B. Winn, “Optimal dispatch strategy in remote hybrid
power systems,” Solar Energy, vol. 58, no. 4-6, pp. 165–179, 1996.

[71] J. L. Bernal-Agust́ın and R. Dufo-Lopez, “Simulation and optimization of stand-
alone hybrid renewable energy systems,” Renewable and sustainable energy re-
views, vol. 13, no. 8, pp. 2111–2118, 2009.



67

[72] S. Miyamoto, H. Ichihashi, K. Honda, and H. Ichihashi, Algorithms for fuzzy
clustering. Springer, 2008.

[73] G. Bayraksan and D. K. Love, “Data-driven stochastic programming using phi-
divergences,” in The Operations Research Revolution, pp. 1–19, INFORMS,
2015.

[74] H. Rahimian, G. Bayraksan, and T. Homem-de Mello, “Identifying effective
scenarios in distributionally robust stochastic programs with total variation dis-
tance,” Mathematical Programming, vol. 173, no. 1, pp. 393–430, 2019.

[75] G. E. Box and K. B. Wilson, “On the experimental attainment of optimum
conditions,” Journal of the royal statistical society: Series b (Methodological),
vol. 13, no. 1, pp. 1–38, 1951.

[76] J. P. Kleijnen, “Design and analysis of simulation experiments,” in International
Workshop on Simulation, pp. 3–22, Springer, 2015.

[77] J. P. Kleijnen, D. Den Hertog, and E. Angün, “Response surface methodol-
ogy’s steepest ascent and step size revisited,” European Journal of Operational
Research, vol. 159, no. 1, pp. 121–131, 2004.

[78] J. P. Kleijnen, “Response surface methodology for constrained simulation op-
timization: An overview,” Simulation Modelling Practice and Theory, vol. 16,
no. 1, pp. 50–64, 2008.

[79] M. Bashiri and F. Samaei, “Heuristic and metaheuristic structure of response
surface methodology in process optimization,” in 2011 IEEE International Con-
ference on Industrial Engineering and Engineering Management, pp. 1495–1499,
IEEE, 2011.

[80] J. P. Kleijnen, “Simulation and optimization in production planning: a case
study,” Decision Support Systems, vol. 9, no. 3, pp. 269–280, 1993.

[81] D. R. Jones, “A taxonomy of global optimization methods based on response
surfaces,” Journal of global optimization, vol. 21, no. 4, pp. 345–383, 2001.

[82] I. E. S. Operator, “Data directory.” http://www.ieso.ca/en/Power-Data/

Data-Directory, 2020.

[83] T. I. E. S. O. (IESO), “Generator output and capability.” http://reports.

ieso.ca/public/GenOutputCapability/, 2021.

[84] N. Insulators, “Structure of nas energy storage system.” https://www.

ngk-insulators.com/en/product/nas-configurations.html, 2021.

[85] unplugged Power Systems, “Atlantic canada’s leader in alternative energy..”
https://unpluggedpowersystems.ca/, 2021.

http://www.ieso.ca/en/Power-Data/Data-Directory
http://www.ieso.ca/en/Power-Data/Data-Directory
http://reports.ieso.ca/public/GenOutputCapability/
http://reports.ieso.ca/public/GenOutputCapability/
https://www.ngk-insulators.com/en/product/nas-configurations.html
https://www.ngk-insulators.com/en/product/nas-configurations.html
https://unpluggedpowersystems.ca/


68

[86] M. Yazdani, M. Salam, and Q. Rahman, “Investigation of the effect of weather
conditions on solar radiation in brunei darussalam,” International Journal of
Sustainable Energy, vol. 35, no. 10, pp. 982–995, 2016.

[87] G. Optimization, “Linear programming (lp) – a primer on the basics.” https:

//www.gurobi.com/resource/linear-programming-basics/, 2021.

[88] C. Research, “Cvx: Matlab software for disciplined convex programming.”
http://cvxr.com/cvx/, 2012.

https://www.gurobi.com/resource/linear-programming-basics/
https://www.gurobi.com/resource/linear-programming-basics/
http://cvxr.com/cvx/

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Literature Review
	Model-based Methods
	Heuristic Methods
	Commercial Solvers

	Metamodel-based Methods
	Response Surface Methodology

	Distributionally-Robust Optimization (DRO)

	Problem description and modelling
	Operational Rules
	Stochastic supply model
	Phi-divergence ambiguity set

	Solution Methodology
	Classical Response Surface Methodology
	Global Response Surface Technique (GRST)

	Case study and results
	Generation of Supply Scenarios
	Classical RSM Results
	GRST Results

	Conclusions and future extensions
	Bibliography

