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ABSTRACT

The Labrador Sea is a key region for the transport of anthropogenic carbon (Cant) into

the ocean interior. The formation of Labrador Sea Water (LSW) provides a direct path

for atmospheric gases to be exchanged with the deep ocean. However, model projections

suggest there is potential for significant future reduction of convection depth and LSW

formation in response to increased freshwater input from Greenland. In order to predict

how physical changes will affect the fate of Cant in the Labrador Sea, it is crucial to

understand how the storage of Cant has been evolving in the region.

In this PhD thesis I present the first multi-decadal (1993-2016) estimate of Cant in the

Central Labrador Sea based on two indirect methods (Transit Time Distribution; TTD

further extended to 1986, and extended Multiple Linear Regression; eMLR), and I compare

these estimates to Dissolved Inorganic Carbon (DIC) observations.

I first focus on the quality of the carbonate chemistry data by assessing the internal

consistency of the carbonate system. I recommend best practices to perform calculations

of the carbonate system parameters and I highlight the importance of conversion to in situ

conditions of temperature and pressure for comparisons with measurements performed

with autonomous sensors.

For the application of the TTD method I calculate the saturations of CFC-12 and SF6

from observations and show their strong temporal variability in this region. Therefore I

provide reconstructed saturations of these tracers to accurately estimate Cant with the TTD

method here.

By using the eMLR method with different time intervals and starting years, I show

that the choice of starting year can greatly affect the estimates of Cant storage rate and

therefore mislead the interpretation of the role of the Labrador Sea in sequestering Cant.

Both methods to estimate Cant highlighted the importance of assumptions implied in a

proxy method, they revealed that the storage of Cant is non-steady over time and that the

temporal variability of the Cant storage in the region appears to be associated to the strength

of convection.

Overall this thesis highlights the importance of a multi-disciplinary long-term monitoring

program and represents a solid base for validation of biogeochemical models.
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CHAPTER 1

INTRODUCTION

1.1 The Oceanic Carbon Sink

Atmospheric levels of carbon dioxide (CO2) have been dramatically increasing since the

industrial revolution as the result of fossil fuel burning and land use change (Keeling et al.,

2005). The change in carbon dioxide concentrations relative to pre-industrial values due to

anthropogenic activities, like fossil fuel combustion and cement manufacture, is defined as

“excess” or “anthropogenic” carbon dioxide (Excess CO2 or Cant; Wallace, 2001).

Only a fraction of the carbon emitted stays in the atmosphere (the “airborne fraction”)

since other sinks, namely the ocean and land, also remove and store anthropogenic CO2 as

part of the global carbon cycle. The ocean represents one of the strongest sinks of Cant with

a cumulative net sink representing approximately 40-45% of the CO2 emitted by fossil fuel

burning over the past 200 years (DeVries, 2014; Gruber et al., 2019b; Khatiwala et al.,

2013; Sabine et al., 2004).

Because the Excess CO2 in the ocean represents only a fraction of the total dissolved

CO2, it is difficult to distinguish the anthropogenic signal from the natural one. Additional

complications are due to the lack of analytical procedure to measure Cant concentrations.

In fact direct observation of the increase in Cant concentrations in the ocean is only possible

if changes in the isotopic signature of CO2 are taken into account (Seuss Effect; Keeling,

1979).

For these reasons, several indirect methods have been developed to obtain an estimate of

Cant concentrations in the ocean (see Sabine and Tanhua, 2010, for a detailed summary of

the methodologies available). These methods have been developed based on both carbonate

chemistry and transient tracers data, as well as employing ocean modelling. A common
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assumption of these methods is that they imply a steady-state ocean circulation between the

pre-industrial’s and today’s conditions. Nevertheless, it is very likely that this assumption

of steady-state ocean circulation is not representative of the real ocean, particularly for

highly dynamic regions like the Labrador Sea. In order to obtain a better understanding

of if a steady-state ocean assumption is reasonable, there is a need for long time series of

ocean observations which are currently a rarity.

The above-mentioned methods to estimate Cant have been applied to assess the column

inventories of Cant (Gruber et al., 2019b; Khatiwala et al., 2009; Sabine et al., 2004;

Waugh et al., 2006), and to quantify the air-sea fluxes and transport of this gas in the ocean

interior (DeVries, 2014; Gruber et al., 2009; Gerber et al., 2009; Khatiwala et al., 2013;

Mikaloff Fletcher et al., 2006). While the values of global net oceanic sink of Cant obtained

by these different methods agree within their uncertainties, significant differences in the

Cant distribution are observed regionally and along the water column.

Nevertheless, all the approaches show that the highest vertically integrated concentra-

tions of Cant are found in the North Atlantic1, making this region the most intense open

ocean accumulation area of anthropogenic carbon in the global ocean (DeVries, 2014;

Gruber et al., 2019b; Khatiwala et al., 2013, 2009; Sabine et al., 2004; Waugh et al.,

2006).

1.2 Cant in the North Atlantic: Storage, Uptake and
Transport

The excess or anthropogenic CO2 can be exchanged from one reservoir to another,

in fact Cant makes its way into the ocean through the air-sea interface. This flux or net

transport of Cant from the atmosphere to the ocean is defined as “Uptake” (U). On the other

hand, a change in the inventory over time within a reservoir is defined as “Storage” (S).

While storage and uptake of a reservoir must be equal on a global scale, in the ocean

they could be geographically decoupled. Indeed uptake of Cant occurs in certain regions on

a larger scale than in others, and the storage of this Cant can also regionally vary due to

lateral transport (Tin and Tout) with either convergence or divergence of ocean currents

(Wallace, 2001). The storage (i.e., rate of accumulation) in a conceptual box can therefore

1With different methods showing Cant column inventories estimates ranging between 90 and 120 mol
m−2 in 1994 in the Labrador Sea.
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be summarized as by the following equation:

S =
TIN − TOUT
Surface Area

+ U (1.1)

where S refers to storage (in mol m−2 y−1), TIN and TOUT represents the net transport

into and out of the box (in mol y−1), z is the bottom depth, the surface area is the area

between the two transects used to calculate the transport (in m−2) and U refers to the

perturbation of the natural flux of CO2 across the air-sea surface, or uptake due to higher

atmospheric CO2 (in mol m−2 y−1).

One of the first global studies by Sabine et al. (2004) estimated the oceanic storage

and studied the distribution of Cant through the water column in the main ocean basins

(Atlantic, Pacific and Indian). They observed that while most of Cant was confined to the

near-surface waters due to gas exchange across the air-sea interface (about 50% of Cant

was found at depths above 400 m), entrainment of Cant in the ocean interior occurs in

convergence zones, particularly in the North Atlantic, with vertical penetration reaching

3000 meters (m) depth. On the other hand, a much shallower entrainment is observed in

equatorial regions. The reason for this irregular distribution of Cant is to be found in the

presence of either deep water formation or upwelling areas. Waters that have been recently

in contact with the atmosphere, and have therefore high concentration of anthropogenic

carbon, are transported in the ocean interior in deep convection zones like the Labrador

and Irminger Seas in the North Atlantic. In contrast, when upwelling occurs old waters,

with very low concentrations or no Cant, are moved toward the surface where they get

exposed to high concentrations of this gas. The dynamics described by Sabine et al. (2004)

highlighted the central role that the Northwest Atlantic plays in the global sequestration of

excess CO2, and conveyed interest of the carbon community in this region. The authors

estimated that, despite representing only 15% of the global ocean area, the North Atlantic

accounts for about 23% of the anthropogenic CO2 of the global ocean. Another study by

Tanhua et al. (2007), showed that an even more broad distribution of Cant is found in the

North Atlantic water column. The entrainment observed in this study implies that more

Cant, than what previously estimated by Sabine et al. (2004), is reaching deeper parts of the

ocean therefore potentially affecting the calcite and aragonite saturation horizons (limits

between waters that are saturated and unsaturated with respect to calcite and aragonite).

3



Estimates of Cant from different methods agree within their uncertainties on a global

scale but the vertical and regional distribution, uptake and transport of Cant are still under

debate. In particular the highest storage of Cant in the North Atlantic has been identified in

different areas due to different locations of transport convergence. While studies involving

Ocean General Circulation Models (OGCM) identified the subtropical North Atlantic as

the major area of Cant storage (Mikaloff Fletcher et al., 2006; Gerber et al., 2009; Gruber

et al., 2009), a study with an Ocean Circulation Inverse Model (OCIM) assessed that

this higher storage occurs further north at mid-latitudes (DeVries, 2014). Nevertheless,

a slightly northward sink is to be trusted as the southward shift of the maximum sink

strength in the former models is due to an erroneous production of North Atlantic Deep

Water (NADW) occurring too far south in the model.

Using five different estimates of Cant (four carbon-based and 1 tracer-based) in the whole

Atlantic Ocean, Vázquez-Rodrı́guez et al. (2009) found that while these methods are highly

correlated and have similar variances in the large scale, significant regional variability is

found among them particularly in the Antarctic Bottom Water (AABW) and the Nordic

Seas. Furthermore the differences between methods of Cant estimation are small in the

Subtropics but larger for polar regions. Also in this study, as for OGCM approaches, the

authors found that despite the method used, the maximum Cant values are found in the

subtropical gyre of the North Atlantic (between 20◦ and 50◦ N). Although different authors

do not fully agree on the location of the highest storage in the North Atlantic, there is

consensus on the fact that the water column inventory of Cant in this region is the highest

in the global ocean.

Despite this higher storage in the North Atlantic, there have been suggestions that the

present-day flux of CO2 across the air-sea interface, or Uptake, particularly in the sub-polar

region, is not necessarily due to local perturbation by anthropogenic carbon (Pérez et al.,

2013). In fact, carbon based Cant calculations coupled with water mass transport estimates

made along several zonal transects of the North Atlantic (from 25◦ N to the Bering Strait)

showed that the air-sea flux of Cant is confined to the subtropical region of the basin, while

the subpolar area is characterized by exchange of natural CO2 across the interface. Pérez

et al. (2013) identified that the main source of anthropogenic carbon into the subpolar

region is the northward transport of tropical waters with high concentration of Cant. A

possible explanation for this differential uptake of anthropogenic and natural carbon by
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Figure 1.1: Conceptual box representing the high storage of Cant in the North Atlantic due
to potentially different processes according to different authors. Note that all processes
shown in this schematic refer to Cant.

the subtropical and subpolar regions of the North Atlantic is that waters coming from

the South Atlantic reach saturation with respect to Cant while moving northward into the

subpolar gyre. This uptake decreases the capacity of this tropical water for further uptake

with respect to Cant. Therefore, contrarily to ocean inversions models that indicate a strong

air-sea uptake of Cant (DeVries, 2014; Mikaloff Fletcher et al., 2006), the study by Pérez

et al. (2013) showed evidences that it is the advection of southern Cant-rich waters, the

main driver of the high storage of anthropogenic carbon in this region. In Figure 1.1

a conceptual box of the North Atlantic illustrates the relative importance of different

processes in determining a high storage of Cant in the North Atlantic. The left box shows

a high storage in the North Atlantic as a consequence of strong air-sea uptake of Cant

as suggested by DeVries (2014) and Mikaloff Fletcher et al. (2006), while the right box

represents a high storage due to strong lateral transport of Cant as suggested by Pérez et al.

(2013).

By using DIC observations from different sections in the South Atlantic a previous study

by Holfort et al. (1998) also studied the meridional transport of DIC, and similarly to Pérez

et al. (2013) showed how the anthropogenic CO2 is moved from the tropics into the North

Atlantic. Although higher concentrations of natural CO2 are found in cold waters due to

higher solubility at low temperatures, counterintuitively higher concentrations of Cant are

found in warm waters (Wallace, 2001). This is due to the Uptake Factor (or Revelle factor)

that increases with increasing temperatures, and may therefore contribute to the northward

transport of Cant described by Pérez et al. (2013).
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On the other hand, a more recent study by Ridge and McKinley (2020) further validates

the model-based theory that the air-sea uptake of Cant occurs in the subpolar North Atlantic.

Based on a combination of models and observations, the authors found that the subpolar

air-sea flux of Cant could be sustained by Cant-depleted waters which are advected through

a subsurface pathway known as the nutrient stream. It is important to highlight that all

the studies mentioned include different definitions of subpolar and subtropical regions,

with their boundaries set at different latitudes of the North Atlantic, which complicates the

reconciliation of their results.

Further complications in understanding the North Atlantic uptake and storage of Excess

CO2 arises from the temporal variability of the convection and deep-water formation.

Indeed deeper convection in certain years could result in a stronger uptake of Cant compared

to years with shallow water formation and therefore impact the storage rate among years.

1.3 Study Site: The Labrador Sea

Until recently, the Labrador Sea (see Figure 1.2) was thought to play a central role in in-

fluencing the Atlantic Meridional Overturning Circulation (AMOC) variability (Yashayaev,

2007) through temporal changes of the local formation of the Labrador Sea Water (LSW).

More recent findings have highlighted the possibility that the transformation of shallow

Atlantic waters into cold and deep waters occurring in the Irminger and Iceland basin could

have a more central role in the variability of the overturning circulation than previously

expected (Lozier et al., 2019).

Nevertheless, this basin has a crucial role in the transport of gases into the ocean interior.

The Labrador Sea represents a strong sink for CO2 primarily as a result of biological carbon

drawdown in spring and summer (Körtzinger et al., 2008) and the formation and transport

of recently-ventilated water masses (i.e., LSW) which causes the storage of anthropogenic

CO2 to be the most intense in the world ocean (DeVries, 2014; Gruber et al., 2019b; Sabine

et al., 2004). The magnitude of the regional carbon sink and carbon storage, the variability

of LSW formation on inter-annual and longer timescales (Yashayaev and Loder, 2016) and

the potential for future reductions of LSW formation due to increased freshwater input

from Greenland (Böning et al., 2016), requires a need for long-term monitoring of ocean

carbon in this region.
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Figure 1.2: Map of the Labrador Sea. The white dots represent stations sampled between
1992 and 2016 along the AR7W line located across the basin, and stations sampled on a
southward transect in 1986. LC; Labrador Current. EGC; East Greenland Current. WGC;
West Greenland Current. IC; Irminger Current.

1.3.1 Circulation in the Labrador Sea and Labrador Sea Water (LSW)
formation

In winter, when cold Arctic air flows on the Labrador Sea, an intense air-sea heat

exchange occurs. This, combined with subpolar gyre circulation, results in the formation

of an intermediate water mass defined as Labrador Sea Water (LSW) through the process of

deep convection. Whereas deep convection has been observed during positive phases of the

North Atlantic Oscillation (NAO+; characterized by cooling and freshening in the Labrador

Sea), periods of low convective renewal of LSW were associated to negative phases of NAO

(NAO−, characterized by higher temperature and salinity). Nevertheless this relationship
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between LSW renewal and NAO index does not fully explain the variability of deep

convection in the Labrador Sea. The onset of deep convection is more complicated, in fact

it has been recognized that preconditioning can play an important role in its regulation

(Yashayaev, 2007) and that LSW renewal can also occur with both little evidence of

preconditioning and low NAO index (Våge et al., 2009).

The salinity and temperature signals of the Labrador Sea Water spread across the North

Atlantic toward the north-eastern side of the basin, and southward along the western

boundary of the North Atlantic. The Labrador Sea circulation is characterized by two cold

and relatively fresh boundary currents, the Labrador and West Greenland Currents (LC

and WGC) that flow along the Labrador Sea margins. The Labrador Current is formed in

the northern and western peripheries of the basin, it is an extension of the Baffin Island

Current (originating in the Arctic) which is modified by the West Greenland Current

and the Hudson Strait overflow water. This current flows southward along the Labrador

shelf/slope exporting cold and fresh water into the North Atlantic. Further off-shore, an

inflow of warmer and saltier waters of North Atlantic origin, is found on the eastern side of

the basin and undertakes a counterclockwise path. This flow originates in the Irminger Sea

and is therefore most commonly defined as the Irminger Current (IC). This current moves

along the Western Greenland slope and when reaches the north-east slope it divides in two

branches: one moves further North into the Davis Strait and the Baffin Bay, the second

deflects westward and can be traced around the Labrador Sea all the way to the west side

of the basin. On its path from the eastern to the western coast the Irminger Current turns

thinner, cooler and fresher along the Labrador coast (Yashayaev, 2007).

The vertical structure of the Central Labrador Sea is characterized by homogenous cold

and fresh LSW. This, depending on the depth of convection reached every year, can be

generally found between 500 and 2000 m depth (the deepest convection ever observed

reached 2400 m in 1994). Below the LSW lies a salty water mass of Atlantic origin

called the North East Atlantic Deep Water (NEADW). This water mass originates from

the Iceland-Scotland Overflow Water that enters the North Atlantic through the Iceland-

Faroe-Scotland Ridge and modifies its characteristics turning into a high saline water due

to mixing with upper salty and warm waters (e.g., Subpolar Mode Water). The core of the

NEADW2 is therefore defined as the maximum in salinity below 1500 m. Below the layer

2Typical ranges of salinity and temperature for the NEADW are 34.892-34.933 and 2.3-2.8◦C, respec-
tively.
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of NEADW, a cold, dense and fresh water mass called Denmark Strait Overflow Water

(DSOW3) is found. This is the densest water mass observed in the Labrador Sea and it

enters into the basin from the Greenland Sea after flowing into the Irminger Sea. The core

of this water mass is defined as 200 m elevation from the bottom of the basin (Yashayaev,

2007).

These water masses have different physical and chemical properties. Indeed they are

characterized by different ages (or ventilation ages, as shown by measurement of transient

tracers like CFCs (Azetsu-Scott et al., 2005, 2003), but also different inorganic carbon and

nutrients content. Because of the multiple pathways and times that these waters take to

reach the Labrador Sea, it should be possible to observe different signals of anthropogenic

carbon, with older water having lower concentrations compared to younger water masses.

1.3.2 Cant in Labrador Sea

Because of its physical circulation and the formation of LSW, the Labrador Sea rep-

resents a direct path for atmospheric gases to the ocean interior (a trap door mode of

ventilation as defined in Bernardello et al., 2014; De Lavergne et al., 2014). In particular,

it has been shown that a significant portion of the total anthropogenic CO2 sequestered by

the North Atlantic flows through the Labrador Sea (Tait et al., 2000), and an increasing

storage of Cant has been observed in the Central part of the basin between 1993 and 1997,

with a peculiar vertical structure. The upper water column (between 200 and 1500-2000

m) is characterized by vertically homogeneous high concentrations of Cant (LSW layer).

Below this recently ventilated and well mixed convective layer, a minimum in Cant con-

centrations corresponding to the NEADW is found. Finally, increasing concentrations are

observed in the deepest 200 m, within the DSOW (Tait et al., 2000). This vertical structure

is closely related to the ventilation time of the different water masses in the basin (i.e., the

time elapsed since they were last in contact with the atmosphere). The LSW is a newly

ventilated water mass formed every winter in the Central Labrador Sea; it is therefore a

“young” water mass and has a relatively high content of anthropogenic CO2. Similarly the

DSOW is also a water mass of recent formation and displays a higher concentration of Cant

in the deepest layer of the basin. On the other hand the NEADW was last in contact with

the atmosphere earlier than LSW and DSOW, and is therefore characterized by a local Cant

minimum (Tait et al., 2000).
3Typical ranges of salinity and temperature for the DSOW are 34.858-34.909 and 1.1-1.6◦C, respectively
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Several prior studies have discussed the capacity of the Labrador Sea to take up and store

anthropogenic carbon. Despite the high concentrations of Cant in the Labrador Sea, a study

by Terenzi et al. (2007) which applied the Transit Time Distribution (TTD) approach to

“Classical” Labrador Sea Water (cLSW4) in the North Atlantic, suggested that the exchange

of CO2 across the sea surface in the Labrador Sea cannot keep pace with its transport into

the ocean interior. This implies that the Labrador Sea is highly undersaturated with respect

to Cant in the atmosphere.

Another study by Steinfeldt et al. (2009) between 20◦ S and 65◦ N in the Atlantic

identified the maximum Cant column inventory to be located in the Labrador Sea. Although

the inventory of Cant in this whole region has been increasing, tracking the atmospheric

increase of CO2, the authors did not observe the same pattern in correspondence of the

LSW over the period studied, which could be explained by a weakening in the rate of LSW

formation between 1997 and 2003. The decreased formation of newly ventilated water

resulted in an “aging” effect on the water mass which translated into a decreased column

inventory of Cant in the western subpolar North Atlantic, but an increased inventory in the

eastern part, most likely due to larger export of LSW formed in the western basin into the

northeastern region prior to 1997 (Steinfeldt et al., 2009).

Comparable to Steinfeldt et al. (2009), finding of a decrease of Cant storage rates of

about -2 mol m−2 y−1, between the early 1990s and 1997-2006 was also observed in the

southern Irminger Sea (Perez et al., 2008). Nevertheless, at the time when these studies

were published it was still not possible to define whether the change in column inventory

was part of a long-term trend, perhaps associated with climate change, or the result of

natural decadal variability in water mass formation. This makes the large availability

of data across the Labrador Sea particularly useful to identify the nature of temporal

variability from a longer time series.

1.3.3 The Labrador Sea Monitoring Program

A long-term (multi-decadal) monitoring program in the Labrador Sea has been main-

tained by Fisheries and Oceans, Canada (DFO) - Bedford Institute of Oceanography (BIO).

The monitoring program involves annual occupations of a GO-SHIP repeated hydrography

section called AR7W (originally started during the WOCE program, and continued during

CLIVAR; see Figure 1.2) which crosses the Labrador Sea and that monitors variability
4The cLSW is commonly defined as water within a fixed density range of 36.82 ≤ σ2 ≤ 36.97 kg m−3
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Table 1.1: Summary of monitoring program with years of sampling for each variable used
in this study (the monitoring program is ongoing and new observations are available). (S =
discrete measurement of salinity; CTD = includes conductivity, temperature and pressure
measurements).

Parameters

S CTD O2 NO3
– NO2

– PT SiT TA
Year 1992-

2016
1992-
2016

1992-
2016

1992-
2016

2012-
2016

1992-
2016

1992-
2016

1995-
2016

DIC pH pCO2 CFC-
12

CFC-
11

CFC-
113

CCl4 SF6

Year 1992-
2016

2012-
2016

2013-
2016

1992-
2016

1992-
2010

1992-
2010

1992-
2010

2012-
2016

in the formation of the LSW (Kieke and Yashayaev, 2015) as well as the physical and

chemical characteristics of high-latitude-derived water masses that contribute to the North

Atlantic Deep Western Boundary Current.

Along this transect a time series from 1992 until present is available for a broad suite of

chemical (nitrate, NO3
– ; nitrite, NO2

– ; soluble reactive phosphorus, PT; silicate, SiT; chlo-

rofluorocarbons, CFCs; sulfur hexafluoride, SF6; total alkalinity, TA; dissolved inorganic

carbon, DIC; pH and partial pressure of CO2, pCO2), physical (Temperature, Salinity, den-

sity and velocities) and biological (chlorophyll, zooplankton nets) parameters (see Table

1.1). This large availability of oceanographic variables contributes to this study, allowing

the application of several indirect methods to estimate the anthropogenic component of the

carbon storage in this basin.
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1.4 Thesis Objectives

Even though estimates of Cant from different methods agree on a global scale, conflicting

results on the regional uptake, storage and transport of anthropogenic CO2 still remain

(particularly in key regions like the Labrador Sea). Therefore this PhD thesis aims to

elucidate the temporal variability of the anthropogenic CO2 storage in a crucial region

of the global ocean and to identify potential decadal to multi-decadal trends, providing a

solid base for biogeochemical model validation here. The unusually long time series along

the AR7W line provides the opportunity to test the assumption of steady state and the

comparison of different approaches in the region. We here present the first multi-decadal

estimates of Cant in the Central Labrador Sea between 1993 to 2016 based on two methods:

a transient tracers-based method known as the TTD, and a carbon-based method known as

eMLR.

We will test two hypotheses: (1) tracer-based (TTD) and carbon-based (eMLR) estimates

of Cant concentrations and trends are identical to within the uncertainties of the methods;

(2) the increase of Cant in the Labrador Sea explains the observed increase of DIC leaving

no room for potential changes in non-anthropogenic components of DIC.

A pre-requisite to assess changes in the inventory, particularly through eMLR, is to

assess the quality of the data, therefore in Chapter 2 we assess the internal consistency of

the marine carbonate system for those years where over determination is available. This

study allows for better understanding of the carbonate system in the context of a long-

term monitoring program and for assessing the error propagation in calculating missing

carbonate chemistry parameters over the time series. Since only TA and DIC are available

throughout the whole time series, we quantify the propagated random uncertainty in pH

and pCO2 calculations for those years where discrete measurements are not available.

Differently from other studies we reported the internal consistency at in situ conditions

of temperature and pressure rather than laboratory ones (important in the context of

autonomous measurements performed with sensors).

Despite the crucial role of the Labrador Sea in sequestering Cant, only a few studies have

focused on the temporal variability of its accumulation rate (Rhein et al., 2017; Steinfeldt

et al., 2009; Tait et al., 2000; Terenzi et al., 2007). Therefore in Chapter 3 we present a

thirty year time series of column inventory and storage rates of Cant in central Labrador

Sea using a refined TTD method. Thanks to the large availability of data in this region, we
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were able to test the validity of two assumptions that this method relies on: (1) constant

saturation of transient tracers (often assumed to be 100%), and (2) constant air-sea CO2

disequilibrium. For this study we extended our time series by including CFC-12 data

collected along a transect southward of the AR7W line in 1986 and we used TA and DIC

data to obtain pCO2 between 1992 and 2016. Based on our findings we provide a refined

TTD method which accounts for the tracers’ saturation variability and, as a result, allows

to obtain more accurate estimates of Cant in Labrador Sea. In Chapter 3, we also investigate

the temporal variability of Cant concentrations in different water masses and the temporal

variability of the Cant storage in the region. Finally, based on the estimates along the AR7W

line, we calculate the total inventory of anthropogenic carbon in Labrador Sea.

Chapter 4 focuses primarily on estimating Cant through the eMLR method. The wide

range of ocean parameters along the AR7W line allowed to run numerous extended

Multiple Linear Regressions. Nevertheless in the chapter we focus on the most basic

eMLR which uses temperature, salinity and oxygen as independent variables to model

the change in DIC due to the anthropogenic perturbation. In this chapter we seek to

understand what sampling frequency is necessary in order to obtain a realistic estimate

of the annual average increase of Cant column inventory in the Central Labrador Sea. We

test the first hypothesis addressed in the thesis by comparing the increase in Cant column

inventories obtained with the eMLR method to that of the TTD method. Further, we

estimate the column inventories based on measurements of DIC, which would include

both the anthropogenic perturbation as well as any potential natural variability of inorganic

carbon. The annual Cant column inventories and the resulting storage rates from the eMLR

and TTD are compared to the total change of DIC in Labrador Sea allowing distinction

between anthropogenic and potential natural variability of DIC in the region.
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CHAPTER 2

THE INTERNAL CONSISTENCY OF THE
MARINE CARBON DIOXIDE SYSTEM
FOR HIGH LATITUDE SHIPBOARD AND
in situ MONITORING1

2.1 Abstract

Deep convection in the Labrador Sea supplies large amounts of anthropogenic carbon to

the ocean’s interior. We use measurements of all four measurable CO2 system parameters

made along AR7W (across Labrador Sea) between 2013 and 2015 to assess the internal

consistency of the carbonate system, including, as appropriate, conversion to in situ tem-

perature (T) and pressure (P). The best agreement between measured and calculated values

was obtained through combination of T,P-dependent (pH or pCO2) and non-dependent (TA

or DIC) parameters. Use of the dissociation constants of Mehrbach et al. (1973) as refit by

Dickson and Millero (1987) and Lueker et al. (2000) yielded the best internal consistency

irrespective of the input parameters used.

A Monte Carlo simulation demonstrated that the propagated uncertainty (i.e., combined

standard uncertainty) of calculated parameters of the carbonate system is (a) always larger

1Raimondi, L., Matthews, J. B. R., Atamanchuk, D., Azetsu-Scott, K., Wallace, D. W. R. (2019).
The Internal Consistency of the Marine Carbon Dioxide System for High Latitude Shipboard and in situ
Monitoring. Marine Chemistry, 213, 49–707. https://doi.org/10.1016/j.marchem.2019.
03.001.
Author contribution: I conducted the field work, analyzed the TA, DIC, pH and pCO2 samples in 2014
and 2015 in collaboration with Stephen Punshon from the Bedford Institute of Oceanography. I led the
interpretation of the data and put into writing the manuscript with extensive input from all co-authors. J. B.
R. Matthews performed the Monte Carlo simulation analysis.
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than the analytical precision of the measurements themselves; (b) strongly dependent

on the choice of input parameters and uncertainties; (c) less dependent on choice of the

specific set of constants.

For calculation of other parameters of the carbonate system from TA and DIC measure-

ments made throughout the Labrador Sea time-series, the estimated combined standard

uncertainty of calculated pCO2 and pH based on the Monte Carlo simulation is ∼ 13 µatm

and ∼ 0.012 pH units respectively, with accuracy relative to laboratory-based measurement

estimated to be between -3 and -13 µatm and 0.002 and 0.007 pH units. Internal consis-

tency especially at in situ temperature and pressure conditions is important for rapidly

developing sensor-based monitoring programs in the region, including measurement of

pH and/or pCO2 from gliders, profiling floats and moorings. We highlight uncertainty

associated with the large pressure effect on pH and pCO2, and recommend a study of

carbonate system internal consistency under deep ocean conditions that addresses pressure

effects on calculations.

2.2 Introduction and Background

Over the last 200 years, approximately 40% of the carbon dioxide (CO2) produced as a

result of fossil fuel use and cement production has been absorbed into the ocean through

dissolution and reaction with water molecules (McKinley et al., 2017; DeVries, 2014;

Le Quéré et al., 2018; Sabine et al., 2004) which alters marine carbonate chemistry and pH.

These chemical changes reduce the buffer capacity of seawater and decrease the ocean’s

ability to remove additional anthropogenic CO2 from the atmosphere. Accumulation of

greenhouse gases in the atmosphere is also driving warming of the global ocean as well

as freshening in some high latitude regions, which could lead to increased stratification,

reduced deep water formation and changes in biological productivity. These can indirectly

influence the uptake rates of CO2.

Monitoring of the oceanic inorganic carbon budget is necessary to keep track of the

fate of anthropogenic carbon and monitor the effectiveness of CO2 emissions reduction

policies (Le Quéré et al., 2018). A wide variety of approaches to examining the build-up

of excess marine dissolved inorganic carbon are available (Khatiwala et al., 2013; Sabine

and Tanhua, 2010; Wallace, 2001), based on either direct measurements of inorganic
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carbon (Friis et al., 2005; Gruber et al., 1996; Wallace, 1995), on measurements of tracers

which mimic the atmospheric and oceanic history of anthropogenic CO2 (Hall et al., 2002;

Waugh et al., 2006), or use of ocean circulation and biogeochemical models (DeVries,

2014; Gerber et al., 2009; Gruber et al., 2009; Mikaloff Fletcher et al., 2006). With

the direct measurement approach, it is important to assess accuracy and uncertainty of

inorganic carbon data, including thorough consideration of internal consistency across

measured parameters.

Furthermore, as in situ sensor technology for carbonate chemistry matures there is a

new, emerging challenge to ensure consistency between data measured in situ with sensors

and laboratory-based measurements that can be traced directly to standards and reference

materials.

The chemistry of inorganic carbon in seawater is regulated by a system of acid-base

equilibria, with three principal equilibrium constants, K0, K1 and K2 (Dickson et al., 2007):

K0 =
[CO2∗]

fCO2

(2.1)

K1 =
[H+][ HCO3

−]

[CO2
∗]

(2.2)

K2 =
[H+][ CO3

2−]

[HCO3
−]

(2.3)

where f CO2 (the fugacity of carbon dioxide in gas phase), CO2* (representing a combi-

nation of CO2 and H2CO3), HCO3
– and CO3

2 – are the carbonate system species and [i]

denote concentrations. These are described through four measurable parameters: Total

Alkalinity (TA), Dissolved Inorganic Carbon (DIC), Partial Pressure or Fugacity of Carbon

Dioxide (pCO2 or f CO2) and pH, which are defined by the following equations:

TA = [HCO3
−] + 2 [CO3

2−] + [B(OH)4
−] + [OH−] + ...

+ [HPO4
2−] + 2 [PO4

3−] + [SiO(OH)3
−] + [NH3] + [HS−] + ...

− [H+]free − [HSO4
−] − [HF] − [H3PO4] − ... (2.4)
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as defined by Dickson (1981).

DIC = [CO2
∗] + [HCO3

−] + [CO3
2−] (2.5)

fCO2 =
[CO2

∗]

K0
(2.6)

where the f CO2 takes into account the non-ideal behaviour of CO2, while the pCO2 is

the product of mole fraction and total pressure. These are related through the fugacity

coefficient, which represents the ratio of fugacity to partial pressure (Dickson et al., 2007),

pHT = −log[H+]T (2.7)

where T represents the total concentration of the hydrogen ion (pH expressed on total

scale).

Using knowledge of solubility and acid-base equilibrium constants it is possible to

measure two of the four measurable parameters and calculate the remaining two by solving

a system of equations (Millero, 2007). In addition, non-measurable (“derived”) parameters

can be computed including the aragonite and calcite saturation states (ΩAr and ΩCa), which

are indices of thermodynamic tendency for precipitation (ΩAr or ΩCa > 1) and dissolution

(ΩAr or ΩCa < 1) of these two forms of calcium carbonate (CaCO3).

In the case when three or four parameters are measured on the same water sample, the

carbonate system and its speciation is over-determined. Hence calculated values can be

compared with a direct measurement of the same parameter. Although measurements

always have an associated error, for the purpose of this paper we will refer to the measured

values as being the “true” values, with the level of agreement (or difference) between

measured and calculated values referred to as “internal consistency” or “accuracy” of

calculations.

Internal consistency depends on how well the equilibrium constants (K0, K1 and K2)

describe the carbonate system equilibria. These dissociation constants, which govern
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CO2 solubility and its transformation into carbonate species, have been experimentally

determined by multiple studies. K1 and K2 have been reported as a function of temperature

and salinity based on experiments with both artificial (Goyet and Poisson, 1989; Hansson,

1973; Roy et al., 1993) and natural (Mehrbach et al., 1973; Millero et al., 2006; Millero,

2010; Mojica Prieto and Millero, 2002) seawater; while other studies have reported sets

of constants based on re-fitting experimental data of others (Dickson and Millero, 1987;

Lueker et al., 2000). The resulting equations for each constant vary due to differences in

the experimental media used, and are valid for different ranges of pressure, temperature

and salinity (see Table 1 in Chen et al., 2015, for a summary). Use of any of the sets of

constants also involves assumptions concerning the composition of seawater, especially

the concentration and acid-base behaviour of inorganic and organic components that

contribute to alkalinity. The latter can vary as a result of the contribution of variable

amounts and types of organic material (“organic alkalinity”; Kim and Lee, 2009), as

well as uncertainties and possible geographic variation in borate alkalinity (Lee et al.,

2010). Analytical measurement error is non-linearly propagated into the calculations and,

together with the choice of carbonate system input parameters, influences the uncertainty

of calculated parameters (Millero, 2007; Orr et al., 2018).

These sources of uncertainty have implications for the design and operation of monitor-

ing programs aimed at detecting and attributing changes in the ocean’s carbonate system.

For instance, Azetsu-Scott et al. (2010) showed that significantly different values of ΩAr

are obtained when applying different formulations of constants to data from the Cana-

dian Arctic Archipelago and Labrador Sea. It is therefore important to determine which

combination of measurable parameters and sets of constants leads to the highest accuracy

and precision in calculations of carbon system speciation and derived parameters. The

internal consistency can also be used as a quality control tool in the context of a monitoring

program where over-determination is achieved over several years (see Discussion below).

Numerous studies have focused on internal consistency of the carbonate system in

different regions of the world ocean using different approaches (Chen et al., 2015; Chierici

et al., 2004; Chierici and Fransson, 2009; Clayton et al., 1995; Johnson et al., 1999;

Jutterström and Anderson, 2005; Lee et al., 1997, 2000; Patsavas et al., 2015; Ribas-Ribas

et al., 2014; Salt et al., 2016; Wanninkhof et al., 1999; Woosley et al., 2017). These studies

are summarized in Table 2.1, where we report the region of interest, parameters measured,
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the depth range sampled and, where specified by the authors, recommendations for best

practices.

2.2.1 Context and Objectives of this study

This study has the goal of assessing the internal consistency of the marine CO2 system in

the context of an ongoing long-term monitoring program in the Labrador Sea. This region

is a key location for formation of North Atlantic Deep Water (NADW) and plays a central

role in the Atlantic Meridional Overturning Circulation (AMOC). The Labrador Sea is a

strong sink for atmospheric CO2, primarily as a result of biological carbon drawdown in

spring and summer (Körtzinger et al., 2008) and the formation and transport of recently-

ventilated water masses (i.e., Labrador Sea Water, LSW). Indeed, it is the site of the

most intense sink of anthropogenic CO2 in the world ocean (DeVries, 2014). Given this

large storage, together with the variability of LSW formation on inter-annual and longer

timescales (Yashayaev and Loder, 2016), and the potential for future reductions of LSW

formation due to increased freshwater input from Greenland (Böning et al., 2016), there is

a need for long-term monitoring of oceanic carbon in the region.

A long-term (multi-decadal) monitoring program in the Labrador Sea has been main-

tained by Canada’s Bedford Institute of Oceanography (BIO). This involves annual oc-

cupations of a GO-SHIP repeated hydrography section (AR7W) crossing the Labrador

Sea (Figure 2.1), and monitoring of variability in the formation of the LSW (Kieke and

Yashayaev, 2015). Along this transect carbonate chemistry data is available from 1992

until present together with a full suite of chemical, physical and biological parameters

(see Figure 2.2). The carbon monitoring program has been based on a high-quality set of

laboratory measurements on discrete samples collected from ships, which has included

over-determination of the carbonate system since 2012.

As in situ measurements of marine CO2 parameters from sensors mounted on moorings,

floats and gliders become more common (DeGrandpre et al., 2006; Johnson et al., 2009;

Körtzinger et al., 2008, 2004; Martz et al., 2009; Riser et al., 2016), it is essential to assess

the ability of the sensors to resolve ocean carbon-system variability. A further challenge is

to relate sensor measurements to those from ships for quality-control purposes (Johnson

et al., 2016). It is notable that, at present, suitable in situ sensor technology is available

only for carbonate system parameters which are pressure and temperature dependent (i.e.,

pH and pCO2). Hence relating laboratory measurements (typically made at 1 atmosphere
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Figure 2.1: Map of the Northwest Atlantic and Labrador Sea, with the stations along the
AR7W line indicated by red dots. The color bar shows depth in meters for the bathymetric
contours.

pressure and constant temperature) to in situ conditions of the interior ocean, requires

temperature and pressure corrections using dissociation constants that have not yet been

fully characterized or tested. This study identifies potential biases and other issues relevant

for planning of in situ measurements in this region.

Assessment of the internal consistency of the carbonate system also allows quantification

of the uncertainty in pH and pCO2 calculations for those years where only TA and DIC data

are available (see Figure 2.2). Furthermore in this region of strong CO2 uptake, where the

saturation state of calcite and aragonite is likely to change but is not directly measurable,

the calculation relies on accuracy of the carbonate system parameter measurements and

dissociation constants. As shown in Table 2.1, studies of internal consistency have been

conducted in various regions and depth ranges (e.g., surface water only or entire water

column) using different sets of parameters (Chen et al., 2015; Chierici and Fransson, 2009;

Jutterström and Anderson, 2005; Lee et al., 1997; Patsavas et al., 2015). These previous

studies were performed at laboratory conditions of temperature and pressure, generally
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Figure 2.2: Summary of monitoring program with years of sampling for each variable. (S
= discrete bottle measurement of salinity; CTD = conductivity, temperature and pressure
measurements from the profiling instrument). Red box highlights the years where all four
carbonate chemistry parameters are available.

use only one year of data and most do not include a Monte Carlo simulation of uncertainty

propagation for carbonate system calculations.

In this study we will present insights into the internal consistency using all four carbon-

ate parameters measured over 3 years in a critical region of the world ocean, including

consideration of corrections to in situ conditions and Monte Carlo uncertainty propaga-

tion to estimate the uncertainty of calculated values (combined standard uncertainty or

propagated random uncertainty) from the uncertainty of the input parameters (standard

uncertainty or analytical precision).
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Table 2.1: Summary of previous works on internal consistency of the carbonate system.

Reference Year Region2Parameters3 Depth Range Notes

Clayton et al.

(1995)

1992 EEP TA, DIC,

pH.

Bow lab intake

(5 m)

Used constants: M73; H. Recommended couples:

(TA,pH) or (DIC,pH).

Lee et al.

(1997)

1993 AO U-f CO2,

f CO2, pH,

TA & DIC

surface f CO2;

water column

(pH, TA &

DIC)

Recommended constants: M73 when using

(pH,TA) or (pH,DIC) to calculate f CO2. Measure-

ment of pH and f CO2 were not internally consistent

probably due to measurement uncertainty of f CO2

or values of K0

Johnson et al.

(1999)

1996 AO U-f CO2, U-

DIC & TA

Surface Recommended constants: M73

Wanninkhof

et al. (1999)

1993

1994

1995

AO

PO

IO

U-pCO2,

TA & DIC

Surface

(pCO2) Water

column (TA

and DIC)

Comparison of U-pCO2 and pCO2 calculated with

(TA,DIC) from surface Niskin bottles. Recom-

mended constants: M73.

Continued on next page
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Table 2.1 – Continued from previous page

Reference Year Region Parameters Depth Range Notes

Lee et al.

(2000)

1990s AO

PO

IO

pCO2, pH,

TA& DIC

0-6000 m Discrete pCO2 measurements (Wanninkhof and

Thoning, 1993). Recommended constants: M73

for calculations involving combinations of pH, TA,

DIC and f CO2, TA, DIC at low f CO2.

Chierici et al.

(2004)

1998 ArO U-pH, U-

f CO2,TA &

DIC

Surface (pH

and pCO2)

Water Column

(TA,DIC)

Used constants: R; Recommended couple:

(DIC,pH) or (TA,pH).

Jutterström

and Anderson

(2005)

1994

1995

1996

ArO TA, DIC &

pH

0-4000 m One cruise with pH. Recommended constants: R.

Chierici and

Fransson

(2009)

2005 ArO TA, pH &

f CO2

Surface Recommended constants: R. Study of Aragonite

and Calcite Saturation State.

Continued on next page
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Table 2.1 – Continued from previous page

Reference Year Region Parameters Depth Range Notes

Ribas-Ribas

et al. (2014)

2011 NWESSU-TA, U-

DIC,U-pH

U-pCO2

Surface TA and DIC from underway supply and surface

CTD casts (<5 m). pH and pCO2 analyzed from

the underway inlet only. A Monte Carlo simulation

was performed. Best internal consistency of pH

with (TA,pCO2) and (DIC,pCO2).

Patsavas et al.

(2015)

2011

2012

WUS

GOM

TA, DIC,

pH & f CO2

0-4000 m Used constants: L. Study of Aragonite saturation

state. Coastal area with presence of organic alkalin-

ity.

Chen et al.

(2015)

2010 ArO TA, DIC &

U-pCO2

Surface (4 m) Recommended constants: M73; L for calculations

of f CO2 from (TA,DIC). Strong salinity and tem-

perature gradients. Evaluation of the significance of

sampling artifacts when comparing underway and

CTD.

Continued on next page
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Table 2.1 – Continued from previous page

Reference Year Region Parameters Depth Range Notes

Salt et al.

(2016)

2002

2005

NS TA,

DIC,pH &

U-pCO2

0-400 m Recommended constants: M73; M06. Potentiomet-

ric pH. Evidence of presence of organic alkalinity

during spring.

Woosley et al.

(2017)

2015 AO TA,

DIC,pH &

U-pCO2

Surface

(pCO2) Water

Column (TA,

DIC & pH)

Recommended constants: M73; L. Poor perfor-

mance of M02. Correction for in situ temperature

is considered.

2EEP = Eastern Equatorial Pacific; AO = Atlantic Ocean; PO= Pacific Ocean; IO = Indian Ocean; ArO = Arctic Ocean; NWESS = North Western European
Shelf Seas; WUS = Western US Coast; GOM = Gulf of Mexico; NS = North Sea.

3U- = Underway measurement
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2.3 Materials and Methods

2.3.1 Sample Collection and Analysis

The dataset used for this investigation was obtained from three cruises conducted aboard

the CCGS Hudson during the month of May each year from 2013 to 2015 (HUD2013-008,

HUD2014-007 and HUD2015-006) along the GO-SHIP AR7W line (Figure 2.1).

At all stations CTD casts were performed together with collection of samples for all

four carbonate parameters (TA, DIC, pCO2 and pH), nutrients (including nitrate; NO3
– ,

nitrite; NO2
– , soluble reactive phosphorus and silicate; PT and SiT), discrete salinity, along

with other parameters not used for this study. Samples were collected throughout the

water column (0-3600 m) using a rosette equipped with 24 Niskin bottles (12 L) and a

SeaBird SBE 911plus CTD unit. Samples for carbon parameters were collected following

the standard operating procedures described in Dickson et al. (2007). TA and DIC samples

were collected in 500 mL borosilicate glass bottles and analyzed on board in 2013. In 2014

and 2015 samples were poisoned with a saturated solution of HgCl2 and stored before

being analyzed at the BIO laboratory. The analyses were carried out within 3 months

of sample collection. Samples for TA were measured using an open cell potentiometric

titration with a full curve Gran end-point determination (Dickson et al., 2007), while DIC

was measured by the gas extraction and coulometric method with photometric detection

(Johnson et al., 1985). All measurements for TA and DIC were corrected using Certified

Reference Materials (CRM batches 126 for 2013; 134 and 139 for 2014; 126 for 2015)

provided by A. Dickson of the CRM Laboratory (Scripps Institution of Oceanography, San

Diego, USA), which were analyzed every 20 samples (Dickson et al., 2007). For these

CRM the assigned values for TA and DIC are within 3 µmol kg-1 of their “true” values

(Bockmon and Dickson, 2015).

For all three cruises, samples for pH were measured at 25◦C on-board using a spec-

trophotometric method (Clayton and Byrne, 1993). In 2015, samples were analyzed using

purified meta-Cresol purple indicator (Liu et al., 2011), while samples from 2013 and 2014

were analyzed using a non-purified dye but corrected with a factor derived by comparing

measurements performed with both purified and unpurified dye. The average offset cor-

rection between purified and unpurified dye was 0.015 units. The pH measurements are

reported on the total scale (Marion et al., 2011).

Samples for pCO2 were poisoned and stored, then later analyzed at BIO. Analyses were
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Table 2.2: Analytical precision for total alkalinity (TA), dissolved inorganic carbon (DIC),
pH, partial pressure of CO2 (pCO2), soluble reactive phosphorus (PT), silicate (SiT),
temperature (T), salinity (S) and pressure (P). The number of samples is n = 476, 486
and 431 for 2013, 2014 and 2015 respectively for all variables except for pCO2 were the
number is n = 47, 68 and 36.

Analytical Precision

Year TA DIC pH pCO2 PT SiT T S P
µmol
kg-1

µmol
kg-1

µatm µmol
kg-1

µmol
kg-1

◦C dBar

2013 3.5 1.6 0.002 1.0 0.21 0.09 0.002 0.001 0.1
2014 1.8 1.9 0.002 1.0 0.05 0.18 0.002 0.001 0.1
2015 2.1 3.4 0.002 1.0 0.06 0.02 0.002 0.001 0.1

performed with a head-space equilibration method adapted from Neill et al. (1997), in

which a sample aliquot (10 mL) was removed and replaced with a head-space gas with 400

ppm CO2. Samples were then thermally equilibrated at 20◦C (2013, 2014) or 22 ± 0.05
◦C (2015). Samples for pCO2 were collected at the surface for every station and complete

profiles were sampled only at select locations (typically at the deepest stations) along the

AR7W line (2, 2 and 1 full profile(s) in 2013, 2014 and 2015, respectively). Precision

varied from year to year for each parameter, therefore in Table 2.2 we report the analytical

precision of all parameters for each year, together with the number of analyzed samples

(in table caption).

The precision of TA, DIC and pH is reported as one standard deviation (± σ) of the

CRM replicates. Precision tests for pCO2 were run by bubbling seawater with a CO2

standard gas (400 ppm) followed by measurement of pCO2 on 17 subsamples, using the

procedure described above. The pCO2 precision is also reported as one standard deviation,

based on these 17 replicate analyses.

2.3.2 Calculations of Carbonate Parameters with CO2SYS

Calculations were performed with the MATLAB version of CO2SYS (Van Heuven et al.,

2011; Lewis et al., 1998) using eight sets of constants. The constants will be referred to

as: R for Roy et al. (1993); GP for Goyet and Poisson (1989); H for Hansson (1973) as

refit by Dickson and Millero (1987); M73 for Mehrbach et al. (1973) as refit by Dickson
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and Millero (1987); HM for Hansson and Mehrbach as refit Dickson and Millero (1987); L

for Lueker et al. (2000); MPM for Mojica Prieto and Millero (2002) and M06 for Millero

et al. (2006). The more recent constants provided in Millero (2010) and Waters et al.

(2014) were not included in our calculations because the former were formulated using

the same data as Lueker et al. (2000) and Millero et al. (2006) to evaluate the components

of the carbonate system in estuarine waters (with salinity and temperature ranges beyond

those relevant to our study area), while the latter are not yet implemented in CO2SYS. All

calculations used the KHSO4 and Total Boron-Salinity formulations of Dickson et al. (1990)

and Uppström (1974), respectively. The use of the latter rather than the value proposed

more recently by Lee et al. (2010) is justified by the “best-practices” recommendations

of Orr et al. (2015). In Orr et al. (2015) the authors argued that the earlier ratio from

Uppström (1974) is to be preferred as it is the same used to derive K1 and K2 formulations

in laboratory determinations by Mehrbach et al. (1973).

For each parameter, values were calculated including nutrient data as input variables and

using all possible combinations of input (measured) parameters and sets of constants. For

instance TA was calculated using (DIC,pH), (DIC,pCO2) and (pH,pCO2) as inputs and all

eight sets of constants, thereby generating 24 calculated datasets. Hereafter these different

datasets of calculated values will be referred to using an extended version of the notation

of Patsavas et al. (2015): X(Y,Z)k represents the parameter X calculated from measured

parameters Y and Z using the set of constants represented by the subscript k. For example

TA(DIC,pH)M73 refers to total alkalinity calculated using DIC and pH as input parameters

with the constants of Mehrbach et al. (1973) as refit by Dickson and Millero (1987).

2.3.2.1 Calculation of in situ values for pH and pseudo-potential pCO2

Comparisons of laboratory measurements with in situ measurements of pH and/or

pCO2, which are made at varying temperatures and (often higher) pressures, as well as

the calculation of the in situ saturation state of calcite and aragonite, require corrections

for temperature and pressure (Johnson et al., 2016). While in CO2SYS the pH can be

assessed at in situ conditions of both temperature and pressure, the pCO2 is only corrected

for in situ temperature. No pressure effect on K0 or on the fugacity coefficient is included

for sub-surface values in the software. In fact the combination of the pressure correction

terms for K0 and fugacity coefficient increases exponentially with increasing total pressure
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(atmospheric + hydrostatic). However in CO2SYS the total pressure is considered to be

equal to the atmospheric pressure (1 atm) also for sub-surface conditions, meaning that no

correction is applied for in situ values of pressure. Orr and Epitalon (2015) recommend to

refer to the pCO2 values corrected for in situ temperature but with no pressure correction

as “pseudo-potential pCO2”. From here on all the pCO2 data presented in this work refer

to pseudo-potential conditions.

We converted our pH and pCO2 measurements from the laboratory to in situ and pseudo-

potential conditions, respectively, using a two-step procedure. Because our laboratory

measurements of pH and pCO2 were performed at 25◦C, and 20 or 22◦C, respectively,

the first step was to convert all measurements to a common laboratory temperature of

25◦C. Values of pCO2 at the temperature of equilibration were converted to pCO2 at

25◦C by first calculating TA from DIC and pCO2 at 20◦C (or 22◦C) and using these

computed TA values with measurements of perturbed DIC (i.e., accounting for outgassing

during pCO2 equilibration) as inputs to CO2SYS (Neill et al., 1997; Patsavas et al., 2015).

All laboratory-based measurements were converted using CO2SYS (and all eight sets

of constants) to in situ temperature and pressure (for pH) and in situ temperature and

1 atmosphere pressure (for pCO2, see above). Hereafter these in situ values of pH and

pseudo-potential pCO2 will be referred to as the measured values.

Figure 2.3 presents vertical profiles of pH and pCO2 for both laboratory, in situ and

pseudo-potential conditions, respectively. It is immediately noticeable that the corrections

to in situ conditions are substantial and vary considerably due to the differing temperature

dependencies of each set of constants. There is no corresponding variation for the pressure

correction because the pressure dependence of the constants has been measured only once

by Culberson and Pytkowicz (1968), with their results adopted for use with all of the sets

of constants in the literature. For calculations of in situ pCO2 the pressure dependence of

K0 was formulated according to Weiss (1974), using equations 3 and 4 in Orr and Epitalon

(2015).

The in situ values of pH and pseudo-potential values for pCO2 also varied depending

on which parameters they were paired with for calculation at in situ conditions. For data

collected in 2015, the in situ pH values obtained with (DIC,pH), (TA,pH) and (pH,pCO2)

ranged between 7.995 and 8.025, 7.977 and 8.003, 7.963 and 7.992 respectively, across

the full depth range and eight sets of constants. Similarly, pseudo-potential pCO2 for 2015
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Figure 2.3: Vertical profiles of pH and pCO2 from central Labrador Sea. The red lines
represent measurements of pH and pCO2 at laboratory conditions of temperature and
pressure. The black lines represent values calculated with M73 constants and DIC as
the second input parameter and corrected for in situ temperature alone. The blue lines
represent values calculated with M73 constants and DIC as the second input parameter and
corrected for both in situ temperature and pressure (for pH), and for in situ temperature
but no pressure correction (for pCO2; i.e., pseudo-potential pCO2). The grey and light
blue shaded areas represent the range obtained when the correction was applied with the
dissociation constants that displayed the smallest (HM) and biggest correction (R). In
panel b the green line represents the pCO2 at in situ conditions of temperature and pressure
including the pressure effect on K0 (Orr and Epitalon, 2015; Weiss, 1974). Note that the
grey and blue shaded areas do not include the uncertainty in the in situ correction for the
M73 constants.
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obtained with the pairs (DIC,pCO2), (TA,pCO2) and (pH,pCO2) varied between 317.5 and

345.3, 320.4 and 347.7, 323.7 and 350.7 µatm.

This means that for comparison of measured and calculated values with different K1 and

K2 (eight sets selected) and different input couples (3 couples), 24 sets of measured pH

and pCO2 values at in situ and pseudo-potential conditions were available. Woosley et al.

(2017) chose to average across in situ values corrected using different sets of constants in

order to remove any bias that might result from the use of a single set of constants. We

assessed if the differences among these 24 sets of measured pH and pCO2 values were

statistically significant by running an n-way ANOVA test (not shown). We found that the

differences were statistically insignificant (p <0.005), and thus any of these sets could be

used as our measured in situ and pseudo-potential values of reference. We chose to use the

values of pH and pCO2 at in situ and pseudo-potential conditions, obtained with (DIC,pH)

and (DIC,pCO2), respectively and with M73 constants. This is consistent with previous

recommendations for pCO2 calculations (Johnson et al., 1999; Wanninkhof et al., 1999;

Millero et al., 2002; Chen et al., 2015) but also justified by values from M73 falling close

to the average obtained from all constants (see Figure 2.3).

2.3.2.2 Comparison of measured and calculated values

We analyzed differences between measured values and the corresponding calculated

values, which we hereafter refer to as residuals (i.e., measured minus calculated) and

represent as ∆X(Y,Z)k, using the notation introduced in Section 2.3.2. We assume implic-

itly that measurements represent the “true” value of a parameter, and therefore that small

absolute values of ∆X indicate an accurate calculation. The standard deviations of ∆X

are representative of the spread of these residuals, while the uncertainty in our calculated

values (i.e., the combined uncertainty) was assessed using a Monte Carlo simulation.

2.3.3 Monte Carlo Simulation

Following Juranek et al. (2011) and Legge et al. (2015), we conducted a Monte Carlo

uncertainty propagation analysis with CO2SYS to derive computational uncertainties

for our calculated values. This involved varying the values of both input parameters and

internal CO2SYS variables by randomly sampling from normal distributions characterizing

31



their uncertainties 4. Specifically, we accounted for measurement precision in the input

carbonate and auxiliary (T, S and nutrients) parameters, uncertainties in the K1 and K2

formulations for each set of constants (using estimates from the corresponding papers),

and uncertainties in the K0, KB, KW and KAr formulations used (again using reported

uncertainties).

The analytical precisions are presented in Table 2.2, and in the Appendix A.2 we

provide a detailed description of the method together with a complete list of the standard

uncertainties used. As described in Appendix A.2 we found that a large number of random

samples are required in order for the Monte Carlo simulations to converge. We used

100,000 random samples and compared the resulting estimates for calculated parameters

against our corresponding analytical precision for them.

2.4 Results

Internal consistency of a carbonate system parameter X varies depending on the choice of

input parameters and dissociation constants. Figures 2.4 through 2.7 present the distribution

of residuals (∆X) for DIC, TA, pCO2 and pH respectively, calculated with data from 2015.

Each figure shows residuals for the three combinations of input parameters (panels a, b

and c), as well as a summary panel (panel d). Tabulated values of the residuals for all three

years and their statistics are presented in an Appendix (Tables A1 to A5).

The plots generally show that calculations of the four parameters are more strongly

dependent on the choice of input pair of carbonate system variables than on the choice

of constants. The different vertical scales used in the plots of residuals show that some

couples yield exceptionally consistent values (e.g., DIC,pH and TA,pH) while others lead

to high inaccuracy (e.g., pH,pCO2).

Further, the distributions show that use of a “non-mixed” couple (two temperature (T)

and pressure (P) dependent parameters (e.g., pH,pCO2) or two T,P-independent parameters

(e.g., TA,DIC) as input, results in calculated values that are generally less accurate and with

higher standard deviations than those obtained using a “mixed” couple (one T,P-dependent

and one T,P-independent parameter; e.g., DIC,pH).

4These normal distributions were characterized by a mean equal to the measured value for input param-
eters, and by a standard deviation equal to the analytical precision (from Table 2.2) or reported precision
(from Table A7), respectively
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The residual distributions revealed relatively poor agreement between measured and

calculated values when using sets of constants that were determined in artificial seawater

(ASW). Among the constants assessed in natural seawater (SW), M73, L and M06 more

commonly produced accurate calculations, as shown by average residuals close to zero.

As expected, values calculated using the M73 and L constants are closely comparable

since both are based on the experimental values determined by Mehrbach et al. (1973). In

most cases these two sets also perform similarly to M06. Among all couples the results

obtained with H, R and GP were always the poorest, in particular H emerged as one of

the sets that produced the poorest calculations when the couples (TA,DIC) and (pH,pCO2)

were employed, while R and GP were the poorest with almost all other combinations.

When TA measurements from 2014 were used in calculations, some results contradicted

those from the other two years (see Tables A1 to A4). For instance, average residuals

closer to zero were obtained with ASW-derived constants when calculating DIC with both

(TA,pH) and (TA,pCO2) instead of with M73, L and M06 constants for the data from 2013

and 2015. Similarly the best internal consistency in 2014 was yielded by ASW-derived

constants for calculations of TA when using both (DIC,pH) and (DIC,pCO2). Calculations

of pCO2 with (TA,DIC) consistently produced positive average residuals with 2014 data,

contrary to results obtained with data from 2013 and 2015. These discrepancies suggested

that the TA dataset from 2014 was biased relative to the other years, and a comparison

based on internal consistency suggested that a correction of ∼ 10 µmol kg-1 should be

applied to TA values from 2014. This was confirmed using secondary quality control with

other data from the region following the GLODAPv2 procedure for cross-over analysis

(Olsen et al., 2016, Supplementary Figure A.1) which gave an offset of 12.2 µmol kg-1 .

The TA data with this offset subtracted are used in the following sections to discuss only

the inter-annual variability of the internal consistency (see Table A5).

In the following subsections we separately discuss results for each carbonate system

parameter. We describe results from calculations with each couple of input parameters

emphasizing their accuracy and standard deviation, and identify the dissociation constants

that produce the best and worst results and conclude with an inter-annual comparison.

We show only data from 2015 in Figures 2.4 to 2.7 due to the offset in TA for 2014 and

because better control of equilibration temperature was achieved for pCO2 measurements

in 2015 compared to 2013 (S. Punshon pers. comm.). Nevertheless results from 2013 and
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2015 data generally show agreement for all four parameters (see Tables A1 to A4).

2.4.1 Internal Consistency for DIC

The DIC residuals for all three years are reported in Table A1 and residuals for 2015

data are shown in Figure 2.4.
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Figure 2.4: ∆DIC (measured DIC-calculated DIC) obtained by calculating DIC with
each of the three possible couples of input parameters and eight sets of constants, then
calculating the difference with the measured values. The plots include mean values of
∆DIC (black line), standard error of the mean with 95% confidence intervals (dark grey),
and standard deviations (light grey). The data represented are from the CCGS Hudson
cruise in 2015.

Calculations with all couples of input parameters generated DIC average residuals that

are exclusively positive (Figure 2.4), meaning that calculated values are underestimated

compared to laboratory measurements. The couples (TA,pCO2) and (TA,pH) produced

overall good accuracy (∆DIC between 1 and 17 µmol kg-1 for the former couple and
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between -1.5 and 12.4 for the latter, depending on choice of constants and year of mea-

surement; see Table A1) with low standard deviations of residuals (∼ 4-6 µmol kg-1 ).

The calculations obtained from (pH,pCO2) were the most variable, with average ∆DIC

ranging from 0 to 68 µmol kg-1 and with much larger standard deviations compared to the

other couples (∼ 28 µmol kg-1 in 2013 and 58 µmol kg-1 in 2015). The large differences

obtained with the three couples of input parameters is represented by the different vertical

scales used for panels a, b and c of Figure 2.4 and summarized in panel d.

The best agreement between laboratory measurements and calculations was achieved

when all couples were used in combination with the M73, L or M06 constants. Calculations

carried out with the constants of R, GP, H and HM were less accurate.

The internal consistency results for DIC were consistent across all couples for datasets

from years 2013 and 2015. After the offset in TA in 2014 was corrected for (see Table A5

for results from corrected values) the average residuals obtained using (TA,pH) agreed

with the other years to within 2 µmol kg-1 . For the (TA,pCO2) couple the average residuals

for the 2015 dataset were within 5 µmol kg-1 of those for 2013 and within 8 µmol kg-1 for

the corrected 2014 values. The couple (pH,pCO2) showed higher inter-annual variability

with good agreement between 2013 and 2015, but pronounced differences in 2014 (with

averaged residuals that ranged between -26.9 and 36.5 µmol kg-1 ). Overall the best results

for DIC calculations in all years were obtained with the (TA,pH) couple and use of the

M73, L and M06 constants.

2.4.2 Internal Consistency for TA

Statistics for the TA residuals are reported in Table A2 (with statistics for residuals

computed with corrected TA for 2014 given in Table A5). Data from 2015 are shown in

Figure 2.5.

Negative residuals of TA were obtained overall with both (DIC,pCO2) and (DIC,pH)

indicating consistent overestimation of calculated TA (Figure 2.5), with average ∆TA

ranging between ∼ -0.5 and -19.7 µmol kg-1 depending on choice of constants and year.

The residuals from these couples were also characterized by a low standard deviation (∼
5-6 µmol kg-1 ) no matter which set of constants was used.

The (pH,pCO2) couple produced both positive and negative average residuals of TA

(Figure 2.5c). It yielded the worst accuracy of calculations, as shown by high absolute

values of the average residuals (between -8.8 and 67.3 µmol kg-1 depending on year and
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Figure 2.5: ∆TA (measured TA-calculated TA) obtained by calculating TA with each of
the three possible couples of input parameters and eight sets of constants, then calculating
the difference with the measured values. The plots include mean values of ∆TA (black
line), standard error of the mean with 95% confidence intervals (dark grey), and standard
deviations (light grey).

constants) and very high standard deviations (∼ 30 µmol kg-1 in 2013 and ∼ 56 µmol kg-1

in 2015).

For all couples the most accurate calculations were produced in combination with M73,

L and M06, while the constants from R and GP yielded the worst accuracy.

Generally good inter-annual agreement was observed among the 2013, 2015 and cor-

rected 2014 data 5. The best accuracy overall was obtained with (DIC,pH) although with the

corrected 2014 TA data, the best internal consistency was obtained with (DIC,pCO2). The

couple (DIC,pH) produced smaller absolute residuals of ∆TA in 2013 than in 2015 with 3

µmol kg-1 better accuracy on average. Different sets yielded the best match for different

5See Tables from A2 and Figure 2.5
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years, with comparable values obtained from M73, L and M06. Similarly, (DIC,pCO2)

performed best with M73, L and M06 in all three years. On the other hand, M06 gave

poorer results compared to M73 and L with (pH,pCO2) as the input parameters.

2.4.3 Internal Consistency for pCO2

Statistics of pCO2 residuals for all three years are reported in Table A3 while Figure

2.6 shows results for 2015. Calculations of pCO2 with (TA,pH) and (DIC,pH) produced
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Figure 2.6: ∆pCO2 (measured pCO2-calculated pCO2) obtained by calculating pCO2 with
each of the three possible couples of input parameters and eight sets of constants, then
calculating the difference with the measured values. The plots include mean values of
∆pCO2 (black line), standard error of the mean with 95% confidence intervals (dark grey),
and standard deviations (light grey).

average residuals close to zero with several sets of constants and that ranged from ∼ -15

and ∼ 18 µatm depending on measurement year and choice of constants. For both couples

the residuals displayed relatively low standard deviations (∼ 6 and 10 µatm), that were

uniform across the sets of constants.
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Values of ∆pCO2 (measured pCO2-calculated pCO2) obtained from the couple (TA,DIC)

showed consistent overestimation (Figure 2.6c) and the calculations performed with this

couple produced the poorest agreement of all, with average ∆pCO2 ranging between -3.1

and -35.8 µatm. On the other hand, standard deviations were similar to those obtained

from other couples (∼ 12 µatm).

Despite the different levels of agreement among the couples and sets of constants, those

that provided the best overall calculations of pCO2 were always M73 and L, in agreement

with previous studies where M73 was suggested as the best choice for pCO2 calculations

(Johnson et al., 1999; Wanninkhof et al., 1999; Millero et al., 2002; Chen et al., 2015).

The constants that led to the poorest agreement were R, GP and H. Note that whereas

for calculation of DIC and TA the constants of M06 were amongst the best choices, this

was not the case for calculations of pCO2.

Results of internal consistency from 2014 with corrected TA data were similar to those in

2013 and 2015. Overall, we have most confidence in the accuracy of pCO2 data from 2015

(see above). The couples (TA,pH) and (DIC,pH) paired with the SW-derived constants of

M73 and L produced, on average, accurate estimates. On the other hand, the ASW-derived

constants of R, GP and H resulted in poorer agreement. Different results were, however,

observed for (TA,pH) in 2014 despite the TA data correction. For instance the sets of

constants from HM and MPM resulted as the best choices instead of M73 (see Table A5).

2.4.4 Internal Consistency for pH

The averages and standard deviations for pH residuals for all years are reported in Table

A4 while Figure 2.7 presents the results of the internal consistency analysis for data from

2015.

Comparisons of measured pH with values calculated from the couple (TA,pCO2) and

(DIC,pCO2) showed generally good agreement, with the average residuals often very close

to zero irrespective of choice of constants. The only sets of dissociation constants that

produced consistently negative pH, and therefore overestimates, were the ASW-derived

constants of R and GP (Figure 2.7). Overall these couples produced accurate results

(average ∆pH ranging between -0.028 and 0.013 units depending on choice of constants

and year). The standard deviations of residuals were similar across all constants (between

∼ 0.006 and 0.012). The best calculations were obtained with M73 and L and in contrast to

other calculations, good accuracy was also obtained using H. On the other hand, calculated
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Figure 2.7: ∆pH (measured pH-calculated pH) obtained by calculating each parameters
with the three possible couples of input parameters and eight sets of constants, then
calculating the difference with the measured values. The plots include mean values of
∆pH (black line), standard error of the mean with 95% confidence intervals (dark grey),
and standard deviations (light grey).

and measured values of pH from these couples showed poor agreement with R and GP.

Contrary to other couples that did not show a consistent pattern of the residuals across

constants, the (TA,DIC) couple exhibited consistently positive values of average residuals,

hence a systematic underestimation of pH (Figure 2.7c). The accuracy of calculations with

this couple was comparable to that of the previously discussed couples with average ∆pH

ranging between 0.002 and 0.026 pH units for the different years. Slightly higher standard

deviations of residuals were observed with these input parameters (∼ 0.015). In contrast to

the other two couples, (TA,DIC) produced worse accuracy of calculations with constants

from H and MPM.

Results from all three years (with the corrected TA data for 2014) showed very similar
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results for all couples and constants. For couples including pCO2, M73, L and H achieved

the best accuracy of calculations, whereas use of R and GP resulted in pH residuals of

order 0.01 or larger (see Tables A4 and A5).

2.4.5 A Monte Carlo simulation to study the uncertainty propaga-
tion in CO2SYS calculations

We used Monte Carlo (MC) simulation to obtain the propagated random uncertainty for

values calculated with CO2SYS and then compared these with our analytical precision

estimates for the measured values (see Table 2.2). In Figures 2.8 to 2.11 we present

four summary plots (hereafter called “half-target plots” because the uncertainty is always

non-negative) that show combined uncertainty, as determined by Monte Carlo simulation

(propagated random uncertainty), vs accuracy of calculations, as given by the average of

residuals, ∆X. Because the absolute value of residuals and MC simulation results were

very similar for both 2013 and 2015, data are reported as the average of the results from

these two years. We did not use the results from 2014 for this exercise due to the previously

discussed offset in the TA measurements in that year. On these plots, an ideal result would

lie at the origin of the axes, where calculated values would be both accurate (low X) and

with low combined uncertainty.

For combined uncertainty, the half-target plots show that the choice of input couple is

more important than the choice of dissociation constants. Uncertainty can vary significantly

between different couples for computed DIC and TA (up to ∼ 90 µmol kg-1 between

different couples). This difference in uncertainty among the couples is observed also

for pH and pCO2 calculations, although to a lesser extent (up to ∼ 0.007 units and

∼ 2-4 µatm between the couples with the lowest and highest uncertainty, respectively).

Combined uncertainties for DIC and TA were considerably higher for the non-mixed couple

(pH,pCO2) compared to mixed couples and similarly the non-mixed couple (TA,DIC)

produced a higher uncertainty for pCO2 calculations. An important exception is pH, for

which the non-mixed couple (TA,DIC) gave the lowest combined uncertainty.

For accuracy of calculations, the half-target plots show that choice of input param-

eters again has a strong impact on results, but more so than for combined uncertainty,

the accuracy of calculations can also be strongly affected by choice of dissociation con-

stants. Calculations for DIC and TA more commonly resulted in poor accuracy when
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using (pH,pCO2), whereas calculations performed using (DIC,pH), (DIC,pCO2), (TA,pH)

and (TA,pCO2) gave generally accurate results. Nevertheless, certain dissociation con-

stants were accurate on average even with use of a mixed couple (e.g., (pH,pCO2)L and

(pH,pCO2)M73).
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Figure 2.8: Half-target plot for the DIC calculations. The x-axis represents the accuracy
of DIC calculations through CO2SYS as the average difference between measured and
calculated values (∆DIC) from the three couples of input parameters (TA-pH, TA-pCO2

and pH-pCO2). On the y-axis, we report the propagated random uncertainty associated
with the computed DIC values obtained from the Monte Carlo simulation. The inset
represents a zoom-in of the accuracy and propagated random uncertainty obtained with the
couples (TA,pCO2) and (TA,pH).

DIC. For DIC (Figure 2.8) the most accurate results were obtained using the couple

(TA,pH) with average DIC residuals ranging between -0.5 and 11.3 µmol kg-1. With this

41



couple, the constants that produced the best accuracy of calculations were M73, L and

M06. The couple (TA,pH) also produced the lowest uncertainty, with combined uncertainty

ranging between 3-4 µmol kg-1, and no strong differences among the different sets of

constants.

The couple (TA,pCO2) also produced accurate results, although slightly less accurate

than (TA,pH), using L, M73 and M06. The combined uncertainty (considering only

random input uncertainties) for (TA,pCO2) was higher than for (TA,pH) with combined

uncertainties of ∼ 6-9 µmol kg-1.

The couple (pH,pCO2) had the worst accuracy of calculations, although with small

average residuals for M73, L and MPM whereas, unlike with the other couples, M06 gave

the worst internal consistency. The uncertainty of the (pH,pCO2) couple was, however,

the highest of all, with minimum and maximum combined uncertainties of 69.8 and 102.7

µmol kg-1 for R and HM respectively and use of most constants resulting in uncertainty ∼
85 µmol kg-1.

Among the more accurate combinations the overall best were DIC(TA,pH)L and

DIC(TA,pH)M06. Although use of R exhibited the lowest uncertainty it also gave the

worst internal consistency with DIC(TA,pH) and DIC(TA,pCO2). With the Monte Carlo

simulation we identified that calculations of DIC could achieve precision of 3.3 µmol kg-1,

but that the analytical precision was generally still higher than the propagated random

uncertainty (see Table 2.2).

TA. The best-accuracy calculations of TA were obtained with the couple (DIC,pH). The

constants that produced the most accurate results with this couple were again M06, L and

M73 (Figure 2.9). This couple also had the lowest uncertainty for calculation of TA, with

combined uncertainties ranging between ∼ 3-5 µmol kg-1. This small range of uncertainty

shows that the choice of constants does not strongly affect the combined uncertainty of the

calculations.

The couple (DIC,pCO2) also produced accurate calculations. As for (DIC,pH) the

constants that produced the smallest residuals were M06, L and M73. This couple also

yielded low combined uncertainties of ∼ 7-10 µmol kg-1 (for R and HM, respectively)

although most of the constants resulted in combined uncertainty of ∼ 8 µmol kg-1 .

Use of the couple (pH,pCO2) resulted in the poorest accuracy for TA calculations. As

with calculations of DIC, (pH,pCO2) produced better accuracy, on average, when combined
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Figure 2.9: Half-target plot for the TA calculations. The x-axis represents the accuracy of
TA (∆TA) from the three couples of input parameters (DIC-pH, DIC-pCO2 and pH-pCO2).
On the y-axis we report the uncertainty associated with TA calculations (MC Uncertainty).
The inset represents a zoom-in of the accuracy and propagated random uncertainty obtained
with the couples (DIC,pCO2) and (DIC,pH).

with the constants of M73, L and MPM (while again M06 resulted in worse accuracy).

Also similar to the DIC results, this couple gave the highest uncertainty for TA calculations,

with combined uncertainties of ∼ 73-108 µmol kg-1 (for R and HM respectively) with

most of the constants giving uncertainty of ∼ 90 µmol kg-1.

Overall the best results in terms of both the accuracy and uncertainty of calculations

were obtained with TA(DIC,pH)M06. Use of M73 and L also produced accurate results with

low combined uncertainty. Although computed TA values can have propagated random

uncertainty as low as 3.3 µmol kg-1, the propagated random uncertainties obtained were
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still higher than the analytical precision (see Table 2.2).
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pCO2. The half-target plot for pCO2 (Figure 2.10) shows a different pattern than for

DIC and TA. The results from different couples are closer together implying that choice of

input parameters does not have as strong an impact.

The couples (DIC,pH) and (TA,pH) gave similar results for both the accuracy and

combined uncertainty of calculations. For both couples the constants that produced the

best internal consistency were M73 and L. The combined uncertainty of the calculated

values obtained with both (DIC,pH) and (TA,pH) ranged between 6.5 and 13.5 µatm for R

and HM, respectively. While the constants of R and HM marked the bounds of uncertainty,
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other constants produced similar combined uncertainties of ∼ 10 µatm.

Overall the couple (TA,DIC) was less accurate and also gave pCO2 calculations with the

highest combined uncertainty of 11.1 and 14.1 µatm for R and HM, respectively. Other

constants produced a combined uncertainty of 12-13 µatm. The spread across the (TA,DIC)

results is smaller than for (DIC,pH) and (TA,pH), for both accuracy and uncertainty of

calculations. The accuracy with (TA,DIC) varied by ∼ 24 µatm between the worst and

best set of constants, whereas the range of accuracy was larger (∼ 34 µatm) with use of

(DIC,pH) and (TA,pH).

The spread of uncertainties with use of the couples (DIC,pH) and (TA,pH) (∼ 7 µatm

for both) was also larger than with (TA,DIC) (3 µatm), so that the choice of constants was

also slightly more important for these two couples than for (TA,DIC). Overall we find that

the best combination for calculating pCO2 is (DIC,pH)M73, although we note also that the

combined uncertainty from this combination (∼ 10 µatm) is 10-fold larger the analytical

precision (see Table 2.2).

pH. Calculations of pH with (DIC,pCO2) and (TA,pCO2) as input parameters produced

similar results, both in terms of internal consistency and uncertainty (Figure 2.11). The

best accuracy of calculations using (DIC,pCO2) was achieved with L and M73 constants.

The combined uncertainty with this couple ranged between 0.015 (R) and 0.024 (HM),

with all other constants giving a pH combined uncertainty of ∼ 0.019 units. The couple

(TA,pCO2) yielded similar results for accuracy and uncertainty of calculations, with a

comparable spread across the different dissociation constants.

On the other hand, the couple (TA,DIC) yielded worse accuracy but lower combined

uncertainty in pH computations. As with the other couples, the constants of L and M73

gave the smallest average residuals. In contrast to the results for pCO2, the couple (TA,DIC)

gave the lowest uncertainty for pH, with combined uncertainties ranging between 0.011

(R) and 0.013 (HM) units. Although the standard deviations of residuals for this couple

were slightly higher than for the others, the Monte Carlo analysis gave lower uncertainties.

As was observed for pCO2 the spread across the (TA,DIC) results was smaller than for

(DIC,pCO2) and (TA,pCO2), in terms of both accuracy and uncertainty of pH calculations.

Overall, the best results across all three couples were obtained with (DIC,pCO2)L,

(DIC,pCO2)M73, and with (TA,pCO2)M73 and (TA,pCO2)L. The couple (TA,DIC)M73 gave

worse accuracy of calculations but also lower combined uncertainty (0.012) compared
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Figure 2.11: Half-target plot for the pH calculations. The x-axis represents the accuracy
of pH (∆pH) from the three couples of input parameters (DIC-pCO2, TA-pCO2 and TA-
DIC). On the y-axis we report the propagated random uncertainty associated with the pH
calculations.

to the other combinations with M73. As with pCO2, the analytical precision of pH was

around an order of magnitude better than the uncertainty of its calculated values.

2.5 Discussion

2.5.1 General findings and recommendations on input parameters
and constants

In this study we identified the combinations of input parameters and sets of constants

that work best for the calculation of each measurable carbonate parameter in the Labrador

Sea. Generally, the best results were given by couples that pair a T,P-dependent parameter
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(pH or pCO2) with a non-dependent one (TA or DIC). Conversely, use of couples that

used two T,P-dependent or independent parameters (i.e., pH,pCO2 or TA,DIC) yielded

poorer results, although some exceptions were found (e.g., low combined uncertainty

when calculating pH from (TA,DIC)). The poorer performance of (pH,pCO2) reflects

the fact that pH and pCO2 are closely correlated and therefore do not serve as effective,

independent constraints. Furthermore the intermediate steps required to first obtain these

two parameters at 25◦C before calculating DIC and TA (see section 2.3.2.1), introduce

additional uncertainty propagation through CO2SYS.

For (TA,DIC) we examined whether the relatively poor accuracy achieved could be due

to organic bases that would be included in measured values of TA but not accounted for

in CO2SYS. Given that the contribution of these species might more likely occur during

intense primary production, we isolated TA residuals obtained from the bloom area that

occurs along the eastern side of the basin. We selected only ∆TA values from the upper 30

meters of the water column along the Greenland coast and plotted these values against the

measured Total Alkalinity (not shown). We found no evidence of the presence of organic

bases, which would have appeared as a consistent positive offset between measured and

calculated values. A further reason why the presence of organic bases is probably not the

cause for the worse accuracy of the (TA,DIC) couple is that other calculations involving TA

(coupled with either pH or pCO2) did not show a similarly poor performance in calculations

with CO2SYS.

The combinations (pH,pCO2)M73 and (pH,pCO2)L were found to exhibit low average

residuals for computed TA and DIC, even though they use two T,P-dependent parameters.

However, the Monte Carlo simulation found that these combinations produced the highest

combined uncertainty by far (almost twenty times higher than other couples), and therefore

should not be used for calculation of TA and DIC.

While the use of (TA,DIC) as input parameters produced the highest uncertainty for

calculation of pCO2, the opposite was found for pH. Indeed for pH, the (TA,DIC) couple

produced the lowest propagated random uncertainty, no matter the constants chosen,

although the accuracy of calculations was worse.

In general, we found that, regardless of input couple, M73 and L yielded the best

internal consistency for all inorganic carbon parameters. In contrast, use of ASW-derived

constants like R, GP and H produced poorer consistency. Our results agree with some of
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Table 2.3: Recommended couples of input parameters and dissociation constants to obtain
the most accurate and precise calculations of each carbonate system parameter based on
the Labrador Sea dataset. The accuracy of calculations is reported for each of the three best
sets of constants while the uncertainty is given as a single indicative value since there was
very little difference observed with the three best sets of constants. All values of DIC and
TA are reported as µmol kg-1 , pCO2 as µatm. The recommended combinations of input
parameters and sets of constants are valid for ranges of temperature and salinity between
-1.7◦ and 5.2◦C, and between 32.3 and 35.0, respectively.

Calculated Couple Constants Accuracy Uncertainty
DIC (TA,pH) M73/L/M06 -1.6/-1.4/-0.5 ∼4
TA (DIC,pH) M73/L/M06 -1.7/-1.5/0.5 ∼4
pCO2 (DIC,pH) M73/L -0.5/-2.3 ∼10
pH (TA,pCO2) H/M73/L 0.001/0.000/0.001 ∼0.02

the internal consistency literature but contrast with other studies. In particular Chierici and

Fransson (2009) found good internal consistency for f CO2 in the Arctic Ocean using (TA,

pH) in combination with R, while a later study in the same region by Chen et al. (2015)

concluded that the best internal consistency for f CO2 was obtained with (TA,DIC) and

M73 constants. In the cases where (TA,pH) or (TA,DIC) are used as the input couple our

data show best agreement between measurements and calculated pCO2 values with M73.

This discrepancy with Chierici and Fransson (2009) is probably due to the wider range of

temperatures encountered in the Arctic region compared to our study area, and perhaps a

better performance of R constants at lower temperatures.

Further, we found that constants derived using natural rather than artificial seawater

nearly always yielded better internal consistency. However some exceptions were found, in

particular pH(DIC,pCO2)H and pH(TA,pCO2)H displayed small average residuals, which

were comparable to those obtained using M73 and L.

Our Monte Carlo simulations show that the combined uncertainty is higher than ana-

lytical precision for all four carbonate parameters. Further, we found that the choice of

constants is less critical for combined uncertainty than the choice of input parameters, as

most constants showed similar combined uncertainties for the same couple. Despite this,

the constants R and HM always produced the lowest and highest combined uncertainty,

respectively, for all input couples and all parameters calculated.
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In Table 2.3 we summarize our recommendations on the couples of input parameters and

sets of constants to be used in calculations of each carbonate parameter in the Labrador

Sea together with the accuracy and uncertainty obtained with these combinations.

2.5.2 Residuals as a function of temperature and salinity

Since dissociation constants are sensitive to temperature and salinity we investigated the

possible dependency of the internal consistency on these two variables. The residuals for

each parameter were fitted with a linear model to determine whether there is a significant

relationship with temperature and salinity. We found no significant relationships, with none

of the linear regressions exhibiting a high r-squared value and the p-values being <0.05. In

the supplementary Figure A.2 we show as an example the DIC residuals for 2015 plotted

against temperature (left panels) and salinity (right panels). The lack of correlation might

be a consequence of the relatively narrow ranges of temperature and salinity encountered

in the Labrador Sea 6, which are smaller than those reported for other regions (e.g., the

Arctic Ocean from Chen et al. (2015)). All our samples have salinities within the valid

ranges of the dissociation constants assessed and only a few had temperatures lower than

the valid range (fewer than 20% and 10% of samples had a temperature below 2◦C and

0◦C, respectively).

2.5.3 Saturation state of Aragonite (ΩAr)

We also assessed the impact of the choice of carbonate system parameters and constants

on calculation of the saturation state of Aragonite, the orthorhombic mineral form of

CaCO3. Previously Patsavas et al. (2015) reported that the calculations of in situ aragonite

saturation state (ΩAr) near the saturation horizon can show differences on the order of

10% between calculations performed with the couple (TA,DIC) compared to those using

(pH,f CO2), (DIC, f CO2) and (DIC,pH). They therefore recommended using a couple with

pH or f CO2 in order to better predict future changes of ΩAr. We performed calculations

of ΩAr with the same couples listed in their study. In this case the ∆ΩAr or “residual” of

ΩAr represents the difference between the saturation state value obtained from a couple

combined with M73 minus the saturation state obtained from another couple also calculated

with M73 (e.g., ∆ΩAr = ΩAr(TA,DIC)M73 - ΩAr(DIC,pH)M73). Our results are summarized

in Figure 2.12 (data are reported in Table A6).
6The Labrador Sea ranges of salinity (∼ 32-35) are here defined narrow in comparison to those reported

for the Arctic Ocean by Chen et al. (2015) (25.8-33.1 in surface water) as well as in comparison to the
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Using our Monte Carlo analysis we investigated whether the couple (TA,DIC) yields

higher uncertainty compared to other couples of input parameters. We found that the

highest uncertainty was associated with couples including pCO2 (see Figure 2.13), while

(TA,DIC), despite giving higher residuals (see Figure 2.12), did not exhibit higher uncer-

tainties than other couples, including those with pH. The standard uncertainties propagated

through the Monte Carlo simulation for all couples and constants produced combined un-

certainties of <0.1, indicating that the choice of input parameters can influence uncertainty

of calculations to a maximum of 10% when Ω=1.

Similar to Patsavas et al. (2015) we find that the couples with the lowest average dif-

ferences are (DIC,pH), (DIC,pCO2) and (pH,pCO2), while the largest average differences

occur with (TA,DIC). Nevertheless, we emphasize that agreement between certain couples

salinity ranges used to determine the dissociation constants of carbonic acid in SW and ASW (0-50).
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and not others (see all ∆ΩAr where (TA,DIC) couple is used) does not signify better accu-

racy. Indeed no conclusions can be drawn regarding the accuracy of aragonite saturation

state calculations as no direct determinations of this derived parameter are available.
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Figure 2.13: Uncertainty in calculated ΩAr obtained from the Monte Carlo simulation
using different couples of input parameters and sets of constants for the year 2015.

2.5.4 Implications for comparison of laboratory and sensor measure-
ments

As noted in the Introduction, data obtained from in situ pH and pCO2 sensors are of

growing importance. Typically, such sensors are calibrated in the laboratory as a function

of both temperature and pressure prior to deployment. However overall quality control also

relies on comparison of in situ sensor-based measurements with conventional measured or

calculated values of pH derived from shipboard or laboratory measurements on discrete

water samples conducted at laboratory temperature and pressure (see Johnson et al. (2016)

and Williams et al. (2017) for review). Hence, the quality assurance procedures require

correction of carbonate system parameters to in situ temperature and pressure conditions

as described in section 2.3.2.1, as well as other aspects related to internal consistency.
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Johnson et al. (2016) report short-term consistency between in situ, sensor-based mea-

surements of pH and shipboard measurements corrected to in situ conditions (0-1000 m

depth) averaging 0.00 ± 0.011. However, a systematic depth-dependence to the offset

between in situ and laboratory-measured pH values was observed which reached 0.01 at

1000 meters. It was noted that this depth-dependent offset is within the uncertainty of

the pressure-dependence of the carbonate system constants. However it could, of course,

also conceivably be a consequence of inaccuracy in a sensor’s pressure-coefficient. With

our present, very limited knowledge of the pressure-dependence of the carbonate system

equilibrium constants (see section 2.3.2.1) it is not possible to definitively assign such

offsets to either: a) in situ measurement error, or b) uncertainties in extrapolation of

measurements made at laboratory conditions to the conditions of the deep ocean.

Comparisons of in situ measurements in deep water (i.e., at high pressure) with shipboard

measurements on deep water samples (1000-2000 m) are also used to correct for post-

deployment sensor drift (Johnson et al., 2016; Williams et al., 2017). An assumption is that

trends of sensor-determined pH diagnosed with this approach reflect changes in the sensor’s

reference potential (Johnson et al., 2016), with the implicit assumption that a sensor’s

pressure coefficient, f(P), does not change. A second key assumption is that the pH of

samples collected at depths >1000 m, after adjustment for variations of carbon-correlated

parameters such as T, S and O2, is invariant relative to the magnitude of a carbonate system

“signal” of interest in overlying waters. The former assumption has not, to the best of our

knowledge, been tested to-date. The latter assumption is justifiable in slowly-ventilated

regions of the World Ocean (e.g., the North Pacific), but not necessarily in locations such

as the Labrador Sea where temporal changes of carbonate system parameters, due to

variability of anthropogenic CO2 and variable “pre-formed” conditions at the sea surface,

can impact water at all depths. In the Labrador Sea, the decadal pH change at 1500 meters

is comparable to that at the sea surface (ca. -0.01 per decade, unpublished data) and deep

water spatial variability is also considerable, due to the existence of multiple water masses

with differing ventilation and formation histories.

A key application for in situ measurement of pH from profiling floats is to determine

the pCO2 of surface waters in order to estimate air-sea pCO2 fluxes (Williams et al., 2017).

This generally requires estimation of a second carbon system parameter based on a “proxy”-

variable that can be measured in situ. Total alkalinity is commonly the chosen second
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parameter and is estimated from regional regressions of alkalinity with salinity determined

with shipboard surveys. Based on a detailed uncertainty analysis, Williams et al. (2017)

estimated an uncertainty of ± 11 µatm for near-surface in situ pCO2 calculated from in

situ pH measurements made on profiling floats in the Southern Ocean. They noted that “an

unknown bias may be introduced to the float pH data during the quality control process as

a result of the uncertainties in the effect of pressure on the carbonate system equilibrium

constants, which has been measured only once (Culberson and Pytkowicz, 1968)”. The

considerable magnitude of this uncertainty for pH is clear from Figure 2.3 which also

shows that the pressure effect on in situ pCO2 is very strong.

Given the rapidly growing importance of in situ measurement of pH and calculation of

in situ pCO2, and the role of deep water comparisons for quality control of these data, a

concerted effort is required to reduce uncertainty in comparison of shipboard and in situ

measurements of the carbonate system. This should include laboratory measurements of the

pressure effect on seawater pH to update the only study by Culberson and Pytkowicz (1968)

which is now obsolete (Johnson et al., 2016). The importance of accurate representation

of pressure effects on the constants will grow as platforms such as biogeochemical Argo

floats are adapted to profile into the deepest waters of the ocean, similar to the 6000m

depths envisioned for the “Deep Argo” program (Jayne et al., 2017). However, the history

of laboratory study of carbonate system dissociation constants suggests that empirical

field studies of carbonate system internal consistency within the deep ocean, including

consistency with in situ sensor measurements of both pH and pCO2, will also be required

for the real-world validation of laboratory studies.

We suggest that a subset of future GO-SHIP cruises and/or other deep-ocean surveys

(such as the Labrador Sea monitoring program) should include vertical profiling of both

pH and pCO2 using laboratory-calibrated in situ sensors in addition to the laboratory-

based analysis of full-depth profiles of DIC, TA, pH and pCO2. We note that current

Standard Operating Procedures for laboratory-based determinations of pCO2 and pH

call for measurements at standard temperatures that are close to laboratory temperature

(e.g., 20◦C or 25◦C). This recommendation was made largely for practical reasons

connected with the ease- and reliability of sample temperature control, and because earlier

carbon-system surveys were not designed for calibration of in situ sensors but rather

for determining global distributions of DIC and TA for which a specific temperature of
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measurement of pH and pCO2 was not important.

However as seen in Figure 2.3, and noted by Williams et al. (2017) and Orr and

Epitalon (2015), conversion of laboratory-based measurements to in situ conditions, for

calibration adjustment of in situ pH and pCO2 measurements, involves large corrections,

the uncertainty of which is not yet fully known. Whereas routine laboratory measurements

at deep ocean pressures remain impractical, we suggest consideration should be given

to including measurements of discrete pH and pCO2 at standard temperatures closer to

deep ocean temperatures in future surveys. This would minimize one source of uncertainty

involved in comparing in situ and laboratory-based measurements. Such a program of

combined sensor and laboratory-based measurements from deep ocean surveys would

provide data that can validate approaches used to inter-relate observed carbon system

parameters at depth within the ocean.

2.6 Conclusions

Based on an assessment of internal consistency of the marine carbonate system in

the context of a long-term monitoring program in the Labrador Sea, we emphasize the

following main points:

The choice of carbonate parameters to be measured is crucial since this strongly affects

both accuracy and uncertainty of parameters that are computed from them. In particular,

we find that a mixed combination of parameters, with one T,P- independent and the other

T,P-dependent is preferred. Especially the use of (pH,pCO2) should be avoided as poor

accuracy and high combined uncertainty of calculated TA and DIC are obtained from these

parameters.

For a given couple of input parameters, the choice of equilibrium constants can also be

very important for accuracy. Overall we find that the constants of Mehrbach et al. (1973)

(M73) as refit by Dickson and Millero (1987) and Lueker et al. (2000) (L) give accurate

results with low combined uncertainty for all four measurable parameters of the carbonate

system with the dataset from Labrador Sea.

For our dataset, calculations using a mixed couple involving measurement of pH results

in better accuracy and lower combined uncertainty for computed parameters than use of

pCO2. Further, we recommend DIC over TA when possible due to the improved accuracy

obtained with use of this parameter in mixed couples. DIC is also preferable because it is
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a direct measurement of carbon content, while measurements of TA could include poorly

characterized contributions from, for example, organic acids.

Comparisons of internal consistency between different years revealed differences which

helped identify a bias in TA for the 2014 dataset. Hence, knowledge of internal consistency

and over-determination of the carbonate system is useful for quality control in long-term

monitoring programs.

The couples that gave the best consistency with observations were: (TA,pH) for calcula-

tion of DIC and (DIC,pH) for calculation of both TA and pCO2. For calculation of pH,

all couples produced generally good internal consistency however the (TA,DIC) couple

gave the lowest combined uncertainty. Hence, for those years of the AR7W time series

for which only TA and DIC were measured, we estimate that pH can be calculated with

an accuracy of <0.007 and a combined uncertainty of <0.011 (with use of M73 or L

constants).

Our Monte Carlo simulation showed that the choice of input couples can affect the

uncertainty of aragonite saturation state calculations to a maximum value of 0.1. Whenever

the couple (TA,DIC) is used higher residuals of ΩAr are observed, nevertheless no conclu-

sions concerning accuracy can be drawn from these results as no direct determinations of

ΩAr are available.

Internal consistency at in situ conditions of T and P is increasingly important in the

context of autonomous oceanographic measurement of pH and/or pCO2 (e.g., from gliders,

Argo floats, moorings) and for model validation. However this is limited by current un-

certainty concerning pressure effects on the constants. A new experimental investigation

of the pressure effect on carbonate system dissociation constants and CO2 solubility is

required. We suggest that this should be validated with an intensive assessment of the

internal consistency of carbonate system measurements within the deep ocean interior.

This should include systematic comparison of laboratory-based measurements with mea-

surements made in situ, of both pH and pCO2, and could make use of shipboard programs

such as the Labrador Sea monitoring discussed here.
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CHAPTER 3

A 30 YEARS TIME SERIES OF
TRANSIENT TRACER-BASED
ESTIMATES OF ANTHROPOGENIC
CARBON IN THE CENTRAL LABRADOR
SEA 1

3.1 Abstract

We use a 30-year time series (1986-2016) of dichlorodifluoromethane (CFC-12) concen-

trations with a refined Transit Time Distribution method (TTD), to estimate the temporal

variation of anthropogenic carbon (Cant) in the Central Labrador Sea.

We determined that the saturation of CFC-12 and sulfur hexafluroide (SF6) in newly-

formed Labrador Sea Water had departed significantly from 100% and varied systematically

with time. Multiple linear regression of the time-varying saturation, with the tracer’s

atmospheric growth rate and the wintertime mixed layer depth as independent variables,

allowed reconstruction of the saturation history of CFC-12 and SF6 in wintertime surface

waters, which was implemented in the TTD method.

1Raimondi, L., Tanhua, T., Azetsu-Scott, K., Yashayaev I., Wallace, D. W. R. (2021). A 30 years time
series of transient tracer-based estimates of anthropogenic carbon in the Central Labrador Sea. Journal of
Geophysical Research: Oceans, e2020JC017092. https://doi.org/10.1029/2020JC017092.
Author contribution: I conducted the field work, analyzed the TA, DIC samples in 2014, 2015 and 2016
in collaboration with Stephen Punshon from the Bedford Institute of Oceanography. Tanhua T. provided
extensive support with the TTD method. Yashayaev I. provided the MLD data and supported with the water
masses definitions. I led the interpretation of the data and wrote the manuscript with extensive input from all
co-authors.
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Use of the time-varying saturation for CFC-12 gave Cant concentrations ∼ 7 µmol kg−1

larger than estimates obtained assuming a constant saturation of 100%. The resulting

Cant column inventories were ∼ 20% larger and displayed lower interannual variability

compared to conventional TTD-based estimates.

The column inventory of Cant increased at an average rate of 1.8 mol m−2 y−1 over the

30-year period. However, the accumulation rate of Cant was higher than this average in the

early 1990’s and since 2013 whereas inventories remained almost unchanged between 2003

and 2012. The variation in the Cant accumulation rate is shown to be linked to temporal

variability in the relative layer thickness of the annually ventilated Labrador Sea Water

and the underlying Deep Intermediate Water.

The non-steady Cant accumulation highlights the importance of sampling frequency,

especially in regions of variable deep mixing and high carbon inventories, and potential

misinterpretation of Cant dynamics.

3.2 Introduction

The change in oceanic total dissolved inorganic carbon (DIC) concentrations relative

to pre-industrial values, due to human mobilization of carbon over the past 250 years,

is defined as “excess” or “anthropogenic” carbon dioxide Wallace (Excess CO2 or Cant;

2001). This Cant represents only a small fraction of the total dissolved CO2, and therefore

difficulties are encountered in distinguishing the anthropogenic perturbation from the

predominant natural signal. This is further complicated by spatial and temporal variability

of the oceanic sink for anthropogenic CO2 (Gruber et al., 2019b,a).

Here we take advantage of a long time series of transient tracers (CFC-12 and SF6)

in the Central Labrador Sea, a region with high integrated column inventory of Cant, to

explore the temporal variability of tracer-based estimates of Cant in this key region of the

world’s ocean for gas uptake and transport.

Methods to estimate Cant in the ocean can be classified in four main categories (see

Sabine and Tanhua, 2010, for a review): (1) back-calculation approaches (e.g., ∆C∗;

Gruber et al., 1996) that separate observed Dissolved Inorganic Carbon (DIC) from the

pre-industrial preformed DIC based on estimation of changes due to remineralization of

organic matter and dissolution of calcium carbonate; (2) decadal change methods based on

repeat observations (e.g., the extended multiple linear regression (MLR), eMLR; Friis
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et al., 2005) that identify Cant by measuring differences between surveys completed in the

same location but at different times; (3) model-based approaches (e.g., Ocean Circulation

Inverse Model (OCIM); DeVries, 2014) that can be used to assess the air-sea flux of Cant

by simulating ocean mixing, circulation and biogeochemistry; (4) tracer-based approaches

(the Transit Time Distribution or TTD method; Waugh et al., 2006) that use transient

tracers to estimate the age of a water sample and, from that, deduce its Cant content based

on the history of CO2 in the atmosphere and surface water.

An important underlying assumption of most applications of these methods is that

large-scale ocean circulation (e.g., ventilation of the ocean interior) is invariant over the

timescale of the Cant increase being considered. This steady-state assumption is particularly

questionable for high latitude regions, such as the Labrador Sea considered here, where

deep water formation displays strong interannual to decadal variability (e.g., Yashayaev

and Loder, 2017). Relatively few observation-based studies have addressed the validity and

significance of this assumption and examined the temporal variability of Cant accumulation

(e.g., Carter et al., 2017; Steinfeldt et al., 2009; Tanhua and Keeling, 2012; van Heuven

et al., 2011), likely because few, suitable, temporally-resolved datasets are available.

Similarly, modelling studies (e.g., Goodkin et al., 2011) have highlighted how errors in

the ocean transport and dynamics of a model can directly affect the prediction of carbon

cycle variables (e.g., air-sea CO2 flux and Cant uptake).

The Northwest Atlantic Ocean (together with the Mediterranean Sea; Schneider et al.,

2010) has been shown to have amongst the highest vertically integrated concentrations

of Cant (DeVries, 2014; Khatiwala et al., 2009, 2013; Sabine et al., 2004; Waugh et al.,

2006) in the global ocean. The Labrador Sea, in particular, is the source of Labrador Sea

Water (LSW) which, together with underlying dense waters from the Denmark Strait and

Iceland-Scotland Overflows, forms NADW and therefore plays a central role for ventilating

the deep ocean interior. It has previously been shown that a significant portion of the total

Cant that is ultimately sequestered by the North Atlantic flows through the Labrador Sea

basin (Tait et al., 2000).

The formation of water masses by deep convection provides a direct path for atmospheric

gases, including Cant, to be exchanged with the ocean interior and has been referred to as a

“trap door” mode of ventilation (Bernardello et al., 2014; De Lavergne et al., 2014). In

contrast to the suppression of deep convection by a strengthening halocline in the Weddell
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Gyre described by Bernardello et al. (2014) and De Lavergne et al. (2014), Labrador

Sea Water formation continues today, but is highly variable on interannual and longer

timescales (Yashayaev and Loder, 2016, 2017). Further, model projections suggest there

is potential for significant future reductions of convection depth and LSW formation in

response to increased freshwater input from Greenland (Böning et al., 2016).

Here we present and interpret a time series of annual, tracer-based estimates of column

inventories and storage rates of Cant in the Central Labrador Sea over a thirty year period,

from 1986 to 2016. The estimates are obtained with a refined version of the TTD method

applied to data collected from a long-term monitoring program conducted along the

WOCE/CLIVAR/GO-SHIP repeated hydrography line AR7W. The extensive time series

data available along this hydrographic transect enable us to test and/or refine two of the

assumptions typically applied when using the TTD method: (a) constant (usually 100%)

saturation of the transient tracers and (b) constant air-sea CO2 disequilibrium (Matsumoto

and Gruber, 2005).

Relatively few studies have focused on the spatial distribution and potential for non-

steady-state behavior of Cant in this region. Using the ∆C∗ method (Gruber et al., 1996),

Tait et al. (2000) provided the first description of the vertical distribution of Cant in the

Labrador Sea. This was followed by several studies which discussed the capacity of

Labrador Sea to take up and store Cant. For example, Terenzi et al. (2007) applied the TTD

approach to “Classical” Labrador Sea Water2 in the North Atlantic, and suggested that,

despite the high concentrations of Cant in Labrador Sea, the exchange of CO2 across the

sea surface in the Labrador Sea cannot keep pace with its transport into the ocean interior.

This implied that the Labrador Sea is highly undersaturated with respect to Cant in the

atmosphere.

Another TTD-based study by Steinfeldt et al. (2009) between 20◦S and 65◦N in the

Atlantic identified that the maximum Cant column inventory was located in the Central

Labrador Sea. A basin-wide decrease of the inventory within LSW was inferred between

1997 and 2003, which was explained by a temporary weakening in the rate of LSW

formation and warming of the intermediate-depth waters during this period.

At the time when these studies were published it was still not possible to define whether

apparent changes in column inventory were part of a long-term trend, or the result of

2See definition provided in Section 1.3.2
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natural (e.g., decadal) variability in water mass formation. The unusual availability of a

long time series of data from the Labrador Sea makes this area particularly valuable for

identification of the nature of temporal variability in Cant uptake.

3.3 Materials and Methods

3.3.1 Data

To calculate the Cant with the TTD method we selected tracers and hydrographic data

along a WOCE/CLIVAR/GO-SHIP repeated hydrography section (AR7W; Figure 3.1)

that crosses the Labrador Sea, and that has been maintained by the Bedford Institute of

Oceanography (BIO), Fisheries and Oceans, Canada (DFO). During these expeditions

(occurring under the Atlantic Zone Off-Shore Monitoring Program [AZOMP] in recent

years) samples for hydrographic, chemical and biological parameters were collected every

spring-summer along this transect (typically in May, but occasionally in June or July).

For a more detailed list of the parameters measured along this section see Raimondi et al.

(2019) and AR7W cruise reports at https://cchdo.ucsd.edu/.

Measurements of CFC-12 from 1992 to 2011 were subject to a secondary quality control

and compiled in the GLODAPv2 data product (Olsen et al., 2016). For the years between

2012 and 2016 we performed the secondary quality control using the toolbox of Lauvset

and Tanhua (2015). We also included early CFC-12 data collected in 1986 along a transect

located slightly to the south of the AR7W line (Wallace and Lazier, 1988, see Figure 3.1),

which extends our dataset over three decades. Sampling of SF6 started in 2012 and annual

data are available up to 2016. In Azetsu-Scott et al. (2005) and Punshon et al. (2016)

a detailed description on the analytical procedures used to measure CFC-12 and SF6 is

provided.
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Figure 3.1: Map of the Labrador Sea with locations of the stations occupied during the
Atlantic Zone Off-Shelf Monitoring Program (AZOMP) along the AR7W section between
1992 and 2016, and during the Hudson cruise in 1986 (southernmost stations).

3.3.2 TTD Method

We estimated the annual inventory of Cant in the Central Labrador Sea between 1986

and 2016 using a refined version of the Transit Time Distribution (TTD) method (Hall

et al., 2002, 2004; Waugh et al., 2006). The TTD provides a statistical description of the

age distribution of a water mass within the ocean interior (where age refers to time elapsed

since a parcel of water left contact with the atmosphere within the surface mixed-layer of an

isopycnal outcrop region). If water is transported into the ocean interior by advection only,

a water mass could be described by a single age or “transit time”, but generally mixing

of water parcels with different “ages” occurs so that a water mass has a distribution or

spectrum of ages. As shown by Holzer and Hall (2000), the concentration within the ocean

interior of a dissolved substance subject to time-variable surface water concentrations

(such as transient tracers and Cant) is given by:

c(t, r) =

∫ ∞
0

c0(t− t′)G(t′, r)dt′ (3.1)
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where c(t,r) is the concentration of the dissolved constituent within the ocean interior at

time t and position r, c0(t) is the constituent’s surface water concentration as a function of

time, and G(t’,r) is the age distribution in the form of a Green’s function that describes

the propagation of surface boundary conditions into the ocean interior (Waugh et al.,

2006). This distribution is commonly defined by an Inverse Gaussian Function (eq.3.2)

characterized by a mean Γ and a width ∆.

G(t′) =

√
Γ3

4Π∆2t′3
· exp

(
−Γ(t′ − Γ)2

4∆2t′

)
(3.2)

The transport of water that delivers the time-variable tracer (or Cant) to a certain location

is characterized by the mixing of water parcels with different ages and, possibly, different

source locations. The concentration of Cant in the ocean interior can be estimated based on

knowledge of the TTD and of the corresponding surface water concentration history of

Cant. The latter is obtained from the time-history of atmospheric CO2 mixing ratios, the

solubility of carbon dioxide and knowledge of the water mass’ preformed alkalinity (TA0;

i.e., the total alkalinity [TA]of a water mass at the time it lost contact with the atmosphere).

The TTD parameters, ∆ and Γ, are constrained using concentrations of transient tracers

such as CFC-12, CFC-11, CFC-113, CCl4 and SF6 and other tracers (e.g., 129I; Smith et al.,

2016). The ratio of width (∆) to mean age (Γ) reflects the relative strength of diffusive

to advective transport processes that connect the ocean surface to the ocean interior. Its

value is generally constrained empirically by comparing mean ages obtained from different

tracers with different surface water concentration histories. Purely advective transport

would have a ∆/Γ = 0 and higher ratios correspond to increasing contributions of mixing to

the overall tracer transport. For the Labrador Sea, we constrained Γ and ∆ using CFC-12

and SF6 data.

Although the TTD method accounts for effects of mixing of water with different ages

on tracer and Cant concentrations, its use involves a number of simplifying assumptions

(see Waugh et al., 2006, for a review). The first is assumption of constant saturation of

surface waters (usually 100%) relative to the time-varying atmospheric concentrations of

the transient tracer gases such as chlorofluorocarbons (CFCs) used to estimate the TTDs.

An implication is that if the true saturation is lower than the assumed value, mean ages will

be over-estimated and lower concentrations of Cant will be inferred for the ocean interior.

Previous studies showed that CFCs can be significantly under-saturated in newly-formed
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Labrador Sea Water (Azetsu-Scott et al., 2003; Wallace and Lazier, 1988), and dissolved

oxygen also does not reach equilibrium during deep convection (Atamanchuk et al., 2020;

Koelling et al., 2017).

The constant 100% saturation assumption was partially relaxed in the work of Terenzi

et al. (2007) where they allowed under-saturation of the transient tracer by scaling the

atmospheric history of CFC-11 to match values observed in the Labrador Sea. This scaling

produced a saturation of 66%, consistent with previous observations of 60% by Wallace

and Lazier (1988) and 70% by Smethie Jr and Fine (2001), nevertheless this value was

held constant in Terenzi et al.’s approach.

In the case of CFCs, under-saturation of wintertime deep mixed layer is likely to have

been more pronounced during periods when the rate of increase of CFCs in the atmosphere

was fastest (i.e., up to 15% year−1 in the period between 1960s to early 1990s). Under-

saturation of a tracer at the time of water mass formation is also likely to be influenced by

the depth of wintertime convection (Haine and Richards, 1995). The deeper the convection,

the larger the volume of water that must be equilibrated (via gas exchange) with the altered

atmospheric concentration of the tracer gas. Deep convection involves entrainment of older,

sub-surface water masses, typically with lower concentrations of transient tracers, which

dilute tracer gas concentrations in the surface layers that are exposed to the atmosphere

(Azetsu-Scott et al., 2005; Tanhua et al., 2008). Consideration of both mechanisms

suggests that under-saturation of transient tracers is likely to be variable in regions of deep

convection such as the Labrador Sea.

A second key assumption when applying the TTD method to Cant estimation, is that

the air-sea CO2 disequilibrium has remained constant over time. Violation of this as-

sumption might be expected given relatively long gas equilibration timescale for CO2

(ca. 1 year) and consequent possibility that deep winter mixed-layers, that are exposed

to the atmosphere for periods of weeks to months, fail to keep pace with the increase of

atmospheric pCO2 (Takahashi et al., 1997). On the other hand, the growth rate of CO2

in the atmosphere has been steadier than that of transient tracers. Contrary to the impact

of the assumption concerning tracer gas saturation discussed above, this assumption of

constant CO2 disequilibrium may typically lead to overestimation of Cant concentrations.
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3.4 Adaptation and Application of the TTD Method to
the Labrador Sea

3.4.1 Influence of Variable Surface Tracer Saturation to the Cant Es-
timate

The Labrador Sea is one of the few major water-mass formation regions where historical

time series of transient tracer concentrations are available with annual resolution extending

over several decades. Using data from the repeated occupation of the AR7W line in May

or June of each year, we reconstructed the time-varying saturation for the time of water

mass formation (typically late February or March; Yashayaev and Loder, 2016; Yashayaev,

2007). We assumed that water lying between the seasonal thermocline (>200 metres [m]

depth) and the maximum mixed layer depth (MLD) in the Central basin best represents the

water that was in contact with the atmosphere during winter. This layer is hereafter referred

to as Labrador Sea Water (LSW). The gas saturation for each year of the time series was

obtained by averaging the measured concentrations of CFC-12 and SF6 in this LSW layer

and converting these to percent-saturation based on the contemporary atmospheric mixing

ratios (hereafter, the percent-saturations obtained in this way are referred to as “observed

saturations”).

Using a least squares method, we modelled interannual variations of the observed

saturation of CFC-12 and SF6 tracer gases at the time of convection as a function of

(a) the annual rate of increase of the tracer gas’s atmospheric mixing ratio and (b) the

interannually-varying maximum depth of wintertime convection.

The atmospheric histories of both CFC-12 and SF6 are well constrained. The CFC-12

atmospheric history has been reconstructed using records of production and release data

from manufacturers prior to 1979 and from direct measurements after 1979 (Prinn et al.,

2000; Walker et al., 2000). The SF6 input function is based on production estimates dating

back to 1953 and direct measurements since then (Bullister, 2017). The annual variation

of the maximum MLD can be estimated from measurements of temperature and salinity

which have been carried out in the Central Labrador Sea since the 1930s (Yashayaev and

Loder, 2016). The MLD was assessed through the methodology described in Yashayaev

and Loder (2016) and using ship-board and Argo floats data collected by Fisheries and

Oceans Canada (Yashayaev and Loder, 2017). Using the wintertime surface heat-loss and

the observation-based estimates of MLD, a linear regression was obtained to parameterize
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the MLD for years prior the early 2000’s, when Argo floats data started complementing

the AR7W line observations (see section B.2 of the Supplementary Material for a detailed

description of the approach). We use model MLD-4 for our calculations as this was closest

to the observed MLD, and closest to the average MLD value of the four models. The

regression coefficients obtained for years of observations were then used to model the

saturation back to 1945 (see Figure 3.2).
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Figure 3.2: Modelled CFC-12 saturation during wintertime conditions in central Labrador
Sea. The black triangles represent the observed saturations from 1986 to 2016. The dashed
line represents the modelled saturation when the maximum MLD is assumed to be constant
at 1500 m. The dots and shaded area represent the average modelled saturation and the
standard deviations obtained with a MLR involving the first derivative of the atmospheric
input function and different realizations of the maximum MLD from a conceptual model
(see Supporting Information).

We used MLR of observed saturations to estimate the saturation of CFC-12 and SF6

for years before the tracers were measured. The dependent variable was the observed

saturation for the years 1986 to 2016 and 2012 to 2016 for CFC-12 and SF6, respectively,

and the independent variables were the first derivative of the atmospheric input function
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and the maximum MLD for the same years:

sat(LSW )(%) = a+ b · dC
dt

+ c ·MLD (3.3)

where dC/dt represents the (annual) rate of increase of the tracer’s atmospheric mixing

ratio and MLD is the maximum MLD in meters.

1950 1960 1970 1980 1990 2000 2010 2020
TIME [years]

55

60

65

70

75

80

85

90

95

100

SF
6 S

AT
U

R
AT

IO
N

 [%
]

Observed Saturation
Modelled Saturation - Constant MLD (1500 m)
Modelled Saturation (SF6 reg) - Variable MLD (Average)
Modelled Saturation (SF6 reg) - Variable MLD (Standard Deviation)
Modelled Saturation (CFC-12 reg) - Variable MLD (Average)
Modelled Saturation (CFC-12 reg) - Variable MLD (Standard Deviation)

Figure 3.3: Modelled SF6 saturation during wintertime in the Central Labrador Sea.
The triangles represent the observed SF6 saturations. The dashed line represents the
SF6 saturation obtained with an MLR and a constant MLD of 1500 m. The blue dots
and shading represent the average saturations and their standard deviations, respectively,
obtained from the MLR performed with the SF6 observations and the four realizations of
maximum MLD. Finally, the purple dots and shading represent the average SF6 saturations
and standard deviations from the MLR performed using the regression coefficients obtained
from the CFC-12 observations.

We modelled the saturation of SF6 using both a MLR based on the 5 years of SF6

observations, as well as using regression coefficients from the MLR obtained with the

CFC-12 observations (see Figure 3.3). The latter approach is justified because the two

tracers shared quasi-exponential atmospheric histories and similar controls on air-sea
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exchange and uptake. We applied the regression coefficients obtained from the CFC-12

regression with the MLD time-series data and the first derivative of the SF6 atmospheric

history.

Saturation variations were largely determined by the atmospheric growth rate (the root

mean square error [RMSE] of the regressions using MLD alone, atmospheric growth rate

alone and both atmospheric growth rate and MLD as independent variables were 9.6, 7.9

and 5.2%, respectively). A comparison of saturations reconstructed with a time-varying

MLD (dots in Figures 3.2 and 3.3), showed that year-to-year variation of the MLD had

only a small contribution of up to 17% and 12% to the overall variability of CFC-12 and

SF6 saturations, respectively. Years with saturations higher than values obtained with the

constant 1500 m MLD, indicate that the actual MLD was a shallow one (e.g., 1960-1970,

2000-2010) while lower saturations indicate years with deeper convection (e.g., 2013-2016

see Figure B.2).

The modelled saturations of both CFC-12 and SF6 were then used to reconstruct the win-

tertime surface history of the tracers effective mole fraction corrected for non-equilibrium

conditions in central Labrador Sea using equation 3.4.

Xeff (t) =
(Xatm(t) · satLSW (t))

100
(3.4)

where Xeff is the effective mole fraction (ppt) of either CFC-12 or SF6 in air that is

in equilibrium with the contemporary, wintertime surface water concentrations, Xatm is

the tracer’s atmospheric mole fraction and satLSW is the saturation calculated for newly-

formed LSW in each year using the MLR (equation 3.3). These calculated histories for

surface water were implemented in the TTD routine so that the mean age calculation

would account explicitly for the time-varying saturation of CFC-12 and SF6. Figure 3.4

shows the resulting reconstructed surface histories of CFC-12 (panel a) and SF6 (panel

b) together with the atmospheric input functions of the two tracers. In Figure 3.4 it is

noticeable that, when time-varying saturation in taken into account, both CFC-12 and SF6

deviate significantly from the atmospheric input functions. Therefore, a large and time

dependent bias is introduced when the traditional TTD approach (with assumed constant

saturation of 100%) is applied to waters ventilated in the Labrador Sea.
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Figure 3.4: Panel a) Comparison between the atmospheric history (grey dots) and the
Central Labrador Sea wintertime surface history (red dots) of the XCFC−12 (see equation
3.4). The dashed line represents the Smoothed function (moving average filter) of the
surface history. Panel b) Comparison between the atmospheric history (grey dots); the
Central Labrador Sea wintertime surface history of XSF6 obtained by applying the regres-
sion coefficients from a MLR using CFC-12 observed saturations to the SF6 input function
(purple dots) and through a MLR using observed saturations of SF6 instead (blue dots).
The dashed lines represent the smoothed functions of both surface histories of XSF6.
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3.4.2 Time-Variation of pCO2

A second key assumption of the TTD approach is that the air-sea disequilibrium of

CO2 has remained constant over time. Although direct measurements of near-surface

pCO2 are not available for most of the time series, measurements of DIC and TA have

been made since 1996 and allow pCO2 to be calculated (see Raimondi et al., 2019, for

description of carbonate chemistry data). For some years of the time series, TA was

either not measured (from 1992 to 1995) or excluded from the GLODAPv2 data product

(Olsen et al., 2016) due to lower quality of the measurements (1998-2000, 2002, 2006 and

2007). Because TA is not expected to vary systematically over time, we used a regional

Salinity-Alkalinity relationship based on all available data to calculate TA for the years

when TA measurements were not available (TA = 41.25 × Salinity + 862.41; R2 = 0.85).

Using the MATLAB version of the CO2SYS software (Lewis et al., 1998; Van Heuven

et al., 2011) we calculated pCO2 using the equilibrium constants from Mehrbach et al.

(1973) as refit by Dickson and Millero (1987) and including measurements of salinity (S),

temperature (T), pressure (P), soluble reactive phosphorus (PT) and silicate (SiT). From

these calculated values of pCO2 we selected only those belonging to the LSW layer and

compared average values obtained for this water mass (hereafter referred to as pCO2(LSW ))

to mean values of wintertime atmospheric pCO2 (January to April) reported from the ICE

station in Iceland (Dlugokencky et al., 2019).

Figure 3.5 presents average values of wintertime atmospheric pCO2 (pCO2(atm)) and

pCO2(LSW ) over the period of measurement. Note that the calculated pCO2(LSW ) values

from (TA,DIC) agree well with independent estimates from moored sensors available in

the region (red markers in Figure 3.5).

Although there is larger interannual variability in the oceanic pCO2, we cannot determine

whether this is representative of a time-varying air-sea disequilibrium because of the

uncertainty associated with the calculated pCO2 values. The root mean square error

(RMSE) for a linear regression of pCO2(LSW ) against time was 7.7 µatm which is smaller

than the propagated random uncertainty associated with calculating pCO2 from (TA,DIC)

which has been estimated previously to be ∼ 12 µatm (Raimondi et al., 2019). Hence the

variability of pCO2(LSW ) in Figure 3.5 is consistent with the combined random uncertainty

of the dissociation constants and carbonate system measurements used in calculating

pCO2.
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The rates of increase of atmospheric and Labrador Sea Water pCO2 between 1996 and

2016 were 2.2 and 2.3 µatm y−1. A t-test, performed following recommendations from

Andrade and Estévez-Pérez (2014), shows that the two slopes are not significantly different

from each other (α = 0.05). We therefore conclude that pCO2(LSW ) tracks the atmospheric

increase and that there is no evidence for a time-varying air-sea disequilibrium over the

period of measurement. This suggests that a constant disequilibrium assumption for pCO2

is appropriate for use with the TTD method in this region, over this time-period.

This finding is consistent with the time evolution of the air-sea CO2 surface disequi-

librium obtained from a model simulation (Matsumoto and Gruber, 2005) which also

showed little divergence between atmosphere and ocean over the years when our data were

collected (∼ 0.5 µmol C kg−1, equivalent to approximately 1 µatm). It is likely that a

longer time series would be required to detect any trend in air-sea CO2 disequilibrium that

is necessary to derive a larger uptake of CO2.

3.4.3 Constraints on Mixing Conditions (selection of ∆/Γ)

In contrast to some other indirect approaches of Cant estimation, the TTD method

accounts for water mass mixing using the ∆/Γ ratio (a measure of the breadth of the TTD).

As stated in Waugh et al. (2006), two tracers with sufficiently different time histories can

be used to constrain ∆ and Γ. If a ∆/Γ ratio is representative of mixing conditions, the

same mean age should be obtained from the different tracers. We therefore simulated mean

ages based on CFC-12 and SF6 concentrations and varied the ∆/Γ ratio between 0.4 and

2.0. We then selected the most appropriate ∆/Γ ratio based on the overall agreement of

the mean ages obtained with the two tracers (see Figure B.1).

We performed this ∆/Γ selection by plotting the ratio of CFC-12-derived to SF6-derived

mean ages versus the SF6-derived mean ages. Due to recently decreasing concentration of

CFC-12 in the atmosphere (see Figure 3.4 panel a), we excluded recently formed water

masses for which a consistent positive bias in CFC-12-derived mean ages was observed.

We performed a linear regression using only mean ages for which SF6 values were <6

ppt, corresponding to the time period when the CFC-12 atmospheric concentration was

3To convert mixing ratios (ppm) into pCO2 (µatm) we used the air pressure with water vapour correction.
The wintertime air pressure was obtained by selecting the monthly mean values of sea level NCEP air pressure
throughout the convection period (from January until March) for each year (reanalysis product downloaded
at https://psl.noaa.gov). For the water vapour correction a MATLAB function provided by Prof.
Roberta Hamme was used instead (downloaded at https://web.uvic.ca/˜rhamme/vpress.m).
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Figure 3.5: Average atmospheric pCO2 and pCO2(LSW ) values from 1992 to 2016. The
atmospheric pCO2 is a wintertime average obtained from the Iceland station data (Storhofdi,
Vestmannaeyjar). The Seawater pCO2 was calculated using (TA,DIC) as input couple in
CO2SYS and averaged for the central region of Labrador Sea between seasonal thermocline
and maximum MLD of each year. A S-TA relationship was obtained using our time series
and then applied for those years where TA was either missing or excluded from the
GLODAPv2 data. The atmospheric values of pCO2 in µatm was obtained using NCEP
values of air pressure for this region 3. The red square, diamond and asterisk markers
represent previous estimates of pCO2 in the region within 200 m depth by Atamanchuk
et al. (2020); DeGrandpre et al. (2006); Körtzinger et al. (2008), respectively.
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lower than the contemporary CFC-12 concentration. The selection was performed based

on the coefficients of this regression and the average distance of the data from a reference

line (black line in supplementary Figure B.1 with intercept of 1 and slope of 0). The most

representative ratio would be that with a slope close to 0, an intercept close to 1 and the

lowest average distance of the data point from the reference line. From this analysis, the

∆/Γ ratios that best represent the mixing conditions was 1.8.

3.4.4 Calculation of Cant Concentrations and Inventories

The mean ages derived from this refined TTD approach were used together with the

surface history of Cant (obtained from atmospheric pCO2 data and equilibrium constants)

to obtain estimates of anthropogenic carbon along the AR7W line. Using the surface

concentration histories of CFC-12 and SF6 with variable saturation derived from the

multiple linear regression, assuming constant disequilibrium for CO2 and the ∆/Γ value

selected in the previous section (∆/Γ = 1.8), the Cant concentration was calculated as:

Cant(r, t) =

∫ ∞
0

Cant,0(t− t′)G(r, t′)dt′ (3.5)

where Cant,0 (t) is the surface concentration of Cant and G(r,t’) is the age spectrum

obtained from the tracers. The Cant concentrations were then interpolated using objective

mapping (Roemmich, 1983) onto a standard grid to assist with calculation of inventories

for comparison between years. In order to calculate column inventory for the Central

Labrador Sea (defined here as the portion of the AR7W line with bottom depth >3300 m;

Yashayaev, 2007), the gridded values of Cant from the objective mapping (spatial resolution

of 5 km), were averaged horizontally for 5 m depth intervals. An average Cant profile was

then integrated vertically to obtain a column inventory as follows:

ICant =

∫ max(depth)

0

Cant,0 × ρ dz (3.6)

where ICant stands for column inventory of Cant, Cant is in mol kg−1, ρ is the in situ

density (kg m−3). The integration was performed by using 5 m intervals.

In order to demonstrate the significance of the constant saturation assumption of tracers

and the choice of ∆/Γ, we estimated Cant using both a constant and a time-varying

saturation for all ∆/Γ values listed earlier (see Results section). Finally, from the column

inventories calculated for each year of the time series we calculated the storage rate (SR)
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in the Central Labrador Sea over three decades (in mol m−2 y−1).

3.5 Results

In this section, we present results of Cant concentrations obtained using the TTD method

with CFC-12 data, for both a constant (100%) and a time-varying saturation (presented in

section 3.4.1). Results of Cant obtained using the TTD method with SF6 are provided in

the supplementary material (section B.3).

3.5.1 Sensitivity of Cant Estimates to the Saturation of CFC-12

Use of a time-varying CFC-12 saturation for TTD calculations resulted in higher es-

timated Cant, with average differences from the conventional TTD approach of ∼ 7 ±
1.5 µmol kg−1. This translated into column inventories that were 19.2 to 39.7 mol m−2

higher when estimated with the refined TTD approach, compared to estimates based on

the conventional assumption of constant (100%) saturation. In Figure 3.6 we show column

inventories of Cant calculated with both time-varying (Cant(V S); where the subscript VS

denotes variable saturation) and constant saturations (Cant(CS); where CS denotes constant

saturation) for ∆/Γ = 1.8.

With the constant saturation assumption, the Cant(CS) inventory estimates increased

from 72.3 to 148.6 mol m−2 between 1986 and 2016, whereas the increase was from 112.0

to 181.4 mol m−2 when the variation of the tracer’s saturation over time was accounted

for. Hence, the storage rate with time-variable saturation was slightly smaller than with

the traditional-TTD approach (1.8 and 2.1 mol m−2 y−1, respectively) but still within its

uncertainty.

Use of a time-varying saturation also reduced the interannual variability (or scatter)

around the long-term rate of increase, as given by the regression line (RMSE of 5.7 and

3.7 mol m−2 y−1 using constant and time-varying saturations, respectively). The column

inventory for the first year of the time-series, 1986, falls noticeably closer to the regression

line when calculated with a time-varying saturation. Both approaches indicate a slow-down

in the rate of increase in the early 2000s, but only the Cant(V S) results indicate a rapid

increase in the latest years of the time series (see Figure 3.6): a result which is also

obtained using SF6 (see section B.3 of supplementary material). In fact we found that

when accounting for time-varying saturation, the Cant estimates based on CFC-12 agree
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Figure 3.6: Column inventory of Cant in the Central Labrador Sea obtained from mean
ages calculated using a constant CFC-12 saturation assumption (triangles) and the column
inventory obtained from our refined TTD method with ∆/Γ = 1.8 (black dots). Here CS
and VS stand for constant and variable saturation, respectively. We also report the slope of
the regressions which represent the storage rates (SR; in mol m−2 y−1).

better with those based on SF6 (see Figure B.5), which is a more reliable tracer for recent

years compared to CFC-12 due to decreasing atmospheric concentrations of the latter.

3.5.2 Sensitivity of Cant Estimates to the Selection of ∆/Γ

Figure 3.7 presents Cant column inventories for the Central Labrador Sea from 1986 to

2016 (black dots) that are averages of values calculated with the refined TTD method with

CFC-12 data and using the full range of ∆/Γ ratios discussed in section 3.4.3. The average

column inventories increased from 114 to 182 mol m−2 over 30 years. The standard

deviation of the inventories obtained with this range of ∆/Γ is represented by the shaded

area in Figure 3.7 and varies between 0.6 and 2.5 mol m−2 in different years. This suggests

that the choice of ∆/Γ does not dramatically affect the column inventory estimates. Indeed,
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the choice of ∆/Γ can lead to percent differences between a minimum of -4.5% and a

maximum of 0.4% in Cant concentrations compared to the reference concentrations obtained

with ∆/Γ = 1.8 (see Table B1). This translated into a maximum difference of ∼ 1.2% in

column inventory estimates using different ratios. We note that Hsieh (2016) suggested

that the ∆/Γ ratio should be variable over time to better represent the different mixing

conditions at times of intense and weak convection. However our results show that the

choice of ∆/Γ will not dramatically affect our estimates of Cant column inventories and

therefore, for this study, the ∆/Γ ratio was held constant over time.
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Figure 3.7: Average column inventories of Cant in the Central Labrador Sea from 1986
to 2016 obtained from CFC-12 (white dots). These averages were calculated using Cant

estimates obtained from a wide range of ∆/Γ (0.4-2.0) and time variable saturation. The
shaded area represents the standard deviation obtained for the range of ∆/Γ. For reference,
we also report the column inventories obtained with the selected ∆/Γ of 1.8 (black dots).
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3.5.3 Distribution of Cant in Major Water Masses

Below the seasonal thermocline (i.e.,>200 m depth) the vertical structure of the Central

Labrador Sea is dominated by a homogeneous cold and fresh layer defined as LSW.

Depending on the depth of convection reached every year, the lower limit of the LSW

layer can be usually found between 500 and 2000 m depth, with the deepest convection

ever observed reaching as deep as 2400 m in 1993 and 1994 (Yashayaev, 2007; Yashayaev

and Loder, 2016). Below the LSW lies the more saline North East Atlantic Deep Water

(NEADW) which originates from the Iceland-Scotland Overflow Water that enters the

North Atlantic through the Iceland-Faroe-Scotland Ridge and becomes more saline due

to mixing with overlying salty and warm Atlantic waters (thermocline water in the lower

limb of the Subpolar Mode Water and North Atlantic Current) that add characteristic salt

to the mix (Yashayaev and Dickson, 2008). Below the NEADW layer, lies the cold, dense

and less saline Denmark Strait Overflow Water (DSOW). This is the densest water mass

observed in the Labrador Sea and the entire Subpolar North Atlantic (SPNA). It originates

from the Denmark Strait Overflow and enters the basin from the Greenland Sea via the

Irminger Sea (Yashayaev, 2007).

We identified these water masses based on either their time-varying or fixed density

ranges (σ2
4; for LSW and NEADW, respectively) or depth range (for surface water

and DSOW), and calculated both the average Cant concentrations and the individual

contributions to the total column inventory of these water masses (see supplementary Table

B2 and Table B3 for water masses definitions, some of which have varied over time).

As a further step we identified the contribution to the total Cant column inventory of a

body of water here referred to as Deep Intermediate Water (DIW). This water mass is a

mixture of LSW, NEADW, Icelandic Slope Water (Yashayaev and Loder, 2017) and other

intermediate and deep-water masses of the SPNA. The DIW is the product of modification

and transformation of a deep-reaching and dense class of LSW formed between 1987 and

1994, possibly with smaller, occasional additions of dense water formed in subsequent

years. The aging of this old class of LSW (LSW1987−1994 in Yashayaev, 2007) is reflected

in the steady loss of its original high freshwater and oxygen signatures, which eventually

determined DIW to be almost indistinguishable from NEADW. Similarly to new LSW

formation, the DIW shows strong temporal variability of its layer thickness (see Figure 3.9

4σ2 = potential density anomaly references to 2000dbar.
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panel d).

In Figure 3.8, we present selected Cant sections from 1986, 1996, 2006 and 2016 to

illustrate the multi-decadal increase and deep penetration of Cant throughout the Labrador

Sea (for the full time series we refer to the animation provided as supplementary material).

The sections, are similar to the vertical distribution of Cant described by Tait et al. (2000).

The highest concentrations of Cant are found, by definition, in the surface layer (<200 m)

which is underlain by a relatively homogeneous layer of high concentrations extending

down to 1500-2000 m (this is the layer of water that is primarily ventilated in Labrador

Sea). The depth range of the older NEADW (2400-3400 m) is marked by a minimum in

Cant concentrations whereas an increase in concentrations within 200 m above the seabed,

reflects the presence of more recently ventilated DSOW.
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Figure 3.8: Sections of Cant along the AR7W line (except for data in 1986 which were collected further south) obtained from the refined
TTD method. The sections show the strong increase and deep entrainment of Cant in Labrador Sea.
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3.6 Discussion

3.6.1 Interannual Variability of Cant in Major Water Masses

In Figure 3.9 (panel a) we present the temporal variation of the average and standard

deviation of the Cant concentrations in the major water masses discussed in the previous

section. Between 1986 and 2016, the average Cant concentration of LSW increased by 22

µmol kg−1, whereas notably smaller increases were observed in the other water masses (13

µmol kg−1 in both DIW and NEADW; 12 µmol kg−1 in DSOW). This implies that the rate

of increase of the annual mean Cant concentrations is the fastest in LSW (at 0.8 µmol kg−1

y−1), showing that this is the water mass that primarily drives the overall variability of Cant

around the longterm (multi-decades) trend observed in the region. The DIW showed an

overall temporal increase similar to that of NEADW and DSOW, but also showed higher

interannual variability in Cant concentrations as with LSW (see Figure 3.9 panel a).

As noted earlier, the DIW is primarily composed of LSW left over from previous years

of strong convection, and not just LSW1987−1994, and was therefore originally characterized

by high concentrations of Cant. Nevertheless, while LSW is ventilated from the surface

every year and therefore exposed to increasing Cant concentrations, the DIW becomes

progressively older, explaining why its rate of increases of Cant is similar to that of NEADW.

Both the annual mean concentrations and rate of increase of Cant are higher in DSOW

than in NEADW (Figure 3.9 panel a). This is explained by the more recent ventilation of

the former and by the stronger transformation and modification the NEADW undergoes

when arriving into the Labrador Sea (Yashayaev and Dickson, 2008). Further a smaller

fraction of annual addition of the original overflow water mixes into NEADW compared

to DSOW.
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Figure 3.9: Caption in the next page.
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Figure 3.9: (Previous page.) Panel a) Average Cant concentrations and standard deviations
in LSW, DIW, NEADW and DSOW in the Central Labrador Sea between 1986 to 2016.
Next to each water mass we report the rate of increase of the average concentration in µmol
kg−1 y−1 (i.e., slopes of the regressions). Panel b) Breakdown of the percent contribution
of different water masses to the Cant column inventory in the Central Labrador Sea. Panel
c) Time evolution of Cant column inventories from 1986 to 2016 with regressions for three
periods. Note that SR represents the slope of each of the three regressions (in mol m−2

y−1). Panel d) Time evolution of the LSW and DIW layer thickness between 1986 and
2016, dots represent absolute values, solid line represent smoothed 5 years running means.
All four panels show time periods with shaded background. The shaded areas represent
periods of intermediate and fast rate of Cant accumulation, on the other hand the white area
represents a period of slow Cant accumulation rate.

In Figure 3.9 panel b we present the percentage contributions of the four main water

masses, as well as the surface water, to the Cant column inventory of the Central Labrador

Sea over time. The figure shows that NEADW and DSOW, which are ventilated outside

the Labrador Sea, display a stable contribution to the total inventory. On the other hand,

LSW and DIW, which both are ventilated, at least partially, in the Labrador Sea, show

large variability in their relative contributions. Whereas LSW’s contribution dominated

the column inventory in the early 1990s and in the most recent years, DIW contributed

significantly during the intervening years, reflecting the decreased LSW layer thickness.

The LSW and DIW exhibited stronger interannual variability of their contribution to the

Cant column inventory due to changes in their relative layer thickness (see Figure 3.9 panel

d), this is reflected by wider ranges of percent contribution for LSW and DIW (between

16-63% for LSW, 3-48% for DIW) compared to narrower ranges for NEADW and DSOW

(20-26% for NEADW and 5-8% for DSOW).

3.6.2 Non-Steady Accumulation of Cant in Central Labrador Sea

The time series of Cant column inventory (Figure 3.6) shows that the increase in column

inventory is not steady over time. In particular we observed three distinct periods: 1986-

2002, 2003-2012 and 2013-2016 (see Figure 3.9 panel c). We find that whereas the first

and third periods were characterized by intermediate and fast increase of Cant column

inventory respectively (2.2 and 5.2 mol m−2 y−1), the period between 2003-2012 was

characterized by a low accumulation rate (0.6 mol m−2 y−1). This accumulation rate was

not significantly different than zero therefore indicating that the Cant column inventory

remained constant at this time.
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During the first period (between 1986 and 2001) the average Cant concentrations of

LSW and DIW displayed differences <5 µmol kg−1 (see Figure 3.9 panel a). During this

time, the Labrador Sea experienced both deep (1992-1995) and intermediate (1996-2002)

convection, which was responsible for a shift from a LSW-dominated water column to one

that was equally partitioned between LSW and DIW (see Figure 3.9 panel d). During this

first period, the average concentrations of Cant were the lowest throughout the time series

and not very different in these two water masses, therefore the relative proportion of the

two water masses did not matter to the extent it did in later years of the time series. Further,

whereas the rate of increase of Cant average concentrations in DIW at this time (0.6 µmol

kg−1 y−1 between 1986 and 2002) was the same as that observed toward the end of the time

series (0.7 µmol kg−1 y−1 between 2013-2016), the rate of increase in the LSW during this

first period (0.7 µmol kg−1 y−1 between 1986 and 2002) was considerably lower than what

was observed toward the end of the time series (1.3 µmol kg−1 y−1 between 2013-2016).

As a result, we observed only an intermediate storage rate of Cant despite this being the

period when the deepest convection was observed.

Starting in 2003, and continuing for the remainder of the time series, we observed a

divergence of the LSW and DIW Cant concentrations, with LSW displaying progressively

higher average concentrations than DIW (see Figure 3.9 panel a). During this second period

of our time series (between 2003 and 2012), the formation of LSW became progressively

shallower and the DIW became the main water mass contributing to the total inventory

of Cant. The combination of lower formation of LSW, the consequent predominance of

DIW (see Figure 3.9 panel d), the much lower concentrations of Cant displayed in DIW

compared to LSW and the lowest rate of increase of Cant in both water masses (0.5 and

0.3 µmol kg−1 y−1, for LSW and DIW, respectively), resulted in the low accumulation

observed between 2003-2012 (see Figure 3.9 panel c).

During the third period (between 2013 and 2016), there was renewed formation of LSW,

and this time the water mass displayed large average concentrations of Cant (which were

larger than the concentrations observed in the DIW layer) and the highest rate of increase

observed (1.3 µmol kg−1 y−1). The increase in the thickness of the LSW layer coupled

with its high Cant concentrations, resulted in the fastest accumulation rate of Cant observed

over the 30-year time series (see Figure 3.9 panel c).

Therefore, we find that the combination of variability in the relative layer thickness
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of LSW and DIW and their average Cant concentrations leads to significant multi-year

variability in the rate at which Cant is stored in the Labrador Sea.

This is consistent, overall, with the findings of Steinfeldt et al. (2009), that Cant accumu-

lation in LSW is not steady over time. Nevertheless, whereas they detected a slow-down

of Cant accumulation in LSW throughout the northwest Atlantic between 1997 and 2003,

our study demonstrates a period of slow-down in Cant accumulation within the Central

Labrador Sea (the formation region for LSW) that starts in 2003 and continued until 2012.

There are several potential reasons for this apparent discrepancy between our findings

and those of Steinfeldt et al. (2009). For example, the lower-than-expected accumula-

tion between 1997-2003 in the Steinfeldt et al. study might have been caused by their

assumption of constant saturation of transient tracers when estimating Cant . Alternatively,

the very significant differences in the temporal and, especially, spatial distribution of the

data used in the two studies complicates any comparison of the two estimates. Our study

has high temporal resolution, but is confined to the immediate formation region of LSW,

whereas Steinfeldt et al. (2009) compare only two “snapshots” of Cant distributions, but

those snapshots involve LSW that is distributed throughout the Sub-polar Gyre of the

North Atlantic.

Our saturation reconstruction (Figures 3.2 and 3.3) shows that the period between

1997 and 2003 addressed by Steinfeldt et al. (2009) was characterized by strong under-

saturation of both CFC-12 and SF6, implying that CFC-11, which was used to estimate

Cant in 1997 in their work, was likely also undersaturated. While the possibility of under-

saturation was taken into account by Steinfeldt et al. (2009), using values between 65%

and 100% depending on the density layer, the saturation values were held constant over

time. Applying a constant 65% saturation to the calculation of Cant inventories along

the AR7W line, increases our estimates by 12% for 1997 and 18% for 2003, compared

to estimates based on an assumed constant saturation of 100%, bringing our estimates

closer to those reported in Steinfeldt et al. (2009). Nevertheless, our Cant column inventory

estimates for the Central Labrador Sea in 1997 are significantly lower (∼ 10-40 mol m−2)

than those reported in Figure 5 of Steinfeldt et al. (2009), irrespective of whether we use a

time-varying or a constant 65% saturation. For this reason, we do not see a slow-down in

Cant accumulation until later in the time series.

It is important to emphasise that the slow-down in Cant storage rate was only temporary
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(ca. 10 years) and not representative of the overall trend throughout the three decades.

In particular we observed a recovered fast storage rate in the latest years of the Cant(V S)

time series (note that this would not have been observed if a constant 100% saturation had

been assumed) which corresponds with renewed deep winter convection during this period

(Yashayaev and Loder, 2016).

Rhein et al. (2017) reported Cant estimates based on the TTD method for the Central

Labrador Sea between 1992 and 2016, however in contrast to this study they only con-

sidered constant saturation of CFC-12. Further, Rhein et al. (2017) assessed the Cant

inventory in two adjacent density layers: the upper LSW (uLSW) and deep LSW (dLSW)

as defined in Stramma et al. (2004), however this partitioning of the upper-to-intermediate

water column into two density layers does not necessarily reflect the time evolution of

newly formed LSW and the associated LSW classes (Yashayaev, 2007; Yashayaev and

Loder, 2016, 2017). Our approach was to define water masses as water with homogeneous

property distributions, with LSW defined following Yashayaev (2007), and later revisited

in Yashayaev and Loder (2016, 2017), and NEADW and DSOW defined as in Yashayaev

and Dickson (2008). For comparison purposes in Supplementary Figures B.3 and B.4, we

have also reported results using the uLSW and dLSW layer definitions.

Overall our Cant estimates are comparable to those reported in Figure 3b of Rhein et al.

(2017), even though some discrepancies are to be expected due to the use of the refined

TTD method in our study. The slow-down in Cant storage rate that we observed between

2003 and 2012 appears to be consistent with findings in Rhein et al. (2017). These authors

report that the Cant inventory in the LSW layer (uLSW + dLSW) in 2007-2010 was lower

than the value projected based on data from 1996 to 1999 and assuming no changes in

ventilation had occurred. This difference was attributed to a decrease in ventilation rate

and supported by a decrease in the fraction of LSW younger than 20 years (see Figure 5 in

Rhein et al., 2017).

We show that the decreasing thickness of LSW between 2003-2012, and increased

thickness of DIW due to transformation of old LSW into DIW (which is characterized

by low Cant concentrations), not only affects the Cant inventory of the LSW but also the

overall accumulation of Cant in the Central Labrador Sea, as demonstrated by the lack of

column inventory increase during this second period of the time-series.
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Using the same GLODAPv2 data product Gruber et al. (2019b) provided global esti-

mates of decadal changes in Cant between the JGOFS/WOCE era (1982-1999) and the

GO-SHIP era (2000-2013) based on their eMLR(C∗) approach. From this study, it emerged

that the Labrador Sea has experienced an increase of ∼ 15 mol m−2 over the period 1994-

2007, which corresponds to a storage rate of 1.15 mol m−2 y−1. Our Cant estimates showed

an increase of 19 mol m−2 in column inventory based on the difference between these two

years which, when divided by the number of years elapsed results in a storage rate of 1.46

mol m−2 y−1. On the other hand, if we use the annual estimates and calculate the storage

rate as the slope of a linear regression for this time period we find a storage rate of 1.8 mol

m−2 y−1 instead. Both of these approaches assume a steady linear increase in Cant column

inventories, which we have shown is unlikely in Labrador Sea where the storage rate can

change significantly over short periods of time.

The differences between these accumulation rates can potentially be related to the

different methodologies applied to estimate Cant and the different time resolution of the

two studies. Whereas we used a tracer-based approach (the TTD method), Gruber et al.

(2019b) used the eMLR(C∗) method which is based on DIC measurements as well as

other oceanographic variables (i.e., temperature, salinity, nutrients etc). As mentioned

previously we know that while on a global scale these methods can produce estimates that

agree within their uncertainties, disagreements can occur on a regional scale (Khatiwala

et al., 2013).

Further, the discrepancies between accumulation rate estimates highlights the importance

of sampling frequency and the assumption of steady linear increase of Cant, especially in

highly variable regions like the Labrador Sea. While for most of the world oceans sampling

at a decadal frequency allows to track the uptake and inventory of anthropogenic carbon

(Sloyan et al., 2019), we show here that this is most likely not the case for the Labrador

Sea. Depending on the years analyzed, conclusions on the accumulation of anthropogenic

carbon in Labrador Sea could be significantly biased depending on the temporal sampling

resolution.

3.7 Conclusions

In this study we calculated annual estimates of column inventory and the multi-decadal,

average storage rate of anthropogenic carbon in the Labrador Sea using a refined version
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of the tracer-based, TTD approach from 1992 to 2016 and extended further to 1986.

We analyzed the validity of two assumptions used conventionally with the TTD approach:

the transient tracers’ constant saturation (often assumed to be 100%); and constant air-sea

CO2 disequilibrium.

The saturation of CFC-12 and SF6 over time was reconstructed using a multiple linear

regression approach with the rate of increase of the tracers’ atmospheric mixing ratios

(first derivative of the atmospheric input functions) and maximum mixed layer depth

as independent variables. We found that the atmospheric input function was the most

important controlling factor of the tracers’ saturation. Both CFC-12 and SF6 were under-

saturated in wintertime surface waters throughout the three decades of observations in

this region so that a significant bias can be introduced if the TTD method is applied

assuming constant 100% saturation. Our refined TTD method, accounting for a time

variable saturation of transient tracers, resulted in higher column inventory estimates

(18% difference on average) and slower storage rates (17% lower storage rate) than the

conventional approach (see Figure 4.6). Accounting for time-varying saturation also led

to better agreement between Cant column inventories estimated through CFC-12 and SF6

compared to when using a constant 100% saturation.

With regard to the second assumption of the TTD method, values of pCO2 calculated

from our measurements showed that, for the time-period of observations, a constant air-sea

CO2 disequilibrium is an adequate assumption in this region.

Hence this study shows the critical importance of assumptions when using indirect,

tracer-based approaches to estimate the concentration of Cant. As noted previously (Wallace,

1995, 2001; Waugh et al., 2006), CFCs are not an exact analog or proxy for a reactive,

high-solubility gas like CO2, so testing of assumptions and approaches can be key to

inferences of Cant behaviour.

With this refined TTD method, we estimated an overall increase of 69 mol m−2 in the

average column inventory in the Central Labrador Sea between 1986 and 2016 resulting

in an average storage rate of 1.8 mol m−2 y−1 (roughly three times the global average

accumulation rate estimated by Gruber et al., 2019b). However, the accumulation rate

was not steady over time. A slowdown in the accumulation of anthropogenic carbon was

observed between 2003 and 2012 in the Central Labrador Sea (SR = 0.6 mol m−2 y−1).

Nevertheless, the slowdown was temporary, and an increase in column inventories was
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re-established between 2013 to 2016 at a faster pace (SR = 5.2 mol m−2 y−1) compared to

that observed in the 1990s (SR = 2.2 mol m−2 y−1).

These variations in the accumulation rate of Cant were associated with changes in the

annual depth of convection and therefore with differences in the mean Cant concentrations

in LSW and DIW. In particular, 2003-2012 slow-down in Cant accumulation was associ-

ated with shallower LSW formation and a predominance of DIW with lower mean Cant

concentrations than LSW, at that time.

The non-steady accumulation of Cant in the Labrador Sea highlights the importance

of sampling frequency in highly variable regions like the Labrador Sea. In fact while

decadal repeated occupations of oceanographic sections allow the overall increase of the

Cant column inventory to be observed (Gruber et al., 2019b; Sabine et al., 2004), important

interannual and sub-decadal variability can be missed with this sampling frequency. The

arbitrary selection of sampling years could lead to misinterpretation of anthropogenic

carbon dynamics in regions like the Labrador Sea, for example when the two years

sampled happened to be extremely divergent from the overall, long-term trend. Further

with this study we have shown the importance of long time series in testing assumptions of

methodologies used to estimate Cant.

Accounting for the whole Labrador Sea (here defined as the region between 52-66◦N and

42-65◦W), using a gridded bathymetry and assuming that the Cant concentrations measured

along the AR7W line are spatially uniform throughout, we estimated the total inventory of

anthropogenic carbon stored in this region. This inventory has increased from 0.9 to 1.5 Pg

C between 1986 and 2016, meaning that the Labrador Sea, despite representing only 0.1%

of the world’s ocean volume, stores ∼ 1% of the global inventory of Cant (compared to the

“best-estimate” inventory of 155 Pg C reported by Khatiwala et al. (2013)). This estimated

total inventory of Cant for the Labrador Sea is equivalent to ∼ 11% of Canada’s total CO2

emissions between 1992 and 2016 (Environment & Climate Change Canada, 2020).
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CHAPTER 4

NATURAL AND ANTHROPOGENIC
CARBON VARIABILITY IN THE
CENTRAL LABRADOR SEA1

4.1 Abstract

In this Chapter a small subset of the large suite of oceanographic parameters measured

along the AR7W transect is used to estimate concentrations and column inventories of

anthropogenic carbon (Cant) in the Central Labrador Sea by means of the extended Multiple

Linear Regression (eMLR). Thanks to the high temporal resolution (annual observations)

of our time series, we also explored the impact of sampling frequency on the estimation of

Cant accumulation rates in this region by applying the eMLR with different time intervals.

We found that while an annual temporal resolution of the observations is not necessary

to obtain a realistic average annual increase of Cant over one to two decades, misleading

accumulation rates could be estimated depending on the starting year selected.

The analysis was further extended into a comparison between the Cant estimates based on

the eMLR and the Transit Time Distribution methods (TTD; presented in Chapter 3) as well

as to direct observations of Dissolved Inorganic Carbon (DIC) along the transect. The latter

comparison was performed in order to understand whether changes in dissolved inorganic

1Raimondi, L., Boteler C., Wallace, D. W. R. Natural and anthropogenic carbon Variability in the Central
Labrador Sea, in preparation.
Author contribution: I conducted the field work, analyzed the carbonate system’s samples in 2014, 2015
and 2016 in collaboration with Stephen Punshon from the Bedford Institute of Oceanography. I led the
interpretation of the data and put into writing this Chapter. Boteler C. closely collaborated on the development
of the statistical tests to compare accumulation rates and performed the statistical analysis. Wallace D. W. R.
provided extensive support on the eMLR method.
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carbon between 1993 and 2016 were exclusively due to the Cant invasion or if some natural

variability of DIC is associated to this signal. While results of Cant accumulation rate from

the eMLR method excluded any contribution of natural variability of DIC in its increase,

results of the TTD-based accumulation rate contradicted the results of the eMLR.

All three methods to estimate the change in DIC showed that a non-steady accumulation

of Cant occurs in this region. Nevertheless, depending on the method applied, very different

interpretation of the timing of increase and/or duration of periods of fast and slow rate of

increase can be deduced and therefore potentially erroneous conclusions could be drawn

on the role of the Labrador Sea in Cant sequestration.

Differences between the inventories obtained based on the eMLR and TTD methods as

well as the annual increase of Cant concentrations in Labrador Sea’s main water masses,

revealed potential bias in the Cant estimates with the TTD method associated with the

assumed tracers’ saturation history for Denmark Strait Overflow Water (DSOW) and

North East Atlantic Deep Water (NEADW). By accounting for a time-lag in the saturation

histories of these two water masses (i.e., considering that these water masses have different

ventilation histories compared to waters ventilated in the Labrador Sea), we estimated

differences in CFC-12 percent saturation compared to the LSW that ranged between -15

and +28% and between -10 and +36% for DSOW and NEADW, respectively. We found

that differences in saturations of this magnitude could lead to over- or underestimation of

the combined contribution of DSOW and NEADW to the total column inventory of Cant in

the order of ∼ 4 to ∼ 13 mol m−2.

4.2 Introduction

It is estimated that approximately 160 Pg of anthropogenic carbon (Cant) was taken up

by the ocean since the beginning of the industrial era until 2010 (Gruber et al., 2019b;

Khatiwala et al., 2013; DeVries, 2014). Large quantities of this Cant are found at high

latitudes, in particular the North West Atlantic has been identified as one of the regions

with the highest integrated column inventories of Cant in the world’s ocean (DeVries, 2014;

Gruber et al., 2019b; Sabine et al., 2004).

As highlighted in previous chapters, the Labrador Sea plays a key role in the transport

and storage of gas in the North West Atlantic. Wintertime convection represents a direct

pathway through which gases can move from the atmosphere and upper water-column into
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Figure 4.1: Average full water-column concentrations of DIC measured in the Central
Labrador Sea between 1992 and 2016 along the AR7W line.

the deep ocean interior. Oxygen and chlorofluorocarbons (CFCs), among other gases, can

be found in high concentrations throughout the full water column in this region. Similarly,

the anthropogenic carbon signal can be detected down to the bottom of this basin (see

Chapter 3 as well as Rhein et al., 2017; Steinfeldt et al., 2009; Tait et al., 2000).

A significant increase in DIC concentrations in the Labrador Sea was observed from

measurements performed along the AR7W line since the early 1990s by Tait et al. (2000)

and is still occurring today. In Figure 4.1 we show that full water-column average DIC

concentration in Central Labrador Sea has increased at a pace of 0.6 µmol kg−1 y−1

between 1992 and 2016. Based on this slope (obtained from a linear regression) we

estimated a total average increase of 14.4 µmol kg−1 when considering the 24 years

of observations. These changes in observed DIC (Cobs) concentrations are potentially

associated to either increasing Cant concentrations, temporal variability of natural carbon
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(Cnat) or both. Therefore the signal in DIC can be described as:

Cobs = Cant + Cnat (4.1)

and, as a consequence, temporal changes in these pools (difference between two time

periods) can be described as:

∆Cobs = ∆Cant + ∆Cnat (4.2)

In Chapter 3 we presented a refined TTD method, which accounts for time-varying

saturation of transient tracers (i.e., CFC-12 and SF6) to estimate the mean age of the water,

therefore allowing more accurate estimate of Cant concentrations. Despite accounting for

the time-varying saturation of CFC-12 and SF6, the refined approach does not address

the main potential flaw of the TTD method: the Cant signal is derived, indirectly, using

gases that have very different solubilities, biogeochemical behaviours, input histories and

atmosphere-ocean equilibration times compared to CO2. For example, unlike CO2, CFCs

and SF6 are not transported by the biological pump.

Using the TTD method we already inferred that a substantial increase in anthropogenic

CO2 has occurred in the Labrador Sea (with column inventories increasing at a pace of

∼ 1.8 mol m−2 y−1 between 1986 and 2016). Nevertheless, acknowledging the indirect,

“proxy”-nature of the TTD method and because of the wide range of ocean parameters

measured along the AR7W line (DIC, oxygen and nutrients among others), we can assess

the contribution of Cant to the overall DIC increase using alternative approaches based

more directly on carbon measurements. In this Chapter we focus on the application of the

extended Multiple Linear Regression (or eMLR) method as well as the overall increase of

DIC along the AR7W line between 1993 and 2016.

The comparison of the TTD and eMLR methods allows verification of whether estimates

of Cant column inventories are the same regardless of the method used. These two methods

cannot, however, identify the variability of DIC due to other factors (e.g., increased or

decreased biological activity, changes in total alkalinity and therefore buffering capacity).

The availability of long term measurements of DIC along AR7W offers the opportunity

to elucidate whether changes in DIC are solely due to the anthropogenic CO2 invasion

(assessed with the eMLR and TTD methods) or if there is natural variability captured in
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the DIC signal which can be estimated from the difference between DIC inventories and

the Cant inventories obtained with either the TTD or eMLR methods (see Equation 4.1).

Therefore the goals of this chapter are: (1) to estimate Cant using the eMLR method;

(2) to assess the impact of different sampling intervals in order to guide the planning of

future observations in the region (see section 4.3.2); (3) to compare these estimates to those

obtained with the TTD method; and (4) to compare the overall DIC increase observed in

the Central Labrador Sea with the estimates of Cant accumulation.

4.3 Materials and Method

4.3.1 The Multivariate Time Series method and its Extended Version

The Multivariate Time Series method was introduced by Wallace (1995) as a means

to estimate the temporal increase of Cant based on repeated measurements. The original

method was developed to compare historic and recent data collected in a specific region

of interest. The method uses a data set of chemical and hydrographic variables of a first

occupation to obtain a predictive equation for DIC using a multiple linear regression

(MLR). The observed change in the residuals between predicted DIC using the MLR

and the measured DIC of a second re-occupation is assumed to provide a measure of

the anthropogenic carbon increase between the two sampling years. The method relies

on many assumptions, including: 1) a multi-parameter linear model can describe the

distribution of DIC within the region analyzed; 2) the natural variability of DIC can be

accounted for by its multiple correlation with independent parameters; 3) this underlying

relationship between the independent parameters and DIC does not change over the time

period between the surveys. In other words, values of the independent parameters can

change over time but their underlying correlation with natural variations of DIC does not.

The choice of independent parameters is rather subjective (Plancherel et al., 2013;

Thacker, 2012) and often dependent on the availability and quality of data. These variables

should include information about: the thermodynamics of the carbonate system, the

stoichiometry of the biological pump and the characteristics of the CO2 system in regions

with different biogeochemistry.

A later approach, introduced by Friis et al. (2005), extends the Multivariate Time Series

method by developing the predictive equations between DIC and other parameters for

two data sets collected at different times in the same location. This method is called
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extended Multiple Linear Regression (eMLR). In this case the signal of Cant is represented

as the difference between the coefficients of two predictive relations obtained from two

occupations of the same (or geographically close) hydrographic transect. To apply the

eMLR method, the DIC of the first occupation of the transect or region under study is

used to estimate a multiple linear regression model of DIC using independent physical and

chemical properties that meet the prerequisites stated above. The form of this regression is

as follows:

DICMLR,t1 = a1 + b1x1,t1 + c1x2,t1 + d1x3,t1 + e1x4,t1 + ε1 (4.3)

where the subscript 1 refers to the first cruise, xi,t1 refers to the independent parameters,

letters (a, b, c, d and e) are the regression coefficients and ε1 are the normally distributed

errors. A second multiple linear regression is then calculated for the DIC at time t2 (i.e.,

on a second cruise available for the same transect):

DICMLR,t2 = a2 + b2x1,t2 + c2x2,t2 + d2x3,t2 + e2x4,t2 + ε2 (4.4)

The anthropogenic signal is then obtained as the change in DIC between t1 and t2,

and calculated by subtracting the coefficients of the two models and applying these new

coefficients to variables measured at t2:

DICeMLR(t1,t2) =(a2 − a1) + (b2 − b1)x1,t2 + (c2 − c1)x2,t2+

+ (d2 − d1)x3,t2 + (e2 − e1)x4,t2

where DICeMLR is interpreted to represent the change in DIC due to Cant invasion between

the two surveys (∆Cant).

The eMLR method, compared to other back-calculation methods, can remove the natural

signal of DIC variability by considering changes in biological production and respiration,

calcium carbonate production and dissolution, and circulation patterns, but does not rely

on specific Redfield ratios and constant CO2 or tracer disequilibrium with the atmosphere.

The eMLR approach minimizes the propagation of measurement error associated with

each independent parameter because the error goes into the prediction twice (once for the

regression of the first cruise and again for the regression obtained for the second one).

93



Unlike the TTD method, the eMLR is not dependent on transient tracers and can provide,

for example, a better representation of the Cant distribution in deeper waters where there

may be no CFC-12 or SF6, but which may still contain anthropogenic CO2 (note that this

does not occur in the Labrador Sea, where recently ventilated water is present at the bottom

of the basin, i.e., DSOW).

Nevertheless, many caveats are also associated with the eMLR method (Goodkin et al.,

2011; Levine et al., 2008; Plancherel et al., 2013; Thacker, 2012). For instance the

assumption of linearity between DIC and other independent parameters is not necessarily

valid in surface waters, where the relationships with DIC may not be linear due to seasonally

varying air-sea gas exchanges (this problem is often avoided by removing surface data

prior to performing the multiple linear regressions). Further, the eMLR method assumes

that the independent parameters are not correlated with one another which is often not the

case. For instance alkalinity and salinity have a strong linear relationship to one another,

therefore collinearity occurs when these are both used as variables to predict DIC.

For most regions of the ocean, the availability of observations of multiple variables in

different years and decades is a strong limitation of this method. However, the AR7W is

one of the very few locations in the world’s ocean where this issue is not encountered.

The wide range of ocean parameters measured along the AR7W line throughout this

multi-decadal time series allows for numerous variants of the extended Multiple Linear

Regressions technique to be applied using different combinations of independent variables.

Nevertheless in this Chapter, we will focus on one of the most simple eMLR which uses

only potential temperature (θ), salinity (S) and dissolved oxygen (DO) as independent

variables.

4.3.2 eMLR with Variable Time Intervals

Because in situ measurements of oceanographic parameters are sparse in space and

time, Goodkin et al. (2011) investigated the robustness of ∆Cant estimates obtained using

the eMLR approach. They compared anthropogenic carbon estimates from ocean model

simulation to results obtained with the eMLR approach (using model outputs of DIC and

temperature, salinity, dissolved oxygen, phosphate and alkalinity as independent variables).

They found that, contrary to what is typically assumed by the eMLR method (and for

other Cant estimation methods based on in situ observations), changes in climate and ocean

chemistry will affect the relationship that DIC has with other oceanographic parameters
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which can result in significant bias in the eMLR based estimates when this is applied

beyond a time interval of 2 to 4 decades. Therefore the authors suggest that the eMLR

should not be applied for observations more than 40 years apart and recommend that field

measurements be repeated at a decadal frequency.

While for most of the world ocean the eMLR applied to datasets collected one or two

decades apart might provide a good representation of carbon accumulation, in the Labrador

Sea decadal sampling frequency might lead to misinterpretation due to the non-steady

accumulation of Cant that this region experiences (as shown in Chapter 3). While Goodkin

et al. (2011) recommended measurements be performed at a decadal frequency based on

analysis of model output, the Atlantic Zone Off-Shore Monitoring Program (AZOMP)

provides one of the very few datasets where we can use observations to test whether finer

time resolution is required in order to understand the variability of carbon.

Here, we apply the eMLR based on θ, S and DO (using only data >300 m depth to

remove potential non-linearity between DIC and the independent variables) to obtain an

estimate of DIC changes due to Cant invasion using different time intervals between the two

regressions. Although observations along the AR7W line are available starting in 1992,

these data are excluded because only half of the transect was sampled that year. Therefore

only data between 1993 and 2016 are included in this analysis. Because the annual

observations extend over 24 years, we performed eMLRs with all possible combinations

of starting and ending year, nevertheless in the results section we will focus primarily on

comparisons of eMLRs performed with time intervals of 1, 5, 10 and 20 years (Figure 4.2).

For instance when considering the Cant accumulation rate between 1993 and 2003, we

could calculate the ∆DICeMLR using AR7W reoccupations that occurred 1 year apart (i.e.,

1993-1994, 1995-1996, 1997-1998...2002-2003), or 5 years apart (i.e., 1993-1998, 1998-

2003) and finally 10 years (i.e., 1993-2003) apart. These accumulations can be written

as:

∆DIC1yr
eMLR(1993,2003) = DICeMLR(1993,1994) +DICeMLR(1994,1995)+

+DICeMLR(1995,1996) + ...+DICeMLR(2002,2003)

(4.5)
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or

∆DIC5yr
eMLR(1993,2003) = DICeMLR(1993,1998) +DICeMLR(1998,2003) (4.6)

or

∆DIC10yr
eMLR(1993,2003) = DICeMLR(1993,2003) (4.7)

First the Cant concentration changes were obtained at the sampling locations along the

transects using the eMLRs (in this example we will have 13 estimates of DICeMLR: 10

for the year-to-year time interval, 2 for the 5-year time interval and 1 for the 10-year

time interval). We then interpolated the resulting estimates along the AR7W transect,

selected the values from the central portion of the basin and calculated the average column

inventory for that region (following the routine presented in section 3.4.4). Because

these inventories represent only the changes that occurred between re-occupation of the

transect, we report the overall increase in column inventory of ∆DICeMLR as cumulative

sum from the reference year (starting year) to the end year of the time period selected.

These calculations were performed with all possible starting years for time periods that

had a moving window of 5, 10 and 20 years (see schematic in Figure 4.2), which produced

a set of time series that we use in our subsequent analysis.

As mentioned earlier, our eMLR time series product allows us to identify what sampling

frequency is necessary to obtain an accurate estimate of the Cant accumulation rate. Another

issue that can be addressed with the time series, is whether selection of different starting

years for the same time intervals can affect our estimates of Cant accumulation rate.

To address these questions we need a statistical test to compare the slopes obtained

from different eMLRs. First we selected several time periods (5, 10 and 20 years) and ran

eMLRs with different time intervals (year-to-year, 5, 10 and 20 years) within each, which

resulted in the slopes presented in Table 4.1. Then we performed two different tests: one

to compare the slopes obtained with different time intervals and another to compare slopes

for the same time intervals with different starting years.

4.3.2.1 Comparison among eMLRs with Variable Time Intervals

To compare results from the eMLRs with different time intervals we performed linear

regressions with interaction terms. For this analysis we defined each time interval as a

factor (category) and selected the factor with the largest time interval within a time period

96



Year to Year

1993-1994

1994-1995

1995-1996

1996-1997

1997-1998

1998-1999

1999-2000

2000-2001

2001-2002

2002-2003

2003-2004

2004-2005

2005-2006

2006-2007

2007-2008

2008-2009

2009-2010

2010-2011

2011-2012

2012-2013

2013-2014

2014-2015

2015-2016

5 Years

1993-1998

1994-1999

5 years (...)

10 Years

1993-2003

1994-2004

10 years (...)

20 Years

1993-2013

1994-2014

20 years (...)

Figure 4.2: Schematic of the different time intervals used to perform the eMLR. Two
examples are given for each time interval while the 5, 10 and 20 years (...) indicate that the
analysis has been repeated for all possible starting year.
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as the reference factor (e.g., for the time period 1993-1998 the 5-year time interval would

be the reference factor and the year-to-year time interval would be the comparison factor;

for the time period 1993-2003, the 10-year time interval would be the reference factor and

the year-to-year and 5-year time intervals would be comparison factors, and so on).

In these linear regressions, the differences between the regression coefficients of the

reference (αi and βi for intercept and slope, respectively) and comparison factors (αj
and βj) represent the interaction terms (αi:j and βi:j). Since the goal is to determine

whether using eMLRs with different time intervals leads to a different accumulation rate of

Cant within the time period selected, we focus on comparison of slopes and disregard the

differences in intercepts (though, as shown in Equation 4.8, the regressions were performed

including intercepts). The difference in average annual slope (storage rate or accumulation

rate) between the 20-year and 10-year time intervals would be reported as β20:10, while the

difference in average annual slope between the 20-year and the year-to-year time intervals

would be reported as β20:1 (see the illustration of slope differences in Figure 4.3). Using a

t-test, we verify whether the difference between slopes of each comparison factor and the

reference factor is significantly different than zero (this was assessed with the p-value for

the interaction factor at a significance level of α = 0.05, with the p-value taken from the

t-distribution with N-p degrees of freedom, where N is the number of time series points

and p is the number of parameters estimated). The equation for these linear regressions

with interaction terms would be in the form of:

Cumulative

∆DICeMLR

=α20 + β20t+ α20:10 + β20:10t+

α20:5 + β20:5t+ α20:1 + β20:1t+ ε

(4.8)

where α represents the intercepts, β represents the slopes and the subscripts with colon

represent the difference in coefficients between the different factors (i.e., interaction terms).

It is important to highlight that some regressions were performed on time series that

only included two data points (i.e., the reference factors for each time period). While it

would not be possible to verify any statistical robustness on these time series individually

(the degrees of freedom are = 0 and the standard error of regression cannot be assessed,

therefore precluding the feasibility of its individual t-test), this is possible when included

in the interaction analysis. In fact, whereas the slopes and intercepts are assessed for each
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Figure 4.3: Illustration of the method used to compare the eMLRs with different time
intervals. In the graphic the time period selected is 20 years therefore the reference factor
is the eMLR performed with 20-year time interval and the comparisons factors are the
year-to-year and the 10-year time intervals. Note that in this plot (and in the following
ones), only regressions of the reference factor and those statistically different from it are
drawn as solid lines. If no difference is found the regression lines are drawn with a dashed
line.

99



individual factor, the standard error calculation is based on all data points regardless of

their category. While this solves the problem of degrees of freedom in the comparison of

different time intervals (i.e., comparison of the slopes reported on each row of Table 4.1),

it does not apply in the context of comparison of the same time intervals with different

starting years (i.e., comparisons within each sub-column in Table 4.1).

4.3.2.2 Comparisons Among eMLRs with the same Time Intervals but Different
Starting Year

When comparing eMLRs with the same time interval but different starting years, all of

the slopes will be obtained based on only two data points. A further complication for this

second comparison lies in the selection of the reference factor.

With these complications in mind, we opted to use a different approach for this second

comparison. We make use of independent t-tests between the slopes calculated for the

same time interval but different starting years. In this case we selected the regressions

with highest, lowest and median values of the slope as three possible reference factors (an

exception is the 20-year time interval for which four slopes were available and therefore

we used only the highest and lowest slopes). In these tests the null hypothesis (H0) is that

each slope obtained using eMLRs with the same time interval but different starting years

are equal to the reference factors. The alternative hypothesis (Ha) is that comparison and

reference slopes are significantly different from each other.

Adapting a statistical test presented in Andrade and Estévez-Pérez (2014) to this ap-

plication, we first assessed whether a simple t-test or a Welch t-test should be used. To

compare two slopes with a simple t-test using a pooled variance, the regression variances

(or squared standard errors of regression or mean squared error; MSE) must be equal and

therefore belong to the same population. If this is not true a Welch t-test should be used

instead. Therefore as a first step we calculated the regression variances for the reference

and comparison factors. In our case the slopes were calculated from two data points, each

of which was obtained from an eMLR that, in turn, involved two linear regressions. There-

fore when calculating our regression variances we need to account for the four regressions

used to perform the two eMLR (one eMLR for the reference and one for the comparison

factor). The regression variances for each of the four regressions were obtained with the
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following equation:

s2
i = MSEi =

SSEi
dfi

=

∑
(ε2i )

ni − 4
(4.9)

where i represents each one of the regressions used to perform the two eMLRs and

εi (also written as SSEi) represents their sum of squares of errors. For each eMLR, the

combination of squared standard errors for the two regressions is indicated by s2
ij and is

calculated with the following equation:

s2
ij =

1

∆t2
(s2
i + s2

j) =
SSEi

∆t2(ni − 4)
+

SSEj
∆t2(nj − 4)

(4.10)

where df are the degrees of freedom calculated as the number of observations (of θ,

S and DO used to perform the original regressions of the eMLR) minus the number of

regression parameters estimated, and ∆t is the time interval implied in the eMLR (5, 10,

20 years). The same equations were used to calculate the regression variances for the

reference factor (these would be s2
ref,i and s2

ref,j and their combination s2
ref,ij).

We could assume that the datasets used to obtain the reference and comparison factors

have a similar variability (i.e., the regression variances are the same) and perform a simple

t-test, but instead we use a statistical test to objectively assess whether the regression

variances belong to the same population or not (i.e., if we should perform a t-test or a

Welch t-test). Therefore as a second step we compared the regression variance of the

reference factor (s2
ref,ij) to that of the comparison factor (s2

ij) with an F-test statistic in the

form of:

F =
s2
ij

s2
ref,ij

(4.11)

The H0 for this test is that s2
ref,ij=s

2
ij , while the Ha is that these regression variances are

different. If the H0 is rejected then a Welch t-test should be used in place of a t-test. The

majority of our comparisons showed that s2
ref,ij and s2

ij belonged to different populations,

therefore we rejected the null-hypothesis and used a Welch t-test for all our comparisons

using the following equation (modified from Equation 8 in Andrade and Estévez-Pérez
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(2014)):

tw =
βref,ij−βij√

SSEref,i

∆t2(nref,i−p)SSRref,i
+

SSEref,j

∆t2(nref,j−p)SSRref,j
+

SSEi
∆t2(ni−p)SSRi

+
SSEj

∆t2(nj−p)SSRj

(4.12)

where βref,ij and βij represent the slope of the reference and comparison factors, respec-

tively. The terms nref,i and nref,j represent the number of θ, S and DO observations that

were used in both of the original regressions to perform the eMLRs for the reference factor

while ni and nj are the numbers of observations for the comparison factors. Finally SSR

represent the sum of square of regressions and can be expressed as:

SSR = SST − SSE =
∑
k

(yk − ȳ)2 −
∑
k

(ε2k) (4.13)

where SST is the squared deviations of DIC observations and SSE is the squared errors of

regression. The test statistic, tw, has a t-distribution with degrees of freedom, ν, calculated

as:

ν =
Aref,i + Aref,j + Ai + Aj

A2
ref,i

nref,i−p
+

A2
ref,j

nref,j−p
+

A2
i

ni−p +
A2

j

nj−p

(4.14)

where A = SSE
∆t2(n−p)SSR and p represents the number of parameters estimated in the

initial regressions (i.e., p = 4). The corresponding p-value was calculated and assessed at a

significance level of α∗ rather than α. In fact when multiple comparisons are performed

on the same set of data, it is more likely to incur Type I errors (false positives, i.e., we

think the slopes are different when in reality they aren’t), therefore a correction of the α is

necessary. We here applied a Bonferroni correction as follows:

α∗ =
α

M
(4.15)

where α = 0.05 and M represents the number of comparisons performed. Note that

this correction ensures that we lower the occurance of Type I errors but also increases the

chances of having Type II errors (false negatives, i.e., we think the slopes are the same

when in fact they are different).
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4.3.3 Comparison of ∆DIC Estimates Based on TTD, eMLR and Ob-
served DIC

The analysis of regression with interaction terms was also used to compare results of

∆DIC based on the two Cant estimation methods (TTD and eMLR) to those obtained from

the overall increase of DIC based on direct observation (DICobs). For this analysis we used

the cumulative ∆DICeMLR assessed with the year-to-year time interval. Unlike the TTD,

the eMLR method provides estimates of the change in DIC due to anthropogenic carbon

rather than its absolute concentration. Therefore, in order to compare results from these

two methods to the overall increase in DIC from observations, we calculated year-to-year

changes in Cant column inventories (mol m−2) based on the TTD method as well as the

year-to-year change of the observed DIC. These values of ∆DIC based on the TTD method

and DIC observations are identified as ∆DICTTD and ∆DICobs, respectively and, like the

∆DICeMLR column inventories, are reported as cumulative sums (see Equation 4.16 and

4.17). All values were calculated by first removing the top 300 m of the water column in

order to avoid seasonal effects.

The TTD method was applied using CFC-12 as a tracer, and because of lack of ob-

servations or low quality of the data during some years, the time series of Cant column

inventories has some gaps compared to the DIC, temperature, salinity and oxygen time

series used to assess ∆DICobs and ∆DICeMLR. To solve the lack of CFC-12 data, for

each missing year we substituted an average value of Cant column inventory based on

the inventories of the two previous and two following years. Once the time series was

completed as described, the change in DIC assessed with the TTD estimates (hereafter

referred to as cumulative column inventory; ∆DICTTD) was calculated as a cumulative

sum that can be simplified in the form of:

∆DIC(TTD)n = Cant(TTD)n − Cant(TTD)1993 (4.16)

where Cant(TTD)n represents the annual anthropogenic carbon column inventory (in mol

m−2) as estimated with the TTD at a given year in the time series (from 1994 to 2016).

Similarly the cumulative column inventory of DICobs (∆DICobs) was calculated as:

∆DIC(obs)n = DIC(obs)n −DIC(obs)1993 (4.17)
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where DIC(obs)n represents the annual column inventory of DIC (in mol m−2) assessed

directly from the DIC observations at a given year in the time series. For the interaction

term analysis on these three time series we have selected the ∆DICobs as our reference

factor.

4.4 Results

In order to show the effects of the choice of time interval on the eMLR analysis, we

present results separately: first the comparisons of different time intervals within each time

period, followed by the comparison of same time intervals with different starting years.

4.4.1 Effect of Different Time-Intervals

In Table 4.1 we report the slopes of linear regressions for the cumulative ∆DICeMLR

obtained for different time periods. Each time period is defined by a starting year (rows)

and an ending year (columns). The different coloured sub-columns represent the slopes

obtained using different time intervals to run the eMLR (year-to-year, 5-year, 10-year and

20-year). The white numbers represent the slopes of reference factors.

We were able to use all three time periods (5, 10 and 20 years) only for our comparisons

of time intervals with starting years between 1993 and 1996. For all other starting years

we could only assess two or one of the time periods (5 and 10 years).

When slopes obtained from different time intervals within the same time period were

compared (i.e., comparison among the sub-columns of each main column of Table 4.1),

we found that most time intervals produce slopes that are within ± 0.6 mol m−2 y−1 from

the reference slope. Even though a few time intervals displayed larger differences from the

reference slope (with a maximum difference of 1.2 mol m−2 y −1 for the 2011-2016 time

period), the interaction term analysis revealed that none of the slopes of the comparison

factors are significantly different from the reference factor.

4.4.2 Effect of Different Starting Years

Table 4.1 also allows comparison of results obtained with the same time interval but

different starting years. Slopes obtained with 5-year time interval can be found along the

second sub-column, while results for the 10-year and 20-year time intervals are reported

along the fifth and ninth sub-columns, respectively.
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Table 4.1: Slopes of linear regressions of cumulative ∆DICeMLR using eMLRs with
different time intervals. Reference factors are represented with white font. Note that the
units of the slopes are in mol m−2 y−1.

Ending Year

1998 2003 2013

St
ar

tin
g

Y
ea

r

1993 0.40 0.46 1.53 1.40 1.47 2.10 2.18 1.94 1.85
1999 2004 2014

1994 1.37 1.29 1.69 1.72 1.55 2.15 2.25 2.14 1.85
2000 2005 2015

1995 2.94 2.52 2.26 2.38 2.42 2.21 2.14 2.21 2.04
2001 2006 2016

1996 2.89 2.71 2.67 3.12 3.07 2.25 2.49 2.63 2.55
2002 2007

1997 1.69 1.60 2.57 2.59 2.48
2003 2008

1998 1.47 2.33 2.73 2.95 2.87
2004 2009

1999 1.06 2.16 2.51 2.37 2.44
2005 2010

2000 2.45 2.24 2.58 1.94 2.13
2006 2011

2001 4.07 3.54 2.55 2.01 1.98
2007 2012

2002 3.89 3.58 2.32 2.34 2.60
2008 2013

2003 3.68 3.57 1.99 2.57 2.42
2009 2014

2004 2.45 2.58 1.77 2.72 2.73
2010 2015

2005 1.36 1.63 1.51 1.99 2.01
2011 2016

2006 0.77 0.48 1.64 2.10 2.19
2012

2007 1.09 1.10
2013

2008 1.15 1.57
2014

2009 2.03 2.85
2015

2010 2.05 2.35
2016 Time Intervals

2011 2.57 3.73 1yr 5yr 10yr 20yr
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Figure 4.4: Slopes of cumulative column inventory of ∆DICeMLR obtained with different
time intervals. We report the mean slopes (solid dots), standard errors of the mean (thick
lines) and standard deviations (thin lines) for each time interval. The empty dots represent
the slope obtained for each regression (values reported in Table 4.1).

While the values of the slopes are quite similar for the 20-year time interval regardless

of the starting years (slopes ranging between 1.85 and 2.55 mol m−2 y−1), this is not the

case with the 5- and 10-year time intervals. In particular, whereas the 10-year time interval

displayed a range of annual average increase of ∆DICeMLR between 1.47 and 3.07 mol m−2

y−1, the 5-year time interval gave the widest range of values with slopes ranging between

0.46 and 3.58 mol m−2 y−1. The differences between the time intervals are illustrated in

Figure 4.4, where it is noticeable that the scatter of the values of slope for the year-to-year

and 5-year estimates (standard deviation of ∼ ±1) is much larger than the 20-year ones

(standard deviation of ∼ ±0.3).

The Welch t-tests revealed that, regardless of the choice of reference factor, significantly

different slopes are obtained when the same time interval is applied with different starting
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years although there were a few exceptions (result of this analysis can be found in Appendix

C). For instance there is no significant difference between two of the four slopes obtained

with the 20-year time interval (1993-2013 and 1994-2014; see Table C2), and no differences

were found between slopes obtained with the 10-year time intervals starting in 1993 and

1994 (Table C3). A few additional exceptions were found for the 5-year time interval

(see Table C1) but overall the majority of comparisons showed that, regardless of the time

interval considered, significantly different slopes and therefore Cant accumulation rates are

obtained when the eMLR is performed with different starting years.

4.4.3 ∆DIC assessed with TTD, eMLR and DIC Observations
The cumulative ∆DIC column inventories assessed with the TTD and eMLR methods

are represented in Figure 4.5 together with the changes from direct DIC observations (see

Section 4.3.3). For reference, in Figure C.1 of Appendix C, we also report the year-to-year

increase (not cumulative) of ∆DIC column inventories obtained from the three methods.

We found that, over the entire time series, the cumulative column inventories of ∆DIC in-

creased by 50, 44 and 42 mol m−2 when assessed with ∆DICobs, ∆DICeMLR and ∆DICTTD,

respectively. Whereas the rate of increase of ∆DICeMLR is comparable to that of ∆DICobs

(accumulation rates of 2.3 and 2.1 mol m−2 y−1 for ∆DICobs and ∆DICeMLR, respectively),

the slope of the regression obtained for the ∆DICTTD time series (1.4 mol m−2 y−1) is

statistically different than the reference factor.

Note that starting in early 2000’s and throughout the period of Cant accumulation slow-

down identified in Chapter 3 (ending in 2012), the ∆DICTTD time series differs significantly

from the other two methods and shows values of column inventories increasing at a slower

rate compared to ∆DICeMLR and ∆DICobs (7-15 and 8-20 mol m−2 lower than ∆DICeMLR

and ∆DICobs, respectively). Between 2013 and 2016 the differences between the ∆DICTTD

and the other two estimates of ∆DIC start decreasing and the three time series converge

again by 2016.

4.5 Discussion

4.5.1 Effects of Different ∆DIC Estimation Methods with all possible
Starting Years and Time Intervals

To further illustrate the implications of using different starting years as well as of

applying different Cant estimation methods, we have calculated slopes of linear regressions
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Figure 4.5: Cumulative column inventories of ∆DICobs (grey dots), ∆DICeMLR (red dots)
and ∆DICTTD (blue dots). The lines and the shaded areas represent the linear regression
models for each time series and their 95% confidence intervals, respectively. Notice that the
regression lines for ∆DICobs and ∆DICTTD are solid because they are the reference factor
and the comparison factor with statistically different slope, respectively. The ∆DICeMLR

line is dashed because no statistical difference in slope is found compared to ∆DICobs.
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between all starting and ending years (between 1993 and 2015) with the eMLR, TTD

methods as well as with the observed DIC. These estimated rates of increase, which are

presented in Figure 4.6, are calculated using only the column inventories of the starting

and ending years and with data >300 m depth (for a better comparison with the eMLR

approach).

Overall it is noticeable that depending on the starting year and time interval selected,

different estimates of ∆DIC rate of increase are obtained, regardless of the method used.

These differences in estimated accumulation rates can translate into contradictory conclu-

sions on the role of the Labrador Sea depending on the years of observations considered.

Whereas the accumulation rates assessed with the TTD method are generally lower

compared to those obtained with the eMLR and observed DIC (i.e., there is more blue

than red in the TTD matrix), we still found some similarities among the three estimates of

∆DIC. For instance, all three methods display lower rates of increase of DIC in the early

period of the time series (between 1990’s and early 2000’s) and for the late 2000’s and

early 2010’s, nevertheless this latter period of slow increase in DIC assessed with the TTD

method is more prolonged in time compared to other methods. A further similarity is that

all three methods identified intermediate to fast rates of increase (slopes ranging between

2 to 6 mol m−2 y−1) toward the very end of the time series.

There were also some clear discrepancies between the TTD method and the DICobs-

and DICeMLR-based estimates. For instance, whereas fast rates of increase in DIC were

obtained for periods starting in early 2000’s and ending in late 2000’s when using DICobs

and eMLR method (slopes between 3-6 mol m−2 y−1), the TTD method only produced fast

rates for a few time periods but in general displayed intermediate to low rates of increase at

this time (slopes between 1-2 mol m−2 y−1). Further all the slopes obtained with starting

years between 1993 and 2006 and ending years between 2010 and 2016 have overall slower

rates of increase with the TTD method compared to the other DIC-based methods.

All three methods used to estimate ∆DIC showed that the rate of increase of Cant is not

constant over time. Instead there are alternating periods of fast and slow rate of increase

of Cant column inventories, which confirmed that the Labrador Sea is characterized by

a non-steady accumulation of Cant. Nevertheless the application of one method over the

other could lead to different interpretation on the time of arise and/or duration of periods

of fast and slow rates of increase.
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Figure 4.6: Matrices of column inventories’ rates of increase (slopes between the starting
and ending years) obtained from the DIC observations (top panel, DICobs), the eMLR
method (middle panel) and the TTD method (bottom panel). Values of slopes are reported
in mol m−2 y−1, with grey, red and blue colours representing intermediate (value of 2 ±
0.5 mol m−2 y−1), high and low rates of increase, respectively.
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Gruber et al. (2019b) inferred the Cant rate of increase between 1994 and 2007 based on

observations as well as estimating the expected change since 1994 in storage assuming

“transient steady state”. The latter concept implies that after a long period of time the

concentration of Cant at any depth in the water column increases at a rate that is proportional

to the increase in the surface layer. Comparison of predicted (based on transient steady

state) and observed Cant rates of increase showed that whereas these agree on a global scale,

significant differences can be found on a regional basis. In particular Gruber et al. (2019b)

showed that, between 1994 and 2007, the North West Atlantic displayed a change in

inventory 20% lower than predicted assuming transient steady state. The anomalously low

inventory change was attributed to changes in ocean circulation, although only temporary.

We here show that despite the slowdown in Cant accumulation rate during the 2000’s

(shown by all three methods used in this work) the Labrador Sea displayed a fast rate of

increase in the 2010’s as a result of renewed deep formation of LSW (see Chapter 3). These

findings further support that ocean circulation plays a crucial role in the sequestration of

Cant, meaning that future changes in LSW formation will most likely affect the role of the

Labrador Sea in storing Cant.

4.5.2 Estimating Natural DIC

As reported in Clement and Gruber (2018), and as shown in Equation 4.2, overall

changes in observed DIC between reoccupations of hydrographic transects (∆Cobs or

∆DICobs) represent changes in both natural (∆Cnat or ∆DICnat) and anthropogenic carbon

(∆Cant). Natural changes in DIC occur due to climate and ocean variability that affect

temperature, biology and circulation. On the other hand, anthropogenic changes are a

consequence of the increase in atmospheric pCO2.

In a steady state scenario (i.e., in absence of changes to the natural DIC over a given

period of time) during a period with increasing atmospheric pCO2, changes in observed

DIC would be solely due to the oceanic uptake of Cant (i.e., ∆DICobs = ∆Cant). In this

scenario, the Cant behaves like a passive tracer (like CFCs) and its uptake is the result of

air-sea disequilibrium and mixing. Nevertheless, in the real ocean the CO2 system (as

well as physical properties) is not necessarily in steady state and it is therefore possible to

separate Cant into both a steady state (SS) and a non-steady state (NSS) components.

∆Cant = ∆Cant(SS) + ∆Cant(NSS) (4.18)
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where ∆Cant(SS) represents the change in anthropogenic carbon due to rising atmospheric

CO2 and in absence of circulation and biological changes, and ∆Cant(NSS) is the Cant

component that is modified by changes in circulation and biology due to climate change

(e.g., temperature effects on CO2 solubility and increasing stratification).

The temporal signal of the observed DIC is further affected by changes in circulation

due to natural variability (i.e., decadal) therefore we separate the natural carbon into a SS

and a NSS component as well:

∆DICnat = ∆DICnat(SS) + ∆DICnat(NSS) (4.19)

By definition, in a steady state scenario there are no changes to the natural DIC dynamics

(i.e., ∆DICnat(SS) = 0), meaning that the ∆DICnat is exclusively driven by NSS changes

that occur as a result of events such as El-Niño-Southern Oscillation. 2

The availability of both the observed DIC and the two estimates of Cant obtained in this

thesis can allow us to identify whether changes in the pool of non-steady state natural DIC

occurred during the years of observations in the Central Labrador Sea. We here identify

∆DICnat simply as the difference between the observed change in DIC (∆DICobs) and

the estimated change in Cant based on both the TTD and eMLR methods (∆DICTTD and

∆DICeMLR).

In Figure 4.7, where we report the ∆DICnat, it is noticeable that whereas the estimated

changes in natural DIC assessed with both methods agree until early 2000’s, different

estimates were obtained starting in 2005 and until the end of the time series, when both Cant

estimation methods again produced similar results of ∆DICnat. The use of the eMLR-based

Cant column inventories resulted in ∆DICnat of 2.7 ± 3.0 mol m−2 on average. Whereas,

use of TTD-based estimates of Cant resulted in ∆DICnat of 6.7 ± 7.9 mol m−2 on average.

In other words, whereas the use of the eMLR implies no trend in the ∆DICnat, the TTD-

based estimates suggest a significant increase in ∆DICnat over time at a pace of ∼ 0.9 mol

m−2 y−1 (R2 = 0.6).

2It is worth noting that when a correction is applied in back-calculation methods to remove the signal
of natural DIC, both of these non-steady state signals (∆DICnat(NSS) and ∆Cant(NSS)) are not accounted for,
therefore only the steady state Cant inventories are estimated by these methods.
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Figure 4.7: Changes in the natural component of DIC (∆DICnat) estimated as the difference
between the observed ∆DICobs and the ∆Cant estimates based on the TTD and eMLR
methods.
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4.5.3 Possible Reconciliation of the Anthropogenic Carbon Estimates
from Different Methods

In Figure 4.5 we showed there are significant differences between the time-histories of

the column inventories of ∆DICTTD and those of ∆DIC obtained with the DIC observations

and the eMLR method. These differences resulted in different conclusions on the role

of ∆DICnat in the overall increase of DICobs (Figure 4.7). To explore possible causes of

this divergence of estimates, we looked at the temporal variability of ∆DICobs, ∆DICeMLR

and ∆DICTTD in the Labrador Sea’s four major water masses: LSW, DIW, NEADW and

DSOW. These water masses were defined as described in section 3.6.1 and B.2.2, and in

Figure 4.8 we report their cumulative year-to-year change in ∆DIC average concentrations

obtained with the three methods (∆DICobs panel a, ∆DICeMLR panel b and ∆DICTTD in

panel c).

It is noticeable that, although there is less noise in the eMLR-based estimates compared

to the DICobs, both show similar concentrations changes among the four water masses (with

all water masses concentrations ranging between -5 and 14 µmol kg−1) as well as similar

rates of increase (all water masses showed rates of increase of ∼ 0.65 and 0.60 µmol kg−1

y−1 for DICobs and DICeMLR, respectively). On the other hand the TTD method resulted in

more obvious distinction between the water masses with wider concentration ranges (e.g.,

0-19 µmol kg−1 for LSW compared to 0-11 µmol kg−1 for DSOW) as well as wider range

of rates of increase (e.g., 0.78 µmol kg−1 y−2 for LSW compared to 0.34 for DSOW).

At the time when the column inventories of ∆DICTTD diverge from the ∆DICeMLR and

∆DICobs, concentrations of ∆DIC assessed through the TTD method were increasing in

LSW and DIW, but remained constant in the DSOW and NEADW.
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Figure 4.8: Cumulative annual average increase of ∆DICobs (panel a), ∆DICeMLR (panel b) and ∆DICTTD (panel c) concentrations in
four major water masses of Labrador Sea. In panel d we report results of ∆DICTTD obtained using time-varying saturation for LSW and
DIW but constant 100% for DSOW and NEADW. Note that in each panel the first datapoint of the time series of each water mass is a
value of zero for 1993 as we are looking at the change in concentration from that year onward.

115



The reasons for the divergence of the “proxy” estimates based on CFCs tracers from the

DIC-based approaches after 2004 are not clear. As noted, the different approaches converge

on similar values for Cant column inventories by the end of the time-series, however the

trajectories vary with implications for estimates of natural carbon variability (see Figure

4.7). One possibility for the divergence could lie with the initial saturation assumption

required with the TTD approach.

As explained in Chapter 3 we reconstructed the tracers’ saturations in Labrador Sea

using the portion of water that better represents the wintertime surface water in Labrador

Sea, hence the CFC-12 and SF6 saturations used in our refined TTD method are char-

acteristic for water masses that have been ventilated in the Labrador Sea. While this

reconstructed saturation should properly represent the tracers’ saturations in LSW and

DIW, the divergence of Cant estimates in NEADW and DSOW raises the question as to

whether this is also the case for DSOW and NEADW. These water masses are ventilated

in other regions (in the Nordic Seas) and at a different time than the LSW. Further, the

NEADW and DSOW are subject to modification of their original characteristics as they

move toward the Labrador Sea further complicating the reconstruction of a realistic history

of the tracers’ initial saturation.

We hypothesize that the differences in Cant column inventories between the TTD and

eMLR methods are related to the reconstruction of the CFC-12 saturation in our refined

TTD method and that a different saturation history could lead to higher concentrations of

Cant in DSOW and NEADW, when using a refined TTD method.

To roughly estimate to what extent the saturation assumption can affect the contribution

of DSOW and NEADW to the total column inventory we here consider two approximate

scenarios: (1) A mixed saturation that includes time-varying saturation for LSW and

DIW, and constant 100% saturation for DSOW and NEADW; (2) Time-varying saturation

for all four water masses but with a time-lag for DSOW and NEADW. Note that it may

be possible to reconstruct an observations-based surface history of the effective mole

fraction of CFC-12 (XCFC – 12) that better represents the saturation conditions when DSOW

and NEADW were last in contact with the atmosphere (tracers data are available for the

Greenland Sea since 1982 Bullister and Weiss, 1983; Bullister, 1984; Karstensen et al.,

2005; Jeansson et al., 2010).
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Figure 4.9: Caption in the next page.
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Figure 4.9: (Previous page.) Top panel represents the difference in CFC-12 percent
saturation between LSW and NEADW (light grey dots) and DSOW (dark grey dots).
The NEADW and DSOW CFC-12 saturations reconstruction was performed by shifting
the LSW reconstruction by 12 and 7 years, respectively. Bottom panel represents the
comparison between the atmospheric history (blue line) the LSW (red line), NEADW
(light grey line) and DSOW (dark grey line) winter-time surface history of the XCFC – 12. All
the lines represents the smoothed function (moving average filter) of the surface history.

4.5.3.1 Mixed Saturation Scenario

In Figure 4.8 panel d we report results of ∆DICTTD obtained using a constant 100%

saturation for DSOW and NEADW. Although the use of 100% constant saturation in these

two water masses gave larger average values of the year-to-year increase of ∆DICTTD, the

distinct differences between the four water masses was maintained. Note that if the absolute

values of Cant were considered (rather than the year-to-year change), the 100% saturation

assumption leads to lower average concentrations of Cant in DSOW and NEADW compared

to using the time-varying saturation (see Figure C.2). The use of 100% constant saturation

for DSOW and NEADW resulted in column inventories on average 4.8 ± 2.3 mol m−2

lower compared to using time-varying saturation for all water masses. Nevertheless we

estimated that this mixed saturation scenario can determine larger year-to-year increases,

leading to cumulative column inventory changes that are on average 2.5 ± 2.3 mol m−2

higher than the estimates obtained with the time-varying saturation for all water masses.

Estimates from this scenario are still considerably lower compared to those from the eMLR

method, therefore we consider a second possible scenario.

4.5.3.2 Time-Lagged Saturation Scenario

Previous studies in the Labrador Sea have reported ventilation ages (time elapsed since

the water was last in contact with the atmosphere not considering mixing) for DSOW and

NEADW. In particular Azetsu-Scott et al. (2005) reported ventilation ages of 5-8 and 11-13

years for DSOW and NEADW, while Tait et al. (2000) reported ventilation ages of 6-8

and 10-15 years. Therefore, if we assume that the reconstruction of the CFC-12 percent

saturation we performed for the Labrador Sea (presented in Figure 3.2) is representative of

the conditions in the Nordic Seas but with a time-lag, then we can roughly estimate the

bias in percent saturation we have introduced by applying the Labrador Sea winter-time

conditions to the DSOW and NEADW.
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In the top panel of Figure 4.9, we report the estimated difference in CFC-12 percent

saturation between LSW and the two water masses ventilated outside the Labrador Sea.

These differences were obtained by applying a time-lag to the LSW saturation history of

7 and 12 years for DSOW and NEADW, respectively. These estimated CFC-12 percent

saturation histories were then employed to reconstruct the winter-time surface histories

of XCFC – 12 for DSOW and NEADW. The latter are reported as smoothed functions in the

bottom panel of Figure 4.9 together with the LSW surface history of XCFC – 12 as well as

the CFC-12 atmospheric input function. From these plots it is noticeable that the bias

introduced by using the LSW surface history for water ventilated in the Nordic Seas is

not constant over time, and while for certain periods we might have underestimated Cant

concentrations in these two water masses there are also few years where we might have

overestimated Cant here. In particular we find differences in percent saturation compared to

the LSW ranging between -15 to +28% for DSOW and -10 to +36% for NEADW, with the

highest differences in NEADW observed during the years when the column inventories of

∆DICTTD diverge from the other two estimates of ∆DIC (see top panel of Figure 4.9). On

the other hand, in the first years of the time series and between 2011-2016 the difference

in saturation of DSOW and NEADW with respect to LSW are characterized by negative

values, with the lowest values observed in 2016 (notice that in Figure 4.9 we also reported

saturation differences between 1986 and 1992 which were not considered for the column

inventories comparisons).

If for instance the waters identified as DSOW and NEADW in 2005 were ventilated 7

to 12 years before (when the atmospheric rate of increase of CFC-12 was at its highest,

therefore suggesting strong undersaturation of CFC-12), we would be using a much higher

percent saturation of CFC-12 to calculate the mean age of these water masses. This leads

to mean ages that are biased old resulting in lower Cant concentrations. On the other hand,

in the latest years of our time series we might have used a saturation percentage of CFC-12

that is too low for the DSOW and NEADW, therefore leading to overestimation of Cant

concentrations.

For illustration purposes we selected only two years within the period of divergence

of the TTD method (2006 and 2010) and few values of CFC-12 percent saturation (65,

85 and 95%). We found that whereas a difference in saturation of 10% (between 95 and

85%) could increase the combined contribution of DSOW and NEADW by ∼ 4 mol m−2,
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a difference of 30% (between 95 and 65%) could lead to a combined contribution of

∼ 13 mol m−2 to the total column inventory of Cant. Overall we found that the larger

the difference between the saturation at time of ventilation of DSOW and NEADW and

the one used based on the Labrador Sea CFC-12 time series, the larger the bias in Cant

column inventories. Despite the overall higher concentrations of Cant in DSOW, the larger

contribution to the bias in column inventory due to erroneous CFC-12 saturations, is

primarily associated to the NEADW due to its larger volume compared to the underlying

DSOW.

Overall these results imply that larger bias in DSOW and NEADW combined contri-

bution to the total column inventory are to be expected for years between early 2000’s

and roughly 2011 compared to early 1990’s and between 2013-2016. If a correction of ∼
+13 mol m−2 and ∼ -4 mol m−2 would be applied for years where the CFC-12 saturation

was over- and underestimated for DSOW and NEADW, it would reconcile the column

inventories from the three methods, further consolidating the conclusion that the increase

of the inorganic carbon pool in this region is solely due to anthropogenic carbon invasion

and no natural variability of inorganic carbon is identified.

4.5.4 Implications of Using Different Starting Years and Different
Methods to Estimate Anthropogenic Carbon

The results presented in Figures 4.5 and 4.6 highlight several implications of the TTD

method application in this region. The comparison of Cant estimated with the TTD to results

of eMLR and DICobs further showed that the assumptions implied in the TTD method

are crucial in determining its performance. In particular, assumption of constant transient

tracers’ saturations is an over-simplification and can affect to a great extent the results

obtained from this method. Even using an observation-based time-varying saturation can

introduce a bias when not all ventilation and saturation histories of the different water

masses are taken into account. Due to the time-varying nature of the tracers’ saturation,

using a constant saturation throughout the water column and over time introduces a bias

that is not constant either in space or in time, which further complicates the interpretation

of the Labrador Sea’s role in the Cant storage.

120



4.6 Conclusions

In this Chapter we presented estimates of Cant based on the eMLR method. We performed

regressions based on potential temperature, salinity and dissolved oxygen for each year

and we calculated the eMLR with different time intervals. With this exercise we have

shown that performing the eMLR with different time intervals within a selected time period

does not affect results of average annual slope. Meaning that obtaining an appropriate

average rate of increase (accumulation rate) of Cant over one to two decades does not

require finer temporal resolution of the data. On the other hand the choice of starting

and ending year can greatly affect the results of average annual slope regardless of the

time interval selected. In fact almost all starting years produced significantly different

average annual slopes regardless of the time interval used, therefore leading to potentially

erroneous conclusions on the carbon dynamics in this region. We have shown that although

it is not necessary to have a higher temporal resolution to obtain a realistic average rate

of accumulation of Cant with the eMLR method, finer temporal resolution allows us to

identify patterns of non-steady accumulation of Cant in the Central Labrador Sea with the

TTD method (presented in Chapter 3) as well as with the DIC-based methods. This result

further proves the importance of long-term monitoring program in highly dynamic regions

like the Labrador Sea.

Thanks to the yearly observations of DIC, we were able to assess changes in inorganic

carbon pool based on the eMLR method but also to estimate the year-to-year increase

of the total signal of DIC. In order to decipher whether changes observed in the DIC

pool in the Central Labrador Sea are solely due to the increase of anthropogenic carbon

concentrations, or whether there is some natural variability captured in this signal, we

compared the ∆DICobs column inventories to those obtained with the TTD and eMLR

methods and found contradictory results. In fact we observed significant differences in

the average annual increase of ∆DIC between the three methods. Whereas the slope

obtained for the eMLR time series, and the resulting estimates of ∆DICnat from this

method, suggested that the increase in DIC signal in the Central Labrador Sea is solely due

to anthropogenic carbon invasion, the TTD results suggested that the observed increase

in inorganic carbon concentrations could partially be associated to natural variability of

DIC in the region. We found that these contrasting results between TTD and eMLR were

primarily due to divergence of the TTD-based column inventories in the 2000’s with
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respect to the ∆DICobs and ∆DICeMLR time series. These discrepancies between the TTD

method compared to the carbon-based estimates suggested potential bias in the former

method associated to the use of transient tracers rather than carbon.

Although the reasons for the TTD-based estimates divergence remain unclear, a possible

explanation could lie with the assumptions regarding the transient tracers’ saturation

implied in the TTD method. Despite accounting for a time-varying saturation (tailored

to Labrador Sea conditions), there is a potential that the CFC-12 saturations used in our

refined TTD method may not be appropriate for water masses such as DSOW and NEADW

which have been ventilated at a different time than LSW and outside the Labrador Sea

(Nordic Sea).

To evaluate to what extent the saturation could affect the TTD-based estimates of ∆Cant,

we considered two scenarios: (1) a mixed saturation scenario (time-varying saturation

for LSW and DIW and 100% constant saturation for DSOW and NEADW), and (2) a

time-lagged scenario (with time-varying saturation for all water masses but accounting

for time-lag in DSOW and NEADW). We found that whereas the first scenario would

only increase the ∆DICTTD by 2.5 mol m−2 on average, not accounting for a time-lag

in the CFC-12 saturation histories for DSOW and NEADW can lead to bias in percent

saturation in these water masses ranging between ∼ -15-28 and -10-36% for DSOW

and NEADW, respectively. These under- and overestimations of the CFC-12 saturations

throughout the time series can translate into over-and underestimation of the TTD-based

Cant concentrations and resulting into biased column inventories (by up to 13 mol m−2).

The second scenario considered here, despite not representing a perfect resolution, suggests

that an appropriate time-varying saturation for water masses ventilated outside the Labrador

Sea could improve our refined TTD-based estimates.

The comparison of the eMLR method to the TTD as well as to the overall DIC signal,

showed the importance of assumptions implied in the TTD method and revealed the,

otherwise overlooked or underestimated, bias that one can introduce in the Cant estimates

when over-simplified assumptions are implied in this method. Overall these results further

support what mentioned in Chapter 3 in that the transient tracers are imperfect analogues

of CO2 and great care needs to be taken with the assumptions of this more indirect method

to estimate Cant. Finally the many assumptions required to apply the TTD method suggest

that direct, carbon-based methods (in particularly the eMLR) are more reliable than the
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tracer-based ones in estimating Cant in Labrador Sea.
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CHAPTER 5

CONCLUSIONS AND OUTLOOK

5.1 Summary and Main Findings

This PhD thesis aimed to elucidate the temporal variability of the anthropogenic carbon

storage in the Central Labrador Sea, a crucial region of the world’s ocean for carbon

sequestration.

The strength of this work relied on the unusually long time series along the AR7W

transect. The Atlantic Zone Off-Shore Monitoring Program (AZOMP), which involves

annual occupations of the AR7W line with measurements of both hydrographic and

biogeochemical parameters, provided the opportunity to compare estimates of Cant obtained

with different approaches as well as to verify whether the assumption of steady state

accumulation of Cant is realistic for this region. The multi-decadal estimates of Cant in the

Central Labrador Sea between 1993 to 2016 were obtained with both the Transit Time

Distribution method (which was further extended to 1986) and the extended Multiple Linear

Regression. These estimates were used to test two hypotheses: (1) the Cant concentrations

and trends are the same regardless of the method used, (2) the increase observed in DIC is

solely due to increase of the Cant concentrations and no natural variability is associated to

the observed DIC signal.

Overall, the AZOMP monitoring program allowed better understanding of the carbonate

system in this region through full characterization of its parameters. In Chapter 2 we

assessed the internal consistency of the marine carbonate system in Labrador Sea between

2013 and 2015 (when over determination of the carbonate system was available) with

conversion to in situ conditions of temperature and pressure rather than the usually reported

laboratory conditions. This study allowed us to identify the couples of input parameters
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that lead to the best agreement between calculated and measured parameters. Using a

Monte Carlo simulation, we assessed the propagated random uncertainty of calculated

parameters which was useful for those years where over determination was not available.

In fact between 1992 and 2012 only samples for TA and DIC determination were collected,

requiring a better understanding of the propagated random uncertainty of calculated pH

and pCO2.

Based on the analysis provided in Chapter 2 we formulated several recommendations

for future studies involving carbonate system parameters. We identified that the choice

of the carbonate system parameters to be measured strongly affects both the accuracy

and the uncertainty of calculated parameters. In particular we found that the combination

of a T,P-dependent parameter to one that is T,P-independent is to be preferred and that

the combination of pH and pCO2 should be avoided due to the low accuracy and high

combined uncertainty of the calculated parameters from this couple. We found that the

best agreement between measured and calculated parameters is more likely to be achieved

when the equilibrium constants of Mehrbach et al. (1973) as refit by Dickson and Millero

(1987) and Lueker et al. (2000) are employed for calculations. Further this study of internal

consistency revealed a bias in total alkalinity data in 2014 showing that this type of analysis

is a useful quality control tool in the context of long-term monitoring programs. Finally

the conversion of pH and pCO2 measurements from laboratory to in situ conditions of

temperature and pressure highlighted the uncertainty concerning the pressure effects on

the equilibrium constants and how this challenges the comparison of in situ measurements

performed by autonomous sensors, and can potentially compromise the sensor calibration.

In Chapter 3 we presented the first multi-decadal time series of column inventory and

storage rates of Cant in the Central Labrador Sea using a refined TTD method based

on CFC-12 data between 1986 and 2016. We tested the validity of two assumptions

that this method relies on: (1) constant saturation of transient tracers (often assumed

to be 100%), and (2) constant air-sea CO2 disequilibrium. The first assumption was

addressed by reconstructing the histories of CFC-12 and SF6 surface water saturations in

winter by using observation between 1986 and 2016 for the former tracer and between

2012 and 2016 for the latter. This reconstruction revealed that both CFC-12 and SF6

are significantly undersaturated throughout the three decades of the time series and that

saturation varies over time, therefore requiring a refinement of the TTD method. The
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constant air-sea CO2 disequilibrium assumption was tested by using measurements of

total alkalinity and dissolved inorganic carbon between 1992 and 2016 to calculate the

wintertime pCO2. When compared to the atmospheric values, these pCO2 estimates

revealed that in wintertime surface water’s partial pressure of CO2 tracks the atmospheric

pCO2 suggesting that a constant air-sea CO2 disequilibrium is an appropriate assumption

during the time our dataset was collected.

Compared to the typical application of the TTD method with constant saturation of

transient tracers, the use of our refined TTD approach (which implied variable saturation)

resulted in higher Cant column inventories and better agreement between inventories

obtained with TTDs based on CFC-12 and SF6. This is a promising result considering that

SF6 is a more reliable tracer than CFC-12 to estimate the mean age of a water parcel in

recent years. Further in Chapter 3, we explored the temporal variability of Cant storage

and related its changes to decadal variability of Labrador Sea Water (LSW) formation,

highlighting the importance of this water mass in the transport and storage of Cant in the

region. In particular we found that a non-steady accumulation of Cant occurred in the

Central Labrador Sea between 1986 and 2016. We identified a period of slow-down in

the rate of increase of the Cant column inventories between 2003 and 2013 which was

associated to changes in the relative thickness of LSW and Deep Intermediate Water (DIW)

and to differences in the average Cant concentrations in these two water masses. Our results

were compared to previous work carried in the region (particularly to Steinfeldt et al., 2009

and Rhein et al.,2017) as well as to global Cant estimates (Gruber et al., 2019b) highlighting

some discrepancies in storage rate estimates. These differences are attributed to the use

of our refined TTD method instead of the classical TTD method and to using almost

annual estimates compared to a decadal average. Finally, the Cant accumulation in the

Central Labrador Sea identified with the application of the TTD method, highlighted the

importance of sampling frequency especially in highly variable regions like the Labrador

Sea.

Effects of sampling frequency were further explored in Chapter 4 where we estimated

changes in DIC due to Cant invasion using the eMLR method. We focused on the most basic

eMLR which uses potential temperature, salinity and oxygen as independent variables

and we performed and compared several iterations of this eMLR using different time

intervals (year-to-year, every 5, 10 and 20 years). The objective of this exercise was to
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understand the sampling frequency necessary to obtain a realistic estimate of the annual

average increase of Cant column inventory within a defined time period. Using linear

regressions with interaction terms, we found that the choice of different time-intervals

within a specific time period does not affect the results of Cant accumulation, meaning that

a finer temporal resolution of the data is not necessary in order to obtain a realistic average

annual increase of Cant. Nevertheless, when we compared same time intervals but with

different starting years we found that significant differences in annual average increase

are obtained depending on the starting year selected. Due to the non-steady behaviour

of the Labrador Sea in accumulating Cant, these differences in slopes can translate into

contradictory conclusions regarding the role of the Labrador Sea in accumulating Cant

depending on the time period used for the eMLR.

Further, in this Chapter, we addressed the comparison of different methods used to

indirectly estimate Cant (TTD and eMLR) to the overall increase of the observed DIC

(DICobs). All three methods to estimate changes in DIC showed that the increase in Cant

concentrations and the resulting accumulation rate is non-steady over time, and periods

of fast and slow rate of increase alternate in the Central Labrador Sea throughout our

time series. Nevertheless, different time of arise and duration of these periods could be

identified, depending on the method selected.

The comparison between different method also allowed us to understand whether the

observed changes in DIC concentrations are solely driven by the increase of anthropogenic

carbon or they represent a combined signal of anthropogenic and natural carbon in the

region. Whereas the eMLR suggests the increase in DIC is solely associated to the

increase in Cant concentrations, the application of the TTD method leaves some room for

potential natural variability of inorganic carbon in this region. A further analysis of the

Cant distribution in major water masses (assessed from the three methods), suggested that

potential bias in column inventories obtained with the TTD method are to be considered,

possibly due to uncertainty on the saturation histories of Denmark Strait Overflow Water

(DSOW) and North East Atlantic Deep Water (NEADW) which have been ventilated

outside the Labrador Sea and at different times than the LSW. A rough estimate of the

potential bias in column inventory introduced by the different saturation histories of these

water masses suggested that results of the TTD would align with those obtained with

the eMRL method, and would rule out any potential natural variability of DIC in the
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region. Nevertheless it is important to highlight that the time-lagged saturation presented

in Chapter 4 does not represent a perfect resolution of the discrepancies between the TTD

and eMLR methods.

5.2 Significance, Outlook and Future Work

By exploring the temporal variability of Cant in the Central Labrador Sea, this PhD

Thesis highlighted a few key points.

The first key point concerns autonomous platforms to measure carbonate systems param-

eters at depth. As technology develops to obtain in situ measurements of pH and pCO2 in

the deep ocean, more efforts should be focused on accurate determination of the pressure

effects on the equilibrium constants of the carbonate system. A better characterization of

the pressure effects will be fundamental to improve in situ measurements. This will be

particularly important in the Labrador Sea where signals of anthropogenic impacts can be

detected at depth and where we heavily rely on measurements from autonomous platforms

to characterize wintertime conditions.

A second key point is that long-term monitoring programs are crucial in our understand-

ing of the ocean. In fact repeated observations allowed us to test several assumptions which

were either shared by different methods to estimate Cant (e.g., steady state assumption

or constant air-sea CO2 disequilibrium) or specific to one method (e.g., tracers’ constant

saturation assumption). The opportunity to test critical assumptions is not constrained to

the carbon cycle alone and could be extended to other assumptions often implied in bio-

geochemical research (e.g., constant Redfield ratio). Therefore monitoring programs, like

the AZOMP, should be maintained in order to answer critical questions that will enhance

our understanding of the ocean but should also evolve by implementing new technology

(expanding the use of autonomous sensors) as well as including new measurements (e.g.,

new tracers to replace the decreasing CFC-12).

Further with this work we identified decadal trends in the accumulation of anthropogenic

carbon, and provided estimates of Cant that could allow biogeochemical model validation

in this region. Whereas we observe increasing CO2 in the atmosphere still today, other

gases like CFCs have currently decreasing atmospheric concentrations and, recent findings

have demonstrated that the ocean could become a source rather than a sink for these gases

in the future (Wang et al., 2021). As more restrictions on CO2 emissions are established,
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the role of the ocean in storing carbon could similarly change in the future. Therefore time

series, like the one presented here, represent a building block for our understanding of the

ocean’s current state (through model validation) as well as for predicting future scenarios.

This thesis has emphasized that assumptions implied in the Cant estimation methods do

matter (particularly for the TTD method) and, depending on them, different conclusions

can be attained. In particular the constant tracer’s saturation assumption of the TTD

method can lead to significant bias in the Cant estimates if this is not addressed with great

care. This implies that carbon-based method, particularly the eMLR method, may be more

reliable in estimating Cant compared to tracer-based methods.

Finally, this thesis showed that the Labrador Sea has a non-steady behaviour in accumu-

lating Cant. Periods of fast and slow rates of increase alternate in this region and are tightly

connected to changes in LSW formation. Recent model projections suggested potential

changes in the formation of this water mass (Böning et al., 2016), therefore based on our

results we conclude that if these changes were to happen they will strongly impact the

ability of the Labrador Sea to store Cant in the future.
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APPENDIX A

A.1 Internal Consistency: Residuals
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Table A1: Average (µ), standard deviation (σ), minimum (min) and maximum (max)
values of DIC residuals obtained by subtracting calculated values from measured ones for
each pair of input parameters and set of constants. The residuals of DIC in 2014 calculated
using TA as input parameter are those obtained from original TA data. For DIC residuals
in 2014 calculated using corrected TA see Table A5.

∆DIC 2013 R GP H M73 HM L MPM M06

(T
A

,p
H

)

µ 10.2 7.3 3.2 0.7 2.6 0.5 2.1 -1.5

σ 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9

min -10.0 -13.0 -17.1 -19.6 -17.7 -19.8 -18.2 -21.8

max 30.6 27.7 23.6 21.1 23.0 20.8 22.5 18.9

(T
A

,p
C

O
2)

µ 12.0 11.4 8.2 1.1 7.2 0.9 3.0 1.0

σ 4.3 4.3 4.3 4.2 4.3 4.2 4.3 4.2

min 3.4 2.7 -0.5 -7.6 -1.5 -7.9 -5.8 -7.8

max 26.9 26.3 23.0 15.8 22.0 15.5 17.7 15.7

(p
H

,p
C

O
2)

µ 32.2 59.1 67.9 4.6 62.0 3.8 11.9 30.1

σ 29.3 28.9 28.8 29.8 29.0 29.8 29.7 29.4

min -9.5 17.9 27.0 -37.7 20.8 -38.5 -30.3 -11.6

max 125.4 151.1 159.6 99.2 154.2 98.4 106.5 123.7

∆DIC 2014 R GP H M73 HM L MPM M06

(T
A

,p
H

)

µ 3.3 0.4 -3.8 -6.4 -4.4 -6.6 -5.0 -8.5

σ 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.9

min -14.6 -17.5 -21.5 -23.9 -22.1 -24.1 -22.6 -26.0

max 23.6 20.9 17.1 15.0 16.6 14.9 16.1 13.2

(T
A

,p
C

O
2)

µ -2.2 -2.8 -6.1 -13.3 -7.1 -13.5 -11.4 -13.4

σ 6.3 6.3 6.3 6.4 6.4 6.4 6.3 6.4

min -11.3 -11.9 -15.2 -22.3 -16.2 -22.6 -20.5 -22.5

max 17.8 17.4 14.4 7.0 13.7 6.7 9.0 6.9
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(p
H

,p
C

O
2)

µ 1.0 28.5 37.5 -26.0 32.0 -26.9 -18.3 -0.2

σ 33.6 33.1 33.0 33.9 33.1 33.9 33.7 33.5

min -56.6 -28.4 -19.1 -84.3 -24.9 -85.2 -76.5 -57.7

max 105.6 131.5 140.0 78.7 134.3 78.0 85.9 103.4

∆DIC 2015 R GP H M73 HM L MPM M06

(T
A

,p
H

)

µ 12.4 9.4 5.2 2.6 4.6 2.4 4.1 0.4

σ 5.3 5.3 5.3 5.2 5.3 5.2 5.2 5.2

min -3.9 -6.8 -10.7 -13.0 -11.3 -13.3 -11.7 -15.2

max 32.4 29.1 24.2 20.9 23.4 20.7 22.5 18.4

(T
A

,p
C

O
2)

µ 17.2 16.4 12.7 5.4 11.3 5.1 6.8 4.9

σ 5.4 5.4 5.3 5.1 5.2 5.1 5.1 5.1

min 9.4 8.7 5.1 -2.3 3.8 -2.5 -0.8 -2.7

max 34.5 33.7 29.4 21.2 27.9 20.9 22.8 20.7

(p
H

,p
C

O
2)

µ 30.5 56.3 60.8 0.9 51.6 0.5 2.4 22.7

σ 56.4 55.8 55.7 58.0 56.4 57.9 58.1 57.2

min -60.0 -32.8 -27.8 -89.6 -36.9 -90.0 -87.9 -66.7

max 203.5 227.2 231.9 177.7 223.9 177.3 179.2 197.9
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Table A2: Same as Table A1 for TA. The residuals of TA in 2014 are those obtained from
original TA data. For TA residuals in 2014 calculated using corrected TA see Table A5

∆TA 2013 R GP H M73 HM L MPM M06
(D

IC
,p

H
) µ -10.7 -7.6 -3.3 -0.7 -2.7 -0.5 -2.2 1.5

σ 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1

min -32.0 -28.9 -24.6 -21.9 -23.9 -21.7 -23.4 -19.6

max 10.5 13.5 17.8 20.4 18.4 20.6 18.9 22.6

(D
IC

,p
C

O
2) µ -13.6 -12.9 -9.2 -1.3 -8.1 -1.0 -3.3 -1.1

σ 4.9 4.9 4.9 4.8 4.9 4.8 4.8 4.8

min -30.6 -29.8 -26.1 -17.8 -24.9 -17.5 -19.9 -17.6

max -3.8 -3.1 0.5 8.6 1.7 8.8 6.5 8.7

(p
H

,p
C

O
2)

µ 22.9 53.9 67.3 3.9 61.7 3.3 10.0 32.7

σ 30.0 29.6 29.4 30.4 29.6 30.4 30.4 30.0

min -24.9 6.8 20.5 -44.2 14.7 -44.8 -38.1 -14.8

max 111.6 141.3 154.2 93.8 149.1 93.1 99.9 121.3

∆TA 2014 R GP H M73 HM L MPM M06

(D
IC

,p
H

) µ -3.5 -0.4 4.0 6.6 4.6 6.9 5.2 8.9

σ 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3

min -24.4 -21.7 -17.7 -15.5 -17.2 -15.4 -16.6 -13.6

max 15.2 18.2 22.4 24.8 22.9 25.0 23.5 26.9

(D
IC

,p
C

O
2) µ 2.5 3.2 6.9 14.9 8.0 15.2 12.8 15.1

σ 7.1 7.2 7.1 7.2 7.2 7.1 7.1 7.2

min -19.8 -19.3 -15.9 -8.0 -15.2 -7.7 -10.4 -7.9

max 12.8 13.5 17.1 25.1 18.2 25.4 23.0 25.2

(p
H

,p
C

O
2)

µ 3.2 35.0 48.7 -14.8 43.6 -15.5 -8.2 14.3

σ 39.0 38.4 38.2 38.8 38.1 38.9 38.6 38.5
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min -73.4 -40.7 -28.8 -89.7 -31.8 -91.3 -80.9 -62.9

max 125.0 154.9 167.8 106.4 162.4 105.9 112.5 134.3

∆TA 2015 R GP H M73 HM L MPM M06
(D

IC
,p

H
) µ -13.0 -9.9 -5.4 -2.7 -4.8 -2.5 -4.2 -0.5

σ 5.6 5.6 5.5 5.5 5.5 5.5 5.5 5.4

min -34.3 -30.8 -25.6 -22.1 -24.7 -21.8 -23.7 -19.5

max 4.1 7.0 11.1 13.5 11.7 13.8 12.1 15.7

(D
IC

,p
C

O
2) µ -19.7 -18.8 -14.4 -6.1 -12.8 -5.8 -7.8 -5.6

σ 6.3 6.3 6.1 5.8 6.0 5.8 5.9 5.8

min -40.4 -39.4 -34.3 -24.6 -32.5 -24.2 -26.5 -24.0

max -10.6 -9.8 -5.8 2.6 -4.3 2.8 0.9 3.1

(p
H

,p
C

O
2)

µ 11.9 42.2 51.5 -8.8 42.3 -8.9 -8.8 16.4

σ 56.2 55.6 55.7 57.5 56.1 57.5 57.5 57.1

min -82.2 -50.1 -39.9 -101.5 -48.7 -101.8 -101.3 -75.0

max 210.2 238.2 247.5 193.4 239.8 193.3 193.6 216.9
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Table A3: Same as Table A1 for pCO2. The residuals of pCO2 in 2014 calculated using
TA as input parameter are those obtained from original TA data. For pCO2 residuals in
2014 calculated using corrected TA see Table A5.

∆pCO2 2013 R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ -9.7 -9.8 -28.1 -3.1 -13.8 -4.5 -13.2 -10.4

σ 12.1 12.1 12.0 11.4 12.0 11.3 11.6 11.4

min -51.8 -51.8 -70.4 -43.5 -55.7 -44.8 -54.5 -51.1

max 13.0 13.0 -4.5 18.8 9.1 17.4 9.4 11.9

(T
A

,p
H

)

µ 16.6 9.5 -19.0 -0.8 -6.4 -2.8 -7.1 -13.8

σ 5.8 5.9 5.8 5.6 5.9 5.6 5.7 5.7

min -1.1 -8.4 -36.8 -17.9 -24.5 -19.8 -24.7 -31.2

max 25.2 18.3 -9.7 7.7 2.8 5.7 1.7 -5.0

(D
IC

,p
H

) µ 15.0 8.3 -19.6 -0.9 -6.9 -2.9 -7.5 -13.6

σ 6.0 6.0 5.9 5.8 6.1 5.7 5.9 5.8

min -4.3 -11.1 -39.0 -19.6 -26.5 -21.5 -26.6 -32.5

max 23.0 16.5 -10.9 6.9 1.7 4.9 0.7 -5.4

∆pCO2 2014 R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ 26.7 26.7 8.4 31.3 22.0 29.9 22.2 24.6

σ 12.4 12.5 14.8 14.6 14.0 14.8 14.3 14.8

min -15.2 -15.3 -36.3 -14.2 -23.8 -15.4 -23.0 -20.5

max 46.6 46.7 30.0 53.0 43.0 51.7 43.6 46.4

(T
A

,p
H

)

µ 21.0 14.1 -15.0 2.8 -2.1 0.7 -3.4 -9.9

σ 8.1 8.1 7.0 6.8 7.2 6.8 6.9 6.9

min -1.4 -8.7 -37.3 -19.1 -24.7 -21.1 -25.4 -32.2

max 49.3 42.6 -3.6 15.5 15.3 12.6 10.7 2.4

(D
IC

,p
H

) µ 20.7 14.3 -13.4 4.7 -0.5 2.7 -1.6 -7.5
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σ 6.7 6.7 6.3 6.3 6.5 6.3 6.3 6.3

min 0.8 -5.9 -33.5 -15.1 -21.0 -17.0 -21.5 -27.7

max 36.4 30.1 -2.9 15.6 12.8 13.7 8.8 3.2

∆pCO2 2015 R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ -18.0 -18.0 -35.8 -12.3 -22.0 -13.7 -21.7 -19.2

σ 11.6 11.6 11.8 11.1 11.6 11.1 11.4 11.2

min -41.6 -41.6 -57.6 -36.6 -45.2 -37.9 -45.0 -42.8

max 1.0 0.9 -17.6 4.8 -3.9 3.6 -4.3 -1.6

(T
A

,p
H

)

µ 18.4 11.8 -15.1 1.7 -3.2 -0.2 -4.3 -10.4

σ 9.7 9.5 8.8 9.1 9.2 9.0 9.0 8.9

min -14.6 -20.7 -45.4 -29.6 -34.9 -31.3 -35.5 -41.0

max 32.6 25.7 -0.3 16.3 10.8 14.5 9.8 4.2

(D
IC

,p
H

) µ 15.6 9.5 -17.2 0.0 -4.9 -1.9 -6.1 -11.7

σ 9.8 9.6 9.7 9.8 9.5 9.8 9.6 9.7

min -15.2 -20.9 -44.9 -28.7 -34.2 -30.3 -34.8 -39.6

max 29.5 23.1 -1.9 14.8 9.4 12.9 8.3 3.4
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Table A4: Same as Table A1 for pH. The residuals of pH in 2014 calculated using TA
as input parameter are those obtained from original TA data. For pH residuals in 2014
calculated using corrected TA see Table A5.

∆pH 2013 R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ 0.009 0.004 0.020 0.002 0.010 0.002 0.014 0.005

σ 0.016 0.016 0.015 0.016 0.016 0.016 0.016 0.016

min -0.044 -0.048 -0.032 -0.051 -0.042 -0.050 -0.038 -0.047

max 0.064 0.060 0.077 0.058 0.066 0.059 0.071 0.062

(T
A

,p
C

O
2)

µ -0.022 -0.025 -0.001 -0.001 -0.009 0.000 0.007 0.003

σ 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

min -0.038 -0.042 -0.019 -0.018 -0.026 -0.017 -0.010 -0.015

max -0.014 -0.017 0.008 0.008 0.000 0.009 0.016 0.012

(D
IC

,p
C

O
2) µ -0.025 -0.028 -0.003 -0.001 -0.010 0.000 0.006 0.003

σ 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

min -0.044 -0.047 -0.023 -0.021 -0.030 -0.020 -0.014 -0.018

max -0.017 -0.019 0.006 0.008 -0.002 0.009 0.015 0.012

∆pH 2014 R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ -0.009 -0.014 0.003 -0.016 -0.008 -0.016 -0.004 -0.013

σ 0.020 0.021 0.021 0.021 0.021 0.021 0.020 0.021

min -0.056 -0.061 -0.043 -0.063 -0.054 -0.062 -0.050 -0.059

max 0.051 0.047 0.071 0.046 0.055 0.047 0.058 0.051

(T
A

,p
C

O
2)

µ -0.019 -0.022 0.004 0.003 -0.005 0.003 0.010 0.006

σ 0.007 0.007 0.009 0.007 0.007 0.007 0.007 0.007

min -0.042 -0.045 -0.021 -0.020 -0.028 -0.020 -0.013 -0.017

max -0.005 -0.008 0.033 0.017 0.011 0.020 0.025 0.023

(D
IC

,p
C

O
2) µ -0.019 -0.022 0.005 0.005 -0.004 0.006 0.013 0.009
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σ 0.007 0.007 0.009 0.007 0.007 0.007 0.007 0.007

min -0.041 -0.044 -0.019 -0.017 -0.026 -0.016 -0.010 -0.013

max -0.006 -0.009 0.035 0.017 0.008 0.018 0.024 0.022

∆pH 2015 R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ 0.014 0.009 0.026 0.007 0.015 0.007 0.020 0.011

σ 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

min -0.030 -0.034 -0.014 -0.035 -0.027 -0.035 -0.023 -0.031

max 0.067 0.062 0.078 0.060 0.068 0.060 0.073 0.063

(T
A

,p
C

O
2)

µ -0.021 -0.023 0.003 0.002 -0.005 0.002 0.011 0.006

σ 0.010 0.010 0.011 0.011 0.010 0.011 0.010 0.011

min -0.057 -0.061 -0.035 -0.036 -0.042 -0.036 -0.027 -0.032

max -0.004 -0.007 0.020 0.018 0.012 0.019 0.027 0.023

(D
IC

,p
C

O
2) µ -0.025 -0.028 0.000 0.000 -0.008 0.000 0.008 0.004

σ 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012

min -0.062 -0.065 -0.039 -0.038 -0.045 -0.037 -0.029 -0.034

max -0.006 -0.009 0.018 0.018 0.011 0.019 0.027 0.023
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Table A5: Average (µ), standard deviation (σ), minimum (min) and maximum (max)
values for all carbonate parameters calculated using 2014 TA as input corrected for the
12.2 µmol kg-1 offset. The residuals were obtained by subtracting calculated values from
measured ones for each of pair of input parameters and set of constants.

∆DIC R GP H M73 HM L MPM M06

(T
A

,p
H

)

µ 15.0 12.1 7.9 5.3 7.3 5.1 6.7 3.2

σ 7.8 7.9 7.9 7.9 7.9 7.9 7.9 8.0

min -2.9 -5.8 -9.8 -12.2 -10.4 -12.4 -10.9 -14.2

max 35.3 32.7 28.9 26.8 28.4 26.7 27.9 25.0

(T
A

,p
C

O
2)

µ 8.6 8.0 4.7 -2.4 3.7 -2.7 -0.6 -2.6

σ 6.3 6.3 6.3 6.3 6.3 6.3 6.3 6.4

min -0.5 -1.1 -4.4 -11.5 -5.4 -11.8 -9.6 -11.6

max 28.8 28.3 25.3 17.7 24.4 17.4 19.7 17.5

∆TA R GP H M73 HM L MPM M06

(D
IC

,p
H

) µ -15.7 -12.6 -8.2 -5.5 -7.6 -5.3 -7.0 -3.3

σ 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.3

min -36.6 -33.8 -29.9 -27.7 -29.3 -27.5 -28.8 -25.8

max 3.1 6.0 10.2 12.6 10.8 12.8 11.3 14.8

(D
IC

,p
C

O
2) µ -9.7 -9.0 -5.3 2.7 -4.2 3.0 0.6 2.9

σ 7.1 7.2 7.1 7.2 7.2 7.1 7.1 7.2

min -32.0 -31.5 -28.1 -20.2 -27.3 -19.9 -22.5 -20.0

max 0.6 1.3 4.9 12.9 6.1 13.2 10.8 13.1

(p
H

,p
C

O
2)

µ -9.0 22.8 36.6 -27.0 31.4 -27.7 -20.4 2.2

σ 39.0 38.4 38.2 38.8 38.1 38.9 38.6 38.5

min -85.6 -52.9 -41.0 -101.9 -44.0 -103.5 -93.1 -75.1

max 112.8 142.7 155.6 94.3 150.2 93.7 100.3 122.1
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∆pCO2 R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ 0.4 0.4 -18.1 6.1 -3.8 4.6 -3.5 -1.1

σ 14.4 14.4 15.8 15.5 14.8 15.6 15.2 15.7

min -44.1 -44.1 -67.4 -40.2 -47.8 -43.1 -48.0 -49.2

max 22.0 22.1 4.5 28.8 18.2 27.4 18.9 21.8

(T
A

,p
H

)

µ 22.8 15.9 -13.0 4.7 -0.2 2.6 -1.4 -8.0

σ 8.1 8.1 6.9 6.8 7.2 6.8 6.9 6.9

min 0.4 -6.8 -35.2 -17.1 -22.7 -19.1 -23.3 -30.2

max 51.1 44.4 -1.6 17.4 17.3 14.5 12.6 4.4

∆pH R GP H M73 HM L MPM M06

(T
A

,D
IC

) µ 0.022 0.017 0.033 0.015 0.023 0.015 0.027 0.018

σ 0.022 0.022 0.022 0.022 0.022 0.022 0.022 0.022

min -0.026 -0.031 -0.014 -0.033 -0.024 -0.032 -0.020 -0.029

max 0.089 0.085 0.105 0.083 0.092 0.084 0.095 0.086

(T
A

,p
C

O
2)

µ -0.017 -0.020 0.006 0.005 -0.003 0.006 0.013 0.009

σ 0.007 0.007 0.009 0.007 0.007 0.007 0.007 0.007

min -0.040 -0.043 -0.019 -0.018 -0.026 -0.017 -0.011 -0.014

max -0.002 -0.005 0.035 0.020 0.014 0.022 0.028 0.026
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Table A6: Statistics of residuals in Aragonite Saturation State (ΩAr), obtained by cal-
culating differences between values from specific pairs of carbonate parameters. Val-
ues of mean (µ), standard deviation (σ), minimum (min) and maximum (max) val-
ues are reported. The labels represent ∆ΩAr1 = ΩAr(TA,DIC)-ΩAr(DIC,pH); ∆ΩAr2

= ΩAr(TA,DIC)-ΩAr(DIC,pCO2); ∆ΩAr3 = ΩAr(DIC,pCO2)-ΩAr(DIC,pH); ∆ΩAr4 =
ΩAr(pH,pCO2)-ΩAr(DIC,pH); ∆ΩAr5 = ΩAr(pH,pCO2)-ΩAr(DIC,pCO2).

ΩAr Residuals µ σ min max
∆ΩAr1 -0.006 0.044 -0.126 0.122
∆ΩAr2 -0.011 0.036 -0.147 0.044
∆ΩAr3 0.004 0.018 -0.015 0.070
∆ΩAr4 -0.004 0.019 -0.069 0.016
∆ΩAr5 -0.007 0.037 -0.138 0.032
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Figure A.1: Evaluation of the TA crossover offset for the 2014 cruise (Olsen et al., 2016).
The plot shows crossovers between TA from the 2014 cruise and all other cruises in the
Labrador Sea available in the GLODAPv2 data product. An offset of 12.2 µmol kg-1 was
identified.
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Figure A.2: ∆DIC from (TA,pH), (TA,pCO2) and (pH,pCO2) from eight different sets of
constants as a function of Temperature (left panels) and Salinity (right panels).
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A.2 Estimating Combined Uncertainty on Computed
Carbonate System parameters by Monte Carlo
simulation1

A.2.1 Introduction

This appendix outlines the method employed in the paper to estimate combined un-

certainty on computed carbonate system parameters using Monte Carlo simulation. The

method involves randomly sampling from the uncertainty distributions of various input

parameters and internal variables of CO2SYS as a means of capturing the uncertainty

associated with each. The combined uncertainties so derived incorporate each of these

individual uncertainty contributions.

Two types of methodological design flaws have been made in the past when estimating

combined uncertainties by Monte Carlo simulation. One has been to neglect uncertainties

in the equilibrium constants of the carbonate system (K0, K1, K2 etc.). The other has been

to use insufficient random samples in the simulations. This latter type of flaw is illustrated

in Figure A.3 where we can see that using too small a sample size (e.g., 1000) results in

different uncertainty estimates each time the Monte Carlo simulation is run. In these cases,

the uncertainty estimates do not converge. On the other hand, using very large sample

sizes comes at computational cost. This study adopts a random sample size of 100,000 as

a reasonable compromise.

A.2.2 Method

Here, uncertainties on the measured input parameters (TA, DIC, pCO2, pH, T, S, PT, SiT)

and in the formulations of the key equilibrium constants (K0, K1, K2, KB , KW , KAr) are

both accounted for, including uncertainty in the pressure corrections applied toK1,K2,KB

and KAr (K1fac , K2fac , KBfac
and KAr(p=0)

, respectively). Uncertainty in the computation

of Ca2+ from salinity is also incorporated. Figure A.4 shows the uncertainties that are

accounted for and how these propagate through CO2SYS via relations between the various

parameters/variables. Note that for internal variables computed from measured temperature

and/or salinity, both analytical uncertainty in the T,S measurements and uncertainty in

the formulations themselves are accounted for. For combinations of input parameters

involving pCO2 or pH (for which measurements had to first be converted to 25◦C and
1Matthews, J. B. R. and Raimondi, L.
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Figure A.3: Repeat estimates of combined uncertainty for computed DIC (from TA, pH)
when using different random sample sizes. One thousand estimates are plotted at each
sample size, each corresponding to a single run of the Monte Carlo simulation using
different random samples each time. The following input values were used together with
M73 for K1, K2: TA = 2303.6 µmol kg-1, pH at 25◦C = 7.713 (total scale), T = 1.636◦C,
S = 34.8964 psu, P = 3601.1 db, PT = 0.959 µmol kg-1, SiT = 9.9 µmol kg-1

then to in situ temperature as described in section 2.2.1), Monte Carlo simulation was

undertaken at each conversion step. Uncertainties were thus propagated from one step to

the next step, capturing uncertainty across all conversion computations. Note, however,

that since pseudo-potential pCO2 was computed, uncertainty in the pressure dependencies

of K0 and the fugacity factor was not accounted for.

The various uncertainty estimates used to conduct the Monte Carlo simulations are

provided in Table A7. The uncertainty distributions of each input parameter and internal

variable were taken to be normal, with mean equal to the measured value for input

parameters or computed value for internal variables, and with the standard deviation
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equal to the analytical precision (from Table 2.2) or reported precision (from Table A7),

respectively. For K1 and K2, different values were used to represent the uncertainty

depending on the formulation employed. The Monte Carlo uncertainties presented in the

paper are the standard deviations of the combined uncertainty distributions ultimately

output from CO2SYS.
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Input 2Input 1 SilicatePhosphate

Output 2Output 1

K0 K1

K1 fac KW facK2 facK2 (p=0) KB fac

K2 KW KB KArCa

Pressure

ΩAr

K1 (p=0) KAr (p=0) KAr facKB (p=0)KW (p=0)

Figure A.4: Schematic illustrating the various contributions to combined uncertainty for computed carbonate system parameters (green
boxes), as estimated by Monte Carlo simulation using COSYS. Uncertainties were assigned to each input parameter (yellow boxes) and
internal variable (light and dark blue boxes), except for measured pressure, which was assumed to have negligible uncertainty. The
dashed lines lead to temperature and pressure -dependent parameters (dark blue boxes). The unspecified input and output parameter
couples can be any complete combination of DIC, TA, pCO2 and TA. Note that KAr is only used for the computation of ΩAr.
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Table A7: Uncertainty estimates used in the Monte Carlo analysis. Numbers in bold are
those stated in the source publications.

Parameter Formulation Abbreviation Uncertainty Reference for Un-

certainty

±1σ ±2σ

K0 Weiss (1974) 0.25% 0.5% Dickson and Riley

(1978), p.2

pK1 Roy et al. (1993) R 0.004 0.008 Matlab

CO2SYSv1.1

(Van Heuven

et al., 2011)

Goyet and Poisson

(1989)

GP 0.0055 0.011 Goyet and Pois-

son (1989),

p.1652

Hansson (1973) as

refit by Dickson and

Millero (1987)

H 0.0065 0.013 Dickson and

Millero (1987), p.

1739

Mehrbach et al.

(1973) as refit by

Dickson and Millero

(1987)

M73 0.0055 0.011 Dickson and

Millero (1987), p.

1739

Hansson (1973)

and Mehrbach et al.

(1973) as refit by

Dickson and Millero

(1987)

HM 0.0085 0.017 Dickson and

Millero (1987), p.

1740

Continued on next page
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Table A7 – Continued from previous page

Parameter Formulation Abbreviation Uncertainty Reference for Un-

certainty

±1σ ±2σ

Lueker et al. (2000) L 0.0055 0.011 Lueker et al.

(2000), p. 110

Mojica Prieto and

Millero (2002)

MPM 0.0056 0.0112 Mojica Prieto and

Millero (2002), p.

2536

Millero et al. (2006) M06 0.0054 0.0108 Millero et al.

(2006), p.81

K1fac Millero (1979) 1% 2% Culberson and

Pytkowicz (1968),

p. 410

pK2 Roy et al. (1993) R 0.003 0.006 Matlab

CO2SYSv1.1

(Van Heuven

et al., 2011)

Goyet and Poisson

(1989)

GP 0.01 0.02 Goyet and Pois-

son (1989),

p.1652

Hansson (1973) as

refit by Dickson and

Millero (1987)

H 0.0085 0.017 Dickson and

Millero (1987), p.

1739

Mehrbach et al.

(1973) as refit by

Dickson and Millero

(1987)

M73 0.01 0.02 Dickson and

Millero (1987), p.

1739

Continued on next page
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Table A7 – Continued from previous page

Parameter Formulation Abbreviation Uncertainty Reference for Un-

certainty

±1σ ±2σ

Hansson (1973)

and Mehrbach et al.

(1973) as refit by

Dickson and Millero

(1987)

HM 0.013 0.026 Dickson and

Millero (1987), p.

1740

Lueker et al. (2000) L 0.01 0.02 Lueker et al.

(2000), p. 110

Mojica Prieto and

Millero (2002)

MPM 0.01 0.02 Mojica Prieto and

Millero (2002), p.

2536

Millero et al. (2006) M06 0.011 0.022 Millero et al.

(2006), p.81

K2fac Millero (1979) 1% 2% Culberson and

Pytkowicz (1968),

p. 410

lnKB Dickson (1990) 0.0042 0.0084 Matlab CO2SYS

v1.1 (Van Heuven

et al., 2011)

KBfac
Millero (1979) 1% 2% Culberson and

Pytkowicz (1968),

p. 410

lnKW Millero (1995) 0.01 0.02 Dickson (1990), p.

763

Continued on next page
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Table A7 – Continued from previous page

Parameter Formulation Abbreviation Uncertainty Reference for Un-

certainty

±1σ ±2σ

KAr(p=0)
Mucci (1983) 2.5% 5% Mucci (1983), p.

797

KAr(p) Millero (1979) 1.2%/km 2.4% / km Millero (1979),

p.1660

Ca2+ Riley and Tongudai

(1967)

0.05% 0.1% Jiang et al.

(2015), p.3
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APPENDIX B

B.1 ∆/Γ Selection

In Figure B.1 we show the approach to select the proper ∆/Γ using mean ages from

CFC-12 and SF6 (as described in section 3.4.3 of the main text). In Table B1 we provide

average differences between each ∆/Γ and reference ratio (∆/Γ = 1.8) when applying our

refined TTD method.

B.2 Mixed Layer Depth and Water Masses Definitions

B.2.1 Mixed Layer Depth

The MLD values used in this study were obtained from an empirical model based on a

correlation between convection depths and winter-time weight-averaged cumulative heat

losses. In order to account for the effect of ocean preconditioning, the annual heat loss was

quantified as a weighted average value obtained from the 5 preceding years. A decreasing

weight was attributed from the 1st to the 5th year prior the year of observation (Yashayaev

and Loder, 2017).

In the figure B.2 we show results of MLD from four simulations where the weight

attributed to the preceding years was varied. For our CFC-12 saturation calculations, we

used the MLD-4 which was the modelled MLD that best matched the observed MLD.

B.2.2 Water Masses Definitions

The principal water masses of the central Labrador Sea were here defined both based on

σ2 (LSW and NEADW) and on depth ranges (Surface Water and DSOW). These definitions

were introduced in previous studies in the region (e.g., Yashayaev, 2007; Yashayaev and

Loder, 2016). In Table B2 we report the limits of each water mass. Because the Labrador
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Figure B.1: Representation of quantitative selection of the ∆/Γ ratio that better represents
physical conditions of the studied area. To objectively select the ∆/Γ, the ratio of mean
ages from CFC-12 to mean ages from SF6 is plotted against mean ages from SF6, the data
points were the SF6 concentration is <6 ppt were included to obtain a fit of which the
slope should be close to 0, the intercept close to 1 and the distance of each data point to
the fit should be close to 0.
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Figure B.2: Modelled mixed layer depth from an empirical model. The colours represent
the different realizations obtained from the empirical model.
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Figure B.3: Average Cant concentrations in LSW and DIW as defined in this paper and in
uLSW and dLSW as defined in the paper by Rhein et al. (2017).

Sea Water definition changes over time we also report the σ2 limit identified for each year

for this water mass in table B3.

For comparison purposes we also calculated average Cant concentrations and inventories

for the upper LSW (uLSW) and deep LSW (dLSW) as defined by Stramma et al. (2004)

and used in Rhein et al. (2017). These results are reported in Figure B.3 and B.4. Although

there are some differences between the two water mass definitions, both display a change

in the relative contribution of the two layers ventilated in the Labrador Sea to the Cant
column inventory at the time when the storage rate was at its lowest (see top and middle

panel of Figure B.4).
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Figure B.4: Cant inventories in mol m−2 in LSW and DIW defined in this paper (top panel)
and in uLSW and dLSW as defined by Stramma et al. (2004) (middle panel). The bottom
panel shows the inventory of the sum of the two layers with both definitions (LSW+DIW)
and (uLSW+dLSW). Solid lines represent 5 years running means.
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B.3 Cant Results Using SF6 as Tracer to Constrain Mean
Ages

B.3.1 Cant Estimates Based on Two SF6 Saturation Reconstructions

As previously mentioned in the main text in section 3.5, we estimated anthropogenic

carbon using both CFC-12 and SF6. We included different scenarios to calculate Cant:

constant 100% saturation for both tracers, time varying saturation based on MLR using

tracers’ saturation observations. For SF6 we also modelled the time varying saturation

applying the regression coefficients obtained from the MLR with CFC-12 data to the

atmospheric history of SF6. We here report results of Cant calculated from these different

scenarios.

Compared to assuming a constant 100% saturation, the Cant concentrations obtained

using variable saturation of SF6 modelled with the CFC-12 regression coefficients were

on average ∼ 3 ± 1 µmol kg−1 higher. This difference was found to be even higher when

the SF6 variable saturation was obtained using regression coefficients based on the SF6

observations (5 ± 1 µmol kg−1 higher).

Inventories calculated with 100% saturation of SF6, were between 10.5 and 15.9 mol

m−2 lower when compared to results with SF6 saturation percentage constrained using the

CFC-12 regression coefficients. This difference was between 17.2 and 20.1 mol m−2 when

the constant saturation was compared to results with SF6 saturations constrained through

the SF6 regression coefficients instead.

We obtained a rate of increase (Cant storage rate) of 5.8 and 5.2 mol m−2 y−1 for

values calculated using a variable saturation modelled from CFC-12 and SF6 regression

coefficients, respectively. While with the constant 100% saturation assumption the rate of

increase was 4.4 mol m−2 y−1. The storage rates reported for SF6 only cover the period

between 2012-2016 therefore in Table B4 we also report results of storage rate obtained

with CFC-12. The table B4 and Figure B.5 show how the use of a refined TTD leads to

better agreement of Cant column inventories obtained with CFC-12 and SF6.
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Figure B.5: Column inventories of Cant in central Labrador Sea obtained from mean ages
calculated using a constant 100% saturation assumption (teal markers) of CFC-12 (dots)
and SF6 (triangles) and the column inventory obtained from our refined TTD methods (red
markers). For the SF6 we also included results obtained with the CFC-12-based regression
coefficients applied to the atmospheric history of SF6 (clear triangles). All calculations of
mean ages where performed with ∆/Γ = 1.8 for all these Cant estimates.

B.3.2 Cant Results from Different ∆/Γ

In Figure B.6 we report Cant column inventories for central Labrador Sea from 2012

to 2016 as an average for all the ∆/Γ ratios listed in section 3.4.3 of the main text (dots)

together with their standard deviations (shaded area). We found that using SF6, the average

increase in column inventory was between 163.2 and 185.1 mol m−2 over the period 2012

and 2016 using saturations based on the CFC-12 regression coefficients, and between

169.3 and 189.0 mol m−2 when saturation was based on SF6.

Comparing the Cant concentrations based on time variable saturations of SF6 obtained

with the two methods described earlier, we found that the percent difference between Cant

concentrations calculated with a ∆/Γ = 1.8 and all other ratios ranged from a minimum
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of -7.9 to a maximum of -0.9% when CFC-12-based regression coefficients were applied

to model the SF6 saturation (see Table B5). This range was found to be between -11 and

-3.3% when the SF6-based regression coefficients were used to model the SF6 saturation

instead (see Table B6). The different concentrations obtained from the ∆/Γ ratios presented

here translated into a maximum difference ∼ 2.5% in column inventory.

Caption Movie S1 (uploaded as separate document): Time evolution of Cant obtained

from the refined TTD method. The animation shows the Cant section plots along the AR7W

line between 1986 and 2016.

Caption Movie S2 (uploaded as separate document): Time evolution of Cant spatial

anomaly. The animation shows the Cant spatial anomaly section plots along the AR7W

line between 1986 and 2016. The anomaly was calculated as difference between Cant
concentrations at every location minus the average Cant concentration of two end-members:

the LSW and the NEADW (∆Cant(i,t) = Cant(i,t) − Cant(LSW−NEADW,t), where i is the

location and t is year and Cant(LSW−NEADW,t) is the annual average Cant concentrations

obtained from LSW and NEADW).
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Figure B.6: Average column inventories of Cant in central Labrador Sea from 2012 and 2016
using SF6 data. The data shown were calculated using different ∆/Γ and time variable
saturation. For SF6 we present results using both a time variable saturation modelled
with CFC-12-based regression coefficients (purple dots) and with SF6-based regression
coefficients (blue dots). The shaded areas represent the standard deviation obtained from
all ∆/Γ. For reference we also report results obtained with constant saturation (black dots).
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Table B1: Average percent difference in Cant concentrations between each ∆/Γ ratio and a
∆/Γ = 1.8 (chosen as our reference based on our ratio selection procedure) obtained with
CFC-12. Note that these numbers reflect conditions in Labrador Sea therefore these would
be different for regions that are characterized by different ventilation pattern.

Difference with respect to ∆/Γ = 1.8

∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ

Year 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0

1986 -3.6 -3.0 -2.3 -1.8 -1.2 -0.7 -0.3 0.3

1992 -3.0 -2.8 -2.3 -1.8 -1.3 -0.8 -0.4 0.3

1993 -2.2 -2.0 -1.7 -1.3 -1.0 -0.6 -0.3 0.3

1994 -2.4 -2.1 -1.7 -1.3 -0.9 -0.6 -0.3 0.3

1995 -2.5 -2.2 -1.8 -1.4 -1.0 -0.6 -0.3 0.3

1996 -3.5 -3.0 -2.4 -1.8 -1.3 -0.8 -0.4 0.4

1997 -3.0 -2.6 -2.1 -1.6 -1.1 -0.7 -0.4 0.3

1998 -3.6 -3.0 -2.3 -1.8 -1.2 -0.8 -0.4 0.3

1999 -2.8 -2.3 -1.8 -1.3 -0.9 -0.6 -0.3 0.2

2000 -4.5 -3.6 -2.8 -2.0 -1.4 -0.9 -0.4 0.3

2001 -3.8 -3.0 -2.4 -1.8 -1.2 -0.8 -0.4 0.2

2002

2003 -4.0 -3.2 -2.5 -1.9 -1.3 -0.8 -0.4 0.3

2004 -3.0 -2.4 -1.9 -1.4 -1.0 -0.6 -0.3 0.2

2005

2006 -2.6 -2.2 -1.7 -1.3 -0.9 -0.5 -0.3 0.1

2007 -4.2 -3.5 -2.7 -2.0 -1.3 -0.8 -0.4 0.3

2008

2009

2010 -3.0 -2.5 -2.0 -1.4 -1.0 -0.6 -0.3 0.2

2011

2012 -1.0 -1.0 -0.8 -0.6 -0.4 -0.2 -0.1 0.1

2013 -1.8 -1.7 -1.4 -1.0 -0.7 -0.4 -0.2 0.1

2014 -1.2 -1.2 -1.0 -0.7 -0.5 -0.3 -0.1 0.1

2015 -1.5 -1.3 -1.1 -0.8 -0.5 -0.3 -0.1 0.1
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2016 -0.7 -0.7 -0.5 -0.4 -0.3 -0.1 -0.1 0.0
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Table B2: Water Masses Definitions based on σ2 and depth. LSW stands for Labrador Sea
Water, DIW stand for Deep-Intermidiate Water, NEADW for North East Atlantic Deep
Water and DSOW for Denmark Strait Overflow Water. The LSWσ2 is the σ2 that defines
the extent of LSW. These are reported in Table B3.

Water Mass Depth/σ2 Range

SURFACE 0-200m

LSW >200m - LSWσ2

DIW LSWσ2>σ2<36.96

NEADW 36.96>σ2 <37.1

DSOW bottom 200m
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Table B3: Inter-annual variability of the LSW σ2 limit.

Year LSWσ2

1986 36.910

1992 36.943

1993 36.952

1994 36.953

1995 36.942

1996 36.931

1997 36.913

1998 36.893

1999 36.870

2000 36.875

2001 36.887

2002 36.885

2003 36.887

2004 36.881

2005 36.868

2006 36.864

2007 36.842

2008 36.874

2009 36.860

2010 36.817

2011 36.823

2012 36.852

2013 36.850

2014 36.860

2015 36.879

2016 36.896
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Table B4: Column inventories (ICant ; in mol m−2) and storage rates (SR; in mol m−2 y−1)
of Cant from different scenarios of tracer’s saturation: constant 100% saturation of CFC-12
(CFC-12(CS) (100%)), time varying saturation of CFC-12 (CFC-12(V S)), constant 100%
saturation of SF6 (SF6(CS) (100%)), time-varying saturation of SF6 modelled with CFC-
12-based regression coefficients (SF6(V S) (CFC-12 Reg)) and with SF6-based regression
coefficients (SF6(V S) (SF6 Reg)).

CFC-12(CS) CFC-12(V S) SF6(CS) SF6(V S) SF6(V S)

(100%) (100%) (CFC-12 Reg) (SF6 Reg)

ICant

(1986-2016) 72.3 - 148.6 112.0-181.4 - - -

ICant

(2012-2016) 136.5-148.6 158.9-181.4 147.7-165.7 158.2-181.6 164.9-185.8

SR

(1986-2016) 2.1 1.8 - - -

SR

(2012-2016) 2.6 5.3 4.4 5.8 5.2
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Table B5: Average percent difference in Cant concentrations between each ∆/Γ ratio and a
∆/Γ = 1.8 (chosen as our reference based on our ratio selection procedure) using SF6 time
varying saturation obtained from CFC12-based regression coefficients.

Difference with respect to ∆/Γ = 1.8

∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ

Year 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0

2012 -6.6 -5.5 -4.2 -3.1 -2.1 -1.2 -0.6 0.5

2013 -7.9 -6.5 -5.0 -3.6 -2.4 -1.4 -0.6 0.4

2014 -7.1 -5.7 -4.3 -3.1 -2.1 -1.2 -0.5 0.4

2015 -6.1 -4.9 -3.7 -2.6 -1.7 -1.0 -0.4 0.3

2016 -5.3 -4.2 -3.2 -2.3 -1.5 -0.9 -0.4 0.3

Table B6: Average percent difference in Cant concentrations between each ∆/Γ ratio and a
∆/Γ = 1.8 (chosen as our reference based on our ratio selection procedure) using SF6 time
varying saturation obtained from SF6-based regression coefficients.

Difference with respect to ∆/Γ = 1.8

∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ ∆/Γ

Year 0.4 0.6 0.8 1.0 1.2 1.4 1.6 2.0

2012 -9.6 -8.6 -7.5 -6.5 -5.6 -4.9 -4.3 -3.4

2013 -11.0 -9.8 -8.5 -7.3 -6.2 -5.3 -4.6 -3.5

2014 -9.6 -8.5 -7.3 -6.2 -5.3 -4.5 -3.8 -2.9

2015 -8.5 -7.6 -6.5 -5.6 -4.8 -4.1 -3.6 -2.8

2016 -7.2 -6.4 -5.5 -4.6 -3.9 -3.3 -2.8 -2.1
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APPENDIX C

Table C1: Comparisons of slopes between reference and comparison factors for 5-year
time-interval. Slopes that are significantly different than the reference factor (or reference
time interval) are reported in red.

Starting Ending Reference Slope

Year Year Time Interval (mol m−2 y−1)

1993 1998 2011-2016 0.46

1994 1999 (max slope) 1.29

1995 2000 2.52

1996 2001 2.71

1997 2002 1.60

1998 2003 2.33

1999 2004 2.16

2000 2005 2.24

2001 2006 3.54

2002 2007 3.58

2003 2008 3.57

2004 2009 2.58

2005 2010 1.63

2006 2011 0.48

2007 2012 1.10

2008 2013 1.57

2009 2014 2.85

Continued on next page
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Table C1 – Continued from previous page

Starting Ending Reference Slope

Year Year Time Interval (mol m−2 y−1)

2010 2015 2.35

1993 1998 1994-1999 0.46

1995 2000 (median slope) 2.52

1996 2001 2.71

1997 2002 1.60

1998 2003 2.33

1999 2004 2.16

2000 2005 2.24

2001 2006 3.54

2002 2007 3.58

2003 2008 3.57

2004 2009 2.58

2005 2010 1.63

2006 2011 0.48

2007 2012 1.10

2008 2013 1.57

2009 2014 2.85

2010 2015 2.35

2011 2016 3.73

1994 1999 1993-1998 1.2

1995 2000 (min slope) 2.52

1996 2001 2.71

1997 2002 1.60

1998 2003 2.33

1999 2004 2.16

2000 2005 2.24

2001 2006 3.54

2002 2007 3.58

Continued on next page
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Table C1 – Continued from previous page

Starting Ending Reference Slope

Year Year Time Interval (mol m−2 y−1)

2003 2008 3.57

2004 2009 2.58

2005 2010 1.63

2006 2011 0.48

2007 2012 1.10

2008 2013 1.57

2009 2014 2.85

2010 2015 2.35

2011 2016 3.73

Table C2: Comparisons of slopes between reference and comparison factors for 10-year
time-interval.

Starting Ending Reference Slope

Year Year Time Interval (mol m−2 y−1)

1993 2003 1996-2006 1.47

1994 2004 (max slope) 1.55

1995 2005 2.42

1997 2007 2.48

1998 2008 2.87

1999 2009 2.44

2000 2010 2.13

2001 2011 1.98

2002 2012 2.60

2003 2013 2.42

2004 2014 2.73

2005 2015 2.01

2006 2016 2.19

Continued on next page

168



Table C2 – Continued from previous page

Starting Ending Reference Slope

Year Year Time Interval (mol m−2 y−1)

1993 2003 1995-2005 1.47

1994 2004 (median slope) 1.55

1996 2006 3.07

1997 2007 2.48

1998 2008 2.87

1999 2009 2.44

2000 2010 2.13

2001 2011 1.98

2002 2012 2.60

2003 2013 2.42

2004 2014 2.73

2005 2015 2.01

2006 2016 2.19

1994 2004 1993-2003 1.55

1995 2005 (min slope) 2.42

1996 2006 3.07

1997 2007 2.48

1998 2008 2.87

1999 2009 2.44

2000 2010 2.13

2001 2011 1.98

2002 2012 2.60

2003 2013 2.42

2004 2014 2.73

2005 2015 2.01

2006 2016 2.19
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Figure C.1: Year-to-year change in column inventories of ∆DICobs (grey dots),
∆DICeMLR (red dots) and ∆DICTTD (blue dots).

Table C3: Comparisons of slopes between reference and comparison factors for 20-year
time-interval.

Starting Ending Reference Slope

Year Year Time Interval (mol m−2 y−1)

1993 2013 1996-2016 1.85

1994 2014 (max slope) 1.85

1995 2015 2.04

1994 2014 1993-2013 1.85

1995 2015 (min slope) 2.04

1996 2016 2.55
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Figure C.2: Absolute values of Cant average concentrations obtained with the TTD method
in four major water masses of the Labrador Sea. Panel a shows values obtained using a
time-varying saturation for all four water masses. Panel b shows average concentrations
obtained using time-varying saturation for LSW and DIW and 100% constant saturation
for DSOW and NEADW.
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Körtzinger, A., U. Send, D. W. R. Wallace, J. Karstensen, and M. DeGrandpre, Seasonal
cycle of O2 and pCO2 in the central Labrador Sea: Atmospheric, biological, and physical
implications, Global Biogeochemical Cycles, 22, 2008.

178



Lauvset, S. K., and T. Tanhua, A toolbox for secondary quality control on ocean chemistry
and hydrographic data, Limnology and Oceanography: Methods, 13, 601–608, 2015.
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