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Abstract 

Introduction: Large amounts of data are available for analyses from survey datasets. 

However, missing data can potentially reduce statistical power and/or introduce bias 

into analyses when not addressed correctly. Data imputation methods can replace 

missing data with estimated values that are informed from existing data. Machine 

learning algorithms can improve the efficiency and accuracy of data imputation by 

automatically generating models that can fit to complex associations that may exist 
between variables in a dataset. 

Methods: This thesis uses a cross-sectional simulation study of the Canadian 

Community Health Survey 2014 public use microdata file to induce missingness into 

annual total household income, an ordinal variable with 5 classes. The simulation 

study includes 5 imputation models from machine learning algorithms and 2 non-

machine learning imputation models (ordinal logistic regression and predictive mean 

matching) for each simulated dataset for a total of 84 imputed datasets. The 

evaluation uses an ordinal-sensitive distance measure and class transition tables to 
compare imputation model performance. 

Results: The imputation models from machine learning algorithms performed better 

than the non-machine learning imputation models with regards to the ordinal-

sensitive distance measure (0.5-0.6 for machine learning vs 0.65-0.75 for non-

machine learning, lower values indicate better performance). The class transition 

tables indicate that, while scoring above 80% accuracy in one class, machine learning 

models tend to overrepresent income classes that are easier to classify and produce 

imputed values that do not reflect the original class structure of the income variable. 

The machine learning models had very low accuracy (less than 5% in all algorithms 

except one) for the income class that was the most underrepresented in the imputed 

data. The non-machine learning models produced imputed values that reflected the 

original income class structure well but had poor accuracy (15-55% depending on the 

class) and also showed less ordinality than the imputed values from the machine 

learning models. 

Conclusion: Machine learning algorithms provide improvements in imputation 

accuracy for specific groups of observations and exhibit stronger ordinality in 

imputed data. However, the overrepresentation of specific classes in the imputed 

datasets may reduce the generalizability of machine learning imputation models. 

While situationally suitable for variables with specific classes that hold high value, or 

for variables where the ordinal structure is important, future research on addressing 

the bias in machine learning algorithms has the potential to further improve the 
performance and generalizability of machine learning methods for data imputation. 
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Ordinal Variable Imputation for Health Survey Data: A Comparison 
between Machine Learning and non-Machine Learning Methods 

 

1 Introduction 

The advent of large-scale surveys such as the Canadian Community Health Survey 

(CCHS) provides researchers with vast amounts of data to work with. These surveys 

are imperative for the understanding of health and how health is impacted by factors 

such as socioeconomic status, comorbidities, biological features, and environmental 

elements. In practice, however, advancements in data collection are not necessarily 

matched by advancements in data analysis. Increasing the efficiency of data analysis 

is an important next step to take.  

The inherent appeal of large surveys is the vast number of variables collected on 

each participant. However, survey items usually vary in completeness of response, 

leading to datasets with variables that have missing observations. For example, 

sensitive data such as total household income or personal mental/depression status 

may have a lower response rate than questions about blood pressure. The optimal 

use of data requires researchers to deal with incomplete data and the failure to 

address this incompleteness may introduce bias into the analyses. Missing data not 

only reduce the sample size for studies, which in turn affects statistical power, but 

may in fact introduce bias into analyses by concealing certain populations that, if 

included, could change population means, variance, or observable trends in data. 

Imputation is a popular method for dealing with incomplete data in which analysts 

replace missing observations with probable values, usually made with inferences 

from the available data. The process of imputation can utilize varying amounts of data 

depending on the imputation model.  Single values or simple models (e.g. linear 

regression) are not the most effective or efficient in the use of available data, 

especially with survey datasets that have hundreds of variables (e.g. the CCHS 2014 

dataset has 1129 variables in its public use micro-data file). While correctional 

strategies such as multiple imputation may improve certain aspects of the imputed 

data, the imputation model is the main determinant of the accuracy of the imputed 
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values (i.e. whether the estimated values in the imputed dataset truly reflect the 

observations that went missing). 

Analyses that use imputed data assume the imputed data to be accurate, or 

accurate enough to provide a basis for reasonable conclusions. Imputation methods 

that are too simple may create imputed datasets that are lacking important 

associations between imputed and non-imputed data. Complex imputation models 

aim to incorporate multiple variables and interactions to have a higher chance of 

preserving features that exist in the original, unimputed dataset. However, 

Conventional model building techniques such as covariate selection via expert-

opinion or stepwise regression may struggle to deal with large amounts of data in an 

efficient manner. A potential solution to this problem is to use machine learning 

algorithms to assist in model building. 

Various types of machine learning algorithms exist, such as neural networks and 

decision trees, and they are powerful tools for data mining. Machine learning 

algorithms improve the models they produce through iterative processes of testing 

and/or learning. The resulting models have the potential to be complex because any 

information deemed useful by the algorithm is incorporated until specific parameters, 

pre-set by model builder, are met. The iterative processes are far more efficient than 

trial and error or visualizations of potential associations between a large number of 

variables. Also, the ability to check for all possible interactions between variables 

while only retaining those that are useful greatly increases the flexibility of the 

resulting imputation model. With the speed and volume of survey data collection 

increasing, and thus creating datasets with potentially more complex features, survey 

data imputation models can benefit greatly from the processing power of machine 

learning algorithms. 

This thesis evaluates the performance of imputation models based on machine 

learning algorithms and compares them to traditional imputation models via a 

simulation study of the CCHS 2014 dataset. The variable of interest is total household 

income, an ordinal variable in the CCHS 2014 dataset.  
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2 Background Literature 

2.1 Non-response 

In the real world it is unlikely for surveys to have a response rate of 100% and 

further unlikely to have all respondents fully complete every single item in a survey. 

The term non-response describes cases in which all or some information is missing 

from a respondent. Two subcategories of non-response are unit non-response and 

item non-response (Raghunathan 2010). This study is mainly concerned with the 

latter.  

Unit non-response is a case in which there is no information across all variables 

for an individual; common examples include refusals of the survey, failure to contact, 

and loss to follow-up. There is virtually nothing a researcher can do with these cases 

because any inference or imputation on a population with no information to base an 

inference on will lack confidence and validity. Thus the topic of unit non-response is 

out of the scope of this study. 

Item non-response is a case in which information is missing for some variables. 

Unlike unit non-response the cause of item non-response, if not due to data entry 

errors or mistakes during data collection, is potentially open for educated inferences 

based on observed values and exemplary complete cases in the survey. Survey data 

includes responses to a wide variety of questions, some dealing with more sensitive 

topics than others. The reluctance of a respondent to provide a response to sensitive 

questions, such as household income, is likely to be influenced by the response itself. 

Item non-response thus introduces a threat to the integrity of survey data because 

the mechanism of missingness serves to suppress specific answers more often than 

other, more common answers. It is therefore important to try to understand the 

mechanism of missingness for a variable that exhibits item non-response in order to 

identify potential biases in the pattern of responses. 

Table 1 is an example of how missing data may skew the predictions of a 

regression model when a variable has missing values. The example utilizes two 

datasets based on the 2014 wave of the CCHS to build an ordinal regression model for 
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“total household income” using only “highest completed education” as the 

explanatory variable. For this simulated example, one dataset (shown in Table 1b) 

has manually induced missing “total household income” values in a biased fashion; of 

the 5 categories for “total household income” those in the lowest and highest category 

are more likely to be missing than those in the three middle categories. The results in 

Table 1b show that the predictions from the regression model are biased towards the 

middle categories (as seen in Table 1c, which shows the change between Table 1a and 

Table 1b) due to their overrepresentation in the dataset with induced missingness 

(i.e. bias towards the mean). To minimize the effect of biases introduced by missing 

data it is first important to consider the nature of the missingness, or, in other words, 

why certain data are missing from the dataset in large. 

 

Table 1a. An example table for predictive probabilities of a univariate ordinal 

regression model that uses Highest Completed Level of Education to predict Total 

Household Income for the 2014 Canadian Community Health Survey 

n = 63522 Total Household Income 

Education <20k 20k-39k 40k-59k 60k-79k >80k 

Less than SS 0.370 0.381 0.129 0.0543 0.0654 

PS Graduate 0.140 0.315 0.215 0.128 0.202 

Some PS 0.124 0.298 0.218 0.136 0.225 

Secondary School 0.0485 0.159 0.182 0.164 0.446 

Note. Higher cell values indicate a higher chance of a model predicting an 
observation to fall into the associated income group based on the observation’s 
education group. (SS = secondary school, PS = postsecondary school). 

 

Table 1b. An example table for predictive probabilities of a univariate ordinal 

regression model that uses Highest Completed Level of Education to predict Total 

Household Income for the 2014 CCHS dataset with manually induced missing data 

n = 61362 Total Household Income 

Education <20k 20k-39k 40k-59k 60k-79k >80k 

Less than SS 0.341 0.398 0.139 0.0571 0.0651 

PS Graduate 0.125 0.314 0.227 0.134 0.201 

Some PS 0.111 0.295 0.229 0.142 0.223 

Secondary School 0.0439 0.157 0.189 0.171 0.439 
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Note. Higher cell values indicate a higher chance of a model predicting an 
observation to fall into the associated income group based on the observation’s 
education group. This dataset includes a bias in missingness towards income groups 
1 and 5, and thus the proportional distribution is skewed towards the middle groups 
compared to the data in Table 1a that has no missing data. (SS = secondary school, PS 
= postsecondary school, CCHS = Canadian Community Health Survey). 

 
Table 1c.  Change (in %) from predictive probabilities of Table 1a (whole 

population) to predictive probabilities of Table 1b (population with induced 

missingness) 

 Total Household Income 

Education <20k 20k-39k 40k-59k 60k-79k >80k 

Less than SS - 7.9 + 4.3 + 8.0 + 5.2 - 0.5 

PS Graduate - 10.3 - 0.5 + 5.3 + 4.8 - 0.7 

Some PS - 10.5 - 0.9 + 5.0 + 4.7 - 0.7 
Secondary School - 9.5 - 1.6 + 4.0 + 4.5 - 1.7 

Note. Bolded values indicate increases in predictive probabilities from Table 1a 
(original dataset) to Table 1b (dataset with missing data). The concentration of 
positive values in income groups 40k-59k and 60k-79k shows that the univariate 
regression model based on the dataset with induced, biased, missing data is more 
likely, for any level of highest completed education, to predict total household income 
values to be in this range compared to the original dataset. The specific changes in 
predictive probabilities provide an example for how missing data can affect a 
regression model (SS = secondary school, PS = postsecondary school). 

 

 

2.2 Non-response models 

The most common and general terms to describe missingness are non-response 

models (van Buuren 2012). A model that describes the missingness as missing 

completely at random (MCAR) assumes errors, mistakes, and other external 

conditions cause missingness/non-response and thus the missing values are 

unassociated with the nature of the variable in question. Data that is MCAR may occur 

from survey respondents overlooking some questions or a data collector forgetting 

to record an answer. The main distinction between non-response models is whether 

there is complete randomness or specific randomness. In terms of information bias, 

MCAR data are non-differential measurement errors. On the other hand, data that is 

missing for a specific reason theoretically occurs by a certain factor influencing a 
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survey respondent to refuse to provide the answer to a question. The concept of social 

desirability bias is a common example; a respondent may become reluctant to 

provide information that may produce an unfavorable judgment upon them (e.g. 

income that is very low or very high).  A further distinction between non-response 

models depends on the associations between missing and observed values. Missing 

at random (MAR) assumes that the missingness of a variable is associated with the 

distribution(s) of other variables. Missing not at random (MNAR) assumes that the 

missingness of a variable is associated with the value of the variable itself. Differential 

measurement error occurs in MNAR data as the rates of missingness differ between 

respondents of different classes/categories. 

The amount of data MCAR in real world data is usually negligible as long as the 

quality of data or sample size is high enough. In some cases, different definitions of 

MCAR exist, as in for longitudinal data (Verbeke & Molenberghs 2000), for which it 

becomes identical to MAR. Most missing data tend to be either MAR or MNAR, but one 

cannot distinguish these two missing data types based on observable data alone 

(Sterne et al. 2009). This is problematic because while MAR assumptions allow other 

variables in the dataset to provide a basis for imputing the missing values, MNAR 

assumptions isolate the missing values from the rest of the observed values in the 

dataset. Nonetheless, the difficulty of dealing with missing survey data lies in 

determining the extent to which the missingness is MAR (i.e. explainable via 

associations with other variables) and MNAR (i.e. the product of a systematic bias that 

is inherent and unique to the variable in question). 

2.3 Imputation 

There are different methods a researcher can use to deal with missing data. The 

simplest method is to discard all observations with missing values and conduct 

analyses on only the complete cases. Complete case analysis has its flaws because it 

assumes that values are MCAR, which is rarely the case for real data and, as a result, 

tends to introduce systematic bias into the results (van Buuren 2012). Complete case 

analysis also reduces sample size (sometimes drastically), which may not be an 

allowable option regarding statistical power for some datasets. An alternative to 
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consider is imputation, the procedure of replacing missing values with one or more 

plausible values (i.e. imputed values). Imputation creates complete datasets that 

provide point estimators that are, for the most part, better representations of the 

population average than point estimators based on data with missing observations. 

Also, data providers can share imputed datasets to avoid inconsistency born from 

different missing data processing methods across data users. National Statistical 

Offices such as Statistics Canada most commonly use single imputation methods, in 

which a single dataset with imputed values to replace the missing values is created, 

when publishing data (Chen & Haziza 2018a). Point estimator calculations are 

simplified in imputed datasets by assuming that values are MAR, thus removing the 

need to account for the non-response bias. If this assumption is held, an imputed 

dataset, built on inferences from observable data, serves as a better representative of 

the true values than an unimputed dataset. There are several procedures to obtain 

imputed values, some being more robust than others, and ultimately the quality of 

imputed datasets (and the subsequent analyses made on the imputed data) rely on 

the integrity of these procedures. Imputation procedures are commonly generalized 

into two categories: deterministic imputation and random imputation. 

Deterministic imputation procedures produce the same imputed dataset if 

repeated on the same population. Parametric methods of deterministic imputation 

apply specific models, such as linear regression, to generate imputed values but can 

also be as simple as replacing all missing values for a variable with its mean or median 

value. These methods are likely to distort the distribution of a variable that has 

missing values unless other variables and complete cases hold enough information to 

provide a robust estimation model (Chen & Haziza 2018a). Models that do not restrict 

the types of associations and interactions that may exist between variables are better 

at preserving the original distribution of a variable. Non-parametric imputation 

methods are more flexible because these do not specify model function and rather are 

‘greedy’ in their use of available information. Predictive mean matching (Little 1988), 

nearest-neighbour imputation, and kernel smoothing (Silverman 1986) are examples 

of non-parametric methods. These are able to account for multiple types of 

interactions and associations between variables but are prone to overfit or to become 
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overcomplex when too many variables are added (the curse of dimensionality). 

Models that are overfitted become sensitive to noise and outliers in the data. This 

sensitivity can cause problems in the consistency of results if one wishes to 

implement random imputation procedures as well as deterministic procedures. 

Random imputation procedures produce different imputed datasets each time. 

The most common source of variance in imputed values is the random drawing of 

donor values in procedures such as random hot-deck imputation. The variance in 

these imputation procedures, imputation variance, is purely artificial and is not a 

favourable replacement or simulation of the discrepancy between observed and 

unobserved values (i.e. non-response error) (Chen & Haziza 2018a). More advanced 

methods such as fractional imputation and balanced imputation, both originally 

proposed by Kalton & Kish (1984), work to reduce the imputation variance by 

assigning weights or constraints to imputed values and/or donor values. The 

reduction of imputation variance with the use of methods more sophisticated than 

completely random draws provides a better simulation of the unobservable non-

response model. Methods that apply weights to random drawing are potentially more 

robust for simulating distributions that are difficult to express as functions, as 

required by most deterministic methods. 

Many imputation procedures, however, often assume a total MAR situation for the 

sake of simplicity in statistical methods. This, as stated in the non-response 

mechanism section, is not necessarily the case for real data and violations in the MAR 

assumption give rise to false accuracy and inaccurate estimates.  For example, Kim et 

al. (2012) concludes that there are demographic differences between two separate 

non-response categories for survey questions regarding income (“Don’t Know” and 

“Refused [to answer]”) from the General Social Survey (conducted by the National 

Opinion Research Center at the University of Chicago). The findings from the 2012 

report and another article from 2007 (Kim et al.), this one using data from the 

Maternal and Infant Health Assessment in California, suggest that; those missing 

income data are not a random sample of a survey population but instead are a specific 

demographic that is, consequentially, underrepresented compared to the rest of the 

survey population. Underestimation of variance in the imputed dataset leads to 
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confidence intervals that are naively narrow for the resulting parameter estimates, 

which themselves may be skewed by models assuming a distribution different from 

the variable’s actual distribution of its values. Advanced imputation procedures take 

this into account and aim to simulate the unknown/unobservable missingness 

mechanism (the MNAR nature of values) by techniques such as variance estimation 

procedures and multiple imputation. 

Variance estimation for single imputation procedures have two main leagues of 

thought. The two-phase framework works with individual variance terms, originally 

proposed by Sarndal (1992) through the decomposition of the total error in estimator 

calculations, which include the sampling variance, the non-response variance, and a 

mixed value that represents the covariance between the sampling and non-response 

error. The reverse framework, proposed by Fay (1991), addresses response 

probabilities, decomposed into its own variance term, by assuming its contribution 

to total variance negligible if the imputation model is correctly specified. Compared 

to variance estimation procedures, however, multiple imputation is more common in 

both literature and practice. 

2.4 Multiple Imputation 

The now widely used procedure of multiple imputation was originally proposed 

by Rubin (1978, 1987). While single imputation procedures produce a single imputed 

dataset, multiple imputation procedures impute each missing value more than once 

and thus create multiple imputed datasets. The calculation of population estimates 

has two distinct steps: 1) the individual analysis of all imputed datasets to produce 

point estimates and 2) the pooling of point estimates to produce a multiply imputed 

population estimate. The two-step approach incorporates variances arising from 

imputation models (within-model variance) and from dataset population selection 

procedures (between-model variance). Nonetheless, multiple imputation requires 

specific conditions for its inferences to remain valid. 

Murray (2018) provides a review of the conditions and justifications that are 

sometimes taken for granted by analysts, especially when they are hidden behind the 

commands and codes of statistical software. Bayesian validity and congeniality: 
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Rubin derived the functions of multiple imputation using Bayesian arguments e.g. 

P(X|Yobs) denotes the probability of a missing value being X given the observed value 

of Y. This method assumes that one can estimate or predict the distribution of a value 

by drawing inferences from a previously established (i.e. prior) distribution. Bayesian 

arguments are not ideal for validating the results of multiple imputation in survey 

data because inferences regarding unobserved populations that are based on 

observed populations (i.e. posterior predictive distributions) are likely to be 

underinformed or misinformed for multi-step/multi-user analyses. For example, a 

prior distribution of a variable that an imputation step specified by the distributor of 

the survey data (in this case the distributed dataset is an imputed dataset) may not 

be the same as the prior distribution an end-user of the data may specify for their 

variance calculations. The mismatch between imputation model (made by the data 

distributor) and analysis model (made by the data end-user) is further explored in 

the concept of congeniality, introduced by Meng (1994). A recent update by Xie and 

Meng (2017) provides evidence that, even under conditions of uncongeniality (i.e. the 

mismatch of prior distributions in multi-step/multi-user analyses), inferences can 

still hold as long as “the imputer’s model is more saturated than the analysts’ [model]” 

(Murray 2018). In other words, the flexibility of an imputed dataset is limited by the 

robustness of its imputation model. Frequentist validity: The efficacy of multiple 

imputation lies in its Frequentist properties; the more imputed datasets there are, the 

more likely the final imputed value will properly reflect the population estimate. The 

process of repeated sampling increases the robustness of a sample by normalizing the 

sampling distribution (central limit theorem) and maximizing coverage from the 

observed values. Of course, the observed values in the dataset must have sufficient 

coverage on their own for repeated samplings to provide any benefit. 

Rubin’s rules for proper imputation: Rubin (1987) defines certain rules 

required for proper multiple imputation. Firstly, the predictive distribution of a 

parameter estimate and its sampling variance should remain unbiased after repeated 

sampling (up to ∞ imputed datasets, i.e. M = ∞). These conditions are usually met as 

long as the proportion of missing data is not large enough to suggest an under-

representation of a specific group within the observed values. Additional adjustments 
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to address concerns of bias, regardless of the use of multiple imputation, include the 

specification of the missingness mechanism within the imputation procedures. A 

separate condition regards the uncertainty of the imputation procedures themselves. 

Random imputation procedures can produce a value for between-model variance that 

can itself be a significant source of bias that strays results from the actual variance of 

the variable these methods aim to approximate. Murray’s review communicates the 

message that future research on imputation will benefit from improved models that 

“reflect uncertainty about missing values and about the imputation model” (2018). 

2.5 Bias variance trade-off 

Multiple imputation procedures usually use a single imputation model and run 

them multiple times. Valid inferences from imputation models (especially those that 

intend to hold across various samples and datasets) require an imputation model to 

accurately specify the distribution of the missing variable, or its relationship with 

complete variables, to reduce non-response bias (Chen & Haziza 2018b). However, 

imputation models also include their own sources of variance and hence an optimal 

model aims to minimize its prediction error, often measured with the mean squared 

error for continuous outcomes. The mean squared error (e) of a parameter estimate 

(�̂�) for a true value (y) can be decomposed into three components: Irreducible error 

(ε), which is the inherent variability in the data, bias (b), and variance (v). 

�̂� = 𝑦 + 𝑒 

𝑒 = 𝜀 +  𝑏 +  𝑣 

Bias is a measure of the difference between the true conditional value of an object 

and the average prediction of the learned classifier across different training sets. 

Variance is a measure of the consistency of predicted values across different training 

sets, regardless of the true conditional probability. (Cambridge Online 2009) Of the 

three components researchers aim to limit the bias and variance of a model since the 

irreducible error is, as its name suggests, out of the scope of model improvement. Bias 

and variance, however, are not easy to reconcile because improving one component 

usually leads to the exacerbation of the other; the term for this condition is the bias 

variance trade-off.  
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The bias variance trade-off is exemplified in the comparison between linear 

models and non-linear models. Linear models are more likely to have high bias 

because the errors are consistent in respect to the predicted model (a straight line). 

Regarding variance, the results of a linear model are likely to have little variance 

across different samples because noise and outliers have less influence on the 

prediction model. On the other hand, non-linear methods are usually lower in bias 

and greater in variance. A decrease in bias can result from three conditions 

(Cambridge Online 2009): 1) the model being consistently correct, 2) probabilities 

for error being relatively equal across all predictions, or 3) multiple predictions for 

the same missing value resulting in errors in opposite directions, causing the 

magnitude of error to average out to 0. The sources of low bias (especially 2 and 3) 

indicate that, in general, an increase in variability is synonymous with a decrease in 

bias. Therefore the sensitivity to unique trends of non-linear models both benefit and 

harm complex models with its flexibility and tendency to overfit (Cambridge Online 

2009). The concept of a trade-off between bias and variance provides an important 

basis for evaluating the efficacy of a model, and hence is convenient to keep in mind 

when searching for effective imputation models. 

2.6 Moving beyond single model imputation 

The most common imputation procedures, whether multiple or single, rely on a 

single imputation model. For example, statistical programs such as STATA (“mi”) and 

R (“mice”) use a single outcome regression model as the default setting for their 

multiple imputation procedures (StataCorp 2017, van Buuren & Groothuis-

Oudshoorn 2011). However, single model imputation procedures are vulnerable to 

model misspecification because bias within the dataset can influence the imputed 

values if the model does not correctly emulate the missingness mechanism. Long, Hsu, 

& Li (2012) were one of the forerunners to deal with model misspecification by 

performing doubly robust non-parametric imputation. Their imputation procedures 

utilize both an outcome regression model and a propensity score model to increase 

the chances of correctly specifying the missingness model. However, others (Kang & 

Schafer 2007, Chen & Haziza 2018a) have criticized the use of double models as they 
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are likely to decrease model efficiency while they still remain liable to 

misspecification. Thus, the logical next-step was to increase the number of regression 

and propensity score models. Chen and Haziza (2018b) propose the use of multiply 

robust imputation as the basis for multiple imputation (multiply robust multiple 

imputation) because as long as any single model correctly specifies the missingness 

model, multiply robust imputation satisfies Rubin’s rules for proper imputation.  

Missingness mechanisms in survey data are likely to have complex associations 

with the remaining data observed in the dataset that may be difficult to capture using 

regression models or other commonly used imputation models. Complex models 

assisted by data processing and machine learning are likely to be more suitable to 

specify missingness models, thus ensuring the robustness of estimates and 

applicability for multiple imputation. The following sections briefly review the use of 

machine learning in health literature and examples of machine learning algorithms 

for imputing survey data. 

2.7 Machine learning in health literature 

Technological advancements have enabled the collection and communication of 

large datasets. Data analysis methods should also move beyond traditional modeling 

practices to match the increasing speed and volume of data collection. Machine 

learning algorithms are powerful data mining tools that incorporate the supervised 

learning of data. Unlike conventional data analyses methods that are unsupervised, 

supervised learning uses labeled data to actively inform and improve the models they 

produce. The effectiveness of machine learning algorithms increases with the 

availability of labeled data that act as exemplary cases from which the model building 

process can draw inferences. A review of health analytics by Islam et al. (2018) shows 

that data mining strategies on health data is useful for the creation of guidelines for 

clinical and administrative decision support. Furthermore, Morgenstern et al. (2020) 

suggest in their review that a greater focus should be placed on the utilisation of large 

datasets for machine learning in population health research. The report by Rey de 

Castillo (2014) was one of the first to compare various machine learning algorithms 

on their accuracy for imputing survey data. 
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Rey de Castillo (2014) compared conventional imputation models (least median 

squared errors, regression imputation, and predictive mean matching) with machine 

learning models, characterized by their supervised learning mechanisms that inform 

the prediction model. The author used one decision tree algorithm (M5P) and two 

neural networks (multilayer perceptron regressor and radial basis function) to 

impute artificially missing wage values from anonymous microdata files of the 

European Union Statistics on Income and Living Conditions. The comparison of 

conventional imputation and machine learning showed that predictive mean 

matching performed the best in terms of producing parameter estimates closest to 

the original values while the machine learning algorithms produced better one-to-

one likeness of data. One issue the author made evident about data mining methods 

was that the resultant variances were underestimated with a bias towards the mean. 

Nonetheless this study proved valuable in the sense that it showed the direction along 

the bias variance trade-off in which future studies should pursue; to test more 

complex models that lower bias and increase variance. Additionally, the 

incorporation of multiple models over single model imputation should also improve 

the results obtained by machine learning algorithms as they do for conventional 

models. 

Large-scale survey data such as the CCHS dataset with tens of thousands of 

observations contain great potential for supervised learning approaches to utilize. As 

well as benefitting from large amounts of labeled data, data mining methods can 

incorporate the nature of the collected data to customise the model building approach. 

Survey data includes information of several different types and categories and often 

have questions that are linked via follow-up questions that only apply to a selected 

portion of the survey population, thus resulting in large proportions of null 

observations. The heterogeneity of information in survey data provides the 

opportunity for meta-analytical procedures such as meta-path construction. Shang et 

al. (2016) and their proposed framework ESim provides an example for how 

heterogeneous information networks are parsed out to identify semantics within the 

dataset that can serve as foundations for clustering and classifying similar variables. 
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Lastly, ensemble methods (i.e. the use of multiple models and predictions to generate 

a consensus) are common in data mining practices as well.  

Complex machine learning algorithms are susceptible to overfitting in the 

presence of outliers. Ensemble methods work to reduce the effects of overfitting in a 

similar approach to how multiple imputation works to improve single imputation; an 

algorithm learns and creates a model for each dataset subsample, commonly 

produced by bootstrapping the original dataset. Voting, regression, or other data type 

specific integration methods then calculate the mean model that, if successful, is more 

stable than each individual model. Also similar to multiple imputation, though, most 

ensemble methods depend on only a single algorithm and thus may not be able to use 

large amounts of data to its fullest potential. 

2.8 Survey data imputation 

It is important for data analysts to first consider the non-response model before 

imputing survey data. MCAR data in surveys are non-differential measurement errors, 

for which simple imputation methods will usually suffice as long as the amount of 

missing data is small (e.g. less than 10%). On the other hand, tables 1a-c and Kim et 

al. (2007, 2012) provide examples of how data with differential measurement error 

(MNAR mechanism) influence certain types of analyses. While the simplicity of 

complete case analyses (i.e. removing observations with missing values from a 

dataset) is tempting, there will always remain the risk of obscuring results and any 

further conclusions or hypotheses one may draw from those results. This section 

provides examples of how imputation has the potential to improve survey data 

analysis. 

Imputation aims to reduce the risk of drawing inappropriate conclusions from 

survey data with missing data by providing a reliable estimation of what the missing 

values could be. A series of simulation studies with the 2002-2003 Los Angeles 

County Health Survey data (Zeng 2009) showed that multiple imputation can provide 

reliable statistical inference for datasets with up to 15% of data missing, performing 

better with demographic variables (e.g. age, education, race) rather than health 

outcome variables (e.g. arthritis, hypertension, diabetes). Dipnall et al. (2016) shows 
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evidence for the use of multiple imputation in imputing non-MCAR data for a machine 

learning prediction algorithm in the National Health and Nutrition Examination 

Survey 2009-2010 dataset. De Silva et al. (2019) and Lee et al. (2020) utilize multiple 

imputation to reduce bias in imputed datasets that address missing values in 

longitudinal data. 

Surveys with large amounts of variables can reach a point where unique variables 

may capture similar information about the population. Variables that capture similar 

information decrease in value for imputation models because the scope of inference 

the model gains from including them may not outweigh the model variance the 

additional variables can introduce. The presence of confounding variables further 

adds to the mixture of potential model candidates but are less of a problem for 

imputation because the ultimate goal of imputation does not require the identity of 

the true causal pathway between dependent and independent variables. Since the 

selection process for explanatory variables is duplicated between the data provider 

and the data user, Murray (2018) advises that the imputation model should always 

be more complex (i.e. contain more variables) than the analysis model to ensure 

congeniality between the two models. This provides another avenue by which 

machine learning can benefit imputation, as machine learning algorithms are likely to 

create complex models to incorporate any useful information a dataset can provide. 

Congeniality is an essential ingredient for increasing the research value of 

imputed survey data. The incorporation of multiple variables increases the capability 

of imputation models to emulate the structural features of data. Krenzke & Judkins 

(2008) tested hot-deck imputation (using age, race, and sex) against semi-parametric 

imputation (stepwise regression followed by a clustering algorithm) on the National 

Education Longitudinal Survey (NELS) to find that the more complex model resulted 

in a closer one-to-one likeness to the original data. The authors concluded that the 

complex semi-parametric approach was able to better preserve structural features 

that are lost in simple models and therefore retain more explanatory power in the 

variables they impute. The difficulty, however, arises when the time comes for the 

imputation model to decide when to stop adding complexity, especially when 

provided with a vast number of variables from large survey data. 
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To summarise, survey datasets provide large amounts of data for analyses, but 

analyses must include robust methods to address missing data to avoid any loss of 

statistical power and to mitigate any bias caused by incomplete coverage of the 

sample population. While many data imputation methods exist to replace missing 

data, machine learning algorithms can improve the efficiency and accuracy of data 

imputation by automatically generating models that can fit to complex associations 

that may exist between the large amount of variables in a survey dataset. 

  



18 
 

3 Objectives 

This thesis evaluates imputation model performance on an ordinal variable from 

a large-scale survey dataset. The primary hypothesis question is: are machine 

learning algorithms better than traditional algorithms for the imputation of missing 

values in an ordinal variable (income)? Secondary research questions are: do 

different patterns of missingness have an impact on the performance of the 

imputation models and, if so, how does the relative performance of the machine 

learning algorithms compare with the traditional algorithms in each pattern of 

missingness? 

This thesis provides a comparison between 7 imputation models to determine 

whether imputation models produced by machine learning algorithms perform 

better (i.e. provide more accurate imputations) than imputation models produced by 

non-machine learning algorithms, particularly in complex patterns of missingness. 

The thesis concludes with a suggestion, based on the results of a simulation study, for 

which imputation models are more suitable for imputing large-scale survey data. 
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4 Methods 

 This thesis project is a cross-sectional simulation study of data from the 2014 

wave of the CCHS that evaluates the performances of several imputation algorithms. 

The simulation study consists of multiple steps including data preprocessing to 

provide a foundation for the machine learning algorithms. This thesis includes a 

variable selection step for practical reasons (to ensure the machine learning 

algorithms can converge in a timely manner), nonetheless the selection is guided by 

survey imputation literature (especially those pertaining to income imputation) and 

other simulation studies. 

4.1 Dataset 

CCHS 2014 

The Canadian Community Health Survey (CCHS) 2014 provides national-scale 

data from its target population of all 110 health regions of Canada, 107 from the 

Provinces and 1 from each Territory (Statistics Canada, 2016). The annual sample 

population consists of approximately 65,000 respondents selected via a multi-stage 

sample allocation strategy (moving from Province/Territory to health region, each 

sample proportional to their respective populations). A total of 63522 observations 

are available to the public via public use micro-data files (PUMFs). Data distributors, 

in this case Statistics Canada, release PUMFs that are modified from the original data 

to ensure no identifiable information about individuals or organizations are included. 

This type of microdata is accessible by faculty and students of post-secondary 

institutions via the Data Liberation Initiative (Statistics Canada 2020) and does not 

require approval from a research ethics board. 

Household Income 

Household income is a common variable collected in surveys but is nonetheless a 

sensitive topic that usually has a relatively large proportion of missing values. For this 

reason household income is a common target for imputation. The baseline 

assumption for imputation is that other variables in the dataset provide enough 

information for a reasonable imputation. However, single model imputation 
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procedures with variance correction techniques (such as variance estimation and 

multiple imputation) are not ideal approaches for imputing household income. The 

sensitive nature of the variable suggests that the missingness mechanism is likely to 

include MNAR characteristics. Variables with partial MNAR characteristics are 

difficult to model because the observed data may not capture the distribution of the 

variable well enough to provide a basis for valid inferences. Single model imputations 

do not perform well when the model cannot sufficiently emulate the missingness 

mechanism. The establishment of a powerful prediction or classification algorithm 

has the potential to increase the validity of analyses that use imputed values to 

accommodate survey variables that are prone to missing data/non-response. 

The CCHS 2014 PUMF provides total household income as an imputed variable 

based on nearest neighbour donor imputation (Yeung & Thomas 2012) and thus has 

very few missing values. A simulation study requires an environment in which the 

analyst can easily control the environment (in this case the dataset) and thus the total 

household income variable from the CCHS 2014 PUMF is an appropriate candidate 

for the simulation study. The imputation models should nonetheless work for any 

dataset because the algorithms that create the models are not survey specific but 

rather incorporate aspects of all types of data into their models (i.e. the models 

created by the algorithms are specific to a dataset, but the algorithms themselves are 

not). In theory, an algorithm that creates a successful imputation model for total 

household income in one survey should be able to create an imputation model for 

total household income in any survey, providing the survey dataset has sufficient 

information to create an imputation model. 

4.2 Process 

Data preprocessing 

The CCHS provides a comprehensive data dictionary and the data have a small 

proportion of missing values overall. One point of interest may be the differentiation 

between values that are not available (i.e. missing) and those that are not applicable 

(i.e. null observations due to questions that follow-up on specific answers). The 

majority of items in the CCHS annual component, in fact, are follow-up questions. One 
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can identify follow-up questions using the data dictionary but are also 

characteristically unique from stand alone questions due to their high proportions of 

not applicable/invalid responses. The simulation study will not include follow-up 

questions as they are not independent variables. Also, questions with high 

proportions of invalid responses will, in general, not be as informative than those 

with little or no invalid responses. The variable selection process intends to reduce 

the number of variables to conserve time on model building while preserving the 

advantages of machine learning (i.e. the capability to process large amounts of data). 

For practical reasons the study uses 30 independent variables, which is a reduction 

from the total of 1129 variables available in the CCHS 2014 PUMF. The variables are 

focused around demographics, geography, socio-demographics, health care usage 

and access, general health, mental health, and education. While mainly based on 

imputation methods of other national surveys (see section on Inducing Missingness 

below), the selection also includes items in the CCHS that studies have identified to 

have associations with income (e.g. oral health (Farmer et al. 2017), and access to 

health care services (Lasser et al. 2006).  

The data preprocessing step also includes the transformation of data structures to 

methods specific to the study. For example, this simulation study transforms the CCHS 

dataset using dummy variables to replace categorical data with binary variables that 

represent each response category because the process of inducing missing data, and 

some machine learning algorithms, requires a completely numerical dataset. 

Simulation Study 

This thesis follows the design of a simulation study performed by Scheffer (2002) 

in which 3 types of missing data (MCAR, MAR, and MNAR) are present for imputation. 

The R function “ampute” in the “mice” package (van Buuren & Groothuis-Oudshoorn 

2011) can induce all 3 types of missing data, as well as mixtures of different types of 

missing data with specific proportions (Schouten et al. 2017). The simulation study 

utilizes data from the CCHS and induce missingness in the “total household income” 

variable in order to evaluate the performance of imputation methods. The 

completeness of the CCHS data allows for a simulation study to induce missingness in 

the variable with almost complete control over the missingness mechanism. The ideal 
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imputation algorithm performs well (i.e. shows little bias and preserves the original 

variance structure of the variable) in all types of missingness. Therefore the ability to 

measure the performances of imputation algorithms in various missingness 

mechanisms assists in the selection of the best, or most robust, algorithm. 

The process of generating missing data can range in complexity. In simple cases 

where the mechanism of missingness is not of particular interest, one may simply set 

the desired proportion of missingness then use a random number generator to 

choose which observations become missing (this would be an example of MCAR). 

However, for this simulation study we are concerned about the effects of missing data 

type on imputation models and therefore must be able to simulate different 

missingness mechanisms. The results from Scheffer (2002) indicate that the trends in 

estimation error are mostly linear and are observable even at small proportions. The 

variety in simulated datasets provides different situations for which an imputation 

model may perform well or poorly. For example, based on the findings of Scheffer 

(2002) and Krenzke & Judkins (2008,) we expect multiple imputation via ordinal 

regression to perform poorly with datasets that have complex missingness 

mechanisms (i.e. increased likeliness of imputation model misspecification) and/or 

large proportions of missing data. 

Inducing missingness 

The R package “mice” contains a function “ampute” that is able to generate MAR, 

MCAR, and MNAR patterns. The “ampute” function is able to manipulate the 

proportion of missingness, the missingness mechanism, and the proportion of a 

missingness mechanism in a dataset with multiple missing data types (“ampute” is 

capable of adjusting more than this, such as simulating survey design, but that is 

beyond the scope of this thesis) (Schouten et al 2017). Once a user identifies the 

variable (denoted as Am for this explanation) in which the function induces 

missingness the user can then distribute the weight each variable in the dataset will 

have on the calculations of missingness probabilities for observations of Am. If the 

user gives weight to variables other than Am (e.g. B, C, D ...), the missingness 

mechanism will be MAR because a prediction model can draw inferences on the 

missing values by looking at associations between Am and the other variables. If the 
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user gives weight to Am itself the missingness mechanism will be MNAR because the 

values that inform the pattern of missingness are themselves, missing from the data, 

and cannot inform prediction models. Furthermore the user can introduce a mix of 

both MAR and MNAR mechanisms by distributing partial weight to Am and the rest to 

B, C, D, and so on. An MCAR mechanism will induce missingness in Am by random and 

will therefore not utilize any weights assigned to variables in the dataset. 

The simulation study produces 4 sets of missing data, each at 3 proportions of 

missingness: 5%, 15%, and 35%, for a total of 12 simulated datasets: one dataset with 

a MNAR missingness mechanism (control) and 3 datasets with varying complexities 

of MAR missingness mechanisms. In the case of this dataset, the ampute function 

bases the weighting scheme for selecting values to become missing solely on the total 

household income variable. To emulate patterns suggested in literature (explained 

below), this simulation study utilizes a two-tailed distribution pattern as the principle 

missingness model. Thus, the missingness for the MNAR dataset is more likely to 

occur in both higher and lower ends of observations in the total household income 

variable. In comparison, the MAR datasets will have the ampute function base their 

weighting schemes on the selected independent variables rather than the total 

household income variable. One similarity between the MAR and MNAR datasets are 

that they all share the general two-tailed distribution model for missing values. In 

theory, the general missingness model (two-tailed) is stronger in the MNAR dataset 

where it and the total household income variable are the only sources of variability 

in missingness. Therefore, the MAR datasets will not show as strong as a two-tailed 

missingness pattern in the total household income variable. Appendix item 1 (R code) 

includes the full details for the ampute functions for the missing data induction steps. 

The MAR datasets, shown in Table 2, will be the main points of comparison between 

the imputation models and will consist of a simple mechanism (5 independent 

variables and no interaction terms), a moderately complex mechanism (8 variables + 

1 interaction term), and a highly complex mechanism (15 variables + 3 interaction 

terms). The higher complexity models will provide situations in which machine 

learning methods are likely to perform better than classical methods due to the 
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presence of interaction terms, which are difficult for models to effectively incorporate 

unless an efficient variable selection mechanism is utilized.  

Regarding the proportions of missingness, simulations studies for imputation 

often utilize high proportions of missingness (≃30% - Berg et al. 2016; 1 - 50% 

Scheffer 2002; 50% - Quartagno et al. 2019; 28 - 33% Ogundimu & Collins 2019) to 

emphasize the effects of the imputation models. This thesis uses the proportions 5%, 

15%, and 35% to better reflect actual missingness proportions of income variables in 

survey data, which typically ranges from 5% to 35% (≃6% National Health and 

Nutrition Examination Survey 2015-2016; ≃30% Jamaica National Healthy Lifestyle 

Survey 2000-2001; ≃35% CCHS 2014). 

Studies of large-scale surveys around the world (Germany - Frick & Grabka 2014) 

(UK - Fisher et al. 2019) (Jamaica - Wilks et al. 2007) (US - Ogundmu & Collins 2019) 

have identified several factors that are associated with non-response for questions 

regarding individual and household income. The most common factors identified are: 

age, sex/gender, education level, race/ethnicity, employment status, and regionality 

(health care region/geographic). Other interesting factors of note are apparent U-

shaped patterns of income non-response (higher rates of non-response at both the 

low and high ends) across income itself (GSOEP - Frick & Grabka 2014) and across 

age (JNHLS - Wilks et al. 2007). While classical imputation models rarely incorporate 

interaction terms along with independent, unique variables some studies speculate 

their impact, especially in studies that identify non-linear distributions of non-

response. The findings of the aforementioned studies guided the selection of factors 

the “inducing missingness” step uses for the MAR datasets along with guidance for 

the non-machine learning imputation algorithm (ordinal logistic regression and 

predictive mean matching). 

Finally, the simulation study proceeds to an imputation step that creates imputed 

datasets by all proposed algorithms (section 4.3) and then evaluates the performance 

using an evaluation method specifically designed to assess ordinal variables (section 

4.4).  This thesis explores different machine learning algorithms such as decision 

trees, support vector machines, and neural networks to find in what ways machine 

learning may improve imputation models. In this thesis the machine learning 
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algorithms do not utilise multiple imputation, which the non-machine learning 

algorithms include. While future studies can investigate the effectiveness of machine 

learning to provide models for single imputation on which multiple imputation 

methods can build on, it is important to find out in what ways machine learning 

models work differently, or similarly, from current models to determine whether or 

not the models can benefit from or are compatible with multiple imputation. 

4.3 Algorithms 

Ordinal logistic regression (mice polr) 

The R “mice” package (van Buuren & Groothuis-Oudshoorn 2011) serves as 

comparator imputation algorithms as they are widely available for use by survey data 

analysts. The R function “mice” performs imputation for ordinal variables based on 

logistic regression. 

The polr method in the mice library applies a proportional odds logistic regression, 

which utilizes successive logistic regressions to address the ordinal nature of the 

target variable (van Buuren 2020). The proportional odds model creates a 

hierarchical odds structure across the classes of the target variable. The change in 

odds in crossing each class-border is the same (i.e. proportional) so the model may 

not be adequate for data that does not follow a proportional odds structure (Ford 

2015). 

Regression models, unlike machine learning models, require a set of pre-selected 

variables to avoid certain factors from overinfluencing the prediction model and 

biasing the results. Since different variables may represent similar or overlapping 

information (e.g. smoking status and lung cancer rate) it is important for regression 

models to, as much as possible, receive input from variables that provide unique 

information. Data mining methods such as principal component analysis can assist in 

the selection of input variables. More traditional methods for choosing input variables 

include stepwise regression and reference to prior studies.  

For the purposes of the simulation study I select variables for the regression 

model in a way that would, as much as possible, emulate a model created from 

traditional variable selection methods. This means that the regression model will 
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perfectly match the missingness mechanism of the simple-MAR dataset, closely match 

the missingness mechanism of the moderately-complex-MAR dataset, and partially 

match the missingness mechanism of the highly-complex-MAR dataset (Table 2). 

The concept of survey weights is unignorable when analyzing survey data. Survey 

weights are necessary for the calculation of parameter estimates that represent the 

target population, rather than representing the sample population. Although the 

calculation of parameter estimates is not necessary for imputation of sample data, the 

inclusion of survey weights, or its factors, in the imputation model is needed to ensure 

congeniality between imputation and analysis models. While the CCHS 2014 PUMF 

includes survey weights as a variable in the PUMF, the ordinal logistic regression 

imputation model does not include the survey weights as an explanatory variable 

because including both the survey weights along with its factors (geography variables 

in the case of CCHS 2014) would be redundant. Similarly, the machine learning 

algorithms (expanded on below) may experience difficulties with including survey 

weights over the geography variables in their models as variable selection is 

automatic. Additional modifications to the imputation model, such as including the 

survey weights as a separate level that influences predictive probabilities (Quartagno 

et al. 2019), exist in principle but introduce great complexity to models (especially for 

non-binary imputation). As the field of covariance adjustment via survey weights in 

machine learning is a relatively complex concept, it is out of the scope of this thesis. 

Predictive Mean Matching (mice pmm) 

The predictive mean matching method (PMM) uses the same library, mice, as the 

ordinal logistic regression and therefore shares the multiple imputation aspect. PMM 

builds off of regression imputation by using models to determine distance measures 

and donor values (Morris, White, & Royston 2015). Distance represents the similarity 

between observations, for example how many same values they share across same 

variables, and observations within a specific distance of the recipient observation are 

matched to form donor pools. Initially introduced by Little (1988), the closest 

observation serves as the sole donor value. 

The method in the mice library (method = “pmm”) generates multiple sets that 

each draw a random sample from a donor pool to provide an imputed value, repeated 
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for each observation that requires imputation for the variable specified in the model 

(van Buuren 2011). 

Ordinal decision trees (rpart and rpartScore) 

Decision trees work by passing all non-missing observations in a dataset through 

a series of splits, eventually providing a step-by-step tree that divides the 

observations into their respective class(es). Algorithms determine splits by 

comparing the purity of the resulting divided datasets, with purer datasets containing 

less heterogeneity of classes (relative to other potential splits). Decision trees have 

the potential to create visual interpretations of the data that assist in the 

identification of patterns or even serve as practical applications as well (e.g. quick 

screening tools). The mechanism by which decision trees organize data (i.e. make 

splits to divide the data into distinct groups) can vary and some work better with 

certain types of data. Rey de Castillo (2014) found a bias towards the mean when 

imputing survey data via classification and regression tree (CART) imputation. 

Therefore this simulation applies a decision tree algorithm that addresses both the 

ordinality and class-wise proportionality of the imputed variable. The rpartScore 

library (Galimberti, Soffritti, & Di Maso 2012) provides adjustments to rpart by 

utilising an ordinal impurity function based on the generalized Gini impurity function. 

The addition of linear costs, a loss function that scales misclassification by increasing 

distance between the correct and incorrect class (e.g. estimating a class 1 observation 

as class 2 is less costly than estimating it as class 5), in determining splits also helps 

to address the ordinality of the income variable the simulation study targets. The 

simulation study also includes a variation of the rpart function that utilizes an ordinal 

cost matrix to guide the generation of decision trees (section 4.4, below, explains the 

concept of ordinal cost in detail). 

Ordinal Random Forest (ordinalForest) 

Random forests classify observations by making multiple CARTs, usually 

introducing variance via sample selection strategies such as boosting or bagging, and 

choosing a final classification based on the collective results of the trees (multiple 

trees, hence the name random forest). The ordinalForest function utilizes bagging 

(bootstrap aggregating) which is a sampling method that takes random samples with 
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replacement from a pre-specified training set. The random sampling produces sample 

datasets with a variety of class representation. This provides the opportunity for 

variable classes with lower proportional representation to have more influence on 

the model because some sample datasets can have, by random selection, a higher 

proportion of a specific class compared to the original variable. Random forest 

algorithms then amalgamate the trees generated on the bagged samples to create a 

final tree that incorporates the best performing aspects from the individual trees. The 

unique aspect of the ordinalForest function is that it considers a continuous variable 

within the ordinal variable to develop regression models (Hornung 2020). The 

ordinality of the outcome variable is preserved by setting a range of continuous 

values to represent each class. 

Support vector machines (e1071) 

Support vector machines (SVM) are algorithms that utilize techniques such as 

dimensional transformations to simulate models for a target outcome variable. The 

flexibility offered by dimensional transformations in SVM provide the potential to 

model non-linear classification problems but otherwise hampers the interpretability 

of the resulting models. Developed in 1995 by Cortes and Vapnik, SVM were initially 

applicable to binary classifications. Meyer (2019) provides an R library, e1071, that 

applies the concept of SVM to multiclass classification by incorporating a voting 

mechanism. Simply put, the svm() function applies binary classification via SVM for 

each category of the target variable. In the case of our simulation study, the total 

household income variable generates 10 subclassifiers that provide the basis for 

voting. 

Neural Networks (nnet) 

Neural networks are similar to SVM as they are very useful for non-linear 

classification problems but do not provide interpretable models. In other words, the 

classification models from neural networks and SVM are black boxes that utilize 

transformations and weightings to represent the relationship between the 

explanatory variable(s) and the outcome variable. The model itself, therefore, does 

not provide any information for understanding relationships between variables and 

is instead a tool for estimating values. The nnet function creates classification models 
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through a feed-forward neural network (Venables & Ripley 2002). Neural networks 

are a series of nodes that apply weights to inputs they receive from sources of data, 

ending with a final output(s) that provides the classification of an observation. A 

neural network can have any number of nodes as well as multiple layers of nodes to 

increase complexity. Complexity of networks also depend on how the algorithm 

adjusts its weights and on how the network uses correct classifications to guide model 

creation (supervised learning). Although, similar to the svm function in e1071, the 

nnet function is not specifically adjusted for ordinal variables the function is able to 

classify multiclass variables by changing the number of output nodes to match the 

target variable. The impact of ordinality in model creation is an important topic of this 

thesis and is discussed in section 6. 

4.4 Evaluation 

A great advantage of a simulation study is the ability to measure a model’s 

performance. Since the original, non-missing data is available, one can assess the 

quality of an imputation by how many times it was correct (accuracy) and how many 

times it was incorrect (instances of misclassification). Misclassification can be a ratio 

or one can assign a cost for incorrect classifications. Performance measures can 

incorporate both accuracy and a misclassification cost to evaluate the imputation 

algorithms. 

The most common performance measure of evaluating the performance of 

imputation methods is the mean squared error (section 2.5). However, the definition 

of classification error does not consider the ordinal nature of variables such as self-

rated general health and total household income. For example, one can say a model 

that imputes “good health” for an observation that was originally “excellent health” 

performs better than a model that imputes “poor health” for the same observation. 

The nuance of ordinal classification performance has been a topic of interest since 

1970 when Murphy proposed the ranked probability score for evaluating probability 

forecasts for weather. The ranked probability score functions by assigning weights 

according to distance calculated in a symmetric matrix of predicted and observed 

values. 



30 
 

An ideal classifier would have 100% accuracy and 0% misclassification. Perfect 

accuracy (or inaccuracy) is highly unlikely and in the case of ordinal variables the 

varying degree of inaccuracy becomes a unique source of information about the 

classifier. Therefore, this thesis uses a performance measure that incorporates both 

accuracy and a misclassification cost to evaluate the imputation algorithms. 

When assigning a cost to misclassification, one must consider the nature of the 

variable being imputed. A categorical variable may not have an equal distribution of 

observations across classes. This can be adjusted with inverse probabilities of 

misclassification (Figure 1. Appendix). An ordinal variable, as mentioned previously, 

has classes that are closer together than others. This can be adjusted with a linear 

absolute value loss function (Figure 2, Appendix). An ordinal variable with class 

imbalance, therefore, would incorporate both these elements when determining the 

cost of an incorrect classification. The product of these two concepts creates 

something called a cost matrix (Figure 3, Appendix), which varies in size by how many 

classes are in the variable of interest. 

To use both accuracy and cost, George, Lu, & Chang (2016) proposed a statistic 

that is a measure of the Euclidean distance between the performance of a given 

classification model and the ideal classification model (100% accuracy, 0% 

misclassification or 0 cost). For this statistic, named the d-statistic, a smaller value 

indicates better performance by the classifier. Nyongesa (2016) provides a 

comparison of evaluation metrics for ordinal variable imputation in which the d-

statistic appears to capture more information on the imputed data than metrics such 

as Kendall’s Tau-b. Therefore this thesis evaluates the performance of all 7 imputation 

algorithms via the d-statistic. 

With regards to a reference point for income imputation accuracy in the CCHS 

dataset, a report published by Statistics Canada (2013) provides a class transition 

table from different imputation methods utilized to create the PUMF. The class 

transition table for total household income in the CCHS compares the values 

predicted by the imputation models against the true, original values in the 5 classes 

of income. Therefore, this thesis also evaluates the class transition tables for each 

imputation model as well as their d-statistics. 
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5 Results 

5.1 Datasets and Variables 

The original dataset, which I based the simulation study on, is the public use 

microdata file of the annual component of CCHS 2014 that contains around 63500 

observations. I processed this data to reduce the number variables and to only include 

complete cases. Then I induced missingness into the income variable with the 

“ampute” function in R, thus creating 4 different patterns of missing datasets (MAR-1, 

MAR-2, MAR-3, and MNAR), each with 3 proportions of missingness (5%, 15%, 35%). 

For each of the 12 resulting datasets I imputed income values to obtain an imputed 

dataset. I repeated this process for the 7 imputation algorithms I intend to compare 

(2 non-machine learning and 5 machine learning) for a total of 84 imputed datasets. 

The final list of variables in each dataset (Appendix List 1) includes 30 

independent variables along with total household income for a total of 31 variables. 

The Appendix item also includes a table (Table A1) that provides a summary of each 

variable  distributed across the total household income variable.  From the 

demographic variables: age, sex, marital status, household composition, and 

education show that those in groups of higher income are more likely to be younger, 

male, married, and postsecondary school graduates. From the self-reported health 

variables, those in groups of higher income are more likely to report “Very Good” for 

general health and “A bit stressful” for life stress. Visible patterns within across the 

income groups become less pronounced in the rest of the variables, but lower income 

groups tend to report more health issues (e.g. arthritis, back problems, and high blood 

pressure). Another notable difference between the income groups appears in the 

dentist/orthodontist utilization variable, with a higher proportion of utilization (i.e. 

having ever visited) by the higher income groups (from 40k-59k and above). 

The processed CCHS datasets do not include respondents under the age of 18 to 

increase the consistency of response rate across the included survey items and to 

avoid surrogate respondents. The resulting processed dataset has 90.1% of the 
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responses as complete, in other words a decrease of 9.1% to a total of 53,065 

observations as this thesis only uses complete cases. 

For the MAR datasets, I used an increasing number of variables to induce different 

patterns of missingness in income. Table 2 shows the variables used to induce 

missingness for each MAR dataset along with the variables each non-machine 

learning imputation model incorporates as explanatory variables. The simulation 

study includes an intentional disparity between the two sets of variables, mainly in 

the complex-MAR dataset, to provide an observation about whether missingness 

mechanism misspecification (section 2.6) impacts the accuracy of the imputation 

models. 

 

 

 

Table 2. Variables in the missingness mechanisms for each MAR dataset compared 

to example to the variables in the regression models for each MAR dataset 

Dataset Mechanism Model 

Simple-MAR Total household income, Age, 

Sex, Education, Province, Self-

perceived health 

Total household income, Age, 

Sex, Education, Province, Self-

perceived health 

Moderate-

MAR 

Total household income, Age, 

Sex, Education, Province, Self-

perceived health, Diabetes, 

Restriction of activity, 

Cultural/racial origin 

 Interaction: Age x 

Cultural/racial origin 

Total household income, Age, 

Sex, Education, Province, Self-

perceived health, Diabetes, 

Restriction of activity, 

Cultural/racial origin 

 

Complex-

MAR 

Total household income, Age, 

Sex, Marital status, Education, 

Province, Self-perceived health,  

Perceived life stress, High 

blood pressure, Diabetes, 

Cancer, Dentist/orthodontist, 

Unmet healthcare needs, 

Alcohol, Restriction of activity, 

Cultural/racial origin 

Total household income, Age, 

Sex, Marital status, Education, 

Province, Self-perceived health,  

Perceived life stress, Diabetes, 

Cancer, Alcohol, Restriction of 

activity, Cultural/racial origin 
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Interactions: Age x 

Cultural/racial origin, Marital 

status x Education, High 

blood pressure x Province 

Note. Bold terms indicate variables that are in the missingness mechanism but not 

in the regression model. (MAR = Missing at Random) 

 

MAR datasets 2 and 3 also have interaction terms to increase the complexity of the 

missingness mechanism. The missingness in the MNAR dataset is solely based on 

income. 

5.2 Total Household Income 

The CCHS income variable in the 2014 PUMF is total household income. As evident 

in Figure 4 the distribution of observations across the classes is not equal. The lowest 

class (total household income under 20,000 for the year of 2014) has the fewest 

observations and the highest class (total household income over 80,000 for the year 

of 2014) has the most observations. The large quantity of observations in the >80k 

class may indicate that the total household income variable has lost some information 

due to setting the highest income value too low as it is unlikely that all observations 

in the >80k class represent a similar demographic.  While the numerical nature of 

income practically necessitates a class that has a soft boundary (i.e. a class that 

includes all values equal to and above a certain threshold value), it would be ideal to 

set a threshold so that the highest income class includes a similar number of 

observations with the other classes. Aside from demographic representation, the 

large number of observations in the >80k class had a large influence on the models 

created by the machine learning algorithms. Since machine learning algorithms are 

“greedy” in the sense that the algorithms reward accurate classifications over 

punishing misclassifications, the final models tend to be biased towards classes with 

many observations because doing so would be correct more often even if just by 
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chance.  It is likely that this tendency is exacerbated when the classes with fewer 

observations are difficult to model. 

Figure 4. Number of observations for total household income (INCGHH) of the 

processed Canadian Community Health Survey 2014 dataset by income class. 

 

Classification models can vary in their performance across classes within a target 

variable. Class-specific accuracy is dependent on how unique the observations within 

the class are. The target variable must have enough variability across the explanatory 

variables for each class to have a unique fingerprint that classification models can 

identify. The Pearson correlation coefficient measures the linear correlation between 

the target variable and a specific explanatory variable. Some prominent correlations 

exist between: age (higher income classes are younger), marital status and living 

situation (higher income classes are married), and education (higher income classes 

have more post-secondary school graduates). Correlations between binary variables 

exist in: sex (highest income class has more males than females while all other income 

classes are predominantly female), arthritis, back problems, and high blood pressure 

(income classes 40k - 59k and below have higher proportions of these health issues), 

and with dentist/orthodontist utilization (income classes 40k - 59k and above have a 

higher proportion of utilization).  
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Figure 5. Principal component analysis of total household income (INCGHH). The 

graph represents the variability of observations within the total household income 

variable across the two most explanatory principal components out of all 30 covariates. 
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Figure 6. Distribution of observations across the 5 total household income classes in 

the 3 Missing at Random (MAR) datasets. The bars for each class represent the 

proportion of the observed values they make up out of all observed values. The lines 

for each class represent the proportion of the missing values they make up out of all 

missing values. The shades of grey represent the proportions of missing data with 

darkest shade showing the results for datasets with 5% missing, the lightest shade 

for 15% missing, and the middle shade for 35% missing. 

 

Another method for investigating the modelling potential of a variable is principal 

component analysis. Figure 5 represents the two most influential principal 

components (explanatory variables transformed in order to maximize the amount of 

variability of the target they represent) on income out of all 30 explanatory variables. 

The axis titles indicate that, while being the most influential, each component only 

accounts for less than 6% of the total variance for observations within the total 

household income variable. The pattern in colours show the distribution across 

income classes (yellow representing the >80k class and a darkening of hue represents 

the subsequent, lower income classes). The figure also shows that total household 

income is somewhat differentiable by a visible pattern but no easy, clear cuts exist 

between all classes. The difficulty for clearly distinguishing income classes using the 

30 explanatory variables poses a problem to the imputation models because this 
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means that there are observations that may not be consistently classified. High 

variability in classification leads to inconsistent results and increased computation 

for attaining model convergence (i.e. when the algorithm agrees on a specific model 

out of the many iterations it generates).  

Figure 7. Distributions of observations across the 5 total household income classes in 

the Missing Not at Random (MNAR) dataset (right) compared to the Missing at Random 

(MAR) datasets (left), with the MAR2 dataset as a reference. The bars for each class 

represent the proportion of the observed values they make up out of all observed 

values. The lines for each class represent the proportion of the missing values they 

make up out of all missing values. The shades of grey represent the proportions of 

missing data with darkest shade showing the results for datasets with 5% missing, 

the lightest shade for 15% missing, and the middle shade for 35% missing. 

 

Figure 6 shows the distribution of observations across the income classes for each 

missing dataset. The bars represent the proportion of observed values and the lines 

represent the proportion of missing values for each income class. There is a slight 

decrease in the proportions of the first two income classes, and a slight increase in 

the later three classes as the proportion of overall missingness increases. 

The MNAR dataset (Figure 7), however, shows a significant change in the 

distribution across income classes as the proportion of overall missingness increases; 



38 
 

the first, second, and fifth classes decrease in proportion while the third and fourth 

increase. The patterns in proportional distribution of observations can influence the 

imputation model in many ways. Multiple imputation methods especially depend on 

unbiased prior distributions to ensure assumptions are met for their variance 

correction methods (Section 2.4).  

5.3 Algorithm Performance 

The machine learning algorithms generally produced imputation models that 

have better d-statistics than the imputation models produced by the non-machine 

learning methods, with exceptions in the MNAR data. Figure 8 and Table 3 show the 

d-statistics for each algorithm by missingness proportion. The machine learning 

algorithms have smaller d-statistics than the non-machine learning algorithms. Also, 

there seems to be little change in d-statistic across missingness proportion for all 

algorithms, which indicates all models performed consistently across proportions of 

5%, 15%, and 35% missingness. While imputation on higher proportions of 

missingness may start to show changes in performance, it is unlikely for practical 

reasons that one would impute data with such high proportions of missingness 

(section 4.2). The MNAR datasets, however, show a pattern of increasing d-statistic 

(i.e. worse performance) with increasing missingness proportion compared to the 

slight downwards trends visible in some algorithms in the MAR datasets. Along with 

information provided by the class transition tables, it is likely the unique increase of 

d-statistics in MNAR data is due to the change in proportional representation of 

income classes in the MNAR data. As shown in Figure 7, the change in observed total 

household income values by missingness proportion has a bias towards keeping 

observations in the middle classes and to induce more missingness in the end classes. 

This bias appears to be reflected in the decreasing performance of classification 

models because MNAR data with larger proportions of missingness end up more 

biased, which leaves the algorithms with a less accurate representation of the original 

data to base their models on. 
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Table 3. d-statistics of imputation models for total household income in Canadian 

Community Health Survey 2014 by missingness mechanism and missingness proportion. 

 

     Figure 8. d-statistic of imputation models for total household income in Canadian 

Community Health Survey 2014. Figures 9-12 in the Appendix show each graph 

individually. Table 3 displays the numbered values. Legend: R-SCORE (RpartScore), 

SVM (e1071 support vector machine), NNET (nnet), O-RF (OrdinalForest), O-REG-MI 

(mice regression based multiple imputation), PMM-MI (mice predictive mean matching 

based multiple imputation), RPART (rpart). 
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Figure 13. Breakdown of imputed total household income values from the 

imputation model generated by the ordinalForest algorithm on the Missing at 

Random 3 (MAR3) dataset with 35% missingness. The columns represent the 

number of imputed observations in each income class and the colours represent the 

original classes of the observations. 

 

Figure 14. Breakdown of imputed total household income values from the 

imputation model generated by the mice pmm algorithm on the Missing at Random 

3 (MAR3) dataset with 35% missingness. The columns represent the number of 

imputed observations in each income class and the colours represent the original 

classes of the observations. 
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Class-by-class comparisons between true values and imputed values provide 

details not captured within the d-statistic. Figures 13 (machine learning) and 14 (non-

machine learning) provide an overview of how two of the best performing, in their 

respective categories, imputation models imputed values from the MAR3 dataset with 

35% missingness. The missing observations in the MAR3 dataset follow a similar 

pattern to the distribution of observations across the original total household income 

variable (Figure 4) and thus an ideal imputation would reflect this pattern in the 

imputed values. At first glance, the shape of the bar graph in Figure 14 closely 

resembles that of Figure 4. However, the colours in each bar indicate that the mice 

pmm imputation model does not necessarily place the imputed observations into 

their original (i.e. correct) classes. In comparison, the ordinalForest imputation 

(Figure 13) does a better job, although not perfect, of placing the imputed values into 

their original classes. On the other hand, the shape of the bar graph in Figure 13 is not 

as similar to Figure 4 than is Figure 14, especially notable is the underrepresentation 

of the middle classes with almost no imputed observations placed in the 60k - 79k 

income class. Instead, machine learning algorithms tend to overpopulate classes that 

are better defined in the data. For example, Figure 5 provides a visual representation 

of how the income variable is plotted across 2 primary components (transformed 

explanatory variables). The >80k class (yellow) and the 20k-39k (dark blue) occupy 

distinct areas of the plot while the 60k -79k class (green) and 40k -59k class 

(turquoise) are more spread out across areas that are also occupied by other classes. 

Therefore, it is likely that ordinalForest algorithm decided to overpopulate specific 

income classes to increase the imputation model’s accuracy rather than to replicate 

the proportional distribution of observations across the classes in the target variable. 

Finally, the figures also display the ordinality of the imputed values through the 

colours in each bar. Compared to the mice pmm imputation model, the ordinalForest 

imputation model has bars that are largely represented by colours of the 

corresponding income class and the next closest income class(es). This pattern is 

most evident in a comparison between the <20k income class from each figure; in 

Figure 13 (ordinalForest) the bar is mostly purple (<20k) and dark blue (20k - 39k) 
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with almost none of the other colours while in Figure 14 (mice pmm) the bar is mostly 

dark blue (20k - 39k), then purple (<20k), but also includes more of the three other 

income classes than the bar in Figure 13. In conclusion, the preference towards select 

classes for increased overall accuracy and a stronger tendency of ordinality in the 

imputed values of the machine learning models (represented by the ordinalForest 

model) are the likely factors for the stronger performance (Figure 8) over the non-

machine learning models (represented by the mice pmm model). 

Tables 4 through 15 (Appendix) are the detailed class transition tables of the 

ordinalForest models and the mice pmm models. The columns contain percentages 

that represent the proportion of true values in each imputed class, which are the rows. 

Figure 15 is a class transition table from a 2013 Statistics Canada report that provides 

a reference point for the accuracy values.  

 

 

Figure 15. Quintile (class) transition table from Statistics Canada Income 

imputation for the Canadian Community Health Survey by Chi Wai Yeung & Steven 

Thomas, Household Survey Methods Division (April 2013). 

 

The official imputation method utilized by Statistics Canada on the CCHS 2014 

data consists of multiple steps and multiple models (Yeung & Thomas 2013). The 

initial steps group together both observed and missing values to form imputation 

classes and then a regression model finds the closest observed value within the 

groups to serve as the imputed value. The steps for forming these imputation classes 

varies with the amount of available data external to the CCHS survey data. The steps 
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most comparable to the methods in this thesis are those that do not incorporate 

information external to the CCHS survey data. 

Most machine learning imputation models in this thesis outperform the Statistics 

Canada imputation model in the specific cases of the accuracies in the 20k -39k 

income class and the >80k income class (quintiles 2 and 5 in the example, 

respectively). The example model outperforms the machine learning methods in 

quintiles 1 (>20k), 3 (40k - 59k), and 4 (60k - 79k) and outperforms the non-machine 

learning models in all quintiles/classes. The rpart with cost matrices algorithm 

created imputation models that have the most similar results (supplementary 

material) to the example model, which suggests similarities between the model 

creation processes (for example, the formation of imputation classes and the 

formation of cost matrices). Nonetheless, the relative simplicity of implementation 

for the model creating algorithms in this thesis (i.e. the use of published statistical 

packages) provides some advantage over the multi-step process utilized by the 

official Statistics Canada imputation method. 

The MNAR datasets (Tables 10 through 15) show different patterns from the MAR 

datasets and especially in higher proportions of missingness. The non-machine 

learning algorithms no longer preserve the class structure (such as in Figure 14) and 

become biased towards the middle classes. A similar bias is evident in the machine 

learning methods, but to a smaller degree. The following subsections describe each 

algorithm’s performance in detail (tables attached to supplementary document). 

5.3.1 CART (rpartScore) 

The CART created by the rpartScore function performed well in the two income 

classes with the largest proportions of observations, the 80k (largest) and 20k-39k 

(second largest) annual total household income groups. The model correctly imputed 

observations in the >80k group consistently with more than 80% accuracy. However, 

there is no ordinality in the incorrect imputations. The proportion of observations 

that have a true value of 20k-39k is the second highest after accurate imputations 

rather than observations from the 60k-79k group, which is closer in income value to 

the 80k group. The rpartScore model did not perform as well in the 20k-39k group, 
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mostly scoring an accuracy of 50% and sometimes dropping to 40%. Similar 

problems with ordinality exist as the most common true value among the incorrect 

imputations was the >80k group instead of <20k and 40k-59k. 

The model did not perform well in the other three income classes. The majority of 

imputed observations were incorrect for the <20k, 40k-59k, and 60k-79k groups. In 

fact, the model did not impute any observations to be in the 60k-79k group. The 

model imputed the majority of observations to be instead in the 20k-39k group (for 

the <20k group) and the >80k group (for the 40k-59k and 60k-79k groups) These 

patterns show that the rpartScore algorithm (specific settings listed in supplemental 

code) created a model that preferred to gain a higher accuracy score by 

overrepresenting imputations in the >80k income group and, to a lesser degree, the 

20k-39k income group. This overrepresentation resulted in high accuracy for the 

classes that, together, contained the vast majority of total observations for the income 

variable. Unfortunately, the accuracy in the two clases came at the cost of poor 

performance in all other income classes along with a distorted variable class structure 

in the imputed income variable. This distortion is more prominent in the MNAR 

dataset as the imputed income variable not only loses all observations in the 60k-79k 

group but also in the <20k group. 

5.3.2 Support Vector Machines (e1071) 

The imputation models from the support vector machine algorithm e1071 gave 

similar results to the rpartScore CART imputation models; a heavy focus on imputing 

observations into the 20k-39k and >80k income groups with severely reduced 

observations in the remaining three classes. The SVM model performed better than 

the rpartScore CART model within the 20k-39k and >80k income groups, scoring 

consistently above 60% and 80% accuracy respectively (except in the dataset with 

MNAR and 35% missingness proportion). Also, while to a lesser degree, the SVM 

model also performed better than the rpartScore model in the 40k-59k group, 

consistently scoring around 15% accuracy. However, the SVM model performed 

poorly in the <20k income group (typically less than 20% accuracy compared to 30-

40% accuracy in the rpartScore model). Another difference between the rpartScore 
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CART model is that the SVM model had some, while very few, observations in the 60k-

79k group. This is likely due to the flexibility of SVM algorithms that implement 

transformations to the input data. The total household income variable in the CCHS 

2014 dataset has some classes with observations that are difficult to differentiate 

from observations in other classes. This pattern is observable in the plot of the two 

major principal components (Section 5.2, Figure 5) in which some classes show 

prominent clusters while other classes are less distinguishable. Data transformations 

allow SVM algorithms to classify observations that are difficult to separate from other 

classes within the target variable and provides an advantage over algorithms that are 

limited to analyzing non-transformed data. Nonetheless, the accuracy for the 60k-79k 

group was very low, ranging from 0.3% to 1% with the model incorrectly imputing 

over 60% of observations with a true value of 60k-79k as observations with >80k 

income. 

5.3.3 Neural Networks (nnet) 

 While similar to the models from the rpartScore algorithm, the best performing 

imputation models (by virtue of the d-statistic) were those created by the nnet 

algorithm. The lower d-statistics for the nnet imputation models are likely due to the 

increased accuracy in the 40k-59k income group, comparable to the e1071 

imputation models, and the 20k-39k income group, while not as accurate as the e1071 

models. A common trouble shared with the rpartScore algorithm is the almost total 

lack of observations imputed as the 60k-79k income group. 

5.3.4 Random Forest (ordinalForest) 

The models produced by the ordinalForest algorithm were comparable to the nnet 

models in performance (d-statistic). The relative improvements in accuracy from the 

other machine learning algorithms are likely due to the class partitioning method and 

optimization steps that consider the ordinal nature of the target variable by the 

ordinalForest algorithm (Section 4.4). Since the algorithm considers a continuous 

range of values to then divide into bounded classes, all classes are existent in the 

imputed dataset. There are multiple internal optimization steps that ordinalForest 

can use when specified by the data analyst. In this simulation study I specified the 
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default method that evaluates the performance of the generated CARTs via a ranked 

probability score. The ordinal-conscious evaluation along with the added robustness 

from multiple trees with varying ordinal class widths are likely factors of the 

improved performance compared to the other algorithms. 

5.3.5 Ordinal Logistic Regression (mice polr) 

At first glance the non-machine learning methods seem to provide promising 

imputation results because the number of imputed observations matches the number 

of true observations in each income class. However, the class transition tables show 

that the accuracy within each class is poor. A distinct pattern is visible in the 

observations imputed by the multiple imputation model using ordinal logistic 

regression. All imputed observations consist of true observations from each income 

class, the proportional distribution of true classes is also consistent across all imputed 

classes: each imputed class consists of ~10% of observations from the <20k income 

class, ~20% from the 20k-39k income class, 15~20% from the 40k-59k income class, 

10~15% from the 60k-79k income class, and 35~40% from the >80k income class. 

This pattern is consistent with the proportional distribution of the true observations 

across income classes. In other words, this pattern directly translates to the accuracy 

of the imputed dataset as all imputed classes follow this pattern (~10% accuracy, 

~20% accuracy, 15~20% accuracy, 10~15% accuracy, and 35~40% accuracy). 

Therefore, unfortunately, the multiple imputation model using ordinal logistic 

regression is consistently inaccurate with the highest accuracy (around 40%) 

occurring in the >80k income class. 

5.3.6 Predictive Mean Matching (mice pmm) 

The multiple imputation model using predictive mean matching is an 

improvement from the ordinal logistic regression imputation. The proportional 

distributions of the imputed observations closely match the proportional 

distributions of the true observations for the MAR datasets. One improvement in 

imputation accuracy is the apparent recognition of a bimodal distribution with peaks 

at 20k-39k and >80k, similar to the overrepresentation of income groups 20k-39k 

and >80k in the machine learning methods but to a lesser degree. A trend of 
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increasing accuracy as the MAR mechanism becomes increasingly complex exists in 

the PMM imputation models. This is likely due to the increased number of variables I 

incorporated into the PMM models to match the increasing complexity of MAR 

mechanisms (Section 5.1, Table 2). Nonetheless, the accuracies of imputations within 

each income class are moderate at best, scoring over 50% only in the >80k income 

class with the next best being scores of around 30% in the 20k-39k income class. As 

shown in the poorer d-statistics compared to the machine learning imputation 

models, the lack of imputation accuracy devalues the correct proportionality of 

income classes in the imputed datasets. 

5.3.7 CART (rpart with cost matrices) 

The CARTs created by the rpart function with cost matrices provided results 

unlike any other imputation models. There is a unique focus on the middle class (the 

40k-59k income group) rather than on the 20k-39k or the >80k income groups that 

other imputation models picked up. The likely reason for this focus on the middle 

class is the low ordinal cost from either end of the scale. The model creation algorithm 

evaluates incorrect imputations as less troublesome if they are closer to the true value 

on an ordinal scale. Therefore the middle class has the lowest likelihood of costly 

mistakes as it can only be off by 2 classes at most. The rpart algorithm for the MAR-2 

dataset also includes bootstrap aggregation (bagging) as a modification as an attempt 

to improve results but the results are similar to the models the algorithm created 

without bagging. The rpart + cost matrix CART models have the highest accuracy in 

the 40k-59k as well as the 60k-79k income classes due to its unique bias towards the 

middle class. The <20k and 40k-59k income classes range from 30% to 40% accuracy, 

60k-79k mostly around 30% accuracy, and 20k-39k and >80k have a range of 40% to 

50% accuracy. The rpart + cost matrix CART models also show the most ordinality in 

their results with the majority of incorrect imputations being observations with true 

values one class away from the imputed class. However, the performance measured 

by the d-statistic indicates that the relative decrease in accuracy compared to 

imputation models from the nnet and ordinalForest algorithms was more costly than 

the improvements made in the preservation of ordinality. 
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5.3.8 Performance in MNAR data 

Almost all imputation models performed better with the MNAR dataset. The 

increase in performance is the product of increased accuracy in the 40k-59k and 60k-

79k income classes. The MNAR datasets are skewed to have relatively more 

observations missing from the <20k and >80k income classes, resulting in larger 

proportional representation by the 40k-59k and 60k-79k income classes (the 

proportion of observations in the 20k-39k remained relatively consistent across MAR 

and MNAR datasets). However, as missingness proportions increase from 5% to 35% 

the comparative loss in accuracy for the other income classes begin to outweigh the 

improvements made in the 40k-59k and 60k-79k income classes. This pattern 

resulted in the trend of worsening performance as missingness proportion increased, 

which is different to the slightly increasing performance trend shown by the MAR 

models. 

The mice polr, mice pmm, and rpart + cost matrices algorithms were affected by 

the modified class imbalance introduced by the MNAR mechanism, resulting in higher 

proportions of the 40k-59k and 60k-79k income groups compared to models made 

by the same algorithms in MAR datasets. The machine learning algorithms (excluding 

the rpart + cost matrices) were affected to a lesser degree. 

5.4 Variable importance 

Section 2.8 describes the potential application of machine learning algorithms in 

the variable selection process for prediction models. One way this is possible is 

through the examination of post-modelling statistics that some algorithms provide. 

The CART algorithms (rpart, rpartScore, and ordinalForest) generate a list that ranks 

each explanatory variable by their importance as a by-product during the tree 

creation process. In other words, variables that are common and high-ranking 

throughout the lists are determined by the algorithms to be useful when predicting 

the target variable. Throughout all 36 variable importance lists (3 CART algorithms, 

4 missing data mechanisms, 3 missing data proportions) there were 6 variables that 

consistently ranked in top 5: DHHGLVG (living arrangement/household composition), 

DHHGMS (marital status), EDUDR04 (highest completed education), DHHGAGE (age), 
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CHP_14 (consulted with dentist or orthodontist), and ALCDTTM (type of drinker, 

alcohol). Apart from the top 5, the main difference between the lists appeared as 

ordinalForest models preferring demographic variables such as respondent sex and 

geographic location compared to rpart and rpartScore preferring health variables 

such as diagnoses of high blood pressure and arthritis. While the household 

composition, marital status, age, and education variables are commonly associated 

with income (section 4.2), the presence of the dentist/orthodontist consultation and 

alcohol variables are interesting in their consistent usage by the algorithms. The high 

ranking of the dentist and orthodontist consultation variable is in line with the 

findings of authors such as Farmer et al. (2017) and may serve as an example of the 

potential utility of variables that are not as common in income prediction models. As 

in this way, the identification of useful explanatory variables through variable 

importance lists is an advantage that CART machine learning algorithms have over 

other machine learning algorithms (or non-machine learning algorithms that may 

require additional tests to measure variable importance). 
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6 Discussion 

Machine learning algorithms produce imputation models for ordinal variables 

that are more accurate than imputation models produced by ordinal logistic 

regression or predictive mean matching. However, imputed data from machine 

learning methods tend to be biased towards classes that are easy to identify; for 

example, classes that represent a large proportion of the target variable’s 

observations, classes with a population that is uniquely characterized by the 

explanatory variables, or a combination of both. In the case of total household income 

in the CCHS 2014 PUMF, while all 5 machine learning algorithms outperformed 

ordinal logistic regression and predictive mean matching, the income classes of 20k-

39k and >80k were overrepresented in the imputed datasets. On the other hand, the 

non-machine learning methods were better at preserving the variable class structure 

by producing imputed datasets with observations distributed across the income 

classes in a similar pattern to the original dataset with no missing data. The non-

machine learning methods were less accurate because the imputation models were 

less likely to classify the missing observations to their correct income classes. With 

regards to incorrect classifications, the machine learning models were more likely to 

misclassify observations as their adjacent income classes than as income classes 

further away from their original class. A stronger sense of ordinality in data may 

benefit certain cases of prediction that can find value in close, but incorrect guesses. 

The trade-off between accuracy and variable class structure is also a factor that 

requires consideration when implementing machine learning imputation models. 

6.1 Strengths and Implications for using imputed values 

The goal of imputation is to increase the number of usable observations in a 

dataset by estimating values for observations that have item nonresponse. One 

should consider the impacts of using imputed data to perform analyses such as 

whether the imputed observations are biased towards certain values, potentially 

skewing the associations between the variables within the dataset. The simulation 

study in this thesis provides evidence for the potential bias in both machine learning 
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and non-machine learning imputation methods. Both methods are affected by MNAR 

mechanisms because prediction models built on existing data are not able to account 

for inherent biases in the datasets without information on missingness mechanisms 

(section 2.6). Therefore data imputation is only practical if one can assume the 

missing data to be mostly MAR or unless one can correctly model the missingness 

mechanism with supplementary data/metadata, such as in the case of Yeung & 

Thomas (2013) creating imputation classes with data from tax forms external to the 

CCHS. Nonetheless, imputation models that are biased towards specific outcomes 

have potential use in situations where the value of correctly imputing one class 

greatly outweighs misclassification of less important classes. Machine learning 

algorithms also tend to have more ordinality in their imputations as misclassified 

observations are more likely to fall into classes that are closer to their original value. 

Therefore, machine learning imputation has the potential to provide better results for 

imputing ordinal variables with misclassification costs that scale with distance. For 

example, Nyongesa (2016) provides evidence for the potential applicability of 

imputation models from machine learning algorithms in the imputation of colon 

cancer data. The study uses real world data from the colon cancer dataset (GSE17536) 

and compares the performances of imputation models while considering the 

ordinality of misclassified observations. The cost of misclassifying a cancer patient as 

stage I instead of stage IV can be high due to the invasive nature of testing and 

treatment required for stage IV cancer patients. Potentially more costly would be the 

misclassification of a stage IV patient as stage I because a different approach for 

treatment can have dire consequences. The high performance of machine learning 

methods for colon cancer data imputation shows that imputation and data prediction 

from machine learning methods can serve a unique niche in health data analyses, in 

which situations similar to the prediction of cancer stages are abundant. 

6.2 Limitations 

The distribution of observations across the income classes in the total household 

income variable likely had an impact on the performances of the imputation models. 

As explored in section 5.2, the concentration of observations in the highest income 
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class (>80k) is problematic because there is a loss of information for a large 

proportion of the respondents that possibly have a total household income much 

greater than 80,000. Additional classes beyond a >80k class can provide room for 

observations to spread out more to possibly show trends in data in higher income 

populations. Another approach could be to increase the range of income within each 

class, allowing the variable to capture a wider scope of household incomes while 

possibly amalgamating similar income households into identifiable groups. An 

income variable that has a more balanced distribution of observation across classes 

may decrease the bias in the machine learning models as no single class will provide 

better accuracy through chance alone. 

The missingness induction process outlined in section 4.2 also influences the 

structure of the income variable. Modifications to features of the ampute function can 

change the missingness mechanism from MAR to MCAR or MNAR (or include a 

complex mixture of mechanisms via subsection sampling) but can also change the 

way the MAR variables are associated to the missingness mechanism. Further 

modifications to the missingness mechanism can provide information on how 

different imputation models perform in specific situations but is out of the scope of 

this thesis. Also, the range of missingness proportions in this thesis (5%, 15%, and 

35%) may limit the patterns of model performance to a smaller threshold than other 

studies that use simulations. This was a practical choice to limit the amount of 

analysis to an area that would more likely reflect data in which one would utilize 

imputation methods. 

The non-machine learning models included variables chosen to reflect the 

variables in the missingness induction processes. However, the models did not 

include one specific variable (DHHGLVG, household composition) that the CART 

algorithms identified as an important explanatory variable. A posteriori analyses 

found that the non-machine learning models experienced some improvement when 

including this variable (data not shown) the final results and performances were 

similar to the models that did not include the household composition variable. 

Finally, the dataset for the simulation study was a modified version of the CCHS 

2014 dataset provided as a PUMF. Modifications to the data include changes to ensure 
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the anonymity of participants, which may cause some discrepancies between the 

actual data and the PUMF data. Due to this fact, a direct comparison of performance 

between the Statistics Canada imputation methods (Figure 15) and the imputation 

methods in this thesis may have some discrepancies. For example, in addition to the 

modification of data in the PUMF, the authors of the Statistics Canada report display 

their results (Figure 15) as “income quintiles”  (i.e. observations divided into five 

equal groups with the groups defined by ranges of income) and not as “income classes” 

as defined by the total household income variable in the CCHS 2014 PUMF. 

Nonetheless, the quintile transition table (Figure 15) is still useful as a point of 

reference for income imputation and, even if the classes do not exactly match up with 

the quintiles, the general sense of ordinality exists in both income quintiles and 

income classes.  

6.3 Future research 

A definite characteristic of the machine learning imputation models is that they 

prefer values that are more likely to be correct and are prone to overrepresent such 

values over other classes in the target variable (i.e. greedy). The “greedy” nature of 

machine learning algorithms is likely because most machine learning processes focus 

on binary variables as target outcomes. Machine learning algorithms adapted to 

multi-class outcomes usually are multiple binary models that use voting systems 

(such as SVMs in the e1071 package) to deal with multiple outcomes. Future 

developments for multi-class machine learning algorithms specifically focused on 

ordinal variables may benefit by incorporating ordinal-sensitive performance 

measures such as the d-statistic in their model creation processes. 

The overrepresentation of specific classes in imputed data from machine learning 

methods are likely to influence analyses that use the imputed data. Studies on the 

impacts of imputed variables with different types of errors and bias can provide 

information for guidelines on the use of imputed data. Greater understanding of the 

characteristics of imputation methods can improve the utility of imputed data if one 

can identify a suitable imputation method for their specific dataset. Different datasets 

can provide new information about the algorithms by showing whether 
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improvements in accuracy are due to overfitting or not. Good performance across 

various datasets is evidence for an algorithm’s versatility and generalizability by 

showing that it can adjust to different trends and associations that characterise 

different datasets. Future studies can validate machine learning algorithms for 

imputation by applying algorithms similar to the algorithms in this thesis to other 

survey datasets and, eventually, to non-survey datasets with ordinal data. 

Different types of datasets exhibit different types of missingness. Working with 

real data (not solely simulated data) will provide opportunities to test the 

applicability of machine learning methods in situations of complex missingness, such 

as mixes of MAR and MNAR data. While for this thesis the datasets remained 

separated between MAR and MNAR data, it is more likely for datasets to contain both 

MAR and MNAR data. For some cases, single models (whether machine learning or 

not) may not suffice to properly address complex missingness. Multiple model 

approaches can include the specification of a missingness mechanism (Long, Hsiu, & 

Li 2012), the use of voting systems (Chen & Haziza 2018b), or multi-step imputation 

based on external data (Yeung & Thomas 2013). The strength of machine learning 

models lies in the possibility to provide robust single imputation methods that these 

multiple model approaches can incorporate. Similarly, multiple imputation methods 

based on machine learning models also have the potential to show the strength of 

incorporating a robust single imputation method to build off of. 

One significant challenge for future studies to overcome is the presence of missing 

data within the explanatory variables and not just the target variable. The machine 

learning algorithms in this thesis all require the inputted data to not have any missing 

observations.  The algorithms can only utilize complete cases because classification 

is based on comparing similarities and differences between observations across all 

input variables. Therefore, if there is a value that cannot be compared to any of the 

other values (i.e. a missing value, unless the variable specifically includes a field for 

null or missing values), algorithms will not know how to classify the variable that 

contains this incomparable value. Methods for dealing with incomplete explanatory 

variables were beyond the scope of this thesis but are important next steps for 

increasing the applicability of machine learning imputation models.  
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7 Conclusion 

In conclusion, it is difficult to determine whether imputation models from 

machine learning algorithms completely outperform methods such as ordinal logistic 

regression or predictive mean matching. Nonetheless, improvements in accuracy for 

a specific group of observations and stronger ordinality in imputed data provide 

machine learning methods a unique upper-hand in situations where a specific type of 

observation holds very high value. Future research on addressing the bias in machine 

learning algorithms has the potential to further improve the performance and 

generalizability of machine learning methods for data imputation.  
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Appendix 

Appendix Item 1. R code for missingness induction steps. 

load("cchs_var5.RData") 

cchs.dat = cchs.dat5.cc 

cchs.datg = cchs.dat 

str(cchs.datg) 

### Label multiclass variables to have intelligible class names in dummy codes 

cchs.datg$INCGHH = ordered(cchs.dat$INCGHH, levels = c(1,2,3,4,5), 

                           labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

cchs.datg$DHHGAGE = ordered(cchs.dat$DHHGAGE, levels = c(1,2,3,4,5,6,7), 

                            labels = c("18-29","30-39","40-49","50-59","60-69", 

                                       "70-79","80+")) 

cchs.datg$DHHGMS = factor(cchs.dat$DHHGMS, levels = c(1,2,3,4), 

                          labels = c("MARRIED","COMLAW","WSD","SINGLE")) 

cchs.datg$DHHGLVG = factor(cchs.dat$DHHGLVG, levels = c(1,2,3,4,5,6,7,8), 

                           labels = c("I_ALON","I_W/OT","W/SPPA","PS_W/C","1P_W/C", 

                                      "C_W/1P","C_W/PS","OTHER")) 

cchs.datg$GEOGPRV = factor(cchs.dat$GEOGPRV, levels = c(10,11,12,13,24,35, 

                                                        46,47,48,59,60), 

                           labels = c("NL","PE","NS","NB","QC","ON","MB","SK","AB", 

                                      "BC","YTNTNU")) 

cchs.datg$EDUDR04 = factor(cchs.dat$EDUDR04, levels = c(1,2,3,4), 

                           labels = c("<SS","SSGRAD","SOMEPS","PSGRAD")) 

cchs.datg$GEN_01 = factor(cchs.dat$GEN_01, levels = c(1,2,3,4,5), 

                          labels = c("EXCELL","VERY_G","GOOD","FAIR","POOR")) 

cchs.datg$GEN_07 = factor(cchs.dat$GEN_07, levels = c(1,2,3,4,5), 

                          labels = c("NO_STR","NV_STR","AB_STR","QB_STR","EX_STR")) 

cchs.datg$RAC_1 = factor(cchs.dat$RAC_1, levels = c(1,2,3), 

                         labels = c("SOME","OFTEN","NEVER")) 
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cchs.datg$SMK_202 = factor(cchs.dat$SMK_202, levels = c(1,2,3), 

                           labels = c("DAILY","OCCASN","DO_NOT")) 

cchs.datg$ALCDTTM = factor(cchs.dat$ALCDTTM, levels = c(1,2,3), 

                           labels = c("REGULR","OCCASN","NOT12M")) 

cchs.datg$SDC_5A_1 = factor(cchs.dat$SDC_5A_1, levels = c(1,2,3,4), 

                            labels = c("ENG","FR","ENGFR","NEITHR")) 

str(cchs.datg) 

### Save dataset as original with no missing values 

save(cchs.datg, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\cchs_ori.RData") 

### Data set for simple MAR (5 variables inducing missingness in income) 

### INCGHH.mar1 induced via DHHGAGE, DHH_SEX, GEOGPRV, EDUDR04, and 
GEN01 

#need 5, 15, 35% missing 

vars1 = c("INCGHH", "DHHGAGE", "DHH_SEX", "EDUDR04", "GEOGPRV", "GEN_01") 

cchs.mar1 = cchs.datg[, vars1] 

### Dummy coding variables with more than 2 categories 

cchs.mar1.dc = dummy_cols(cchs.mar1, select_columns = c("DHHGAGE","EDUDR04", 

                                                        "GEOGPRV","GEN_01"), 

                          remove_selected_columns = TRUE) 

str(cchs.mar1.dc) 

#creating columns with MAR-simple data 

marpattern = c(0, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1) 
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marweight = c(0, 

              1,1,1,1,1, 

              1,1,1,1,1, 

              1,1,1,1,1, 

              1,1,1,1,1, 

              1,1,1,1,1, 

              1,1,1) 

### 5% Missing 

set.seed(2019);mar1_5 = ampute(cchs.mar1.dc, patterns = marpattern, weights = 
marweight, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.05) 

cchs.mar1_5 = mar1_5$amp 

cchs.dat.mar1_5 = cchs.datg 

cchs.dat.mar1_5$INCGHH = ordered(cchs.mar1_5$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar1_5$INCGHH)) 

# 50515/53065 = 0.952 = 95.2% 

save(cchs.dat.mar1_5, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar1_05.RData") 

### 15% Missing 

set.seed(2019);mar1_15 = ampute(cchs.mar1.dc, patterns = marpattern, weights = 
marweight, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.15) 

cchs.mar1_15 = mar1_15$amp 

cchs.dat.mar1_15 = cchs.datg 

cchs.dat.mar1_15$INCGHH = ordered(cchs.mar1_15$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar1_15$INCGHH)) 

# 45200/53075 = 0.852 = 85.2% 
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save(cchs.dat.mar1_15, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar1_15.RData") 

### 35% Missing 

set.seed(2019);mar1_35 = ampute(cchs.mar1.dc, patterns = marpattern, weights = 
marweight, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.35) 

cchs.mar1_35 = mar1_35$amp 

cchs.dat.mar1_35 = cchs.datg 

cchs.dat.mar1_35$INCGHH = ordered(cchs.mar1_35$INCGHH, levels = c(1,2,3,4,5), 

                                  labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar1_35$INCGHH)) 

# 34743/53075 = 0.655 = 65.5% 

save(cchs.dat.mar1_35, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar1_35.RData") 

### Data set for mid-complex MAR (8 variables + 1 interaction term) 

### Variables: DHHGAGE, DHH_SEX, GEOGPRV, EDUDR04, GEN01, RAC_1, 
SDCGCGT, CCC_101 

### Interaction: DHHGAGE x SDCGCGT 

#need 5, 15, 35% missing 

vars2 = c("INCGHH", "DHHGAGE", "DHH_SEX", "EDUDR04", "GEOGPRV", "GEN_01", 
"CCC_101", 

          "RAC_1", "SDCGCGT") 

cchs.mar2 = cchs.datg[, vars2] 

str(cchs.mar2) 

### Create an interaction term between DHHGAGE and SDCGCGT 

cchs.mar2$AGE_RACE = as.factor(paste(cchs.mar2$DHHGAGE, 
as.factor(cchs.mar2$SDCGCGT), sep="")) 

### Dummy coding variables with more than 2 categories 

cchs.mar2.dc = dummy_cols(cchs.mar2, select_columns = c("DHHGAGE","EDUDR04", 

                                                        "GEOGPRV","GEN_01", 

                                                        "RAC_1","AGE_RACE"), 



65 
 

                          remove_selected_columns = TRUE) 

str(cchs.mar2.dc) 

#creating columns with MAR-mid-complex data 

marpattern2 = c(0, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1) 

marweight2 = c(0, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1) 

### 5% Missing MAR2 

set.seed(2019);mar2_5 = ampute(cchs.mar2.dc, patterns = marpattern2, weights = 
marweight2, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.05) 

cchs.mar2_5 = mar2_5$amp 

addmargins(table(cchs.mar2_5$INCGHH)) 
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cchs.dat.mar2_5 = cchs.datg 

cchs.dat.mar2_5$INCGHH = ordered(cchs.mar2_5$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar2_5$INCGHH)) 

# 50517/53065 = 0.952 = 95.2% 

save(cchs.dat.mar2_5, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar2_05.RData") 

### 15% Missing MAR2 

set.seed(2019);mar2_15 = ampute(cchs.mar2.dc, patterns = marpattern2, weights = 
marweight2, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.15) 

cchs.mar2_15 = mar2_15$amp 

addmargins(table(cchs.mar2_15$INCGHH)) 

cchs.dat.mar2_15 = cchs.datg 

cchs.dat.mar2_15$INCGHH = ordered(cchs.mar2_15$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar2_15$INCGHH)) 

# 45335/53065 = 0.854 = 85.4% 

save(cchs.dat.mar2_15, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar2_15.RData") 

### 35% Missing MAR2 

set.seed(2019);mar2_35 = ampute(cchs.mar2.dc, patterns = marpattern2, weights = 
marweight2, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.35) 

cchs.mar2_35 = mar2_35$amp 

addmargins(table(cchs.mar2_35$INCGHH)) 

cchs.dat.mar2_35 = cchs.datg 

cchs.dat.mar2_35$INCGHH = ordered(cchs.mar2_35$INCGHH, levels = c(1,2,3,4,5), 

                                  labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar2_35$INCGHH)) 
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# 35026/53065 = 0.661 = 66.1% 

save(cchs.dat.mar2_35, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar2_35.RData") 

### Data set for complex MAR (15 variables + 3 interaction term) 

### Variables: DHHGAGE, DHH_SEX, GEOGPRV, EDUDR04, GEN_01, RAC_1, 
SDCGCGT, 

###   CCC_101, DHHGMS, GEN_07, UCN_010, ALCDTTM, CCC_31A, CHP_14, CCC_071 

### Interactions: DHHGAGE x SDCGCGT, DHHGMS x EDUDR04, CCC_071 x 
GEOGPRV 

#need 5, 15, 35% missing 

vars3 = c("INCGHH", "DHHGAGE", "DHH_SEX", "DHHGMS", "EDUDR04", "GEOGPRV", 

          "GEN_01", "GEN_07", "CCC_071", "CCC_101", "CCC_31A", "CHP_14", 

          "UCN_010", "ALCDTTM","RAC_1", "SDCGCGT") 

cchs.mar3 = cchs.datg[, vars3] 

str(cchs.mar3) 

### Create an interaction term between DHHGAGE and SDCGCGT 

cchs.mar3$AGE_RACE = as.factor(paste(cchs.mar3$DHHGAGE, 
as.factor(cchs.mar3$SDCGCGT), sep="")) 

### Create an interaction term between DHHGMS and EDUDR04 

cchs.mar3$MAR_EDU = as.factor(paste(cchs.mar3$DHHGMS, cchs.mar3$EDUDR04, 
sep="")) 

### Create an interaction term between GEOGPRV and CCC_071 

cchs.mar3$GEO_HBP = as.factor(paste(cchs.mar3$GEOGPRV, 
as.factor(cchs.mar3$CCC_071), sep="")) 

### Dummy coding variables with more than 2 categories 

cchs.mar3.dc = dummy_cols(cchs.mar3, select_columns = c("DHHGAGE","DHHGMS", 

                                                        "EDUDR04","GEOGPRV", 

                                                        "GEN_01","GEN_07", 

                                                        "ALCDTTM","RAC_1", 

                                                        "AGE_RACE","MAR_EDU", 

                                                        "GEO_HBP" 
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), 

remove_selected_columns = TRUE) 

str(cchs.mar3.dc) 

#creating columns with MAR-complex data 

marpattern3 = c(0, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1) 

marweight3 = c(0, 

               1,1,1,1,1, 

               1,1,1,1,1, 
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               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1,1,1,1,1, 

               1) 

### 5% Missing MAR3 

set.seed(2019);mar3_5 = ampute(cchs.mar3.dc, patterns = marpattern3, weights = 
marweight3, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.05) 

cchs.mar3_5 = mar3_5$amp 

addmargins(table(cchs.mar3_5$INCGHH)) 

cchs.dat.mar3_5 = cchs.datg 

cchs.dat.mar3_5$INCGHH = ordered(cchs.mar3_5$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar3_5$INCGHH)) 

# 50440/53065 = 0.951 = 95.1% 

 



70 
 

save(cchs.dat.mar3_5, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar3_05.RData") 

### 15% Missing MAR3 

set.seed(2019);mar3_15 = ampute(cchs.mar3.dc, patterns = marpattern3, weights = 
marweight3, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.15) 

cchs.mar3_15 = mar3_15$amp 

addmargins(table(cchs.mar3_15$INCGHH)) 

cchs.dat.mar3_15 = cchs.datg 

cchs.dat.mar3_15$INCGHH = ordered(cchs.mar3_15$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar3_15$INCGHH)) 

# 45213/53065 = 0.852 = 85.2% 

save(cchs.dat.mar3_15, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar3_15.RData") 

### 35% Missing MAR3 

set.seed(2019);mar3_35 = ampute(cchs.mar3.dc, patterns = marpattern3, weights = 
marweight3, mech = "MAR", type = "TAIL", cont = TRUE, prop = 0.35) 

cchs.mar3_35 = mar3_35$amp 

addmargins(table(cchs.mar3_35$INCGHH)) 

cchs.dat.mar3_35 = cchs.datg 

cchs.dat.mar3_35$INCGHH = ordered(cchs.mar3_35$INCGHH, levels = c(1,2,3,4,5), 

                                  labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mar3_35$INCGHH)) 

# 34872/53065 = 0.657 = 65.7% 

save(cchs.dat.mar3_35, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mar3_35.RData") 

### Create MNAR dataset 

cchs.mnar = cchs.datg 
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mnarpattern = c(0, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1, 

                1,1,1,1,1 

                ) 

 

mnarweights = c(1, 

                0,0,0,0,0, 

                0,0,0,0,0, 

                0,0,0,0,0, 

                0,0,0,0,0, 

                0,0,0,0,0, 

                0,0,0,0,0 

                ) 

#MNAR 5% 

set.seed(2019);mnar05 = ampute(cchs.mnar, patterns = mnarpattern, weights = 
mnarweights, mech = "MNAR", type = "TAIL", cont = TRUE, prop = 0.05) 

cchs.mnar05 = mnar05$amp 

addmargins(table(cchs.mnar05$INCGHH)) 

cchs.dat.mnar05 = cchs.datg 

cchs.dat.mnar05$INCGHH = ordered(cchs.mnar05$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mnar05$INCGHH)) 

# 50495/53065 = 0.952 = 95.2% 
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save(cchs.dat.mnar05, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mnar05.RData") 

#MNAR 15% 

set.seed(2019);mnar15 = ampute(cchs.mnar, patterns = mnarpattern, weights = 
mnarweights, mech = "MNAR", type = "TAIL", cont = TRUE, prop = 0.15) 

cchs.mnar15 = mnar15$amp 

addmargins(table(cchs.mnar15$INCGHH)) 

cchs.dat.mnar15 = cchs.datg 

cchs.dat.mnar15$INCGHH = ordered(cchs.mnar15$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mnar15$INCGHH)) 

# 44884/53065 = 0.846 = 84.6% 

save(cchs.dat.mnar15, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mnar15.RData") 

#MNAR 35% 

set.seed(2019);mnar35 = ampute(cchs.mnar, patterns = mnarpattern, weights = 
mnarweights, mech = "MNAR", type = "TAIL", cont = TRUE, prop = 0.35) 

cchs.mnar35 = mnar35$amp 

addmargins(table(cchs.mnar35$INCGHH)) 

cchs.dat.mnar35 = cchs.datg 

cchs.dat.mnar35$INCGHH = ordered(cchs.mnar35$INCGHH, levels = c(1,2,3,4,5), 

                                 labels = c("<20k","20k-39k","40k-59k","60k-79k",">80k")) 

addmargins(table(cchs.dat.mnar35$INCGHH)) 

# 50495/53065 = 0.631 = 63.1% 

save(cchs.dat.mnar35, file = 
"~/School/MSc_CHE/Thesis/DataMiningAndMultipleImputation/Rscripts/cchs_dat
a_2\\mnar35.RData") 
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Figure 1. Example table of how to calculate the inverse probability of 

misclassification for a 3-class categorical variable. 
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Figure 2. Example table of how to represent linear absolute value loss for a 3-class 

categorical variable. 
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Figure 3. Ordinal misclassification cost calculated as the product of inverse 

probability of misclassification and linear absolute value loss.  
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Appendix List 1. Variables selected in processed Canadian Community Health Survey 
dataset 

Income  = INCGHH (total household income from all sources) | 5 categories, 66 
Not stated 

--------------------------------- 

Demographics - 6 

--------------------------------- 

Age = DHHGHAGE (remove under 18) | 16 categories, 0 missing, 4948 u18 

Sex = DHH_SEX | binary, 0 missing 

Marital status = DHHGMS | 4 categories, 130 Not stated 

Living arrangement = DHHGLVG (household make-up) | 8 categories, 325 Not 
stated 

Education = EDUDR04 (highest completed by respondent) | 4 categories, 1021 Not 
stated 

Province = GEOGPRV (province of residence) | 11 categories, 0 missing 

--------------------------------- 

General Health - 2 

--------------------------------- 

Self-perceived health = GEN_01 | 5 categories, 90 Don't know, 8 Refusal 

Perceived life stress = GEN_07 | 5 categories, 352 Don't know, 31 Refusal 

--------------------------------- 

Chronic Conditions - 11 

--------------------------------- 

Asthma = CCC_031 | binary, 73 Don't know, 13 Refusal 

Fibromyalgia = CCC_041 | binary, 113 Don't know, 7 Refusal, 13 Not stated 

Arthritis = CCC_051 | binary, 1588 Not applicable, 184 Don't know, 7 Refusal, 829 
Not stated 

Back problems = CCC_061 | binary, 108 Don't know, 8 Refusal, 9 Not stated 

High blood pressure = CCC_071 | binary, 192 Don't know, 11 Refusal, 13 Not stated 

Migraine headaches = CCC_081 | binary, 58 Don't know, 8 Refusal, 13 Not stated 

Diabetes = CCC_101 | binary, 68 Don't know, 6 Refusal, 13 Not stated 

Heart disease = CCC_121 | binary, 194 Don't know, 8 Refusal, 13 Not stated 

Ever had cancer = CCC_31A | (Y/N + currently has cancer as Not Applicable), 44 
Don't know, 3 Refusal, 21 Not stated 

Mood disorder = CCC_280 | binary, 94 Don't know, 25 Refusal, 13 Not stated 

Anxiety disorder = CCC_290 | binary, 124 Don't know, 24 Refusal, 13 Not stated 

--------------------------------- 

Healthcare Utilization - 4 

--------------------------------- 

Overnight patient = CHP_01 (within the past 12 months) | binary, 35 Don't know, 
13 Refusal 
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Family doctor = CHP_03 (ever visited?) | binary, 88 Don't know, 9 Refusal, 13 Not 
stated 

Dentist  = CHP_14 (ever visited?) | binary, 54 Don't know, 3 Refusal, 13 Not 
stated 

Unmet healthcare needs = UCN_010 (within the past 12 months) | binary, 141 
Don't know, 20 Refusal 

--------------------------------- 

Other Health-Related - 4 

--------------------------------- 

Injury = INJ_01 (within the past 12 months) | binary, 78 Don't know, 66 Refusal 

Restriction of activity = RAC_1| 3 categories, 91 Don't know, 16 Refusal 

Smoking = SMK_202| 3 categories, 26 Don't know, 10 Refusal, 312 Not stated 

Alcohol = ALCDTTM (type of drinker) | 3 categories, 1359 Not stated 

--------------------------------- 

Socio-demographics - 3 

--------------------------------- 

Country of birth = SDCGCB13 | binary (Canada/other), 1946 Not stated 

Knowledge of official languages = SDC_5A_1 | 4 categories, 9 Don't know, 34 
Refusal, 1607 Not stated 

Cultural/racial origin = SDCGCGT | binary (white or visible minority), 2294 Not 
stated 
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Table A1. Summary of explanatory variables by total household income group. 

 <20k 
(N=5391) 

>80k 
(N=18768) 

20k-39k 
(N=11287) 

40k-59k 
(N=9834) 

60k-79k 
(N=7785) 

Overall 
(N=53065) 

Age       

18-29 551 (10.2%) 
3423 
(18.2%) 

1153 
(10.2%) 

1250 
(12.7%) 

1188 
(15.3%) 

7565 
(14.3%) 

30-39 363 (6.7%) 
3582 
(19.1%) 

715 (6.3%) 919 (9.3%) 
976 
(12.5%) 

6555 
(12.4%) 

40-49 376 (7.0%) 
3138 
(16.7%) 

689 (6.1%) 874 (8.9%) 
912 
(11.7%) 

5989 
(11.3%) 

50-59 875 (16.2%) 
4290 
(22.9%) 

1456 
(12.9%) 

1692 
(17.2%) 

1576 
(20.2%) 

9889 
(18.6%) 

60-69 1299 (24.1%) 
2953 
(15.7%) 

2804 
(24.8%) 

2626 
(26.7%) 

1857 
(23.9%) 

11539 
(21.7%) 

70-79 1060 (19.7%) 
1029 
(5.5%) 

2724 
(24.1%) 

1693 
(17.2%) 

918 
(11.8%) 

7424 
(14.0%) 

80+ 867 (16.1%) 353 (1.9%) 
1746 
(15.5%) 

780 (7.9%) 358 (4.6%) 
4104 
(7.7%) 

Sex       

Male 1788 (33.2%) 
9399 
(50.1%) 

4292 
(38.0%) 

4266 
(43.4%) 

3655 
(46.9%) 

23400 
(44.1%) 

Female 3603 (66.8%) 
9369 
(49.9%) 

6995 
(62.0%) 

5568 
(56.6%) 

4130 
(53.1%) 

29665 
(55.9%) 

Marital Status       

Common 
Law 

190 (3.5%) 
2427 
(12.9%) 

575 (5.1%) 812 (8.3%) 
840 
(10.8%) 

4844 
(9.1%) 

Married 666 (12.4%) 
11447 
(61.0%) 

3930 
(34.8%) 

4564 
(46.4%) 

4165 
(53.5%) 

24772 
(46.7%) 

Single 1644 (30.5%) 
3638 
(19.4%) 

2508 
(22.2%) 

2202 
(22.4%) 

1683 
(21.6%) 

11675 
(22.0%) 

Widowed, 
Separated, 
Divorced 

2891 (53.6%) 
1256 
(6.7%) 

4274 
(37.9%) 

2256 
(22.9%) 

1097 
(14.1%) 

11774 
(22.2%) 

Household 
Composition 
Living 
Arrangement 

      

Single 
parent with 
children 

293 (5.4%) 273 (1.5%) 487 (4.3%) 331 (3.4%) 238 (3.1%) 
1622 
(3.1%) 

Child living 
with one 
parent  

101 (1.9%) 337 (1.8%) 292 (2.6%) 285 (2.9%) 258 (3.3%) 
1273 
(2.4%) 

Child living 
with parents 

86 (1.6%) 
2006 
(10.7%) 

271 (2.4%) 453 (4.6%) 471 (6.1%) 
3287 
(6.2%) 

Individual 
living alone 

3993 (74.1%) 
1697 
(9.0%) 

5457 
(48.3%) 

3092 
(31.4%) 

1583 
(20.3%) 

15822 
(29.8%) 

Individual 
living with 
others 

145 (2.7%) 460 (2.5%) 387 (3.4%) 328 (3.3%) 225 (2.9%) 
1545 
(2.9%) 

Other 69 (1.3%) 
1002 
(5.3%) 

226 (2.0%) 303 (3.1%) 290 (3.7%) 
1890 
(3.6%) 
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(N=5391) 

>80k 
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20k-39k 
(N=11287) 

40k-59k 
(N=9834) 

60k-79k 
(N=7785) 

Overall 
(N=53065) 

Parents 
living with 
children 

171 (3.2%) 
5316 
(28.3%) 

586 (5.2%) 936 (9.5%) 
1204 
(15.5%) 

8213 
(15.5%) 

Living with 
spouse/part
ner 

533 (9.9%) 
7677 
(40.9%) 

3581 
(31.7%) 

4106 
(41.8%) 

3516 
(45.2%) 

19413 
(36.6%) 

Highest 
Completed 
Education 

      

Less than 
secondary 
school 

2291 (42.5%) 
1073 
(5.7%) 

3451 
(30.6%) 

1654 
(16.8%) 

825 
(10.6%) 

9294 
(17.5%) 

Post-
secondary 
school 
graduate 

1751 (32.5%) 
13368 
(71.2%) 

4693 
(41.6%) 

5355 
(54.5%) 

4803 
(61.7%) 

29970 
(56.5%) 

Some post-
secondary 
school 

273 (5.1%) 902 (4.8%) 534 (4.7%) 468 (4.8%) 382 (4.9%) 
2559 
(4.8%) 

Secondary 
school 1076 (20.0%) 

3425 
(18.2%) 

2609 
(23.1%) 

2357 
(24.0%) 

1775 
(22.8%) 

11242 
(21.2%) 

Province of 
Residence 

      

Alberta 309 (5.7%) 
2469 
(13.2%) 

821 (7.3%) 802 (8.2%) 731 (9.4%) 
5132 
(9.7%) 

British 
Columbia 

592 (11.0%) 
2306 
(12.3%) 

1397 
(12.4%) 

1227 
(12.5%) 

993 
(12.8%) 

6515 
(12.3%) 

Manitoba 278 (5.2%) 
1104 
(5.9%) 

635 (5.6%) 608 (6.2%) 479 (6.2%) 
3104 
(5.8%) 

New 
Brunswick 

292 (5.4%) 458 (2.4%) 613 (5.4%) 419 (4.3%) 301 (3.9%) 
2083 
(3.9%) 

Newfoundla
nd and 
Labrador 

239 (4.4%) 541 (2.9%) 417 (3.7%) 341 (3.5%) 208 (2.7%) 
1746 
(3.3%) 

Nova Scotia 325 (6.0%) 600 (3.2%) 586 (5.2%) 404 (4.1%) 337 (4.3%) 
2252 
(4.2%) 

Ontario 1596 (29.6%) 
6339 
(33.8%) 

3489 
(30.9%) 

3279 
(33.3%) 

2610 
(33.5%) 

17313 
(32.6%) 

PEI 112 (2.1%) 183 (1.0%) 210 (1.9%) 220 (2.2%) 138 (1.8%) 863 (1.6%) 

Quebec 1200 (22.3%) 
2795 
(14.9%) 

2331 
(20.7%) 

1886 
(19.2%) 

1402 
(18.0%) 

9614 
(18.1%) 

Saskatchew
an 

291 (5.4%) 
1271 
(6.8%) 

597 (5.3%) 497 (5.1%) 424 (5.4%) 
3080 
(5.8%) 

Yukon, 
Northwest 
Territories, 
Nunavut 

157 (2.9%) 702 (3.7%) 191 (1.7%) 151 (1.5%) 162 (2.1%) 
1363 
(2.6%) 

Self-Perceived 
Health 

      

Excellent 562 (10.4%) 
4510 
(24.0%) 

1536 
(13.6%) 

1730 
(17.6%) 

1460 
(18.8%) 

9798 
(18.5%) 

Fair 1170 (21.7%) 
1026 
(5.5%) 

1714 
(15.2%) 

1034 
(10.5%) 

654 (8.4%) 
5598 
(10.5%) 
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(N=9834) 

60k-79k 
(N=7785) 

Overall 
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Good 1859 (34.5%) 
4869 
(25.9%) 

3991 
(35.4%) 

3136 
(31.9%) 

2315 
(29.7%) 

16170 
(30.5%) 

Poor 547 (10.1%) 271 (1.4%) 587 (5.2%) 332 (3.4%) 172 (2.2%) 
1909 
(3.6%) 

Very Good 1253 (23.2%) 
8092 
(43.1%) 

3459 
(30.6%) 

3602 
(36.6%) 

3184 
(40.9%) 

19590 
(36.9%) 

Perceived 
Stress 

      

A bit 
stressful 

1988 (36.9%) 
8101 
(43.2%) 

4153 
(36.8%) 

3845 
(39.1%) 

3118 
(40.1%) 

21205 
(40.0%) 

Extremely 
stressful 

241 (4.5%) 480 (2.6%) 289 (2.6%) 242 (2.5%) 186 (2.4%) 
1438 
(2.7%) 

Not at all 
stressful 

1031 (19.1%) 
1789 
(9.5%) 

2209 
(19.6%) 

1539 
(15.6%) 

1046 
(13.4%) 

7614 
(14.3%) 

Not very 
stressful 

1232 (22.9%) 
4592 
(24.5%) 

3103 
(27.5%) 

2821 
(28.7%) 

2157 
(27.7%) 

13905 
(26.2%) 

Quite a bit 
stressful 

899 (16.7%) 
3806 
(20.3%) 

1533 
(13.6%) 

1387 
(14.1%) 

1278 
(16.4%) 

8903 
(16.8%) 

Asthma       

No 4727 (87.7%) 
17394 
(92.7%) 

10313 
(91.4%) 

9067 
(92.2%) 

7216 
(92.7%) 

48717 
(91.8%) 

Yes 664 (12.3%) 
1374 
(7.3%) 

974 (8.6%) 767 (7.8%) 569 (7.3%) 
4348 
(8.2%) 

Fibromyalgia       

No 5089 (94.4%) 
18543 
(98.8%) 

10933 
(96.9%) 

9588 
(97.5%) 

7649 
(98.3%) 

51802 
(97.6%) 

Yes 302 (5.6%) 225 (1.2%) 354 (3.1%) 246 (2.5%) 136 (1.7%) 
1263 
(2.4%) 

Arthritis       

No 3172 (58.8%) 
15898 
(84.7%) 

7261 
(64.3%) 

7072 
(71.9%) 

6047 
(77.7%) 

39450 
(74.3%) 

Yes 2219 (41.2%) 
2870 
(15.3%) 

4026 
(35.7%) 

2762 
(28.1%) 

1738 
(22.3%) 

13615 
(25.7%) 

Back 
Problems 

      

No 3711 (68.8%) 
15410 
(82.1%) 

8410 
(74.5%) 

7719 
(78.5%) 

6162 
(79.2%) 

41412 
(78.0%) 

Yes 1680 (31.2%) 
3358 
(17.9%) 

2877 
(25.5%) 

2115 
(21.5%) 

1623 
(20.8%) 

11653 
(22.0%) 

High Blood 
Pressure 

      

No 3430 (63.6%) 
15693 
(83.6%) 

7133 
(63.2%) 

6929 
(70.5%) 

5875 
(75.5%) 

39060 
(73.6%) 

Yes 1961 (36.4%) 
3075 
(16.4%) 

4154 
(36.8%) 

2905 
(29.5%) 

1910 
(24.5%) 

14005 
(26.4%) 

Migraine 
Headaches 

      

No 4763 (88.4%) 
17017 
(90.7%) 

10339 
(91.6%) 

8953 
(91.0%) 

7050 
(90.6%) 

48122 
(90.7%) 
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(N=5391) 

>80k 
(N=18768) 

20k-39k 
(N=11287) 
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(N=7785) 

Overall 
(N=53065) 

Yes 628 (11.6%) 
1751 
(9.3%) 

948 (8.4%) 881 (9.0%) 735 (9.4%) 
4943 
(9.3%) 

Diabetes       

No 4496 (83.4%) 
17725 
(94.4%) 

9649 
(85.5%) 

8816 
(89.6%) 

7148 
(91.8%) 

47834 
(90.1%) 

Yes 895 (16.6%) 
1043 
(5.6%) 

1638 
(14.5%) 

1018 
(10.4%) 

637 (8.2%) 
5231 
(9.9%) 

Heart Disease       

No 4685 (86.9%) 
18015 
(96.0%) 

9945 
(88.1%) 

9020 
(91.7%) 

7289 
(93.6%) 

48954 
(92.3%) 

Yes 706 (13.1%) 753 (4.0%) 
1342 
(11.9%) 

814 (8.3%) 496 (6.4%) 
4111 
(7.7%) 

Ever had 
Cancer 

      

No 4584 (85.0%) 
17505 
(93.3%) 

9600 
(85.1%) 

8609 
(87.5%) 

6994 
(89.8%) 

47292 
(89.1%) 

Yes 807 (15.0%) 
1263 
(6.7%) 

1687 
(14.9%) 

1225 
(12.5%) 

791 
(10.2%) 

5773 
(10.9%) 

Mood 
Disorder 

      

No 4396 (81.5%) 
17621 
(93.9%) 

10143 
(89.9%) 

8971 
(91.2%) 

7211 
(92.6%) 

48342 
(91.1%) 

Yes 995 (18.5%) 
1147 
(6.1%) 

1144 
(10.1%) 

863 (8.8%) 574 (7.4%) 
4723 
(8.9%) 

Anxiety 
Disorder 

      

No 4628 (85.8%) 
17773 
(94.7%) 

10388 
(92.0%) 

9141 
(93.0%) 

7290 
(93.6%) 

49220 
(92.8%) 

Yes 763 (14.2%) 995 (5.3%) 899 (8.0%) 693 (7.0%) 495 (6.4%) 
3845 
(7.2%) 

Overnight 
Patient (within 
past 12 
months) 

      

No 4501 (83.5%) 
17424 
(92.8%) 

9921 
(87.9%) 

8875 
(90.2%) 

7149 
(91.8%) 

47870 
(90.2%) 

Yes 890 (16.5%) 
1344 
(7.2%) 

1366 
(12.1%) 

959 (9.8%) 636 (8.2%) 
5195 
(9.8%) 

Family Doctor 
(ever visited) 

      

No 1087 (20.2%) 
4163 
(22.2%) 

2107 
(18.7%) 

2025 
(20.6%) 

1611 
(20.7%) 

10993 
(20.7%) 

Yes 4304 (79.8%) 
14605 
(77.8%) 

9180 
(81.3%) 

7809 
(79.4%) 

6174 
(79.3%) 

42072 
(79.3%) 

Dentist 
Orthodontist 
(ever visited) 

      

No 3295 (61.1%) 
4245 
(22.6%) 

5784 
(51.2%) 

3842 
(39.1%) 

2405 
(30.9%) 

19571 
(36.9%) 

Yes 2096 (38.9%) 
14523 
(77.4%) 

5503 
(48.8%) 

5992 
(60.9%) 

5380 
(69.1%) 

33494 
(63.1%) 
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>80k 
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(N=7785) 

Overall 
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Unmet 
Healthcare 
Needs 

      

No 4581 (85.0%) 
16925 
(90.2%) 

10093 
(89.4%) 

8800 
(89.5%) 

7010 
(90.0%) 

47409 
(89.3%) 

Yes 810 (15.0%) 
1843 
(9.8%) 

1194 
(10.6%) 

1034 
(10.5%) 

775 
(10.0%) 

5656 
(10.7%) 

Injury (within 
the past 12 
months) 

      

No 4634 (86.0%) 
15709 
(83.7%) 

9880 
(87.5%) 

8564 
(87.1%) 

6652 
(85.4%) 

45439 
(85.6%) 

Yes 757 (14.0%) 
3059 
(16.3%) 

1407 
(12.5%) 

1270 
(12.9%) 

1133 
(14.6%) 

7626 
(14.4%) 

Restriction of 
Activity 

      

Never 2642 (49.0%) 
14475 
(77.1%) 

6626 
(58.7%) 

6495 
(66.0%) 

5506 
(70.7%) 

35744 
(67.4%) 

Often 1385 (25.7%) 
1371 
(7.3%) 

2053 
(18.2%) 

1270 
(12.9%) 

821 
(10.5%) 

6900 
(13.0%) 

Sometimes 1364 (25.3%) 
2922 
(15.6%) 

2608 
(23.1%) 

2069 
(21.0%) 

1458 
(18.7%) 

10421 
(19.6%) 

Type of 
Smoker 

      

Daily 1387 (25.7%) 
2158 
(11.5%) 

1856 
(16.4%) 

1486 
(15.1%) 

1025 
(13.2%) 

7912 
(14.9%) 

Does not 
smoke 

3787 (70.2%) 
15791 
(84.1%) 

9037 
(80.1%) 

7953 
(80.9%) 

6442 
(82.7%) 

43010 
(81.1%) 

Occasional 217 (4.0%) 819 (4.4%) 394 (3.5%) 395 (4.0%) 318 (4.1%) 
2143 
(4.0%) 

Type of 
Drinker 
(Alcohol) 

      

Not within 
the past 12 
months 

2147 (39.8%) 
2290 
(12.2%) 

3431 
(30.4%) 

2072 
(21.1%) 

1385 
(17.8%) 

11325 
(21.3%) 

Occasional 1218 (22.6%) 
2460 
(13.1%) 

2453 
(21.7%) 

1901 
(19.3%) 

1282 
(16.5%) 

9314 
(17.6%) 

Regular 2026 (37.6%) 
14018 
(74.7%) 

5403 
(47.9%) 

5861 
(59.6%) 

5118 
(65.7%) 

32426 
(61.1%) 

Country of 
Birth 

      

Other 816 (15.1%) 
2619 
(14.0%) 

1955 
(17.3%) 

1634 
(16.6%) 

1196 
(15.4%) 

8220 
(15.5%) 

Canada 4575 (84.9%) 
16149 
(86.0%) 

9332 
(82.7%) 

8200 
(83.4%) 

6589 
(84.6%) 

44845 
(84.5%) 

Knowledge of 
Official 
Languages 

      

English 3737 (69.3%) 
14095 
(75.1%) 

8088 
(71.7%) 

7121 
(72.4%) 

5761 
(74.0%) 

38802 
(73.1%) 
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English and 
French 

739 (13.7%) 
3534 
(18.8%) 

1497 
(13.3%) 

1548 
(15.7%) 

1247 
(16.0%) 

8565 
(16.1%) 

French 844 (15.7%) 
1101 
(5.9%) 

1614 
(14.3%) 

1115 
(11.3%) 

747 (9.6%) 
5421 
(10.2%) 

Neither 71 (1.3%) 38 (0.2%) 88 (0.8%) 50 (0.5%) 30 (0.4%) 277 (0.5%) 

Cultural / 
Racial Origin 

      

Visible 
minority 

920 (17.1%) 
2421 
(12.9%) 

1494 
(13.2%) 

1255 
(12.8%) 

978 
(12.6%) 

7068 
(13.3%) 

White 4471 (82.9%) 
16347 
(87.1%) 

9793 
(86.8%) 

8579 
(87.2%) 

6807 
(87.4%) 

45997 
(86.7%) 
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Figure 9. d-statistics of imputation models for total household income in Canadian Community Health Survey 2014 with induced 

MAR (mechanism 1: simple) by proportion of missing data 
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Figure 10. d-statistics of imputation models for total household income in Canadian Community Health Survey 2014 with induced 

MAR (mechanism 2: mid-complex) by proportion of missing data. 
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Figure 11. d-statistics of imputation models for total household income in Canadian Community Health Survey 2014 with induced 

MAR (mechanism 3: complex) by proportion of missing data. 
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Figure 12. d-statistics of imputation models for total household income in Canadian Community Health Survey 2014 with induced 

MNAR by proportion of missing data. 
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Table 4. Proportions (%) of true CCHS2014 total household income value by its imputed 
value in induced MAR (mechanism 1: simple) with 35% missingness, imputed via O-RF 

O-RF: MAR-1 (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 38.4 11.1 3.1 1.4 0.4 1381 

20k-39k 44.6 55.3 35.5 20.6 7.0 5283 

40k-59k 3.4 9.3 13.5 11.1 4.4 1467 

60k-79k 0.2 0.5 1.6 1.8 0.7 171 

>80k 13.2 23.9 46.2 65.0 87.5 10020 

Sum 2009 3978 3377 2635 6323 18322 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 

the highest proportion true values in each income category 

 

Table 5. Proportions (%) of true CCHS2014 total household income value by its imputed 

value in induced MAR (mechanism 2: mid-complex) with 35% missingness, imputed via O-
RF 

O-RF: MAR-2 (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 40.7 12.1 3.5 1.5 0.4 1507 

20k-39k 44.1 55.7 36.1 21.1 7.7 5376 

40k-59k 3.5 9.1 14.7 11.4 4.5 1495 

60k-79k 0.3 0.5 1.6 1.3 0.9 166 

>80k 11.3 22.6 44.1 64.6 86.6 9495 

Sum 2066 4040 3331 2596 6006 18039 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 
the highest proportion true values in each income category 

 

Table 6. Proportions (%) of true CCHS2014 total household income value by its imputed 
value in induced MAR (mechanism 3: complex) with 35% missingness, imputed via O-RF 

O-RF: MAR-3 (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 38.4 10.9 3.6 1.8 0.4 1415 

20k-39k 44.4 55.3 35.1 20.7 6.7 5253 

40k-59k 4.1 9.4 14.6 11.1 4.6 1522 

60k-79k 0.4 0.6 1.3 1.8 0.8 179 

>80k 12.7 23.9 45.5 64.6 87.4 9824 

Sum 2046 4005 3366 2604 6172 18193 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 
the highest proportion true values in each income category 
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Table 7. Proportions (%) of true CCHS2014 total household income value by its imputed 
value in induced MAR (mechanism 1: simple) with 35% missingness, imputed via PMM-MI 

PMM-MI: MAR-1 (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 19.2 18.1 12.3 9.1 5.8 2132 

20k-39k 29.5 25.4 20.1 18.1 13.6 3618 

40k-59k 20.1 19.4 21.4 20.0 17.6 3538 

60k-79k 10.8 12.4 13.3 14.1 15.4 2505 

>80k 20.5 24.6 32.9 38.6 47.6 6529 

Sum 2009 3978 3377 2635 6323 18322 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 

the highest proportion true values in each income category 

 

Table 8. Proportions (%) of true CCHS2014 total household income value by its imputed 

value in induced MAR (mechanism 2: mid-complex) with 35% missingness, imputed via 
PMM-MI 

PMM-MI: MAR-2 (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 20.3 16.8 12.2 9.8 6.7 2162 

20k-39k 32.9 29.9 24.4 20.3 15.4 4156 

40k-59k 18.5 18.7 20.3 18.0 17.1 3309 

60k-79k 10.4 12.9 13.7 15.3 15.3 2511 

>80k 17.9 21.6 29.5 36.6 45.4 5901 

Sum 2066 4040 3331 2596 6006 18039 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 
the highest proportion true values in each income category 

 

Table 9. Proportions (%) of true CCHS2014 total household income value by its imputed 
value in induced MAR (mechanism 3: complex) with 35% missingness, imputed via PMM-MI 

PMM-MI: MAR-3 (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 25.4 16.9 9.9 7.4 3.6 1942 

20k-39k 36.4 32.1 24.1 19.2 11.2 4035 

40k-59k 17.6 19.8 21.0 17.4 16.0 3304 

60k-79k 8.6 11.7 14.8 16.2 16.0 2554 

>80k 12.0 19.5 30.2 39.8 53.1 6358 

Sum 2046 4005 3366 2604 6172 18193 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 
the highest proportion true values in each income category 
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Table 10. Proportions (%) of true CCHS2014 total household income value by its imputed 
value in induced MNAR with 5% missingness, imputed via O-RF 

O-RF: MNAR (5%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 34.9 9.9 2.0 1.4 0.4 260 

20k-39k 47.9 55.8 30.9 20.8 6.0 767 

40k-59k 4.4 10.2 17.1 11.1 5.7 205 

60k-79k 0.4 0.3 2.0 2.4 1.5 29 

>80k 12.5 23.8 48.0 64.3 86.4 1309 

Sum 545 588 246 207 984 2570 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 

the highest proportion true values in each income category 

 

Table 11. Proportions (%) of true CCHS2014 total household income value by its imputed 
value in induced MNAR with 15% missingness, imputed via O-RF 

O-RF: MNAR (15%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 27.7 6.7 1.3 1.5 0.1 585 

20k-39k 52.6 55.9 34.5 21.2 6.3 2508 

40k-59k 6.5 14.7 19.9 14.6 6.4 855 

60k-79k 0.3 0.7 2.2 3.1 1.3 100 

>80k 12.8 22.1 42.1 59.6 85.9 4133 

Sum 1573 1840 869 721 3178 8181 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 
the highest proportion true values in each income category 

 

Table 12. Proportions (%) of true CCHS2014 total household income value by its imputed 
value in induced MNAR with 35% missingness, imputed via O-RF 

O-RF: MNAR (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 23.3 5.1 1.2 0.2 0.2 980 

20k-39k 55.2 53.3 28.9 17.1 5.1 5507 

40k-59k 11.3 21.0 29.1 22.3 10.2 3206 

60k-79k 0.3 1.4 2.6 3.2 1.9 342 

>80k 9.9 19.2 38.3 57.2 82.7 9526 

Sum 3023 4544 2380 2004 7610 19561 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 
the highest proportion true values in each income category 
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Table 13. Proportions (%) of true CCHS2014 total household income value by its imputed 

value in induced MNAR with 5% missingness, imputed via PMM-MI 

PMM-MI: MNAR (5%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 22.6 15.1 10.2 4.3 3.9 284 

20k-39k 34.7 31.0 21.5 19.8 10.1 564 

40k-59k 19.1 21.6 19.5 18.4 15.2 467 

60k-79k 10.1 11.2 16.3 15.5 15.9 349 

>80k 13.6 21.1 32.5 42.0 55.0 906 

Sum 545 588 246 207 984 2570 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 

the highest proportion true values in each income category 

 

Table 14. Proportions (%) of true CCHS2014 total household income value by its imputed 

value in induced MNAR with 15% missingness, imputed via PMM-MI 

PMM-MI: MNAR (15%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 22.4 15.0 8.1 5.0 3.3 839 

20k-39k 34.8 30.4 24.6 21.1 12.6 1875 

40k-59k 19.2 21.7 22.9 21.4 17.4 1607 

60k-79k 9.9 13.3 16.6 17.5 16.5 1194 

>80k 13.7 19.6 27.8 35.1 50.2 2666 

Sum 1573 1840 869 721 3178 8181 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 

the highest proportion true values in each income category 

 

Table 15. Proportions (%) of true CCHS2014 total household income value by its imputed 

value in induced MNAR with 35% missingness, imputed via PMM-MI 

PMM-MI: MNAR (35%) True 

Imputed <20k 20k-39k 40k-
59k 

60k-
79k 

>80k Sum 

<20k 19.0 12.5 6.9 4.5 2.3 1570 

20k-39k 34.5 31.0 22.4 19.2 10.6 4173 

40k-59k 22.0 24.7 25.5 21.2 19.4 4300 

60k-79k 11.7 14.4 18.6 18.2 18.4 3220 

>80k 12.8 17.4 26.6 37.0 49.3 6298 

Sum 3023 4544 2380 2004 7610 19561 

Note. Shaded cells indicate the diagonal (i.e. accurately imputed values). Bold figures indicate 

the highest proportion true values in each income category 


