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Abstract

In this work, we lay the foundation for de�ning a category of quantum domains

and developing a model for quantum programming language. We give a de�nition

of quantum domains, which act as objects of the category. In this de�nition, we

consider systems which deal with `progressive information'. Also, we give a de�nition

of progressive superoperators for �nite domains. In the category of quantum domains,

the progressive superoperators act as the morphisms of the category.
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Chapter 1

Introduction

Quantum computers are a promising technology with the potential to revolutionize

the future of computation and communication, as they have more computational

power than the classical computers when it comes to certain problems [6, 17]. There-

fore, it is very important that we develop `suitable' quantum programming languages.

The �rst step would be to determine what are appropriate conditions for a suitable

programming language. For example, due to the no-cloning rule of quantum physics

[18], debugging a quantum program at runtime is not possible [7]. Therefore, it would

be useful to be able to give a formal proof of correctness for certain quantum programs.

In order to assist in the development of such quantum programming languages, it is

important to study their semantics [5, 16].

Domain theory is an indispensable tool for studying semantics of programming

languages, as it allow us to �nd mathematical objects that represent the behavior of

computer programs [1]. Domain theory was developed by Dana Scott and others in

the 1960's. There have been a number of attempts to de�ne a theory of quantum

domains. Some of these focused on quantifying entropy in a quantum setting [4,

9]. Also, in [14], Selinger has proposed a simple �rst-order quantum programming

language by developing a categorical model involving directed-complete partial orders

of superoperators.

In this thesis, we develop a notion of quantum domains that deals with progressive

information, i.e., partial information which might become more complete over time,

which is something that has not been considered in [14]. As an example of partial

information, consider a system built from a pair of quantum devices. The �rst device

can output zero, one, or two qubits. The second device receives the output of the

�rst one and after processing it, outputs a result.

If the �rst device outputs, say, one qubit, it is still possible that later on, it will

output a second qubit. So the second device needs to perform its function without

1
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complete information about the number of qubits it will receive in total. Note that

the second device cannot undo the result after it has been output. When we speak of

�progressive information�, what we mean in this case is that the behavior of the second

device when it receives two qubits of input, must be consistent with its behavior when

it receives just one qubit.

In this thesis, we give a general de�nition of quantum domains suitable for mod-

elling progressive information. The ultimate goal of this line of research is to de�ne

a category of quantum domains (similar to the model given in [14]), where the ob-

jects are quantum domains and the morphisms are �progressive superoperators�. We

achieve part of this goal: we give a general de�nition of quantum domains, and we

de�ne progressive superoperators only in the case of �nite quantum domains. Our

de�nition of progressive superoperator has the potential to be extended to in�nite

domains in future work.

Related Work

The work of this thesis was inspired by the proposal [15] and builds on the earlier

work of summer students Yoann Le Montagner [11] and Alain Patey [13]. In [11],

Le Montagner de�ned a quantum domain and also gave a de�nition of progressive

superoperators for �nite domains. However, the cumbersome notation he used made

it di�cult to show that his de�nition of progressive superoperator has the necessary

conditions, i.e., is a generalization of special cases such as states, observations, su-

peroperators, and stochastic maps. Also, the de�nition he had given for progressive

superoperators could not be easily generalized to the in�nite domains.

In [13], Patey de�ned probabilistic domains (which are a special case of quantum

domains) and gave a de�nition of stochastic maps. Also, using Le Montagner's work

as the basis of his work, he proposed conditions for the implementability of progressive

superoperators for �nite domains, but showing the correctness of these conditions was

left for future work.

Contribution

In this thesis, we propose a new de�nition of quantum domains, which is much simpler
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than previous de�nitions. We de�ne notions of observation and state which are fun-

damental notions in quantum computing. Then we consider the problem of physical

realizability and de�ne �nitely compactly supported states, a class of states that are

physically realizable. Then we show that all states can be achieved as limits of �nitely

compactly supported states. Also, we give two equivalent de�nitions of progressive

superoperators between �nite quantum domains. The second of these de�nitions is

stated in such a way that it can potentially be extended to in�nite domains in the

future.

Outline

In Chapter 2, we give a brief overview of the basic concepts of quantum computing,

domain theory, and probabilistic domains. In Chapter 3, we state our results. In

Section 3.1, we give our de�nition of quantum domains. Sections 3.2, 3.3, and 3.4

address the concepts of observations, states, and �nitely compactly supported states,

respectively. In the last two sections we give two de�nitions of progressive superop-

erators for �nite domains and we discuss why only one of them has the potential to

be generalized to the in�nite case.



Chapter 2

Background

In this chapter, we will brie�y cover some basic notions used in this thesis, as well

as some related background. In the �rst two sections, we cover some basics of Quan-

tum Computing and Domain Theory. The last section will address a simple case of

quantum domains and progressive superoperators, called probabilistic domains and

stochastic maps.

2.1 Quantum Computing

Quantum computers are computers governed by the laws of quantum physics and

quantum computing is using these computers for processing information (by taking

advantage of some of their properties like superposition and entanglement). In this

section, we will brie�y cover the basics of quantum computing which are used in this

thesis. For a more detailed introduction to quantum computing, see [12].

2.1.1 Qubits

A quantum bit or qubit is the foundation of quantum computers. It is a unit of

information which generalizes classical bit. While a classical bit can take only the

states 0 or 1, a qubit can take a non-zero linear complex combination of these two

states. States are de�ned up to scalar multiples. Therefore, we can assume without

loss of generality that states are normalized, i.e., described by vectors of unit length.

More generally, a state q is normalized if ∥q∥ = 1, and subnormalized if ∥q∥ ≤ 1.

While it is possible to normalize the state after each operation, it is sometimes useful

not to do so. Here, we consider the states to be subnormalized.

For the states of the qubits, we sometimes use the Dirac notation |·⟩. The states |0⟩

and |1⟩ (the column vectors

[
1

0

]
and

[
0

1

]
, respectively) are called the computational

4
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basis states, while all the other states q = α |0⟩+β |1⟩, where α, β ∈ C and |α|2+|β|2 =
1, are called superpositions of these basis states.

The state of a pair of qubits is described by a normalized vector in C2 ⊗ C2, and

can be written as

|q⟩ = α |00⟩+ β |01⟩+ γ |10⟩+ δ |11⟩,

where |00⟩ = |0⟩ ⊗ |0⟩, etc. If |q⟩ is of the form |q⟩ = (a |0⟩+ b |1⟩) ⊗ (c |0⟩+ d |1⟩),
where a |0⟩+ b |1⟩ and c |0⟩+ d |1⟩ are single-qubit states, we say that |q⟩ is separable,
otherwise we call |q⟩ entangled. For example, the state |01⟩ = |0⟩ ⊗ |1⟩ is a separable

state, while the state
|00⟩+ |11⟩√

2
is an example of an entangled state.

Similarly, we can write the state of a n-tuple of qubits as follows:

|q⟩ = α0···00 |0 · · · 00  
n

⟩+ α0···01 |0 · · · 01  
n

⟩+ · · ·+ α1···11 |1 · · · 11  
n

⟩

where |0 · · · 00⟩ , |0 · · · 01⟩ , . . . , |1 · · · 11⟩ are the 2n computational basis states and

α0···00, . . . , α1···11 ∈ C.

2.1.2 Unitary Transformations and Measurements

In a physical experiment, there are two types of operation we can perform on a qubit:

Unitary transformations and measurement. A unitary transformation is an operation

analogous to a classical logic gate which evolves the state of the input qubit(s). In

a quantum circuit, unitary transformations are considered to be quantum gates. A

unitary transformation of states (considered as column vectors) is represented by a

unitary square matrix U (i.e., UU † = I and U †U = I) which maps a system in state

|q1⟩ = α1 |0⟩+ β1 |1⟩ to a state |q2⟩ = α2 |0⟩+ β2 |1⟩ where(
α2

β2

)
= U

(
α1

β1

)
.

An example of a quantum gate is the Hadamard gate H =
1√
2

(
1 1

1 −1

)
which acts

as follows

|0⟩ ↦→ 1√
2
|0⟩+ 1√

2
|1⟩ |1⟩ ↦→ 1√

2
|0⟩ − 1√

2
|1⟩.
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This quantum gate acts on a single qubit. Another example of single quantum

gate is the not-gate N =

(
0 1

1 0

)
which switches the basis states (sends |0⟩ to |1⟩ and

|1⟩ to |0⟩).
Some unitary transformations act on more than one qubit. An example of a gate

which operates on two qubits is a controlled gate. For example, the controlled not

gate given by the following 4× 4 matrix,

Nc =

⎛⎝ I 0

0 N

⎞⎠,

is a unitary transformation. When applied to a basis state, it does not a�ect the �rst

qubit and performs the not gate on the second qubit only if the �rst qubit is in state

|1⟩. In the other words, it acts as follows.

|00⟩ ↦→ |00⟩ |01⟩ ↦→ |01⟩

|10⟩ ↦→ |11⟩ |11⟩ ↦→ |10⟩

Measurement is a probabilistic operation which maps a state |q⟩ = α |0⟩+β |1⟩ to
state |0⟩, with probability |α|2 and maps it to state |1⟩, with probability |β|2. Like a
unitary transformation, we can measure the state of a system containing more than

one qubit. Let |q⟩ = α |00⟩ + β |01⟩ + γ |10⟩ + δ |11⟩ be the state of a system of two

entangled qubits. If the left qubit is measured, then the outcome of the measurement

is either

α |00⟩+ β |01⟩√
|α|2 + |β|2

(2.1)

with probability
√
|α|2 + |β|2 or the outcome is

γ |10⟩+ δ |11⟩√
|γ|2 + |δ|2

(2.2)

with probability
√
|γ|2 + |δ|2. Now suppose that after the �rst measurement, the

qubits are in state (2.1). Then if the right qubit is measured, the outcome will be

either |00⟩ with probability |α|2 or it is |01⟩ with probability |β|2. On the other hand

if after the �rst measurement the qubits are in state (2.2), then the result of the
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second measurement is either |10⟩ with probability |γ|2 or it is |11⟩ with probability

|δ|2.

2.1.3 Mixed States and Density Matrices

In classical computation, it is possible to examine bits to determine whether they are

in state 0 or 1. In quantum computation it is not possible to determine the state

of a qubit by only examining it, i.e., �nding the values of the coe�cients α and β

in the state α |0⟩ + β |1⟩. Instead, we have the operation of measurement. When a

qubit in state α |0⟩+ β |1⟩ is measured, the output always will be either 0 or 1 (with

probability |α|2, the output is 0 and with probability |β|2, the output is 1).
Because of this nature of quantum physics, sometimes we have incomplete in-

formation about the state. So we are unable to exactly determine the state of a

qubit, but we can present a set of states that are the possible states for the qubit,

together with the probability of each them happening. This ensemble of states and

their probabilities is called a mixed state. In general a mixed state can be presented as

a subconvex linear combination
∑
i∈I

λi{|qi⟩}, i.e., a linear combination where {λi}i∈I

are real numbers such that λi ≥ 0, for all i ∈ I, and
∑
i∈I

λi ≤ 1. A mixed state∑
i∈I

λi{|qi⟩}, where λi = 0 for all i ̸= j, for some j ∈ I, is called a pure state. As an

example of mixed state, consider the state

|q⟩ = 1

2
{|0⟩}+ 1

2
{|1⟩}.

This mixed state represents a qubit which is in the state |0⟩ with probability
1

2
and

is in the state |1⟩ with the same probability. Note that this state is di�erent from

|q′⟩ = 1√
2
|0⟩+ 1√

2
|1⟩ which a pure state (a superposition of states |0⟩ and |1⟩). As

another example, consider the state

|q⟩ = 4

9

{
|0⟩+ |1⟩√

2

}
+

5

9
{|1⟩}.

The qubit is in the state
|0⟩+ |1⟩√

2
with probability

4

9
and is in the state |1⟩ with

probability
5

9
.
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Also, mixed states are used for situations where two quantum system are entangled

and we want to describe the state of only one of these entangled systems. In this case,

its state cannot be described by a pure state. Since a mixed state can be a mix of any

number of states, working with Dirac notation of states for performing computation

can become cumbersome. A solution for this problem is to use density matrices. A

density matrix can be used to represent both pure and mixed states. The density

matrix of a pure state |q⟩ is |q⟩ ⟨q| (the outer product). For example, the density

matrix of the pure state |0⟩ is

(
1 0

0 0

)
.

The notion of density matrices is especially helpful with mixed states. Let∑
i∈I

λi{|qi⟩}

be the ensemble of pure states corresponding to a mixed state |q⟩. Then |q⟩ can be

represented by density matrix
∑
i∈I

λi |qi⟩ ⟨qi|. For example, consider the mixed state

1

2

{
|0⟩+ |1⟩√

2

}
+

1

2

{
|0⟩ − |1⟩√

2

}
. The density matrix of this state is

1

2

(
1/2 1/2

1/2 1/2

)
+

1

2

(
1/2 −1/2

−1/2 1/2

)
=

1

2

(
1 0

0 1

)
One of the bene�ts of using density matrices is that the density representation of

states is unique. In other words, (pure and mixed) states with same density matrix

are indistinguishable by a process allowed by quantum mechanics. For example, the

state

1

2

{
|0⟩+ |1⟩

2

}
+

1

2

{
|0⟩ − |1⟩

2

}
given above is indistinguishable from the mixed state

1

2
{|0⟩}+ 1

2
{|1⟩}, as both have

the same density matrix
1

2

(
1 0

0 1

)
. Using the density matrices, we can determine

that the pure superposition state
1√
2
|0⟩+ 1√

2
|1⟩ is di�erent than the mixed state

1

2
{|0⟩}+ 1

2
{|1⟩}, since the former has a density matrix of

1

2

(
1 1

1 1

)
, which is not

equal to the density matrix of
1

2
{|0⟩}+ 1

2
{|1⟩}, given above.
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Now, we will address the necessary and su�cient conditions for density matrices,

but before doing so, we need to de�ne positive matrices.

De�nition 2.1. Using physics terminology, a matrix A is called positive, if it is

hermitian and positive semi-de�nite. We write 0 ⊑ A to indicate A is positive.

De�nition 2.2. For two matrices A and B, we have A ⊑ B if and only if 0 ⊑ B−A.

Proposition 2.3. A matrix A is the density matrix of some mixed state if and only

if A is positive and has a trace less than 1.

Note that equivalently, we can de�ne a unitary transformation as a map on density

matrices. In our previous de�nition, a unitary transformation U mapped a state q to

the state Uq. By expanding this de�nition, we have that a unitary transformation U

maps a density matrix M to the density matrix UMU †.

Similar to unitary transformations, we can de�ne the measurement operation on

density matrices. The density matrix of a pure state |q⟩ = α |0⟩+ β |1⟩ is(
αα∗ αβ∗

βα∗ ββ∗

)
.

So measurement maps the above density matrix to density matrix

(
1 0

0 0

)
with prob-

ability αα∗ and maps it to the density matrix

(
0 0

0 1

)
with probability ββ∗. More

generally, the density matrix of a mixed state is

(
a b

c d

)
, where a+ d = 1. Measure-

ment maps the density matrix of such mixed state to density matrix

(
a 0

0 0

)
with

probability a and maps it to the density matrix

(
0 0

0 d

)
with probability d.

2.1.4 Superoperators

For modelling the general evolution of quantum systems, we need to de�ne an operator

which maps the initial state (density matrix) to the new state (density matrix). Also,
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this operator needs to preserve the properties of density matrices. This operator is

called a superoperator. Before giving a formal de�nition of superoperator, we �rst

need to de�ne convex spaces and linear maps on convex spaces.

Notation 2.4. Let H be a �nite dimensional Hilbert space. B(H) denotes the set of

(bounded) linear maps on H.

De�nition 2.5. A subset X of a real vector space is called pointed if 0 ∈ X, and it is

called convex if for all v, w ∈ X and λ1, λ2 ∈ R such that λ1, λ2 ≥ 0 and λ1 + λ2 = 1,

we have λ1v+ λ2w ∈ X. The expression λ1v+ λ2w is called a convex combination of

v and w.

Note that if X is pointed and convex, we can also form subconvex combinations,

namely λ1v + λ2w where λ1 + λ2 ≤ 1, or more generally, λ1v1 + · · · + λnvn, where

λ1 + · · ·+ λn ≤ 1.

De�nition 2.6. A pointed convex space is a pointed convex subset of a real vector

space.

Example 2.7. The following are some examples of pointed convex spaces:

• any real vector space

• [0, 1]

•
∏

i∈I B (Hi)
+, where B (Hi)

+ is the set of positive bounded linear maps on

Hilbert spaces

•
{
T ∈

∏
i∈I B (Hi)

+ | T ⊑ I
}

•
{
T ∈

∏
i∈I B (Hi)

+ | tr(T ) ≤ 1
}

De�nition 2.8. Let X and Y be pointed convex spaces. We say that a map F :

X → Y is linear if it preserves subconvex combinations, i.e., for all v, w ∈ X and

λ1, λ2 ∈ [0, 1] with λ1 + λ2 ≤ 1,

F (λ1M1 + λ2M2) = λ1F (M1) + λ2F (M2).

De�nition 2.9. [2] Let Cn×n denote the vector space of complex n× n-matrices. A

superoperator f : Cn×n → Cm×m is an operator which has the following properties:
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• f is linear

• f is positive, i.e., for all A ∈ Cn×n such that A is positive, f(A) is positive

• f is trace non-increasing, i.e., for all A ∈ Cn×n such that 0 ⊑ A, tr(f(A)) ≤
tr(A)

• f is completely positive, i.e., for all k ≥ 1 and for all A ∈ Ckn×kn such that

0 ⊑ A, 0 ⊑ (idk ⊗ f) (A).

Theorem 2.10. [10] For any completely positive operator f : Cn×n → Cm×m, there

exist operators Sj ∈ Cm×n, j ∈ J such that
∑
j∈J

S†
jSj ⊑ I and for all A ∈ Cn×n,

f(A) =
∑
j∈J

SjAS
†
j .

De�nition 2.11. [10] The sum de�ned in the previous theorem is called a Kraus

representation or operator-sum representation of the operator f . Note that Kraus

representations are not unique.

Next we will present a simpli�ed version of Choi's Theorem on completely positive

maps [3].

Theorem 2.12. [Simpli�ed Choi's Theorem] Let H be a Hilbert Space. A map F :

C → B(H) is completely positive if and only if it is positive. Similarly, a map

F : B(H) → C is completely positive if and only if it is positive.

2.2 Domain Theory

In this section, we present some basic concepts of domain theory.

De�nition 2.13. A partially ordered set or poset is a set P together with a binary

relation ≤ such that the following properties hold for all x, y, z ∈ P :

• Re�exivity: x ≤ x

• Antisymmetry: x ≤ y ∧ y ≤ x =⇒ x = y

• Transitivity: x ≤ y ∧ y ≤ z =⇒ x ≤ z.
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Finite (and some in�nite) posets can be visualized by their Hasse diagram, which

shows each element of P as a vertex and uses directed edges to indicate x ≤ y

relation.

Example 2.14. The diagram representation of three di�erent posets is given in

Figure 2.1.

◦ω

◦2

◦1

◦0

(a) Natural numbers with in�nity

{a, b}
◦

{a}
◦

{b}
◦

∅◦

(b) Subsets of {a, b}

T
◦

F
◦

⊥◦

(c) Flat boolean

Figure 2.1: Three examples of posets

Figure 2.1(a), shows the diagram of the poset of the ordinal natural numbers with

`in�nity'. It is an example of an in�nite poset. Figure 2.1(b) shows the set of subsets

of {a, b} ordered by the inclusion relation. Figure 2.1(c) shows the �at boolean poset.

We will later return to this poset as it is used for explaining the behavior of a system

with partial information. Figures 2.1(b) and 2.1(c) are examples of �nite posets.

De�nition 2.15. Let (P,≤) be a partially ordered set and A ⊆ P . An upper bound

for A is an element u ∈ P such that u is above every element of A (∀x ∈ A, x ≤ u).

Similarly, a lower bound of A is an element l ∈ P such that l is below all the elements

of A (∀x ∈ A, l ≤ x).

As an example, consider the subset A = {∅, {a}} in Figure 2.1(b). The elements

{a} and {a, b} are upper bounds of A and ∅ is the lower bound of A. In the third

�gure (Figure 2.1(c)), the subset A = {F, T} does not have an upper bound. The

lower bound of A is the element ⊥.

De�nition 2.16. Let (P,≤) be a partially ordered set and A ⊆ P . The supremum

(in�mum) of A is an element x ∈ P which is the smallest upper bound (greatest lower

bound) of A. The supremum of A is denoted by supa∈A a. The element x is called

the maximum (minimum) element of A if x ∈ A and x is the supremum (in�mum)

of A.
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Consider the subset A = {∅, {a}, {a, b}}, in Figure 2.1(b). The maximum element

of A is {a, b} and its minimum element is ∅. The subset A = {⊥, F, T} of the poset

given in Figure 2.1(c) does not have a maximum element, but it has a minimum

element ⊥.

De�nition 2.17. Let (P,≤) be an ordered set. If an element x ∈ P is below all the

elements of P , then x is called the least element or bottom element and is denoted by

⊥. Dually, an element x ∈ P is called the top element if it is above every element of

P .

De�nition 2.18. Let P be a poset. A subset A ⊆ P is called directed, if A is

nonempty and each pair of elements of A has an upper bound in A.

As an example, consider the subset A = {1, 2, 3} of the poset in Figure 2.1(a).

This totally ordered subset (chain) is directed. The subset A = {∅, {a}, {b}} is not

directed, since there is not upper bound of {a} and {b} in A.

De�nition 2.19. A directed-complete partial order (dcpo) (sometimes domain) is a

poset in which all directed subsets have a supremum.

Every �nite poset is a dcpo. So the posets in Figures 2.1(b) and 2.1(c) are both

dcpo's. The poset in Figure 2.1(a), is an example of an in�nite dcpo. Note that the

poset of ordinal natural numbers (without in�nity) is not a dcpo, since the poset itself

is directed, but does not have a supremum.

De�nition 2.20. Let P and Q be two posets. A map f : P → Q is monotone, if for

all x, y ∈ P such that x ≤ y, f(x) ≤ f(y).

De�nition 2.21. A map f between two dcpo's which is both monotone and preserves

suprema of directed sets is called Scott-continuous.

Proposition 2.22. Let P be a dcpo. Let I and J be directed posets and let {ai,j}i∈I,j∈J
be a monotone family of elements of P , i.e., i ≤ i′ and j ≤ j′ implies aij ≤ ai′j′.

Then the following suprema exist and are equal:

sup
i∈I

(
sup
j∈J

(ai,j)

)
= sup

j∈J

(
sup
i∈I

(ai,j)

)
.
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2.2.1 Approximation

De�nition 2.23. [1] Let D be a dcpo and x, y ∈ D. We say that x approximates y

if for all directed subsets A ⊆ D, y ≤ supz∈A z implies x ≤ a, for some a ∈ A. An

element is called compact if it approximates itself.

Notation 2.24. In this thesis, some of the notations were adapted from [1]. Let D be

a dcpo and x, y ∈ D:

• x ≪ y ⇔ x approximates y

• ↞x = {y ∈ D | y ≪ x}

• K(D) = {x ∈ D | x is compact}

Example 2.25. Consider the poset given in Figure 2.1(a). Then n ≪ n + 1, for all

n ∈ N. Now consider the poset P , given in Figure 2.2 and a1, a2 ∈ P . It is clear that

a1 does not approximate a2, since for the subset B = {b0, b1, . . . , ω}, we have a2 ≤ ω,

but there does not exists any bi ∈ B such that a1 ≤ bi. As a matter of fact, for all

x, y ∈ P , x does not approximate y (x ̸≪ y).

◦
ω

◦a2

◦a1

◦a0

◦ b2

◦ b1

◦ b0

Figure 2.2: Two copies of natural numbers with in�nity, connected at the top element

Proposition 2.26. Let D be a dcpo and let x, y ∈ D. Then the following holds:

• x ≪ y ⇒ x ≤ y

• If x ∈ K(D), then x ≤ y implies x ≪ y (x approximates all the elements above

it).
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2.2.2 Algebraic Domains

De�nition 2.27. [1] A dcpo D is called an algebraic domain if for all x ∈ D, the set

K(D)∩ ↞x of compact elements approximating x is directed, and x = sup (K(D) ∩ ↞x).

Example 2.28. Figure 2.3, presents an example of an algebraic domain, while the

dcpo given in Figure 2.2, is an example of a domain which is not algebraic.

◦ω

◦a2

◦a1

◦a0

◦ ω′

◦ a′2

◦ a′1

◦ a′0

Figure 2.3: Two parallel copies of natural numbers with in�nity

Remark 2.29. Note that every �nite poset is an algebraic domain.

De�nition 2.30. [1] Let S be a poset (we can think of S as being the set of compact

elements of some algebraic domain). S is mub-complete, if for every �nite subset

M ⊆ S, below each upper bound u ∈ S of M , there is at least one minimal upper

bound of M in S. For a �nite set M ⊆ S, the mub-closure of M , denoted mc(M),

is the smallest set that contains all minimal upper bounds (in S) of �nite subsets of

mc(M).

Remark 2.31. Let S be a poset with bottom element ⊥ and let M ⊂ S be a �nite

set. Then ∅ ⊂ mc(M) and ⊥ is the minimal upper bound for ∅. So ⊥∈ mc(M).

De�nition 2.32. [1] A dcpo D is bi�nite when:

1. D has a least element (denoted by ⊥),

2. D is algebraic,

3. K(D) is mub-complete,

4. given a �nite set M ⊆ K(D), the mub-closure of M (mc (M)) is �nite.
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2.3 Probabilistic Domains

In this section, we cover a special case of quantum domains which has been addressed

in the literature [8](see also [13, 15]), namely probabilistic domains. For simplicity,

we �rst consider the �nite case.

De�nition 2.33. A �nite probabilistic domain PD is a �nite domain D, together

with a tuple of probabilities px, where x ∈ D and
∑
x∈D

px = 1. The values of the tuple

(px)x∈D are called the probabilistic states of the domain.

For a better understanding of this de�nition, consider a system which can produce

0, 1, or 2 tokens with probability p0, p1, and p2, respectively, where p0 + p1 + p2 = 1.

This system corresponds to a 3-element domain D = {0, 1, 2}, where a probability pi

is assigned to each element i = 0, 1, 2 of D. The domain is presented in Figure 2.4.

The tuple (1/3, 1/3, 1/3) is a probabilistic state of this system.

2

1

0

p2

p1

p0

Figure 2.4: A probabilistic system which might output 0, 1, or 2 tokens

If we consider the amount of information we have about the behavior of the system,

then we can de�ne an information order on the probabilistic states of this system.

Figure 2.5 shows three probabilistic states of this system and the order on them.

2

1

0

p2 = 0

p1 = 0

p0 = 1

⪯

2

1

0

p2 = 0

p1 = 1

p0 = 0

⪯

2

1

0

p2 = 1

p1 = 0

p0 = 0

Figure 2.5: Information order on the probabilistic states

The intuition behind this order is that as we move up in the domain, we have more

information about the behavior of the system. For example, when the system has

output one token, we know for certain that the system will not output zero tokens.
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In the same way, when the system has output two tokens, we know that it will not

output zero or one token (or in other words, will not stay in the positions 0 or 1).

In order to formally de�ne this order, �rst the concept of observations needs to

be de�ned.

De�nition 2.34. Let PD be a �nite probabilistic domain. An observation on D is a

monotone function q : D → [0, 1].

Now, a pairing function can be de�ned on states and observations, by assigning

a probability to each pair of a state and an observation. This will be used to de�ne

the information order.

De�nition 2.35. Let PD be a �nite probabilistic domain, let p = (px)x∈D be a state,

and let q : D → [0, 1] be an observation. The pairing of state and observation is

de�ned by

⟨p | q⟩ =
∑
x∈D

pxq(x).

De�nition 2.36. Let PD be a �nite probabilistic domain and let p, p′ be two states

of the domain. The information order on states is de�ned by

p ⪯ p′ ⇔ for all observations q, ⟨p | q⟩ ≤ ⟨p′ | q⟩.

Note that the 3-elements states in Figure 2.5 are ordered as shown here.

While the given de�nition of states works nicely in the �nite case, in order to work

with in�nite domains, the de�nition of probabilistic domains, their observations and

states needs to be re�ned.

Note that the �rst de�nition of observations can be easily extended to non-�nite

domains by de�ning the observations only on compact elements, i.e., for a non-�nite

quantum domain D, an observation on D is a monotone function B : K(D) → [0, 1].

De�nition 2.37. A probabilistic domain is an algebraic domain D. A probabilistic

state on D is a linear Scott-continuous function p from observations to [0, 1].

Remark 2.38. In case D is �nite, this de�nition agrees with our previous de�nition, as

it can be proved that the state p is uniquely de�ned by the linear function q ↦→ ⟨p | q⟩
and vice versa.
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Note that in an in�nite domain, the non-compact elements can only be reached as

limits of compact ones. So, it would be ideal to prove that under suitable conditions

a state can be represented as a limit of compact ones. This goal is achieved through

compactly-supported states.

De�nition 2.39. A compactly-supported state is a state which can be represented

as an assignment of probabilities to the set of compact elements of the domain, such

that the probabilities sum to 1 (similar to the �nite case).

Theorem 2.40. [13, 15] (Fundamental theorem of probabilistic powerdomains) Let D

be a bi�nite domain. Every state on D is a supremum of a directed set of compactly-

supported states.

In order to give a general model for the behavior and evolution of probabilistic

systems (modelled by probabilistic domains), an operator needs to be de�ned on the

states of the system. In [13], Patey has given two de�nitions for such operators (called

stochastic maps) between two bi�nite probabilistic domains P and Q:

1. a Scott-continuous function from P to States(Q)

2. a Scott-continuous linear function from States(P ) to States(Q)

where States(P ) denotes the set of all probabilistic states of P . Then the author

has proved that these de�nitions are equivalent, i.e., the set of all Scott-continuous

functions from P to States(Q) is isomorphic to the set of all Scott-continuous linear

functions from States(P ) to States(Q). For proving this isomorphism, Patey has

used the results of Claire Jones on probabilistic non-determinism [8].

In her thesis, Jones de�ned the notion of evaluations on topological spaces. An

evaluation is a map from the set of open sets to the interval [0,∞]. But equivalently,

evaluations can be de�ned from the set of open sets to the interval [0, 1]. Next, Jones

de�ned a functor V on the category DCPO, which is a category with dcpo's as its

objects and continuous functions as its morphisms. This functor takes every dcpo D

to the set of its evaluations V(D), which itself is also a dcpo. For every two evaluations

µ and ν, the order on evaluations is de�ned by

µ ≤ ν ⇔ µ(O) ≤ ν(O), for all open sets O.
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Lastly, Jones has proved that for two dcpo's P and Q, the set of continuous

functions f : P → V(Q) is the same as the set of continuous so-called super-linear

functions f : P → Q.

In [13], the author has discussed that based on the de�nition of open sets and

evaluations, the open sets can be viewed as observations and the evaluations can

be viewed as states. In this way, evaluating an open set is equivalent to the inner

product of states and observations and the information order is same as the order on

the evaluations. Therefore, using the result obtained by Jones, for bi�nite domains

P and Q, the set of all Scott-continuous functions f : P → States(Q) is isomorphic

to the set of Scott-continuous linear functions f : States(P ) → States(Q). Note that

for using this result, it is important that the domains are bi�nite (and thus algebraic).

This result is formulated in the following proposition.

Proposition 2.41. [13] Let P and Q be bi�nite probabilistic domains. The set of

Scott-continuous functions f : P → States(Q) is isomorphic to the set of Scott-

continuous linear functions f : States(P ) → States(Q).

Using this result, the author in [13] de�ned the stochastic maps as follows:

De�nition 2.42. [13] Let D and E be two probabilistic bi�nite domains. A stochas-

tic map is a Scott-continuous function from D to States(E). Equivalently, a stochas-

tic map can also be de�ned as a Scott-continuous linear map from States(D) to

States(E), and we will use the two de�nitions interchangeably.



Chapter 3

Quantum Domains

In this chapter, we de�ne quantum domains. A quantum domain is a domain which

can be used to describe the behavior of a quantum system. In the �rst section, we

will give a formal de�nition for the quantum domains. In Section 3.2, we will give

a de�nition for observations and will show that the set of all observations forms a

dcpo. In Section 3.3, we will de�ne states and show that the set of all states together

with information order will form a dcpo. In Section 3.4, we will introduce the notion

of �nitely compactly supported states (states which are physically realizable) and

will show that every state can be viewed as a limit of �nitely compactly supported

ones. In Section 3.5, we will give a de�nition for progressive superoperator for �nite

quantum domains and discuss how this de�nition will extend special cases like states,

observations, superoperators, and stochastic maps. In Section 3.6, we will discuss

why the de�nition of progressive superoperator given in the previous section was not

suitable for extension to non-�nite domains. Then we will give the dual de�nition of

progressive superoperators which addresses those problems.

Before giving a de�nition for quantum domains, let us consider an example of a

quantum domain. Assume that we have a quantum system which might output 0, 1,

or 2 qubits. The behavior of this system can be described using the domain given in

Figure 3.1.

◦ 2 A2

◦ 1 A1

◦ 0 A0

Figure 3.1: A quantum domain which might outputs 0, 1, or 2 qubits

Here, similar to the probabilistic domains, the arrows indicate an increase in the

information about the behavior of the system. However, unlike the probabilistic

20
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domain, A0, A1, and A2 are not all probabilities. While A0 ∈ C1×1 indicates the

chance of system outputting no qubits, A1 ∈ C2×2 and A2 ∈ C4×4 are matrices which

give more information about the output of the system than just the probability with

which the system outputs one and two qubits, respectively. The system outputs one

qubit (resp. two qubits) in state A1 (resp. A2) with probability tr (A1) (resp. tr (A2)).

This means that for giving a de�nition of quantum domains, in addition to con-

sidering the structure of the positions of the system (given by the domain), we need

to consider the space of density matrices corresponding to each position. We can use

this information to give a formal de�nition of quantum domains, but before doing so,

we �rst will mention a de�nition and a notation used in this thesis.

De�nition 3.1. Let H and K be �nite dimensional Hilbert spaces. A linear mul-

tiplicative involution preserving unital map (miu-map) f : B(H) → B(K) is a map

with following properties:

• f(AB) = f(A)f(B)

• f(A†) = f(A)†

• f(I) = I

Notation 3.2. Let FHilbimiu be the category which has

• as objects, the �nite dimensional Hilbert spaces,

• as morphisms, the injective miu-maps (imiu-maps) of the form f : B(H1) →
B(H2), where H1 and H2 are �nite dimensional Hilbert spaces.

Remark 3.3. The morphisms of this category are Scott-continuous maps.

3.1 De�nition of Quantum Domain

Now we can de�ne quantum domains formally:

De�nition 3.4. A quantum domain D = (D,H) consists of:

• a bi�nite domain D,
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• a functor H: K(D) → FHilbimiu where

� On objects: For all x ∈ K(D), x ↦→ H(x) = Hx

� On morphisms: For all x, y ∈ K(D) with x ≤ y, Hx,y is an injective miu-

map B (Hx) → B (Hy):

y

x

B (Hy)

B (Hx)

Hx,y↦−→

Example 3.5. Consider the diagram in Figure 3.2. The diagram represents a quan-

tum system which has two channels and might output zero qubit or one qubit (from

one of the channels). The nodes indicate the number of qubits that have been output

and their label shows the Hilbert space assigned to that compact element.

x C2yC2

⊥ C

Figure 3.2: A quantum system with two channels

De�nition 3.6. For all x, y ∈ K(D) with x ≤ y, the adjoint of the function Hx,y (also

called the partial trace) is the map H†
x,y : B (Hy) → B (Hx). It is a linear function,

but not necessarily injective nor miu-map.

3.2 Observations

Quantum systems are usually described by their states and the observations on them,

so in this section, we will give a de�nition for observations in our setting. In order to

do so, we �rst will give a de�nition of the space of matrix tuples and the operations

over them.

De�nition 3.7. Let D = (D,H) be a quantum domain. Every element

T ∈
∏

x∈K(D)

B (Hx)
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is called a matrix tuple. The space of all matrix tuples over D is denoted by

VD =
∏

x∈K(D)

B (Hx).

A matrix tuple is called positive if Ax is positive (i.e., positive semi-de�nite and

hermitian) for all x ∈ K(D). The set of positive matrix tuples is denoted by VD
+.

De�nition 3.8. For A = (Ax)x∈K(D) ∈ VD, the support of A is Supp(A) = {x | Ax ̸=
0}.

De�nition 3.9. For all positive A = (Ax) ∈ VD, the trace is de�ned as:

tr(A) =
∑

x∈K(D)

tr(Ax) ∈ [0,∞]

Now we will de�ne the concept of observation in our setting of quantum domains:

De�nition 3.10. B = (Bx) ∈ VD is an observation if:

• ∀x ∈ K(D), 0 ⊑ Bx

• ∀x ∈ K(D), Bx ⊑ I

• ∀x, y ∈ K(D), x ≤ y, Hx,y (Bx) ⊑ By

The set of all observations is denoted by OD.

Note that the observations are only de�ned at compact elements. For example,

consider a system which outputs an in�nite stream of qubits. Such a system corre-

sponds to the diagram in Figure 3.3:

◦ω

◦2

◦1

◦0

C4×4

C2×2

C

Figure 3.3: The domain representing a stream of qubits
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The element ω cannot be achieved except as a limit of �nite elements. This notion was

considered in our de�nition of observation and is the reason that the observation was

de�ned only for compact elements. Next we will show that the set of all observations

forms a dcpo.

Theorem 3.11. The partially ordered set (OD,⊑) is a dcpo.

Proof. Let {Bj}j∈J be a directed family of observations. De�ne B = sup
j∈J

(
Bj
)
be the

pointwise supremum of Bj's. We want to show that B is an observation, as well. In

order to do so we need to show

1. ∀x ∈ K(D), 0 ⊑ Bx

2. ∀x ∈ K(D), Bx ⊑ I

3. ∀x, y ∈ K(D), x ≤ y, Hx,y(Bx) ⊑ By

The proof of the required conditions is as follows:

1. We know ∀x ∈ K(D), 0 ⊑ Bj
x, so 0 ⊑ Bj

x ⊑ sup
j∈J

(
Bj

x

)
= Bx. This implies that

∀x ∈ K(D), 0 ⊑ Bx.

2. We know ∀x ∈ K(D), Bj
x ⊑ I. So I is an upper bound for Bj

x's. So as Bx is the

least upper bound of {Bj
x}, ∀x ∈ K(D), Bx ⊑ I.

3. We know ∀x, y ∈ K(D), x ≤ y, Hx,y(B
j
x) ⊑ Bj

y. So

Hx,y(B
j
x) ⊑ Bj

y ⊑ sup
j∈J

(
Bj

y

)
= By.

Also, Hx,y is Scott-continuous since it is an injective miu-map. This implies

that Hx,y (Bx) is the least upper bound of
{
Hx,y(B

j
x)
}
j∈J . So Hx,y (Bx) ⊑ By

and thus we have ∀x, y ∈ K(D), x ≤ y, Hx,y(Bx) ⊑ By.

Therefore, B is an observation. This implies that the set (OD,⊑) is a dcpo and we

are done.
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3.3 States

In the context of quantum computing, the concepts of states and observation can

be considered as dual, because on one hand, the observation we make is completely

dependent on the state in which the system is in. On the other hand, the only way we

can determine the system's state is by making an observation. Therefore, in order to

make our de�nitions compatible with actual systems and experiments, we will de�ne

the state as a function of observations.

De�nition 3.12. Let D and E be two quantum domains. A function F : VD → VE

is called linear if it preserves the subconvex combination. In other words, for all

M1,M2 ∈ VD and λ1, λ2 ∈ [0, 1] with λ1 + λ2 ≤ 1,

F (λ1M1 + λ2M2) = λ1F (M1) + λ2F (M2)

De�nition 3.13. A state of D is a linear Scott-continuous function A : OD → [0, 1].

The set of all states is denoted as SD. From now on, A(B) will be denoted ⟨A,B⟩.
Next we need to de�ne an order on the states.

Proposition 3.14. If B1 ⊑ B2 ∈ OD and A ∈ SD, then ⟨A,B1⟩ ≤ ⟨A,B2⟩.

Proof. The result follows from monotonicity of A.

De�nition 3.15. The information order ⪯ over SD is de�ned as follows. Let A1 and

A2 be two states on a quantum domain D, then we say A1 ⪯ A2 if

∀B ∈ OD, ⟨A1, B⟩ ≤ ⟨A2, B⟩

This relation is a partial order over SD. In the next theorem, we will show that SD

together with the de�ned partial order forms a dcpo.

Theorem 3.16. The partially ordered set (SD,⪯) is a dcpo.

Proof. Let {Aj}j∈J be a directed family of states. De�ne A = sup
j∈J

(
Aj
)
to be the

pointwise supremum of {Aj}j∈J . We want to show that A is a state (a linear Scott-

continuous function), as well.
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1. Linearity:

Let B1, B2 ∈ OD and λ1, λ2 ∈ [0, 1] such that λ1 + λ2 ≤ 1. First we will show

that

(i) For k = 1, 2, λk sup
j∈J

(
⟨Aj, Bk⟩

)
= sup

j∈J

(
⟨Aj, λkBk⟩

)
(ii) sup

i∈J

(
⟨Ai, B1⟩

)
+ sup

j∈J

(
⟨Aj, B2⟩

)
= sup

i,j∈J

(
⟨Ai, B1⟩+ ⟨Aj, B2⟩

)
.

For proving (i), �rst note that since Aj are states, we have ⟨Aj, λkBk⟩ =

λk⟨Aj, Bk⟩. So we only need to show that λk sup
j∈J

(
⟨Aj, Bk⟩

)
= sup

j∈J

(
λk⟨Aj, Bk⟩

)
.

For k = 1, 2 and j ∈ J , sup
j∈J

(
⟨Aj, Bk⟩

)
belongs to [0, 1]. So (i) follow from

the fact that multiplication on positive real numbers is Scott-continuous. Sim-

ilarly, (ii) follows from the fact that addition on positive real numbers is Scott-

continuous. Therefore, A = sup
j∈J

(
Aj
)
is linear. Next we will show the Scott-

continuity of A = sup
j∈J

(
Aj
)
.

2. Scott-Continuity:

For A to be Scott-continuous, it needs to have the two following conditions:

• Monotonicity:

Let B1, B2 ∈ OD such that B1 ⊑ B2. So for all j ∈ J , ⟨Aj, B1⟩ ≤ ⟨Aj, B2⟩.
Therefore, we have

⟨A,B1⟩ = sup
j∈J

(
⟨Aj, B1⟩

)
≤ sup

j∈J

(
⟨Aj, B2⟩

)
= ⟨A,B2⟩

So ⟨A,B1⟩ ≤ ⟨A,B2⟩ which implies A is monotone.

• Preservation of Suprema:

Let {Bk}k∈K be a directed family of observations. De�ne B = sup
k∈K

(Bk).

We have

sup
k∈K

(⟨A,Bk⟩) = sup
k∈K

(
sup
j∈J

(⟨
Aj, Bk

⟩))
= sup

j∈J

(
sup
k∈K

(⟨
Aj, Bk

⟩))
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= sup
j∈J

(⟨
Aj, sup

k∈K
(Bk)

⟩)
= sup

j∈J

(⟨
Aj, B

⟩)
= ⟨A,B⟩

Note that the third equality holds because the Aj are states and therefore

are Scott-continuous.

This shows that A is monotone and preserves suprema which implies that A is

Scott-continuous.

Therefore, A = sup
j∈J

(
Aj
)
is a state which implies that (SD,⪯) is a dcpo and we

are done.

3.4 Finitely Compactly Supported States

In general, we would like to prove that under suitable conditions, all states on a

quantum domain are `physically realizable'. However, in general, it is not clear what

exactly is `physical'. We therefore de�ne a subset of states, which we call the `�nitely

compactly supported states', which are de�nitely physically realizable, and then we

will show that all quantum states arise as directed suprema of �nitely compactly

supported ones.

3.4.1 Projectable Sets

In this subsection, we will de�ne projectable sets and give some of their properties. In

the next subsection, we will use projectable sets to de�ne projection of observations

and restricted states which are necessary for the proof of Theorem 3.48.

De�nition 3.17. Let D be a domain. A �nite subset X ⊆ K(D) is called projectable

if for all d ∈ D, the set {x ∈ X | x ≤ d} has a maximum.

Remark 3.18. Let D be a dcpo and let X, Y ⊆ K(D) be projectable. Then X ∪ Y is

not necessarily projectable. As an example, consider the following domain D:
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{a, b}
◦

a
◦

b
◦

⊥◦

The sets X = {⊥, a} ⊂ D and Y = {⊥, b} ⊂ D are projectable. However,

X ∪ Y = {⊥, a, b}

is not projectable, since the set {x ∈ X ∪ Y | x ≤ {a, b}} = {⊥, a, b} does not have a

maximum.

We will now give a de�nition of projection and inclusion (embedding) maps and

discuss some properties of these maps and projectable sets.

De�nition 3.19. Let D be a bi�nite domain and let X ⊂ K(D) be projectable.

De�ne the projection map pX : D → X by

pX(d) = max (X ∩ ↓d) = max{x ∈ X | x ≤ d}

Moreover, let eX : X → D be the inclusion map.

Lemma 3.20. Let M be a �nite set of compact elements of an algebraic domain D.

Below each upper bound of M , there is a compact upper bound.

Proof. Let u ∈ D be an upper bound of M . Since D is algebraic, the set K(D) ∩ ↓u
is directed, with u as its supremum. We have M ⊆ K(D) ∩ ↓u, so as K(D) ∩ ↓u is

directed, there exists u′ ∈ K(D) ∩ ↓u such that u′ is an upper bound of M . So u′ is

an upper bound of M which is in K(D) and is below u.

Proposition 3.21. Let D be a bi�nite domain and let M be a �nite set of compact

elements of D. We have

1. mc(M) is projectable.

2. the projection map pmc(M) is Scott-continuous.

3. pmc(M) and emc(M) are adjoints. In other words,
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∀x ∈ mc(M), ∀d ∈ D, x ≤ pmc(M)(d) ⇔ emc(M)(x) ≤ d

Proof. 1) Let x ∈ D be given. We need to show that the set

A := mc(M) ∩ ↓x = {y ∈ mc(M) | y ≤ x}

has a maximum. Note that as D is bi�nite, mc(A) is �nite, which implies that A is

�nite, as well. Therefore, by Lemma 3.20, there exists a compact upper bound k of

A, where k ≤ x (as x is an upper bound of A). Consequently, as D is bi�nite, K(D)

is mub-complete, which implies that there exists a minimal compact upper bound u

of A, below k. Since u is minimal upper bound of A ⊆ mc(M), u ∈ mc(M). Also, we

know u ≤ k ≤ x, which implies u ∈ ↓x. So, we have u ∈ A. Therefore, u is an upper

bound of A which a part of A, which implies that u is maximum of A.

2) We need to show that pmc(M) is monotone and preserves suprema. Let x, y ∈ D

with x ≤ y. So ↓x ⊆ ↓y and thus mc(M) ∩ ↓x ⊆ mc(M) ∩ ↓y. Therefore, we have

pmc(M)(x) = max (mc(M) ∩ ↓x) ≤ max (mc(M)↓y) = pmc(M)(y).

So, pmc(M) is monotone. Next, we will show that pmc(M) preserves directed suprema.

Let A ⊆ D be directed. Since pmc(M) is monotone, pmc(M)(A) is directed, as well. So

sup
(
pmc(M)(A)

)
≤ pmc(M) (sup(A)). We only need to show that

pmc(M) (sup(A)) ≤ sup
(
pmc(M)(A)

)
.

We know that pmc(M) (sup(A)) ≤ sup (A). Also, we know that pmc(M) (sup(A)) is

compact. Therefore, we have pmc(M) (sup(A)) ≤ a for some a ∈ A and thus

pmc(M) (sup(A)) ≤ p(a) ≤ sup
(
pmc(M)(A)

)
.

3) Let x ∈ mc(M) and d ∈ D be given such that x ≤ pmc(M)(d). As pmc(M)(x) ≤ x,

for all x ∈ D, we have

emc(M)(x) ≤ emc(M)

(
pmc(M)(d)

)
≤ d.

Now assume x ∈ mc(M) and d ∈ D such that emc(M)(x) ≤ d. We know x ∈
mc(M) ∩ ↓x, so x ≤ max (mc(M) ∩ ↓x) = pmc(M)(x). Also, we know pmc(M)(x) ≤ x.

Therefore, we have pmc(M)(x) = x which implies that

x = pmc(M)(x) = pmc(M)

(
emc(M)(x)

)
≤ pmc(M)(d).



30

Corollary 3.22. Let D be a bi�nite domain and M be a �nite mub-closed set. Then

M is projectable.

Theorem 3.23. Let D be a bi�nite domain. For every �nite set S ⊆ K(D), there

exists a projectable set X ⊆ K(D) such that S ⊆ X.

Proof. From Proposition 3.22, X = mc(S) is projectable and S ⊆ X. Now we only

need to show that X ⊆ K(D). We know that mc(S) is �nite, since D is bi�nite. Also,

since D is bi�nite, K(D) is mub-complete. So it contains the minimal upper bounds

of �nite subsets of mc(S), i.e., it contains mc(S). So mc(S) ⊂ K(D).

The next Proposition addresses the relation between mub-closed sets and projectable

sets.

Proposition 3.24. Let D = (D,H) be a quantum domain and M ⊆ K(D). Then M

is projectable if and only if M is a �nite mub-closed set.

Proof. Assume that M is a �nite mub-closed set. So from Corollary 3.22, M is

projectable. Now assume M is projectable. Let S ⊂ M . Note that since M is

projectable, it is a �nite set. So S is �nite. This implies that S has a upper bound d

in D. Therefore, from Lemma 3.20, we have that there exists a compact upper bound

c below d. Since D is bi�nite, there exists a minimal upper bound u ∈ K(D) below

c. So u is a minimal upper bound for S.

Now consider the set U = {x ∈ M | x ≤ u}. Since M is projectable, U has a

maximum elementm. We claim thatm = u. Now assume to the contrary thatm ̸= u.

Then as u is an upper bound for S, we have that S ⊂ U and since m = maxU , m < u

which implies that m is an upper bound for S which is smaller than u. Therefore, u

cannot be a minimal upper bound for S which is contradiction. Therefore, m = u and

since m ∈ M , the minimal upper bound of S is in M . This implies that M contains

all the minimal upper bounds of its �nite subsets. Therefore, M is a mub-closed

set.

3.4.2 Projection Observations and Point Observations

As we discussed before, it is desirable to be able to perform computation by relying

on only �nitely many elements. The �rst step is to de�ne a process for getting an
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observation by relying on �nite elements (since the state of the system and thus the

result of all other computations will be dependent on observations). In this subsection,

for every observation B, we will de�ne the notion of projection observation B onto a

projectable set of compact elements and we will show that B is the limit of all such

projection observations.

Proposition 3.25. Let D = (D,H) be a quantum domain and let M be a projectable

subset of K(D). For every observation B ∈ OD, there exists a least observation B|M
such that for all x ∈ M , Bx ⊑ (B|M)x. It is given by

(B|M)x = HpM (x),x

(
BpM (x)

)
Moreover, (B|M)m = Bm for all m ∈ M , and B|M ⊑ B.

Proof. We want to show that B|M is an observation. We know that HpM (x),x is an

imiu-map. So since 0 ⊑ BpM (x) ⊑ I, we know that 0 ⊑ HpM (x),x

(
BpM (x)

)
= (B|M)x

and (B|M)x = HpM (x),x

(
BpM (x)

)
⊑ I. For all x, y ∈ D, with x ≤ y, we have

Hx,y (B|M)x = Hx,y

(
HpM (x),x

(
BpM (x)

))
= HpM (y),y

(
HpM (x),pM (y)

(
BpM (x)

))
⊑ HpM (y),y

(
BpM (y)

)
= (B|M)y.

Therefore, B|M is an observation. Also, for all m ∈ M , pM(m) = m. So, we have

(B|M)m = HpM (m),m

(
BpM (m)

)
= Bm, which implies that B|M agrees with B on M .

Now we need to show that B|M is the least such observation. Let B′ be an

observation such that Bm ⊑ B′
m, for all m ∈ M . For all x ∈ K(D), we have

(B|M)x = HpM (x),x

(
BpM (x)

)
⊑ HpM (x),x

(
B′

pM (x)

)
⊑ B′

x.

Therefore, B|M ⊑ B′. In particular, B|M ⊑ B

We call B|M the `projection of B onto M '. In the next proposition, we will show

that the projection of B onto M is monotone in M .

Proposition 3.26. Let N ⊂ M ⊂ K(D) be two projectable sets. Then for all obser-

vation B ∈ OD, we have
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B|N ⊑ B|M .

Proof. For all x ∈ N , x ∈ M and thus (B|N)x = Bx = (B|M)x. Also, for all

x ∈ D\M , (B|N)x ⊑ (B|M)x, since both observations B|M and B|N are the projection

observations. Since B|N ⊑ B, for all x ∈ M \ N , we have (B|N)x ⊑ Bx = (B|M)x.

Therefore, we have B|N ⊑ B|M .

Now we are ready to show that every observation can be written as a limit of all

its projection.

Theorem 3.27. Let D = (D,H) be a quantum domain and let B ∈ OD. Then the

set

X = {B|M | M ⊂ K(D) is a projectable set}

is directed and we have

B = sup (X).

Proof. Let M,N ⊂ K(D) be two projectable sets. So mc (M ∪N) is a projectable set

as well, and thus B|mc(M∪N) ∈ X. From Proposition 3.26, we have B|N ⊑ B|mc(M∪N)

and B|M ⊑ B|mc(M∪N). Therefore, X is directed.

Let M ⊂ K(D) be a projectable set. We know from Proposition 3.25 that for all

observations B, B|M ⊑ B. So B is an upper bound for X. Now we want to show

that B is the least upper bound. Let B′ ∈ OD be an upper bound for X. So for all

x ∈ K(D), B|{x} ⊑ B′. So from Proposition 3.25, we have

∀x ∈ K(D), Bx =
(
B|{x}

)
x
⊑ (B′)x.

Therefore, B ⊑ B′ and thus B = sup (X).

In Proposition 3.26, we showed that the projection of observations is monotone

as a function on M . In the next proposition, we will show that it is also monotone

as a function of B.

Proposition 3.28. Let D = (D,H) be a quantum domain. Let B,B′ ∈ OD such that

B ⊑ B′ and let M ⊂ K(D) be a projectable set. Then B|M ⊑ B′|M .
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Proof. We know that for all x ∈ K(D), HpM (x),x is Scott-continuous. So as BpM (x) ⊑
B′

pM (x), we have

HpM (x),x

(
BpM (x)

)
⊑ HpM (x),x

(
B′

pM (x)

)
.

Therefore, based on the de�nition of projection observations, we have

(B|M)x = HpM (x),x

(
BpM (x)

)
⊑ HpM (x),x

(
B′

pM (x)

)
= (B′|M)x,

for all x ∈ K(D). Therefore, B|M ⊑ B′|M .

The next propositions will cover some of the properties of the projection observa-

tions like linearity and preserving suprema.

Proposition 3.29. Let D = (D,H) be a quantum domain and M ⊂ K(D) be a

projectable set. Let B ∈ OD such that (B)x = 0 for all x ∈ M . Then B|M = 0.

Proof. For all x ∈ D, we have pM(x) ∈ M , since M is projectable. So we have

(B|M)x = HpM (x),x

(
BpM (x)

)
= HpM (x),x (0) = 0.

Proposition 3.30. Let D = (D,H) be a quantum domain. Let B1, B2 ∈ OD and

λ1, λ2 ∈ [0, 1] such that λ1 + λ2 ≤ 1. Then (λ1B
1 + λ2B

2) |M = λ1B
1|M + λ2B2|M .

Proof. For all x ∈ M , we have((
λ1B

1 + λ2B
2
)
|M
)
x
=
(
λ1B

1 + λ2B
2
)
x

= λ1B
1
x + λ2B

2
x = λ1

(
B1|M

)
x
+ λ2

(
B2|M

)
x
.

Also,
(
λ1B

1 + λ2B
2
)
|M is the least observation with Bx ⊑ (B|M)x, for all x ∈ M .

Therefore, for all x ∈ K(D), we have((
λ1B

1 + λ2B
2
)
|M
)
x
= λ1

(
B1|M

)
x
+ λ2

(
B2|M

)
x

and thus
(
λ1B

1 + λ2B
2
)
|M = λ1B

1|M + λ2B2|M .

Proposition 3.31. Let D = (D,H) be a quantum domain. Let
{
Bk
}
k∈K ⊂ OD

be a directed family of observations and let M ⊂ K(D) be a projectable set. If

B = sup
k∈K

(
Bk
)
, then B|M = sup

k∈K

(
Bk|M

)
.
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Proof. Since B = sup
k∈K

(
Bk
)
, we have Bk ⊑ B, for all k ∈ K. From Proposition 3.28,

we get Bk|M ⊑ B|M , for all k ∈ K, which implies sup
k∈K

(
Bk|M

)
⊑ B|M . Now we

need to show B|M ⊑ sup
k∈K

(
Bk|M

)
. For all x ∈ K(D), pM(x) ∈ M and thus Bk

pM (x) =(
Bk|M

)
pM (x)

. Also, we know that HpM (x),x is Scott-continuous. So for all x ∈ K(D),

we have

(B|M)x = HpM (x),x

(
BpM (x)

)
⊑ HpM (x),x

(
sup
k∈K

(
Bk

pM (x)

))
= HpM (x),x

(
sup
k∈K

((
Bk|M

)
pM (x)

))
= HpM (x),x

((
sup
k∈K

(
Bk|M

))
pM (x)

)

⊑
(
sup
k∈K

(
Bk|M

))
x

Therefore, B|M ⊑ sup
k∈K

(
Bk|M

)
and thus B|M = sup

k∈K

(
Bk|M

)
.

So far, we have de�ned the projection of observations and proved some of their

properties. However, this projection operation need not be restricted to only obser-

vations. In the next part, we will give a more general de�nition for all matrix tuples

and will prove that this operation is linear.

De�nition 3.32. Let D = (D,H) be a quantum domain,M ⊂ K(D) be a projectable

set, and T ∈ VD be a matrix tuple. De�ne a matrix tuple T |M by

(T |M)x = HpM (x),x

(
TpM (x)

)
.

for x ∈ K(D) (Note that this restriction operation T ↦→ T |M gives a miu-map on VD).

Proposition 3.33. Let D = (D,H) be a quantum domain. Let T 1, T 2 ∈ VD and

λ1, λ2 ∈ R. Then (λ1T
1 + λ2T

2) |M = λ1T
1|M + λ2T

2|M .

Proof. Let x ∈ K(D). Then since HpM (x),x is linear, we have(
λ1T

1 + λ2T
2
)
|M = HpM (x),x

(
λ1T

1 + λ2T
2
)

= λ1HpM (x),x

(
T 1
)
+ λ2HpM (x),x

(
T 2
)
= λ1T

1|M + λ2T
2|M
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In the next part, we will de�ne point observations (observations which will succeed

only on or after a certain position in the domain).

De�nition 3.34. Let D = (D,H) be a quantum domain, x ∈ K(D), and E ∈ B (Hx)

with 0 ⊑ E ⊑ I. The closed point observation Bc(x,E) is de�ned by

Bc(x,E)y =

⎧⎨⎩Hx,y (E) if y ≥ x

0 otherwise.

It is an observation which has chance of succeeding only at or after point x. The open

point observation B◦(x,E) is de�ned by

B◦(x,E)y =

⎧⎨⎩Hx,y (E) if y > x

0 otherwise.

It is an observation which has chance of succeeding only after the point x.

In the next part, we will explain the relation between point observations and ob-

servations of the form B|M , i.e., how the latter can be written as a linear combination

of point observations. But before doing so, we are going to show that the value of

B|M depends only on the values of entries of B whose index belong to M .

Lemma 3.35. Let D = (D,H) be a quantum domain, M ⊂ K(D) be a projectable

set, and B1, B2 ∈ OD be observations. We have

B1|M = B2|M ⇔ ∀x ∈ M,B1
x = B2

x.

Proof. It is clear that if B1|M = B2|M , then for all x ∈ M , B1
x = B2

x. Now assume

for all x ∈ M , B1
x = B2

x. For all y ∈ K(D),

(B1|M)y = HpM (y),y

(
B1

pM (y)

)
= HpM (y),y

(
B2

pM (y)

)
= (B2|M)y

since pM(y) ∈ M . Therefore, we have B1|M = B2|M .

Proposition 3.36. Let D = (D,H) be a quantum domain, let M ⊂ K(D) be a

projectable set, and let B ∈ OD be an observation. Then

B|M =
∑
x∈M

B
c(x,Bx)|M −B◦(x,Bx)|M
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Remark 3.37. Here, the sum and di�erences we take are in the space of all matrix

tuples, i.e., the intermediate result are not necessarily observations. More speci�cally,

for all x ∈ M , the matrix tuple Bc(x,Bx)|M −B◦(x,Bx)|M is not an observation, but

the sum of these matrix tuples is an observation.

proof of Proposition 3.36. From linearity of projection operation on matrix tuples (by

Proposition 3.33), we have

∑
x∈M

Bc(x,Bx)|M −B◦(x,Bx)|M =

(∑
x∈M

Bc(x,Bx)−B◦(x,Bx)

)⏐⏐⏐⏐⏐
M

.

So we need to show that

B|M =

(∑
x∈M

Bc(x,Bx)−B◦(x,Bx)

)⏐⏐⏐⏐⏐
M

.

From Lemma 3.35, the equation above holds if and only if for all y ∈ M , we have

By =
∑
x∈M

Bc(x,Bx)y −B◦(x,Bx)y.

Now let y ∈ M be given. We have

Bc(x,Bx)y −B◦(x,Bx)y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Hx,y (Bx)−Hx,y (Bx) if x < y

Bx − 0 if x = y

0 otherwise

=

⎧⎨⎩By if y = x

0 otherwise

Therefore, for all x ∈ M , where x ̸= y, Bc(x,Bx)y − B◦(x,Bx)y = 0, which implies

that ∑
x∈M

Bc(x,Bx)y −B◦(x,Bx)y = By.

Therefore, we have

B|M =
∑
x∈M

Bc(x,Bx)|M −B◦(x,Bx)|M
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The following example demonstrates the previous proposition for a �nite proba-

bilistic domain which is a special case of quantum domains.

Example 3.38. Let D = (D,H) be a �nite probabilistic domain, where D =

{x, y, z}. Figure 3.4 shows the diagram of D.

◦ z

◦ y

◦ x

Figure 3.4: A 3-element probabilistic domain

Let M = {x, y}. Clearly, M is projectable. Let B = (Bx, By, Bz) be an observation

on D and let A(Bx, By, Bz) = 0.6Bx +0.3By +0.1Bz be a map on observations of D.

Clearly, A is linear. Monotonicity and preserving directed suprema properties of A

follows from that of positive real numbers. So A is a state of D.

By de�nition B|M = (BpM (x), BpM (y), BpM (z)) = (Bx, By, By). Next, we will calcu-

late the closed and open point observations for every position of D.

Bc(x,Bx) = (Bx, Bx, Bx) B◦(x,Bx) = (0, Bx, Bx)

Bc(y,By) = (0, By, By) B◦(y,By) = (0, 0, By)

Bc(z,Bz) = (0, 0, Bz) B◦(z,Bz) = (0, 0, 0)

Now we will �nd the projection of these point observations:

Bc(x,Bx)|M = (Bx, Bx, Bx) B◦(x,Bx)|M = (0, Bx, Bx)

Bc(y,By)|M = (0, By, By) B◦(y,By)|M = (0, 0, 0)

Bc(z, Bz)|M = (0, 0, 0) B◦(z,Bz)|M = (0, 0, 0)

So, the subtraction of the closed and open point observations gives:

Bc(x,Bx)|M −B◦(x,Bx)|M = (Bx, Bx, Bx)− (0, Bx, Bx) = (Bx, 0, 0)

Bc(y,By)|M −B◦(y,By)|M = (0, By, By)− (0, 0, 0) = (0, By, By)

Bc(z,Bz)|M −B◦(z,Bz)|M = (0, 0, 0)− (0, 0, 0) = (0, 0, 0)

This implies that
∑
m∈M

Bc(m,Bm)|M −B◦(m,Bm)|M = (Bx, By, By) = B|M .
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Proposition 3.39. Let D = (D,H) be a quantum domain, let M ⊂ K(D) be a

projectable set, let x ̸∈ M , and let E ∈ B (Hx). Then we have

B
c(x,E)|M = B◦(x,E)|M .

Proof. For all y ∈ K(D), we have (Bc(x,E)|M)y = HpM (y),y

(
Bc(x,E)pM (y)

)
and

(B◦(x,E)|M)y = HpM (y),y

(
B◦(x,E)pM (y)

)
, where

Bc(x,E)pM (y) =

⎧⎨⎩Hx,pM (y)(E) if x ≤ pM(y)

0 otherwise

and

B◦(x,E)pM (y) =

⎧⎨⎩Hx,pM (y)(E) if x < pM(y)

0 otherwise
.

However, since x ̸∈ M , pM(y) ̸= x. So we have Bc(x,E)pM (y) = B◦(x,E)pM (y) and

thus for all y ∈ K(D), we have

(Bc(x,E)|M)y = HpM (y),y

(
Bc(x,E)pM (y)

)
= HpM (y),y

(
B◦(x,E)pM (y)

)
= (B◦(x,E)|M)y

3.4.3 Restricted States and Finitely Compactly Supported States

In this subsection, we are going to de�ne the dual concept of projection of observations

and we will show that this dual concept is in fact a state (we refer to these states as

restricted states). Then we are going to de�ne �nitely compactly supported states

and discuss the relation between these states and the restricted states. In the last

part, we will show that every state can be written as a limit of �nitely compactly

supported ones.

Proposition 3.40. Let D = (D,H) be a quantum domain. Let A ∈ SD be a state of

D and let M be a projectable subset of K(D). The function A|M : OD → [0, 1] de�ned

by

∀B ∈ OD, ⟨A|M , B⟩ = ⟨A,B|M⟩
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is a state.

Proof. We need to show that A|M is a linear Scott-continuous function. This easily

follows from the fact that the restriction operator B ↦→ B|M is linear and Scott-

continuous. Explicitly, the linearity of A|M comes from the linearity of A. In other

words, for B1, B2 ∈ OD and λ1, λ2 ∈ [0, 1] such that λ1 + λ2 ≤ 1, from Proposition

3.30, we have

⟨A|M , λ1B1 + λ2B2⟩ = ⟨A, (λ1B1 + λ2B2) |M⟩
= ⟨A, λ1B1|M + λ2B2|M⟩
= ⟨A, λ1B1|M⟩+ ⟨A, λ2B2|M⟩
= λ1 ⟨A,B1|M⟩+ λ2 ⟨A,B2|M⟩
= λ1 ⟨A|M , B1⟩+ λ2 ⟨A|M , B2⟩

Therefore A|M is linear. Next, we will address the monotonicity of A|M . Let B1, B2 ∈
OD such that B1 ⊑ B2. Therefore, from Proposition 3.28, we have B1|M ⊑ B2|M .

From monotonicity of A, we get

⟨A|M , B1⟩ = ⟨A,B1|M⟩ ≤ ⟨A,B2|M⟩ = ⟨A|M , B2⟩.

So, A|M is monotone.

Finally, we need to show that A|M preserves directed suprema. Let
{
Bk
}
k∈K

be a directed family of observations and let B = sup
k∈K

(
Bk
)
. We know A preserves

suprema, so from Proposition 3.31, we have

sup
k∈K

(⟨
A|M , Bk

⟩)
= sup

k∈K

(⟨
A,Bk|M

⟩)
=

⟨
A, sup

k∈K

(
Bk|M

)⟩
= ⟨A,B|M⟩

= ⟨A|M , B⟩

=

⟨
A|M , sup

k∈K

(
Bk
)⟩

Therefore, A|M preserves the supremum. So A|M is a linear Scott-continuous function

and thus is a state.
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Now we are going to prove that the restriction of a state A to a projectable set

M is monotone in M .

Proposition 3.41. Let D = (D,H) be a quantum domain and let N ⊆ M ⊆ K(D)

be two projectable sets. Then for all A ∈ SD, A|N ⪯ A|M .

Proof. For all observations B ∈ OD, from Proposition 3.26, we have B|N ⊑ B|M .

Therefore, from Proposition 3.14, we get

⟨A|N , B⟩ = ⟨A,B|N⟩ ≤ ⟨A,B|M⟩ = ⟨A|M , B⟩

Since this is true for all observations B, we have A|N ⪯ A|M

In the next part, for every state A of a quantum domain, we will de�ne an operator

with which we can determine the probability of success of the system when it is in a

certain position x and the observation made is a point observation. Then we use this

operation to �nd a relation between states and the restricted states.

De�nition 3.42. Let D = (D,H) be a quantum domain and let A ∈ SD be a state.

For x ∈ K(D), we de�ne a positive matrix Ax ∈ B (Hx) with tr(Ax) ≤ 1 as the unique

operator such that for all E ∈ B (Hx),

tr (AxE) = ⟨Ax, E⟩ = “ ⟨A,Bc(x,E)−B◦(x,E)⟩ ”
= ⟨A,Bc(x,E)⟩ − ⟨A,B◦(x,E)⟩ ∈ [0, 1]

Note that in the notation “ ⟨A,Bc(x,E)−B◦(x,E)⟩ ”, the operation Bc(x,E) −
B◦(x,E) is not an observation. However, for simplicity we use this notation in our

calculation and we de�ned it to be ⟨A,Bc(x,E)⟩ − ⟨A,B◦(x,E)⟩.

Lemma 3.43. Let D = (D,H) be a quantum domain. Let A ∈ SD be a state of D
and M be a projectable subset of K(D). Then (A|M)x = Ax, for all x ∈ M .

Proof. Let E ∈ B (Hx) and let x ∈ M . Note that

(Bc (x,E)−B◦ (x,E))y =

⎧⎨⎩E y = x

0 otherwise
.

So, Bc (x,E)−B◦ (x,E) = (Bc (x,E)−B◦ (x,E)) |M . So we have
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⟨(A|M)x , E⟩ = ⟨A|M ,Bc (x,E)−B◦ (x,E)⟩
= ⟨A, (Bc (x,E)−B◦ (x,E)) |M⟩
= ⟨A,Bc (x,E)−B◦ (x,E)⟩
= ⟨Ax, E⟩

Therefore, for all x ∈ M , (A|M)x = Ax.

Next, we will show that every map of the form B ↦→
∑

x∈K(D)

tr (AxBx) is a state.

We are also going to give a de�nition for �nitely compactly supported states and show

that for any projectable set, the restricted state over that set is a �nitely compactly

supported state.

Proposition 3.44. Let D be a quantum domain, let I be the singleton domain, and

let A ∈ VD with

• For x ∈ K(D), 0 ⊑ Ax

• tr(A) ≤ 1

• Supp(A) is �nite

Then the map S, given by

S : OD → OI

B ↦→
∑

x∈K(D)

tr (AxBx),

is a state.

Proof. First note that since tr(A) ≤ 1, for all B ∈ OD, S(B) ∈ [0, 1] and thus S(B)

is an observation in domain I. In order to show that the map S is a state, we need

to show that S is linear and Scott-continuous. S is linear, as for all B1, B2 ∈ BD and

λ1, λ2 ∈ [0, 1], we have

S
(
λ1B

1 + λ2B
2
)
=

∑
x∈K(D)

tr
(
Ax

(
λ1B

1 + λ2B
2
)
x

)
= λ1

∑
x∈K(D)

tr
(
AxB

1
x

)
+ λ2

∑
x∈K(D)

tr
(
AxB

2
x

)
= λ1S

(
B1
)
+ λ2S

(
B2
)
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Now we are going to show that S is monotone. Let B1, B2 ∈ OD such that B1 ⊑ B2.

So for all x ∈ K(D), tr (AxB
1
x) ≤ tr (AxB

2
x). This implies that

S
(
B1
)
=

∑
x∈K(D)

tr
(
AxB

1
x

)
≤

∑
x∈K(D)

tr
(
AxB

2
x

)
= S

(
B2
)
.

So S is monotone. Next we show that S preserves suprema and thus is Scott-

continuous. Let {Bk}k∈K be a directed family of observations. We have

S

(
sup
k∈K

(Bk)

)
=

∑
x∈K(D)

tr

(
Ax

(
sup
k∈K

(
Bk

x

)))

= sup
k∈K

⎛⎝ ∑
x∈K(D)

tr
(
AxB

k
x

)⎞⎠
= sup

k∈K

(
S
(
Bk
))
.

This implies that S is a linear Scott-continuous map and therefore, S is a state.

Next, we will give a de�nition for state matrix tuples and �nitely compactly

supported states.

De�nition 3.45. Let D = (D,H) be a quantum domain. A matrix tuple A ∈ VD

is called state matrix tuple if the map B ↦→
∑

x∈K(D)

tr (AxBx), B ∈ OD, is a state. In

other words, if A is positive and tr(A) ≤ 1.

De�nition 3.46. Let D be a quantum domain. A state A is �nitely compactly

supported if there exists a state matrix tuple C ∈ VD with �nite support (Supp(C) is

�nite), such that

∀B ∈ OD, ⟨A,B⟩ =
∑

x∈K(D)

tr (CxBx)

The set of all �nitely compactly supported states is given by FSD.

Proposition 3.47. Let D = (D,H) be a quantum domain and let M be a projectable

subset of K(D). Then A|M is a �nitely compactly supported state.

Proof. We write this proof in two steps. Let A′ = A|M and for all x ∈ K(D), A′
x be

the operator given in De�nition 3.42. In the �rst step we will show that the support

of the matrix tuple (A′
x)x∈K(D) is �nite.
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Claim 3.47.1. For all x ̸∈ M , A′
x = 0.

Proof of Claim 3.47.1. Let x ∈ K(D) such that x ̸∈ M . A′
x by De�nition 3.42 is such

that for all E ∈ B (Hx),

tr ((A′
x)E) = ⟨A′,Bc(x,E)⟩ − ⟨A′,B◦(x,E)⟩

= ⟨A|M ,Bc(x,E)⟩ − ⟨A|M ,B◦(x,E)⟩
= ⟨A,Bc(x,E)|M⟩ − ⟨A,B◦(x,E)|M⟩

.

As x ̸∈ M , by Proposition 3.39, Bc(x,E)|M = B◦(x,E)|M . Therefore, for all E ∈
B (Hx), tr ((A

′
x)E) = 0 and thus A′

x = 0. [□ Claim 3.47.1]

In the next step, we will show that A′ is a �nitely compactly supported state.

Claim 3.47.2. For all observation B ∈ OD,

⟨A′, B⟩ =
∑

x∈K(D)

tr (A′
xBx).

Proof of Claim 3.47.2. Let B ∈ OD be an observation. We have

⟨A′, B⟩ = ⟨A|M , B⟩
= ⟨A,B|M⟩ (by de�nition)

=
∑
x∈M

⟨A,Bc(x,Bx)|M⟩ − ⟨A,B◦(x,Bx)|M⟩ (from Proposition 3.36)

=
∑
x∈M

⟨A|M ,Bc(x,Bx)⟩ − ⟨A|M ,B◦(x,Bx)⟩ (by de�nition)

=
∑
x∈M

⟨A′,Bc(x,Bx)⟩ − ⟨A′,B◦(x,Bx)⟩

=
∑
x∈M

tr(A′
xBx) (by de�nition 3.42)

=
∑

x∈K(D)

tr(A′
xBx) (by Claim 3.47.1)

[□ Claim 3.47.2]

So we proved that there exists C ∈ VD, with

Cx =

⎧⎨⎩A′
x if x ∈ M

0 if x ̸∈ M
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such that ⟨A|M , B⟩ =
∑
x∈D

tr(CxBx). Finally, we will show that tr(C) ≤ 1. In the

previous part, we have shown that there exists C ∈ VD such that for all B ∈ OD,

⟨A|M , B⟩ =
∑

x∈K(D)

tr (CxBx). We know that for all B ∈ OD, ⟨A|M , B⟩ ∈ [0, 1] (since

A|M is a state). Now set B = I. So we get

⟨A|M , I⟩ =
∑

x∈K(D)

tr (Cx) = tr(C) ≤ 1

and we are done.

Now we are ready to discuss the main theorem of this section. In the next theorem,

we will show that every state can be written as a limit of its restrictions, each of which

we showed (in Proposition 3.47) is a �nitely compactly supported state.

Theorem 3.48. Let D = (D,H) be a quantum domain and let A ∈ SD. Then the

set

X = {A|M | M ⊂ K(D) is a projectable set}

is directed and we have

A = sup (X).

Proof. Let M,N ⊂ K(D) be two projectable sets. So mc (M ∪N) is a projectable set

as well, and thus A|mc(M∪N) ∈ X. From Proposition 3.41, we have A|N ⪯ A|mc(M∪N)

and A|M ⪯ A|mc(M∪N). Therefore, X is directed.

Let B ∈ OD and let P = {M ⊂ K(D) | M is projectable}, then we have

sup
M∈P

(⟨A|M , B⟩) = sup
M∈P

(⟨A,B|M⟩) (based on de�nition)

=

⟨
A, sup

M∈P
(B|M)

⟩
(A preserves suprema)

= ⟨A,B⟩ (from Theorem 3.27)

Since this is true for all observations B, we have A = sup (X) and we are done.

So in this section, we showed that every state can be written as a limit of �nitely

compactly supported states. A �nitely compactly supported state is realizable on a

physical quantum device, simply by preparing one of the �nitely many mixed states

according to a probability distribution. Therefore, we have shown that every state is

a limit of physically realizable states.
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3.5 Progressive Superoperators for Finite Quantum Domains

In the previous section, we showed that every state can be written as a limit of �nitely

compactly supported states. Now in this section we are going to de�ne a progressive

superoperator for the �nite quantum domains. In a �nite quantum domain, every

element is a compact element. Therefore, since the set of compact elements is �nite,

every state is a �nitely compactly supported state.

So for every quantum domain D and state A ∈ SD, we can write

⟨A,B⟩ =
∑

x∈K(D)

tr (AxBx).

where Ax is the operator de�ned in De�nition 3.42.

Notation 3.49. From now on, for every state A ∈ SD, A also denotes the matrix tuple

(Ax)x∈K(D) where Ax ∈ B (Hx) is the positive matrix de�ned in De�nition 3.42. Based

on this notation, SD ⊂ VD
+.

De�nition 3.50. Let D = (D,HD) and E = (E,HE) be two �nite quantum domains.

A linear map F : VD → VE is completely positive if for all x ∈ D and y ∈ E, the map

Fyx : B (Hx) → B (Hy) is completely positive, where

F
(
(Ax)x∈K(D)

)
=

⎛⎝ ∑
x∈K(D)

Fyx (Ax)

⎞⎠
y∈K(E)

.

Next we will present a de�nition for progressive superoperator and we will explain

how this de�nition generalizes concepts like states, observations, and superoperators.

De�nition 3.51. Let D and E be two �nite quantum domains. A progressive super-

operator F : D → E is a linear map from VD to VE such that

• F is completely positive

• ∀T ∈ VD
+, tr (F (T )) ≤ tr(T )

• ∀A1, A2 ∈ SD with A1 ⪯ A2, F (A1) ⪯ F (A2).
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Note that the set of states SD is a subset of the vector space VD of all matrix

tuples and spans VD as a vector space. Therefore, a progressive superoperator, which

is a linear map from VD to VE , is completely determined by its action on states. In

the following, we will therefore interchangeably refer to F as a map from VD to VE or

as a map from SD to SE .

In the next part, we revisit concepts such as states, observations, etc. as special

cases of progressive superoperators. However, before doing so, we will prove some

results that we will need later.

Lemma 3.52. Let H be a Hilbert space and let F : B (H) → C be a linear map.

Then there exists B ∈ B (H) such that for all A ∈ B (H), F (A) = tr (AB).

Proof. Since F is linear, it is determined by its action on the basis of B (H). Fix

a basis of H and let Eij ∈ B (H) such that the entry of ith row and jth column

is 1 and it is 0 everywhere else. De�ne bji = F (Eij) and let B = (bij). Note that

F (Eij) = tr (EijB). Therefore, for all A ∈ B (H), F (A) = tr (AB).

Notation 3.53. Let D = (D,H) be a �nite quantum domain. For all A ∈ SD and

x ∈ K(D),

δxA =
∏

y∈K(D)

δx(y)Ay,

where δx(y) =

⎧⎨⎩1 if y = x,

0 otherwise.

Proposition 3.54. Let D = (D,H) be a �nite quantum domain and let M ∈ VD be

two matrix tuples. Then the following map is linear.

L : VD → VI

T ↦→
∑

x∈K(D)

tr (TxMx)

Proof. Let T 1, T 2 ∈ VD and λ1, λ2 ∈ [0, 1]. So we have

L
(
λ1T

1 + λ2T
2
)
=

∑
x∈K(D)

tr
((
λ1T

1 + λ2T
2
)
x
Mx

)
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= λ1

∑
x∈K(D)

tr
(
T 1
xMx

)
+ λ2

∑
x∈K(D)

tr
(
T 2
xMx

)
= λ1L

(
T 1
)
+ λ2L

(
T 2
)

Lemma 3.55. Let D = (D,H) be a �nite quantum domain and let B ∈ VD
+. Then,

for all x, y ∈ K(D) with x ≤ y,

Hx,y (Bx) ⊑ By ⇔ ∀A ∈ VD
+, ⟨A′

, B⟩ ≤ ⟨δyA,B⟩

where (A′)x = H†
x,y(Ay) and A′ is zero everywhere else.

Proof. First assume that Hx,y (Bx) ⊑ By. Let A ∈ VD
+. We have

⟨A′, B⟩ = tr
(
H†

x,y(Ay)Bx

)
= tr (AyHx,y(Bx)) ≤ tr (AyBy) = ⟨δyA,B⟩.

Now assume that for all A ∈ VD
+, ⟨A′

, B⟩ ≤ ⟨δyA,B⟩ and x, y ∈ K(D) with x ≤ y.

So we have tr (AyHx,y(Bx)) ≤ tr (AyBy) and thus tr (Ay (By −Hx,y(Bx))) ≥ 0. Since

this holds for all A ∈ VD
+ (and thus for all Ay ∈ B (Hy)

+), we have 0 ⊑ By−Hx,y(Bx).

Therefore, we have Hx,y (Bx) ⊑ By.

Lemma 3.56. Let D = (D,H) be a �nite quantum domain and let A ∈ VD
+. Then,

for all x, y ∈ K(D) with x ≤ y,

A′ ⪯ δyA

where (A′)x = H†
x,y(Ay) and A′ is zero everywhere else.

Proof. LetB ∈ OD. SinceB is an observation,Hx,y (Bx) ⊑ By. So by Lemma 3.55, we

have ⟨A′, B⟩ ≤ ⟨δyA,B⟩. Since the choice of B was arbitrary, we have A′ ⪯ δyA.

In the next part, we present special cases of progressive superoperators. The following

theorem shows that observations can be considered as a special case of progressive

superoperators.

Theorem 3.57. Let D = (D,H) be a �nite quantum domain, let I be the singleton

domain, and let B ∈ OD be an observation. Then the map FB : D → I with
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VD → VI

A ↦→ ⟨A,B⟩

de�nes a progressive superoperator. Conversely, any progressive superoperator F :

D → I is of this form.

Proof. First we will show that FB is a progressive superoperator:

• Linearity: From Proposition 3.54, FB is linear.

• Non-increasing trace property: By de�nition, we have ⟨A,B⟩ =
∑

x∈K(D)

tr (AxBx).

Also, since B is an observation, Bx ⊑ I. Therefore,

∀x ∈ K(D), tr(AxBx) ≤ tr (Ax)

which implies tr (FB (A)) ≤ tr (A).

• Complete positivity: We know that FB is linear, so it can be written as

FB(A) =
∑

x∈K(D)

Fx(Ax),

for all A ∈ SD, where Fx : B (Hx)
+ → C is how FB acts on δxA. FB is

completely positive if Fx is completely positive, for all x ∈ K(D). By simpli�ed

Choi's theorem (Theorem 2.12), Fx is completely positive if and only if it is

positive. So we only need to show that Fx is positive.

For all A ∈ SD, A is positive which implies for all x ∈ K(D), 0 ⊑ Ax. Since

B is an observation, 0 ⊑ Bx, for all x ∈ K(D). This implies that Fx(Ax) =

tr(AxBx) ≥ 0, for all x ∈ K(D). This implies that Fx is positive and thus is

completely positive. So FB is completely positive.

• Monotonicity: Based on the de�nition of the order of states, for all states

A1, A2 ∈ SD with A1 ⪯ A2,

FB(A1) = ⟨A1, B⟩ ≤ ⟨A2, B⟩ = FB(A2).

So FB is monotone.
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Now assume F : D → I is a progressive superoperator. We want to show there exists

B ∈ OD such that F = FB. Since F is a progressive superoperator, F is linear. So

for all A ∈ SD,

F (A) =
∑

x∈K(D)

Fx (Ax)

where Fx : B (Hx) → C is how F acts on δxA.

From Lemma 3.52, there exists Bx ∈ B (Hx) such that Fx(Ax) = tr (AxBx). This

implies that for all A ∈ SD, F (A) =
∑

x∈K(D)

tr (AxBx) = ⟨A,B⟩.

Next we will show that B de�ned above is an observation. Let Ax ∈ B (Hx) be

a positive matrix. Since F is positive, for all x ∈ K(D), Fx is positive, as well. So

Fx (Ax) = tr(AxBx) ≥ 0 which implies that 0 ⊑ Bx, for all x ∈ K(D). As F does not

increase the trace, we have

Fx (Ax) = tr (AxBx) ≤ tr(Ax)

which implies that 0 ≤ tr((I −Bx)Ax). Since this is true for all positive Ax, we have

that 0 ⊑ I −Bx and thus Bx ⊑ I.

By Lemma 3.55, Hx,y(Bx) ⊑ By if and only if for all A ∈ VD
+,

⟨A′, B⟩ ≤ ⟨δyA,B⟩,

where (A′)x = H†
x,y(Ay) and A′ is zero everywhere else. Equivalently, we can write

Hx,y (Bx) ⊑ By ⇔ ∀A ∈ VD
+, F (A′) ≤ F (δyA)

By Lemma 3.56, we know A′ ⪯ δyA. Since F is a progressive superoperator, it is

monotone on states. So we have F (A′) ≤ F (δyA). This implies that Hx,y (Bx) ⊑ By

and therefore B is an observation.

As we have seen in the theorems above, observations can be viewed as progressive

superoperators. In the next theorem, we will show that progressive superoperators

generalize superoperators.

Theorem 3.58. Let D = (D,HD) and E = (E,HE) be two singleton quantum do-

mains with D = {x}, E = {y}, B ((HD)x) = Cn×n, and B ((HE)y) = Cm×m for some
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n,m ∈ N. Let f : Cn×n → Cm×m be a superoperator. Then f is a progressive super-

operator from D to E. Conversely, every progressive superoperator F : D → E is of

this form (a superoperator).

Proof. Since f is a superoperator, it is linear, complete positive, and does not in-

crease the trace. Since f is completely positive, it is monotone. This implies f is a

progressive superoperator. Now assume F : D → E is a progressive superoperator.

Since F is linear, positive, completely positive, and does not increase the trace, it is

clear that F is a superoperator.

Next, we will address how our de�nition of progressive superoperators generalizes

the de�nition of stochastic maps given in De�nition 2.42. Before doing so, we will

cover one of the properties of state matrix tuples.

Lemma 3.59. Let D = (D,H) be a quantum domain and A1, A2 ∈ VD be two state

matrix tuples. Then

A1 = A2 ⇔ ∀B ∈ OD,
∑

x∈K(D)

tr
(
A1

xBx

)
=

∑
x∈K(D)

tr
(
A2

xBx

)
.

Proof. If A1 = A2, then the right hand side holds trivially. Now assume that for all

B ∈ OD,
∑

x∈K(D)

tr
(
A1

xBx

)
=

∑
x∈K(D)

tr
(
A2

xBx

)
. Let x ∈ K(D) and E ∈ B (Hx), then

we have ∑
y∈K(D)

tr
(
A1

yB
c(x,E)y

)
=

∑
y∈K(D)

tr
(
A2

yB
c(x,E)y

)
∑

y∈K(D)

tr
(
A1

yB
◦(x,E)y

)
=

∑
y∈K(D)

tr
(
A2

yB
◦(x,E)y

)
.

So we get

tr
(
A1

xB
c(x,E)x

)
=

∑
y∈K(D)

tr
(
A1

yB
c(x,E)y

)
−
∑

y∈K(D)

tr
(
A1

yB
◦(x,E)y

)
=

∑
y∈K(D)

tr
(
A2

yB
c(x,E)y

)
−
∑

y∈K(D)

tr
(
A2

yB
◦(x,E)y

)
= tr

(
A2

xB
c(x,E)x

)
This implies that tr

((
A1

x − A2
x

)
Bc(x,E)x

)
= tr

((
A1

x − A2
x

)
E
)
= 0, for all E ∈ B (Hx).

Therefore, A1
x = A2

x. As this is true for all x ∈ K(D), we have A1 = A2.
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Proposition 3.60. Let D and E be �nite quantum domains and let F : VD → VE be a

progressive superoperator. Then F preserves directed suprema of state matrix tuples.

Proof. Let (Aj)j∈J be a directed family of state matrix tuples and let supj∈J(Aj)

denote the supremum, given by the supremum of the associated states:

tr

((
sup
j∈J

(Aj)

)
B

)
= sup

j∈J
(tr(AjB)), for all B ∈ OD.

Since F is monotone on the state matrix tuples, {F (Aj) : j ∈ J} is a directed family,

as well. We must show that sup
j∈J

F (Aj) = F

(
sup
j∈J

(Aj)

)
.

Note that D and E are �nite quantum domains, so the trace provides an inner

product on the �nite dimensional spaces VD and VE . The map F is bounded with

respect to these trace inner products and so has an adjoint F † : VE → VD with respect

to them, given by

tr (F (A)B) = tr
(
AF †(B)

)
, for all A,B ∈ VD.

Therefore, given an observation B ∈ OD, we have

tr

(
F

(
sup
j∈J

(Aj)

)
B

)
= tr

((
sup
j∈J

(Aj)

)
F †(B)

)
by de�nition of F †

= sup
j∈J

(
tr
(
AjF

†(B)
))

by de�nition of sup
j∈J

(Aj)

= sup
j∈J

(tr (F (Aj)B)) by de�nition of F †

= tr

((
sup
j∈J

F (Aj)

)
B

)
by de�nition of sup

j∈J
(F (Aj)).

It follows from Lemma 3.59 that F

(
sup
j∈J

(Aj)

)
= sup

j∈J
(F (Aj)).

Now we are ready to address how our de�nition of progressive superoperator

extends the de�nition of stochastic maps.

Theorem 3.61. Let D = (D,HD) and E = (E,HE) be two �nite probabilistic domains

and let f : SD → SE be a stochastic map. Then f is a progressive superoperator from

D to E. Conversely, every progressive superoperator F : D → E is of this form (a

stochastic map).
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Proof. To prove the �rst claim, assume f : SD → SE is a stochastic map. We know

that f is linear and Scott-continuous (thus it is monotone). By de�nition, f is positive,

as it takes states to states. Again by de�nition, for all M ∈ SD, we have

tr(M) ≤ 1 ⇒ tr (f(M)) ≤ 1.

By scaling, i.e., replacing M by 1
x
M , this also implies

tr(M) ≤ x ⇒ tr (f(M)) ≤ x.

Therefore, we have for all M ∈ SD, tr (f(M)) ≤ tr(M). So f does not increase the

trace. Lastly, we need to show that f is completely positive. Since f is linear, it can

be written as f = (fy,x)x∈K(D),y∈K(E) where

f
(
(Ax)x∈K(D)

)
=

⎛⎝ ∑
x∈K(D)

fyx (Ax)

⎞⎠
y∈K(E)

for all (Ax)x∈K(D) ∈ SD. We know f is completely positive if and only if all fy,x are

completely positive. By de�nition all fy,x are positive and thus they are completely

positive by Theorem 2.12. This implies that f is completely positive, proving the �rst

claim.

To show the converse, assume F : D → E is a progressive superoperator. We

want to show that F is a stochastic map. Note that by de�nition, F is linear and

monotone and by Proposition 3.60, F preserves the suprema. Therefore, F is a

stochastic map.

In the next theorem, a de�nition of states as superoperators is given.

Theorem 3.62. Let D = (D,H) be a �nite quantum domain, let I be the singleton

domain, and let A ∈ SD be a state. Then the map FA : I → D with

SI → SD

x ↦→ xA

de�nes a progressive superoperator. Conversely, every progressive superoperator F :

I → D is of this form.
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Proof. By de�nition, FA is positive. Also, FA is linear, since for all x, y ∈ SI and

λ1, λ2 ∈ [0, 1], we have

FA (λ1x+ λ2y) = (λ1x+ λ2y)A = λ1xA+ λ2yA = λ1FA(x) + λ2FA(y).

We know A ∈ SD, so tr(A) ≤ 1. This implies that for all x ∈ SI , tr (FA(x)) =

tr(xA) = xtr(A) ≤ x = tr(x). Therefore, FA does not increase the trace.

Next, we will address the monotonicity of FA. For all x, y ∈ SI with x ≤ y,

FA(x) = xA ≤ yA = FA(y), so FA is monotone. To show that FA is completely

positive, note that FA can be written as FA = (Fy)y∈K(D) where Fy : C+ → B (Hy) is

Fy (x) = (F (x))y = xAy, for all x ∈ SI . FA is completely positive if and only if all

Fy are completely positive. By de�nition, each Fy is positive. So by Lemma 2.12, all

Fy are completely positive and therefore, FA is completely positive.

For the converse, assume F : D → E is a progressive superoperator. We want to

show that F is a state (linear Scott-continuous map). By de�nition, F is linear and

monotone and by Proposition 3.60, it preserves suprema. Therefore, F is a state.

3.6 Dual De�nition of Progressive Superoperator

In the previous section, we have shown that our de�nition of progressive superopera-

tor generalizes several concepts. However, this de�nition does not generalize well to

in�nite domains. For generalizing the special cases, such as observations and states,

we had to de�ne the progressive superoperators on states. But in the case of in�-

nite domains, states themselves are de�ned indirectly via observations (see De�nition

3.13), whereas the observations are directly de�ned on the compact elements of the

domain (see De�nition 3.10). In the in�nite case, it is therefore more convenient

to de�ne progressive superoperators as functions from observations to observations

rather than from states to states.

Therefore, in order to have a more natural de�nition for our progressive superop-

erators (one that hopefully can be extended to non-�nite domains in future work),

in this section, we will re-de�ne progressive superoperators by dualizing the previous

de�nition. We will show that the two de�nitions of progressive superoperators are

equivalent for �nite quantum domains, and thus all the special cases of progressive
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superoperators we considered in in the previous section, can also be written using

this new de�nition.

Notation 3.63. Let D be a �nite quantum domain, then ⟨−,−⟩D : VD × VD → C is

the map de�ned by

⟨A,B⟩D =
∑

x∈K(D)

tr (AxBx), for all A,B ∈ VD.

Lemma 3.64. Let D = (D,H) be a �nite quantum domain and let B,B′ ∈ VD such

that for all A ∈ VD, ⟨A,B⟩ = ⟨A,B′⟩. Then B = B′.

Proof. Since ⟨A,B⟩ = ⟨A,B′⟩, for all A ∈ VD, we have

⟨δxA,B⟩ = ⟨δxA,B′⟩,

for all x ∈ K(D). This implies that tr (AxBx) = tr (AxB
′
x). As a result, we have

tr (Ax(Bx −B′
x)) = 0, for all Ax ∈ B (Hx) and thus Bx = B′

x. Since this is true for

all x ∈ K(D), we get B = B′.

Theorem 3.65. Let D = (D,HD) and E = (E,HE) be two �nite quantum domains.

For all completely positive F : VD → VE , there exists a unique completely positive

G : VE → VD such that

∀A ∈ VD, B ∈ VE , ⟨F (A), B⟩E = ⟨A,G(B)⟩D

Proof. Since F is linear, it can be written as F = (Fxy)x∈K(E),y∈K(D), where each

Fxy : B (Hy) → B (Hx) is linear and completely positive (since F is). This implies

that for all x ∈ K(E) and A ∈ VD, F (A)x =
∑

y∈K(D) Fxy(Ay). Also, since Fxy is

linear and completely positive, by Theorem 2.10, it has a Kraus representation, i.e.,

Fxy(Ay) =
∑
j∈Jxy

SjAyS
†
j . Now de�ne G = (Gyx)x∈K(E),y∈K(D), where Gyx : B (Hx) →

B (Hy), with

Gyx(Bx) =
∑
j∈Jxy

S†
jBxSj.

Therefore, we can write
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⟨F (A), B⟩ =
∑

x∈K(E)

tr (F (A)xBx)

=
∑

x∈K(E)

tr

⎛⎝⎛⎝ ∑
y∈K(D)

Fxy(Ay)

⎞⎠Bx

⎞⎠
=
∑

x∈K(E)

∑
y∈K(D)

tr (Fxy(Ay)Bx)

=
∑

x∈K(E)

∑
y∈K(D)

tr

⎛⎝⎛⎝∑
j∈Jxy

SjAyS
†
j

⎞⎠Bx

⎞⎠
=
∑

x∈K(E)

∑
y∈K(D)

tr

⎛⎝∑
j∈Jxy

SjAyS
†
jBx

⎞⎠
=
∑

x∈K(E)

∑
y∈K(D)

∑
j∈Jxy

tr
(
SjAyS

†
jBx

)
=
∑

x∈K(E)

∑
y∈K(D)

∑
j∈Jxy

tr
(
AyS

†
jBxSj

)

=
∑

x∈K(E)

∑
y∈K(D)

tr

⎛⎝Ay

⎛⎝∑
j∈Jxy

S†
jBxSj

⎞⎠⎞⎠
=

∑
y∈K(D)

∑
x∈K(E)

tr (AyGyx(Bx))

=
∑

y∈K(D)

tr

⎛⎝Ay

∑
x∈K(E)

Gyx(Bx)

⎞⎠
=

∑
y∈K(D)

tr (AyG(B)y)

= ⟨A,G(B)⟩

By de�nition, G is completely positive.

Next we will show that G is unique. Assume there exists another map G′ : VE →
VD such that

∀A ∈ VD, B ∈ VE , ⟨F (A), B⟩E = ⟨A,G′(B)⟩D.

Fix B ∈ VE . So for all A ∈ VD, ⟨A,G(B)⟩D = ⟨F (A), B⟩E = ⟨A,G′(B)⟩D, which
implies by Lemma 3.64 that G(B) = G′(B). Since this holds for all B ∈ VE , we have

G = G′. Therefore, G is unique.

Remark 3.66. The map F and G in Theorem 3.65 are called each others adjoint.
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Lemma 3.67. Let D be a �nite quantum domain and B1, B2 ∈ OD. Then,

∀A ∈ VD
+, ⟨A,B1⟩ ≤ ⟨A,B2⟩ ⇔ B1 ⊑ B2

Proof. First assume that for all A ∈ VD
+, ⟨A,B1⟩ ≤ ⟨A,B2⟩. In particular, given

x ∈ D, we get ⟨δxA,B1⟩ ≤ ⟨δxA,B2⟩. Therefore, we have

tr
(
AxB

1
x

)
=

∑
y∈K(D)

tr
(
(δxA)y B

1
y

)
=
⟨
δxA,B

1
⟩

≤
⟨
δxA,B

2
⟩

=
∑

y∈K(D)

tr
(
(δxA)y B

2
y

)
= tr

(
AxB

2
x

)
So tr

(
Ax

(
B2

x −B1
x

))
≥ 0. This holds for all positive Ax, which implies that 0 ⊑

B2
x −B1

x and thus B1
x ⊑ B2

x. Since this is true for all x ∈ K(D), we have B1 ⊑ B2.

Now assume B1 ⊑ B2. Let A ∈ VD
+. We have⟨

A,B1
⟩
=

∑
y∈K(D)

tr
(
AyB

1
y

)
≤

∑
y∈K(D)

tr
(
AyB

2
y

)
=
⟨
A,B2

⟩
Therefore, for all A ∈ VD

+,
⟨
A,B1

⟩
≤
⟨
A,B2

⟩
.

The next theorem will cover the relation between properties of adjoints F and G,

given in Theorem 3.65.

Theorem 3.68. Let F and G be as in Theorem 3.65. Then we have:

(i) F is trace non-increasing, i.e., ∀A ∈ VD
+, tr (F (A)) ≤ tr(A), if and only if

G (IVE ) ⊑ IVD

(ii) F is a progressive superoperator ⇔ ∀B ∈ OE , G(B) ∈ OD.

Proof. (i): Assume that for all A ∈ VD
+, tr (F (A)) ≤ tr(A). So for all A ∈ VD

+, we

have

⟨A,G (IVE )⟩ = ⟨F (A), IVE ⟩ = tr (F (A)) ≤ tr (A) = ⟨A, IVD⟩.

So by Lemma 3.67, G (IVE ) ⊑ IVD .

Now assume G(IVE
+) ⊑ IVD

+ . For all A ∈ VD
+, we have
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tr (F (A)) =
∑

x∈K(E)

tr (F (A)x)

=
∑

x∈K(E)

tr
(
F (A)x

(
IVE

+

)
x

)
=
⟨
F (A), IVE

+

⟩
=
⟨
A,G(IVE

+)
⟩

=
∑

y∈K(E)

tr
(
AyG

(
IVE

+

)
y

)
≤
∑

y∈K(E)

tr (Ay) = tr(A)

(ii): First assume that for all B ∈ OE , G(B) ∈ OD. Since in particular, IVE
+ ∈ OE ,

it follows that G
(
IVE

+

)
∈ OD, hence G

(
IVE

+

)
⊑ IVD

+ . Therefore, F is trace non-

increasing by part (i). In particular, F maps states to states. What is left to show is

that for all A1, A2 ∈ SD, A1 ⪯ A2 implies F (A1) ⪯ F (A2). So assume that A1 ⪯ A2

and let B ∈ OD be an arbitrary observation. Then we have

⟨F (A1), B⟩ = ⟨A1, G (B)⟩ ≤ ⟨A2, G (B)⟩ = ⟨F (A2), B⟩.

Therefore, F (A1) ⪯ F (A2) as claimed.

For the converse direction, assume that F is a progressive superoperator. Let B ∈
OE . So we need to show that G(B) ∈ OD. For all A ∈ SD, ⟨A,G(B)⟩ = ⟨F (A), B⟩ ≥
0 which implies that 0 ⊑ G(B), for all x ∈ K(D). Next we need to show that

G(B) ⊑ IOD . Since B ∈ OE , B ⊑ IVE . Also, since F is a progressive superoperator,

F does not increase the trace. So from part (i), we have that G(B) ⊑ G(IVE ) ⊑ IVD .

Finally, we must show that Hx,y (G(B)x) ⊑ G(B)y holds for all x ≤ y. So �x x

and y and consider any A ∈ B (Hy)
+. Let δyA denote a state which has A in its y

position and is zero everywhere else. So by Lemma 3.56, we have δx
(
H†

x,yA
)
⪯ δyA

and therefore, since F preserves the order on states, also F
(
δx
(
H†

x,yA
))

⪯ F (δyA).

Since B is an observation, we have⟨
δx
(
H†

x,yA
)
, G(B)

⟩
=
⟨
F
(
δx
(
H†

x,yA
))
, B
⟩

≤ ⟨F (δyA), B⟩

= ⟨δyA,G(B)⟩
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δyA and δx
(
H†

x,yA
)
are states which has A (resp. H†

x,yA) in its y position (resp. x

position) and are zero everywhere else. So the pairing maps above can be simpli�ed

as follows:

tr
((
H†

x,yA
)
G(B)x

)
=
⟨
δx
(
H†

x,yA
)
, G(B)

⟩
≤ ⟨δyA,G(B)⟩ = tr (AG(B)y)

We know that tr
((
H†

x,yA
)
G(B)x

)
= tr (AHx,y (G(B)x)). So we get

tr (AHx,y (G(B)x)) ≤ tr (AG(B)y)

and thus tr
(
A
(
G(B)y −Hx,y (G(B)x)

))
≥ 0. Since this is true for all A ∈ B (Hy)

+,

we have Hx,y (G(B)x) ⊑ G(B)y, which implies that G(B) is an observation.

Remark 3.69. Note that in the case (ii), the condition G(B) ∈ OD implies that

FG(B) = FB ◦ F , where FB is the progressive superoperator de�ned in Theorem 3.57.

Now we are ready to give a formal dual de�nition for progressive superoperators.

We will show that the two de�nitions we have given for progressive superoperators

are equivalent.

De�nition 3.70. (Dual De�nition of Progressive Superoperator) Let D and E be

two �nite quantum domains. A progressive superoperator G : D → E is a linear map

from VE to VD such that

• G is completely positive

• G (IVE ) ⊑ IVD

• ∀B ∈ OE , G(B) ∈ OD

Theorem 3.71. De�nitions 3.51 and 3.70 for progressive superoperators are equiva-

lent.

Proof. This follows from Theorem 3.65.

As a result of Theorem 3.71, it follows that the special cases of progressive su-

peroperators we discussed in the previous section, can be de�ned using the dual

de�nition.
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Corollary 3.72. Let D be a �nite quantum domain, let I be the singleton domain,

and let B ∈ OD be an observation then the map GB : D → I with

VI → VD

x ↦→ xB

de�nes a progressive superoperator. Conversely, every progressive superoperator G :

D → I is of this form.

Corollary 3.73. Let D and E be two �nite probabilistic domains and let f : SD → SE

be a stochastic map. Let g : VE → VD be the map in Theorem 3.65 with

⟨f(A), B⟩E = ⟨A, g(B)⟩D,

for all A ∈ SD and B ∈ OE . Then the map Gf : D → E with

VE → VD

B ↦→ g (B)

de�nes a progressive superoperator. Conversely, every progressive superoperator G :

D → E is of this form (a stochastic map).

Corollary 3.74. Let D = (D,HD) and E = (E,HE) be two singleton quantum do-

mains with D = {x}, E = {y}, B ((HD)x) = Cn×n, and B ((HE)y) = Cm×m for some

n,m ∈ N. Let f : Cn×n → Cm×m be a superoperator. Let g : Cm×m → Cn×n be the

map in Theorem 3.65 with

⟨f(A), B⟩E = ⟨A, g(B)⟩D,

for all A ∈ Cn×n and B ∈ OE . Then the map Gf : D → E with

VE → VD

B ↦→ g (B)

de�nes a progressive superoperator. Conversely, every progressive superoperator G :

D → E is of this form (a superoperator).

Corollary 3.75. Let D be a �nite quantum domain, let I be the singleton domain,

and let A ∈ SD be a state. Then the map GA : I → D with
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VD → VI

B ↦→ ⟨A,B⟩

de�nes a progressive superoperator. Conversely, any progressive superoperator G :

I → D is of this form.



Chapter 4

Conclusions and Future Work

In this thesis, we gave a new de�nition of quantum domains. This de�nition is much

simpler than what was proposed in [11, 13]. We de�ned observations, states, and

�nitely compactly supported states and we proved that every state can be viewed as

a limit of �nitely compactly supported ones.

The simplicity of our de�nition enabled us to de�ne progressive superoperators

for �nite domains, and to show that observations, states, and stochastic maps are

special cases, which is something that has not been done before. Then we discussed

that this de�nition cannot be generalized to in�nite domains, because it was de�ned

on states. We solved this problem by giving a second, dual de�nition of progressive

superoperators. We proved that the two de�nitions are equivalent, but the second

de�nition, which is based on observations instead of states, creates a foundation for

de�ning a progressive superoperator for in�nite domains, in the future.

4.1 Future Work

Having de�ned an abstract notion of the progressive superoperators, the next step will

be to show that this de�nition is physically realizable, i.e., every progressive super-

operator is physically implementable and every physical operation can be modelled

by a progressive superoperator.

The progressive superoperators de�ned in this thesis were only de�ned on �nite

quantum domains. As mentioned in the introduction, it is of interest to see how

our de�nition of progressive superoperators can be extended to the in�nite case.

Speci�cally, the main goal of future work on this topic is to de�ne a suitable category

of quantum domains and to investigate its properties. Such a category has (�nite

and in�nite) quantum domains as its objects and progressive superoperators as its

morphisms. One of the most important questions that arise after this category is

de�ned is that whether this category can serve as a model for quantum programming

61
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languages. Also, we are interested in studying this category in order to determine the

types of limits, colimits, and other structure it has and to �nd out whether there are

any functors of interest on this category.

Another line of questions that can be pursued in future work is to �nd the connec-

tions between the category of quantum domains and that of Von Neumann algebras.

Also, it would be of interest to �nd out whether domain equations have a solution in

the category of quantum domains.
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