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Abstract

Next-generation DNA sequencing technologies have made marker-gene DNA sequence

data widely available. Analysis of microbiome data has many challenges, including

sparsity, high cardinality, and intra-study dependencies during feature engineering.

Language-modelling techniques may provide the means to overcome these challenges.

The first step in sequence modelling is dividing the sequence into sensible tokens. We

show that trained tokenization strategies, byte-pair encoding and unigram language

modelling can replace traditional sliding-window based segmentation techniques for

DNA marker genes in classification, clustering, and language-modelling tasks. We

then propose a novel approach for feature representation of DNA marker genes,

proposing a training scheme to learn dense vector representations of DNA sequences

using transformer language models optimized using DNA sequence pair-wise align-

ment scores. We demonstrate that our representations match or exceed previously

published approaches for treatment of individual marker genes and of microbiome

samples while providing fixed-length, low-cardinality representations of each.
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Chapter 1

Introduction

1.1 Motivation

DNA sequences are frequently used as proxies for biodiversity, and important eco-

logical questions are now being asked using machine learning. For example, diagnos-

tic machine-learning algorithms are being developed to predict human disease state

given a collection of microbial DNA sequences taken from a body site on the subject

[47, 80, 101, 96, 99]. One of the most significant challenges of DNA machine learning

tasks is the question of feature representation. DNA must be represented numerically

before it can be processed by a machine-learning algorithm. When choosing a feature

representation, one must consider that DNA sequences are typically variable length

and comprised of a character set that is comprised of only four characters. A typi-

cal approach for DNA sequence representation is to segment DNA into overlapping

chunks, called k -mers, count the k -mers in a sequence, and use the resulting count

vector as a feature. While this approach is sufficient for some use cases, the process

destroys contextual information and string-based distance measures, limiting their

applications.

Current practices for the treatment of DNA proxies for ecological samples prevent

the development of production-ready machine learning algorithms. The most common

approach for feature representation for these data is to construct features from a

collection of samples. An undesirable consequence of this that a corresponding feature

vector is entirely dependant on properties of the data set from which the sample was

taken. This prevents pre-trained ML models from being used with test data from

outside of the study used for training.

Recent research has investigated the application of techniques popular in the nat-

ural language processing (NLP) domain with DNA sequence data [17, 55, 32, 92, 49].

Of note, researchers have investigated the use of language modelling and representa-

tion learning techniques to develop novel feature representations for DNA sequences,

1



2

with the goals of creating dense, fixed-length representations of sequences that mean-

ingfully capture distances among them [55, 92]. These studies were successful, but

were limited by their use of normalization processes involving statistics calculated

over an entire data set.

We propose that adapting contemporary language-modelling techniques for use

with DNA sequences will allow us to develop novel DNA feature representations

which can overcome the limitations of previous work. The development of robust

fixed-length dense vector representations of DNA will allow researchers to create fea-

ture representations of collections of DNA sequences by performing vector arithmetic

over the vector embeddings of the sequences. As language-modelling tasks generally

scale in compute complexity, memory demand, or both as the length of sequences

increases, it is important to identify viable methods to reduce the lengths of DNA

input representations for such tasks.

1.2 Marker Genes and Microbial Community Analysis

Over the last 30 years or so, the tools and processes available to microbial ecologists

have changed drastically. Historically, researchers interested in the diversity and

composition of microbes living in a given environment had to resort to culturing

samples in a wet-lab setting and directly observing the microbes using microscopy,

characterizing them by morphological traits. While studies employing such methods

have advanced microbial life sciences, they faced a major limitation: The majority

of microbial organisms cannot survive and grow in a laboratory setting and thus

fail to be represented in experiments that rely on culturing [30]. In light of this,

researchers proposed that un-culturable microbes might be compared and categorized

by differences in their DNA sequence [24].

With the advent of high-throughput next-generation sequencing (NGS) techniques,

researchers have acquired the ability to extract genetic material directly from an en-

vironment, forgoing the need for culturing and thereby allowing them to better char-

acterize microbial diversity. Differences in DNA sequence allow different organisms

from a given environment to be distinguished, thus allowing detailed characterization

of a community of microorganisms (i.e., the microbiome).

There are multiple strategies for extracting microbial genetic information from an



3

environment. “Metagenomic” methods aim to characterize microorganisms by ran-

domly sampling from all the genetic information present in an environmental sample.

Other, more-focused methods target specific DNA sequences corresponding to indi-

vidual genes. It is common to be interested in the taxonomy of microbes in a sample.

In the context of living organisms, taxonomy is a classification schema that places

organisms into increasingly comprehensive hierarchical groups [69]. If researchers

target a ubiquitous gene that is present in all organisms, they may perform taxo-

nomic analyses of organisms by comparing sequence differences among the recovered

genes. In order to detect and characterize specific DNA sequences from a sample,

researchers must have a priori knowledge of the composition of some part of the tar-

get sequences. This is because the DNA sequencing takes place by first amplifying

small regions of DNA using a series of biochemical reactions. To perform this ampli-

fication, researchers must design molecular anchors (called “primers”) that flank the

target sequence, which requires knowledge of the flanking DNA sequence.

The process of sequencing specific genes and using the sequences to differentiate

organisms is called marker-gene analysis. When selecting a marker gene, researchers

will usually select a gene that contains both sequence regions that are highly similar

across organisms, and regions that are more variable. The conserved regions are used

to design “universal” primers that can detect and sequence the marker genes from all

organisms of interest. Differences in variable gene regions are then used as diagnostic

markers to distinguish different organisms in the sample. The presence and relative

abundance of unique marker-gene sequences can then serve as a proxy for the relative

quantities of microbes in a sample.

1.2.1 Ribosomal RNA Genes

The most common targets in marker-gene analyses are the genes that encode ribo-

somal RNA (rRNA). Ribosomes are ubiquitous cellular components with functions

that are critically essential for all life, and thereby all living cells contain ribosomal

genes. All ribosomes comprise large and small subunits, each of which in turn com-

prises proteins and small RNA molecules, called rRNAs (figure 1.1a). In the case of

prokaryotes, the rRNA genes found in the ribosome are referred to as 23S, 16S, and

5S. The 23S and 5S rRNA are localized to the ribosome’s large subunit and the 16S
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rRNA to the ribosome’s small subunit.

16S is a suitable candidate for marker gene analysis for several reasons. Firstly,

it is found in every prokaryotic cell, meaning that 16S amplification can theoretically

detect all bacteria and archaea in a sample. Additionally, 16S rRNA genes must main-

tain a specific three-dimensional structure to function properly. This property has had

the evolutionary result of the 16S containing several highly conserved regions; muta-

tions in these regions very rarely survive and spread in a population as they typically

result in the death of the organism. These conserved regions flank regions of DNA

with highly variable sequences which mutate easily and generally vary from species

to species. Thus, 16S sequences can be easily detected and amplified via the design

of primers that target one of the conserved regions, then compare the differences in

the variable regions to identify the unique species in a sample (figure 1.1 (b)).

1.2.2 Amplicon Sequence Data

One of the most common instruments for performing marker-gene analysis is the

Illumina MiSeq [90]. Given a sample, these sequencing machines returns thousands

of “short read” sequences of length 150-250 nucleotides with associated quality scores.

Although this level of DNA sequencing can in principle allow the identification of even

rare organisms, the sequencing process is imperfect and can generate infrequent errors

in sequences that might otherwise be identical. Therefore, it is not feasible to assume

that all unique short reads correspond exactly to unique organisms. In light of this,

researchers have developed approaches to approximating the “true” unique sequences

from a set of short-read sequences.

An early and still widely used approach to mitigate the errors of sequencing in-

struments is to cluster sequences based on their sequence identity into “operational

taxonomic units” (OTUs). Several OTU clustering methods group sequences with at

least 97% sequence identity into a cluster, perhaps motivated by a proposal in the late

1990s that a sequences with a 16S percent identity of 97% or greater could be used

to delineate species [21, 78, 79]. After clustering, each OTU will have an associated

“representative sequence”, an unambiguous nucleotide sequence which represents all

16S sequences in that OTU and is used for subsequent taxonomic assignment and
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Figure 1.1: Prokaryotic ribosomal rRNA. (a) Space-filling model of prokaryotic ribo-
some. The ribosome exists as a complex of proteins and RNA molecules. The left
piece shows the small subunit, comprising 16S rRNA complexed with several proteins.
Proteins are shown as purple, and rRNA molecules are shown as pink and yellow. The
right piece shows the large subunit, comprising 23S and 5S rRNA complexed with sev-
eral proteins. Adapted from lecture slides courtesy of Robert Beiko. (b) Approximate
layout of the 16S prokaryotic small subunit rRNA gene. The 16S gene is approxi-
mately 1500 nucleotides in length and consists of several highly conserved regions and
nine hypervariable regions. Variable regions are shown in green, conserved regions are
shown in blue. Shown in red are two examples of commonly used targets for amplicon
sequencing, the V1-V3 region and the V3-V4 region. Modified from Ricci et al. [72].
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analyses. While the 97% sequence identity threshold is still commonly used, contem-

porary OTU clustering algorithms allow users to specify the percent identity as a

parameter and various studies use different values.

While OTU clustering has provided a means to make analysis of high-throughput

amplicon sequencing data tractable, it is not without shortcomings. Researchers have

shown that minor adjustments in the OTU clustering procedure can significantly af-

fect downstream analyses and interpretations. For example, He et al. [29] have shown

that small changes to the number of sequences or samples included in OTU clustering

calculations will significantly affect the resultant OTUs, showing that OTU clustering

procedures are unstable. Others have shown that the 97% identity threshold is a sen-

sible value for delineating certain species, but is too sensitive for some (i.e. separates

species which should not be considered separate) and not sensitive enough for others

(i.e. collapses species which ought to be considered separate) [56, 51]. Additionally,

the distance metrics used to calculate similarity between sequences for OTU cluster-

ing may result in poor-quality clusters [56]. In spite of these shortcomings, OTUs

remain widely used in studies of microbial diversity and ecology. Readers should

understand that these data should be considered noisy and imperfect.

Quality scores indicate the level of confidence that the sequencing machine has

identified the correct nucleotide. This information can be used to mitigate the impacts

of sequencing errors, and are often used as a prefiltering step to remove reads of

very low quality. In 2016, Callahan et al. [12] proposed an alternative algorithm

to OTU clustering which uses the quality scores in conjunction with the short-read

sequences to produce “Amplicon Sequence Variants” (ASVs) in a process generically

referred to as “denoising”. This work was published under the name DADA2. The

process of denoising reads into ASVs replaces the process of clustering reads into

OTUs: Instead of clusters, sequences are denoised and then assigned IDs based on

uniqueness. Since the development of DADA2, additional denoising algorithms have

been introduced, such as Deblur [3]. ASVs exhibit higher fidelity and more consistent

representations of sample ecology than OTU clustering, and ASV-based analyses are

becoming increasingly common in the literature [34, 13, 62].
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1.2.3 Challenges and shortcomings of amplicon sequence data

Though amplicon sequencing has been a tremendous boon to microbial ecology re-

search, it is not without shortcomings. A major limitation of amplicon sequence data

is that it is inherently compositional [28, 27]. Since there is an intrinsic upper bound to

the amount of reads a DNA sequencer can produce, the number of reads produced in a

run cannot be considered reflective of the total number of DNA molecules, and conse-

quently the total number of organisms, in a sample. As the magnitude of count values

is reflective of the capacity of the sequencing machine rather than the magnitude of

the organisms in a sample, it is best practice for researchers to treat the sequence

count values as compositional data [27]. Compositional data are characterised by bias

towards negative correlations and laden with spurious correlations, which can have

serious implications for ordination analyses, clustering, network analysis, and statis-

tical tests of differential abundance [27, 28]. An increasingly common approach is to

project the count data to a simplex using a log-ratio transformation [27, 28, 46, 60].

While these recommendations are well-motivated by mathematical first principles,

comparative analyses and machine-learning methods based on simple counts or pro-

portions are still in widespread use.

Another significant challenge with amplicon sequencing data, and one which we

aim to address in this work, is the difficulty of comparing samples across studies in

the context of machine learning. Most published works that describe an amplicon-

based machine-learning workflow are based on relative abundance or count vectors

of either OTUs or ASVs [47, 84]. The algorithms which produce OTUs and ASVs

accept raw read information as input and produce representative sequences and count

tables as output. These count tables are essentially S ×D matrices, where S is the

number of samples from the study and D is the number of OTUs/ASVs detected.

OTU/ASV count vectors generated from the set of samples are then used as feature

vectors v ∈ RD that are used to train models. While useful, models trained using

these feature vectors cannot be extended to previously unseen test data that contain

OTUs/ASVs that are absent from the training and validation sets.

As an illustrative example, consider two hypothetical studies in which separate

teams of researchers wish to train a model to detect colorectal cancer using micro-

biome data from human stool samples collected in house. Suppose the first team
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performs DNA sequencing and ASV denoising and acquires a Sα × Dα ASV count

matrix. They then train their model to predict a class label using vectors v ∈ RDα as

input. Concurrently, the second team also performs sequencing and denoising using

their samples and acquire a Sβ ×Dβ ASV matrix. They train their model to output

a label given some vector v ∈ RDβ . Because Dα and Dβ were calculated in two sepa-

rate studies, they will only be equal in the highly unlikely scenario that both studies

detected precisely the same set of unique ASVs. In this context, then, two teams

must both create machine-learning models to perform the same task using the same

type of data, but each model will be incompatible with the other team’s data.

1.3 Machine-learning applications with amplicon sequence data

Machine learning can be applied to amplicon sequence data at different steps in the

analysis process. An important step in microbial community analysis pipelines is

the assignment of taxonomic information to short reads, i.e. predicting the spe-

cific organism of interest for a given representative sequence. There are multiple

approaches to these assignments, but the most popular include sequence similarity

searches, machine-learning approaches trained with reference databases, and combi-

nations of the two [8, 33, 88].

In addition to classification of individual sequences, there has been increased in-

terest in the ability to use microbiome marker-gene data sets to predict environmental

traits as a machine learning classification problem, particular in the prediction of hu-

man disease states from biopsies and/or stool samples [15, 97, 23, 101, 80, 67, 96,

99, 57, 99, 20]. Such investigations range in methodology and aim: some use data

mining methods to identify whether specific species and species distributions are as-

sociated with specific host traits, whereas others frame prediction of a disease state as

a machine learning classification problem using the microbiome data as input. Each

approach offers advantages and shortcomings: The data-mining approaches may re-

veal helpful insights into the biological roles of specific microbes in their respective

communities. The classification approaches may serve as inductive research tools,

allowing researchers to inspect which features were weighted as important by their

classifier and to inspect the traits of samples which confound their model. Microbiome

sequencing may someday play a role in diagnostics, providing incentives to develop
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effective machine-learning tools given the complexity of microbial communities. Cur-

rently, most machine learning studies use some transformation of OTU or ASV data

as feature vectors, preventing the use of these models in production (as discussed in

section 1.2.3).

1.3.1 Considerations in machine learning: Model selection

When performing machine learning analyses, it is important to consider the choice

of model. It is widely accepted that there is no single machine learning model which

will achieve the best possible performance for all possible data sets [93]. Model

performance will be significantly affected by the factors such as the dimensionality

of the sample data (i.e. number of features), the distribution of class labels, and the

number and proportion of relevant features in the data set. For example, Ng [54] has

shown that sample complexity of rotationally invariant models, such as support vector

machines and artificial neural networks, scales linearly with the number of irrelevant

features in the sample data whereas rotationally variant models such as Näıve Bayes

classifiers and decision trees scale log-linearly. Additionally, some problems cannot

be solved by learners which act as combinations of linear functions; these problems

may require non-linear functions such as radial basis kernel methods [83].

With the availability and ease of use of contemporary machine learning program-

ming libraries and APIs such as scikit-learn [58], it is a reasonably straightforward

exercise to trial multiple machine learning models when attempting to design a good

estimator for a given problem. Therefore, we consider it to be good practice to repeat

experiments with multiple models where computing resources allow.

1.3.2 Considerations in machine learning: Feature selection

The microbiome data used in host phenotype prediction are typically high dimen-

sional and sparse [57, 38]. Additionally, the sampling and sequencing procedures

involved in acquiring microbiome data generally result in data sets with n samples

on the order of tens or a few hundreds [84, 20]. The inevitable result is a data set

in which nfeatures ≫ nsamples. Most estimators require some ratio of nsamples/nfeatures

to successfully learn a discriminator function which can generalize to data outside

their training set and generally perform better as the ratio of samples to features
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increases [53, 54]. Therefore, applying methods which reduce the number of features

in a data set can result in improved estimator model performance for microbiome

data sets.

In addition to being used to improve model performance, feature-selection algo-

rithms can be used to investigate which features in a data set are most informative or

important. However, as with machine learning models, feature-selection approaches

differ in their motivation and efficacy. Broadly, feature-selection algorithms can be

divided into univariate approaches, which consider individual features, and multivari-

ate approaches, which consider feature subsets [35]. Each approach has advantages

and drawbacks; univariate approaches are tractable and interpretable but may fail to

identify key interactions among features, whereas multivariate approaches can iden-

tify higher-order features but must rely on heuristics to perform their searches [35].

The ability to identify these higher-order feature interactions may be important in mi-

crobial community analysis, as microbes are known to interact significantly in their

environment in both competitive and mutualistic manners [74, 81]. The effective-

ness of different feature-selection algorithms can be data set specific, therefore single

feature-selection models should not be used to draw conclusions without a thorough

understanding of the distribution, variance, and correlation structure of a data set

and its features.

1.4 Segmentation of DNA sequences

An essential first step in the machine learning analysis of DNA data is the choice of

representation. As text data, DNA cannot be directly passed to a machine-learning

model; it must first be converted to some numerical representation.

Recall that a molecule of DNA is comprised of a series of nucleotides, of which

there are four types. Therefore, any DNA sequence S is composed of characters

c ∈ C,C = {A,G,C, T}. One possible numerical representation of a DNA sequence

of n characters is to convert characters to one-hot vectors. Since |C| = 4, a one-hot

representation of a DNA sequence of length n would become a n× 4 matrix.

Segmentation strategies, in which DNA sequences of length n are decomposed

to form some list of tokens, are widely used. This section describes k -mer segmen-

tation, perhaps the most common form of DNA segmentation, as well as previous
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Figure 1.2: Segmentation of a short DNA sequence into overlapping 3-mers. A se-
quence of length n will produce n− k + 1 k -mers.

work describing a statistically motivated DNA segmentation approach. Finally, we

describe contemporary statistical segmentation approaches that have been used in

non-biological text processing fields.

1.4.1 k-mer based segmentation

A k -mer refers to a DNA sequence of length k. In the context of DNA segmentation,

DNA sequences are usually segmented into k -mers that overlap with an overhang of

one. For a DNA sequence of length n and a k -mer size k, this results in a list of

k -mers of size n− k + 1 (figure 1.2).

While k -mer segmentation of DNA is somewhat näıve, it is effective in several ap-

plications. Taxonomic classifiers based on machine learning represent their sequences

as k -mers prior to feeding them to their model [8]. There are multiple ways to repre-

sent lists of k -mers as numeric data. Similar to raw nucleotide sequences, it is possible

to one-hot encode a list of k -mer sequences. However, a one-hot encoded approach

will typically result in a highly sparse feature space, which results in analysis difficul-

ties. Instead, researchers may opt to represent lists of k -mers as vectors v ∈ Z+4k ,

such that v[i] represents the ith value in a sorted list of possible k -mers. An individ-

ual sequence can then be represented as either a presence/absence vector in which

v[i] = 1 if k -mer i is present in the sequence, 0 otherwise, or as a count vector, in

which v[i] will be assigned the count of the number of times k -mer i appears in the

sequence.

When segmenting DNA into k -mers, the choice of k can have a significant impact
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on the downstream analysis. Larger sizes of k provide the opportunity to detect

rare sequence combinations, which may provide valuable information to an analysis.

However, the cardinality of the feature vector scales exponentially with the size of k,

resulting in increasingly sparse data that requires large amounts of memory. This is

a trade-off which researchers much carefully navigate for their specific application.

1.4.2 Statistically driven segmentation of DNA sequences

While k -mer segmentation strategies are often effective, it is possible to choose a

DNA segmentation strategy that is based on calculated principles rather than based

on a fixed-length sliding window. For example, Liang [44] showed that it is possible

to segment DNA using a maximum likelihood n-gram model.

Similar to a k -mer, an n-gram refers to a series of characters of length n, with

the distinction being that k -mers are typically overlapping and n-grams are not. The

model described by Liang [44] is simple: Given a sequence of n-grams X, predict to-

ken xi given xi−(n−1), ..., xi−1 by choosing max(P (xi|xi−(n−1), ..., xi−1)). The authors

reduced the search space of the probabilities by restricting the size of n to an interval

and by solving using the Viterbi algorithm rather than brute force. Their approach

remains a proof of concept and has not been used to explore downstream applica-

tions, though they showed that approaches previously reserved for natural language

processing such as n-gram segmentation are viable for DNA.

1.5 Representation learning of text data

Text analysis in computational tasks using tokenized input has been historically suc-

cessful, but has significant limitations. For example, in the examples described above

(k -mer and n-gram tokenization of sequences), tokens are represented as indices in

some vocabulary. While such representations can be used successfully in many tasks,

by nature they do not encode any distance measurement among tokens. In the

field of natural language processing, the inability to quantify distance between n-

gram or word tokens resulted in stagnation in tasks such as machine translation and

speech recognition [50, 7]. As such, researchers have developed techniques for training

machine-learning models to project tokens to a meaningful vector representation, a



13

Figure 1.3: Overview of Word2Vec architectures. CBOW architecture uses words in
a surrounding context to predict the target word. Skip-gram uses a current word to
predict the words in the surrounding context. From Mikolov et al. [50]

process broadly defined as representation learning. Here, we discuss major develop-

ments in representation learning of text data and describe how they have been applied

to DNA sequence data.

1.5.1 Word embedding

A major development in representation learning for text data was the development of

word vector models. The motivation of a word vector model is to train some machine

learning model to associate words from a vocabulary to a distributed real-valued

vector space, Rd [6, 50, 7]. The process of projecting words from a vocabulary to a

real-valued vector space is termed “word embedding”. Some of the most successful

such models were introduced by Mikolov et al. [50], who introduced two novel neural

network architectures for learning word vectors, collectively termed Word2Vec.

In their paper, Mikolov et al. [50] described two related word embedding ap-

proaches, which they called Skip-gram and CBOW (figure 1.3). Both models are sim-

ple log-linear classifiers using a hierarchical softmax “projection layer” and trained

with stochastic gradient descent. In the CBOW (Continuous Bag-of-Words) model,

given a target word w in a sentence, n words upstream and n words downstream of the
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target word are passed to the projection layer and averaged. The averaged projection

layer is then used to predict the target word w using the hierarchical softmax opera-

tion. Conversely, in the Skip-gram model, a target word w is passed to the projection

layer and then used to predict the values of n upstream and n downstream context

words. The authors demonstrated that both approaches can be used to project words

onto a real valued vector space by discarding the softmax layer after training (i.e. word

vectors are the value produced by the projection layer). Famously, the vectors seem

to encode semantically meaningful information, allowing vector arithmetic to produce

sensible results (e.g. vector(“biggest”)− vector(“big”) ≈ vector(“smallest”)).

Subsequent to the development of Word2Vec, alternative word embedding models

built on similar principles emerged, such as FastText, which incorporates the use

of sub-word n-grams to enrich the word vectors [7], and GloVe, which incorporates

global information in addition to the local context information used in Word2Vec [59].

1.5.2 Sub-word tokenization

When creating numerical representations for DNA sequence data, it is sensible to use

k -mer representations as described above. As DNA is composed of a fixed set of four

possible nucleotide characters, k -mer representations will have fixed vocabularies of

size 4k. When modelling natural languages, however, the question of how to define

a vocabulary is not so simple. One way of addressing the problem of the open vo-

cabularies found in natural languages is the introduction of sub-word tokenization, in

which texts are tokenized into segments shorter than words rather than by dictionary-

defined or white space separated words [11]. In addition to providing more flexible

language modelling capabilities, researchers have found that sub-word tokenization

improves representation learning outcomes and makes models more robust and gen-

eralizable than using words as tokens [11, 40, 45, 39].

Here, we briefly summarize two popular sub-word tokenization algorithms, byte

pair encoding (BPE) and unigram language modelling. We propose that these ap-

proaches may offer sensible alternatives to k -mer segmentation for DNA sequences.

Byte pair encoding is a greedy iterative algorithm which trains an encoder to build

a vocabulary with which to segment text. Byte pair encoding was originally proposed

in 1994 as a data compression algorithm [25]. The algorithm proceeds by scanning
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a training corpus for common sub-string pairs and then replacing those pairs with

symbolic tokens, which are added to a vocabulary that is initialized to contain the

character set of the corpus.

BPE has the desirable traits of allowing user-specified vocabulary size and being

able to handle previously unseen sub-strings by tokenizing text using the character

set as tokens. The simple, effective, and flexible characteristics of BPE have made it

the de facto tokenization strategy for language modelling and neural machine trans-

lation [76, 11, 39, 19, 45, 40].

Although BPE has become the dominant tokenization strategy in language mod-

elling tasks, some research has indicated that an alternative strategy, unigram lan-

guage modelling, may be preferable [11, 39]. Unigram language modelling is an

approach which attempts to calculate the most likely tokenization of a text using

expectation maximization, thereby considering multiple sub-word candidates. Unlike

BPE, which iteratively grows a vocabulary, unigram language modelling proceeds by

initializing a large vocabulary to contain common sub-strings found in a training cor-

pus, calculating the most likely tokenization for each document in the corpus, and

then iteratively eliminating tokens with low likelihoods until a target vocabulary size

is met. Some research has shown that by considering multiple sub-word candidates,

language models may become more robust to noise and may be more inclined to learn

semantically meaningful text segmentations [11, 39].

1.5.3 Transformers

The field of natural language processing has shifted from application specific mod-

elling to pre-training large language models and later fine tuning those models for

application-specific tasks [91]. The advent of this paradigm shift can be attributed

to a multitude of factors, not the least of which is the development of novel effective

architectures. In particular, a machine learning model architecture referred to as

the transformer [85] has seen wide-spread adoption. The paradigm of fine tuning a

large, pre-trained transformer model has been used to achieve state-of-the art results

in a wide range of tasks, including but not limited to text classification, machine

translation, text summarizing, and commonsense inference [45, 86, 87, 94, 41, 10, 43].

The transformer is an architecture designed for sequence transduction tasks [85].
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Figure 1.4: Overview of the transformer model as originally described in Vaswani
et al. [85]. Transformer architectures are encoder-decoder architectures characterized
by stacks of layers containing multi-headed self-attention layers followed by fully
connected feed-forward layers. Each layer is followed by a residual connection and
batch normalization (“Add & Norm”). The transformer represents input position
using a positional encoding operation applied to the inputs. Figure from Vaswani
et al. [85].
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Prior to the development of the transformer, state-of-the-art sequence modelling was

achieved through the use of recurrent, encoder-decoder sequence models such as long

short-term memory (LSTM) networks and gated recurrent networks [82, 16, 5]. Re-

current model architectures typically function by performing successive computations

along steps of the input and output sequence. While these methods have been suc-

cessful in a wide variety of applications, the sequential manner of their calculations is

a massive limitation as it prevents parallelisation. Some researchers proposed mecha-

nisms to reduce or the amount of sequential calculations required to model sequences,

such as purely convolutional sequence modelling [26]. However, the number of com-

putations required to model intra-sequence dependencies scales with the distance

between those dependencies [85]. Instead of modelling sequences as states-over-time

using auto-recurrent hidden states, Transformer architectures use attention mecha-

nisms to model global dependencies between input and output sequences [85].

The transformer architecture is an encoder-decoder architecture characterized by

stacks of identical layers in both the encoder and decoder. Each stack contains a

multi-headed attention mechanism as well as a fully connected feed-forward network.

To allow the network to model positional dependencies in input data, both the en-

coder and decoder have a positional embedding layer prepended (figure 1.4). By using

attention instead of recurrence or convolution to model sequences (both of which scale

in compute costs with the distance of intra-sequence dependencies), transformer is

able to compute long-term dependencies in constant time [85]. In addition to the

constant time computation of sequence dependencies, attention is parallelizable, al-

lowing Transformer models to take advantage of GPU accelerated parallel processing.

We discuss the mechanisms of attention and Transformer models in more detail in

chapter 3.

Though the transformer was originally designed specifically for sequence trans-

duction tasks (specifically neural machine translation), researchers soon applied vari-

ations of the architecture on the paradigm of pre-training large models for general

language “understanding” and later fine tuning those models for task specific per-

formance [65, 19]. For example, the BERT model uses bidirectional encoders in a

transformer architecture, pre-trained using a masked language model objective in

which tokens in an input sequence are randomly ablated and the model is tasked
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with predicting the token ID of the original tokens [19]. This practice of pre-training

large language models and subsequently tuning them with some supervised learning

objective has largely replaced other language modelling techniques, achieving state

of the art performance in several natural language processing tasks [91].

1.5.4 Sentence transformer

One interesting and relevant application of pre-trained transformer models is the abil-

ity to fine-tune them to generate semantically meaningful continuous vector represen-

tations v ∈ Rd of full sentences. Reimers and Gurevych [71] showed that pre-trained

transformer language models can be tuned to learn sentence-level representations by

simply adding a pooling layer to the network’s output and fine-tuning the resulting

model in a jointly-trained configuration using annotated sentence pairs (figure 1.5).

For the task of computing sentence-level vector embeddings, the model is trained

using sentence pairs annotated with a similarity score between 0 and 1 and minimizes

the distance between the annotated score and the cosine similarity of the embedding

vectors of the input sentences, using mean-squared error loss to update the network

weights via back-propagation [71].

1.6 Representation learning of DNA sequence data

The development and use of vector representations for text data in the natural lan-

guage processing domain has not gone unnoticed by biologists and bioinformaticians.

In 2017, a researcher published a proof-of-concept pre-print showing that a Word2Vec

style approach could be applied to DNA k -mers [55]. That is, they trained a skip-

gram network architecture and training objective to project DNA fragments of length

k to a continuous vector representation v ∈ Rd. They showed that cosine similarity

in the projected vector space correlated with DNA sequence alignment scores, sug-

gesting that the embedding approach may preserve semantic information for DNA

sequences in the same way observed in language text. Following this work, several

other researchers have gone on to apply representation learning techniques to biolog-

ical sequence data [31].
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Figure 1.5: Overview of the cosine similarity sentence embedding objective proposed
by Reimers and Gurevych [71]. A pre-trained bidirectional transformer has a pooling
layer added after the final, d -dimensional hidden layer of the model and is loaded
twice in parallel (annotated as “BERT-like” in the figure). The conjoined models are
fed sentence pairs with a corresponding similarity score between (0, 1). Each sentence
pair is passed through the models to produce d -dimensional vector representations,
u and v. The cosine similarity between u and v is calculated, and the mean squared
error (MSE) between the cosine similarity and the annotated score is calculated. The
model then adjusts its weights via back-propagation gradient descent using the MSE
as loss. Adapted from Reimers and Gurevych [71].
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1.6.1 k-mer embedding

Representing DNA as k -mer count vectors or k -mer one-hot vectors are functional

approaches, but these approaches have significant drawbacks, including high dimen-

sionality of the representations and a lack of sensible distance metrics between values

in the representation space. These issues are similar to those faced by natural language

processing researchers when creating representations for words and text. Therefore,

researchers began to apply natural language processing paradigms to biological se-

quence data.

Multiple researchers have now shown that k -mers can be projected to a continuous

dense vector representation using neural language models [55, 49, 92]. In the specific

domain of 16S marker gene analysis, Woloszynek et al. [92] trained a Word2Vec model

to learn k -mer embeddings using 16S sequences as the training corpus. Their research

showed that the resultant embeddings could be aggregated to create sequence level

embeddings using a procedure called Smooth Inverse Frequency embedding (SIF).

SIF is a procedure proposed by Arora et al. [4] as a means of producing sentence-

level dense vectors. Following the success of word embedding algorithms like Word2Vec,

researchers became interested in producing dense vector representations of higher-

order text units like sentences or documents. While several supervised and unsu-

pervised learning based approaches have been created, Arora et al. [4] showed that

a relatively simple, non-parametric approach could create high-quality sentence em-

beddings which outperformed several contemporary approaches (figure 1.6). The

approach relies on a trained word-embedding model, though it is agnostic to the

specifics of that model. The procedure is to first segment a collection of sequences

into tokens (e.g. words for language, k -mers for DNA) (figure 1.6a). Next, use a

pre-trained word embedding model to project the tokens from each sequence to a

continuous vector representation (figure 1.6b). Then, take the geometric mean of the

token embeddings comprising a sequence and create a matrix of the resultant vectors

(figure 1.6c). Finally, calculate the first principal component of the matrix via singu-

lar value decomposition and subtract it from the matrix (figure 1.6d). The result is a

matrix with columns containing vector embeddings for the sequences in the corpus.

With previous literature showing the robustness of k -mer embedding and Arora

et al. [4] creating a compelling sentence-level embedding approach, Woloszynek et al. [92]
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Figure 1.6: Overview of the smooth inverse-frequency (SIF) sequence embedding
approach. (a) A body of s sequences is segmented into tokens using some tokenization
strategy. Here, sequences are segmented into 4-mers. (b) The tokens from each
sequence are embedded as d -dimensional vectors using a trained word embedding
model. Here, d = 3. (c) The geometric mean of the token vectors comprising each
sequence is taken. The resulting d -dimension vectors are used to form the columns
of a matrix A. These columns represent the “raw” sequence embeddings for each
sequence. (d) The matrix A is decomposed using singular value decomposition (SVD).
The results of SVD are used to remove the first principal component from A. The
result is a d× s matrix where each column is a d -dimensional sequence embedding.

showed that the SIF approach could be used to create dense vector representations

of 16S sequences. They showed that by training a Word2Vec model to learn k -mer

embeddings and then applying the SIF approach, the resultant 16S vectors could be

used to classify taxonomy, perform phylogenetic clustering, and approximate cluster

consensus sequences. They also showed that there was a correlation between the pair-

wise cosine similarity of their sequence embeddings and pairwise sequence alignment

scores, suggesting that their embeddings approximate distance similar to sequence

alignment metrics.
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1.7 Contributions

While there has been some work investigating approaches for tokenization of DNA

sequences as an alternative to k -mers, we have not found work which investigates the

effects of using these sequences in downstream work flows. We train two statistically

driven text encoders using a large corpus of 16S marker genes and analyze the re-

sultant tokens. We show that our segmentation strategies produce shorter sequences

than k -mer encoding with no loss of performance in sequence taxonomic assignment

tasks. We also show that the tokens from our trained encoders can replace k -mers

when training DNA segment vectors as per Woloszynek et al. [92], resulting in dra-

matically faster training time and no loss of vector quality.

While several studies have used transformer-based methods for the analysis of pro-

tein sequences, very few have applied these techniques to DNA sequence data [31].

We show that we can use encoded 16S marker genes as training data for a trans-

former model learning a masked language modelling task. We introduce a novel

method for producing gene-level DNA sequence embeddings by introducing a fine-

tuning loss function to our pre-trained transformer model that minimizes the differ-

ence between cosine similarity of output vectors and pairwise alignment scores of raw

DNA sequences. We show that these embeddings outperform previously published

embedding strategies in the criteria defined by their authors. Finally, we show that

vector arithmetic of the resultant marker gene embeddings can be used to create

continuous representations of entire microbiome samples, opening the possibility of

production-ready machine learning models for those data.

1.8 Thesis outline

The remainder of this thesis is divided into three chapters. In chapter 2, we describe

our approaches to training tokenizers for 16S marker gene data. We train byte-

pair encoding and unigram tokenizers to create vocabularies of sizes matching k -

mer vocabularies of size k = 6 and k = 8. We investigate the properties of our

encoded DNA sequences and show that our encoding strategies can replace k -mers for

tokenization in taxonomic classification tasks. Next, we use our encoding strategy to

learn DNA token vectors using CBOW Word2Vec. We produce sequence-level vectors
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using the approach described by Woloszynek et al. [92] and show that our encoding

strategies can be used in place of k -mers in representation-learning problems.

In chapter 3, we describe our implementation of a transformer model trained on

the masked language modelling task using 16S marker gene data as input. Subse-

quently, we describe how we use a novel sequence pair objective function to fine tune

our transformer to produce high quality gene-level sequence embeddings. We com-

pare our embeddings against those created by the approach described in Woloszynek

et al. [92] and show that our approach results in ostensibly higher-quality vectors.

Finally, we propose a novel approach for creating sample-level vector representations

of microbiome data and investigate their application in the use of host phenotype

classification tasks.

In chapter 4, we discuss the implications and limitations of our work and propose

future research directions.



Chapter 2

Statistically Driven Segmentation of DNA Sequences

In this chapter we describe our investigation into alternative approaches to k -mer seg-

mentation for tokenization of 16S DNA sequences. We trained BPE and unigram lan-

guage model tokenization algorithms using non-redundant sequences from the SILVA

database, a large database of 16S gene sequences, to learn token strategies for 16S

genes. Our trained tokenizers resulted in far fewer features than did k -mer strategies.

This is a major advantage for language modelling tasks, as such tasks scale linearly

or worse in either compute or memory demand as a function of sequence length. We

show that both BPE and unigram tokens can be used in place of k -mer tokens in

sequence classification tasks with no loss in classification performance. We then show

that BPE and unigram tokens can be used to learn dense vector representations of

DNA “words”, performing similarly to k -mers with a dramatic reduction in model

training time.

2.1 Data acquisition and preprocessing

To train the Byte-Pair-Encoding and unigram tokenization algorithms, we down-

loaded the SILVA NR-Ref version 138.1 database of small subunit rRNA (SSU) se-

quences using the SILVA web portal [64]. We selected all 453,395 prokaryotic reference

sequences belonging to Bacteria and Archaea, leaving out the eukaryotic reference se-

quences.

Some nucleotides from the DNA database are annotated as ambiguous due to low

sequencing quality. We used only the unambiguous SSU sequences from the SILVA

data set by removing all sequences with characters that did not refer precisely to a

specific nucleotide, i.e. ’A’ for Adenine, ’T’ for Thymine, ’G’ for Guanine, or ’C’ for

Cytosine. 410,078 sequences remained after filtering.

For taxonomic-prediction tasks, we used a smaller data set of 16S sequences cu-

rated by the KEGG database [36]. Note that there is a non-zero intersection between

24
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the SILVA and KEGG data sets; some sequences appear in both sets. We do not

consider there to be data set cross-contamination as the SILVA data set is used in

unsupervised tasks and the KEGG set is used in supervised tasks. We retrieved

16,800 KEGG curated 16S sequences from the data repository shared by Woloszynek

et al. [92], who also performed analysis on 16S sequence data. The KEGG sequences

are not annotated with taxonomy, but rather with database IDs. We wrote a script

to query the KEGG database RESTful API to acquire the taxonomic information

for each sequence in our data set. We were able to successfully retrieve taxonomic

information for 16,254 sequences, which we annotated with hierarchical labels at the

levels of Kingdom, Phylum, Class, Order, Family, Genus, and Species. Some se-

quences are fully resolved to these taxonomic ranks and are assigned the label of

Candidatus at the rank subsequent to their most granular resolved rank; this label

refers to organisms which may be well characterized but are yet to be cultured (i.e.

grown in laboratory) [77]. When performing clustering or classification, we removed

targets with a label of Candidatus.

2.2 Byte-pair encoding

Several contemporary high-performance language models use a strategy called Byte

Pair Encoding to tokenize their input sequences [19, 45, 66]. Byte Pair Encoding

(BPE) is a language agnostic text compression algorithm first described by Sennrich

et al. [76]. In BPE, an encoder is trained to learn a tokenization strategy given a

corpus of text. The BPE algorithm is an iterative greedy algorithm which compresses

text with the following strategy (detailed in algorithm 1):

1. Given a corpus S with character set C and a target vocabulary size v :

2. Initialize a vocabulary V s.t. C ∈ V

3. Parse the corpus S and determine the most-frequent pair of adjacent tokens

(s1, s2)

4. Create a new token sn to represent the most-frequent token pair. Append it to

the vocabulary V

5. Replace all pairs (s1, s2) in the corpus with sn
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6. Repeat until |V | = v

The result of training is an encoder which can map a sequence with character set C

to a sequence of tokens in the set V as well as a decoder which can map a sequence

of tokens back to its corresponding set of characters. BPE has the useful property of

not requiring special treatment for white space, e.g. word gaps. As there are no such

delineations in DNA sequences, a DNA tokenization strategy requires this property.

A trained BPE encoder segments text by dividing the text into individual char-

acters and then iteratively merging the characters into the tokens stored in the BPE

vocabulary. The priority of token merges is driven by the order in which tokens were

added to the vocabulary [76].

The deterministic and greedy nature of BPE is generally viewed as a shortcom-

ing of the approach, as the deterministic segmentation approach can limit language

models in learning morphemes [63, 39]. This shortcoming of the determinism of BPE

encoding can be overcome using a simple drop-out approach: when segmenting texts,

randomly prevent merge operations from occurring with a probability p [63]. By

randomly preventing merge operations, stochastic text segmentation can occur. Ex-

posing language models to these stochastically segmented texts has been shown to

make them more robust [63, 11].

BPE tokenization of DNA sequences could result in properties which are favor-

able over the k -mer representation. A major drawback of k -mer tokenization is the

property of overlapping k -mers: By using overlapping tokens, k -mer tokenization

strategies result in sequences of length n being represented as lists of tokens of length

(n− k + 1) , where typically k << n. Thus, k -mer tokenized sequences are approxi-

mately as long as un-tokenized DNA sequences. This can make k -mer representations

prohibitively expensive for language models that use full sequence information such

as the transformer, Seq2Seq, or even Word2Vec, all of which scale in compute and/or

memory demand as the length of input sequences increases [85, 82, 50]. Unlike k -mer

tokenization, BPE tokenization converts sequences to non-overlapping series of to-

kens. Indeed, at least one work that we are aware of use BPE tokenization for DNA

sequences, though this processing was peripheral to their main work and they do not

investigate the properties of the tokenization strategy against k -mer tokenization [98].
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Shorter sequences are desirable for many sequence-analysis tasks; shorter se-

quences result in faster token counting for count vector methods and are more tractable

for sequence modelling tasks as described above. This makes BPE appealing espe-

cially for marker gene analyses: As marker genes are characterised by highly conserved

regions and BPE is designed to collapse common sub strings, it is likely that a BPE

encoder trained using marker genes will result in a compression of the marker gene

sequences.

Here, we investigate the efficacy of BPE encoding to replace k -mer encoding in

tasks using 16S marker genes. To compare byte pair encoded sequences against k -

mer encoder sequences, we trained BPE encoders using 410,078 unambiguous 16S

marker gene sequences until their vocabularies reached size 4k; that is, until the

vocabulary size matched the number of possible k -mers of size k. We used Google’s

SentencePiece [40] library to train BPE encoders with vocabulary sizes of 46 and 48.

Our choice of BPE implementation includes sub-word regularization and BPE dropout

for robustness. For brevity, we will refer to these encoders as BPE6 and BPE8,

respectively. To allow the encoder to compress long, conserved regions of the marker

genes, we configured the BPE algorithm to allow a maximum token length of 256 (i.e.

a single token can replace 256 characters), up from the default value of 8.

Algorithm 1 Train Byte-Pair Encoder

Input: A set of sequences S, final target vocabulary size v

V ← set of unique characters in S

while |V | < v do

s1, s2 ← Tokens comprising most frequent bigram

sn ← s1 + s2

V ← V + sn

Replace all s1, s2 bigrams with sn

end while

2.3 Unigram tokenization

While BPE tokenizers have seen wide adoption in the NLP field, some recent work

suggests that BPE is a sub-optimal tokenization strategy [11]. This work shows that
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an alternative tokenization strategy called unigram tokenization results in tokens

which are more morphologically meaningful than BPE tokens. The work is focused

on language modelling, and also shows that the use of tokenization strategy can affect

the performance of downstream language-modelling tasks.

The unigram tokenization algorithm was proposed by Kudo [39]. Unlike BPE,

which is a greedy algorithm, unigram is a maximum-likelihood model that consid-

ers multiple sub-word candidates. The unigram model begins by parsing the set of

training sequences and creating a heuristic seed vocabulary V composed of the set

of characters occurring in the training data and the most common sub-strings in the

data, such that |V | is much larger than the target vocabulary size. The algorithm

iteratively ranks the sub-strings (tokens) in V and removes the lowest scoring tokens

until |V | is equal to the target vocabulary size (algorithm 2).

Algorithm 2 Train Unigram Language Model

Input: A set of sequences S, final target vocabulary size v, decay rate η

V ← heuristic seed vocabulary: The set of unique characters in S and the most

common sub-strings in S, s.t. |V | ≫ v

while |V | > v do

Compute L =
∑︁|D|

s=1 log(
∑︁

x∈S(X(s)) P (x)); maximized via EM algorithm

For each token xi ∈ V , compute li, the reduction of L if xi is removed from V

Sort V by xi values. Remove (100− η)% tokens from V .

end while

To investigate whether unigram tokenization is better for 16S marker gene to-

kenization than BPE or k-mer, we trained unigram tokenizers using the same pa-

rameters as our BPE tokenizers: we trained two unigram tokenizers using 410,078

unambiguous 16S marker gene sequences with vocabulary sizes 46 and 48. Hereafter,

we will refer to these models at Unigram6 and Unigram8. We set the same token

length limit of 256 as we used in our BPE tokenizers.

2.4 16S Sequence Embedding

A major motivation in the decision to use BPE or unigram tokenization strategies

in place of k-mer tokenization is the desire to use shorter, non-overlapping token
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sequences in language modelling tasks. To our knowledge, there is only one published

work investigating the projection of 16S marker genes to a continuous vector space,

described by Woloszynek et al. [92].

The procedure describe by Woloszynek et al. [92] for producing continuous vector

representations of 16S sequences is a two-step procedure: First, use a 16S corpus to

train a Word2Vec model to produce k-mer embeddings. Next, use a procedure de-

scribed by Arora et al. [4] that uses word embeddings to produce sentence embeddings

and apply this to the k-mer embeddings.

The procedure described by Arora et al. [4] is referred to as Smooth Inverse Fre-

quency (SIF) embedding and was proposed as a simple but effective baseline for

the evaluation of sentence-level embedding models. SIF embedding requires the use

of a trained word/token embedding model. The procedure is fairly simple (further

described in algorithm 3):

1. Given a corpus S of tokenized sequences and a token embedding model W which

projects tokens to a vector v ∈ Rd

2. For each sequence si in S containing li tokens, apply model W to all tokens in

si s.t. S becomes a matrix of shape l × d

3. Average the token embeddings in each sequence matrix such that the result is a

single d -dimensional vector for each sequence s. When calculating the average,

down-weight tokens with high frequency in the corpus.

4. Place the resultant sequence vectors into a matrix M s.t. M is a |C|×d matrix.

5. Perform singular value decomposition (SVD) on the matrix M to acquire the

first principal component of M .

6. Subtract the first principal component from M . The projection of the data

along the first principle component is thought to encode semantic material of

the entire corpus, and therefore removing this projection acts as a de-noising

step for the individual sequence embeddings. The resultant matrix now contains

the final sequence embeddings.

To investigate the viability of BPE and unigram representations in a language

modelling context, we replicated the methods described by Woloszynek et al. [92]
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using k-mer, BPE, and unigram representations. We trained Word2Vec models using

the CBOW training objective and the same parameters described by Woloszynek

et al. [92], implemented using the Gensim Python library [70]. We used an embedding

dimension of 128, a look-ahead/look-behind window of 50 tokens, negative sampling

value of 10, a high-frequency down-sampling rate of 1e−4, and a minimum word count

value of 100, with all other parameters set to default.

Algorithm 3 Simple Average with PC Removal Sequence Embedding

Input: Token embeddings {vk ∈ Rd|k ∈ V }, a set of sequences S, down-weighting

term a

Output: Sequence embeddings {vs : s ∈ S}
n← total number of tokens in S

for all tokens k ∈ V do

fk ← frequency of k in S

p(k)← fk/n

end for

for all sequences s in S do

vs ← 1
|s|Σk∈svk

a
a+p(k)

end for

Form matrix X with columns {vs : s ∈ S}, let u be the first singular vector of X

for all sentences s in S do

vs ← vs − uuTvs

end for

2.5 Results

2.5.1 Properties of encoded sequences

Prior to assessing the usefulness of BPE and unigram encoding strategies in down-

stream applications, we encoded our training corpus of 16S marker genes using BPE,

unigram, and k -mer approaches and investigated the distribution properties of tokens

in the various encoding strategies. We investigate the effect of encoding strategy on

sequence length, token frequency distributions, and feature importance rankings. We

found that using BPE or unigram encoding resulted in dramatically shorter sequences
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than k -mer encoding. We also found that token distributions and feature importance

rankings changed depending on which tokenization strategy is used, suggesting that

researchers may wish to adjust their analyses if switching from one strategy to an-

other.

Compression rate of tokens

To approximate the compression rate of the two tokenization strategies, we investi-

gated the distribution of token lengths in the trained encoders’ vocabularies. Each

encoder has an upper bound on the number of characters a single token can represent

of 256. We refer to the number of characters encoded by a single token as that token’s

token length. For each possible token length i ∈ [0, 256], we counted the number of

tokens in each encoder’s vocabulary with length i (figure 2.1). We found that for all

encoders, the majority of tokens have a token length i < 50. Interestingly, we found

that the most common token length for BPE6 and BPE8 are 6 and 8 respectively,

which matches the token length of k in their defined vocabulary sizes of 4k. We do not

see this with unigram encoding; both Unigram6 and Unigram8 have a most-common

token length of 6.

We found that with both BPE and unigram encoding, a larger vocabulary size

allows for larger token lengths to occur in the vocabulary. This matches our expecta-

tions; we would expect frequent strings of length li to be less frequent than sub-strings

found within those strings. Using a larger vocabulary size allows the encoder to add

longer strings to the token vocabulary.

We found that BPE6 and Unigram6 learned tokens of similar lengths, having

similar distributions of token lengths in their vocabularies. However, we observed that

Unigram8 contains far more long tokens than BPE8 (red plots, figure 2.1), suggesting

that the maximum-likelihood model used in the unigram tokenization process is more

likely to use large tokens in its vocabulary than the strictly greedy approach used by

BPE. We also note a spike of the number of tokens with a length of 256 in Unigram8’s

vocabulary, which is the upper bound. This may indicate that Unigram8 trained with

a larger maximum token size would add still larger tokens to its vocabulary.
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Figure 2.1: Distribution of token lengths as they appear in encoders’ vocabularies.
x-axis indicates the number of characters represented by a token, i.e. the length of
a token. y-axis indicates the number of tokens in the encoder vocabulary with a
given token length. Unigram models are represented in the right hand column. BPE
models are represented in the left hand column.

Distribution of tokens

Next, we investigated the distribution of token lengths that appear in the set of

410,078 training sequences after tokenization (figure 2.2). When inspecting the in

situ distributions of token lengths, we find that the apparent differences in token

length distributions among models seen in their vocabulary distributions is no longer

apparent. BPE6, BPE8, and Unigram8 all have most frequent token sizes of 5 and 6.

Curiously, Unigram6 has a most frequent token size of 1, representing single nucleotide

tokens.

We find that in spite of BPE8 having far fewer tokens with length > 100 than

Unigram8 in its vocabulary (figure 2.1), the distribution of large tokens in real data

occurred with similar frequency (figure 2.2, red plots). Thus, in spite of BPE and

Unigram encoders producing differently distributed vocabularies, their encoding in

practice resulted in similar token distributions. This discrepancy can be explained by

the difference in vocabulary building strategies used by BPE and unigram encoders.

Where BPE is purely greedy and frequency based, it is unlikely to maintain large

common strings, especially as the vocabulary size becomes smaller. In the context of

DNA sequence data where strings are contiguous, for any string s with length ls > 1
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Figure 2.2: Distribution of token frequencies using various token encoding methods,
binned by encoded token length. Tokens are counted over 410,078 full length 16S
sequences retrieved from SILVA [64]. Top row shows tokenizers trained to a vocab-
ulary size of 4096 tokens. Bottom row shows tokenizers trained to a vocabulary of
65536 tokens. Left column shows tokenizers trained using the BPE algorithm. Right
column shows tokenizers trained using the Unigram Language Model algorithm. Note
that the y-axis has a log scale.

that occurs with frequency k in a corpus, it is extremely likely that there is some sub-

string of s that occurs with frequency f > k. Therefore, large strings will be ousted

from the limited vocabulary by their more frequent sub-strings. Unigram, however,

uses a loss function approach to score strings when deciding whether to keep them in

the vocabulary, so it is not strictly necessary that long strings with more frequent sub-

strings will be discarded. In practice, however, both methods prefer using relatively

short tokens to encode sequences.

Similar to what we observed when inspecting vocabulary distributions, we note

that BPE6 and Unigram6 have far fewer large tokens than BPE8 and Unigram8. It

is apparent that larger vocabulary sizes allow for the addition of larger tokens to

the vocabulary, resulting in increased compression of sequences. Certain applications

require increased compute and memory for increased sequence length, while others

do so for increased vocabulary size, and the best choice of vocabulary size may be

use-case dependent.
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Inverse rank frequency of tokens

We investigated the relationship between token frequency in the corpus and token

rank. Token rank refers to the index of a token in a list of tokens sorted descending by

their frequency of occurrence. We investigated whether any or all of the tokenization

strategies (BPE, Unigram, k -mer) produced approximately log-linear inverse rank

frequency plots, which is a characteristic widely observed in computational linguistics

data sets [61]. We encoded our large 16S corpus using BPE, unigram, and k -mer

representations with vocabulary sizes {46, 48}. Next, we calculated the frequency

of all tokens in each encoding strategy, sorted by descending frequency, and plotted

frequency vs rank on a log-log plot (figure 2.3). We performed simple linear regression

on the log-log plots and used the resultant R2 value as a measure of linearity.

We find that both choice of vocabulary size and tokenization strategy affect the

frequency-rank distributions of tokens. Of the three representations, Unigram tokens

resulted in the closest to linear inverse rank frequency. We note that for k -mer and

unigram encoding strategies, a larger vocabulary size resulted in closer to log-linear in-

verse rank frequency distributions, whereas for BPE the converse was true. We notice

that the frequency of tokens was more concentrated in BPE and Unigram tokenization

strategies than in k -mer strategies (figure 2.3). Based on the variance between fre-

quency distributions of the models, we suggest that parameterized, frequency-driven

analysis methods may need to be modified based on the representation used.

Length of encoded sequences

We investigated the resultant sequence length from encoding 16S sequences with our

tokenization methods. Again, we tokenize our SILVA data set of sequences using

BPE, Unigram, and k -mer representations with vocabulary sizes of 4k, k ∈ 6, 8. We

recorded the length (i.e. number of tokens) of all encoded sequences and plotted

them (figure 2.4). The average length of a 16S sequence is ≈ 1500 nucleotides. As

discussed in chapter 1, the length of a k -mer encoded DNA sequence with n nucleotide

will always be (n−k+1), k << n, so k -mer encoded sequences will be approximately

equal in length to the raw sequences. The average 16S sequence was ≈ 1500, with

some significant variability in the data set.

Both unigram and BPE encoding reduced the number of tokens in a sequence
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Figure 2.3: Inverse rank-frequency plots for token frequencies in SILVA data set.
Columns show k -mer, BPE, and unigram representation. Rows show vocabulary
sizes of 46 and 48. Frequency values are hex-binned for legibility. The x-axis shows
the log value of the token rank. The y-axis shows the log value of the token frequency
in the corpus.
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Figure 2.4: Length distributions in number of tokens of 16S sequences encoded us-
ing various tokenization strategies. Distributions were measured by measuring the
number of tokens in each tokenized sequence from the 410,087 SILVA 16S sequences.
y-axis indicates the number of tokens in the encoded sequence.

by approximately 7-fold compared to k -mer methods. As expected from our results

discussed above, BPE8 and Unigram8 produced shorter sequences (i.e. fewer tokens)

than their BPE6 and Unigram6 counterparts. Interestingly, despite unigram encoding

resulting in vocabularies containing more large tokens than BPE, BPE representations

resulted in shorter sequences. This is likely due to the high frequency of very short

tokens found in unigram encoding (figure 2.2).

2.5.2 Machine-learning assignment of taxonomy

It is common practice to use machine-learning classifiers to assign taxonomic labels to

16S sequences, often using some k -mer derived representation as features [8, 33, 89].

To assess the efficacy and quality of BPE and unigram tokens in 16S segmentation, we

implemented machine-learning models to classify 16S sequences using inputs derived
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from k -mer, BPE, and unigram tokens and compared the performance of each model.

Experimental Design

As a feature representation, we used a count-vector representation, whereby given a

sequence s and vocabulary of tokens V, |V | = d, the sequence s is represented as a

vector v ∈ Zd where v[i] is the number of times the ith token in V occurs in s. We

justify our choice to use count vectors as research has shown that count vectors of

k -mers are effective for classification of 16S sequences [33]. We created count vectors

using k -mer tokens, BPE tokens, and unigram tokens.

Taxonomic ranks are assigned hierarchically. Therefore, we formulated 3 classifi-

cation tasks: Given a count vector of a sequence s, predict that sequence’s taxonomic

assignment at the ranks of Phylum, Order, and Genus (i.e. 3 classification problems

with increasing granularity). For our classification tasks, we used our 16,254 KEGG

database 16S gene sequences.

We used the SciKit-learn machine learning library [58] to implement two machine-

learning models to predict a sequence’s taxonomic class label given the count vector

embedding as input. We produced count vectors using 6 -mer, BPE6, and Unigram6

representations. We implemented a Multinomial Näıve Bayes classifier and a Random

Forest (RF) classifier, each using the SciKit learn default hyperparameters.

We also investigated the effect of feature selection on classification performance.

We implemented statistical univariate feature selection using ANOVA F-score to se-

lect the n best features with n ∈ 1024, 512, 256, 128. We also implemented a tree-

based stochastic mutual information feature selection strategy, selecting the n best

features from a RF model based on impurity with n ∈ 1024, 512, 256, 128. When

using RF feature selection and RF classification in the same trial, we used different

models for feature selection and classification.

We performed machine-learning trials using each machine learning model, each

feature selection strategy, and each count vector embedding (BPE6, Unigram6, 6-

mer) (figure 2.5). For our classification tasks, we used seeded train-test splits with

a test set size of 20%. We measured the success of each permutation by measuring

the model’s weighted F1 score over the test set. We calculated the F1 score as

F1 = 2 P∗R
P+R

where P and R are precision and recall, respectively. Precision is defined



38

as P = Tp

Tp+Fp
, where Tp and Fp are the number of true positive and false positive

predictions in a test set, respectively. Recall is defined as R = TP

Tp+Fn
, where Fn is the

number of false negative predictions in the test set.

Classification results

There were no significant differences in the best results for each feature representation

(i.e. tokenization strategy). However, there were major differences among perfor-

mances of models using the different representations (figure 2.5). Of note, univariate

feature selection resulted in significant degradation of model performance for unigram

and BPE representations, but not for 6-mer representation. In the genus classification

task, for example, BPE token representations classified with RF classifiers achieved

an F1 score of 0.980 using 128 features selected via RF mutual information, but

only achieved an F1 score of 0.307 when using 128 features selected using ANOVA F

score. The unigram representations resulted in nearly identical scores. 6-mer repre-

sentations, however, had almost no change in score, achieving 0.988 with RF feature

selection and 0.986 with ANOVA feature selection.

Näıve Bayes classifiers performed worse than RF classifiers in every trial. This

difference was more pronounced when using BPE or unigram tokens than with k -

mer tokens. For example, the best RF classifier for BPE-encoded sequences in genus

prediction, using 1024 features, achieved an F score of 0.990, whereas the best Näıve

Bayes classifier for the same achieved 0.943, with a similar difference in results for

unigram. With k -mer tokens, the difference in performance between RF and Näıve

Bayes performance was near constant, with RF achieving 0.01 - 0.04 higher F scores

in all trials. For BPE and unigram, however, the difference in performance became

more pronounced with smaller feature sets. Using 128 features selected via RF, BPE-

trained RF classifiers achieved an F1 score of 0.980, whereas the Näıve Bayes classifier

trained with the same features achieved a score of only 0.771.

Overall, we found that all the highest scoring models used RF classifiers with

separate RF mutual information feature selection. While token strategy choice did

not affect the highest scores of the models, the 6-mer representation was more robust

to feature selection with small n features and to model choice.
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Figure 2.5: Performance of models assigning taxonomic labels to KEGG database 16S
sequences. Sequences were encoded as token count vectors using different tokenization
strategies (k -mer, BPE, Unigram). All tokenization strategies used a vocabulary
size of 4096. Our trials compared the performance impacts of statistical univariate
feature selection using ANOVA F-score and stochastic mutual information feature
selection using random forest. We repeated our experiments using both random forest
and Näıve Bayes classifiers. The top row shows results using random forest feature
selection. The bottom row shows results using ANOVA F-score feature selection.
Columns show performance of models at different taxonomic ranks, with increasing
granularity from left to right.
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Feature Correlations

To learn more about the apparent differences between tokenization methods, we in-

vestigated the internal correlation structure of features selected using our two feature

selection strategies and our three tokenization strategies. We chose to investigate

results from the genus classification task, as these results showed the greatest discrep-

ancy among methods (figure 2.5). We calculated the Pearson correlation co-efficient

among the 128 selected features for each feature selection strategy and each token

count representation (figure 2.6).

For both feature-selection strategies, 6-mer token features have a higher rate of

intra-correlation than do unigram or BPE features. This is an intuitive finding: due to

the overlapping nature of k -mers, it is natural to expect them to be correlated with one

another. When using ANOVA F score univariate feature selection, BPE and unigram

features had very little intra-feature correlation and almost no negative intra-feature

correlation. The features selected by RF mutual information had more intra-feature

correlation than did ANOVA F score for BPE and unigram tokens. It appears that

some internal correlation structure is important to the success of classifiers using these

token representations: ANOVA feature selection with BPE and unigram resulted in

features with little internal correlation and produced a classification F1 score of ≈0.30

for both token strategies, whereas RF feature selection resulted in a higher magnitude

internal correlation and produced a classification F1 score of ≈0.98.

To further investigate the differences between feature importance and correlations

among features, we performed ordination analysis on the 128 features selected from

each feature selection algorithm for each tokenization strategy in the genus classifica-

tion task. We performed principal coordinates analysis (PCoA) over the correlation

matrices of each feature set, calculating the eigenvectors and eigenvalues of each set.

We ranked the principal co-ordinates by their percentage of variance explained and

plotted the top 20 principal co-ordinates (figure 2.7). We found that k -mer representa-

tions had a large amount of variance explained by the first principal co-ordinate, with

28.0% from the RF selected features and 45.4% with the ANOVA F-score selected fea-

tures. In comparison, BPE’s first principal co-ordinate explained only 7.59% of vari-

ance with RF selected features and 3.19% with ANOVA selected features. Unigram’s

first principal co-ordinate explained 6.31% of variance with RF feature selection and
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Figure 2.6: Pearson correlation of 128 most important features selected by univariate
feature selection and stochastic mutual information feature selection in the 16S genus
classification task using multiple tokenization strategies. Each panel shows the pair-
wise Pearson correlation coefficient of the features selected by a given algorithm for a
given tokenization strategy. Top row shows univariate feature selection by ANOVA
F-score. Bottom row shows stochastic mutual information feature selection by RF.
Columns show results from tokenization strategy of k -mer, BPE, and unigram, from
left to right. Strong negative correlations are shown as dark blue, strong positive
correlations are shown as dark red, and no correlation is shown as white.
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Figure 2.7: Scree plot showing the proportion of variance explained by the top 20
principal coordinates extracted from the 128 most important features selected by
univariate feature selection and stochastic mutual information feature selection in 16S
genus classification task using multiple tokenization strategies. The top row shows
univariate feature selection by ANOVA F-score. The bottom row shows stochastic
mutual information feature selection by random forest. Columns show results from
tokenization strategy of k -mer, BPE, and Unigram, from left to right.

3.20% with ANOVA selected features. We found that stochastic mutual information

feature selection produced more significant individual principal co-ordinates for BPE

and unigram than statistical univariate feature selection, whereas univariate statis-

tical feature selection produced more significant individual principal co-ordinates for

k -mers.

2.5.3 Sequence embedding assessment

As described in section 2.4, Woloszynek et al. [92] proposed a method for learning

dense vector representations of 16S sequences which involved first training a word

embedding model using DNA k -mers and then aggregating the vectors comprising

the k -mers in a sequence via the SIF embedding procedure. We performed sequence

embedding with this method using 6-mers, BPE6 tokens, and Unigram6 tokens to
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train the word embedding model. Of note, we observed an approximately 10x speed-

up of training time for BPE and Unigram representations vs k -mer representations

as a result of the shorter sequences produced by these strategies (table 2.2).

To compare the quality of sequence embeddings that result from each token rep-

resentation, we embedded the 16,254 KEGG database 16S sequences that had labels

available. We then perform classification and clustering experiments with the embed-

ded sequences to determine their utility in these tasks.

Classification of embedded sequences

To compare the different sequence embeddings, we trained a RF classifier to predict

the genus of the sequence using the sequence embedding as input. The SIF procedure

has a user-specified hyperparameter, a, which down-weights the vector embeddings

of more frequent tokens (3). We tested the effects of choice of a value by repeating

the sequence embedding procedure using a ∈ {None, 100, 10, 1, 0.1, 0.001, 0.00001,

0.0000001, 0.000000001} using 6-mers, BPE6, and Unigram6. Where a = None,

we did not perform the a term normalization, instead directly averaging the vector

embeddings of tokens. We then trained a RF classifier to predict the genus of a

sequence using the final sequence embedding as input. We performed 5-fold cross

validation and reported the mean accuracy (figure 2.8).

BPE and k -mer representations achieved ≈ 0.01 higher mean accuracy than the

unigram representation. There was no consistent trend in the effects of the down-

weighting parameter a; each representation showed fluctuations within 1% mean clas-

sification accuracy with changing a value. As the choice of a value does not signif-

icantly affect model performance using the resulting representation, we concluded

that token down-weighting was unimportant for our purposes. Note that Woloszynek

et al. [92] reported improvements in Adjusted Rand Index (ARI) clustering metrics

with a = 0.00001, but did not report effect size.

Clustering of embedded sequences

To further compare the quality of sequence embeddings, we performed K -means clus-

tering on the embedded sequences, modifying K to reflect different hierarchical tax-

onomic assignments. For each target of {Kingdom, Phylum, Class, Order, Family,
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Figure 2.8: Mean accuracy of random forest classification of genus using dense vector
embeddings of DNA sequences using different tokenization strategies and parameters.
“a value” indicates the value of the a term in the modified SIF embedding procedure
proposed by Woloszynek et al. [92]. y-axis indicates the mean validation accuracy
from 5-fold cross validation trials, with error bars showing the standard deviation of
the accuracies. Note that the y-axis is truncated to emphasize error bars.
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Genus}, we performed K -means with K set to the number of labels of each target

found in the KEGG data set.

We assessed the quality of clusters using four metrics: homogeneity, completeness,

ARI, and adjusted mutual information (table 2.1). Each score is bound between

[0.0, 1.0], with a larger value indicating a higher score. Homogeneity is a measure of

the proportion of instances in a cluster that are a measure of a single class, with a score

of 1.0 being assigned if all instances in all clusters are of the same class. Completeness

measures the proportion of data points in a single class that are assigned to a single

cluster, with a score of 1.0 being assigned if all data points from each class are assigned

to the same clusters. The Rand Index is a metric for assessing the quality of clusters

that is calculated by considering all pairs of samples and comparing the true labels

and predicted labels of the samples. It is calculated as:

RI =
(n agreeing pairs)

n pairs

The Adjusted RI modifies the RI score such that randomly assigned labels will result

in a score close to 0.0. Given the above definition of RI, ARI is defined as:

ARI =
(RI − ExpectedRI)

max(RI)− ExpectedRI

The mutual information score measures the similarity between two labellings of the

same data; in this context, between the predicted cluster labels and the true cluster

labels. If |Ui| is the number of samples in cluster U and |Vj| is the number of samples

in cluster |V |, then the mutual information score between U and V is given as:

MI(U, V ) =

|U |∑︂
i=1

|V |∑︂
j=1

|Ui ∩ Vj|
N

log
N |Ui ∩ Vj|
|Ui||Vj|

Similar to the ARI, the adjusted mutual information score (AMI) modifies the MI

score to account for random chance. The AMI adjustment is more complex than the

ARI adjustment and requires further definitions. Given a set of samples S clustered

to U , the probability that a random sample selected from S will be placed in cluster

Ui is

PU(i) =
|Ui|
N

and the entropy of U is then

−
n clusters∑︂

i=1

PU(i) logPU(i)
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Given these definitions and the definition of MI, AMI is then defined as:

AMI(U, V ) =
MI(U, V )− Expected(MI(U, V ))

avg(H(U), H(V ))− Expected(MI(U, V ))

Since Woloszynek et al. [92] reported using ARI to assess their choice of a value

during sequence embedding, we performed preliminary investigations into the effect

of a value on ARI. Modifying the a value during sequence embedding resulted in in-

consistent fluctuations on the order of magnitude of 0.001 for subsequent ARI scores.

Coupled with our findings in section 2.5.3, we therefore decided that token down-

weighting was unimportant for our purposes and performed our detailed cluster anal-

ysis using sequences embedded without the use of down-weighting.

The clustering metrics among the representations were similar, with k -mer method

clusters achieving scores 0.0 - 0.05 higher in most metrics than the nearest trained

token method, with the exception of the ARI scores for family and genus, in which

the k -mer method outperformed the next best methods by 0.10 and 0.12, respectively

(table 2.1). There was a general trend of BPE method clusters achieving metric values

approximately 0.1 higher than unigram, with some exceptions. For every metric and

every feature representation, we observe that metrics improve with finer resolution

taxonomic groupings.

2.6 Conclusions

Given the results of our experiments, we believe that BPE tokenization and unigram

language modelling are viable representation strategies for for marker-gene analysis.

BPE and unigram representations have major advantages over k -mers in applica-

tions which scale in computational complexity with the length of sequences, as the

length of BPE or unigram encoded token sequences is nearly an order of magnitude

shorter than k -mer tokenizations. We observed such an advantage when training

our Word2Vec models, noting a ≈10x speedup in absolute run time when training

Word2Vec models using BPE and unigram sequences vs k -mer sequences 2.2. Shorter

sequences also result in faster counting operations when creating count vectors or pres-

ence/absence vectors, as such representations require parsing the tokens in a sequence

to create the counts.
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Table 2.1: Clustering metrics for SIF embeddings calculated using different tokeniza-
tion strategies at different taxonomic ranks. We performed K -means clustering for
each taxonomic rank, setting K to equal the number of distinct classes at each rank.
We clustered sequences at the ranks of Kingdom, Phylum, Class, Order, Family, and
Genus. Each tokenization strategy had a vocabulary size of 4096. ARI indicates the
adjusted Rand Index. AMI indicates the Adjusted Mutual Information metric.

Rank K P C O F G

n Classes 2 36 99 198 428 666

Homogeneity k-mer 0.100 0.852 0.917 0.940 0.954 0.961
BPE 0.101 0.813 0.906 0.929 0.945 0.954
Unigram 0.062 0.826 0.889 0.914 0.934 0.944

Completeness k-mer 0.013 0.368 0.501 0.637 0.746 0.813
BPE 0.016 0.340 0.485 0.609 0.712 0.774
Unigram 0.012 0.348 0.473 0.597 0.698 0.758

ARI k-mer -0.013 0.129 0.124 0.199 0.307 0.382
BPE -0.016 0.090 0.100 0.142 0.206 0.261
Unigram -0.027 0.097 0.088 0.131 0.185 0.233

AMI k-mer 0.028 0.508 0.631 0.732 0.792 0.822
BPE 0.028 0.473 0.614 0.704 0.756 0.778
Unigram 0.020 0.483 0.599 0.689 0.738 0.755

Table 2.2: Time in seconds to complete 5 epochs of Word2Vec training using different
tokenization strategies. Models were trained using an Advanced Micro Devices Ryzen
7 2700X CPU with 16 threads.

Token Strategy Runtime (s)

k -mer 1763.42
BPE 188.79
Unigram 192.49
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In addition to scaling with sequence length, certain applications scale with the size

of the vocabulary, including count or presence/absence approaches and transformer-

based language modelling [19, 45, 85]. BPE and unigram representations each offer

the benefit of allowing user defined vocabulary sizes, allowing far more flexibility

in designing vocabulary size dependant analyses than k -mer representations, which

require vocabulary sizes to be 4k.

We find that BPE and unigram can each be used for direct classification and

representation approaches with little or no loss in performance compared with k -

mers. However, our findings suggest that BPE and unigram representations are more

sensitive to model choice and have less-correlated features than k -mer representations.

The latter is an intuitive finding; due to the overlapping nature of k -mers it is natural

that they would be highly correlated. The former is less intuitive and suggests that

parameterized models which perform well with k -mers will likely require different

parameter choices to perform well with BPE or unigram representations.

Our trials with feature selection suggest that while BPE and unigram token models

can match k -mer representations in various applications, they will likely require more

features to do so. This finding is corroborated by our findings using progressively

stricter feature selection as well as by our ordination analysis — our PCoA analysis

suggests that BPE and unigram representations require more features to explain the

variance in a data set.

We find that BPE and unigram models are both viable, but there are important

differences between the two and we do not consider them interchangeable. Uni-

gram representations appear to be more sensitive to parameter choices than BPE

representations, as seen in our sequence embedding, classification, and ordination

experiments. These differences can likely be attributed to the differences in token

distributions between the two models. Unigram-based approaches produce a very

large number of tokens representing single characters, a phenomenon that does not

occur in our BPE models. Single-character tokenization tends to result in poor con-

servation of information in DNA sequences, which has partially motivated the use of

k -mer representations. We therefore believe that the high incidence of single-token

characters as tokens in our unigram representations is a plausible explanation for

those representations being more sensitive to parameter choices in downstream tasks.



49

Given that both BPE and unigram perform well in all downstream applications

that we tested, we believe each approach to be viable for replacing k -mer representa-

tion in marker gene analysis tasks. However, our findings show that BPE strategies

result in shorter sequences with preference to longer tokens which are more robust to

parameter choice in down stream applications. Therefore, we suggest that researchers

should consider using BPE tokenization to replace k -mer tokenization in their DNA

sequence modelling.



Chapter 3

Bi-Directional Transformers Produce High-Quality Sequence

Embeddings with Multiple Use Cases

In the previous chapter, we investigated the viability of BPE and unigram tokenized

encodings of 16S marker genes in the application of sequence embeddings. To our

knowledge, the only previously published approach to projecting 16S sequences onto

a continuous vector space is the approach published by Woloszynek et al. [92], which

maps tokens in a sequence s to a continuous vector space Rd and then aggregates

the resultant vectors to represent a sequence (algorithm 3). While this approach

proved effective, contemporary transformer-based models make it possible to pre-

train a model to learn the “language” of a corpus of sequences [91, 19, 45, 98, 41]

and subsequently fine-tune that model to produce high quality sequence-level vector

embeddings which preserve semantic information from the raw texts [71].

There has been some previous work applying transformers to biological sequences [31].

These models have been applied to application areas such as protein tertiary struc-

ture prediction, protein sub-cellular localization prediction, bacterial transcription

start site annotation, and human genome annotation [73, 22, 68, 17, 32, 98]. As de-

scribed in chapter 1, each of these papers follows the paradigm of pre-training a large

transformer architecture (“language” modelling of the biological sequence corpora)

followed by fine tuning the model for some supervised learning objective.

Here, we pre-train a transformer language model to learn to model prokaryotic

small subunit rRNA genes (16S marker genes) and subsequently fine tune our model

to produce continuous vector fixed-length representations of 16S marker genes. To

our knowledge, we are the first to apply transformer language modelling to the task

of marker gene vector embedding. First, we trained a RoBERTa style transformer

architecture [45] using our corpus of 410,078 16S marker genes from the SILVA

database [64]. Then, we created a corpus of annotated sequence pairs by calculat-

ing the pairwise alignment scores of 16,254 16S sequences from the KEGG database

50
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using the VSEARCH algorithm [36, 75]. We used a sub-sampling of the resulting

132,088,131 sequence pairs to fine tune our model to produce sequence level vector

embeddings using the procedure described by Reimers and Gurevych [71]. We com-

pared the quality of our sequence embedding approach against the approach used in

chapter 2 as described by Woloszynek et al. [92] using clustering metrics and taxo-

nomic performance. We show that our approach’s sequence vector embeddings can

be used to perform a GPU accelerated similarity search. We selected 1000 random

sequences from our KEGG 16S data set and use BLAST+ [14] to identify the closest

5 sequences from our SILVA data set for each sequence. We then performed sequence

embedding and similarity search using the same sequences and found that searching

the vector space can approximate local alignment search in a small fraction of com-

pute time. Finally, we investigate the application of our trained embedding model

to short-read microbiome data, producing sample-level embeddings of human stool

microbiota and using the resultant vectors to classify the host phenotype.

3.1 Masked Language Model

The premise of this chapter is that transformer models pre-trained on language mod-

elling tasks can subsequently be fine-tuned for task specific purposes in several areas,

including when using biological sequence data [91, 19, 71, 45, 17, 32, 73, 22, 68, 31].

Therefore, we propose that a transformer specifically trained to model 16S gene se-

quences can subsequently be fine-tuned to produce high quality 16S sequence embed-

dings.

The notion of a language model is defined by the task of the model during learn-

ing. Several contemporary language models have seen great success with a training

objective known as masked language modelling (MLM) [19, 42, 45, 91]. The MLM

objective is simple: Models are fed segments of text as training data in which tokens

in the text are randomly ablated and replaced with a “mask” token. The model is

tasked with predicting the identities of the masked tokens.

3.1.1 Transformer model architecture

As discussed earlier, the transformer is an encoder-decoder model. The general

premise of an encoder-decoder architecture is that inputs are passed through some
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“encoder” model architecture such that an encoded state is produced. The resultant

state of is then passed to the “decoder” model, which maps the state vector to some

output with fixed shape.

The Transformer family of architectures is characterized by stacks of layers con-

taining a multi-headed self attention layer followed by a fully connected feed-forward

layer in both encoder and decoder [85]. Canonical transformer architectures per-

form language modelling by using the states of tokens i0, ...in−1 to predict token

in. Here, we use bidirectional transformers pre-trained using the masked-language

modeling task, as bidirectional pre-training has been shown to improve the robust-

ness of transformer-based language model [19, 45]. Unlike canonical or “left-to-right”

transformer architectures, bidirectional transformers consist only of the transformer

encoder, which is used to predict the identities of masked tokens in the masked

language-modelling task (figure 3.1). As discussed in chapter 1, the transformer en-

coder comprises a series of N stacks, where each stack consists of a multi-headed

self-attention layer followed by a fully connected feed-forward layer. In the process of

learning the masked-language modelling task, the model learns context-dependant,

d-dimensional vector embeddings for each token in the vocabulary used to train the

model.

The mechanism which allows transformer models to model intra-sequence depen-

dencies without recurrence or convolution is the attention mechanism coupled with

positional encoding. In general, attention describes a mapping of query, key, and

value vectors to some output (referred to as Q, K, and V for brevity from here).

There are multiple ways to compute attention, but transformer architectures use

scaled dot-product attention, computed as

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V

where dk is the cardinality of the key vector [85].

Transformer is also characterized by the use of multi-headed attention, which

allows the model to attend to sequence dependencies at different ranges. Multi-head

attention is a procedure in which the vectors Q, K, and V, where X ∈ Q,K, V , |X| =
dx are linearly projected h times to projections with dimensions dq, dk, dv in parallel

using different, learned projections over which the attention operation is applied in
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Figure 3.1: Left-right encoder-decoder architecture (left) vs bidirectional encoder-
only architecture (right). The encoder only architecture uses bidirectional context to
predict the identities of randomly masked tokens in the input sequence. The tokens
are identified by performing softmax of the hidden layer over the vocabulary. Modified
from Vaswani et al. [85].
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parallel. Subsequently, the resultant dv dimensional output values are concatenated

and projected again with a learned linear projection, resulting in a final output value.

This operation is summarized as

MultiHead(Q,K, V ) = Concat(head1, ...headh)WO

where

headi = Attention(QWQ
i , KWK

i , V W V
i )

and WX
i are the projection parameters for the vectors [85].

While the full encoder-decoder transformer architecture applies multi-head at-

tention in multiple ways, the encoder only architecture uses only self-attention. In

self-attention, the Q, K, and V vectors are all derived from the output of the layer,

i.e. Q, K, and V are equivalent.

The positional encoding layer is what allows attention-based models to capture

positional dependencies in input data without the use of recurrence or convolution.

Transformer models use a pre-defined positional encoding function to inject posi-

tional information which is computed and added to each token vector in the input.

Positional encoding functions in general may be either learned or pre-defined. In

practice, Vaswani et al. [85] found that pre-defined positional encoding functions per-

formed nearly identical to learned ones.

To perform the positional encoding for an input representation X ∈ Rn×d, where d

is the dimension of the token vectors and n is the number of tokens, one first constructs

a positional embedding matrix P ∈ Rd. The canonical transformer approach uses the

fixed positional encoding strategy in which elements of P are populated using sine

and cosine functions,

pi,2j = sin(
i

10000
2j
d

)

pi,2j+1 = cos(
i

10000
2j
d

)

[85]. This results in each dimension in P corresponding to a sinusoid, the wavelengths

of which form a geometric progression from 2π to 10000 ∗ 2π. The frequencies of the

wavelengths are monotonically decreasing along the embedding dimension, allowing

absolute positions to be inferred by frequency. This representation also allows the

model to learn relative position-wise dependencies with offset length k in constant
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time, as for any offset k Pi+k can be represented as a linear function of Pi [85, 100].

As the positional encoding matrix P is the same shape as the input matrix X, P can

be added to X, thereby embedding positional information into the input data X.

Some bidirectional encoders are optimized using the joint objectives of masked

language modelling and next-sentence prediction [19]. However, in the context of

marker gene modelling, there is no sensible analogy to next-sentence prediction. Ad-

ditionally, Liu et al. [45] has shown that masked language modelling alone is enough to

robustly train a bidirectional transformer model. Therefore, we based our transformer

model architecture on the one described by Liu et al. [45].

We constructed our transformer model using the Python library HuggingFace

Transformers [91]. We constructed a RoBERTa style transformer with 6 hidden layers,

12 attention heads, and a maximum sequence length of 258. Transformers require

a pre-defined vocabulary size in order to construct the token embedding layer. The

computational complexity of the model increases with vocabulary size. Knowing this

and consulting our results from chapter 2, we decided to use BPE tokenization with a

vocabulary size of 46 = 4096. The hidden layer size must be divisible by the number of

attention heads. To match the dimensionality of our previous embedding experiments

as closely as possible while satisfying that criterion, we used a hidden layer size of

132.

3.1.2 Data set preparation

To model 16S sequences, we prepared our SILVA database 16S corpus of 410,087

unambiguous prokaryotic SSU sequences [64]. Using our byte-pair encoding algorithm

trained in chapter 2, BPE6, we encoded each sequence into non-overlapping tokens

with a vocabulary size of 4096.

3.1.3 Training

We trained our transformer model on the masked language modeling task. We trained

our model using a P (mask) = 0.15, i.e. the probability of a token being randomly

replaced with a mask token is 0.15. We randomly selected 10% of the training data to

be used as a validation set. We trained our model using an NVIDIA RTX3090 GPU.

We assessed the loss calculated over the validation set at each epoch to implement
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an early-stopping callback; we configured the model to train for either 200 epochs

or until the validation loss stops improving for 15 consecutive epochs, restoring the

best-scoring model after training. This resulted in our model being trained for 145

epochs, approximately 65 hours on the single GPU.

3.2 Sequence embedding: Siamese network architecture

Our ultimate motivation in training our transformer language model was to fine-

tune the model to produce high-quality sequence-level vector embeddings. This can

be accomplished by adding a pooling layer to the pre-trained transformer and fine-

tuning using annotated sequence pairs. Here we describe the model architecture,

training procedure, and our proposed sequence annotation procedure.

3.2.1 Sequence transformer architecture

The sequence embedding architecture we used is described in Reimers and Gurevych [71].

The architecture is straight-forward: Simply append a mean-pooling layer to the hid-

den state layer of a pre-trained transformer model. For an input sequence of n

tokens and hidden state dimension of d such that an input sequence x is of the shape

x ∈ Rn×d, this results in an output vector of shape v ∈ Rd. This resultant vector acts

as the sequence embedding.

3.2.2 Sequence transformer loss and optimization

Simply pooling the hidden vectors of the pre-trained transformer is not enough to

produce high quality sequence embeddings. However, the pre-trained model can

be fine-tuned using the cosine similarity loss objective described in Reimers and

Gurevych [71]. To do so, the model must be trained with annotated pairs of in-

puts in which each pair has an associated similarity score between 0 and 1. The

model encodes each sequence in the pair to produce a final output through the pool-

ing layer with dimensionality Rh, where h is the cardinality of the hidden layer of the

network. The model then computes the cosine similarity of the resultant sequence

vectors, which also by definition will be a value between 0 and 1. Next, the model

calculates the mean squared error between the cosine similarity and the annotated
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Figure 3.2: Overview of the SRoBERTa training process. (a) A transformer encoder is
pre-trained using the masked language modelling task. Input sequences are tokenized
and tokens are randomly replaced with a < mask > token during training. The model
objective is to predict the identity of the masked tokens. (b) After pre-training, a
pooling layer is added to the transformer model. The model is then fine-tuned using
sequence pairs annotated with a similarity score. The model outputs a dense vector
corresponding to each sequence in a pair and calculates the cosine similarity between
them. Then, it computes the MSE between cosine similarity and the annotated
similarity score and updates its weights via back-propagation. (c) Once fine tuned,
the transformer encoder can produce dense vector representations of DNA sequences.

similarity score and adjusts its weights via back-propagation [71].

For our sequence embedding task, we needed to devise a measure which can be

used to describe the similarity of two DNA sequences. We considered that historical

research has used Spearman correlation between sequence pairwise-alignment score

and sequence embedding cosine similarity as a way of assessing the quality of em-

beddings [55, 92]. We therefore decided to use pairwise-alignment scores as assigned

by the open-source algorithm VSEARCH as our similarity score for pairs of 16S

sequences. VSEARCH uses an adaptation of the dynamic programming Needleman-

Wunsch algorithm [52] to assign alignment scores between 0 and 100 for all
(︁
n
2

)︁
se-

quences in a corpus containing n sequences [75]. See figure 3.2 for an overview of the

sequence embedding training process.
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3.2.3 Data set preparation

As our SILVA data set is too large to feasibly compute pairwise alignment scores

for all
(︁
n
2

)︁
sequences within, we used our KEGG data set comprising 16,254 16S

sequences to create annotated sequence pairs [36]. We used the VSEARCH version

2.17.1 command line tool to calculate pairwise alignment scores for our KEGG data

set with default parameters, resulting in 132,088,131 annotated sequence pairs [75].

We divided the pairwise alignment scores by 100 to produce scores in [0, 1].

We proceeded by selecting subsets of our annotated sequence pairs for training,

validation, and testing. We calculated the distribution of pairwise alignment scores

in our pairs data set. We then sampled from the data set using the distribution of

scores as sampling weights with the goal that our sub-sets would have similar score

distributions as our full data set. We sampled a training set size of 1,000,000 pairs

and validation and test set sizes of 100,000 pairs without replacement.

3.2.4 Training

We used the SentenceTransformers Python library to add pooling to our pre-trained

transformer model and to implement cosine similarity loss [71]. We trained our model

for 35 epochs using our training set of 1,000,000 pairs. We used our validation set of

100,000 pairs to record validation loss at each epoch. After training, we restored the

model parameters which achieved the best validation loss score.

3.3 Quality of sequence transformer embeddings

We performed several experiments to investigate the quality of 16S embeddings pro-

duced by our fully trained model. Where relevant, we compared the embeddings from

our approach against the embeddings produced by the methods described in Woloszynek

et al. [92], which we described in chapter 2. We will refer to our embeddings as

SRoBERTa embeddings and the latter embeddings as SIF embeddings.

Our model produced sequence embeddings whose cosine similarities correlate with

pairwise alignment scores much more strongly than those produced by SIF embed-

ding. We repeated the clustering experiments described in chapter 2 and found that

SRoBERTa sequence embeddings clustered with better metrics than SIF embeddings
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at all taxonomic ranks. We than performed taxonomic classification with both em-

beddings and found no significant difference, as both representations achieved near-

perfect scores.

One proposed application of sentence embedding architectures is fast semantic

similarity search [71]. We investigated whether our embeddings can be used to quickly

identify the most closely related sequence in a database and compared our results to

BLAST+, the de facto gold standard for sequence homology search [14]. We found

that our embeddings can be used to modestly approximate homology search with

extreme improvements in speed, offering a trade-off of less accurate, much faster

sequence look-ups.

Finally, we investigated whether sequence embeddings in microbiome data samples

can be aggregated and subsequently used to classify host phenotype. We classified

human stool samples from multiple studies using OTU data and one study using ASV

data. Our feature representation provides a fixed-length feature vector that did not

significantly decrease the performance of the classifier vs OTU/ASV center log-ratio

transformed abundances. Our fixed-length representation reduces the dimensionality

of the data set and makes it possible to apply trained models to data from outside

the training set study, a feature which is not possible with traditional OTU/ASV

methods.

3.3.1 Spearman correlation of pairwise-alignment scores and cosine

similarities

In their study, Woloszynek et al. [92] showed that there was a Spearman correlation

between the cosine similarities of their sequence embeddings and the VSEARCH pair-

wise alignment scores of the raw sequences. We used our 100,000 test set pairs to cal-

culate pair-wise cosine similarities for sequences embedded using both our SRoBERTa

method and the SIF method described by Woloszynek et al. [92]. We calculated the

Spearman correlation co-efficient between the cosine similarities and the VSEARCH

pairwise alignment scores. As expected, our method’s embeddings have dramatically

stronger correlation between cosine similarity and VSEARCH alignment score (ta-

ble 3.1). Though our model was trained directly to maximize this correlation, it is

still worth showing that it outperforms the SIF model in this metric.
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Table 3.1: Spearman correlation coefficient values between cosine similarity of em-
bedded sequences and pairwise alignment distance of raw sequences. Note that
SRoBERTa directly optimizes the correlation between cosine similarity and pairwise
alignment score, whereas SIF does not. Correlation was calculated over 100,000
VSEARCH annotated KEGG database 16S sequence pairs reserved for test purposes.

Spearman r

SRoBERTa 0.9310
SIF 0.1956

3.3.2 Clustering of embedded sequences

We continued our assessment of sequence embedding quality by repeating our clus-

tering experiments from section 2.5.3. Using our 16,254 KEGG 16S sequences, we

performed sequence embedding using the SIF procedure with BPE6 tokens and our

SRoBERTa sequence embedding procedure. We then clustered the embedded se-

quences with K -means clustering multiple times, again modifying K to reflect the

number of distinct taxa at each target of {Kingdom, Phylum, Class, Order, Family,

Genus}. We assessed the clusters using the same metrics as earlier: Homogene-

ity, completeness, ARI, and AMI. Our embeddings produced higher quality clusters

nearly universally, with improvements in nearly every metric at every taxonomic rank

(table 3.2).

3.3.3 Classification of embedded sequences

We assessed whether our embedded sequences can be used to classify the taxonomy of

the organism of origin. We created three label sets for the data: Phylum, Order, and

Genus, representing taxonomic labels at increasingly granular levels in the hierarchical

taxonomy scheme. During each trial, we removed data with targets which appeared

less than five times in the data set. We then used the SciKit-learn Python library

to train RF classifiers to predict the labels of sequences with each label set. We

performed 5-fold cross validation and report the average balanced accuracy and F1

score as well as standard deviations for each (table 3.3). We calculated balanced

accuracy as the macro average of class-wise recall scores, where recall is calculated

as R = TP

TP+FN
, with TP indicating true positive predictions and FN indicating false

negative predictions.
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Table 3.2: Clustering metrics for sequence embedding at different taxonomic ranks
using both SIF embedding and SRoBERTa embedding. We performed K -means
clustering for various taxonomic ranks, setting K to equal the number of distinct
classes at each rank. We clustered sequences at the ranks of Phylum, Order, and
Genus. ARI indicates the adjusted Rand index score. AMI indicates adjusted mutual
information.

Rank P O G

n Classes 36 198 666

Homogeneity SRoBERTa 0.865 0.952 0.962
SIF 0.813 0.929 0.954

Completeness SRoBERTa 0.369 0.643 0.799
SIF 0.340 0.609 0.774

ARI SRoBERTa 0.122 0.196 0.324
SIF 0.090 0.142 0.261

AMI SRoBERTa 0.512 0.740 0.809
SIF 0.473 0.704 0.778

Table 3.3: Performance metrics of 5-fold cross validated classification of embedded
16S sequences to different taxonomic ranks using random forest classifiers.

Rank Model Balanced Accuracy F1

Phylum SRoBERTa 0.930 ± 0.026 0.989 ± 0.003
SIF 0.911 ± 0.039 0.989 ± 0.003

Order SRoBERTa 0.962 ± 0.009 0.992 ± 0.001
SIF 0.967 ± 0.010 0.994 ± 0.001

Genus SRoBERTa 0.976 ± 0.004 0.985 ± 0.002
SIF 0.983 ± 0.006 0.989 ± 0.001
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Both embeddings performed with near perfect performance with small variance

in validation metrics. We therefore can’t conclude that either representation is con-

sistently better suited to taxonomic assignment using direct classification over the

sequence embedding.

3.3.4 Nearest sequence lookup

One interesting suggested use of sentence embedding is the ability to perform GPU

accelerated semantic similarity search of text data [71]. Users can identify the closest

matches to a query sequence by producing embeddings of a target search corpus,

embedding the query sequence, computing the cosine similarities between the query

and targets, and then selecting the highest scores. We investigated whether we can

apply this method to our DNA sequence embeddings to approximate homology search.

The gold-standard sequence homology search tool in bioinformatics is BLAST [2,

14, 48]. BLAST is widely used to identify homologous sequences by comparing queries

to large databases of biological sequence data. While BLAST searches are known to be

relatively fast, compute costs scale with the size of queries, the size of the database,

and the number of queries. Here, we investigate how closely a nearest-embedding

search can approximate a BLAST search.

To perform nearest-sequence look-up, we randomly selected 1000 sequences from

our KEGG data set to use as queries. We then used NCBI BLAST+ software, version

2.12.0, to construct a local database comprising our 410,078 SILVA database 16S

sequences and executed a BLAST nucleotide homology search for each of the 1000

randomly selected KEGG database sequences against the SILVA database sequences,

recording the IDs and alignment scores of the top 5 best hits for each sequence [14].

Besides adjusting the number of hits returned to five, we used default parameters for

our BLAST search. Next, we trained our SRoBERTa model to produce a database

of vector embedded 16S sequences from our SILVA data set. Finally, we embedded

the 1000 randomly selected KEGG sequences and calculated the cosine similarity

scores between the query sequences and database sequences, again recording the top

5 results for each sequence. For each sequence, we compared how many of the top

5 results from the BLAST search overlap with the top 5 results from the cosine

similarity search. We found that 76% of the sequences investigated had at least one
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Figure 3.3: Distribution of overlaps of top five results between BLAST homology
search and cosine similarity nearest-neighbor lookup. We used BLAST+ to identify
the top five closest sequences for 1000 randomly selected KEGG 16S queries against
a database of 410,087 SILVA 16S sequences. We then encoded all query and database
sequences to a continuous vector representation using our fully trained SRoBERTa
model and calculated the top five closest sequences for each query using cosine sim-
ilarity. For each sequence, we count how many matches were found in the top five
results of both methods.

result in common, with 13% of sequences producing exactly the same top 5 matches

(figure 3.3).

3.4 Classification of host phenotype from amplicon sequence data

One of our motivations for developing fixed-length vector embeddings for 16S se-

quences is the promise of developing a fixed-length representation for compositional

microbiome data. As discussed in section 1.2.3, the feature vectors of microbiome

data are usually count vectors, with each element corresponding to the count of an

OTU or ASV that was identified in the study. Because different studies (and indeed,

the same studies with different sample denoising protocols) will result in different

OTUs/ASVs being identified, different studies will produce data with variable fea-

ture vector shapes. This difference precludes the ability to develop models which

can perform classification across studies, which is an essential ability for production

machine learning applications and therefore a major barrier to deploying microbiome

machine learning classification in clinical settings.
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Table 3.4: Summary of data sets used for microbiome sample classification.OTU
data were cleaned by removing OTUs which appeared in less than 15% of samples.
As part of the DADA2 denoising process, ASVs with frequency below the first quartile
of frequencies were removed, therefore this cleaning step was not applicable for our
ASV data set.
Study Type n samples n feat., init n feat., post Task.

Gevers OTU 164 109,869 1787 Inflammatory bowel disease
Lozupone OTU 53 10,105 887 HIV
Zeller OTU 118 82,666 8147 Colorectal cancer
Son OTU 105 17,983 888 Austism Spectrum Disorder
Zackular ASV 60 3,113 N/A Colorectal cancer

To address this limitation, we propose a strategy which uses a relative-abundance

weighted average of the sequence embeddings comprising a microbiome sample to

produce a single fixed-length feature vector. We used publicly available human stool

sample data from five studies and compared the ability of a RF classifier to learn

to predict host disease state from our embedding strategy against a classical relative

abundance approach. While our approach did not improve performance, it never

performed significantly worse than the relative abundance approach and offers the

advantage of a fixed-length, continuous-valued representation.

3.4.1 Data set preparation

We prepared five data sets for our sample-level embedding classification trials. We re-

trieved four data sets from MicrobiomeHD, which hosts data and metadata for several

microbiome classification tasks [20]. We retrieved data sets with binary classification

tasks of disease state vs healthy for various disease states (table 3.4). We retrieved

only data sets which used Illumina MiSeq 16S sequencing, ignoring data sets curated

from studies using older instruments. The data provided from MicrobiomeHD come

pre-processed as OTU counts clustered at 100% sequence identity using the USE-

ARCH algorithm along with corresponding representative sequences; raw sequences

were not provided, preventing analysis of the impact of denoising strategy on the

final result [20]. All samples were human stool samples. The data sets we used are

described in table 3.4.

OTU data sets are sparse with high cardinality (i.e. number of features). These



65

characteristics typically result in increased compute cost and decreased efficacy for

machine learning models. We therefore subjected all our OTU count tables to the

same data cleaning procedure. First, we perform simple data cleaning by removing

any OTUs or samples that had either missing values or were comprised of all zeros.

To reduce the high cardinality, We also removed all OTUs which appear in less than

15% of samples (table 3.4).

For our fifth data set, we retrieved data from a study investigating microbiome

signatures in patients with colorectal cancer [96]. We retrieved this data as paired-

end raw reads and processed them using a denoising procedure rather than an OTU

clustering one. We used the QIIME2 bioinformatics software package to de-multiplex

the sequences and investigate their quality scores [9]. We then assigned the sequences

to ASVs using the DADA2 denoising algorithm [12].

3.4.2 Sample-level embedding

Microbiome data sets are presented as matrices T ∈ Z+n×m, where the n rows cor-

respond to individual samples and the m columns correspond to OTU or ASV IDs.

Therefore, a single microbiome sample is represented as a count vector in Z+m, where

several of the entries may be zero. Separately, microbiome data are accompanied by a

table mapping each of the m ASVs or OTUs to representative DNA sequences. These

m-dimensional vectors can be used to successfully classify several host-phenotype pre-

diction tasks, however, their cardinality is dependent on the OTU/ASVs identified in

a set of samples. This intra-data set dependency prevents the use of models trained

with one data set from being used with others.

Here, we propose a procedure to create fixed-length, low-cardinality dense vector

representations of microbiome samples. Given a trained sequence embedding model

which projects sequences to a d-dimensional vector space, our sample-embedding

procedure is a simple weighted average of the sequence embeddings for the sequences

found in a sample. For each sample, we retrieved the frequencies of OTUs or ASVs

with non-zero frequency and embedded the corresponding representative sequences

to dense-vector representation using our trained model. In designing our sample-level

embedding procedure, we considered microbiome data to be fundamentally composi-

tional, bounded by the upper limit of sequencing capabilities of the high throughput
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Figure 3.4: Overview of the microbiome sample embedding procedure. Representative
sequences are retrieved from a microbiome sample and embedded to a dense vector
representation using the SRoBERTa model. The count values of the representative
sequences are transformed using a centered log-ratio transformation. The correspond-
ing transformed values are then used as weights to produce a weighted average of the
representative sequences, producing a fixed-length dense vector representation of the
microbiome sample.

sequencing instruments, as per [28, 27]. Therefore, rather than using OTU or ASV

frequencies or relative abundances as weights in our weighted average, we transformed

the non-zero OTU/ASV frequencies to an Aitchison geometry using a centered log-

ratio (CLR) transformation. We then used the transformed count values as weights

to produce a weighted average of the sequence embeddings comprising a sample (al-

gorithm 4). In so doing, we projected samples to a d-dimensional dense vector rep-

resentation using only data pertaining to the individual sample (see figure 3.4 for an

overview).
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Algorithm 4 Count-table sample embedding procedure

Input: An OTU or ASV relative abundance table T ∈ Z+n×m, a set of sequences

S, |S| = m, comprising the representative sequences of table T , a trained sentence

transformer model with pooling dimension p ∈ Rd

Output: n Sample embeddings vt ∈ Rd

for all sequences s in S do

es ∈ Rd ← model.encode(s)

end for

for all i ∈ [0, n] do

r ← non-zero entries in Ti

rt ← centered log-ratio transform of r

vr ← d-dimensional vector with all entries initialized to 0

for all j ∈ [0, |rt|] do
ej ← sequence embedding corresponding to OTU or ASV at rt[j]

vr ← vr + ri[j](ej)

end for

vr ← vr ÷ |ri|
end for
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3.4.3 Classification of samples

Our goal is to demonstrate that our sample embedding procedure can replace canon-

ical microbiome classification procedures without a reduction in performance. To

do so, we trained a RF classifier on five binary classification tasks; four OTU based

classification tasks and one ASV based classification task as described in table 3.4.

To classify OTU/ASV sample data, we followed best practice recommendations

from the literature. As described above, we removed low-frequency OTUs by removing

those OTUs which appear in less than 15% of samples. Additionally, we used centered

log-ratio transforms of the OTU and ASV count vectors rather than the raw counts

or relative abundances. According to several authors, this is the best practice when

treating these data [80, 101, 28, 20, 27]. We also performed trials using raw counts

and relative abundance vectors but found that the centered log-ratio transformed

data consistently performed the best across all data sets, so we omit those results.

We trained a SciKit-learn RF classifier with 5000 estimators and otherwise default

parameters to classify each of our five data sets [58]. We performed five-fold cross

validation and recorded the area-under-curve for the receiver operating characteristic

curve (ROC score). We trained models using both CLR transformed count vectors

and our dense vector embeddings. We used the mean and standard deviation of ROC

scores from the cross-validated trials to calculate the significant difference between

the results of each feature representation using the student’s t-test. We consider

results to be significantly different if the t-test produces a p-value less than or equal

to 0.05. Our embedding method’s performance was not significantly different from

the CLR transformed count vectors in four of the five studies and its performance

was significantly better in the fifth (table 3.5).

3.5 Conclusions

Our findings show that our sequence embedding method creates dense vector embed-

dings that meet or exceed the quality of previously published methods in all metrics.

We have shown clearly that our method can be used to effectively perform tax-

onomic classification of 16S sequences, providing a fixed-length and low cardinality

representation of variable length sequences without resorting to token counts. Our
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Table 3.5: Classification of disease state from stool microbiota using center-log ratio
normalized abundance values and SRoBERTa embedding aggregation for data sets
from five studies. AUC indicates the mean area-under-curve for the receiver operating
characteristic curve calculated over a five-fold cross validation. p-value is calculated
via two-sample t-test, results are considered significantly different when p < 0.05.

Study AUC (Abundance CLR) AUC (Embedding) p-value Sig. Diff.

Gevers (OTU) 0.770 ± 0.134 0.753 ± 0.202 0.843 No
Lozupone (OTU) 0.957 ± 0.055 0.930 ± 0.058 0.475 No
Zeller (OTU) 0.754 ± 0.143 0.606 ± 0.207 0.230 No
Son (OTU) 0.581 ± 0.058 0.755 ± 0.027 0.001 Yes
Zackular (ASV) 0.456 ± 0.099 0.511 ± 0.125 0.466 No

representation also preserves relative distances between sequences, allowing for in-

terpretable analyses such as clustering that would not be sensible on count based

methods.

Our embeddings can be aggregated in a way such that microbial community sam-

ples can be represented as weighted averages of the sequences they contain. The

resulting embeddings don’t perform significantly worse than count table representa-

tions, implying that they maintain approximately the same amount of information

with significant reduction of feature cardinality as well as the benefits of a fixed-length

representation. Additionally, our method is the first DNA sequence embedding proce-

dure which does not rely on data that do not pertain to individual samples. This has

major implications in the development of scalable machine learning models for pheno-

type prediction tasks from host microbiome signatures, as our embedding procedure

may be applied across studies and to unseen test data.

The success of our sample embedding procedure implies that our sequence embed-

ding method is robust to variable sequence lengths, since the representative sequences

found in microbiome samples are much shorter than the full length 16S sequences we

used to train the embedding model (≈250 nucleotides vs ≈1500 nucleotides).

We have shown that the distance-preserving nature of our sequence embeddings

allows for fast approximate nearest-sequence search using cosine similarities. Though

our results were not a high fidelity approximation of BLAST searching, there may be

useful applications for such searches where low sensitivity results are an acceptable
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trade-off for speed. Given the apparent robustness of our approach to variable se-

quence lengths as inputs, an interesting avenue of research could be to investigate the

ability of our model to perform asymmetric sequence lookups (i.e. lookup operations

in which query sequences are significantly shorter than target sequences).

Some researchers use a handful of specific OTUs or ASVs in an ensemble fashion

with other host meta data to create better machine learning models [96, 20]. The

fixed-length, study-independent nature of our method makes it feasible to pre-train

models across several data sets if curating them becomes possible. Given that our

method fares no worse than direct OTU or ASV feature representations, we propose

that such a pre-trained model could contribute to the success of predictive ensemble

models.

Given that our embedding procedure outperforms the previously published method

in all tested metrics while forgoing the requirement to use data set wide meta-statistics

in their calculations, we suggest that our model has achieved state of the art perfor-

mance in production of both 16S dense vector embeddings and microbiome sample

level dense vector embeddings.



Chapter 4

Conclusion

Our research investigating novel tokenization strategies and sequence-embedding ap-

proaches for marker genes was successful and naturally lends itself to future research

directions and applications. Here we discuss the implications of our findings, the

limitations of our work, and propose future research directions.

4.1 Implications

Our findings from chapter 2 show that using BPE or unigram language modelling to

learn tokenization strategies for 16S DNA sequences is viable and results in compres-

sion of sequences without loss of performance in downstream tasks. The ability to use

an approach like BPE or unigram tokenization in lieu of k -mer segmentation becomes

important in tasks such as those we performed in chapter 3 in which sequence length

and vocabulary size become important variables for computational complexity.

Although unigram language modelling may be a more robust choice for natural

language tasks such as neural machine translation [11, 39], our findings here suggest

that BPE tokenization results in greater compression of marker-gene DNA sequences

and increased robustness to parameter choice in downstream applications. We there-

fore believe that BPE is the best choice for tokenization strategy in future studies

performing language modelling tasks over DNA sequences, particularly in the context

of marker-gene analyses.

Contemporary language modelling paradigms which involve pre-training large

models using unlabelled data followed by fine-tuning using supervised objectives allow

users to implement creative objectives and loss functions. Previous DNA sequence-

embedding work has pointed to Spearman correlation between embedding space co-

sine similarities and sequence space pairwise alignment distances as evidence that

their embedding procedures were meaningful [55, 92]. We have shown that using con-

temporary language modelling paradigms we can directly optimize this correlation,

71
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ensuring that our embeddings maintain the so-called semantic meaningfulness of the

raw sequences. As research in this area continues, researchers may propose additional

metrics and tests for assessing the biological meaningfulness and/or usefulness of se-

quence embeddings. Using procedures related to ours, they may directly optimize

these criteria and ensure the quality of their embeddings.

In chapter 3, we showed that it is possible to rapidly approximate similar sequence

searching using cosine similarity in the sequence embedding space. Though such

searches are not likely to replace large-scale biological sequence-searching algorithms

such as BLAST, it is possible that this sequence search task could be further optimized

and applied in situations where fast heuristic searches are helpful.

One of our most important findings is the demonstration that one may aggregate

the sequence embeddings from a microbiome sample to create sample-level dense

vectors. To the best of our knowledge, our approach is the first to create fixed-

length feature representations of microbiome samples without relying on statistics

calculated over a set of samples. We therefore propose that our approach is the first

microbiome feature representation that allows models trained with a given data set

to be universally applied to any microbiome test set data. The development of such

approaches is important towards the development of machine-learning models with

clinical applicability [20, 47, 80, 101].

4.2 Limitations

An immediately apparent limitation of our work is that we have limited the scope

of our analyses to 16S DNA sequences, raising the question as to how our methods

would perform using other sources of DNA. Limiting the scope of our work to a single

gene made several decisions trivial which become difficult when extending to broader

DNA sequences. For example, researchers using transformer-based language models

for DNA sequences have had to carefully design how to chunk their data for input

to their model, as canonical transformer models do not scale well when maximum

sequence length exceeds ≈500 tokens [17, 32, 85], whereas this was not a consideration

for our model as each input could correspond to a single gene sequence. Similarly,

the limitations of byte-pair encoding and similar learned tokenization models remain

unknown when used with broader genomic data. We found that learned tokenization
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strategies resulted in compression of 16S sequences through a combination of non-

overlapping tokens and collapsing of conserved regions into single tokens. We have not

tested whether a trained tokenization encoder could achieve compression of sequences

if trained using non-homologous DNA sequences, which would have an increased

diversity of substrings as compared to a corpus of marker genes.

Creating sample level microbiome dense vectors remains challenging due to the

substantial variance involved in the pre-processing of raw read data into OTUs or

ASVs. As we discussed earlier, OTU clustering methods are sensitive to parameter

choice and data set composition and are generally unstable and noisy [51, 51, 56].

Similarly, ASV generation requires several user defined parameters and quality control

decisions which affect the output. Therefore, using OTU and ASV data as input for

feature engineering is likely to produce noisy outputs. In our work here, we do not

investigate how robust our sample embedding model is to the noisy process of OTU

and ASV generation so we cannot speculate how sensitive the model is to upstream

parameter choices.

In our research, we have performed some parameter space searching but were lim-

ited due to the high compute demand for the methods we tested. For example, our

choices of BPE and unigram language model vocabulary sizes were limited only to 46

and 48, but it is possible that other vocabulary sizes could produce more desirable re-

sults. Similarly, we do not repeat our experiments with variations in the tokenization

algorithm’s maximum token lengths. We also do no parameter searching with our

transformer model, instead using default values from optimized language-modelling

papers (save for our vocabulary size and embedding dimension, which we set to equal

our BPE vocabulary and approximately equal to our previously tested embeddings,

respectively) [45, 91]. It is possible that adjusting the transformer model’s vocabulary

size, embedding dimension, or other hyperparameters could significantly affect the

model’s downstream performance. Due to the significant compute demand required

to train large transformer models and our satisfactory results, we do not explore

transformer hyperparameter optimization in this work.

Along with leaving transformer hyperparameters largely unexplored, we do not

try different training procedures for our transformer model. While some researchers
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randomly inject short sentence fragments into the training of their bidirectional trans-

formers [19], other researchers have shown that the use of fragment injection does

not improve the training speed or robustness of the model [45]. For simplicity, we

used only full-length DNA sequences while training our transformer, but it remains

untested whether the DNA language model would benefit from fragment injection

during training. As we do apply our model to embedding of short DNA reads during

microbiome sample embedding, it is possible that the model would be improved by

injection of fragments or other data augmentation procedures.

When fine-tuning our transformer to learn DNA sequence embeddings, we only

performed experiments using our cosine similarity/pairwise alignment score mean

squared error loss function. It is possible that different fine-tuning approaches could

result in higher quality sequence embeddings. For example, one could modify the

fine-tuning procedure to use triplet networks, ranking the distance between sequence

triplets [71]. One could also investigate the use of alternative scoring metrics for

annotating sequence pairs with distance scores; we used the VSEARCH pairwise

alignment score due to its use in previously published DNA sequence embedding

work, but it is possible that authors could devise other scoring metrics for distance

between homologous DNA sequences.

One major limitation of our work, common to many feature-embeddings, is the

loss of interpretability when using sample embedding methods as we describe. While

researchers gain the ability to project microbiome data to fixed-dimension, data set-

independent representations, they lose the ability to analyse the importance of indi-

vidual microbes in their classification tasks. This is a fundamental limitation of the

bidirectional transformer architecture; as it is composed only of the transformer en-

coder, it does not have the ability to reconstruct inputs from the dense vector space.

It is possible that alternative models using transformer encoder-decoders would be

able to produce high quality DNA sequence embeddings via a generative model, pro-

viding the ability to decode the resultant dense vectors, but such a model is outside

the scope of this work and would require different training objectives. In addition to

the inability of our model to decode dense-vector sequence representations, important

sequences would be obfuscated by our sample embedding procedure of weighted av-

eraging. Creating a fixed-length vector representation of sample vectors from which
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feature importance of individual organisms could be recovered remains an open prob-

lem.

4.3 Future directions

An obvious future direction for this work is to investigate the applicability of our

approaches on entire genomes rather than a single set of homologous marker genes.

Transformer models do better with data sets orders of magnitude larger than what

we used here [45]. Extending the DNA language modelling task to genomic data

is an interesting proposition which is becoming more feasible as researchers develop

transformer models capable of handling large inputs [98, 18, 37]. Indeed, the authors

of one of these transformer models claimed that their model could use human genomic

data and learn to annotate promoter sequences with high fidelity [98]. If researchers

wished to investigate whether such large models would be able to be used to produce

fixed-length embeddings of genomic DNA, they would have to decide on sensible

chunks of genomes to use. For example, researchers could investigate the feasibility

of embedding protein coding regions of DNA, individual chromosomes, viral genomes,

or smaller bacterial genomes.

Transformers in natural language processing tasks are generally trained to model a

single human language, with some exceptions. Interestingly, [44] suggested that DNA

sequences from different organisms seem to statistically resemble distinct languages.

Their method uses maximum likelihood to determine n-gram segmentation of DNA

sequences. They write that genomic data from different organisms result in distinct

probability distributions for their n-gram segmentation strategy, resulting in differ-

entiated segmentation strategies for different genomes. Indeed, it is well known that

genomic composition varies widely from species to species. An interesting experiment

could be to train transformers to model genomic DNA from a specific phylogenetic

group (e.g., species or genus) and investigate the efficacy of transfer learning to other

groups, measuring the relationship between performance metrics in the transfer learn-

ing task and phylogenetic distance. It would be interesting to determine boundaries

at which transfer learning begins to fail; for example, presumably transfer learning

would be successful among closely related bacterial species, but it is unlikely that a

model trained using bacterial genomics would perform well with human genomic test
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data.

Our results showing the ability to perform fast nearest sequence queries are promis-

ing, especially where our model was not trained to specifically perform well at that

task. It is likely that some models will be better suited to this type of query than oth-

ers. While we saw some modest success comparing BLAST sequence similarity search

results using similar sequences (16S only), it remains to be seen whether the search

results would perform well given a model that produces vectors of a wider range of

genomic material. It is possible that an asymmetric search strategy such as those seen

in question answering models (where query is typically shorter much shorter than the

target) could result in better look-up results. Optimizing these searches as a heuristic

for use with large genomic database searches could be an interesting use case.

An interesting avenue for research is the idea of replacing OTU or ASV picking

algorithms with some aspect of the transformer language model. A simple version

of this would be to investigate whether clustering embedded reads using cosine simi-

larity threshold or other clustering approach could replace OTU clustering. A more

involved investigation would involve training transformer language models to use raw

short-read data, i.e. paired end read data which have not been processed at all, in-

cluding ambiguous nucleotides and quality scores. The paramaterized denoising or

OTU picking algorithms could be directly replaced with a sequence embedding pro-

cedure. While the representative sequences from such a denoising algorithm would

not be recoverable, we have shown that taxonomic assignment can be performed us-

ing sequence embeddings as input, which would allow downstream microbial ecology

analyses to proceed as normal.

A relatively simple but compelling research idea is investigating how additional

data could be implicitly encoded into our pairwise sequence distance optimization

task. In our work, we only use VSEARCH pairwise alignment scores as the gold-

standard pairwise score. Because the score is meant to indicate the semantic related-

ness of the sequences, the choice of score will impact the resulting embeddings greatly.

It is plausible that a motivated author could devise a more biologically meaningful

scoring metric to implicitly encode additional information into the sequence embed-

dings. For example, an author could construct a corpus of 16S sequences annotated
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with distances derived from the organisms’ whole genomes. This could be an inter-

esting way of incorporating genomic-level information into the sequence embeddings.

Creating 16S embeddings and short-read embeddings results in the creation of

uniquely structured data sets in the case of microbiome data. Each sample in the

data set can be represented as a variable-length “bag-of-vectors”, in which the sam-

ple contains n count values corresponding to the number of d dimensional vectors

contained in the sample. In our work, we collapse these “bag-of-vector” data by pro-

ducing weighted averages of the vectors. Devising novel ways of aggregating this data

could be an interesting research direction with both practical and theoretical impli-

cations. If the data are treated as compositional as suggested by [28, 27], one may

consider scouring the compositional data analysis literature to propose some means of

aggregating the vectors. For example, [1] suggested using the log-contrast as a way of

representing compositional mixtures. Given some mixture X with n objects compo-

sitional co-efficients A, you can represent the mixture as a0 log(x0)+, ...,+an log(xn),

where
∑︁n

i=0 ai = 1. Of course, this approach cannot work where xi is a real valued

vector, as log(x) is undefined where x < 0. Investigating alternative approaches based

on the principles of the log-contrast may be of interest.

Researchers may also consider geometrically motivated solutions to the task of ag-

gregating “bag-of-vector” representations. For example, [95] suggest that pre-trained

word embeddings can be combined to create sentence embeddings in a parameter free

way using matrix algebra. Investigating similar approaches may allow 16S embed-

dings to be aggregated to create sample embeddings in a way that is competitive with

the approach we describe in our work.

We consider our work here to be an important development in the research of

biological sequence language modelling and embedding, particularly in the realm of

marker gene and microbiome analysis. We hope that our work and proposed future

research directions serve to inspire researchers to continue developing this interesting

and relatively nascent area of research.
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