
i

ProxemicUI: Iterative Design and Evaluation of

a Flexible and Generic Framework for

Proxemics Aware Applications

By

Mohammed Abdulhamid Alnusayri

Submitted in partial fulfillment of the requirements

For the degree of Doctor of Philosophy

at

Dalhousie University

Halifax, Nova Scotia

© Copyright by Mohammed Abdulhamid Alnusayri, 2021

ii

To my father and mother for their

endless Love, Support and

inspiration. To my wife for her love,

patient and support, I dedicate this

work.

iii

Table of Contents

Table of Contents .. iii

List of Tables ... viii

List of Figures .. ix

Abstract .. xii

List of Abbreviations Used ... xiii

Acknowledgements.. xiv

Chapter 1: Introduction ... 1

Chapter 2: Literature Review ... 13

Proximity and interactive systems ... 13

Entity formation and interactive systems .. 18

Proximity in virtual environments ... 27

Proximity in machine learning ... 29

Toolkits in smart environments ... 33

Evaluating HCI toolkits ... 42

Demonstration ... 42

Usage .. 44

Summary .. 44

Chapter 3: ProximityTable ... 46

Implementation and Evaluation of ProximityTable ... 47

Implementation ... 47

Evaluation .. 51

Summary .. 54

Chapter 4: ProxemicUI Version 1 ... 55

Design Requirements ... 55

Entities ... 56

Relative Proximity Rules .. 57

Absolute Proximity Rules ... 57

Compound Rules .. 57

Hybrid Rules ... 58

iv

Fulfilling the Requirements: ProxemicUI v1 .. 60

ProxemicUI Version1 Structure.. 61

Summary .. 64

Chapter 5: ProxemicUI Architecture Version2 ... 66

Why ProxemicUI .. 66

How to Use ProxemicUI ... 67

Adding the required DLL files ... 69

Initializing the OSC server and retrieving entities .. 69

Creating a RelativeDistanceRule .. 70

Creating a CompoundRule ... 71

Creating a HybridRule .. 71

Creating MobilityRule .. 72

Creating F-formation .. 73

System implementation ... 74

DataReceiver .. 75

EntityContainer .. 77

ProximityEntity ... 79

Geometry ... 80

Rule .. 84

Formation ... 98

RuleEngine ... 100

ProximityEventArgs .. 101

Extension points ... 103

Summary .. 106

Chapter 6: Evaluating ProxemicUI Through Proof-of-Concept Applications 107

Proof-of-concept applications ... 108

The main application .. 109

The alarm interface .. 110

v

The toaster interface ... 111

The thermostat interface ... 111

The TV interface ... 112

The coffee machine interface .. 112

The tabletop interface ... 113

Additional design requirements .. 113

A More Generic HybridRule ... 114

Extensions to the OSC message format ... 114

Activation status .. 115

MobilityRule ... 116

Test condition .. 117

IsFacingRule ... 117

Small tweaks and refinements ... 118

Hackathon User Study.. 119

Summary .. 123

Chapter 7: Evaluating ProxemicUI Through a Code Review Study .. 125

Objectives for the code review study .. 126

Study design ... 127

Participants .. 127

Recruitment ... 128

Informed consent ... 128

Compensation .. 128

Study environment .. 128

Study Procedure ... 129

ProxemicUI vs. The Proximity Toolkit .. 131

ProxemicUI vs. Microsoft PSI ... 144

Data collection ... 154

vi

Analysis method ... 154

Results .. 156

ProxemicUI vs. The Proximity Toolkit .. 157

ProxemicUI vs. Microsoft PSI ... 164

Summary of the outcomes... 170

ProxemicUI vs. The Proximity Toolkit .. 170

ProxemicUI vs. Microsoft PSI ... 171

Required refinements to the framework ... 171

Limitations of code review ... 172

Discussion .. 174

Summary .. 175

Chapter 8: Evaluating ProxemicUI through the integration into Story CreatAR 177

Story CreatAR ... 178

Objectives for the integration with Story CreatAR .. 178

Integration effort of ProxemicUI into Story CreatAR ... 180

Study design ... 180

Results .. 184

Discussion... 194

Indirect use of using ProxemicUI ... 194

Study design ... 195

Results .. 200

Discussion... 210

Additional design requirements .. 211

Summary .. 211

Chapter 9: Discussion ... 213

Summary of refinements ... 218

Using ProxemicUI for the smart home scenario .. 218

Integrating ProxemicUI into Story CreatAR ... 221

Future work .. 222

Chapter 10: Conclusion .. 227

vii

Bibliography ... 228

Appendices ... 239

Appendix 1: ProxemicUI vs. Microsoft PSI codes ... 239

Appendix 1.1: Generating training data using Microsoft PSI ... 239

Appendix 1.2: Provide the classifier with low-level proximity data using Microsoft PSI..... 243

Appendix 1.3: Providing the classifier with high-level proximity data using Microsoft PSI . 246

Appendix 1.4: Hybrid test using Microsoft PSI .. 249

Appendix 2: Example of OSC Communicator Code in Python ... 252

Appendix 3: Ethics Application for Hackathon User Study .. 253

Appendix 4: Letter of Approval for Hackathon User Study ... 279

Appendix 5: Informed Consent for Code Review and Story CreatAR studies 280

Appendix 5.1: Informed Consent for the Analytical Comparison Sessions 280

Appendix 5.2: Informed Consent for participants integrating ProxemicUI into Story CreatAR

 ... 283

Appendix 5.3: Informed Consent for Author Participants in Story CreatAR 286

Appendix 6: Amendment Approval Letters for Code Review and Story CreatAR studies 289

viii

List of Tables

Table 1: list of the design requirements with each related work that can make use of the

requirement ... 60

Table 2: fulfilling the design requirements .. 61

Table 3: Key changes to ProxemicUI v1 ... 65

Table 4: Schedule of the hackathon over the weekend .. 122

Table 5: list of questions asked during the sessions to answer each research question 130

Table 6: number of participants who preferred each toolkit according to different key questions

 ... 157

Table 7: Code metrics to test a single proximity attribute between two entities 158

Table 8: Code metrics to test a single proximity attribute between more than two entities 160

Table 9: Code metrics to test multiple proximity attributes ... 161

Table 10: Code metrics to combine external events with proximity events 163

Table 11: List of incorrect statements that participants reported and the reason whey they are

not correct ... 163

Table 12: Metrics to generate training data .. 165

Table 13: Code metrics to feed the classifier low-level proximity data 166

Table 14: Code metrics to feed the classifier high-level proximity data 167

Table 15: Code metrics to combine external events with proximity events 168

Table 16: Number of participants who preferred each toolkit according to different key

questions .. 169

file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031478
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031478
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031480
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031481
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031483
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031483
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031484
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031485
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031486
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031487
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031488
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031488
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031489
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031490
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031491
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031492
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031493
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031493

ix

List of Figures

Figure 1: Left: example of F-formation configuration [56], right: example of group formation

around public displays [11] .. 20

Figure 2: setup of ProximityTable, Kinect camera installed in the ceiling for top-down tracking,

two sides around the table are being tracked ... 46

FIGURE 3: SCREEN SHOTS OF THE MUSEUM KIOSK APPLICATION .. 47

Figure 4: Participants with different sizes of workspace at ProximityTable 50

Figure 5: example of initializing a Relative Distance Rule ... 63

Figure 6: Example of initializing a Compound Rule (ANDRule) .. 63

Figure 7: An Example of initializing a Hybrid Rule ... 64

Figure 8: Adding the namespace of ProxemicUI .. 69

Figure 9: Initializing the DataReceiver server and retrieving entities .. 70

Figure 10: Steps to initialize a RelativeDistanceRule ... 70

Figure 11: Initializing an ANDRule .. 71

Figure 12: Initializing the HybridRule ... 72

Figure 13: Initializing MobilityRule .. 72

Figure 14: Specifying F-formation in ProxemicUI .. 73

Figure 15: Initializing an F-Formation .. 73

Figure 16: Structural system diagram of ProxemicUI framework ... 74

Figure 17: basic format for received message ... 76

Figure 18: additional message format for extra data .. 77

Figure 19: Examples of entity retrieval methods in entity container class 79

Figure 20: Class diagram shown the relationship between a ProximityEntity and Geometry 82

Figure 21: example of abstract methods in Geometry class ... 83

Figure 22: Class diagram of Rule that show all inherited classes and their relationships 84

Figure 23: The steps of executing the rules in ProxemicUI .. 87

Figure 24: An example of test method implementation in RelativeDistanceRule 89

Figure 25: The implementation of test method in ANDRule ... 92

Figure 26: up) the process of HybridRule that does not communicate with ProxemicUI, down)

the process of hybridrule that communicates with proxemicui.. 94

file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031406
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031406
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031407
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031407
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031408
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031409
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031410
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031411
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031412
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031413
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031414
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031415
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031416
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031417
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031418
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031419
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031420
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031421
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031422
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031423
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031424
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031425
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031426
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031427
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031428
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031429
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031430
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031431
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031431

x

Figure 27: The implementation of test and ExternalEvent methods in HybridRule 96

Figure 28: The implementation of test method in MobilityRule ... 97

Figure 29: Implementation of the FormationRule class showing the two methods to create/

retrieve the formation rule .. 98

Figure 30: The implementation of createFormation method in CircularFormation 100

Figure 31: Using the ProximityEventArgs to access the test results .. 101

Figure 32: snapshot of main interface of tablet controller application 109

Figure 33: left: alarm interface in the tablet application, right: alarm interface simulation 110

Figure 34: left: toaster interface in the tablet application, right: toaster interface simulation .. 111

Figure 35: left: thermostat interface in the tablet application, right: thermostat interface

simulation .. 111

Figure 36: left: two TV interfaces in the tablet application, right: TV interface 112

Figure 37: left: coffee machine interface in the tablet application, right: coffee machine interface

simulation .. 112

Figure 38: tabletop interface in both tablet application and tabletop .. 113

Figure 39: A) the tabletop is running its application, B) the TV is playing a media through its

application ... 121

Figure 40: floor layout show how to place devices in the lab for the hackathon........................ 123

Figure 41: Testing relative distance between two entities using the Proximity Toolkit.............. 134

Figure 42: Testing relative distance between two entities using ProxemicUI 135

Figure 43: Testing relative distance between multiple entities using the Proximity Toolkit 136

Figure 44: Testing relative distance between multiple entities using ProxemicUI 137

Figure 45: Combining distance and orientation tests using the Proximity Toolkit 139

Figure 46: Combining distance and orientation tests using ProxemicUI 140

Figure 47: Integrate UI event with proximity event using the Proximity Toolkit 142

Figure 48: integrating UI event with proximity event using ProxemicUI 143

Figure 49: part 1 of generating the training data using Microsoft PSI .. 146

Figure 51: a method to be added to ProxemicUI to generate the training data 147

Figure 50: part 2 of generating the training data using Microsoft PSI .. 147

Figure 52: feeding the classifier with low-level proximity data using Microsoft PSI 148

Figure 53: accessing the low-level proximity data using ProxemicUI .. 149

file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031432
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031433
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031434
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031434
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031435
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031436
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031437
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031438
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031439
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031440
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031440
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031441
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031442
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031442
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031443
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031444
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031444
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031445
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031446
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031447
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031448
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031449
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031450
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031451
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031452
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031453
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031454
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031455
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031456
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031457
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031458

xi

Figure 54: generating the high-level proximity data and forward them to the classifier using

Microsoft PSI .. 150

Figure 55: A method to be added to ProxemicUI to forward the high-level proximity data to the

classifier ... 151

Figure 56: Part 1 of Microsoft PSI code to combine two data source ... 151

Figure 57: PART 2 OF MICROSOFT PSI CODE TO COMBINE TWO DATA SOURCE 152

Figure 58: ProxemicUI code to combine two data source ... 153

Figure 59: Left: Specifying different details about the story, right: choosing an object to add it to

the story ... 178

Figure 60: Developers' OSC communicator code .. 185

Figure 61: A) Main interface to create a proximity rule in Story CreatAR, B) Creating

RelativeDistance rule, C) Creating IsFacing rule .. 186

Figure 62: OnEventTrue and OnEventFalse handling methods to start eavesdropping to a

conversation .. 188

Figure 63: up: how a developer overcome the multithreading issue in Unity, down: calling the

TestRunner method from the RuleEngine ... 190

Figure 64: up: part of A1's story shows the use of relative distance, down: proximity between

objects in A2’s story ... 203

Figure 65: an author creating a relative distance ruel in Story CreatAR 205

file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031459
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031459
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031460
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031460
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031461
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031462
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031463
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031464
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031464
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031465
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031466
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031466
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031467
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031467
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031468
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031468
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031469
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031469
file:///D:/PhD%20Thesis/Ph.D.%20Final/PhD%20thesis%20-%20final%20.docx%23_Toc80031470

xii

Abstract

Systems that respond to spatial configurations of people, devices, and objects (sometimes

called proxemics-aware systems) have long been explored in HCI research and are now

finding commercial applications. While state-of-the-art tracking systems and toolkits have

been demonstrated the ability to provide proxemics data, there is still a considerable gap

between what existing systems support and what the developers require to define their

own custom proxemics events (e.g., to indicate that complex spatial configurations are

meaningful) rather than conduct manual tests in the UI layer after low-level events are

triggered. In addition, proximity-related events are often intertwined with other events,

such as interaction with application interfaces and notifications from smart appliances.

While machine learning techniques might detect complex spatial configurations, more

research is needed to determine what kinds of input data are required to train an accurate

and adaptable classifier. In response to these issues, I developed ProxemicUI, an object-

oriented framework that provides a simple but powerful rule-based format for expressing

proxemics relationships, an event-driven model for responding to their occurrence, a

mechanism for integrating non-proxemics data and events, and extensibility through

clearly articulated extension points. I evaluate ProxemicUI through a set of proof-of-

concept applications, a comparative code review study with 18 programmers, and the

integration of ProxemicUI into an augmented reality storytelling tool, working with three

authors and three developers. The results demonstrate that ProxemicUI supports rapid

prototyping of systems that can respond to complex proxemics events across various

contexts.

xiii

List of Abbreviations Used

HCI Human Computer Interaction
DT-DT Dal Top-Down Tracker
PSI Platform for Situated Intelligence
OSC Open Sound Control
UI User Interface
API Application Programming Interface
ML Machine Learning

xiv

Acknowledgements

My unreserved gratitude and praises are for Allah, the Most Compassionate, and

the Most Merciful. He blessed me with his bounties, and he has given me the

strength and courage to reach my goals during the course of this research.

I would like to thank my supervisor, Dr. Derek Reilly, for his guidance, help and

support throughout my research. I also appreciate his patient encouragement and

valuable advice over the course of my entire Ph.D. program.

I would also like to thank my committee members Dr. Israat Haque and Dr. Sageev

Oore who have given their time and expertise improve my work. Special thanks to

Dr. Nicolai Marquardt for accepting to be my external examiner and for his

insightful questions and suggestions which improved my thesis.

I would also like to thank Dr. Joseph Malloch for numerous fruitful discussions and

useful suggestions for my work. Thank you, Abbey Singh, Shannon Frederick for

helping running the Story CreatAR study; thanks also goes the rest of the Story

CreatAR project team and to my colleagues at the Graphics and Experiential

Media (GEM) Lab.

I would like to thank Jouf University, for providing me a scholarship to complete my

studies at the Dalhousie University.

Finally, I would like to express my sincere love and gratitude to my father

Abdulhamid and my mother Kawlah. I owe them more than anyone could possibly

imagine. I thank them for their love and infinite care, which has made the person I

am today. My sincere love and gratitude to my wife Ayat who supported through

the course of my Ph.D. program, thank you for being patient and supportive.

1

Chapter 1: Introduction

Ubiquitous Computing (“ubicomp”) often involves connecting multiple devices such that

they are aware of each other and the surrounding environment [38][126]. In other words,

digital devices (e.g., smartphones, smartwatches, interactive displays) and their users

maintain awareness of each other within an environment. They also might be aware of

the affordances and constraints of the environmental context in which they are situated,

even to the level of the location, shape, and size of non-digital objects such as sofas and

coffee tables. This awareness allows devices and services to provide a better experience

to users in the space. The information that is shared to achieve this awareness can include

(but is not limited to) identity, position, orientation, status, type, and shape. Some entities

in “smart” environments have built-in sensors and can provide some of this data

themselves (e.g., through the inertial measurement units (IMUs), dedicated processing

chips, and relevant application programmer interfaces (APIs) found in smartphones).

Other entities require external tracking or sensing systems to capture this information

(e.g., skeletal tracking using Microsoft Kinect [59], positional and activity tracking via a

top-down tracker like DT-DT [49], or attaching physical trackers (VICON [120] and VIVE

[122]) to non-digital objects). To employ this information effectively, we need first to

understand the environmental context for the applications that we are developing. Das et

al. [27] and Volpentesta [124] explore smart environment contextual factors, including

participating entities and their proprieties, relationships between these entities, and the

physical layout of the environment. We also need to understand the types of tasks to be

2

performed, the interaction techniques available, the range of possible system responses,

and the roles and identities of all participating entities.

When performing tasks using interactive systems, there are preferred or implied

relationships between individuals and/or devices we use. In particular, multi-user

interactive systems can be characterized into three types based on these relations. First,

collaborative use, e.g., SIDE [86], a tabletop game for group therapy, Lucero et al.’s work

to explore photo collections using multiple mobile phones [68], and teamwork when

interacting with CityWall [83], a multi-touch wall display to navigate media. Second,

independent use, e.g., the museum exploration station [60], the public advertising

interactive display [125], and the parallel use of CityWall [83]. Third, mixed-use, where

users can work independently on a sub-task then contribute to the group’s main task (e.g.,

the RoomPlanner [129], a room furniture layout application and the Proxemic

Brainstorming application [70]). By considering the full range of multi-user applications,

we can see the presence of three types of task coupling [127]. First, tightly coupled tasks

require working together to complete the task (e.g., tabletop collaborative games, as seen

in Futura [8] and designing classrooms together, as seen in [91]). Second, lightly coupled

tasks involve working independently to complete a higher-level task (e.g., room furniture

layout, as seen in RoomPlanner [129] and a mixed-focus collaborative application, as seen

in PiVOT [57]). Finally, uncoupled tasks involve working independently on tasks that are

not directly related (e.g., museum exploration station [60] and MyAppCorner [34]). These

coupling types are often reflected in device configurations, and developers could utilize

proxemics in useful ways to do so. We might distribute a task between two devices, tightly

3

or loosely coupling subtasks based on device proximity. For example, if we placed a

camera in the corner of a room, it will capture the activities in the whole space. When we

add a second camera in the other corner, each camera will rotate and zoom in

automatically to capture only half the space. For uncoupled tasks, separate devices can

be responsible for supporting different tasks. When the proxemic relationships between

entities reflect the environmental context of a space, task coupling is facilitated by

physical proximity.

With task coupling, multiple users interact with the system simultaneously, where each

user’s role might change over time. Several abstract roles have been identified in the

literature that pertains to an individual’s relation toward work being done on the

interactive display: direct participant (directly interacts with the system), active observer

(actively participate in the task without direct interaction with the system), passive

observer (participate in a subset of the activities only), and disengaged bystander

(completely disengaged from the task) [60][112]. We can extend these roles to devices as

well. For example, we might consider the device that controls all other devices or initiates

an interaction in a smart environment, a direct participant (e.g., Proximity-Aware control

[64]). A device that receives commands, and as a part of its response, communicates with

other devices in the environment might be considered an active observer. For example, a

coffee machine is an active observer that receives a command to start preparing the

coffee, and then, it might produce a notification on a phone or TV that the coffee is ready.

Finally, a passive observer might be the device that receives a command then generates

a response (e.g., show notifications on a wall display similar to [99]) without

4

communicating with other devices. The difference between an active observer and a

passive observer in devices is that the active observer contributes to the interaction (by

communicating with other devices), similar to a collaborator with a direct user. On the

other hand, the passive observer only shows a response (e.g., playing audio on speakers

and showing notifications on TV), similar to a person who shows reactions to some activity

without direct participation. Applying user’s roles to devices shows how smart

environments might contain different devices that have different functions, making them

play different roles. In addition, we can track non-digital objects (e.g., couch) In the smart

environment using different tracking systems (e.g., by attaching VICON markers or VIVE

trackers to the objects). Tracking non-digital objects might play important roles in the

smart environment. For example, the system might start testing user-to-TV relations only

when s/he sits on the couch. A part of the environmental context is the physical layout of

the space that include but not limited to identifying the location of digital and non-digital

objects in the space.

The awareness of environmental context provides the basic building blocks of proxemics-

aware systems. It provides data like identity, positional data, status, and space layout. The

ability to access this data allows measuring and detecting proximity relations between

participating entities. In addition, the type of task that is performed in the environment

defines the role of each entity. For example, by employing both identity and proximity to

appliances, the system might prevent guests from changing the temperature in the

thermostat, allowing only the host to control it (it is the host and close to the controller).

The task here is controlling the thermostat, which is restricted to the host only (the

5

identity and the role). Considering the need for environmental context awareness, the

presence of various types of tasks in interactive systems, and the different roles of entities

in the environment, how can we build a software infrastructure to support the variety of

smart environment applications?

Two theoretical concepts related to the infrastructure layer have been influential in the

research literature that we should consider. First, the study of interpersonal proximity

(termed proxemics) was introduced in 1965 by Edward Hall. He defined proxemics as

understanding how the space surrounding a human is being used and how behaviors can

be affected by crowded spaces [41]. Hall defines four interaction zones: intimate space,

personal space, social space, and public space. Each space or zone has minimum and

maximum thresholds, which can change based on the environment (e.g., bus vs. dining

hall) and can be influenced by cultural factors. Human-Computer Interaction (HCI)

researchers have been using the concept of proxemics when designing applications for

interactive systems. For example, the work of Vogel and Balakrishnan [123] applied Hall’s

proximity theory to the spatial relationships between users and a wall display. They

established four interaction zones corresponding to Hall’s zones. Transitions between

zones (changes in the distance relative to the display) triggered changes in content

presentation and interaction style. Their system allows multiple users to work

independently and simultaneously on different parts of the screen. We can classify users

as direct participants (the user’s role) who work independently on separate tasks

(uncoupled tasks) on a single display. Greenberg et al. [38] applied proxemics theory more

generally to interaction with heterogeneous displays integrated into physical work,

6

leisure, home, or other settings. In addition to using the spatial relationships between

users and the display, they also incorporated the relative orientation to provide more

support (e.g., pause media when turning away from the TV). In their Proxemic Media

Player application, users’ roles change based on their proximity to the display (e.g., the

user standing at the display gains the control). They introduced the five dimensions of

proxemics for ubicomp: distance, orientation, movement, identity, and location. Their

work also included the development of the Proximity Toolkit to facilitate the development

of “proxemics-aware” applications [71]. One of the five proxemics dimensions that

Greenberg et al. found useful to consider is orientation. Using orientation, developers can

support user interaction by detecting which entity (e.g., person or device) has the user’s

attention (e.g., sensing attention [104]) and respond accordingly. Combining both

proximity and orientation defines the second theoretical concept I want to discuss: F-

Formations. F-formation theory, initially developed by Kendon [58], considers the way

people arrange themselves when they interact with each other [58][74]. Several canonical

formations have been identified, each corresponding to patterns of interpersonal

interaction (e.g., circular or face-to-face formation when interacting with a counter

assistant and a semi-circular around a wall display). When looking at the existing work in

the literature, we can see the presence of the F-formation concept between people only,

people and devices, and devices only. For example, in GroupTogether [72], Marquardt et

al. used F-formation to determine who is in the group and who is not. Azad et al. [11]

explored how single and multiple groups arrange themselves relative to vertical displays.

Dynamic F-formations also exist between surgeons, nurses, and imaging technologies, as

7

discussed by Mentis et al. [75]. Zhou et al. [132] used the F-formation to notify the user

of a tablet about the presence of onlookers. Other systems used F-formations between

devices only (e.g., EasyGroups [54][55]). Considering these systems, we can see that

devices take different roles. For example, passive observers are the devices that only

show contents with no direct interactions like public kiosks in Azad et al.’s work [11]). The

tablet in Zhou et al.’s work [132] plays as an active observer that shows notifications

during the interactions. Finally, the Ring technique in EasyGroups [54][55], the role of

adding the new devices moves from one device to another (each device touches the

device on its right to add it to the group). While the proximity and F-formation theories

have been applied by many researchers in HCI, what existing tools employ both theories

to support the implementation of proxemic aware applications? And do they provide

enough support compared to the developer's needs?

The Proximity Toolkit [71] is well-established in the literature that supports the

implementation of rule-based applications that use the relative distance and orientations

and pointing relations between entities. Pérez et al. [85] also developed a framework to

support implementing mobile proxemic apps for smart environments. Their system also

detects the relative distance and orientations between entities based on the collected

proximity data from existing smart devices in the environment (e.g., smartphones and

wearable devices). However, there remains a considerable gap between what existing

systems support and what developers require to detect more complex proximity

scenarios. Specifically, when testing multiple proximity attributes for multiple entities and

combining proximity events with external data (e.g., system notifications and UI events).

8

Machine learning researchers also have employed the proximity theory and F-formation

to recognize proxemics interactions (e.g., detecting social interaction [1]). Using machine

learning requires a lot of processing, including creating and preparing a dataset and

training and testing the classifier, making machine learning not suitable for every use case

(e.g., when there is a need for a quick setup, frequent changes in the environment).

However, even when using machine learning to detect proxemics interactions, the

classifier requires data to train the model and input data during prediction. Platforms like

Microsoft PSI, “an open, extensible framework that enables the development, fielding,

and study of situated, integrative-AI systems” [87], processes one or more input streams

through stream operators to generate a single output stream. This output stream then

can be forwarded to another component or a machine learning classifier for further

processing. Using this output stream, Microsoft PSI can support the machine learning

classifier in two ways: generating labeled data for training and feeding the classifier with

proximity data for prediction. However, using Microsoft PSI to generate proximity data

requires a lot of effort as developers need to write the code to calculate different

proximity attributes. This effort will increase when the input stream is low-level proximity

data (e.g., position and orientation) from a tracking system (e.g., VIVE trackers) as the

low-level proximity data require preprocessing before generating proximity data (e.g.,

relative distance). Therefore, implementing complex proxemics-aware scenarios using

existing toolkits will be very difficult and time-consuming for developers. For example,

keeping track of multiple events (e.g., relative distance and orientation) to perform a

single response in The Proximity Toolkit requires listening for two different events to draw

9

the response. It also requires creating multiple relations between every two entities in

case we have more than two entities. Using Microsoft PSI, collecting training data and

providing the machine learning classifier with proximity data (e.g., relative distance) is

also difficult and time-consuming. This is because developers need to write the methods

to calculate all proximity attributes (e.g., distance and orientation) before passing them

to the classifier. These difficulties shift developers’ focus from implementing the final

product (e.g., system responses) to dealing with low-level data to detect user’s behaviors.

To address these limitations, I present ProxemicUI, an object-oriented framework that

provides a simple but powerful rule-based format for expressing proxemics relationships,

an event-driven model for responding to their occurrence, a mechanism for integrating

non-proxemics data and events, and extensibility through clearly articulated extension

points. ProxemicUI eases the process of implementing proxemic-aware applications by

combining basic proximity tests into a single complex test, where developers keep track

of a single object instead of multiple. Similarly, it integrates proximity tests (basic or

compound) with an external data source (e.g., direct interactions and system

notifications). Besides, ProxemicUI can support the machine learning classifier in three

ways. First, developers can test user experience and technical and contextual challenges

of classifiers before building them. Second, developers can also use ProxemicUI to train

the classifier by generating a labeled dataset (e.g., entities, relative distance, pass/fail).

Third, ProxemicUI can feed the proximity data to the classifier as a part of the input data

that the classifier requires to complete the prediction. Through its rule-based approach,

10

ProxemicUI also serves as an explainable alternative to machine learning, one that is easy

to modify and adapt as circumstances change.

My work makes the following contributions:

1- Defined a set of design requirements for proxemics-aware applications in smart

environments that were derived from the literature, my previous experience with

the ProximityTable (a museum information kiosk that responds to proximity

relations between users and the kiosk), and the outcomes of evaluating

ProxemicUI.

2- Fully implemented a robust rule-based object-oriented framework to support

proxemics-aware applications, called ProxemicUI.

3- Demonstrated how beneficial the ProxemicUI development model is compared to

The Proximity Toolkit model (a well-established toolkit in the literature for

proxemics-aware development), specifically when detecting complex proxemics

interactions through combining basic rules into a single rule (CompoundRule) and

integrating proxemics interactions with non-proximity data or events

(HybridRule).

4- Demonstrated how ProxemicUI can more readily support a proxemics-aware

machine learning classifier for proxemics data, compared to Microsoft PSI, a state-

of-the-art ML platform for smart environments, in two ways. First, how

ProxemicUI’s rules can train a machine learning classifier through labeling

proximity data. Second, how to feed the machine learning classifier with data

11

about detected proximity events (e.g., a certain entity’s configuration is detected)

using ProxemicUI’s rules.

5- Demonstrated the process of integrating ProxemicUI into a larger system by

integrating ProxemicUI into Story CreatAR, an authoring tool for virtual and

augmented reality storytelling.

ProxemicUI was evaluated using four techniques that are commonly used to evaluate

toolkits in HCI [65]. These techniques are as follows:

1- How To scenario technique is used in chapter 5 where I showed a step-by-step

how to use ProxemicUI to implement a smart home scenario.

2- Replicated examples technique is used in chapter 6 where I showed how we could

use ProxemicUI to reimplement an existing application that was implemented

using the Proximity Toolkit.

3- Comparison technique is used in chapter 7 where I conducted a code review study

to gather external developers’ opinion about how each toolkit complete the same

task. This comparison includes ProxemicUI vs. the Proximity Toolkit to build

proxemic-aware applications and ProxemicUI vs. Microsoft PSI to support a

proxemic-aware machine learning classifier.

4- Case studies technique is used in chapter 8 where I integrated ProxemicUI into

Story CreatAR, a storytelling tool in virtual reality.

12

The rest of this dissertation is structured as follows. Chapter 2 looks at the related work

to this research. Chapter 3 discusses my previous experience implementing the

ProximityTable that plays an important role in defining the design requirements. Chapter

4 explains ProxemicUI version 1, including the initial design requirements for proxemic-

aware applications. Chapter 5 shows a walkthrough example of how to use ProxemicUI

to build a proxemic-aware applications. It also explains the final architecture of

ProxemicUI (ProxemicUI version 2). Chapter 6 looks at the proof-of-concept applications

of a simulated smart home and how they contribute to evaluate and refine ProxemicUI.

Chapter 7 discusses the evaluation of ProxemicUI through a code review study. Chapter

8 shows evaluating ProxemicUI through integrating it into Story CreatAR. Chapter 9

reflects on the ProxemicUI framework in relation to other research. It also summaries the

refinements to ProxemicUI as well as the future work. Finally, the conclusion will be in

chapter 10.

13

Chapter 2: Literature Review

This chapter discusses the background for this research and is divided into proximity and

interactive systems, entity formation and interactive systems, proximity in virtual

environments, proximity in machine learning, and toolkits for smart environments.

Proximity and interactive systems

In ubiquitous computing paradigm, devices are aware of the presence of each other, their

environment, and context of use [38][126]. In an effort to achieve such awareness, HCI

researchers have applied proxemics theory to interactive systems design.

One of the earliest HCI research projects that applied proxemic theory on interactive

displays was Vogel and Balakrishnan’s work [123]. Similar to the four zones in Hall’s

proxemic theory, they established four interaction zones around a wall display: “ambient

Display, implicit Interaction, subtle interaction, and personal interaction” [123]. Using the

VICON motion tracking system, they tracked the position and orientation of users to

detect levels of engagement. The transition between the four interaction zones (changes

in levels of engagement) causes changes in interaction style and content presentation.

Importantly, in this early work, proxemics was used to adjust the interaction modality and

change the content presentation, emphasizing the highly intertwined relationship

between proxemics and interactivity.

Proxi-Sketch [7] is an interactive tabletop application that uses Medusa [7], a tabletop

interactive system that can track the torso, arms, and hands of users via a set of IR-based

14

proximity sensors. Proxi-Sketch, a prototyping application to create and edit graphical

user interfaces, shows a glowing orb on the tabletop display to indicate the detection of

users. The clarity of the orb also indicates how far the user is from the display. We can

consider the torso, arms, and hands of an individual sub-entities of the main entity (the

person). ProxemicUI can sub-class the main entity to define multiple sub-entities

(multiple joints). Then, developers can test proximity relations between sub-entities of

the same individual (e.g., the hand is touch the face) or sub-entities of two individuals

(e.g., hand shaking).

Klinkhammer et al. [60] present a museum exploration station that can track users using

IR proximity sensors around the interactive tabletop. Using this data, the system creates

a personal workspace for each user, which moves as they move. In addition, when two

users come together, the workspace left behind will be removed after 15 seconds. During

their study, there were 257 bystanders who did not interact with the tabletop. Forming a

group when two people come together and detecting bystanders require multiple tests

at the same time. For example, testing a single proximity attribute with multiple

thresholds (e.g., the distance between the user and the table, the bystander and the

table, and the user and the bystander). Other cases require testing multiple proximity

attributes (e.g., the distance between each user and the table, both users, and the relative

orientation between each user and the table). ProxemicUI composes multiple basic

proximity tests into a complex test using Compound Rules.

15

Screenfinity [100] is a proxemic-aware system that was developed to allow passers-by to

read content on a wall display while walking. The content on the wall display changes

according to the position of the users as follows. The content moves, rotates, and changes

size according to users’ position relative to the display. The system also supports

presenting and changing multiple contents on the display for different users. In this work,

we can see that the system continuously responses to the user’s position relative to the

display from multiple users. Using ProxemicUI, this can be achieved by defining a single

relative distance rule that includes all users instead of writing a test for each user.

Developers then would access the relative distance for each user to respond accordingly.

HCI researchers also employed proximity between multiple users and a single display to

control contents on display. Dostal et al.’s work [31] uses a combination of proxemics

(distance and position) and multi-view technology so that two people can see different

content on the same display at the same time. This shows testing multiple thresholds for

a single proximity attribute, which can be achieved using Compound Rules in ProxemicUI.

The Proxemic Media Player application [13] and SpiderEyes [30] divide the display

between users, where each has different contents. In the Proxemic Media Player

application, when a new user stands between an existing user and the display, s/he takes

control over the content. This shows changes in user’s roles based on their proximity

relative to the display. In SpiderEyes, two users can come closer to each other to merge

the two spaces into one; then, they can move together (towards/away from) the display

to control the content. This also shows testing multiple thresholds for a single proximity

attribute. Tafreshi et al. [97] [110] uses the average distance of all users relative to the

16

display to provide a better view for all users. This approach shows calculating multiple

distances for all users relative to the display.

Eyes-Free Art [90] is a proxemic audio interface supporting people with visual

impairments to explore 2D artwork. Users can interact with the interface by moving

between 4 different zones relative to paintings. Each of the four zones will have different

auditory experiences: “Background Music, Sonification, Sound Effects, and Verbal

Description”[90]. Eyes-Free Art provides direct interactions with paintings (e.g., touching

different parts of the painting plays different sounds). It also provides verbal interaction

(e.g., repeat instructions for each zone with the voice command “Repeat”). This system is

an example of integrating proximity data with external events (direct touch and verbal

commands), which ProxemicUI supports through the Hybrid Rule.

The AirPlayer [107] system extends the use of proxemics to cover multiple rooms in the

house, using location and movement for interaction with the system. An example of using

location is when the system starts to play songs from the library because it knows that

there are two people in the living room. When one person goes to the bedroom to take a

nap, where they like to listen to a specific singer while falling asleep, they start their

preferred list of songs on their phone. The system then detects that they are in the

bedroom and plays these songs through the bedroom speakers. Meanwhile, the previous

list of songs still plays in the living room. Another example of using movement is when a

user starts a list of songs while in the bedroom, then moves to the living room: the system

will follow them and play the list on the living room speakers. The AirPlayer checks if an

17

individual is in a specific location within the environment, which ProxemicUI refers to as

Absolute Proximity Rules. Playing music when two people in the living room might be

more specified. For example, if both people are relaxing on the couch, play music; if one

is watching TV and the other is doing some work on the table, then don’t play music. With

such a scenario, there is a combination of absolute and relative proximity tests that

ProxemicUI supports through Compound Rules. In addition, we can see the presence of

HybridRule when the user starts a list of songs, the system would detect the user’s

locations to determine on which speakers the songs should be played.

Savannah [14] is an open-field collaborative hunt game. It is a proximity-based game,

where players (each player is a lion) have to be in the same location to exchange

information about animals. This information is being displayed on handheld devices. To

win the game, players need to work collaboratively (hunt together). Hunters keep walking

in the field (“virtual Savannah”) and move between different virtual zones; when they

enter a zone that “contains an active target”, an “attack” button will be displayed. This

game shows different features of ProxemicUI. For example, RelativeProximityRules and

CompoundProximityRules when detecting the relative distance between all players.

AbsoluteProximityRules can be seen when detecting transition between zones in the

tracked field.

Many other systems do not directly employ proxemic interactions, but one can see the

presence of proxemics scenarios. For instance, Lucero et al. [68] introduced several

prototypes for collected mobile interactions where people use their phones to create a

18

shared workspace. One of their examples is exploring photo collection together, as with

traditional photo album sharing. In this example, all users place their phones on a table;

as the owner of the photo collection starts to explore photos, all other devices move to

the photo that the owner is looking at. A second example is “large-scale sharing”

experiences, where multiple phones combine as a single display to present content (by

placing phones next to each other), or where several devices combine into a single display

while another operates as the joined display controller [67]. Lucero et al. prototypes

show an example of how useful to employ proximity on device-to-device interactions. For

example, they should know each device’s position relative to other devices to determine

which part of the photo each device should present.

By considering previous work, one can see the benefits of employing proxemics to

support the interactions on interactive systems. For example, using proxemics can

allocate personal workspaces [60], change display content [123], and create a joined-

scaled display [67].

Entity formation and interactive systems

When people interact with one another, we can see the presence of different spatial

patterns as they stand close to each other. These patterns are defined by Kendon [58] as

F-formations. Kendon describes several patterns include circular, rectangular, semi-

circular, L-arrangement, side-by-side, or linear arrangements, figure 1 left. Paay et al.

[81][82] explored how people interact while cooking together and identified four

additional F-formation: wide V-shaped, Spooning, Z-shaped, reverse L-shaped. Serna et

19

al. [101] and Tong et al. [116] explored the collaboration in outdoor activities and

identified one additional F-formation that is a triangular arrangement. They found that

the triangular formation is influenced by the roles of group members who form the

triangular for a short period (e.g., one member gives instructions to the group). Solera et

al. [106] argue that groups cannot only be detected using the position and orientation of

individuals relative to the o-space as proposed by Kendon. For example, in crowded areas,

group members tend to reduce the inner distance between group members. They also

argue that some group members might not directly connect to the center of the group (o-

space) but still a member of that group. The environmental context can influence the type

of pattern when people create a formation. For example, two people can create a circular

formation when discussing exhibits with the counter assistant at a tourist center; the

same pair can create a side-by-side formation when annotating a map on a table [74].

Other temporal environmental contexts might also influence these patterns (e.g.,

changing the formation when it is crowded around the display [11]). Existing interactive

systems create F-formation patterns between people and devices that are similar to the

patterns identified by Kendon [58] between people only. For example, groups of two or

more tourists created circular formations when interacting with the counter assistant at

the museum [74] that are similar to the formations created by visitors who interacted

with kiosks or displays discussed by Azad et al. [11]. The difference between the two

formations is that the kiosk or the display plays the role of the counter assistant.

20

TouristPlanner [73] is a walk-up-and-use tabletop system that allows understanding

group behaviors around interactive displays in public places (e.g., tourist centers). It

allows a group of up to four users to independently explore the system to choose places

to visit before gathering on one side of the tabletop to discuss the final plan. Marshall et

al. found that at most times, group members arrived at the tabletop at different times.

While the group was interacting, some members left the tabletop to explore other parts

of the tourist center. While some groups used only one side of the tabletop or had less

than four members, there were some instances where strangers joined groups. The

authors stated that groups chose to work on a single side of the table for two reasons:

preferring a shared focus on the contents and not knowing that multiple people can use

the display simultaneously. This shows that there is a need to track people around the

display and respond to group configurations, for example, by creating openings for new

users, notifying groups about new table space, or identifying when groups want to discuss

a final plan. This kind of system response requires ongoing consideration of the relative

proximity between individuals and the display.

FIGURE 1: LEFT: EXAMPLE OF F-FORMATION CONFIGURATION [56], RIGHT: EXAMPLE OF GROUP

FORMATION AROUND PUBLIC DISPLAYS [11]

21

Azad et al. [11] explored how groups reach and use three different vertical displays

(cinema ticket kiosks, photo-developing kiosks, and mall directories). They found that

groups arrange themselves based on how they reach the display (e.g., one member

leading the group vs. all moving together). In addition, since group members' roles (driver,

active observer, and passive observer) might change during the interaction, the group

formation changes accordingly. Azad et al. also observed a direct effect of the crowd

around the display and of arrival time on groups’ positioning and formation. This shows

how the position and orientation of people play important roles in the flow of interaction

(e.g., to establish the owner of a workspace), and how the approach to a device can signify

intent. Correspondingly, group formations can be useful to detect even before the

interaction begins. They stated that group members change their positions to change

their roles (e.g., taking turns at the kiosk when buying movie tickets). Similarly, We might

apply these roles on devices to determine the controller of other devices according to

device position. For example, during a workshop, we might have multiple presenters who

present different tutorials. When the presenter moves to the front of the room, s/he can

gain access to participants’ devices to fix encountered issues.

Mentis et al. [75] discussed the presence of F-formations in neurosurgery, not only

between surgeons and nurses but also involving devices (e.g., imaging technologies). An

example of changing F-formation is when a surgeon moves towards an imaging device to

direct the nurse to show different views or images. This is another example of how

tracking the position and orientation of both people and devices is useful. For instance,

we can combine the position of surgeons and their hand gestures to control the level of

22

detail. We can achieve this using hybrid rules in ProxemicUI. Hedayati et al. [45]

conducted a user study to explore the differences between participants' F-formation

when interacting with physically present vs. virtual moderators. They recruited eight

participants to participate in a quiz game. In their setting, the spatial properties (position

and orientation) of the moderator (physical or virtual) are static, where participants form

a group of up to seven members around the moderator. When a participant loses a round

in the quiz game, they leave the group, where the remaining participants will “shuffle”

the F-formation before the next round. Shuffling the F-formation and changing the

number of group members results in different F-formations that the same group creates

in the same setting. All participants participated in both conditions: with physically

present and virtual moderators. They found that F-formations with a physically present

moderator are wider (with greater distance to the center of the formation) than those

with a virtual moderator. This finding supports the need to understand the environmental

context to provide better interaction supports.

Luff and Heath [69] defined micro-mobility as how we position, orient, and manipulate

objects to serve different purposes during collaborations. For example, at travel agencies,

the travel agent might print multiple bookings (with different routes and prices), then

pass them to the customer. Then, the customer might place them side-by-side to compare

total trip time, number of stops, and prices. In this scenario, the paper documents are

moving from the agent to the customer and placed on the table in a specific form by the

customer to complete the task (e.g., choose a flight).

23

Marquardt et al. employed the micro-mobility concept in their system, GroupTogether

[72]. GroupTogether is a system containing a set of cross-device interaction techniques

for sharing content between interactive devices. The design of these interaction

techniques reflects two different concepts: micro-mobility and F-formation. They used

micro-mobility to define how to orient and/or position a handheld device to perform a

task (e.g., send a copy of the shared document). They also used the F-formation concept

to determine who is in the group and who is not (based on positions of people who hold

devices) as well as space where the interaction should take place (the shared space

between users). ProxemicUI provides the support for micro-mobility and f-formation

through detecting the relative relationships (distance and orientation) between entities

(e.g., devices and people), where multiple relative rules can be combined into compound

rules.

Lucero et al.’s work [67][68], discussed in the previous section, introduced several

collected mobile interaction prototypes to create a shared workspace using mobile

phones. Their prototypes show examples of using two, three, and four mobile devices to

create a shared display. Based on the number and orientation of devices, the size and

presentation of the image change. This also shows the importance of detecting spatial

relationships between devices.

Some formations do not indicate creating groups, but there might be a need to detect

and respond to their existence. For example, Zhou et al. [132] designed a tablet interface

that can detect and notifies users about the presence of onlookers to protect their

24

privacy. They used Polhemus G4 (“a 6 degree-of-freedom electromagnetic motion

tracker” [132]) to extract proximity data (position and orientation) of entities (tablet and

onlooker). Then, they used this data to calculate the relative distance (< 5 feet) and

orientation (within 60º field of view) between the tablet and the onlooker to provide

users with notifications about onlookers and/or perform a protection technique of the

content on the screen. In addition to the automatic protection, they have “a manual

protection mode allowed tablet users to decide when and for how long to use a

protection by clicking a button” [132]. This system includes testing multiple relative

proximity attributes (distance and orientation) and supporting proximity events with user

confirmation (UI touch events), which ProxemicUI can support.

Tracking devices vs. users in some systems, group formations are created by users holding

their mobile phones. In these systems, mobile phones play the role of proxies to those

users, which are used to track/determine the locations of those users. For example, Jokela

and Lucero introduced EasyGroups [54][55], which includes three techniques to create

groups of mobile devices for collaborative interaction. Their application interface is

represented as a tabletop on which it places devices in-order around it for collaborative

work. While employing spatial relationships between devices help in automating the

detection and creation of groups, their system creates groups manually as follows. In the

Seek technique, one user (which they called “the leader”) creates a group using the “Seek

application”. Then, the rest of the users search for that group using the same application

while they are in the same network as the leader; users need to enter a password to join

the group. If devices' order is different from their physical order, the leader can reorder

25

devices by touch through the application. In the Ring technique, one user creates the

group then touches the phone of the next user to his/her right using his/her phone to add

that user to the group. The second user follows the same procedure to add the third user

(who should be on the right side of the second user) and so on until they complete the

group. Following this approach, the application can keep track of users’ orders as each

new user will be added by the person at their left. In the Host technique, one user creates

the group (which they also called “the leader”) then keeps touching all devices using

his/her phone in counter-clockwise order to keep track of devices order. With the

ProxemicUI framework, grouping and ordering can be much easier. For example, when

the leader creates a group, anyone within a threshold might get notified about the new

group, the leader then can accept or reject the joining request. To determine ordering,

ProxemicUI can detect each device's relative position and orientation. The application

might also be automatically responsive to f-formations as they occur, removing the need

for explicit initialization of join requests from a group leader.

Jokela and Lucero also introduced FlexiGroups [55][56], which expands on the techniques

in EasyGroups. In FlexiGroups, one user starts the application and adds other users by

touching other users’ phones using his/her phone. The first difference here is that other

users do not have to start the application where their phones are in an idle state. Then

any added user can add new users following the same procedure. In terms of devices’

order, all devices will be showing on the tabletop screen (on the phone application) in the

same order that they were added. Then, devices can be reordered to match the right

physical order by any user in the group, where all screens will be locked while a user starts

26

the reordering process. Here proximity is used to add new devices, which we refer to as

relative distance in ProxemicUI. However, they still have the ordering issue that they do

through direct interactions, which can be done automatically through relative position

and orientation in ProxemicUI. While there exist different scales of f-formations, from

micro-mobility to smart home scales, the ability of ProxemicUI to work with these

different scales is determined by the ability of sensing technologies to detect proximity at

different scales.

In summary, we see that group formation around interactive displays might change over

time due to changes in members’ roles, group size, and the number of groups. In addition,

there are instances of breaking one group formation and creating another one in medical

settings. For example, in the operating room, we might have a formation that includes

three surgeons around the patient table. During the operation, a surgeon might break this

formation and moves towards the imaging display, creating a new formation including

the nurse and the display). What is more, group formations can be seen between people

only, between people and devices, and between devices only. Therefore, tracking

changes within groups as well as between groups might be useful in different ways. For

example, content on the interactive display might change according to the group size as

well as the number of groups and individuals around the display; and multiple interactive

displays might work as a single display; and multiple devices might work individually to

process a task. In addition, we might have two different relations in a single formation.

For example, if we have two people standing by a tabletop at a museum entrance, one of

them faces the tabletop while the other one is facing away from it. In this scenario, we

27

have a group based on their proximity and two sub-groups based on their orientation

(user and tabletop face to face, and a bystander and the tabletop side by side/ face to

back). The system response of this complex case might be different than other simple

cases (e.g., both people are facing the tabletop).

Proximity in virtual environments

Researchers have been studying how proxemic interactions manifest in virtual worlds and

if the social norms of physical spaces exist in these virtual environments. Hecht et al. [43]

conducted a study where they asked participants to approach an avatar using two

different techniques. First, the participant approaches the avatar by physical movements

toward the avatar on the screen. Second, the participant controls a second avatar through

the keyboard to approach the other avatar. With both tasks, the goal was to reach a

comfortable distance to ask a stranger for direction. They found that the average distance

in both techniques was 1 metre, which is close to the personal space boundary in the

proxemics theory defined by Edward Hall [41].

Bonsch et al. [19] conducted a user study to explore how the personal space of a user can

be affected by three factors: the facial expressions of virtual agents, the number of

approaching virtual agents, and the direction of their approach. Their setup was a five-

sided CAVE, where they asked participants to stand in the middle and only allowed them

to turn their heads in order to look around the space. They asked participants to indicate

their comfortable and uncomfortable zones when being approached by virtual agents

while varying the three factors. Participants indicated their preferences using an ART

28

Flystick 2. They found that the number of approaching virtual agents and their facial

expressions impact personal space preferences. These findings support Hecht et al. claim

(discussed above) about the similarities of proxemic interactions in virtual and physical

worlds. For example, the o-space (the middle area) size in a circular formation tends to

increase as the number of group members increases. Therefore, detecting such

formations will be the same in both physical and virtual worlds, which is supported using

Compound Rules in ProxemicUI.

Williamson et al. [128] conducted a virtual academic workshop that was built using

Mozilla Hubs. Their research studied social interactions in the virtual environments how

they can be affected by the size of space they took place in. One of the challenges

participants stated is the difficulty of sensing what is behind their avatars. Another issue

participants faced is how far they should be from other avatars to start a private

conversation or start a private conversation while still participating in the large group.

Authors argue that it is important to provide social awareness to participants about

different events in the environment (e.g., when an avatar leaves the room). Such

awareness might help “organizers to ensure all attendants are stationed in the rooms

they are meant to be at any given time” [128].

In summary, proximity in virtual environments is somehow similar to its use in physical

spaces where people tend to leave enough distance between their avatars and other

avatars (e.g., to have comfortable conversations with others and avoid blocking other’s

views). Besides, employing proximity in virtual environments will improve the interactions

29

between users. For example, using Compound Rules in ProxemicUI (relative distance and

orientation between avatars), the system can allow users to start a private conversation.

If avatars already within a distance of each other (e.g., theater settings), the system might

use relative orientation only (avatars turn to each other) to start the private conversation.

When the private conversation starts, the system might decrease the voice of the main

talk to make the conversation event more realistic. In some contexts, proximity

awareness is important from a management perspective to control the flow of virtual

events. Using the AbsolutePositionRule, ProxemicUI can detect proximity events to know

who is in a specific room. ProxemicUI also can create groups (using F-formation Rules) to

start a specific event (e.g., start a conversation or talk).

Proximity in machine learning

Researchers in machine learning have also employed proximity and F-formation to detect

social interactions in different contexts. This section will discuss some of this work to

understand how researchers have used proximity data to train a classifier to detect social

interactions.

Aghaei et al. [1] introduced a system that aims to detect social interaction in photo

streams captured by a single wearable camera. The social interactions they detect are

when the user forms an F-formation with other people. They detect F-formations by

estimating the position and facial orientation of other people. Their model consists of two

modules as follows. The first module extracts the two features that define the F-formation

(distance and orientation) between the user and individuals in the photo streams. The

30

module then prepares these features in the sequence level to pass them to the next

module. “The second module analyzes the resulting features from the first module to

classify the sequences”[1]. They used a low frame camera to capture user interactions as

they stated that high frame cameras might not be suitable to capture interactions

throughout the day. They trained a long-short time memory network, “a type of Recurrent

Neural Networks that is capable of learning long term dependencies” [1]. The input data

to the network are the resulting distance and orientation from the first module (extracting

the features). Due to the lack of datasets for their specific settings, they collected

approximately 30.000 images by eight users. They used 70% of the dataset for the

training. They divided the remaining of the real dataset equally for validation and testing,

where they also enlarged the validation set.

Ko et al. [61] proposed a method that detects abnormal human behaviors through

surveillance systems. It consists of three models. First, the detection and discrimination

module (YOLO network, an object detection algorithm) aims to separate objects in the

video to extract human subjects. Second, the posture classification module classifies the

abnormal behavior from the extracted human subject frames. This module concatenates

from two models. The first model is a convolutional neural network model that is used to

recognize postures in the extracted images. The second model is a recurrent neural

network model that is used to extract the features for motion dynamics. Third, the

abnormal behavior detection module is a long-short term memory network model that is

used to detect abnormal behaviors based on the dataset. They trained and tested their

models using the “UT-Interaction-Data” dataset. This dataset contains 50 video clips

31

where multiple people perform six activities: handshaking, hugging, kicking, pointing,

punching, and pushing. They found that there are difficulties in differentiating between

behaviors with similar motions (e.g., punching vs. pointing). They argued that these

difficulties are due to the small size of the database and the low resolution of training

images.

Cumin et al. [26] employed an environmental context feature (location) to enhance

activity recognitions using supervised learning algorithms. Their approach suggests using

location information (e.g., living room vs. kitchen) to determine what activities the

classifier should look for and from which sensors. To add a new activity during the training

phase, they use all classifiers of all locations (e.g., living room vs. kitchen) to recognize this

activity. When a decision is being made by every classifier of all locations, all decisions go

through a fusion method to finalize the decision. For decision fusion, they used the

MultiLayer Perceptron and the Support Vector Machine, two stacking classifiers. They

used the Opportunity dataset [92], multi-level labeling of activity dataset, where they

used only 17 activities and added a None activity for no activities or other locations

activities. Three classification models were used to validate their approach: MultiLayer

Perceptron, the Support Vector Machine, and the Bayesian Network. They found that

location-based activity recognitions and decision fusion of classifiers' output increase

detection accuracy. Location-based activity recognitions support what ProxemicUI

provides with Absolute Proximity Rules, which check spatial relations relative to the

environment.

32

Hedayati et al.’s work [44] detects F-formations using a data-driven approach based on

people's spatial data (position and orientation). The first step of their approach is to

define a relationship between every two individuals in annotated frames. This

relationship includes the distance between the two individuals and how much each

individual should rotate to face each other. The second step is to label the relationship

data (inside the F-formation or not) and use labeled data to train a binary classifier. The

last step is to use the relationship data to form existing F-formations. They trained three

ML classifiers: Weighted KNN, Bagged Trees, and Logistic Regression, using the SALSA

dataset [2], a large dataset of 18 people interacting in an indoor setting. They used 80%

for training and 20% for testing. They compared the result of the three models with their

implementation of the Graph-Cuts algorithm [102], a Computer Vision method that

detects F-formation from single images, and they found that all three models performed

better than the Graph-Cuts algorithm. Their approach processes every two people

individually, then combines the results after the classifications. ProxemicUI can provide

the same data (relative distance and orientation) for more than two entities

simultaneously, making it more suitable to support the ML classifier.

Using machine learning requires a lot of processing, including creating and preparing a

dataset and training and testing the classifier. Therefore, the cost of this process will

increase as the number and complexity of the required interaction techniques increases,

making machine learning not suitable for every context. For example, when collecting

training data, the dataset should have a reasonable amount of data for every interaction

technique that we need to detect. ProxemicUI provides a robust and straightforward

33

event model to detect interactions that have been explored with machine learning. For

example, Aghaei et al. [1] and Hedayati et al. [44] detect F-formation based on the

position and orientation of entities. Cumin et al. [25] use a location-based approach to

determine what activity to detect to enhance activity recognition. ProxemicUI can

accomplish this by combining the absolute position with the interaction technique using

HybridRule. In addition, ProxemicUI can ease the process of training the classifier and

detecting proxemic interactions by feeding the classifier with high-level proximity data

(e.g., relative distance) through its rules.

Toolkits in smart environments

Edwards et al. [32] defined four ways of addressing the infrastructure problem in HCI:

Surface approach, Interface approach, Intermediate approach, and Deep approach.

Without making any changes to the infrastructure itself, the Surface approach employs

the applications to give users a better product using that infrastructure. The Interface

approach aims to modify the infrastructures to provide developers with more suitable

abstractions of the infrastructures. The goal of the Intermediate approach is to ease the

application development process by implementing new features that are not supported

by existing toolkits. The Deep approach aims “to directly influence the architecture of

infrastructure itself” [32]. ProxemicUI v1 follows the Intermediate approach, where it uses

any low-level tracking system (e.g., DT-DT or HTC Vive Lighthouse) as a source of position

and orientation data and integrates them with a non-proxemic data source (e.g.,

34

Windows event model) to generate higher-level proxemics events (e.g., relative distance

between two people).

Toolkits in HCI research can be placed on a continuum between research toolkits and

toolkits for research [131]. Toolkits for research “speed up development by encapsulating

common code revealed during research, enabling faster iterations and research

participation by more people”[131]. PyMT [42], a toolkit to support the development of

post-WIMP interfaces (e.g., multi-touch interface), is an example of an HCI toolkit for

research. On the other hand, research toolkits “enable development of interfaces based

on entirely new paradigms” [131]. ZOIL Framework [133], a toolkit for post-WIMP

zoomable user interfaces, is an example of an HCI research toolkit. It is essential to study

existing toolkits to establish the research gap in the literature. ProxemicUI falls in between

the two types of toolkits where it enables faster developments and still provides a new

paradigm through Compound and Hybrid Rules. This section will discuss some of the

existing and relative toolkits to my research.

Schipor et al. introduced two related toolkits called EUPHORIA [98] and SAPIENS [99],

where SAPIENS was built based on the architecture of EUPHORIA. The goal of these

toolkits is to ease the development and validation process of interactions between

different devices in smart environments. Both toolkits classify devices in smart

environments as follows. First, Producers are input devices (e.g., a microphone, a VICON

tracking system). Second, Consumers are output devices (e.g., a wall display, a sound

system). Third, they consider devices that can be input and output devices simultaneously

35

(e.g., tablets and smartphones), a mix of Producers and Consumers. The SAPIENS design

adds a few new features over EUPHORIA, but I will discuss the only two relevant features

to ProxemicUI. First, The ATTENTION-DETECTION-MODULE evaluates the received events

from Producers (e.g., a change in position event from VICON motion sensors) in order to

track the user’s attention within the smart environment (e.g., a user is watching TV).

Second, the CONTEXT-AWARENESS-MODULE collects spatial data of participating entities

(e.g., position and orientation), which can be used to discern which entity has the user’s

attention and what Consumers should be used to show notifications to users. It is helpful

to consider their devices' classifications in smart environments (Producers, Consumers,

and both) in relation to the user roles discussed in the introduction: direct participant,

active observer, passive observer, and disengaged bystander [11][112]. We can benefit

from their device classifications in relation to user’s roles to support the interaction by

considering the functionality assigned to each device, giving each device a different role.

For example, if we have an environment that contains ten devices, five of which are either

input/output or only output devices. When the system wants to show notifications, it will

only test spatial relationships between the user and those five devices instead of the ten

devices. I proposed that we could extend these roles to devices and considered a device

that controls other devices in a smart environment, a direct participant, and a device that

receives commands and, as a part of its response, communicates with other devices in

the environment an active observer. In Schipor et al.’s classification, both roles fall under

what they call a mix of Producer and Consumer (i.e., both), although the controller might

be considered more purely as a Producer (albeit sometimes as a proxy for the user as in

36

the case with remote controls, for example). I also propose that any device that doesn’t

communicate with other devices but responds to commands is a passive observer, which

falls under the Consumer in Schipor et al.’s classification.

Schipor et al.’s ATTENTION-DETECTION-MODULE and CONTEXT-AWARENESS-MODULE

collect proxemics data and evaluate proxemics relationships between entities to support

user interactions in the smart environment. Since SAPIENS is not a fully implemented

system, Schipor et al. introduced an online simulation application to illustrate how their

system works. ProxemicUI is a fully implemented rule-based model that detects

proxemics relationships between entities where developers can choose which entities,

what property to be tested, and set the threshold for each rule.

Pérez et al. [84][85][88] developed a framework to support implementing mobile

proxemic apps for smart environments. Their system gathers proximity data from existing

smart devices in the environment (e.g., smartphones and wearable devices). Their

framework consists of three components. First, Proxemic Zones: because they consider

the four proximity zones, developers would use this component to define the proximity

zones by passing maximum thresholds for each zone. Then, developers will connect these

zones to one or more entities, which is used to change the interaction between every two

entities. The second component is the API: is the interface where developers can access

all methods required to create proxemic zones and to test proxemic data. The last

component is the DILMO: allows defining combinations of the five proximity dimensions

(e.g., change the interaction according to distance and orientation). An example of using

37

the framework is a mobile app that can control the volume of the video based on which

of the four proximity zone does the user stand relative to the phone. The first limitation

of their system is that they detect orientation based on detected faces that are not

suitable for every scenario (e.g., human-to-device interactions, devices with no cameras,

and device-to-device interactions). There are also no thresholds for orientation which is

not ideal for every use case (e.g., I may not directly facing a tabletop, but I am still engaged

with its content). They also do not consider other properties of entities when measuring

spatial relationships (e.g., the shape of an entity is important to measure the distance

accurately, a person to a tabletop). Besides, they perform one-to-one tests between

entities, making the system not scalable with a larger number of entities. XDKinect [80] is

a toolkit that employs Microsoft Kinect to support the interaction of cross-device

applications. One of its components is the Proxemic API, which supports proxemic

interactions. It activates/deactivates the interaction mode according to the user distance

relative to the display. It can also detect the presence of multiple users around the display

based on the number of the detected skeletons using Microsoft Kinect. While ProxemicUI

does not limit the number or the type of tracked entities, XDKinect limits the tracked

entities to a limited number of human subjects as it uses Microsoft Kinect to detect users.

The Context Toolkit [29][95] was developed to support the implementation of context-

aware applications by providing a set of reusable widgets that play as a source of context

information to be accessed by the applications. Each widget provides a number of

attributes and callback methods that aim to hide the complexity of building context-

aware applications. For example, the IdentityPresence widget provides three attributes

38

(location, identity, and timestamp) and two callback methods (PersonArrives and

PersonLeaves). Each widget also implements generators which are software components

that capture context data from sensing hardware (e.g., voice recognition). One of the

most important points discussed when using this toolkit is composing Context Widgets to

generate a widget that provide the application context information based on the

information gathered from the two widgets. However, each widget “is implemented as a

single process” where widgets “uses peer-to-peer communications”. In addition, the

Context Toolkit requires creating a widget for every location that it needs to access its

context information, which raises the scalability issue. ProxemicUI provides a rule

hierarchy that includes a set of rules to combine different types of proxemic and non-

proxemic tests in single rules. It also employs the OSC communication protocol to as an

interface protocol to capture proximity data from different sensing technologies. In

addition, ProxemicUI also addresses the scalability issue by allowing testing multiple

entities in a single rule.

One of the most relevant works to ProxemicUI in research toolkits is The Proximity Toolkit

[50][71], which is a toolkit that provides developers with a set of proxemics data between

entities. According to Marquardt et al. [71], proxemics data includes orientation, distance,

motion, identity, and location; and entities include people, interactive displays, digital and

non-digital objects. The toolkit provides developers with a 3D visualization window that

allows them to examine the relationships between entities. In addition, their “proxemic

data model” can employ any tracking system to extract proxemic data. The Proximity

Toolkit provides developers with low-level proxemics data (raw proxemics data for each

39

entity, e.g., the position of an entity within the tracked area). It also provides developers

with more high-level proxemics data. These data include relationships between two

entities (e.g., the relative orientation between two entities) and pointing relationships

between two entities (e.g., A is pointing at B). These higher-level proxemics data is

represented by events where they only pass two entities as arguments to be tested. On

the other hand, ProxemicUI follows the same events approach with more arguments to

give developers the flexibility to control the test, where each event has two list of entities

and minimum and maximum thresholds.

To understand the use of proximity data that Proximity Toolkit provides and to have a

better vision of the differences between Proximity Toolkit and the ProxemicUI

framework, we will look at several research prototypes that employed Proximity Toolkit.

First, the Proxemics Media Player application [13] uses The Proximity Toolkit to track

people, digital devices, and other physical objects, to define the relative proxemics

relationships. The system reacts differently based on the received relative proximity data.

For example, the system starts showing a set of videos on the wall display as the user

enters the room, and the number of videos displayed increases as the user gets closer to

the display. After the user selects a video, it is displayed full screen when they sit on the

couch. Here we can see that the system used relative distances between the user, the

wall display, and the sofa. Another example is, when a second user enters the room, the

system starts to show details about the video, where the details will increase as the

second user gets closer to the display. Here we also see several relative distances (with

multiple thresholds) between four entities, the two users, the wall display, and the sofa.

40

The Proximity Toolkit implements these by defining multiple relations events where each

event represents the relation between two entities. This way, developers need to listen

to all events to draw the response. On the other hand, ProxemicUI eases the complexity

of testing multiple attributes for multiple entities with multiple thresholds by allowing

developers to create basic relative proximity rules and combine them into compound

proximity rules. This way, developers listen to a single compound rule to perform the

response.

Proximity-Aware control [64] is another system that employs the Proximity toolkit to gain

control of appliances based on relative distance and orientation. For example, as a person

moves around the room while holding a tablet (the controller for existing devices, e.g., TV

and radio), the tablet will show icons for controllable on the screen. Here we can see

relative orientation between multiple devices. In addition, the decrease of the distance

between that person and a device increases the level of engagement and allows for more

control; this uses a single relative distance between a person (the device they are holding)

and an appliance.

Proxemic Brainstorming application [70] uses The Proximity Toolkit to transfer

information between devices using their relative distance. First, Proxemic Brainstorming

shows the presence of other devices by showing small icons at the edges of the personal

device, which moves around the edges according to the other device's position.

Decreasing the distance between two devices allows increasing the displayed

41

exchangeable content accordingly. Finally, according to the distance between devices,

different interaction techniques can be applied.

Proximity Peddler [125] is a public advertising interactive display that uses The Proximity

Toolkit and aims to capture the attention of passersby to explore and buy products from

online marketplaces(e.g., Amazon). It captures their attention by changing the shown

animation speed and presenting more details about products based on a passerby’s

position and orientation relative to the display. Here, we can also see the use of relative

proximity data.

Physio@Home [62] is a system that employs The Proximity Toolkit to retrieve the relative

position and orientation of joints (shoulder, elbow, and wrist). This relative proximity data

is used to provide visual guidance and feedback for patients to help them do their

exercises correctly. In this system, each joint represents an entity which is an interesting

aspect where we might derive sub-entities from the base entity (joints are sub-entities

from body entity). They measure relative proximity data for three entities (joints):

something that is achieved in a straightforward way as a single Compound Rule (as in

ProxemicUI).

While a number of toolkits support proxemics awareness in smart environments, there is

still a considerable gap between the supported basic proximity triggers and what is

required to support complex interactions in smart environments. For example, detecting

more complex group formations when not all members are facing the group's center and

drawing system responses based on proximity events and non-proxemics data (e.g.,

42

system notifications or direct interactions). ProxemicUI fills this gap by allowing

developers to compose basic proximity rules into a single compound rule and integrating

proximity events with an external data source (e.g., system notifications).

Evaluating HCI toolkits

Ledo et al. [65] analyzed 68 published toolkit papers and defined four different methods

that are used to evaluate toolkits in HCI. The first method is “demonstration”, which

shows the toolkit's features and how developers can use them. The second method is

“usage”, which involves external users' participation (programmers) in the evaluation

process. The third method is “technical performance”, which helps to find out how well

does the toolkit work. The fourth method is “Heuristics”, which is “used as a discount

method that does not require human participants to gather insight, while still exposing

aspects of utility” [65]. Each of these methods has several techniques that can be used to

evaluate the toolkit. In this section, I will discuss with examples the four techniques that

I used to evaluate ProxemicUI.

Demonstration

I used three of the demonstration techniques to evaluate ProxemicUI. First, the

“replicated example” shows how the new toolkit can reimplement existing work following

broader solutions. For example, SwingStates [10], an extended library from the Java Swing

toolkit [109], adds a “state machine” feature to replace the listeners when defining

interactions. The authors compared the crossing interaction techniques in their library to

the ones in CrossY [9], a drawing application to demonstrate the benefits of the crossing

43

interaction technique for graphical user interfaces. In my evaluation, I am reimplementing

a smart home scenario similar to the setup done by Ledo et al. [64].

The second demonstration technique that I used to evaluate ProxemicUI is “case study”,

which demonstrates what the toolkit can do. For example, Prefuse [47] is a toolkit that

was implemented to support the visualization of structured and unstructured data. One

of the case studies that use Prefues is Vizster [46], a visualization tool to “explore online

social network services”. In my evaluation, I am reporting how ProxemicUI was used by

Story CreatAR [105], a VR/AR storytelling tool.

The third demonstration technique that I used to evaluate ProxemicUI is “How To”, which

demonstrates in detail how a developer can create a specific application using the toolkit.

This demonstration can be done in several ways. For example, RetroFab [89], a non-

expert tool to redesign/modify physical interfaces such as a toaster interface, and Pineal

[63], a tool for end-users to “prototype interactive smart devices” [63], are both provides

detailed steps in how to create an example using the tool. On the other hand,

VoodooSketch [18], a system that adds “physical interface palettes” to existing interactive

surfaces to control applications, employs a demonstrative scenario to show how users

can use the toolkit. Other systems, such as Weave [24], a cross-device framework that

uses scripting to support the interaction between wearables and mobile devices, used

code pieces to show different features of the system. In my evaluation, I am using a

demonstrative example as a context where I show detailed steps on how to use

ProxemicUI’s features, including code samples.

44

Usage

I used one of the usage techniques to evaluate ProxemicUI that is “comparison”, which

can be done between the new toolkit and a baseline. The “baselines include not having a

toolkit or working with a different toolkit” [65]. For example, the MAUI [48], a toolkit for

supporting group awareness in groupware interfaces, compared their implementation

with an implementation that does not use a toolkit and the GroupKit [93], a toolkit to

build “distributed computer-based conferencing” that support group awareness. While

the evaluation of Damask [66], a prototyping tool to support interfaces that work on

multiple devices, compared using and not using the tool’s features during the

implementation of the interfaces. The evaluation of XDStudio [79], a tool that provides

two authoring modes to support the development of interactive web interfaces that work

on multiple devices, compared using the tool with a single authoring mode (one mode at

a time) and both authoring modes at the same time. In my evaluation, I comparing

ProxemicUI with two toolkits: The Proximity Toolkit [71] to support building proxemic-

aware applications and Microsoft PSI [87] to support proxemic-aware machine learning

classifiers.

Summary

This chapter discussed how HCI researchers employed three sociological concepts and

theories (Hall’s Proxemics, micro-mobility and f-formations) to support the interaction with

interactive systems in different context. It also looked at a number of toolkits that were

developed to provide application developers with such support. For example, the Proximity

Toolkit allows one to track entities and detect their proxemic relationships. While the work

45

we discussed provides supporting evidence of the design requirements I defined to build

ProxemicUI, the next chapter (chapter 3) discusses my experience implementing and

evaluating the ProximityTable, which also serves as a source of these design

requirements.

46

Chapter 3: ProximityTable

This brief chapter will summarize the implementation and evaluation of ProximityTable,

which was completed during my master’s degree. Full detail about the work is available

in the thesis [4]. I developed ProximityTable before proposing and implementing the

ProxemicUI framework: that is, the implementation and evaluation of ProximityTable

served as an important source of requirements during the design and development of the

ProxemicUI framework.

FIGURE 2: SETUP OF PROXIMITYTABLE, KINECT CAMERA INSTALLED IN THE CEILING FOR TOP-DOWN

TRACKING, TWO SIDES AROUND THE TABLE ARE BEING TRACKED

47

Implementation and Evaluation of ProximityTable

ProximityTable is a Windows Presentation Foundation interactive tabletop application

that I built using C# and the Microsoft Surface 2.0 SDK. It uses a top-down tracking system

to track users around a tabletop display. Based on the tracking data, it generates a set of

proxemics-triggered events that allows for changes in the configuration of the display. I

evaluated ProximityTable using a focus group study that included completing tasks using

ProximityTable and reflecting on the application design.

Implementation

ProximityTable [4] uses the OSC communication protocol to receive low-level tracking

data captured through DT-DT [49], a tracking system that uses a Kinect camera with a top-

down view to track human activities. DT-DT was used as a source of tracking data because

it allows tracking not only users at the tabletop but also users who stand behind them. In

addition, DT-DT does not require users to wear any additional equipment. ProxemicUI

also employs the OSC communication protocol to receive data about entities in the

environment. The data can be sent from a tracking system (e.g., DT-DT) or read from a

Increase button Join button Stop moving button

(a) (b) (c) (d)

FIGURE 3: SCREEN SHOTS OF THE MUSEUM KIOSK APPLICATION

A) SINGLE USER WORKSPACE WHERE A “STOP MOVING” BUTTON IS ON ITS TOP RIGHT CORNER; B) “INCREASE”

TOUCH BUTTON IS SHOWN ABOVE THE WORKSPACE WHEN A BYSTANDER IS GETTING CLOSE TO THE USER; C)

“JOIN” BUTTON APPEARS WHEN 2 USERS FORM A GROUP; D) BIGGER WORKSPACE APPEARS WHEN INCREASE OR

JOIN BUTTON IS TOUCHED

48

file (e.g., size of a table that only needs to be configured once). Besides, using the OSC

communication protocol allows ProxemicUI to connect with broader tracking systems by

writing a communicator code that captures the tracking data and forwards them to

ProxemicUI.

Interactive tabletop displays can be used simultaneously by groups and individuals

[11][73]. ProximityTable is designed as an information kiosk at the entrance of a museum.

The application consists of several windows (private workspaces) that are assigned for

groups and individuals, displaying contents taken from the Rijksmuseum (Amsterdam)

website (www.rijksmuseum.nl/en). ProximityTable employs two proxemic interaction

zones defined by Hall [41]: personal space (45-120 cm) and intimate space (<45 cm).

Following the concept of these two zones, I designed five application behaviors, as

follows:

1. Creating/removing workspaces based on the presence and absence of users in the

tracked region.

2. Moving workspaces based on users’ movements around the tabletop display.

3. Recognizing bystanders when they enter the intimate space of existing users while

still in the personal space of the tabletop display.

4. Changing the size of the workspace when an existing user enters another user's

intimate space. This change allows users to have a bigger workspace or reduce the

enlarged workspace's size if they were grouped and broke the group.

http://www.rijksmuseum.nl/en

49

5. Switching the orientation of the workspace as users move to a different side of

the table.

Implementing these behaviors in ProximityTable made it clear that the development of

proxemics-aware applications can quickly become complex. To illustrate, I will explain the

process of implementing behavior 4 (increasing the size of a workspace when two existing

users create a group). After receiving proxemics data of entities through DT-DT,

ProximityTable will perform several calculations to determine if the distance between

entities is within a predefined threshold. First, it checks to see if both users have

workspaces, so that we have two active users and not a user and a bystander. Second, it

calculates the following distances: user1 to user2, user1 to display, and user2 to display.

If all distances are within predefined thresholds, the system places a “join areas” button

on the display between the workspaces and attaches a touch event listener to the button.

If the event is triggered, the size of one workspace (the one with the stable user) will

increase, and the other workspace (with the user who moved to the other user) will be

completely removed. After enlarging the workspace, when the two users walk away from

each other, the system retrieves the original size of the existing workspace and creates a

new workspace for the other user after five seconds from moving apart. In this example,

the system performs two tests: both users are within a predefined threshold to the

tabletop, and the distance between both users is greater than showing the button

threshold (grouping threshold). Suppose the two users walk away from each other before

the button is clicked (users still have their private workspaces), the system will perform

the same test for ungrouping discussed above. If we have a bystander, s/he is in the

50

intimate space of the user while not having a workspace; the system will perform similar

tests to check the distance between all three entities (user1 and bystander, user1 and the

display, and bystander and the display) to notify the user about the bystander and maybe

enlarge the workspace. After enlarging the workspace, when one user leaves the

tabletop, the system will check the three distances again to draw the response (retrieve

the original size of the workspace for the existing user).

In this example, one can see three Relative Proximity Rules (distance between user1 and

user2, user1 and the display, and user2 and the display) and one UI rule (touching event).

Existing toolkits only partially support these requirements. For example, both DT-DT and

The Proximity Toolkit can provide properties of entities (e.g., ID, position). While DT-DT

leaves it to the developer to manually calculate relationships, as shown in this example,

the Proximity Toolkit takes these data one further step and processes them to provide

different relations between entities (e.g., the direction of a person related to the

smartboard). Since Proximity Toolkit can provide developers with relative relationships

between two entities, developers will retrieve three relative distances between the two

users and the display and test them in the UI layer. If the test passes, the button will be

showing, causing the application to listen for a touch event. ProxemicUI goes further by

FIGURE 4: PARTICIPANTS WITH DIFFERENT SIZES OF WORKSPACE AT PROXIMITYTABLE

51

providing an encapsulation mechanism that allows testing these relations between

multiple entities and associating a corresponding UI behavior into a single custom rule.

For example, instead of removing one workspace in the event of grouping, the system

might overlap both workspaces allowing users to switch between them through little taps

on top (as suggested by one participant). To break this grouping, one user can touch the

tap of his workspace then walk away from the other user. In this scenario, the system

detects the touch event then starts testing spatial relationships (distance between user1

and user2, user1 and the display, and user2 and the display). ProxemicUI would

implement this with a compound rule inside a hybrid rule.

ProximityTable could not keep track of the user’s identity as it uses DT-DT as a source of

tracking data. With DT-DT, every time a user moves out of the tracking area and comes

back, DT-DT will assign a new ID. Considering we have a tracking system that can keep

track of an entity’s identity, each entity in ProxemicUI has an activation status property

(active/inactive). This property will change to inactive if the entity is no longer being

tracked (e.g., out of the tracking range or in sleep mode). When the entity comes back,

the property will change to active.

Evaluation

This section briefly discusses the outcomes from the focus group evaluation. More details

can be found in [4][3].

I recruited three groups of four participants: a group of Computer Science students, a

group of Biology instructors, and a group was from the Science Atlantic association. The

52

study involved completing information-seeking and planning tasks using the

ProximityTable application as though they had arrived at Rijksmuseum, and then taking

part in a group critique and design brainstorming session. Tasks were designed to elicit

different collaboration styles: tightly coupled coordination in one task and loosely

coupled / parallel work in another. The tabletop’s proxemic-aware behaviors responded

to all participant movements throughout the tasks, in the manner described above.

I now summarize the study findings in relation to how they influenced the design of

ProxemicUI.

❖ Working as a group:

Although the design of the first task allowed working independently, all pairs chose to

work collaboratively on a single workspace. During the first task, P1G3/P2G3 decided

to split their workspace to find items independently. P3G3/P4G4 were motivated by

P1G3/P2G3 and decided to split their workspace as well. In the second task, four out

of six pairs chose to work on a joined workspace throughout the task. This shows the

benefit of detecting proxemics relationships between entities to support the user’s

decision (e.g., detecting distance relationships to determine when to work as a group

or independently). ProxemicUI refers to this as relative proximity rules, and it is

commonly used in existing proxemic-aware systems.

❖ Automatic vs. manual control of proxemics-based system responses:

ProximityTable has a mix of automatic (proxemic-based) and manual (through UI)

control. For example, it requires users to touch a button to join workspaces. On the

53

other hand, it waits for 5 seconds before automatic splitting when users break their

group. Participants tended to prefer manual control via a confirmation mechanism

(e.g., providing a button to join workspaces). Automated control could lead to

confusing situations during tasks: for example, when participant P4G3 moved back

from the table to make room so her partner P3G3 could move their shared workspace,

the system decreased the size of the workspace, and created a brand new workspace

for her when she returned, as she had left tracking range and was treated as a new

user. This motivated the design of hybrid rules (that is, the coupling of proxemics

events and other events such as UI interaction) in ProxemicUI to allow developers to

manage user-confirmed vs. automated behavior.

❖ Classifying new Users:

As a user of ProximityTable reaches the display, a private workspace will be created

for that user if they are not in the intimate zone of an existing user (not classified as a

bystander). In practice, two factors play an important role in detecting users,

bystanders, and strangers: distance, where we detect how far a user is from another

user and the display, and orientation, which can be used with distance to detect an f-

formation, and so who is considered a direct participant in the interaction session. This

motivated the design of compound proximity rules in ProxemicUI.

❖ Moving content:

Participants appreciated that the workspace moved according to the user’s

movements but not for every task. For example, you don’t want your workspace to

54

follow you while you are moving temporarily to acquire a tool. This also supports our

earlier discussion about manual vs. automated control and the need to have hybrid

rules. Participants also suggested several usages for the moving content feature. For

example, supporting location-based actions (e.g., display a user’s documents on a

projector when they move to a certain location during a meeting). This motivated the

design of absolute proximity rules in ProxemicUI, rules triggered based on proximity to

a specific location.

Summary

The main outcomes from my experience implementing and evaluating ProximityTable are

the need to define two types of tests: compound tests and hybrid tests. Compound testing

tests multiple proximity attributes or a single proximity attribute but with multiple

thresholds at once. For example, creating a new workspace when the user is within 1m

to the table and facing the table. A second example is recognizing a bystander standing

behind the user; this example includes detecting two distances from the user and the

bystander to the table. Hybrid testing combines proximity tests with UI events. For

example, when two workspaces are overlapped as a response to grouping event, a user

can touch one workspace and start moving to break the group and split the workspaces.

Table 1 in Chapter 4 lists existing work that can benefit from such features. Compound

and hybrid testing are two key features in ProxemicUI as I will discuss in chapters 4 and

5.

55

Chapter 4: ProxemicUI Version 1

The remaining chapters detail work completed during my Ph.D. In this chapter, I define

four-core design requirements for ProxemicUI, which cover features important for a wide

range of proxemics-aware applications, and describe version 1 of ProxemicUI, which I

built according to these requirements. The work in this chapter is presented in the

following paper:

Mohammed Alnusayri, Gang Hu, Elham Alghamdi, and Derek Reilly. 2016. ProxemicUI:

object-oriented middleware and event model for proxemics-aware applications on large

displays. In Proceedings of the 8th ACM SIGCHI Symposium on Engineering Interactive

Computing Systems (EICS '16). Association for Computing Machinery, New York, NY, USA,

50–60.

Design Requirements

During the implementation of ProximityTable, it was difficult to keep track of different

proximity events giving that I tested two thresholds for four users simultaneously (e.g.,

create a new workspace and grouping/ungrouping events). These tests involve

calculating/checking multiple distances simultaneously. Besides, it was complicated to

intertwine distances and UI events to join workspaces. The focus group evaluation

emphasized the need to integrate proximity events with user inputs to validate the

meaning behind user’s behaviors. Considering these difficulties, I identified four design

requirements to cover a wide range of proxemic-aware applications: entities, relative

proximity rules, compound rules, and hybrid rule. Thereafter, I reviewed some of the

56

existing work in the literature to explore such requirements to support my arguments.

This exploration was done by reviewing the proximity interaction techniques (e.g.,

responding to the relative distance between entities and tracking groups' behaviors) that

different systems support and examining how to implement such techniques. Finally, I

looked at what some existing toolkits provide to support these requirements to identify

the research gap in the literature. To summarize, the four requirements presented here

are derived from the literature review of existing work, the development process of

ProximityTable, and the findings of the focus group study.

Entities

Entities are the base of any proxemics-aware application, where systems cannot test rules

or fire events without knowing about the presence of these objects and their basic

properties. Each entity has a set of low-level properties that are used to test any of the

association rules. These properties include class (e.g., user and large interactive display),

identity, position, orientation, and velocity (if mobile). In addition, I identify two entity

“statuses”: mobile and static. This is meant to assist in rule formation when there are a

variety of tracked entities, where some normally have static status (e.g., a table), some

are mainly mobile (e.g., people and handheld devices), while others have switchable

status (e.g., chairs, laptop computers).

One of the fundamental aspects of proxemic-aware applications' development is to

measure and understand the spatial relationships between entities. I identified three

types of rule to achieve this, as presented in the next sections.

57

Relative Proximity Rules

Relative Proximity Rules (RPRs) refer to measuring the relationship between two or more

entities based on a single property of these entities. For example, creating a workspace

for a new user as s/he reaches the tabletop display in ProximityTable. This example

measures the relative distance between the user and the tabletop. This type of rule is

commonly used in the literature, as seen in table 1.

Absolute Proximity Rules

We note it is also desirable to include Absolute Proximity Rules (APRs) (i.e., rules triggered

by proximity to a specific location), as evidenced in some focus group feedback and in

prior work. For example, the focus group participants suggested supporting location-

based actions (e.g., display a user’s documents on a projector when they move to a certain

location during a meeting). The AirPlayer [107] also suggests the use of absolute proximity

rules. For example, playing favorite songs based on location on the house (e.g., play music

on living room speakers if the user is in the living room or on bedroom speakers if the user

is in the bedroom). These are supported in a subsequent version of PUI, discussed later.

Compound Rules

Compound Proximity Rules (CRs) measure multiple relationships between two or more

entities based on one or more properties. For example, ProximityTable measures one

property (relative distance) between multiple entities (User1, User2, and Table) to

support grouping and splitting. This is considered as CR because of the two thresholds

(the personal zone between users and the table and the intimate zone between users

58

themselves). Other examples might require measuring multiple properties (e.g., distance

and orientation).

While CRs were directly motivated as a way to address the complexity of testing multiple

attributes for multiple entities at UI layer during the implementation of ProximityTable,

the need for such rules can similarly be seen in much prior work. For example, responding

to changes in group formation when arriving to and leaving a display at different times

[73], responding to changing roles (e.g., user or observer) [11], and distinguishing users

and bystanders [60]. In these examples, we might start with testing the distance between

a person and a tabletop display to start the interaction. Later on, when a new user joins

an existing user at the display, we might need to test the distance and the orientation

between these entities to detect what type of F-formation they have formed. Different F-

formations might mean different user roles (e.g., user vs. bystander), which means

different system responses. ProxemicUI allows developers to create two basic relative

proximity rules (distance and orientation); then combine them into a single compound

rule to ease this process. This way, a developer can write a single handler method based

on a compound event instead of listening for discrete proxemic events (e.g., a single

distance or orientation relation between two entities) and then manually checking to see

whether additional criteria are met before responding.

Hybrid Rules

Hybrid Rules (HR) refers to connect a Proximity Rule (RPR or CPR) and UI event. The ability

to deeply integrate UI events with proxemic events follows from our focus group

59

participants’ concerns about retaining user agency. This integration can happen in two

different ways. In the first approach, the application waits for a Proximity Rule to be

triggered and then starts to listen for a UI event. This was implemented manually in

ProximityTable, by providing a button once two users get close to each other, and if the

button is touched increases the size of the workspace. When following this approach, an

application may remove the UI component and/or its event listener once the proximity

rule no longer holds true. In the second approach, the application listens for a UI event,

and if it is fired, it immediately tests an associated proximity rule, which influences the

response to the event. For example, during the evaluation of the ProximityTable, one of

the participants of the focus group study suggested that to include tabs in grouped

workspaces where each tab would be associated with the state of an individual workspace

before merging. Then, the tab could be dragged to separate the individual workspace

from the group and restore it. In this case, the system detects the touch interaction

(dragging the workspace), then checks the position of the user relative to the display to

associate the workspace to that user.

60

Fulfilling the Requirements: ProxemicUI v1

Most tracking toolkits (e.g., DT-DT [49]) provide developers with low-level data about

entities in an environment(e.g., identity and position), but leave application developers

TABLE 1: LIST OF THE DESIGN REQUIREMENTS WITH EACH RELATED WORK THAT CAN MAKE USE OF THE REQUIREMENT

ProxemicUI version Requirement Related work that could use

Requirements
of ProxemicUI

version 2

Requirements
of ProxemicUI

version 1

Entities

They are the base of
proxemic aware applications
and are used in existing tool

kits such as: Pérez et al.
[82][83][86], the Proximity

Toolkit [69]

Relative Proximity Rules

Vogel and Balakrishnan
[120], Medusa [7],
Screenfinity [97], SpiderEyes
[28], Eyes-Free Art [88],
Proximity-Aware control
[62], Proxemic Brainstorming
application [68], Proximity
Peddler [122]

Absolute Proximity Rules
The AirPlayer [104],
Savannah [14], Williamson
[125], Cumin [25]

Compound Rules

Klinkhammer et al. [58],
Dostal et al. [29], The
Proxemic Media Player
application [13], Tafreshi et
al. [91][107], Savannah [14],
TouristPlanner [71],
Physio@Home [60]

Hybrid Rule
Eyes-Free Art [88], the
AirPlayer [104]

 Mobility Rule The AirPlayer [104]

 Test condition
Klinkhammer et al. [58],
Savannah [14]

 Activation status
EasyGroups [52][53],
FlexiGroups [54]

 F-formation

TouristPlanner [71], Azad et
al. [11], Mentis et al. [73],
GroupTogether [70], Lucero
et al.[65][66], Zhou et al.
[129]

61

to determine proximity relationships. Other toolkits use the positional data to generate a

set of relative relationships between entities that can then be tested or queried (e.g., the

Proximity Toolkit [71]). Proxemic UI further extends toolkit support for proxemic-aware

applications by generating proxemic events based on Compound Proximity Rules and

Hybrid Rules (Table 2). These two rules types are important when developing proxemic-

aware applications as they reduce the complexity of dealing with low-level positional data

and many unitary, primitive proxemic relationships (including the need for potentially

complicated formulas, repeated tests, and long conditional expressions) by providing

developers with a clear mechanic for rule expression, and by letting developers manage

test results using a familiar event handling paradigm.

TABLE 2: FULFILLING THE DESIGN REQUIREMENTS

Types of proximity data DT-DT The Proximity
Toolkit

ProxemicUI

Raw Proximity Data
(e.g., position & orientation)

Basic Proximity Data
(e.g., relative distance)

-

Compound Test
(e.g., two different attributes, or one

attribute with two thresholds)

- -

Hybrid Test
(e.g., Basic/Compound test with UI events)

- -

ProxemicUI Version1 Structure

ProxemicUI v1 follows the Intermediate approach, one of the ways to address the

infrastructure problem in HCI, discussed by Edwards et al. [32]. The Intermediate

Approach refers to frameworks or toolkits that “sit atop of a layer of more fundamental

62

infrastructure”, and its goal is to “overcome the limitations of existing infrastructure and

ease the construction of novel applications” [32]. ProxemicUI v1 follows this approach,

where it uses any low-level tracking system (e.g., DT-DT or HTC Vive Lighthouse) as a

source of position and orientation data. It can also integrate the Windows event model

as a source of UI events. ProxemicUI v1 then generates higher-level proxemics events

using these Low-level tracking data and UI events. ProxemicUI v1 defines a set of rules

where it processes the input data (tracking data and UI events) to generate these

proxemics events. Application developers can customize these rules according to

application requirements. They also can define new rules or extend existing rules to

match application requirements. Finally, when the defined rules fire an event, developers

then can create application responses accordingly. In this section, I will discuss the

architecture of version 1 of ProxemicUI.

ProxemicUI v1 receives two types of input data: proximity data from tracking systems

(e.g., DT-DT and HTC Vive Lighthouse) and UI events (e.g., touch events). The proximity

data includes information about every participating entity in the environment (e.g., ID,

position, and orientation). ProxemicUI v1 implements a communication gateway to

receive these tracking data from any tracking system by employing the OSC

communication protocol [15][16][103]. When ProxemicUI v1 receives these tracking data,

it creates an object for every entity to store its data. Creating objects for entities and

storing their data fulfills the first design requirement that is detecting entities and

knowing their data, which is the base of any proxemic-aware application.

63

ProxemicUI v1 defines a set of parameterized proximity rules, including Absolute

Proximity Rules (e.g., absolute position) and Relative Proximity Rules (e.g., relative

distance). When developers initiate a rule, they define its parameters, including what

entities to test and the thresholds to use for the tests. At the application layer, developers

will add the initiated rule to the Rule Engine, which continuously tests all active rules.

Developers will also subscribe to listeners of different events of the initiated rule. Figure

5 shows an example of initializing a proximity rule at the application level. Predefining

these proximity rules fulfills the second design requirement that is testing different

proximity attributes for participating entities or between them.

ProxemicUI v1 employs the little language pattern to compose basic proximity rules to

more complex rules (Compound Rules) via basic logical operators (AND, OR, XOR, and

NOT). When a complex rule is defined, each sub-rule (basic rule) will have its parameters

specified. Developers will only need to add the most parent class to the Rule Engine. They

also need to subscribe to listeners of the most parent rule only. Defining such complex

rules fulfills the third design requirement by allowing developers to define rules that

simultaneously involve testing multiple proximity attributes and/or multiple thresholds.

Figure 6 shows an example of initializing a compound rule.

FIGURE 5: EXAMPLE OF INITIALIZING A RELATIVE DISTANCE RULE

FIGURE 6: EXAMPLE OF INITIALIZING A COMPOUND RULE (ANDRULE)

64

Finally, ProxemicUI v1 integrates any of the rules discussed above (Relative Proximity

Rules, Absolute Proximity Rules, and Compound Rules) with UI events using the Hybrid

Rule. A Hybrid Rule contains a single parameterized rule that can be any of the rules

discussed above. The Hybrid Rule also has a listener for the UI events to test the proximity

rule as soon as the UI event occurs. Developers would subscribe to the Hybrid Rule events

only, which will be fired when both proximity events and UI events are fired. Figure 7

shows an example of initializing a Hybrid Rule. The ability to integrate the proximity

events with UI events in ProxemicUI v1 fulfills the fourth design requirement.

Summary

This chapter discussed the initial design requirements that I used to build ProxemicUI v1.

It also discussed the basic structure of ProxemicUI v1. I evaluated ProxemicUI through

three different methods as I will discuss in the next chapters, and each evaluation method

produced a set of design improvements. The next chapter (chapter 5) discusses the full

architecture of ProxemicUI v2 including all improvements based on the evaluation results.

Table 3 shows the key changes made to ProxemicUI v1 to generate ProxemicUI v2.

FIGURE 7: AN EXAMPLE OF INITIALIZING A HYBRID RULE

65

Features Rationale Implementation

IsFacing Rule
Allows to test relative

orientation based on the
data of a single entity

Subclassed from the Relative
Orientation Rule

Mobility Rule
Allows to check and update
the mobility status of each

entity

Subclassed form the base
Rule class

Generic Hybrid Rule
Allows to combine proximity
events with external events

beyond UI events

Updated the existing Hybrid
Rule class

Activation status
Allows to track existing

entities in the space
Added as property to the

Proximity Entity

Test Condition
Allows to apply the proximity

test to all entities or just a
subset of them

Added as an argument to all
basic rules

TABLE 3: KEY CHANGES TO PROXEMICUI V1

66

Chapter 5: ProxemicUI Architecture

Version2

Chapter 4 discussed the ProxemicUI v1 and the design requirements that I used to build

it. I evaluated ProxemicUI through employing ProxemicUI with the proof-of-concept

applications, code review study, and integrating ProxemicUI into Story CreatAR, as I will

discuss in the next three chapters. This chapter presents ProxemicUI version 2 with

consideration to the outcomes of the three evaluation methods I mentioned above. This

chapter starts with a “How to” scenario explaining step-by-step how to use ProxemicUI.

Then, it will explain in detail the architecture of ProxemicUI v2.

Why ProxemicUI

This section will discuss why I implemented a new proximity tool and not expanded

existing tools such as the Proximity Toolkit. I am considering the Proximity Toolkit because

it is the closest to ProxemicUI in terms of intended use.

1- Different programming model: the programming model for the Proximity Toolkit

provides developers with proximity data (e.g., the distance between two entities)

where they handle the tests in the handling methods (e.g., check if the distance

within thresholds to draw a response). However, while the programming model

for ProxemicUI provides information about proximity events to developers (e.g.,

which entities passed the test), it encapsulates testing the proximity data in the

67

rules. In other words, when the event is triggered, developers do not need to test

the proximity data to check if they are within thresholds or not.

2- Platform support: the Proximity Toolkit relies on old tracking libraries (e.g., Kinect

and VICON) that are not compatible anymore, which will require a significant

amount of work to bring it back to work.

3- Extensibility: while the Proximity Toolkit provides a set of ready-made features to

support the implementation of proxemic-aware applications, it was not designed

specifically for extensibility. On the other hand, ProxemicUI provides a set of well-

articulated extension points (will be discussed at the end of this chapter), making

ProxemicUI more extensible than the Proximity Toolkit.

How to Use ProxemicUI

ProxemicUI is a framework that is designed for application developers and not for end-

users. Therefore, this section discusses in detail how a developer would use different

features in ProxemicUI. This discussion plays two important roles. First, one of the

evaluation techniques through demonstration is the “How To” scenario, which is a “step-

by-step breakdown of how a user creates a specific application” [65]. This discussion

applies this technique for evaluating UI toolkits. It also functions as a tutorial

demonstrating how a developer uses ProxemicUI in an actual use case scenario.

To better understand how ProxemicUI works, I will explain step-by-step how to use it in a

context example that is a smart home setting. In this example, Alice, who is a homeowner

and a developer, has several smart appliances in her home that she wants to interact with

68

according to her proximity. For example, Alice wants the system to open the controller

app on her tablet for a specific appliance when she gets closer to it (e.g., open the coffee

machine interface when she gets closer to it). She also wants the system to detect more

complex interactions as follows. She wants the system to turn on the TV and start the

controller app on her tablet only if she is within distance and facing the TV simultaneously.

In addition, when Alice starts her coffee machine and goes to watch TV, she wants the

system to show notifications on the TV that her coffee is ready. Besides, when Alice places

her tablet on the kitchen counter for two minutes, she wants the system to open the

recipe app on the tablet and keeps the screen on. Finally, when Alice has dinner guests,

she wants the system to detect the presence of F-formations and respond accordingly.

For example, when guests arrange themselves around the dinner table, the system turns

on the top-down projector, and the dinner table becomes a display. Each of these

interactions involves using different rules. The rest of this section will demonstrate the

steps that show how to use ProxemicUI, which include the following key steps:

• Adding the required DLL files

• Initializing the OSC server and retrieve the entities

• Creating the rules

• Subscribing to the events and writing the handling methods

69

Adding the required DLL files

Before I get into deep details about using ProxemicUI, I will start by pointing the required

steps to set up the environment. First, adding the required DLL files

(ProxemicUIFramework.dll, Bespoke.Common.dll, and Bespoke.Common.Osc.dll) to the

project. The ProxemicUIFramework DLL file reference the framework, and the other two

Bespoke files for the OSC communication setup inside ProxemicUI. In Visual Studio, Alice

would click on “Project” from the menu bar, then navigate to “Add Reference” and click

it. A popup window will open, where she needs to click on the “Browse” button, then

navigates to where the three DLL files are located; she selects the files, then clicks “Add”

to add them to her project. With some other systems like Unity, drag and drop the DLL

file somewhere in the Assets folder adds them to the project. Second, after Adding the

DLL files, Alice should add the namespace of ProxemicUI to the top of her code to access

its features, figure 8. Now, everything is ready to start detecting and responding to Alice’s

proximity in her home.

Initializing the OSC server and retrieving entities

Before creating any rules, Alice would start with initializing the OSC server to receive

tracking data from the tracking system, the first line in figure 9. Because Alice wants to

control multiple devices through her tablet (controller), she would use one-to-many tests

(ProxemicUI allows for one-to-one, one-to-many-, and many-to-many tests). Therefore,

she defines two variables: a string for the controller id (her tablet) and a list of strings for

the ids of other devices (second and third lines in figure 9). She then would retrieve ids of

FIGURE 8: ADDING THE NAMESPACE OF PROXEMICUI

70

entities (using one of the methods discussed in the EntityContainer in chapter 8) and put

them in the list she defined earlier (fourth line in figure 9). Now she is ready to initialize

the rules she needs.

Creating a RelativeDistanceRule

To check the distance between Alice’s tablet and other appliances, she initializes a

RelativeDistanceRule (first line in figure 10) and passes all required arguments to

complete the test. These arguments are minimum and maximum thresholds, the two lists

of entities (change depending on the test type, e.g., one-to-many), and the test condition.

After completing the initialization, she would add the rule to the RuleEngine to be tested

(second line figure 10). Then, she would subscribe for OnEventTrue and OnEventFalse to

be notified when the events are fired (third and fourth lines in figure 10). The last step for

all rules is to write the handling methods for the events. In the handling methods, she

FIGURE 9: INITIALIZING THE DATARECEIVER SERVER AND RETRIEVING ENTITIES

FIGURE 10: STEPS TO INITIALIZE A RELATIVEDISTANCERULE

71

would start by retrieving the test results and cast them to the appropriate type based on

the initialized rule (the two methods at the bottom of figure 10).

Creating a CompoundRule

To turn on the TV only when Alice is within distance and facing the TV, she would create

ANDRule (a compound rule) and pass its arguments. These arguments are two sub-rules:

RelativeDistanceRule and RelativeOrientationRule, figure 11. Both basic rules have a one-

to-one test (controller to TV), and their test condition is “ALL”. After the initialization,

Alice would follow the same steps as the RelativeDistanceRule we discussed earlier:

adding the ANDRule only to the RuleEngine, subscribing to the events

(OnEventTrue/OnEventFalse) for the ANDRule only, and writing the handling methods for

the ANDRule only.

Creating a HybridRule

To notify Alice when her coffee is ready on any output device based on her proximity (the

TV in this example), she would create a HybridRule that takes any rule (ProximityRule or

CompoundRule) as an argument (first line in figure 12). HybridRule works a bit differently

than other rules. It contains the ExternalEvent method that can be called as a handler

method to any external event (e.g., UI event or system notifications). The ExternalEvent

method can be called in two ways: when subscribing to an event (second line in figure 12)

or directly called when receiving system notifications (third line in figure 12), which is the

way to go in our example. After calling the ExternalEvent method as a handler method for

FIGURE 11: INITIALIZING AN ANDRULE

72

the external event, she would subscribe to the events for the HybridRule (similar to what

she did for RelativeDistanceRule); she would also write the handling methods for these

events. Unlike other rules, the HybridRule would not be added to the RuleEngine as the

test for the proximity rule would take place only once, that is, when the external event

has occurred (to make sure they are happening at the same time).

Creating MobilityRule

To open the recipe app on Alice’s tablet when she places it on her kitchen counter for two

minutes, she would create two rules. First, AbsolutePositionRule to check if the table on

that specific location in her kitchen. Second, MobilityRule to check if the tablet is stable

in that position for the duration she needed (in this example, two minutes). The

MobilityRule checks and updates one or more entities' mobility status. It follows the same

approach as all other rules: creating the rule, figure 13, adding it to the RuleEngine,

subscribing to the events, and writing the handling methods for the events. The duration

in this rule is the period between capturing two positions for an entity to check its status.

The threshold is the distance between two positions in which the developer considers as

movements.

FIGURE 12: INITIALIZING THE HYBRIDRULE

FIGURE 13: INITIALIZING MOBILITYRULE

73

Creating F-formation

To detect the guests’ formation to make the dinner table a display, Alice would start by

specifying the required formation. Then she can retrieve this formation to test if it exists

in the environment. Figure 14 shows the steps to specify the formation and retrieve it for

testing.

ProxemicUI can also define the exact placement of entities when an F-formation is

created, which can be beneficial in virtual environments. For example, a virtual

environment application might require creating conversations between avatars where

they are placed on a specific configuration. To use this feature, a developer would

initialize the required formation (e.g., CircularFormation), the first line of figure 15. Then,

FIGURE 15: INITIALIZING AN F-FORMATION

FIGURE 14: SPECIFYING F-FORMATION IN PROXEMICUI

74

add the formation to the formation list in the RuleEngine (second line in figure 15), which

works as the rule list that I discussed above. Each formation has two events:

OnFormationCompleted and OnFormationUpdated (third and fourth lines in figure 15).

With these two events, the developer would be able to update the formation if s/he needs

to. For example, the developer might create a formation with three avatars, and then,

during the gameplay, a new avatar joins the conversation. In such cases, the developer

might need to readjust the formation to fit the new avatar in. Therefore, the developer

would subscribe to the appropriate event. Lastly, the developer would write the handling

method to the event (the two methods at the bottom of figure 15).

System implementation

ProxemicUI consists of seven core classes, where some include several subclasses and

helper classes. The main classes are DataReceiver, EntityContainer, ProximityEntity,

Geometry, Rules, F-Formation, and RuleEngine, which I will discuss accordingly.

FIGURE 16: STRUCTURAL SYSTEM DIAGRAM OF PROXEMICUI FRAMEWORK

75

DataReceiver

DataReceiver works as a communication gateway between ProxemicUI and tracking

systems (e.g., DT-DT and VIVE). It contains a full setup for the OSC communication

protocol to receive the proxemics data of tracked entities. Therefore, developers can use

any tracking system to capture the proxemics data of entities and forward them to

ProxemicUI. To achieve this, developers should write their own OSC sender code to send

proxemics data to ProxemicUI from the tracking technology they are using, or use an

existing implementation (so far, I have created implementations for DT-DT and HTC Vive

Lighthouse). Writing the communicator code is also useful when ProxemicUI receives

tracking data from multiple tracking systems. For example, we might receive position

from one system and orientation from another; in such a case, ProxemicUI can receive

multiple OSC messages for the same entities containing different properties. In the case

where redundant data exists (e.g., two tracking systems send position for the same

person), developers need to handle this outside ProxemicUI in their OSC communicator

code as ProxemicUI makes no assumptions about which data to prefer, nor does it provide

built-in sensor fusion capabilities. In addition, the OSC communicator code can be useful

to read data from files and send them to ProxemicUI. Appendix 5 shows an example of

the OSC communicator code that captures data from the tracking system and read other

data from a file, which I used for the smart home setup. The format of their messages

should follow the same format as the messages in ProxemicUI. Upon receiving the OSC

message, DataReceiver breaks it down and passes data of each entity to the

EntityContainer class through the EntityChecker method.

76

The DataReceiver class has one primary message format that contains the most common

3D properties of entities as follows: timestamp, ID, position data (X, Y, and Z axes), and

orientation data (roll is rotating around the front to back axis, pitch is rotating around

side-to-side axis, and yaw is rotating around the vertical axis), see figure 17. Application

developers can send any additional properties in a different message following another

format; ProxemicUI then differentiates between messages using the header. The

DataReceiver class also defines a second message format that was used during the proof-

of-concept applications evaluation. This message format includes a different set of

properties of entities (in this case, properties are the width and length of a tabletop),

figure 18. Developers can add different formats according to their needs (e.g., to received

data about different shapes such as radius for circular entities). When defining a new

message format, developers would make changes to two classes. First, in the

DataReceiver class, developers will implement their method that breaks and extracts the

new message's data (this process will follow the new message format). Then, they will

pass these data to the EntityContainer class, where they will implement a method that

takes these data and assign them to existing entities or create new entities as required. I

chose to follow this approach for two reasons. First, why do we provide application

developers with extra data when all they need is the basic proxemics data; this is

“/trackers timestamp ID X Y Z Yaw Pitch roll

Header First entity

FIGURE 17: BASIC FORMAT FOR RECEIVED MESSAGE

77

important when the developers must write the communicator code. Second, some

tracking systems might not provide these extra data (e.g., width and length). For example,

initially, I built ProxemicUI based on the use of DT-DT tracking system. But I had to make

changes to the received message format and the corresponding part of ProxemicUI code

to use the VIVE tracking system.

EntityContainer

EntityContainer receives the data of entities (e.g., ID, x, y, etc.) from DataReceiver through

a method called EntityChecker. Upon receiving proxemics data, EntityContainer performs

one of two actions. First, if an entity already exists, it calls the UpdateProperties method

from ProximityEntity class to update the entity's data. On the other hand, it creates a new

instance of ProximityEntity and assigns its data if it is a new entity. Developers might also

create/update entities manually if they wish to. For example, some entities are stable,

and their data is static, so ProxemicUI would need to know about these entities only once.

For such a case, the developer can create a new instance of ProximityEntity and pass its

data manually if they don’t want to include the data in the OSC messages.

Querying entities

In addition, EntityContainer contains several methods that retrieve references to entities

based on different properties (typeId, shapeId, isStable, and isActive; more details are in

“/geometry properties/” ID Width Height

Header First entity

FIGURE 18: ADDITIONAL MESSAGE FORMAT FOR EXTRA DATA

78

the ProximityEntity class description). These methods are listed below, and figure 19 has

examples of these methods.

• EntityRetrievalByType method retrieves entities by type (e.g., table, person,

cellphone, etc.) through testing the received ID against the typeId of each entity.

• EntityRetrievalByShape method retrieves entities by shape (e.g., rectangle, point,

etc.) through testing the received ID against the shapeId of each entity.

• EntityRetrievalByMobilityStatus method retrieves entities by mobility status (e.g.,

mobile, stable) through testing the received status against IsStable of each entity.

If the received status is true, it will return all stable entities; and if the received

status is false, it will return all mobile entities.

• EntityRetrievalByActivationStatus. It retrieves entities by activation status (e.g.,

active, inactive) through testing the received status against the status IsActive of

each entity. If the received status is true, it will return all active entities; and if the

received status is false, it will return all inactive entities.

• EntityRetrievalAll method retrieves all entities.

79

• EntityContainer has EntityInactiveEvent that keeps track of the last truth value of

the activation status and notifies listeners of the change. Developers can subscribe

to listen to this event through the EntityContainer class.

ProximityEntity

ProximityEntity is the class that represents an entity. To create a new entity, developers

need to define a new instance of this class. It consists of a constructor, several methods,

and getters/setters to store, retrieve, and update properties of entities. To assign

properties of an entity, developers can define new constructors or use setters in

ProximityEntity. ProximityEntity also has the UpdateProperties method to be called to

update properties. The UpdateProperties method can be used to update position and

orientation data at once. On the other hand, the setters and getters allow developers to

set/update or get each type of data individually. ProximityEntity class contains the

following properties. First, entityID is a string type to support recording different

identification numbers from different types of tracking systems. Second, 3D proximity

data, including position (x, y, z), and orientation (yaw, pitch, roll). Third, timestamp, which

might be useful for calculating other temporal properties (e.g., velocity) or processing

data that arrives out of sequence or with a delay. Fourth, IsActive (active vs. inactive),

which will be true as default when the entity is created. Then, ProxemicUI updates it

according to EntityInactiveEvent discussed above. Fifth, IsStable (stable vs. mobile), which

FIGURE 19: EXAMPLES OF ENTITY RETRIEVAL METHODS IN ENTITY CONTAINER CLASS

80

will be false as default when the entity is created. Then, ProxemicUI will update it

according to the test of MobilityRule that will be discussed later in this chapter. Lastly,

TypeID allows the system to distinguish between people, devices, furniture, and etcetera.

Currently, ProxemicUI defines four types: person, tabletop, tablet, and TV. These can be

expanded to include other objects (e.g., couch and coffee table) as required. I am not

considering subclassing for these types as they all share the same properties that the

ProximityEntity provides. The other unique properties that each of these types has and

are required for proxemic awareness are related to their shapes, which will be assigned

to their shapes. The usages of each of these properties will be discussed later in this

chapter. Since each entity has a shape, next, I will discuss the Geometry class and show

its relationship with ProximityEntity.

Geometry

Each entity has a unique shape. While in some cases entities can be considered points for

the purpose of analysis, for many proxemics applications, the shape of an entity may be

highly relevant. For example, to measure the distance between a person and a tabletop

display, do I calculate the distance to the person from the center of the table or its edges?

Therefore, to accurately measure proxemic relations between entities, the shape and its

measures must be known. In addition, some entities might have dynamic shapes (e.g.,

KirigamiTable [40], TransformTable [111], and Proxemic Transitions [39]). Due to this

shape variety of trackable entities, I defined a shape for each entity. To better understand

how this works, I looked at few collision detection algorithms for 2D games. These

collision algorithms depend on the type of shapes that might collide. This is similar to

81

what I am trying to do in ProxemicUI, where each entity has a bounding area (sometimes

2 bounding areas if the minimum threshold > 0) around it and its edge is the maximum

threshold that we are using to test the collision. In addition, this approach is commonly

used in existing APIs and frameworks that support collision detection. For example, Unity

is a game engine that supports collision detection between objects in the game scene. It

defines a set of colliders for different shapes; these colliders are invisible shapes that

handle the collisions between objects in the game scene (similar to the bounding area we

have in ProxemicUI).

The shape of an entity is derived from the Geometry class, which is the base class of all

shapes. Geometry defines two subclasses: Point and Rectangle; it can be expanded to

include other shapes as required. In addition, Geometry has several setters and getters to

set or retrieve properties of shapes. These setters and getters used to be in

ProximityEntity class, but I shifted them to Geometry class. This way, ProximityEntity

contains only the common properties between all entities (discussed earlier), where other

specific properties (e.g., width, height) are included in subclasses (e.g., shapes). Geometry

also has several abstract methods that are called from any rule (will be discussed later in

rules) to measure proxemic relations between entities. For example, CheckDistance is an

abstract method that is implemented in all shapes (derived classes), and its arguments

are a Geometry instance and two thresholds. More details will be discussed later in the

rules.

82

Point

An instance of Point class is created in each entity that has a shape of point. It includes

several setters and getters to set and retrieve properties of the shape of the entity (x, y,

z, yaw pitch, roll), figure 20. It used to implement several methods: CheckDistance,

CheckAbsoluteOrientation, CheckRelativeOrientation, and IsFacing. These methods are

called from different rules, when being tested, through the shape of an entity (will be

described later in rules). For example, to check the relative distance between entity A and

entity B, the CheckDistance method of A’s shape will be called, and its arguments will be

a Geometry instance (B’s shape) and the two thresholds (maximum and minimum). The

test concept is to perform shape to shape test and return true or false. Therefore, A knows

its shape (e.g., Point), and it needs to check B’s shape. If B’s shape is a Point, it performs

FIGURE 20: CLASS DIAGRAM SHOWN THE RELATIONSHIP BETWEEN A PROXIMITYENTITY AND GEOMETRY

83

Point to Point check, and if it is a Rectangle, it performs Point to Rectangle check. Then it

will return true or false according to the test results. Currently, it has tests between

shapes (Point and Rectangle), and developers can easily add other shapes as required. For

example, if a developer wants to add a test for a new shape (e.g., Circle), s/he needs to

add an “if” statement in the CheckDistance method to check what test to perform (e.g.,

Point to Circle). This “if” statement contains the formula to test the distance between the

Point and the edge of the Circle, where it returns true if the test passes. The

CheckAbsoluteOrientation method is overridden where it can check the orientation of a

single axis (e.g., yaw within a threshold) or all axes at once (yaw, pitch, and roll). The

CheckRelativeOrientation method returns true if the relative orientation between two or

more entities is within the thresholds. The IsFacing method returns true if one or more

entities are facing another entity or a point in the space. Finally, the MobilityCheck

method returns true if one or more entities are mobile.

Rectangle

An instance of the Rectangle class is created in each entity that has the shape of a

rectangle. It includes several setters and getters to set and retrieve properties of the

shape of the entity (x, y, z, yaw pitch, roll). Similar to the Point class, the Rectangle class

implements several methods: CheckDistance, CheckAbsoluteOrientation,

CheckRelativeOrientation, and IsFacing. ProxemicUI calculates the center point of a

rectangular entity because its position represents the top-left corner of the rectangle

(e.g., tabletop); the calculation is done before performing the test. Rectangle also

FIGURE 21: EXAMPLE OF ABSTRACT METHODS IN GEOMETRY CLASS

84

performs shape-to-shape tests, where it checks the received shape and performs the

proper test accordingly. Developers can add other shapes, in the same way I discussed

previously in Point.

Rule

Reusability and extensibility are two of the benefits of creating a framework. Reusability

is providing interfaces to define “generic components that can be reapplied to create new

applications”[35]. Extensibility is allowing developers to expand existing components to

add new functionalities to the framework [35][36]. The main goal of the ProxemicUI

framework is to provide developers with functionalities that ease the process of

FIGURE 22: CLASS DIAGRAM OF RULE THAT SHOW ALL INHERITED CLASSES AND THEIR RELATIONSHIPS

85

developing proxemic-aware applications. The support of these functionalities should

allow developers to focus on the final product rather than dealing with low-level

programming tasks (e.g., managing the calculation of proximity data). Defining a set of

rules where each can handle a specific task and notify developers only when its conditions

are met would allow us to achieve this support. Encapsulating these rules into an object-

oriented framework allows a reusable set of rules that can be reapplied and expanded

according to the application requirements.

One of the behavioral design patterns is the interpreter pattern, which aims to solve a

common problem by defining instances of the problem as grammar rules, representing

each rule by a class in an object-oriented hierarchy design. With this pattern, the abstract

class defines the interpret method; then, all subclasses implement that interpret method

to solve the problem instance that the subclass defines [37][51]. ProxemicUI follows this

approach as it solves the problem of detecting proximity relationships between entities

in the environment. In ProxemicUI, the abstract class Rule defines the interpret method

test(), which is implemented in all subclasses. Each subclass represents an instance of

detecting a different type of proximity relationship.

The composite design pattern is one of the structural patterns, which “compose objects

into tree structures to represent whole-part hierarchies.” [25][37]. Following this pattern,

ProxemicUI defines a sub-hierarchy (CompoundRule) from the base class (Rule) to

compose basic objects into a more complex object. The Context Toolkit [29][95]

introduced building a new widget (a component that provides attributes and callback

86

methods) based on the data received from multiple widgets. However, the Context

Toolkit also requires creating a new widget (a single independent process) for every

location that it needs to access its context information, which raises a scalability issue. On

the other hand, ProxemicUI can apply a rule to specific types of entities even if they are

at different locations in the tracked space, and can support arbitrarily complex compound

rules without significantly increasing overhead as all tests operate on a centralized

repository of tracked entity data. I chose to follow the composite pattern to allow

developers to expand the framework to apply it to different contexts, which is important

for prototyping. The Rule class inherits all rules, including HybridRule, ProximityRules,

CompoundRules, and MobilityRule. The base class in the hierarchy is the Rule class and

not the ProximityRules class because the other types of rules (HybridRule and

CompoundRules) implement the same interpret method, and they are not proximity

rules. Figure 22 shows the class diagram of Rule, and figure 23 shows the steps of

executing each rule.

87

ProximityRule

ProximityRule is derived from Rule, and it consists of two different subclasses:

RelativeProximityRules, and AbsoluteProximityRules.

RelativeProximityRules

RelativeProximityRules tests a single proximity attribute between entities (e.g., relative

distance). This type of rule is similar to the event trigger mechanism in the Proximity

Toolkit [71] and is commonly used in existing applications [13][70][125].

RelativeProximityRules is the base class for all Relative Proximity Rules, including

RelativeDistanceRule, RelativeOrientationRule, and IsFacingRule; other Relative Proximity

Rules can be derived from this class as well.

FIGURE 23: THE STEPS OF EXECUTING THE RULES IN PROXEMICUI

88

• RelativeDistanceRule: is responsible for checking the relative distance between

entities and fire OnEventTrue, OnEventFalse, or OnEventChanged according to the

test results. It has three constructors to cover the three types of tests (one-to-one,

one-to-many, and many-to-many). All constructors consist of five arguments: two

doubles representing minimum and maximum thresholds of the distance, lists of

entities (two lists, two strings, or one list and one string, depends on the type of

test), and one string representing the TestCondition. The TestCondition can be

“ALL” or “ANY,” providing developers with two options. First, to fire OnEventTrue

when the TestCondition is “ALL,” the test must be true for all entities. Second, to

fire OnEventTrue when the TestCondition is “ANY,” the test must be true for one

or more entities. This means that the “ANY” TestCondition can be true when more

than one entity passes the test. This meant to support cases where the developers

want to know all the entities that pass the test. In addition, RelativeDistanceRule

overrides the test method in Rule class that walks through the references for

entities and performs the test. As discusses in Point, the test method calls the

CheckDistance method from the shape of one entity, and it passes the shape of

the second entity and the two thresholds. CheckDistance is of type bool, and the

result of each test is stored in CheckList of type list in the test method. When all

tests are completed, the test method will examine the CheckList. Then the test

89

method will call FireEventTrue/FireEventFalse from the Rule class to fire the event.

Figure 24 shows the implementation of the test method.

• RelativeOrientationRule: is responsible for checking the relative orientation

between entities and fire OnEventTrue, OnEventFalse, or OnEventChanged

according to the test results. Similar to the RelativeDistanceRule, it has three

constructors to cover three types of tests. The RelativeOrientationRule has four

arguments: one double representing the threshold in degrees, lists of entities to

be tested, and a string for the TestCondition. It only has one value to represent the

threshold because it checks the difference in degrees from zero to the maximum

that the developers specify. RelativeOrientationRule follows the same testing

FIGURE 24: AN EXAMPLE OF TEST METHOD IMPLEMENTATION IN RELATIVEDISTANCERULE

90

approach in RelativeDistanceRule (discussed above). Instead of calling the

CheckDistance method, it calls the CheckOrientation method from the shape to

perform the test. Firing events follow the same approach as RelativeDistanceRule.

• IsFacingRule: is responsible for checking the relative orientation for one or more

entities relative to another entity or a point in space and fire OnEventTrue,

OnEventFalse, or OnEventChanged according to the test results. It has two

constructors to cover the two cases: one to one/point in the space or many to

one/point in the space. Both constructors have three arguments: double

representing the threshold in degrees, string or list for the entities, and vector3

representing the position of an object or a point in the space. IsFacingRule follows

the same testing approach in RelativeDistanceRule (discussed above). Instead of

calling the CheckDistance method, it calls the IsFacing method from the shape to

perform the test. Firing events follow the same approach as RelativeDistanceRule.

AbsoluteProximityRules

AbsoluteProximityRules tests a single proximity attribute for entities relative to the

environment (e.g., check if the user is in a specific room in the house). This type of rule

can be seen in some existing applications, such as the Savannah [14] and the AirPlayer

[107]. AbsoluteProximityRules is the base class for all AbsoluteProximityRules, including

AbsolutePositionRule and AbsoluteOrientationRule; other Absolute Proximity Rules can

be derived from this class as well. AbsoluteProximityRules is responsible for testing if data

(e.g., orientation) of an entity is within a threshold according to the whole tracking region.

In other words, it provides data similar to DT-DT but in the form of proxemic events.

91

• AbsoluteOrientationRule: is responsible for checking if an entity is facing a certain

direction within the tracked region. It allows checking only a single angle (e.g.,

yaw) or all angles (yaw, pitch, and roll). It also allows checking for one or more

entities as well. Therefore, it has four constructors. The two constructors for the

single axis test have five arguments: two doubles representing the thresholds, a

string or a list for entities, a string for the axis, and a string for the TestCondition.

The other two constructors all axes test and have four arguments: two lists of

double representing threshold (each element represents the threshold for an

axis), a string or a list for entities, and a sting for the TestCondition.

AbsoluteOrientationRule follows the same testing approach in

RelativeDistanceRule (discussed above). Instead of calling the CheckDistance

method, it calls the CheckAbsoluteOrientation method from the shape to perform

the test. Firing events follow the same approach as RelativeDistanceRule.

• AbsolutePositionRule: is responsible for checking if an entity is in a specific location

within the tracked region. It has two constructors to test single or multiple entities.

These constructors have four arguments: two vector3 representing minimum and

maximum thresholds, a string or a list for entities, and a string for the

TestCondition. AbsolutePositionRule follows the same testing approach in

RelativeDistanceRule (discussed above). Instead of calling the CheckDistance

method, it calls the CheckAbsolutePosition method from the shape to perform the

test. Firing events follow the same approach as RelativeDistanceRule.

92

CompoundRules

CompoundRules combines the test of any two rules of type Rules: ProximityRule,

CompoundRule, HybridRule, and MobilityRule. This type of rule can be seen in some

existing applications, such as the Proxemic Media Player [13] and SpiderEyes [30].

CompoundRules class is the base class for all Compound Rules, including ANDRule,

ORRule, XORRule, and NOTRule. Other Compound Rules can be derived from this class as

well. When combining two rules, there are three variables that might change: having the

same or different entity lists, testing the same or different proximity attributes, and

having the same or different thresholds. Currently, it evaluates rules by performing AND,

OR, XOR, and NOT test for the rules.

• ANDRule: is responsible for testing any two Rule with an AND. Its constructor has

two Rule as arguments. It also has a test method to test the rule, where both rules

must return true for this test to pass. Firing events follow the same approach as

RelativeDistanceRule; the test method will call

FIGURE 25: THE IMPLEMENTATION OF TEST METHOD IN ANDRULE

93

FireEventTrue/FireEventFalse/FireEventChanged from the Rule class to fire the

event. Figure 25 shows the implementation of the test method in ANDRule.

• ORRule: is responsible for testing any two Rule with an OR. Its constructor has two

Rule as arguments. It also has a test method to test the rule, where it will pass if

at least one rule returned true. Firing events follow the same approach as

ANDRule.

• XORRule: is responsible for testing any two Rule with XOR. Its constructor has two

Rule as arguments. It also has a test method to test the rule, where the test will

pass if one and only one rule returned true. Firing events follow the same

approach as ANDRule.

• NOTRule: is responsible for testing a single Rule with NOT. Its constructor has a

single Rule as an argument. It also has a test method to test the rule, where the

test will pass if the rule returned false. Firing events follow the same approach as

ANDRule.

HybridRule

HybridRule aims to combine a proximity event with any proxemic external events. The

external events can be any type of event that is not based on proximity data. For example,

it can be direct interaction with the system (e.g., click, touch, in-air gesture, and voice),

receiving system notifications (e.g., timer elapsed), or receiving commands from a

different device (e.g., through OSC messages). This type of rule can be seen in existing

applications that combine direct interactions with proximity data, such as Eyes-Free Art

94

[90] and The AirPlayer [107]. As stated in the framework requirements, HybridRule can

exist in two different ways. First, the system tests the Proximity Rule, and if it’s valid, it

listens for the external event. With this type of HybridRule, ProxemicUI does not get any

notifications about the external event, figure 26 up. Second, the system listens for the

external event, and if it is fired, it tests the Proximity Rule. This type of HybridRule requires

a mechanism to notify ProxemicUI about the occurrence of external events, figure 26

down. Therefore, ProxemicUI only implements a class for the second type of HybridRule

(listening for the external event, then testing the ProximityRule) because the first type

can be implemented using a ProximityRule (as will be discussed later in this section).

FIGURE 26: UP) THE PROCESS OF HYBRIDRULE THAT DOES NOT COMMUNICATE WITH PROXEMICUI, DOWN) THE

PROCESS OF HYBRIDRULE THAT COMMUNICATES WITH PROXEMICUI

95

HybridRule constructor receives only a ProximityRule, which can be of type:

RelativeProximityRules, AbsoluteProximityRules, CompoundRules, or MobilityRule. It also

has two methods: test and ExternalEvent, and it works as follows. First, application

developers call the ExternalEvent method when the external event is performed (e.g., a

touchdown event), so it will be the handler for the external event (e.g., touch event, timer

elapsed). Then, the external event will call the test method, which will start testing the

ProximityRule. Finally, OnEventTrue/OnEventFalse is fired if the ProximityRule is valid. The

ExternalEvent method is overloaded in the HybridRule. The first method has two

arguments following the same event model in C#. The first argument is the sender object

that created the event. The second argument is of type EventArgs, which is the base class

for all classes that contain event data in C# [33]. This method allows developers to

subscribe to it when the external event is of any type of the classes representing event

data (e.g., touch down or time elapsed). If developers want to support an event that does

not have the same types of arguments, they have to overload this method with the

arguments they need to support. The second method in the HybridRule has no

arguments, so developers can call it directly as the external event occurs. I used this

method to notify the HybridRule when an OSC message is received. Figure 27 shows the

implementation of test and ExternalEvent methods in HybridRule.

96

ProxemicUI doesn’t implement any classes for the first type of HybridRule (testing the

Proximity Rule then listening for the external event) because it is a sequence of events,

which can be implemented using any ProximityRule. For example, ProximityTable shows

a button when two users get close to each other; if the button is touched, it increases the

size of the workspace. We can implement this using RelativeDistanceRule as follows. First,

I create a RelativeProximityRule that tests the distance between entities. Second, the

handling method of this rule shows the button on display. Finally, the handling method

of the button will increase the size of the workspace. We cannot implement this sequence

using the current HybridRule implementation because HybridRule listens for an external

event (e.g., UI event) then starts testing the ProximityRule.

FIGURE 27: THE IMPLEMENTATION OF TEST AND EXTERNALEVENT METHODS IN HYBRIDRULE

97

MobilityRule

MobilityRule checks and updates the mobility status (IsStable) of entities. This can be

useful when the developer wants to draw a system response based on an entity's location

and mobility status. For example, in Alices’ smart home scenario, placing her tablet on

the kitchen counter for 2 minutes might be an indication that she is using the tablet to

read recipes. Therefore, the system might keep the screen on. The mobility status can be

updated in two different ways. First, the developer updates IsStable field manually.

Second, the system automatically updates it through the use of MobilityRule. The

developer controls this automated process where s/he creates a MobilityRule and passes

it arguments. The MobilityRule has two arguments: a threshold in centimeters between

old and new position (to determine its movements) and duration in seconds between

capturing the old and new position. Then, it tests the mobility and updated the IsStable

field of the entity.

FIGURE 28: THE IMPLEMENTATION OF TEST METHOD IN MOBILITYRULE

98

Formation

F-formations can play an important role in users' experience with interactive systems. For

example, detecting F-formations can allow the systems to adjust contents on display

according to the formations [11], notify developers about openings on the tabletop [73],

or support interactions in medical settings [76]. While developers can use the rules

discussed above to detect F-formations, ProxemicUI provides a class hierarchy that allows

developers to specify F-formations. The base class of this hierarchy is the Formation class

tat has two subclasses: FormationRule and FormationPlacement.

FormationRule

FormationRule allows developers to use the rules we discussed above to define a

formation rule (specify F-formations). Then, developers can retrieve a formation rule to

check if it exists anywhere in the environment. The FormationRule has two methods: one

FIGURE 29: IMPLEMENTATION OF THE FORMATIONRULE CLASS SHOWING THE TWO METHODS TO CREATE/ RETRIEVE THE

FORMATION RULE

99

allows developers to create the formation, and the second one to retrieve it. Figure 29

shows the implementation of the FormationRule class.

FormationPlacement

In virtual environments, some scenarios require defining the exact placement of entities

when creating an F-formation. For example, in Story CreatAR, there is a need to create

different formations for objects in the environment (e.g., creating a conversation where

avatars form a circle). To support such requirements, ProxemicUI implements the

FormationPlacement class, which is the base class of all formation placement rules.

Currently, it only has a single sub-class: CircularFormation class. Other placement rules

can be derived from the FormationPlacement base class. The FormationPlacement class

has two events (OnFormationCompleted and OnFormationUpdated) and two methods to

fire these events (FireEventCompleted and FireEventUpdated).

CircularFormation

CircularFormation is responsible for calculating and return new positions and orientations

for entities participating in the circular formation. It calculates the closest position on the

circle for each entity relative to its current position. The constructor of CircularFormation

has three arguments: vector3 representing the center of the circle, double representing

the radius of the circle, and a list containing the participating entities. It also allows

updating existing formation by calling the UpdateFormation, which takes a double as the

new radius (adding new entities increases the size of the circle) and a list for the additional

entities. CircularFormation also has several methods to calculate different attributes to

get to the final results. When calculating the final position and orientation is completed,

100

the CircularFormation calls a method (FireEventCompleted or FireEventUpdated) to fire

an event (OnFormationCompleted or OnFormationUpdated). The event object will

contain a list of tuples where each tuple includes a string for the entity’s ID, the entity's

position, and the entity's orientation. These data will be used to place entities in the

circular formation.

RuleEngine

RuleEngine is responsible for continuously checking the developer’s rules, which is done

as follows. RuleEngine has a list (listOfRules) that contains all rules to be tested. There are

three tasks that RuleEngine can perform using this list. First, using the AddToRuleList

FIGURE 30: THE IMPLEMENTATION OF CREATEFORMATION METHOD IN CIRCULARFORMATION

101

method, which has a single type of rule argument, the developer can add a rule to the list

to be tested. Second, if a developer no longer wants to test a rule, s/he can use the

RemoveFromRuleList method to remove the rule from the list. RemoveFromRuleList has

a single argument of type Rule. The RuleEngine overload TestRunner method as follows.

The first method is a private method that runs on a separate task to continuously tests all

rules in listOfRules. The second method is a public method that allows developers to

perform the tests at the application layer. This can be useful if a developer does not want

to run the test continuously. It also avoids running the test in a separate thread, which I

used to overcome the multithreading issue with Unity that I will discuss in chapter 8.

ProximityEventArgs

ProximityEventArgs class is the base class for subclasses that pass different arguments to

the handling methods when events are fired. Because each rule has different arguments,

including different TestCondition (ALL/ANY), it is required to define different argument

types to pass the results to the handling methods. Any additional arguments can be added

as a subclass of the ProximityEventArgs class. Figure 31 shows an example of using these

subclasses. In the first line inside the method, the developer casts the ProximityEventArgs

object to a specific sub-object (in this example, the sub-object is

RelativeBasicProximityEventArgs). In the second line, the developer can access a specific

FIGURE 31: USING THE PROXIMITYEVENTARGS TO ACCESS THE TEST RESULTS

102

data collection type and read its data (in this example, the data collection type is a

dictionary). These subclasses are as follows.

RelativeBasicProximityEventArgs

This object will be used for all basic relative proximity rules and includes multiple types

for rules and test conditions:

• EntityListsForAll: when the test condition for the basic rule is "ALL" this contains

the two lists of entities that were passed to the rule.

• EntityDictionaryForAny: when the test condition for the basic rule is "ANY" this

contains a dictionary where the keys are IDs from the first list, and the value is a

list with all IDs of entities that passed the test relative to the key.

• EntityListForIsFacing: returns a single list that contains all the entities that are

facing the target object.

AbsoluteBasicProximityEventArgs

This object will be used for all basic absolute proximity rules. Currently, it includes only a

single type:

• ListOfEntities: returns a list of entities that passed the test relative to the

environment.

CompoundRulesEventArgs

This object will be used for all basic relative proximity rules and includes multiple types

for rules and test conditions:

103

• RuleDictionaryForAND: returns a dictionary where the key is one of the subrules

and the value is the results arguments from testing that rule.

• RuleTupleForORandXOR: returns a tuple when testing for OR and XOR. This tuple

contains the Rule that passes the test and its argument.

• RuleForNOT: return a single if it passes the test.

HybridEventArgs

This object will be used for the HybridRule. Currently, it includes only a single type:

• RuleArgsForHybrid: returns the proximity event arguments of the proximity rule

that was passed to the Hybrid rule.

FformationEventArgs

This object will be used for the FormationPlacement. Currently, it includes only a single

type:

• TuplesForFformation: returns a list of tuples where the entity’s ID and its new

position and orientation.

Extension points

Framework extensibility is allowing developers to expand existing components to add

new functionalities to the framework [35][36]. This section will discuss the extensibility of

ProxemicUI by defining the extension points that developers can use to add more

functionality to ProxemicUI to apply it to different contexts.

104

1. Rule hierarchy: one of the extension points in ProxemicUI is the Rule hierarchy,

where a developer can subclass a new rule object in the Rule hierarchy to perform

a new task. When a new rule object is added to the hierarchy, developers need to

define new arguments in the ProximityEventArgs to pass the results of testing the

rule in the event object. Developers will follow the same process to a new

CompoundRule object, where they can use additional logical operators to

compose more complex objects to support different contexts. This composition

would be extended from the CompoundRule class, similar to existing rules (e.g.,

ANDRule). A clear example of rule extension is when I implemented the

MobilityRule and IsFacingRule, which are two sub-classes, and each performs a

new task.

2. Shape: as stated before, to accurately measure the relative proximity data,

ProxemicUI performs a shape-to-shape comparison (e.g., point-to-rectangle).

Currently, ProxemicUI implements the test for two shapes: point and rectangle.

Developers can subclass a new shape object in the Geometry hierarchy to add

additional shapes. When a new shape object is added to the hierarchy, developers

only need to implement the Geometry (the subclass) methods, and there are no

other changes required to the framework.

3. Entity: Entity is the base of any proxemic-aware system, and it is the third

extension point in ProxemicUI. I discussed how to extend rules and shapes and

how each extension point would add new functionality to the framework, but why

105

would we extend an object that holds the properties and how that would be

useful? There might be some scenarios where there is a need to subclass the entity

to keep track of different interactions. For example, subclassing entities can be

beneficial if we have a system that detects in-air gestures. In such cases, the main

entity is the user, and the child entities are his/her joints. With this classification,

we can detect the relative proximity data within one main entity (e.g., user). To

add a child entity, developers need to subclass the Entity class (the base) and add

the specific properties for that subclass to it. This process does not require any

changes to the rest of the framework.

4. DataReceiver: DataReceiver is the communication gateway between ProxemicUI

and other tracking systems, which is an important extension point in ProxemicUI.

DataReceiver implements the OSC messaging server to receive tracking data from

external systems, which can be expanded by subclassing the DataReceiver in two

ways. First, subclassing the DataReceiver to define additional OSC messages

format that might include different data about the environment. This subclassing

includes creating a method that would process the new message to extract the

tracking data. Second, subclassing the DataReceiver to add a sub-receiver to

capture the data from different SDKs (e.g., Microsoft Kinect SDK). This subclassing

includes setting up the connection with the tracking system and writing the

method that extracts the tracking data. The DataReceiver only receives and

extracts the proximity data, then passes these data to the EntityContainer, which

will create new entities and assign their data. Therefore, for both approaches,

106

developers need to write the method that will process the data in the

EntityContainer as well.

Summary

This chapter discussed the full architecture of ProxemicUI v2, including a set of

improvements derived from the evaluation methods. This chapter also explains how to

use ProxemicUI with a walkthrough example that shows all the required steps to use

every rule in ProxemicUI. The next chapter (chapter 6) discusses using ProxemicUI in a

smart home setup, resulting in a set of additional design requirements that improved

ProxemicUI.

107

Chapter 6: Evaluating ProxemicUI Through

Proof-of-Concept Applications

One of the most critical aspects of developing a framework is to evaluate it to validate its

concepts. One of the evaluation methods for toolkits in HCI is the demonstration method,

which shows the toolkit's features and how developers can use them. To evaluate

ProxemicUI, I implemented a set of seven proof-of-concept applications representing

smart home appliances and integrated them into a smart home setup. In so doing, I apply

one of the techniques for HCI toolkit evaluation through demonstration identified by Ledo

et al. [65] called “replicated examples”, which show “how the toolkit supports and

encapsulates prior ideas into a broader solution space”[65]. Marquardt et al. [71] and

Pérez et al. [84][85] employ the use of testing relative proximity attributes (distance and

orientation). ProxemicUI uses these data as the base of more complex tests: testing

multiple attributes/thresholds for multiple entities simultaneously using Compound Rules

and integrating proximity events with external non-proxemic events using Hybrid Rule. In

this evaluation, the proof-of-concept applications are similar to Proximity-Aware control

[64], which was implemented using the Proximity toolkit. The Proximity-Aware control is

a system that grants users control of a specific device based on the spatial relationships

between users and devices in a smart environment. This is intended to show how

ProxemicUI implements similar examples with less effort (less lines of codes and less tests

to keep track of). This chapter starts by discussing these proof-of-concept applications. It

will then discuss additional design requirements and several refinements to ProxemicUI

108

that I derived from this integration. Finally, it will discuss the proposed hackathon user

study that was canceled due to the restrictions of COVID-19.

Proof-of-concept applications

To evaluate the features that ProxemicUI provides and find out how well it can support

the development of interactive applications in smart environments, I developed seven

proof of concept applications that simulate smart home appliances. To help contextualize

the proof-of-concept applications, I am going to start with the following scenario:

Alice has several home appliances, including a toaster, alarm, thermostat, TV,

coffee machine, and tabletop. She wants to gain control of all of these

appliances through her phone using her proximity data. For example, she

wants to open the coffee machine interface on her phone when she gets closer

to the coffee machine. After she starts the coffee machine, she wants the

system to track her to show her a notification when the coffee is ready based

on her location. For example, if she goes to watch TV, the system will show the

notification on the TV; but if she goes to work on her tabletop, the notification

will be showing there. She also wants to turn on the TV and open its interface

on her phone when she is within distance and facing the TV simultaneously. If

she is within distance to the TV (e.g., sitting on the couch) but reading a

magazine, the TV will not turn on.

In this scenario, we can see testing multiple relative proximity attributes (position and

orientation). For example, we test for the relative distance between Alice and every

appliance (e.g., the coffee machine) in her house to give her control of that device. We

also test both relative distance and orientation simultaneously to turn on the TV and open

its interface on Alice's phone. We can also see combining relative proximity data with

external events. The external event data is when Alice interacts with her phone to start

the coffee machine (in this case, the external event is the UI event triggered by the phone

109

interactions), and the proximity data is when the system tracks Alice’s proximity to other

devices (in this case, to the TV or tabletop) to determine where to show notifications.

Following the contextual scenario discussed above, the idea of using these proof-of-

concept applications is to replace the button functionalities of the main interface with

proximity events using ProxemicUI. To do so, I employed the VIVE trackers to access the

proximity data of each appliance. Since all appliances are stale, I record the proximity data

of each appliance using a VIVE tracker and only attached the trackers to the tables that

would be used as controllers. In the following subsections, I will discuss these proof-of-

concept applications.

The main application

The main application is the tablet/smartphone application that contains the control

interface for all other applications(appliances). The main interface consists of six buttons;

FIGURE 32: SNAPSHOT OF MAIN INTERFACE OF TABLET CONTROLLER APPLICATION

110

each represents a different application and will show a sub-interface for the selected

device. Because I was planning to use these applications for the hackathon user study, I

implemented this interface with buttons to have a fully functioning interface. Then,

developers are required to replace the touch event with a proxemic event (e.g., relative

distance event) using ProxemicUI. Next, I will explain how each application works and

communicates with the control interface.

The alarm interface

The alarm interface has a basic setting where users can choose the hour, minutes, and

period (am/pm). The alarm interface shows the current time/date, the alarm's status

(on/off), and the time of the alarm if it is on.

FIGURE 33: LEFT: ALARM INTERFACE IN THE TABLET APPLICATION, RIGHT: ALARM INTERFACE SIMULATION

111

The toaster interface

The toaster interface sets the timer for the toaster in seconds, which has a scale from rare

done to well done. It has two different options to start toasting based on the timer setting

or reheat the toast for 30 seconds. The toaster application will show the setting (toasting

or reheating) and the remaining time to be done.

The thermostat interface

The thermostat interface allows to choose the mode (cool/heat) and set the temperature.

The thermostat application shows the current temperature, current setting (cool/heat +

temperature), current date/time, and changes in the screen's background based on the

setting.

FIGURE 34: LEFT: TOASTER INTERFACE IN THE TABLET APPLICATION, RIGHT: TOASTER INTERFACE SIMULATION

FIGURE 35: LEFT: THERMOSTAT INTERFACE IN THE TABLET APPLICATION, RIGHT: THERMOSTAT INTERFACE SIMULATION

112

The TV interface

The main TV interface allows the user to choose the media to be played, while the sub-

interface allows for controlling current media (e.g., play/pause). The TV application will

play the selected media. It can also show a notification to the user on the TV about other

events in the smart environment.

The coffee machine interface

The coffee machine interface allows the user to choose the type of beverage (tea/coffee)

and its amount in ml. It can also set the duration to keep the beverage warm. The coffee

machine application shows the remaining time for the beverage to be ready, the beverage

level, and the duration to be kept warm.

FIGURE 36: LEFT: TWO TV INTERFACES IN THE TABLET APPLICATION, RIGHT: TV INTERFACE

FIGURE 37: LEFT: COFFEE MACHINE INTERFACE IN THE TABLET APPLICATION, RIGHT: COFFEE MACHINE INTERFACE SIMULATION

113

The tabletop interface

Both the tabletop interface in the tablet application and the tabletop application shows

several images and a white bar at the bottom of the screen. When the user drags an image

to the white bar, it will be transferred to the other application.

All commands from the tablet application are transferred to other applications using OSC

messages. Some applications will also respond to these messages or send different

messages to other applications (e.g., show notification on TV that the coffee is ready)

using OSC messages.

Additional design requirements

As stated earlier, employing ProxemicUI to support a smart home setup using the proof-

of-concept applications contributes as an initial evaluation of the framework. This section

will discuss what new design requirements I derived from this employment.

FIGURE 38: TABLETOP INTERFACE IN BOTH TABLET APPLICATION AND TABLETOP

114

A More Generic HybridRule

In v1, Hybrid Rules referred to combining a Proximity Rule (RPR or CPR) and a UI event.2

However, during testing ProxemicUI with the proof of concept applications, I had system

notifications instead of UI events while using the HybridRule. For example, when Alice

starts the coffee machine and goes to watch TV, the coffee machine will send a

notification to the TV telling her that the coffee is ready. In addition, the coffee machine

sent the notification to the TV using an OSC message, which is different than subscribing

to a button click. Therefore, to make the HybridRule more generic, we require the

following two changes. First, changing the name of UIEvent to ExternalEvent to include a

broader set of events. Second, add a second ExternalEvent method in the HybridRule, so

developers can call it directly instead of subscribing to events. For this second change,

ProxemicUI has a method that is called as a handling method when subscribing to any

event where it takes arguments following the same approach that Windows event model.

When the system receives notifications from a different process/device, we need to add

a way to notify the HybridRule that an event has occurred (in this case, I added a second

method with no arguments to be called directly).

Extensions to the OSC message format

In v1, ProxemicUI’s OSC message format was determined based on the data used from

the DT-DT top-down tracker in the ProximityTable application: ID, X, and Y for each entity.

However, when employed ProxemicUI v1 to support the proof-of-concept applications, I

used the HTC VIVE Lighthouse tracking system to make ProxemicUI’s tracker support

115

more robust and generic (e.g., through defining a broader format for the default OSC

messages). The HTC VIVE Lighthouse tracking system provides timestamp, ID, X, Y, Z, Yaw,

Pitch, and Roll for each tracker. Because ProxemicUI v1 defines a shape for every entity

to accurately measure proximity relationships, it needs to know the dimension of each

shape. In addition, some properties of the smart environment might only need to be sent

once to ProxemicUI and not supported by tracking systems (e.g., the position of stable

entities such as a wall display and a thermostat). Since such data might not be provided

by tracking systems, developers might send them in separate messages. I added an

additional format to other OSC messages that include the shape properties, which can be

expanded for other data.

Activation status

When DT-DT can no longer track a person (e.g., when they move outside the tracked

region), it will delete all data for that person from the system. So, if this person came back,

s/he would be considered a new user. For this reason, ProxemicUI v1 used to delete an

entity if it is no longer being tracked. However, this approach is not suitable for a

proxemic-aware system, especially if we can detect entities' identities. For example, when

a VIVE tracker is not moving for about five minutes (e.g., attached to a tablet that was left

on the table), it goes to sleep mode, which doesn’t mean the tracker left the environment.

When we turn the tracker back on, the system will know which tracker it is and all of its

proximity data. For this reason, I added the activation status (IsActive field). The default

value of this field is “true” (the entity is active) for all entities. However, if the entity is not

stable and ProxemicUI no longer receives its data, ProxemicUI automatically changes its

116

status and notifies the developer about this change. This is important for developers at

the application layer to draw the appropriate system response accordingly. In addition,

the EntityContainer class used to have EntityRemovedEvent that would be fired when an

entity is deleted (no longer being tracked following DT-Dt’s approach). However, replaced

the EntityRemovedEvent with the EntityInactiveEvent, which will be automatically when

the entity is no longer being tracked. Besides, I also added an additional querying method

based on the activation status that is EntityRetrievalByActivationStatus.

MobilityRule

Initially, each entity in ProxemicUI v1 has IsStable field, which can be used to check if the

entity is stable or mobile. However, some entities might change their stability status over

time. For example, a tablet can be stationary for some time on the kitchen island when

reading recipes while cooking. It can also be mobile when moving around the smart home

to control other devices. To update the field, developers would write a MobilityRule and

pass the ids of entities to update their stability status. Then, ProxemicUI uses this rule to

update the stability status of these entities and notifies developers when the update is

done.

117

Test condition

Initially, ProxemicUI v1 tests all entities against thresholds in the rule, then fires events if

the test passes for all entities. In some scenarios, this approach will be time-consuming

and requires a lot of effort to implement. For example, in Alice’s scenario we discussed

above, we have a controller that controls all smart appliances at home. To implement this

using ProxemicUI v1, developers would have to create multiple rules (a rule between the

controller and each device). To overcome this issue and allow developers to test multiple

entities simultaneously in the same rule, I added the TestCondition field to the basic

proximity rules. Using the TestCondition, developers can specify if the test results are

required for all entities or just a subset.

IsFacingRule

Initially, ProxemicUI has only RelativeOrientationRule, which checks if two or more

entities are facing each other within a predefined threshold (it checks the relative

orientation based on the facing direction of both entities). However, what if we have a

scenario where we only care about one or more entities facing another entity. For

example, if we want to check if two users are facing a tabletop or not, no matter which

side of the table they are at, they might be standing at what we might consider the

back/side of the table. IsFacingRule solves this problem.

118

Small tweaks and refinements

In addition to the previous design requirements that I derived from using ProxemicUI v1

to support the smart home scenario, I completed some refinements to ProxemicUI v1 to:

support a wider range of tracking systems, organize the code by moving some fields to

where they belong, and reflect the changes that were completed for the new design

requirements discussed above. This section summarizes these refinements.

➢ Changing ID from type integer to string because some tracking systems use a

combination of letters and numbers as tracker id.

➢ Shifting some properties (e.g., width and length) from proximity entity to shape. They

are the properties of the shape and left proximity entity with only the most abstract

properties (e.g., ID, type of shape, isActive, isStable, etc.).

➢ Changing the code in DataReceiver and EntityContainer classes to match the new

format of OSC messages. This includes 3D position and orientation data and shape

data (e.g., width and length) of entities. They also include defining additional

constructors and OSC message formats.

➢ Replacing EntityRemovedEvent with EntityInactiveEvent in EntityContainer.

➢ Implementing ProximityEventArgs class that contains all different object types to

pass data of different events to developers.

➢ Changing OnEvent to OnEventTrue and OnEventFalse for all rules.

119

➢ Adding multiple class constructors for all rules to cover all types of tests (one-to-one,

one-to-many, and many-to-many) to make it easier for developers to pass

arguments.

Hackathon User Study

In addition to using the proof-of-concept applications as a tool to draw an initial

evaluation of ProxemicUI, I also intended to use these applications in a hackathon user

study to gain feedback about ProxemicUI from external developers. I was planning to use

these applications to create a smart home environment where I bring in external users to

connect these applications based on proximity data using ProxemicUI. Unfortunately, I

had to cancel this user study due to the restriction of COVID-19 and evaluate ProxemicUI

through two other methods (will be discussed in the next two chapters). This section will

briefly discuss the hackathon user study, and the ethics application that contains the full

study design and the letter of approval are in appendix 3 and 4.

I chose the hackathon to generate qualitative and experimental data from a relatively

small sample in a short period of time. With such a method, I can learn what aspects of

the framework developers like and what aspects they get stuck in, leading to suggestions

for improvements. In addition, the hackathon participants might find something that I

never looked at before; these might be different ways of using the features of the

framework or different environments where the framework can be used. I was planning

to run the study over the course of 2.5 days (a weekend). During the study, participants

would use ProxemicUI to control mock home appliances (the proof-of-concept

120

applications discussed above) based on proxemic data (e.g., when I sit on the couch, turn

on the TV and launch the remote control app on my phone). In this evaluation, I am

following one of the demonstration techniques discussed by Ledo et al.[65], and that is

replicated examples, where the design of the proof-of-concept applications is similar to

the Proximity-Aware control design [64], which was also implemented using the Proximity

toolkit. This is important to show how ProxemicUI implements similar examples in a more

fixable way. In addition to asking participants to connect the proof-of-concept

applications, I was also planning to allow them to explore different designs/usage of the

framework by implementing their scenarios.

The main purpose of this study was to establish that developers with limited exposure to

the kinds of applications supported by the framework can rapidly prototype using it. This

could be achieved by considering how two key innovations of the framework are used:

Hybrid Rules (connecting tracking data with user interface events) and Compound Rules

(composing more complex rules from basic building blocks). To accomplish this, I would

collect and analyze a variety of data: video recording of the development process, group

discussions/reflections, screen capture of a testing computer (that we provide), final

demo presentations and critiques, and source code. All videos would be transcribed and

annotated using an open coding process to identify themes during development and

group discussion. Source code and screen capture will be reviewed and annotated to

itemize what elements of the framework were used, what syntactic or semantic errors

occurred, and how fluency with the framework emerged over the weekend. The group

121

discussions will also be used to obtain detailed feedback and suggestions about the

framework.

In the hackathon user study, I was planning to recruit a minimum of four and a maximum

of six groups of three (12-18 participants) who know how to code with C# because the

A

B

FIGURE 39: A) THE TABLETOP IS RUNNING ITS APPLICATION, B) THE TV IS PLAYING A MEDIA THROUGH ITS APPLICATION

122

framework was developed using C#. The plan was to run the study over the course of 2.5

days (a weekend: Friday 5:00-8:00 pm and Saturday and Sunday 9:00 am – 5:00 pm). The

study would start with a mini workshop where participants would be exposed to some

examples of existing work that demonstrates the use of proximity in smart environments.

This workshop would end with a hands-on lab session to give the participants a guided

experience using the framework. This session would introduce the proof-of-concept

applications to participants and use the alarm application as an example to guide

participants to try to write the code for different rules that ProxemicUI provides, including

ProximityRules, CompoundRules, and HybridRule. Table 4 shows the schedule of the

hackathon.

TABLE 4: SCHEDULE OF THE HACKATHON OVER THE WEEKEND

Time Slot Task

Friday (5:00 – 8:00 pm) Mini workshop (overview of ProxemicUI + hands-on

experience)

Saturday (9:00 am - 4:00 pm) Using the framework to control the proof-of-concept

applications to make them proxemic-aware and

responsive

Saturday (4:00 - 5:00 pm) Discussion session to comment about the pros and

cons of the framework and suggestions for

improvement

Sunday (9:00 am – 3:00 pm) Using the framework to imagine and implement their

proxemic-aware application

Sunday (3:00 - 4:00 pm) Discussion session to comment about the pros and

cons of the framework and suggestions for

improvement

Sunday (4:00 pm – 5:00 pm) Each group would present their work to a jury.

Announce the winning team and runner, then award

prizes

123

Summary

This chapter discussed the proof-of-concept applications I developed to be used in a

hackathon user study. It also briefly discussed the study design for the hackathon user

study, which I could not conduct due to COVID-19 restrictions. While I could not conduct

the hackathon user study, this chapter also discussed how ProxemicUI was improved by

applying it to a smart home setup. For example, the HybridRule is used to combine

proximity events with UI events. Still, I had system notifications (e.g., the coffee is ready)

instead of UI events when applying ProxemicUI to a smart home setup. Therefore, I

defined a more generic HybridRule that takes any external events. Other major

improvements include defining IsFacingRule and MobilityRule, adding the activation

status as an attribute to the proximity entity, adding the test condition to rules, and

FIGURE 40: FLOOR LAYOUT SHOW HOW TO PLACE DEVICES IN THE LAB FOR THE HACKATHON

124

extending the OSC messages. The next chapter (chapter 7) discusses evaluating

ProxemicUI in a code review study.

125

Chapter 7: Evaluating ProxemicUI Through

a Code Review Study

Validating a framework by external users is important to show that the framework can

support users’ needs. Unfortunately, due to COVID-19, I could not conduct the planned

hackathon to gain that feedback. I chose not to run the hackathon online as it requires

repeated testing with physical components in the lab (e.g., moving the tablet to the

tabletop to exchange files) to make sure the code responds correctly. I followed a

different approach to gain developer feedback about the toolkit. One of the evaluation

techniques through usage is “comparison” between the new toolkit and a baseline.

“Baselines include not having a toolkit, or working with a different toolkit” [65].

Comparing ProxemicUI against existing toolkits with the same or similar intended use can

show the improvements over the current state-of-the-art, including the benefits of the

ProxemicUI programming model. Therefore, I conducted a code review study to compare

ProxemicUI to The Proximity toolkit [71] and Microsoft PSI (Platform for Situated

Intelligence) [87]. I chose the Proximity Toolkit because, through my literature review of

systems and tools for proxemics-awareness, it is the closest toolkit in terms of intended

use (an object-oriented toolkit to build proxemic-aware applications) to ProxemicUI and

is commonly used and cited by the research literature. Other toolkits provide support for

the development of proxemic-aware applications, but I did not consider them: Schipor et

al.’s work [99] is not a fully implemented toolkit and only has an online simulation tool to

show its functionalities. Pérez et al.’s work [84][85] has a number of limitations, as

126

discussed in the background chapter (e.g., detecting orientation based on detected faces,

which is not suitable for every scenario such as human-to-device interactions, devices

with no cameras, and device-to-device interactions). I chose Microsoft PSI because it is an

emerging standard for data-driven (machine-learning) approaches to smart environment

applications. It is also being adopted as a research platform by researchers who

conducted the foundational work in proxemics interaction research and developed the

Proximity Toolkit. During the code review, participants walked through two separate C#

program segments that implemented the same application, each using a different toolkit

(ProxemicUI and the Proximity Toolkit). Participants also walked through to the

procedures and code required to use ProxemicUI vs. Microsoft PSI alongside a machine

learning classifier to support proxemic-aware applications.

Objectives for the code review study

My primary research objective for the code review was to receive external developer

feedback regarding different approaches to creating proxemics-aware applications

offered by my framework in comparison to the others. This can be formulated broadly as:

❖ What benefits and drawbacks exist when using ProxemicUI compared to existing

toolkits (specifically Proximity toolkit and Microsoft Psi) to build proxemics-aware

applications?

To achieve this objective, I ask the following research questions:

➢ Is using basic proximity rules to implement proxemic-aware scenarios easier for

developers than approaches offered by existing toolkits? And if so, why?

127

➢ Is using Compound Rules to implement complex scenarios easier for developers

than approaches offered by existing toolkits? And if so, why?

➢ Is using Hybrid Rules to combine a proximity rule with an external event easier for

developers than approaches offered by existing toolkits? And if so, why?

➢ Which toolkit would provide better support for a proxemic-aware machine

learning classifier in terms of generating the training data and feeding the classifier

with proximity data?

➢ In which ways can the framework be improved?

Study design

This section will discuss the study design, including the study population and recruitment

process, the study environment, the study procedure, the data collection and analysis

procedure, and the study results.

Participants

I recruited six groups of three, 6 undergrad (from first to the fourth year) and 12 grad

(master and Ph.D.) students (3 females and 15 males) from the Faculty of Computer

Science at Dalhousie University. To be eligible to participate in the study, all participants

must be familiar with coding in C# (as ProxemicUI API was developed using C#) and Java

as it is similar to C#, an object-oriented programming language. Familiarity with the

Internet of Things and/or mixed/augmented reality is an asset but not strictly required

128

for participation. I chose participants based on their self-declared experience when they

responded to the recruitment notice.

Recruitment

I recruited participants by email announcements through the Computer Science mailing

list (cs-jobs@kil-lsv-2.its.dal.ca). In the recruitment notice, participants were asked to

email their interest to participate to the listed researcher. The participants and researcher

communicated to find an appropriate time for the study.

Informed consent

All participants involved in the study signed an informed consent form (Appendix 5.1).

When participants indicated their interest in participating in the study, I emailed them a

copy of the consent form to ready, sign, and send it back before the study is scheduled.

The informed consent outlined the risks and benefits associated with the study, a

description of the study, the participant’s right to withdraw without consequence (or

losing the compensation), and assurances of confidentiality and anonymity of personal

data.

Compensation

Each participant received CAD 30 for their participation in the study.

Study environment

Due to the COVID-19 pandemic, all sessions conducted online using Microsoft Teams.

During every session, I shared my screen with participants to present study material

129

(presentation slides and source code). I also recorded all sessions, including presentations

and discussions, using Microsoft Teams. As Microsoft Teams allows participants to gain

control of a machine that shares its screen, while I did not introduce this feature to

participants, there was one instance where participants requested control to point at

different parts of the presented source codes during the discussion.

Study Procedure

In the code review study, each group had three 1-hour sessions. Two sessions are

dedicated to comparing ProxemicUI and the Proximity Toolkit, and one session is

dedicated to comparing ProxemicUI and Microsoft PSI. To mitigate learning effects, I

flipped the order of exposure to the toolkits. I started each comparison with a short

overview of each toolkit so participants will know the toolkits (e.g., an overview of

ProxemicUI and the Proximity Toolkit before comparing them). As the code segments

were presented, participants were encouraged to ask questions and ask to review

implementation details or documentation as the walkthrough is taking place. After

introducing each piece of the code segments, I started by giving participants a chance to

comment or discuss any thoughts they have about the two code segments. Then, they

participated in a discussion where I asked them about the pros and cons of the approach

of each toolkit. Every time, I started by asking a different participant to give everyone a

chance to express their opinion before it gets affected by other’s opinions.

130

TABLE 5: LIST OF QUESTIONS ASKED DURING THE SESSIONS TO ANSWER EACH RESEARCH QUESTION

Research questions Related discussion questions

Is using basic proximity rules to

implement proxemic-aware

scenarios easier for developers

than approaches offered by

existing toolkits? And if so, why?

- The Proximity Toolkit creates a relation between two

entities to detect proxemics events where the system

keeps tracking all proxemics attributes looking for a

change. On the other hand, ProxemicUI allows developers

to choose which attributes to check. Which approach do

you think is more sufficient? Explain.

- To detect proxemics events using the Proximity Toolkit,

developers need to create a relation between two entities;

this means that developers will have to create multiple

relations if they want to detect the event between multiple

entities simultaneously. On the other hand, ProxemicUI

allows developers to pass multiple entities in a single rule.

Which approach do you think is more sufficient? Explain.

- The Proximity Toolkit provides developers with proxemic

data, where they have to test these data with their

threshold (e.g., The Proximity Toolkit provides the distance

to developers, then developers have to test this distance

with their threshold). On the other hand, ProxemicUI asks

developers to pass their thresholds (minimum and

maximum), then only fires the event if the distance within

these thresholds. Which approach do you think is more

sufficient? Explain.

- Can you think of a better way to solve these problems?

Is using Compound Rules to

implement complex scenarios

easier for developers than

approaches offered by existing

toolkits? And if so, why?

- When testing multiple proxemics attributes (distance and

orientation) using the Proximity Toolkit, developers need

to listen for two different events. On the other hand, using

the Compound rules in ProxemicUI, developers can

combine both tests in a single rule and only listen for a

single event. Which approach is more sufficient? Explain.

- Can you think of a better way to solve this problem?

Is using Hybrid Rules to combine

a proximity rule with an external

event easier for developers than

approaches offered by existing

toolkits? And if so, why?

- When testing an external event (e.g., UI) with a proxemics

event using the Proximity Toolkit, developers have to write

two handing methods: one is for the external event (where

the system will start to test the proxemics event). The

second and one is for the proxemics event when it is fired

to draw the system response. On the other hand, using

Hybrid rules in ProxemicUI, developers need to call the

external event method as a handling method for the

external event (e.g., the button click) and then write a

single handling method for the Hybrid event. Which

approach is more sufficient?

131

Research questions Related discussion questions

Which toolkit would provide

better support for a proxemic-

aware machine learning

classifier in terms of generating

the training data and feeding the

classifier with proximity data?

- Which toolkit (Microsoft Psi vs. ProxemicUI) do you think is

more suitable to generate training data for machine

learning classifier to support proxemics-aware

applications? Explain.

- If you would integrate one of these toolkits (Microsoft Psi

or ProxemicUI) with a machine learning classifier that

receives high-level proximity data (e.g., the relative

distance), then predict what response to draw, which

toolkit do you think will be more suitable for this task?

Explain.

- If you would integrate one of these toolkits (Microsoft Psi

or ProxemicUI) with a machine learning classifier that

receives raw proximity data (e.g., position and orientation).

The classifier then calculates the high-level proximity data

(e.g., the relative distance) to draw a response, which

toolkit do you think is more suitable to support (by

providing low-level proximity data or calculate high-level

proximity data) the classifier with this task? Explain

In which ways can the

framework be improved?

- For all discussed points above, I asked this question:

Can you think of a better way to solve this problem?

General questions - Which toolkit do you think minimizes the developer’s effort

more?

- Which toolkit provides straightforward steps for

developers to create proxemics applications?

ProxemicUI vs. The Proximity Toolkit

As stated above, both The Proximity Toolkit and ProxemicUI were built with the same

intended use, supporting building proxemics-aware applications. Therefore, during the

code review sessions, participants were exposed to (via “code walkthrough”) two

different C# code segments that implement the same applications (solve the same

problems). Each code uses a different toolkit (either ProxemicUI or The Proximity Toolkit).

I used what I implemented in the proof-of-concept applications (smart home setup

discussed in chapter 6) as a context scenario for this comparison so that participants have

132

a better understanding of what the codes do. This comparison focused on four

comparisons as follows:

1- Testing a single proximity attribute between two entities: to answer the research

question “Is using basic proximity rules to implement proxemic-aware scenarios

easier for developers than approaches offered by existing toolkits? And if so,

why?”

2- Testing a single proximity attribute between more than two entities: to answer

the research question “Is using basic proximity rules to implement proxemic-

aware scenarios easier for developers than approaches offered by existing

toolkits? And if so, why?”

3- Compound testing: to answer the research question “Is using Compound Rules to

implement complex scenarios easier for developers than approaches offered by

existing toolkits? And if so, why?”

4- Hybrid testing: to answer the research question “Is using Hybrid Rules to combine

a proximity rule with an external event easier for developers than approaches

offered by existing toolkits? And if so, why?”

Testing a single proximity attribute between two entities

This test checks a single proximity attribute that can be relative distance, relative

orientation, relative facing direction, absolute position, and absolute orientation. The

code samples show how each toolkit implements the relative distance test between two

entities. The scenario for this test is as follows:

133

When the user gets closer to the tabletop, the system opens the tabletop

interface on the tablet.

To do this test, the Proximity Toolkit creates an object for each entity (“PresenceBase”),

then pairs those entities by creating a “RelationPair” to access the relative proximity

attributes between them. Lastly, through the “RelationPair”, developers would subscribe

to any event (in this example, “OnLocationUpdate”) based on the attribute they want to

test; then, write the handling method for that event. The Proximity Toolkit passes the

values of the tests to the handling method, where developers would do their checks. On

the other hand, ProxemicUI creates entities internally (but can be done manually as well)

when receiving the tracking data through OSC messages. Then, developers can choose

what rule to create according to the attribute they want to test (in this example,

“RelativeDistanceRule”). Developers then add the rule to the “RuleEngine”, subscribe to

“OnEventTrue” and “OnEventFalse” for that rule, and write the handling methods for

those events. Unlike the Proximity Toolkit, ProxemicUI provides developers with the final

results by firing one of two events (“OnEventTrue” and “OnEventFalse”). Figure 41 shows

performing the test using the Proximity Toolkit, and figure 42 shows performing the test

using ProxemicUI.

134

FIGURE 41: TESTING RELATIVE DISTANCE BETWEEN TWO ENTITIES USING THE PROXIMITY TOOLKIT

135

Testing a single proximity attribute between more than two entities

The code samples in this test show how each toolkit implements the relative distance test

between multiple entities. The scenario for this as follows:

The user’s tablet plays as a controller for multiple appliances (in this example,

the TV and the tabletop) in her/his home. When the user gets closer to any

appliance, the system opens the interface for that appliance on the tablet.

The main difference between ProxemicUI and The Proximity toolkit to implement this test

is that ProxemicUI allows developers to include multiple entities in a single test (e.g., one-

to-many). On the other hand, because The Proximity Toolkit allows for one-to-one

relations only, developers need to create multiple “RelationsPairs” for every two entities

they need to test. In addition, with ProxemicUI, developers can retrieve entities easily

using one of the methods in ProxemicUI (e.g., “EntityRetrievalAll”); wherewith The

FIGURE 42: TESTING RELATIVE DISTANCE BETWEEN TWO ENTITIES USING PROXEMICUI

136

Proximity Toolkit, developers would create an object (“PresenceBase”) for each entity.

Figure 43 shows performing the test using the Proximity Toolkit, and figure 44 shows

performing the test using ProxemicUI.

FIGURE 43: TESTING RELATIVE DISTANCE BETWEEN MULTIPLE ENTITIES USING THE PROXIMITY TOOLKIT

137

FIGURE 44: TESTING RELATIVE DISTANCE BETWEEN MULTIPLE ENTITIES USING PROXEMICUI

138

Compound testing

Compound testing can include several scenarios as follow. First, combining two tests for

a single proximity attribute (e.g., relative distance), but each test has different thresholds

or a different set of entities. Second, combining two tests, each for a different proximity

attribute (e.g., one for relative distance and one for relative orientation), where they

might share the same set of entities or have different ones. The scenario for this is:

 The system should play media on the TV only when the user is close to the TV

and facing the TV simultaneously

The main difference between ProxemicUI and The Proximity toolkit to implement this test

is that ProxemicUI can combine two rules into a single one, then listen for the events of

that rule only (e.g., listen for the events of ANDRule). In contrast, The Proximity Toolkit

creates a relation pair between two entities, then listen for two events and check the

results to make sure they both passed. Besides, if the test between more than two

entities, then The Proximity Toolkit would create multiple relation pairs, then listen for

two events of all these relation pairs. Figure 45 shows performing the test using the

Proximity Toolkit, and figure 46 shows performing the test using ProxemicUI.

139

FIGURE 45: COMBINING DISTANCE AND ORIENTATION TESTS USING THE PROXIMITY TOOLKIT

140

Hybrid testing

Hybrid testing integrates any external event (e.g., in this example, the external event is UI

event) with a proximity test (basic or compound proximity test). The scenario for this is:

 When the user touches the play media button on the tablet, the system

checks if the user is within the threshold to the TV, it will play the media

The difference between ProxemicUI and The Proximity Toolkit is that with The Proximity

Toolkit, developers would listen to two different events (the proximity event and the

external event); then check if both events pass to draw the system’s response. This

process involves checking the time for each event to make sure both events happened

simultaneously. In contrast, ProxemicUI uses the “ExternalEvent” method inside the

FIGURE 46: COMBINING DISTANCE AND ORIENTATION TESTS USING PROXEMICUI

141

“HybridRule” as a handling method for any external event, and developers will only listen

for the events from that rule (OnEventTrue or OnEventFalse). With this approach, there

is no need to check if both events happened simultaneously as the “ExternalEvent”

method will test the proximity rule only when it is called. Figure 47 shows performing the

test using the Proximity Toolkit, and figure 48 shows performing the test using

ProxemicUI.

142

FIGURE 47: INTEGRATE UI EVENT WITH PROXIMITY EVENT USING THE PROXIMITY TOOLKIT

143

FIGURE 48: INTEGRATING UI EVENT WITH PROXIMITY EVENT USING PROXEMICUI

144

ProxemicUI vs. Microsoft PSI

While Microsoft PSI and ProxemicUI are both designed to support situated, adaptive, and

responsive smart infrastructure, they support different development paradigms and

different ranges of application. ProxemicUI is an event-driven, rule-based object-oriented

framework that supports the implementation of proxemics-aware applications, while

Microsoft PSI is a data-driven, stream-oriented platform for machine learning applications

in the broader domain of smart environments. It is not appropriate to compare them

based on proxemics interaction recognition due to these differences, but it is still

interesting and important to consider PSI as it could be used to create spatially adaptive

systems. Therefore, I compare both toolkits in terms of how they could be used to train a

machine learning classifier for proxemics events and as a data source. The main goal of

training a machine learning classifier is to have a modal that can answer questions

correctly [114]. A machine learning system consists of five steps: defining the problem

and proposing a solution, constructing the dataset, transforming the data, training the

model, and predictions [28]. I will discuss how constructing the dataset and predictions

are related to comparing ProxemicUI and Microsoft PSI later in this section.

In this comparison, participants were exposed to (via “code walkthrough”) two different

C# code segments; each was implemented with a different toolkit. These code segments

s show the steps required for ProxemicUI and Microsoft Psi to generate training data and

provide the classifier with low-level proximity data (e.g., position and orientation) and

high-level proximity data (e.g., relative distance and orientation). It is important to state

that I am only considering generating training data and providing the classifier with

145

low/high-level proximity data to start prediction. Other steps to train the model (e.g.,

preparing the data samples and training the classifier) were not parts of this study as they

are more related to training the classifier and not generating the proximity data. Besides,

this comparison looks at how straightforward to generate the data using both tools and

not that if the generated data by one tool has a better quality over the other one. In

addition, both toolkits provide a mechanism to combine data coming from two different

sources (ProxemicUI using Hybrid Rule and Microsoft PSI using “Join” operator). While

combining two sources of data is not related to machine learning, it is still worth exploring

how each toolkit performs the combination for proxemic use. The C# code segments for

this comparison show how each toolkit can integrate external events with proximity

events (Hybrid rule). This section will discuss employing both toolkits to support the

machine learning classifier and combine external events with proximity events.

Generating training data

Constructing the dataset consists of four steps: “collect the raw data, identify features

and label sources, select a sampling strategy, and split the data” [28]. In this point of

comparison, I am only focusing on collecting the raw data using both toolkits and

identifying the features and label sources. This would involve receiving the proximity data

from a tracking system, calculating various proximity attributes, testing if proximity

attributes passed or failed, and finally, writing the results into a file to create the dataset.

For the sake of comparison, I used only calculating a single proximity attribute just to

show the steps that we need to take to generate the data. Figures 49 and 50 show a part

of the code to generate training data using Microsoft PSI, and the full code is in appendix

146

1.1. Figure 51 shows the method that would be added to ProxemicUI to generate the

data.

FIGURE 49: PART 1 OF GENERATING THE TRAINING DATA USING MICROSOFT PSI

147

FIGURE 51: PART 2 OF GENERATING THE TRAINING DATA USING MICROSOFT PSI

FIGURE 50: A METHOD TO BE ADDED TO PROXEMICUI TO GENERATE THE TRAINING DATA

148

Providing the machine learning classifier with low-level proximity data

For this point of comparison, I assume that the machine learning classifier is already

trained, and it is time to use the model for prediction. ProxemicUI, at its base functions,

plays as an entity tracker, as it can collect entities’ data from one or more tracking systems

into a single object for each entity with its data. As part of the discussion, I am considering

how an out-of-the-box system like Microsoft PSI can provide the classifier with low-level

proximity data (e.g., ID, position, and orientation) compared to the ProxemicUI

framework. Figure 52 shows a part of the code that feeds the classifier the low-level

FIGURE 52: FEEDING THE CLASSIFIER WITH LOW-LEVEL PROXIMITY DATA USING MICROSOFT PSI

149

proximity data, the full code in appendix 1.2. Figure 53 shows how to access the low-level

proximity data using ProxemicUI.

Providing the machine learning classifier with high-level proximity data

For this point of comparison, I also assume that the machine learning classifier is already

trained, and it is time to use the model for prediction. I am comparing using ProxemicUI

and Microsoft Psi to provide the classifier with high-level proximity data (e.g., the relative

distance between two entities). Each toolkit receives the low-level proximity data and

calculates the high-level proximity data. Then, the high-level proximity data will be

forwarded to the machine learning classifier to start prediction. Figure 54 shows part of

the code on how to generate the high-level proximity data forward them to the classifier,

and the full code is in appendix 1.3. Figure 55 shows the method to be added to

ProxemicUI to forward the data to the classifier.

FIGURE 53: ACCESSING THE LOW-LEVEL PROXIMITY DATA USING PROXEMICUI

150

FIGURE 54: GENERATING THE HIGH-LEVEL PROXIMITY DATA AND FORWARD THEM TO THE CLASSIFIER USING

MICROSOFT PSI

151

Hybrid testing

Hybrid testing integrates any external event (e.g., UI events and system notifications) with

a proximity test (basic or compound proximity test). While this combination is not related

to machine learning, in this point of comparison, I am looking at the two different

mechanisms that each toolkit follows to achieve this combination. I am also looking for

participants point of view on which toolkit achieve this combination better. Figures 56

and 57 show part of the code on how Microsoft PSI performs the test, the full code in

appendix 1.4. Figure 58 shows how ProxemicUI performs the test.

FIGURE 55: A METHOD TO BE ADDED TO PROXEMICUI TO FORWARD THE HIGH-LEVEL PROXIMITY DATA TO THE

CLASSIFIER

FIGURE 56: PART 1 OF MICROSOFT PSI CODE TO COMBINE TWO DATA SOURCE

152

FIGURE 57: PART 2 OF MICROSOFT PSI CODE TO COMBINE TWO DATA SOURCE

153

FIGURE 58: PROXEMICUI CODE TO COMBINE TWO DATA SOURCE

154

Connecting with tracking systems

ProxemicUI has a setup for OSC communications protocol, making it able to connect with

any tracking system. On the other hand, Microsoft PSI has several components to capture

various types of data (e.g., Kinect component and speech recognition component).

However, to connect with unsupported systems (e.g., VIVE trackers), developers would

set up the connection to receive the data. This difference was shown to participants

throughout the comparison when I showed the code metrics. Therefore, I asked them

which approach they prefer: a generic approach such as the OSC communications

protocol setup in ProxemicUI or a built-in component approach such as the Kinect

component in Microsoft PSI. During this discussion, I made it clear that developers might

still need to write a communicator code with the generic approach to capture the data

from the tracking system and pass them to ProxemicUI.

Data collection

During all the code review sessions, screen recordings of explaining the codes and

participants’ discussions were collected using Microsoft Teams.

Analysis method

Qualitative research can be defined as using participant’s textual and verbal input as data

to answer the research questions [20]. Thematic analysis is a common method of

qualitative research analysis methods [21][22], which Braun and Clarke define as

“identifying, analyzing, and reporting patterns (themes) within data”[22]. These themes

represent important aspects of the data that helps to answer the research questions.

155

Identifying themes consists of several steps, including getting familiar with the dataset,

identifying initial codes, generating themes based on the initial codes, reviewing and

revising the generated themes, finalizing the themes, and writing the report [21][22][77].

Inductive thematic analysis is one approach to defining themes in qualitative research,

which is considered a “data-driven” approach. The “data-driven” approach means that

there is a direct connection between the identified themes and the questions asked

during the data collection phase [21][22]. My analysis follows the inductive thematic

approach, where I started by transcribing all video recordings from all sessions. Microsoft

Teams, which I used for recording, saved all recordings automatically to Microsoft Stream.

Microsoft Stream provides an option to auto-transcribe video, which I used as a starting

point for the transcription. Then I walked through the transcription file to compare and

correct the results with videos to ensure all data is correct. Then, I identified eight codes

according to the discussion questions that I asked during the sessions, and then I divided

the transcription accordingly. I used the question as codes because they represent the

eight tasks (discussed earlier) that we are trying to accomplish using each toolkit. Upon

reviewing the dataset in relation to the eight codes, I identified two themes for

ProxemicUI vs. the Proximity Toolkit (flexibility vs. effort) and two themes for ProxemicUI

vs. Microsoft PSI (processing the proximity data in the background vs. at the developer’s

side). By identifying these themes, I was able to understand participants' opinions about

each point of comparison and the reasons behind these opinions. For example, while

most participants preferred to use ProxemicUI to test a single proximity attribute

between more than two entities over The Proximity Toolkit, each group discussed

156

different reasons, with partial overlap. Finally, I reported the data for each theme

including each opinion, how many participants agreed upon it, and listed all the reasons

given for the opinion.

Besides the thematic analysis, I produced some code metrics for the code samples that

were shown to participants during the code review study, as we discussed the related

code sample. Code metrics can be defined as “a set of software measures that provide

developers better insight into the code they are developing”[23]. Metrics such as

maintainability index and cyclomatic complexity allow developers to improve the

quality of their code by identifying parts of the code that may need to be re-

designed. The basic code metrics that I generated from the code samples aim to

give participants an approximate sense of the amount of work required to perform

a specific task using each tool (in terms of lines of code to write, number of objects

to instantiate and manage, number of callback methods that need to be created,

and number of methods to recall). We acknowledge that such metrics say little

about the complexity of the logic within each line of code.

Results

The last phase of conducting a thematic analysis is “producing the report” of the analyzed

data [21][22], including reporting the identified themes and the evidence to support these

themes. The results consist of two main sections, one for each comparison (ProxemicUI

vs. the Proximity Toolkit and ProxemicUI vs. Microsoft PSI). each of these sections has

157

several subsections that represent the tasks we were trying to accomplish in the code

samples using each toolkit. Within each subsection, I will discuss the two themes

(including the evidence to support each theme) I identified for each comparison,

ProxemicUI vs. the Proximity Toolkit (flexibility vs. effort) and ProxemicUI vs. Microsoft

PSI (processing the proximity data in the background vs. at developer’s side). Throughout

the results sections, there are a few incorrect statements that participants reported

during the discussion, which I stated as reported. Each incorrect will be underlined with a

small number at the end of the statement. Then, in Table 11, I listed all of the incorrect

statements and the reasons why they are incorrect.

ProxemicUI vs. The Proximity Toolkit

Testing a single proximity attribute between two entities

The main point of participants’ input can be abstracted to flexibility vs. effort. The

majority of the participants (13 out of 18) preferred ProxemicUI and think that it

minimizes developers' effort more. First, it has a specific and intuitive approach to handle

Questions Proximity Toolkit ProxemicUI No
answer

Which toolkit is more sufficient to
test a single proximity attribute

between two entities

5 13 N/A

Which toolkit is more sufficient to
test a single proximity attribute
between more than two entities

1 16 N/A

one said it is good
for beginners

one said it is good
for experience users

Which toolkit is more sufficient to
test a multiple proximity

attributes

N/A 17 1

Which toolkit is more sufficient to
combine testing proximity

attributes with external events

N/A 18 N/A

TABLE 6: NUMBER OF PARTICIPANTS WHO PREFERRED EACH TOOLKIT ACCORDING TO DIFFERENT KEY QUESTIONS

158

the test. Second, it does the tests in the background, which minimizes coding errors.

Third, it is easier to make changes to a rule (in ProxemicUI) than a method (in The

Proximity Toolkit). Two participants think that both toolkits are equal in minimizing the

effort. Another participant thinks minimizing the effort is different between developers

as each toolkit follows a different approach.

On the other hand, five participants preferred the Proximity Toolkit and think it is more

flexible. First, it allows you to access the proximity data (e.g., the value of relative

distance), then developers will check if it is within thresholds or not1. With the Proximity

Toolkit, developers can see what the handling methods are testing, enabling them to

make changes if they wish. Two participants think that this flexibility allows them to have

multiple tests in the same handling method if they have multiple thresholds. They also

think they would need to create multiple rules with ProxemicUI if they have multiple

thresholds2. Only one participant thinks that flexibility to access the low-level

programming tasks (calculating proximity attributes and checking if they are within

thresholds) is more important than reducing the effort.

TABLE 7: CODE METRICS TO TEST A SINGLE PROXIMITY ATTRIBUTE BETWEEN TWO ENTITIES

Code Metrics The Proximity Toolkit ProxemicUI

Lines of code 19 14

Objects created 3 1

Methods created 1 2

Methods called 1 2

159

Testing a single proximity attribute between more than two entities

The majority of the participants (16 out of 18) preferred the approach that ProxemicUI

follows, and one participant liked the approach that The Proximity Toolkit follows. The

last participant thinks that ProxemicUI is better for experienced developers and The

Proximity Toolkit is better for beginners. The reason behind this is that she thinks

beginners should start with long and detailed code to understand the process they are

doing; then, when they get comfortable, they can move to use the abstracted code. In

contrast, another participant who preferred ProxemicUI thinks that beginners should

start with an abstracted system (e.g., ProxemicUI) because it is easier for them than

dealing with low-level codes and detailed tests.

Sixteen out of eighteen participants think that ProxemicUI minimizes developers’ effort

for many reasons. First, ProxemicUI abstracts most of the stuff that developers need to

do into a single rule (e.g., testing multiple entities and having the test condition “ALL” or

“ANY”), making it more scalable than The Proximity Toolkit. Participants also think that

the complexity of the code will increase as the number of devices increases, making the

use of The Proximity Toolkit good with a small number of devices. P2 said with

ProxemicUI, “you don’t need to think much about scaling, but in The Proximity Toolkit, I

would create another class to manage relations” [P2]. P3 said, “ProxemicUI can do all the

functions that The Proximity Toolkit does in a simpler way, and it can do more”. Two

participants think that ProxemicUI limits you to its functions3, making The Proximity

Toolkit more flexible in terms of testing something that is not already in ProxemicUI. One

of these participants thinks that The Proximity Toolkit would be suitable for research

160

where you can access all details, where ProxemicUI is good if you know what you need to

do and trying to create a final product.

Compound testing

Seventeen out of eighteen participants preferred the use of ProxemicUI. First, it would

reduce/avoid coding errors and is easy to go back and check the code if something went

wrong as everything is in one line (e.g., in the ANDRule). P3 said, “ProxemicUI has a more

natural way of dealing with these kinds of things by using these rules”. Besides, using rules

and thresholds in ProxemicUI relieve developers from getting into low-level programming

details. Two participants think that the rule approach might end up in problems if a

scenario does not have the rule to test it. One participant thinks that combining two

compound rules makes ProxemicUI more flexible and sufficient to use. On the other hand,

one participant would use The Proximity Toolkit when dealing with complex scenarios

because it is more flexible and allowing more control. Even though she believes that The

Proximity Toolkit will increase the burden for developers a bit, she would still use it to

have more control. However, she also believes that the rule approach is easier to use.

TABLE 8: CODE METRICS TO TEST A SINGLE PROXIMITY ATTRIBUTE BETWEEN MORE THAN TWO ENTITIES

Code Metrics The Proximity Toolkit ProxemicUI

Lines of code 40-… 31

Objects created 6-… 3

Methods created 2 3

Methods called 2 3

161

Another participant thinks that the flexibility of The Proximity Toolkit allows doing checks

beyond distance and orientation, which ProxemicUI covers with Hybrid Rule.

Orientation tests

One of the interesting points that we looked at while discussing the compound test above

is how each toolkit tests orientation. The Proximity Toolkit provides developers with two

types of values regarding the relative orientation (e.g., double for the angle between two

entities and true/false if A is facing B); more details are in [71]. In both cases, developers

would check these values at their end to draw system responses accordingly. On the other

hand, ProxemicUI receives a threshold (in degrees) then checks if entities are facing each

other within this threshold or not. Participants appointed the advantages of each

approach: the threshold in ProxemicUI makes it more flexible in dealing with, where The

Proximity Toolkit might provide more accurate measure if needed (e.g., if A is facing B or

angle between two entities). Three participants think that ProxemicUI can incorporate

the orientation features in The Proximity Toolkit to implement proxemics-aware

applications even easier. One of those participants stated that having the threshold

TABLE 9: CODE METRICS TO TEST MULTIPLE PROXIMITY ATTRIBUTES

Code Metrics The Proximity Toolkit ProxemicUI

Lines of code 46 23

Objects created 3 1

Methods created 2 2

Methods called 2 2

162

requires thinking about how to implement the function. Another two participants suggest

using The Proximity Toolkit with fewer entities and ProxemicUI with more entities.

Hybrid Test

One participant thinks that ProxemicUI is clearer and easier than The Proximity Toolkit,

but its logic became more complex. The rest of the participants (17 out of 18) preferred

ProxemicUI. First, with ProxemicUI, there is no need to check when both events occurred;

the proximity rule will be tested automatically when the external event has occurred,

which reduces the complexity of the code. ProxemicUI allows defining extended rules

inside the “HybridRule” (e.g., CompoundRule). ProxemicUI abstracts what The Proximity

Toolkit does, which provides a straightforward and well-structured code. One participant

suggested that we can use The Proximity Toolkit to set up, but when everything is working

perfectly, we can use ProxemicUI. She also suggested that The Proximity Toolkit is suitable

for beginners to see all the steps, and ProxemicUI is ideal for advanced developers. In

contrast, another participant thinks ProxemicUI would be ideal for beginners because it

is easy to use and less prone to errors. One participant pointed a disadvantage of the rule

approach: developers would need to know what they are doing before they start because

they can not figure things out on the way. However, she also thinks that it will be a

massive advantage if developers know how the system works. Lastly, one participant

suggested that if there is a way to override the “ExternalEvent” method to allow

developers to more things when the external event has occurred.

163

Processing proximity data internally vs. at the developer’s side

Flexibility is one of the main points discussed during the sessions (e.g., getting the value

and doing the check with The Proximity Toolkit vs. having the final results with

ProxemicUI). Therefore, I asked participants if they prefer to do the check themselves or

for the system to do it for them. Seventeen out of eighteen participants preferred the

ProxemicUI’s approach, where the system does the test and provides the final results.

They liked ProxemicUI for many reasons. First, developers will focus on the system

response they want to draw instead of wasting their time dealing with low-level details.

Second, modifying rules is easier and straightforward than modifying methods. On the

other hand, only one participant preferred The Proximity Toolkit’s approach with no given

reason behind his choice.

TABLE 10: CODE METRICS TO COMBINE EXTERNAL EVENTS WITH PROXIMITY EVENTS

Code Metrics The Proximity Toolkit ProxemicUI

Lines of code 37 24

Objects created 4 2

Methods created 2 2

Methods called 2 2

Note Statement Why it is not correct

1 ProxemicUI is not flexible because
developer cannot access the values of high-

level proximity data

The event object in ProxemicUI can be used
to retrieve the values of the high-level

proximity data

2 With ProxemicUI, developers would need
to create multiple rules with ProxemicUI if

they have multiple thresholds

Participants stated this because they were
not exposed to the CompoundRules et

3 ProxemicUI limits you to its functions,
making The Proximity Toolkit more flexible

in terms of testing something that is not
already in ProxemicUI

One of the extension points in ProxemicUI is
the ability to define/create new set rules,

which allows developers to add more
functionality to ProxemicUI.

TABLE 11: LIST OF INCORRECT STATEMENTS THAT PARTICIPANTS REPORTED AND THE REASON WHEY THEY ARE NOT CORRECT

164

ProxemicUI vs. Microsoft PSI

For this comparison, I considered using the VIVE trackers as a source for proximity data

because we can track any entities (humans or objects) by attaching a tracker to them. To

use the VIVE trackers, I wrote a communicator code that uses OSC communication

protocol as a bridge to transfer proximity data from the tracking system to both Microsoft

PSI and ProxemicUI. Because ProxemicUI already has the setup to connect with any

tracking system through OSC, there is no need to do the OSC setup at the developer’s

side. On the other hand, because Microsoft PSI does not support the OSC communication,

we need to add the OSC setup at the developer’s side. However, when I showed the code

segments to participants, we also discussed how much effort to use one of PSI’s

components (e.g., Microsoft Kinect component) to receive the tracking data. The OSC

setup for Microsoft PSI requires defining and starting the OSC server; writing the OSC

handling method that the system will call when it receives a message; breaking the

messages down to define different attributes before start testing proximity data. I will

discuss how this affects the code in different sections below. Before I go into more details,

I want to make it clear that I compared both toolkits in the context of proxemic awareness

use, and the results might not be applicable in other contexts. For example, Microsoft PSI

is a more generic framework that is not limited to support proxemic awareness.

Therefore, the data reported in this section is for supporting proxemic awareness that

might not be applicable for other domains.

165

Generating training data

The main difference here is handling proximity data in the background vs. at the

developer’s side. Generally, all participants preferred using ProxemicUI, but each toolkit

has its pros and cons. ProxemicUI performs the same task more easily and with fewer

lines of code; as P3 said: “ProxemicUI is right on the point”. These tasks are done internally

in ProxemicUI, including processing the OSC messages, store the proximity data, calculate

high-level proximity data to generate the final results. Wherein Microsoft PSI, developers

would do all of these tasks manually. However, we will have fewer tasks (no OSC setup)

with Microsoft PSI if we used one of its components (e.g., Microsoft Kinect) to capture

the tracking data. Even with using the Kinect, all participants think ProxemicUI would be

better as developers would still need to calculate the high-level proximity data. The

reason behind this difference is ProxemicUI intended to support the development of

proxemic-aware applications, where Microsoft PSI is a more generic framework with no

specifications for proxemic awareness support. One participant suggested that

ProxemicUI can be a good tool for beginners.

Given that everything is done at the developer's side with Microsoft PSI, four participants

think it would make Microsoft PSI more flexible. This flexibility allows developers to

TABLE 12: METRICS TO GENERATE TRAINING DATA

Code Metrics Microsoft Psi
(with OSC)

Microsoft Psi
(without OSC)

ProxemicUI

Lines of code 158 59 7
Objects created 8- … 7 2

Methods created 4 3 0

Methods called 4 3 0

166

customize the data more according to their needs. One participant suggested adding this

customization to ProxemicUI by passing the high-level proximity data's value and not only

the final pass or fail. This flexibility also allows them to add non-proxemic-related data.

They also think Microsoft PSI more complex because it is more open and large scale; as

P3 said: “Microsoft PSI seems a bit more robust for streaming data process especially

when it gets very complicated”.

Providing the machine learning classifier with low-level proximity data

When it comes to providing low-level proximity data, there is no complex process

involved; each system will receive the tracking data, process them, then forward the data

according to the required format to the machine learning classifier. One participant thinks

they are both equal in providing the low-level data. Sixteen participants preferred to use

ProxemicUI for this task. First, there is no need to go into low-level programming tasks to

process the data, which is done internally; as P8 and P9 said, “ProxemicUI abstracts a lot

of things that I need to do through Microsoft PSI”. Second, the data in ProxemicUI is

already processed and can be accessed through different methods based on different

attributes (e.g., shape or type). Third, no need to set up the OSC connection as it is built-

in; this makes ProxemicUI work with any tracking system and not limited to the

component inside Microsoft PSI. However, only one participant preferred to use

TABLE 13: CODE METRICS TO FEED THE CLASSIFIER LOW-LEVEL PROXIMITY DATA

Code Metrics Microsoft Psi ProxemicUI
Lines of code 112 5-9

Objects created 7- … 4

Methods created 1 0
Methods called 1 1-5

167

Microsoft PSI to provide low-level data because it is more flexible to add data other than

what is supported by ProxemicUI.

Providing the machine learning classifier with high-level proximity data

For this task, we are not only processing the incoming data but also calculating the high-

level proximity data, which will expand as the number of proximity attributes and

thresholds test increases. One participant did not provide any input in this regard, but

seventeen participants preferred to use ProxemicUI for this task. First, ProxemicUI

abstracts a lot of what Microsoft PSI is doing (e.g., calculating the proximity attributes),

which is less prone to coding errors. Second, ProxemicUI is specific to what we are looking

for (proxemics data), and it is built for that. One participant thinks ProxemicUI is a good

tool for beginner and intermediate developers, and Microsoft PSI can be helpful for more

advanced developers. However, one participant suggested that Microsoft PSI might be

useful in some situations when there is a need to add a final level of tuning to the data.

Another participant suggested that calculating the high-level proximity data at the

developer side adds more flexibility to a different type of testing (e.g., calculate the

distance based on an area, not minimum and maximum thresholds). Two participants

TABLE 14: CODE METRICS TO FEED THE CLASSIFIER HIGH-LEVEL PROXIMITY DATA

Code Metrics Microsoft Psi
(with OSC)

Microsoft Psi
(without OSC)

ProxemicUI

Lines of code 138 39 6
Objects created 7- … 6 2

Methods created 3 2 0
Methods called 3 2 0

168

think that overall, Microsoft PSI is more flexible as developers can access all low-level

programming details.

Hybrid testing

This type of testing aims to provide developers with a straightforward feature to

simultaneously draw system responses based on proximity events and external events.

Fifteen participants preferred using the HybridRule in ProxemicUI over the Join operator

in Microsoft PSI. First, with ProxemicUI, there is no need to initialize the two streams,

which might be confusing to deal with, especially when joining them with the Join

operator. HybridRule relieves developers from writing different methods to calculate

proximity attributes, making ProxemicUI less prone to errors. In addition, with the rule

approach, developers would need to pass the arguments only with no need to worry

about processing data streams, making the rules easy, straightforward, and more

sufficient in most cases. One participant believes that, with Microsoft PSI, developers

would implement more methods as the number of proximity attributes that we need to

test increases; therefore, the code size will grow as developers would need to write more

formulas, resulting in increasing the execution time. One participant understands that it

will be a hassle to calculate different proximity attributes using Microsoft PSI, but he still

TABLE 15: CODE METRICS TO COMBINE EXTERNAL EVENTS WITH PROXIMITY EVENTS

Code Metrics Microsoft Psi
(with OSC)

Microsoft Psi
(without OSC)

ProxemicUI

Lines of code 155 74 49
Objects created 10- … 8 2

Methods created 4 4 3
Methods called 4 4 3

169

prefers to use it as it is more readable and understandable. Two participants have no

preference as to which toolkit to use.

Connecting with tracking systems

ProxemicUI has a setup for OSC communications protocol, making it able to connect with

any tracking system. On the other hand, Microsoft PSI has several components to capture

various types of data (e.g., Kinect component and speech recognition component).

However, to connect with unsupported systems (e.g., VIVE trackers), developers would

set up the connection to receive the data. I discussed this point with participants, and the

majority of participants (14 out of 18) preferred the broader approach that ProxemicUI

takes, which does not limit developers to use a specific system. However, one participant

thinks that it all comes to what type of data the OSC messages support and if developers

can transfer their data using OSC. The OSC allows to include any type of data in the

messages. Another participant thinks that if we are building a system using Microsoft

Questions Microsoft PSI ProxemicUI Equal No answer

Which toolkit is more suitable to
generate training data for a
machine learning classifier

N/A 18 N/A N/A

Which toolkit is more suitable to
feed the machine learning

classifier low-level proximity data

1 16 1 N/A

Which toolkit is more suitable to
feed the machine learning

classifier high-level proximity
data

N/A 17 N/A 1

Which toolkit is more suitable to
combine testing proximity

attributes with external events

1 15 2 N/A

TABLE 16: NUMBER OF PARTICIPANTS WHO PREFERRED EACH TOOLKIT ACCORDING TO DIFFERENT KEY QUESTIONS

170

environment with Microsoft products, then Microsoft PSI will be ideal. Four other

participants did not have comments on this.

Summary of the outcomes

ProxemicUI vs. The Proximity Toolkit

Overall, participants think ProxemicUI would be more suitable to support the

implementation of proxemic-aware applications for many reasons. First, ProxemicUI

abstracts most of the low-level programming details by performing the proximity tests in

the background. Unlike The Proximity toolkit, which allows for creating one-to-one

relations, ProxemicUI allows adding multiple entities into a single rule using one-to-many

or many-to-many; besides, using the test condition (ALL/ANY) makes ProxemicUI more

scalable. ProxemicUI also allows combining two tests (rules) into a single one (e.g., using

ANDRule), where developers would check the results of one event (the ANDRule), which

is easier than dealing with more details in the handling methods with The Proximity

Toolkit. ProxemicUI also allows combining external events with proximity events by using

HybridRule. With the HybridRule, developers can define extended rules as well (e.g.,

CompoundRule). Lastly, modifying rules is easier and straightforward than modifying

methods.

On the other hand, The Proximity Toolkit provides some flexibility where developers can

have more control over the tests. However, this flexibility would make the code more

complex as the number of entities/tests increases. Unlike ProxemicUI, which provides a

171

single threshold for relative orientation, The Proximity Toolkit provides a set of specific

attributes regarding the relative orientation (e.g., true/false if A is facing B).

ProxemicUI vs. Microsoft PSI

Because ProxemicUI was built to support proxemic awareness, it is more suitable to

generate training data than Microsoft PSI, which does all the tests at the developer’s side.

However, few participants think that they can customize the data more with Microsoft

PSI as they implement the test at the developer's side compared to the built-in method

in ProxemicUI. ProxemicUI can gain this flexibility by passing the values of the tests to the

developers and not only the final results (pass or fail). When combining proximity events

with external events, HybridRule relieves developers from writing different methods to

calculate proximity attributes, making ProxemicUI less prone to errors. In addition, with

the rule approach, developers would need to pass the arguments only with no need to

worry about processing data streams, making the rules easy, straightforward, and more

sufficient in most cases. Finally, have an OSC protocol setup in ProxemicUI makes a

broader system that can connect with any tracking system in terms of proxemic

awareness use.

Required refinements to the framework

When supporting the machine learning classifier, ProxemicUI provides a built-in function

to generate the training data to a file or forward the data to the classifier. However,

participants suggested that it would be sufficient to pass the values back to the

developers and let them customize the data as they want. Currently, Rules in ProxemicUI

172

notify developers of the final results only (pass/fail). As a refinement to the framework, I

will pass the test values to developers along with other arguments.

Limitations of code review

In this section, I will discuss the limitation of setting up and running the code review study.

I was planning to generate the code segments for the Proximity Toolkit by implementing

the same scenario I used for ProxemicUI (the smart home scenario). Therefore, I

downloaded the source code project for the toolkit from the project website [50], built

the project to generate the setup installation file, and installed the toolkit. To accomplish

this, I followed the available How-To documentation on the project website, including

videos and textual documentation. Then, I started the server, where I chose the tracking

system (Microsoft Kinect) to load with the server start-up. After this, I am supposed to

get the server setup window, but the toolkit froze at this point and did not show any error

messages. I reviewed the documentation on the website again but could not find any

more data regarding this issue. When I contacted the toolkit authors, they stated that the

codebase does not work anymore as it depends on tracking libraries that are no longer

compatible. Therefore, I switched my plan to use the source code of an existing system

that uses the Proximity toolkit and is similar to the smart home setup I am using for

ProxemicUI. I tried to get the source code of the Proxemic-Aware Controls [64] from the

same group as a toy example to show how to use the toolkit but did not get any response.

Because I was not able to get the Proximity Toolkit running and could not get the source

code of an existing application that uses the Proximity Toolkit, I wrote the codes based on

173

my understanding of the toolkit. I generated these Code segments according to the

authors' documentation available in their paper [71]. The paper provides a demonstrative

scenario that explains step-by-step how to implement the scenario using the toolkit. I

followed these steps to generate the code that I presented to my participants.

For Microsoft PSI, I was also trying to look at how existing projects use the toolkit, as their

website provides a list of projects that uses the Microsoft PSI. Unfortunately, all projects

were ongoing projects, and there was no available documentation on how Microsoft PSI

is being used by these projects. Therefore, I wrote the code segments based on my

understanding of the available documentation in [87] and sample applications in [96]. The

available documentations have steps to show how to use different operators, including

code snippets. The sample applications provide how an operator is being used in the

context of an application. Therefore, both code segments for Microsoft PSI and The

Proximity Toolkit were generated based on my understanding of the tools. The

comparison between ProxemicUI and Microsoft PSI was limited to the use of proxemic

awareness, which might not be applicable to other contexts as Microsoft PSI is a more

generic toolkit. Lastly, to have more accurate measures about how each toolkit performs,

all toolkits should be used by external developers. Unfortunately, my participants did not

have a hands-on experience due to the restriction of COVID-19, given that I planned a

hackathon user study.

174

Discussion

One of the main goals of developing a framework or a toolkit is to add new functionalities

or ease existing ones to support the development of applications in certain domains.

These new functionalities should not take developers away from their main task (building

the application) to dealing with low-level programing tasks that the toolkit requires to use

these functionalities. While the Proximity Toolkit provides developers with some data

about proximity relations between two entities where developers would do the check at

their side, ProxemicUI encapsulates these tasks in rules. While the flexibility of the

Proximity Toolkit is present in the handling method where developers retrieve the

proximity data to process them, ProxemicUI provides flexibility in the rules. In these rules,

developers can test as many entities as they wish by using different types of tests (one-

to-one, one-to-many, many-to-many). Developers also can specify to apply the rule to all

entities or just a subset using the test condition (ALL/ANY). Such rule flexibility is

important for toolkits, especially if scalability plays an essential role in the new system. In

addition, with HybridRule, developers would keep track of a single object (in this case, it

is HybridRule) instead of two objects (the proximity rule and the external event). The

HybridRule also allows extending rules by defining a CompoundRule inside it, which adds

to the rule flexibilities in ProxemicUI.

One of the main steps of building a machine learning classifier is to train it, which requires

a training dataset. In many cases, there are no available datasets that can be used for

training, which forces developers to collect the dataset themselves. Collecting a dataset

175

can be a really hard task, especially if there are no resources to help with the collection.

As ProxemicUI was built to support proxemic awareness, it can be more suitable to train

a proxemic-aware classifier over other systems that don’t support proxemic awareness

(e.g., Microsoft PSI). The same concept can also be applied to feeding proximity data to

the classifier during the prediction phase. However, when training a proxemic-aware

classifier, it is more suitable to provide the proximity data to developers where they can

format the dataset as they wish over having built-in functions that write the data. While

the current implementation of ProxemicUI provides only the final results (pass/fail),

which does not include the proximity data, the event objects can be used to pass these

values as well.

Summary

This chapter discussed a code review study that consists of two parts. First we compared

ProxemicUI with the Proximity Toolkit, to compare how each tool can support building

proxemic-aware applications. Second, we compared ProxemicUI with Microsoft PSI to

compare how each tool can support train/feed data to a proxemic-aware classifier. The

chapter also discussed the outcomes of the code review study, including a set of

refinements to ProxemicUI. For example, most participants preferred using ProxemicUI

over the Proximity Toolkit to build proxemic-aware applications as it abstracts most of

the low-level programming details by testing in the background and using the rules in

ProxemicUI. Besides, while the Proximity toolkit provides some flexibility through passing

the high-level proximity data to developers and providing a set of specific attributes

176

regarding the orientation, ProxemicUI’s event model and rule hierarchy are extensible

and can be used to provide such features. In addition, while most participants preferred

using ProxemicUI over Microsoft PSI to support building a proxemic-aware classifier,

some participants believe that Microsoft PSI is more customizable when generating

training data. However, ProxemicUI can achieve this customization using the event model

to pass the proximity data to the developers. The main refinements to ProxemicUI that

the code review study generated are to pass the high-level proximity data to developers

using the event model and provide additional specific attributes to developers regarding

the relative orientation between entities. While the code review study provided insights

into how developers feel about different approaches that each tool follows, the next

chapter (chapter 8) discusses the process of integrating ProxemicUI into another system.

177

Chapter 8: Evaluating ProxemicUI through

the integration into Story CreatAR

One evaluation technique through demonstration is Case Studies that demonstrate what

the toolkit can do [65]. This demonstration might involve using the toolkit with different

projects similar to the iStuff toolkit [12]. Employing ProxemicUI with other systems allows

me to show its range of use and explore additional requirements, especially when it is

being used in a different context (e.g., VR/AR). Therefore, I integrated ProxemicUI into

Story CreatAR [105], which is an author-facing tool to create VR/AR stories that can be

deployed in different environments. This integration will provide evidence that external

developers would be able to use ProxemicUI to support the implementation of their

system. It will also provide evidence on how end-users might benefit from using

ProxemicUI functionalities through interacting with other systems (in my case, the other

system is Story CreatAR). This chapter will give a brief overview of Story CreatAR. Then it

will discuss the process of evaluating ProxemicUI through its integration into Story

CreatAR. This work was done with co-investigators who contributed in building the Story

CreatAR, integrating ProxemicUI into Story CreatAR, and running the study with the end-

users.

178

Story CreatAR

As stated before, Story CreatAR is an authoring tool that allows authors to create stories

in AR/VR. To create the story, authors can use an existing map or upload a new map of an

environment to Story CreatAR. Authors start creating their story by adding story details

(title/author) and story elements, consisting of avatars, 3D audio, and other objects (e.g.,

table, painting, cat). In addition, there is the option to use Groups that allow authors to

group story elements that will be assigned similar spatial placements, or simply to

categorize story elements. For example, suppose an author wants all the protagonists to

be in an open area. In that case, s/he can create a group called "Protagonists", add all the

protagonists to it, and give it the spatial attribute “open area”. Using the tool, story

elements and groups can be placed within an environment according to space syntax

characteristics [108] and proxemics rules.

Objectives for the integration with Story CreatAR

Our primary research objective for the Story CreatAR study (the ethics application is in

appendix 7 and the approval letter is in appendix 8) is to assess how external developers

will use/benefit from the ProxemicUI framework when developing proxemics-aware

FIGURE 59: LEFT: SPECIFYING DIFFERENT DETAILS ABOUT THE STORY, RIGHT: CHOOSING AN OBJECT TO ADD IT TO THE

STORY

179

applications. In addition, we want to assess how well ProxemicUI can be integrated into

a platform used by end-users (in this case, authors of augmented and virtual reality

stories). To achieve this objective, we ask the following research questions about

ProxemicUI’s integration into Story CreatAR:

1- What kinds of difficulties do developers face when integrating ProxemicUI into

Story CreatAR? What was done to overcome these issues?

2- What features of ProxemicUI were deemed to be most useful by the developers

for Story CreatAR? What features were less useful in this context?

3- How can the framework be improved to better support integration?

We also pose these research questions about indirect use of ProxemicUI through the

Story CreatAR tool and existing proximity events in graphs of stories or their scrips:

1- What types of proxemic rules do the end-users use or express in their

stories/graphs?

2- How many rules do the end-users use or express relative to the number of events

in the stories?

3- What Type of compound rules exists in end-users’ stories and graphs?

Story CreatAR utilizes ProxemicUI for interaction, which triggers actions that progress the

story. The triggers can be in the form of relative distance, relative orientation, or a

combination. An example of a rule involving relative distance is when the player walks

within 2m of an avatar; then the avatar starts talking to the player. Another example

involving relative orientation is when the player faces an avatar, then the avatar will turn

to look at the player. These examples can be used as independent events or combined as

180

a single event using the Compound Rules that ProxemicUI supports. By using Story

CreatAR in this study, I evaluated ProxemicUI in two different ways: Integrating

ProxemicUI into a larger system and Indirect use of ProxemicUI (through the Story CreatAR

tool).

Integration effort of ProxemicUI into Story CreatAR

Integrating ProxemicUI into a larger system is an important validation step for software

frameworks that, by definition, are designed to provide a specific feature set or technical

capability through adaptation to different application contexts. Therefore, integrating

ProxemicUI into Story CreatAR is a good example of this validation step.

Study design

This section will discuss the study design of the integration process of ProxemicUI into

Story CreatAR. It will include the study population, the informed consent, the study

environment, the study procedure, the data collection, and the analysis method.

Participants

Participants for the integration process of ProxemicUI into Story CreatAR are five students

(three grads and two undergrads) from the Faculty of Computer Science at Dalhousie

University. There was no recruitment as all participants are involved in the development

of Story CreatAR. I also took part in this process as well. I will refer to those five individuals

as the “integration team”.

181

Informed consent

All participants involved in the study signed an informed consent form (Appendix 5.2). I

emailed them a copy of the consent form to read, sign, and send it back before starting

the study. The informed consent outlined the risks and benefits associated with the study,

a description of the study, the participant’s right to choose to participate or not, the

participant’s right to withdraw without consequence (or losing the ability to participate

in the Story CreatAR research project), assurances of confidentiality and anonymity of

personal data, and assurances of not using their data in the analysis if they chose to

withdraw from the study.

Compensation

Participation in this study is voluntary, and there are no compensations.

Study environment

For the integration process, because Story CreatAR was built using Unity (a real-time

development platform to build interactive content)[118], the integration team used Unity

to integrate ProxemicUI into Story CreatAR. Documentation about the integration process

was collected using a shared file in gitbook, accessible by all integration team members.

All collaboration and discussion meetings are done through Microsoft Team.

Study Procedure

Systems integration is a common task involving the composition of components and

subsystems and their specialization to support a specific context of use. Object-oriented

frameworks like ProxemicUI are intentionally designed for integration: they provide basic

182

functionality that requires specialization to be used. The integration effort will include

the following aspects:

1- Defining a software build that compiles Story CreatAR and ProxemicUI.

2- Specializing ProxemicUI classes to support Story CreatAR features.

3- Designing user interface elements that expose ProxemicUI capabilities in Story

CreatAR.

4- Writing the code that translates user interface element values into proxemics

rules.

5- Writing the code that triggers interaction events in VR based on the proxemics

rules.

6- Testing, debugging, and refactoring (improving code structure and organization).

In addition, participants proposed and discussed ways to modify and improve ProxemicUI

to further benefit the development of Story CreatAR. Some of these improvements were

proposed in an unstructured way through the development process and some others

during the final interview with developers.

The study started with a one-hour introductory session, where I explained the different

features of ProxemicUI. To accomplish this, I used two toy examples that were

implemented using Unity. One of the developers implemented the first example, which

moves two boxes next to each other while indicating if they are within thresholds by

changing the color of a ball in the scene. The second example I implemented rotates four

boxes around a center point in the middle and indicates when a box is facing the center

by printing on the screen which box is facing the center. Each developer then worked

183

independently where I was available throughout the study for any questions or issues

encountered. The introductory session was recorded and used by developers as a

reference. They also have access to the source code and examples of how to use the

framework. While five developers developed Story CreatAR, only three of them worked

with ProxemicUI. One of these three developers did not directly code using ProxemicUI

but fixed some bugs of the code that uses ProxemicUI and implemented part of the stories

using the interface that uses ProxemicUI as well. Therefore, at the end of the study, I

conducted 30-minutes interviews with the two developers who worked with ProxemicUI.

During the 30-minutes interviews, I asked the following questions:

1- What positive experiences or outcomes have you had when using the framework?
Explain.

2- What negative experiences or outcomes have you had when using the
framework? Explain.

3- What specific issues, concerns, or problems have you faced when using the
framework?

4- How significant are the issues and concerns you have with the framework?

5- If you could choose a feature to add to the framework, what would it be? Why?

6- Are there any other ways you think the framework can be improved?

7- Can you think of a scenario where we can employ the use of ProxemicUI, other
than Story CreatAR?

8- Is there anything else you want to add about the framework?

Data collection

I created a shared document accessible by the integration team and me to keep track of

the work required to integrate ProxemicUI into Story CreatAR. This includes decisions that

were made and why we chose them, issues encountered, pitfalls faced and how we

addressed them, source code, and ideas for modifications. The document followed a

184

journal format, wherein each entry we provide a date and classification of the entry (e.g.,

who made the note, date, issue, decision). I collected a screen recording of the

introductory session when I explained the different features of ProxemicUI and the

individual meetings with each developer at the end of the study. I also collected a video

demo and a report about how ProxemicUI is being used. Finally, I also collected the source

code history during the study and unstructured discussion through slack chats.

Analysis method

For my analysis, I am following the same approach I discussed in chapter 7 that is thematic

analysis [21][22][77]. I started by transcribing video recordings from the interviews, taking

notes of coding behaviors from source code history, notes from the interface design,

notes from the journal file, and notes from slack chats. I grouped these notes and

transcriptions into different groups to create my initial codes. Then I reviewed these

groups to create my themes, where I identified six themes. Finally, I reported the results

according to these themes, as I will discuss in the next section.

Results

This section discusses the result of the integration effort of ProxemicUI into Story

CreatAR. The section is organized according to the six themes: ProxemicUI in use,

unexpected use of ProxemicUI, issues while using ProxemicUI, additional features, future

expansions, and use case scenarios. In this section, I will refer to developers as D1, D2,

and D3.

185

ProxemicUI in use

• The OSC communicator code: the first step developers took was to write the OSC

communicator code that captures the tracking data and sends them to

ProxemicUI. In this case, Unity was used as a tracking system where the OSC

communicator code captures the 3D tracking data of existing objects and sends

them to ProxemicUI. D1 wrote the OSC communicator code, and he reported that

he likes how generic the OSC messages are and found that it worked well to

capture data from trackers to a central place like ProxemicUI. He stated that “I

never thought that a Unity object could be used as a tracker, but we send the OSC,

and it became a tracker”; “Everything can send its position and orientation

through OSC can be used as a tracker”. He also thinks that employing OSC protocol

FIGURE 60: DEVELOPERS' OSC COMMUNICATOR CODE

186

to receive the tracking data demonstrates a real strength of ProxemicUI to

connecting with multiple trackers and not only Unity. Figure 60 shows the OSC

communicator code that D1 wrote.

• Implementing the proximity rules: D2 created an interface that allows end-users

to define rules based on their requirements. Four rules were added to the

interface: RelativeDistanceRule, IsFacing, AND, and OR rules. The AND and OR

A)

C)

B)

FIGURE 61: A) MAIN INTERFACE TO CREATE A PROXIMITY RULE IN STORY CREATAR, B) CREATING

RELATIVEDISTANCE RULE, C) CREATING ISFACING RULE

187

rules were not used in the end-users approach due to some bugs with Story

CreatAR that could not be fixed on time before starting the end-user experience.

Therefore, the Rule interface allows end-users to create two types of rules:

RelativeDistanceRule, IsFacingRule. Both developers think that the rules in

ProxemicUI are very intuitive as they exactly tell what they are going to test. D2

likes how ProxemicUI combines two rules into one using CompoundRule, allowing

her to test relative distance and orientation at once. Figure 61 shows the

interfaces to create RelativeDistanceRule and IsFacingRule.

• Saving the rules: when a story is created in Story CreatAR, it will be saved to be

experienced at different times. Developers of Story CreatAR store all story

settings, including the created proximity rules, in a JSON file (JSON file is a file that

uses JavaScript Object Notation to store data). When the story is played again,

Story CreatAR retrieves all settings, including the proximity rules to experience the

story.

188

• Writing the handling methods: both rules were used to eavesdropping or

addressing the player by a non-player character, giving the end-user the option to

trigger the eavesdropping when the player is within distance or facing the player

the conversation. Figure 62 shows examples of the two handling methods for

OnEventTrue and OnEventFalse to start or stop eavesdropping.

Unexpected use of ProxemicUI

• Creating multiple rules: one developer created a rule for each test between the

player and every non-player character resulting in subscribing to multiple events

and creating multiple handing methods. This can be accomplished by creating a

single rule and apply it for all entities using the test condition (ANY/ALL).

FIGURE 62: ONEVENTTRUE AND ONEVENTFALSE HANDLING METHODS TO START EAVESDROPPING TO A CONVERSATION

189

• Using proximity events: initially, ProxemicUI v1 has only a single event for each

rule (OnEvent) that would be fired when the test passes. D2 stated that using a

single event was confusing as she was not sure how to check when the event is

true or false. To overcome this issue, she created the basic proximity rule then

applied the NOTRule to the basic proximity rule to get notified when the rule is

not true. I updated ProxemicUI v1, and I added the two events for each rule

(OnEventTrue and OnEventFalse) so that the developer would be notified when

the event is true and false. D2 worked with both versions and thinks that the new

update makes more sense in responding to the rule’s status (true/false). However,

while she used both OnEventTrue and OnEventFalse for the relative distance rule,

she is still following the same approach to detect when the player is not facing a

conversation. She created IsFacingRule then applied the NOTRule to it to detect

the “not facing condition”. This can be achieved by subscribing to OnEventFalse.

Therefore, the same IsFacingRule can be created where the OnEventTrue can be

used to detect the “facing condition” and OnEventFalse” to detect the “not facing

condition. However, the developer is still using the NOTRule to detect the “not

facing condition.

Issues while using ProxemicUI

• Multi-threading in Unity: As discussed in chapter 5, the RuleEngine in ProxemicUI

has a separate task [113] that is continuously running in the background to test all

rules in the system. D1 reported that there was an incompatibility between

ProxemicUI and Unity with testing the rules that is because Unity is not thread-

190

safe. With Unity, developers can create their threads to perform tasks in the

background. Still, these threads cannot interact with Unity’s main thread [115].

D1 worked around this issue by testing the rule directly inside Unity’s update

method, seen in figure 63 up. He thinks that it is not a major issue, but it is an

obstacle that should not be there. However, this approach is inefficient as the

RuleEngine does a couple of checks (will be discussed in the next point) before

performing the test to ensure all arguments are available in the system, which I

don’t want to involve the developer with to make the implementation

straightforward. To overcome this issue, I tried some existing solutions, such as

using the Unity job system [117][52] and calling the RuleEngine from a different

thread [119] but could not get it working with these approaches. Therefore, I

added the TestRunner, a public method in the RuleEngine, that needs to be added

to Unity’s update method to perform the test. An example of how a developer

would use it is in figure 63 down.

• Not existing entities when testing the rules: in ProxemicUI, each rule has

references to the entities (only entity’s ID) to be tested in that rule. There was an

instance where the entities in the rule do not exist in ProxemicUI. For example,

FIGURE 63: UP: HOW A DEVELOPER OVERCOME THE MULTITHREADING ISSUE IN UNITY, DOWN: CALLING THE

TESTRUNNER METHOD FROM THE RULEENGINE

191

the developer creates the rule and passes the entities as s/he knows what entities

to test (no need to retrieve them from ProxemicUI using the retrieval methods

discussed in chapter 5). However, ProxemicUI still did not receive the OSC

messages that contain the data for these entities, causing the RuleEngine to

through an error. To overcome this issue, I added a couple of checks in the

RuleEngine to ensure that all entities' data exist before testing the rule.

• Repeatedly triggering events: in ProxemicUI, OnEventTrue/OnEventFalse will be

continuously triggered as long as testing the rule passes/fails. However, in some

cases, developers would need to be notified only once when testing the rule

passes/fails. D3 reported that she created a local Boolean to keep track of the rule

status. To address this issue, I added the OnEventChange event to allow

developers to subscribe to it in such cases.

Additional features

• F-formation: ProxemicUI detects existing F-Formation through the use of various

rules (RelativeDistanceRule, RelativeOrientationRule, and IsFacingRule). This is

suitable when employing ProxemicUI in a physical space context (e.g., smart home

or museum). However, when it comes to virtual spaces, there is a need for more

than detecting F-Formations. For example, when the integration team started

implementing the stories, there was a need to create groups (through the use of

F-Formation). This can be seen in creating a conversation that involves multiple

avatars facing each other, creating a shape in their formation (e.g., circular

192

formation). Therefore, following the same approach of defining a rule, I added the

ability to specify a grouping F-Formation in ProxemicUI.

Future expansions

• Adding the third dimension: D1 reported that it would be useful to add calculating

the third-dimension proximity data to ProxemicUI. Currently, ProxemicUI can

receive 3D data about entities but calculate only 2D high-level proximity data (e.g.,

relative distance). This is because ProxemicUI was initially built to support

proxemic interactions in physical spaces using a top-down tracking system (DT-DT

[49]). One of my future works is to expand ProxemicUI to cover 3D to support

more scenarios in both physical and virtual spaces. D2 thinks that ProxemicUI is

complete for the purpose that she was using it for and stated that “there was not

a time when I said I wish that thing existed”.

• Expanding IsFacingRule: the current implementation of IsFacingRule allows to

check if one or more entities are facing a single object (e.g., multiple users are

facing a tabletop). In Story CreatAR, the IsFacingRule is used to detect if a player

is facing a conversation or not. The conversation is created by creating a

conversation node and add all participating avatars to it. Therefore, Story CreatAR

is still checking if the player is facing a single object or not (in this case, the object

is the conversation node). However, what if we don’t have the conversation node

and only have a number of avatars? This means we need to check if one entity or

more are facing multiple objects. To address this case, I would overload the

constructor of the IsFacing method to accept one-to-many and many-to-many. I

193

would also calculate the center point between the objects that I need to check if

the entities are facing or not; then, I will use this center point for the IsFacing

check.

Use case scenarios

• Data Visualization: D1 thinks that ProxemicUI can be useful for data visualization.

For example, when having an application that represents a lot of moving points

where it highlights or animates specific points when some object within a distance

to each other. Such support is already explored in physical settings (e.g., relative

proximity between a user and the display [53]). However, it will be interesting to

explore how to support visualizations based on proxemic relations between virtual

objects.

• Using HybridRule in games: D2 suggested using HybridRule in video games. In

some video games, players are required to perform an action to complete a task

then wait for it to be completed. D2 suggests using HybridRule, where the game

captures the action as an external event; then, instead of waiting, the player can

wander around and get notified when the task is completed based on the player’s

proximity in the virtual world. This is similar to the use of HybridRule in Alice’s

smart home scenario. First, starting the coffee machine is similar to any action in

the game space. Second, going to watch TV or work on the tabletop is similar to

wandering around the game space. Finally, checking Alice’s proximity to notify her

when the coffee is ready is similar to checking the player’s proximity in the game

space to notify her/him when the task is completed.

194

Discussion

Integrating ProxemicUI into Story CreatAR provides evidence of the ability of ProxemicUI

to support other systems by using the set of rules in ProxemicUI. This integration also

provides evidence that ProxemicUI can be expanded to add more features, such as adding

the creation of the F-formation feature. With some integration processes, developers

might face incompatibility or issues during the integration. While my participants faced

an issue with the multi-threading in Unity, they overcame this issue themselves by testing

the rules directly. While I provided a solution for developers to test the rules without

calling a different thread by calling the test method when they want to test the rule, it is

important to provide such functionally to developers especially when they don’t want the

test to be running all the time. Besides, this integration also confirms that it is not enough

to notify the developer when a proximity event has occurred; developers would need to

know when the event is true and when it is false. Additionally, developers might want to

be notified only once, which confirms the need to notify developers on changes of events

using OnEventChanged.

Indirect use of using ProxemicUI

Indirect use of ProxemicUI (through the Story CreatAR tool) allowed us to evaluate the

framework in use as part of an application interface. In this evaluation, end-users

(authors) interacted with the Story CreatAR (UI interface), thereby indirectly used

ProxemicUI by creating proxemics-based interaction triggers.

195

Study design

This section will discuss the study design of the indirect use of ProxemicUI. It will include

the study population, the informed consent, the study environment, the study procedure,

the data collection, and the analysis method.

Participants

Participants for the end-user experience of using ProxemicUI are two media studies

undergraduates and one media studies faculty member at Dalhousie. I will refer to those

three individuals as “authors”.

Informed consent

All participants involved in the study signed an informed consent form (Appendix 5.3). I

emailed them a copy of the consent form to read, sign, and send it back before starting

the study. The informed consent outlined the risks and benefits associated with the study,

a description of the study, the participant’s right to choose to participate or not, the

participant’s right to withdraw without consequence (or losing the ability to participate

in the Story CreatAR research project), assurances of confidentiality and anonymity of

personal data, and assurances of not using their data in the analysis if they chose to

withdraw from the study.

Compensation

Participation in this study was voluntary, and there were no compensations.

196

Study environment

For the indirect use of ProxemicUI, the screen recordings for all interactions were

collected using Microsoft teams for both approaches. For the graph-based approach,

authors used Miro [5], an online collaborative whiteboard that allows teams to complete

different tasks (e.g., brainstorming and design), to create their graphs. For the interface-

driven approach, authors interacted with Story CreatAR by gaining access to one of the

integration team computers through Microsoft Teams.

Study procedure

Participants used ProxemicUI indirectly through using the Story CreatAR user interface.

Participants used Story CreatAR to deploy stories they have written into a VR format in

collaboration with the integration team. In this part of the study, participants used two

approaches, and each took place at a different stage of the story deployment process:

1- Graph-based approach: authors worked with the integration teams to create a

story graph. The graph is an intermediate representation that includes details

about proximity-based triggers among other event transitions in the story. Each

author participated in 5-7 one-hour sessions based on the progress of their graph.

In the first session, we started with a quick introduction to the online tool we were

using to create the graphs (Miro) and explained with an example how to use it.

The rest of the sessions were led by the authors, where the role of the integration

team was to take notes and ask questions about steps and decisions the author

made during the session. During the sessions, participants were encouraged to

think out loud to allow the integration team to understand what they were doing

197

and their reasoning. At the end of this approach, the integration team conducted

a 1.5-hour session where each author presented her/his graph to other authors

and exchanged their ideas about different methods each has taken. The

integration team also conducted a 15-30 minute session for each author, asking

them how they can change/improve their graphs after looking at others' graphs.

We started the session by having the author's graph that we were interviewing

open on the shared display. Then, we referred back to other authors’ graphs

through the questions we asked. We asked a lot of questions about the graphs

that are related to Story CreatAR. However, below are the questions that are

related to ProxemicUI use:

• Are there any events that are triggered by getting close to

characters/objects?

• Are there any events that are triggered by facing a certain

direction/object?

• Are there any arrangements for avatars while in a conversation (e.g.,

shape)?

2- UI-based approach: authors used the Story CreatAR interface themselves to

implement their story, including creating groups, placement, and interaction

rules. Each author participated in four 1-hour sessions. In the first session, the

integration team started with a quick introduction about using Story CreatAR and

showed its features. The rest of the sessions were led by the authors, where the

role of the integration team was to support the authors (by answering questions),

take notes, ask questions about steps and decisions made during the sessions.

198

During the sessions, participants were encouraged to think out loud to allow the

integration team to understand what they were doing and their reasoning. In the

first two sessions, authors were asked to use their graphs to implement their

stories. In the last two sessions, authors used their scripts to implement their

stories. This was to understand how they can benefit from using their own graphs

and scripts, and how each data source can benefit the author. We asked a lot of

questions about their use of Story CreatAR. However, below are the questions that

are related to ProxemicUI use:

• Do you think there is a need to apply proximity rules (how close/far) to rooms as

well? E.g., The three bedrooms have to be next to each other.
• Do you think there is a need for rules that detect when the player is facing a

certain direction or towards a certain object/room/avatar? E.g., when the player

is facing the door, it opens.
• Do you think you can benefit from different types of formations? If yes, what

would they be?

During both approaches and at the end of each week, researchers met as required

(weekly/biweekly) to analyze and discuss participants’ behaviors during the past sessions

and define questions about participants’ decisions. A list of questions and/or defined new

pointers and/or tasks are summarized in a shared document accessed by researchers

only.

Data collection

During all sessions of the indirect use of ProxemicUI, screen recordings of participant

usage of Story CreatAR and using Miro to create the graphs were collected. This also

199

includes the authors' feedback during interviews about creating the graphs and using the

Story CreatAR interface. Other data also were collected, including copies of the script,

story graph, resulting VR output, and summaries of researchers' weekly/biweekly

meetings. I also collected the documentation of the integration process and screen

recordings of developers' interviews about their experience using ProxemicUI. In

addition, I collected the resulting VR output of the developers’ experience implementing

different parts of the stories.

Analysis method

For my analysis, I am following the same approach I discussed in chapter 7 that is thematic

analysis [21][22][77]. I started by transcribing video recordings from the interviews and

interaction sessions, taking notes of final graphs and stories scripts, and notes from the

summaries of researchers' weekly/biweekly meetings. I also reviewed the final VR outputs

of both the authors' and developers' experiences and took notes about their use of

ProxemicUI through using the interface. During the transcription and taking notes phase,

I was trying to identify what proximity features each story has and how authors can

benefit from ProxemicUI to complete the implementation of their stories. I grouped these

notes and transcriptions into different groups to create my initial codes. Then I reviewed

these groups to create my themes, where I identified four themes. Finally, I reported the

results according to these themes, as I will discuss in the next section.

Summary of the stories

This section briefly gives an overview of each story as a context for the results in the next

section.

200

Spill

The player attends a tea party and tries to find clues and eavesdrop on the NPCs to find

the keyword (secret) for each NPC. The player can receive strikes regarding their bad

manners (maximum three strikes, then he leaves or is forced to leave the game). The

player also can heal strikes by bringing tea to NPCs. The story has four endings based on

how the player interacts and behaves during the game.

Tyson’s Peak

The story started when the player got trapped in a cabin during a snowstorm. There are

eight friends in the cabin where they try to investigate the murder of one of them who

was poisoned. The player can interact with different characters where s/he can eavesdrop

or directly interact with members based on proximity data.

Standvillle museum

The story started when the player (who play the role of a detective) and his son visit the

museum where the son gets kidnapped. The player has to find clues and solve riddles to

find his son. The story has different endings based on the player's decisions during the

game.

Results

As stated earlier, the authors participated in two approaches: graph-based approach and

UI-based approach. This section will discuss how authors employ proxemics to tell their

stories in both approaches, including the parts of their stories that they did not implement

in any of the two approaches. It will also discuss some of the similarities and differences

between authors and developers of using the interface. This section is organized

201

according to the five themes: using proximity rules, applying proximity rules to game

layout, using F-formation, expert user experience with the interface, and system

limitations. I will refer to authors: A1, A2, and A3; and to developers D2 and D3.

Using proximity rules

In the Spill story, out of 41 events, there were 18 proximity events. Some of the events

can be repeated based on the player interaction, but I only counted them once as there

was no specific number on how many times they can be repeated. For example, the player

can eavesdrop on NPCs conversation, but there is no specific number on many

conversations that can take place during the story. In Tyson’s peak story, out of 115

events, there were 52 proximity events. In this story, there is a specific number of

conversations that take place during the game. Therefore, I counted every possible event

in the story. For the Standville museum story, out of 115 events, there were 42 proximity

events. In this story, I also counted all possible events. While this is the total number of

events in the three stories, the authors did not implement all of them with both

approaches (graph-based and interface-based) because they focused on implementing

segments of their stories due to the limited time of the sessions. In addition, the authors

faced some difficulties using the interface where they spent some time setting up the

scenes, which is required before adding any proximity rules. In the rest of the section, I

will discuss what proximity events exist in the stories and how they would be used.

Relative distance rule

All authors used relative distance in their graphs/stories to show how different events

occur in the story. In the Spill story, there was a minimum of 10 relative distance rules; in

202

Tyson’s peak story, there were 48 relative distance rules, and in the Standville museum

story, there were 20 relative distance rules. For example, there are eavesdropping events

in both Tyson’s peak and Spill stories when the player is within a specific distance (e.g., 2

metres) to non-player characters. Other events include interacting with avatars when the

player is too close (e.g., within 1 meter) to a conversation (e.g., directly addressing the

player). Using Story CreatAR, A1 implemented two examples of using relative distance

rules where she used the rules for both eavesdropping and directly addressing the player.

A1 also liked how the distance rules are presented in Story CreatAR by providing minimum

and maximum thresholds following ProxemicUI’s approach; “I really like how you set up

the proximity triggers, within distance, and you get the range. That is really easy to use”

A1. A1 only implemented two examples so she can experience different features of Story

CreatAR to implement different parts of the story before the end of the four sessions. In

addition, A1 faced two issues with Story CreatAR. First, she could not add more than two

proximity rules due to a bug in Story CreatAR. Second, Story CreatAR does not allow

editing rules, so she had to delete and recreate the rules. Figure 64 up shows a part of

Tyson’s peak story that implements the relative distance proximity rule. The Standville

museum story used relative distance to interact with objects or playing sounds. For

example, when you get within 1 meter of a clue, you can pick the clue; or when you get

closer to a room, you can hear sound coming from the room. Using Story CreatAR, A3

implemented a relative distance rule to make the player talk to himself when s/he gets

closer to a room. The Spill story used relative distance to interact with avatars (e.g.,

greeting by the host when entering the front door) or interact with an object (e.g., when

203

s/he gets within a distance of the table, the player talks to him/herself about the object).

Using Story CreatAR, A2 implemented a relative distance rule to gather NPCs around the

host in the living room. While all authors also used proximity between objects to define

how to place game objects in the story (figure 64 down), A2 and A3 reported that they

need to define proximity rules to allow the player to interact with objects (e.g., pick clues

or teacup). The current implementation of Story CreatAR does not provide this feature.

A2 addressed this issue by creating avatars and naming them as objects (e.g., table, clue).

Then, he applied proximity rules between the player and objects. A2 also faced the issue

of not being able to create more than two proximity events due to a bug in Story CreatAR.

FIGURE 64: UP: PART OF A1'S STORY SHOWS THE USE OF RELATIVE DISTANCE, DOWN: PROXIMITY

BETWEEN OBJECTS IN A2’S STORY

204

Absolute position rule

In all of the three stories, there were instances of using the absolute proximity position

(the Spill five rules, Tyson’s peak four rules, and the Standville museum sixteen rules). It

is used to detect if the player or an NPC entered/left a room. For example, in the Standville

museum story, the player needs to get to a specific location to find clues. In Tyson’s peak

story, an NPC will get in the center of the living room to gather all avatars, including the

play, around her, so she talks to them. In the Spill story, the host will go to a specific living

room location to gather all avatars around. While Story CreatAR does not support the

creation of absolute proximity rules, they are suitable to detect such events, as it is

relative to a specific location relative to the environment.

IsFacing rule

Only two stories have instances of using the IsFacing rule. For example, in the Spill story,

the player must be facing a clue item to find it, and a non-player character should see

(face) the player doing inappropriate behaviors to give a strike. Using Story CreatAR, A2

created an IsFacing rule to start addressing the player by the host. A2 also used this rule

to allow the player to interact with the clue. In the Standville museum story, the IsFacing

rule can be beneficial to ease the flow of the story. For example, A3’s original thought is

to show different clues after the player spends some time in a room. However, by using

the IsFacing rule, he thinks it would be better to let the player wander around the room,

and only when s/he faces a specific object, the clue will appear. In addition, when creating

the IsFacing rule in Story CreatAR, authors can choose if the player is facing or not facing

205

the subject. Therefore, A3 used the not-facing option to create a conversation where two

avatars stand side by side.

Compound rules

Only two stories have instances of using a combination of relative distance and

orientation to interact with objects. For example, in the Spill story, the player picks up the

teacup by approaching and facing it, or the player must be within distance and facing the

FIGURE 65: AN AUTHOR CREATING A RELATIVE DISTANCE RUEL IN STORY CREATAR

206

NPCs to eavesdrop. Using Story CreatAR, A2 specifies that to see the clue, the player

should be within a distance of the table and facing the clue, which is a combination of

distance and orientation. In the Standville museum story, the player approaches and faces

a game object (e.g., a painting) to get the following instructions. Using Story CreatAR, A3

reported that he would create a combination of distance and orientation to start a

conversation if this option was available in the interface.

Applying proximity rules to game layout

In Story CreatAR, authors can add rooms to the scene they are creating, and Story CreatAR

picks the room randomly according to the specified size (e.g., small, medium, large room)

and the spatial placement rules attached to the entities in the room. In some cases,

authors did not like the placement of rooms (e.g., how far they are from other rooms).

Therefore, I asked them about applying proximity between rooms as an additional

attribute to the size and spatial placement rules of entities when creating the room. All

authors agreed that it would be beneficial to apply proximity for room placements. A1

thinks that it would be useful from storytelling and manageability points of view. For

example, we can map the story to a full floor and only open part of it, if we need to, using

proximity. In addition, in the Standville museum story, there is a couple of rules about

applying distance between rooms. For example, the six offices are in close proximity, the

security room is far from the bathroom, and the locker room is far from the security room.

Using F-Formation

Each of the three stories has a different type of F-formation that involves avatars only,

avatars and objects, and objects only. For example, in the spill story, avatars form a semi-

207

circle facing away from the player to prevent him/her from eavesdropping. In the

Standville museum story, the player has a conversation with an avatar while standing side

by side facing a painting. A1 thinks the formations for her story are more like interacting

with objects but not avatars (e.g., lying on bed and sitting on the couch). She also defined

formations between objects when placing furniture in a room (e.g., “Couch about 3 m

from the fireplace, facing it”).

Expert users experience with Story CreatAR interface

Two members of the development team (D2 and D3) used Story CreatAR to implement

different parts of the three stories. This section will discuss the similarity and differences

of using the interface by authors and developers. I am only discussing how they used

ProxemicUI to complete the story as they have implemented different parts of the stories

that do not contain proximity events.

• The Spill story: when A2 was implementing his story's introduction, he focused on

creating interaction between the player and objects, which is no available in Story

CreatAR. However, D2 implemented the same part of the story and created four

distance rules for the player to interact with the host (greeted by the host). On the

other hand, both A2 and D2 implemented the same relative distance and IsFacing

rules for the same event (start addressing the player by the host). D2 also

implemented 27 proximity rules from different parts of the story that A2 was not

trying to implement during the sessions.

208

• Tyson’s Peak story: Both A1 and D3 implemented two distance rules for the same

event that implements eavesdropping and addressing the player. A1 skipped

implementing the rest of the proximity rules of this part of the story to explore

different features of Story CreatAR and to implement different parts of the story

before the end of the two sessions. This part of the story has a total of 12 proximity

events, which D3 implemented through the interface. In addition, D3 implemented

different parts of the story that A1 was not trying to implement during the sessions.

These parts have eight proximity events (5 for eavesdropping and 3 for directly

addressing the player).

• The Standville Museum story: for this story, there is no part of the story that both

developers and authors implemented. However, D3 implemented different parts of

the story, and she created eight proximity rules to play different lines where the

player talks to him/herself when s/he is close to a room or an object.

System limitations

Story CreatAR

There were three limitations with Story CreatAR that limited authors of implementing

some proximity rules:

• While the current implementation of Story CreatAR only implements two basic

proximity rules (relative distance and IsFacing), the three stories involve other

rules. These rules include the absolute position, relative orientation, and

compound rules. For example, D2 reported that if they only used the IsFacing rule,

the event will be triggered even if the player is in a different room. Therefore, they

209

have to use a compound rule to trigger the event only when the player is facing

and within a distance of the subject. This demonstrates the importance of the

compound rules.

• While the current implementation of Story CreatAR allows applying proximity

rules between avatars only, there were instances where authors want to create

proximity interactions between the player and objects in the game (e.g., relative

distance and orientation to a clue).

• Due to a bug in Story CreatAR, authors could not create more than two proximity

rules in some instances.

ProxemicUI

There are three limitations of ProxemicUI that need to be added to provide a better to

the stories:

• Implement more F-formations to support different events in the stories.

• Add tracing the history of proximity data which would be beneficial in many cases.

For example, in the Spill story, the player needs to walk around the mushroom

ring to move between the cognitive and real worlds. This can be achieved by

tracking the history of the player’s position around the mushroom ring, which is

not supported currently in ProxemicUI.

• The current implementation of the RelativeOrientationRule takes only a single

threshold. This means if the two entities are facing each other within the

210

threshold, from zero to the threshold (e.g., 45 degrees), then fire the event.

However, the eavesdropping event in the Spill story requires the player to face the

NPCs but not directly. This means that the threshold starts from more than zero

to the maximum (e.g., from 10 to 45 degrees). Therefore, the

RelativeOrientationRule should take two thresholds (minimum and maximum) to

cover broader cases.

Discussion

Working with end-users confirms their need for different proximity events and F-

formations to complete their stories. It also confirms that some experiences in virtual

environments not only require detecting F-formations but also creating them (e.g., create

a conversation node involving multiple avatars). In addition, tracing the history of

proximity data (e.g., position) might play an important role during the interaction. For

example, in the Spill story, the player can move between cognitive and real worlds by

walking around the mushroom ring three times. This can be achieved by tracing the

location history of player movements.

One of the interesting points we discussed with participants is applying proximity rules to

the game layout. While all participants agreed this would be beneficial when designing a

game, I think it also would be useful in different domains. I can imagine software to create

building layouts that would prevent placing a room in a specific location in the layout

because it is close/far from another room or an entrance.

211

Additional design requirements

Virtual environments require more than detecting proximity relationships between

virtual objects; that is, to define how to place these objects in the environment. For

example, placing avatars in a conversation, what formation they should form, and how

far they should be from each other. To provide such support, ProxemicUI should provide

developers with the detection and creation of F-Formations. This is a new requirement

that ProxemicUI support, as I discussed in the F-Formation section in chapter 5.

Summary

This chapter presents a study that explores the process of integrating ProxemicUI into

another system (Story CreatAR). This study consisted of two parts. First, exploring

developer experience using ProxemicUI, including what features they used and what

issues they encountered. Developers were able to set up ProxemicUI in Unity and

implemented the proximity rules and their handling methods. However, while developers

considered exposing the ability to define more complex relationships through the

interface, they rely on fairly basic proxemic relationships when creating the interface for

end-users. This decision needs to be explored more to study the extent to which end-

users can define complex relationships through the interface. Second, exploring end-

users’ experience and how they benefit from using ProxemicUI’s features to create their

stories. While end-users benefited from ProxemicUI features and implemented few

proximity rules during the process of creating some parts of their stories using Story

CreatAR, their stories scripts and graphs show evidence of the need to detect different

212

proximity relationships and F-formations between multiple entities. The chapter also

discussed the additional design requirements that I derived from integrating ProxemicUI

into Story CreatAR. For example, while detecting F-formations plays an important role in

a proxemic-aware application, VR application requires calculating objects placements

using F-formation (e.g., placing avatars in a semi-circular formation to create a

conversation). Therefore, I expanded ProxemicUI to support objects placements using F-

formations.

213

Chapter 9: Discussion

ProxemicUI makes a system contribution by implementing a robust rule-based object-

oriented framework that supports proxemics awareness in smart environments.

Relative proximity rules are the most basic rules to detect proxemics interactions and are

commonly used in the literature (e.g., using relative distance to control the content on

screen [31][60][100]). ProxemicUI extends the support for these types of rules over

existing toolkits in two ways. First, it encapsulates the low-level programming details and

provides developers with the final results by specifying the minimum and maximum

thresholds upon rules creations. Second, it allows developers to test multiple entities in a

single rule by covering multiple test cases (one-to-one, one-to-many, and many-to-many)

and specifying the test condition (ANY/ALL). These two features can be beneficial when

applying the same rule to multiple entities, which reduces the developer's effort by

defining a single rule for multiple tests. Besides, this abstraction makes ProxemicUI more

scalable compared to The Proximity Toolkit [71]. A clear example is controlling multiple

appliances through a tablet/phone based on the proximity to each appliance. In this

example, ProxemicUI creates a single rule to test all entities, where the Proximity Toolkit

creates a relation pair between every two entities.

In Klinkhammer et al.’s work [60], when two users come close to each other (each with

her/his workspace), one of their workspaces is removed. They also stated that there were

257 bystanders out of 968 user sessions. Those bystanders are companions of users or

strangers. During using TouristPlanner [73], authors reported that groups are joined by

214

strangers, although the application was built to be used by a single group at a time. Also,

members of groups who used TouristPlanner mostly arrived at different times, and some

members left the table while others are still interacting, which cause changes in group

formation at the display. Other reasons for changing group formation are changing

members' roles and the size of other groups around the display [11]. This shows that some

cases require the detection of multiple relations (between different users and the display,

users, bystanders, and the display, or between groups and the display) to perform a

response. ProxemicUI supports the need to test multiple relations by composing rules

into a single rule using compound rules (ANDRule, ORRule, XORRule, and NOTRule). This

composition of rules relief developers from keeping track of when multiple events have

occurred and only listens for the main compound rule. While ProxemicUI allows

combining different types of proximity rules, it will be interesting to apply and test the

same concept on different types of interactions. For example, in Miners [130], a wall

display game, the player would need to use tangible and direct interaction to activate a

tool; CollabDraw [78], a collaborative art and photo manipulation application, allows to

combine multiple interaction techniques (touch and in-air) from multiple users. It would

be interesting to explore how the use of rule composition can be reapplied to combining

interaction input.

Other systems integrate direct interactions with proximity data to control systems

responses. For example, Medusa [7] shows a blurred half circle as the user reaches the

display, which will open interaction options as the half-circle is being touched. Similarly,

Vogel and Balakrishnan [123] also track hands to perform some in-air gestures; they also

215

require the user’s direct touch in the personal interaction phase to present detailed

information. On the other hand, in the AirPlayer [107], the user starts her/his preferred

list of songs, then the system detects her/his location to play the list (e.g., play the list on

bedroom speaker vs. living room speaker). Jokela et al. [54][55] introduced a grouping

technique where one user starts the group on her/his phone, then touches other users’

phones to add them to the group (phone to phone proximity). Therefore, we can see the

presence of the two types of integrating external events with proximity events. First,

detecting the proximity event, then listen for the external event. I consider this type of

integration a sequence of events that is technically supported, as I discussed earlier.

Second, detect the external event, notify the system about it, and then listen for the

proximity event. ProxemicUI implements a class to supports the second type of

integration through HybridRule, where it provides a mechanism to listen for external

events to test the proximity event. HybridRule also allows developers to define extended

rules where it can have a CompoundRule as an argument, which itself has multiple rules.

While I discussed how to employ the HybridRule in physical and virtual spaces, it will be

interesting to explore how we can benefit from the use of HybridRule on presenting

contents on the display. For example, Von Zadow et al. [130], Sabri et al. [94], Andrews et

al. [6], and Bezerianos et al. [17] discussed the lack of awareness about changes on the

display when working on a large wall display with close distance. For example, we might

consider a certain change on the display an external event; when this change occurs, the

system will check the user proximity or touch proximity (hand position) relative to the

display, then show notification about that change.

216

Proximity awareness plays an important role in supporting social interactions around

interactive systems and in virtual environments. For example, detecting F-formations can

allow the systems to adjust contents on display according to the formations [11], notify

developers about openings on the tabletop [73], or support interactions in medical

settings [76]. In virtual environments, Williamson et al. [128] argued that proximity

awareness is important from a management perspective to control the flow of virtual

events (e.g., to know who is in a specific room). Perhaps, this control expands to cover

the placement of people in different rooms and not only detecting their locations. For

example, during the COVID-19 pandemic, lots of schools over the world moved to teach

through online tools. I can imagine having a virtual world tool where students and

teachers log into, and when a class started, all students involved in a specific class would

be placed in the same virtual room. Besides, Story CreatAR [105] requires creating F-

formations between avatars through creating conversation nodes. Creating F-formation

in Story CreatAR means defining the exact placement of each avatar in the formation.

ProxemicUI supports specifying F-formations in two ways. First, it allows developers to

use existing rules to define a formation between entities (create a formation rule). Then

developers can retrieve this formation rule to test if it exists or not. Second, ProxemicUI

allows developers to calculate the exact placement of each entity in the formation using

the formation placement rules. This rule will return each entity and its new position and

orientation.

Using machine learning requires a lot of processing, including creating and preparing a

dataset and training and testing the classifier. For example, Aghaei et al. [1] collected their

217

dataset due to the lack of datasets that include the interactions they want to detect.

Therefore, the cost of this process will increase as the number and complexity of the

required interaction techniques increases, making machine learning not suitable for every

context. ProxemicUI provides a robust and straightforward event model to detect

complex proxemics interactions, making it a suitable alternative to machine learning in

some contexts (e.g., quick setups where time and effort do not permit for machine

learning Iterations). However, when building a proxemic-aware machine learning

classifier, ProxemicUI can support this process in two ways. First, ProxemicUI can be used

to generate/label data to train a machine learning classifier. Second, developers can use

ProxemicUI as a source of proximity data to be forwarded to the machine learning

classifier. In general, if developers want to use a tool for data collection, this tool should

be built for the same specific purpose as the classifier to ease the data collection process.

This is demonstrated in the comparison between ProxemicUI and Microsoft PSI. While I

explored how to support a proxemic-aware machine learning classifier by generating

training data or feeding the high-level proximity data to the classifier, it would be

interesting to explore how to use ProxemicUI to validate the classifier's results. For

example, Villena-Román [121] introduced an approach for text categorization that

validates the results of the machine learning classifier through the use of a rule-based

system.

218

Summary of refinements

As I discussed in previous chapters, I evaluated ProxemicUI through proof of concept

applications, code review study, and integration into Story CreatAR. These evaluation

methods result in a set of refinements to ProxemicUI. This section summarizes what I

added of these refinements to ProxemicUI.

Using ProxemicUI for the smart home scenario

This section will summarize the refinements I made to ProxemicUI to support the

interactions in the smart home scenario.

• I defined a default OSC message format in the DataReceiver that contains the base

3D proximity data for each entity (ID, timestamp, X, Y, Z, YAW, PTICH, ROLL). This

allows ProxemicUI to connect with most tracking systems (e.g., VIVE trackers) as

they provide such data. I used this format to connect ProxemicUI to the VIVE

trackers when I used ProxemicUI to support the smart home scenario. This new

OSC format results in changes for many classes as follows. First, the

EntityContainer class was modified to match the new format of OSC messages as

it is responsible for capturing the data from the DataReceiver to create/update

entities. Second, the entity’s ID changed from type integer to string because some

tracking systems (e.g., VIVE trackers) use a combination of letters and numbers as

tracker ID. Third, the timestamp field was added to the properties of entities,

which can be used to calculate other properties (e.g., velocity). Lastly, the position

and orientation data were expanded from 2D to 3D.

219

• Instead of setting the IP address and port number internally in the DataReceiver,

I changed it to be specified during the initialization of the DataReceiver. With this

approach, developers do not need to make changes to ProxemicUI’s code every

time the IP address and port number change.

• IsActive field was added to the entity properties because some devices might not

be active but still exist in the environment (e.g., in sleep mode) or may not be

tracked anymore (e.g., not visible to the tracking system). The EntityContainer

used to have EntityRemovedEvent, which is fired when the entity is no longer

being tracked. I replaced this event with EntityInactiveEvent, which will be fired

when the IsActive field changes to false.

• Basic proximity rules used to have a single constructor that takes two lists, which

might not be ideal for developers. When creating a rule to perform a one-to-one

test, developers would have to create two lists, add an entity to each list, and then

pass them to the rule. I added multiple constructors in all basic rules to cover all

test cases (one-to-one, one-to-many, and many-to-many) to overcome this issue.

In addition, I added the TestCondition to the basic proximity rules to allow

developers to test for ALL or ANY entities. This means the test must be true for all

entities or just a subset of them.

• All rules used to have a single event (OnEvent), which will be fired when the test

is true. This approach is not sufficient and increases the developer’s effort. Instead

of defining two rules: one to test if you are close to an appliance and the other to

test if you are far from the appliance, we can create a single rule for both tests

220

and use two events (OnEventTrue/OnEventFalse). Therefore, I replaced the

OnEvent event with the two events (OnEventTrue/OnEventFalse).

• To provide a more generic HybridRule that can combine different types of events

with proximity events, I replaced the UIEvent method with the ExternalEvent

method. I also overloaded the ExternalEvent method: one follows the base event

model format in C# and the other one more generic that can be called directly. I

used this generic form of the ExternalEvent method when the external event was

coming through an OSC message.

• Some use cases require checking the mobility status of entities to draw responses

accordingly. To support this requirement, I implemented the MobilityRule, which

allows developers to check and update the mobility status for a set of entities that

the developer specifies.

• In some scenarios, developers need to check the relative orientation between two

entities based on the direction of one of them only. For example, a developer

might want to check if the user is facing the tabletop, but it does not matter at

which side of the tabletop the user is standing. This test cannot be fulfilled using

the RelativeOrientationRule. Therefore, I implemented the IsFacingRule for this

purpose.

• To be able to pass the test results of each rule to the developers, we need to have

an object that contains the results and can be included in the event object when

it is fired. Therefore, I implemented the ProximityEventArgs class that has several

221

subclasses, one for each type of rule. These subclasses can be used to carry the

test results to the developer through the event object.

Integrating ProxemicUI into Story CreatAR

This section will summarize the refinements I made to ProxemicUI during its integration

into Story CreatAR.

• I implemented the Formation class that allows developers to specify F-formations

using the proximity rules in ProxemicUI or calculate the exact placement of

entities in an F-formation. Defining the exact placement of entities was a

requirement of Story CreatAR, which was used to create conversations between

avatars. Currently, the formation placement implements a circular formation only.

• In the RuleEngine, I implemented a public version of the FormationCreator (this

method to create F-formations) and TestRunner (this method to test the rules)

methods to give developers the option to run the test manually and to overcome

the multithreading issue in Unity.

• When using the two events (OnEventTrue/OnEventFalse) in rules, the system will

keep notifying the developers as long as the event is true or false. However, in

some cases, developers just need to be notified when there is a change in the

status of the event (changed from true to false and vice versa). Therefore, I added

the OnEventChanged event to all rules.

222

Future work

In the previous section, I summarized the refinements to ProxemicUI that I completed. In

this section, I will list the refinements to ProxemicUI that I left for future work.

• Expanding F-formation: I am planning to expand the F-formation support in two

ways. First, ProxemicUI implements the placements of entities in a circular

formation. This is important to support creating other types of F-formations (e.g.,

L-shaped, Z-shaped, and triangle formations). Second, ProxemicUI allows

developers to create a formation rule using its proximity rules. I am planning to

expand this to allow developers to parametrize the formation rule. With this

approach, ProxemicUI will have a set of predefined formations (circle, triangle, v-

shaped, etc.) where developers can specify the formation parameters. For

example, a developer should be able to define a formation rule such as: create a

circular formation between this set of entities with a maximum threshold of 2

meters.

• Expanding the TestCondition: currently, ProxemicUI provides two modifiers for the

TestCondition. First, “ALL” is used to apply the rule to all entities, and they must

all pass the test in order for the rule to be true. Second, “ANY” is used to apply the

rule to all entities, and at least one entity must pass the test in order for the rule

to true. This means the “ANY” modifier might return more than one entity. I am

planning to expand the TestCondition by adding one more modifier (“ONE”), which

will fire the event true when one entity passes the test. With this modifier, the

223

rule will be a short circuit that stops testing the entity as soon as one of them

passes the test.

• When ProxemicUI tests a rule, it notifies developers if the rule is true/false and

passes the IDs that passed the test using the ProximityEventArgs through the

event object. I am planning to expand the ProximityEventArgs so that it includes

the proximity values of the tests for each entity. This can be beneficial in two ways.

First, by providing the developers with the high-level proximity values (the results

of the test, e.g., the relative distance between two entities), developers can do

further testing at their end if they wish to. Second, when collecting training data

for a machine learning classifier, developers can access the proximity data and

customize the data as they wish. Both of these points were strongly recommended

by the participants of the code review study.

• Expanding Querying support: while ProxemicUI allows developers to query

entities based on basic attributes (e.g., ID, type, and shape), there might be a need

to support querying entities based on their proximity data. Therefore, I am

planning to add a set of querying methods as follows. First, retrieve all entities

within a specific region, which can be based on 2D or 3D space. Williamson et al.

[128] discussed the need for proxemic awareness to control the flow of virtual

events. I discussed that this support might be extended to cover the placement of

avatars (e.g., place all avatars in the conference room at the start of a lecture).

Before we perform such placements, we might need to check who is in the

224

conference room. If all participants are there, we don’t need to perform the

placement. Second, retrieve entities within a specific range of another entity,

which might be useful to control crowd flow. For example, in a supermarket, we

might retrieve all entities that are close to the cashier, where we might open an

additional cashier based on the number of customers in line. Third, retrieve all

entities spawned within a specific time period, which can be useful for security

checks. For example, if a crime occurred at an airport, we might retrieve a list of

all entities with the time frame of the crime. Then we might combine this list with

another list that we retrieve based on the location of the crime to finalize the

suspected subjects list.

• TracedEntity: in Story CreatAR, there was a task where the player walks around a

mushroom ring three times. To address such tasks, ProxemicUI needs to trace the

player's position to make sure that s/he walked three times around the ring.

Therefore, I am planning to add TracedEntity to each entity to maintain a history

of proximity values.

• All comparison methods between entities are currently placed in the Geometry

class, which is not suitable, especially if we consider expanding the shapes. With

this approach, when developers add a new shape class, they will need to modify

all existing shape classes so they can be compared. Therefore, I am planning to

move all comparisons to a separate class (e.g., Comparison Container class) to

allow developers only to modify this class and not all shapes.

225

• Currently, ProxemicUI is a centralized system that works on a single machine (e.g.,

in the smart home scenario, ProxemicUI is used by the controller only, which is

the tablet that controls all other appliances). This is because my focus was on the

developer model to create more complex proximity rules. However, I am planning

to expand the RuleEngine to provide a distributed event model. With this

distributed event model, multiple devices can create rules and add them to the

RuleEngine, subscribe to events, get notified when they occur, and inquire about

rules created by other devices to subscribe and get notified when their events

occur. The communications between the RuleEngine will take place over the

network.

• While tracking data can be gathered from different hardware components such as

depth cameras, physical trackers, and Wi-Fi signals, the current implementation

of ProxemicUI provides a single class (DataReceiver) that employs the OSC

communication protocol to receive the tracking data from different systems. One

extension point in the framework lies in DataReceiver, which can be subclassed to

implement different protocols to capture the tracking data or to define a new OSC

message format that takes in different types of data. Such changes need to be

reflected in a corresponding ProximityEntity subclass if new types of data are

being received, and Rule subclasses would need to be written that make use of

this data.

226

• While developers can interact with ProxemicUI through creating rules and

subscribing to their events and writing the handling methods, I plan to create a

generic interface that allows end-users to interact with ProxemicUI. This interface

would allow users to create rules, then show previews of how interaction would

take place based on the created rules. This way, end users would build

understating of how the rules work such that they can modify them as required

for their own needs.

• As discussed in the thesis, the role of an entity might be important during an

interaction. For example, should we give control of appliances to guests or

children? If yes, to what extend should they gain control? While I think such

decisions are related to the application layer and the developer should make

them, ProxemicUI can support such scenarios. For example, we can add additional

attributes that define the role of an entity, and combine the proximity with the

roles in Rules to fire events and draw system responses.

227

Chapter 10: Conclusion

Developers of proxemics-aware applications in smart spaces require tools to support the

detection of more complex interaction scenarios. Still, there is a gap between what

existing tools provide and what developers require to implement more complex scenarios

(e.g., testing multiple proximity attribute for multiple entities simultaneously and

combining external events with proximity events). Therefore, I introduced ProxemicUI to

fill this gap and support these complex scenarios using CompoundRules and HybridRule.

I evaluated ProxemicUI through a set of proof-of-concept applications, a comparative

code review study, the integration into an augmented reality storytelling tool. The results

demonstrate that ProxemicUI supports rapid prototyping of systems that can respond to

complex proxemics events across various contexts, including proxemics awareness in

physical and virtual spaces and supporting proxemics awareness through machine

learning.

228

Bibliography

[1] Aghaei, M., Dimiccoli, M. and Radeva, P. 2016. With whom do i interact? Detecting social
interactions in egocentric photo-streams. Proceedings - International Conference on
Pattern Recognition (Jan. 2016), 2959–2964.

[2] Alameda-Pineda, X., Yan, Y., Ricci, E., Lanz, O., Kessler, F.B. and Sebe, N. Analyzing Free-
standing Conversational Groups: A Multimodal Approach.

[3] Alnusayri, M., Hu, G., Alghamdi, E. and Reilly, D. 2016. ProxemicUI: Object-oriented
middleware and event model for proxemics-aware applications on large displays. EICS
2016 - 8th ACM SIGCHI Symposium on Engineering Interactive Computing Systems (New
York, New York, USA, 2016), 50–60.

[4] Alnusayri, M.A. 2015. Proximity Table: Exploring Tabletop Interfaces that Respond to
Body Position and Motion. March (2015).

[5] An Online Visual Collaboration Platform for Teamwork: 2020. https://miro.com/.
Accessed: 2021-03-31.

[6] Andrews, C., Endert, A., Yost, B. and North, C. 2011. Information visualization on
large,high-resolution displays: Issues, challenges, and opportunities. Information
Visualization. 10, 4 (2011), 341–355. DOI:https://doi.org/10.1177/1473871611415997.

[7] Annett, M., Grossman, T., Wigdor, D. and Fitzmaurice, G. 2011. Medusa: A proximity-
aware multi-touch tabletop. UIST’11 - Proceedings of the 24th Annual ACM Symposium
on User Interface Software and Technology (New York, New York, USA, 2011), 337–346.

[8] Antle, A.N., Bevans, A., Tanenbaum, J., Seaborn, K. and Wang, S. 2011. Futura: Design for
collaborative learning and game play on a multi-touch digital tabletop. Proceedings of the
5th International Conference on Tangible Embedded and Embodied Interaction, TEI’11
(2011), 93–100.

[9] Apitz, G. and Guimbretière, F. 2005. CrossY: A Crossing-Based Drawing Application. ACM
Transactions on Graphics. 24, 3 (2005), 930–930.
DOI:https://doi.org/10.1145/1073204.1073286.

[10] Appert, C. and Beaudouin-Lafon, M. 2008. SwingStates: Adding state machines to the
swing toolkit. UIST 2006: Proceedings of the 19th Annual ACM Symposium on User
Interface Software and Technology (2008), 319–322.

[11] Azad, A., Ruiz, J., Vogel, D., Hancock, M. and Lank, E. 2012. Territoriality and behaviour
on and around large vertical publicly-shared displays. Designing Interactive Systems
Conference (2012), 468–477.

[12] Ballagas, R., Ringel, M., Stone, M. and Borchers, J. 2003. iStuff: A physical user interface
toolkit for ubiquitous computing environments. Conference on Human Factors in
Computing Systems - Proceedings (2003), 537–544.

229

[13] Ballendat, T., Marquardt, N. and Greenberg, S. 2010. Proxemic Interaction: Designing for
a Proximity and Orientation-Aware Environment. ACM International Conference on
Interactive Tabletops and Surfaces - ITS ’10 (2010), 121.

[14] Benford, S., Rowland, D., Flintham, M., Drozd, A., Hull, R., Reid, J., Morrison, J. and Facer,
K. 2005. Life on the Edge: Supporting Collaboration in Location-Based Experiences.
Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’05
(2005), 721–730.

[15] Bespoke.osc — Bitbucket: https://bitbucket.org/pvarcholik/bespoke.osc/src/master/.
Accessed: 2021-05-17.

[16] Bespoke Software » Open Sound Control:
http://www.bespokesoftware.org/wordpress/open-sound-control/. Accessed: 2021-05-
17.

[17] Bezerianos, A. and Isenberg, P. 2012. Perception of visual variables on tiled wall-sized
displays for information visualization applications. IEEE Transactions on Visualization and
Computer Graphics. 18, 12 (2012), 2516–2525.
DOI:https://doi.org/10.1109/TVCG.2012.251.

[18] Block, F., Haller, M., Gellersen, H., Gutwin, C. and Billinghurst, M. 2008. VoodooSketch:
Extending interactive surfaces with adaptable interface palettes. TEI’08 - Second
International Conference on Tangible and Embedded Interaction - Conference
Proceedings (2008), 55–58.

[19] Bonsch, A., Radke, S., Overath, H., Asche, L.M., Wendt, J., Vierjahn, T., Habel, U. and
Kuhlen, T.W. 2018. Social VR: How Personal Space is Affected by Virtual Agents’
Emotions. 25th IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018 -
Proceedings. (2018), 199–206. DOI:https://doi.org/10.1109/VR.2018.8446480.

[20] Braun, V. and Clarke, V. 2013. Successful Qualitative Research: A Practical Guide for
Beginners. 400.

[21] Braun, V. and Clarke, V. 2012. Thematic Analysis. APA handbook of research methods in
psychology, Vol 2: Research designs: Quantitative, qualitative, neuropsychological, and
biological. 57–71.

[22] Braun, V. and Clarke, V. 2006. Using Thematic Analysis in Psychology. Qualitative
Research in Psychology. 3, 2 (2006), 77–101.
DOI:https://doi.org/10.1191/1478088706qp063oa.

[23] Calculate code metrics - Visual Studio (Windows) | Microsoft Docs:
https://docs.microsoft.com/en-us/visualstudio/code-quality/code-metrics-
values?view=vs-2019. Accessed: 2021-08-07.

[24] Chi, P.Y. and Li, Y. 2015. Weave: Scripting cross-device wearable interaction. Conference
on Human Factors in Computing Systems - Proceedings (2015), 3923–3932.

[25] Composite Design Pattern: 2015. https://sourcemaking.com/design_patterns/composite.
Accessed: 2021-04-18.

230

[26] Cumin, J., Lefebvre, G., Ramparany, F. and Crowley, J.L. 2017. Human activity recognition
using place-based decision fusion in smart homes. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics). 10257 LNAI, (2017), 137–150. DOI:https://doi.org/10.1007/978-3-319-
57837-8_11.

[27] Das, B., Seelye, A.M., Thomas, B.L., Cook, D.J., Holder, L.B. and Schmitter-Edgecombe, M.
2012. Using smart phones for context-aware prompting in smart environments. 2012
IEEE Consumer Communications and Networking Conference, CCNC’2012. (2012), 399–
403. DOI:https://doi.org/10.1109/CCNC.2012.6181023.

[28] Data Preparation and Feature Engineering in ML:
https://developers.google.com/machine-learning/data-prep. Accessed: 2021-02-27.

[29] Dey, A.K., Abowd, G.D. and Salber, D. 2001. A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer
Interaction. 16, 2–4 (2001), 97–166.
DOI:https://doi.org/10.1207/S15327051HCI16234_02.

[30] Dostal, J., Hinrichs, U., Kristensson, P.O. and Quigley, A. 2014. SpiderEyes: Designing
attention- and proximity-aware collaborative interfaces for wall-sized displays.
International Conference on Intelligent User Interfaces, Proceedings IUI (2014), 143–152.

[31] Dostal, J., Kristensson, P.O. and Quigley, A. 2013. Multi-view proxemics: Distance and
position sensitive interaction. 2nd ACM International Symposium on Pervasive Displays
(PerDis’13). (2013), 1–6. DOI:https://doi.org/10.1145/2491568.2491570.

[32] Edwards, W.K., Newman, M.W. and Poole, E.S. 2010. The infrastructure problem in HCI.
SIGCHI Conference on Human Factors in Computing Systems (CHI’10) (2010), 423–432.

[33] EventArgs Class (System) | Microsoft Docs: https://docs.microsoft.com/en-
us/dotnet/api/system.eventargs?view=netframework-4.8. Accessed: 2021-06-12.

[34] Fabregat, M.B., Leyva, F.D.M., Saina, J. and Sarangi, A. 2016. Demonstration of
MyAppCorner: Creating personal interaction areas on a public screen. AcademicMindtrek
2016 - Proceedings of the 20th International Academic Mindtrek Conference (2016), 445–
448.

[35] Fayad, M.E. and Schmidt, D.C. 1997. Object-oriented application frameworks.
Communications of the ACM. 40, 10 (1997), 32–38.
DOI:https://doi.org/10.1145/262793.262798.

[36] Foote, B. and Johnson, R.E. 1988. Designing reusable classes. Journal of Object-Oriented
Programming. 2, 1 (1988), 22–35.

[37] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. 1995. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Publishing Company.

[38] Greenberg, S., Marquardt, N., Ballendat, T., Diaz-Marino, R. and Wang, M. 2011.
Proxemic Interactions: The New Ubicomp? Interactions. 18, 1 (2011), 42.
DOI:https://doi.org/10.1145/1897239.1897250.

231

[39] Grønbæk, J.E., Korsgaard, H., Petersen, M.G., Birk, M.H. and Krogh, P.G. 2017. Proxemic
Transitions: Designing Shape-Changing Furniture for Informal Meetings.

[40] Grønbæk, J.E., Rasmussen, M.K., Halskov, K. and Petersen, M.G. 2020. KirigamiTable:
Designing for Proxemic Transitions with a Shape-Changing Tabletop. Conference on
Human Factors in Computing Systems - Proceedings (2020), 1–15.

[41] Hall, E.T. (Edward T. 1966. The hidden dimension. Doubleday.

[42] Hansen, T.E., Hourcade, J.P., Virbel, M., Patali, S. and Serra, T. 2009. PyMT: A Post-WIMP
Multi-Touch User Interface Toolkit. (2009).

[43] Hecht, H., Welsch, R., Viehoff, J. and Longo, M.R. 2019. The shape of personal space. Acta
Psychologica. 193, (2019), 113–122. DOI:https://doi.org/10.1016/j.actpsy.2018.12.009.

[44] Hedayati, H., Szafir, D. and Andrist, S. 2019. Recognizing F-Formations in the Open World.
ACM/IEEE International Conference on Human-Robot Interaction (2019), 558–559.

[45] Hedayati, H., Szafir, D. and Kennedy, J. 2020. Comparing F-formations between humans
and on-screen agents. Conference on Human Factors in Computing Systems - Proceedings
(2020), 1–9.

[46] Heer, J. and Boyd, D. 2005. Vizster: Visualizing online social networks. Proceedings - IEEE
Symposium on Information Visualization, INFO VIS (2005), 33–40.

[47] Heer, J., Card, S.K. and Landay, J.A. 2005. Prefuse: A toolkit for interactive information
visualization. CHI 2005: Technology, Safety, Community: Conference Proceedings -
Conference on Human Factors in Computing Systems (2005), 421–430.

[48] Hill, J. and Gutwin, C. 2004. The MAUI toolkit: Groupware widgets for group awareness.
Computer Supported Cooperative Work. 13, 5–6 (2004), 539–571.
DOI:https://doi.org/10.1007/s10606-004-5063-7.

[49] Hu, G., Reilly, D., Alnusayri, M., Swinden, B. and Gao, Q. 2014. DT-DT: Top-down Human
Activity Analysis for Interactive Surface Applications. Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces - ITS ’14 (2014), 167–176.

[50] iLab Cookbook - The Proximity Toolkit:
http://grouplab.cpsc.ucalgary.ca/cookbook/index.php/Toolkits/ProximityToolkit.
Accessed: 2021-04-13.

[51] Interpreter Design Pattern: https://sourcemaking.com/design_patterns/interpreter.
Accessed: 2021-06-10.

[52] JacksonDunstan.com | Job System Tutorial:
https://www.jacksondunstan.com/articles/4796. Accessed: 2021-06-11.

[53] Jakobsen, M.R., Sahlemariam Haile, Y., Knudsen, S. and Hornbaek, K. 2013. Information
visualization and proxemics: Design opportunities and empirical findings. IEEE
Transactions on Visualization and Computer Graphics. 19, 12 (2013), 2386–2395.
DOI:https://doi.org/10.1109/TVCG.2013.166.

232

[54] Jokela, T., Chong, M.K., Lucero, A. and Gellersen, H. 2015. Connecting devices for
collaborative interactions. Interactions. 22, 4 (Jun. 2015), 39–43.
DOI:https://doi.org/10.1145/2776887.

[55] Jokela, T. and Lucero, A. 2013. A comparative evaluation of touch-based methods to bind
mobile devices for collaborative interactions. Conference on Human Factors in Computing
Systems - Proceedings (New York, New York, USA, 2013), 3355–3364.

[56] Jokela, T. and Lucero, A. 2014. FlexiGroups: Binding mobile devices for collaborative
interactions in medium-sized groups with device touch. MobileHCI 2014 - Proceedings of
the 16th ACM International Conference on Human-Computer Interaction with Mobile
Devices and Services (New York, New York, USA, 2014), 369–378.

[57] Karnik, A., Plasencia, D.M., Mayol-Cuevas, W. and Subramanian, S. 2012. PiVOT:
Personalized view-overlays for tabletops. UIST’12 - Proceedings of the 25th Annual ACM
Symposium on User Interface Software and Technology (2012), 271–280.

[58] Kendon, A. 1990. Conducting interaction. Patterns of behaviour in focused encounters.

[59] Kinect - Windows app development: 2020. https://developer.microsoft.com/en-
us/windows/kinect/. Accessed: 2021-04-29.

[60] Klinkhammer, D., Nitsche, M., Specht, M. and Reiterer, H. 2011. Adaptive Personal
Territories for Co-Located Tabletop Interaction in a Museum Setting. Proceedings of the
International Conference on Interactive Tabletops and Surfaces (ITS’11). (2011), 107–110.
DOI:https://doi.org/10.1145/2076354.2076375.

[61] Ko, K.E. and Sim, K.B. 2018. Deep convolutional framework for abnormal behavior
detection in a smart surveillance system. Engineering Applications of Artificial
Intelligence. 67, October 2017 (2018), 226–234.
DOI:https://doi.org/10.1016/j.engappai.2017.10.001.

[62] Langner, R., Brosz, J., Dachselt, R. and Carpendale, S. 2010. PhysicsBox: Playful
educational tabletop games. ACM International Conference on Interactive Tabletops and
Surfaces, ITS 2010 (New York, New York, USA, 2010), 273–274.

[63] Ledo, D., Anderson, F., Schmidt, R., Oehlberg, L., Greenberg, S. and Grossman, T. 2017.
Pineal: Bringing passive objects to life with embedded mobile devices. Conference on
Human Factors in Computing Systems - Proceedings (2017), 2583–2593.

[64] Ledo, D., Greenberg, S., Marquardt, N. and Boring, S. 2015. Proxemic-Aware Controls.
Proceedings of the 17th International Conference on Human-Computer Interaction with
Mobile Devices and Services - MobileHCI ’15 (2015), 187–198.

[65] Ledo, D., Houben, S., Vermeulen, J., Marquardt, N., Oehlberg, L. and Greenberg, S. 2018.
Evaluation strategies for HCI Toolkit research. Conference on Human Factors in
Computing Systems - Proceedings (New York, New York, USA, 2018), 1–17.

[66] Lin, J., Jose, S. and Landay, J.A. 2008. Employing Patterns and Layers for Early-Stage
Design and Prototyping of Cross-Device User Interfaces. (2008), 1313–1322.

233

[67] Lucero, A., Holopainen, J. and Jokela, T. 2011. Pass-them-around: Collaborative use of
mobile phones for photo sharing. Conference on Human Factors in Computing Systems -
Proceedings (New York, New York, USA, 2011), 1787–1796.

[68] Lucero, A., Jones, M., Jokela, T. and Robinson, S. 2013. Mobile collocated interactions:
Taking an offline break together. Interactions. 20, 2 (Mar. 2013), 26–32.
DOI:https://doi.org/10.1145/2427076.2427083.

[69] Luff, P. and Heath, C. 1998. Mobility in collaboration. Proceedings of the ACM Conference
on Computer Supported Cooperative Work. (1998), 305–314.
DOI:https://doi.org/10.1145/289444.289505.

[70] Marquardt, N., Ballendat, T., Boring, S., Greenberg, S. and Hinckley, K. 2012. Gradual
engagement: Facilitating information exchange between digital devices as a function of
proximity. ITS 2012 - Proceedings of the ACM Conference on Interactive Tabletops and
Surfaces (2012), 31–40.

[71] Marquardt, N., Diaz-Marino, R., Boring, S. and Greenberg, S. 2011. The Proximity Toolkit:
Prototyping Proxemic Interactions in Ubiquitous Computing Ecologies. Proceedings of the
24th Annual Symposium on User Interface Software and Technology (UIST’11) (2011),
315–325.

[72] Marquardt, N., Hinckley, K. and Greenberg, S. 2012. Cross-device interaction via micro-
mobility and f-formations. Proceedings of the 25th annual ACM symposium on User
interface software and technology - UIST ’12 (New York, New York, USA, 2012), 13.

[73] Marshall, P., Morris, R., Rogers, Y., Kreitmayer, S. and Davies, M. 2011. Rethinking “Multi-
User” - An In-The-Wild Study of How Groups Approach a Walk-Up-and-Use Tabletop
Interface. Proceedings of the International Conference on Human Factors in Computing
Systems (CHI’11). (2011), 3033–3042. DOI:https://doi.org/10.1145/1978942.1979392.

[74] Marshall, P., Rogers, Y. and Pantidi, N. 2011. Using F-formations to analyse spatial
patterns of interaction in physical environments. Cscw 2011. Cscw (2011), 3033–3042.
DOI:https://doi.org/10.1145/1958824.1958893.

[75] Mentis, H., O’Hara, K., Sellen, A. and Rikin Trivedi, R. 2012. Interaction proxemics and
image use in neurosurgery. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). (2012), 927–936.
DOI:https://doi.org/http://dx.doi.org/10.1145/2207676.2208536.

[76] Mentis, H., O’Hara, K., Sellen, A. and Rikin Trivedi, R. 2012. Interaction proxemics and
image use in neurosurgery. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’12). (2012), 927–936.
DOI:https://doi.org/http://dx.doi.org/10.1145/2207676.2208536.

[77] Miles, M., Huberman, A., Saldana, J. (Arizona S.U. 2014. Qualitative data analysis: a
methods sourcebook. SAGE Publications, Inc.

[78] Morris, M.R., Huang, A., Paepcke, A. and Winograd, T. 2006. Cooperative gestures: multi-
user gestural interactions for co-located groupware. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (CHI ’06) (2006), 1201–1210.

234

[79] Nebeling, M., Mintsi, T., Husmann, M. and Norrie, M.C. 2014. Interactive development of
cross-device user interfaces. Conference on Human Factors in Computing Systems -
Proceedings (2014), 2793–2802.

[80] Nebeling, M., Teunissen, E., Husmann, M. and Norrie, M.C. 2014. XDKinect: Development
framework for cross-device interaction using kinect. EICS 2014 - Proceedings of the 2014
ACM SIGCHI Symposium on Engineering Interactive Computing Systems (2014), 65–74.

[81] Paay, J., Kjeldskov, J. and Skov, M.B. 2015. Connecting in the kitchen: An empirical study
of physical interactions while cooking together at home. CSCW 2015 - Proceedings of the
2015 ACM International Conference on Computer-Supported Cooperative Work and Social
Computing (2015), 276–287.

[82] Paay, J., Kjeldskov, J., Skov, M.B. and O’Hara, K. 2013. F-formations in cooking together: A
digital ethnography using YouTube. Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
8120 LNCS, PART 4 (2013), 37–54. DOI:https://doi.org/10.1007/978-3-642-40498-6_3.

[83] Peltonen, P., Kurvinen, E., Salovaara, A., Jacucci, G., Ilmonen, T., Evans, J., Oulasvirta, A.
and Saarikko, P. 2008. “It’s mine, don’t touch!”: Interactions at a large multi-touch
display in a city centre. Conference on Human Factors in Computing Systems -
Proceedings (2008), 1285–1294.

[84] Perez, P., Roose, P., Cardinale, Y., Dalmau, M., Masson, D. and Couture, N. 2020. A
Framework for Developing Proxemic Mobile Applications. Proceedings of the 2020
Federated Conference on Computer Science and Information Systems, FedCSIS 2020
(2020), 653–656.

[85] Pérez, P., Roose, P., Cardinale, Y., Dalmau, M., Masson, D. and Couture, N. 2020. Mobile
proxemic application development for smart environments. ACM International
Conference Proceeding Series (New York, NY, USA, Nov. 2020), 94–103.

[86] Piper, A.M., O’Brien, E., Morris, M.R. and Winograd, T. 2006. SIDES: A cooperative
tabletop computer game for social skills development. Proceedings of the ACM
Conference on Computer Supported Cooperative Work, CSCW (2006), 1–10.

[87] Platform for Situated Intelligence: https://github.com/microsoft/psi. Accessed: 2019-10-
30.

[88] Proxemic Interaction: https://www.iutbayonne.univ-pau.fr/~ppdaza/. Accessed: 2021-05-
09.

[89] Ramakers, R., Anderson, F., Grossman, T. and Fitzmaurice, G. 2016. RetroFab: A design
tool for retrofitting physical interfaces using actuators, sensors and 3D printing.
Conference on Human Factors in Computing Systems - Proceedings (2016), 409–419.

[90] Rector, K., Salmon, K., Thornton, D., Joshi, N. and Morris, M.R. 2017. Eyes-Free Art:
Exploring Proxemic Audio Interfaces For Blind and Low Vision Art Engagement.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 1,
3 (2017), 1–21. DOI:https://doi.org/10.1145/3130958.

235

[91] Rick, J., Harris, A., Marshall, P., Fleck, R., Yuill, N. and Rogers, Y. 2009. Children Designing
Together on a Multi-Touch Tabletop: An Analysis of Spatial Orientation and User
Interactions. 8th International Conference on Interaction Design and Children - IDC ’09
(2009), 106–114.

[92] Roggen, D. et al. 2010. Collecting complex activity datasets in highly rich networked
sensor environments. INSS 2010 - 7th International Conference on Networked Sensing
Systems. (2010), 233–240. DOI:https://doi.org/10.1109/INSS.2010.5573462.

[93] Roseman, M. and Greenberg, S. 1996. Building real-time groupware with GroupKit, a
groupware toolkit. ACM Transactions on Computer-Human Interaction. 3, 1 (1996), 66–
106. DOI:https://doi.org/10.1145/226159.226162.

[94] Sabri, A.J., Ball, R.G., Fabian, A., Bhatia, S. and North, C. 2007. High-resolution gaming:
Interfaces, notifications, and the user experience. Interacting with Computers. 19, 2
(2007), 151–166. DOI:https://doi.org/10.1016/j.intcom.2006.08.002.

[95] Salber, D., Dey, A.K. and Abowd, G.D. 1999. The context toolkit: Aiding the development
of context-enabled applications. Conference on Human Factors in Computing Systems -
Proceedings (1999), 434–441.

[96] Samples · microsoft/psi Wiki · GitHub: https://github.com/microsoft/psi/wiki/Samples.
Accessed: 2021-04-13.

[97] Sarabadani Tafreshi, A.E., Marbach, K. and Norrie, M.C. 2017. Proximity-based adaptation
of web content on public displays. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (2017), 282–
301.

[98] Schipor, O.A., Vatavu, R.D. and Vanderdonckt, J. 2019. Euphoria: A Scalable, event-driven
architecture for designing interactions across heterogeneous devices in smart
environments. Information and Software Technology. 109, (May 2019), 43–59.
DOI:https://doi.org/10.1016/j.infsof.2019.01.006.

[99] Schipor, O.A., Vatavu, R.D. and Wu, W. 2019. SAPIENS: Towards software architecture to
support peripheral interaction in smart environments. Proceedings of the ACM on
Human-Computer Interaction. 3, EICS (Jun. 2019), 1–24.
DOI:https://doi.org/10.1145/3331153.

[100] Schmidt, C., Müller, J. and Bailly, G. 2013. Screenfinity: Extending the Perception Area of
Content on Very Large Public Displays. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI ’13. (2013), 1719.
DOI:https://doi.org/10.1145/2470654.2466227.

[101] Serna, A., Pageaud, S., Tong, L., George, S. and Tabard, A. 2016. F-formations and
collaboration dynamics study for designing mobile collocation. Proceedings of the 18th
International Conference on Human-Computer Interaction with Mobile Devices and
Services Adjunct, MobileHCI 2016 (2016), 1138–1141.

[102] Setti, F., Russell, C., Bassetti, C. and Cristani, M. 2015. F-formation detection:
Individuating free-standing conversational groups in images. PLoS ONE. 10, 5 (2015), 1–
26. DOI:https://doi.org/10.1371/journal.pone.0123783.

236

[103] SharpOSC: Full implementation of Open Sound Control in C# .NET 3.5:
https://github.com/ValdemarOrn/SharpOSC. Accessed: 2021-05-17.

[104] Shell, J.S., Selker, T. and Vertegaal, R. 2003. Interacting with groups of computers.
Communications of the ACM. ACM PUB27 New York, NY, USA.

[105] Singh, A., Kaur, R., Haltner, P., Peachey, M., Gonzalez-Franco, M., Malloch, J. and Reilly,
D. 2021. Story CreatAR: a Toolkit for Spatially-Adaptive Augmented Reality Storytelling.
Proceedings of IEEE VR 2021 (2021).

[106] Solera, F., Calderara, S. and Cucchiara, R. 2016. Socially Constrained Structural Learning
for Groups Detection in Crowd. IEEE Transactions on Pattern Analysis and Machine
Intelligence. 38, 5 (2016), 995–1008. DOI:https://doi.org/10.1109/TPAMI.2015.2470658.

[107] Sørensen, H., Kristensen, M.G., Kjeldskov, J. and Skov, M.B. 2013. Proxemic interaction in
a multi-room music system. Proceedings of the 25th Australian Computer-Human
Interaction Conference: Augmentation, Application, Innovation, Collaboration, OzCHI
2013 (New York, New York, USA, 2013), 153–162.

[108] Space Syntax Network: 2005. https://www.spacesyntax.net/. Accessed: 2021-03-30.

[109] Swing GUI Toolkit Group: https://openjdk.java.net/groups/swing/. Accessed: 2021-05-21.

[110] Tafreshi, A.E.S., Marbach, K. and Troster, G. 2018. Proximity Based Adaptation of Content
to Groups of Viewers of Public Displays. International Journal of UbiComp. 9, 1/2 (2018),
01–09. DOI:https://doi.org/10.5121/iju.2018.9201.

[111] Takashima, K., Aida, N., Yokoyama, H. and Kitamura, Y. 2013. TransformTable: A Self-
Actuated Shape-Changing Digital Table. (2013), 179–188.

[112] Tang, A., Tory, M., Po, B., Neumann, P. and Carpendale, S. 2006. Collaborative coupling
over tabletop displays. Proceedings of the SIGCHI conference on Human Factors in
computing systems - CHI ’06. (2006), 1181.
DOI:https://doi.org/10.1145/1124772.1124950.

[113] Task Class (System.Threading.Tasks) | Microsoft Docs: https://docs.microsoft.com/en-
us/dotnet/api/system.threading.tasks.task?view=net-5.0. Accessed: 2021-04-14.

[114] The 7 Steps of Machine Learning: 2017.
https://www.youtube.com/watch?v=nKW8Ndu7Mjw&list=PLIivdWyY5sqJxnwJhe3etaK7u
trBiPBQ2&index=2. Accessed: 2021-02-28.

[115] Threading in Unity - Unity Answers: 2013.
https://answers.unity.com/questions/180243/threading-in-
unity.html?_ga=2.22523643.1163458672.1618373117-1748809650.1517507927.
Accessed: 2021-04-14.

[116] Tong, L., Serna, A., Pageaud, S., George, S. and Tabard, A. 2016. It’s not how you stand,
it’s how you move: F-formations and collaboration dynamics in a mobile learning game.
Proceedings of the 18th International Conference on Human-Computer Interaction with
Mobile Devices and Services, MobileHCI 2016 (2016), 318–329.

237

[117] Unity Job System: Safe and Easy Multithreading in Unity • Infallible Code:
http://infalliblecode.com/unity-job-system/. Accessed: 2021-06-11.

[118] Unity Real-Time Development Platform | 3D, 2D VR & AR Engine: 2021.
https://unity.com/. Accessed: 2021-06-02.

[119] Using threads in Unity3D | universityofgames.net:
https://www.universityofgames.net/using-threads-in-unity-engine/. Accessed: 2021-06-
11.

[120] Vicon | Award Winning Motion Capture Systems: 2019. https://www.vicon.com/.
Accessed: 2021-04-29.

[121] Villena-Román, J., Collada-Pérez, S., Lana-Serrano, S. and González-Cristóbal, J.C. 2011.
Hybrid approach combining machine learning and a rule-based expert system for text
categorization. Proceedings of the 24th International Florida Artificial Intelligence
Research Society, FLAIRS - 24 (2011), 323–328.

[122] VIVETM Canada | Discover Virtual Reality Beyond Imagination: https://www.vive.com/ca/.
Accessed: 2021-04-29.

[123] Vogel, D. and Balakrishnan, R. 2004. Interactive public ambient displays: Transitioning
from implicit to explicit, public to personal, interaction with multiple users. UIST:
Proceedings of the Annual ACM Symposium on User Interface Softaware and Technology
(2004), 137–146.

[124] Volpentesta, A.P. 2015. A framework for human interaction with mobiquitous services in
a smart environment. Computers in Human Behavior. 50, (2015), 177–185.
DOI:https://doi.org/10.1016/j.chb.2015.04.003.

[125] Wang, M., Boring, S. and Greenberg, S. 2012. Proxemic Peddler: A Public Advertising
Display that Captures and Preserves the Attention of a Passerby. Proceedings of the
International Symposium on Pervasive Displays (PerDis ’12) (2012), 3–9.

[126] Weiser, M. 1991. The Computer for the 21 st Century. Scientific American. 265,
September (1991), 94–105.

[127] Wigdor, D. and Wixon, D. 2011. Brave NUI World: Designing Natural User Interfaces for
Touch and Gesture.

[128] Williamson, J., Li, J., Vinayagamoorthy, V., Shamma, D.A. and Cesar, P. 2021. Proxemics
and Social Interactions in an Instrumented Virtual Reality Workshop. (2021), 1–20.
DOI:https://doi.org/10.1145/3411764.3445729.

[129] Wu, M. and Balakrishnan, R. 2003. Multi-finger and whole hand gestural interaction
techniques for multi-user tabletop displays. Proceedings of the 16th annual ACM
symposium on User interface software and technology - UIST ’03 (2003), 193–202.

[130] Von Zadow, U., Bösel, D., Dam, D.D., Lehmann, A., Reipschläger, P. and Dachselt, R. 2016.
Miners: Communication and awareness in collaborative gaming at an interactive display
wall. Proceedings of the 2016 ACM International Conference on Interactive Surfaces and
Spaces: Nature Meets Interactive Surfaces, ISS 2016 (2016), 235–240.

238

[131] Von Zadow, U. and Dachselt, R. Research on HCI Toolkits and Toolkits for HCI Research: A
Comparison.

[132] Zhou, H., Tearo, K., Waje, A., Alghamdi, E., Alves, T., Ferreira, V., Hawkey, K. and Reilly, D.
2016. Enhancing mobile content privacy with proxemics aware notifications and
protection. Conference on Human Factors in Computing Systems - Proceedings (May
2016), 1362–1373.

[133] Zöllner, M., Jetter, H. and Reiterer, H. 2011. ZOIL: A Design Paradigm and Software
Framework for Post-WIMP Distributed User Interfaces. Distributed User Interfaces:
Designing Interfaces for the Distributed Ecosystem. (2011), 87–94.
DOI:https://doi.org/10.1007/978-1-4471-2271-5.

239

Appendices

Appendix 1: ProxemicUI vs. Microsoft PSI codes

Appendix 1.1: Generating training data using Microsoft PSI

240

241

242

243

Appendix 1.2: Provide the classifier with low-level proximity

data using Microsoft PSI

244

245

246

Appendix 1.3: Providing the classifier with high-level proximity

data using Microsoft PSI

247

248

249

Appendix 1.4: Hybrid test using Microsoft PSI

250

251

252

Appendix 2: Example of OSC Communicator Code in

Python

253

Appendix 3: Ethics Application for Hackathon User Study

RESEARCH ETHICS BOARDS

APPLICATION FORM

Prospective Research

This form should only be used if new data will be collected. For research involving only

secondary use of existing information (such as health records, student records, survey data or

biological materials), use the REB Application Form – Secondary Use of Information for Research.

This form should be completed using the Guidance for Submitting an Application for Research

Ethics Review available on the Research Ethics website (application instructions).

SECTION 1. ADMINISTRATIVE INFORMATION [File No: office only]

Indicate the preferred Research Ethics Board to review this research:

[] Health Sciences OR [✓] Social Sciences and Humanities

Project Title: ProxemicUI: object-oriented middleware and event model for proxemics-

aware applications on responsive interactive displays

1.1 Research team information

Dalhousie researcher name Mohammed Alnusayri

Banner # B00562801 Department Faculty of

Computer Science

Email (@dal) mh625076@dal.ca Phone 902-999-5052

Study start date Study end date

http://www.dal.ca/dept/research-services/responsible-conduct-/research-ethics-/apply-for-reb-approval.html
mailto:mh625076@dal.ca

254

Co-investigator

names and

affiliations

Derek Reilly, FCS

Joseph Malloch, FCS

Hubert Hu, FCS

Chinenye Ndulue, FCS

Robert Macgregor, FCS

Contact person for

this submission (if

not lead

researcher)

Name

Email Phone

1.2 For student submissions:

Degree program PhD of Computer Science

Supervisor name and

department

Derek Reilly, Faculty of Computer Science

Supervisor Email (@dal) reilly@cs.dal.ca Phone 902-494-

4057

Department/unit ethics review (if applicable). Undergraduate minimal risk research only.

Attestation: [] I am responsible for the unit-level research ethics review of this project

and it has been approved.

Authorizing name:

Date:

1.3 Other reviews:

Other ethics reviews (if any)

Where

Status

Funding, if any (list on

consent form)

Agency

Award Number

Peer review (if any)

mailto:reilly@cs.dal.ca

255

1.4 Attestation(s). The appropriate boxes must be checked for the submission to be

accepted by the REB)

[✓] I am the lead researcher. I agree to conduct this research following the principles of

the Tri-Council Policy Statement Ethical Conduct for Research Involving Humans

(TCPS) and consistent with the University Policy on the Ethical Conduct of Research

Involving Humans.

I have completed the TCPS Course on Research Ethics (CORE) online tutorial.

[✓] Yes [] No

For Supervisors (of student / learner research projects):

[✓] I am the supervisor for this research named in section 1.2. I have reviewed this

submission, including the scholarly merit of the research, and believe it is sound and

appropriate. I take responsibility for ensuring this research is conducted following the

principles of the TCPS and University Policy.

I have completed the TCPS Course on Research Ethics (CORE) online tutorial.

[✓] Yes [] No

SECTION 2. PROJECT DESCRIPTION

2.1 Lay summary

2.1.1 In lay language, describe the rationale, purpose, study population and methods.

Include the background information or literature to contextualize the study.

Mention what new knowledge is anticipated, and whether this is a pilot project or

fully developed study. [500 words]

Interactive display applications can be designed based on three types of territories: a single

territory for all users (for collaborative use), personal territories for each user (for

independent use), or a mix of personal and public territories (to support a mix of

collaborative and independent use). These different designs are chosen based on the type

of task coupling that being performed using the interactive display as well as different user

roles, both of which can impact group formation and dynamics. Tightly coupled tasks

require working together to complete the task, lightly coupled tasks involve working

independently to complete a higher level task, while uncoupled tasks involve working

independently on tasks that are not directly related. A number of abstract roles have been

identified in the literature that pertain to an individual’s relation toward work being done

http://www.pre.ethics.gc.ca/eng/policy-politique/initiatives/tcps2-eptc2/Default/
http://www.dal.ca/dept/university_secretariat/policies/human-rights---equity/ethical-conduct-of-research-involving-humans-policy.html
http://www.dal.ca/dept/university_secretariat/policies/human-rights---equity/ethical-conduct-of-research-involving-humans-policy.html
http://www.pre.ethics.gc.ca/eng/education/tutorial-didacticiel/
http://www.pre.ethics.gc.ca/eng/policy-politique/initiatives/tcps2-eptc2/Default/
http://www.dal.ca/dept/university_secretariat/policies/human-rights---equity/ethical-conduct-of-research-involving-humans-policy.html
http://www.pre.ethics.gc.ca/eng/education/tutorial-didacticiel/

256

on the interactive display: direct participant, active observer, passive observer, and

disengaged bystander. Therefore, large interactive displays might be used by individuals

and groups simultaneously, and the roles of users, a group’s size and formation around an

interactive display might change over time. In addition, there are a number of interactive

display systems that employed the use of relative proximity of individuals to interactive

displays and to others. Proximity can be defined as how a person uses the surrounding

area, which is divided into: intimate space, personal space, social space, and public space.

Considering these concepts, we developed and evaluated a kiosk application

(ProximityTable [1]) that can detect and respond to groups and individuals behaviors

(combine personal work spaces into a single large workspace as a response for creating a

group). Based on the literature review and implementation and evaluation of

ProximityTable we defined four core requirements for proxemics-aware interactive display

applications. These requirements are: entities, which is the base of a proxemics-aware

application, association rules between entities to measure and understand proxemic

relationships between entities; these rules include: Relative Proximity Rules (e.g. test

relative distance), Compound Proximity Rules (e.g. test distance and orientation), and

Hybrid Rules (combine proxemic-rules with UI events). By looking into existing toolkits (e.g.

Proximity toolkit [2]), we can see such toolkits provides only basic events based on single

proxemic rule (e.g. distance, orientation) and between two proximity entities. Therefore,

based on the four requirements defined above, we developed ProxemicUI, a proximity-

based event model and software framework to support the implementation of interactive

display applications that respond to the position and orientation of individuals relative to

the display and each other.

In this study, we want to validate our concept through exploring the design space of how

ProxemicUI can be used in real settings. The study will take place over the course of 2.5

days (a weekend: Friday 5:00-8:00 pm and Saturday and Sunday 9:00 am – 5:00 pm) and it

will be conducted in the GEM lab, Mona Campbell, Dalhousie University. The study will be

organized in the form of a “hackathon”, a block of time over which teams move from idea

through to implementation, testing, and demonstration. We are planning to recruit a

minimum of four and maximum of six groups of three (12-18 participants), who know how

to code with C#. Recruitment will take place through ShiftKey Labs channels (email and

webpage for the event) and posting the hackathon ad on ad boards on the Dalhousie

campus.

Developers will use ProxemicUI to control a number of home appliances (e.g. lamp,

thermostat) and interactive displays (e.g. tabletop, tablet) based on proxemic data (e.g.

turn on lamp when entering a room). The study will start with a mini-workshop to provide

an overview of the framework to participants. This includes a training session where

participants will be given a guided experience of using the framework. Participants then

will start using the framework to create a smart home application. At the end of each

development session, participants will participate in a group discussion to discuss the pros

and cons of the framework and ways to improve it. At the end of the study, two winning

teams will be announced, and prizes will be awarded (the prizes are Amazon Echo Dots, a

257

voice-controlled smart-home device, for each member in the first and second place

teams); it is common to give prizes for the best work at the end of hackathon events.

During the study, development sessions, discussion sessions, and final presentations will

be videotaped. Source code directories will be copied and a recording of each team’s

development process will be screen captured as well.

References:

[1] Gang Hu, Derek Reilly, Mohammed Alnusayri, Ben Swinden, and Qigang Gao. 2014. DT-

DT: Top-down Human Activity Analysis for Interactive Surface Applications. In Proceedings

of the Ninth ACM International Conference on Interactive Tabletops and Surfaces (ITS '14),

167-176. DOI=10.1145/2669485.2669501 http://doi.acm.org/10.1145/2669485.2669501

[2] Nicolai Marquardt, Robert Diaz-Marino, Sebastian Boring, and Saul Greenberg. 2011.

The proximity toolkit: prototyping proxemic interactions in ubiquitous computing

ecologies. In Proceedings of the 24th annual ACM symposium on User interface software

and technology (UIST '11), 315-326. DOI=10.1145/2047196.2047238

http://doi.acm.org/10.1145/2047196.2047238

2.1.2 If a phased review is being requested, describe why this is appropriate for this

study, and which phase(s) are included for approval in this application.

[✓] Not applicable

2.2 Research question

State the hypotheses, the research questions or research objectives.

Our study addresses the following research objective:

1- How well can the framework support the implementation of different proxemic-

aware interactive applications?

In addition, the study explores the following research questions:

1- What type and amount of proxemic rules do the developers use?

2- With what type of interactions are Hybrid Rules used? Were there any

unexpected ways of using these?

3- Under what circumstances are Compound Rules used? Were there any

unexpected ways of using these? How complex are the composed rules?

4- What difficulties do developers face when using ProxemicUI?

5- In which ways can the framework be improved?

2.3 Recruitment

http://doi.acm.org/10.1145/2669485.2669501
http://doi.acm.org/10.1145/2047196.2047238

258

2.3.1 Identify the study population. Describe how many participants are needed and how

this was determined.

The study population will be a minimum of 12 developers (four groups of three), and no

more than 18 developers (six groups of three), who will be recruited through ShiftKey

Labs, Computer Science, Dalhousie University. ShiftKey Labs was chosen because we can

contact a large number of developers during the recruitment process, and our study will

be conducted as a hackathon, which Shiftkey has experience promoting.

2.3.2 Describe recruitment plans and append recruitment instruments. Describe who will

be doing the recruitment and what actions they will take, including any screening

procedures. Describe and justify any inclusion / exclusion criteria.

The main investigator Mohammed Alnusayri will do the recruitment through ShiftKey

Labs channels. A copy of the recruitment notice is included in appendix A. In the

recruitment notice, it is clearly states that to be eligible to participate in the study,

participants must have programming skills and know how to code with C# (C# was chosen

because the framework was built with it). If anyone wishes to participate, they will

indicate so on a Google Form (through ShiftKey Labs website). The main investigator then

contacts them through email to explain the study in detail and verify that they are willing

to participate. Participants will give informed consent at the outset of the event by

signing an informed consent form (detailed below).

2.3.3 Describe any community or organizational permissions needed to recruit your

participants (attach support letters). Describe any other community consent or

support needed to conduct this research. (If the research involves Aboriginal

participants, please complete section 2.10).

[] Not applicable

Participants will be recruited through the ShiftKey Labs channels. Permissions from the

labs manager is in Appendix C.

2.4 Informed consent process

2.4.1 Describe the informed consent process, including any plans for ongoing consent

(how and when the research will be described to prospective participants, by

whom, how the researcher will ensure prospective participants are fully informed).

If non-written consent is proposed, describe the process. Address how any third

party consent (with or without assent) will be managed. Append copies of all

consent/assent documents, including oral consent scripts.

If participants are interested in the hackathon, they will indicate so through the ShiftKey

Labs website (on a Google Form). The advertisement for the hackathon will clearly

indicate that it is being conducted for research purposes. The main researcher

Mohammed Alnusayri will contact them through email to explain the study in detail and

259

confirm their willingness to participate. At the outset of the study participants will sign

the consent form (Appendix D). The informed consent outlines the risks and benefits

associated with the study, a description of the study, the participant’s right to withdraw

without consequence, and assurances of confidentiality and anonymity of personal data.

2.4.2 Discuss how participants will be given the opportunity to withdraw (their

participation and/or their data) and any limitations on this.

[] Not applicable

Participants will be informed that they can choose to withdraw their participation at any

point of the study.

2.4.3 If an exception to the requirement to seek prior informed consent is sought,

address the criteria in TCPS article 3.7A.

[✓] Not applicable

2.5 Methods and analysis

2.5.1 Describe the study design, where the research will be conducted, what participants

will be asked to do and the time commitment, what data will be recorded using

what research instruments (append copies).

The study will take place over the course of 2.5 days (a weekend), where participants will

use the framework (ProxemicUI) to control a number of home appliances (e.g. lamp,

stereo, thermostat) and interactive displays (tabletop, wall display, tablets, phones)

based on proxemic data (e.g. when I sit on a living room couch or chair, turn on the TV

and stereo and launch the remote control app on my phone). The study environment will

be the GEM lab, which will have one large area set up like a living space, and separate

breakaway areas for groups to code in. We also will have the DT-DT tracking system

ready for participants’ use.

The study procedure will be as follows:

- Friday evening (5:00 – 8:00 pm): mini-workshop to provide an overview of the

framework and it features. The researcher will explain to participants how to use

the framework and inform them about its features (e.g. examining existing rules

and demonstrating how to add new rules). The framework includes a set of

different proxemic-events using different proxemic rules and UI events. The

researcher also will show some examples of proxemic-aware applications to give

users an idea about how the framework can be useful. These examples extracted

from the main investigator previous work as well as the literature. The workshop

http://www.pre.ethics.gc.ca/eng/policy-politique/initiatives/tcps2-eptc2/chapter3-chapitre3/#toc03-1b

260

will end with a hands-on lab session to give the participants guided experience

using the framework.

- Saturday and Sunday (9:00 am – 5:00 pm): participants will be working with the

framework to create a smart home application by controlling several appliances

and making them proxemic-aware and responsive. Development sessions will be

videotaped, and all coding will be captured with screen recording software. At

4pm on Saturday and 3pm on Sunday groups will participate in a discussion

session to comment on pros and cons of the framework as well as to offer

suggestions for improvement. Starting at 4pm on Sunday, each group will present

their work to a jury consisting of Computer Science faculty members working in

the area of Human-Computer Interaction and Internet of Things. The jury will be

free to ask questions during this time. The discussions and presentations will be

videotaped. After this, the winning team and runner up will be announced, and

prizes will be awarded. Questions for the group discussions are in appendix G.

To make sure we recruit groups of three, the recruitment notice makes it clear that we

are looking for groups of three, but individuals are welcome to participate. In case we

have individuals, we will match them into groups of three. If a participant decides to

withdraw from the study, his/her group will be given the option to continue the study or

withdraw as well. In either case, we will not use any collected data up to the point where

the participant(s) decided to withdraw from the study.

The main investigator Mohammed Alnusayri (the developer of the framework) will be

available through the weekend to answer questions and support the groups while using

the framework. Dr. Derek Reilly will provide oversight during the event. Investigators Dr.

Joseph Malloch, Hubert Hu, Chinenye Ndulue, and Robert Macgregor will help during the

study to guide participants and to control the study flow.

Discussion and hacking sessions will be video recorded, source code will be collected, and

screen capture software will capture the process of the groups. We will review them to

understand developers’ behaviors when using the framework. Video recording of hacking

session will be transcribed, and the prototypes designed and built over the weekend will

be annotated. Source code will be reviewed and annotated as well to understand

different coding behaviors and build common themes between groups.

This research will take place in the GEM lab, fourth floor, Mona Campbell building,

Dalhousie University.

[] This is a clinical trial (physical or mental health intervention) – ensure section 2.11 is

completed

2.5.2 Describe plans for data analyses.

The main purpose of this study is to establish the systems contribution of the ProxemicUI

framework: that is, to establish that developers with limited exposure to the kinds of

261

applications supported by the framework are nonetheless able to rapidly prototype using

it.

We will be looking carefully at how two key innovations of the framework are used:

Hybrid Rules (connecting tracking data with user interface events), and Compound Rules

(composing more complex rules from basic building blocks).

To accomplish this we will be collecting and analyzing a variety of data: video recording of

the development process, group discussions/reflections, screen capture of a testing

computer (that we provide), final demo presentations and critiques, and source code.

All video will be transcribed and annotated using an open coding process to identify

themes during development and in group discussion. Source code and screen capture will

be reviewed and annotated to itemize what elements of the framework were used, what

syntactical or semantic errors occurred, and how fluency with the framework emerged

over the course of the weekend. The group discussions will also be used to obtain

detailed feedback and suggestions about the framework.

The resulting applications produced by the groups will also be annotated and

described to provide evidence of the framework’s utility.

2.5.3 Describe any compensation that will be given to participants and how this will be

handled for participants who do not complete the study. Discuss any expenses

participants are likely to incur and whether/how these will be reimbursed.

Since we are running a hackathon, at the end of the study we will announce first and

second place teams and award prizes of Echo Dots for each member of the winning

teams. The winners will be determined by a panel of experts, who will provide critiques

of each application. The judging session and the critiques will be collected and used in

analysis. The panel members will be made aware of this beforehand and will provide

informed consent (see Appendix F).

2.5.4 Describe and justify any use of deception or nondisclosure and explain how

participants will be debriefed.

[✓] Not applicable

2.5.5 Describe the role and duties of local researchers (including students and

supervisors) in relation to the overall study. Identify any special qualifications

represented on the team relevant to the proposed study (e.g. professional or

clinical expertise, research methods, experience with the study population,

statistics expertise, etc.).

Dr. Derek Reilly is a faculty member in Computer Science, who is the PhD advisor for the

main investigator Mohammed Alnusayri. Mohammed has developed the framework and

the study design under the direction of Dr. Reilly. Investigators Dr. Joseph Malloch,

262

Hubert Hu, Chinenye Ndulue, and Robert Macgregor will help during the study to guide

participants and to control the study flow. They will help in data analysis as well.

2.6 Privacy & confidentiality

2.6.1 Describe any provisions for ensuring privacy and confidentiality (or anonymity).

Describe who will have access to data and why, how data will be stored and

handled in a secure manner, how long data will be retained and where. Discuss any

plans for data destruction and/or de-identification.

[] This research involves personal health records (ensure section 2.12 is completed)

All audio recording and source codes will be stored, accessed, and processed on a

secure computer (password protected) accessible only to the researchers

associated with the project. After analysis is completed, all data will be kept for three

years in a secure location as a future reference for publications, then it will be

deleted.

2.6.2 Describe how participant confidentiality will be protected when research results are

shared. Discuss whether participants will be identified (by name or indirectly). If

participants will be quoted address consent for this, including whether quotes will

be identifiable or attributed.

To ensure anonymity of all participants, all data collected will be treated

anonymously by using pseudonyms. When a participant agrees to do the study,

they will be assigned a participant identification number (e.g., P1, P2, etc.). With

the exception of the consent form, any time the participant is referred to in any

document (e.g., study logs, reports, papers, etc.) only the participant ID will be

used. Consent forms will be kept separate from the ID numbers.

2.6.3 Address any limits on confidentiality, such as a duty to disclose abuse or neglect of a

child or adult in need of protection, and how these will be handled. Detail any such

limits in consent documents.

[✓] Not applicable

263

2.6.4 Will any information that may reasonably be expected to identify an individual

(alone or in combination with other available information) be accessible outside

Canada? This includes sharing information with team members, collecting data

outside Canada, use of survey companies, use of software.

[✓] No

[] Yes. If yes, describe how you comply with the University Policy for the Protection of

Personal Information from Access Outside Canada, such as securing participant consent

and/or securing approval from the Vice President Research.

2.7 Provision of results to participants

2.7.1 The TCPS encourages researchers to share study results with participants in

appropriate formats. If you plan to share study results with participants, discuss

the process and format.

[] Not applicable

If a participant requests (e.g., on the consent form) to see the results, we will

provide publication details once complete. Participants will be able to see

aggregate results in the publications. Publications will provide context to the study

and results (e.g., the motivation of the study and why the topic is important).

2.7.2 If applicable, describe how participants will be informed of any incidental findings –

unanticipated results (of screening or data collection) that have implications for

participant welfare (health, psychological or social).

[✓] Not applicable

2.8 Risk & benefit analysis

2.8.1 Discuss what risks or discomforts are anticipated for participants, how likely risks

are and how risks will be mitigated. Address any particular ethical vulnerability of

your study population. If applicable, address third party or community risk. Risks to

privacy from use of identifying information should be addressed.

There are very low risks associated with this study. There is a low risk that some

users may feel uncomfortable if they experience some difficulty using the

framework during the study but there is a researcher will always be available

during the study to answer any questions.

http://www.dal.ca/dept/university_secretariat/policies/governance/protection-of-personal-information-policy-.html
http://www.dal.ca/dept/university_secretariat/policies/governance/protection-of-personal-information-policy-.html

264

2.8.2 Identify any direct benefits of participation to participants (other than

compensation), and any indirect benefits of the study (e.g. contribution to new

knowledge)

There are a number of direct benefits for participants taking part in this research

project: they will experience creating a smart home environment, having fun in the

competition, using novel framework, and finally possibility of winning the prizes.

An indirect benefit is the opportunity to advance research knowledge and

potentially benefit others. In addition, participants will be able to keep a copy of

their source code; IP over what the teams develop using the framework will be

shared equally between the team and the designers and implementers of the

software framework (Mohammed Alnusayri and Derek Reilly). This is made

explicit in the informed consent form.

2.9 Conflict of interest

Describe whether any dual role or conflict of interest exists for any member of the

research team in relation to potential study participants (e.g. TA, fellow student, teaching

or clinical relationship), and/or study sponsors, and how this will be handled.

[✓] Not applicable

2.10 Research with Aboriginal peoples

[✓] Not applicable – go to 2.11

2.10.1 If the proposed research involves Aboriginal peoples, describe the plan for

community engagement (per TCPS Articles 9.1 and 9.2). Attach supporting letters,

research agreements and other relevant documents, if available. If community

engagement is not sought, explain why the research does not require it,

referencing article 9.2.

2.10.2 State whether ethical approval has been or will be sought from Mi’kmaw Ethics

Watch or other Indigenous ethics review group(s), and if not, why the research

does not fall under their purview.

http://www.pre.ethics.gc.ca/eng/policy-politique/initiatives/tcps2-eptc2/chapter9-chapitre9/#toc09-1c

265

2.10.3 Describe any plans for returning results to the community and any intellectual

property rights agreements negotiated with the community, with regard to data

ownership. If there are specific risks to the community involved, ensure these

have been addressed in section 2.8.1.

2.11 Clinical trials

[✓] Not applicable – go to 2.12

2.11.1 Does the proposed research require clinical trial registration, in keeping with

national and international regulations?

[] No. Please explain why not.

[] Yes. Please indicate where it was registered and provide the registration number.

2.11.2 If a novel intervention or treatment is being examined, describe standard

treatment or intervention, to indicate a situation of clinical equipoise exists (TCPS

Chapter 11). If placebo is used with a control group rather than standard

treatment, please justify.

2.11.3 Clearly identify the known effects of any product or device under investigation,

approved uses, safety information and possible contraindications. Indicate how

the proposed study use differs from approved uses.

[] Not applicable

2.11.4 Discuss any plans for blinding/randomization.

2.11.5 What plans are in place for safety monitoring and reporting of new information to

participants, the REB, other team members, sponsors, and the clinical trial

registry? These should address plans for removing participants for safety reasons,

and early stopping/unblinding/amendment of the trial. What risks may arise for

participants through early trial closure, and how will these be addressed? Are

there any options for continued access to interventions shown to be beneficial?

http://www.pre.ethics.gc.ca/eng/policy-politique/initiatives/tcps2-eptc2/chapter11-chapitre11/

266

2.12 Use of personal health information

[✓] Not applicable

2.12.1 Describe the personal health information required and the information sources, and

explain why the research cannot reasonably be accomplished without the use of that

information. Describe how the personal health information will be used, and in the

most de-identified form possible.

2.12.2 Will personal health information be combined with information from other sources to

form a composite record (data linkage)? Will the research create individually

identifying health information by combining information from two or more

databases without the consent of the individuals who are the subjects of the

information (data matching)?

[] No.

[] Yes. Describe the other information and how linkage will be conducted, and/or why data

matching is required.

2.12.3 Describe reasonably foreseeable risks to privacy and how these will be mitigated.

SECTION 3. APPENDICES

3.1 Appendices Checklist. Append all relevant material to this application. This may include:

[✓] Recruitment documents (posters, oral scripts, online postings, invitations to participate,

etc.)

[] Screening documents

[✓] Consent/assent documents or scripts

[✓] Research instruments (questionnaires, interview or focus group questions, etc.)

[] Debriefing forms

[] Permission letters (Aboriginal Band Council, School Board, Director of a long-term care

facility)

[✓] Support letters

267

3.2 Consent Form

Sample consent forms are provided on the Research Ethics website and may be used in

conjunction with the information in the Guidance document to help you develop your consent

form.

http://www.dal.ca/dept/research-services/responsible-conduct-/research-ethics-/apply-for-reb-approval.html

268

Appendix A – Recruitment Notice

We are recruiting participants to take part in a research study to evaluate our framework

(ProxemicUI) that is a proximity-based event model and software framework to support the

implementation of interactive display applications that respond to the position and orientation of

individuals relative to the display and each other. We are recruiting groups of three who have

programming skills, know how to code with C#. We encourage you to join our study with your

friends or colleagues as a group of three, but individuals are welcome as well (we will match

individual users into groups of three).

If you agree to participate, use the following link (google form link) to sign up for the study. When

sign up, the main researcher Mohammed Alnusayri will contact you to explain the study in detail

and to give consent to do the study.

The study will take place over a weekend (Friday 5:00 - 8:00pm, Saturday and Sunday 9:00 am -

5:00pm) in the GEM lab, Mona Campbell Building at Dalhousie University. You will be using our

framework (ProxemicUI) to control home appliances apps and make them proxemic-aware; and

then reflect on the experience in a group discussion. During the study, development sessions,

discussion sessions, and final presentations will be videotaped. Source codes will be collected and

screen recording of developing process will be screen captured as well. Your source code will be

collected as well to help us understand your behaviors when using the framework. You are going

to work with a minimum of four different teams and by the end of the study we will pick first and

second place teams. an Echo Dot for each member of both first and second places. participants

will be able to keep a copy of their source code; and IP over what participants developed

will be shared between Mohammed Alnusayri, Derek Reilly, and the team.

269

Appendix B – Hackathon Ad Copy

It’s the one-and-only Smart Home Track-a-thon !

Have you dreamed of making your toaster alive and interactive? We’ve all heard about smart

homes, now here’s your chance to build one!

The Graphics and Experiential Medial Lab and ShiftKey Labs in the Faculty of Computer Science

have teamed up to offer a unique hackathon event where teams will use state-of-the-art software

that tracks people and connects devices, allowing you to develop innovative smart home

applications.

Here are just a few of the appliances that you can work with and some of the possible intelligence

you can add to them:

Lamp: e.g. turn the lamp on when you enter the room.

TV: e.g. automatically launch a remote control app on your phone when you sit on the couch.

Dining room table: e.g. select a decorative pattern based on who is seated at the table

… and of course, many opportunities to make the Toaster intelligent!

Event schedule:

Friday (5:00 – 8:00 pm): mini-workshop and tutorial.

Saturday (9:00 am – 4:00 pm): development session

Saturday (4:00 pm – 5:00 pm): group discussion

Sunday (9:00 am – 3:00 pm): development session

Sunday (3:00 pm – 4:00 pm): group discussion

Sunday (4:00 pm – 5:00 pm): group presentations and announcing winners.

Lunch will be served on Saturday and Sunday.

The event is open to all students enrolled in a postsecondary program, who have programming

skills and know how to code with C#.

You will form teams of three (you can either register as a team or ask to be placed in one). Your

final creations will be judged by an expert panel at the end of the weekend. Each member of first

270

and second place teams will win an Echo Dot! All participants will be keep a copy of their source

code, and IP over what you build with the framework will be shared between your team and the

software framework developers.

Why should you participate?

1. For the fun! Work with your peers to build cool applications using cool technology.

2. For the experience! Hackathons look great on your resume.

3. For the prizes! Need we say more?

4. For science! The GEM Lab will collect and review your experiences during the hackathon

to understand how to better support rapid prototyping for smart home applications.

where: GEM lab, 4th floor, Mona Campbell building, Dalhousie University

when: date

Hosted by:

GEM Lab (gem.cs.dal.ca)

Shiftkey Labs (shiftkeylabs.ca)

271

Appendix C – Supporting Letter

272

Appendix D – Informed Consent for participants

ProxemicUI: object-oriented middleware and event model for proxemics-aware applications

on responsive interactive displays

Principal Investigators: Mohammed Alnusayri, Faculty of Computer Science

Dr. Derek Reilly, Faculty of Computer Science

 Joseph Malloch, Faculty of Computer Science

Hubert Hu, Faculty of Computer Science

Chinenye Ndulue, Faculty of Computer Science

Robert Macgregor, Faculty of Computer Science

Contact Person: Mohammed Alnusayri, Faculty of Computer Science, mh625076@cs.dal.ca

We invite you to take part in a research study being conducted by Mohammed Alnusayri at
Dalhousie University. Your participation in this study is voluntary and you may withdraw from the
study at any time. Your academic (or employment) performance evaluation will not be affected
by whether or not you participate. To be eligible to participate in the study, you must have
programming skills, know how to code with C# and be 18 or older. We encourage you to join our
study with your friends or colleagues as a group of three, but individuals are welcome as well (we
will match individuals into groups of three). The study is described below. There are a number

of direct benefits for participants taking part in this research project: you will experience
creating a smart home environment, have fun in the competition, use a novel software
framework, and possibly win a prize. An indirect benefit is the opportunity to advance
research knowledge and potentially benefit others. In addition, you will be able to keep a
copy of your source code and IP over what is developed will be shared between your
teammates and the software framework developers.

The purpose of the study is to evaluate our framework (ProxemicUI) and to understand how
developers can benefit from it. You will be asked to participate in 2.5 days (a weekend: Friday
5:00-8:00 pm and Saturday and Sunday 9:00am–5:00pm) study where you will use the framework
to control home appliances apps and make them proxemic-aware; and then reflect on the
experience in a group discussion. You and two other participants will be working as a team
throughout the study and group discussion will be audio recorded.

Your team will be competing with other three teams and at the end of the weekend we will pick
two winning teams: the prize for each member of first and second place teams is an Echo Dot.
You can withdraw from the study at any time without consequence.

When you sign up for the study, you will meet with an investigator (in the Mona Campbell
building). At this initial meeting you will be asked to give consent to do the study. You will be
given a general description of the study procedure. At the beginning of the study, you will
participate in a mini-workshop where you will learn how to use the framework. The rest of the
weekend will be spent on developments to create smart home environment. After each
developing session, you will participate in a group discussion about you experience using the

mailto:mh625076@cs.dal.ca

273

framework. At the end of the study, you will present your work to a jury consists of Computer
Science faculty members. The jury then will announce two winners of the hackathon.

During the study, development sessions, discussion sessions, and final presentations will be
videotaped. Source codes will be collected and screen recording of developing process will be
screen captured as well. All personal and identifying data will be kept confidential. Anonymity of
textual data will be preserved by using pseudonyms (e.g., an ID number) to ensure your
confidentiality. The informed consent form and all research data will be kept in a secure location
under confidentiality in accordance to University policy for three years post publication.

In the event that you have any difficulties with, or wish to voice concern about, any aspect of your

participation in this study, you may contact Catherine Connors, Director, Office of Research Ethics

Administration at Dalhousie University’s Office of Human Research Ethics for assistance: phone:

(902) 494-1462, email: Catherine.connors@dal.ca.

“I have read the explanation about this study. I have been given the opportunity to discuss it and

my questions have been answered to my satisfaction. I understand that being video taped is

necessary to participate in the study. I hereby consent to take part in the study. However, I

understand that my participation is voluntary and that I am free to withdraw from the study at

any time.”

Participant Researcher

Name: _________________________________ Name: _________________________________

Signature: ______________________________ Signature: ______________________________

Date: __________________________________ Date:

Please select one of the options below:

 “I agree to let you directly quote any comments or statements made in any written reports

without viewing the quotes prior to their use and I understand that the anonymity of

textual data will be preserved by using pseudonyms.”

Participant Researcher

Name: _____________________________ Name:

Signature: __________________________

 Signature:_____________________________

Date: _____________________________

 Date:_______________________________

Or

 “I want to read direct quotes prior to their use in reports and I understand that the

anonymity of textual data will be preserved by using pseudonyms.”

mailto:Catherine.connors@dal.ca

274

[if this option is chosen, please include a contact email address: _____________________]

Participant Researcher

Name: ______________________________ Name: _________________________

Signature: ___________________________ Signature:_______________________

Date: ______________________________ Date:

If you are interested in seeing the results of this study, please check below and provide your

email address. We will contact you with publication details that describe the results.

 “I would like to be notified by email when results are available via a publication.”

[if this option is chosen, please include a contact email address: _____________________]

275

Appendix E – Informed Consent for jury

ProxemicUI: object-oriented middleware and event model for proxemics-aware applications

on responsive interactive displays

Principal Investigators: Mohammed Alnusayri, Faculty of Computer Science

Dr. Derek Reilly, Faculty of Computer Science

 Joseph Malloch, Faculty of Computer Science

Hubert Hu, Faculty of Computer Science

Chinenye Ndulue, Faculty of Computer Science

Robert Macgregor, Faculty of Computer Science

Contact Person: Mohammed Alnusayri, Faculty of Computer Science, mh625076@cs.dal.ca

We invite you to be a member of the jury that will evaluate developers’ performance in a

research study conducted by Mohammed Alnusayri at Dalhousie University. Your participation
in this study is voluntary and you may withdraw from the study at any time. Your academic (or
employment) performance evaluation will not be affected by whether or not you participate.
Participating in the study might not benefit you, but we might learn things that will benefit others.
You should discuss any questions you have about this study with Mohammed Alnusayri.

The purpose of the study is to evaluate our framework (ProxemicUI) and to understand how
developers can benefit from it. We are going to run a hackathon where we have a number

of developer use the framework to create a smart home environment by controlling home
appliances apps and make them proxemic-aware. The study will take place over the weekend of
(date) and continue through the weekend (2.5 days) in the GEM lab, Mona Campbell building,
Dalhousie University. Starting at 4pm on Sunday, each group will present their work to the jury
members, where you and the rest of the jury members are free to ask questions during this time.
The discussions and presentations will be videotaped. After this, the winning team and runner up
will be announced, and prizes will be awarded.

In the event that you have any difficulties with, or wish to voice concern about, any aspect of your

participation in this study, you may contact Catherine Connors, Director, Office of Research Ethics

Administration at Dalhousie University’s Office of Human Research Ethics for assistance: phone:

(902) 494-1462, email: Catherine.connors@dal.ca.

“I have read the explanation about this study. I have been given the opportunity to discuss it and

my questions have been answered to my satisfaction. I understand that being video taped is

necessary to participate in the study. I hereby consent to take part in the study. However, I

understand that my participation is voluntary and that I am free to withdraw from the study at

any time.”

Participant Researcher

mailto:mh625076@cs.dal.ca
mailto:Catherine.connors@dal.ca

276

Name: _________________________________ Name: _________________________________

Signature: ______________________________ Signature: ______________________________

Date: __________________________________ Date:

Please select one of the options below:

 “I agree to let you directly quote any comments or statements made in any written reports

without viewing the quotes prior to their use and I understand that the anonymity of

textual data will be preserved by using pseudonyms.”

Participant Researcher

Name: _____________________________ Name:

Signature: __________________________

 Signature:_____________________________

Date: _____________________________

 Date:_______________________________

Or

 “I want to read direct quotes prior to their use in reports and I understand that the

anonymity of textual data will be preserved by using pseudonyms.”

[if this option is chosen, please include a contact email address:

___________________________]

Participant Researcher

Name: ______________________________ Name: _________________________

Signature: ___________________________ Signature:_______________________

Date: ______________________________ Date:

If you are interested in seeing the results of this study, please check below and provide your

email address. We will contact you with publication details that describe the results.

 “I would like to be notified by email when results are available via a publication.”

[if this option is chosen, please include a contact email address:____________________]

277

Appendix F – invitation for jury

Dear Dr. (faculty member name)

My name is Mohammed Alnusayri, a PhD student in Computer Science at Dalhousie
University and under the supervision of Dr. Derek Reilly. We have developed a framework
(ProxemicUI) that is a proximity-based event model and software framework to support the
implementation of interactive display applications that respond to the position and orientation of
individuals relative to the display and each other. We are going to evaluate the framework

through running a hackathon where we have a number of developer use the framework to
create a smart home environment by controlling home appliances apps and make them proxemic-
aware. The study will take place over the weekend of (date) and continue through the weekend
(2.5 days) in the GEM lab, Mona Campbell building, Dalhousie University. Starting at 4pm on
Sunday, each group will present their work to a jury consisting of Computer Science faculty
members working in the area of Human-Computer Interaction and Internet of Things. The jury
will be free to ask questions during this time. The discussions and presentations will be
videotaped. After this, the winning team and runner up will be announced, and prizes will be
awarded.

We are happy to invite you to be a member of the jury. We hope you would accept our
invitation, if you are please reply to this email letting me know that the date and time
suits

Sincerely,

278

Appendix G – group discussion questions

1- List three things that you liked about the framework, explain each.
2- List three things that you disliked about the framework, explain each.
3- What type of interactions/applications/scenarios require the use of Compound

Rules?
4- What type of interactions/applications/scenarios require the use of Hybrid Rules?
5- What limitations have you faced when using the framework?
6- How do you think we can overcome these limitations?
7- In which ways do you think the framework can be improved?

279

Appendix 4: Letter of Approval for Hackathon User Study

280

Appendix 5: Informed Consent for Code Review and Story

CreatAR studies

Appendix 5.1: Informed Consent for the Analytical Comparison

Sessions

ProxemicUI: object-oriented middleware and event model for proxemics-

aware applications on responsive interactive displays

Principal Investigators: Mohammed Alnusayri, Faculty of Computer Science

Dr. Derek Reilly, Faculty of Computer Science

 Dr. Joseph Malloch, Faculty of Computer Science

Contact Person: Mohammed Alnusayri, Faculty of Computer Science, mh625076@cs.dal.ca

We invite you to take part in a research study being conducted by Mohammed Alnusayri at
Dalhousie University. Your participation in this study is voluntary and you may withdraw from the
study at any time. Your academic (or employment) performance evaluation will not be affected
by whether or not you participate. To be eligible to participate in the study, you must have
programming skills, know how to code with C#, have experience developing applications in one
or more of the following domains: Internet of Things, smart spaces, mixed/augmented reality,
public digital installations, ubiquitous and mobile computing, and be 18 or older. The study is
described below. There are a number of direct benefits for participants taking part in this

research project: you will learn how to use three different toolkits and how each was built
and what it can support. This might also increase your knowledge in how to build a toolkit.
An indirect benefit is the opportunity to advance research knowledge and potentially
benefit others.

The purpose of the study is to evaluate our framework (ProxemicUI) and to understand how
developers can benefit from it. The study consists of three 45 minutes sessions. During these
sessions, you will be exposed to two different C# codes that implement the same application
(solve same problems). Each code implements the same application using different toolkit
(ProxemicUI and The Proximity Toolkit). You will also be exposed to a set of steps in how to
integrate two different toolkits (ProxemicUI and Microsoft Psi) with a machine learning classifier.
Then you will be asked about the pros and cons of each toolkit. You and two other individuals will
remotely participate (e.g. through Google hangout) in these sessions with the main investigator
Mohammed and these sessions will be screen recorded (only the moderator’s device).

Your participation is voluntary and there is no compensation. You can withdraw from the study at
any time without consequence.

When you sign up for the study, you will be emailed an informed consent form to give consent to
do the study.

During these sessions, screen recording of the moderator’s device will be captured. All personal
and identifying data will be kept confidential. Anonymity of textual data will be preserved by using
pseudonyms (e.g., an ID number) to ensure your confidentiality. The informed consent form and

mailto:mh625076@cs.dal.ca

281

all research data will be kept in a secure location under confidentiality in accordance to University
policy for three years post publication.

In the event that you have any difficulties with, or wish to voice concern about, any aspect of your

participation in this study, you may contact Catherine Connors, Director, Office of Research Ethics

Administration at Dalhousie University’s Office of Human Research Ethics for assistance: phone:

(902) 494-1462, email: Catherine.connors@dal.ca.

“I have read the explanation about this study. I have been given the opportunity to discuss it and

my questions have been answered to my satisfaction. I understand that being video recorded is

necessary to participate in the study. I hereby consent to take part in the study. However, I

understand that my participation is voluntary and that I am free to withdraw from the study at

any time.”

Participant Researcher

Name: _________________________________ Name: _________________________________

Signature: ______________________________ Signature: ______________________________

Date: __________________________________ Date:

Please select one of the options below:

 “I agree to let you directly quote any comments or statements made in any written reports

without viewing the quotes prior to their use and I understand that the anonymity of

textual data will be preserved by using pseudonyms.”

Participant Researcher

Name: _____________________________ Name:

Signature: __________________________

 Signature:_____________________________

Date: _____________________________

 Date:_______________________________

Or

 “I want to read direct quotes prior to their use in reports and I understand that the

anonymity of textual data will be preserved by using pseudonyms.”

[if this option is chosen, please include a contact email address: _____________________]

Participant Researcher

Name: ______________________________ Name: _________________________

Signature: ___________________________ Signature:_______________________

mailto:Catherine.connors@dal.ca

282

Date: ______________________________ Date:

If you are interested in seeing the results of this study, please check below and provide your

email address. We will contact you with publication details that describe the results.

 “I would like to be notified by email when results are available via a publication.”

[if this option is chosen, please include a contact email address: _____________________]

283

Appendix 5.2: Informed Consent for participants

integrating ProxemicUI into Story CreatAR

ProxemicUI: object-oriented middleware and event model for proxemics-aware applications

on responsive interactive displays

Principal Investigators: Mohammed Alnusayri, Faculty of Computer Science

Dr. Derek Reilly, Faculty of Computer Science

 Dr. Joseph Malloch, Faculty of Computer Science

Contact Person: Mohammed Alnusayri, Faculty of Computer Science, mh625076@cs.dal.ca

We invite you to take part in a research study being conducted by Mohammed Alnusayri at
Dalhousie University. Your participation in this study is voluntary and you may withdraw from the
study at any time. Your academic (or employment) performance evaluation will not be affected
by whether or not you participate. To be eligible to participate in the study, you must be a
researcher in the Story CreatAR project in the Graphics and Experiential Media Lab. The study is
described below. There are a number of direct benefits for participants taking part in this

research project: by integrating ProxemicUI into Story CreatAR you will add useful
features to the application and gain experience with the object-oriented framework
integration process that will be more generally useful in other software development
projects. An indirect benefit is the opportunity to advance research knowledge and
potentially benefit others

The purpose of the study is to evaluate our framework (ProxemicUI) and to understand how
developers can benefit from it. You will work with the main investigator and the rest of the Story
CreatAR team during the period of integration process. You will expose the features of ProxemicUI
in Story CreatAR to enhance stories. You will be involved in the regular activities of the Story
CreatAR research project. This includes documenting the integration process in a collaborative
journal, participating in group meetings, writing and annotating source code, and running tests.
You are under no obligation to participate in this study, and your choice has no impact on your
ability to participate in the Story CreatAR research project. You can withdraw from the study at
any time without consequence. If you choose not to participate or to withdraw participation, your
entries in the collaborative journal, your source code annotations, and your participation in group
meetings will not be used in analysis.

The main investigator will have emailed you this informed consent form to review, sign, and email
back. During the integration process the main investigator will work directly with you, and will be
available to answer questions and help overcome issues with the framework as you use it.

During the study, we will document the process of integrating ProxemicUI into Story CreatAR in a
collaborative journal, and annotate code changes in version control. The journal, annotations, and
source code will be collected for study. We will also collect screen capture of meetings, including
collaborative design and coding sessions. All personal and identifying data will be kept
confidential. Anonymity of textual data will be preserved by using pseudonyms to ensure your
confidentiality. Video capture of meetings will not be used in publication. The informed consent
form and all research data will be kept in a secure location under confidentiality in accordance to
University policy for three years post publication.

mailto:mh625076@cs.dal.ca

284

In the event that you have any difficulties with, or wish to voice concern about, any aspect of your

participation in this study, you may contact Catherine Connors, Director, Office of Research Ethics

Administration at Dalhousie University’s Office of Human Research Ethics for assistance: phone:

(902) 494-1462, email: Catherine.connors@dal.ca.

“I have read the explanation about this study. I have been given the opportunity to discuss it and

my questions have been answered to my satisfaction. I understand that being video recorded is

necessary to participate in the study. I hereby consent to take part in the study. However, I

understand that my participation is voluntary and that I am free to withdraw from the study at

any time.”

Participant Researcher

Name: _________________________________ Name: _________________________________

Signature: ______________________________ Signature: ______________________________

Date: __________________________________ Date:

Please select one of the options below:

 “I agree to let you directly quote any comments or statements made in any written reports

without viewing the quotes prior to their use and I understand that the anonymity of

textual data will be preserved by using pseudonyms.”

Participant Researcher

Name: _____________________________ Name:

Signature: __________________________

 Signature:_____________________________

Date: _____________________________

 Date:_______________________________

Or

 “I want to read direct quotes prior to their use in reports and I understand that the

anonymity of textual data will be preserved by using pseudonyms.”

[if this option is chosen, please include a contact email address: _____________________]

Participant Researcher

Name: ______________________________ Name: _________________________

Signature: ___________________________ Signature:_______________________

Date: ______________________________ Date:

mailto:Catherine.connors@dal.ca

285

If you are interested in seeing the results of this study, please check below and provide your

email address. We will contact you with publication details that describe the results.

 “I would like to be notified by email when results are available via a publication.”

[if this option is chosen, please include a contact email address: _____________________]

286

Appendix 5.3: Informed Consent for Author

Participants in Story CreatAR

ProxemicUI: object-oriented middleware and event model for proxemics-aware applications

on responsive interactive displays

Investigators: Mohammed Alnusayri, Faculty of Computer Science

Dr. Derek Reilly, Faculty of Computer Science

 Dr. Joseph Malloch, Faculty of Computer Science

Peter Haltner, Faculty of Computer Science

Abbey Singh, Faculty of Computer Science

Ramanpreet Kaur, Faculty of Computer Science

 Matt Peachey, Faculty of Computer Science

Contact Person: Mohammed Alnusayri, Faculty of Computer Science, mh625076@cs.dal.ca

We invite you to take part in a research study being conducted by Mohammed Alnusayri at
Dalhousie University. Your participation in this study is voluntary and you may withdraw from the
study at any time. Your academic (or employment) performance evaluation will not be affected
by whether or not you participate. To be eligible to participate in the study be 18 or older. The
study is described below. You will directly benefit from participating in this research project

by working with investigators to produce a version of a story you have authored as an
interactive virtual reality experience, using an authoring toolkit called Story CreatAR. An
indirect benefit is the opportunity to advance research knowledge and potentially benefit
others.

The purpose of the study is to evaluate the benefit to authors of features integrated into the Story
CreatAR toolkit. You will work on creating your stories using Story CreatAR in collaboration with
the study investigators, who will provide authoring assistance and support as needed. You can
withdraw from the study at any time without consequence.

The main investigator will have emailed you this informed consent form, which you should
carefully review, sign, and email back.

During the study, we will collect data of about your usage of Story CreatAR and also ask for your
feedback about the process of using the tool and its features. Collected data includes screen
capture of collaborative authoring sessions, screen recordings of post-session interviews, design
documents created during the authoring process, and copies of the script and resulting VR
content. You will retain copies of all creative output. All personal and identifying data will be kept
confidential in publication. Anonymity of textual data will be preserved by using pseudonyms to
ensure your confidentiality. Audio and video capture will not be used in publication. Inclusion of
creative materials (script elements, VR story) in publications will not occur without your explicit
verbal consent. The informed consent form and all research data will be kept in a secure location
under confidentiality in accordance to University policy for three years post publication.

mailto:mh625076@cs.dal.ca

287

In the event that you have any difficulties with, or wish to voice concern about, any aspect of your

participation in this study, you may contact Catherine Connors, Director, Office of Research Ethics

Administration at Dalhousie University’s Office of Human Research Ethics for assistance: phone:

(902) 494-1462, email: Catherine.connors@dal.ca.

“I have read the explanation about this study. I have been given the opportunity to discuss it and

my questions have been answered to my satisfaction. I understand that being video recorded is

necessary to participate in the study. I hereby consent to take part in the study. However, I

understand that my participation is voluntary and that I am free to withdraw from the study at

any time.”

Participant Researcher

Name: _________________________________ Name: _________________________________

Signature: ______________________________ Signature: ______________________________

Date: __________________________________ Date:

Please select one of the options below:

 “I agree to let you directly quote any comments or statements made in any written reports

without viewing the quotes prior to their use and I understand that the anonymity of

textual data will be preserved by using pseudonyms.”

Participant Researcher

Name: _____________________________ Name:

Signature: __________________________

 Signature:_____________________________

Date: _____________________________

 Date:_______________________________

Or

 “I want to read direct quotes prior to their use in reports and I understand that the

anonymity of textual data will be preserved by using pseudonyms.”

[if this option is chosen, please include a contact email address:

___________________________]

Participant Researcher

Name: ______________________________ Name: _________________________

Signature: ___________________________ Signature:_______________________

Date: ______________________________ Date:

mailto:Catherine.connors@dal.ca

288

If you are interested in seeing the results of this study, please check below and provide your

email address. We will contact you with publication details that describe the results.

 “I would like to be notified by email when results are available via a publication.”

[if this option is chosen, please include a contact email address:

_________________________]

289

Appendix 6: Amendment Approval Letters for Code

Review and Story CreatAR studies

290

