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Abstract

The work in this thesis is dedicated to design and analysis of iterative interference cancel-

lation systems with applications in underwater acoustic communication and random access

communications over terrestrial wireless channels.

In the first part of the work a technique is proposed for signal transmission and reception

over underwater acoustic communications channels targeting high spectral efficiency. The

transmit data is split into multiple superimposed streams, where each stream is encoded via

an error-correction code, interleaved, permuted, and modulated via Orthogonal Frequency

Division Multiplexing (OFDM).

Since the channel exhibits a doubly selective nature due to multi-path and fading, a sig-

nificant channel variation occurs within each OFDM symbol. The task of the receiver is to

iteratively refine the channel estimate, cancel the inter-carrier interference (ICI) introduced

by the Doppler spread, and inter-data stream interference, and perform error-correction de-

coding. The receiver is shown that it can operate successfully over a range of significant

Doppler spreads. Because of lack of standard underwater channel models, I propose an un-

derwater channel model which is suited for my proposed Kalman Forward-Backward channel

estimation algorithm specifically to support the iterative receiver with channel knowledge.

Simulation results of the integrated iterative cancellation process with channel estimation

are presented.

The second part of the thesis deals with unsourced random access (URA) over Gaussian

and fading channels. In a URA setting, a very large number of potential users is consid-

ered, while only a smaller subset of the users is active at any given time. The users transmit

messages in a grant-free fashion, utilizing a common codebook. A new URA iterative cancel-

lation receiver is proposed and studied, that operates in both Gaussian and fading channels.

The transmitted message format is concatenation of preamble and data payload packets re-

spectively. Payload of each user incorporates repetition and permutation, and the task of

the receiver is to cancel users’ interference when retrieving a user signal. The preamble of

each packet carries information about the users signature and permutation sequences. The

xi



main focus is on the approximate message passing (AMP)-based preamble detection algo-

rithms, where user’s preambles is employed for channel estimation. As in the underwater

case, the URA interference cancellation multi-user detector (MUD) algorithm depends on

channel estimate obtained from the preamble part. A set of new preamble detection algo-

rithms which can perform user activity and collision detection, as well as channel estimation

for large numbers of active users is presented. The results are compared with the sate-of-the

art methods and demonstrate advantages over the existing algorithms for both stand-alone

preamble detection and the entire URA system performance.
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Chapter 1

Summary

1.1 Introduction

This thesis is dedicated to study, design and analysis of receiver communications architec-

tures which are based on iterative interference cancellation processing with applications in

underwater acoustic and wireless and unsourced random access (URA). These environments

are distinct in nature and have different parameters settings. We consider acoustic orthogonal

frequency division multiplexing (OFDM) modulation-based transmission underwater, where

the communication channels exhibit doubly-selective behavior. The power fluctuates across

frequency tones as a result of multi-path (frequency selectivity), and the signal of a single

frequency tone spreads to neighbouring frequency tones and causes inter-carrier interference

(ICI). The spread is caused by the channel variation during the OFDM symbol (time selec-

tivity) and results in loss of orthogonality among the OFDM tones. In such setting, the task

of the interference cancellation algorithm is to simultaneously estimate transmitted symbols

at frequency tones and cancel the interference caused by the neighbouring tones. The main

challenge comes from the necessity to obtain channel knowledge within each OFDM symbol

individually and simultaneously perform interference cancellation and channel estimation.

In a URA scenario at anytime slot, a random subset of devices from a large pool of devices

are activated to transmit short data packets, without bandwidth, time, and code resource

pre-allocation. Because of the huge size of original user pool, users cannot be assigned pre-

allocated identifiers, unlike the case of grant-based access where user’s unique identifier is

employed to allocate resources on a case of regular random channel access. Additionally, the

transmitters are low power devices with low computational capabilities. Because of these

constraints, transmitted users’ signals actively interfere with each other. At the receiver

side, after acquiring channel knowledge, the interference cancellation algorithm is tasked

with retrieving user data while cancelling inter-user interference. The challenge is to design

the multi-user detection interference cancellation algorithm that supports high number of

active users with low error rate per user. This requirement demands high-quality estimation

1
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process, which resembles activity-detection problem, to correctly detect active users and

their channels.

Both of the described systems require channel knowledge to perform detection and inter-

ference cancellation processes. In order to design estimation algorithms that reliably work in

real settings, we utilize emulated channels that closely resemble actual communication chan-

nels. For URA setting, the employed channels are standard, such as Gaussian and Rayleigh

single path channels, which allows for results comparison. For OFDM underwater channels,

however, no universal model exists for communication system evaluation. Hence, we develop

a model to serve this purpose.

In this summary we first describe the underwater channel model developed in [1] for

single-input multiple-output (SIMO) channel, highlight its main features, and provide a

model for multiple-input multiple-output (MIMO) channel, detailed in Chapter 2 and 3

respectively. In Chapter 4, we describe the proposed interference cancellation algorithm for

OFDM in doubly-selective underwater acoustic channels and propose to integrate estimation

into the interference cancellation. In Chapter 5, we describe the URA setup approach, and

the proposed signalling format that enables the capabilities of MUD algorithm, channel

estimation approach, and provide a detailed analysis of the system’s performance. Each

of the following sections provide more details on the problems, the publications, and the

contributions made.

1.2 Underwater Channels Models

Channel modeling is an important step in the process of studying and designing a commu-

nication system. Typically standardized models, that may be simple or complex, exist and

can be readily adopted for system design and testing, as in wireless communications and

optical communications, for example. For underwater channels, however, because of a large

amount of degrees of freedom in the channel and modeling parameters, there is no unified

model for study and design of such systems.

Several SISO channel models have been proposed in the literature. Some of them follow

the approach of physical environment modeling such as [2][3], where ray-tracing is employed

to determine multi-path propagation profile. Another cohort of models follow a statistical

approach as in [4], where time behavior of channel paths is modeled as autoregressive pro-

cesses. The existing approaches don’t offer a test environment that can facilitate design



3

of singling format, channel estimation, and detection algorithms we consider. More impor-

tantly, channel models in MIMO presented as in [1], [5], [6] lag on both physical modeling

of MIMO underwater aspects and ignore the key aspect which is the time-space correlation

of the channel.

We propose a communication channel model based on the sum-of-sinusoids approach [7],

and a notion of correlation footprints together to model correlation for SIMO. We also

propose a MIMO correlation modeling approach based on a Lloyd reflection technique and

treating surface-time variation. The model developed in Chapter 2 takes into account specific

communication-based processes like receive and transmit filtering. The model is base-band

and is capable of augmenting Doppler shifts, caused by carrier miss-match between trans-

mitter and receiver, and approximates time-space correlation in case of SIMO setting. The

final outcome of the model is a sequence of channel impulse responses for the duration of

the OFDM symbol that can be readily used in system testing .

The modeling setup includes setting the environmental parameters such as the nature of

sea bottom, depth and the sound-speed profile (sound-speed as function of depth). Addition-

ally, the depth of the transmitter and receiver is supplied to the Bellhop simulator [3] which

generates an analog channel characterized by a power-delay profile that shows the time of

arrival of each signal propagation path, its power and the number of surface-bottom bounces

per path. To add the time variability to the analog paths, the SOS approach is employed.

Each analog path is SOS with frequencies sampled randomly to follow decaying exponen-

tial Doppler spectrum function. The Doppler spread can potentially be replaced with an

observed one. The time-variable paths are then sampled using transmit-receive raised co-

sine filter to produce channel impulses. By use of the correlation footprint approach, the

correlation factor is calculated for any two hydrophones in the receiver array, as a function

of overlap area between the footprints which the signals leave on sea surface. Based on the

correlation factor, some of the sinusoids are re-employed in path time variability generation

to emulate the correlation.

In Chapter 3 we present another model to treat MIMO in underwater channels and ex-

plain the nature of time-space correlation function to allow for better physical understanding.

The accurate, physically representative spatial-temporal correlation function is crucial for

underwater MIMO channel capacity estimation. The current underwater MIMO models as-

sume independence of time and space, and rely on fitted experimental data to justify the
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choice of spatial correlation functions. In Chapter 3, derivation of the correlation is initi-

ated by formulating time-space pressure wave between a source and destination using Lloyd

mirror model.

The model considers direct and indirect signal propagation paths. The indirect path is

modeled as another direct path which is emanating from a mirror source. Hydrophones are

assumed to be close to the surface, and far from the bottom such that there is no bottom

reflections. By introducing the statistical variables of gravity wave, wave heights and surface

velocity through change of frame of reference, the model presents stochastic pressure waves

utilized for correlation. The pressure wave, in addition of its dependence of sea environment,

depends on the angular spectrum of the source through its frequency response. For a two

array receiver, the correlation function approximates to sum of direct path correlation and the

indirect. Two sources are tested, the delta function as monochromatic source with a single

frequency signal, and the raised-cosine pulse as ploy-chromatic source with a bandwidth of

frequencies. For a vertical and horizontal array setting, the correlation between arriving

pressure waves is high because of the dominance of the direct path. The indirect path

correlation vanishes dramatically with angular separation between the receiver elements, and

becomes much smaller compared to direct path. The work on modelling been summarized

in the table below.

Publication Status and Contributions
Truhachev, D., Schlegel, C., Bashir, M. and Bous-
quet, J.F., “Modeling of underwater acoustic channels
for communication system testing,” In OCEANS 2018
MTS/IEEE, Charleston, USA, pp. 1-8, 2018, October.

Published, contributed to
the model design, and de-
signed model evaluation pa-
rameters.

Bashir, M., Ponomarenko, S.,Truhachev, D. Acoustic
Pressure Correlations in Deep Ocean with Applications
to Multiple-Input Multiple-Output Underwater Com-
munications. to be re-submitted to Journal of Acoustical
Society of America.

Addressing reviewers com-
ments to be resubmitted,
contributed to model design
and performance testing.

1.3 Iterative Interference Cancellation For Acoustic Underwater OFDM

System

Bandwidth available for underwater communication systems is a critical resource and its op-

timal utilization is necessary to achieve high spectral efficiency required for short to medium
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transmission ranges and high throuput applications such as video transmission. The early

attempt of video transmission, presented in of [8], used differential phase shift keying (DPSK)

and a slow rate of transmission is observed. The orthogonal frequency division modulation

(OFDM) is advocated for underwater acoustics communication in many research contribu-

tions [9][10][11], and we adopt it here under SISO and SIMO setting. OFDM allows for

treating the channel conveniently in frequency domain at both transmitter and receiver.

Higher order constellations are also desirable to enhance spectral efficiency.

Given the doubly spread nature of the underwater channel, the approach of higher or-

der constellation OFDM system quickly becomes challenging because of the long delays that

causes severe inter-symbol interference (ISI), in addition to the ICI. The approach we present

here uses a transmission format where multiple streams with unequal powers that are inde-

pendently modulated and superimposed to achieve higher constellation that is tolerant to

ISI and achieve targeted high spectral efficiency. The theory of multi-users detection offers

various techniques for interference cancellation, and allow for channel estimation integration

to the process. Moreover, MUD theory is rich with analysis tools to borrow for system pa-

rameter optimization. The key question which I worked on and provided a solution is ”how

to estimate accurately the doubly selective channel within each OFDM symbol”.

In chapter 4 the employed OFDM signalling is utilized in an multi-user-like interference

cancellation system. In electromagnetic (EM) wireless channels, the multi-path channel is

static during the OFDM symbol duration, and results in un-equal power frequency tones or

so called frequency selectivity, and no frequency tone is interacting with its neighbouring

ones. As mentioned earlier, in underwater OFDM the channel is dynamic during the OFDM

symbol, and each frequency tone signal spreads into neighbouring frequency tones, and the

higher the channel’s Doppler spread the wider is the neighbourhood of the interference. The

frequency domain channel matrix captures both effects, with frequency selectivity present

as diagonal elements of the channel matrix in frequncy domain of un-equal power, and time

selectivity as decaying off-diagonal elements with decay depends on Doppler spread.

When a receiver processes a single stream of data, with perfect channel knowledge, one

iteration operation is comprised of symbols detection, interference estimation and subtrac-

tion. Symbols detection utilizes diagonal elements of frequency domain channel matrix, and

the resulting symbols estimates are used with the off-diagonal elements to estimate the in-

terference and cancel it. The next iteration starts with less interference and the process
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continues until it reaches the interference free state. Using SISO channel model presented

in Chapter 2, the system is evaluated, with perfect channel knowledge, for wide range of

Doppler spreads, and system settings (bandwidth and number of OFDM frequency tones)

and to demonstrate convergence to interference-free state.

In the sequel, the channel estimation process replaces the perfect channel knowledge

assumption, and the operation of the iterative receiver follows the sequence of channel esti-

mation, symbols detection and interference cancellation. The cancellation process requires

high accuracy channel estimate and tracking for the duration of the OFDM symbol, espe-

cially for small bandwidths of underwater channel and high number of tones to increase

transmission rates. Well known adaptive filters provide decent estimates only for lower

Doppler spreads, disregard channel models to improve estimation quality, and omit certain

structures of received signal that are useful for estimation. My proposed first-order Kalman

forward-backward filter (KFBF) is able to provide channel estimates that allow the cancel-

lation to start successfully and converges. The soft-data aided KFBF that utilizes soft-data

as pilots is presented and studied as pre-cursor to uniting channel estimation, interference

cancellation and data detection processes. The integrated systems are tested for range of

Doppler spreads, and proved successful convergence.

My contributions include proposing FBKF and its soft-data aided version which enables

usage of data detected in channel estimation process. The algorithm’s Mean Square Er-

ror (MSE) performance is studied using first and second order autoregressive processes as

channel models for a wide range of Doppler spreads. I then integrated the channel estima-

tion with interference cancellation system, and studied the effect of the estimate quality on

the convergence process using experimental state evolution. The resultant Bit Error Rates

(BER) are compared with the case of perfect channel knowledge case. Additionally, the

channel estimation algorithm is utilized to quantify the effect of beam forming in terms for

MSE reduction. The following table lists relevant publications.
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Publication Status
Bashir, M., Truhachev, D. and Schlegel, C., 2018, May. Kalman
forward-backward channel tracking and combining for OFDM in
underwater acoustic channels. In 2018 OCEANS-MTS/IEEE Kobe
Techno-Oceans (OTO) (pp. 1-10). IEEE.

Published

Eskandari, N., Bashir, M., Truhachev, D., Schlegel, C. and Bous-
quet, J.F., 2018, May. Improving the Quality of Underwater Acous-
tic Channel via Beamforming. In 2018 OCEANS-MTS/IEEE Kobe
Techno-Oceans (OTO) (pp. 1-7). IEEE.

Published

Bashir, M., Truhachev, D., Schlegel, C. Iterative Equalization and
Estimation, Superposition Modulation.

To be submitted

1.4 Iterative Interference Cancellation For Unsourced Random Access (URA)

We consider a class of random-access systems, proposed in [12], where the potential pool

of users is very large with a much smaller random and varying set of active users that

infrequently transmit short messages to the receiver point. As mentioned earlier, because

of the short message constraint and the large size of users’ pool, the utilization of unique

users identifiers is hindered, and the receiver is tasked with retrieving users’ data without

explicit knowledge of users IDs. Consequently, the users access the channel without resource

allocation requests. Such setting presents itself in applications like sensor networks, internet

of things, and generally in scenarios where sensor data is more important than IDs.

The URA concept is approached using various methods based on compressed sensing

(CS) [13, 14, 15, 16, 17], irregular slotted and T-fold ALOHA [18, 19, 20, 21], and preamble-

data payload format [22, 23, 24, 19]. The systems derived in the mentioned approaches are

compared in performance, in terms of the number of supported active users, and far from

random coding bound in [12] especially for high numbers of active users. It is important to

note that per user probability of block error is the measure of success instead of the ”every

users success” requirement of the classic multiple access.

We utilize preamble/payload format, where the preamble carries a part of the user’s mes-

sage, encoded using a Gaussian signature dictionary, and communicates signature/permutation

pair which will be used in the payload. The payload part employs error-correction code, and

uses signature/permutation pair to scramble and spread data. At the receiver side, ap-

proximate message passing (AMP) algorithms, for Gaussian and Rayligh access channels,

are employed to recover the signature/permutation pair from the preamble and initiate the
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multi-user detection algorithm for the payloads. MUD algorithm refines channel estimates

and performs SNR-based selective decoding with removal of successfully detected users pack-

ets.

Since the access is grant free, two or more users can collide in case they randomly select

the same signature sequence. For the case of equal power Gaussian channel, the pream-

ble channel estimator results in an activity detection algorithm. The preamble activity

detection problem setting resembles a compressed sensing linear system and approximate

message passing (AMP) is typically utilized to solve for the sparse activity detection vector.

The CS-AMP algorithm is collision ignorant, and starts to miss-detect users and introduces

false ones as number of active users increase (and probability of collision increases accord-

ingly). Both false alarms and missed detections deteriorate the performance of the MUD

algorithm. Therefore, I present pair-collision aware algorithms to mitigate this problem. For

the case of URA operating in Rayleigh channel, the channel is sparse complex Gaussian vec-

tor, and the joint activity detection and channel value estimation is required. By extending

the activity-detection only to exploit the Rayleigh distribution, the joint estimation task is

proved possible, and can support the missed detection/false alarms rates required for MUD

performance, to achieve much higher number of active users than existing algorithms.

My contribution is the development and study of the collision-aware AMP algorithm,

as well joint channel estimation and activity detection AMP and integration with MUD

algorithms. The following table list relevant publications.

Publication Status
Truhachev, D., Bashir, M., Karami, A. and Nassaji, E., “Low-
Complexity Coding and Spreading for Unsourced Random Access,”
IEEE Communications Letters, March 2021.

Published

Nassaji, E, Bashir, M.,Truhachev, D., “Unsourced Random Ac-
cess over Fading Channels via Data Repetition, Permutation, and
Scrambling,” submitted to IEEE Transactions of Communications.,
2021

Submitted



Chapter 2

Underwater Channel Model

2.1 Abstract

A model for single-input multiple output (SIMO) underwater acoustic channel is proposed.

The model targets testing of underwater acoustic communication systems and incorporates

multi-path, Doppler spread and shift, as well as correlation between the signals at multiple re-

ceive hydrophones, transmit/received filtering and sampling. A study of receive hydrophone

correlation based on surface correlation footprints is included. An example of a modeled and

measured channel corresponding to the same communication scenario is presented together

with the bit-error rate (BER) results for a data receiver algorithm which includes channel

estimation and iterative equalization performed on the measured and modeled channels for

comparison.

2.2 Introduction

Propagation of sound in underwater ocean environments is a complex physical phenomenon.

A multitude of approaches to underwater acoustic propagation modeling have been proposed

over the years. The focus and the areas of application of models vary: oceanography, sonar

systems, underwater navigation, positioning and sensing, environmental observation etc. We

target modeling of the underwater acoustic channel for the sole purpose of communications

system design and testing. The underwater acoustic communication channel is a doubly-

spread channel that exhibits frequency selectivity (multi-path effect) and time selectivity

(fading). Because of the necessity to utilize multiple receivers and, in some cases, transmit-

ters, spatial behavior of the channel is of significant importance for channel modeling.

One of the key aspects in establishing high-rate coherent acoustic communications un-

derwater is accurate channel estimation and tracking. Realistic testing of channel estimation

algorithms involves modeling channel multi-path profiles, Doppler effects (shift and spread),

9
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and their impact on the transmitted data in time and frequency. The effect of the trans-

mit and receive filtering also needs to be included. Testing of Doppler-shift compensation,

synchronization, and channel equalization algorithms all require accurate modeling of these

effects.

Understanding the potential of multiple-input multiple-output (MIMO) communications

underwater requires modeling of the spatial correlation between the channel impulse re-

sponses in time and frequency. The channel correlation and its temporal behavior impact

the channel rank, resulting capacity and MIMO communication algorithms such as beam-

forming [25] and equalization. Modeling of signals arriving from different directions with

their associated time delays and frequency shifts is required together with an understanding

of the physical effects behind spatial correlation of the propagating signals.

While no standardized underwater communications channel model exists, a number of

approaches have been developed. Among these are channel ray-tracing [26] and parabolic

equation propagation models [27], as well as statistical models [28]. The model proposed

in [28] is a point-to-point model that models the channel dynamics based on modeling a

physical processes underlying underwater sound propagation such as extension and contrac-

tion of the sound propagation paths and formation of micro-path clusters causing Doppler

spread.

In an attempt to model MIMO channels two major approaches are usually taken: the

first is to extend a point-to-point channel model including the transmit and receive array

geometry without explicitly modeling the correlation effect (see for example [29]) or looking

at general matrix-based MIMO channel models with transmitter and receiver correlation

applied externally [30].

Instead of modeling the physical reality of ocean propagation environments and commu-

nications channels resulting from transmitter/receiver deployments within these, our focus

is on creation of artificial test channels that would provide communications algorithms with

the same set of challenges as the real acoustic underwater channel would. Our approach is

to propose a structurally simple model core that depends on a few experimentally observed

or precomputed parameters. When assessing the modeling performance we would like to

ensure that our test algorithms (channel tracking [31], equalization [32] etc.) demonstrate

similar performance on both the model and a corresponding channel measured in sea trials.

The proposed model starts with a power-delay profile (as the model in [28]) which is either
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Figure 2.1: Channel model setup.

measured in a sea trial, produced by a ray-tracing simulator, or created artificially for testing

purposes. The time evolution of each channel tap is determined by a selected scattering

function, such as a exponentially decaying Doppler spread function [33], and generated using

a sum-of-sinusoids (SOS) technique [34]. Transmit and receive filtering and sampling is

then applied to create a time-varying tap-delay model of the channel in baseband. In a

related work, statistical underwater acoustic channel modeling based on artificial generation

of channel tap variation has been considered in [35] where random Gaussian process is used

to generate each path dynamics and is shaped to have specific Doppler spectra obtained

during sea measurements. In [36] a stochastic replay approach is taken where a measured

channel is considered to be a single instance of a random process characterized by a number

of parameters and other realizations of that random process are generated for the purpose

of channel modeling. Here we take an approach to use SOS that gives us possibility of

controlling the fading dynamics and initiation of correlated fading processes for different

receive hydrophones. Also the above-mentioned models consider point-to-point channel while

we take a step to model the spatial behavior of the channel as well.

The proposed single-input multiple-output (SIMO) model uses the angle of arrival in-

formation of the propagation paths as well as the array geometry to generate the tap-delay

profile and fading processes at each receive hydrophone. The correlated fading processes

at various hydrophones are generated by reusing groups of frequencies and phases seeding

the SOS model generating time-fading of the channel taps. In order to realistically set the

correlation parameters we utilize the ray-tracing propagation geometry and use Huygens’
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principle to derive the approximate surface areas contributing to the Doppler spectra of the

respective channel taps observed at neighboring hydrophones. The overlap of these “corre-

lation footprints” is used to set the approximate tap correlations.

2.3 Model Setup

The flow of the modeling process is presented in Fig. 2.1. The input parameters include

channel power-delay profile given by Lp paths with delays τ1, τ2, · · · , τLp and average powers

P1, P2, · · · , PLp . For each channel path we consider a Doppler spread function Sl(ν), which,

in the simplest case, can be defined by a single parameter αl representing root-mean square

(RMS) Doppler spread for path l = 1, 2, · · · , Lp. The Doppler spread function determines

time-selectivity (fading) of the channel and we follow a common assumption that fading

processes are independent for all Lp paths. The carrier frequency is given by fc.

The Lp paths result from the acoustic wave propagation from the transmitter to receiver

without the effect of transmit/receive filtering and sampling and represent an “infinite band-

width” channel model. To create a tap-delay baseband channel model suitable for testing

acoustic communication systems we introduce the transmit/receive filter impulse response

g(t) and sampling time Ts.

To model SIMO systems we consider a vertical line array (VLA) at the receiver with

distance d meters between each pair of neighboring hydrophones. We also consider the angle

of arrival θl, l = 1, 2, · · · , Lp for each channel path. The incident angle for each path is the

same for all hydrophones. We assume that a path is a result of a flat acoustic wavefront

arriving at the VLA. This implies that the fading processes generated by one wavefront

on different hydrophones are correlated. We define correlation parameters ρl ∈ [0, 1], l =

1, 2, · · · , Lp which determine the correlation between two fading processes on the neighboring

hydrophones in the receive VLA for each channel path.

2.3.1 SIMO Modeling Setup

The first hydrophone of the receive VLA is considered as the reference hydrophone. The

acoustic wavefront from channel path l, l = 1, 2, · · · , Lp arriving from an incident angle θl

reaches hydrophone i, i = 1, 2, · · · , N with delay ∆
(i)
l = d(i − 1) sin(θl)/c measured with

respect to the reference hydrophone.
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An infinite-bandwidth Lp-path channel in baseband observed at hydrophone i, i =

1, 2, · · · , N can be written [37] as

h(i)(t; τ) =

Lp∑
l=1

√
Plh

(i)
l (t)δ(τ − τ (i)

l (t))ej2πfc∆
(i)
l (2.1)

where h
(i)
l (t) is the fading process for channel path l at hydrophone i, the delay equals

τ
(i)
l (t) = τl + ∆

(i)
l ,

and the exponential factor ej2πfc∆
(i)
l results from the down-conversion to baseband.

2.3.2 Sum-of-Sinusoids Model

The fading process h
(i)
l (t) is generated using a sum-of-sinusoids (SOS) technique [34]

h
(i)
l (t) =

1√
M

M∑
m=1

ej(φ
(i)
l,m+2πf

(i)
l,mt) (2.2)

as a sum of M unit-power complex exponentials with frequencies f
(i)
l,m, m = 1, 2, · · · ,M . The

initial phases φ
(i)
l,m, m = 1, 2, · · · ,M are selected independently from the uniform distribution

on the interval [0, 2π]. The M frequencies f
(i)
l,m are selected to generate time variation of path

l according to scattering function Sl(ν). It is common to utilize an exponentially decaying

Doppler spread function [33]

Sl(ν) =
1

2α
e−|ν|/α . (2.3)

where αl is root-mean square (RMS) Doppler spread (Hz). In order to guarantee

Sl(ν) =
∣∣∣ lim
M→∞

F
(
Eth(i)

l (t)h
(i)
l (t+ ∆t)∗

)∣∣∣ (2.4)

(where F denotes Fourier transform) we select frequencies f
(i)
l,m independently out of a distri-

bution determined by the probability density function (pdf) Sl(ν). The respective cumulative

distribution function (cdf) is given by

F (f) =

∫ f

−∞

1

2α
e−|ν|/αdν =

sgn(f)

2

(
1− e−|f |/α

)
. (2.5)

Inverse transform sampling allows us to use uniformly distributed u ∈ [0, 1] and set F (f
(i)
l,m) =

u in order to generate

fl,m = −α log (mod (2u, 1) ) sgn(1− 2u) (2.6)

such that pdf of f
(i)
l,m equals Sl(ν).
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2.3.3 Setting up hydrophone correlation

It is common to observe correlation between signals received by the VLA. While in practice

correlation is time dependent we include an average correlation parameter ρl, l = 1, 2, · · · , Lp

into the model. A more-detailed study of the correlation is given in Section 4.8.

In order to guarantee the average correlation between fading processes for two neighboring

hydrophones

Eth(i)
l (t)h

(i+1)
l (t)∗ = ρl (2.7)

we select the sinusoid frequencies f
(i)
l,m such that ρM frequencies are shared between the

frequency set f
(i)
l,m, m = 1, 2, · · · ,M for hydrophone i and the frequency set f

(i+1)
l,m , m =

1, 2, · · · ,M for hydrophone i+ 1.

During the frequency-generation process we can start from the reference hydrophone and

select M frequencies for each path. Then for the second hydrophone we draw ρM frequencies

uniformly from the previously selected set and add (1− ρ)M new frequencies. For the third

hydrophone we draw ρM frequencies uniformly from the second hydrophone set and add

(1 − ρ)M new frequencies and so on. Note that this process restricts the range of possible

correlation patters between hydrophones. Another approach would be to generate random

set of frequencies for each hydrophone and then multiply with the correlation factor to obtain

the required correlation.

In order to select phases φ
(i)
l,m we follow the same sharing process as with the frequencies

but we also take into account the phase differences 2πfc∆
(i)
l caused by the acoustic wave

propagation between the hydrophones in the VLA and add respective terms for the phases

of hydrophone i, i = 1, 2, · · · , N . Here we assume that the speed of the sound in the water

c is constant within the VLA.

2.3.4 Filtering and Sampling

Consider transmit filter q(t) and the same receive filter with combined transit/receive filter

given by the convolution g(τ) = q(τ) ? q∗(−τ). The channel for hydrophone i including

transmit/receive filtering is then represented by the convolution

f (i)(t; τ) = h(i)(t; τ) ? g(τ). (2.8)

Finally we consider sampling with sampling time Ts. The sampled received signal values
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y
(i)
k = y(i)(kTs), k = 0, 1, 2 · · · at hydrophone i are given by

y
(i)
k =

L∑
l=1

xk−lf
(i)
k,l + nk (2.9)

where nk = n(kTs), k = 0, 1, 2 · · · is the sampled noise, xk−l = x((k − l)Ts) is the sampled

transmit signal, and f
(i)
k,l is the sampled channel (tap-delay line) where k is the time sample

index and l is the delay sample index, L is the number of discrete (sampled) channel taps.

Note that we assume perfect synchronization between transmitter and receiver. However,

this assumption might not hold in real setting because of transmitter and receiver movements

resulting in time dilation.

The discrete filtered channel taps for the multi-path case are then generated as

f
(i)
k,l =

Lp∑
l′=1

√
Pl′h

(i)
l′ (kTs)g(lTs − τ (i)

l′ (kT ))ej2πfc∆
(i)

l′ (2.10)

for l = 1, 2, · · · , L, i = 1, 2, · · · , N .

In a practical model implementation it is convenient to first generate the fading processes

h
(i)
l′ (kTs) and then obtain the convolution with the transmit/receive filter g(lTs − τ (i)

l′ (kT ))

as in (2.10).

2.3.5 Doppler Shift

If the receiver moves at constant speed v relative to the transmitter, channel path l will

experience a Doppler shift dictated by the Mach number al = v/c cos(θl) (not including the

effect of bandwidth)

Then the channel model takes the form

h(i)(t; τ) =

Lp∑
l=1

√
Plh

(i)
l (t(1 + al))δ(τ − τ (i)

l (t))ej2πfc∆
(i)
l (1+al) (2.11)

where

τ
(i)
l (t) = (τl + ∆

(i)
l )(1 + al)

The rest of the modeling process is the same including the SOS channel tap model, tap

correlation between the hydrophones, filtering and sampling. The next section deals with

hydrophone correlation in more detail.
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Figure 2.2: Illustration of signal reflection at the sea surface.

2.4 Correlation Between Receive Hydrophones: The Correlation Footprint

Approach

The way reflections of acoustic energy at the sea surface is typically viewed is that akin to a

mirror, as illustrated in Fig. 2.2 by the solid line. However, as argued in recent treatises on

the subject [28], that single path is in reality a bundle of many close path that are generated

by the typically rough sea surface. This is illustrated in the figure by the dashed paths.

The reflection footprint, highlighted in the figure, is the area of sea surface that ”signif-

icantly” contributes to the signal a the receive hydrophone. While a truly planar incident

wave would generate received signal power from the infinitely large sea surface, and there

would be no clearly defined reflection footprint, we will show that we can nonetheless sharply

define such a footprint. To do this, we first make the following observations: (i) clearly, the

incident wave is not an infinite-size planar wave and can be considered planar only over

a relatively small area, certainly an area whose diameter is smaller then d; (ii) in order

to estimate statistical correlation, we are not so much interested in how much energy the

footprint reflects, but how large is the footprint such that the energy from it arrives at the

hydrophone mostly coherently. Outside this coherence area, there won’t be a statistical cor-

relation either. We’ll see that our analysis will give a sharp definition for the criteria (i) and

(ii). Lastly, (iii), the footprint can be no larger than the average length of the surface waves

which create the time variations in the path bundles in the first place. Beyond that wave

length, statistical signal correlation is also not expected to be significant.
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Figure 2.3: Illustration of signal reflection at the sea surface.

2.4.1 The Reflection Footprint

Here we compute the contribution of signal from a elliptical surface area onto a given point at

depth d, the hydrophone location. The incident wave is assumed to be planar, as in Fig. 2.2.

We apply Huygens’ principle that each surface point emits a omni-directional wave. Fig. 2.3

illustrates the principle, where we have reflected the hydrophone using the reflection principle

to facilitate the analysis.

We note that the rays generated by the elliptical surface that travel to the hydrophone

at the apex of the cone in Fig. 2.3, are the same as those that would originate from the

circular conical cut at right angles to the cylinder’s axis. We denote the radius of this circle

by Mw/2, where we call Mw the mirror width. The circular equivalent mirror, however, can

be thought of as the surface of a cylindrical section of the planar incident wave field. We

will now calculate the signal at the apex resulting from that circular surface instead, and

translate the geometry back to the sea surface later. In essence both surfaces results form

conical cut through the same cone, but the circular view is simpler to analyze.

Assume the uniform intensity across the circular area to be I. Then each annular region

at radius x from the center, will contribute the same amount and phase of signal to the apex

point, this amount is given by

I(x) ∝ 2πxej2π
f
c

√
x2+d2/ sin2(θ) (2.12)
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where f is the acoustic frequency, c = 1500 m/s is the speed of sound in water, d is the depth

of the hydrophone and θ is the ray incident angle, as explained earlier. The quantity I(x) is

proportional to the intensity. The wave amplitude is proportional to x. The term d2/ sin2(θ)

is the distance from the sea surface to the apex of the cone. The main effect in (2.12) is

the phase shift that the signal experiences, which will cause the signal decorrelation. The

minuscule amounts of amplitude attenuation differences between rays are ignored.

The complete signal at the hydrophone is now computed as

IR(Mw) =

∫ Mw/2

0

I(x)dx

= 2πx

∫ Mw/2

0

ej2π
f
c

√
x2+d2/ sin2(θ)dx

We can further express IR(Mw) as

IR(Mw) =
c2

2πf 2

(
1− 2πjf

c
d

)

·

ej2π fc d√M2
w

4d2
+ 1

sin2(θ)

√
M2

w

4d2
+

1

sin2(θ)
− e

j2π f
c

d

sin( θ)

sin(θ)

 (2.13)

where we note that, while a closed form exists, it is not very readable.

For typical values, such as our experimental values of f = 2048 Hz, and d on the order

of 40− 50 m, 2πfd/c� 1, and we can simplify to

IR(Mw) =

− j cd
f

(
e
j2π f

c
d

√
M2
w

4d2
+ 1

sin2(θ)

√
M2

w

4d2
+

1

sin2(θ)
− ej2π

f
c

d
sin(θ)

sin(θ)

)
Further noting that Mw � 2d, that is the mirror width will be significantly smaller then the

hydrophone depth, otherwise we are in a near-field situation, where we can no longer assume

ray-tracing to be accurate, we obtain our final approximation

IR(Mw) ≈ −jcd
f sin(θ)

(
e
j2π f

c
d

√
M2
w

4d2
+ 1

sin2(θ) − ej2π
f
c

d
sin(θ)

)
. (2.14)

Numerical comparisons between (2.15) and (2.13) show an excellent agreement.

We can use a normalized mirror width mw = Mw/(2d), and reduce the above equation

to a single parameter equation

IR(mw) ≈ −jcd
f sin(θ)

(
e
j2π f

c
d
√
m2
w+ 1

sin2(θ) − ej2π
f
c

d
sin(θ)

)
. (2.15)
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Normalizing by d2 we obtain the following proportionality for the received pressure power

P (mw) =
|IR(mw)|2

d2

≈ c2

f 2 sin2(θ)

∣∣∣∣∣ej2π fc d
(√

m2
w+ 1

sin2(θ)
− 1

sin(θ)

)
− 1

∣∣∣∣∣
2

(2.16)

We further manipulate P (mw) into

P (mw) ≈ c2

f 2 sin2(θ)

∣∣∣∣∣ej2π fc dm2
w

/(√
m2
w+ 1

sin2(θ)
+ 1

sin(θ)

)
− 1

∣∣∣∣∣
2

(2.17)

But since mw � 1 and 1
sin(θ)

> 1, we can further approximate as follows

P (mw) ≈ c2

f 2 sin2(θ)

∣∣∣ejπ fc dm2
w sin(θ) − 1

∣∣∣2 (2.18)

and we realize that it is advantageous to renormalize the function by letting ν =
√

fd
c
mw

√
sin(θ)

to obtain the normalized pressure power function

P (ν) =
∣∣∣ejπν2 − 1

∣∣∣2 (2.19)

which does no longer contain the nuisance environmental variable d, f, c, and θ.

Fig. 2.4 shows (2.19) for ν < 1.5, and we see that the function has a clear maximum

at ν = 1, and then rapidly decreases as near-field effects cause destructive interference.

(For larger values of ν, the function P (ν) will start to oscillate.) We conclude that the

coherence footprint is caused by the circular cylinder cut of radius Mw computed from ν =√
f
dc
Mw

2

√
sin(θ) = 1, that is, a circluar area with a radius of

√
d
√

c
f

√
1

sin(θ)
=
√
dλ/ sin(θ).

2.4.2 Correlation Regions

Let us return now to our original question of determining the correlation region of a path

bundle, i.e., the surface area that contributes to the majority of the energy received at the

hydrophone.

This area coincides with the area over which the received phases of different rays add

coherently, as discussed in the previous section.

There are in general two effects that limit the correlation region: (i) As discussed above,

the area of significant reflection is limited, and (ii) the correlation is also limited by the
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Figure 2.4: Plot of the normalized received pressure power as a function of ν.
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Figure 2.5: Illustration of the conical cut model to determine correlation regions.

geometric extent of the gravity waves that cause the time variations in the path bundles.

The smaller region among the two will determine the correlation region.

We first return to the limit (i) by reconsidering the geometry discussed above, which is

illustrated again in Fig. 2.5 for clarity. As can be seen, the sea surface cuts an ellipse out of

the ray cone with major axis aligned with the path bundle direction. The way we chose to

orient the cutting planes, the semi-latus rectum of the ellipse l = Mw/2, the radius of the

circular reflection mirror discussed above.

To compute the extent of the elliptical footprint, we introduce the axis parts b1 and b2,
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as well as the apex angle α. First we compute

α = tan−1
(r
d

sin(θ)
)

= tan−1

(√
λ sin(θ)

d

)
(2.20)

or in terms of the distance l of the reflection point from the receiver, we obtain

α = tan−1

(√
λ cos(θ)

l

)
→ tan−1

(√
λ

l

)
. (2.21)

Using the sine-law we further compute

b1 =
d sin(α)

sin(θ) sin(θ + α)
; b2 =

d sin(α)

sin(θ) sin(θ − α)
; (2.22)

and the diameter of the reflection footprint is given by

de = b1 + b2 =
d sin(α)

sin(θ)

(
1

sin(θ + α)
+

1

sin(θ − α)

)
(2.23)

Example: We assume a deployment depths of d =40 m, a reflection point distance l =150

m, and a frequency of f = 2048 Hz. These numbers will give us a radius of Mw/2 = 5.25 m,

and a footprint extent of de =42 m.

Regarding point (ii), since the average gravity wave length varies from about 8 m to over

200 m, the correlation regions appear to be lower bounded by the refection footprint for

most combinations of depths and reflection angles in shallow water, where, typically
√
dλ <

gravity wave periods.

2.4.3 Applications

The reflection footprints can now be used to estimate the amount of signal correlation in

various situations. In Fig. 2.6 we consider the use of two hydrophones which may form part

of vertical array and are separated by a distance of ∆d. The overlap of their respective

reflection footprints is where signals reach both hydrophones and the ratio between overlap

and individual reflection footprint shall serve as estimate of the correlation between the two

signals arriving at the two hydrophones.

Using basic geometry we find that the centers of the two elliptical footprints are offset

from each other by the offset of the central reflection points using standard ray-tracing,

leading to ∆r = ∆d/ tan(θ). For the example from above with l = 150 m and d = 40 m,

then the footprints have axis of 40 m as discussed above.
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Figure 2.6: Correlation illustration of vertically separated hydrophones.

As a simplifying assumption, think for a moment of the reflection footprints as square

areas, and near-by footprints lie on the diagonals of these squares. Then, the area shared

by two footprints shrinks with the square of the separation between the two centers. In

the example above with a hydrophone separation of ∆d = 0.33 m, ∆r = 1.25 m. With a

reflection footprint diameter of 40m, the expected correlation factor ρ would be given by

ρ =

(
de −∆r

de

)2

=

(
38.75

40

)2

= 0.94 (2.24)

Using the same geometries, and the example of the VLA, correlation between the first

and last hydrophone would be
(

35
40

)2
= 0.76.

Generically then, in order to achieve decorrelation between the signal of two hydrophone

receivers, we need ∆r > de, which leads to ∆d > d de/l. In our example this would lead

to a hydrophone separation of 11 m or larger. Since de ∝
√
d, the required separation for

decorreation has an order relationship with depths as O(d3/2) where the exact proportionality

factors depend on the geometry of the transmission environment as discussed here. However,

we can conclude that deep-sea systems will practically never see a significant decorrelation of

a given path over the hydrophone array, and only rather shallow deployments could achieve

such a signal decorrelation.

2.5 Model Example and Experimental Results

In this section we consider an example channel measured in a sea trial experiment performed

off the cost of Nova Scotia, Canada, during the summer of 2017. The distance between
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Figure 2.7: Normalized power-delay profile used to generate a model of St. Margaret’s bay
channel.

the transmitter and receiver was equal to 1 km, and the ocean depth was approximately

80 m. Both transmitter and receiver were at approximately 40 m depth. Hard bottom

(gravel and sand composition) is expected in the measurement area according to Canadian

oceanographic survey maps. The underwater acoustic transmission was performed using the

carrier frequency fc = 2048 Hz, bandwidth was set to B = 320 Hz and root-raised cosine

filters with roll-off 0.25 have been used. The receive VLA consisted of five hydrophones

separated by d = 0.36 m (half a wavelength).

Sampled power-delay profiles of the measured is given in Fig. 2.8 (top) where the horizon-

tal axis represents the sampled (discrete) channel taps. Sampling time equals Ts = 1/B =

0.0031s. A clear multi-path propagation is exhibited by the channel. The first cluster of

channel taps includes the direct, single bottom and single surface reflection paths. A dy-

namic sampled power-delay profile of the measured channel is given in Fig. 2.9. The overall

RMS Doppler spread is equal to 0.44 Hz.

The modeled channel was obtained via Bellhop modeling of the channel power delay

profile according to the communication channel geometry given by the measurement setup.

The resulting (unsampled) normalized power-delay profile is given in Fig. 2.7 and a sampled

discrete power-delay profile of the modeled channel is given in Fig. 2.8 (bottom). Both

measured and modeled power-delay profiles consist of five clusters of significant channel taps.

We notice that for the measured channel all channel taps, even these outside the clusters are

non-zero. On the other hand for the modeled channel all non-zero taps are located within

the clusters resulted from the channel paths (Fig. 2.7) and subsequent filtering.
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Figure 2.8: Sampled power-delay profile of measured (top) and modeled (bottom) St. Mar-
garet’s bay channel.

In order to set the Doppler spread for the channel we take one of the two approaches

where the first approach is to set the Doppler spread for each channel path to the same value

α RMS Doppler and use the distribution (2.3) to create the time fading according to the

SOS process. The second approach would be to set αl for path l = 1, 2, · · · , Lp proportional

to the number of surface bounces (see also [28]) since the Doppler spread tend to broaden

with the number of surface bounces.

The average correlation between two neighboring hydrophones obtained for the measured

channel was around ρ = 0.8. Hence we use the same value to set the correlation for the

modeled channel. We use the same correlation values for all paths for the example modeled

channel. This is also consistent with the values predicted by Section 4.8.

Finally we use the two channels, measured and modeled to test the OFDM communication

system presented in [31]. The transmitter performs data modulation where the (uncoded)

binary data is repeated, permuted and mapped to QPSK symbols in frequency domain. The

data stream is superimposed bit by bit with the repeated pilot sequence designed in [38] and

transmitted over the channel. Total channel power (sum of all taps squared) is normalized
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Figure 2.9: Time-variation of the measured normalized power-delay profile of St. Margaret’s
bay channel.

to one and Gaussian additive noise is considered to simulate the system at different signal-

to-noise ratios (SNR)s. The OFDM size is 1024, repetition factor equals 4 and a pilot with

time-domain period of 64 is considered where the pilot power is 10% of the signal power.

The details are given in [31].

The receiver performs iterative channel estimation, equalization and data decoding [31].

At every iteration Kalman-based channel estimator in time domain is estimating the channel

based on the pilot signal and partially decoded data. Soft data estimation and interference

cancellation removing inter-carrier interference is performed after the channel estimation

and using the obtained channel knowledge. Iterative decoding with 6 iterations has been

performed for the two channels.

Fig. 2.10 demonstrates the uncoded bit-error rate of OFDM transmission utilizing the

modeled and measured channels employing transmit and receive signaling described above.

The modeled channel was set to have 0.44 Hz Doppler per path. The simulated BERs for

both perfect channel knowledge assumption and channel estimation based iterative receivers

are close for modeled and measured channels.
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Figure 2.10: Bit-error rate for the iterative receiver obtained on measured (circles curve) and
modeled (stars curve) St. Margaret’s bay channel assuming perfect channel knowledge and
performing 6 equalization iterations. Simulated BER for full iterative receiver which includes
channel estimation are given by diamonds curve for the measured channel and squares curve
for the modeled channel.

2.6 Conclusion

A dynamic underwater acoustic SIMO communications based on SOS principle is presented.

The model reproduces the essential features of the underwater acoustic channel such as time

and frequency selectivity, and incorporates transmit/receiver filtering. Special attention is

given to modeling spatial channel correlation between the received hydrophones. A setup

for modeling hydrophone correlation based on SOS is presented and the correlation values

themselves are predicted using a study of correlation footprints presented in this chapter.

Finally an example of a channel scenario is provided with both modeled and measured

channel and the results of channel estimation and equalization demonstrate similar behavior

on both measures and modeled channels.
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Chapter 3

Acoustic Pressure Correlations in Deep Ocean with Applications

to Multiple-Input Multiple-Output Underwater Communications

3.1 Abstract

We derive a general expression for the two-point space-time pressure field correlations gen-

erated by a polychromatic acoustic point source located not too far from the surface of a

deep water basin. We show that in the monochromatic case, our results yield an explicit

analytical expression for the two-point correlation function of acoustic Green’s functions that

characterize correlations among the individual transmitter-receiver links in a multiple-input

multiple-output (MIMO) underwater communication system. In order to characterize the

quality of the MIMO channel we quantify the degradation of the pressure correlations of the

acoustic waves scattered by a free ocean surface due to the gravity wave velocity component

and random ocean surface height fluctuations. The weak correlations of the surface-scattered

waves are, however, offset by the presence of the direct propagation links between the trans-

mitters and receivers. The direct link results in a significant overall correlation among the

entries of the underwater MIMO channel matrix degrading its rank and limiting channel

capacity.

3.2 Introduction

Understanding and modelling all aspects of the underwater sound propagation is a long-

standing objective of the acoustic research that guides the fundamental oceanographic sci-

ence and impacts a multitude of ocean technology applications. Recent advances in remote

acoustic sensing and underwater acoustic communications research have led to the devel-

opment of several sound propagation models, ranging from basic ones, aimed at computing

the acoustic energy loss on wave propagation in the water, to comprehensive modelling of

a multitude of underwater sound propagation aspects. The latter include multi-path sound

propagation and acoustic wave scattering from the ocean seabed and free surface gravity

27
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waves.

The widely utilized ray-tracing models such as Bellhop [3] are coached within the geo-

metric acoustics framework that allows to determine a multi-path ray propagation profile.

The latter can then be applied to model the impulse response of an acoustic communication

channel, for instance. Further, the time variation of the impulse response modelling has

been approached in a number of papers via modelling the acoustic wave scattering from the

sea surface that was assumed to vary randomly in time. The authors of [4], for instance,

attempted to model the actual acoustic wave scattering from the random sea surface by

introducing, in a rather heuristic way, a random ensemble of micro-paths with prescribed

time delays between the neighboring rays. A similar approach was followed in [5, 39, 6] for

the case of modelling multiple-input multiple-output (MIMO) underwater acoustic signal

propagation. An alternative approach was advocated in [40, 41] where instead of obtaining

the scattered rays via micro-path ray tracing, an empirical scattering function, obtained

from direct measurements, was incorporated into the model. The authors of [42] took a

step further in the same direction by presenting a technique of stochastic replay whereby a

time variation of the acoustic communication channel is generated from previously recorded

channel measurements. The approach of superposition of a ray-tracing model and an em-

pirical scattering function has been also considered for MIMO channels in [1] where an

artificial parameter regulating correlations between individual transmit-receive propagation

links have been introduced. In [43] a statistical model of random sea-surface variations was

advanced and coupled with ray tracing to describe underwater sound propagation. A more

fundamental, wave equation based approach to underwater acoustic signal propagation was

also developed [44] within the parabolic equation approximation for relatively narrow-angle

acoustic sources. Finally, the capacity of MIMO channel has been assessed based on coarse

MIMO channel model approximations via correlated Rayleigh or Ricean matrices [30, 45]

inspired by terrestrial wireless MIMO channel modelling.

However, while systematically treating the temporal fluctuations of the communication

channel with variable degrees of success, the vast majority of existing underwater acoustic

communication models incorporate the channel spatial fluctuations in a completely heuristic

manner. To address the spatial and temporal fluctuations of the acoustic medium on equal

footing, one has to go beyond ray tracing and explore the Green function of an acoustic

field instead of the temporal impulse response function of an acoustic channel. To this
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end, a normal mode expansion of the underwater Green function [46] serves as a convenient

first step. Unfortunately, a purely numerical implementation of the method [47] is not

conducive to gaining much physics insight. An alternative approach that combines a semi-

analytic Kirchhoff theory to account for wave scattering from large surface wave swells and

geometric optics approximation to obtain a rough estimate for the scattering cross-section

was advocated in [48]. However, the acoustic pressure correlations were evaluated in a rather

ad-hoc fashion, and in the end, a purely phenomenological exponential correlation function

was argued to fit the measured data for pressure correlations at pairs of spatial points in the

horizontal plane of the ocean. In addition the approach of [48] is limited to monochromatic

sources and static ocean as no temporal pressure fluctuations are considered.

While point-to–point communication systems can use existing channel models discussed

above, MIMO communication requires accurate space/time modelling. MIMO communi-

cations can open up a unique opportunity to take advantage of a multitude of spatially

independent point-to-point communication channels between the transmitter/source and re-

ceiver [49]. In favorable channel conditions, the utilization of multiple transmitters and

receivers leads to increased communication channel capacity which may scale linearly with

the number of transmit/receive element pairs. The key question regarding a success of MIMO

communication is the degree to which its promise can be exploited, or, in other words, the

degree to which multiple point-to-point MIMO channels are uncorrelated in space. Answer-

ing this fundamental question necessitates the first-principles physics modelling of spatial

correlations among individual transmitter-receiver links in multiple acoustic MIMO chan-

nels. The first-principles approach must rely on studying Green’s function correlations at

pairs of space-time points to establish the degree of MIMO channel correlations.

In this chapter, we determine space-time pressure correlations of the acoustic fields that

are generated by monochromatic and polychromatic point sources located in the deep water

not too far from the surface. In the monochromatic case, the result yields an analytical ex-

pression for the (normalized) correlation function of Green’s functions at a pair of space-time

points that characterizes the communication channel correlations. We discuss the influence

of the random surface height fluctuations, as well as the Doppler effects associated with

sound scattering from free surface gravity waves, on the spatial correlations of acoustic fields

at pairs of observation points in the water. We then investigate the effects of source central

frequency and bandwidth as well as receiver angular separation on the pressure correlation.
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Finally, we study the interplay between the direct and indirect correlation components and

conclude that the dominance of the direct signal propagation path undermines the efforts to

create a high-rank high-capacity MIMO link.

3.3 Problem formulation and random Lloyd mirror model

We seek to determine two-point, space-time pressure correlations in the water, produced by

an underwater acoustic source located not too far from the surface of a deep water reservoir

such as a deep ocean or an ocean bay. In general, we expect the pressure correlations

to be influenced by a multitude of uncontrollable factors related to the ocean free surface

conditions, such as the gravity wave velocity and surface height distributions, as well as the

ocean turbulence and its floor state (density, roughness and presence of sediments). The

rich physics of underwater sound propagation and scattering necessitates a judicious choice

of a statistical model to account for major factors affecting the pressure correlations. To this

end, we shall make the follwoing simplifying assumptions.

1. The source is assumed to insonify the upper half space, z ≥ 0 and to be located

sufficiently far from the seabed.

2. The water is assumed to be very deep such that its depth far exceeds any characteristic

spatial scale in the problem.

3. The source is assumed to be located not too far from the surface so that we can neglect

sound speed stratification with the depth.

4. The water is assumed to be clear with no random sound scatterers.

5. The ocean surface is assumed sufficiently smooth such that its typical radius of the

curvature far exceeds a characteristic wavelength of the source spectrum.

The first two assumptions imply that we can neglect scattering of sound from the seabed.

Assumptions three and four are self-explanatory: we assume an isovelocity sound speed pro-

file and neglect any effects due to volume scattering, either from random particles/copepods

or ocean turbulence. The final assumption allows us to view the surface as locally flat with

a random surface height with respect to the zero-crossing line z = 0. Our model can cap-

ture two major factors affecting the pressure correlations: the Doppler-induced correlation
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fading due to random distribution of the surface wave velocities and the correlation decay

due to random surface height fluctuations. We thus break the problem into two parts. First,

we work in the gravity wave packet reference frame where the surface wave velocity is zero.

Choosing our z axis in the vertical direction, the angular spectrum representation of a generic

pressure wave in this frame reads

p(r′, t) =

∫ ∞
0

dω

2π
e−iωt

∫
d2k⊥
2π
A(k⊥, ω)ei(k⊥·r

′
⊥±kzz

′), (3.1)

where

kz =
√
ω2/c2

s − k2
⊥, (3.2)

and all primed variables refer to the wave packet reference frame; A(k⊥, ω) is the angular

spectrum of our source, ± indicates the propagation direction of a constituent plane wave

into the upper (+) or lower (−) half-space. Hereafter, we drop the plane wave components

propagating downward and designate all vector components in the z-direction (depth) with

the subscript “ ‖ ” while all vector components in the plane perpendicular to the z-direction

come with the subscript “⊥”. Second, we transform to the laboratory frame and perform

averages over statistical distributions of wave velocities and heights to determine the second-

order pressure correlations at a pair of space-time points.

As the source is in deep water, we can treat sound scattering within the framework of

a random Lloyd mirror model. This conceptually simple model implies that there are only

two paths that matter: the direct path from the source to a receiver and the one involving

a single reflection of sound from the random ocean surface. The second contribution can be

thought of as coming from an image source above the surface so that the overall pressure at

any point under water can be expressed as

p(r′, t) =

∫ ∞
0

dω

2π
e−iωt

∫
d2k⊥
2π
A(k⊥, ω)eik⊥·r

′
⊥ [eikz(z′−z0) − e−ikz(z′−z∗)], (3.3)

where z0 and z∗ define the vertical coordinates of the source and image, respectively; the

source is assumed to be located on the z-axis. Next, imposing a pressure release condition

on the surface,

p(r′, t)|z′=h = 0, (3.4)

we can easily determine the image location,

h− z0 = −(h− z∗) =⇒ z∗ = 2h− z0. (3.5)
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Thus,

p(r′, t) =

∫ ∞
0

dω

2π
e−iωt

∫
d2k⊥
2π
A(k⊥, ω)eik⊥·r

′
⊥ [eikz(z′−z0) − e−ikz(z′+z0−2h)]. (3.6)

3.4 Space-time acoustic pressure correlations

We may now transform from the gravity wave packet frame to the laboratory frame. To

this end, we notice that the first term on the r.h.s, of Eq. (3.6) represents the contribution

directly propagating from the source to the receiver without having ever interacted with

the random surface. Hence, in the first term, r′⊥ = r⊥ and z′ = z. At the same time, the

coordinates of the wave scattered by the moving surface in the laboratory frame read

r⊥ = r′⊥ + v⊥t, z = z′ + v‖t, (3.7)

where the unprimed coordinates correspond to the laboratory frame; v⊥ and v‖ = v‖ez are

gravity wave velocities in the ocean surface plane and in the vertical direction, respectively.

We have tacitly assumed that since the speed of any gravity wave is much smaller than the

speed of sound, we can neglect the change in either vertical or horizontal velocity components

of an ensemble of gravity waves over the course of their interaction with any acoustic plane

wave making up the angular spectrum of the source. On substituting from Eq. (3.7) into (3.6)

and rearranging terms we arrive at

p(r, t) =

∫ ∞
0

dω

2π
e−iωt

∫
d2k⊥
2π
A(k⊥, ω)eik⊥·r⊥ [eikz(z−z0) − ei(kzv‖−k⊥·v⊥)te−ikz(z+z0−2h)]. (3.8)

The first term on the r.h.s., of (3.8) is just the pressure generated by the source at the point

r at a time t. Thus,

p(r, t) = p0(r, t)−
∫ ∞

0

dω

2π
e−iωt

∫
d2k⊥
2π
A(k⊥, ω)eik⊥·r⊥ei(kzv‖−k⊥·v⊥)te−ikz(z+z0−2h). (3.9)

A straightforward analysis shows that the cross-terms involving directly propagated and

scattered plane waves nearly vanish in the far zone, kjrj � 1, (j = 1, 2) because the acoustic

paths add up, resulting in highly oscillating contributions which should cancel out upon

plane wave superpositions. We can then determine the effective correlation function

Γ(r1, t1; r2, t2) ≡ 〈[p∗(r1, t1)− p∗0(r1, t1)][p(r2, t2)− p0(r2, t2)]〉, (3.10)
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where the bar indicates averaging over the ensemble of surface wave packet velocities and

the angle brackets that over the surface wave heights which are assumed to be independent.

The overall pressure correlation function will then be simply

Γtot(r1, t1; r2, t2) ≡ 〈[p∗(r1, t1)p(r2, t2)〉 ' p∗0(r1, t1)p0(r2, t2) + Γ(r1, t1; r2, t2). (3.11)

It follows that

Γ(r1, t1; r2, t2)=

∫ ∞
0

dω1

2π

∫ ∞
0

dω2

2π

∫
d2k1⊥

2π

∫
d2k2⊥

2π
ei(ω1t1−ω2t2)ei(k2⊥·r2⊥−k1⊥·r1⊥)eik1 z(z1+z0)

× e−ik2 z(z2+z0)ei(k1⊥t1−k2⊥t2)·v⊥〈e2ih(k2 z−k1 z)〉 ei(k2 zt2−k1 zt1)v‖A∗(k1⊥, ω1)A(k2⊥, ω2). (3.12)

We are left to evaluate the characteristic functions of the gravity wave velocities and

wave height distributions. Unless the ocean is in an extreme stormy condition, the wave

height PDF is reliably Gaussian, as the surface height at a given point is determined by

many independent contributions from the neighbourhood of the point. Averaging then over

the Gaussian distribution of wave heights gives

〈e2ih(k2 z−k1 z)〉 = e−2σ2
h(k2 z−k1 z)2 , (3.13)

where σh is an rms width of wave heights. Further, the vertical velocity distribution can be

modelled by assuming that

v‖ = v‖ cos θ, (3.14)

where θ is a random phase of the wave train, uniformly distributed in the interval, 0 ≤ θ ≤ 2π.

This generic distribution captures the key fact that the vertical velocity oscillates back an

forth harmonically with the overall random phase of the wave with a characteristic average

amplitude v‖. Averaging over the vertical velocity distribution yields a Doppler shift due to

its spread as

ei(k2 zt2−k1 zt1)v‖ = J0[(k2 zt2 − k1 zt1)v‖], (3.15)

where J0(x) is a Bessel function of the first kind of order zero.

Let us next average over the group velocity of a gravity wave packet in the surface plane

(xy−plane). The first requirement for the group velocity distribution PDF is rotational

symmetry in the xy-plane, which follows from the random direction of a driving wind velocity.

Thus the group velocity PDF should then depend only on the magnitude of the group velocity,

P(v⊥) = P(v⊥). Each wave packet consists of a large number of gravity waves, propagating
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with random phase velocities determined by the local wind gusts. Hence, it is reasonable to

assume, by virtue of the central limit theorem, that the in-plane wave velocity PDF factorizes

into a product of two uncorrelated Gaussian distributions for each Cartesian component of

the velocity. By implication, the PDF of the in-plane velocity v⊥ is a Rayleigh one,

P(v⊥, φ) = (v⊥/σ
2
⊥)e−v

2
⊥/2σ

2
⊥ . (3.16)

Here σ⊥ is a group velocity parameter related to the average group velocity through v⊥ =

σ⊥
√
π/2. It follows from Eqs. (3.16) upon integrating either in Cartesian or in polar coor-

dinates that

ei(k1⊥t1−k2⊥t2)·v⊥ = e−(k1⊥t1−k2⊥t2)2σ2
⊥/2. (3.17)

Finally, on combining Eqs. (3.13), (3.15) and (3.17), we arrive at the result,

Γ(r1, t1; r2, t2)=

∫ ∞
0

dω1

2π

∫ ∞
0

dω2

2π

∫
d2k1⊥

2π

∫
d2k2⊥

2π
ei(ω1t1−ω2t2)ei(k2⊥·r2⊥−k1⊥·r1⊥)eik1 z(z1+z0)

×e−ik2 z(z2+z0)e−(k1⊥t1−k2⊥t2)2σ2
⊥/2J0[(k2 zt2 − k1 zt1)v‖]e

−2σ2
h(k2 z−k1 z)2A∗(k1⊥, ω1)A(k2⊥, ω2).(3.18)

In practice, it is convenient to introduce a normalized correlation function as

γ(r1, t1; r2, t2) =
Γtot(r1, t1; r2, t2)√

Γtot(r1, t1; r1, t1)Γtot(r2, t2; r2, t2)
. (3.19)

We point out that some of our Doppler-induced correlation factors resemble those derived

heuristically in [4] that provides albeit an oversimplified, yet computationally attractive

platform that has influenced a generation of signal processing papers in underwater acoustic

communications. We note, however, that [4] model lacks solid physics basis. In particular, it

entirely misses the fact that spatial and temporal correlations among plane wave components

of the angular spectrum are strongly coupled by virtue of acoustic wave propagation as is

evidenced by Eq. (3.18). Hence, one cannot simply ignore spatial dependence and introduce

it later in a heuristic manner. In addition, [4] ignores Doppler broadening effects associated

with a velocity spread of surface gravity waves in the horizontal plane of the ocean, which

can be quite important as we estimate below and demonstrate in our numerical simulations.

3.5 Plane wave scattering and order-of-magnitude estimates

Let us briefly consider the physics of single plane-wave correlations. Consider a plane wave

of frequency ω∗ with the wave vector k∗. If the angular spectrum consisted of just this plane
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wave, implying that A(k⊥, ω) = δ(k⊥− k∗⊥)δ(ω− ω∗), its self-correlation at two space-time

points would be given by Γ(r1, t1; r2, t2) ∝ e−k
2
∗⊥σ

2
⊥(t1−t2)2/2J0[k∗zv‖(t1 − t2)]. It follows that

the plane wave scattered in a given direction remains self-correlated over a typical correlation

time τc ∼ min(k−1
∗z v

−1
‖ , k

−1
∗⊥σ

−1
⊥ ) due to the Doppler broadening. Notice that characteristic

self-correlation times are different for different plane waves within the angular spectrum of

the source, implying a strong coupling of space-time correlations, the point missed in [4]. Let

us now make some order-of-magnitude estimates. We first consider the appropriate range of

sonar frequencies. Recent ultrasonic underwater communication experiments were performed

in the frequency range 5 ≤ ν0 ≤ 20 kHz [4], whereas acoustic sensing for oceanographic

purposes is typically carried out in the range 24 kHz ≤ ν0 ≤ 1.2 MHz. [50]. Let us then

assume a range 5 kHz ≤ ν0 ≤ 1 MHz to enable both possibilities. Notice that even at the

lower end of the frequency spectrum, the sound wavelength λ0 ∼ 30 cm is much shorter

than a characteristic ocean surface radius of the curvature, typically of the order of a few

meters even in a stormy weather. Further, a typical vertical wave velocity can be estimated

from its amplitude a and gravity wave frequency ωgw as v‖ ∼ ωgwa, where we can estimate

ωgw ∼
√
gkgw ∼

√
2πg/λgw in the deep water limit [51]. Table 3.1 presents the gravity

wave σ⊥,v̄|| and height σh parameters as a function of sea state. We employ Joint North Sea

Wave Observation Project (JONSWAP) spectrum [52] to calculate the relationships between

different sea state parameters (see Appendix B).

3.6 Far-field behavior and Green’s function correlations

Since typical observations in acoustics happen in the far zone, kr � 1, Eq. (3.18) can

be substantially simplified by performing a stationary-phase integration over the angular

spectrum. To this end, we re-write Eq. (3.18) as

Γ(r1, t1; r2, t2) =

∫ ∞
0

dω1

2π

∫ ∞
0

dω2

2π
ei(ω1t1−ω2t2)Φ(r1, t1; r2, t2;ω1, ω2), (3.20)

where

Φ(r1, t1; r2, t2;ω1, ω2) =

∫
|f1⊥|≤1

(
d2f1⊥

2π

)∫
|f2⊥|≤1

(
d2f2⊥

2π

)
k2

1k
2
2 A∗(k1f1⊥, ω1)A(k2f2⊥, ω2)

×C(f1⊥, f2⊥) e−[k1[f1⊥·r1⊥−f1 z(z1+z0)] eik2[f2⊥·r2⊥−f2 z(z2+z0)]. (3.21)

Here the slowly-varying correlation function reads

C(f1⊥, f2⊥) = e−(k1f1⊥t1−k2f2⊥t2)2σ2
⊥/2J0[(k2f2 zt2 − k1f1 zt1)v‖]e

−2σ2
h(k2f2 z−k1f1 z)2 , (3.22)
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where we introduced

kj⊥ = kjfj⊥, fj z =
√

1− f 2
j⊥, (3.23)

and kj = ωj/cs, j = 1, 2. The integral (3.21) can be evaluated by the standard stationary-

phase technique with the result being a straightforward generalization of [53, 45]

Φ(r1, t1; r2, t2;ω1, ω2)=k1k2s1 zs2 zA∗(s1⊥, ω1)A(s2⊥, ω2)C(s1⊥, s2⊥)
ei(k2r2−k1r1)

r1r2

, (3.24)

where

C(s1⊥, s2⊥) = e−(k1t1s1⊥−k2t2s2⊥)2σ2
⊥/2J0[(k2t2s2 z − k1t1s1 z)v‖]e

−2σ2
h(k2s2 z−k1s1 z)2 . (3.25)

Here we introduced a two-dimensional vector s⊥ and sz viz.,

sj⊥ = sin θj(ex cosφj + ey sinφj); sz = cos θj. (3.26)

In physics terms, our result implies that the plane waves propagating from the image

source along the lines-of-sight connecting the image source and the two receivers, sj z =

(zj + z0)/r∗j ' cos θj, r∗j =
√
x2
j + y2

j + (z + z0)2 ' rj make dominate contributions to the

correlation function in the far zone of the source. We also assumed that the receivers are

located far enough from the source such that z0, zj � rj, (j = 1, 2).

We now specify to a polychromatic spherical wave as a conventional broadband acoustic

source. The angular spectrum of such a source is well-known [46, 45]

A(kj⊥, ω) =
iF̃ (ω)

kjsj z

=
iF̃ (ω)

kj
√

1− s2
j⊥

=
iF̃ (ω)

kj cos θj
, (3.27)

where F̃ (ω) is a spectral amplitude of the source. On substituting from Eq. (3.27) into (3.25)

and making use of (3.21) through (3.24) and (3.26), we arrive at

Γ(r1, t1; r2, t2) =
1

r1r2

∫ ∞
0

dω1

2π
eiω1(t1−r1/cs)F̃ ∗(ω1)

∫ ∞
0

dω2

2π
e−iω2(t2−r2/cs)F̃ (ω2)

×e−(k1t1s1⊥−k2t2s2⊥)2σ2
⊥/2J0[(k2t2s2 z − k1t1s1 z)v‖]e

−2σ2
h(k2s2 z−k1s1 z)2 . (3.28)

Finally, on combining with the directly propagated contribution, we obtain

Γtot(r1, t1; r2, t2) =
F ∗(t1 − r1/cs)F (t2 − r2/cs)

r1r2

+ Γ(r1, t1; r2, t2), (3.29)

where we introduced a source temporal profile viz.,

F (t) =

∫ ∞
0

dω

2π
F̃ (ω)e−iωt. (3.30)
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Next, we specialize to a realistic case of grazing incidence which corresponds to most

actual remote-sensing and underwater communication experiments near surface. The polar

angles the observation points (receivers) make with the normal are then in the vicinity of

π/2. As in oceanography the polar angles are often measured with respect to the horizon,

we can introduce the complementary angle, ψ = π/2−θ. Thus, whenever θ ' π/2, it follows

that sin θj ' 1 and cos θj ' ψj, implying that

sj⊥ ' ex cosφj + ey sinφj; sj z ' ψj. (3.31)

It then follows at once that

Γ(r1, t1; r2, t2) =
1

r1r2

∫ ∞
0

dω1

2π
eiω1(t1−r1/cs)F̃ ∗(ω1)

∫ ∞
0

dω2

2π
e−iω2(t2−r2/cs)F̃ (ω2)

×e−σ2
⊥χ(k1,t1,k2,t2,∆φ)/2J0[(k2t2ψ2 − k1t1ψ1)v‖]e

−2σ2
h(k2ψ2−k1ψ1)2 ; (3.32)

where we introduced the notations

χ(k1, t1, k2, t2, φ1 − φ2) = k2
1t

2
1 + k2

2t
2
2 − 2k1k2t1t2 cos ∆φ, ∆φ = φ1 − φ2. (3.33)

To gain physical insight, we first examine a strictly monochromatic spherical wave with

the spectrum in the form of a delta-function, F̃ (ω) ∝ δ(ω − ω0). In this case, the acoustic

field is due to a monochromatic point source and hence is given by the Green function,

G(r, t; z0, 0). It follows that the total correlation function is equivalent to the second-order

correlation function of Green’s functions, Γtot(r1, t1, r2, t2) = 〈G(r1, t1; z0, 0))G(r2, t2; z0, 0)〉.
We can then readily obtain the normalized correlation function of Green’s functions analyt-

ically by substituting the delta-function spectrum into Eq. (3.32) and carrying out trivial

integrations. It then follows from Eqs. (3.19), (3.29), and (3.32) that

|γG(r1, t1, r2, t2)|= 1
2

{
1+e−k

2
0σ

2
⊥[t21+t22−2t1t2 cos ∆φ]/2J0[k0v‖(t1ψ1 − t2ψ2)]e−2k20σ

2
h(∆ψ)2

}
, (3.34)

where the subscript “G” stands for Green’s function and we introduced k0 = ω0/cs and

∆ψ = ψ1 − ψ2. Eq. (3.34) no longer depends on the source particulars and it is a function

of the underwater acoustic communication channel.

In MIMO communication practice, we typically interrogate all the channels simultane-

ously. Thus, we are interested in equal-time acoustic correlations. Setting, t1 = t2 = t in

Eq. (3.34), we arrive at once at

|γG(r1, r2, t)|= 1
2

[
1+e−2k20σ

2
⊥t

2 sin2(∆φ/2)J0(k0v‖t∆ψ)e−2k20σ
2
h(∆ψ)2

]
. (3.35)
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Figure 3.1: The horizontal array and the respective propagation model.

Let us focus on a pair of receivers located at approximately the same distance d from the

source. We consider the correlations between the two receivers at the time the acoustic wave

arrives at each receiver, t = r/cs. We can infer from Eq. (3.35) that the in-plane and vertical

channel correlations are characterized by two (dimensionless) angular correlation scales of

the order of

σφ ∼
cs/σ⊥
k0r

σψ ∼ min

(
cs/v‖
k0r

,
1

k0σh

)
. (3.36)

We can then infer from Eq. (3.36) that due to the space-time correlation coupling, we can

control the azimuthal angular correlations by adjusting the communication channel length

r.

The behavior of the polar angle correlation scale is more subtle as it is determined by

a relative strength of wave height correlations, the communication channel length, and the

magnitude of vertical gravity wave velocity fluctuations. In the following section, we present

numerical examples illustrating various situations.
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Figure 3.2: Propagation model for the vertical array.

3.7 Numerical results

In this section, we present a numerical evaluation of the spatio-temporal pressure wave

correlation for two types of acoustic sources. We start (in Section 3.7.1) with considering

a transmitter equipped with a monochromatic signal source which emits a pressure wave

with frequency ω0 = 2πν0 or equivalently is characterized by an impulse function δ(ω− ω0).

The second source we consider is a polychromatic source discussed in Section 3.7.2) and

characterized by a raised cosine acoustic pulse spectral profile, shown in Fig. 3.7, frequently

used in underwater communication transmitters.

The receiver is a two-hydrophone array positioned either vertically or horizontally with

respect to the sea surface. We assume that the hydrophones are located at the same distance

r1 = r2 = r from the transmitter. They are positioned in a way that the direct pressure

wave front, emitted by transmitter, arrives at both receivers at the same time t1 = t2 = t.

The horizontal array placement is shown in Fig. 3.1 where both receivers lie in the xy-plane

with angles θ1 = θ2 = π/2, or ψ1 = ψ2 = 0. The magnitude of the resulting normalized

correlation function |γG| depends on the angular difference ∆φ = φ2 − φ1 and the arrival

time t.

The vertical array shown in Fig. 3.2 consists of two hydrophones located in yz plane so

that the angles φ1 = φ2 = π/2. Similar to the horizontal case, the normalized correlation

|γG| depends on the angular difference ∆θ = θ2 − θ1 = ∆ψ and the time t. We choose
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BEAUFORT NUMBER 1 2 3 4 5
Average Wind Speed Uavg (m/s) 0.90 2.45 4.40 6.70 9.35
Average Significant Height Hs (m) 0.182 0.364 1.091 1.820 3.640
Average Height Havg (m) 0.1 0.2 0.6 1.0 2.0
Fetch Distance F (km) 153.9 83.05 231.7 277.6 570.2
Average Wave Period Tavg (sec) 3.226 3.667 6.276 7.669 10.894
Wave Height S.deviation σh (m) 0.062 0.125 0.375 0.626 1.253
Average Group Velocity v̄⊥ (m/s) 5.032 5.721 9.790 11.962 16.992
Group Velocity Parameter σ⊥ (m/s) 4.015 4.564 7.811 9.544 13.558
Average Vertical Velocity v̄|| (m/s) 0.097 0.171 0.300 0.409 0.576

Table 3.1: Physical environment parameters as a function of the Beaufort numbers.

r = 1000 m and, based on the assumptions outlined in Section 3.3, we consider a constant

speed sound in the water (within the range of operation) equal to cs = 1500 m/s.

The transmitter and receivers are assumed to operate in an ocean environment with

the sea state parameters given in Table 3.1. We employ the Beaufort scale [54] to obtain

the values of the average wind speed (measured at height of 10 m above sea surface) and

the wave heights. The wind is assumed to be blowing with a constant speed Uavg over the

fetch distance F , and the resulting waves have an average height of Havg, and average wave

period Tavg. Parameters σh, v̄⊥, σ⊥, v̄|| are derived in Appendix B based on the JONSWAP

spectrum.

Beaufort numbers shown in Table 3.1 characterize ocean environments that range from

calm indicated by index 1, to rough indicated by 5. We are not considering higher Beaufort

numbers since it is difficult to deploy transmitter and receivers in such ocean conditions.

Note that both the wind speed and significant/average wave heights increase with Beaufort

number. Throughout the Section 3.7 we assume that our transmitter and receivers are placed

in an environment with Beaufort number equal to 3 (slight) which represents an intermediate

sea state within the considered interval. The corresponding parameters (σh, v̄⊥, σ⊥, v̄||) are

used to find the correlation |γG| for vertical and horizontal arrays with monochromatic and

polychromatic sources. Sometimes, we will also consider behavior of the correlation function

for the entire range of Beaufort numbers from 1 top 5.

Hereafter, it will prove convenient to introduce a retarded time expressed by τ = t−r/cs.

The retarded time is always non-negative and τ = 0 implies that the acoustic wave has just

arrived at the receiver.
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(a)

(b)

Figure 3.3: Correlation factor |γG| for horizontal array with monochromatic source of fre-
quency ν0 = 25 kHz. Transmitter-receiver separation equals r = 1000 m.

3.7.1 Quasi-Monochromatic Source

Our focus is on studying the behavior of the correlation factor |γG| for vertical and horizontal

receivers as a function of angular separation and the retarded time. As we will see this

correlation dependence on space and time is inseparable.

Consider a horizontal array shown in Fig. 3.1 where θ1 = θ2 = π
2

or equivalently ψ1 =

ψ2 = 0. The amplitude of the correlation factor |γG(·)| (see (3.35)) reduces to

|γG(τ,∆φ)| = 1

2

[
1 + e−2σ2

⊥k
2
0(τ+r/cs)2 sin2(∆φ/2)

]
, (3.37)

with spatial dependence on angular separation ∆φ, group velocity factor σ⊥, and retarded

time τ . Fig. 3.3 depicts |γG(τ,∆φ)| for the case of two-element horizontal receiver array and

a monochromatic transmitting source with carrier frequency ν0 = 25kHz and transmitter-

receiver distance r = 1000 m.

Fig. 3.3 (a) depicts |γG| for several time instances τ as a function of the angular separation

∆φ. The surface plot Fig. 3.3 (b) demonstrates correlation dependence on both τ and ∆φ

and indicates correlation inseparability in space and time. Note that only for τ > 4r/cs or for

∆φ ≥ π/64 the correlation |γG| becomes virtually independent of the other spatial/temporal
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(a)

(b)

Figure 3.4: Correlation factor for the case of a vertical array and monochromatic source with
ν0 = 25 kHz with transmitter-receiver distance r = 1000 m.

component respectively.

Consider now a vertical array shown in Fig. 3.2, with φ1 = φ2. With the monochromatic

source the correlation factor (3.35) reduces to

|γG(τ,∆ψ)| = 1

2

{
1 + J0

[
k0 (τ + r/cs) v̄||∆ψ

]
e−2k20σ

2
h(∆ψ)2

}
, (3.38)

where ∆ψ is the angular separation, v̄|| the speed of the gravity wave pack, and σ2
h the

variance of the wave heights. Fig. 3.4 (a) shows the correlation as a function of the angular

difference ∆ψ for several time instances τ while Fig. 3.4 (b) shows how the correlation

dependence on τ and ∆ψ. The dependence of the correlation on time and space and its

inseparability is even more pronounced for the vertical case.

Our next step is to compare the correlation factors |γV
G| and |γH

G| of the vertical and

horizontal arrays respectively for ocean environments with with Beaufort numbers and pa-

rameters given in Table 3.1. We use |γH
G|/|γV

G| ratio as a function of angular separation

∆φ = ∆ψ to decide under what conditions the vertical/horizontal array offers lower correla-

tion for the case of τ = 0. The latter case is the most interesting for communications, since

we typically receive and sample information bearing signals as they arrive.
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Figure 3.5: Ratio of the vertical and horizontal array correlation factors |γH
G| and |γV

G| for a
monochromatic source with ν0 = 25 kHz and r = 1000 m taken at time τ = 0.

The results are shown in Fig. 3.5 where different colors correspond to different sea states

with Beaufort numbers from 1 to 5. For clam and smooth sea states, the correlation coeffi-

cient ratio decays sharply from 1 to almost 0.5 for angular separation ∆ψ = ∆φ > π
12

before

it starts to gradually increase again for ∆ψ = ∆φ > π
8
. Similar behavior is showcased for

slight, moderate and rough sea states. However, for states 3–5, after the initial deep the

correlation ratio approaches unity faster as the angular separation grows.

The results presented in Fig. 3.5 suggest that for the chosen parameter values, the hori-

zontal array offers weaker correlations compared to the vertical array for a large interval of

angular separation values. We comment on the factors influencing the relative magnitude of

vertical and horizontal pressure correlations at the end of the section. By substituting τ = 0

in (3.38) and (3.37), we obtain

|γH
G(∆φ)| =

1

2

[
1 + e−2σ2

⊥k
2
0(r/cs)2 sin2(∆φ/2)

]
|γV

G(∆ψ)| =
1

2

{
1 + J0

[
k0 (τ + r/cs) v̄||∆ψ

]
e−2k20σ

2
h(∆ψ)2

}
.

Both horizontal and vertical correlations are decaying functions with respect to σ⊥, and
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Figure 3.6: Vertical (left) and horizontal (right) array correlation factors |γV
G| and |γH

G|
respectively as a function of the source frequency ν0 for monochromatic source. Ocean
environment with Beaufort number equal to 3 is considered.

σh, v̄|| respectively. From Table 3.1 we can see that the parameter of the horizontal wave

motion σ⊥ is significantly larger than σh and v̄|| the characterize the vertical movement.

This explains the sharp decay of |γH
G| compared to |γV

G| for the monochromatic source in

consideration.

Finally, we study the behavior of |γV
G| and |γH

G| for the slight ocean environment (Beaufort

number equal to 3) and τ = 0, as a function of transmission frequency ν0 of the monochro-

matic transmitter. Fig. 3.6 shows |γH
G| and |γV

G| for different ranges of ∆φ and ∆ψ respec-

tively. We clearly see that both vertical and horizontal arrays correlation factors imitate a

spatial high-pass filter with respect to the angular separation ∆φ or ∆ψ.

3.7.2 Band-Limited Source with Raised Cosine Pulse as Spectral Amplitude

Function

In this section we study a polychromatic source particularly important to underwater com-

munication systems. The source emits a raised-cosine (RC) pulse, operates at the central

frequency ν0, and uses bandwidth B or, equivalently, pulse duration T = 1/B. The RC
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Figure 3.7: Temporal profile F (t) (left) and frequency response F̃ (ω) (right) for an RC pulse
of duration T and central frequency ω0 = 2πν0.

pulse temporal and spectral profiles F (t) and F̃ (ω) are shown in Fig. 3.7. We consider a

carrier frequency (central frequency) ν0 = 25 kHz and bandwidth B = 8 kHz. Note that the

temporal profile F (t) = 0 at t = T, 2T, . . . and F (t = 0) = 1. This property of RC pulses

allows to avoid inter-symbol interference (Nyquist condition) in case the receiver samples

a sequence of transmitted pulses at times τ = 0, T, 2T, · · · etc. In our experiment we are

transmitting a single pulse since we are focused on correlation properties rather than on data

transmission directly.

Fig. 3.8 depicts the correlation coefficient |γG| for the horizontal array as a function

of ∆φ and τ . Fig. 3.8 (a) shows the correlation dependence on spatial parameter ∆φ for

several time instants τ . For higher values of τ the correlation decays quickly as a function

of ∆φ while for τ = 0 its decay with ∆φ is very slow. Fig. 3.8 (b) confirms the inseparable

dependence of the correlation on time and space. We also note that for higher values of ∆φ

the correlation inherits the temporal behaviour of the source (see Fig. 3.7) as it reaches its

maximum at τ = 0 and 0 for τ = T, 2T, · · · . This happens due to the dominance of the

direct propagation path that carries the properties of the transmitted pulse itself. The dips

at τ = T, 2T, · · · will not occur when a sequence of such data-carrying pulses is transmitted

since for each τ = T, 2T, · · · there will be a pulse which is sampled at its peak value.

The behavior of the correlation with respect to τ and ∆ψ for the case of vertical array

is very similar. As in the horizontal array case, the correlation behaviour mimics the RC

temporal profile and reaches its maximum value for τ = 0. It reaches 0 for τ equal to
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(a)
(b)

Figure 3.8: Correlation factor |γG(τ,∆φ)| for the horizontal array setting when a band-
limited RC source with νo = 25 kHz and B = 8 kHz is utilized; Beaufort number equals
3.

multiples of T . The decay of the correlation with respect to ∆ψ for higher values of τ is

slightly slower than for the horizontal case.

A comparison between the vertical (left) and horizontal (right) array correlations for

range of transmission bandwidths B is given in Fig. 3.9. The results demonstrate that the

correlation factors increase as the bandwidth of the pulse grows. This is opposite to the

behavior of the correlation with respect to the central frequency ν0. Fig. 3.6 computed for

the case of a monochromatic source shows that the correlation decreases as a function of the

source frequency ν0.

Fig. 3.9 also demonstrates that the horizontal array offers lower correlation compared to

the vertical array because of the fact that group velocity parameter σ⊥ is much larger than

wave vertical movement σh and v̄||. As we can infer from Appendix B, the Fetch distance is

a significant factor that influences σ⊥: a shorter fetch distance could result in a smaller σ⊥

potentially reversing the observed trend.
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Figure 3.9: Vertical (left) and horizontal (right) correlation coefficients, plotted as functions
of ∆ψ and ∆φ respectively for band-limited RC source with carrier frequency ν0 = 25 kHz
and for τ = 0. Ocean environment with Beaufort number 3 is considered.

3.7.3 Correlation Dependence on the Beaufort Number

Based on (3.19) we can compute the normalized correlation factors for the direct and indirect

(surface reflection) paths separately to study their contributions to the overall correlation

coefficient. The direct and indirect correlations are given by

γdirect
G =

|F (τ)|2
r2√

Γtot(r1; t1)Γtot(r2; t2)
, (3.39)

γindirect
G =

Γ(r, t)√
Γtot(r1; t1)Γtot(r2; t2)

. (3.40)

Fig. 3.10 demonstrates the correlation factors for the vertical (left) and horizontal (right)

array receivers in an ocean environment with Beaufort number equal to three. The receiving

arrays are located at distance of 1000 meters from the transmitter.

From (3.32) and (3.30) we can see that the direct path contribution to the correlation

is dominant compared to the indirect path. The indirect path component (integrand in

(3.32)) is smaller that the direct path component (integrand in (3.30)). As the angular
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Figure 3.10: Correlation factors |γdirect
G | (solid lines) and |γindirect

G | (dashed lines) for vertical
(left) and horizontal (right) array located at distance of 1000 m from the transmitter, for
τ = 0.

separation ∆ψ or ∆φ increases this dominance becomes even more pronounced. The indirect

contribution decays with ∆ψ and ∆φ for both vertical and horizontal array case but the rate

of the decay depends on the Beaufort number. The higher the Beaufort number the faster

is the decay since the parameters σh, v̄|| and σ⊥ take higher values. For both array types the

direct path contribution is insensitive to angular separation ∆ψ or ∆φ between the array

elements (it changes slightly due to overall normalization).

The results of Fig. 3.10 and 3.9 confirm that in the communication scenario we consider

we can expect strongly correlated links between transmitters and receivers in an underwater

MIMO acoustic communication system. This can negatively affect the rank of the MIMO

channel as well as its capacity [55]. In an extreme case when the correlations are close to

unity the channel degrades into a keyhole channel in which any transmitter-receiver link

experiences exactly same channel coefficient. The rank of such channel matrix degrades to

unity as well and its capacity scales logarithmically with the number of transmit/receive

elements.
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In other potential scenarios where such direct link is absent, quick degradation of corre-

lations resulting from surface fluctuations would lead to uncorrelated MIMO channels with

high rank and capacity. The absence of a direct link would obviously result in diminished

signal-to-noise ratio at the receiver. Therefore, in order to exploit the potential of such

MIMO links much higher transmit power levels would have to be utilized.

3.8 Discussion and Conclusions

In this chapter we advance a theoretical framework to determine space-time correlations of

pressure waves generated by a polychromatic acoustic point source underwater. We derive

a general expression for two-point space-time pressure field correlation function and demon-

strate the inseparability of the correlation function in space and time. The correlation

functions for two sources (a monochromatic source and a polychromatic source transmitting

raised-cosine pulses) have been studied in detail along with two types of receiver arrays:

vertical and horizontal. The derived expression quantifies the surface-induced correlation

component that vanishes as a function of the angular separation between the receiver el-

ements as well as Beaufort number that dictates the surface variation. This effect would

give a promise to a high-rank and capacity MIMO communications channel. However, the

dominance of the direct component which is insensitive to angular separation and Beaufort

number leads to high overall correlation and hinders MIMO communications. Therefore,

beam-forming with multiple transmit and receive elements and their utilization to increase

the signal-to-noise ratio via signal combining is, in general, more practical under water com-

pared to signalling techniques tailored for high-rank MIMO channel that can be encountered

in terrestrial wireless applications.

It is instructive to compare our approach to the related work by Dahl, [48] that treated

the same subject. There are several key differences between the two approaches. First, Dahl

considers the case of rather large surface wave swells, such that the surface slopes are large

and should be treated within the Kirchhoff approximation in the single-scattering regime.

We, on the other hand, focus on the case of fairly smooth surfaces such that the surface can

be viewed as quasi-flat (small local curvature) with random parameters determined by the

surface wave motion. Second, Dahl’s statistical model is oversimplified: the surface wave

influence enters only through a single parameter, the root mean-square slope of the wave, and

hence the model is capable of describing pressure correlations in the horizontal plane only. In
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contrast, we take into account in-plane (horizontal) as well as vertical motion of the surface

waves and their effect on Doppler shifts of the scattered acoustic waves. Therefore, we are

able to quantitatively describe in-plane as well as vertical pressure correlations. Third, Dahl’s

approach is limited to strictly monochromatic sources, as no temporal pressure fluctuations

are taken into account, while we consider a general polychromatic source. Most importantly,

Dahl’s approach is semi-phenomenological in nature, combing ray tracing with a simplified

version of Kirchhoff’s approximation for scattering of a single plane wave (ray). By contrast

in the present manuscript, we offer a first-principles approach rooted in the wave equation and

revealing the crucial role the space-time coupling plays in entangling vertical and in-plane

pressure correlations as well as providing accurate dependence of the said correlations on

the frequency of any monochromatic component within the source spectrum. Interestingly,

Dahl’s phenomenological exponential correlation function does qualitatively captures the in-

plane pressure correlations in the quasi-monochromatic case, although their dependence on

the surface wave parameters is quite a bit more complicated as we discover in the present

work.

Further, we point out that our model assumes clear water, thereby neglecting any vol-

ume scatterers as well as surface bubble plumes that can form by the ocean surface for large

enough surface gravity waves. Any volume scatterers, be they internal waves, turbulent

fluctuations as well as macro- or microorganisms, such as fish or copepods, will degrade cor-

relations among the plane waves propagating directly to the receivers as well as among those

scattered from the ocean surface, thereby weakening pressure correlations at the receiver

arrays. As far as communication applications of our theory are concerned, such additional

subtle effects that we have neglected at this stage, will only boost the underwater MIMO

prospects.

Air bubbles will in general attenuate the waves transmitted through bubble plumes near

the surface. In addition, the monochromatic components of the acoustic waves at the frequen-

cies in resonance with the internal oscillation frequencies of the bubbles of all sizes present by

the surface will suffer spectacular attenuation by virtue of transferring their acoustic energy

to bubble oscillations. Therefore, these monochromatic components will be virtually absent

from the spectrum of the waves captured by the receivers. As a result, the correlations will

have a more pronounced dependence on the spectral content of the source.
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Appendix A: Raised Cosine Filter Spectral Amplitude Function

The polychromatic raised-cosine source has the following spatial spectral amplitude function

[56]

F̃ (ω) =



1, ω0 − (1−β)π
T

< ω ≤ ω0 + (1−β)π
T

1
2

[
1 + cos

(
T
2β

[
|ω − ω0| − (1−β)π

T

])]
, ω0 + (1−β)π

T
< ω ≤ ω0 + (1+β)π

T

1
2

[
1 + cos

(
T
2β

[
|ω − ω0| − (1−β)π

T

])]
, ω0 − (1+β)π

T
≤ ω < ω0 − (1−β)π

T

0, otherwise

(3.41)

The source temporal profile shown in Fig. 3.7 is given by

F (t) =
1

T
sinc

(
t

T

)
cos(πβt

T
)

1− (2βt
T

)2
e−iω0 t , (3.42)

where

sinc(x) =
sin(πx)

πx
.

Appendix B : Calculation of Significant Wave Height Hs, Tavg, σh, v̄||, v̄⊥, σ⊥

using JONSWAP distribution

From Beaufort scale, we read the wind speed U10 and the corresponding probable wave height

Havg. Note that Hs is defined as the mean of the recorded trough to crest heights Hr of the

highest third of the waves. The wave height h that we employ is assumed to be Gaussian

with mean µ = 0. We now attempt to find Hs and the variance σ2
h, using Havg and the fact

that Hr (recorded heights) follow the folded normal distribution where Hr ≈ 2|h| (assuming

the waves are symmetric).

The average wave height is then given by

Havg = 2σh

√
2

π
, (3.43)

and, equivalently,

σh = Havg

√
π

8
. (3.44)
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The significant height of Hr is given by (see Appendix C)

Hs = 6

√
2

πe
σh .

Using the wind speed U10, JONSWAP angular frequency ωp [57] is given by

ωp = 22

(
g2

U10F × 103

) 1
3

. (3.45)

The fetch distance F is the distance over which the wind blows with constant velocity.

We find the value of F that matches the sea-state indices to the Beaufort wind scale indices,

using the following relationship between fetch, significant height and wind speed for practical

JONSWAP data [52]

F =

(
Hs

0.0163× U10

)2

, (3.46)

see Table 3.1. The average angular frequency is approximated to the probable angular

frequency ωp

ωavg = ωp,

and the corresponding average period

Tavg =
2π

ωavg

. (3.47)

Using average wave heights Havg (3.43) and average periods Tavg (3.47), we calculate average

vertical velocity v̄||

v̄|| =
πHavg

Tavg

(3.48)

The average group velocity v⊥ is computed using the average wave period Tavg with g =

9.8 m/s2 and

v̄⊥ =
gTavg

2π
. (3.49)

Finally, the group velocity parameter σ⊥ is given by

σ⊥ =
v̄⊥√
π/2

. (3.50)
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Appendix C: Significant Height Hs for half-Normal distribution

Starting with h ≈ N (0, σ2
h) we have

x = |h| , (3.51)

where x is the wave height from sea level to crest. The probability distribution of x is a

modified normal distribution with PDF

PX(x) =

√
2

πσ2
h

e
− x2

2σ2
h . (3.52)

The half-normal distribution of x implies∫ ∞
σh

PX(x)δx =
1

3
, (3.53)

and [σh,∞] is the range of the third highest wave heights. The conditional distribution of

the wave heights over the mentioned range is given by

PX∈[σh,∞](x) =
PX(x)

P [X ∈ [σh,∞]]

= 3

√
2

πσ2
h

e
− x2

2σ2
h (3.54)

The significant height of x is then given by

H̄s =

∫ ∞
σh

xPX∈[σh,∞](x)δx

= 3

√
2

σ2
hπ

∫ ∞
σh

xe
− x2

2σ2
h δx

= 3

√
2

σ2
hπ

(−σ2
h)e
− x2

2σ2
h

∣∣∣∣∞
σh

= 3

√
2

πe
σh . (3.55)

For y = |2h|, we have the following PDF

PY (y) =
1√

2πσ2
h

e
− y2

8σ2
h∫ ∞

2σh

1√
2πσ2

h

e
− y2

8σ2
h =

1

3
, (3.56)
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where [2σh,∞] is the range of the highest third of the wave heights. The significant height

of y is then

Hs = 6

√
2

π
σhe

− 1
2

= 6

√
2

πe
σh . (3.57)



Chapter 4

Joint Iterative Interference Cancellation and Channel Estimation

for Underwater OFDM

4.1 Introduction

Underwater communication enabled numerous applications ranging from wireless submarine

to submarine communication in military, to domestic underwater and marine environment

monitoring using autonomous underwater vehicles (AUVs) [58]. In many of these appli-

cations, the data generated from sensors and AUVs is increasingly large, and commands

the need for communication system that teams well with the mobility aspect of underwater

assets. Wireless communication systems present themselves as a solution with either light

signal [59] for short distances data exchange, or sound for relatively longer transmission

reach. In both cases, the developed systems follows one (or more) of the well known fixed

allocation schemes : Time Division Multiple Access (TDMA); Frequency Division Multiple

Access (FDMA) and Code Division Multiple Access (CDMA). With sound waves as media

of transmission, TDMA implementation is challenging because of strong synchronization

requirement, especially in network settings. Moreover, large delays and strong multi-path

presence prevents scalability of point to point to the eventual network settings [60] faced

in many applications. The mentioned tremendous challenges faced in implementing under-

water sound-based TDMA motivated research and development of frequency or code based

underwater communication schemes.

Direct Spread − Code Division Multiple Access (DS − CDMA) transmitter/receiver

design is advocated in [61]. Spatial diversity weights combiners, forward and backward

filters are jointly optimized and updated at the symbol rate for slow time varying channels.

As channel variability increases it becomes imperative to update the channel at the chip level

to maintain the same performance, at additional cost of computation complexity. Similar

approach is presented in [62] where a filter with tasks of equalization, and multi-access

interference cancellation is updated every symbol, and deteriorates in performance as the

55
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channel variability increases. In [63], channel variability is found to be the limiting factor to

CDMA systems, the chip rate processing complexity increases significantly to maintain the

benchmark performance of static channel.

Orthogonal Frequency Division Multiplexing (OFDM) has been advocated for underwater

communication [64], since OFDM is not only computationally efficient because of the use

of the Fast Fourier Transforms, but allows as well for efficient utilization of bandwidth and

enables high data rates. OFDM is chosen as a modulation scheme for many of the wireless

communication standards (including the 4G LTE). OFDM is typically utilized in frequency-

selective channels and known for its sensitivity to time selectivity since it results in carriers

orthogonality loss. The obstacle of time selectivity however did not hinder the adoption for

OFDM for doubly selective channels arise in communication with rapidly moving objects

such high speed trains [65] [66].

In underwater acoustic communications, because of the use of sound (with bandwidth

comparable to the carrier frequency), Doppler spread is much more pronounced then in ter-

restrial Electromagnetic (EM). Underwater channels have long impulse responses caused by

slow propagation sound waves and numerous surface and bottom reflections. The combined

effect of multi-path channel impulse response and fast channel variability results in a Doubly

selective channel with both frequency selectivity and inter-carrier interference.

Several methods presented in literature to tackle the double selectivity nature. In [67]

[68] an oversampling approach is applied to unpack the observed frequency-domain signal.

Each sub-carrier received signal is decomposed into finer sub-carriers using oversampling,

and apply weight vectors to cancel the interference. The weights are updated such that the

resultant system is ICI-free. Similar approach is applied in [69] [70] where oversampling

results in a Doppler-frequency channel representation and the transmitted symbols are col-

lected from both dimensions, and ICI is exploited as source of observations. An estimation

of interference coefficients (off-diagonal elements) and mitigation approach is shown in [11]

where the estimation of the off diagonal elements is implemented using the Least Mean

Square (LMS) algorithm, and cancelled using decision feedback filter effectively treating ICI

as Inter symbol (ISI) interference in frequency domain. Feed-forward, phase-correction unit,

and feed-backward filter coefficients are optimized in the MSE sense.

System parameters optimization to minimize ICI approach is found in [71] where the



57

both the transmitter and receiver pulses are optimized, for non coherent soft symbol detec-

tors that uses only Doppler-delay profile as a prior for data detection. A data and pilot

allocation strategy in OFDM frame is presented in [72] to effectively treat residual Doppler

shift induced ICI - assuming ICI is limited to window of neighbouring sub-carriers. Orthog-

onal Matching Pursuit (OMP) algorithm is applied in [72] to explore the channel sparsity

structure, a feature in many communication channels, including underwater. In [73] a com-

parison is conducted between the ICI-ignorant, the Bases Expansion Model (BEM) based,

and the discrete-delay channel receivers, respectively in their treatment of ICI. The study

concludes that the best performance of presented receivers is under slow varying channels,

and deteriorates as channel variability increases. The best performance is for discrete chan-

nel impulse response based receivers where BEM deteriorates even worse than ICI ignorant.

Coherent OFDM systems require channel knowledge for equalization, and in many cases

channel instances estimation is implemented to acquire this channel knowledge, either using

pilot signals or data-aided channel estimation. Many systems couple channel estimation and

data detection through information exchange to improve the performance of both units to

reduce low Bit Error Rate (BER) further. In [74] [75], a spares channel estimator, carrier

frequency offset estimator and Low Density Parity Check (LDPC) decoder coupled to ex-

change both soft and hard symbols generated by the decoder to the estimator to produce a

refined channel estimate. Similarly, in [76] a turbo equalizer is coupled with LMMSE channel

estimator. In [77] a CDMA based system, that employs Cyclic coordinate descent (CCD)

strategy where the detector cycles through symbol estimates, channel estimates, and carrier

phase estimates, adjusting each one in turn while holding the other two constant. OFDM

system with LDPC decoder and ICI estimation and canceller that extends its span (num-

ber of off-diagonal) in case of decoding failure is presented in [78] and for MIMO-OFDM

in [79] with BEM channel estimation. In [80], a turbo equalization with Recursive Least

Square (RLS) is used to estimate a time in-variant channel with ICI caused by frequency

offset. Turbo equalization with sparse estimation algorithm is presented in [81] for MIMO-

OFDM system, and for Single Carrier (SC)-MIMO in [82]. Note for all of these system,

the decoder exhibits high computational complexity of the whole system since it is part of

the interference cancellation loop. In this chapter, we present a simple iterative interference

cancellation receiver that utilizes a simple repetition−permeation code [83], coupled with

data-aided channel estimation, to reach interference free performance with low complexity.
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After reviewing OFDM transmitted/received signal format, pilot signal format, underwater

synthetic channel generation, we present the iterative interference cancellation receiver and

its detailed operation with perfect channel knowledge. Then we study the problem for dou-

bly selective channel estimation and propose pilot only Forward-backward Kalman Filter

as a solution, and study its data aided version. The channel estimator integration process

with the interference cancellation receiver is then presented, where we show the benefit of

interaction between the two units.

4.2 OFDM Transmitted and Received Signalling Format

In this section, we present the encoding and modulation process to construct the transmitted

signal. As well, the pilot signal and its correlation properties useful for synchronization and

start of frame detection. For ease of reference, we review the synthetic channel generation

process detailed in chapter.

4.2.1 OFDM Transmitted Frame

Data Source Repetition Encoder Permutor QPSk Modulator

Pilot Sequence

IFFT

Figure 4.1: shows transmitter units and steps to convert information bits frame B[l] to
transmitted signal x.

We consider an OFDM transmitter setup depicted in Fig. 4.1. The data source generates

512 data bits frame B[l] where l indicates frame index. The frame B[l] is input to repetition

unit with reparation factor M = 4. The output block Brep[l] (2048 bits) is permuted (with

permutation matrix P) to spread bits over the frame. The output of the permutor Bperm[l]

is mapped to Quadrature Phase Shift Keying (QPSK) symbols vector D with N = 1024

sub-carriers. Using Inverse Fourier Transform (IFFT), D is converted to time domain data

signal d . The frequency domain pilot signal P is an FFT of repeated Zadoff-Chu sequence

with correlation properties showed in Figure (4.4a). The time domain pilot signal p is added
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to d to produce the signal x,

x = p+ d, (4.1)

which has corresponding frequency domain representation,

X = P +D. (4.2)

Cylic PrefixPre-ample Data + Pilot 

Figure 4.2: OFDM frame structure

Figure 4.2 depicts a block of transmitted frame contains the data−pilot block x, cyclic

prefix xCP and preamble pPre. The preamble pPre (with length NPre) is repeated pilot struc-

ture utilized by the receiver to estimate the power-delay profile and frame synchronization.

Removal of cyclic prefix block xCP (length NCP) mitigates Inter symbol-Interference and in-

sure sub-carriers orthogonality in case of frequency-selective only channels. The transmitted

frame xt is given by

xt =


pPre

xCP

x

 , (4.3)

with length Nt = NPre +NCP +N .

Pilot-Only Silence Data+Pilot Data+Pilot

Figure 4.3: Transmission Protocol

Figure (4.3) shows the transmission protocol for multiple data blocks. All blocks have

length Nt including the silence period. The transmission starts with a pilot-only block,

that serves start-of-frame detection, Doppler shift compensation, and Auto-regressive (AR)

channel model parameter setting. The silence period can be utilized in synchronization as

well.
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4.2.2 Pilot Signal

Both the pilot-only and the preamble blocks employ the pilot signal shown in Figure 4.4.

The time domain pilot signal is a Zadoff–Chu sequence of the form

pbase =
1√
NZC

F−1{exp(−2πiq)} (4.4)

where NP is length of sequence, F−1 is the inverse Fourier Transform operator and q is a

vector with length NP with elements randomly selected from the 8-PSK constellation. By

repeating the base signal in Figure 4.4 Ntotal

NNC
times the repeated pilot signal is built. Figure

(4.4a) shows the correlation function of the repeated pilot signal p. The correlation function

of the signal p is shown in (4.4b).

(a) Correlation function of repeated pilot signal p (b) Correlation function of pilot signal pbase

4.2.3 OFDM Received Frame

Following the Inter-symbol-interference (ISI) channel representation, the time domain re-

ceived signal y[i] is given by

y[i] =
L−1∑
k=0

fk[i]xt[i− k] + ni, (4.5)

where L is the number of discrete channel taps and fk[i] is the kth tap in the channel impulse

response f [i] at time instance i. The discrete channel taps takes into account both transmit

and receiver filters effects. The time domain received frame in matrix format is given by

yr = Hwxt + n. (4.6)
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where Hw is convolution matrix of underwater channel impulse responses. An elaborate

form of (4.6) in terms of preamble and cyclic prefix transmitted signals is given by
yPre

yCP

y

 =


HPre 0 0

0 HCP 0

0 0 H



pPre

xCP

x

+ n, (4.7)

where n is the measurement noise which is modeled as Additive White Gaussian Noise

(AWGN).

The received signal yPre

yPre = Hreppre + n (4.8)

is used to estimate initial model parameters for later channel estimation. yCP is removed to

cancel inter−symbol interference. Finally, the received signal y corresponds to the Data-pilot

block x

y = Hx+ n, (4.9)

serves the task of joint-channel estimation and data detection. In OFDM wireless commu-

nication systems, the time domain channel matrix H is circulant since the channel impulse

response is constant during the OFDM symbol [84]. In underwater communication sys-

tems however, the channel impulse response varies within the OFDM symbol, because of

the high Doppler spread factors compared to wireless channels. This fact translates into H

semi-circulant has the following structure

H =
[
f [1], . . . ,f [i],f [i+ 1], . . . ,f [N ]

]T
, (4.10)

where f [i] is the discrete channel impulse response of the channel at discrete time i (rotated).

The frequency domain received signal Y has the form

Y = H(f)X + Φ, (4.11)

where H(f) is the frequency domain channel matrix given by

H(f) = FHFH, (4.12)

where F is Discrete Fourier Transform (DFT) matrix of size N ×N . The frequency domain

measurement noise Φ is modeled as AWGN.
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4.2.4 Underwater Channel Model

Delay-power profile

SOS model of time

variation for each

channel tap

Combine time variation

and filtering

Tap-delay line 

(with varying taps)

output

Baseband Channel Model

Doppler spread

profiles

Compute TX/RX

Filter coefficients

for each tap (delay) 

sampling time, etc

paramaters

Figure 4.5: Channel model block diagram

For channel generation to produce the time-varying channel taps fk[i] to build channel matrix

H , we use the developed model of base-band underwater acoustic channel [1]. Figure 4.5

shows the stages of the channel generation procedure. First, a tap-delay profile of the

underwater channel is selected, generated using a ray-tracing software such as Bellhop [2], or

obtained from sea trials. The next step is to add the feature of channel path variation with

time to each channel path l, l = 1, 2, · · · , Lp via the sum-of-sinusoids (SOS) approach [85].

fSoSl [i] =

√
Pl
M

M∑
m=1

ej(φm+2πfmiTs), (4.13)

where Pl is the power of the lth path extracted from the normalized power delay profile (PDP)

of the channel. The initial phases φm, m = 1, 2, · · · ,M are chosen uniformly randomly within

the interval [0, 2π) while the frequencies fm are chosen such that the scattering function

(Doppler spread function) of the tap follows

S(ν) =
1

2αl
e
−|ν|
αl , (4.14)

typical for underwater acoustic channels [41], where αl is the root-mean square (rms) of the

Doppler spread for channel path l. Higher values of αl corresponds to larger time variations

in the channel impulse response, since (4.14) contains higher frequencies with considerable

power. Clearly different channel taps may have different αl’s and it can be motivated that
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higher αl’s correspond to the paths with larger number of the surface bounces [4]. If the

number of surface bounces per channel tap is available via modeling (from Bellhop) we set

the base value α per bounce and compute αl per tap as the base value α multiplied by the

number of the surface bounces experienced by the tap.

Channel taps fk[i], for i = 1, 2, · · · , N and k = 1, 2, · · · , N are obtained by applying

transmit−receive root raised cosine (RRC) to each of the channel paths generated above

(4.13), considering appropriate delays τl, l = 1, 2, · · · , Lp from the power-delay profile. An

example channel matrix H is visualized in Fig. 4.6. The channel PDP depicted in Fig. 4.6(c)

extracted from sea trials performed in St Margaret’s Bay of the coast off Nova Scotia. The

Root Mean Square (RMS) Doppler per bounce has been set to α = 0.25 Hz. Figure (4.6)

shows instances for different values of RMS Doppler spread. The figures shows the multi-path

effect and the time variation of taps amplitude within one OFDM symbol.

4.3 Iterative Interference Cancellation Receiver

In this section, we introduce the iterative receiver cancellation receiver for underwater doubly

selective channel, and evaluate its performance using perfect channel knowledge. We show

that through experiments that the described ICI cancellation process is effectively able to

reach the interference free performance − for wide range of Doppler spread values.

4.3.1 Description of Operation

The iterative interference cancellation process flow diagram is shown in Figure 4.7. Using

the given channel matrix H(f), the received signal Y is matched filtered and the resultant

Y MF is given by

Y MF = H(f)∗Y = H(f)∗H(f)X + H(f)∗Ψ

= RX + φ

= RD + RP + φ. (4.15)

where R = H(f)∗H(f) =, and is composed of data, pilot and measurement noise parts

respectively. To retrieve the data part only, the pilot part signal is subtracted to yield

r = Y MF −RP

= RD + φ. (4.16)
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(a) α = 0.001 (b) α = 0.1

(c) α = 0.5 (d) α = 1.2
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Figure 4.6: shows four instances of underwear channel impulse responses generated using the
model shown in Figure 4.5, for different Doppler spread factors α. The bandwidth of RC filter =
B = 320Hz. Figures to the left show evolution power of the channel impulse responses over the
duration of OFDM symbol, and on the right shown the evolution of the power of one tap.
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Figure 4.7: Iterative receiver diagram

For frequency selective only channel, the the matrix H(f) is diagonal because time domain

channel matrix H is perfectly circulant. For this case, the demodulation process is straight

forward given by

Dk =
rD[k]

Rkk

(4.17)

where k is the index of the sub-carrier. This simple efficient data retrieval process is one of

the reason behind adoption OFDM for frequency selective channels.

For Doubly selective channels, the matrix R is band diagonal, because of the semi-

circulant nature of the time domain channel impulse response matrix H. The higher the

Doppler spread, the stronger the power of off-diagonal terms. By decomposing the matrix

R into diagonal and non-diagonal elements,

R = Rdiag + Roff (4.18)

where,

Rdiag = diag(R), (4.19)

Roff = R−Rdiag. (4.20)

we can see clearly that by cancelling the off-diagonal we can implement the simple OFDM

data demodulation in (4.17). The matrix Rdiag represents the frequency selectivity of the

channel, where time selectivity or Inter-carrier Interference is captured by Roff .
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Figure 4.8: shows the matched filtered data only signal r, interference signal rOff and the
interference-free signal rD. The iterative receiver cancellation iteratively cancel signal rOff

and produce rD for demodulation. The bandwidth is B = 320 Hz, with Doppler spread of
α = 1.2 Hz.

The task of the setting in Figure 4.7 is to iteratively decode transmitted symbols D and

remove the Inter-carrier Interference, or time selectivity effect of the channel. Figure 4.8

shows the target signal for interference free signal rD[k]. Using r[0] = r, the soft repetition

decoder/soft modulator unit shown in Figure 4.8 produces soft symbols D̃[0]. With the

knowledge of the inter-carrier interference matrix Roff , the interference signal is calculated

as

r̃[0] = RoffD̃[0] (4.21)

which is then subtracted form the matched filter signal to cancel part of the inter-carrier

interference, that is

r[1] = r − r̃[0],

and r[1] contains lower interference compared to r. Similarly, at i = 1 with r[1], the estimate

D̃[1] is produced. The new data estimate is used to estimate the interference signal

r̃[1] = RdiagD̃[1].
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r(I)
Intr. LLRs

Ext. LLRs
D̂(I)

Figure 4.9: shows repetition decoder and and soft data generation.

The resulting interference signal is as well subtracted from the matched filter r, and produce

the signal

r[2] = r − roff [1],

which has lower inter-carrier interference compared to r[1] and r. The cancellation process

continues following

r[I] = r − roff [I − 1]

until we reach the final iteration Ifinal, and the final data estimate then D̃(Ifinal). The de-

scribed operation of the interference cancellation requires the channel knowledge represented

by the two matrices Roff and Rdiag.

Figure (4.9) shows the steps to produce the soft symbols D̂. At the QPSK soft demod-

ulator, with the input r[i] and diagonal element Rdiag, we create an estimate of the QPSK

symbol

D̂[I] = r[I]R−1
diag =

r[I]

Rdiag

, (4.22)

taking frequency-selectivity only, note as well we can employ the LMSSE estimate but comes

at additional complexity especially the matrix inversion will be calculated at every iteration.

The demodulaotr require the variance of interference and measurement noise

σ2
D =

1

N

∑
k

var
(
D̂k[I − 1]−Dk

)
, (4.23)
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and practically we use D̂[I], that is

σ2
D =

1

N

∑
k

var
(
D̂[I]

)
(4.24)

where we assume that σ2
Dk

[I] ∝ σ2
D[I], where σ2

Dk
[I] is the data variance at the tone k. we

assume QPSK symbols at different frequency tones are independent from each other because

of repetition with permutation. Optimal Conditional expectation for BPSK symbols in

AWGN channel is used to calculate Log Likelihood Ration (LLR) for reapted BPSK symbols.

The LLRs vector (size 2048) that is de-permuted to produce s[I] and forwarded to the Soft

bits repetition decoder. The LLR of a bit bi in Brep is calculated as following

λ(bi)[I] =

√
Eb

N0 + σ2
D[I]

si[I]. (4.25)

To estimate the LLR of the information bit, the four replica of the soft bits are averaged,

that is

λ(bk)[I] =
1

M

∑
i∈K

λ(bi)[I], (4.26)

where K is m elements set of indices of repeated bits correspond to information bit bk. The

extrinsic LLRs of the repeated bits is calculated

λext(bi)[I] = λ(bi)[I]− λ(bk)[I], (4.27)

and forwarded to the soft bits estimator, permuted and used to create the soft QPSK symbols

D̂[I] is given by

D̂j[I] = tanh

(
λ(bi)[I]

2

)
+
√
−1 tanh

(
λ(bi′)[I]

2

)
, (4.28)

where i and i′ are two soft bits that make up the QPSK symbol and D̂[I] that is used for

further interference cancellation in iteration I + 1. Figure 4.10 shows the state evolution

(σ2
I , σ

2
D) at each iteration I, where

σ2
I =

1

N

∑
k

var(rk[I]). (4.29)

At first, the data estimate is poor but biased enough to reduce noise and interference power

σ2
I . In all cases of Doppler spread, the second iteration presents significant improvement

in data estimate σ2
D. The reduction of interference continues until σ2

I ≈ σ2
n where the

interference is almost perfectly cancelled.
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α = 0.5

α = 0.1

α = 1.2

Figure 4.10: shows the evolution the reduction of σ2
D and σ2

I through the interference can-
cellation process. The final σ2

D values are 0.03257, 0.02206, 0.02222 for α = 0.1, 0.5 and 1.2
respectively. The noise power σ2

n = 0.2 for Eb
No

= 10 dB.

4.3.2 Experimental Performance

Figure (4.11) shows averaged Bit Error Rate (BER) of three underwater channels with

Doppler spread of α = 0.1, 0.5 and 1.2 Hz, with B = 320 Hz compared with the theoreti-

cal ML performance of QPSK over the AWGN channel. Noticeably, the higher the Doppler

spread of the channel, the lower the BER because of the diversity introduced by the high fad-

ing, since fewer bits falls in deep fade as shown in Figure 4.12. The iterative receiver process

can effectively remove the Inter-carrier Interference in case where we have full knowledge of

the Channel information. In the next section we propose a channel estimation algorithm to

be employed by the iterative receiver and can use the soft estimates D̂[I] to further enhance

the channel estimate quality.
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Figure 4.11: Simulated BER for the iterative receiver for the three channels, with Doppler
spreads 0.1, 0.5 and 1.2 Hz.

4.4 Chanel Estimation Algorithms for Underwater Channels

The iterative receiver described in Figure 4.7 fundamentally requires knowledge of channel

matrix H to iterativly cancel ICI. In this section, we review available channel estimation

algorithms utilized to acquire such channel knowledge.

Least mean Square adaptive filter is utilized in [86] to estimate and track residual Doppler

shift change from one OFDM symbol to the next, with channel impulse response static during

the symbol. The recursive least square (RLS) algorithm is employed in [87] to track frequency

domain throughout OFDM symbols. It is well knows that as the step size of LMS algorithm

increases, channel tracking ability is enhanced at the cost of estimation performance [88].

RLS algorithm converges much faster to solution compared to LMS but has poorer tracking

ability.
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(a)

(b)

(c)

Figure 4.12: shows Eb/No [dB] for each frequency tone k in the interference free signal rD[k]
for Doppler spread values of α = 0.1, 0.5, 1.2 respective to (a), (b) and (c). The higher the
Doppler spread value, the less variation of the Eb/No and lower probability that rD[k] falls
into a deep fade, hence less construction errors.



72

Another model agnostic approach is presented in [89] where subspace projections methods

of multiple signal classification (MUSIC) and Estimation of signal parameters via rotational

in-variance techniques (ESPIRT) algorithms are employed for small to moderate Doppler

spreads, and Compressing sensing approaches like orthogonal matching pursuit (OMP) and

basis pursuit (BP) for high Doppler at cost of increasing the delay resolution and dictionary

sizes. The various algorithms presented compared with Least Squares (LS) and found that

compressed sensing is the most performant. Note that these methods don’t rely on channel

models. A Bayesian model based solution for a case when the channel is static throughout the

duration of one OFDM symbol is detailed in [90], where the channel is estimated in frequency

domain. The latter approach, however, can only be applied for low Doppler spreads. In [91]

OMP is applied to underwater channels, after Carrier frequency offset removal and the

impulse response is assumed constant during OFDM symbol with carrier offset as source

of ICI. In [92], various algorithms investigated and sparse estimation OMP, BP is shown

to provide better performance than diversity combing algorithms like MUSIC and ESPIRT.

The channel taps are assumed constant during the block with residual mean Doppler shift

as source of ICI.

In [93], instead of explicit estimation of the channel, a sparse estimate of delay−Doppler

spread function that captures both channel structure and dynamics (time variation of paths

and Doppler variation with each path) is found using OMP, BP and LS-OMP assuming

the function stays constant for window of time. The validity of this assumption depends

on the length of the window and the rate of change of the function. Path Identification

(PI) algorithms are presented in [94] [95][96] to target the analog path estimation without

relying on channel model. Low rank OFDM approximation is used to enhance the channel

estimation of frequency selective channels is shown in [97].

Another cohort of algorithms is focused in changing the nature of the channel from doubly

selective to frequency selective using transformations. In [98] an exponential basis expansion

model (EBEM) is applied to model doubly selective wireless channels. For a time block,

the channel is represented by the EBEM expansion coefficients that are assumed to change

slowly from one time block to next − but time invariant within the block. First order auto

regressive AR(1) model is assumed for parameter evolution and Kalman filter is presented

for tracking and data detection. A polynomial based BEM is utilized in [99] to model the

evolution of each channel tap independently, and a Kalman filter is applied to track each
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tap. The model serves as a compression method to reduce Kalman filters complexity. The

Doppler spread range is relatively small 0.1 − 0.3, as it is used for EM wireless doubly

selective channels. In [100] it is shown that discrete prolate spheroidal sequence (DPSS)

BEM represents the channel better than discrete Fourier transform DFT BEM in terms of

modeling error and bias.

Most of the methods mentioned assume quasi static channel during OFDM symbol, and

ICI resulting from Doppler shifts. Additionally, depending on the bandwidth and carrier

frequency, the underwater channel may not exhibit the sparse paths structure. What we

target here is simple model based, that can perform both initial channel estimation and

tracking − for wide range of Doppler spreads factors.

In this section we consider a time domain channel estimation approach[101]. The time

domain formulation lends itself to state space models and utilizes statistical information

about the channel and provide the estimation algorithm with an ability to track the evolution

of the channel throughout each OFDM symbol. Given the linear observation model of the

received sequence, state-space model for the channel evolution, the Kalman filter presents

itself as the optimal estimator and tracker. It is important to note, however, that the entire

vector of received samples is provided to the estimator upon reception of each OFDM symbol.

Hence, we propose to utilize two Kalman filter estimators to run simultaneously, one in

forward time direction and the other in backward, and combine the results of each run. The

forward backward estimator is designed to operate as a part of the iterative receiver. At each

iteration the estimator provides the interference canceller and the soft-bit decoder with an

estimate of the channel, and the estimator receives back a soft-data pilot. At the beginning of

the iterations the estimator starts from a known pilot sequence which is superimposed on the

OFDM data symbol. As iterations progress the estimator is able to benefits from partially

decoded data in addition to the pilot sequence to improve channel estimation quality and

consequently lower error of decoded bits. The section is organized as follows: quick review

of system model, the channel estimation setup and channel-state space model are presented

in Section 5.3 and Section 4.5 respectively. The estimator and combiner are described in in

Section 4.6. The experimental results are presented in Section 4.8. Section 4.10 presents the

iterative OFDM receiver with channel estimation and soft decoding.
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Figure 4.13: Equivalent channel H used in the linear OFDM model.

System model review

We consider an OFDM underwater acoustic communication system setup depicted in Fig.

4.13. The N transmitted signal samples in the frequency domain (that form one OFDM

symbol) are denoted by X = (X1, X2, · · · , XN). The vector X is modulated into the time

domain sampled signal vector x = (x1, x2, · · · , xN) using an inverse Fourier transform of

size N and transmitted through underwater acoustic channel. The received time domain

observations vector y is supplied to a Fourier transform to generate the frequency domain

observations Y . The physical channel (in blue) is sampled and the resulting channel im-

pulse response matrix is denoted by H. The OFDM time domain observation model, after

removing the cyclic prefix, is given by (ISI model)

yi =
L−1∑
k=0

fk[i]xi−k + ni (4.30)

where L is the number of discrete channel taps and fk[i] is the kth term of the channel

impulse response f [i] at time i. In matrix format

y = Hx+ n (4.31)

where y, x, H and n are the N × 1 time domain observation vector, the N × 1 OFDM time

domain symbols, the N ×N time domain channel matrix and the N × 1 observation noise,
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and N is the size of one OFDM symbol. The matrix H has the general form

H =



f [1]
...

f [i]

f [i+ 1]
...

f [N ]


. (4.32)

Note that, because of the convolution and removed cyclic prefix, the elements of consecutive

rows (channels) are right−shifted by one position. A visual representation of H is shown in

Figure 4.15. The channel equation in frequency domain in matrix form is given by

Y = H(f)X + Ψ = FH(f)F−1X + Fn (4.33)

where F is the matrix of the Fourier transform coefficients.

4.5 Channel estimation setup

Consider the task of estimating the channel matrix H based on the signal x that consists

solely of a pilot signal. To be specific, the pilots-only minimum mean-squared error (MMSE)

channel estimator is the solution to the minimization problem

Ĥ = arg min
H̃

E
{∣∣∣H̃−H

∣∣∣2
F

∣∣y}

=
N∑
i=1

arg min
f̃ [i]

E
{∣∣∣f̃ [i]− f [i]

∣∣∣2 ∣∣y} (4.34)

where F is the Frobenius norm, and H̃ and f̃ [i] are optimization variables. The solution to

(4.34) is minimum mean square error (MMSE) estimator of the form

Ĥ = EH

{
H
∣∣y} (4.35)

or

f̂ [i] = Ef [i]

{
f [i]
∣∣y} (4.36)

We notice that a direct attempt to solve (4.35) would require solving for N2 unknowns based

on a vector y of N observations. This is in contrast with the estimator (4.36), where the
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Figure 4.14: Illustration of the estimator in (4.36). The first step is to calculate the estimates
f̂ b,i and f̂ f,i using past and future observations ,respectively. Then we combine the two

estimates to find the final estimate f̂ i.

estimator conserves the number of variables to be estimated but requires a more structured

implementation — through the vehicle of state-space model. The estimator (4.36) seeks

the channel impulse response at discrete time instants i using observations available from

time 0 up to time N , that is, it uses the past observations in the interval [0 → i] and the

future observations in the interval [i + 1 → N ]. One way to address this is to employ a

two−step estimation strategy depicted in Figure 4.14. First, estimate the channel using past

observations alone and then estimate the channel using future observations, that is

f̂ f [i] = E {f [i]|{y[0], y[1], . . . , y[i]}} (4.37)

f̂ b[i] = E {f i|{y[i+ 1], y[i+ 2], . . . , y[N ]}} (4.38)

where f̂ f [i] is the forward direction estimate and f̂ b[i] is the backward direction estimate.

The second step is to combine the estimates optimally, that is

f̄ [i] = Ef [i]

{
f [i]
∣∣f̂ f [i], f̂ b[i]} . (4.39)

The estimate (4.39) considers the information from time 0 up to time N . Another

approach to accumulating information is applying a smoother to the calculated forward

estimates.

The estimators (4.37), (4.38) and (4.39) hint at how consecutive estimates (for example

f̂ f [i] and f̂ f [i+1]) can be computed if we have a model that describes the evolution of channel



77
f1[i]
f2[i]

...
fL[i]

 =


aAR(1) 0 . . . 0

0 aAR(1) . . . 0
... . . .

. . .
...

0 0 . . . aAR(1)



f1[i− 1]
f2[i− 1]

...
fL[i− 1]

+


v1[i]
v2[i]

...
vL[i]

 (4.40)

impulse response. Such a model will allow the estimators to become trackers. Moreover, the

model allows us to exploit the fact that consecutive channel impulse responses are highly

correlated. Motivated by these two observations, we develop a state space model for the

channel, and with it we can move the estimator into the Kalman filter form.

4.5.1 Channel State Space Model

The estimator in (4.37) relies on calculating the conditional expected value which requires

the probability density function (pdf) p(f [i]). Even if we have the joint pdf of the channel

impulse response taps, calculating E{.} is computationally expensive. This observation

motivates us to model the channel evolution f [i] taps over time using a simple state-space

model for the channel. Flexibility of simple state space model allows Kalman filter, as

a tracking algorithm, to augment additional information in its state-space model such as

motion models for the transmitter or receiver. State space models allow for separation of

physical environment information from tracking algorithm and reduce the need to customize

tracking algorithms steps itself.

4.5.2 AR(1) Model

The AR(1) model is the simplest model for the channel and has the form (4.40), where

fk[i] is the kth active tap (non-zero) in the channel impulse response f [i], and vk[i] is the

corresponding Gaussian innovation noise of the AR(1) process of tap k. Note that here we

are assuming that the taps are uncorrelated for simplicity. Because of filtering, adjacent

channel taps are expected to be correlated (effectively the same analog tap). We explore

a model without exploiting this potential correlation among neighboring taps. The model

in (4.40) assumes an AR(1) process for each active tap, and all the taps share the same

regression factor aAR(1) but differ in the innovation noise power σ2
v [k]. The compact form of

the state-space model of (4.40) is

f [i] = A(1)f [i− 1] + v[i] . (4.41)
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

f1[i+ 1]
f2[i+ 1]

...
fL[i+ 1]
f1[i]
f2[i]

...
fL[i]


=



aAR(2) 0 . . . bAR(2) . . . 0
0 aAR(2) . . . 0 bAR(2) 0
... . . . . . . . . .

...
0 . . . aAR(2) . . . 0 bAR(2)

1 0 . . . . . . 0 0
0 1 . . . . . . 0 0
... . . . . . . . . . . . .

...
0 . . . 1 . . . . . . 0





f1[i]
f2[i]

...
fL[i]

f1[i− 1]
f2[i− 1]

...
fL[i− 1]


+



v1[i]
v2[i]

...
vL[i]

0
0
...
0


(4.42)

4.5.3 The AR(2) Model

The AR(2) model has the form (4.42) and a compact representation

f [i+ 1] = A(2)f [i] + v[i] (4.43)

With the state-space models (4.41) and (4.43) for the channel, along with the linear obser-

vation model (4.31), we can use the Kalman filter to perform the channel estimation and

tracking.

4.6 Kalman Filter and Combiner

In this section we first review Kalman filter recursions for for the first step in estimation, and

then present combining strategy of estimates. The results is compared with model agnostic

adaptive algorithms widely used in literature of channel estimation and tracking.

4.6.1 Kalman filter formulation

Consider a known pilot signal x and the linear observation model and the state space model

assumed for the channel evolution

y[i] = f [i]x+ n[i] (4.44)

f [i+ 1] = A(1)f [i] + v[i] . (4.45)
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The Kalman filter for the forward estimates of f̂ f [i] = E
{
f [i]
∣∣{y[0] . . . y[i]}

}
. is given by

σ2
e [i] = σ2

n + x∗Mf [i|i− 1]x (4.46)

Kf [i] =
Mf [i|i−1]x

σe[i]2
(4.47)

e[i] = y[i]− f̂ f [i|i− 1]x (4.48)

f̂ f [i|i] = f̂ f [i|i− 1] +Kf [i]e[i] (4.49)

f̂ f [i|i+ 1] = A(1)f̂ f [i|i] (4.50)

Mf [i|i] = Mf [i|i− 1]

−Mf [i|i−1]xx∗Mf [i|i−1]

σ2
e [i]

(4.51)

Mf [i+ 1|i] = A(1)HMf [i|i]A(1) + Q(1) (4.52)

where the subscript f indicates the forward estimate Mf [i] is its error co-variance matrix.

The forward Kalman filter runs from time i = 0 up to i = N . For backward run from time

i = N up to time i = 0, change the subscript to b indicating the backward filter. Similarly,

for the AR(2) channel model we have y[i]

y[i− 1]

 = f [i](2)

x 0

0 x

+

 n[i]

n[i− 1]


y[i] = f [i]x+ n[i] (4.53)

f [i+ 1] = A(2)f [i] + v[i] (4.54)

and the Kalman recursion for the AR(2) setting is

Re[i] = σ2
nI2 + x∗Mf [i|i− 1]x (4.55)

Kf [i] = Mf [i|i− 1]xRe[i]
−1 (4.56)

e[i] = y[i]− f̂ f [i|i− 1]x (4.57)

f̂ f [i|i] = f̂ f [i|i− 1] +Kf [i]e[i] (4.58)

f̂ f [i|i+ 1] = A(2)f̂ f [i|i] (4.59)

Mf [i|i] = Mf [i|i− 1]

−Mf [i|i− 1]xRe[i]
−1x∗Mf [i|i− 1] (4.60)

Mf [i+ 1|i] = A(2)HMf [i|i]A(2) + Q(2) (4.61)
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4.6.2 Combining of the Estimates f̂ f [i|i] and f̂ b[i|i]

Up to this point we have two estimates of the channel, forward and a backward, namely

f̂ f [i|i] and f̂ b[i|i] with error co-variance matrices Mf [i|i] and Mb[i|i] respectively. The task

now is to merge the two estimates into one refined estimate. We first explain optimal combing

in its general setting as in [102] and then apply the result to the channel estimation case in

hand. Consider the following two linear systems:

y1 = A1w + q1 (4.62)

y2 = A2w + q2 (4.63)

where y1, y2 are observation vectors, A1,A2 are the sensing matrices, and q1,q2 are Gaussian

observation noise vectors and independent from each other. The task is to estimate w. The

linear minimum mean-square estimator of w for each system separately is given by

ŵ1 = [R−1
w + B∗1R

−1
q1 B1]−1B∗1R

−1
q1 z1

= M1B
∗
1R
−1
q1 z1 (4.64)

where M1 is the error co-variance matrix of the estimate ŵ1 using the observations model

(36) only. Similarly, the estimate of w using the linear model in (4.63) only is

ŵ2 = M2R
−1
q2 z2 . (4.65)

Now we calculate the estimate given both z1 and z2 and to do that we find the concatenated

linear system of (4.62) and (4.63), which has the form[
y1

y2

]
=

[
A1

A2

]
w +

[
q1

q2

]

y = Aw + q (4.66)

which has the solution

ŵ =
(
R−1
w +A∗RqA

)−1A∗R−1
q y

=
(
R−1
w + B∗1R

−1
q1 B1 + B∗2R

−1
q2 B2

)−1

·
(
B∗1R

−1
q1 z1 + B∗2R

−1
q2 z2

)
=

(
M−1

1 + M−1
2 −R−1

w

)−1 (
B∗1R

−1
q1 z1 + B∗2R

−1
q2 z2

)
= M

(
B∗1R

−1
q1 z1 + B∗2R

−1
q2 z2

)
. (4.67)
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Using (4.62) and (4.63), the relationship between ŵ, ŵ1 and ŵ2 is given by:

M−1ŵ = M−1
1 ŵ1 + M−1

2 ŵ2 (4.68)

M−1 = M−1
1 + M−1

2 −Rw . (4.69)

Note that we can drop the term Rw when we have no prior auto-correlation information

about w. The Kalman filter is the implementation of the LMMSE when we have a state-

space model of the channel, hence, we apply the above to the results of the forward-backward

filter as follows:

M[i|i] = [M−1
f [i|i] + M−1

b [i|i]]−1 (4.70)

f̂
c
[i|N ] = M[i|i]

·
(
M−1

f [i|i]f f [i|i] + M−1
b [i|i]f b[i|i]

)
. (4.71)

4.6.3 Model Agnostic Channel Estimation

In this section we present standard methods to estimate the channel that do not assume the

availability of a channel model, then compare with the Kalman filter combiner presented in

previous section. If a channel is static during the OFDM symbol duration then the least-

squares estimation of the channel along with the shift orthogonality property of the pilots

results in a matched filter solution, which is optimal. When the channel starts to build

up dynamics, the matched filter deteriorates and recursive least square (RLS) and least

mean-squares (LMS) algorithms are typically employed.

Exponentially Weighted Recursive Least Squares (λ-RLS)

The λ-RLS [88] is a recursive linear MMSE estimator that puts more weight on the recent

observation yi using forgetting factor λ. The formulation is given by

MRLS[i] = λ−1MRLS[i− 1]

− λ−2 MRLS[i− 1]xHi xiM
H
RLS[i− 1]

σ2
n + λ−1xiMRLS[i− 1]xHi

(4.72)

e(i) = yi − f̂RLS[i− 1]xi (4.73)

f̂RLS[i] = f̂RLS[i− 1]

+
λ−1MRLS[i− 1]xi

σ2
n + λ−1xiMRLS[i− 1]xi

e(i) . (4.74)
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Figure 4.15: 3-D plot of the absolute value of the pseudo-circulant channel matrix H for the
1-km St. Margaret’s Bay channel. The inset shows the significant values and illustrates the
structure of H.

Note that we can run the RLS algorithm forward and backward and combine the resulting

estimates using the optimal combiner.

Least Mean-Square (LMS) algorithm

The LMS algorithm is as well-known model-agnostic algorithm that is known for its robust-

ness and tracking ability. The LMS algorithm for time-varying underwater channels has the

form

f̂LMS[i] = f̂LMS[i− 1] + µxHi e(i) (4.75)

e(i) = yi − xTi f̂LMS[i− 1] . (4.76)

where µ is the step size. The convergence condition for the LMS is given by

0 < µ <
2

Tr(R)x
(4.77)

where NL is the number of active taps under tracking. LMS algorithms are known for their

slow convergence time compared to RLS algorithm.
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4.7 Channel State Space Model Parameters

The parameter aAR(1) is found by fitting the auto-correlation function of the taps (4.13) with

the auto-correlation function of the assumed AR(1) channel

Rk,1(m) = E {fk[i]f ∗k [i+m]} = Rk,tr(0)amAR(1) (4.78)

where Rk,1(m) is the auto-correlation of tap k that follows the AR(1) model. The auto-

correlation of fSoSk [i] is

Rk,SoS[m] =
Pk

1 + (2πmαTs)2
(4.79)

where Rk,SoS[m] is the auto-correlation of tap k that follows the SoS model, α is the Doppler

exponential factor, and Ts is the sampling time. Th parameter aAR(1) is the solution to the

minimization problem

aAR(1) = arg min
āAR(1)

∑
m

‖Rk,1[m]−Rk,SoS[m]‖2 (4.80)

and is independent of Pk. The power delay profile is needed to find the noise power σ2
v [k],

that is

σ2
v [k] = Pk(1− aAR(1))

2 . (4.81)

4.8 Experimental Results

The algorithm is tested using a channel impulse response profile for the underwater channel

measured in Saint Margaret’s Bay located off the coast of Nova Scotia, Canada, where recent

under-water channel sounding experiments have been performed. The acoustic environment

is a shallow-water (depth of about 60−80m) 1-km channel with hard bottom. The transmit

carrier frequency was set to 2048 Hz, bandwidth to 320 Hz, and root-raised cosine filtering

with 0.2 roll-off was applied at the transmitter and receiver. The high-resolution power delay

profile of the channel is depicted in Fig. 4.16, where the x-axis represents the delay given in

terms of signal samples. A snapshot of the time varying channel matrix H corresponding to

this profile and the Doppler spread of α = 0.25Hz per surface bounce is given in Fig. 4.15.

The channel is used to transmit the time-domain pilot sequence x, and the observations

y are used to run the Kalman filters. Two cases are considered for the Doppler spread,

α = 0.1, 0.5 Hz representing a calmer and a heavier sea environment. The number of surface
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Figure 4.16: The high-resolution (orange) and post-filtered (blue) normalized power delay
profiles of the Saint Margret’s Bay channel.

bounces per tap varies from 0 to 6 depending on the tap. OFDM symbol duration is set to

N = 1024 samples. The normalized mean-squared channel estimation error is plotted as a

function of the system SNR in Fig. 4.17 results for α = 0.1 (left) and α = 0.5 (right). The

Kalman filter is able to offer better estimates than LMS and RLS thanks to the knowledge

about the channel exploited using state-space representation. The combiner offers an even

better estimate because it can account for simultaneous availability of all observations.

4.8.1 AR(1) vs AR(2)

Before studying the channel estimator as a part of the iterative decoder, we first compare

the Kalman filter optimal combiners with AR(1) and AR(2) channel state-space models.

Fig. 4.18 shows the normalized MSE of the estimators with the two models. The per-

formances provided by the two models are close. The Doppler spread factor used for the

experiments presented in the figure equals α = 0.25. The results suggest that further increas-

ing the model order may not provide tangible gain. Investigation of AR(p) and improved

models are a part of our ongoing work.
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Figure 4.17: Estimation error vs SNR for different values of Doppler spread environments a)
α = 0.1 (rms Doppler spread per bounce) b) and α = 0.5

4.9 Data-Aided Channel Estimation

In this section we study the Kalman filter estimation using data as pilots. For each OFDM

symbol, the decoder generates the vector L(d) which can be used to calculate the soft data

d̃ which is expected to biased, hence help in channel estimation process.

4.9.1 Soft-Symbols Kalman Filter

Modeling the time domain data d as [103]

d = d̂+ η (4.82)

where d̂ is time domain estimated data and η is Gaussian with Rη = σ2
dI — where the data

symbols are assumed to be independent from each other. The data and pilots observation

model is given by

y[i] = f [i](x+ d) + n[i]

y[i] = f [i](x+ d̂[i] + η) + n[i]

= f [i](x+ d̂[i]) + f [i]η + n[i]

= f [i](x+ d̂[i]) + z[i] (4.83)
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Figure 4.18: Estimation error vs SNR for KF with AR(1) and AR(2) with Doppler α = 0.25
fixed for all paths. OC denoted optimal combining of Forward-backward filters.

and

z[i] = n[i] + f [i]η (4.84)

where z[i] is the total noise, with variance

σ2
z = σ2

n + σ2
dTr(Rf) (4.85)

= σ2
n + σ2

d

Nactive∑
k=1

Pk (4.86)

where Pk is the power of the kth discrete tap. The noise variance σ2
z depends on the uncer-

tainty in the data d represented by σ2
d. The Soft-Symbols and pilots channel estimator is
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Figure 4.19: (a) NMSE for Kalman Filter with Soft symbols, and (b) with optimal combining,
with α = 0.1.

given by

σ2
z = σ2

n + σ2

Nactive∑
k=1

Pk (4.87)

σ2
e [i] = σ2

z + (x+ d̂)HMf [i|i− 1](x+ d̂) (4.88)

Kf [i] =
Mf [i|i− 1](x+ d̂)

σe[i]2
(4.89)

e[i] = y[i]− f̂ f [i|i− 1](x+ d̂) (4.90)

f̂ f [i|i] = f̂ f [i|i− 1] +Kf [i]e[i] (4.91)

f̂ f [i|i+ 1] = A(1)f̂ f [i|i] (4.92)

Mf [i|i] = Mf [i|i− 1]− Mf [i|i− 1](x+ d̃)(x+ d̃)HMf [i|i− 1]

σ2
e [i]

(4.93)

Mf [i+ 1|i] = A(1)HMf [i|i]A(1) + Q1 (4.94)

The Soft symbols Kalman filter and its combiner are tested using QPSK soft symbols as

d̂ and the pilots with the shift orthogonality property. Figures 4.19, 4.20 and 4.21 show the

results for stretching factor α = 0.1, 0.5 and 1.2 respectively. The algorithms are tested for

range of noise variance σ2
d, and as the noise increases the error of the estimate rises.
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Figure 4.20: (a) NMSE for Kalman Filter with Soft symbols, and (b) with optimal combining,
with α = 0.5.
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Figure 4.21: (a) NMSE for Kalman Filter with Soft symbols, and (b) with optimal combining,
with α = 1.2.
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Figure 4.22: Transmitter diagram.

4.10 Iterative Receiver for OFDM and Channel Tracking Based on Soft

Symbols

This section is dedicated to an application of the channel estimation and tracking technique

presented in the previous sections to an OFDM system designed for underwater acoustic

communications shown in Figure 4.7. For ease of reference we review the transmitter and

receivers main functions.

Consider a system model depicted in Fig. 5.1 presented in [104]. A vector of data symbols

d is encoded by an M -times repetition code (we choose M = 4 in our experiments) into

a vector d′ of length 2N which is permuted and mapped into a vector D composed of

N quadrature phase-shift keying (QPSK) data symbols. The data signal is superimposed

(added) in the time -domain to a known pilot sequence p. The pilot sequence helps the

channel estimator produce an initial channel estimate that can, in turn be used to initiate

data decoding. Since we consider OFDM based transmission and reception, the vector

X = D + P is transmitted over a vector channel described by

Y = H(f)X + Ψ

where H(f) is the N × N matrix of channel coefficients in frequency domain and Ψ is a

vector of N iid circularly-symmetric Gaussian noise samples with power σ2
n in both complex

dimensions combined (see (4.33)).

The repetition code in the system aids in the iterative interference cancellation of the

ICI. A strong outer error correction code can be included to lower the resulting bit error-rate

as desired at the cost of some loss on overall data rate. The iterative receiver diagram is

given in Fig. 4.23. The received signal first arrives at the channel estimator and tracker that
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Figure 4.23: Receiver diagram.

performs estimation based on the known pilot sequence treating the unknown data signal as

noise. The resulting channel estimate is transferred into the frequency domain Ĥ(f) and is

used to matched-filter the received signal as

r = Ĥ(f)∗Y = Ĥ(f)∗H(f)X + Ĥ(f)∗Ψ

= R̂X + φ

= R̂D + R̂P + φ

where R̂ = Ĥ(f)∗Ĥ(f) and φ is resulting colored noise. Since the ICI manifests itself in pres-

ence of the off-diagonal components in H(f), the task of the matched filter is to consolidate

the energy on the diagonal of the resulting matrix R̂.

Before feeding the matched filtered output r to the soft demodulate-decoder, the pilot

signal component Ĥ(f)∗H(f)P is subtracted to produce

r̂ = r − Ĥ(f)∗Ĥ(f)P + φ = R̂D + φ′

We also define the matrices of the diagonal and off-diagonal components of R̂:

R̂diag = diag
(
R̂
)

; R̂off = R̂− R̂diag .
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Figure 4.24: Bit Error Rate (BER) for the iterative receiver. The blue curve corresponds
to the performance with perfect channel knowledge. The red curve corresponds to the
(hypothetical system) performance where the channel estimation with 100% is performed
first and then given to the iterative receiver. The black curves corresponds to the data-aided
channel estimation with 15 iterations.

The soft decoder receives the signal r̂ and produces a vector of soft-symbol estimates D̂
(1)

.

It exploits the fact that each data bit participates in the data signal M times. It produces

log-likelihood ratios (LLRs) of each replica of the received data bit and combines them in an

optimal iterative decoding manner and uses a tanh(·) function to produce soft-bit estimates.

The channel estimate Ĥ(f)∗ is also utilized by the soft decoder for LLR normalization.

In the sequel every iteration i starts from a new channel estimate obtained by the channel

estimator and tracker from the received observation signal Y based on the known pilot

sequence and the soft data symbols D̂
(i−1)

supplied by the soft decoder. Then the interference

cancellation unit produces the cancelled signal

r(i) = Ĥ(f)(i)∗Y − R̂
(i)
offD̂

(i−1)
− Ĥ(f),(i)∗Ĥ(f),(i)P

with pilot removed. The signal r(i) is forwarded to the soft decoder to produce the soft



92

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.25: Variance Transfer Chart (VTC) shows the progressive reduction of the variance
of soft symbols with the iterations. At the first iteration, the estimator relies exclusively
on the pilot sequence to produce the channel estimate. The number of iterations is I = 15,
and we can see that the soft symbols quickly become known and are used by the estimator
together with the pilots.

symbols D̂
(i)

, and so on.

The progressive reduction of the soft symbol variance throughout the iterations is shown

in Fig. 4.25. The normalized MSE of the channel estimator is given as a function of the

soft-bit variance. The blue line shows change in the values as iteration progress. We can

see that at the very beginning the estimation is noisy while the soft bits are completely

unknown. At the end the estimation is very precise and the soft bits are decoded with high

confidence.

The bit error rate (BER) performance curves are plotted in Fig. 4.24 as a function

of the system SNR per bit Eb/N0. The iterative receiver with perfect channel knowledge

corresponds to the benchmark BER given by the blue curve. The red curve represents the

BER for a hypothetical case when a channel estimation with 100% pilot density is performed
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outside of the iterative received and the receiver is provided with the estimated channel

knowledge. Finally the black curve corresponds to the actual bit error-rate performance

of the iterative receiver with the iterative channel estimation. The pilot sequence power is

chosen to be 0.25 of the data sequence power is accounted for in the Eb/N0 computation. The

iterative receiver performance with the estimator is just about 2dB away from the perfect

channel knowledge case and about 3dB away from the AWGN (without time or frequency

selectivity) case.

4.11 Conclusion

In this chapter we present a channel estimation technique for underwater acoustic channel.

The method tailored to OFDM transmission systems and is based on utilizing forward and

backward Kalman-filter trackers and combining of the estimates for each sample within an

OFDM symbol. We demonstrate that the estimator can provide quality estimates even for

realistic channels with long, dense power delay profiles and significant Doppler spreads. The

estimator is a part of the iterative receiver used for decoding of data transmitted via OFDM

signalling and shown it is capable to start the iterative process providing initial channel

estimates using a low-power pilot. As the decoder learns the data throughout the iteration

the estimator can improve the quality of the estimates benefiting from soft estimates of the

OFDM symbol data and eventually converges to the interference free state.



Chapter 5

Unsourced Random Access over Fading Channels via Data

Repetition, Permutation, and Scrambling

5.1 Abstract

We focus on an unsourced random access (URA) system for communication over fading chan-

nels where the payload of each packet is encoded for error-correction, repeated, permuted,

and scrambled. Each packet is also equipped with a preamble that is used for channel es-

timation and encodes permutation and scrambling sequences utilized for payload encoding.

We propose an algorithm to resolve multiple-access preamble transmission, based on the ap-

proximate message-passing (AMP), that is capable to support high numbers of active users

and achieve low probabilities of miss-detection. We also develop a parallel interference can-

cellation technique for payload reception that iteratively refines the channel estimates and

attempts to minimize the mean squared error (MSE) of the users’ data via selective error-

correction decoding. Finally we derive a detailed system performance analysis that closely

matches the obtained numerical results. We demonstrate that the presented system can more

than double the number of active users, supported by the state-of-the-art systems. Large

gains in terms of the minimal required signal-to-noise ratios (SNR)s are also demonstrated

for a wide range of active user numbers.

5.2 Introduction

The concept of random access received a lot of attention in multi-user communications since

the design of the ALOHA system in 1970s [105]. A system where multiple users access a

common transmission media on demand at random times (grant free) has proven to be im-

portant for a large variety of applications including cellular, ad hoc, and sensor networks.

The random access functionality is even more important now, when the methodology and

philosophy of the fifth generation of cellular systems (5G) and beyond (B5G) focus on in-

corporating new functionalities such as the Internet of things (IoT), machine-to-machine

94
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(M2M) and others.

The unsourced random access is a novel random access paradigm [12] that targets short

packet random access communication in wireless systems. A very large number of potential

users is considered, while only a smaller subset of all potential users is active at any given

time. The users communicate in a grant-free fashion without pre-allocation of time, space,

or bandwidth resources. Due to a very large size of the overall user pool it is assumed that

the receiver cannot be tailored to distinguish users based on their identities (IDs). Instead,

the users utilize a common codebook to transmit their data. Hence, the receiver may not

be able to identify the transmitters where the received data packets originated. Therefore,

the URA concept is especially suitable for applications where it is important to deliver the

data itself rather than trace back the origin of the data. In addition, the reliability measure

defined for URA systems is the average per-user probability of error and error-free reception

of all packets is not targeted.

A number of URA systems have been proposed, starting from a few approaches examined

in [12, 13]. The main focus for most of the existing research is on the Gaussian multiple-

access channel and the resolution of multi-user interference in the unsourced setting, rather

than dealing with the channel impairments. A number of methods based on the ideas

that stem from the compressed sensing (CS) domain were proposed in [13, 14, 15, 16, 17].

Some methods rely on the T -fold and irregular slotted ALOHA [18] where each packet

time slot is further subdivided into sub-slots that may be accessed randomly by different

active users [19, 20, 21] to transmit their data. Another cohort of methods uses a blend

of CS-encoded preamble and a data payload [22, 23, 24, 19] encoded for multi-user access.

It has been also shown [106] that for lower numbers of active users the preamble may be

omitted [106] to increase the system’s efficiency.

When URA is applied to a more general channel, the identification of active users and

message decoding are further complicated by the necessity to perform channel estimation.

Some packets may be lost due to poor channel conditions, and the inability of the receiver to

recover these further complicates the decoding of the remaining packets. URA over Rayleigh

channel is considered in [20, 21, 107, 108, 109, 110]. In [20, 21] it is performed via data-

aided estimation in conjunction with T -fold ALOHA and parallel interference cancellation

(PIC) or serial interference cancellation (SIC) processing. Multiple antennas in a massive

multiple-input multiple-output (MIMO) setup aid channel diversity and facilitate decoding
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and channel estimation for URA in [107, 108, 109, 110].

The methods proposed in [20, 21] prescribe each user to randomly pick a sub-slot within

a frame dedicated to packet transmission and transmit a short block of data encoded by a

low-density parity-check (LDPC) or polar code. This results in the T -fold ALOHA approach

where T is the maximum number of blocks that can be simultaneously received and success-

fully decoded on a single sub-slot. The decoding capability T is related to the strength of

the underlying error-correction code (ECC). The channel estimation and data decoding are

preformed jointly on the entire system graph [20]. While the methods of [20, 21] are success-

ful for small and medium numbers of active users, high numbers of active users, that lead to

increased numbers of packet collisions, overwhelm the decoding capability of the system.

In this work we utilize packets with preamble/payload separation as suggested in [22,

23, 24, 19], build on the concept of a URA system [111], and focus on construction of

transmission and reception algorithms for URA over fading channels, specifically the single-

antenna block-fading Rayleigh channel. The payload data is encoded via an error-correction

code and undergoes repetition, permutation, and scrambling to create a non-orthogonal

multiple-access transmission. The preamble is used to communicate the pairs of permutation

and signature sequences, selected by the active users to permute and scramble their payload

data. The receiver recovers the signature and permutation pairs from the preambles received

on the preamble multiple-access channel and uses them for decoding of the payloads received

on the payload multiple-access channel.

The preamble is utilized for an initial channel estimation that starts the data-aided

channel estimation process operating within the payload decoder. The preamble decoder

has to be powerful enough to support high numbers of active users that inevitably lead to

multiple user collisions, i.e. situations when several users pick the same pair of signature

and permutation for their payload encoding. We demonstrate that the balance between the

numbers of misses and false alarms produced by the preamble decoder has to be tipped

towards lower numbers of misses. Moderate levels of false alarms can then be overcome by

the iterative multiple-user payload decoder that alternates between the estimation of channel

values and data bits, and cancellation of the multi-user interference. Our contributions are

as follows:
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• We propose a preamble detection algorithm, based on the AMP principle, that com-

bines features of channel estimation, interference suppression via adaptive threshold-

ing, the overall power constraint, and a tuned complex approximate message-passing

(CAMP) [112]. We demonstrate that the proposed algorithm outperforms its existing

counterparts and is capable to support the presented URA system in highly overloaded

user regimes.

• We develop an iterative multi-user detection and decoding algorithm with channel

estimation, a selective decoding and thresholding of the detected user packets based

on their estimated SNR, and removal of successfully decoded packets.

• We present a detailed performance analysis of the payload decoder and the entire

URA system that takes into account the error-correction code, probability of miss, and

user collision distribution. The results of the analysis can closely predict the results

achievable by simulations.

The presented URA system significantly outperforms the existing methods in terms of

supported numbers of active users. It also requires less SNR to guarantee a given level of the

per-user probability of error. We demonstrate that very high rate systematic codes (such

as Hamming code and double error-correcting BCH [113, 114] code) with low-complexity

encoding allow for successful system operation over a wide spectrum of active user loads.

Finally we demonstrate that the system is scalable and can operate successfully on different

slots sizes.

The chapter is organized as follows. Section 5.3 presents the system model, describes the

packet structure, channel, and the decoding algorithms utilized at the receiver. Section 5.4

presents the performance analysis derived to track the evolution of the noise-and-interference

power (NIP) throughout the decoding iterations. Section 5.5 presents the numerical simula-

tion results and Section 5.6 concludes the chapter.

5.3 System Model

We consider a URA scenario with the overall pool of Ktot potential users where only Ka

users out of Ktot are active, Ka � Ktot. The system is slotted and the active users start

transmitting their packets at the beginning of time slots (frames). The length of each frame
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equals Nt channel uses. The information message of the kth active user, k = 1, 2, · · · , Ka is a

binary vector uk of length B that is mapped by the transmitter into a data message (packet)

xk = xk(uk) of length Nt. The power of each packet is constrained to P i.e. ||xk||2 ≤ NtP ,

k = 1, 2, · · · , Ka. We focus on the case when each user’s transmitter as well as the common

receiver are all equipped with single antennas. Fading channel is considered and the received

signal is given by

y =
Ka∑
k=1

Hkx
k(uk) + z, (5.1)

where z
i.i.d.∼ CN (0, N0INt) is the complex additive white Gaussian noise (AWGN) vector

and the channel coefficient matrix equals Hk = diag(hk), where hk is the channel coefficient

vector of the kth user. The channel coefficient vector is independent of xk and z. In this

work, block-fading Rayleigh channel is considered, where the channel coefficient of each user

is constant during the entire transmission frame, i.e. Hk = hkINt , where hk
i.i.d.∼ CN (0, 1).

We assume that the channel coefficients are unknown to both the transmitter and receiver

(no-CSI assumption). In the remainder of the chapter we will use the short notation xk

instead of xk(uk).

To evaluate the performance of a URA scheme, the per-user probability of error (PUPE)

is defined in [12] as

Pe =
1

Ka

Ka∑
j=1

Pr[Ej], (5.2)

where Ej
∆
= {uj /∈ φ(y)} ∪ {uj = ui, i 6= j} and φ(y) is the list of messages decoded by the

receiver based on the received signal y. URA algorithms are often compared based on the

minimum SNR per information bit (Eb/N0) they require in order to achieve a certain level

of PUPE.

5.3.1 Packet Structure and Transmitter Model

We consider the concept of splitting a packet into a preamble and a payload, proposed

in [22, 23] in context of URA, and follow the approach of [111] where data permutation

and signature sequences were used in the payload encoding. We then develop the signal

processing algorithms required for the receiver operation, given in Sections 5.3.2 and 5.3.3,

to establish URA over block Rayleigh-fading channels.
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Figure 5.1: Block-diagram of the transmitter for the kth active user.

The transmitter of the kth active user is depicted in Figure 5.1. The B-bit information

vector uk of the kth active user, k = 1, 2, · · · , Ka, is first encoded by a binary (n,B) error-

correction code of rate R = B/n. The encoded vector vk is split into two parts vk = [vkp,v
k
d].

The sequence vkp of length Bp is used to encode the preamble which we call the CS part of the

packet since it is encoded and decoded via compressed-sensing. The sequence vkd of length

Bd = n−Bp is used to encode the payload xkd which we will call the MU part of the packet

since it will be decoded via a multi-user detector (MUD). Thus, the message (packet) of the

kth user is xk = [xkp,x
k
d] and the lengths of the CS part and MU part of the message equal

to Np and Nd respectively where Nt = Np +Nd.

To encode the CS part, the Bp-bit sequence vkp is converted to a decimal number νk ∈
[0, 2Bp−1] and mapped into a sequence xkp = aνk of length Np. The sequence aνk is a column

in an Np × 2Bp matrix A composed of iid complex Gaussian CN (0, 1) entries.

To encode the MU part, kth active user selects a pair of signature and permutation se-

quences (sk,πk) uniformly at random from a set of 2Bp of such pairs based on νk. Each

signature sequence is constructed from iid unitary complex numbers with uniform random

phase. The permutation sequences are selected uniformly at random from a set of all per-

mutations of length BdM/2. At first, the bit sequence vkd is repeated M times to generate a

vector of length BdM . The repeated sequence is mapped to a sequence of QPSK symbols of

length BdM/2 as shown in Fig. 5.1. The complex modulated signal is then permuted using

πk and multiplied symbol by symbol by the signature sequence sk (scrambled) to produce

the encoded MU part xkd.

As we will see later, the selection of the ECC depends on the URA operational regime. If

the number of active users Ka is low, it is possible to apply a stronger code with lower rate

(larger n) in order to reduce the required operational SNR. For highly overloaded systems
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with large numbers of active users high-rate codes are more beneficial, since they allow to use

higher repetition factors M , essential for successful convergence of the multi-user detection.

The task of the code is two-fold. First of all it reduces the number of errors at the output of

the URA receiver to guarantee the required level of PUPE. The second role the code plays

is to help the multi-user detector working on the MU parts of the packets to converge to the

“single-user” performance and aid the channel estimation within the iterative MUD process.

5.3.2 User Detection and Channel Estimation via AMP

The composite received signal for the CS parts of the users’ packets is given by

yp =
Ka∑
k=1

hkx
k
p + zp =

Ka∑
k=1

hkaνk + zp = Ah + zp, (5.3)

where h is a sparse (2Bp × 1) vector of user activity and channel coefficients, and zp is the

complex AWGN CN (0, N0INp). All entries of h are zeros except for hνk for k = 1, 2, · · · , Ka.

Typically hνk = hk, however, if two active users k1 and k2 select the same νk1 = νk2 then

hνk1 = hνk2 = hk1 + hk2 (user collision). For the case of Gaussian only channel hk ∈ {0, 1}
indicating the users status of active or dormant with probabilities p0 and p1 respectively. In

case of collision, where tow or more users select the same signature sequence then hk > 1,

and pair collision kk = 2 with probability p2 . We treat the activity-collision detection first.

AMP Algorithms for Detection of Active Users and Collisions events

The power based activity-detection only AMP algorithm is presented in [115] [116] has the

following form

zl = yp −Ah̃
l

p + zl−1
(
P − ||h̃

l

p||2
)
N−1

p τ−2
l−1 (5.4)

h̃
l+1

p =
√
P1

(
1 +

p0

1− p0

e
√
P1(0.5

√
P1−ATzl+h̃

l
p)τ−2

l

)−1

(5.5)

where τ 2
l = ||zl||2/Np, P = KaP1 and p0 is the probability that an element of ṽp equals 0

(user inactivity rate). The recursion is initialized with z0 = 0, ṽ0
p = 0 and l is the iteration

index. The above algorithm assumes no collision event is present, and all users signatures are

unique. As the number of users increase and subsequently probability of pair-collision (see

Figure 5.6) the above AMP algorithm introduces additional missed detection and false alarms
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Figure 5.2: shows the estimates of h produced using activity-detection (5.4) only and activity-
collision AMP (5.7).

as it tries to gauge the estimate to have power P . Moreover, the MUD detector benefits

form the knowledge of collision and enables the design of collision resolution techniques.

By acknowledging the pair collision events the AMP algorithm can simultaneously detects

activity and collision patterns. The modified algorithm first implements the cancellation

step shown in equation (5.4), and then calculate the initial channel estimate

r(l) = v̂(l) + ATz(l), (5.6)

to finally estimate the activity-collision detection pattern

v̂(l+1) =
p1e

−(r(l)−1)2

2τ2
l + 2p2e

−(r(l)−2)2

2τ2
l

p0e
−r(l)2

2τ2
l + p1e

−(r(l)−1)2

2τ2
l + p2e

−(r(l)−2)2

2τ2
l

. (5.7)

Figure 5.2 compares between activity-only and collision-aware AMP algorithms, where the

AMP in 5.4 reduces collision to activity event. The following table summarizes the effects of
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this reduction on missed detection and false alarms rates, where missed detection rate are

consistently lower for collision aware algorithm.

Collision-Aware Collision-Blind
Ka Missed Detection False Alarms Missed Detection False Alarms
400 4/100 3/100 6/100 2/100
500 1/100 0 3/100 0
600 0 2/100 3/100 1/100

Table 5.1: shows missed detection and false alarms for the collision aware and blind AMP
respectively. Number of channel uses is 4000 for Ka = [400, 500], and 5000 for Ka = 600.

Complex AMP Algorithms for Detection of Active Users and Channel Estimation

The setting in equation (5.3) is a typical compressed sensing problem, where the task is to

estimate a long sparse vector h based on a much shorter vector of observations yp. Numerous

methods to approach this problem exist such as orthogonal matching pursuit (OMP) [117],

l1-regularized least squares (LASSO) [118], non-negative least squares (NNLS) [119] and

others. While many algorithms are designed for the case of real-valued measurements and

unknowns, only a subset of these is applicable to the more challenging case of complex

measurements, unknowns and sensing matrices. Joint channel estimation and user detection

algorithms were proposed in [107, 109] for the case of massive MIMO receiver where they

rely on the multiple antenna diversity.

A complex version of one of the most successful algorithms, the AMP [120] (which was

used to approach the asymptotic information-theoretic CS limit in [121]) has been developed

in [112]. The complex AMP (CAMP) presented in [112] is a method to study asymptotic

behavior of the complex LASSO. The following recursive equations describe CAMP algorithm

applied to (5.3), where l is the iteration index and ĥlj is the estimated vector

ĥl+1
j = η(ĥlj +

∑
b

A∗bjz
l
b; τl) j = 1, 2, · · · , 2Bp (5.8)

zl+1
a = ya −

∑
j

Aaj ĥ
l+1
j (5.9)

−
∑
j

Aaj

(
δηR

δh
(ĥlj +

∑
b

A∗bjz
l
b)

)
Re(A∗ajz

l
a)−

∑
j

Aaj

(
δηR

δh
(ĥlj +

∑
b

A∗bjz
l
b)

)
Im(A∗ajz

l
a)

− i
∑
j

Aaj

(
δηI

δh
(ĥlj +

∑
b

A∗bjz
l
b)

)
Re(A∗ajz

l
a)− i

∑
j

Aaj

(
δηI

δh
(ĥlj +

∑
b

A∗bjz
l
b)

)
Im(A∗ajz

l
a),

a = 1, 2, · · · , Np l = 0, 1, . . .
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The initial conditions are given by ĥ
0

= 0 and z0 = 0. The complex soft thresholding

function

η(u+ iv; τl) =

(
u+ iv − τl(u+ iv)

ε+
√
u2 + v2

)
1(u2 + v2 > τ 2

l )

is applied element-wise, and ε is a small positive number used to preserve numerical stability.

The function suppresses small entries in the estimated user activity and channel coefficient

vector. The entries with the amplitude that falls below the threshold τl are set to zero since

they are likely caused by the noise. At every iteration the algorithm performs thresholding

with η(·) to produce a new estimate ĥ
l+1

of h and computes the residual noise and interference

za
l+1 that results from cancellation of the interference caused by ĥ

l+1
and the correction term

(the last four terms in (5.9)). The CAMP algorithm is agnostic to the distribution of the

non-zero entries of h and works for a wide range of distributions. An enhanced version of

CAMP, called the tuned CAMP, which we will denote by τCAMP, is presented in [122].

At every iteration of τCAMP the optimal threshold value τl is selected, that minimizes the

square error function Eu‖η(h+σu; τ)−h‖2 for a given sparse channel h, where u ∼ N (0, 1)

and σ is the noise and interference level.

Based on the conducted experiments we found that τCAMP significantly outperforms

the original CAMP for the problem of (5.3). However, when either CAMP or τCAMP is

applied to a system with a large number of active users (overloaded system) high levels of

misses are produced and that results in high PUPE of the overall URA system. As we

will see later, the number of misses is the key parameter of the algorithm as long as URA

application is concerned. Moderate levels of false alarms cause slight increase of interference

within the MUD operating on the MU parts of the packets. Similarly, the quality of the

channel estimates provided by the AMP algorithm for the active users does not have to be

very high, since these estimates will be refined multiple times at the MUD stage. Therefore,

in the next section we propose a new algorithm that meets the needs of the designed URA

system.

Proposed Phase Estimation and Thresholding AMP (PET-AMP) Algorithm

The new algorithm is developed based on AMP framework [120]. We start with outlining

the steps of the algorithm performed at every iteration l and then explain the purpose of
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each step. The algorithm is given by

zlp = yp −Aĥ
l
+
zl−1

p

τ 2
l−1

(
Ph − ||ĥ

l
||2

Np

)
, (5.10)

rl = ĥ
l
+ A∗zlp, (5.11)

|h̃j| =

p1

∫ ∞
0

ap(a)ρ(rlj|a, τl)da

p0ρ(rlj|a = 0, τl) + p1

∫ ∞
0

p(a)ρ(rlj|a, τl)da
j = 1, · · · , 2Bp (5.12)

arg(h̃j) = arg(rlj) j = 1, 2, · · · , 2Bp (5.13)

τ 2
l =

||zlp||2

Np

, (5.14)

ĥl+1
j =

h̃j, |h̃j| > cτl

0, otherwise
, j = 1, · · · , 2Bp (5.15)

where Ph = E||h||2 is the expected overall power estimated by

P̂h = ||yp||2 −NpN0.

The probability of the user activity is given by p1 = Ka

2Bp , where p0 = 1 − p1, and the

probability density functions of the fading amplitude and the interference are

p(a) ∝ ae−
a2

2 and ρ(x|a; τ) ∝ e−
(|x|−a)2

2τ2 .

The algorithm starts with calculating the residual noise and interference zlp shown in

equation (5.10) and uses the total power constraint in the correction term as in [123]. The

residual noise zlp is matched-filtered with the sensing matrix A and accumulated with the

previous estimate, to find the initial estimate rl of h in (5.11). Since the system operates

on the Rayleigh channel, we extend the AMP approach used for activity detection as in

[116][111] to jointly estimate the channel coefficient and user activity. Under the assumption

of Gauusian noise and interference the entries of rl are distributed as

rlj = |hj|ei arg(hj) + τlξj j = 1, 2, · · · , 2Bp (5.16)

where ξj ∼ CN (0, 1). Consequently, we estimate the amplitudes of the vector h given

the observations rlj and assuming they are obtained in independent Gaussian channels with

variance τ 2
l , where the probability of the user activity is p1 and the Rayleigh amplitude
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Figure 5.3: Numbers of misses and false alarms for τCAMP (squares), PET−AMP (di-
amonds), and CAMPET (circles) computed for a range of Eb/N0 and Ka = 50, 150, 350
numbers active users and Np = 350, 1250, 2125 respectively.

distribution equals p(a) (see (5.11)). The separate maximum likelihood estimate of the

phase arg(rl) is given in (5.13).

To actively suppress false alarms that appear in the iterative estimation process, we use

a thresholding procedure (5.15) which is analogous to the thresholding that appears in many

versions of AMP [120] to enforce sparsity in the estimated vector. We utilise c = 2.8, 2.9

or 3 for the range of active user numbers Ka and CS part lengths Np of interest. The

presented algorithm performs a number of iterations (typically set to 25) and the estimate

ĥ
l

that corresponds to the lowest τl is chosen for the output. The algorithm can produce an

estimate with much smaller number of misses compared to τCAMP, and we will use τCAMP

in the next section to improve it further.

τCAMP Assisted PET-AMP (CAMPET) Algorithm

The proposed PET-AMP algorithm introduces significantly less misses than τCAMP. On

the other hand, τCAMP produces a very low level of false alarms, indicating that users esti-

mated by τCAMP are reliable. Therefore, we combine both algorithms and reduce the miss-

detection rate further. The following steps summarize the proposed combined CAMPET
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algorithm:

1. Compute the estimate ĥτCAMP using τCAMP. The set of active users SτCAMP is defined

as the set of indices of the nonzero entries of ĥτCAMP .

2. Compute ĥPET−AMP using PET-AMP and obtain the set of active users SPET−AMP.

3. Calculate the difference S∆ = SτCAMP \ SPET−AMP.

4. Assign ĥCAMPET = ĥPET−AMP and then set ĥCAMPET(S∆) = ĥτCAMP(S∆).

Figure 5.3 compares the three algorithms in terms of the number of misses and false

alarms for the cases of Ka = 50, Np = 350 (red), Ka = 150, Np = 1250 (blue), and

Ka = 350, Np = 2150 (black). The performance curves for τCAMP, PET−AMP, and

CAMPET are shown by curves with squares, diamonds and circles respectively. The fact

that CAMPET provides lowest number of misses, especially for the low range of Eb/N0, is

essential to lower the overall SNR requirement of the URA system. As Eb/N0 increases, all

algorithms have similar performance for Ka = 50, 150. For Ka = 350 users the advantage

of combining τCAMP and PET−AMP is clearly visible. The number of false alarms stays

relatively constant with respect to Eb/N0. CAMPET has a slightly higher false alarm rate

than the τCAMP. However, such increase in false alarm rate has a minor impact on the

performance of the MUD algorithm applied to the MU parts of the packets.

5.3.3 Payload Receiver Based on Iterative Data Estimation and Interference

Cancellation

The composite received signal for the MU parts of the packets is given by

yd =
Ka∑
k=1

hkx
k
d + zd. (5.17)

Following the decoding of the CS parts of the packets discussed in Section 5.3.2, in this

section we will describe the MUD algorithm applied to the received signal yd in order to

decode the MU parts. The decoder of the CS parts outputs the estimated data of the CS

parts v̂kp and the corresponding estimated indices ν̂k, k = 1, 2, · · · , K̂a of the signature and

permutation pairs utilized by the active users k = 1, 2, · · · , K̂a to encode the MU parts. By
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ĥ
∗

Figure 5.4: MUD receiver architecture.

K̂a we denote the number of packets detected by the CS part decoder that also outputs the

estimated channel coefficients ĥk of each detected active user.

Figure 5.4 depicts the block diagram of the MUD receiver. The main loop of the iterative

decoder is highlighted by the gray color. The blocks that process the spread signal are shown

by the blue color. The red blocks show processing of the despread symbols. To extract the

data of the kth active user, k = 1, 2, · · · , K̂a, the received signal yd (5.17) is multiplied by

the conjugate of the estimated channel coefficient ĥk

rk = ĥ∗kyd = |hk|2xkd +
Ka∑
k′=1
k′ 6=k

ĥ∗khk′x
k′

d + ĥ∗kzd + e∗khkx
k
d . (5.18)

The second term on the right hand side of (5.18) comprises the interference from other users,

the third term is the noise term, and the last term is the error due to the imperfect channel

estimation where ek = ĥk − hk. The task of the MUD is to iteratively cancel the multi-user

interference and ultimately decode the data vkd, k = 1, 2, · · · , K̂a.

As shown in Figure 5.4, at each iteration the receiver performs estimation of the data

bits, channel estimation, and interference cancellation. In addition, depending on the esti-

mated SNR, the data may undergo error-correction decoding and a CRC check to test its

correctness.

Data Estimation
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At iteration i the log-likelihood ratios (LLR)s of the data bits of user k are calculated as

λ̂
i

k =
2r̃i−1

k

σ2
k,i−1

, (5.19)

where r̃i−1
k is the estimate of |hk|2xkd at the ith iteration (given later by (5.24)) and the initial

r̃0
k = rk at iteration i = 0. The noise and interference power experienced by the active user

k at iteration i− 1 is denoted by σ2
k,i−1.

The LLR vector λ̂
i

k (5.19) is multiplied by the signature sequence sk and then de-

interleaved using the inverse of the permutation πk. The real and imaginary parts of de-

interleaved sequence are concatenated to produce a set of M LLRs λ̃ik,j,m, m = 1, 2, · · · ,M
for each data bit j = 1, 2, · · · , Bd of user k, k = 1, 2, · · · , K̂a. These LLRs are then used

to compute soft and hard estimates of the data bits for the purpose of error-correction de-

coding and interference cancellation as well as for refining the channel estimates. LLRs of

the M different replicas of each data bit are added together and then the optimal (in MSE

sense) conditional expectation estimate of a binary {−1, 1} signal in a Gaussian noise and

interference is computed

ϑik,j =
M∑
m=1

λ̃ik,j,m , (5.20)

ṽik,j = tanh
(
ϑik,j
)
, (5.21)

where j = 1, 2, · · · , Bd. The “soft symbols” of equation (5.21) can be used to produce

hard decision QPSK symbols qik,j, j = 1, 2, · · · , Bd/2 which will be used for refining of the

estimated channel coefficients. In addition, in order to propagate the estimates of each bit

replica and continue the iterative MUD process M different estimates (for the uncoded case)

are computed

ṽik,j,m = tanh

(
M∑

m′=1
m′ 6=m

λ̃ik,j,m′

)
, m = 1, 2, · · · ,M, j = 1, 2, · · · , Bd . (5.22)

The estimates (5.22) are used to re-modulate the signals by applying permutation πk and

scrambling with sk. The resulting data signals x̃i,kd will be used to perform interference

cancellation.

Error-Correction Decoding, SNR Estimation, CRC Check
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For that case when an error-correction code is used and the decoder is activated at the

receiver, the LLRs ϑik,j are passed to the input of the decoder together with v̂kp. The result

of the decoding is utilized to form hard QPSK symbols, qik,j that are then repeated M times,

permuted, and scrambled, to re-modulate the data of the respective packet prior to the

interference cancellation.

In the CRC-aided successive cancellation list (CA-SCL) decoder, cyclic redundancy check

(CRC) bits are appended to the coded bits to reduce the block error rate (BLER) [124]. CRC-

aided polar codes are adopted in the 5G standard for both uplink and downlink channels.

We exploit the CRC bits to decrease the complexity of the receiver and improve PUPE

when the packets are encoded by a polar code. If the CRC bits of one packet are valid for

two successive iterations of the MUD, the packet is considered as perfectly decoded and is

not decoded in the subsequent iterations. We use two successive iterations to decrease the

probability of a false positive of the CRC sequence.

SNR estimation plays a crucial role in the decoder to control the channel estimation

and error correction blocks. For low SNRs, execution of error-correction decoding results in

higher MSE compared to the case when the decoder is not applied as shown in Figure 5.5.

Hence, implementing a threshold to switch between the two modes of operation when the

error-correction decoder is on or off is critical, especially for the system encoded by a polar

code. In addition, the MSE of the channel estimate depends on the SNR, and consequently

on the bit error rate of a particular user (packet). If the SNR of the received signal is not high

enough, the MSE of the channel estimate produced inside the MUD could be higher than

the MSE of the channel estimate obtained from the CS part decoder. Therefore, switching

between the error-correction decoding and no decoding regime is used for each packet, based

on its SNR level.

Channel Estimation

As we already mentioned, the decoder of the CS parts provides the initial estimates of the

channel coefficients, namely ĥk. The estimates are refined throughout the MUD iterations.

As the iterations progress, naturally, the channel estimates get first improved for the high-

power users and then for the low-power users. The channel coefficient of the kth user can
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be estimated at each iteration via

ĥi,k =
1

Bd/2

Bd/2∑
j=1

ϑik,jσ
2
k,i

2ĥ∗k,i−1q
i
k,j

. (5.23)

Interference Cancellation

The data signals x̃i,k
′

d constructed from the M soft-bit replicas (5.22), or hard QPSK sym-

bols in case the system is coded and the error-correction decoder is activated (see Figure 5.4),

are used for the interference cancellation to compute

r̃ik = ĥ∗i,kyd −
K̂a∑
k′=1
k′ 6=k

ĥ∗i,kĥi,k′x̃
i,k′

d , σ2
k,i = var

ĥ∗i,kyd −
K̂a∑
k′=1

ĥ∗i,kĥi,k′x̃
i,k′

d

 . (5.24)

The average NIP equals σ2
k,i = σ̄2

k,i. The cancelled signals r̃ik will be used to produce the

LLRs (5.19) in the next (i + 1)th iteration. The iterative MUD process continues until the

normalized NIP σ2
k,i/|hk|2 approaches the level of the noise power σ2 = N0/2 (per Re/Im

dimension). This would correspond to the “single-user” performance. The conditions for

convergence of the system to the single-user performance are investigated in Section 5.4.

Impact of Misses, False Alarms, and User Collisions on MUD Operation

Some active users’ packets are not detected by the decoder of the CS parts. The packets

of those missed users behave as interference for other users in the MUD receiver and would

not be cancelled by (5.24). At the same time, some false users are introduced by the CS

decoder algorithm to MUD by mistake due to false alarms. These will be referred to as false

users. The false users can inject interference into the iterative decoder at the stage when

the transmit signal is regenerated as ĥk′x̃
k′

d . It turns out that the vast majority of the false

users are of low power and cannot increase the residual interference dramatically.

Another phenomenon that degrades the performance of the MUD algorithm is the colli-

sions of pairs of active users. As we mentioned earlier a collision happens when two active

users select the same signature and permutation pair (sk,πk) to send their message. In such

case the decoder of the CS parts detects the channel-faded signals of the two colliding users

as a single user. The estimated channel coefficient approximates the sum of the channel

coefficients of the two colliding users and the resulting “combined user” signal is passed to

the MUD. The MUD algorithm, in turn, can often detect and decode the user with the
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highest power out of the two users in a collision. This happens if the difference between the

powers of the two colliding users is high enough. Apart from that, both colliding users are

not detectable by the MUD algorithm. In contrast to the case of missed and false users, the

power of colliding users could be high and could increase the interference dramatically if the

number of collisions is significant.

5.4 Performance Analysis

In this section we present a performance analysis of the MUD operating on the MU parts

of the packets. The analysis is based on the evolution of the NIP as well as the MSE of the

data estimates that we track throughout the iterative interference cancellation process.

5.4.1 Analysis in Absence of User Collisions

We consider a system with Ka active users where the powers of their respective packets at

the receiver are given by Pk = |hk|2, k = 1, 2, · · · , Ka. We start with considering the case

when the user collisions are absent i.e. all the users happen to select distinct signature and

permutation pairs. We also start with the assumption that all users’ packets have been

detected correctly by the algorithm processing the CS parts, the channel coefficients have

been estimated perfectly, and no false alarms have been produced. First, we derive the

analysis equations for the case when the packets are uncoded.

In case of perfect channel knowledge the interference cancellation equation (5.24) at

iteration i = 1, 2, · · · can be written as

rik/|hk| = |hk|xkd +
Ka∑
k′=1
k′ 6=k

h∗khk′/|hk|
(
xk
′

d − x̃
i,k′

d

)
+ h∗k/|hk|zd , (5.25)

rik,j/|hk| = |hk|vk,j + ηk,j, j = 1, 2, · · · (5.26)

where the power of the noise and interference term ηk,j (per real or complex dimension) is

given by

χi = σ2
k,i/|hk|2 = Eη2

k,j =
Ka∑
k′=1

|hk′ |2E
(
vk′,j − ṽik′,j

)2
+ σ2

=
Ka∑
k′=1

Pk′E
(
vk′,j − ṽik′,j

)2
+ σ2 . (5.27)
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Since we consider the optimal estimator (5.20) of the binary signal vk,j ∈ {−1, 1} in a

Gaussian noise and interference, the MSE of the estimate is given by

E
(
vk,j − ṽik,j

)2
= g

(
Pk
χi−1

)
,

where the function

g(s) = 1− 1√
2π

∫ ∞
−∞

e−z
2/2 tanh

(
s− z

√
s
)
dz (5.28)

derived in [125] is the MSE of the maximum a posteriori probability (MAP) estimation

of equiprobable binary {1,−1} signals in AWGN N (0, s−1). Following the interference can-

cellation stage of iteration i the MSEs of all users k = 1, 2, 3, · · · will jointly contribute to

the overall NIP after iteration i resulting in

χi =
Ka∑
k=1

Pkg

(
Pk
χi−1

)
+ σ2 .

where we do not account for the fact that the kth user is not a part of the interference.

Since the channels of the users are Rayleigh we can write a continuous approximation

based on the Rayleigh probability density function p(·) of the received signal amplitudes

χi = αa

∫ ∞
0

r2p(r)g

(
r2

χi−1

)
dr + σ2 = αagf

(
1

χi−1

)
+ σ2 i = 1, 2, 3, · · · (5.29)

where αa = Ka/M is the active user load computed as the ratio of the number of active

users to the repetition factor M and

gf

(
χ−1
)

=

∫ ∞
0

r2p(r)g

(
r2

χ

)
dr

denotes the average MSE of the entire user population. The initial NIP, before the MUD

iterations start, equals

χ0 = αagf (0) + σ2 = αa

∫ ∞
0

r2p(r)g (0) dr = αa + σ2 . (5.30)

Equation 5.29 characterises the evolution of the NIP throughout the MUD iterations.

The goal of the MUD process is to cancel (almost) all the multi-user interference, in which

case the sequence χi will decrease with i and approach the noise power σ2. Often, however,

the interference cancellation process stops at a point where the NIP χi does not decrease
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as a function of i and remains significantly larger than σ2. To study the evolution of the

interference cancellation process we define a characteristic equation

χ = αagf

(
1

χ

)
+ σ2. (5.31)

The convergence of the interference cancellation process is characterized by the largest

fixed point (FP) χ∗ of (5.31). The final BLER (for the case of uncoded transmission) is one

of the main contributors to the PUPE and is determined by

Pbl =

∫ ∞
0

(
1− (1−Q(

√
r2/χ∗))Bd

)
p(r)dr

where Q(s) =
1√
2π

∫ ∞
s

exp(−z2/2)dz .

based on hard decisions taken after the last MUD iteration for each bit independently. For

the case when the interference cancellation process converges to the level close to the noise

power σ2 we can substitute χ∗ ≈ σ2 in the above expression.

The Two-Stage Decoding Schedule

Consider now the case when the data is encoded with an (n,B) error-correction code

C. The simplest decoding schedule at the receiver is the two-stage decoding schedule when

the receiver performs MUD first, without involving the error-correction decoder at the (the

first stage). Once the MUD reaches a point where the average SNR of the packets equals

a certain threshold γ, the ECC decoding is performed for each packet individually and the

final result is produced (the second stage). The MUD cutoff threshold γ is selected based

on the target BLER and the error-correction code properties.

To achieve the best performance of this schedule we can let the first MUD stage achieve

the point of saturation described by the highest FP of the characteristic equation (5.31).

The final post-MUD SNR for a packet received with power r2, r ∈ [0,∞], is given by r2/χ∗

where r is the fading gain. Let us denote the BLER provided by the ECC C at SNR s by

PC(s). The final BLER can then be computed as

Pbl =

∫ ∞
0

PC
(
r2/χ∗

)
p(r)dr . (5.32)

Joint MUD/ECC Decoding
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Figure 5.5: MSE of coded and uncoded estimated BPSK signals in AWGN.

The next schedule we consider is a joint decoding schedule when the MUD and the

decoding of the ECC are executed jointly in an iterative fashion, see Section 5.3.3. At every

iteration MUD bit estimation (from the repetition), error-correction decoding, and the MUD

interference cancellation can be executed. As we will see it is beneficial not to perform the

error-correction decoding at the initial iterations when the SNR of the system is too low,

since the decoder introduces more errors than it corrects. It is more beneficial, as shown by

the analysis, to engage the decoder once the SNR of a particular packet reaches the level

when the decoder can contribute to the interference cancellation process.

For the data encoded with an (n,B) error-correction code C we can define and numerically

compute the MSE of the post-decoding data v̂ in an AWGN channel with SNR s as

gc(s) = 4E(v − v̂(s))2 , (5.33)

assuming that the coded bits were modulated with BPSK modulation. Figure 5.5 shows the

MSE gc(s) in AWGN for a number of ECCs used in this work, plotted as a function of the

SNR s = P/σ2 per coded bit. The red curve corresponds to the uncoded MSE g(s) (5.28).

One of the error-correction codes we consider is the double-extended systematic Hamming

(128, 119) code used in 400ZR optical communication standard [126]. We shortened it to

(109, 100) so that it contains 100 information bits for the purpose of comparison with the

related work discussed later in Section 5.5. We use a decoding algorithm that takes into

account soft input information (LLRs) of the received sequence and outputs a codeword (hard

decision). The algorithm is the direct error-pattern testing (DEPT) algorithm, presented in
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[127] that uses 64 partial error-patterns. The respective Hamming code MSE is given by the

black curve. In addition, we consider a double error-correcting systematic BCH [113, 114]

code (128, 113) shortened to (115, 100) and decoded with DEPT algorithm using 575 patterns

(blue curve). For both BCH and Hamming codes, for simplicity, we consider hard decision

feedback from the decoder to the MUD as discussed in Section 5.3.3.

Finally, we consider several 5G polar codes including the (1023, 100) code (solid magenta

curve), (511, 100) code (dashed magenta curve), and (181, 100) code (dash-dotted magenta

curve). All codes are rate-adjusted to contain 100 information bits. Each code is using 11

CRC bits and is decoded with a list size of 64.

We can see that for high SNRs stronger and more powerful codes outperform their coun-

terparts in terms of MSE. However, for low SNRs the situation is opposite. Note also that

for low SNRs the MSE of the uncoded transmission is much lower than that of the coded

transmission due to high numbers of errors and the hard decoding output. By s = γswitch we

will denote the SNR point where the uncoded MSE g(s) and the coded MSE gc(s) intersect.

Thus, we can consider an MUD schedule at the receiver that tracks the signal-to-noise

and interference ratio (SINR) r2/χi of every user (packet). For any given user the estimation

phase of every iteration is carried out without the decoding feedback until the SINR of the

data bits reaches a level close to γswitch. After that we engage hard decoding at every iteration

for this user. The switching between the uncoded data estimation and error-correction

decoding, based on the optimal SINR, changes the MSE function to ḡ(s) = min{g(s), gc(s)}
and the resulting characteristic equation to

χ = αaḡf

(
1

χ

)
+ σ2 = αa

∫ ∞
0

r2p(r)ḡ

(
r2

χ

)
dr + σ2 . (5.34)

The largest FP χ∗ of (5.34) predicts convergence of the system to SNR 1/χ∗ where the final

BLER is given by (5.32).

The performance may be improved with use of a soft decoding feedback at the expense of

increased decoding complexity. On the other hand, switching between the LLR-based data

estimation and decoding optimizes the use of the error-correction code, and the availability

of a soft feedback may not provide high additional gains.

Accounting for CS Part Decoding

We can now take into account some of the imperfections of the CS part decoding that

influence the MUD of the MU parts. CS decoders use thresholding to suppress small entries
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of the estimated user activity vector. All users (packets) corresponding to the entries that

fall below that threshold after the final CS decoder iteration are missed.

Such missed users contribute to the noise and interference power throughout the MUD

iterations and we assume, for simplicity, that the MSE of these users equals 1. This leads to

the convergence equation that takes into account the thresholding in the CS part decoding

algorithm

χ = αagf,t

(
1

χ
, θ

)
+

∫ θ

0

r2p(r)dr + σ2, (5.35)

where

gf,t

(
χ−1, θ

)
=

∫ ∞
θ

r2p(r)g

(
r2

χ

)
dr .

The threshold parameter θ can be computed based on the overall probability of miss produced

by the CS decoder, assuming, for simplicity, that all users below the threshold θ are missed

and all the users above are decoded.

The impact of false users is usually more complicated to predict and take into account,

since it is difficult to estimate their power distribution. Simulation results suggest that

moderate numbers of false users do not impact the performance significantly.

5.4.2 The Impact of User Collisions

Consider now the general case when some of the active users may select the same signature

and permutation pairs from the available pool. This selection happens in every time slot

uniformly at random. Let’s assume that in a given time slot ks users select a signature and

permutation pair which is not unique.

In a typical scenario such ks colliding users appear in form of ks/2 user pairs where two

users within a pair select the same signature and permutation. For large numbers of active

users Ka a single triple of users that select the same signature and permutation may occur.

The cases of more that one triple and more than three users involved in a collision have

insignificant probability for our parameter setting. Probability distributions of the number

of colliding users per time slot for Bp = 17 and various Ka are given in Figure 5.6 for Ka

equal to 10 (red circles), 200 (blue squares), 600 (black triangles), 1000 (magenta stars),

and 1400 (green diamonds). The part of a probability distribution for which the users are

involved solely in pair collisions is given by a solid curve. The part of a distribution that

involves a single triple is given by a dashed curve.
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Figure 5.6: Probability distribution of the number of colliding users for Bp = 17 and Ka =
10, 200, 600, 1000, 1400. The solid curves show the probabilities of the numbers of users
involved in pair collisions. The dashed curves are for the case of a single triple collision and
several pair collisions.

Based on the observations related to collision resolution in the MUD process given in

Section 5.3.3 the highest power user in a collision is often decoded. Hence we make an

approximation and assume that we can always decode half of the users involved in collisions.

The ks/2 weaker users become a part of the Gaussian noise and interference. The resulting

characteristic equation for the case of ks users involved in collisions and considering the

thresholding θ related to the number of misses produced by the CS decoding algorithm is

given by

χ =
Ka − ks/2

M
ḡf,t

(
1

χ
, θ

)
+

∫ θ

0

r2p(r)dr +
ks

4M
+ σ2 . (5.36)

Note that the average power of a small user in a collision is 1/2 (and not 1) based on the

order statistic and Rayleigh distribution of the channel fading. The highest FP χ∗(ks) of

(5.36) results in BLER Pbl(ks) computed based on the error-correction code which is used.

Finally the overall PUPE is computed as an expectation EPbl(ks) taken over the distribution

of the numbers of colliding users ks.
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Figure 5.7: The minimum Eb/N0 required to achieve PUPE of 0.1 for uncoded and coded
systems without CS part and joint MUD/ECC decoding (red dashed curves), two-stage
decoding (blue dashed curves), simulated (solid magenta curves). Systems with a CS part,
user collisions, and joint MUD/ECC decoding are shown by the solid black curves.

5.4.3 Analysis Results

Finally we present the numerical results for the performance analysis derived in this section.

We consider a commonly used setup of [12] where the length of the users’ messages equals

Nt = 30000 channel uses and each user transmits a packet that encodes B = 100 information

bits. We set the required level of PUPE to 0.1 as in [20]. Figure 5.7 demonstrates the smallest

Eb/N0 required to achieve PUPE of 0.1 for a variety of systems. Each curve is plotted as

a function of the number of active users Ka. In all cases we consider Bp = 17 for the CS

part. Rayleigh fading channel is considered and it is assumed that the channel coefficients

are known by the MUD receiver, the impacts of misses and false alarms are not considered

on this plot.

The dashed red curves correspond to the analysis computed for the case when the entire

packet of length Nt is dedicated to the payload where Nd = Nt (Np = 0) and the repetition
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factorM ≈ 2Nt/Bd. Joint MUD/ECC decoding schedule with SNR-based decoder activation

is applied. The dashed blue curves correspond to the same parameter setting but with the

two-stage decoding schedule. The markers on the curves indicate uncoded transmission

n = B (pentagrams), as well as encoding by Hamming code (109, 100) (triangles), BCH

(115, 100) (diamonds), polar (180, 100) (crosses), polar (255, 100) (circles), polar (511, 100)

(stars), and polar (1023, 100) (squares). The characteristic knee-shaped turns of the curves

occur at the points where the highest FP of the respective characteristic equation deviates

from the near-optimal χ∗ ≈ σ2 as the number of active users increases. The phase-transition

change occurs, and the interference cancellation is no longer capable to provide near “single-

user” performance. The simulations for the joint MUD/ECC schedule without preamble are

given by the solid magenta curves. In all the above scenarios we do not consider the impact

of the user collisions.

The solid black curves correspond to the case when the length of the CS equals Np = 8000

and it uses 12dB SNR. The repetition factor of the MU part is adjusted to 2(Nt −Np)/Bd

while we still consider the “perfect” decoding of the CS parts. The impact of the user

collisions as per Section 5.4.3 is taken into account for this set of curves.

We note that the joint MUD/ECC schedule provides results that are superior to that of

the two-stage schedule. The difference is especially pronounced for stronger polar codes of

lower rates. For the case of polar codes, the main benefit of coding comes from the integration

of the code into the decoding process where it helps to work at low SNRs. This capability

comes at the price of increased active user load due to the low coding rate, since the overall

packet length is fixed. Therefore, using such codes in a two-stage schedule is inefficient and

the MUD has to combat high active user load at the first decoding stage without any help

of the error-correction decoding. For high-rate codes the difference in performance between

the two-stage and joint MUD schedules is small. For the uncoded case the performances of

both schedules naturally coincide. We also note that the analysis provides a good match to

the simulation results.

Finally, we note that presence of the CS part impacts the results in terms of the overall

SNR that takes into account both CS and MU parts of the packet (black curves). Since the

MU part is shorter, the repetition factor M is reduced and the active user load increases

compared to the zero-length CS part case. Hence, the point of no convergence, when the

system is no longer capable to support the active user load, occurs for a smaller number of
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active users. The user collisions contribute to the increased noise and interference floor of the

system (5.36) and result in a slight concavity of the curves upwards towards higher required

SNRs. This can be seen for the black curves with pentagrams, diamonds, and triangles. This

happens specifically for the 800 − 1500 user range where the impact of collisions becomes

significant. In the next section we will compare the results of the analysis and full numerical

system simulations.

5.5 Numerical Results

To evaluate the system’s performance numerically here we again consider Nt = 30000, B =

100, and a PUPE level of 0.1. The CAMPET algorithm is used to decode the CS part and it

passes the data to the MUD working on the MU parts of the packets. The minimum Eb/N0

of the entire packet is computed as

Eb

N0

=
sdBd + spBp

nR
=
sdBd + spBp

B
, (5.37)

where R = B/n is the ECC rate, sp is the SNR per data bit of the CS part used to detect

permutation and signatures sequences and perform an initial channel estimate. By sd we

denote the SNR per data bit of the MUD part, required to achieve PUPE of 0.1 that combines

the probability of misses in the CS part and the block errors in the MUD part.

Figure 5.8 shows the minimum Eb/N0 required to achieve the desired PUPE as a function

of the number of the active users Ka in the system. We consider Bp = 17 bits in the CS

part of the messages for all the experiments. In order to optimize the performance we use

different SNRs for the CS and MU parts. The SNR of the CS part equals 12dB for Ka ≤ 400,

13dB for Ka = 500, 14dB for Ka = 600, 15dB for Ka ∈ [800, 1000], and 18dB for Ka ≥ 1200.

For the cases when polar codes are used as ECC, the Np of the CS part is set to 8000 for

Ka = 100, 200 and Np = 6500 for Ka ≥ 300. For the case of uncoded transmission and

transmission using (109, 100) shortened Hamming code Np = 8000 is used for all Ka. For

each case the repetition parameter M of the MU part is selected to ensure that the overall

packet length Nt ≈ 30000.

The solid black curve corresponds to the system which is encoded by the (109, 100)

Hamming code. The uncoded system results are shown by the solid blue curve. Note that

both systems can support very high numbers of active users. The dashed blue curve shows

the result based on the analysis of the MUD performance presented in Section 5.4 for the
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Figure 5.8: Minimum required Eb/N0 as a function of Ka for PUPE ≤ 0.1, Nt = 30000 and
7500, B = 100, block Rayleigh fading.

uncoded system. Similarly the dashed black curve shows the analysis result for the Hamming-

coded system. The practical imperfections such as the rate of misses, distribution of user

collisions, and the SNR required by the CS part decoder are considered in the calculation

of the analytical curves. The analysis results are in good agreement with the simulated

performance. Channel estimation error and presence of false users cause some deviation for

higher numbers of users.

The minimum required SNRs of the systems encoded with the (181, 100), (511, 100),

and (1023, 100) polar codes, discussed in Section 5.4, are given by the solid cyan, red, and

green curves, respectively. The anaysis results for the polar-coded systems are plotted by

the dashed curves of the same color.

Note that longer polar codes with lower rates provide lower required SNRs that translate

into the best performance. Since the overall packet length Nt is fixed, large code length n

reduces the repetition factor M that can be used and increases the active user load αa =

Ka/M . Therefore, such codes can only be used for smaller and medium Ka, not exceeding 800

in this case. Higher active user loads can be supported by Hamming-coded transmission and

uncoded transmission and require somewhat higher SNRs. This observation, confirmed by
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the analysis results shown in Figures 5.7 and 5.8, suggests that stronger codes are beneficial

for small numbers of users when the noise presents a more significant impairment than

the multi-user interference. High numbers of users necessitate high-rate codes or uncoded

transmission, that is capable to operate with higher repetition factors and deliver stronger

MUD performance.

For comparison, the performances of the two existing state-of-the-art URA systems are

also shown in Figure 5.8. These are the 4-fold ALOHA system that uses LDPC codes [20]

(pink solid curve with circles) and the treat interference-as-noise successive interference can-

cellation (TIN-SIC) scheme using polar codes [21] (solid purple curve with circles). Both

systems consider block fading Rayleigh channel. However, the channel is allowed to change

on the scale of the sub-slots used by the ALOHA system. In the TIN-SIC algorithm a 14-fold

ALOHA is applied and the ALOHA sub-slot length is n = 512. The theoretic achievablity

bound of the TIN-SIC decoder constructed using random coding arguments is plotted by

the dashed purple curve.

The presented system outperforms the related work in terms of the achievable active

user numbers by more than twice. In addition, for the case when the number of active users

Ka ≥ 300 the system outperforms the state-of-the-art systems in terms of the minimum

required SNR as well. The results for low user numbers are at par with the related works.

We have also considered a system with Nt = 7500 and Np = 2000 to study the flexibility

of the proposed design with respect to the packet length and adaptability to the coherence

block length of the fading channel. The overall number of information bits equals B = 100

while Bp = 15 is considered. The results of the Hamming coded and polar (511, 100) coded

systems are shown by the black and red dotted curves respectively. The Nt = 7500 system

needs approximately 0.2− 1 dB more power than the Nt = 30000 length system to support

the same active user density Ka/Nt. On the other hand, we demonstrate that for Ka ≤ 300

the system with a much smaller block length is sufficient to communicate B = 100 bits of

information in a URA fashion.

5.6 Conclusions

The chapter considers a URA over fading channels and focuses on the approach where each

transmitted packet is equipped with a CS preamble part for the purpose of URA and channel

estimation, and an MU data payload part encoded via permutation and scrambling for
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non-orthogonal multiple-access. We propose a decoding algorithm to decode the CS parts

of the packets that can support high numbers of active users and perform their channel

estimation. We also present an MUD algorithm for the MU parts that allows for iterative

data detection, channel estimation, and flexible error-correction code activation, based on

the current signal-to-noise and interference ratio as predicted by the presented performance

analysis. We demonstrate that the proposed design outperforms state-of-art methods in

terms of both supported multi-user load and the SNR required to guarantee a certain level

of per-user error probability.



Chapter 6

Conclusion and Future Work

In this thesis, we presented two iterative cancellation receivers that operate in two drastically

different communication environments. The underwater channel, characterized by its doubly-

selective nature presents a serious challenge for the channel estimator, especially for the case

of OFDM transmission over a channel with high Doppler spread. The presented Kalman

filter-combiner is able to provide accurate channel estimates for significant levels of Doppler

spreads, while utilizing a relatively simple model. It is shown to provide good performance

in combination with interference-cancellation type iterative receiver. Further investigation

on improving the estimation performance, especially in MIMO setting, is needed to support

higher number of transmitted data streams that resemble higher-order constellations. The

combined analysis of estimation and iterative receiver, through the state evolution would

allow for better parameters optimization for different sea states and Doppler spreads.

The presented channel model for the case of MIMO underwater channels provides a step

forward in terms of model construction based on physical understating of the environment.

The current model is suitable for calm seas, when the curvature of the surface is small, and

additional extensions are necessary to enhance the validity of the model.

The presented URA system attempts to combine the best of unsourced user activity

detection via the compressed sensing preamble, and the strong multi-user detection for the

payload. Extension to MIMO and massive MIMO settings are a very natural direction of the

future work. Additionally, a state evolution study for the presented AMP algorithms would

allow for optimization of preamble parameters, and optimal integration with the MUD part.
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