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“No son molinos, amigo Sancho, que son gigantes.”

(“They are not windmills, Sancho my friend, they are giants.”)

– Don Quixote to his loyal servant, Sancho, before charging into

battle against an array of windmills. (Don Quixote, Miguel de

Cervantes)
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Abstract

Photon-induced electronic excitation of organic chromophores in molecular crystals
has received much attention due to potential applications in organic electronics,
optics, and biomedicine. Theoretical modeling can aid our understanding of the
excitation processes and becomes necessary for high-throughput screening of candi-
date materials for potential applications. However, predicting photoluminescence
(PL) properties in the solid state is complex, as the excitation energies may
shift drastically from their gas-phase counterparts. Also, these properties can be
significantly influenced by subtle changes in the intermolecular interactions caused
by different modes of crystal packing or molecular compositions within the solid-
state material.

This thesis aims to develop a novel computational methodology to achieve accu-
rate and cost-efficient prediction of single-electron excitation energies in molecular
crystals. Our methodology combines periodic-boundary and single-molecule density-
functional theory (DFT) calculations. The periodic-boundary DFT method is
paired with the exchange-hole dipole moment (XDM) dispersion model to accurately
describe the intermolecular interactions within the crystal lattice. An efficient
correction scheme, the virial exciton model, is then employed to obtain the singlet-
triplet energy splitting in the first single-electron excited configuration from gas-
phase molecular calculations, leading to the prediction of the singlet excitation
energies.

Herein, we detail the design, validation, and application of our novel compu-
tational methodology. Initial studies probe the effect of electronic excitations on
London dispersion, and test the reliability of the virial exciton model for charge-
transfer excitations. These studies provide validation for some key assumptions in
the devised methodology. Our methodology is then applied to model a variety of
solid-state PL properties in diverse sets of luminescent molecular crystals. These
investigations encompass topics including piezochromism, polymorphism-dependent
PL, and coformer-dependent PL. Our methodology proves highly successful in
replicating the experimentally-observed PL behaviors of the investigated molecular
crystals, demonstrating excellent reliability and transferability. Valuable insights
into the underlying mechanisms of the investigated solid-state PL properties are
also obtained through our results.

We hope that the research presented herein could lead to accelerated theory-
guided design and screening of industrially valuable solid-state luminescent materi-
als. It may also uniquely contribute to the general understanding of the fundamental
nature of electronic excitations in the solid state.
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Chapter 1

Introduction

1.1 Background

Photon-induced electronic excitations are ubiquitously observed in nature for

molecules both in solutions and in solids. In the solid state, a great variety of light-

absorbing and -emitting organic molecular crystals display interesting luminescent

properties.1 Such luminescent properties form the basis of important applications

in fields such as photovoltaics, optics, and biomedicine. Prominent examples

include crystalline dyes,2,3 fluorescent sensors,4–6 organic light-emitting diodes

(OLEDs),7–9 lasers,10 and biomedical imaging.6,11 Experimental investigation of the

factors controlling luminescent properties in molecular crystals, in particular the

absorption/emission energies and the corresponding spectra, has attracted much

interest. In the field of crystal engineering,12 many strategies are currently under

development to fine-tune13–15 the absorption/emission spectra to obtain desired

luminescent characteristics. Examples of these novel crystal-engineering strategies

include co-crystallization,15–19 exploration of the effects of polymorphism,18,20–24

and exploitation of aggregation to constrain non-emissive pathways among species

featuring Aggregation-Induced Emission (AIE).2 These synthetic strategies lead

to a plethora of novel luminescent properties, such as multi-color absorption or

emission,16,18 thermochromism,22,25 mechanochromism,23,26 and piezochromism27–30

(see Figure 1.1 for an illustrative example).

The variety of both synthetic strategies and the resulting luminescent properties

in molecular crystals indicates that many factors can significantly affect their

electronic excitations. The absorption/emission energies of species often change
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Figure 1.1: Pressure-dependent luminescence (piezochromism) observed for the
boron diketonate crystal by Wang et al.29 Top left: photographs of the crystal under
a) daylight; b) UV radiation. Top right: molecular structure of boron diketonate.
Middle: reversible changes of the emission color during the compression/decompress
cycle, along with the fluorescent microscope image of the single crystal. Bottom:
experimental emission profile of the boron diketonate crystal under varying pressure.
All images were extracted from Ref. 29. Figures reused with permission from Wang
et al., Adv. Mater. 27, 2918-2922 (2015). Copyright 2015 Wiley-VCH.
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significantly going from the gas or solution phase to the solid phase.31,32 This

suggests that excitation processes in molecular crystals could be noticeably different

from their gas-phase counterparts. Within the solid state, different modes of crystal

packing may significantly influence both ground and excited states via intermolec-

ular interactions within the crystal structure12,16,17,33–35 – namely electrostatics,

hydrogen- and halogen-bonding, π-stacking, London dispersion, and other van der

Waals interactions.

Current works in synthesizing molecular crystals with novel luminescence behav-

iors could be regarded as efforts in mapping out the excitation-energy landscape in

the molecular crystal regime of chemical space,36 which refers to the ensemble of

all possible chemical species. The near-infinite number of possible species calls for

the development of viable theoretical approaches to screen the candidate crystalline

materials for potential applications utilizing the predicted luminescent properties,

before substantial material-resources and human efforts are committed to their

syntheses and characterizations. Computations can also offer insights into the

fundamental nature of the electronic excitation processes in the solid state and

promote our understanding of the effect of various intermolecular interactions on

these processes, thereby aiding the explanation of the unconventional luminescent

properties in novel molecular crystals as they appear in synthetic laboratories.

1.2 Contemporary Theoretical Works

Computational modeling of excited-state properties in crystalline organic chro-

mophores is still a very young field. Currently, the QM/MM (quantum me-

chanics/molecular mechanics) embedding approach is the predominant theoretical

method employed. The prediction accuracy, while in many cases satisfactory using

the QM/MM scheme, can be further improved via applying fully QM-based, ab initio

electronic structure theories. However, moving to fully ab initio treatment of the

excitation processes in crystalline organic chromophores faces significant obstacles,

one of which is the rapid scaling of the computational cost of conventional excited-

state methods, which is only exacerbated by the necessity of invoking periodic-

boundary conditions.
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1.2.1 The QM/MM Embedding Approach

In short, QM/MM embedding methods37–39 treat a periodic solid by partitioning the

system into the surroundings and embedded-cluster subsystems. The surroundings,

which comprise the bulk of the periodic solid, are simulated with low-cost, classical

MM methods. The MM methods mostly employ Newtonian force fields with fitted

parameters describing the potential-energy surface of the modeled system with

respect to bond stretching, bond-angle bending, dihedral torsion, long-range van

der Waals interactions (usually approximated by the Lennard-Jones potential), and

electrostatic Coulomb interactions. Examples of widely used MM force fields include

Assisted Model Building with Energy Refinement (AMBER),40,41 the Generalized

AMBER Force Field (GAFF),42 the Universal Force Field (UFF),43 and Chemistry

at HARvard Macromolecular Mechanics (CHARMM).44 The embedded cluster is the

region of particular interest, in which the modeled excitation process takes place.

The embedded cluster is described by QM methods to a much higher accuracy,

with the influence of an interacting potential that represents the surroundings. For

modeling excited states, the QM method is most commonly time-dependent density-

functional theory, TDDFT.45,46

Within the QM/MM framework, the total energy of the entire system is

partitioned as:

Etotal = Ev
QM + EMM + EQM-MM. (1.1)

Ev
QM is the energy of the embedded QM system subject to the external electrostatic

field, v, generated by the MM subsystem; this embedding method is termed

“electrostatic embedding”.47 EMM is the MM energy of the surroundings, which

sums over all bonded and non-bonded interactions between centers exclusively

within the MM surroundings. The final term, EQM-MM, is the interaction energy

between the QM and the MM subsystems. Among these three terms, EQM-MM is

the most intricate to model as it suffers from the inconsistency between QM and

MM methods.

The QM-MM interactions are usually expressed as the sum of the electrostatic

and van der Waals interactions between the centers within the QM subsystem and

the centers within the MM subsystem. This simplified QM-MM interaction term
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can be expressed by the QM-MM Hamiltonian, ĤQM-MM:

ĤQM-MM = −
∑︂
iM

qM
riM

+
∑︂
αM

ZαqM
RαM

+
∑︂
αM

[︃
AαM

R12
αM

− BαM

R6
αM

]︃
, (1.2)

where i and α are the indices of the electrons and the nuclei within the QM

subsystem, respectively, and M is the index of the atoms within the MM subsystem.

These indices imply that electrons and nuclei are treated as separate entities within

the QM subsystem, while the MM subsystem is treated only as a collection of

atoms. Furthermore, riM refers to the electron-atom distance between QM-electron

i and MM-atom M , whereas RαM is the nucleus-atom distance between QM-nucleus

α and MM-atom M . The first two terms in eq. 1.2 represent the electrostatic

interaction between the QM and the MM subsystems, where the atoms and the

nuclei in the MM and QM subsystems are assigned effective point charges, qM

and Zα, respectively. Since the first term involves the interaction between the

QM electrons and MM nuclei, it is incorporated into the QM Hamiltonian as the

electrostatic embedding. The third term represents the QM-MM van der Waals

interaction which is approximated by the “6-12”-type Lennard-Jones potential with

fitted parameters, AαM and BαM , for each QM-nucleus/MM-atom pair, typically

assigned based on force-field atom types.

The definition of the boundary between the QM and the MM subsystems is

rather arbitrary and is often chosen via a trail-and-error approach. An issue arises

if the same large molecule (such as a protein) is divided by the QM-MM boundary,

as this involves cutting covalent bonds. In this case, a common solution is to attach

a “link atom”,47 usually an H atom or a pseudo-atom parametrized to mimic the

absent linking group,48,49 to the MM end of the cut bond and incorporate it into the

QM treatment. The link atom is set to have no interaction with the MM subsystem.

An alternative formulation of the QM/MM scheme is the “Our own N-layered

Integrated molecular Orbital molecular Mechanics” (ONIOM) method developed by

Morokuma et al. during the mid-1990s.50,51 The ONIOM method is a subtractive

scheme, compared to the additive QM/MM formulation of eq. 1.1. The ONIOM

energy is

EONIOM(QM:MM) = Emodel
QM + Ereal

MM − Emodel
MM , (1.3)
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where Emodel
QM and Emodel

MM are respectively the QM and MM energies of the QM

(“model”) subsystem, and Ereal
MM is the MM energy of the full (“real”) system.

Double-counting of interactions within the QM subsystem is offset by subtracting

the energy resulting from an MM calculation on the same subsystem. Note that in

the ONIOM scheme, the low-level method is not restricted to MM – a low-level QM

method (QM′), such as Hartree-Fock (HF) theory, can be used instead.

An extension of ONIOM divides the system into three subsystems:

EONIOM(QM1:QM2:MM) = Emodel
QM1 + Eintermediate

QM2 − Emodel
QM2 + Ereal

MM − Eintermediate
MM , (1.4)

where “intermediate” denotes an intermediate subsystem that is smaller than the

real system and contains the model subsystem. The central model subsystem is

treated with a high-level QM method (denoted QM1), the intermediate subsystem

with a low-level QM method (QM2), and the real system with MM. The subtractive

terms remove the double-counting of both the model and the intermediate subsys-

tems. In principle, the ONIOM method can be extended to an arbitrary N-layer,

although it has yet to be widely implemented for N = 4 and beyond.52

The QM/MM methodology allows for treatment of systems whose sizes range

from over several hundred to several thousand atoms, making it highly popular

in the simulation of large-scale biochemical systems, such as complex protein

structures.53,54 It is also the currently predominant method for modeling localized

excitations in molecular crystals. However, there exist major shortcomings within

the QM/MM methodology. One of them is the absence of Pauli repulsion55 between

QM and MM subsystems, as the non-bonded QM-MM interactions are treated

classically using the Lennard-Jones potential. This issue becomes pronounced

in regions near the QM-MM boundary, where the lack of Pauli repulsion causes

unphysical penetration of the QM-electron density into the MM subsystem, which

can lead to significant over-binding between QM and MM atoms.55 Another problem

results when solvated-cluster models with extensive H-bonding networks are broken

by the QM/MM partitioning. Exclusion of H-bond donors lying outside the model

system from the QM calculation can result in artificial accumulation of electron

density at the boundary.56 In addition, the accuracy of the ONIOM scheme is
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highly dependent on error cancellation between the model-system QM and the real-

system MM calculations, which typically requires the trial-and-error testing of many

combinations of high/low-level methods on a smaller sample system.52

1.2.2 Applications of QM/MM to Crystalline-Phase Exci-
tations

A large portion of the contemporary literature applying QM/MM to solid-state

electronic excitations focuses on modeling systems that display the Aggregation-

Induced Emission (AIE) effect,2 which was first conceptualized by Tang et al.

in 2001.57 A species displays AIE when its emission is enhanced or induced by

increasing degrees of aggregation (e.g. going from a dilute solution to solvated

clusters, and eventually to a molecular crystal). The AIE effect contradicts the

conventional Aggregation-Caused Quenching (ACQ) effect.58 ACQ is typically

observed in systems featuring strong π-π stacking interactions in its aggregated

forms,59 which are prohibited in typical AIE systems by high steric hindrance. The

working mechanism of AIE is understood mainly as restrictions on two non-radiative

relaxation pathways induced by aggregation: restriction of intramolecular rotations

(RIR)60 and restriction of intramolecular vibrations (RIV),61 which are collectively

termed restriction of intramolecular motions (RIM).

In one of the earliest computational studies of the exited-state properties of

organic molecular crystals, Li et al.62 applied the ONIOM(TDDFT:UFF) scheme

to model the ground and excited states of the AIE-active diphenyldibenzofulvene

(DPDBF) crystal. Later, Shuai et al.63–66 employed the QM/MM (TDDFT/GAFF)

methodology to investigate the AIE mechanism in a series of AIE-active crystals.

Their results showed good agreement with the experimentally-observed absorp-

tion/emission spectra for the investigated systems. By analyzing the calculated

shifts in the geometry and energetics of the excited state going from the gas/solution

phase to the crystalline phase, they confirmed the role of RIR in affording AIE

activity. In a joint experimental/computational study, Bu et al.67 employed an

ONIOM(TDDFT:MM) scheme to model the excited-state crystal structure of an

unconventional rotor-less coumarin derivative that is AIE-active. Aided by the

ONIOM results, they demonstrated that restriction of out-of-plane vibration, rather

than RIR, caused the observed AIE activity in their coumarin derivative. Other
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works by Wang et al.68 and Peng et al.69 also used a similar ONIOM framework to

supplement the RIM understanding of the AIE phenomenon. They revealed that

restriction of access to the charge-transfer intermediate state, and to the conical

intersection between the potential-energy surfaces of the ground and excited states,

could also be part of the AIE mechanism. More recent works on the AIE mechanism

employing QM/MM include those of Naito et al.70 and Presti et al.71

Another crystalline-phase excitation phenomenon that has drawn theoretical

attention recently is the excited-state intramolecular proton transfer (ESIPT)

process in molecular crystals.72 ESIPT refers to a photochemical process where

the excited molecule undergoes tautomerization via rapid (picosecond timescale)

proton transfer(s) between its enol (E∗) and keto (K∗) forms, before decaying

back to the ground state via either radiative or non-radiative pathways. ESIPT

requires the presence of an intramolecular H-bond between the proton donor and

the proton acceptor groups.73 Chromophores that undergo ESIPT typically feature

dual emission (from both E∗ and K∗), large Stokes shifts, and high sensitivity to the

crystalline environment.74

Presti et al.75,76 applied their computational protocol (also used in Ref. 71 for

studying the AIE mechanism) to model the ESIPT process in molecular crystals,

using salicylidene aniline (SA) as a case study. Their proposed protocol involves

three steps: (i) optimization of the crystal structure using a dispersion-corrected

DFT method adapted to periodic-system calculations;77 (ii) identification and

isolation of the model cluster within the crystal structure; and (iii) applying the

ONIOM(TDDFT:HF) scheme to calculate the vertical excitation energy of the

model cluster, where the crystalline environment is represented by point charges

in the low-level region.78 They were able to qualitatively reproduce the absorption

and emission spectra of the trans- and cis- forms of the K∗ of SA, although

quantitatively their results were strongly dependent on the choice of exchange-

correlation functional used in the ONIOM scheme.

The same group later modeled the excitation and emission in the 1,8-dihydroxy-

2-naphthaldehyde (DHNA) crystal,79 which has been experimentally shown80 to

undergo excited-state intramolecular double proton transfer (ESIDPT). This is

a special case of ESIPT, where two excited-state proton transfers happen in
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succession among three adjacent enol/keto positions. The authors combined

the ONIOM(TDDFT:HF) scheme with an external point-charge background that

was calculated self-consistently with respect to the charge density of the excited

molecule. They found that the inclusion of a self-consistent point-charge background

significantly improved the prediction of the emission energy shifts of DHNA from

the solution phase to the crystalline phase. Their model was able to capture the

different levels of destabilization of the two excited-state keto forms exerted by the

crystalline environment, which explained the solution-to-crystal shift in the relative

intensities of the two emission peaks of DHNA.

Recently, Dommett et al.81 investigated two molecular crystals based on

2′-hydroxychalcone, both featuring ESIPT and having drastically different AIE

activities (one is AIE-active, the other is non-emissive in both solution and

crystalline phases). The authors modeled the excited states of the two crystals using

the ONIOM(TDDFT:AMBER) scheme. They modeled multiple decay pathways

of E∗ and K∗ in both crystals, including access to the minimum-energy conical

intersection (MECI)82 (a common non-radiative pathway) between the excited and

ground states of the keto form in the ESIPT process. They concluded that the

differing AIE activities of the two crystals result from the interplay between multiple

intermolecular and intramolecular factors. These factors include differing levels of

stabilization of E∗, K∗, and the keto-form MECI by the electrostatic potential of

the crystalline environment, which are crucial in determining the accessibility of the

keto-form MECI in both crystals.

1.2.3 TDDFT Applied under Periodic-Boundary Condi-
tions

While still faced with many challenges mainly associated with the exceedingly high

computational cost, applying full TDDFT to a periodic solid is not impossible.

However, efforts in this direction are still relatively scarce, as the implementation

of full TDDFT under periodic-boundary conditions is currently at a largely

experimental stage. Among the contemporary literature, we note the recent work

by Arhangelskis et al.,83 where they devised a periodic-boundary TDDFT algorithm

based on Hutter’s84 re-formulation of linear-response TDDFT (LR-TDDFT, for

more details see Sec. 2.2.2). Hutter’s formalism essentially adapted the LR-TDDFT
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equations to a planewave basis, which allowed for higher computational efficiency in

applications to periodic solid systems.84 The periodic-boundary TDDFT algorithm

of Arhangelskis et al. extended Hutter’s original formulation, which assumed

only the special Γ point, to any arbitrary k-point in momentum space83 and was

implemented in the CASTEP85 planewave-DFT code. Limited by the prohibitive

computational cost of sampling more than one k-point during the periodic-boundary

TDDFT excited-state calculation, the authors resorted to Baldereschi’s86 idea of a

mean-value k-point, where an optimum single k-point is chosen for each crystal

lattice to represent an average of the whole Brillouin zone.87

Using their planewave TDDFT method, Arhangelskis et al. computationally

predicted83 the emission spectra of a set of 4 cocrystals formed between 1,4-

bis(2-cyanostyryl)benzene and 4 different halogenated benezenes (see Figure 1.2),

previously shown to demonstrate coformer-dependent emission.16 Their approach

Figure 1.2: Chemical structure of 1,4-bis(2-cyanostyryl)benzene (A) and its four
coformers (1 to 4); images of the corresponding fluorescent cocrystals16 are shown
below. Image extracted from Ref. 83. Figure reused with permission from
Arhangelskis et al., J. Phys. Chem. A 122, 7514-7521 (2018). Copyright 2018
American Institute of Physics.

employed a combination of DFT/TDDFT geometry optimizations (using the

PBE88 density functional and Grimme’s D2 dispersion correction89) and single-

point TDDFT excited-state calculations (using the B3LYP90 density functional).

Arhangelskis et al. were able to reproduce the experimental emission spectra of
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these cocrystals with good accuracy, obtaining a mean absolute error of roughly

0.2 eV in the calculated emission maxima. Furthermore, the authors offered a

theoretical rationalization of the red-shift in the emission color of A1 from the

other 3 cocrystals from analysis of the crystal geometries. The authors theorized

that species A1’s monoclinic lattice allowed for significant π − π stacking between

A and coformer 1, which was absent in the triclinic lattices of cocrystals A2, A3,

and A4, leading to A1’s emission red-shift.

Ref. 83 is a pioneering effort in the implementation of planewave TDDFT and its

application to calculating the excitation energies of periodic solids, although more

work is ahead towards truly mature planewave TDDFT for solid-state applications.

In Ref. 83, the authors were limited by the insurmountably high cost of using a

consistent hybrid density functional for both the TDDFT energy calculations and

geometric optimization of the excited states. This is notwithstanding the fact that

the computational cost of conducting single-point planewave TDDFT calculations

using a hybrid density functional is already too high for many experimentally-

oriented researchers to afford. Additionally, Ref. 83’s periodic-boundary TDDFT

calculations were confined to using a single mean-value k-point, also due to the

high cost of including more than one k-point. This mean-value k-point needs to

be determined on a case-by-case basis, which could be a quite involved process,83

thereby potentially hampering the method’s general applicability.

Prior to the implementation of their periodic-boundary TDDFT algorithm,

Arhangelskis et al. studied the colorations of fluorescein crystals using periodic-

boundary band-structure calculations (for more details, see Sec. 2.4.6) in a joint

experimental-computational study.91 Although the calculated crystalline band-gap

values were significantly underestimated relative to the experimental measurements

of the fluorescence energies, good qualitative agreement in the relative rankings of

the quinoid, zwitterionic and lactoid forms of the fluorescein crystal (see Figure

1.3) was obtained. Thus, the calculations were able to explain the differences in

coloration between these 3 tautomeric crystalline forms. In addition, band-structure

calculations were conducted on various cocrystals formed between the lactoid fluores-

cein and acridine, phenanthridine, and pyrazine.92 The results of these calculations

demonstrated that the presence of a coformer could potentially modify the band
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Figure 1.3: The 3 tautomeric forms of fluorescein:91 quinoid (flsQ); zwitterionic
(flsZ); and lactoid (flsL).

structure of the cocrystal, thus altering its optical and electronic properties.91

Periodic-boundary band-structure calculations were similarly employed in previous

work by Sander et al.93 Combined with analysis of the total density of states,94

the authors were able to use the calculated band structures to rationalize the red

coloration of the cocrystal of acetaminophen (APAP) and 2,4-pyridinedicarboxylic

acid (PDA), while the pristine crystals of APAP and PDA are both colorless.

1.3 Thesis Goals

In this work, we devise, validate, and implement a novel approach for fast and

accurate modeling of the first singlet excitation energy in crystalline organic

chromophores. We intend to achieve high prediction accuracy, improving upon

the level of the currently predominant QM/MM embedding scheme, while reliably

handling difficult cases such as excitations with significant charge-transfer character.

Additionally, we design our scheme to maintain a moderate computational cost and

we will rely on well-established computational codes for implementation simplicity.

In order to achieve these goals, the following issues must be properly addressed:

• The periodic crystalline environment could cause a significant shift in the

nature of both the ground and excited states of the chromophore with respect
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to the gas phase. Therefore the crystalline bulk needs to be reliably modeled,

and the effect of the crystalline surroundings on the ground and excited states

of the chromophore accurately quantified.

• Intermolecular interactions, in particular π − π interactions, halogen- and

hydrogen-bonding, could conceivably have a non-trivial impact on the excited

states of the crystalline organic chromophore. They must be properly

described.

• One major failure of LR-TDDFT is the modeling of charge-transfer (CT)

excitations,95,96 which are ubiquitous in organic chromophores. Conven-

tional exchange-correlation functionals massively underestimate CT excitation

energies. Using range-separated hybrid (RSH) functionals alleviates this

problem to some extent,97,98 but does not offer a cure. In addition, the

RSH approach is currently only practical in gas-phase calculations due to the

high cost associated with computing the HF exchange energy in an extended

periodic system. Going beyond the AA and the LR formalism may further

improve the accuracy, although this also comes with a drastic increase in

computational cost and is still scantily explored even for gas-phase molecules.

It is our intention to depart from the time-dependent theories altogether,

using conventional ground-state DFT to afford an efficient, yet still ab initio,

treatment of the problem.

• Conventional ground-state DFT is known to yield adequate predictions of the

ground-state and first triplet-state energies (E0 and ET, respectively) and,

therefore, of the triplet excitation energy (E0T = ET −E0) in molecules. This

is due to the single-determinant nature of these states.99 However, modeling of

singlet excitation energies (E0S), which is of primary interest and importance

in the absorption/emission spectra of organic chromophores, is problematic

for DFT due to their inherently multi-determinantal nature. While modeling

of E0T is a reliable starting point, the key problem remains in correcting E0T

towards E0S. Becke recently showed that such a correction can be efficiently

achieved and provided a working scheme.99,100

• Under the assumption that both the triplet and the singlet excited states of the
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chromophore are influenced very similarly by the intermolecular interactions

in the crystalline surroundings, a direct additive correction from E0T towards

E0S would seem viable. We are hopeful that Becke’s singlet-excitation scheme

will also yield accurate results for CT excitations in organic chromophores,

although this needs to be tested for a selection of systems known to pose the

CT-excitation problem for TDDFT.

• The devised methodology is intended to treat the first singlet transition

energies in both the absorption and emission spectra. For absorption, the

vertical excitation energy is calculated using the same geometry for both the

ground and excited states, as absorption takes place almost instantly as the

excited moiety interacts with the incident photon with a matching quantum

of energy. For emission, the situation is less straightforward because of the

significant elapse of time (compared to absorption), which allows the excited

moiety to reorganize and relax to a metastable intermediate state, typically

via some non-radiative pathway, before releasing a photon and returning to

the ground state. This argument is commonly used as an explanation for the

Stokes shift ubiquitously observed in the photoluminescence (PL) spectra of

both solutions and solids. The relaxation of the excited-state geometry needs

to be taken into account in the modeling of emission energies.

• Comparison with the experimentally observed absorption/emission spectra of

the investigated species needs to be made to assess the overall reliability of

the proposed approach. Such a comparison should also be instrumental in

uncovering any unexpected issues with the proposed modeling methodology.

For example, we are neglecting thermal effects in our currently-proposed

scheme (all calculations are conducted at 0 K), which might potentially affect

our predictions of the first singlet excitation energies. It is our hope that

analysis of the discrepancies between our theoretical predictions of transition

energies and the experimental data will serve to provide valuable insights

into the fundamental nature of the electronic processes in crystalline organic

chromophores.
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1.4 Layout of the Remaining Chapters

The following chapters are dedicated to our own efforts towards the computational

modeling of electronic excitations in the solid state, specifically to the prediction of

absorption/emission energies in crystalline organic chromophores. Chapter 2 aims to

provide the reader a theoretical preparation for the computational methods involved

in this thesis. Theoretical topics including density-functional theory (DFT), time-

dependent DFT, the virial exciton model,99,100 periodic-boundary DFT, practical

considerations for solid-state calculations using Quantum ESPRESSO,101 and the

exchange-hole dipole moment (XDM) dispersion model,102–104 are discussed in

necessary detail. In Chapter 3, we present a preliminary study that assesses the

effect of electronic excitations on London dispersion in molecular and crystalline

systems. In Chapter 4, we benchmark the virial exciton model, which plays an

integral role in our proposed computational methodology, for electronic excitations

featuring significant charge transfer. Such a benchmark is important as charge-

transfer excitations post significant challenges for conventional TDDFT methods.

In Chapter 5, we offer a detailed description of the design of our computational

methodology, and present the results from exploratory calculations as a proof

of concept. Chapters 6 and 7 describe the full application of our methodology

to modeling the PL properties of a variety of molecular crystals. We show the

success of our approach in efficiently and accurately reproducing diverse novel solid-

state PL phenomena observed in experiments, including piezochromism (Chapter

6), polymorph-dependent PL in polymorphic crystals (Chapter 7), and coformer-

dependent PL in cocrystals (Chapter 7). Finally, in Chapter 8, we offer an overall

conclusion to this work and provide the reader with an outlook towards future

research directions.
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Chapter 2

Theoretical Preparation

It is important to note that modeling excited-state properties in solid-state organic

chromophores is significantly different than in inorganic solid-state systems, such as

inorganic semiconductors. This originates from the fact that solid-state organic

chromophores owe their luminescent properties to excitations of a much more

localized nature (i.e. short-range, within the same molecule or only between adjacent

molecules), as opposed to the delocalized excitations (i.e. over large distances

within the material) typically observed in inorganic solids. In the former case,

accurately modeling the intermolecular interactions, especially in the region where

the excitation is localized, becomes very important. Computational modeling of

the excited-state properties of inorganic solid-state materials (e.g. the band gap and

the dielectric constant) has a rich history in physics and material science, although

this discipline is entirely beyond the scope of this present work. Here we concern

ourselves exclusively with the computational modeling of the absorption/emission

spectra of organic chromophores in the crystalline phase.

2.1 Density-Functional Theory

Density-functional theory (DFT) has enjoyed enormous success in physics and

material sciences since Hohenberg and Kohn’s proof in 1964,105 which established

its formal foundation, and the formulation of Kohn-Sham theory,106 which provided

it with a practical working mechanism. Between 1980s and 1990s, with the

popularization of generalized-gradient approximations (GGAs)88,107,108 and hybrid

density functionals,90,109 DFT further expanded into chemistry, biochemistry, and
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many other fields. DFT has become the modeling method of choice in the

aforementioned fields as it frequently combines predictive accuracy and modest

computational cost in modeling the ground-state properties of molecular systems.

In an effort to briefly sketch out the basic principles of DFT, we start

from the general time-independent Hamiltonian within the Born-Oppenheimer

approximation for an N-electron system:

Ĥ = −1

2

N∑︂
i=1

∇2
i +

N∑︂
i<j

1

|ri − rj|
+
∑︂
i

vext(ri). (2.1)

Here −1
2
∇2

i is the kinetic energy operator for the ith electron, ri and rj are the

respective position vectors for the ith and the jth electrons, 1
|ri−rj | is the repulsive

electron-electron interaction operator, and vext(ri) is the external potential operator,

which includes the Coulomb attraction between the ith electron and all nuclei in

the system, as well as any potential caused by an externally applied electric field.

By iteratively solving the N-electron Schrödinger equation,

Ĥψ(r1, r2, ...rN , σ1, σ2, ...σN) = Eψ(r1, r2, ...rN , σ1, σ2, ...σN), (2.2)

where ri and σi are respectively the positional and spin coordinates of electron

i, we can obtain the N-electron wavefunction ψ(r1, r2, ...rN , σ1, σ2, ...σN) and the

ground-state energy, E. This can be done using a hierarchy of wavefunction-

based methods (i.e. Hartree-Fock (HF) theory, Møller-Plesset second-order (MP2)

perturbation theory, coupled-cluster (CC) methods and configuration interaction

(CI)). Unfortunately, doing so rapidly becomes infeasible beyond the smallest

systems due to the increasingly harsh scaling of computational cost (e.g. N5 to

N7 for CC methods, and N ! for full CI, where N is the number of electrons in the

system). Instead, ground-state DFT centers itself around the electron density ρ(r):

ρ(r) = N

∫︂
dr2...drNdσ1dσ2...dσN |ψ(r1, r2, ...rN , σ1, σ2, ...σN)|2, (2.3)

which only relies on 3 spatial coordinates, to obtain ground-state energies of the

system. In principle, relying only on ρ(r) affords DFT a much more tolerable scaling

factor on the order of N3, making systems of chemically relevant sizes (several tens
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to hundreds of atoms and beyond) approachable.

The Hohenberg-Kohn (HK) theorem105 is an existential proof that established

a one-to-one mapping between the external potential and the ground-state electron

density:

vext(r) ↔ ρ(r). (2.4)

Since vext(r) uniquely defines the time-independent Hamiltonian (eq. 2.1), it also

uniquely determines the eigenfunctions and eigenvalues of eq. 2.2. This leads

to a unique functional relationship between ψ(r1, r2, ...rN , σ1, σ2, ...σN) and ρ(r),

which implies that the expectation values of all ground-state observables ⟨Ô⟩ are

functionals of ρ(r): ⟨Ô⟩ = ⟨Ô⟩[ρ(r)]. In particular, we have the ground-state energy

E as E[ρ(r)]. The HK theorem also states that the true ground-state ρ(r) is found

when its corresponding energy is variationally minimized.

Following the HK theorem, the Kohn-Sham (KS) theorem outlines a practical

scheme for DFT calculations. The KS theorem maps the true, interacting N-electron

system to a fictitious, non-interacting system under an effective KS potential vKS(r).

The non-interacting KS system is described by a set of N one-electron Schrödinger

equations called the KS equations:[︃
−1

2
∇2

i + vKS(r)

]︃
ϕi(r) = ϵiϕi(r), (2.5)

where ϕi(r) is a one-particle KS orbital (here always assumed to be real) of the

ith electron, and ϵi is its corresponding KS-orbital energy. The non-interacting KS

system retains, by definition, the identical ground-state ρ(r) of the true, interacting

system. For a spin-neutral system, we have:

ρ(r) = 2

N/2∑︂
i=1

|ϕi(r)|2. (2.6)

vKS(r) can be partitioned as follows:

vKS[ρ(r)] = vext(r) +

∫︂
dr′ ρ(r′)

|r − r′|
+ vXC[ρ(r)], (2.7)

where the second term on the right side is the Hartree potential representing
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the classical Coulomb repulsion between electrons. vXC is the so-called exchange-

correlation potential whose exact form is not known.

A perhaps better-known partition is that of the total energy (again assuming a

spin-neutral system):

E = 2

N/2∑︂
i

(−1

2
)

∫︂
drϕi(r)∇2

iϕi(r)+

∫︂
drvextρ(r)+

1

2

∫︂∫︂
drdr′ρ(r)ρ(r′)

|r − r′|
+EXC[ρ(r)],

(2.8)

with the first to the third terms on the left being the KS kinetic, external, and

electron-electron Coulomb interaction energies, respectively. The final term is

the exchange-correlation energy. It includes all real-system quantum-mechanical

contributions to the electron-electron interactions that are not contained in the first

three terms on the left side of eq. 2.8. vXC[ρ(r)] is the functional derivative of

EXC[ρ(r)]:

vXC[ρ(r)] =
δEXC[ρ(r)]

δρ(r)
. (2.9)

Consequently, the exact form of EXC is also not known. In practice, approximations

are made directly to EXC rather than vXC.

With some approximation to EXC[ρ(r)], an operating mechanism emerges for a

KS-DFT calculation. One starts with a set of basis functions to constitute an initial

guess (ansatz ) for the KS spin-orbitals. For finite molecular systems, the ansatz

is most often constructed as linear combinations of Gaussian-type orbitals such as

the “split-valence” basis sets by Pople et al. and the “correlation-consistent” basis

sets by Dunning et al.110,111 For infinitely-extended systems such as periodic solids,

planewave basis sets are used instead, and this will be discussed in greater detail in

Section 2.5. From the initial KS spin-orbitals, one can also construct an initial spin-

density, and consequentially the initial KS potential, via eqs. 2.6 and 2.7. Solving

eq. 2.5 yields improved KS spin-orbitals and an improved spin-density, which is put

back into eq. 2.7 to complete the self-consistent field (SCF) loop. Such an SCF loop

is repeated until the resulting total energy (from eq. 2.8) variationally converges

under a preset threshold.

The development of DFT methods has been centered around obtaining increas-

ingly better approximations to EXC[ρ(r)]. Many flavors112 of density-functional
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approximations (DFAs) to EXC[ρ(r)] have been developed since the original local-

density approximation (LDA) proposed by Kohn and Sham based on the uniform

electron gas.106 Of great importance in the modern applications of DFT are

the so-called generalized gradient approximations (GGAs)88,107,108 and hybrid

functionals.90,109

In GGAs, EXC is dependent on both the local electron density ρ(r) and its

gradient ∇ρ(r):

EGGA
XC = EXC[ρ(r),∇ρ(r)]. (2.10)

The ∇ρ(r) dependence incorporates density information in the immediately adjacent

areas of any reference point r. The “semi-local” GGA functionals improve signifi-

cantly upon LDA, ushering in a new era of greatly expanded applicability of DFT.

The most well-known GGA exchange-correlation functional is the PBE functional

devised by Perdew, Burke and Ernzerhof in 1996,88 which has found widespread use,

especially in the solid-state physics and material sciences communities (although

Becke arrived at the B86a functional113 a decade earlier with essentially the same

mathematical form). The B86b107 functional, which is employed in this work, is

a modification of the B86a113 (PBE) functional form. It has a large-gradient limit

(“large” in the sense of Eq. 2.12 below) that is optimum for weakly bound van der

Waals systems. The exchange part (which dominates EXC) of the B86b functional

is written as:

EB86b
X = −

∑︂
σ

∫︂
drcXρ

4/3
σ

[︃
1 +

β

cX

χ2
σ

(1 + γχ2
σ)4/5

]︃
, (2.11)

where χσ is the reduced spin-density gradient:

χσ =
|∇ρσ|
ρ
4/3
σ

, (2.12)

and cX = 3
2
( 3
4π

)1/3. The two parameters β and γ are fit to atomic data, and have

the respective values of 0.00375 and 0.007.

To further improve the accuracy of DFT, one must go beyond the GGA

framework. In pure GGAs, the exchange energy (which is an inherently non-local

effect originating from the antisymmetry of the electronic wavefunction) is formally
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inexact. Meanwhile, the exchange energy is treated in its exact form in HF theory:

Eexact
X = −1

2

∑︂
σ

∑︂
ij

∫︂∫︂
dr1dr2

ϕiσ(r1)ϕjσ(r1)ϕiσ(r2)ϕjσ(r2)

|r1 − r2|
, (2.13)

where the orbitals have been supplemented with the spin indices σ, signifying that

the exchange effect only exists between same-spin electrons. Hybrid functionals

improve their description of the exchange energy by incorporating a certain portion

of exact (HF) exchange:

Ehybrid
XC = aXE

exact
X + (1 − aX)EGGA

X + EGGA
C , (2.14)

where aX is an exact-exchange mixing percentage which ranges from 0 to 100%

(typically aX lies between 20% and 50%); EGGA
X and EGGA

C are the exchange and

correlation parts from the EXC of the base GGA functional, respectively. The

hybrid functionals improve significantly upon GGAs especially in modeling the

thermochemistry of molecular systems, leading to a literal explosion of applications

of computational chemistry since Becke’s seminal work in 1993.90 The most famed

of all hybrid functionals, B3LYP, features 20% of HF exchange mixed with B88

exchange108 and Lee-Yang-Parr (LYP) correlation,114 with three semi-empirical

parameters from Ref. 90.

2.2 Time-Dependent Density-Functional Theory

The time-dependent (TD) variant of DFT, namely TDDFT, was invented two

decades after the groundbreaking works of Hohenberg, Kohn, and Sham for ground-

state systems for treating processes involving electronic excitations. TDDFT has

since become the most popular theoretical tool for modeling excited-state properties

in systems of chemical interest.

2.2.1 The Runge-Gross Theorem and Kohn-Sham TDDFT

The formal foundation of TDDFT is the Runge-Gross (RG) theorem.45 It states

that, for a system evolving from a fixed initial state, ψ0, under a TD external

potential, vext(r, t), there exists a unique, one-to-one mapping between vext(r, t)
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and the TD electron density ρ(r, t):

ψ0 : vext(r, t) ↔ ρ(r, t). (2.15)

In the same spirit as the time-independent case, vext(r, t) uniquely defines the TD

Hamiltonian for an N-electron system, which determines the solutions of the TD

Schrödinger equation. The RG theorem can be regarded as the TD analogy of the

ground-state Hohenberg-Kohn (HK) theorem.

In the same RG paper, the TD-KS formalism is also prescribed. It maps the true,

interacting N-electron system to a fictitious, non-interacting system under the TD-

KS potential vKS(r, t), which yields the same TD electron density as the interacting

system. The non-interacting system is described by a set of one-particle TD-KS

equations: [︃
−1

2
∇2

i + vKS(r, t)

]︃
ϕi(r, t) = i

∂ϕi(r, t)

∂t
, (2.16)

where ϕi(r, t) are the set of one-particle TD-KS orbitals of the non-interacting

system that recover the TD electron density of the interacting system:

ρ(r, t) =
N∑︂
i=1

|ϕi(r, t)|2. (2.17)

The RG theorem equally applies to the non-interacting KS system, by which we can

state that the non-interacting TD-KS potential is a unique functional of both the

initial state and the electron density. It can be written as vKS[ρ,Φ0](r, t), which

can be partitioned as:

vKS[ρ,Φ0](r, t) = vext(r, t) +

∫︂
dr′ ρ(r′, t)

|r − r′|
+ vXC[ρ,Φ0, ψ0](r, t). (2.18)

The second term on the right is the classical Hartree potential. The final term,

vXC[ρ,Φ0, ψ0](r, t), is the exchange-correlation potential, where Φ0 and ψ0 are

respectively the initial KS and real states. In its original formulation, vXC is

dependent on the entire history of the density and the initial states of both the

KS and the interacting systems. The TD version of vXC is much more complex than

its ground-state counterpart. Thus, in practice, vXC(r, t) is the subject of significant
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simplification and approximation.

2.2.2 Linear-Response TDDFT

At present, the vast majority of TDDFT implementations are in the form of linear-

response TDDFT (LR-TDDFT). This approach is used to extract the excitation

frequencies and the oscillator strengths (whose magnitudes are proportional to the

intensity of their corresponding excitations) in the optical absorption spectra. The

use of LR-TDDFT is so predominant that for many it has become synonymous with

TDDFT. LR-TDDFT treats the time evolution of the system as a small perturbation

to the ground-state: δvext(r, t). The density response to δvext(r, t) can then be

expressed in a power series:

ρ(r, t) = ρ0(r) + δρ(r, t) + ..., t > t0, (2.19)

where ρ0(r) is the initial ground-state density. LR-TDDFT truncates eq. 2.19 to

the first-order (linear) term, i.e. ρ(r, t) = ρ0(r) + δρ(r, t) for t > t0 (t0 being the

initial time of the TD perturbation).

In line with the more general linear response theory of the ground state to a

weak external optical field (say an incoming long-wavelength photon along the z-

direction), δvext = −Aeiωtz, we have the linear density response:

δρ(r, t) =

∫︂∫︂
dt′dr′χ(r, r′; t− t′)δvext(r

′, t′). (2.20)

Similarly, for the non-interacting KS system:

δρ(r, t) =

∫︂∫︂
dt′dr′χKS(r, r′; t− t′)δvKS(r′, t′), (2.21)

where χ(r, r′; t− t′) and χKS(r, r′; t− t′) are the response functions for the true and

KS systems, respectively.

Starting from the first-order TD perturbation theory, one arrives at an expression

for the Fourier transform of χKS in the frequency domain:115

χKS(r, r′;ω) = lim
λ→+0

N∑︂
k=1

∞∑︂
j=N+1

[︃
ϕj(r)ϕk(r)ϕj(r

′)ϕk(r′)

ω − (ωj − ωk) + iλ
− ϕk(r)ϕj(r)ϕk(r′)ϕj(r

′)

ω + (ωj − ωk) + iλ

]︃
,

(2.22)
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where ϕk and ϕj are the occupied KS orbital k and the unoccupied KS orbital

j, respectively, and ωj − ωk is the transition frequency between ϕk and ϕj. In

eq. 2.22, λ is a convergence factor which approaches 0 from the positive side, and

ω is the frequency variable. Note that all KS orbitals involved come from the

self-consistent ground-state DFT calculation. It is thus obvious that the KS linear

response function is essentially a sum over single excitations. The KS linear response

function is connected to its fully-interacting counterpart via:46

χ(r, r′;ω) = χKS(r, r′;ω) +

∫︂∫︂
dr1dr2χKS(r, r1;ω)

×
[︃

1

|r1 − r2|
+ fXC[ρ0](r1, r2, ω)

]︃
χ(r2, r

′;ω),

(2.23)

where the fXC term is the Fourier transform of the TD exchange-correlation kernel.

This is defined as the functional derivative of the TD exchange-correlation potential,

which is in turn the functional derivative of the TD exchange-correlation energy,

evaluated at the initial ground-state density:

fXC[ρ0](r, r
′; t− t′) =

δvXC[ρ](r, t)

δρ(r′, t′)

⃓⃓⃓
ρ(r′,t′)=ρ0

=
δ2EXC[ρ](r, t)

δρ(r, t)δρ(r′, t′)

⃓⃓⃓
ρ(r′,t′)=ρ0

. (2.24)

The exchange-correlation kernel is central to LR-TDDFT: its approximation

needs to capture the dynamic, many-electron effects ignored in the KS system. It

acts to mix the bare KS single excitations, whose frequencies are at the poles of eq.

2.22, to recover the true excitation frequencies of the interacting system.116

The simplest option for an approximation to fXC is to directly use a ground-state

exchange-correlation functional. This is called the adiabatic approximation (AA):

vAA
XC [ρ](r, t) = vGS

XC[ρ(t)](r), (2.25)

where the instantaneous electron density at t is plugged in the ground-state DFT

exchange-correlation functional. Note that fAA
XC only relies on the instantaneous

time-dependent density ρ(t), which causes χAA (the response function under the

AA) to have neither frequency nor initial-state dependence. The AA is by far the

most predominant approximation to fXC in LR-TDDFT.

In most LR-TDDFT implementations, the extraction of excitation energies and
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oscillator strengths is done through casting eq. 2.23 into a set of non-Hermitian

matrix equations, called the Casida equations.117 This set of equations can be

expressed in the form of a (pseudo) eigenvalue problem:

Ω(ω)F = ω2F , (2.26)

where F is the eigenvector of the frequency-dependent matrix Ω(ω). The elements

of the Ω(ω) matrix are:

Ωqq′(ω) = δqq′ω
2
q+4

√
ωqωq′

∫︂∫︂
drdr′ϕi(r)ϕa(r)

[︃
1

|r − r′|
+ fXC(r, r′, ω)

]︃
ϕj(r

′)ϕb(r
′)

(2.27)

where δqq′ is the Kronecker delta. Here we have introduced the double index q =

(i, a), or q′ = (j, b), which indicates a single excitation from the occupied KS orbitals,

ϕi or ϕj, to the unoccupied (virtual) orbitals, ϕa or ϕb. ωq is the corresponding KS

transition frequency.

Solving eq. 2.26, the resulting eigenvalues ω are the true transition frequencies of

the interacting system. The oscillator strengths of these transitions are obtained by

a subsequent matrix operation on their corresponding eigenvectors F .117 Eq. 2.26

is often reformulated as118[︄
A B

B A

]︄[︄
X

Y

]︄
= ω

[︄
−1 0

0 1

]︄[︄
X

Y

]︄
, (2.28)

where the respective elements of A and B are

Aqq′ = δijδabωq + 2

∫︂∫︂
drdr′ϕi(r)ϕa(r)

[︃
1

|r − r′|
+ fXC(r, r′, ω)

]︃
ϕj(r

′)ϕb(r
′),

(2.29)

Bqq′ = 2

∫︂∫︂
drdr′ϕi(r)ϕa(r)

[︃
1

|r − r′|
+ fXC(r, r′, ω)

]︃
ϕb(r

′)ϕj(r
′). (2.30)

The elements Xq(ω) and Yq(ω) of the resulting eigenvector [X Y ]T are used to

construct the linear electron-density response:118

δρ(r, ω) =
∑︂
q

[Xq(ω)ϕa(r)ϕi(r) + Yq(ω)ϕb(r)ϕj(r)] . (2.31)
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To summarize, when applying the LR-TDDFT scheme, one starts by running a

self-consistent ground-state DFT calculation to obtain the ground-state KS orbitals

(with some usual approximation to the exchange-correlation potential), including

the virtual orbitals. These ground-state KS orbitals are then used to construct the

density response by solving the Casida equations, where bare KS single excitations

are mixed by the exchange-correlation kernel approximated by the AA to produce

the “true” excitation energies and oscillator strengths. It is thus evident that LR-

TDDFT, in its most popularly implemented form, is solely dependent on the KS

orbitals calculated for the ground state. Indeed such a formalism is only “pseudo-

time-dependent”, albeit the time dependence is necessary for the derivations leading

towards its working equations.

Although LR-TDDFT often provides impressively accurate estimations to the

excitation energies and excited-state densities, its limitations are equally notable.

Via the AA, LR-TDDFT inherits any potential errors from the ground-state

exchange-correlation functionals, such as the significant underestimation of charge-

transfer (CT) excitation energies and the incorrect asymptotic behavior thereof,

i.e. the CT excitation energies erroneously converge to some underestimated values

when the CT distance is infinitely stretched. The CT problem of LR-TDDFT is

especially frustrating since CT excitations are among the most common types of

electronic processes in organic chromophores, and their relative energy orderings

with respect to other localized valence excitations greatly influence the interpretation

of the electronic processes in those systems.

Between 2003 and 2004, Head-Gordon et al.95,119 explicitly demonstrated the

problem in CT systems ranging from the simple C2H4-C2F4 dimer to photosynthetic

porphyrin complexes. They concluded119 that the underestimation of the CT-

excitation energy is due to the localized nature of the approximate exchange-

correlation potential used in TDDFT. In CT excitations, the non-local exchange

contributions to the excitation energy (the fXC terms in eqs. 2.29 and 2.30) become

important as the overlap between the faraway electron-donating and electron-

accepting orbitals vanishes. The DFT exchange potential behaves incorrectly at

large CT distances, falling off too rapidly and causing the non-local contribution to

the CT excitation energy to vanish (recall eqs. 2.24, 2.29 and 2.30). This reduces
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the TDDFT estimation of the CT excitation energy to the energy difference between

the bare KS orbitals, which is much too low (frequently by 1 to 2 eV) and levels off

at some fixed value as the separation between the electron-donating and electron-

accepting orbitals tends to infinity.

Tozer et al.97 later established that range-separated hybrid (RSH) functionals

(such as CAM-B3LYP120) with varying degrees of Hartree-Fock exchange-mixing at

short and long ranges significantly alleviate the CT excitation problem of TDDFT.

They also proposed a diagnostic Λ-index to quantify the CT character of excitations,

which can be used as an indicator of the reliability of TDDFT results.

2.3 Becke’s Virial Exciton Model

From 2016 to 2018, Becke introduced a novel scheme,99,100 named the Virial Exciton

Model, to calculate the first singlet excitation energy (E0S) in molecular systems

using ground-state KS-DFT. This simple approach has been shown to yield values

of E0S on par with, or more accurate than, the popular LR-TDDFT method when

compared to theoretical benchmark or experimental data. E0S is of primary interest

in the luminescence spectra of organic chromophores, yet reliable calculation of E0S

is difficult to achieve via ground-state methods due to the multi-determinant nature

of the singlet excited state. Before going into the details of the virial exciton model,

the multi-determinant problem of singlet excitations is presented.

A single-electron excitation from the initial closed-shell ground-state orbital ψi to

the excited-state orbital ψf can be categorized into one of two situations according

to the total spin of the resultant excited states: a singlet excited state (S = 0), or a

triplet excited state (S = 1). The orbital configuration for the singlet excited state

can be expressed as

ΨS =
1√
2
{|αβ⟩ − |βα⟩}, (2.32)

where α and β denote up spin and down spin, respectively. For the triplet excitation,

there are three degenerate configurations:

Ψm=+1
T = |αα⟩, (2.33a)
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Ψm=0
T =

1√
2
{|αβ⟩ + |βα⟩}, (2.33b)

Ψm=−1
T = |ββ⟩, (2.33c)

where m is the total spin angular momentum.

Conventional KS-DFT is, by design, a strictly single-determinant method. While

not suitable to describe the general case of electronic excitations that involve multi-

determinantal states, conventional KS-DFT is capable of calculating the energies

of excited states where a single determinant suffices. For the triplet state, one can

calculate its energy, ET, from either one of the two single-determinants, |αα⟩ or

|ββ⟩, since

ET = Eαα
T = Eββ

T = Eαβ+βα
T . (2.34)

It is evident, however, that direct calculation of the singlet-excited-state energy

ES is problematic since one cannot circumvent the double-determinant state. If

we ignore the Coulombic correlation between the electrons (i.e. if we reduce

the system to its non-interacting KS picture), we can conceive an uncorrelated,

double-determinant approximation to ES. This approximation arises from the non-

interacting limit of the so-called “adiabatic connection”121–123 concept, which is

fundamental to KS-DFT. In the non-interacting (KS) limit, the gap between ES

and ET is simply the difference in the exchange energy between the singlet and

triplet excited states (assuming that their spatial orbitals are the same), which can

be expressed in terms of the pair-density difference,99,100 ∆ΠKS(r1, r2), between said

states:

ES − ET =
1

2

∫︂ ∫︂
d3r1d

3r2
∆ΠKS(r1, r2)

r12
, (2.35)

with

∆ΠKS(r1, r2) = 4ϕi(r1)ϕf (r1)ϕi(r2)ϕf (r2), (2.36)

where ϕi and ϕf are the initial and final orbitals involved in the transition.

Substituting eq. 2.36 into eq. 2.35, we obtain

ES − ET = 2

∫︂∫︂
dr1dr2

ϕi(r1)ϕf (r1)ϕi(r2)ϕf (r2)

r12
. (2.37)
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Now, we define the two-electron integral, H12:

H12 =

∫︂∫︂
dr1dr2

ϕi(r1)ϕf (r1)ϕi(r2)ϕf (r2)

r12
, (2.38)

such that

ES − ET = 2H12. (2.39)

The quantity 2H12 is the uncorrelated first singlet-triplet energy splitting.99 We

reiterate that it is the exchange-energy difference between the singlet and triplet

excited states, and thus it is the exact singlet-triplet energy splitting in the KS

limit.

However, eq. 2.39 is a poor approximation to the actual correlated singlet-triplet

energy splitting, massively overestimating ES by more than 1 eV on average99

compared to correlated-wavefunction benchmark data for excitations of 28 gas-

phase organic molecules compiled by Thiel et al.124 In order to obtain a better

approximation, we must add a correction term, Ecorr, to 2H12 to include the

correlation-energy contribution to the singlet-triplet splitting, which is ignored in

the KS limit:

ES − ET = 2H12 + Ecorr. (2.40)

In Ref. 100, Becke approached the Ecorr term via the virial theorem,125 which

states that, for an exact stationary state of a molecular system at equilibrium

geometry, its kinetic (T ) and potential (V ) energies have the following simple

relation:

2T = −V. (2.41)

The virial theorem is valid for both ground and excited states, and equally applies

to both the correlated and uncorrelated (KS) systems. Therefore, we can trivially

derive the relation between the kinetic and potential parts of Ecorr:100

2T corr = −V corr. (2.42)

From this, we can express Ecorr solely in terms of the potential-energy correction for

correlation:

Ecorr = T corr + V corr =
1

2
V corr. (2.43)
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Based on physical intuition, Becke argued that the potential caused by electron-

electron correlation would significantly lower 2H12 by “smoothing out”100 the singlet-

triplet pair-density difference (eq. 2.36). The simplest approximation is to reduce it

to 0 everywhere.100 The potential-energy correction would then completely cancel

out 2H12:

V corr = −2H12. (2.44)

Applying the virial-theorem result of eq. 2.43 with the potential-energy correction

of eq. 2.44, the total correlation-energy correction is obtained:

Ecorr =
1

2
V corr = −H12, (2.45)

which leads to Becke’s correlation-corrected singlet-triplet energy splitting:

ES − ET = H12, (2.46)

with H12 defined by eq. 2.38.

Becke’s virial-theorem correction scheme was tested against the aforementioned

28-molecule theoretical benchmark set,124 as well as experimental data for linear

acenes and non-linear polycyclic aromatic hydrocarbons (PAHs), while comparisons

were made with the TDDFT results. Becke’s model achieves remarkable accuracy

for Thiel’s 28-molecule set, with the mean absolute error (MAE) of 0.26 eV being on

par with the TD-B3LYP MAE of 0.24 eV. Additionally, Becke’s model significantly

out-performs TD-B3LYP for the singlet excitation energies of the linear acenes and

nonlinear PAHs, achieving MAEs of 0.10 eV and 0.14 eV, respectively, compared to

MAEs of 0.43 eV and 0.27 eV obtained with TD-B3LYP.

2.4 Periodic-Boundary DFT

2.4.1 The Planewave Basis

Theoretical modeling of solid-state materials is in many ways distinct from that of

gas-phase molecules. Currently, the hierarchy of post-Hartree-Fock wavefunction-

based methods (MP2, coupled-cluster methods, configuration interaction, etc.)

cannot be applied practically to periodic systems using planewave basis sets, while
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(ground-state) DFT can be routinely employed in solid-state calculations. In

particular, the use of the planewave-pseudopotential (PW-PS) formalism of periodic-

boundary DFT has become a standard practice for theoretical calculations in solid-

state physics and material sciences.

The exploitation of periodicity is crucial in the application of electronic-structure

methods to solid-state calculations. An ideal crystalline solid consists of identical

structural units, called unit cells, which are (nearly) infinitely repeated throughout

the material. The periodicity is very convenient because it allows one to have

knowledge of the entire (infinitely extending) crystal structure by merely studying

the properties of a finite unit cell. In the language of quantum mechanics, if one

knows the wavefunction (or the electron density) of a unit cell, it can be replicated

via the translational symmetry along every dimension of the unit cell. The Bravais

lattice vector is the unit of spacial periodicity:

R =
3∑︂

i=1

niai, (2.47)

where ai are the set of three real-space vectors representing the dimensions of the

unit cell and ni can take any integer values. Translation along R from any point r

within the unit cell results in an identical potential:

V (r + R) = V (r). (2.48)

The periodicity of V gives rise to Bloch’s theorem.126 Under the enforcement of

the periodic-boundary condition that ψ(r) = ψ(r+NR) for some very large integer

N (on the level of the Avogadro’s number), Bloch’s theorem stipulates a planewave

form of the electronic wavefunction under a periodic potential:

ψkn(r) =
1√
Ω
ukn(r)eik·r, (2.49)

where Ω is the volume of the unit cell: Ω = a1 · (a2 × a3). ukn(r) is a spatially-

dependent component of the wavefunction for the nth energy band, which has the
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same periodicity as the real-space lattice:

ukn(r + R) = ukn(r). (2.50)

We have also introduced the wave vector k:

k =
3∑︂

i=1

kibi, (2.51)

where the reciprocal lattice vectors bi are defined by their reciprocal relationship

with the real-space lattice vectors aj:

aj · bi = 2πδij. (2.52)

Further, ukn can itself be expanded in planewaves:

ukn =
∑︂
G

ckn(G)eiG·r, (2.53)

in which ckn(G) are the planewave expansion coefficients, and

G =
3∑︂

i=1

gibi, (2.54)

where gi must take on integer values due to the periodicity of ukn (eq. 2.50). In

comparison, in the expansion of k within eq. 2.51, the coefficients ki can take on

integer as well as fractional values. Substituting eq. 2.53 into eq. 2.49, we obtain

the nth band wavefunction at wave vector k, in the fully-expanded planewave basis

set:

ψkn(r) =
1√
Ω

∑︂
G

ckn(G)ei(k+G)·r. (2.55)

Eq. 2.55 is essentially a Fourier expansion of the real-space wavefunction in terms

of its components in the so-called “reciprocal space”, i.e. momentum space. The

wave vector k represents the kinetic energy of its associated planewave component
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via Ek = 1
2
|k|2. Eq. 2.55 has the following property:

ψkn(r + R) = ψkn(r)eik·R, (2.56)

which leads to:

|ψn(r + R)|2 = |ψn(r)|2 · |eik·R|2 = |ψn(r)|2, (2.57)

which is guaranteed by |eik·R|2 = 1, for all k and R. Eq. 2.57 implies that the

electronic density of a planewave wavefunction observes the same periodicity as the

real-space lattice.

The planewave basis of the periodic wavefunction is inherently orthogonal and

complete as the summation over all allowable k approaches infinity. In practice,

an upper limit to the momentum-space component summation is set to obtain

a finite number of planewave basis functions: 1
2
|k|2 < Ecut,wfn, where Ecut,wfn is

the wavefunction kinetic-energy cutoff. Such a truncation is valid for a physical

system where momentum-space components with higher kinetic energy become

progressively insignificant. The electron density can likewise be expressed as a

Fourier-series expansion:

ρ(r) =
∑︂
n

ψ∗
n(r)ψn(r) =

∑︂
k

ρ̃(k)eikr. (2.58)

Different from eq. 2.49, in eq. 2.58 components of k are restricted to the multiples

of the momentum-space lattice vectors, since ρ(r) has the periodicity of the lattice.

Truncating eq. 2.58 leads to a cutoff energy with respect to the electron density:

1
2
|k|2 < Ecut,ρ. Ecut,wfn and Ecut,ρ are proportional to the number of planewaves, i.e.

the size of the planewave basis set. In calculations, higher cutoff values will lead to

higher accuracy at the cost of increasing computational time. It is often necessary

to gradually increase the cutoff values until the resulting total energy converges

under some set threshold. When employing planewave basis sets, one evaluates

a certain real-space quantity, be it ψn(r) or ρ(r), by sampling its components in

momentum space. This is most often done on a Monkhorst-Pack (MP) style grid127

consisting of discrete and evenly-spaced grid points in momentum space defined in

the basis of bi. A specific MP-style sampling grid (also called k-mesh) is denoted by
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k1 × k2 × k3, with each index referring to the number of grid points to be sampled

along its corresponding dimension.

2.4.2 Pseudopotentials

Due to their delocalized and sinusoidal nature, planewave basis sets are competent

in describing the slowly-varying interstitial potential between the nuclei within

the unit cell. However, the potential oscillates rapidly in the regions near the

nuclei (see Figure 2.1), where the core electrons typically reside. It would take an

excessive number of planewaves to properly capture the core potential. One way to

significantly reduce the number of planewaves needed is to replace the wavefunction

description of the core electrons with a so-called pseudopotential,128,129 which

maintains the same effective potential felt by the valence electrons. Pseudopotentials

are constructed to vary much more smoothly than the actual all-electron (AE)

potential in the near-core region of an atom (see Figure 2.2). Beyond a set

radius, rcut, from the nucleus, the pseudopotential will behave identically to the

AE potential. The use of pseudopotentials is justified by the fact that the core

electrons are chemically inert and, in general, have a much less significant effect on

the physical properties of the material than its valence electrons. Also, due to the

screening effect of the core-electrons, the Coulomb potential beyond the near-core

regions (felt mostly by the valence electrons) is indeed much more smoothly-varying.

Figure 2.1: Schematic sketch of the behavior of the electronic wavefunction in a
periodic system. Notice the rapid oscillation in the near-core regions within the
dashed circles.

Pseudopotentials are specifically assigned to each element. When used in

a planewave DFT calculation, the pseudopotentials are also parametrized using

the specific exchange-correlation functional to be employed. While such a pseu-

dopotential approximation works remarkably well in many cases, its validity is
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Figure 2.2: Schematic diagram of the pseudopotential approximation. The all-
electron potential, VAE, is replaced by the “flattened” pseudopotential, VPS, within
the cut-off radius, rcut. As a result, the rapidly oscillating all-electron wavefunction,
ψAE, becomes the smoothed wavefunction, ψPS, in the near-core regions.

diminished when one wishes to model certain hyperfine properties, such as spin-

orbit coupling,130 where information regarding the full wavefunction in the near-

core regions becomes important. Also, one does not have beforehand knowledge of

the reliability of the results when using pseudopotentials, which poses the potential

issue of transferability.131

2.4.3 The Projector Augmented-Wave (PAW) Method

An all-electron approximation that is now frequently used is the projector

augmented-wave (PAW) method first proposed by Blöchl in 1994.132 Method-

ologically speaking, the PAW method could be viewed as an extension of the

previously described pseudopotential approach. The PAW method uses fix-shaped

atomic orbitals within the near-core regions to mimic the rapidly-oscillating nature

of the core-electron wavefunctions. The all-electron single-particle wavefunction

(|Ψ⟩) is mapped to a smoothly-varying pseudo-wavefunction (|Ψ̃⟩) via a linear

transformation (T ):

|Ψ⟩ = T |Ψ̃⟩. (2.59)

Since the pseudo- and all-electron wavefunctions only differ within a certain cut-off

radius, rcut, from the atomic nucleus, the transformation operator T should differ

from 1 only within rcut (refer to Figure 2.2).
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The overall pseudo-wavefunction can be further expanded into a linear combi-

nation of pseudo partial waves:

|Ψ̃⟩ =
∑︂
i

|ϕ̃i⟩ci. (2.60)

The index, i, is the quantum state label, which contains a momentum-space wave

vector index, a band index, and a spin index.133 For the coefficients ci, we define a

set of “projector functions”, |pi⟩, such that

ci = ⟨pi|Ψ̃⟩, (2.61)

where ⟨pi|ϕ̃j⟩ = δij. Subsequently, T can be explictly written as

T = 1 +
∑︂
i

(|ϕi⟩ − |ϕ̃i⟩)⟨pi|. (2.62)

Note that |pi⟩ is always taken to be 0 outside of rcut. The transformation is therefore

uniquely defined by a set of all-electron partial waves, |ϕi⟩, and a set of projector

functions, |pi⟩. The all-electron partial waves, |ϕi⟩, are also mapped to the pseudo

partial waves, |ϕ̃i⟩, via T :

|ϕi⟩ = T |ϕ̃i⟩. (2.63)

Importantly, within the PAW cutoff sphere, the transformed pseudo wavefunction

necessarily reduces to |Ψ̃⟩ itself:133

∑︂
i

|ϕ̃i⟩⟨pi|Ψ̃⟩ = |Ψ̃⟩, (2.64)

which leads to the key result of projector-partial-wave completeness:133,134

∑︂
i

|ϕ̃i⟩⟨pi| = 1. (2.65)

The pre-computed sets of all-electron atom-like orbitals and projector functions

collectively constitute the PAW dataset. Atom-specific PAW datasets are readily

available in online repositories135,136 and can be called when a planewave-PAW

calculation is requested.
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2.4.4 Spin-Magnetized Calculations

In this work, spin-magnetized/polarized calculations with the Quantum ESPRESSO

(QE) program101 are frequently employed to simulate non-singlet spin states (in

particular, the first triplet state, T1) in periodic solid systems. These calculations

require two additional inputs: (i) the specification of a constant total spin-

magnetization, which restricts the system to the desired non-singlet spin state, and

(ii) the assignment of an initial magnetization bias, which alters the ansatz used as

the initial guess for the self-consistent field (SCF) cycles of the calculations.

To indicate that a spin-magnetized calculation is to be conducted, and specify

the total spin-magnetization of the system, the QE keywords137 nspin and

tot magnetization are used, respectively. We first specify that the system should

be spin-magnetized along the z-axis, which is done by using the option nspin

= 2. Then, the tot magnetization keyword is given a value which equals the

total number of majority-spin (α) electrons, minus the number of minority-spin (β)

electrons in the system. For a T1 state, we specify tot magnetization = 2, since

there are 2 more α-spin electrons than β-spin electrons in a triplet-state system.

In QE, initial magnetization biases can be assigned to specific individual atoms

within the crystal lattice. This is done in order to facilitate SCF convergence to

a non-singlet energy minimum, by providing a spin-polarized initial guess electron

density. The QE keyword starting magnetization(n) = x is used to assign an

initial magnetization bias to the nth atom type in the input’s list of atoms. The x

value gives the magnitude of the bias, which can range from -1 (all electrons are β-

spin) to 1 (all electrons are α-spin). The solid-state spin-polarized calculation itself

resembles an unrestricted Hartree-Fock (UHF) calculation138 on a molecule, in which

the Kohn-Sham equations are solved for the α- and β-spin orbitals independently.

2.4.5 Applied Pressure

In QE, an external pressure can be specified in a variable-cell (i.e. “full”)

optimization of the crystalline geometry, using the press keyword. This is done in

order to optimize the crystalline geometry under a specific external pressure. While

a crystal’s response to an external pressure can be quite complex, the QE press

keyword operates on a rather simple principle: at constant external pressure, the
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equilibrium geometry of a crystal is found when the enthalpy (Hcryst) is minimized,

instead of the electronic energy (Ecryst). The enthalpy of the crystal is:

Hcryst = Ecryst + pV, (2.66)

where p is the applied external pressure and V is the volume of the crystal lattice.

It is evident that, in order to minimize Hcryst, there is an incentive for the crystal

lattice to shrink under high external pressures and expand under negative external

pressure (as results from the lattice vibrations). The press keyword simply adds

an extra pV constraint to the variable-cell geometry optimization, compared to a

regular, unconstrained optimization without any applied external pressure. The

crystal geometry obtained under such a constraint is thus the optimized geometry

subject to the specified external pressure.

2.4.6 Crystalline Band Structure

The QE package employs a multi-step procedure to calculate the band structure

of a crystal. Initially, a simple single-point SCF calculation is performed on the

geometry-optimized crystal, which generates a set of Kohn-Sham orbitals (in the

momentum space) for the crystal. These Kohn-Sham orbitals include all occupied,

and a number of unoccupied, orbitals. This set of Kohn-Sham orbitals is then used as

input to a second, non-SCF calculation (via the calculation = bands keyword) to

obtain the electronic energy states (i.e. bands), spanning the crystal’s valence band

and including a certain number of states within the conduction band (assuming an

insulator). The total number of bands to be calculated is specified using the nbnd

keyword.

In addition, a “path” of wave vectors is specified for this non-SCF calculation

for the momentum-space sampling of the calculated states. To achieve efficient

momentum-space sampling, the specified path generally starts from the Γ point,

with wave vector k = (0, 0, 0). It then passes through a number of high-symmetry

points (denoted by letters such as W, X, L, Z, etc.) within the first Brillouin

zone,87 and finally loops back to the Γ point. Figure 2.3 gives an illustrative

example of such a path selection. Along this k-path, a specified number of points

are sampled between each two adjacent high-symmetry points. The band energies
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Figure 2.3: The first Brillouin zone of a face-centered cubic (FCC) crystal, showing
possible paths connecting its major high-symmetry points. Drawing taken from
Ref. 141. Image reused with permission from Setyawan et al., Comput. Mater. Sci.
49, 299-312 (2010). Copyright 2010 Elsevier.

(i.e. the eigenvalues) are obtained via a single iteration of diagonalization of the

Fock matrix,139 which is constructed from the previously acquired SCF Kohn-Sham

orbitals. This Fock-matrix diagonalization is done at each sampled point in the

momentum space until the specified k-path is completed.140

Finally, a third calculation is performed to extract the crystal band structure

from the wavefunction outputs of the previous non-SCF calculation, using the

bands.x program within the QE package. The end result is a list of electronic-

state energies with respect to the wave vector, from which the crystal band diagram

and the valence-conduction band gap can be easily obtained.

2.5 The XDM Dispersion Model

It is well-known that conventional exchange-correlation density functionals, such

as the local density approximation (LDA) and generalized-gradient approximations

(GGAs), are incapable of properly describing London dispersion interactions.142,143

This is due to the “near-sightedness” of these density functionals, which only

consider the local electron density (for LDA) or, in addition, the density gradients

near the vicinity of a reference point (for GGAs). The lack of long-range dispersion

interactions severely limits the use of these conventional functionals in modeling

weakly-bound systems,144–146 or in deciding the preferred crystal polymorphs when

many close energetic competitors are present.147,148

The exchange-hole dipole moment (XDM) model is a semi-classical dispersion
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correction developed by Becke and Johnson starting in 2005, with the final version

of the equations formulated in 2007.102,103 The XDM model belongs to the category

of a posteriori dispersion-correction methods, which calculate an additive dispersion

energy term to obtain the dispersion-corrected DFT energy:

E = EDFT + Edisp. (2.67)

The central idea behind XDM is to consider the interaction between the exchange-

hole dipole moments in atoms as the origin of the London dispersion interactions.

XDM borrows from the concept of interacting instantaneous dipole moments in the

classical theory of London dispersion, although in XDM such dipole moments arise

from the purely quantum-mechanical phenomenon of Pauli exclusion between the

same-spin electrons in atoms.

The exchange hole, hXσ(r1, r2), measures the depletion of the probability density

of finding a same-spin electron 2 in the space around a reference σ-spin electron 1:

hXσ(r1, r2) = − 1

ρσ(r1)

∑︂
ij

ψiσ(r1)ψjσ(r1)ψiσ(r2)ψjσ(r2), (2.68)

where r1 and r2 are the respective position vectors of the electrons and ρσ(r1) is

the σ-spin density at r1. The summation runs over all occupied σ-spin Hartree-

Fock or Kohn-Sham orbitals, ψiσ. The exchange hole completely eliminates the

probability density of the σ-spin electron 2 at the reference point (i.e. the position

of the reference electron 1):

hXσ(r1, r1) = −ρσ(r1), (2.69)

which is in agreement with the Pauli exclusion principle stating that it is impossible

to find two same-spin electrons occupying the same point in space. The exchange

hole is normalized to −1 electron (i.e. +1 charge) when integrated over all space:∫︂
dr2hXσ(r1, r2) = −1. (2.70)

In general, the exchange hole is not spherically symmetric. This gives rise to

40



an exchange-hole dipole moment between the negatively-charged electron and its

corresponding exchange hole, which can be considered positively charged. The

exchange-hole dipole moment is expressed as

dXσ(r1) =

[︄
1

ρσ(r1)

∑︂
ij

ψiσ(r1)ψjσ(r1)

∫︂
dr2rψiσ(r2)ψjσ(r2)

]︄
− r1. (2.71)

The expectation value of the square of the exchange-hole dipole moment is:

⟨d2X⟩ =
∑︂
σ

∫︂
drρσ(r)d2

Xσ(r). (2.72)

Based on dXσ, one can derive a general expression for higher-order l-pole

(quadrupole, octopole, and so on...) moment integrals, with ⟨d2X⟩ = ⟨M2
1 ⟩:

⟨M2
l ⟩ =

∑︂
σ

drρσ(r)[rl − (r − dXσ)l]2. (2.73)

The XDM expressions for the C6 and higher-order dispersion coefficients

(C8, C10, etc.) can be derived from the second-order perturbation theory of

dispersion.149,150 The expression for the leading-order C6 coefficient (between atoms

A and B) is:

C6 =
αAαB⟨d2X⟩A⟨d2X⟩B
αB⟨d2X⟩A + αA⟨d2X⟩B

, (2.74)

where αA and αB are the atomic polarizabilities of atoms A and B, respectively. For

atom i, αi is proportional to its atomic volume Vi:

αi =
Vi

Vi,free
αi,free, (2.75)

where αi,free denotes the free atomic polarizability, which is experimentally measured

in vacuo. Vi/Vi,free is determined through Hirshfeld charge analysis151 of the

calculated electron density.

The HF exchange hole shown in eq. 2.68 is infeasible to compute for periodic

systems. In practical XDM calculations, a density-functional approximation to the

exact-exchange hole, the Becke-Roussel152 model (“the BR hole”) is used instead.

The BR hole model simplifies the exchange hole into an exponential function,
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−Ae−ar, centered at distance b from the reference electron. There are three property

constraints on the BR hole:

• normalization to −1 electron,

• elimination of spin-density, ρσ, at the reference point,

• same reference-point curvature as the HF exchange hole.

From these constraints we can obtain the value of the three parameters: A, a, and

b. In particular we have

b3 =
x3e−x

8πρσ
, (2.76)

with x = ab obtained via solving the nonlinear equation

xe−2x/3

x− 2
=

2

3
π2/3ρ

5/3
σ

Qσ

. (2.77)

The curvature, Qσ, is obtained from ρσ and the kinetic-energy density, τσ:

Qσ =
1

6

[︃
∇2ρσ − 2

(︃
τσ −

1

4

(∇ρσ)2

ρσ

)︃]︃
, (2.78)

where τσ is

τσ =
∑︂
i

(∇ψiσ)2. (2.79)

Under the BR-hole approximation, the exchange-hole dipole moment is simply

dXσ = b, which is used in the practical calculation of dispersion coefficients. The

BR hole by itself can be regarded as a meta-GGA density functional due to its

dependence on ρσ, ∇ρσ, τσ, and ∇2ρσ. The BR-hole variant of XDM has been

shown to yield excellent results for molecular C6 dispersion coefficients, improving

upon the HF-exchange hole, when paired with pure density functionals.143

The energy correction for London dispersion is a series expansion of all pairwise

interatomic interactions:

Edisp = −
∑︂
ij

∑︂
n=6,8,10

Cn,ijfn(Rij)

Rn
ij

, (2.80)
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where Rij is the distance between atoms i and j, and fn is the so-called Becke-

Johnson (BJ) damping function153 for the Cn dispersion term. The purpose of fn is

to prevent the divergence of Edisp at short interatomic distances, converging Edisp to

some finite value at the onset of the repulsive potential wall between two approaching

atoms. fn has the form

fn(Rij) =
Rn

ij

Rn
ij + (a1Rc,ij + a2)n

. (2.81)

Here Rc,ij denotes a “critical” interatomic separation distance where contributions to

Edisp from the C6, C8, and C10 terms become equal. Rc,ij depends on the dispersion

coefficients and, in practice, has three possible choices of definition:

Rc,ij =

(︃
C8,ij

C6,ij

)︃ 1
2

,

(︃
C10,ij

C8,ij

)︃ 1
2

,

(︃
C10,ij

C6,ij

)︃ 1
4

. (2.82)

In XDM, Rc,ij is taken as the average of these three possible values. The BJ damping

function incorporates two damping parameters, a1 and a2, which are empirically fit

to minimize binding-energy errors for Kannemann and Becke’s training set of 49

molecular dimers143 for each specific exchange-correlation functional used.

The XDM model, paired with the B86bPBE density functional, has been shown

to yield excellent results in solid-state calculations,154 comparable (within 1 kcal/mol

for lattice energies) to values obtained from much more expensive methods, such as

the random phase approximation (RPA)155 and non-local correlation functionals

based on the adiabatic-connection fluctuation-dissipation theorem (ACFDT).156

The overall performance of the XDM model is on par with, or better than, other

popular post-SCF dispersion correction methods, such as Grimme’s DFT-D3,157,158

the Tkatchenko-Scheffler van der Waals (TS-vdW) method,159 and its many-body

dispersion (MBD) extension.160,161 The XDM model also stands out for its strong

physical motivation and its dynamic dependence of both the moment integrals

and polarizabilities on the calculated electron density. The XDM model also

possesses high transferability between molecular and solid-state systems without

any modification.
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Chapter 3

The Effect of Electronic Excitation
on London Dispersion

The work presented in this current chapter has been published as an article: Xibo

Feng, Alberto Otero-de-la-Roza, and Erin R. Johnson, The Effect of Electronic

Excitation on London Dispersion, Can. J. Chem. 96: 730–737 (2018).

Synopsis: Atomic and molecular dispersion coefficients can now be calculated

routinely using density-functional theory. In this work, we present the first

determination of how electronic excitation affects molecular C6 London dispersion

coefficients from the exchange-hole dipole moment (XDM) dispersion model.

Excited states are typically found to have larger dispersion coefficients than

the corresponding ground states, due to their more diffuse electron densities.

A particular focus is both intramolecular and intermolecular charge-transfer

excitations, which have high absorbance intensities and are important in organic

dyes, light-emitting diodes, and photovoltaics. In these classes of molecules, the

increase in C6 for the electron-accepting moiety is largely offset by a decrease in C6

for the electron-donating moiety. As a result, the change in dispersion energy for

a chromophore interacting with neighbouring molecules in the condensed phase is

minimal.
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3.1 Introduction

The study of electronic excitations is essential in many areas of chemistry.

Molecular electronic excitations play important roles in the design and fabrication of

organic electronics162,163 (sensors, light-emitting diodes, photovoltaics, etc.). While

properties of the excited state have been extensively studied for single molecules

in the gas-phase and in solution, little is known regarding how excitation of a

single molecule affects the intermolecular interactions with its neighbours.164,165 In

particular, to our knowledge, there has only been one investigation to date as to

how electronic excitation affects the strength of intermolecular London dispersion

interactions166 and this was limited to a small set of van der Waals complexes rather

than common chromophores.167 This may be, in part, because popular empirical

dispersion models have dispersion coefficients that are either fixed89,168 or depend

only on the geometry157 and consequently cannot describe correctly the change in

intermolecular dispersion during a vertical excitation. Alternatively, while non-local

density-functional dispersion models are transferable to excited states,166 they do

not directly provide atomic or molecular dispersion coefficients.

The exchange-hole dipole moment (XDM) model,102,103,169,170 in the context

of density-functional theory (DFT), is uniquely suited to address the question of

how electronic excitation affects London dispersion. The XDM model provides a

non-empirical means of calculating accurate C6 (and higher-order171) dispersion

coefficients directly from the electron density. As such, the XDM dispersion

coefficients are sensitive to changes in an atom’s electronic environment172–174 and

the method is completely transferable, without modification, from ground-state to

excited-state electron densities.

In XDM, the dispersion energy is an a posteriori correction to the self-consistent

energy, calculated using one of the common density functionals. The dispersion

energy is written as a sum over all pairs of atoms, i and j separated by a distance

Rij, and includes C6, C8, and C10 dispersion terms.

EXDM
disp = −

∑︂
n=6,8,10

∑︂
i<j

Cn,ijfn(Rij)

Rn
ij

(3.1)

The damping function, fn(Rij), prevents the divergence of the dispersion energy at
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small internuclear separations. The atomic C6 dispersion coefficients are determined

from the exchange-hole dipole moment integrals, ⟨d2X⟩, and atom-in-molecule

polarizabilities, α.

C6,ij =
αiαj⟨d2X⟩i⟨d2X⟩j
αi⟨d2X⟩j + αj⟨d2X⟩i

(3.2)

Analogous formulae can be written for the higher-order dispersion coefficients and

involve higher-order exchange-hole multipole moments. The moment integrals and

polarizabilities are both functions of the electron density and consequently vary with

atomic environment. Interested readers are directed to Ref. 170 for a comprehensive

review of the XDM equations and the theory underpinning the model. The overall

molecular Cn dispersion coefficient can be evaluated by summing over all atom pairs.

Cn =
∑︂
ij

Cn,ij (3.3)

This value is the Cn dispersion coefficient for the interaction between one molecule

and a second, identical molecule.

In this work, the XDM model is applied to investigate how the molecular

dispersion coefficients change upon electronic excitation for a small collection of

molecular systems, which can be broken down into three classes. These are π → π∗

excitations in conjugated hydrocarbons, charge-transfer excitations in push-pull

chromophores of 4,4′-disubstituted biphenyls, and intermolecular excitations in

charge-transfer complexes. Additionally, we consider a set of ten molecular crystals

and co-crystals and assess how changes in dispersion coefficients resulting from

electronic excitation affect the dispersion energy for interaction of a single excited

molecule with the surrounding bulk. This dispersion contribution to the excitation

energy has not previously been considered when modeling electronic excitations of

molecules in the condensed phase.

3.2 Computational Methods

3.2.1 Molecular calculations

All molecular calculations were performed using the Gaussian 09 program.175

Geometries of all molecules and intermolecular complexes were optimized using
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B3LYP90,114 or B3LYP-XDM, respectively, both with the 6-31+G* basis set. Subse-

quent single-point energy calculations and time-dependent density-functional theory

(TDDFT)118,176–178 calculations were performed with either the 6-31+G* basis set

for single molecules or aug-cc-pVDZ for complexes and either the B3LYP90,114 or

CAM-B3LYP120 density functionals. Usually the first singlet excited state was

considered, but occasionally a higher excited state was investigated, corresponding

to the charge-transfer state for the push-pull chromophores or intermolecular charge-

transfer complexes (see below).

Change-transfer excitations are well known to be problematic for functionals

with little or no exact-exchange mixing,119,179–184 due to the density-functional

“delocalization” or “charge-transfer” error.112,185–189 As such, calculations on

intermolecular charge-transfer complexes were performed using systematic series of

hybrid and range-separated hybrid density functionals with varying exact-exchange

mixing. Specifically, a family of BLYP108,114-based hybrid functionals of the form

EXC = aXE
exact
X + (1 − aX)EB88

X + ELYP
C (3.4)

was used, where the exact-exchange mixing fraction, aX was varied from 0 to 1 in

increments of 0.1. Similarly, we also considered a family of range-separated hybrid

functionals based on LC-BLYP.190 In these functionals, the interelectronic Coulomb

potential is divided into short- and long-range terms using the error function:

1

r12
=

1 − erf(ωr12)

r12
+

erf(ωr12)

r12
. (3.5)

This modified Coulomb potential is then used in evaluation of the exchange energy

such that the short-range portion is treated with the B88 generalised-gradient-

approximation functional108 and the long-range component is treated with exact

exchange. The length of this range-separation is determined by the parameter ω,

whose value was varied from 0 to 1 Bohr−1 in increments of 0.1 Bohr−1. In evaluation

of the exchange-hole dipole moments, and resulting XDM dispersion coefficients, the

Becke-Roussel exchange-hole model152 was used in all calculations. As such, the full

two-particle density matrix for the excited state was not required. We need only

the expansion of the Kohn-Sham orbitals in terms of the atomic basis functions,
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which can be obtained from the wavefunction file. The density=current option in

the Gaussian program175 was used to generate wavefunction files for excited states.

The ground state density, ρgs, is obtained from the usual sum of the squares of the

occupied, real Kohn-Sham orbitals: ρgs =
∑︁

i,σ ψ
2
iσ(r). The excited-state density,

ρex is determined from the first-order density response and is given by118,191

ρex = ρgs +
∑︂
i,a,σ

Piaσψiσ(r)ψaσ(r), (3.6)

where index i refers to the occupied Kohn-Sham orbitals, index a the virtual

Kohn-Sham orbitals, and σ denotes the electron spin. The Piaσ coefficients

are determined from solution of the Casida equation in TDDFT.176,192 The BR

procedure is then applied to calculate the exchange-hole dipole moments and

dispersion coefficients169,170,193 from the density and orbitals. The postg program194

was used to calculate the C6 dispersion coefficients and Hirshfeld151 atomic charges

for both the ground and excited states.

3.2.2 Solid-state calculations

Crystal structures of 4-amino-4′-nitrobiphenyl, A3MN [2-Amino-3-((E)-(4-

(diethylamino) benzylidene)amino)maleonitrile],195 coumarin, 6-aminocoumarin,

and the benzene/hexafluoro-benzene, N,N-dimethylaniline/hexafluorobenzene,

naphthalene/hexafluorobenzene, tetracyanoethylene/naphthalene, chloranilic

acid/pyrazine, and 2,5-dimethylbenzoquinone/bis-(hydroquinone) co-crystals, were

obtained from the Cambridge Crystallographic Data Centre196 (codes: KEFLEM01,

PAQMIE01, RAZLEK, BEZZAJ, BICVUE01, DMAFBZ01, IVOBOK, CYENAP,

BOQHOE, and CISCOW, respectively). The structures of these crystals (both

atomic positions and unit-cell parameters) were then optimized with B86bPBE-

XDM88,107,154,170 using the Quantum ESPRESSO program.101 These calculations

used Projector-Augmented-Wave (PAW) pseudopotentials, a 4×4×4 k-point mesh,

and energy and density plane-wave cut-offs of 60 and 600 Ry, respectively. After

optimization, single-point energy and TDDFT calculations were performed on a

single molecule cut from the crystal at this fixed geometry. These calculations used

Gaussian 09 as detailed above, with the B3LYP functional and the 6-31+G* basis

set. The London dispersion coefficients were calculated from the resulting electron
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densities using the postg program.194 These coefficients were then used to evaluate

the dispersion energy for interaction of this single molecule, in either its ground or

excited state, with the remainder of the crystal, using the critic2 program.197

Figure 3.1: The constituents of conjugated-chain set of molecules.

3.3 Results and Discussion

3.3.1 Conjugated hydrocarbons

We begin by considering the π → π∗ excitations for the set of conjugated

hydrocarbon molecules shown in Figure 3.1. This set consists of a mixture of

straight-chain alkenes, biphenyls, and stilbenes. As π → π∗ excitations are much

less sensitive to the choice of DFT method than are charge-transfer excitations, we

consider only B3LYP results. Figure 3.2 shows the percent change in molecular C6

dispersion coefficients for all members of this set, as a function of either excitation

energy (a,b) or chain length (c,d).

The results in Figure 3.2(a,b) show that the percent change in molecular C6 upon

excitation increases exponentially with increasing excitation energy for each distinct

series of compounds (alkenes, stilbenes, and biphenyls). This is to be expected as

the valence electron becomes more weakly bound in higher-energy excited states,

causing the electron density to be more diffuse, which in turn causes the dispersion

coefficients to increase. In particular the percent increase in C6 upon excitation of

ethylene is extremely large (in excess of 200%) and even larger increases appear in

high-energy Rydberg excitations. However, as such high-energy excitations are not

observed in everyday chemical applications, we focus our attention on lower-energy
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π → π∗ and charge-transfer excitations.

While the excitation energies for the conjugated-chain set vary significantly

depending on the molecule type, a simplified picture of the effect of excitation on

C6 can be obtained by recourse to a particle-in-a-box model in which only the chain

length of each hydrocarbon is considered. Figure 3.2(c,d) shows the that percent

change in C6 decreases with increasing chain length, using two possible definitions

(either the Euclidean length or number of C-C bonds between distal carbon atoms,

with the latter yielding a slightly improved correlation). In the context of the

particle-in-a-box, a shorter chain, or box, length results in a more loosely-bound

excited state, leading to large increases in C6 upon excitation. Conversely, a longer

chain length results in a more-tightly bound excited state, leading to smaller relative

increases in C6 upon excitation. Figure 3.2(c,d) also shows that C8 and C10 follow

the same trends as seen for C6, although the percentage increase induced by the

excitation is higher for the higher-order dispersion coefficients.

Lastly, we decompose the changes in C6 into contributions from the two types

of terms in Equation 3.2: the moment integrals and atomic polarizabilities. As the

densities in the excited states are more diffuse, one might expect that an increase

in polarizability would be the primary contribution to the change in molecular C6.

However, more diffuse densities will also cause a larger average displacement between

a reference electron and its corresponding exchange hole, which remains centered

near the nearest atomic nucleus.152 Thus the moment integrals also increase upon

excitation, and Figure 3.3 shows that the relative contributions from the moment

integrals and polarizabilities are roughly equivalent. This is similar to what is seen

for changing chemical environments in ground-state molecules,170,172 but contrary

to solids where changes in C6 are dominated by changes in the exchange-hole dipole

moment integrals.170,173

3.3.2 Push-pull chromophores

Next we consider the set of 4,4’-disubstituted biphenyls shown in Figure 3.4(a).

These molecules can be classified as “push-pull” systems since one substituent is a

strong electron-donating group (EDG) while the other is an electron-withdrawing

group (EWG). In all cases either the first or second excited state corresponds

to a charge-transfer state, as determined from the Hirshfeld charges. In our
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Figure 3.2: Changes in molecular C6 dispersion coefficients as a function of excitation
energy for subsets of (a) alkenes and (b) stilbenes and biphenyls. Also shown are
changes in C6, C8, and C10 dispersion coefficients for the conjugated-chain set as a
function of chain length using two different definitions: (c) the Euclidean distance
between terminal carbon atoms and (d) the number of C-C bonds forming the chain.
The lines are to guide the eye.
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analysis, the charges and dispersion coefficients of these molecules are partitioned

into contributions from the electron-donating and electron-accepting halves which

are separated by the central C-C single bond. The extent of charge transfer is

determined as the absolute value of the difference in the Hirshfeld charge between

the ground and excited state, for either of these two halves of a given molecule.

Figure 3.4(b) shows the extent of charge transfer as a function of the calculated

excitation, with both B3LYP and CAM-B3LYP. Range-separated functionals, such

as CAM-B3LYP, are conventionally viewed as being the more reliable for charge-

transfer excitations,95,97,198,199 although one must be careful not to generalise

this result, particularly to large systems, as the performance of range-separated
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Figure 3.3: Decomposition of the changes in molecular C6 dispersion coefficients
into contributions from the dipole-moment integrals and polarizabilities. Results
are shown for the conjugated-chain set as a function of chain length, defined as the
number of C-C bonds forming the chain.
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functionals is highly system-dependent.200–202 Figure 3.4(b) shows that going from

B3LYP to CAM-B3LYP leads to higher excitation energies and reduced charge

transfer, as expected since the latter functional was designed to minimise charge-

transfer errors. However, the correlation between these two quantities becomes less

clear than with B3LYP. Considering trends with substituent, the amino group is

a stronger EDG than the hydroxyl group, resulting in greater charge-transfer and

lower excitation energies. For the EWGs, the excitation energies follow the trend

NO2 < CHO < COOH < CN < CF3 and the extent of charge transfer follows the

inverse trend.

Figure 3.4 also shows the change in C6 for the EDG and EWG halves of the

biphenyls, obtained with B3LYP (c) and CAM-B3LYP (d). In general, the C6 for

the EDG decreases upon excitation as charge is transferred away from this region

of the molecule, resulting in a more compact electron density. Conversely, the C6

for the EWG increases upon excitation as charge is transferred to this region of

the molecule, resulting in a more diffuse electron density. CAM-B3LYP predicts

somewhat lower charge transfer, which results in smaller increases in the EWG C6

and smaller decreases in the EDG C6 compared to B3LYP. However, as these effects
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Figure 3.4: The set of selected 4,4’-disubstituted biphenyls (a) together with the
calculated extent of charge transfer as a function of excitation energy (b). Also
shown are the excitation-induced changes in C6 for the electron-donating and
electron-withdrawing halves of each biphenyl from B3LYP (c) and CAM-B3LYP
(d). Coloured symbols correspond to hydroxyl electron donors and open symbols
correspond to amino electron donors.
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offset, the overall differences in total C6 values remain small and are only 0-4% for

the molecules in the set, with both functionals.

Lastly, regarding substituent effects, the magnitude of ∆C6 for the EDG tends to

increase with greater charge transfer, as it becomes more positive in the excited state.

For the EWG, the ∆C6 tends to increase as the extent of charge transfer decreases.

This is due to the inverse relationship between charge transfer and excitation energy;

reduced charge transfer occurs when the excited state is higher in energy, resulting

in more diffuse electron densities and higher C6 coefficients in the excited state.

Additionally, two distinct trends lines are present in Figure 3.4(c,d), one for each

EDG, with larger increases in C6 occurring for the amino substituent than for the
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hydroxyl substituent.

3.3.3 Intermolecular charge-transfer excitations

As shown in the previous section, overall increases in molecular dispersion coef-

ficients on excitation are minimal for intramolecular charge-transfer excitations.

In this section, we consider two intermolecular charge-transfer complexes: ben-

zene/hexafluorobenzene (in C6v symmetry) and benzene/tetracyanoethylene (in C2v

symmetry), both of which possess fairly low-lying intermolecular charge-transfer

excitations. Due to the delocalization (or charge-transfer) error, we expect the

results for these intermolecular complexes to be much more sensitive to the choice

of density functional than were the data for the biphenyls. We therefore consider the

effect of exact-exchange mixing on the extent of excitation-induced charge transfer

and changes in the C6 coefficients using series of hybrid and range-separated hybrid

functionals.

Figure 3.5(a,b) show plots of the charge-transfer excitation energy as a function

of exact-exchange mixing fraction or range-separation parameter for the two

intermolecular complexes. In general, the density-functional delocalization error

causes local density functionals (i.e. those with no exact-exchange mixing) to

over-stabilise fractional charges and to underestimate charge-transfer excitation

energies.112,119,179–189 This is reflected in Figure 3.5(a,b) which show systematic

increases in the excitation energies as the exact-exchange mixing fraction or range-

separation parameter is increased.

Next, Figure 3.5(c,d) show the excitation-induced charge transfer and reveal

differing behaviour for these complexes. In both cases, the BLYP functional,

with no exact-exchange mixing, predicts fractional charge transfer of near one-

half of an electron (0.58 e− for benzene/hexafluorobenzene and 0.44 e− for

benzene/tetracyanoethylene). This is expected as delocalization error causes local

functionals to over-stabilise fractional charges. As exact exchange is incorporated

into the functional, the extent of charge transfer tends towards integer values.

However, the trends are opposing for the complexes, with the charge transfer

decreasing to zero for benzene/hexafluorobenzene and increasing to 0.8 e− for

benzene/tetracyanoethylene. This would seem to imply that the latter case is a

“true” charge-transfer excitation, while the low-energy charge-transfer excitation
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Figure 3.5: Calculated properties of the benzene-hexafluorobenzene (left) and
benzene-tetracyanoethylene (right) complexes as a function of exact-exchange
mixing (aX) in BLYP-based hybrids (filled symbols, solid lines) or range-separation
(ω) parameters in LC-BLYP-based functionals (open symbols, dashed lines). Shown
are the excitation energies (top row), extent of excitation-induced charge transfer
(middle row), and excitation-induced changes in C6 dispersion coefficients (bottom
row).
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seen in the former complex is an artifact caused by delocalization error.

Finally, Figure 3.5(e,f) show the excitation-induced changes in C6 London

dispersion coefficients for the complexes, as well as for the component donor

and acceptor molecules. Despite the high sensitivity of both the charges and

excitation energies, the dispersion coefficients show minimal functional dependence,

particularly for benzene/tetracyanoethylene. This indicates that use of popular

hybrid functionals, like B3LYP, should be adequate to describe dispersion properties,

even for strong charge-transfer excitations. As for the disubstituted biphenyls, the

C6 of the electron donor decreases on excitation while the C6 of the electron acceptor

increases. These effects offset almost completely for benzene/tetracyanoethylene;

however, for benzene/hexafluorobenzene, there is a net increase in C6 of roughly

10%, much larger than those seen in the biphenyls or conjugated hydrocarbons. This

implies that changes in dispersion energy coming from excitation may be larger for

co-crystals than single-molecule crystals, and this will be confirmed in the following

section.

3.3.4 Dispersion in crystalline solids

Having established that electronic excitation has the potential to cause large changes

in molecular dispersion coefficients, we next assess the impact of this effect on the

dispersion energy for interaction of a single molecule with a surrounding crystal

environment. We consider a set of 4 single-molecule crystals and 6 co-crystals,

shown in Figure 3.6.

The results in Table 3.1 show that the changes in C6 on excitation remain quite

low for the single molecules exhibiting intramolecular charge-transfer excitations, as

expected from the results in Section 3.3.2. While %∆C6 may be significantly larger

in magnitude for some of the intermolecular charge-transfer excitations, the resulting

changes in dispersion energy for excitation of a molecular dimer within the co-crystal

remain quite small in magnitude. This is partly because the moment integrals and

polarizabilities for only a single molecular dimer are changing, so the resulting effect

on the dispersion coefficients for interactions with the remainder of the crystal are

effectively halved relative to what would be seen for interaction between two excited

moieties. Additionally, the larger relative increases in the higher-order dispersion

coefficients (Figure 3.1) cause increases in the effective atomic van der Waals radii

56



Figure 3.6: Structures of selected chromophores present in molecular crystals
together with their CCDC codes.

used in the XDM damping function. This results in increased damping of the

dispersion energy, which largely offsets the effect of increasing dispersion coefficients.

Indeed, in the majority of cases considered, the increased damping causes a lower

dispersion energy in the excited state than in the ground state, as reflected by the

many positive values of ∆Edisp in Table 3.1.

The largest changes in dispersion energy resulting from a localised excitation

are −1.2 kcal/mol for benzene/hexafluorobenzene and 1.2 kcal/mol for naph-

thalene/hexafluorobenzene. While examples could likely be found with larger

dispersion-energy changes, this finding indicates that this dispersion effect has a

very minor contribution to the overall excitation energy for a molecule or dimer in

the condensed phase.

3.4 Summary

This is the first work to consider the effect of electronic excitation on molecular

London dispersion coefficients. Excitation increases the dispersion coefficients as

the electron density distribution in the excited state is more diffuse, resulting in

larger atomic polarizabilities and exchange-hole multipole moment integrals, with

these two contributions being roughly equivalent in size. The percentage change in
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Table 3.1: Changes in molecular C6 coefficients for a single excited moiety (single
molecule or charge-transfer dimer) and overall dispersion energies for interaction of
the chromophore with surrounding molecules in the crystal.

Molecule %∆C6 ∆Edisp (kcal/mol)
4-amino-4′-nitrobiphenyl 0.3 -0.16
A3MN 0.9 0.17
coumarin 1.9 0.18
6-aminocoumarin 2.8 0.14
benzene/hexafluorobenzene 7.8 -1.24
N,N-dimethylaniline/hexafluorobenzene 2.8 0.07
naphthalene/hexafluorobenzene 4.6 1.23
tetracyanoethylene/naphthalene -0.3 0.39
chloranilic acid/pyrazine -0.3 0.46
2,5-dimethylbenzoquinone/bis(hydroquinone) 24.4 1.02

the C6 dispersion coefficient was found to decrease with increasing chain length for

π → π∗ excitations in conjugated hydrocarbons. For charge-transfer excitations, the

dispersion coefficients for the electron-donating moiety decrease, while the dispersion

coefficients for the electron-withdrawing moiety increase. The combined effect on

the overall dispersion coefficient is negligible for intramolecular charge transfer, but

can be fairly large for intermolecular charge transfer. However, despite the potential

for large changes in dispersion coefficients, electronic excitation of a single molecule

has only a minimal effect on the dispersion energy for interaction of the chromophore

with the surrounding bulk in a molecular crystal or co-crystal.
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Chapter 4

Assessing the Performance of
Becke’s Virial Exciton Model for
Charge-Transfer Excitations

The work presented in this current chapter has been published as an article: Xibo

Feng, Axel D. Becke, and Erin R. Johnson, Communication: Becke’s Virial Exciton

Model Gives Accurate Charge-Transfer Excitation Energies, J. Chem. Phys. 149,

231101 (2018).

Synopsis: First singlet (S1) excitations are of primary importance in the

photoluminescence spectra of organic chromophores. However, due to the multi-

determinantal nature of the singlet excited states, standard Kohn-Sham density-

functional theory (DFT) is not applicable. While linear-response time-dependent

DFT is the method of choice for the computation of excitation energies, it fails

severely for excitations with charge-transfer character. Becke’s recent virial exciton

model100 offers a promising solution to employ standard DFT for calculation of the

S1 excitation energy in molecular systems. Here, it is shown that the virial exciton

model is free of charge-transfer error. It is equally reliable for S1 excitations with

significant charge-transfer character as for other classes of transitions.
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4.1 Introduction

The photoluminescence of organic chromophores plays a fundamental role in

nature, with prominent examples being photosynthesis,203 vision,204 and biolumines-

cence.205 Recent applications of photoluminescent materials include development

of organic light-emitting diodes,8,9 fluorescent sensors,4,19 lasers,10 waveguides,206

and biomedical imaging.11,19 The first singlet (S1) electronic excitation is of

primary importance in photoluminescence spectra. Computational modeling of

these excitations is complicated as standard Kohn-Sham density-functional theory

(DFT)106 is not applicable to the S1 excited state due to its multi-determinant

nature. Linear-response time-dependent density-functional theory (TDDFT)45,46,118

is the predominant method employed for the calculation of S1, and higher, excitation

energies. However, TDDFT typically exhibits a severe underestimation of the

excitation energy (frequently in excess of 1 eV) when the excitation is of charge-

transfer (CT) character.97,119,181,182,207 This problem can be ameliorated using long-

range-corrected hybrid functionals, but the optimum range-separation parameter in

these functionals is extremely system dependent.200,202,208 Also, time-independent

methods as exemplified by the very recent work of the Van Voorhis group (see

Ref. 209 and references therein) are known which can handle CT excitations well.

We recommend Ref. 210 for extensive reviews of both time-dependent and time-

independent approaches to excited states in DFT.

Becke recently derived a simple model100 for the energy splitting between

the first singlet and triplet (S1-T1) excited states, and hence the S1 excitation

energy itself, based on the virial theorem.211 This “virial exciton model” only

requires conventional DFT calculations for the S0 ground state and the (single-

determinant) T1 excited state. It therefore represents a simple alternative to

TDDFT for calculation of the S1 excitation energy in molecular systems. For Thiel’s

benchmark set124 of 28 small-molecule excitation energies, the virial exciton model

achieves a mean absolute error (MAE) for S1 on par with TD-B3LYP (0.26 and

0.24 eV, respectively), relative to high-level correlated wavefunction reference data.

Remarkably, it significantly out-performs TD-B3LYP for S1 excitation energies of

polycyclic aromatic hydrocarbons,212 achieving a MAE of 0.13 eV, versus the TD-

B3LYP value of 0.31 eV.100
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Figure 4.1: The chemical systems investigated in this work. Shown are the
ethylene-tetrafluoroethylene (C2H4-C2F4) complex; the donor-acceptor molecules
4-dimethylamino-benzonitrile (DMABN), para-nitroaniline (p-NA), and N,N -
dimethyl-4-nitroaniline (DAN); and the intermolecular CT dimers between tetra-
cyanoethylene (TCNE) and each of benzene, toluene, o-xylene, and naphthalene.

In this work, the performance of the virial exciton model for systems that

feature S1 excitations of significant CT character will be assessed for the first

time. It is a two-step method, beginning with a conventional T1 excitation-

energy computation, followed by a simple two-electron integral correction. The

first step ensures, in large part, that the method does not suffer the CT failures

of TDDFT. Our benchmark set (see Fig. 4.1) consists of three subsets: (i) the

ethylene-tetrafluoroethylene intermolecular CT dimer that has been used as a

classic demonstration of TDDFT charge-transfer error;119 (ii) four intermolecular

CT dimers consisting of tetrafluoroethylene and aromatic hydrocarbons, for which

experimental S1 excitation energies are available;213,214 and (iii) three donor-acceptor

molecules featuring S1 excitations with intramolecular CT, for which high-level

correlated wavefunction benchmark data are available.215,216 The results show that

the virial exciton model is free of CT error.
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4.2 Theory

In the virial exciton model, the difference between the S1 and T1 excitation energies

is given by the following two-electron integral:

∆EST = H12 =

∫︂ ∫︂
d3r1d

3r2
ϕi(r1)ϕf (r1)ϕi(r2)ϕf (r2)

r12
, (4.1)

where ϕi and ϕf are the initial and final Kohn-Sham (KS) orbitals involved in

the single-electron excitation, respectively. This expression is the result of adding

a correlation correction to the uncorrelated S1-T1 splitting. In the following, we

briefly summarise how this result is derived.

For a non-interacting system, the S1-T1 excitation-energy difference is

∆E0
ST =

1

2

∫︂ ∫︂
d3r1d

3r2
∆Π0

ST(r1, r2)

r12
, (4.2)

where ∆Π0
ST(r1, r2) is the non-interacting pair-density difference between the S1 and

T1 states:

∆Π0
ST(r1, r2) = 4ϕi(r1)ϕf (r1)ϕi(r2)ϕf (r2). (4.3)

Substituting eq. 4.3 into eq. 4.2, one obtains

∆E0
ST = 2

∫︂ ∫︂
d3r1d

3r2
ϕi(r1)ϕf (r1)ϕi(r2)ϕf (r2)

r12
= 2H12. (4.4)

A correlation correction, ∆Ecorr
ST , must be added to ∆E0

ST to recover the correlated

S1-T1 splitting, ∆EST:

∆EST = ∆E0
ST + ∆Ecorr

ST . (4.5)

∆Ecorr
ST consists of kinetic and potential energy contributions:

∆Ecorr
ST = ∆T corr

ST + ∆V corr
ST . (4.6)

The quantum virial theorem states that, for a system at equilibrium, its kinetic (T )

and potential (V ) energies have the simple relation 2T = −V . This theorem is valid

for both the ground and excited states. It also equally applies to both the correlated

and uncorrelated systems. Therefore, this theorem can be used to simplify eq. 4.6
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and write

∆Ecorr
ST =

1

2
∆V corr

ST . (4.7)

Becke argued100 that electron correlation would have the effect of “smoothing

out” the S1-T1 non-interacting pair-density difference (eq. 4.3), reducing it to zero

everywhere. Correlation would then lower the potential energy of the S1 state,

relative to the T1 state, by ∆V corr
ST = −2H12. Thus,

∆Ecorr
ST = −H12 (4.8)

and substitution into eq. 4.5 gives the correlated S1-T1 splitting,

∆EST = 2H12 −H12 = H12, (4.9)

which is the result in eq. 4.1.

The S1 energy, ES1 , and the corresponding excitation energy, ∆E0S = ES1 −ES0 ,

can therefore be obtained from the energies of the S0 and T1 states and the H12

integral by

ES1 = ET1 +H12, (4.10a)

∆E0S = ET1 +H12 − ES0 = E0T +H12, (4.10b)

where ∆E0T = ET1 − ES0 is the triplet excitation energy. To evaluate ∆E0S, the

virial exciton model requires the energy of the S0 state, as well as a restricted-open-

shell (RO) calculation for the T1 state. The calculation must be RO in order to

uniquely define ψi and ψf .

4.3 Computational Details

The geometries of the four TCNE-aromatic dimers (B3LYP/cc-pVDZ),213 and

DMABN (B3LYP/6-31G*)216 were taken from the literature. The geometries of p-

NA and DAN were optimized using B3LYP/6-311G(d,p), consistent with Ref. 215.

The C2H4-C2F4 dimer geometry (C2v symmetry) was optimized using B3LYP/6-

31+G* at a fixed intermolecular separation of 4 Å. This intermolecular separation,

R, was defined by the distance between the midpoints of the two C=C bonds, as
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Figure 4.2: Calculated S1 excitation energy (E0S) as a function of the intermolecular
separation, R, for the C2H4-C2F4 dimer. The B3LYP functional was used for both
the TDDFT and virial exciton model calculations.
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shown in Figure 4.1, and was varied from 4.0 to 10.0 Å in 0.5 Å increments. Ground-

state, unrestricted and RO triplet-state, and TDDFT single-point calculations, were

performed on the optimized geometries of all species using B3LYP90/cc-pVTZ.

Configuration interaction singles (CIS)217 calculations were also performed using

the cc-pVTZ basis set for the C2H4-C2F4 dimer. The Gaussian 09 package175 was

employed throughout. An in-house “postG” program was used to compute the H12

integrals employing the numerical method of Becke and Dickson.218

4.4 Results and Discussion

4.4.1 C2H4-C2F4: A Classic CT Test

We first apply the virial exciton model to the C2H4-C2F4 intermolecular dimer,119

which is an established test of CT-excitation errors. The S1 excitation energy was

calculated for a range of intermolecular separations with the virial exciton model,

TD-B3LYP, and CIS. The results are shown in Figure 4.2.

CIS theory, which will serve as our benchmark, predicts a localized π → π⋆

transition on the ethylene molecule as the lowest-energy singlet excitation. In

contrast, various TDDFT calculations erroneously predict the intermolecular CT
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state to lie lower in energy.95,119 This causes TD-B3LYP to drastically underestimate

the S1 excitation energy over the entire range of intermolecular separations.

Moreover, because the TD-B3LYP S1 excitation has CT character, the excitation

energy shows a strong dependence on the intermolecular distance, as seen in

Figure 4.2. Conversely, the lowest-energy triplet excitation is localized on the

ethylene molecule and is of π → π⋆ character. As a result, the virial exciton model

is in good agreement with CIS over the entire range of intermolecular separations

and does not share the same CT breakdown displayed by TD-B3LYP.

Calculations were also attempted on the bacteriochlorin-zincbacteriochlorin

(ZnBC-BC) intermolecular dimer, which is the second complex popularized as a

demonstration of CT error.95 However, due to the near degeneracy of the first three

excited states,95 we have not yet been able to converge the RO triplet calculations

required for the virial exciton model.

4.4.2 TCNE-Aromatic Dimers and Push-Pull Dye Molecules

We now turn to a set of systems for which the S1 excitation does correspond to a CT

state. The S1 excitation energies were computed for four TCNE-aromatic CT dimers

and three donor-acceptor molecules featuring intramolecular CT excitations. The

resulting excitation energies, and related quantities required for the virial exciton

model, are tabulated in Table 1. The S1 excitation energies are compared to

experimental or high-level theoretical reference values.213,215,216

To verify that the T1 excited states in question indeed possess CT character,

we computed density differences relative to the S0 ground state. The results

are presented in Figure 4.3. For each of the four TCNE-aromatics dimers,

notable intermolecular CT is observed, with the electron density shifting from

the aromatic moiety to the TCNE molecule. DMABN, p-NA, and DAN all show

typical intramolecular, push-pull CT from the electron-donating to the electron-

withdrawing substituent.

Returning to Table 4.1, the S1-T1 energy splitting, given by the H12 integral,

ranges from 1.1-1.7 eV for these systems. One might expect a vanishing H12 integral

for CT excitations, as the ground-state frontier orbitals will be localised on either the

donor or acceptor moieties and will consequently have negligible overlap. However,

this is not the case, as the two singly-occupied molecular orbitals in the RO triplet
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Table 4.1: Calculated excitation energies, and related quantities, in eV. Absolute
errors from the literature reference values (∆ERef.

0S ) are given in parentheses.
Tabulated values are: the unrestricted and restricted T1 excitation energies (∆EU

0T

and ∆ERO
0T ), the H12 integral, the unrestricted and restricted S1 excitation energies

(∆EU
0S and ∆ERO

0S ), and the TD-B3LYP S1 excitation energies (∆ETD
0S ).

System ∆EU
0T ∆ERO

0T H12 ∆EU
0S ∆ERO

0S ∆ETD
0S ∆ERef.

0S

TCNE-benzene 2.27 2.41 1.55 3.82 (0.23) 3.96 (0.37) 1.91 (-1.68) 3.59213

TCNE-toluene 2.21 2.33 1.30 3.51 (0.15) 3.63 (0.27) 1.74 (-1.62) 3.36213

TCNE-o-xylene 2.14 2.25 1.12 3.26 (0.11) 3.37 (0.22) 1.48 (-1.67) 3.15213

TCNE-naphthalene 1.61 1.72 1.10 2.71 (0.11) 2.82 (0.22) 0.81 (-1.79) 2.60213

DMABN 3.33 3.41 1.66 4.99 (0.27) 5.07 (0.35) 4.31 (-0.41) 4.72216

p-NA 3.12 3.17 1.46 4.58 (0.19) 4.63 (0.24) 3.50 (-0.89) 4.39215

DAN 2.91 2.97 1.37 4.28 (0.34) 4.34 (0.40) 3.19 (-0.75) 3.94215

MAE 0.20 0.29 1.26 –

calculations are delocalised over both moieties and have substantial overlap.

Table 4.1 shows that TD-B3LYP drastically underestimates the CT excitation

energies, as expected, with a MAE of 1.26 eV. For all seven systems, the virial

exciton model provides significantly more accurate CT excitation energies than

TD-B3LYP, with a MAE of 0.29 eV. An even lower MAE of 0.20 eV can be

achieved by adding H12 (which must be computed from the RO triplet orbitals)

to the unrestricted T1 excitation energy. Contrary to the typical underestimation

by TDDFT methods, the virial exciton model systematically overestimates the CT

excitation energies in Table 4.1. This is possibly a result of using the cc-pVTZ basis

set, which lacks diffuse functions. The CT nature of the present excitations results

in anionic moieties in the excited states, which will be preferentially stabilised by

the addition of diffuse functions. Unfortunately, the RO triplet calculations are

somewhat difficult to converge with the present basis set, and addition of diffuse

functions greatly exacerbates the problem. This emphasizes the importance of

improving self-consistent-field algorithms for RO calculations, as one must be able to

efficiently converge to the correct triplet state before applying the virial correction.

Regardless, the performance of the virial exciton model is impressive and confirms

that it does not suffer from the same intrinsic CT errors as TDDFT.
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Figure 4.3: Computed T1-S0 density differences for the TCNE-aromatic dimers and
donor-acceptor molecules. Violet (green) isosurfaces represent an increase (decrease)
in electron density in the T1 state relative to the S0 state. The isovalues are
±0.001 a.u.

TCNE-benzene TCNE-toluene TCNE-o-xylene TCNE-naphthalene

DMABN p-NA DAN

4.5 Conclusions

In this work, the accuracy of Becke’s virial exciton model was assessed for CT

excitation energies. The results demonstrate that the model is free of the systematic

CT errors that plague conventional TDDFT methods. For a benchmark set

consisting of four intermolecular TCNE-aromatic dimers and three donor-acceptor

molecules, the virial exciton model achieves an overall MAE of 0.29 eV (or 0.20 eV

using unrestricted T1 energies) compared to literature reference data, significantly

improving upon the accuracy of the widely used TD-B3LYP method. This error is

roughly on par with the MAE of 0.26 eV previously obtained100 for Thiel’s small-

molecule excitation data set.124 We therefore conclude that the virial exciton model

can be reliably used to predict S1 excitation energies in molecular systems, even for

excitations with CT-character. See, also, the very recent application of the model

to computation of the optical gap in polyacetylene.219
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Chapter 5

A Novel Computational
Methodology for Modeling
Solid-State Excitations: Design
and Initial Testing

5.1 Design of the Computational Framework

It is our intention to design a fully ab initio (i.e. first-principles) computational

methodology. The underpinning theoretical method is ground-state KS-DFT, which

is carried out via a combination of the PW-PAW implementation of periodic-

boundary calculations on the crystalline solid and non-periodic calculations on

isolated molecules. The various stages of calculations are described in detail in

the following subsections.

5.1.1 Solid-State Calculations: The Ground State

We start by extracting the experimental crystal structures of our chromophores of

interest from the Cambridge Crystallographic Data Centre (CCDC).196 The first

step of the calculations is to optimize the geometry of the crystal unit cell using

periodic-boundary DFT with the PAW formalism, implemented in the Quantum

ESPRESSO (QE) program.101 In order to accurately model the intermolecular

interactions in the crystal structure, we use the well-tested B86bPBE exchange-

correlation functional88,107 in conjunction with the XDM dispersion correction

model.104 B86bPBE-XDM has been found to yield an optimal description of non-

covalent interactions in solids.154
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5.1.2 Solid-State Calculations: The First Triplet State

After obtaining the optimized ground-state geometric structure and ground-state

energy, Ecrystal
0 , we model the first triplet-state energy of the crystal. An initial

spin-magnetization bias220 is assigned to one molecule within the unit cell to let the

SCF calculation converge to the first triplet excited state, with energy Ecrystal
T . The

first triplet excitation energy of the crystal is then

Ecrystal
0T = Ecrystal

T − Ecrystal
0 . (5.1)

To model the emission process, we allow relaxation of the atomic positions in the

unit cell during the spin-magnetization calculation. The relaxed triplet excited state

corresponds to the state at the initiation of the photonic emission.

5.1.3 Gas-Phase Calculations

Having optimized the ground-state crystal structure, we select a single moiety in the

crystal unit cell to model the singlet excitation. This moiety could be either a single

molecule or a charge donor-acceptor dimer, depending on the nature of the singlet

excitation being modeled, and is excised from the crystal structure using the critic2

program.197,221 Gas-phase Gaussian 09175 single-point energy calculations are then

performed on both the ground and first triplet states of the excised moiety. The

restricted open-shell (RO) formalism is used for the first triplet state and the .wfn

(wavefunction) file is written at the end of the SCF procedure to obtain orbitals

for the singlet-triplet energy splitting. Additionally, the spin-density distribution

obtained for the first triplet state can be used to determine the initial magnetic

biases to be assigned to each atom of the excited moiety in the aforementioned

solid-state calculations.

5.1.4 Determination of the First Singlet Excitation Energy

Finally, we apply Becke’s virial exciton model to calculate the energy splitting

between the T1 and S1 excited states of the excised molecular moiety, ∆Emol
ST . The

calculation of ∆Emol
ST (i.e. Eq. 2.46) is performed numerically using the method

of Becke and Dickson218 via an in-house “postG” code. The expansion of the

HOMO and LUMO orbitals in terms of the Gaussian basis functions, contained
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in the wavefunction (.wfn) files written during the RO triplet-state calculations, are

required as input. We assume that the crystal environment affects both the first

singlet and triplet excited states very similarly, such that

∆Emol
ST ≈ ∆Ecrystal

ST . (5.2)

Such an assumption should be valid, as photon-induced single-electronic excitations

generally produce very similar total electron densities for the lowest singlet and

triplet excited states,222–224 which differ from each other by a mere spin-flip of the

excited electron. Given this key assumption, ∆Emol
ST can be used to recover the first

singlet-excitation energy in the crystal:

Ecrystal
0S = Ecrystal

0T + ∆Ecrystal
ST ≈ Ecrystal

0T + ∆Emol
ST . (5.3)

Lastly, it is useful to note that Becke’s scheme was conceptualized for isolated

molecular systems with localized molecular orbitals. This makes its direct

application to simple inorganic solids (such as silicon and diamond) with fully

delocalized electronic energy bands infeasible. Despite this, we are confident

that Becke’s scheme is perfectly transferable to calculating the T1-S1 splitting for

molecular crystals. Unlike periodic inorganic solids, where the entire material is

connected via covalent bonds, distinct molecular moieties can be clearly identified

in organic molecular crystals. These constituent moieties are held together via non-

covalent intermolecular interactions and, consequently, they have significant degrees

of autonomy. Thus, the electronic orbitals closely resemble those of isolated gas-

phase molecules and remain highly localized around their respective constituent

molecules in the crystal lattice. This high similarity in terms of orbital localization

supports the virial exciton model’s transferability from gas-phase molecules to

molecules within organic solids.
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5.2 Preliminary Tests on Ethylene and

Nucleobase Crystals

Our first task is to test the viability and the robustness of the proposed methodology.

To provide a proof-of-concept, we have chosen five simple crystals with archived

structures225,226 to carry out preliminary calculations: ethylene, thymine, cytosine,

adenine, and uracil, the molecular structures of which are shown in Figure 5.1.

Ethylene is chosen for the obvious reason of simplicity, allowing for fast testing of

the computational scheme. The four nucleobases, while still possessing moderate

unit-cell sizes, feature strong hydrogen bonding in the crystalline phase. This is of

particular interest as we aim to quantify the effect of the intermolecular interactions

in the crystalline environment on the excitation energies.

Figure 5.1: The systems chosen for the preliminary tests. The CCDC196

codes for their crystal structures are labeled in the parentheses. The ethylene
crystal structure was extracted from the Crystallography Open Database (COD).225

Specific goals for these preliminary tests are: (i) to demonstrate that the

predicted first triplet (and therefore the first singlet) excitation energies of the

crystals converge with increasing unit cell sizes and (ii) to quantify the effect of the

crystalline environment on the first singlet excitation energies of the tested systems.

Preliminary calculations were performed for both the crystals and excised
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molecules of ethylene and the four nucleobases (A, T, C, U). QE periodic-boundary

calculations used the B86bPBE-XDM method with Ecut,wfn = 60 Ry and Ecut,ρ = 600

Ry. Gaussian 09 calculations on the excised molecules used the B3LYP functional

and the cc-pVTZ basis set.227 Becke’s virial exciton model was used to correct the

crystalline-phase first triplet excitation energies towards the first singlet excitation

energies.

5.2.1 Super-Cell Size Effect

We first probed the effect of super-cell size on the first triplet excitation energy

(Ecrystal
0T ) of our test crystals. After ground-state optimizations, the original 1×1×1

unit cells were replicated to form Nx × Ny × Nz super cells, where Nx, Ny and Nz

denote the numbers of replications in the x, y, and z directions, respectively. Initial-

magnetization biases were assigned to one molecule in each super-cell expansion

and the first triplet excitation energy was then calculated according to eq. 5.1. The

results are presented in Table 5.1.

It is clear from the results that variations in Ecrystal
0T with respect to the super-cell

size are minimal, being well under 0.1 eV in magnitude in the vast majority of cases.

This implies that the interactions of the triplet-excited molecule with its translated

images in neighboring super cells have a negligible effect on Ecrystal
0T . The density

differences between the ground and first triplet states were visualized for the excised

molecules and crystals of all cell sizes using the VMD program.228 For the outliers

with a Ecrystal
0T shift greater than 0.1 eV, the density differences corresponded to

a delocalized triplet state in the crystal. Such a delocalized triplet state was also

found for the 1×1×3 super cell of uracil, even though its Ecrystal
0T only deviates from

the 1 × 1 × 1 unit cell by less than 0.03 eV. These results indicate that, in future

crystalline-phase calculations, using the 1 × 1 × 1 unit cell should be adequate as

the cell size has a negligible effect on Ecrystal
0T .

Density-difference plots for all 1 × 1 × 1 unit cells are shown in Figure 5.2

and compared with the results for the excised molecules. The density-difference

plots for the three super cells possessing a delocalized triplet state are shown in

Figure 5.3. Overall, our magnetized, solid-state calculations were able to converge

to first triplet states that highly resemble the gas-phase RO triplet-state results,

confirming the validity of our approach. Meanwhile, we should be mindful of the
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Figure 5.2: Density differences between the ground and first triplet states: 1× 1× 1
unit cells (left) vs excised molecules (right). The purple (green) isosurfaces represent
regions with increased (decreased) electron density in the first triplet state. The
density isovalues are +/-0.005 a.u. for all cases except for ethylene, where +/- 0.01
au. are used. Coloring scheme: C, black; H, gray; N, blue; O, red. The unit cells
are delineated by the red boxes. Cell orientations have been adjusted for optimal
views of the density differences.

(a) ethylene (b) cytosine

(c) thymine (d) uracil

(e) adenine
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Table 5.1: First triplet excitation energies calculated for various super-cell expan-
sions of the test crystals. One molecule in each super cell was assigned an initial
magnetic bias. Ecrystal

0T shift denotes the shift in the triplet excitation energy from
that of the original 1 × 1 × 1 cell. For super cells labeled with a ∗, a delocalized
triplet state was obtained from the magnetized calculation. All energies are in eV.

Crystal Super cell Ecrystal
0T Ecrystal

0T shift

ethylene

1 × 1 × 1 4.42 0.00
1 × 1 × 2 4.36 -0.06
1 × 2 × 1 4.42 -0.00
2 × 1 × 1 4.41 -0.01
1 × 2 × 2 4.36 -0.07
2 × 1 × 2 4.36 -0.07
2 × 2 × 1 4.42 -0.00
2 × 2 × 2∗ 4.62 0.20

cytosine
1 × 1 × 1 3.50 0.00
1 × 1 × 2 3.51 0.01
1 × 1 × 3 3.50 0.00

adenine
1 × 1 × 1 3.15 0.00
1 × 1 × 2 3.13 -0.02
2 × 1 × 1 3.12 -0.03

thymine

1 × 1 × 1 3.32 0.00
1 × 1 × 2∗ 3.44 0.12
1 × 2 × 1 3.32 0.00
2 × 1 × 1 3.32 0.00
1 × 2 × 2 3.32 0.00

uracil
1 × 1 × 1 3.46 0.00
1 × 1 × 2 3.41 -0.05
1 × 1 × 3∗ 3.43 -0.03

potential inconsistency between the first triplet states obtained from the crystalline-

and gas-phase calculations due to charge delocalization in the extended crystal

lattice, although we expect the effect of such charge delocalization on Ecrystal
0T to

remain minor for systems of practical interest. Excessive charge delocalization is a

common artifact of the GGA density functionals,183,185,229,230 including B86bPBE.

5.2.2 Quantification of Crystalline-Environment Effects

We quantified the effect of the crystalline environment on E0T for our test crystals

to gauge its relative significance. This was achieved by performing additional PW-

PAW calculations on the excised molecules by placing them in a very large cubic unit
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Figure 5.3: Density differences between the ground and first triplet states for super
cells that converged to a delocalized first triplet state. The purple (green) isosurfaces
represent regions with increased (decreased) electron density in the first triplet state.
The density isovalues are +/-0.002 a.u. for all cases. Coloring scheme: C, black;
H, gray; N, blue; O, red. The unit cells are delineated by the red boxes. Cell
orientations have been adjusted for optimal views of the density differences.

(a) ethylene (2×2×2) (b) thymine (1× 1× 2) (c) uracil (1× 1× 3)

cell comprised mostly of vacuum. The sizes of vacuum cells were chosen such that

the total ground-state energy was converged to within 0.001 eV and correspond to

30×30×30 Å3 for ethylene and 40×40×40 Å3 for the nucleobases. The calculated

first triplet excitation energies of the isolated molecules in vacuum, Evacuum
0T , were

compared to the Ecrystal
0T values. The results are presented in Table 5.2.

Table 5.2 shows that, while rather small in magnitude, the effect of crystalline

environment on E0T is non-trivial. This is especially true for the nucleobases

featuring strong intermolecular H-bonding, where the absolute values of Ecrystal
0T −

Evacuum
0T can be as large as 0.3 eV. Also intriguing is that the crystalline environment

can shift the E0T values either higher or lower, which potentially indicates a

competition between H-bonding and other intermolecular interactions within the

crystalline environment. One can reasonably expect that the relative significance of

the crystalline-environment effect will manifest to greater degrees in cases such as

polymorphs and co-crystals, where intermolecular interactions are likely the primary

driving force behind the subtle shifts in the absorption/emission spectra.

The first singlet excitation energies, Ecrystal
0S , for the 1×1×1 unit cells of ethylene

and the four nucleobases were calculated using Eq. 5.3. The results are presented

in Table 5.3. Unfortunately, we are unable to assess the quality of our Ecrystal
0S
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Table 5.2: Quantification of the crystalline-environment effect on Ecrystal
0T . The

differences between the first triplet excitation energies in the crystal and vacuum,
Ecrystal

0T −Evacuum
0T , are used to indicate the magnitude of the crystalline-environment

effect. All energies are in eV.

Crystal Evacuum
0T Ecrystal

0T Ecrystal
0T − Evacuum

0T

ethylene 4.47 4.42 -0.05
cytosine 3.34 3.50 0.16
adenine 3.44 3.15 -0.29
thymine 3.26 3.32 0.06
uracil 3.35 3.46 0.11

Table 5.3: The first singlet excitation energies (Ecrystal
0S ) calculated for the 1 × 1 × 1

unit cells of the test crystals using Becke’s scheme. ∆Emol
ST denotes the energy gap

between the first triplet and singlet excited states of the excised molecules. All
energies are in eV.

Crystal Ecrystal
0T Ecrystal

0S ∆Emol
ST

ethylene 4.42 7.76 3.34
cytosine 3.50 4.78 1.28
adenine 3.15 4.77 1.62
thymine 3.32 5.21 1.89
uracil 3.46 5.34 1.88

predictions due to the lack of experimental/theoretical benchmark values for the

crystals involved in these preliminary tests. In Chapters 6 and 7, we apply the same

approach to more crystals with experimentally measured absorption or emission

energies to benchmark its predictive accuracy.
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Chapter 6

Computational Modeling of
Piezochromism in Molecular
Crystals

The work presented in this current chapter has been published as an article:

Xibo Feng, Axel D. Becke, and Erin R. Johnson, Computational Modeling of

Piezochromism in Molecular Crystals, J. Chem. Phys. 152, 234106 (2020).

Synopsis: Piezochromic materials, whose luminescence responds to external

pressure, have recently garnered much experimental attention. Computational

modeling of piezochromism is of high theoretical interest, yet currently lacking.

Herein, we present a computational effort to predict the piezochromism for a

selection of molecular crystals. The current methodology employs a combination of

dispersion-corrected solid-state and gas-phase density-functional theory (DFT), and

Becke’s virial exciton model. Our study finds that piezochromism is primarily driven

by the modification of intermolecular interactions within the molecular crystal and

can be understood from the perspectives of changing polarizability or band gaps

upon the application of mechanical pressure.

6.1 Introduction

Piezochromism231 refers to changes in the photoluminescence (PL) wavelength

and/or intensity of certain molecular crystals in response to the external stimulus

of mechanical pressure (grinding or hydraulic pressure). Molecular crystals that
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Figure 6.1: Molecular structures of the investigated piezochromic crystals, with
their Cambridge Crystallographic Data Centre196 (CCDC) identifiers included in
parentheses. 1: Tetrathiazolythiophene, 2: boron diketonate, 3: 2,7-diaryl-
[1,2,4]triazolo[1,5-a]pyrimidine (2,7-diaryl-TAP). For 1, two crystal structures were
reported, one measured under ambient pressure (FIFGUY01), and the other
(FIFGUY02) under 2.8 GPa of isotropic hydraulic pressure.28

display piezochromism have attracted considerable research attention, due to their

potential applications in fields such as mechano-sensors,232,233 memory devices,234,235

and optoelectronics.236,237 The potential utility of many piezochromic materials also

lies in the fact they concurrently possess aggregation-induced emission2,57 (AIE),

meaning that their PL is significantly enhanced in the crystalline form relative

to a dilute solution. It has been hypothesized that piezochromic behaviors could

be induced when the inter- or intra-molecular environment within the crystal is

modulated through the change in the crystal packing mode, or simply spatial

constriction, when external pressure is applied.238–240

Computational investigation of piezochromism in molecular crystals is theoreti-

cally intriguing, as it represents a challenging case where the interplay of multiple

inter- and intra-molecular factors might drive the modification of the electronic

structure in the solid state, which is manifested by shifts in the crystals’ luminescent

properties. Despite much experimental effort to synthesize and characterize a variety

of novel molecular crystals showing significant piezochromism,26,238–243 theoretical

modeling and rationalization of this phenomenon is currently limited.244 We suspect

that this is primarily due to complications in applying the popular time-dependent

density-functional theory (TDDFT45,46) method to periodic solids.

Figure 6.1 shows the molecular structures of the three investigated molecular
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Table 6.1: Experimental PL properties and piezochromism of the investigated
molecular crystals. λemi

max: emission maximum wavelength; ∆Eemi: emission energy.

Species Ambient pressure Highest pressure Max. PL Piezochromism Ref.
λemi
max (nm) ∆Eemi (eV) Pmax (GPa) λemi

max (nm) ∆Eemi (eV) shift (eV) type
1 556 2.23 3.20 609 2.04 0.19 Rev. red shift 28
2 585 2.14 5.77 660 1.88 0.26 Rev. red shift 29
3 524 2.37 14.5 676 1.83 0.53 Rev. red shift 30

crystals. Organic chromophores 1,28 2,29 and 330 have been previously synthesized

and crystallized. These crystals’ experimentally-observed PL properties and

piezochromic behaviors are summarized in Table 6.1. Note that all three molecular

crystals display a gradual red shift in the PL maximum wavelength under increasing

isotropic hydraulic pressure. Such a red shift appears to be generally observed in the

experimental literature. For the investigated crystals, this red shift is also reversible,

i.e. the original PL maximum wavelength measured at ambient pressure is restored

once the applied hydraulic pressure is removed.

6.2 Computational Methods

We employ a multi-step approach in this work involving standard density-functional

theory (DFT) calculations on the target molecular crystals and on excised gas-phase

molecular moieties. The crystals are modeled with the plane-wave formalism and

projector augmented-wave132 (PAW) atomic datasets. Computations are performed

for the ground state (S0) and the first excited triplet state (T1), the latter using

constrained magnetization to localize the excitation. A correction is then applied

to the T1 energy to obtain the first singlet (S1) excited-state energy from gas-phase

excised molecular calculations. The correction, or S1-T1 gap, is based on the virial

exciton model of Becke100 and the assumption that the excitation is localized on

molecular sites in the crystal.

The S1-T1 gap is represented by the two-electron H12 integral (denoted as Kif in

Ref. 100) and computed as the exchange integral involving the two singly occupied

frontier orbitals of the molecular T1 state:

H12 =

⟨︃
ϕa(1)ϕb(2)

⃓⃓⃓⃓
1

r12

⃓⃓⃓⃓
ϕa(2)ϕb(1)

⟩︃
. (6.1)
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The virial exciton model has the advantage of computational simplicity, while also

eliminating errors seen with TDDFT for charge-transfer excitations.245 It is assumed

that the total electron densities in the T1 and S1 states are very similarly affected

by the surrounding crystalline environment, so that the H12 value calculated in the

gas phase for an extracted molecular moiety can be used to approximate the S1-

T1 energy gap of the molecular crystal. Thus, the singlet excitation energy in the

crystal can be approximated as

∆Ecryst
0S = ∆Ecryst

0T +Hmol
12 , (6.2)

where ∆Ecryst
0T is computed from periodic-boundary DFT and Hmol

12 from finite-

molecule calculations.

The virial exciton model itself also relies on the assumption that the T1 and

S1 states have similar densities in the computation of the singlet-triplet splitting,

H12.
100 This assumption is based on the fact that the T1 and S1 states have identical

orbital occupations, differing only in the spin of one electron, and is supported by the

success of the model. One would expect the largest singlet-triplet density differences

to occur for the smallest systems. The error introduced for the helium 1s2s singlet-

triplet splitting is 0.20 eV,100 and much smaller errors are expected for large organic

molecules. Additionally, following our previous work,246 the effect of excitation on

the dispersion component of the lattice energy may be determined using the critic2

program.197 The computed dispersion coefficients for a single ground-state molecule

within the crystal lattice are replaced with the corresponding values for the T1 or S1

state, and the resulting intermolecular dispersion energy evaluated. The molecular

excited-state densities were obtained from SCF calculations for T1 and from TDDFT

for S1, and the dispersion coefficients evaluated using the postg program.194 For the

three compounds considered here, the T1 state experiences slightly greater dispersion

interactions within the crystal; however, the lattice-energy differences are extremely

small (viz. 0.02-0.10 kcal/mol). This supports our assumption that the S1 and

T1 states will experience sufficiently similar intermolecular interactions with the

surrounding crystal lattice.

Figure 6.2 sketches the overall computational framework. We first optimized

the S0 geometries of the experimentally reported crystal structures, taken from the

80



Figure 6.2: The computational scheme employed in this work.

Exp. Crystal Structure

Solid-State S0 (for

Absorption) or T1 (for

Emission) Geometry

Optimization (QE)

Gas-Phase S0, T1

Single-Points on Excised

Molecular Moieties (G09)

Solid-State Spin-

Magnetized T1 (QE)
Becke’s Virial

Exciton Model

∆E0S Prediction from Eq. 6.2

CCDC.196 After the initial S0 geometry optimizations, the crystal lattices were cut

into (symmetry equivalent) molecular moieties using the critic2 program.197 One

single molecule was chosen, upon which single-point gas-phase calculations on the S0

and T1 (restricted open-shell, RO) states were performed. The resulting T1 frontier

orbitals were used to calculate the H12 integral. The initial spin-density biases used

in the spin-magnetized calculation on the T1 state in the crystal were then assigned

based on the gas-phase RO spin-densities. To acquire the absorption energy, a

single-point spin-magnetized T1 calculation sufficed. For emission, spin-magnetized

T1 geometry optimization was performed, and the H12 integral was calculated again

for the molecular moiety excised from the T1-optimized crystal lattice.

All calculations on the molecular crystals were performed with the B86bPBE

functional,88,107 in conjunction with the exchange-hole dipole moment (XDM)

model102,103,154 dispersion correction. The Quantum ESPRESSO101 (QE) package

was used for these solid-state calculations. The press keyword was used to designate
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the isotropic pressure applied to the crystal lattice. For all QE calculations, the well-

converged 2 × 2 × 2 Monkhorst-Pack127 k-point mesh and planewave cutoff values

of 80 and 800 Ry for the wavefunction and density, respectively, were used. All

PAW datasets were generated via the atomic code by Dal Corso.247 Gas-phase

calculations on the molecular moieties were performed for the S0 and restricted

open-shell T1 states with the B3LYP90 (for 1 and 2) and the BHandHLYP248 (for 3,

due to B3LYP’s failure in RO convergence) functionals, using the Gaussian 09 (G09)

package.175 Molecular polarizabilities were calculated for the S0 and unrestricted T1

states, with the B3LYP functional for all compounds, using the polar keyword. The

Dunning-style cc-pVDZ basis set227 was used for all G09 molecular calculations. An

in-house program, which employs the numerical integration method of Becke and

Dickson,218 was used to calculate the H12 integrals.

6.3 Results and Discussion

6.3.1 Replication of Piezochromism

Applying our computational scheme, we obtained the absorption/emission energies

for each crystal under a series of pressure values. The pressure ranges considered

for the four crystal structures are: FIFGUY01/FIFGUY02 (1): 0.0-4.0 GPa (in 0.5

GPa increments); XAPLUY (2): 0.0-6.0 GPa (in 0.5 GPa increments); IXICUP (3):

0-15 GPa (in 1 GPa increments). The emission energies as functions of pressure

are presented in Figure 6.3, with comparison to the experimental emission data

extracted from literature.28–30 Similar results were also obtained for the absorption

energies versus pressure, as shown in the Supplementary Information. For each

molecular crystal, red shift of the emission from the absorption is predicted for the

entire pressure range, in agreement with the experimental observations.

Overall, our calculations were able to replicate the piezochromism of the modeled

molecular crystals. As Figure 6.3 shows, the calculated emission energies red shift

with increased external pressure for all four molecular crystals, which is consistent

with the experimentally observed trends. Note that the calculated “compression

curves” for the excitation energies are smooth. This suggests a gradual and reversible

red shift of the excitation energy as the external pressure is increased within the

calculated range, which also agrees with experimental observations. We point out
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that the results for the two crystals of 1 (FIFGUY01 and FIFGUY02) are essentially

identical, which indicates that the geometry optimizations correctly “linked” the two

ends of the same reversible compression cycle.28 Compression from the low-pressure

structure and decompression from the high-pressure structure lead to identical

piezochromic behavior; for this reason, we shall report only on FIFGUY01 in our

further discussions.

Figure 6.3: Calculated emission energies (∆Eemi
0S ) versus applied pressure, decom-

posed into the triplet-excitation (∆Eemi
0T ) and the Hmol

12 integral contributions. The
triplet excitation energies for the excised molecules (∆Emol

0T ) are also shown. The
calculated results are compared to experimentally-measured emission energies under
varying pressure (∆Eexp

0S ).
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In terms of eV-accuracy, our predictions over-estimate the experimental emission
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Table 6.2: Calculated emission piezochromism, showing both the total red shift (eV)
and red shift per unit pressure (eV/GPa). Results, linearly fit and interpolated to
match the full experimental pressure ranges, are shown for both the full calculations
of the S1 excitation energy (∆Eemi

0S ) and the T1 band gaps (∆Egap
T1 ). The band-

structure calculations correspond to the difference between valence and conduction
band edges from the ground-state electronic configuration, using the T1 geometries
for each applied pressure. Experimental data are given for comparison.

Species Total red shift Shift per unit pressure
∆Eemi

0S ∆Egap
T1 Expt. ∆Eemi

0S ∆Egap
T1 Expt.

1 0.14 0.13 0.19 0.044 0.041 0.059
2 0.22 0.27 0.26 0.038 0.047 0.045
3 0.48 0.52 0.53 0.033 0.036 0.037

energies by ca. 0.40 eV for 1 and 0.25 eV for 2, while an under-estimation by ca.

0.45 eV occurred for 3. These errors are comparable to those previously obtained for

three organic push-pull molecules (0.24-0.40 eV).245 However, the relative changes

in ∆Eemi
0S with pressure are in more impressive agreement with experiment. As

shown in Table 6.2, the predicted magnitudes of the piezochromic red shifts and

their pressure derivatives (i.e. the slopes of the emission compression curves) match

very closely to the experimental data.

By decomposing our calculated singlet-excitation energies into the triplet-

excitation and H12 integral contributions, as in Figure 6.3, it can be argued that the

piezochromism of the investigated molecular crystals is driven by pressure-induced

changes in the intermolecular interactions. For each compound in Figure 6.3, the

values of the H12 integrals and intramolecular triplet excitation energies are nearly

constant with respect to pressure. Thus, the overall piezochromic red shift is

determined primarily from the solid-state triplet excitation energy. These results

indicate the importance of properly accounting for the non-covalent, intermolecular

interactions within the crystal lattice when modeling piezochromism.

6.3.2 Origin of the Universal Red Shift

One intriguing observation from both the experimental and calculated excitation-

energy data is the consistent finding of a red shift with increased isotropic pressure.

The fact that this red-shift behavior is shared by most other reported piezochromic

molecular crystals in the experimental literature implies the universality of its origin.
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We suggest that the piezochromic red shift can be rationalized from two different

perspectives: molecular and solid-state.

Figure 6.4: Potential energy curves for the S0 and S1 states of the molecular crystals
as functions of applied pressure.
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6.3.2.1 The Molecular Polarizability Perspective

From a molecular point of view, one might suspect that the piezochromic red shift

could be caused by the difference in the response of the molecule in the ground

or excited state to increasing pressure. The ground- and excited-state energies are

each expected to increase with pressure due to confinement effects, as shown in

Figure 6.4 (note that the S1 curves are directly above the T1 for XAPLUY and

IXICUP). However, the energy of the ground state is raised to a larger degree than

the excited states when the surrounding crystal lattice is compressed, reducing the

excitation energy and leading to a pressure-induced red shift. This result can be

explained if the excited-state molecule, which typically possesses a more diffuse

electronic density than the ground state, is more able to polarize itself to adapt to

increasing spacial constriction. Applied pressure increases Pauli repulsion between

molecules. The densities of highly malleable (i.e. highly polarizable) molecules are

better able to adjust themselves to avoid density overlaps and hence reduce Pauli

repulsion. This reasoning is akin to a similar polarization argument made by Feng

et al. in their experimental work.240

To validate the hypothesis of the excited states being more polarizable, we calcu-

lated the polarizabilities of the excised molecules in both S0 and T1 states. Results

for both the zero-pressure absorption and emission geometries are summarized in
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Table 6.3: Molecular S0 and T1 polarizabilities (in a.u.) calculated for the excised
molecules at zero pressure, using the crystal geometries obtained for either the
absorption or emission.

Species S0 Polarizability T1 Polarizability
Abs. Emi. Abs. Emi.

1 301 327 381 372
2 390 393 591 588
3 303 310 508 500

Table 6.3. At zero pressure, the polarizability of the excised molecular moiety is

significantly higher for the T1 state than for the S0 state of each species. The

same trend holds for the full pressure ranges as well, albeit both the S0 and T1

polarizabilities decline slightly at higher pressures (see Supplementary Information).

Thus, for the investigated species, the single molecule becomes more polarizable in

the excited state, which induces the piezochromic red shift of the excitation energy

via reduction of intermolecular repulsion. However, there is no direct correlation

between the T1-S0 polarizability difference and the red shift per unit pressure, which

is expected as the extent of compression will be highly anisotropic, depending on

the molecular packing.

6.3.2.2 The Solid-State Band Structure Perspective

Alternatively, when one considers the entire crystal lattice, it is also of potential

value to probe the effect of increased pressure on the calculated band structure. We

might reasonably expect that external pressure will change (even if only slightly)

the band gap of the compressed crystal. The crystal band gap is directly linked

to the first-singlet excitation energy and the behavior of a molecular crystal’s band

gap under pressure could indicate its piezochromism. We hence conducted standard

ground-state band-structure calculations for the investigated molecular crystals over

the entire range of applied pressures. In each case, up to 6 bands above the

conduction band edge were calculated. The resulting bands are extremely flat,

as expected for molecular systems; representative band structures are shown in the

Supplementary Information.

Figure 6.5 shows the variation in the valence and conduction band edges, which

correspond to the highest-occupied and lowest-unoccupied bands, computed at the
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Figure 6.5: Valence and conduction band edges, and band gaps, of the molecular
crystals as functions of applied pressure, using the T1 geometries.
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T1 (emission) optimized geometries. These individual band energies both increase

with pressure, due to molecular confinement. The crystal band gap values were

extracted from the calculated band structure and are also plotted in Figure 6.5. The

band gaps are consistently lower than the T1 excitation energies obtained from the

difference in self-consistent energies, as expected for the type of density-functional

approximation used.249–252 The band gaps for all three crystals smoothly decrease

with pressure, in agreement with the observed piezochromism. The maximum

emission red shifts are compared with the full computational results and the

experimental data in Table 6.2. The red shifts in the band gap and in the full

S1 excitation energy with pressure are virtually identical for all three molecular

crystals. Thus, we can view the pressure-induced closing of the band gap as driving

piezochromism.

6.4 Conclusion

In this work, a novel computational scheme, combining solid-state and gas-phase

DFT and Becke’s virial exciton model, was proposed and applied to predict the

piezochromism for a selection of molecular crystals. Our results indicate that

the proposed method correctly captures the experimentally observed piezochromic

red shifts. The magnitudes of the red shifts, and their rates of change with

applied pressure, were predicted with impressive accuracy. Our calculations also

revealed that the piezochromism observed for the investigated molecular crystals
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is predominantly a result of pressure modulation of the intermolecular interactions

within the crystal lattice. Further, theoretical insights into the origin of the universal

piezochromic red shift were gained. We found that the piezochromic red shift could

be rationalized from two perspectives: i) molecular, as the polarizability of the

excited moiety consistently increases upon excitation, preferentially stabilizing the

excited state upon compression; and ii) solid state, as closing of the crystal band

gap under increasing pressure is consistently predicted. We hope that this work

will contribute to the understanding of piezochromism and electronic excitations

in molecular crystals in general, and aid the design of novel molecular crystals

displaying PL properties of potential applicability.

Supplementary Material

The reader may consult Appendix A for supplementary material to this work,

which includes: calculated absorption energies as functions of pressure; molecular

polarizabilities for the S0 and T1 states as functions of pressure; valence and

conduction band edges and band gaps as functions of pressure using the solid-state

S0 geometries; and representative zero-pressure band structures.
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Chapter 7

Polymorph- and
Coformer-Dependent Electronic
Excitations in the Solid State: A
Theoretical Perspective

The work presented in this current chapter has been published as an article:

Xibo Feng, Axel D. Becke and Erin R. Johnson, Theoretical Investigation of

Polymorph- and Coformer-Dependent Photoluminescence in Molecular Crystals,

CrystEngComm 23, 4264-4271 (2021).

Synopsis: Polymorph- and coformer-dependent photoluminescence (PL) are among

the variety of novel solid-state PL phenomena recently observed in many molecular

crystals. They are of particular research interest due to their direct connections

to two heavily investigated topics in crystal engineering: polymorphism and

cocrystalization. Herein, we apply a novel computational methodology, initially

proposed and successfully applied in our previous investigation of piezochromism,

to theoretical modeling of the polymorph- and coformer-dependent PL in the well-

known ROY polymorphs and the recently synthesized 9-acetylanthracene (9-ACA)

cocrystals, respectively. Our methodology offers satisfactory prediction of the

experimentally observed color zoning for the ROY polymorphs and provides good

qualitative and quantitative accuracy for the emission (fluorescence) energies of the

9-ACA cocrystals, although the results in both cases may be adversely affected

by delocalization error in the density-functional methods employed. While the
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polymorph-dependent PL in ROY is found to be controlled by the intramolecular

geometry, modeling of the periodic crystal environment is necessary for accurate

prediction of the coformer-dependent PL in the 9-ACA cocrystals, which is driven

by charge transfer.

7.1 Introduction

Solid-state materials displaying photoluminescence (PL) have garnered significant

research attention due to their wide range of potential applications in manu-

facture of solar cells,253,254 fluorescent sensors,4,14,255 and organic light-emitting

diodes (OLEDs).256–258 Recent experimental works have discovered a variety of

novel solid-state PL properties in many crystalline systems, including polymorph-

dependency,259–261 coformer-dependency,19,262 PL response to applied pressure

(piezochromism),28–30 and PL response to temperature (thermochromism).261,263

Since polymorphism and cocrystal formation are two intensively investigated aspects

of crystal engineering, which are critically relevant to the discovery and manufacture

of pharmaceuticals, molecular crystals displaying polymorph- or coformer-dependent

PL are particularly intriguing. Consistent with many other novel solid-state PL

phenomena, intermolecular interactions within the crystal lattice are thought to

play a subtle, yet potentially critical, role in polymorph- and coformer-dependent

PL.

Computationally modeling polymorph- and coformer-dependent PL is of high

theoretical interest, as periodic-boundary calculations can potentially unveil their

mechanistic origin, and may also serve as a screening tool to optimize properties of

candidate photoluminescent materials. Yet, such an endeavor also presents a great

theoretical challenge, as the cost of wavefunction-based, correlated excited-state

methods would be prohibitive in the molecular crystal context. Meanwhile, until

very recently, successes in developing efficient time-dependent density-functional

theory (TD-DFT) algorithms for periodic-boundary calculations83,91,93 have been

scarce. Another potential alternative is the quantum-mechanics/molecular-

mechanics (QM/MM) embedding scheme,37,244 where a MM cluster mimicking the

crystalline environment could be built around a QM core on which the excitation

is localized. However, the QM/MM scheme is not without its own shortcomings
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as it neglects Pauli repulsion between the QM and MM subsystems, leading to

the unphysical penetration of the QM-electron density into the MM subsystem.55

Artificial accumulation of QM-electronic charge is also found at the QM/MM

boundary, in cases when there exists an extensive H-bond network.56

We recently developed a novel and cost-efficient computational scheme to predict

first-singlet excitation energies for molecular solids.264 Our methodology combines

isolated-molecule and dispersion-corrected periodic-boundary DFT calculations, and

incorporates Becke’s virial exciton model100 to entirely bypass conventional excited-

state methods. The virial exciton model has the advantage of computational

simplicity, while also eliminating errors seen with TD-DFT for charge-transfer ex-

citations.245 We previously applied this methodology to modeling the piezochromic

behaviors of a selection of molecular crystals,264 and achieved general success in

both cost-efficiency and predictive capability. In this work, we employ the same

methodology to model the polymorph- and coformer-dependent PL in selected

molecular crystals.

The best-known example of polymorph-dependent PL is the plethora of polymor-

phic crystals of 5-Methyl-2-[(2-nitrophenyl)amino]-3-thiophenecarbonitrile (Figure

7.1). This compound is better known as ROY due to the various colors ranging

from Red to Orange to Yellow displayed by its polymorphs.260 Herein, we model the

absorption of a series of 8 ROY polymorphs whose crystallographic structures have

been hitherto archived.24 The experimental absorbance data for the investigated

ROY polymorphs are summarized in Table 7.1. For coformer-dependent PL, we

select a group of 4 cocrystals formed between 9-acetylanthracene (9-ACA) and each

of 4 coformers (Figure 7.2). These 9-ACA cocrystals were found to display coformer-

dependency in their emission (fluorescence) wavelengths, with their emission colors

ranging from blue to green under UV light.19 Their experimental emission data are

summarized in Table 7.2. As the results will indicate, our methodology once again

achieves qualitative to semi-quantitative success in predicting the polymorph- and

coformer-dependent PL, demonstrating excellent transferrability between a variety

of solid-state PL problems.
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Figure 7.1: Molecular structure of 5-Methyl-2-[(2-nitrophenyl)amino]-3-
thiophenecarbonitrile, commonly known as ROY due to the colors of its various
polymorphic molecular crystals. A correlation exists between the colors of the ROY
polymorphs and the internal rotation angle θthio.

Figure 7.2: Molecular structures of 9-acetylanthracene (A) and its four coformers:
4-bromotetrafluorobenzenecarboxylic acid (B); 2,3,5,6-tetrafluorohydroquinone (C);
octafluoro-naphthalene (D); and 1,2,4,5-tetracyanobenzene (E).

7.2 Computational Methods

Initial geometries of all molecular crystals were obtained from the Cambridge

Crystallographic Data Centre (CCDC).196 The atomic positions and cell parameters

were fully relaxed using periodic-boundary DFT calculations. We employed the

projector-augmented wave method132 and the B86bPBE functional88,107 paired with

the exchange-hole dipole moment (XDM) dispersion correction,102,103,154 using the

Quantum ESPRESSO (QE) program.101 The well-converged 2 × 2 × 2 Monkhorst-

Pack127 k-point mesh and planewave cutoff values of 80 and 800 Ry for the kinetic

energy and electron density, respectively, were used. All PAW datasets were

generated via the “atomic” code by Dal Corso.247
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Table 7.1: Eight investigated polymorphic crystals of ROY, with their conventional
names and their corresponding Cambridge Structural Database (CSD) code names.
Also given are magnitudes of the internal rotation angle, |θthio|, from both
experiment265 and DFT relaxation, partially-available experimental absorption
maximum wavelengths (λabsmax) and energies (∆Eabs). R: Red; R05: Red, 2005; ORP:
Orange-Red Plate; OP: Orange Plate; ON: Orange Needle; YN: Yellow Needle; Y:
Yellow; YT04: Yellow Transformed, 2004. The conventional names are color-coded
according to the approximate colors of their corresponding polymorphs to render a
more intuitive view

Polymorph CSD code |θexptthio | (◦) |θcalcthio| (◦) λabsmax (nm) ∆Eabs (eV)
R QAXMEH02 21.7 19.8 451 2.75

R05 QAXMEH33 34.0/44.9 23.3 - -
ORP QAXMEH05 39.4 29.0 - -
OP QAXHEM03 46.1 37.7 448 2.77
ON QAXMEH 52.6 42.2 419 2.96
YN QAXMEH04 104.1 113.0 415 2.99
Y QAXMEH01 104.7 112.0 415 2.99

YT04 QAXMEH12 112.8 119.9 - -

Table 7.2: The pristine 9-ACA crystal (A) and its four cocrystals (A·B to
A·E), with their CSD code names, and their respective experimental emission
(fluorescence) maximum wavelengths19 (λemi

max) and energies (∆Eemi)

Species CSD code λemi
max (nm) ∆Eemi (eV)

A DEZCAM 476 2.61
A·B QAHNIZ 450 2.76
A·C QAHNUL 466 2.66
A·D QAHPAT 451 2.75
A·E QAHNOF 600 2.07

Following geometry relaxation, absorption and emission energies were com-

puted using the same multi-step approach used in our previous work modeling

piezochromism,264 which combines spin-polarized calculations on the target molecu-

lar crystals and on excised gas phase molecules. For absorption, a single-point energy

calculation is performed on the crystal using constrained magnetization to model

the first excited triplet state (T1). The initial magnetic bias is applied to a single

molecule to localize the excitation. For emission, the atomic positions of this T1

state are relaxed, although the lattice constants are kept fixed at their ground-state

values.

To obtain the absorption and emission energies for the first singlet excited state

(S1), a correction term obtained from Becke’s virial exciton model100 is applied to
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the T1 energy. This correction corresponds to the S1-T1 gap for a single molecule,

excised from the relaxed crystal structure. The S1-T1 gap is given by the two-

electron exchange integral, H12 (denoted as Kif in Ref. 100), computed from the

two singly occupied HOMO and LUMO orbitals of the molecular T1 state:

H12 =

⟨︃
ϕa(1)ϕb(2)

⃓⃓⃓⃓
1

r12

⃓⃓⃓⃓
ϕa(2)ϕb(1)

⟩︃
. (7.1)

Thus, for a finite-molecule calculation, the S1 excitation energy from the virial

exciton model is

∆Emol
0S = ∆Emol

0T +Hmol
12 . (7.2)

Gas-phase calculations on the molecular moieties were performed with the Gaussian

09 (G09) program, using the B3LYP functional90 and the cc-pVDZ basis set.227 The

BHandHLYP functional248 was used in the θthio-scanning calculations on the ROY

molecule, due to restricted open-shell convergence issues with the B3LYP functional.

The molecular geometries were taken from the relaxed crystal structures for either

the S0 or T1 states, for absorption or emission, respectively. In both cases, single-

point restricted open-shell calculations were used to model the T1 states and obtain

the wavefunctions of the frontier orbitals. An in-house program, which employs the

numerical integration method of Becke and Dickson,218 was used to calculate the

H12 integrals.

It is assumed that the total electron densities of the T1 and S1 states are very

similarly affected by the surrounding crystalline environment, so that the single-

molecule H12 value is a good approximation to the S1-T1 energy gap of the molecular

crystal. Thus, the singlet excitation energy in the crystal can be written as

∆Ecryst
0S = ∆Ecryst

0T +Hmol
12 . (7.3)

Here ∆Ecryst
0T is the T1 excitation energy, computed from periodic-boundary DFT,

and Hmol
12 is the S1-T1 gap from the finite-molecule calculation.

The assumption that the S1-T1 gap should be comparable for the molecule and

crystal is based on the conjecture that the S1 and T1 states will have similar electron

densities, differing only in the spin of one electron. This is also a fundamental

assumption used in the virial exciton model itself and is supported by the excellent
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performance of the model for gas-phase excitation benchmarks.100,245 Additionally,

we have found that the S1 and T1 states experience very similar dispersion

interactions with the surrounding crystal lattice, as quantified by differences in the

resulting lattice energies.246,264

In our previous study of piezochromism,264 we found that the pressure-dependent

shifts in absorption and emission energies were captured as well by changes in the

molecular crystal’s band gap. The valence-conduction band gap in a molecular

crystal, analogous to the HOMO-LUMO (optical) gap in the context of an isolated

molecule, is directly related to its S0-S1 excitation energy. As such, additional band-

structure calculations were performed on the investigated molecular crystals and

the valence-conduction band gap values (∆EBG) extracted. These calculations used

the S0 or T1 geometries for comparison with experimental absorption or emission

energies, respectively.

7.3 Results and Discussion

7.3.1 Polymorph-Dependent Absorption of ROY

We first apply our computational scheme to predict the polymorph-dependent PL

of the 8 polymorphic crystals of ROY. The absorption energies are computed under

the assumption of vertical excitation from S0 to S1. The results are compared to

available experimental absorption data in Table 7.3. The virial exciton computations

systematically underestimate the experimental absorption energies by 0.11−0.60 eV.

However, this quantitative comparison is complicated by the broad-band nature of

the absorption spectral peaks,265 which diminishes the precision of the experimental

absorption-energy values. Impressively, upon ranking the 8 polymorphs’ computed

and experimental absorption energies in ascending order, the virial exciton model

almost perfectly reproduces the experimentally observed R-O-Y “color-zoning”,

grouping each polymorph into the correct Red-Orange-Yellow tricolor regime.

The R-O-Y color zoning can be correlated with the intramolecular rotation angle,

θthio, shown in Figure 7.1. The red and orange forms have small intramolecular

angles, ranging from ca. 20 − 50◦, while the yellow forms have larger angles near

110◦. Smaller angles increase the extent of conjugation between the phenyl and

thiophene rings, resulting in lower excitation energies, while larger angles break
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Table 7.3: Calculated (∆Ecryst
0S ) vs. experimental265 (∆Eexp

abs ) absorption energies
for the 8 ROY polymorphs under investigation. ∆Emol

0S are the molecular singlet-
excitation energies, which are obtained by summing the H12 integral and the first-
triplet excitation energies computed for the excised molecules. Also shown are the
band gaps (∆EBG) for each polymorph. Each column is sorted in ascending order.
All values are in eV.

Polymorph ∆Eexp
abs Polymorph ∆Ecryst

0S Polymorph ∆Emol
0S Polymorph ∆EBG

R 2.75 R05 2.17 ON 3.30 R 1.12
R05 - ORP 2.20 R05 3.38 R05 1.25
ORP - R 2.25 ORP 3.38 ON 1.30
OP 2.77 ON 2.28 R 3.40 ORP 1.37
ON 2.96 OP 2.36 OP 3.57 OP 1.38
YN 2.99 YT04 2.80 YT04 3.89 YN 1.62
Y 2.99 Y 2.88 YN 3.89 YT04 1.67

YT04 - YN 2.92 Y 3.93 Y 1.84

conjugation and give rise to higher excitation energies. To verify the correlation

between the excitation energies and θthio, gas-phase BHandHLYP114,248/cc-pVDZ

calculations were conducted on the isolated ROY molecule using Gaussian 09.175

The molecular geometry was relaxed with θthio constrained to values from 0◦ to

180◦, in steps of 10◦, and the S1 excitation energy computed for each. As shown in

Figure 7.3, our gas-phase results agree with the trends seen both in experiment and

our crystalline calculations: the molecular excitation energy increases as the level

of conjugation decreases, and peaks when θthio is exactly 90◦, where the conjugation

is completely broken. Thus, when the ROY molecule becomes more planar, the

polymorph’s color tends to red; when the ROY molecule becomes more twisted, the

polymorph’s color tends to yellow.

Our results in Table 7.3 show a pronounced separation in absorption energies

between the yellow- and red/orange-colored polymorphs. Meanwhile, the red-

orange separation is predicted to be much narrower, indicating an orange-colored

transition zone that bears more structural resemblance to the red-colored regime. It

is possible that our calculations are underestimating the spread in excitation energies

for the red/orange polymorphs due to delocalization error,187,188,266,267 which

affects all generalized gradient approximations (GGAs), including the B86bPBE

functional used in this work. One manifestation of delocalization error is that GGA

functionals artificially stabilize systems with extended conjugation,268–271 and this

can affect molecular crystal structure prediction.272–274 From Table 7.1, geometry
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Figure 7.3: Correlation between θthio and the gas-phase singlet-excitation (absorp-
tion) energy (∆Emol

0S ) of the isolated ROY molecule.
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optimizations of the R05, ORP, OP, and ON polymorphs provide intramolecular

angles that are ca. 10◦ smaller than in the experimental crystal structures, favouring

increased planarity and conjugation. Underestimation of this dihedral could lead

to underestimation of the T1, and consequently the S1, excitation energies for these

four polymorphs.

Another possible cause for the observed discrepancies between our calculated

internal dihedral angle and the experimental crystal structures is the omission

of thermal expansion (or contraction) of the cell volume within the present

computational scheme. Thermal effects may be particularly significant for ROY,

as the PL of the Y polymorph has been demonstrated to be quite sensitive to the

cell volume.241 In agreement with previous work,273,274 we found that fixed-lattice

optimizations of the S0 geometries significantly reduced the deviations in θthio for the

8 ROY polymorphs, from 15.8 to 3.8% mean absolute error, relative to experiment.

We therefore conclude that the geometric discrepancies are mostly driven by the lack

of thermal effects, which eventually leads to the aforementioned underestimation of

the red-orange separation.

To further demonstrate the intramolecular nature of ROY’s polymorph-

dependent PL, the singlet excitation energies of the excised molecular moieties

(∆Emol
0S ) are also shown in Table 7.3. While the molecular excitation energies yield

large quantitative errors when compared to the experimental absorption energies for

the crystal polymorphs, this is expected due to complete neglect of the surrounding
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crystalline environment in computation of ∆Emol
0S . However, the single-molecule

results are able to replicate the experimental absorption-energy ranking and color

zoning quite well, with the only one notable exception of polymorph ON. Thus,

the polymorphism-dependent PL of ROY is predominantly due to the differences

in the intramolecular geometry, in particular the internal rotation angle θthio of

the ROY molecule in its various polymorphic crystals. Intermolecular interactions

within the crystal only affect the color zoning of the ON polymorph. Since the ON

crystal involves close π-stacking of ROY molecules, it is reasonable that the effects of

intermolecular interactions are more pronounced for this form relative to the other

polymorphs.

The final column in Table 7.3 shows the valence-conduction band gap (∆EBG)

values. Unsurprisingly, the computed band gaps massively underestimate the

experimental absorption energies, with errors of 1.3-1.6 eV for all 8 polymorphs.

This underestimation is, in part, a manifestation of the well-known band gap

problem seen with GGA density functionals.250,275–277 Additionally, the valence-

conduction band gap cannot be fully equated to the optical gap of a periodic solid.278

However, ∆EBG mostly reproduces the R-O-Y color-zoning, except for a minor

crossover of the orange-colored ON polymorph into the red-colored regime, which

was also seen in the molecular results. Furthermore, the clear separation between the

red/orange-colored polymorphs and the yellow-colored polymorphs observed in the

virial exciton calculations, using both the single molecules and molecular crystals,

is retained.

7.3.2 Coformer-Dependent Emission of 9-ACA Cocrystals

Next, we turn our focus onto modeling the emission/fluorescence of the 9-

acetylanthracene (9-ACA) cocrystals, which exhibit coformer-dependent PL. Apply-

ing our computational scheme specifically to emission, the results are tabulated in

Table 7.4, together with the experimental emission data from the work of Li et al.19

Unlike the ROY polymorphs, the 9-ACA cocrystals offer a good case for quantitative

comparison between our calculations and experimental measurements. This is due to

both the completeness of the experimental emission data and the sharp-peak nature

of the emission/fluorescence spectrum, which allows for precise peak identification.

Overall, our computed emission energies achieved a mean absolute error (MAE) of
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0.31 eV compared to experiment. This MAE is on-par with the accuracy previously

attained by the virial exciton model100 on the Thiel small-molecule benchmark set,124

as well as for a set of charge-transfer excitations.245

Our solid-state virial-exciton calculations are able to reproduce the experimental

trend in emission energies among the four cocrystals: A·E ≪ A·C < A·B ≈ A·D.

However, the experimental relations between the emission energies of the pristine

crystal and the cocrystals are not fully reproduced by our calculations. Specifically,

the experimental blue-shift of A·B and A·D from A is not predicted; rather, all

three crystals are predicted to have similar emission energies. We also note that the

largest quantitative error from experiment (0.45 eV) is seen for the single-component

crystal A, making it an outlier relative to the set of cocrystals.

Table 7.4: Calculated (∆Ecryst
0S ) vs experimental (∆Ecryst

0S ) emission energies for the
four cocrystals (A·B to A·E) and the pristine crystal (A) of 9-ACA. ∆Emol

0S are the
molecular singlet-excitation energies and ∆EBG are the computed band gaps. All
values are in eV.

Species ∆Eexp
emi ∆Ecryst

0S ∆Emol
0S ∆EBG

A 2.61 3.06 3.21 1.74
A·B 2.76 2.96 3.15 1.65
A·C 2.66 2.82 3.50 1.58
A·D 2.75 3.08 3.19 1.81
A·E 2.07 2.45 3.51 0.80
MAE – 0.31 0.74 1.05

The computed band gaps, ∆EBG shown in Table 7.4, also replicate the trends

in experimental emission energies of the 9-ACA cocrystals to an impressive degree,

despite large quantitative deviations. However, the difference between A·C and A·B
is now considerably smaller than seen from the ∆Ecryst

0S results, while the difference

between A·B and A·D is widened slightly. The experimental blue-shift of A·B
and A·D from A is again not captured by ∆EBG, further solidifying the status

of the pristine 9-ACA crystal as an outlier, compared to its cocrystals. The large

quantitative underestimation of ∆Eexp
abs/emi by ∆EBG reflects the value of including

the localized virial exciton model in our methodology, which can correct for the

band-gap problem and hone in on the actual excitation energies.

Similar to the previous case of the ROY polymorphs, we also computed the

gas-phase emission energies for the 9-ACA molecules (∆Emol
0S ) excised from each
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Figure 7.4: Degrees of intermolecular CT within the cocrystals and the pristine
crystal of 9-ACA, as indicated by the absolute charge per molecule.
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relaxed crystal structure. The large quantitative deviation from the experimental

values is again to be expected due to neglect of the surrounding intermolecular

interactions. However, in the case of the 9-ACA cocrystals, the single-molecule

emission energies are entirely unable to capture any experimental trends. ∆Emol
0S

even fails to predict the largest red shift in emission energy, seen for A·E, and

instead predicts a substantial blue shift for this cocrystal. This indicates that the

coformer-dependent emission of the 9-ACA cocrystals is controlled by intermolecular

interactions, necessitating the inclusion of the crystalline surroundings to distinguish

between red and blue shifts in emission wavelengths. This stands in stark contrast

to the intramolecular nature of the polymorph-dependent absorption of ROY, where

a fairly decent prediction of the polymorphs’ color zoning could be still obtained by

merely modeling the molecular moiety excised from the crystal lattice. Indeed, the

importance of intermolecular factors for the 9-ACA cocrystals can be inferred from

the strategy used by Li et al.19 in their design, which aimed to exploit different

degrees of intermolecular charge transfer (CT) between the 9-ACA molecule and

the various coformers.

To verify the role played by intermolecular CT in shifting the emission energies,

Bader charge analysis,279 using the critic2 program,197 was performed on the

molecular moieties within the cocrystals A·B to A·E, and the pristine crystal A,

in both the S0 and T1 states. Figure 7.4 shows the results of this analysis, in the

form of the absolute charge per molecular moiety within each (co)crystal. While

no intermolecular CT is predicted between the 9-ACA molecules within the pristine

100



crystal, intermolecular CT from 9-ACA to the coformer is consistently predicted for

all 4 cocrystals. Moderate amounts of CT (∼ 0.05 − 0.13 e−) are seen for both S0

and T1 states of each cocrystal, with the exception of A·E in the T1 state, where the

intermolecular CT increases drastically to 0.28 e−. This increased charge transfer

should preferentially stabilize the T1 state of A·E, relative to S0, and lead to a

red shift in the emission energy. This charge analysis affirms the validity of the

experimental designing strategy for A·E.19 The tetracyano-substituted coformer E

has by far the strongest electron-withdrawing effect, and therefore induces a larger

amount of CT from the 9-ACA molecule, especially in the excited state, leading to

its large emission red-shift.

The lack of intermolecular CT in the pristine crystal likely contributes to the

apparent irregularity in its computed emission energy compared to the set of

cocrystals. As noted above, the B86bPBE functional (like all GGA functionals)

exhibits delocalization error, which causes preferential stabilization of systems with

more CT.183,185,229,230 Thus, there is likely a systematic error cancellation in the

computed properties of the cocrystals and the comparability between results for

the pristine crystal and the cocrystals is significantly diminished. This explains the

inability of our calculations to fully replicate the experimental relations between the

emission energies of A and A·B to A·E.

7.4 Conclusions

In this work, we applied our novel computational methodology, which combines

plane-wave periodic-boundary DFT calculations for solids and isolated-molecule

DFT calculations using the virial exciton model, to the modeling of polymorph-

and coformer-dependent PL in the polymorphs of ROY and the cocrystals of 9-

ACA, respectively. For the 8 ROY polymorphs, our results were able to replicate the

experimentally-observed R-O-Y color zoning. For this compound, the polymorph-

dependent PL was shown to be driven by the intramolecular geometry, and the key

role of the internal rotation angle θthio in determining the coloration of these ROY

polymorphs was confirmed.

For 9-ACA, our results were able to replicate the experimental ordering of the

emission energies among the cocrystals and, quantitatively, an overall MAE of 0.31
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eV was achieved by our calculations. However, trends regarding blue-shifting with

respect to the pristine 9-ACA crystal were not captured. This can be attributed

to delocalization error, which likely causes overstabilization of the cocrystals, all

of which exhibit significant CT, relative to the pure 9-ACA crystal. Inclusion of

the crystalline environment is necessary to model the coformer-dependent PL of

9-ACA, as it is predominantly driven by CT and other intermolecular interactions.

This stands in contrast to the previous case of polymorph-dependent PL of ROY.

The significant red-shift in the emission energy of the cocrystal A·E was rationalized

through the increase in intermolecular CT from the ground to the excited state.

Although not as accurate as the combined solid-state and isolated molecule

scheme, computed valence-conduction band gap values also offered fair qualitative

replications of the experimental trends for both the ROY polymorphs and 9-ACA co-

crystals. Due to their computational simplicity, use of band-structure calculations

for qualitative prediction of solid-state PL warrants further exploration in future

modeling studies.

Within the confines of our current computational methodology, we are not

yet able to reproduce full absorption/emission spectra for our modeled systems.

While the first singlet transition energy is of primary spectroscopic importance

for most luminescent molecular crystals, knowledge of the full spectral line shape

may be required to fully determine crystal colour, particularly for cases with broad

adsorption/emission bands. Theoretically, it is possible to approximate the full

spectrum by incorporating vibrational levels via the Franck-Condon principle.280

However, the computational cost of the requisite phonon calculations borders on

prohibitive, even with sampling of only the Γ point, considering that our systems of

interest frequently contain 150 to 200 atoms (or more) in their unit cells.

In closing, our employed methodology was successful in capturing the ex-

perimentally observed polymorph- and conformer-dependent PL behaviors of the

investigated sets of molecular crystals. Along with its previous success in modeling

piezochromism,264 the current methodology displays excellent transferrability among

a diversity of solid-state PL properties in molecular crystals. This work opens the

door for theory-driven crystal engineering to optimize PL properties of molecular

materials for targeted device applications.
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Supplementary Material

The reader may consult Appendix B for supplementary material to this work,

which includes: calculated crystalline and molecular triplet excitation energies

for all investigated species; calculated valence and conduction band edges for all

investigated molecular crystals; the internal rotation angle (θthio) values for the ROY

polymorphs using fixed-cell and variable-cell optimizations; data for the amounts of

absolute charge per 9-ACA molecule in 9-ACA and its cocrystals; and an expanded

version of Figure 7.3.
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Chapter 8

Conclusions and Future Work

The central objective of this thesis is the design, validation, and application of

a novel theoretical methodology for the accurate and cost-efficient calculation

of the first singlet (i.e. S0 to S1) excitation energy in molecular crystals. A

systematic endeavor in this direction is highly valuable, as a theoretical methodology

combining both prediction accuracy and cost-efficiency might enable the fast

pre-laboratory screening of candidate molecular crystals potentially displaying

industrially-applicable solid-state PL properties. Successful theoretical modeling

could also aid our understanding of the underlying physical mechanism that gives

rise to the diverse solid-state PL properties seen experimentally.

To achieve our goal, we proposed a highly innovative computational scheme.

Most significantly, our methodology completely circumvents all conventional time-

dependent excited-state methods, such as time-dependent correlated wavefunction

theories and the very popular TDDFT, both of which are currently too costly to fully

implement in the context of periodic solids. Our methodology features a combination

of first-principles ground-state DFT calculations for both isolated molecules and

solids under periodic-boundary conditions, and the use of the virial exciton model

for direct prediction of the S1-T1 energy splitting. In order to properly model the

intermolecular interactions within the crystal lattice, which are potentially crucial in

rendering the modeled solid-state PL properties, our periodic-boundary solid-state

calculations are combined with the XDM dispersion correction, which has previously

seen much success when applied to the solid state.

Our initial studies served as theoretical preparations and validations for our
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proposed methodology. In a first-of-its-kind investigation, we probed the effect of

electronic excitations on London dispersion, which is a key source of intermolecular

interactions in both molecular and solid-state systems. Our results demonstrated

that, despite potentially large changes in the molecular dispersion coefficients upon

intermolecular charge-transfer excitations, the effect of such an excitation on the

overall dispersion energy of the whole crystal lattice remains minimal. This finding

helps justify a key assumption in our computational approach, which is that the

intermolecular interactions will be effectively equivalent for the S1 and T1 excited

states within the crystal.

In the next study, we addressed concerns with the capability of our proposed

methodology to accurately model excitations of significant CT nature, which are

highly problematic for conventional TDDFT methods. The virial exciton model,

which is directly responsible for the calculation of the first singlet excitation energy in

our methodology, was tested for a set of molecular systems featuring CT excitations.

The results showed that the virial exciton model is equally reliable when applied to

CT excitations, achieving a very similar accuracy to that for the non-CT cases, when

compared to high-level theoretical benchmark data. Therefore, the virial exciton

model proved to be free from the well-known CT errors suffered by conventional

TDDFT methods, giving our methodology a significant edge over TDDFT when

modeling similar excitations in the solid state.

After building a solid theoretical foundation via the aforementioned preparatory

studies, we moved on to the full application of our methodology to model a range

of experimentally-observed solid-state PL properties in a variety of luminescent

molecular crystals. Overall, our methodology achieved satisfactory performance

in replicating the experimental trends with respect to the first singlet excitation

energies of the investigated molecular crystals. Valuable theoretical insights

into the mechanisms of these solid-state PL properties were also obtained from

the analysis of our results. Quantitative success was achieved for replication

of the pressure dependency (i.e. piezochromism) of the emission energies of the

tetrathiazolythiophene, boron diketonate and 2,7-diaryl-TAP molecular crystals.

In particular, both the magnitudes of the overall piezochromic red shifts and the

corresponding rates of change in the emission energies with applied pressure were
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predicted with impressive quantitative accuracy, for all three investigated molecular

crystals. Significantly, our results found that piezochromism is predominantly driven

by the subtle pressure modulation of the intermolecular interactions within the

crystal lattice. Additionally, our results were also able to elucidate the origin of the

universally-observed piezochromic red shifts from two perspectives: molecular and

solid-state. From the molecular perspective, it was found that the polarizability of

the embedded molecular moiety is consistently higher in the excited state than in

the ground state. This leads to the preferential stabilization of the excited state

under increasing constriction of the surrounding lattice, resulting in a piezochromic

red shift. From the solid-state perspective, band-structure calculations revealed that

increasing pressure has the effect of steadily narrowing the valence-conduction band

gap of the molecular crystal, which also results in a piezochromic red shift.

Following the study on piezochromism, we then applied our methodology to

model the polymorphism-dependent PL of the well-known ROY polymorphs and

the coformer-dependent PL of the cocrystals of 9-acetylanthracene (9-ACA). Our

methodology was able to qualitatively replicate the Red-Orange-Yellow “color-

zoning” among the 8 investigated polymorphs of ROY, correctly matching each

polymorph with its experimentally observed color regime. Our results confirmed

the intramolecular nature of ROY’s polymorphism-dependent PL, highlighting the

pivoting role of the θthio intramolecular dihedral angle in determining the colors of the

investigated ROY polymorphs. For 9-ACA and its cocrystals, our results successfully

replicated the emission-energy ranking among the 4 cocrystals. Good quantitative

accuracy of the predicted emission energies was obtained by our calculations,

achieving a MAE of 0.31 eV compared to the experimental emission values. Further,

the coformer-dependent PL of 9-ACA was found to be predominantly driven by

the intermolecular interactions within the crystal lattice, and consideration of the

crystalline surroundings of the excited molecular moiety is necessary to recover the

experimentally observed trends in the emission energies. This is in clear contrast to

the case of ROY polymorph coloration, illustrating the diverse physical origins of

different solid-state PL properties. Moreover, analysis of our results confirmed the

role of intermolecular CT in determining the coformer-dependent emission of the

investigated cocrystals, offering theoretical validation of the experimental design
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strategy of exploiting intermolecular CT via cocrystalization.

Through the works hitherto presented, we believe that the thesis goal of

establishing of a novel, elegant, and cost-efficient theoretical methodology for

calculation of the first singlet excitation energies in molecular crystals has been

achieved. The devised methodology proved robust and reliable in its applications.

It has also demonstrated excellent transferability, successfully modeling a range

of solid-state PL properties, including piezochromism, polymorphism-dependent

PL, and coformer-dependent PL, in a diversity of molecular crystal systems. Our

methodology strikes a good balance between computational cost and prediction

accuracy, allowing for decent semi-quantitative prediction of absorption/emission

energies of luminescent molecular crystals. Even more importantly, our methodology

achieved excellent prediction of the qualitative energetic trends that give rise to the

aforementioned solid-state PL properties. Our results were able to elucidate the

underlying mechanisms that drive these diverse solid-state PL properties, thereby

contributing to the general theoretical understanding of electronic excitations in

molecular crystals.

Potentially, our methodology could be combined with rapidly-developing crystal

structure prediction (CSP)281,282 techniques to achieve fast in silico pre-screening of

candidate molecular crystals for various industrially desired PL properties. Via

successful CSP, a small number of the minimum-energy (co)crystal structures

of an organic chromophore can be efficiently generated; our methodology can

then be applied to these generated structures to probe if they display any solid-

state PL property of interest. Such a combined scheme could lead to dramatic

increases in throughput for the discovery, design, and synthesis of novel solid-state

luminescent materials. Meanwhile, the incorporation of thermal effects into our

crystal geometry optimizations may enable the modeling of thermally activated

solid-state PL properties, notably thermochromism,22,25 where the PL wavelengths

of a molecular crystal experience shifts with respect to changing temperature. In

such an investigation, thermal-energy correction methods, such as density-functional

perturbation theory (DFPT),283,284 will be employed to obtain accurate crystal

structures at varying temperatures. Our methodology can then be applied to

obtain the absorption/emission energies of the molecular crystal over a range of
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temperatures. The inclusion of thermal-energy corrections could also enhance our

methodology’s predictive accuracy in potential cases where the crystal-structure

changes induced by thermal expansion have a non-negligible impact on the crystal’s

electronic excitation energies.
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Figure A.1: Calculated absorption energies (∆Eabs
0S ) versus applied pressure,

decomposed into the triplet-excitation (∆Eabs
0T ) and the Hmol

12 integral contributions.
The triplet excitation energies for the excised molecules (∆Emol

0T ) are also shown.
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Figure A.2: Calculated polarizabilities of the excised molecules as a function of
pressure for the singlet (S0) and unrestricted triplet (T1) states, using the solid-
state absorption or emission geometries.
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Figure A.3: Valence and conduction band edges, and band gaps, of the molecular
crystals as functions of applied pressure using the absorption (S0) geometries.
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Figure A.4: Representative band structures near the valence-conduction band gap,
obtained for the S0 geometries at zero pressure. Energies are expressed relative to
the valence band edge. Top: FIFGUY01; middle: XAPLUY; bottom: IXICUP.
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Table B.1: Absorption of the 8 ROY polymorphs: calculated triplet-excitation
energies for the crystal (∆Ecryst

0T ) and the excised 9-ACA molecule (∆Emol
0T ), along

with the molecular singlet-triplet splittings (∆Emol
ST ). All values are in eV.

Species ∆Ecryst
0T ∆Emol

0T ∆Emol
ST

R 1.52 2.66 0.74
R05 1.40 2.61 0.77
ORP 1.44 2.62 0.76
OP 1.55 2.76 0.81
ON 1.50 2.52 0.78
YN 1.92 2.90 0.99
Y 1.92 2.97 0.96

YT04 1.84 2.93 0.96

Table B.2: Emission of 9-ACA (A) and its cocrystals (A·B–A·E): calculated
triplet-excitation energies for the crystal (∆Ecryst

0T ) and the excised 9-ACA molecule
(∆Emol

0T ), along with the molecular singlet-triplet splittings (∆Emol
ST ). All values are

in eV.

Species ∆Ecryst
0T ∆Emol

0T ∆Emol
ST

A 1.47 1.62 1.59
A·B 1.38 1.57 1.58
A·C 1.39 2.07 1.43
A·D 1.48 1.59 1.60
A·E 1.01 2.07 1.44

Table B.3: Band structures of the 8 ROY polymorphs: calculated valence band
edges (maximum, Emax

val ) and conduction band edges (minimum, Emin
cond), along with

the corresponding valence-conduction band gaps (∆EBG). All values are in eV.

Species Emax
val Emin

cond ∆EBG

R 2.12 3.24 1.12
R05 0.95 2.21 1.25
ORP 1.92 3.28 1.37
OP 1.96 3.34 1.38
ON 2.02 3.32 1.30
YN 1.68 3.30 1.62
Y 1.73 3.57 1.84

YT04 1.86 3.53 1.67
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Table B.4: Band structures of 9-ACA (A) and its cocrystals (A·B–A·E): calculated
valence band edges (maximum, Emax

val ) and conduction band edges (minimum, Emin
cond),

along with the corresponding valence-conduction band gaps (∆EBG). All values are
in eV.

Species Emax
val Emin

cond ∆EBG

A 1.78 3.52 1.74
A·B 2.03 3.68 1.65
A·C 1.83 3.41 1.58
A·D 1.98 3.79 1.81
A·E 1.62 2.42 0.80

Table B.5: The ROY molecule: calculated values of molecular triplet-excitation
energies (∆Emol

0T ) and molecular S1-T1 splittings (H12), across the 0-180◦ range of
θthio.

θthio (◦) ∆Emol
0T (eV) H12 (eV)

0 3.69 0.68
10 3.73 0.65
20 3.78 0.68
30 3.85 0.73
40 3.95 0.79
50 4.06 0.85
60 4.17 0.92
70 4.26 0.98
80 4.31 1.01
90 4.33 1.02
100 4.30 1.01
110 4.24 0.97
120 4.16 0.93
130 4.08 0.89
140 4.00 0.84
150 3.93 0.79
160 3.87 0.73
170 3.83 0.68
180 3.80 0.62
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Table B.6: ROY polymorphs: internal rotation angle values calculated using fixed-
cell optimization (θfcthio) and variable-cell optimization (θvcthio) on ground-state crystal
geometries, compared to experiment (θexpthio). The main absolute percentage errors
(MAPE’s) of θfcthio and θvcthio from θexpthio are also given.

Species θexpthio (◦) θfcthio (◦) θvcthio (◦)
R 21.7 22.1 19.8

R05 34.0/44.9 42.5 23.3
ORP 39.4 36.4 29.0
OP 46.1 43.1 37.7
ON 52.6 50.5 42.2
YN 104.1 106.2 113.0
Y 104.7 106.4 112.0

YT04 112.8 114.4 119.9
MAPE - 3.8% 15.8%

Table B.7: 9-ACA (A) and its cocrystals (A·B–A·E): the amounts of absolute
charge per 9-ACA molecule (e−) in S0 and T1.

Species S0 T1

A 0.001 0.001
A·B 0.05 0.06
A·C 0.13 0.12
A·D 0.11 0.11
A·E 0.08 0.28
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Figure B.1: The ROY molecule: calculated molecular singlet-excitation energies
(∆Emol,rel.

0S ), molecular S1-T1 splitting (Hrel.
12 ), and S0 and T1 energies (Erel.

S0/T1
), across

the 0-180◦ range of θthio, all relative to their respective values at θthio = 0◦.
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Appendix C

Miscellaneous Records

C.1 Conference Attendances and Presentations

• ACS 2021 Spring Meeting. April 2021, online. Oral presentation titled: “A

Novel Approach for Modeling Solid-State Electronic Excitations”.

• RSC Poster Twitter Conference 2021 March 2021, online. Poster titled:

“Computational Modeling of Piezochromism in Molecular Crystals”

• The 6.5th Crystal Engineering and Emerging Materials Workshop of Ontario

and Quebec (CEMWOQ-6.5). June 2020, online. Oral presentation titled:

“Piezochromism in Molecular Crystals: A Computational Study”.

• The 102nd Canadian Chemistry Conference and Exhibition (CCCE). June

2019, Québec, QC. Poster titled: “Application of Becke’s Virial Exciton Model

on Charge-Transfer Excitations”.

• Photoinduced Processes in Embedded Systems (PPES) 2018. June 2018, Pisa,

Italy. Poster titled: “Fully Ab-Initio Modeling of the First Singlet Excitation

Energy in Molecular Crystals”.

• The 16th International Congress of Quantum Chemistry (ICQC). June 2018,

Menton, France. Poster titled: “Fully Ab-Initio Modeling of the First Singlet

Excitation Energy in Molecular Crystals”.

• Dalhousie Chemistry Research Symposium 2017. September 2017, Halifax,

NS. Poster titled: “The Effect of Charge-Transfer Excitations on London
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Dispersion: A TDDFT Study”.

• Atlantic Theoretical Chemistry Symposium (ATCS) 2017. August 2017,

Halifax, NS. Poster titled: “The Effect of Charge-Transfer Excitations on

London Dispersion: A TDDFT Study”.

• The 100th Canadian Chemistry Conference and Exhibition (CCCE). May

2017, Toronto, ON. Poster titled: “Modeling London Dispersion in Classical

Lewis Adducts Using Density-Functional Theory”.

C.2 Graduate Coursework

• PHYC 5151: Quantum Physics II

(Full course by J. Maassen, fall 2016. Final grade: A-)

• CHEM 5301: Theory of Chemical Bonding

(Full course by E. R. Johnson, winter 2017. Final grade: A)

• CHEM 6353: Density-Functional Theory

(Graduate module by E. R. Johnson, winter 2018. Final grade: A+)

• CHEM 6363: Electronic Structure Theory of Solids

(Graduate module by J. W. Zwanziger, winter 2018. Final grade: A-)

• PHYC 6201: Solid State Physics

(Full course by J. Maassen, spring 2019. Final grade: A+)

C.3 Teaching Assistantship

• Total TA hours: 540 hours completed as of June, 2019. PhD program

minimum: 360 hours.
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C.4 Awards and Scholarships

• ATCS 2017 Student Poster Second Prize (August, 2017).

• Nova Scotia Graduate Scholarship (NSGS-D) (August, 2018 - August, 2020)

• Gerry Dauphinee Graduate Student Award (September, 2018).

• The 102th CCCE Best Student Poster Prize, Physical and Theoretical

Chemistry Section (June, 2019).

• The 6.5th CEMWOQ Dectris Oral Presentation Prize (June, 2020).

C.5 Program Timeline

• September, 2016: Entry into the MSc program (Chemistry).

• September, 2017: Delivery of Graduate Seminar I. Seminar title: “Machine

Learning in Chemistry: An Introduction”.

• December, 2017: Completion of minimum TA hours at PhD level (360 hours).

• April, 2018: Completion of PhD program qualifying examination.

• September, 2018: Formal transfer into the PhD program.

• April, 2019: Completion of PhD-level coursework requirement.

• November, 2020: Delivery of Graduate Seminar II. Seminar title: “Solid-State

Electronic Excitations: Theoretical Insights Through A Novel Approach”.

• May, 2021: PhD thesis submission.

• July, 2021: PhD thesis defense.
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[10] S. Chénais and Forget, Recent advances in solid-state organic lasers, Polym.
Int. 61, 390–406 (2012).

[11] K. Kundu, S. Knight, N. Willett, S. Lee, W. Taylor, and N. Murthy,
Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen
species in cell culture, tissue, and in vivo, Angew. Chem. Int. Ed. 48, 299–303
(2009).

[12] G. R. Desiraju, Crystal engineering: a holistic view, Angew. Chem. Int. Ed.
46, 8342–8356 (2007).

121



[13] P. Gao, H. N. Tsao, M. Grätzel, and M. K. Nazeeruddin, Fine-tuning the
electronic structure of organic dyes for dye-sensitized solar cells, Org. Lett.
14(17), 4330–4333 (2012).

[14] S. P. Anthony, Organic solid-state fluorescence: strategies for generating
switchable and tunable fluorescent materials, ChemPlusChem 77, 518–531
(2012).

[15] J. D. Wuest, Co-crystals give light a tune-up, Nat. Chem 4, 74–75 (2012).

[16] D. Yan, A. Delori, G. O. Lloyd, T. Fris̆c̆ić, G. M. Day, W. Jones, J. Lu, M. Wei,
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