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Abstract
This study presents a multi-period bi-objective mixed-integer supply planning model

and applies it to a case study inspired by the operational challenges of a Canadian

provincial healthcare provider’s PPE supply chain during the COVID-19 pandemic.

Uncertainties in the supply, price, and demand of PPE are considered. The cost mini-

mization objective function is formulated using stochastic, robust, and distributionally

robust optimization. The service-level objective function follows minimax robustness

by minimizing the maximum shortage of any product in any time period and scenario.

The ε-constraint method is used to generate Pareto-optimal solutions and analyze the

trade-off between the two competing objectives. Numerical experiments analyze model

behaviour and the efficacy of emergency inventory and increased inventory levels as risk

mitigation strategies. The distributionally robust optimization model is recommended

with its ambiguity set size determined by the decision makers’ relative preferences for

average cost performance, worst-case cost performance, or cost variance.
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Chapter 1

Introduction
In recent decades, the prevailing strategy of supply chain (SC) design has been to

reduce redundancies such as inventory in the name of short-term efficiency. The

COVID-19 pandemic, and the ensuing disruption to SCs of all types, has exposed

the risks of relying on a handful of low-cost, often foreign, producers. Medical SCs

have received particular attention during the COVID-19 pandemic, as their disruption

threatens the quality of healthcare services and containment of diseases.

Health service providers around the world have suffered shortages of medical equipment

needed to combat the COVID-19 virus. Worldwide shortages of ventilators and

personal protective equipment (PPE) paired with increased demand have pushed

prices significantly above their norm. In April 2020, an independent non-profit entity

called the Society for Healthcare Organization Procurement Professionals (2020)

reported that the cost of N95 masks had risen 6,136% during the COVID-19 pandemic

compared to their pre-COVID prices. Surging demand and prices make it difficult for

health organizations to secure the medical supplies that they need. This problem is

exacerbated by a globally constrained supply of PPE. On April 13, 2020, a Canadian

news agency reported that Canada had received around 6% of 293 million surgical

masks ordered, around 0.5% of 130 million N95 masks ordered, and less than 0.5% of

900 million pairs of gloves ordered (Zimonjic, 2020). The severity of SC disruptions

reported during the COVID-19 pandemic highlights the potential value of a resilience-

oriented approach to SC design.

Even prior to COVID-19, the amount of research on SC resilience had increased

significantly in the preceding years (Hosseini et al., 2019a). Resilience is a property
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of SCs that describes their capacity to plan for, absorb, recover from, and adapt to

unfavorable events (National Research Council, 2012). Resilience differs from other

SC properties such as sustainability or robustness in its emphasis on recovering from

disruptions and returning to the SC’s original state (Golan et al., 2020). Enhancing

SC resilience often coincides with decreasing SC risk which Jajja et al. (2018) define

as both the likelihood and impact of disruption in SC sourcing, transportation, or

operations; however, resilience is a property of SCs and risk is an environmental factor.

Motivated by the COVID-19 pandemic, Ivanov and Dolgui (2020b) introduced a new

concept in SC research called SC viability. SC viability contains all the qualities of

SC resilience in addition to the ability to survive long-term disruptions that scale

unpredictably. While SC resilience typically studies singular disruptions during a fixed

time window, SC viability studies the continuous evolution of SCs over longer, even

infinite, time windows (Ivanov & Dolgui, 2020b).

This thesis explores novel applications of mathematical optimization under uncertainty

to improve the resilience and viability of a Canadian provincial healthcare provider’s

PPE SC. The presented models select suppliers and allocate forecasted demand among

those suppliers during multiple time periods. Multi-period modelling is required since

pandemics can disrupt SCs for multiple years and to varying degrees of intensity. In

total, this research considers five extensions of the basic supplier selection problem:

1) Multi-periodicity to consider the long-term disruption and unpredictable spread

of pandemics.

2) Multi-objective programming to analyze the trade-off between satisfying demand

and cost performance.

3) Robust, stochastic, and distributionally robust optimization to consider uncer-

tainty in PPE prices, supply, and demand.
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4) Sample average approximation (SAA) to adjust model conservatism through

chance-constraining the robust cost objective.

5) All-unit volume-based discounted pricing.

The case study to which this research is applied was inspired by the Nova Scotia

Health Authority (NSHA), which is the largest health services provider in the Canadian

province of Nova Scotia. The NSHA Supply Operations Department procures medical

equipment and distributes it to hospitals located throughout Nova Scotia using

numerous warehouses.

1.1 Thesis Motivation

This study is motivated by the operational challenges experienced by Canadian health-

care providers during the COVID-19 pandemic. Its goal is to develop mathematical

models that can support procurement decision making prior to and during long-term

SC disruptions with the specific aims of discovering generally applicable managerial in-

sights and demonstrating the process by which any healthcare provider can implement

the presented models. The efficacy of additional starting inventory and federal emer-

gency PPE stockpiles as risk mitigation strategies is analyzed in the case study using

the proposed optimization framework. The contents of this thesis are partially based

on manuscripts (Ash et al., 2021a; Ash et al., 2021b) on the application of stochastic

programming (SP) and robust optimization (RO) models and distributionally-robust

optimization (DRO) models to healthcare SC optimization during pandemics.

1.2 Thesis Contributions

The contributions of this thesis are categorized as either managerial implications,

referring to the insights and tools offered to SC managers, or theoretical contributions

to academia. The managerial and theoretical contributions of this study are briefly
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summarized in this section and discussed in further detail in Section 6.

This research analyzes the unique challenges of pandemics as SC disruptions. The

presented optimization framework demonstrates how SC managers can use multi-

objective optimization to assess the trade-off between two competing goals and multi-

period modelling to optimize SCs during long-term disruptions. The SP, RO, and

DRO models serve as decision support tools with varied levels of risk tolerance and

confidence in input data. The case study is based on a Canadian Healthcare Provider

and considers three different types of sourcing. Multiple operational insights are

uncovered regarding pre-pandemic inventory levels, emergency stockpile size and

prices, sourcing mix, and model conservatism.

This study contributes to SC literature by augmenting the limited number of studies

on multi-objective optimization under uncertainty. Although the theory behind multi-

objective RO has been presented numerous times, including by Kuroiwa and Lee

(2012), few research studies have applied it to real-world SCs. A realistic case study

is analyzed with not only multi-objective RO, but also multi-objective DRO which

is a novel approach in supplier selection research. This research presents a unique

comparison between the value of information in two-stage and multi-stage recourse

models. Finally, this thesis evaluates the effectiveness of risk mitigation strategies in

the context of pandemics that spread unpredictably and disrupt SCs over multiple

time periods.

1.3 Thesis Outline

The remainder of this paper is structured as follows. Relevant literature is discussed

next followed by presentation of the case study and optimization framework used in

this research in Section 3. Section 4 formulates a deterministic multi-objective supply

planning model along with SP, RO, and DRO extensions to consider uncertainty.
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Numerical experiments are conducted in Section 5. Section 6 discusses managerial

and theoretical contributions, limitations, and avenues of future study. Conclusions

are drawn in Section 7.
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Chapter 2

Literature Review
Golan et al. (2020) recommend a comprehensive approach to designing resilient SCs

that includes definitions, models, metrics, and disruption analysis. This literature

review thus begins by presenting definitions and conceptual drivers of important

SC properties. It then discusses the unique nature of pandemics as disruptions,

summarizes common SC risk mitigation strategies, and reviews quantitative analysis

methods.

This research was influenced by existing literature surveys on SC network design

(SCND) under uncertainty (Govindan et al., 2017), SC risk management (SCRM)

(Dolgui et al., 2018; Baryannis et al., 2018; Heckmann et al., 2015), and SC resilience

(Golan et al., 2020; Hosseini et al., 2019a; Ivanov et al., 2017; Kamalahmadi & Parast,

2016). SC viability had limited research at the time of writing due to its recent

conception from the field of SC resilience. SC viability is thus framed as SC resilience

in the context of longer-term disruptions.

2.1 Agility vs. Resilience

It is important to distinguish between SC agility and SC resilience, as both terms

are properties of a SC related to SC disruptions. SC agility is typically defined as

the ability to sense changes in the SC or external environment and then efficiently

respond to them (Altay et al., 2018). Agility extends the definition of flexibility, which

is simply the ability to rapidly respond to changes, by including the requirement to

sense changes (Eckstein et al., 2014). Flexibility can thus be viewed as an antecedent

of agility. Characteristics of agile SCs are fast delivery, reliability, flexibility in product
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volume and mix, and the ability to customize products (Jajja et al., 2018).

SC agility and resilience share some similar capabilities such as short lead-times

and flexible sourcing (Carvalho et al., 2012), but they should be viewed as separate

strategies for improving SC performance. Wieland and Marcus Wallenburg (2013)

categorize SC agility as a reactive strategy for achieving SC resilience. SC agility

enables rapid response to new conditions, which increases SC resilience by quickly

recovering to normal operations following a disruption (Carvalho et al., 2012).

2.2 Conceptual Drivers of SC Agility and Resilience

Using a dynamic capabilities approach, Brusset & Teller (2017) present evidence that

flexibility, which is defined as responsiveness to customer stimuli, and integration,

which is defined as collaborative SC management and decision making with SC

partners, both significantly improve SC resilience. Using similar methods, Jajja et

al. (2018) conclude that awareness of risk motivates companies to improve their SC

agility through supplier and customer integration.

Minimizing SCs’ vulnerability to disruptions is a key driver of SC resilience. SCs

that rely upon a few individual nodes to supply a disproportionately large amount

of product are vulnerable to major shortages if those key nodes are disrupted. Lim-

Camacho et al. (2017) propose a resilience index that is highest when product flows

are more evenly distributed to all nodes in the SC. SC resilience is also enhanced by

the geographical separation of suppliers which reduces the probability that regional

disruptions will affect multiple suppliers (Kamalahmadi & Parast, 2017; Hosseini et

al., 2019b).

Communication and collaboration between SC members has been proven through

qualitative and quantitative studies to enhance SC resilience (Hosseini et al., 2019a).

Li et al. (2017) illustrate how inter-echelon information sharing can enhance SC
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resilience by curtailing the propagation of disruptions to other echelons of the SC.

2.3 Pandemic Disruptions

SC disruptions are defined as events with low probabilities of occurrence and severe

negative consequences on SC performance (Torabi et al., 2015). They have greater

impact, less frequent occurrence, and potentially longer-term effects than operational

risks, which include events like equipment failure, power outages, and personnel

absence (Torabi et al., 2015; Jabbarzadeh et al., 2018).

While some recent studies (Golan et al., 2020; Mehrotra et al., 2020; Ivanov & Dolgui,

2020b; Ivanov, 2020a; Ivanov, 2020b) discuss SC disruptions specifically in the context

of the COVID-19 pandemic, the vast majority of research on SC disruptions study

localized disruptions such as building fires, natural disasters, or political unrest. SC

disruptions caused by pandemics differ from localized disruptions due to the potentially

longer duration and unforeseeable propagation of pandemics (Ivanov, 2020a). The

significance of these characteristics is demonstrated by Ivanov’s (2020a) simulation-

based analysis of the COVID-19 pandemic in which the greatest determinants of a

pandemic’s impact on SC performance were pandemic propagation speed, facility

disruption duration, and the time at which facilities are opened or closed.

Another difference between pandemics and localized disruptions is that while the latter

impedes sections of a SC, pandemics can simultaneously affect multiple geographic

regions and echelons of the SC (Sheffi, 2015). Uncertainty in a SC’s supply or demand

side alone can seriously impede its efficiency, while volatility in multiple areas of a

SC, as has been created by the COVID-19 pandemic, presents even greater challenges

(Choi et al., 2019). Pandemics can also generate panic in the general public resulting

in unstable pricing and demand (Sheffi, 2015).

Further complicating the predictability of pandemic disruptions is the variation in
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epidemiological and pathological features among viruses. SARS-CoV-2, the virus

behind the COVID-19 pandemic, spreads significantly faster and has higher infectivity

than SARS-CoV and MERS-CoV (Goh et al., 2020) despite their shared ancestry (Hu

et al., 2020).

2.4 Risk Mitigation Strategies

Risk mitigation strategies minimize the likelihood or impact of disruptions’ adverse

effects. The most common SC risk mitigation strategies are i) multiple sourcing, ii)

backup sourcing, iii) emergency inventory, and iv) facility fortification (Govindan et

al., 2017).

Multiple sourcing is achieved by sourcing products from multiple primary suppliers.

This strategy provides greater flexibility when adapting to disruptions in the supply

base (Costantino & Pellegrino, 2010) and is more effective than single sourcing at

mitigating the risks of high operating costs and low service levels (Sawik, 2014). Meena

and Sarmah (2013) present a non-linear model that selects the optimal number of

suppliers based on the trade-off between the volume-based discounts offered by each

supplier and their risk of disruption. Tomlin (2006) uses a Markovian inventory model

to show that multiple sourcing becomes a more effective risk mitigation strategy than

emergency inventories as disruptions occur more frequently and for longer durations.

Another risk mitigation strategy, backup sourcing, contracts the option to buy finished

products or future production capacity from a supplier (Torabi et al., 2015). Typically,

there is a fixed cost to reserve backup production capacity and then a per unit purchase

price if it is utilized. Backup suppliers may also be vulnerable to disruptions. A third

strategy, emergency inventories, pre-purchases units and stores them at locations

throughout the SC to help meet demand if primary sources are disrupted. A fourth

risk mitigation strategy is facility fortification which reduces the likelihood of facility

9



disruption. Installing handwashing stations and teaching employees to self-monitor

their health are pandemic-related examples of this strategy.

Torabi et al. (2015) present a resilient supplier selection model which uses the four

strategies mentioned above and fifth strategy that is called supplier continuity planning

and entails collaborating with suppliers to develop their own disruption recovery plans.

Another risk mitigation strategy found in literature is substituting products or raw

materials with an alternative when primary sources are unavailable (Hosseini et al.,

2019a). An example of this strategy during pandemics is the substitution of medical

face shields with those produced using plastic sheets and 3D printing.

Dolgui et al. (2018) categorize all risk mitigation strategies as either proactive or

reactive. Multiple sourcing, emergency inventory, and facility fortification are proactive

strategies, as they defend the SC against disruptions with little attention paid to

recovery. Back-up sourcing, supplier continuity planning, and product substitution

are reactive strategies, as they focus on modifying a SC after disruptions occur to

recover as quickly as possible.

Organizations may pursue more than one risk mitigation strategy. Evidence from

Yoon et al. (2018) suggests that implementing multiple sourcing, back-up sourcing,

and emergency inventories can improve SC performance more than utilizing only

one of these approaches. Ultimately, risk mitigation approaches must be specifically

tailored to the organization based on contextual variables and their propensity for

cost or service-level focused performance (Yoon et al., 2018).

2.5 Mathematical Optimization

Mathematical optimization is a commonly applied technique for SCND under disrup-

tion risks (Dolgui et al., 2018; Hosseini et al., 2019a). Linear programming is a type

of optimization that maximizes or minimizes a linear equation called the objective
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function by changing the values of decision variables subject to constraints.

2.5.1 Objective Functions in SC Resilience Models

This section presents six categories of objective functions used in SC resilience and

SCRM models. The first category is monetary objective functions such as minimizing

cost or maximizing profit. Penalty costs for undesirable events, such as unmet demand,

can be included in monetary objectives. Jeong et al. (2013) design emergency SCs

using a multi-objective mixed-integer linear program (MILP) that minimizes operating

cost and penalty costs incurred during disruptions. Rottkemper et al. (2012) minimize

both cost and the amount of unsatisfied demand when solving a transshipment model

for humanitarian relief SCs.

Another objective function approach is to measure performance level. One of the

first quantitative resilience metrics proposed in literature was the area under the

operating level curve during a disruption (Bruneau et al., 2003). Other examples

include minimizing lost production (Simchi-Levi et al., 2015), minimizing the percent

of demand that cannot be satisfied (Chen & Miller-Hooks, 2012), and minimizing the

total travel time of customers whose demand is satisfied by secondary sources (Azaron

et al., 2020). In a COVID-19 motivated model, Mehrotra et al. (2020) minimize

the maximum number of ventilators that any hospital is shorted in any time period.

Khalili et al. (2016) simultaneously maximize three performance metrics: production

capacity, transportation capacity, and emergency inventory availability as a percentage

of the nominal capacity.

A third type of objective function is minimization of recovery time after a disruption.

Torabi et al. (2015) perform SCND by minimizing the unit weighted time between the

start of a disruption and when unmet demand is satisfied. Sahebjamnia et al. (2018)

present a multi-objective MILP that minimizes profit-weighted time to recover to full
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capacity as well as operating level loss following disruptions.

Minimizing the probability of occurence of undesirable events, such as costs exceeding

budget, is another modeling approach (Azaron et al., 2008; Guillen et al., 2005).

A fifth objective function category is to optimize strategies that improve SC resilience.

Hosseini et al. (2019b) select a resilient supply base by maximizing the sum of

geographic distances between suppliers and minimizing total costs using a multi-object

MILP. Yoon et al. (2018) select suppliers by maximizing the demand-weighted sum

of supplier reliability scores. Wang et al. (2009) design a medical SC network by

minimizing the maximum transport time between any warehouse and demand point.

Margolis et al. (2018) propose a MILP that maximizes demand weighted connectivity,

which is defined as the number of unique paths from suppliers to a demand point

where all nodes in the path are only used in that path. Cardoso et al. (2015) list four

resilience indicators that can be used in model constraints and objective functions:

the number of nodes in the SC, the number of flows in the SC, the ratio of the number

of flows to the number of potential flows, and the number of critical nodes which are

those that have net flows above a certain threshold.

A sixth objective function category is the optimization of risk terms such as standard

deviation, regret, or value-at-risk (VaR) (Heckmann et al., 2015). Examples of this in

literature and a broader discussion of risk terms are presented in the following section.

2.5.2 Risk Measures

SC research has adopted numerous risk metrics from finance and insurance industries

with the purpose of quantifying the likelihood and severity of variations in objective

function value (Govindan et al., 2017). Heckmann et al. (2015) surveyed SCND

literature and found that most quantitative risk measures fit into one of two categories.

The first category is deviation-based metrics such as standard deviation, expected
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deviation, regret, and semi-deviation from target. Deviation-based metrics describe

the width of the objective function value distribution. The second category is downside

risk metrics such as VaR and conditional value-at-risk (CVaR). Downside risk metrics

describe the objective function value in worst-case scenarios beyond some probability

of occurrence. Many risk metrics can only be computed if scenario probabilities are

known.

Decision makers can assess the trade-off between performance and risk exposure using

a weighted mean-risk term in the objective function (Govindan et al., 2017). Noyan

(2012) proposes a SP model that optimizes the weighted sum of the expected cost

and the CVaR for a given risk tolerance level. Jabbarzadeh et al. (2018) design a

SC network under disruption risk using a stochastic-robust model that minimizes

a weighted sum of the expected value and maximum regret, which is the difference

between the objective values of a solution and the best possible solution for that

scenario. Model preference for optimizing expected value or the risk-term is adjusted

by changing the value of the weight parameter.

Risk-performance trade-offs can be assessed using multi-objective models where at

least one of the objective functions is a risk-term (Govindan et al., 2017). Azaron

et al. (2008) develop a tri-objective SP model that minimizes cost variance along

with expected cost and the probability that costs exceed budget. Sabio et al. (2010)

propose a multi-objective model that minimizes both expected cost and the worst-case

cost.

Risk tolerance can also be modelled using risk constraints and chance constraints. In

risk constraints, a risk-term is constrained by a parameter. In chance constrained

programming, some constraints are only required to be satisfied a set portion of the

time. In a resilient supplier selection model, Hosseini et al. (2019b) chance constrain

the number of disruptions that each supplier can experience.
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2.5.3 Optimization Under Uncertainty

RO, SP, and DRO were considered for optimization under uncertainty. SP optimizes

the expected value of an objective function based on either the probability distribution

function or discrete probabilities of unknown parameters realizing certain values. SP

is commonly applied to SCND under disruption risks with the objective functions

typically minimizing the expected total cost across the pre-disruption and post-

disruption stages (Torabi et al., 2015; Chen & Miller-Hooks, 2012; Ni et al., 2018). SP

provides risk-neutral solutions, while RO provides risk-averse solutions by optimizing

the performance of the worst-case scenario.

Model conservatism can protect decision makers’ against common human biases. Jain

et al. (2018) found that an overconfidence bias during sourcing causes buyers and

suppliers to underestimate demand variability resulting in less reserve capacity and

fewer suppliers in the supply base. Tang (2006) found that ignoring probabilities

of occurrence protects decision makers from underestimating disruption risks and

being ill-prepared for them. This characteristic of RO offers additional utility during

unprecedented events like the COVID-19 pandemic, as historical data is often limited.

DRO is a technique that unifies the RO and SP frameworks, making it less prone to

the weaknesses of each individual approach (Shang & You, 2018). While RO optimizes

the worst-case outcome and SP optimizes the expected outcome, DRO optimizes

the worst-case expected outcome among a set of possible probability distributions

called the ambiguity set. DRO offers less conservative solutions than RO while still

performing risk-averse decision making, and it counteracts the tendency to over-fit

SP models by considering a family of probability distributions rather than just one.

The strength of a DRO approach stems from utilizing available data to estimate the

probability distribution without assuming the expected value is correct as SP does

(Shang & You, 2018).
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Jia et al. (2020) propose a distributionally robust goal programming model to select

sustainable suppliers and allocate the orders of a steel company under uncertainty

in costs, emissions, and demand. They optimize the trade-off between four objective

functions related to costs, carbon dioxide emissions, social impact, and suppliers’

comprehensive value. Jia et al. (2020) found that sustainable supplier selection

and order allocation models were commonly solved using fuzzy multi-objective or

stochastic multi-objective programming and rarely using DRO. DRO has still been

applied to other areas of SC optimization. Shang and You (2018) present a multi-stage

DRO framework for industrial-scale process network planning and batch production

scheduling with demand uncertainty. Gao et al. (2019) develop a two-stage DRO

MILP to design shale gas SCs under uncertainty in supply and demand. Their DRO

model is more tractable and performs better than its SP counterpart when given

imperfect data inputs.

Wang et al. (2020) compare the out-of-sample performance of DRO, RO, and SP

on facility location problems with uncertain demand and shipping costs. In their

experiments, optimal solutions obtained from nominal data and out-of-sample data

were closer in DRO models than SP models. They also found lower expected values,

values-at-risk, and conditional-values-at-risk in DRO models compared to RO models.

These results demonstrate the potentially superior performance of DRO to RO or SP

when unexpectedly optimizing with out-of-sample data. Encountering out-of-sample

data on pandemics is a likely occurrence, as pandemic severity can vary by geographic

region and throughout its own progression due to virus mutation. The adjustable

conservatism of DRO models and their protection against out-of-sample data makes

them flexible for use by multiple different healthcare providers.
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2.6 Simulation

Simulation is a powerful tool for predicting SC performance over time (Ivanov, 2020a).

Although simulation does not guarantee optimality, it can provide additional capacities

that optimization does not easily handle such as event randomness and complex

inventory, sourcing, and shipping policies (Ivanov & Dolgui, 2020a). Simulation allows

decision makers to quickly estimate recovery time and other key performance indicators

for various recovery plans and “what-if” scenarios.

2.7 Machine Learning

Where sufficient historical data is available, machine learning can be a useful tool for

risk assessment, disruption identification, and automated decision making (Ivanov

et al., 2018; Baryannis et al., 2018). The learning and prediction capabilities of

machine learning can improve traditional SC modelling techniques by more accurately

predicting probability distributions and future SC performance (Cavalante et al., 2019).

Hosseini et al. (2019b) and Zhao & You (2019) apply statistical learning techniques

to estimate scenario probabilities and the probability density functions of uncertain

parameters respectively for resilient SC design models.

2.8 Hybrid Approaches

Each quantitative technique discussed above offers unique capabilities and limitations.

Mathematical optimization offers the ability to optimize highly complex systems, but

it is limited in the quantity of data that it can handle (Baryannis et al., 2018). Dolgui

et al. (2018) suggest that optimization models should concentrate on minimizing

risk during SC design rather than modelling SC performance over time. Simulation

is quite capable of time-dependent analysis, so it should be applied to contingency
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planning and SC recovery after disruptions (Dolgui et al. 2018; Ivanov & Dolgui,

2020a). Machine learning can automate decision making and learn from large amounts

of data but has limitations when modelling complex systems (Baryannis et al., 2018).

Hybrid applications of optimization, simulation, and machine learning techniques can

provide even more powerful and holistic approaches to SCRM. Ke and Zhao (2008)

solve a medical supplies distribution problem using simulation to model epidemic

spread in the populace and optimization to design the SC network. Cavalcante et

al. (2019) merge simulation and machine learning, referred to as a digital SC twin,

to perform data-driven supplier selection. Their digital SC twin promotes SC agility

and resilience through quick decision making based on data-driven experimentation

of different scenarios. Ivanov and Dolgui (2020a) develop a decision-support system

that combines simulation, optimization, and data analytics. Simulation-optimization

tools optimize the SC network and simulate SC performance during various disruption

scenarios. Data analytics are used to identify disruptions based on live process data

and generate realistic disruption scenarios for contingency planning.

2.9 Research Gaps

The papers reviewed above, excluding Mehrotra et al. (2020) and Ivanov (2020a),

analyze SC decision making in non-pandemic situations, so contextual parameters

differ from this study. During pandemics, the PPE SC is fraught with complications

as global demand sky rockets due to increased PPE usage, panic purchasing, and

hoarding. This pressure on the SC can lead to contracts being unfulfilled, volatile

market prices, and other foreseen and unforeseen consequences during long periods of

disruption. According to Govindan et al. (2017), multi-period modelling is crucial

for long-term disruptions that evolve unpredictably, yet a significant portion of SC

disruption research studies two-stage models rather than multi-stage models.
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SP is the most common approach to optimization under uncertainty in SC resilience

(Hosseini et al., 2019a) and SCRM research (Baryannis et al., 2018). The problem

with this trend is that SP assumes absolute correctness of its uncertainty scenario

probability distribution. This may be unrealistic in the context of pandemics due to

their infrequent occurrence and variance in epidemiological and pathological features.

The literature is also lacking studies that combine RO and DRO with multi-objective

optimization models.
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Chapter 3

Problem Definition
This thesis studies the critically important PPE supply planning problem during the

COVID-19 pandemic. Supply planning is defined as the selection of suppliers from

multiple types of sources over multiple time periods. This is consistent with key

decisions in SC disruption management identified by Hosseini et al. (2019b).

The models in this study incorporate five procurement factors that were identified

in the case study of a Canadian healthcare provider. The first factor is the timing

of purchases. The proposed models have multiple time periods to help SC managers

decide when to make purchases. Modelling with multiple time periods is essential to

capturing the long-term nature and unpredictable spread of pandemics.

The second procurement factor is competing strategic objectives. Health authorities

consider various decision criteria when procuring medical supplies. Two common

criteria, and those used by the healthcare provider in this case study, are to maximize

the portion of PPE demand that is satisfied while also minimizing operating cost.

Multi-objective optimization is used to optimize the trade-off between these two

competing goals. A strength of this approach is its ability to optimize both cost and

service level without a defined penalty cost for unmet demand which is also called

shorted demand. Unmet demand can have long-lasting performance impacts making

its cost to an organization unclear and difficult to accurately estimate (Simchi-Levi et

al., 2018).

The third element of this framework is the use of RO, SP, and DRO to consider

uncertainty in future PPE prices, supply, and demand. Recourse modelling techniques

like these provide an intuitive approach to optimizing SCs under disruption-related
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uncertainties (Govindan et al., 2017). Strategic decisions are made in the pre-disruption

stage under uncertainty of future outcomes. These decisions cannot be easily adjusted

in the short-term, so they have the same value regardless of the uncertainty scenario

that is realized. Operational decisions are made in post-disruption modelling stages.

These decisions can easily be adjusted in response to the realization of uncertain

parameter values. The service-level objective function follows minimax robustness by

minimizing the maximum shortage of any product in any time period and scenario.

This approach facilitates health authorities’ risk aversion regarding demand satisfaction.

Costs are optimized using SP, RO, and DRO. Sample average approximation (SAA)

is applied to the RO model to chance-constrain the minimax cost objective and adjust

solution conservatism.

The fourth procurement factor is quantity-based pricing. Sourcing greater quantities

from a single supplier often decreases unit cost through quantity-based discounts, but

it exposes the SC to greater risk if that supplier is disrupted. The models in this

study include all-unit volume-based discounted pricing. This differs from incremental

discounts, which only apply to units in excess of the price break quantity, and business-

volume discounts which discount the price of all products bought from a supplier

(Bohner & Minner, 2017).

The fifth procurement factor is multiple types of sources: long-term contracts, one-

time purchases on the open market, and federal emergency stockpiles. Long-term

contracts deliver fixed quantities of PPE in each time period at fixed prices. One-off

purchases from the open market vary in both quantity and price. Canada maintains a

federal emergency supplies stockpile and allocates PPE to the provinces upon request

(Government of Canada, 2021). This is modelled by parameterizing the total supply of

emergency PPE available to the healthcare provider, while purchase quantities in each

time period are decision variables. The price of emergency stockpile PPE remains
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constant.

The models incorporate multiple sourcing and emergency inventory stockpiles, as these

were identified to be promising risk mitigation strategies for risk-averse organizations

in Tomlin (2006). The potential benefits of carrying larger inventory quantities prior

to disruption are also analyzed.

To reduce SC complexity, warehouses are represented by individual decision variables

for the net inventory and the net shipment quantities of each product in each time

period. Similarly, the demand at all destinations is aggregated into a single parameter

for each product and time period. The flow of PPE in the modelled SC is depicted in

Figure 3.1.

Figure 3.1: Representational diagram of the case study SC
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Chapter 4

Optimization Framework
Section 4.1 formulates a deterministic multi-objective model for resilient supply

planning. The ε-constraint solution method is outlined in Section 4.2. In Section 4.3,

uncertainty is considered using both two-stage and multi-stage recourse models with

RO, SP, and DRO cost objectives.

4.1 Deterministic Formulation

The following notation is used to formulate the supply planning models:

Sets

P Products

I Suppliers

K Warehouse capacities (sqft.)

B Quantity-based price breaks

T Time periods t ∈ 1...T

Parameters

Acit Availability of supplier i to meet contractual obligations in time t

Aoit Availability of supplier i’s nominal open market capacity in time t

Dpt Total hospital demand of product p in time t

popit Open market price per unit of product p for supplier i in time t

pcpi Base contract price per unit of product p from supplier i

pep Price per unit of product p in emergency stockpile

C1
pi Cost to ship product p from supplier i to warehouses

C2
p Cost to ship product p from emergency stockpile to warehouses
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C3
p Cost to ship product p from warehouses to hospitals

C4
k Cost to have net warehouse capacity k

C5
p Holding cost per unit of product p in inventory

C6 Administrative cost to contract each supplier

F 1
pi Fraction of product p from supplier i that is usable (not defective)

F 2
pib Fraction of base contract price of product p for supplier i and discount b

K1
k Square footage of net warehouse capacity k

K2
p Square feet required to store one unit of product p

Q1
ib Contract quantity where supplier i offers all-unit discount b

Q2
pi Contract quantity maximum for product p from supplier i

Q3
pi Contract quantity minimum for product p from supplier i

Q4
pi Average quantity of product p that supplier i sells on open market per period

Q5
p Net supply of product p in federal stockpile allocated to the healthcare provider

V 0
p Inventory of product p at start of disruption

M Very large number

ε Parameter of the ε-constraint approach to multi-objective optimization

Decision Variables

qcpib Periodic quantity of product p contracted from supplier i with discount b

qopit Quantity of product p procured from supplier i in time t on open market

qept Quantity of product p procured from federal stockpile in time t

qhpt Quantity of product p delivered from warehouses to hospitals in time t

spt Portion of demand for product p that is shorted in time t

vpt Inventory level of product p at beginning of time t

wk


1 if net warehouse capacity is size k

0 otherwise
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ypib


1 if product p is contracted from supplier i at price discount b

0 otherwise

Warehouse capacity (wk), and long-term contract selection (qcpib, ypib) are strategic

decisions, so their values do not change during the modelled disruptions. Open market

purchase quantities (qopit), emergency stockpile consumption (qept), transport quantities

(qhpt), PPE shortages (spt), and inventory levels (vpt) are operational decisions that can

change in each period of the modelled disruptions.

The models minimize the net costs in objective function Z1 in Eq. 1, and they minimize

the maximum portion of demand that is shorted in objective function Z2 in Eq. 2.
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p
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∑
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∑
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c
piq

c
pib +

∑
p

∑
i

∑
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pq
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∑
p

∑
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∑
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C6ypib

(1)

Minimize Z2 = max
p∈P,t∈T

spt (2)

Objective function Z1 in Eq. 1 has 10 terms which account for costs associated

with procurement, shipping, warehousing, inventory, and administration. Specifically,

they are the long-term contract procurement costs, open market procurement costs,

emergency stockpile procurement costs, shipping costs from contracted suppliers

to warehouses, shipping costs from open market suppliers to warehouses, shipping

costs from the emergency stockpile to warehouses, shipping costs from warehouses
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to destinations, overhead cost of having net warehouse capacity k, inventory holding

costs, and administration costs incurred by each long-term contract including the cost

of negotiating with, documenting, and inspecting suppliers.

Objective function Z2 in Eq. 2 minimizes the maximum portion of demand that is

unsatisfied for any product p and time period t. Optimizing the minimax term instead

of a sum of shortages prevents the model from concentrating its product shortages at

one hospital or in one time-period (Mak & Shen, 2012; Mehrotra et al., 2020). Most

health providers would prefer smaller shortages in several time periods over one large

shortage.

The deterministic model is bound by constraints 3 – 20.

qopit ≤ AoitQ
4
pi ∀p ∈ P, i ∈ I, t ∈ T (3)

qcpib ≤ Q2
piypib ∀p ∈ P, i ∈ I, b ∈ B (4)

qcpib ≥ Q3
piypib ∀p ∈ P, i ∈ I, b ∈ B (5)

qcpib ≥ Q1
ibypib ∀p ∈ P, i ∈ I, b ∈ B (6)

qcpib ≤ Q1
i,b+1ypib ∀p ∈ P, i ∈ I, b ∈ B (7)∑

p

K2
pvpt ≤

∑
k

K1
kwk ∀t ∈ T (8)

∑
i

∑
b

AcitF
1
piq

c
pib +

∑
i

F 1
piq

o
pit + qept − qhpt + vpt = vp,t+1 ∀p ∈ P, t ∈ T (9)

vp,t=1 = V 0
p ∀p ∈ P (10)

vp,t=T+1 ≥ V 0
p ∀p ∈ P (11)

qhpt − (1− spt)Dpt = 0 ∀p ∈ P, t ∈ T (12)∑
k

wk = 1 (13)

∑
b

ypib ≤ 1 ∀p ∈ P, i ∈ I (14)
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∑
t

qept ≤ Q5
p ∀p ∈ P (15)

qcpib ≥ 0 ∀p ∈ P, i ∈ I, b ∈ B (16)

qopit ≥ 0 ∀p ∈ P, i ∈ I, t ∈ T (17)

qept, q
h
pt, spt, vpt ≥ 0 ∀p ∈ P, t ∈ T (18)

wk ∈ {0, 1} ∀k ∈ K (19)

ypib ∈ {0, 1} ∀p ∈ P, i ∈ I, b ∈ B (20)

Constraint 3 ensures that open market order quantities are less than each supplier’s

capacity in each time period. Constraints 4 and 5 enforce maximum and minimum

contract sizes. The price discount binary variables are set by constraints 6 and 7 so

that contract quantities are within their quantity-based discount bracket. Constraint

8 limits inventory space to the net warehouse capacity. Constraint 9 equates net

inventory in the following time period to its current value plus or minus PPE shipments

during the current period for each product. Constraint 10 sets the initial inventory

level for each product. Inventory levels in the final time period (T + 1) must be

equal to or greater than their starting inventory levels, which is enforced by constraint

11. Constraint 12 ensures that PPE quantities shipped to destinations exceed the

service level for each product p and period t. Constraint 13 ensures that only one net

warehouse capacity is selected. Selecting the smallest warehouse capacity has zero

cost, as the smallest option is the current capacity. Constraint 14 ensures that at

most one discount price is used for each product-supplier combination. Constraint 15

guarantees that the sum of shipments from the federal emergency stockpile over all

periods does not exceed the emergency stockpile fraction allocated to the healthcare

provider. Constraints 16 – 20 are non-negativity and binary constraints.

This formulation makes the following assumptions. Contracted units that are never

delivered are not paid for and there is no recourse if suppliers cannot produce the
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contracted amount. Only PPE that passes quality inspection when it arrives at

warehouses is stored in inventory. The cost of defective products is not refunded.

Suppliers can offer all-unit volume-based price discounts on contracts but not on open

market purchases. Lastly, demand must be satisfied in its respective time period, as

back-ordering PPE is not an option in pandemic settings.

4.2 Solution Approach

The ε-constraint approach was chosen to solve the multi-objective models in this

study. This approach designates one objective function as the primary objective, while

the remaining objective functions are added to the model constraints and bound by

parameters ε (Ehrgott, 2005). The proposed model has two objectives, so it only

requires one additional ε-constraint.

Efficient solutions, also referred to as Pareto-optimal solutions, in multi-objective

programming can not enhance the value of any objective function without degrading

the value of another objective (Ehrgott et al., 2014). Efficient solutions are realized by

optimizing (21) and then setting the value of ε to its objective value and optimizing

(22). A set of efficient solutions obtained from different values of ε are typically referred

to as a Pareto front.

Min. Z1

s.t Eqs. 3–20

spt ≤ ε ∀p ∈ P, t ∈ T

(21)
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Min. θ

s.t spt ≤ θ ∀p ∈ P, t ∈ T

Eqs. 3–20

Z1 ≤ ε

(22)

4.3 Optimization Under Uncertainty

The SP, RO, and DRO models presented in this section incorporate scenario-based

uncertainty in PPE supply, prices, and demand. This requires an additional notation

set S for uncertainty scenarios (S = 1...S). Parameters Acit, Aoit, Dpt, and popit and

recourse decision variables qopit, qept, qhpt, spt, and vpt receive an additional index to

indicate their value in scenario s. Constraints 3, 8, 9, 10, 11, 12, 15, 17, 18 and the

ε-constraint now exist ∀s ∈ S, as they contain at least one uncertain parameters or

recourse decision variable.

In two-stage recourse models, the value of uncertain parameters in all future time

periods becomes known at the start of a disruption. Strategic decisions are made under

uncertainty, but operational decisions are made with certainty. For example, warehouse

capacity must be decided under uncertainty of the severity of future disruptions, but

once a disruption begins, the open market purchase quantities are decided with

knowledge of future demands, prices, and supplier availability. Conversely, multi-stage

models make all decisions under uncertainty of future outcomes. In this context, the

difference between strategic and operational decisions is that strategic decisions must

remain fixed during all time periods, while operational decisions can assume different

values in each period. The greater uncertainty in multi-stage recourse models causes

their objective values to be worse than those from their two-stage counterparts.

In multi-stage uncertainty, scenarios with the same uncertain parameter realizations

in the current and preceding time periods must have identical decision variable values.
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Such scenarios do not exist in the two-stage dataset, so a multi-stage dataset was

created in which there are three potential outcomes of uncertainty parameter values

in each time period. Constraints 23–26 are added to the multi-stage recourse model to

enforce the equality of decision variables qepts, qhpts, spts, and qopits in scenarios 1 to 3, 4

to 6, · · · , 3T − 2 to 3T in time period T − 1, scenarios 1 to 9, 10 to 18, · · · , 3T − 8 to

3T in time period T − 2, etc. Constraint 27 performs the same function for decision

variable vpts one time period ahead since vpts represents the inventory at the beginning

of a period rather than its end. Constraints 23–27 do not apply to scenarios numbered

as a multiple of 3T−t due to the three potential outcomes of uncertainty parameter

values in each time period.

qepts = qept,s+1 ∀p ∈ P, t ∈ {1...T − 1}, s ∈ S\{3T−t, 2× 3T−t...3T} (23)

qhpts = qhpt,s+1 ∀p ∈ P, t ∈ {1...T − 1}, s ∈ S\{3T−t, 2× 3T−t...3T} (24)

spts = spt,s+1 ∀p ∈ P, t ∈ {1...T − 1}, s ∈ S\{3T−t, 2× 3T−t...3T} (25)

qopits = qopit,s+1 ∀p ∈ P, i ∈ I, t ∈ {1...T − 1}, s ∈ S\{3T−t, 2× 3T−t...3T} (26)

vp,t+1,s = vp,t+1,s+1 ∀p ∈ P, t ∈ {1...T − 1}, s ∈ S\{3T−t, 2× 3T−t...3T} (27)

4.3.1 Robust Optimization Formulation

The RO formulation incorporates what Soyster (1973) initially introduced as minimax

or strict robustness. It requires each scenario to satisfy all constraints. The RO cost

objective minimizes the maximum cost incurred in any scenario, while the service

level objective minimizes the maximum portion of demand that is shorted for any

product, time period, and scenario. Optimizing these minimax terms necessitates a

new non-negative decision variable θ. If cost is the main objective, θ must exceed Z3

in Eq. 28 ∀s ∈ S. If service level is the main objective, θ must exceed spts for each
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product p, time period t, and scenario s.
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(28)

This approach mimics that proposed by Kuroiwa and Lee (2012), where the concept

of minimax robustness is extended to multi-objective models by optimizing objective

functions’ worst-case values across all uncertainty scenarios. This formulates the

multi-objective RO model as a deterministic problem to which the ε-constraint method

can be applied. The efficient solutions of this approach are referred to as robust

solutions.

RO model conservatism is made adjustable by applying chance constrained program-

ming which is a technique that only requires some constraints to be satisfied a set

portion of the time. An example of this in literature is Hosseini et al. (2019b) chance

constraining the number of disruptions that each supplier can experience. Sample

average approximation (SAA) is an approach proposed by Ahmed and Shapiro (2008)

to approximate chance-constraints. In this model, the minimax cost constraint is

chance constrained, allowing the cost of some scenarios to exceed the value of θ. This

is achieved by adding an arbitrarily large number M to the right-hand side of the

minimax cost constraint in a select number of scenarios. Binary decision variables zs

select those scenarios. The number of scenarios where cost can exceed θ is bound by

the product of parameter α and the total number of scenarios S.

Robust Pareto-optimal solutions with SAA of the minimax cost objective are obtained

by optimizing (29) and then optimizing (30) with the value of ε set to the objective
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value of the former model.

Min. θ

s.t Z3 ≤ θ +Mzs ∀s ∈ S∑
s

zs ≤ αS

Eqs. 3–20, 23–27

spts ≤ ε ∀p ∈ P, t ∈ T, s ∈ S

(29)

Min. θ

s.t spts ≤ θ ∀p ∈ P, t ∈ T, s ∈ S

Eqs. 3–20, 23–27

Z3 ≤ ε+Mzs ∀s ∈ S∑
s

zs ≤ αS

(30)

Increasing the value of parameter α makes the model less risk-averse with regards to

total cost while remaining completely risk-averse with regards to PPE shortages.

4.3.2 Stochastic Programming Formulation

This formulation replaces the RO cost objective with an expected cost function that

is presented in Eq. 31. The first two terms represent the cost of strategic decisions

regarding net warehouse capacity and contract quantities. These long-term decisions

apply to all uncertainty scenarios, as they are not easily reversible. The third term

represents the expected cost of operational decisions which are also referred to as

recourse decisions since they can be changed depending on the scenario that is realized.

The costs of recourse decisions are multiplied by their respective scenario’s probability

of occurrence fs resulting in an expected cost.
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Efficient solutions are obtained for the SP formulation by optimizing (32) and then

optimizing (33) with the value of ε set to the objective value of the former model.

Min. Z4

s.t Eqs. 3–20, 23–27

spts ≤ ε ∀p ∈ P, t ∈ T, s ∈ S

(32)

Min. θ

s.t spts ≤ θ ∀p ∈ P, t ∈ T, s ∈ S

Eqs. 3–20, 23–27

Z4 ≤ ε

(33)

4.3.3 Distributionally Robust Optimization Formulation

While RO optimizes the worst-case cost and SP optimizes the expected cost, DRO

optimizes the worst-case expected cost among a set of possible probability distributions

called the ambiguity set and denoted by D. Thus, DRO problems can be formally

represented as inf
x

sup
f∈D

Ef [g(x, ξ)], where f is the probability distribution that results

in the worst-case expected value, and ξ represents the uncertain parameters of future

scenarios.
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Different types of ambiguity sets exist in DRO. This project uses a statistical-distance-

based ambiguity set which bounds a spherical region in the space of feasible probability

distributions using a φ-divergence function.

φ-divergence, referred to as the distance between the estimated probability distribution

f̂s and any distribution fs in the ambiguity set D, is mathematically defined as:

Iφ(f, f̂) =
∑
s

f̂sφ(fs
f̂s

) (34)

where φ(t) is some convex function for t ≥ 0, φ(1) = 0, 0φ(a0):= a lima→∞
φ(t)
t

for a >

0, and 0φ(0
0):=0 (Ben-Tal et al., 2013).

The variation distance φ-divergence function shown in Eq. 35 is used in this study

to maintain model linearity. The reader is referred to Ben-Tal et al. (2013) for a

summary of other φ-divergence functions commonly used in the literature.

Iφ(f, f̂) =
∑
s

|fs − f̂s| (35)

This DRO model constrains the φ-divergence function by parameter ρ. The ambiguity

set D, which is bound by the φ-divergence function, is therefore defined as:

D(f̂ , ρ) =
{
f ∈ Λ

∣∣∣∣∣∑
s

|fs − f̂s| ≤ ρ

}
(36)

where Λ represents the space containing all feasible probability distributions.

When ρ is set to 0, the only distribution in the ambiguity set D is f̂ , so the problem

reduces to SP. Increasing the value of ρ increases the size of the ambiguity set thus

making the DRO model more conservative. As ρ→∞, the ambiguity set D contains

all possible distributions, and the problem becomes RO.
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An initial DRO formulation can be created by optimizing objective function 37 subject

to constraints 3–20, 23–27, and 38–42. Decision variable ds is introduced to enact the

absolute value operation in the variation distance φ function. Parameter f̂s is set to
1
S

, as equally likely scenarios are assumed.

min
∑
k

C4
kwk +

∑
p

∑
i

∑
b

C6ypib + max
fs,ds

∑
s
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∑
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pvpts

] (37)

∑
s

fs = 1 (γ) (38)

∑
s

ds ≤ ρ (π) (39)

−fs − ds ≤ −f̂s ∀s ∈ S (ψ+
s ) (40)

fs − ds ≤ f̂s ∀s ∈ S (ψ−s ) (41)

fs, ds ≥ 0 ∀s ∈ S (42)

The third term of objective function 37 and constraints 38–42 form an inner maximiza-

tion problem within the outer minimization problem. The inner and outer problems

can be rectified using primal-duality theory. The standard formulation of a primal LP

problem is:

(Primal) max{〈c, x〉 : Ax = b, x ≥ 0}

where A ∈ Rm×n, rank(A) = m, b ∈ Rm, and c ∈ Rn. The corresponding dual problem

is:

(Dual) min{〈b, y〉 : ATy + s = c, s ≥ 0}

Dualizing the inner problem converts it from a maximization problem to a minimization

problem and eliminates decision variables fs and ds in the process. γ, π, ψ+, and ψ−
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are the dual variables attached to constraints 38–42 respectively. The dualized inner

problem is formulated in equations 43–48.

min
γ,π,ψ+

s ,ψ
−
s

γ + ρπ −
∑
s

f̂sψ
+
s +

∑
s

f̂sψ
−
s (43)

π − ψ+
s − ψ−s ≥ 0 ∀s ∈ S (44)
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(45)

γ u.r. (46)

π ≥ 0 (47)

ψ+
s , ψ

−
s ≥ 0 ∀s ∈ S (48)

The dual of the inner problem is then reintroduced to the outer problem, and the

DRO objective function becomes Eq. 49.

Min. Z5 =
∑
k

C4
kwk +

∑
p

∑
i

∑
b

C6ypib + γ + ρπ −
∑
s

f̂sψ
+
s +

∑
s

f̂sψ
−
s (49)

Efficient DRO solutions are found by solving (50), then setting the value of ε to its

objective value and optimizing (51).
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Min. Z5

s.t Eqs. 3–20 (Nominal Cst.s)

Eqs. 23–27 (Multi-Stage Recourse Cst.s)

Eqs. 44–48 (DRO Cst.s)

spts ≤ ε ∀p ∈ P, t ∈ T, s ∈ S

(50)

Min. θ

s.t spts ≤ θ ∀p ∈ P, t ∈ T, s ∈ S

Eqs. 3–20 (Nominal Cst.s)

Eqs. 23–27 (Multi-Stage Recourse Cst.s)

Eqs. 44–48 (DRO Cst.s)

Z5 ≤ ε

(51)
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Chapter 5

Numerical Experiments
Experiments inspired by the NSHA case were run with the presented models using

realistic data. Open market PPE prices vary between the average market prices prior

to and during the COVID-19 pandemic as reported by the Society for Healthcare

Organization Procurement Professionals (2020). Pandemic scenarios were generated

based on plausible and actual pandemic trajectories seen around the world during the

COVID-19 pandemic including single-wave, two-wave, and exponential growth.

The severity of the pandemic, which is denoted by a numerical factor, sets the values

of the four uncertain parameters: demand (Dpt), open market price (popit), open

market supply (Aoit), and contract fulfillment (Acit). PPE prices and demands have

a positive correlation to pandemic severity, while open market and contract supply

have a negative correlation to it. Open market prices (popit), contract fulfillment (Acit),

and open market supplier availability (Aoit) have a linear relationship with pandemic

severity factors, so an X% change in the pandemic severity factor value corresponds

with an X% change in these parameter values. Total hospital demand (Dpt) increases

by a factor of (1 + pandemic severity factor), so increases in the pandemic severity

factor correspond with less than proportional increases in demand for PPE.

The two-stage recourse dataset contains ten scenarios named A through J. Their

pandemic severity factors are plotted in Figure 5.1. Each scenario has eight time

periods of a two month duration.
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Figure 5.1: Pandemic severity factors by time period in two-stage dataset scenarios

The multi-stage recourse dataset contains four, four month time periods rather than

eight, two month time periods to reduce model run-time. Each of the four time periods

in the multi-stage dataset has three potential levels of pandemic severity resulting in

43 = 81 scenarios in total. The values of pandemic severity factors in the multi-stage

dataset are plotted in Figure 5.2.
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Figure 5.2: Plot of potential pandemic severity factor values in multi-stage dataset

Three products are sourced by the model: 3-ply mask, isolation gown, and N95

mask. The purchase prices of the three PPE sources relative to one another changes

depending on the time period and scenario. Emergency stockpile PPE costs more than

all contract prices. Open market PPE is the cheapest source in some time periods

and scenarios and the most expensive source in other time periods and scenarios.

There are seven potential suppliers. The single domestic supplier has higher prices

and lower magnitude disruptions than the six foreign suppliers. Further, contract

availability is disrupted less by pandemics than open market availability, as it is

assumed that suppliers satisfy their contractual obligations before accepting open

market orders. In the multi-stage dataset, the average availability of contracted

suppliers (Acits) is 71%, while it is only 63% for open market suppliers (Aoits).
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Due to the large number of parameters and uncertainty scenarios, only the upper

and lower bounds of parameters in the multi-stage dataset are shown in Table 5.1.

The entire two-stage and multi-stage datasets are available as electronic supplements.

Modelling was performed in MATLAB with Gurobi 9.0.0 on a Dual-Core Intel © i5

CPU running at 1.6GHz with 8.00GB RAM.

Table 5.1: Multi-stage dataset parameter value ranges
Parameter Minimum Value Maximum Value

Acits 0% 99%
Aoits 0% 99%
Dpts 110,000 525,000
popits $ 0.05 $ 10.80
pcpi $ 0.10 $ 1.60
pep $ 0.20 $ 1.60
C1
pi $ 0.0025 $ 0.050
C2
p $ 0.0030 $ 0.030

C3
p $ 0.0038 $ 0.038

C4
k $ 0 $ 20,000

C5
p $ 0.0040 $ 0.032

C6 - $ 1,000
F 1
pi 99% 99%

F 2
pib 94% 100%
K1
k 16,000 sqft. 24,000 sqft.

K2
p 0.010 sqft.

unit
0.025 sqft.

unit

Q1
ib 0 1.0 E+09

Q2
pi 14,285 128,571

Q3
pi 1,000 3,000

Q4
pi 10,000 150,000

Q5
p 120,000 360,000

V 0
p 50,000 150,000

5.1 Cost and Service Level Trade-Off

In this first experiment, Pareto fronts are generated and plotted with net cost as a

function of the portion of demand satisfied. Efficient solutions are sampled by varying

parameter ε between 0% and 20% at step sizes of 1%. Cost is the main objective,

so ε bounds the maximum shortage or product p that can occur in any period t and
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scenario s.

The deterministic model was run for scenarios A through J. The resulting Pareto

fronts are plotted in Figure 5.3. Scenarios B, A, and C are the respective first, second,

and third highest-cost scenarios in the deterministic model across all sampled service

levels. These three scenarios also have the highest cost in the two-stage SP model

and are the first three scenarios removed by the SAA constraint in the two-stage RO

model.

Scenarios A and C have the two lowest standard deviations in pandemic severity factor

across time periods which may correspond with less opportunities to buy PPE at low

costs resulting in higher overall costs. This hypothesis was tested by computing the

correlation between scenario costs and their standard deviation in pandemic severity

factors across time periods. This hypothesis is supported by a resulting correlation

of -0.46, but scenario B, which has a relatively high standard deviation, is still the

highest cost scenario. One potential explanation of scenario B’s high costs is that its

maximum severity is in the first period, so the model has no opportunity to acquire

inventory in preparation for the worst time periods.
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Figure 5.3: Deterministic model Pareto fronts using two-stage dataset

Figure 5.4 plots the Pareto fronts of the two-stage and multi-stage RO without SAA,

SP, and DRO with ρ = 0.8 models using the multi-stage dataset. In this case, the

two-stage and multi-stage RO models have identical Pareto fronts due to both models

optimizing the same worst-case scenario regardless of two-stage or multi-stage recourse.

The slope of the Pareto fronts increases slightly as the service level increases. When

cheaper suppliers have no product to sell, the model must purchase PPE from higher-

cost suppliers. This increases the marginal cost of PPE and by extension the slope of

the Pareto fronts.
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Figure 5.4: Pareto fronts of the two-stage and multi-stage RO (α = 0), SP, and DRO

(ρ = 0.8) models

Figure 5.4 reflects that DRO is more conservative than SP but less conservative than

RO. The DRO model has similar run-times to the SP and RO formulations despite

the additional constraints and continuous decision variables in the DRO model.

5.2 Risk Mitigation Strategy Analysis

5.2.1 Starting Inventory Quantity

The value of parameter V 0
p , which is the inventory level for product p in the first

period, was varied to observe its impact on optimal costs in the deterministic model.

The costs for scenarios A through J at four different starting inventory levels, which

are represented by different bar colors, are plotted in Figure 5.5. These results show
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that some scenarios decrease in cost given greater quantities of starting inventory,

while other scenarios increase or experience little to no change in cost. This behavior

is correlated with the maximum pandemic severity during the first three time periods.

Scenarios B, F, H, and J, which clearly benefited from more starting inventory, have

maximum pandemic severity factors between 0.21 and 0.25 during the first three

time periods. Scenario B, whose severity starts at a maximum of 0.25 in period 1

and linearly decreases with the progression of time, experiences the greatest cost

improvement. This supports the hypothesis proposed earlier that scenario B has high

cost due to its lack of opportunity to gather inventory in preparation for maximum

demand in period 1. Scenarios that experience little to no change in cost (A, C, G)

have a maximum pandemic severity factor between 0.13 and 0.15 during the first three

time periods. Scenarios whose cost clearly increased with greater quantities of starting

inventory (D, E) have a maximum pandemic severity factor between 0.08 and 0.10

during the first three time periods. Scenario I seemed to fit into both the decreasing

cost and constant cost groups, so it was not included in any group. The two-stage and

multi-stage SP, RO, and DRO models all experienced decreases in their cost-objective

value given more starting inventory.
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Figure 5.5: Deterministic model costs by scenario and average quantity of starting

inventory

5.2.2 External Emergency Stockpile

The following two experiments analyze how the size and prices of the emergency PPE

stockpile impacts expected cost. The two-stage and multi-stage SP models at a 99%

service level were run with different values for parameters Q5
p and pep which indicate the

total supply of product p in the emergency stockpile allocated to the Health Provider

and the cost to consume emergency stockpile PPE respectively. Figure 5.6 plots the

expected costs as blue bars and the cost standard deviation divided by the mean cost,

also known as relative standard deviation (RSD), as red lines against the percent

of total demand that could be satisfied by the emergency stockpile alone. Larger

emergency stockpiles reduce cost RSD, but they have little effect on expected cost.

This experiment was then repeated with the RO and DRO models. Figure 5.7 plots

the cost objectives of all five models at a 99% service level against the percent of total

demand that could be satisfied by the emergency stockpile alone. Figure 5.7 shows
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that the RO and DRO models benefit more from larger emergency stockpiles than

the SP models. This indicates that larger emergency stockpiles cause a greater cost

reduction for more severe scenarios, which are over-weighted in the RO and DRO

models, than for less severe scenarios. Figure 5.7 illustrates a diminishing return on

cost savings as the emergency stockpile size increases. With this data, increasing the

quantity of emergency stockpile allocated to the Health Provider beyond 25% of their

total expected demand seems uneconomical.

Figure 5.6: Expected cost and cost RSD for two-stage (left) and multi-stage (right)

SP models versus size of emergency stockpile
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Figure 5.7: Plot of cost objective versus size of emergency stockpile

The quantity of allocated emergency stock was then held constant while the the cost

of using it varied between 30% and 180% of the average contract price. The federal

government could decide to heavily subsidize the costs of emergency stockpile PPE

which is reflected in the case where emergency stock costs only 30% of the average

contract price. Figure 5.8 plots the expected cost and cost RSD against various prices

of emergency stock. As anticipated, cheaper emergency stockpile PPE significantly

reduces expected cost. Cost RSD is minimized when the emergency PPE prices are

roughly equal to the average contract price, but the improvements in cost RSD are

smaller than those achieved by increasing the size of the emergency stockpile. The

utilization of allocated emergency stock in the multi-stage model varies from 18%

when its prices are highest to 94% when they are lowest.

Figures 5.6 and 5.8 indicate that cost variance is more effectively reduced by increasing

the quantities of PPE allocated through the emergency stockpile rather than lowering

the price of emergency stockpile PPE, while the latter strategy is more effective than

the former at reducing expected cost.
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Figure 5.8: Expected cost and cost RSD for two-stage (left) and multi-stage (right)

SP models versus price of emergency stockpile

5.3 Inventory Level Behavior

In periods of severe pandemic spread, increased demand and prices paired with

decreased supply causes inventory levels to drop. Both two-stage and multi-stage SP

models exhibit this behaviour as shown by the negative correlation between pandemic

severity factors and change in inventory levels that ranges in value between (-) 0.4

and (-) 0.9. The RO and DRO models exhibited weaker negative correlations than

the SP model. This is likely caused by the former models’ tendency to optimize the

worst-case scenarios and find feasible but sometimes erratic solutions for scenarios

with zero probabilities of occurrence.

Decreasing inventory holding cost or the storage space required per unit of PPE

strengthens the negative correlation between inventory change and pandemic severity.

A potential explanation of this behaviour is that stronger negative correlations can

be thought of as more price sensitive purchasing. Low holding costs and space

requirements make it cheaper for the model to purchase PPE in time periods with

low prices and store it in inventory until use in more severe time periods.

Increasing the emergency stockpile size or decreasing emergency stockpile prices
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weakens the negative correlation between inventory change and pandemic severity.

This indicates that abundant and cheap emergency stock corresponds with less open

market price sensitivity. The average inventory level also decreases as greater amounts

of emergency stock become available at lower prices.

5.4 RO Model Conservatism

The RO model at a 99% service level was run with various values of α which relaxes or

tightens the SAA chance-constraint on the cost objective. Larger values of α allow the

cost of more scenarios to exceed the minimax cost objective. As shown in Figure 5.9,

the minimax cost objective decreases as the value of α increases. The cost objective

at α = 0 is equivalent to the optimal solution of the RO model without SAA.

Figure 5.9: Plot of RO minimax cost objective against values of α
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5.4.1 RO Contract Utilization

Figure 5.10 plots the percent of available contracts selected by the model at a 90%

service level for various values of α. Contract utilization was hypothesized to decrease

as α increases and relaxes RO model conservatism. This behaviour is reflected in

Figure 5.10.

Figure 5.10: Plot of RO contract utilization against values of α

5.5 DRO Model Conservatism

Increasing the value of ρ increases the size of the ambiguity set which makes the DRO

model more conservative. The worst-case expected cost values of the DRO model at a

99% service level are plotted for various values of ρ in Figure 5.11. The worst-case

expected cost increases along with the value of ρ. The cost objective at ρ = 0 is

equivalent to the optimal solution of a SP model with scenario probabilities f̂s. The

objective function value of the DRO model converges on the objective value of the
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RO model as ρ increases and equals the robust solution for all instances of ρ greater

than 2.

Low, moderate, and high DRO conservatism ranges are defined by setting the value of

ρ within the intervals [0,1], (1, 1.6), and [1.6, ∞) which are shaded in Figures 5.11 to

5.14 with darker shades indicating higher conservatism.

Figure 5.11: Plot of DRO cost objective against values of ρ

Higher conservatism reduces the risk of high expected costs associated with incorrect

probability estimates, but it can also increase overall expected costs.

Figure 5.12 plots the expected cost of the DRO model at a 99% service level given

that the scenario probability estimates f̂s are correct against the value of ρ. Figure

5.12 confirms that increasing model conservatism generally decreases performance

under the estimated probability distribution.
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Figure 5.12: Plot of DRO expected cost if estimated probabilities are correct against ρ

5.5.1 DRO Contract Utilization

Figure 5.13 plots the percent of available contract units selected by the model at a 99%

service level for various values of ρ. Contract prices can be higher or lower than open

market prices depending on the scenario and time period, so it was anticipated that

less conservative models would sign fewer long-term contracts than more conservative

models. Figure 5.13 indicates that contract utilization is 82% with SP compared to

90% with RO. The DRO model contracts more units as the value of ρ increases and

has the same contract utilization for all values of ρ greater than 1.
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Figure 5.13: Plot of DRO contract utilization against values of ρ

5.5.2 Relative Standard Deviation in Cost

Cost RSD was calculated for the DRO model at various values of ρ. Figure 5.14 shows

that the DRO model with a 99% service level experiences a decrease in cost RSD as the

value of ρ increases. Interestingly, cost RSD increases again as ρ approaches 2, which

is the point at which the DRO model is equivalent to a pure RO model. One potential

explanation of this behaviour is that as the size of the ambiguity set increases, the

DRO model optimizes fewer scenarios as the probability of many scenarios approaches

0. Sub-optimal solutions for scenarios with probabilities of occurrence equal to zero

causes cost RSD to increase again when ρ equals 2, so it cannot be said definitively

whether DRO or RO reduces cost RSD more. The DRO model does provide solutions

with lower cost RSD than the SP model.

The DRO model with the value of ρ set between 1 and 1.6 is recommended for decision

makers that prioritize low cost variance. Decision makers in favour of average cost
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performance can still benefit from the lower cost variance of DRO models with small

values of ρ. For example, ρ = 0.6 reduces cost RSD by 20% compared to ρ = 0.

Figure 5.14: Plot of DRO cost RSD against values of ρ

5.6 Value of Information

Studies that implement SP often calculate the value of information which compares the

expected value obtained through SP to the best possible expected value that could be

achieved if a deterministic model had perfect information about future states. Having

presented two-stage and multi-stage models, this paper has the unique opportunity to

explore what is rarely seen in other studies, a comparison of not two but three levels

of uncertainty in value of information analysis. The two-stage and multi-stage SP

models were run with the multi-stage dataset. The value of perfect information is

the expected cost of running the deterministic model in each scenario with the same

scenario probabilities as the SP model. The results of these experiments are presented

in Table 5.2.

54



Table 5.2: Value of information experiment results

The two-stage SP model has a lower expected cost than its multi-stage counterpart.

This was anticipated as the two-stage model makes strategic decisions under uncertainty

and operational decisions with certainty, while the multi-stage model makes both

strategic and operational decisions under uncertainty. This allows the two-stage model

to make more educated purchasing decisions, resulting in a cost that is closer to the

deterministic model’s expected cost with perfect information.

Realistically, many health authorities do not have the ability to predict the state

of future time periods as is required for the two-stage models. They must use the

multi-stage model, which has an expected cost that is only 0.6% greater than that

with perfect information. The multi-stage model thus provides low-cost solutions

while incorporating realistic levels of future uncertainty inherent in supply planning

during a pandemic.
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Chapter 6

Discussion

6.1 Managerial Implications

Implementing optimization models in real systems is often complicated by uncertainty

about the future and multiple decision making criteria (Ide & Schöbel 2015). The

multi-objective SP, RO, and DRO models developed in this study incorporate both

future uncertainties and multiple goals. They allow decision makers to select a solution

along the trade-off between cost and service level that best serves their organizational

strategy. Another benefit of multi-objective optimization is its independence of

shortage penalty costs which have the undesirable traits of impacting optimal decisions

and being difficult to accurately estimate.

The case study uncovered numerous operational insights for SCs disrupted by pan-

demics. Higher inventory levels may or may not improve worst-case or expected

costs depending on the potential disruption scenarios. If rapid escalation of pandemic

severity is probable, then SC managers should increase pre-pandemic inventory levels

as they will have few opportunities once the pandemic starts to stockpile inventory. If

pandemic severity is expected to increase slowly, then ample opportunities will exist

during the pandemic to stockpile inventory and high levels of pre-pandemic inventory

will be a cost burden. Another operational insight is that scenarios with early peaks

and low variation in pandemic severity have the highest cost since inventory cannot

be stockpiled prior to early peaks in severity and low variation in severity results in

fewer opportunities to buy cheap PPE. Larger emergency PPE stockpiles reduce cost

RSD, while cheaper emergency stockpiles reduce expected costs. Provincial health
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authorities can use this insight to make request of the federal government for specific

emergency stockpile allocations and prices. This insight supports findings of Kamalah-

madi and Parast (2017) that emergency inventory effectively mitigates the negative

impacts of disruptions. Finally, increasing the portion of fixed contracts in the PPE

supply base improves the worst-case cost but increases expected cost performance.

Signing more long-term contracts is beneficial in worst-case scenarios where open

market PPE is limited and expensive, but it can be a hindrance in less-severe scenarios

where cheaper PPE is available on the open market.

There are numerous points for managers to consider when selecting a suitable opti-

mization approach. One factor is the availability of historical data. The certainty

regarding future states and probability distribution estimates required for determinis-

tic optimization and SP is generally not possible during pandemics when historical

data is scarce or out-of-sample. DRO offers protection against over-fitting SP models

by assuming that estimated probabilities can be incorrect. The protection against

worst-case expected cost provided by more conservative DRO models comes at the

expense of increasing expected cost when estimated probabilities are in fact correct.

Greater skepticism in scenario probability estimates leads to RO which completely

disregards them. SP and RO solutions can also be achieved with a DRO model by

setting parameter ρ to zero and 2 respectively.

Decision makers must select an appropriate value for DRO model hyperparameter ρ.

Three intervals of ρ values are proposed to prioritize average cost performance, cost

variance, or worst-case cost performance. DRO with ρ less than 1 is recommended

for decision makers with higher confidence in scenario probability estimates and a

preference for average cost performance. Even when decision makers are confident in

the accuracy of their scenario probability estimates, the DRO model with small values

of ρ offers some advantages over SP models by decreasing cost variance and the risk of
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out-of-sample predictions. DRO with ρ greater than 1.6 should be used when decision

makers prioritize worst-case cost performance over expected cost performance or have

limited data with which to estimate the scenario probability distribution. Values of ρ

between 1 and 1.6 are ideal when decision makers prefer to minimize cost-variance

or suspect that some historical data could be out-of-sample data. This moderate

conservatism will best suit health authorities that have strict budget constraints.

Requesting additional funds can be an arduous process, so minimizing cost variance

and thus the chance of exceeding the planned budget is desirable. The values of ρ that

define these three intervals may vary for other datasets, so the DRO model should

first be tested with all values of ρ between 0 and 2.

The DRO model selects more long-term contracts as the value of ρ increases. This

demonstrates that long-term contracts are an effective insurance policy against high

costs in extreme disruption scenarios but over-weighting them in the supply base

can decrease average cost performance. The added cost of some strategic decisions,

such as sourcing from contracts rather than the open market, may be unsustainable

indefinitely. For this reason, healthcare providers should develop systems that detect

pandemics as soon as possible, perhaps through an internal business intelligence

unit or frequent communication with the World Health Organization. Early warning

notifications regarding a potential pandemic should result in immediate action to

scale-up certain resilience strategies like contracting more suppliers. Conversely, less

responsive strategic decisions, such as warehouse location, would remain constant in

normal as well as disrupted time periods.

The definition of resilience adopted by this paper has four components: planning for,

absorbing, recovering from, and adapting to disruptions. The first two components

are delivered by consulting the presented models during the SC design phase. The

latter two components are addressed post-disruption by reoptimizing the supply base
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using newly available data. Decision variables qcpib for existing contracts would be

constrained to the contracted amounts, while the unconstrained qcpib variables would

represent contracts that are currently available. The duration of time periods in

the post-disruption optimization model could be shortened from months to weeks to

increase the complexity of pandemic scenarios considered by the model.

6.2 Theoretical Contributions

This paper contributes to SC literature through its focus on the rarely studied topic

of pandemics as disruptions. A survey by Govindan et al. (2017) on SCND under

uncertainty literature from 2000 to 2015 finds that less than 20% of studies focus

on disruption risks while the rest focus on operational risk. Further, the majority of

research on SC disruptions study localized events like natural disasters rather than

wide-spread long-term disruptions like pandemics. Govindan et al. (2017) suggest

further study of disruptions that impact the SC over multiple periods such as the

one developed here. The presented modelling approach for long-term disruptions that

evolve unpredictably is fundamental to SC viability research.

Multiple surveys of SC resilience literature have recommended the empirical study

of multi-objective models that analyze the trade-off between costs and resilience-

enhancing strategies, which this paper provides (Hosseini et al., 2019a; Kamalahmadi

& Parast, 2016). This study also adds to the limited amount of research on multi-

objective optimization under uncertainty. Although some multi-objective optimization

studies use SP to deal with uncertainty, far fewer studies incorporate RO and none were

found in supplier selection research combining DRO with multi-objective optimization.

While most studies adopt a single approach to modelling under uncertainty such as

RO, DRO, or SP with either two-stage or multi-stage recourse, this study utilizes

all three approaches as well as two-stage and multi-stage recourse. This facilitated a
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comparison of the value of information in both two-stage and multi-stage uncertainty

which has, to the best of my knowledge, not previously been performed in the literature.

This study also provides insightful analysis on the relative variance achieved with

DRO, RO, and SP. The results confirm that DRO achieves lower relative variance in

the objective function than SP.

The use of RO, DRO, non-monetary objective functions, and multi-period models are

all unconventional in SC resilience and SCRM (Hosseini et al. 2019a; Baryannis et al.,

2018; Heckmann et al., 2015). Finally, this study answers the call of Govindan et al.

(2017) for more SCND research to present models based on real-world applications

with a case study of a Canadian provincial healthcare provider during the COVID-19

pandemic.

6.3 Limitations

This study contains limitations including its disregard for lead times on open market

purchases. PPE is ordered and delivered in the same period which may be unrealistic

for some open market suppliers. Another limitation is that the cost of strategic

decisions are not evaluated on a long-term horizon. The cost to maintain additional

warehouse capacity or source through premium-priced contracts in the disruption

free periods between pandemics may be sizeable. This study might be improved by

allowing the emergency stockpile supply to increase during longer pandemics to reflect

the federal government’s continual efforts to purchase and allocate PPE to provinces.

6.4 Recommended Future Work

The first potential avenue of future research is large scale optimization to handle the

large number of scenarios required for multi-stage recourse models. The ability to model

more time periods creates opportunities to improve model precision using shorter
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period durations and incorporate multiple strategic decision periods. Ambulkar,

Blackhurst, and Grawe (2014) find that SC resilience to high-impact disruptions

requires active reconfiguration of resources, so allowing the model to adjust warehouse

capacities and the portfolio of supplier contracts during a pandemic may improve

performance.

Future work could also consider other types of sourcing such as contracts that guarantee

the price but have a variable order quantity. Another potentially valuable modelling

approach could be to group suppliers by geographic regions. Each region would

experience different levels of pandemic severity rather than a single severity factor

that applies globally as was the case in this study. Such a model would facilitate

building on Hosseini et al.’s (2019b) research on supplier geographic dispersion as a

resilience-enhancement strategy.

Effective supply planning is crucial to SC resilience, although another important

component is satisfying volatile demand levels at points of usage. Agile SCs, inventory

centralization, and transshipment models may be valuable tools in achieving SC

resilience on the demand side.

Future studies could develop a more holistic SCRM approach that integrates the

presented models with simulation or data analytics. Simulation could model pandemic

spread in the populace while the models presented in this study periodically optimize

the supply base. Data analytics provide the opportunity to use the abundance of data

collected during the COVID-19 pandemic for more accurate parameter estimation and

scenario generation for the models presented in this study.
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Chapter 7

Conclusion
The COVID-19 pandemic has challenged healthcare SC managers with unprecedented

volatility in the supply, demand, and price of PPE. In this paper, multi-period multi-

objective optimization models perform resilient supply planning under pandemic

induced uncertainty for a Canadian provincial healthcare provider. The ε-constraint

method produces sets of Pareto-optimal solutions along the trade-off between cost

minimization and service level maximization.

Scenario-based uncertainty is incorporated using two-stage and multi-stage recourse

models with SP, RO, and DRO objective functions. Multi-stage models make strategic

and operational decisions under uncertainty, while two-stage models only make strategic

decisions under uncertainty.

SAA of the minimax cost objective is introduced allowing decision makers to relax

the RO model’s conservatism regarding cost. The SP formulation provides risk-

neutral solutions for operating cost while remaining risk-averse regarding service

level. SP carries the risk of performing poorly on out-of-sample data (Smith &

Winkler, 2006; Wang et al., 2020). This is pertinent in the context of pandemics as

they are unpredictable and occur infrequently. DRO models minimize this risk by

assuming the true distribution is contained within an ambiguity set whose size can

be adjusted by changing the value of parameter ρ. Three intervals for the value of

ρ are recommended depending on the decision makers’ preference for average cost

performance, worst-case cost performance, or cost variance. This is important in the

healthcare context, as many regional differences exist thus creating the need to model

different risk-tolerances and budget restrictions. The presented models can enhance
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SC resilience to and viability during pandemics by optimizing the supply base prior

to disruption and re-optimizing it during a disruption as new information becomes

available.

Healthcare providers can assess the effectiveness of new risk mitigation and procurement

strategies using the proposed optimization framework. For example, the case study

analysis uncovered generally applicable insights regarding emergency PPE stockpiles,

pre-pandemic inventory levels, long-term contracts, and cost conservatism.

Value of information experiments revealed that the knowledge of future time periods

possessed by the two-stage SP model helps it perform closer to the deterministic

model with perfect information than the multi-stage SP model. It is more likely that

healthcare providers will use multi-stage models, as the ability to predict pandemic

severity several months into the future is somewhat unrealistic. The mere 0.6%

difference in expected cost between the multi-stage model and deterministic model

with perfect information demonstrates the potential of the multi-stage models to

provide near-optimal supply planning solutions amidst realistic levels of pandemic

induced uncertainty.
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Appendix A
Matlab Code for Deterministic Model

1 %% F i l e Names and Scenar io S e l e c t i o n
2 c l e a r
3 SheetName=' Sheet1 ' ;
4 DataFileName = ' DataFi le twoStage . x l s x ' ;
5 ResultsFileName = ' Resu l t s . x l s x ' ;
6 scenar io number =6;
7
8 %% Index I n i t i a l i z a t i o n
9 s e t s=readmatr ix ( DataFileName , ' Sheet ' , ' Set s ' ) ;

10 P=s e t s (1 , 2) ; %number o f products
11 I=s e t s (2 , 2) ; %number o f s u p p l i e r s
12 K=3; %number o f warehouse c a p a c i t i e s a v a i l a b l e
13 B=s e t s (3 , 2) ; %number o f p r i c e breaks o f f e r e d by s u p p l i e r s , 1 = no p r i c e breaks
14 T=s e t s (4 , 2) ; %number o f time p e r i o d s ;
15 S=s e t s (5 , 2) ; %number o f s c e n a r i o s
16
17 %% S e n s i t i v i t y Ana lys i s Var iab le
18 var = readmatr ix ( DataFileName , ' Sheet ' , ' V0 data ' ) ;
19 s e n s i t i v i t y V a r i a b l e = [ var ; 2∗ var ; 3∗ var ] ;
20 c o u n t s e n s i t i v i t y = s i z e ( s e n s i t i v i t y V a r i a b l e , 1) ;
21
22 %% Model Hyperparameters I n i t i a l i z a t i o n
23 e p s i l o n s t a r t = 0 . 2 0 ; %s e r v i c e l e v e l
24 s tep = −0.01;
25 count eps = f l o o r ( abs ( e p s i l o n s t a r t / s tep ) ) +1;
26
27 qc va r s = [ ] ;
28 qo vars = [ ] ;
29 w vars = [ ] ;
30 i n v b y s = [ ] ;
31 q c b y i = [ ] ;
32 q o b y i = [ ] ;
33 OMcap last ep = [ ] ;
34 c n t c o r r e l = 1 ;
35
36 %% Model Parameter I n i t i a l i z a t i o n
37 Ac data=readmatr ix ( DataFileName , ' Sheet ' , ' Ac data ' ) ; %Port ion o f s u p p l i e r i ' s

co nt rac t that i s a c t u a l l y r e c e i v e d in t
38 A c i t s = [ ] ;
39 f o r c t = 1 :T
40 f o r c i = 1 : I
41 A c i t s = [ Ac i t s , Ac data ( : , ( c i −1)∗T+ct ) ] ;
42 end
43 end
44 A c i t s=reshape ( Ac i t s ' , 1 , I ∗T∗S) ;
45
46 Ac i t = A c i t s ( I ∗T∗( scenario number −1)+1: I ∗T∗ scenar io number ) ;
47
48 Ao data=readmatr ix ( DataFileName , ' Sheet ' , ' Ao data ' ) ; %Port ion o f s u p p l i e r i ' s open

market capac i ty a v a i l a b l e in t
49 A o i t s = [ ] ;
50 f o r c t = 1 :T
51 f o r c i = 1 : I
52 A o i t s = [ Ao its , Ao data ( : , ( c i −1)∗T+ct ) ] ;
53 end
54 end
55 A o i t s=reshape ( Ao its ' , 1 , I ∗T∗S) ;
56
57 Ao it = A o i t s ( I ∗T∗( scenario number −1)+1: I ∗T∗ scenar io number ) ;
58
59 D data=readmatr ix ( DataFileName , ' Sheet ' , ' D data ' ) ; % open market purchase p r i c e f o r
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product p , s u p p l i e r i , time per iod t , s c e n a r i o s
60 D pts = [ ] ;
61 f o r c t = 1 :T
62 f o r cp = 1 :P
63 D pts = [ D pts , D data ( : , ( cp −1)∗T+ct ) ] ;
64 end
65 end
66 D pts=reshape ( D pts ' , 1 , P∗T∗S) ;
67
68 D pt = D pts (P∗T∗( scenario number −1)+1:P∗T∗ scenar io number ) ;
69
70 po data=readmatr ix ( DataFileName , ' Sheet ' , ' po data ' ) ; % open market purchase p r i c e

f o r product p , s u p p l i e r i , time per iod t , s c e n a r i o s
71 p o p i t s = [ ] ;
72 f o r c t = 1 :T
73 f o r c i = 1 : I
74 f o r cp = 1 :P
75 p o p i t s = [ po p i t s , po data ( : , ( cp −1)∗T+ct +(c i −1)∗P∗T) ] ;
76 end
77 end
78 end
79 p o p i t s=reshape ( po p i t s ' , 1 , P∗ I ∗T∗S) ;
80 p o p i t = p o p i t s (P∗ I ∗T∗( scenario number −1)+1:P∗ I ∗T∗ scenar io number ) ;
81 p c p i = readmatr ix ( DataFileName , ' Sheet ' , ' pc data ' ) ; % base cont rac t p r i c e f o r

product p , s u p p l i e r i
82 pe p = readmatr ix ( DataFileName , ' Sheet ' , ' pe data ' ) ; %Emergency stock purchase p r i c e
83 C1 pi = readmatr ix ( DataFileName , ' Sheet ' , ' C1 data ' ) ; % c o s t to sh ip product p from

s u p p l i e r to WH
84 C2 p = 1.2∗ C1 pi ( 1 :P) ; % c o s t to sh ip product p from emergency stock to WH
85 C3 p = readmatr ix ( DataFileName , ' Sheet ' , ' C3 data ' ) ; % c o s t to sh ip product p

f rom by sc WH to h o s p i t a l
86 C4 k = [ 0 , 10000∗(1 :K−1) ] ; %c o s t to have capac i ty k at warehouse j
87 C5 p = readmatr ix ( DataFileName , ' Sheet ' , ' C5 data ' ) ; %ho ld ing c o s t per product p at

warehouse j
88 C6 = 1000 ; %c o s t to e s t a b l i s h s u p p l i e r r e l a t i o n s h i p
89 F1 pi = readmatr ix ( DataFileName , ' Sheet ' , ' F1 data ' ) ; %R e l i a b i l i t y o f s u p p l i e r i (

por t i on o f product that pas s e s QC and i s usab le )
90 F2 pib = readmatr ix ( DataFileName , ' Sheet ' , ' F2 data ' ) ; %Fract ion o f normal p r i c e

charged by s u p p l i e r i f o r product p with d i scount d
91 F2 pib= [ ones (1 ,P∗ I ) , reshape ( F2 pib ' , 1 , P∗ I ∗(B−1) ) ] ;
92 Q1 ib 1 = readmatr ix ( DataFileName , ' Sheet ' , ' Q1 data ' ) ;% Quantity o f any product

where s u p p l i e r i o f f e r s d i s count d − has dimensions I ∗ (B+1)
93 Q1 ib 1 = [ z e r o s (1 , I ) , Q1 ib 1 , 10ˆ9∗ ones (1 , I ) ] ;
94 Q2 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q2 data ' ) ; %c ont r ac t max
95 Q3 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q3 data ' ) ; %c ont r ac t min
96 Q4 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q4 data ' ) ; %Nominal capac i ty o f s u p p l i e r i

in u n i t s o f product p
97 Q5 p = readmatr ix ( DataFileName , ' Sheet ' , ' Q5 data ' ) ; %Supply o f product p in

emergency s t o c k p i l e
98 K1 k = 16000 + 4000∗(0 :K−1) ; %warehouse inventory c a p a c i t i e s in square f e e t
99 K2 p = readmatr ix ( DataFileName , ' Sheet ' , ' K2 data ' ) ; %square f e e t r e q u i r e d to s t o r e

one un i t o f product p
100 V0 p = readmatr ix ( DataFileName , ' Sheet ' , ' V0 data ' ) ; %s t a r t i n g inventory
101 M=10ˆ9; %very l a r g e number
102
103 %% Dec i s i on Var iab l e s
104 %qc : number product p purchased f rom by sc s u p p l i e r i to warehouses in time per iod t
105 z e r o q c = z e r o s (1 , P∗ I ∗B) ;
106
107 %qo : number product p purchased f rom by sc backup s u p p l i e r i to warehouses in time

per iod t
108 ze ro qo = z e r o s (1 , P∗ I ∗T) ;
109
110 %qh : number product p shipped f rom by sc warehouses to h o s p i t a l s in time per iod t
111 zero qh = z e r o s (1 , P∗T) ;
112
113 %s : number o f shorted u n i t s o f product p at h o s p i t a l s in time per iod t
114 z e r o s = z e r o s (1 , P∗T) ;
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115
116 %v : inventory l e v e l o f product p at warehouses in time per iod t
117 z e r o v = z e r o s (1 , P∗(T+1) ) ;
118
119 %w: 1 i f warehouse j inventory capac i ty i s s i z e k and 0 otherwi se
120 zero w = z e r o s (1 , K) ;
121
122 %y : 1 i f s u p p l i e r i i s s e l e c t e d as a primary s u p p l i e r o f product p and 0 otherw i se
123 z e r o y = z e r o s (1 ,P∗ I ∗B) ;
124
125 %qe : number o f u n i t s o f product p sent f rom by sc emergency stock to warehouses in t

and s
126 z e r o q e = z e r o s (1 , P∗T) ;
127
128 %theta i s an a u x i l i a r y v a r i a b l e
129 z e r o t h e t a =0;
130
131 %% Locat ions o f end o f DVs
132 l o c q c=P∗ I ∗B;
133 l o c q o=P∗ I ∗B+P∗ I ∗T;
134 l o c q h=P∗ I ∗B+P∗ I ∗T+P∗T;
135 l o c s=P∗ I ∗B+P∗ I ∗T+P∗T+P∗T;
136 l o c v=P∗ I ∗B+P∗ I ∗T+P∗T+P∗T+P∗(T+1) ;
137 loc w=P∗ I ∗B+P∗ I ∗T+P∗T+P∗T+P∗(T+1)+K;
138 l o c y=P∗ I ∗B+P∗ I ∗T+P∗T+P∗T+P∗(T+1)+K+P∗ I ∗B;
139 l o c q e=P∗ I ∗B+P∗ I ∗T+P∗T+P∗T+P∗(T+1)+K+P∗ I ∗B+P∗T;
140 l o c t h e t a=P∗ I ∗B+P∗ I ∗T+P∗T+P∗T+P∗(T+1)+K+P∗ I ∗B+P∗T+1;
141
142 %% S e r v i c e Object ive Function
143 se rv i ceOF pts = [ repmat ( [ zero qc , zero qo , zero qh ] , P∗T, 1 ) , eye (P∗T) , repmat ( [

zero v , zero w , zero y , zero qe , z e r o t h e t a ] , P∗T, 1 ) ] ;
144
145 %% ∗∗∗ S e n s i t i v i t y Ana lys i s Loop∗∗∗
146 f o r i t e r a t i o n s e n s i t i v i t y = 1 : c o u n t s e n s i t i v i t y
147
148 V0 p = s e n s i t i v i t y V a r i a b l e ( i t e r a t i o n s e n s i t i v i t y , : ) ;
149 e p s i l o n = e p s i l o n s t a r t ;
150
151 %% Theta Object ive
152 OF theta = [ z e r o s (1 , l o c q e ) , 1 ] ;
153
154 %% Cost Object ive
155 %qc
156 q c c o e f f=Ac i t ∗ repmat ( eye ( I ) ,1 ,T) ' ;
157 q c c o e f f=repmat ( kron ( q c c o e f f , ones (1 ,P) ) ,1 ,B) ;
158 q c c s t = q c c o e f f . ∗ [ ( repmat ( pc pi , 1 ,B) . ∗ F2 pib ) + repmat ( C1 pi , 1 ,B) ] ;
159 %qo
160 qocs t = [ p o p i t + repmat ( C1 pi , 1 ,T) ] ;
161 %qh
162 qhcst = repmat ( C3 p , 1 , T) ;
163 %s
164 s c s t=z e r o s ;
165 %v
166 vcs t = repmat ( C5 p , 1 , T+1) ;
167 %w
168 wcst = C4 k ;
169 %y
170 ycs t = C6∗ ones (1 ,P∗ I ∗B) ;
171 %qe
172 q e c s t = repmat ( [ C2 p + pe p ] , 1 , T) ;
173 %theta
174 t h e t a c s t = 0 ;
175
176 costOF=[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
177
178 %% CST 3 − Open market supply supply CST − p , i , t , s
179 %qc
180 q c c s t=repmat ( zero qc , P∗ I ∗T, 1) ;
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181 %qo
182 qocs t=eye (P∗ I ∗T) ;
183 %qh
184 qhcst=repmat ( zero qh , P∗ I ∗T, 1) ;
185 %s
186 s c s t=repmat ( z e r o s , P∗ I ∗T, 1) ;
187 %v
188 vcs t=repmat ( zero v , P∗ I ∗T, 1) ;
189 %w
190 wcst=repmat ( zero w , P∗ I ∗T, 1) ;
191 %y
192 ycs t=repmat ( zero y , P∗ I ∗T, 1) ;
193 %qe
194 q e c s t=repmat ( zero qe , P∗ I ∗T, 1 ) ;
195 %theta
196 t h e t a c s t = z e r o s ( P∗ I ∗T , 1) ;
197
198 Acst3 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
199 bcst3 =[ kron ( Ao it , ones (1 ,P) ) . ∗ repmat ( Q4 pi , 1 ,T) ] ' ;
200
201 %% CST 4 − Contract maximum CSTs − p , i , b
202 %qc
203 q c c s t=eye (P∗ I ∗B) ;
204 %qo
205 qocs t=repmat ( zero qo , P∗ I ∗B, 1) ;
206 %qh
207 qhcst=repmat ( zero qh , P∗ I ∗B, 1) ;
208 %s
209 s c s t=repmat ( z e r o s , P∗ I ∗B, 1) ;
210 %v
211 vcs t=repmat ( zero v , P∗ I ∗B, 1) ;
212 %w
213 wcst=repmat ( zero w , P∗ I ∗B, 1) ;
214 %y
215 ycs t=−repmat ( Q2 pi , 1 ,B) . ∗ eye (P∗ I ∗B) ;
216 %qe
217 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
218 %theta
219 t h e t a c s t = z e r o s ( P∗ I ∗B , 1) ;
220
221 Acst4 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
222 bcst4=z e r o s (P∗ I ∗B, 1) ;
223
224 %% CST 5 − Contract minimum CSTs − p , i , b
225 %qc
226 q c c s t=eye (P∗ I ∗B) ;
227 %qo
228 qocs t=repmat ( zero qo , P∗ I ∗B, 1) ;
229 %qh
230 qhcst=repmat ( zero qh , P∗ I ∗B, 1) ;
231 %s
232 s c s t=repmat ( z e r o s , P∗ I ∗B, 1) ;
233 %v
234 vcs t=repmat ( zero v , P∗ I ∗B, 1) ;
235 %w
236 wcst=repmat ( zero w , P∗ I ∗B, 1) ;
237 %y
238 ycs t=−repmat ( Q3 pi , 1 ,B) . ∗ eye (P∗ I ∗B) ;
239 %qe
240 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
241 %theta
242 t h e t a c s t = z e r o s ( P∗ I ∗B , 1) ;
243
244 Acst5=−[qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
245 bcst5=−z e r o s (P∗ I ∗B, 1) ;
246
247 %% CST 6 − Contract order quant i ty exceeds p r i c e break min − p , i , b
248 %qc
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249 q c c s t=eye (P∗ I ∗B) ;
250 %qo
251 qocs t=repmat ( ze ro qo , P∗ I ∗B , 1) ;
252 %qh
253 qhcst=repmat ( zero qh , P∗ I ∗B , 1) ;
254 %s
255 s c s t=repmat ( z e r o s , P∗ I ∗B , 1) ;
256 %v
257 vcs t=repmat ( z e r o v , P∗ I ∗B , 1) ;
258 %w
259 wcst=repmat ( zero w , P∗ I ∗B , 1) ;
260 %y
261 ycs t=−kron ( Q1 ib 1 ( 1 : I ∗B) , ones (1 ,P) ) . ∗ eye (P∗ I ∗B) ;
262 %qe
263 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
264 %theta
265 t h e t a c s t = z e r o s ( P∗ I ∗B , 1) ;
266
267 bcst6 = −z e r o s (P∗ I ∗B, 1) ;
268 Acst6 = −[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
269
270 %% CST 7 − Contract order quant i ty i s l e s s than next p r i c e break − p , i , b
271 %qc
272 q c c s t=eye (P∗ I ∗B) ;
273 %qo
274 qocs t=repmat ( ze ro qo , P∗ I ∗B , 1) ;
275 %qh
276 qhcst=repmat ( zero qh , P∗ I ∗B , 1) ;
277 %s
278 s c s t=repmat ( z e r o s , P∗ I ∗B , 1) ;
279 %v
280 vcs t=repmat ( z e r o v , P∗ I ∗B , 1) ;
281 %w
282 wcst=repmat ( zero w , P∗ I ∗B , 1) ;
283 %y
284 ycs t=−kron ( Q1 ib 1 ( I +1: I ∗(B+1) ) , ones (1 ,P) ) . ∗ eye (P∗ I ∗B) ;
285 %qe
286 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
287 %theta
288 t h e t a c s t = z e r o s ( P∗ I ∗B , 1) ;
289
290 bcst7 = z e r o s (P∗ I ∗B, 1) ;
291 Acst7 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
292
293 %% CST 8 − WH inventory capac i ty CST' s − t +1, s
294 %qc
295 q c c s t=repmat ( zero qc , (T+1) , 1) ;
296 %qo
297 qocs t=repmat ( zero qo , (T+1) , 1) ;
298 %qh
299 qhcst=repmat ( zero qh , (T+1) , 1) ;
300 %s
301 s c s t=repmat ( z e r o s , (T+1) , 1) ;
302 %v
303 vcs t =[repmat ( K2 p , 1 , (T+1) ) . ∗ kron ( eye (T+1) , ones (1 ,P) ) ] ;
304 %w
305 wcst=−repmat ( K1 k , (T+1) , 1) ;
306 %y
307 ycs t=repmat ( zero y , (T+1) , 1) ;
308 %qe
309 q e c s t=repmat ( zero qe , (T+1) ,1 ) ;
310 %theta
311 t h e t a c s t = z e r o s ( (T+1) , 1) ;
312
313 Acst8 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
314 bcst8=z e r o s ( (T+1) , 1) ;
315
316 %% CST 9 − WH inventory / f low balance CST − p , t , s
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317 %qc
318 q c c s t=repmat ( kron ( reshape ( Ac it , I ,T) ' , ones (P,P) ) , 1 , B) . ∗ ( repmat ( F1 pi , 1 , B) . ∗

repmat ( eye (P) ,T, I ∗B) ) ;
319 %qo
320 qocs t=repmat ( F1 pi , 1 , T) . ∗ kron ( eye (T) , repmat ( eye (P) ,1 , I ) ) ;
321 %qh
322 qhcst=−eye (P∗T) ;
323 %s
324 s c s t=repmat ( z e r o s , P∗T, 1) ;
325 %v
326 vcs t =[ [ eye (P∗T) , z e r o s (P∗T, P) ] −[ z e r o s (P∗T, P) , eye (P∗T) ] ] ;
327 %w
328 wcst=repmat ( zero w , P∗T, 1) ;
329 %y
330 ycs t=repmat ( zero y , P∗T, 1) ;
331 %qe
332 q e c s t = eye (P∗T) ;
333 %theta
334 t h e t a c s t = z e r o s ( P∗T , 1) ;
335
336 Acst9 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
337 bcst9=z e r o s (P∗T, 1 ) ;
338
339 %% CST 10 − Inventory per iod 1 e q u a l i t y c o n s t r a i n t s a c r o s s s c e n a r i o s − p , ( s −1)
340 %qc
341 q c c s t=repmat ( z e r o q c , P , 1) ;
342 %qo
343 qocs t=repmat ( ze ro qo , P , 1) ;
344 %qh
345 qhcst=repmat ( zero qh , P , 1) ;
346 %s
347 s c s t=repmat ( z e r o s , P , 1) ;
348 %v
349 vcs t= [ eye (P) , z e r o s (P, P∗T) ] ;
350 %w
351 wcst=repmat ( zero w , P , 1) ;
352 %y
353 ycs t=repmat ( z e r o y , P , 1) ;
354 %qe
355 q e c s t=repmat ( zero qe , P, 1) ;
356 %theta
357 t h e t a c s t = z e r o s ( P , 1) ;
358
359 bcst10 = V0 p ' ;
360 Acst10 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
361
362 %% CST 11 − WH inventory in per iod 1 and T+1 are equal − p , s
363 %qc
364 q c c s t=repmat ( z e r o q c , P , 1) ;
365 %qo
366 qocs t=repmat ( ze ro qo , P , 1) ;
367 %qh
368 qhcst=repmat ( zero qh , P , 1) ;
369 %s
370 s c s t=repmat ( z e r o s , P , 1) ;
371 %v
372 vcs t= [ z e r o s (P, P∗T) , eye (P) ] ;
373 %w
374 wcst=repmat ( zero w , P , 1) ;
375 %y
376 ycs t=repmat ( z e r o y , P , 1) ;
377 %qe
378 q e c s t=repmat ( zero qe , P, 1) ;
379 %theta
380 t h e t a c s t = z e r o s ( P , 1) ;
381
382 bcst11 = −V0 p ' ;
383 Acst11 = −[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
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384
385 %% CST 12 − Hosp i ta l demand s a t i s f a c t i o n c o n s t r a i n t s − p , t , s
386 %qc
387 q c c s t=repmat ( z e r o q c , P∗T , 1) ;
388 %qo
389 qocs t=repmat ( ze ro qo , P∗T , 1) ;
390 %qh
391 qhcst=eye (P∗T) ;
392 %s
393 s c s t=eye (P∗T) . ∗ D pt ;
394 %v
395 vcs t=repmat ( z e r o v , P∗T , 1) ;
396 %w
397 wcst=repmat ( zero w , P∗T , 1) ;
398 %y
399 ycs t=repmat ( z e r o y , P∗T , 1) ;
400 %qe
401 q e c s t=repmat ( z e r o q e , P∗T , 1) ;
402 %theta
403 t h e t a c s t = z e r o s ( P∗T , 1) ;
404
405 Acst12 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
406 bcst12 = D pt ' ;
407
408 %% CST 13 − Si ngu l a r WH capac i ty i s s e l e c t e d − s i n g u l a r
409 bcst13 = 1 ;
410 Acst13 =[ zero qc , zero qo , zero qh , z e r o s , zero v , ones (1 ,K) , zero y , zero qe ,

0 ] ;
411
412 %% CST 14 − At most one d i scount i s app l i ed − p , i
413 %qc
414 q c c s t=repmat ( z e r o q c , P∗I , 1) ;
415 %qo
416 qocs t=repmat ( zero qo , P∗I , 1) ;
417 %qh
418 qhcst=repmat ( zero qh , P∗I , 1) ;
419 %s
420 s c s t=repmat ( z e r o s , P∗I , 1) ;
421 %v
422 vcs t=repmat ( zero v , P∗I , 1) ;
423 %w
424 wcst=repmat ( zero w ,P∗I , 1) ;
425 %y
426 ycs t=repmat ( eye (P∗ I ) ,1 ,B) ;
427 %qe
428 q e c s t=repmat ( zero qe , P∗I , 1 ) ;
429 %theta
430 t h e t a c s t = z e r o s ( P∗ I , 1) ;
431
432 bcst14 = ones (P∗I , 1) ;
433 Acst14 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
434
435 %% CST 15 − Emergency stock supply c o n s t r a i n t
436 %qc
437 q c c s t=repmat ( z e r o q c , P, 1) ;
438 %qo
439 qocs t=repmat ( zero qo , P, 1) ;
440 %qh
441 qhcst=repmat ( zero qh , P, 1) ;
442 %s
443 s c s t=repmat ( z e r o s , P, 1) ;
444 %v
445 vcs t=repmat ( zero v , P, 1) ;
446 %w
447 wcst=repmat ( zero w , P, 1) ;
448 %y
449 ycs t=repmat ( zero y , P, 1) ;
450 %qe
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451 q e c s t= repmat ( eye (P) , 1 , T) ;
452 %theta
453 t h e t a c s t = z e r o s ( P , 1) ;
454
455 bcst15 = Q5 p ' ;
456 Acst15 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , t h e t a c s t ] ;
457
458 %% ∗∗∗ Eps i lon FOR LOOP∗∗∗
459 f o r i t e r e p s = 1 : count eps
460
461 %% Prepar ing F i r s t Model
462 Acst eps = serv i ceOF pts ;
463 b c s t e p s = e p s i l o n ∗ ones (P∗T, 1 ) ;
464
465 %% Solv ing F i r s t Model − Cost Main OF
466 Acst = [ Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ; Acst14 ; Acst15 ; Acst eps ] ;

% A matrix non−e q u a l i t i e s
467 bcst = [ bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ; bcst14 ; bcst15 ; b c s t e p s ] ;

% b matrix non−e q u a l i t i e s
468 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ] ; % A matrix e q u a l i t i e s
469 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ] ; % b matrix e q u a l i t i e s
470 i n tcon = [ l o c v +1: l o c y ] ; %s e t t i n g D.V. s to i n t e g e r s
471 LB = z e r o s (1 , l o c t h e t a ) ; %LB i s z e r o s f o r a l l v a r i a b l e s
472 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c t h e t a −l o c y ) ] ; %UB i s ones

f o r w, y , o , B.V. s , i n f f o r remaining
473 [ so l1 , va l1 ] = i n t l i n p r o g ( costOF , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB) ;
474
475 %% Prepar ing Second Model
476 f p r i n t f ( ' Part 2 ' ) ;
477 x0 ( i t e r e p s , : )=so l1 ' ;
478 x0 ( i t e r e p s , l o c t h e t a )=e p s i l o n ;
479 e p s i l o n t w o = val1 ;
480
481 Acst eps = costOF ;
482 b c s t e p s = e p s i l o n t w o ;
483
484 Acst theta = serv i ceOF pts + [ z e r o s (P∗T, l o c q e ) , −ones (P∗T, 1 ) ] ;
485 b c s t t h e t a = z e r o s (P∗T, 1 ) ;
486
487 %% Solv ing Second Model − Shortage Main OF
488 Acst = [ Acst theta ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ; Acst14 ; Acst15 ;

Acst eps ] ; % A matrix non−e q u a l i t i e s
489 bcst = [ b c s t t h e t a ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ; bcst14 ; bcst15 ;

b c s t e p s ] ; % b matrix non−e q u a l i t i e s
490 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ] ; % A matrix e q u a l i t i e s
491 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ] ; % b matrix e q u a l i t i e s
492 i n tcon = [ l o c v +1: l o c y ] ; %s e t t i n g D.V. s to i n t e g e r s
493 LB = z e r o s (1 , l o c t h e t a ) ; %LB i s z e r o s f o r a l l v a r i a b l e s
494 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c t h e t a −l o c y ) ] ; %UB i s ones

f o r w, y , o , B.V. s , i n f f o r remaining
495 [ so l2 , va l2 ] = i n t l i n p r o g ( OF theta , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB, x0 (

i t e r e p s , : ) ) ;
496
497 %% Increment Eps i lon
498 e p s i l o n=e p s i l o n+step ;
499 end
500 end
501 % Output Resu l t s to Excel

78



Appendix B
Matlab Code for Two-Stage RO Model
with SAA

1 %% F i l e Names and Output S e l e c t i o n
2 c l e a r
3 SheetName=' Sheet1 ' ;
4 DataFileName = ' DataFi le twoStage . x l s x ' ;
5 ResultsFileName = ' Resu l t s . x l s x ' ;
6
7 %% Index I n i t i a l i z a t i o n
8 s e t s=readmatr ix ( DataFileName , ' Sheet ' , ' Set s ' ) ;
9 P=s e t s (1 , 2) ; %number o f products

10 I=s e t s (2 , 2) ; %number o f s u p p l i e r s
11 K=3; %number o f warehouse c a p a c i t i e s a v a i l a b l e
12 B=s e t s (3 , 2) ; %number o f p r i c e breaks o f f e r e d by s u p p l i e r s , 1 = no p r i c e breaks
13 T=s e t s (4 , 2) ; %number o f time p e r i o d s ;
14 S=s e t s (5 , 2) ; %number o f s c e n a r i o s
15 alpha = 1 ; %l e v e l o f r i s k in c o s t v ia SAA c o n s t r a i n t
16
17 %% S e n s i t i v i t y Ana lys i s Var iab le
18 var = readmatr ix ( DataFileName , ' Sheet ' , ' Q5 data ' ) ;
19 sv tyVar iab l e = [ 0 . 1 5 ∗ var ; 0 .2∗ var ; 0 .25∗ var ; 0 .3∗ var ; 0 .35∗ var ; 0 .40∗ var ] ;
20 count svty = s i z e ( svtyVar iab le , 1) ;
21
22 %% Model Hyperparameters I n i t i a l i z a t i o n
23 e p s i l o n s t a r t = 0 . 2 0 ; %s e r v i c e l e v e l
24 s tep = −0.01;
25 count eps = f l o o r ( abs ( e p s i l o n s t a r t / s tep ) ) +1;
26
27 rho = 0 . 8 ;
28 qc va r s = [ ] ;
29 qo vars = [ ] ;
30 w vars = [ ] ;
31 i n v b y s = [ ] ;
32 q c b y i = [ ] ;
33 q o b y i = [ ] ;
34 OMcap last ep = [ ] ;
35 c n t c o r r e l = 1 ;
36
37 %% Model Parameter I n i t i a l i z a t i o n
38
39 Ac data=readmatr ix ( DataFileName , ' Sheet ' , ' Ac data ' ) ; %Port ion o f s u p p l i e r i ' s

co nt rac t that i s a c t u a l l y r e c e i v e d in t
40 A c i t s = [ ] ;
41 f o r c t = 1 :T
42 f o r c i = 1 : I
43 A c i t s = [ Ac i t s , Ac data ( : , ( c i −1)∗T+ct ) ] ;
44 end
45 end
46 A c i t s=reshape ( Ac i t s ' , 1 , I ∗T∗S) ;
47
48 Ao data=readmatr ix ( DataFileName , ' Sheet ' , ' Ao data ' ) ; %Port ion o f s u p p l i e r i ' s open

market capac i ty a v a i l a b l e in t
49 A o i t s = [ ] ;
50 f o r c t = 1 :T
51 f o r c i = 1 : I
52 A o i t s = [ Ao its , Ao data ( : , ( c i −1)∗T+ct ) ] ;
53 end
54 end
55 A o i t s=reshape ( Ao its ' , 1 , I ∗T∗S) ;
56
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57 D data=readmatr ix ( DataFileName , ' Sheet ' , ' D data ' ) ; % open market purchase p r i c e f o r
product p , s u p p l i e r i , time per iod t , s c e n a r i o s

58 D pts = [ ] ;
59 f o r c t = 1 :T
60 f o r cp = 1 :P
61 D pts = [ D pts , D data ( : , ( cp −1)∗T+ct ) ] ;
62 end
63 end
64 D pts=reshape ( D pts ' , 1 , P∗T∗S) ;
65
66 po data=readmatr ix ( DataFileName , ' Sheet ' , ' po data ' ) ; % open market purchase p r i c e

f o r product p , s u p p l i e r i , time per iod t , s c e n a r i o s
67 p o p i t s = [ ] ;
68 f o r c t = 1 :T
69 f o r c i = 1 : I
70 f o r cp = 1 :P
71 p o p i t s = [ po p i t s , po data ( : , ( cp −1)∗T+ct +(c i −1)∗P∗T) ] ;
72 end
73 end
74 end
75 p o p i t s=reshape ( po p i t s ' , 1 , P∗ I ∗T∗S) ;
76 p c p i = readmatr ix ( DataFileName , ' Sheet ' , ' pc data ' ) ; % base cont rac t p r i c e f o r

product p , s u p p l i e r i
77 pe p = readmatr ix ( DataFileName , ' Sheet ' , ' pe data ' ) ; %ES purchase p r i c e
78 C1 pi = readmatr ix ( DataFileName , ' Sheet ' , ' C1 data ' ) ; % c o s t to sh ip product p from

s u p p l i e r to WH
79 C2 p = 1.2∗ C1 pi ( 1 :P) ; % c o s t to sh ip product p from emergency stock to WH
80 C3 p = readmatr ix ( DataFileName , ' Sheet ' , ' C3 data ' ) ; % c o s t to sh ip product p

f rom by sc WH to h o s p i t a l
81 C4 k = [ 0 , 10000∗(1 :K−1) ] ; %c o s t to have capac i ty k at warehouse j
82 C5 p = readmatr ix ( DataFileName , ' Sheet ' , ' C5 data ' ) ; %ho ld ing c o s t per product p at

warehouse j
83 C6 = 1000 ; %c o s t to e s t a b l i s h s u p p l i e r r e l a t i o n s h i p
84 F1 pi = readmatr ix ( DataFileName , ' Sheet ' , ' F1 data ' ) ; %R e l i a b i l i t y o f s u p p l i e r i (

por t i on o f product that pas s e s QC and i s usab le )
85 F2 pid = readmatr ix ( DataFileName , ' Sheet ' , ' F2 data ' ) ; %Fract ion o f normal p r i c e

charged by s u p p l i e r i f o r product p with d i scount d
86 F2 pid= [ ones (1 ,P∗ I ) , reshape ( F2 pid ' , 1 , P∗ I ∗(B−1) ) ] ;
87 Q1 ib 1 = readmatr ix ( DataFileName , ' Sheet ' , ' Q1 data ' ) ;% Quantity o f any product

where s u p p l i e r i o f f e r s d i s count d − has dimensions I ∗ (B+1)
88 Q1 ib 1 = [ z e r o s (1 , I ) , Q1 ib 1 , 10ˆ9∗ ones (1 , I ) ] ;
89 Q2 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q2 data ' ) ; %c ont r ac t max
90 Q3 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q3 data ' ) ; %c ont r ac t min
91 Q4 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q4 data ' ) ; %Nominal capac i ty o f s u p p l i e r i

in u n i t s o f product p
92 Q5 p = readmatr ix ( DataFileName , ' Sheet ' , ' Q5 data ' ) ; %Supply o f product p in

emergency s t o c k p i l e
93 K1 k = 16000 + 4000∗(0 :K−1) ; %warehouse inventory c a p a c i t i e s in square f e e t
94 K2 p = readmatr ix ( DataFileName , ' Sheet ' , ' K2 data ' ) ; %square f e e t r e q u i r e d to s t o r e

one un i t o f product p
95 V0 p = readmatr ix ( DataFileName , ' Sheet ' , ' V0 data ' ) ; %s t a r t i n g inventory
96 M=10ˆ9; %very l a r g e number
97 TS data = readmatr ix ( DataFileName , ' Sheet ' , ' TS data ' ) ;
98
99 %% Dec i s i on Var iab l e s

100
101 %qc : number product p purchased f rom by sc s u p p l i e r i to warehouses in time per iod t
102 z e r o q c = z e r o s (1 , P∗ I ∗B) ;
103
104 %qo : number product p purchased f rom by sc backup s u p p l i e r i to warehouses in time

per iod t
105 ze ro qo = z e r o s (1 , P∗ I ∗T∗S) ;
106
107 %qh : number product p shipped f rom by sc warehouses to h o s p i t a l s in time per iod t
108 zero qh = z e r o s (1 , P∗T∗S) ;
109
110 %s : number o f shorted u n i t s o f product p at h o s p i t a l s in time per iod t
111 z e r o s = z e r o s (1 , P∗T∗S) ;
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112
113 %v : inventory l e v e l o f product p at warehouses in time per iod t
114 z e r o v = z e r o s (1 , P∗(T+1)∗S) ;
115
116 %w: 1 i f warehouse j inventory capac i ty i s s i z e k and 0 otherwi se
117 zero w = z e r o s (1 , K) ;
118
119 %y : 1 i f s u p p l i e r i i s s e l e c t e d as a primary s u p p l i e r o f product p and 0 otherw i se
120 z e r o y = z e r o s (1 ,P∗ I ∗B) ;
121
122 %pe : number o f u n i t s o f product p sent f rom by sc emergency stock to warehouses in t

and s
123 z e r o q e = z e r o s (1 , P∗T∗S) ;
124
125 %z i s an a u x i l i a r y v a r i a b l e to e n f o r c e SAA c o n s t r a i n t
126 z e r o z = z e r o s (1 , S ) ;
127
128 %% Locat ions o f end o f DVs
129 l o c q c=P∗ I ∗B;
130 l o c q o=P∗ I ∗B+P∗ I ∗T∗S ;
131 l o c q h=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S ;
132 l o c s=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S ;
133 l o c v=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S ;
134 loc w=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K;
135 l o c y=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B;
136 l o c q e=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S ;
137 l o c z=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S+S ;
138 l o c t h e t a=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S+S+1;
139 %theta i s an a u x i l i a r y v a r i a b l e to determine the max . demand shorted o f any product

at any h o s p i t a l in any time per iod
140
141 %% Object ive Function − Theta
142 OF theta = [ z e r o s (1 , l o c z ) , 1 ] ;
143
144 %% S e r v i c e Object ive Function
145 se rv i ceOF pts = [ repmat ( [ zero qc , zero qo , zero qh ] , P∗T∗S , 1 ) , eye (P∗T∗S) , repmat ( [

zero v , zero w , zero y , zero qe , ze ro z , 0 ] , P∗T∗S , 1 ) ] ;
146
147 %% ∗∗∗ S e n s i t i v i t y Ana lys i s Loop∗∗∗
148 f o r i t e r s v t y = 1 : count svty
149 %S e n s i t i v i t y Ana lys i s Var iab le
150 Q5 p = svtyVar iab l e ( i t e r s v t y , : ) ;
151
152 e p s i l o n = e p s i l o n s t a r t ;
153
154 %% CST 1 − Cost OF
155 %qc
156 q c c o e f f = [ ] ;
157 f o r cntOF = 1 : S
158 q c c o e f f =[ q c c o e f f ; A c i t s ( ( cntOF−1)∗ I ∗T+1:cntOF∗ I ∗T) ∗ repmat ( eye ( I ) ,1 ,T) ' ] ;
159 end
160 q c c o e f f=repmat ( kron ( q c c o e f f , ones (1 ,P) ) ,1 ,B) ;
161 q c c s t = q c c o e f f . ∗ repmat ( [ ( repmat ( pc pi , 1 ,B) . ∗ F2 pid ) + repmat ( C1 pi , 1 ,B) ] , S , 1)

;
162 %qo
163 qocs t = [ p o p i t s + repmat ( C1 pi , 1 ,T∗S) ] . ∗ kron ( eye (S) , ones (1 ,P∗ I ∗T) ) ;
164 %qh
165 qhcst = kron ( eye (S) , repmat ( C3 p , 1 , T) ) ;
166 %s
167 s c s t=repmat ( z e r o s , S , 1) ;
168 %v
169 vcs t = kron ( eye (S) , repmat ( C5 p , 1 , T+1) ) ;
170 %w
171 wcst = repmat ( C4 k , S , 1) ;
172 %y
173 ycs t = C6∗ ones (S ,P∗ I ∗B) ;
174 %z
175 q e c s t = kron ( eye (S) , repmat ( [ C2 p + pe p ] , 1 , T) ) ;
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176 %z
177 z c s t = repmat ( ze ro z , S , 1 ) ;
178 %theta
179 t h e t a c s t=z e r o s (S , 1) ;
180
181 costOF s =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
182
183 %% CST 2 − SAA c o n s t r a i n t − s i n g u l a r
184 bcst SAA = alpha ∗S ;
185 Acst SAA =[ z e r o s (1 , l o c q e ) , ones (1 , S ) , 0 ] ;
186
187 %% CST 3 − Open market supply supply CST − p , i , t , s
188 %qc
189 q c c s t=repmat ( zero qc , P∗ I ∗T∗S , 1) ;
190 %qo
191 qocs t=eye (P∗ I ∗T∗S) ;
192 %qh
193 qhcst=repmat ( zero qh , P∗ I ∗T∗S , 1) ;
194 %s
195 s c s t=repmat ( z e r o s , P∗ I ∗T∗S , 1) ;
196 %v
197 vcs t=repmat ( zero v , P∗ I ∗T∗S , 1) ;
198 %w
199 wcst=repmat ( zero w , P∗ I ∗T∗S , 1) ;
200 %y
201 ycs t=repmat ( zero y , P∗ I ∗T∗S , 1) ;
202 %z
203 q e c s t=repmat ( zero qe , P∗ I ∗T∗S , 1 ) ;
204 %z
205 z c s t=repmat ( ze ro z , P∗ I ∗T∗S , 1) ;
206 %theta
207 t h e t a c s t=z e r o s (P∗ I ∗T∗S , 1) ;
208
209 Acst3 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
210 bcst3 =[ kron ( Ao its , ones (1 ,P) ) . ∗ repmat ( Q4 pi , 1 ,T∗S) ] ' ;
211
212 %% CST 4 − Contract maximum CSTs − p , i , d
213 %qc
214 q c c s t=eye (P∗ I ∗B) ;
215 %qo
216 qocs t=repmat ( zero qo , P∗ I ∗B, 1) ;
217 %qh
218 qhcst=repmat ( zero qh , P∗ I ∗B, 1) ;
219 %s
220 s c s t=repmat ( z e r o s , P∗ I ∗B, 1) ;
221 %v
222 vcs t=repmat ( zero v , P∗ I ∗B, 1) ;
223 %w
224 wcst=repmat ( zero w , P∗ I ∗B, 1) ;
225 %y
226 ycs t=−repmat ( Q2 pi , 1 ,B) . ∗ eye (P∗ I ∗B) ;
227 %z
228 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
229 %z
230 z c s t=repmat ( ze ro z , P∗ I ∗B, 1) ;
231 %theta
232 t h e t a c s t=z e r o s (P∗ I ∗B, 1) ;
233
234 Acst4 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
235 bcst4=z e r o s (P∗ I ∗B, 1) ;
236
237 %% CST 5 − Contract minimum CSTs − p , i , d
238 %qc
239 q c c s t=eye (P∗ I ∗B) ;
240 %qo
241 qocs t=repmat ( zero qo , P∗ I ∗B, 1) ;
242 %qh
243 qhcst=repmat ( zero qh , P∗ I ∗B, 1) ;
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244 %s
245 s c s t=repmat ( z e r o s , P∗ I ∗B, 1) ;
246 %v
247 vcs t=repmat ( zero v , P∗ I ∗B, 1) ;
248 %w
249 wcst=repmat ( zero w , P∗ I ∗B, 1) ;
250 %y
251 ycs t=−repmat ( Q3 pi , 1 ,B) . ∗ eye (P∗ I ∗B) ;
252 %z
253 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
254 %z
255 z c s t=repmat ( ze ro z , P∗ I ∗B, 1) ;
256 %theta
257 t h e t a c s t=z e r o s (P∗ I ∗B, 1) ;
258
259 Acst5=−[qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
260 bcst5=−z e r o s (P∗ I ∗B, 1) ;
261
262 %% CST 6 − Contract order quant i ty exceeds p r i c e break min − p , i , d
263 %qc
264 q c c s t=eye (P∗ I ∗B) ;
265 %qo
266 qocs t=repmat ( ze ro qo , P∗ I ∗B , 1) ;
267 %qh
268 qhcst=repmat ( zero qh , P∗ I ∗B , 1) ;
269 %s
270 s c s t=repmat ( z e r o s , P∗ I ∗B , 1) ;
271 %v
272 vcs t=repmat ( z e r o v , P∗ I ∗B , 1) ;
273 %w
274 wcst=repmat ( zero w , P∗ I ∗B , 1) ;
275 %y
276 ycs t=−kron ( Q1 ib 1 ( 1 : I ∗B) , ones (1 ,P) ) . ∗ eye (P∗ I ∗B) ;
277 %z
278 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
279 %z
280 z c s t=repmat ( ze ro z , P∗ I ∗B, 1) ;
281 %theta
282 t h e t a c s t=z e r o s (P∗ I ∗B, 1) ;
283
284 bcst6 = −z e r o s (P∗ I ∗B, 1) ;
285 Acst6 = −[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
286
287 %% CST 7 − Contract order quant i ty i s l e s s than next p r i c e break − p , i , d
288 %qc
289 q c c s t=eye (P∗ I ∗B) ;
290 %qo
291 qocs t=repmat ( ze ro qo , P∗ I ∗B , 1) ;
292 %qh
293 qhcst=repmat ( zero qh , P∗ I ∗B , 1) ;
294 %s
295 s c s t=repmat ( z e r o s , P∗ I ∗B , 1) ;
296 %v
297 vcs t=repmat ( z e r o v , P∗ I ∗B , 1) ;
298 %w
299 wcst=repmat ( zero w , P∗ I ∗B , 1) ;
300 %y
301 ycs t=−kron ( Q1 ib 1 ( I +1: I ∗(B+1) ) , ones (1 ,P) ) . ∗ eye (P∗ I ∗B) ;
302 %z
303 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
304 %z
305 z c s t=repmat ( ze ro z , P∗ I ∗B, 1) ;
306 %theta
307 t h e t a c s t=z e r o s (P∗ I ∗B, 1) ;
308
309 bcst7 = z e r o s (P∗ I ∗B, 1) ;
310 Acst7 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
311

83



312 %% CST 8 − WH inventory capac i ty CST' s − t +1, s
313 %qc
314 q c c s t=repmat ( zero qc , (T+1)∗S , 1) ;
315 %qo
316 qocs t=repmat ( zero qo , (T+1)∗S , 1) ;
317 %qh
318 qhcst=repmat ( zero qh , (T+1)∗S , 1) ;
319 %s
320 s c s t=repmat ( z e r o s , (T+1)∗S , 1) ;
321 %v
322 vcs t=kron ( eye (S) , [ repmat ( K2 p , 1 , (T+1) ) . ∗ kron ( eye (T+1) , ones (1 ,P) ) ] ) ;
323 %w
324 wcst=−repmat ( K1 k , (T+1)∗S , 1) ;
325 %y
326 ycs t=repmat ( zero y , (T+1)∗S , 1) ;
327 %z
328 q e c s t=repmat ( zero qe , (T+1)∗S , 1 ) ;
329 %z
330 z c s t=repmat ( ze ro z , (T+1)∗S , 1) ;
331 %theta
332 t h e t a c s t=z e r o s ( (T+1)∗S , 1) ;
333
334 Acst8 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
335 bcst8=z e r o s ( (T+1)∗S , 1) ;
336
337 %% CST 9 − WH inventory / f low balance CST − p , t , s
338 %qc
339 q c c s t=repmat ( kron ( reshape ( Ac i t s , I ,T∗S) ' , ones (P,P) ) , 1 , B) . ∗ ( repmat ( F1 pi , 1 , B)

. ∗ repmat ( eye (P) ,T∗S , I ∗B) ) ;
340 %qo
341 qocs t=repmat ( F1 pi , 1 , T∗S) . ∗ kron ( eye (T∗S) , repmat ( eye (P) ,1 , I ) ) ;
342 %qh
343 qhcst=−eye (P∗T∗S) ;
344 %s
345 s c s t=repmat ( z e r o s , P∗T∗S , 1) ;
346 %v
347 vcs t=kron ( eye (S) , [ [ eye (P∗T) , z e r o s (P∗T, P) ] −[ z e r o s (P∗T, P) , eye (P∗T) ] ] ) ;
348 %w
349 wcst=repmat ( zero w , P∗T∗S , 1) ;
350 %y
351 ycs t=repmat ( zero y , P∗T∗S , 1) ;
352 %z
353 q e c s t = eye (P∗T∗S) ;
354 %z
355 z c s t=repmat ( ze ro z , P∗T∗S , 1) ;
356 %theta
357 t h e t a c s t=z e r o s (P∗T∗S , 1) ;
358
359 Acst9 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
360 bcst9=z e r o s (P∗T∗S , 1 ) ;
361
362 %% CST 10 − Inventory per iod 1 e q u a l i t y c o n s t r a i n t s a c r o s s s c e n a r i o s − p , ( s −1)
363 %qc
364 q c c s t=repmat ( z e r o q c , P∗S , 1) ;
365 %qo
366 qocs t=repmat ( ze ro qo , P∗S , 1) ;
367 %qh
368 qhcst=repmat ( zero qh , P∗S , 1) ;
369 %s
370 s c s t=repmat ( z e r o s , P∗S , 1) ;
371 %v
372 vcs t= kron ( eye (S) , [ eye (P) , z e r o s (P, P∗T) ] ) ;
373 %w
374 wcst=repmat ( zero w , P∗S , 1) ;
375 %y
376 ycs t=repmat ( z e r o y , P∗S , 1) ;
377 %z
378 q e c s t=repmat ( zero qe , P∗S , 1) ;
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379 %z
380 z c s t=repmat ( ze ro z , P∗S , 1) ;
381 %theta
382 t h e t a c s t=z e r o s ( P∗S ,1) ;
383
384 bcst10 = repmat ( V0 p , 1 , S ) ' ;
385 Acst10 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
386
387 %% CST 11 − WH inventory in per iod 1 and T+1 are equal − p , s
388 %qc
389 q c c s t=repmat ( z e r o q c , P∗S , 1) ;
390 %qo
391 qocs t=repmat ( ze ro qo , P∗S , 1) ;
392 %qh
393 qhcst=repmat ( zero qh , P∗S , 1) ;
394 %s
395 s c s t=repmat ( z e r o s , P∗S , 1) ;
396 %v
397 vcs t= kron ( eye (S) , [ z e r o s (P, P∗T) , eye (P) ] ) ;
398 %w
399 wcst=repmat ( zero w , P∗S , 1) ;
400 %y
401 ycs t=repmat ( z e r o y , P∗S , 1) ;
402 %z
403 q e c s t=repmat ( zero qe , P∗S , 1) ;
404 %z
405 z c s t=repmat ( ze ro z , P∗S , 1) ;
406 %theta
407 t h e t a c s t=z e r o s ( P∗S ,1) ;
408
409 bcst11 = −repmat ( V0 p , 1 , S ) ' ;
410 Acst11 = −[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
411
412 %% CST 12 − Hosp i ta l demand s a t i s f a c t i o n c o n s t r a i n t s − p , t , s
413 %qc
414 q c c s t=repmat ( z e r o q c , P∗T∗S , 1) ;
415 %qo
416 qocs t=repmat ( ze ro qo , P∗T∗S , 1) ;
417 %qh
418 qhcst=eye (P∗T∗S) ;
419 %s
420 s c s t=eye (P∗T∗S) . ∗ D pts ;
421 %v
422 vcs t=repmat ( z e r o v , P∗T∗S , 1) ;
423 %w
424 wcst=repmat ( zero w , P∗T∗S , 1) ;
425 %y
426 ycs t=repmat ( z e r o y , P∗T∗S , 1) ;
427 %z
428 q e c s t=repmat ( z e r o q e , P∗T∗S , 1) ;
429 %z
430 z c s t=repmat ( ze ro z , P∗T∗S , 1) ;
431 %theta
432 t h e t a c s t=z e r o s (P∗T∗S , 1) ;
433
434 Acst12 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
435 bcst12 = D pts ' ;
436
437 %% CST 13 − Si ngu l a r WH capac i ty i s s e l e c t e d − s i n g u l a r
438 bcst13 = 1 ;
439 Acst13 =[ zero qc , zero qo , zero qh , z e r o s , zero v , ones (1 ,K) , zero y , zero qe ,

ze ro z , 0 ] ;
440
441 %% CST 14 − At most one d i scount i s app l i ed − p , i
442 %qc
443 q c c s t=repmat ( z e r o q c , P∗I , 1) ;
444 %qo
445 qocs t=repmat ( zero qo , P∗I , 1) ;
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446 %qh
447 qhcst=repmat ( zero qh , P∗I , 1) ;
448 %s
449 s c s t=repmat ( z e r o s , P∗I , 1) ;
450 %v
451 vcs t=repmat ( zero v , P∗I , 1) ;
452 %w
453 wcst=repmat ( zero w ,P∗I , 1) ;
454 %y
455 ycs t=repmat ( eye (P∗ I ) ,1 ,B) ;
456 %z
457 q e c s t=repmat ( zero qe , P∗I , 1 ) ;
458 %z
459 z c s t=repmat ( ze ro z , P∗I , 1) ;
460 %theta
461 t h e t a c s t=z e r o s (P∗I , 1) ;
462
463 bcst14 = ones (P∗I , 1) ;
464 Acst14 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
465
466 %% CST 15 − Emergency stock supply c o n s t r a i n t
467 %qc
468 q c c s t=repmat ( z e r o q c , P∗S , 1) ;
469 %qo
470 qocs t=repmat ( zero qo , P∗S , 1) ;
471 %qh
472 qhcst=repmat ( zero qh , P∗S , 1) ;
473 %s
474 s c s t=repmat ( z e r o s , P∗S , 1) ;
475 %v
476 vcs t=repmat ( zero v , P∗S , 1) ;
477 %w
478 wcst=repmat ( zero w , P∗S , 1) ;
479 %y
480 ycs t=repmat ( zero y , P∗S , 1) ;
481 %z
482 q e c s t= kron ( eye (S) , repmat ( eye (P) , 1 , T) ) ;
483 %z
484 z c s t=repmat ( ze ro z , P∗S , 1) ;
485 %theta
486 t h e t a c s t=z e r o s (P∗S , 1) ;
487
488 bcst15 = repmat ( Q5 p , 1 , S ) ' ;
489 Acst15 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , zcs t , t h e t a c s t ] ;
490
491 %% ∗∗∗ Eps i lon FOR LOOP∗∗∗
492 f o r i t e r e p s = 1 : count eps
493
494 %% Prepar ing F i r s t Model
495 Acst eps = serv i ceOF pts ;
496 b c s t e p s = e p s i l o n ∗ ones (P∗T∗S , 1 ) ;
497 Acst theta = costOF s + [ z e r o s (S , l o c q e ) , −M∗ eye (S) , −ones (S , 1 ) ] ;
498 b c s t t h e t a = z e r o s (S , 1 ) ;
499
500 %% Solv ing F i r s t −Cost Model
501 Acst = [ Acst theta ; Acst SAA ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ;

Acst14 ; Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s
502 bcst = [ b c s t t h e t a ; bcst SAA ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ;

bcst14 ; bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s
503 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ] ; % A matrix e q u a l i t i e s
504 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ] ; % b matrix e q u a l i t i e s
505 i n tcon = [ l o c v +1: l oc y , l o c q e +1: l o c z ] ; %s e t t i n g D.V. s to i n t e g e r s
506 LB = z e r o s (1 , l o c t h e t a ) ; %LB i s z e r o s f o r a l l v a r i a b l e s
507 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c qe −l o c y ) , ones (1 , l o c z −

l o c q e ) , i n f ] ; %UB i s ones f o r w, y , o , B.V. s , i n f f o r remaining
508 [ so l1 , va l1 ] = i n t l i n p r o g ( OF theta , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB) ;
509
510 %% Prepar ing Second Model
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511 f p r i n t f ( ' Part 2 ' ) ;
512 x0 ( i t e r e p s , : )=so l1 ' ;
513 x0 ( i t e r e p s , l o c t h e t a )=e p s i l o n ;
514 e p s i l o n t w o = val1 ;
515 Acst eps = costOF s + [ z e r o s (S , l o c q e ) , −M∗ eye (S) , z e r o s (S , 1 ) ] ;
516 b c s t e p s = e p s i l o n t w o ∗ ones (S , 1 ) ;
517 Acst theta = serv i ceOF pts + [ z e r o s (P∗T∗S , l o c z ) , −ones (P∗T∗S , 1 ) ] ;
518 b c s t t h e t a = z e r o s (P∗T∗S , 1 ) ;
519
520 %% Solv ing Second−Shortage Model
521 Acst = [ Acst theta ; Acst SAA ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ;

Acst14 ; Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s
522 bcst = [ b c s t t h e t a ; bcst SAA ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ;

bcst14 ; bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s
523 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ] ; % A matrix e q u a l i t i e s
524 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ] ; % b matrix e q u a l i t i e s
525 i n tcon = [ l o c v +1: l oc y , l o c q e +1: l o c z ] ; %s e t t i n g D.V. s to i n t e g e r s
526 LB = z e r o s (1 , l o c t h e t a ) ; %LB i s z e r o s f o r a l l v a r i a b l e s
527 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c qe −l o c y ) , ones (1 , l o c z −

l o c q e ) , i n f ] ; %UB i s ones f o r w, y , o , B.V. s , i n f f o r remaining
528 [ so l2 , va l2 ] = i n t l i n p r o g ( OF theta , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB, x0 (

i t e r e p s , : ) ) ;
529
530 %% Increment Eps i lon
531 e p s i l o n=e p s i l o n+step ;
532 end
533 end
534 % Output Resu l t s to Excel
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Appendix C
Matlab Code for Multi-Stage RO Model
with SAA

1 %% RO Two−Stage Model Code Lines (1 ) − (489)
2
3 %% CST 16 − Multi−stage e q u a l i t y c s t − qe − P∗(S∗(T−1)−3−9−27)
4 PTS = [ ] ;
5 PTS v = [ ] ;
6 PITS = [ ] ;
7 f o r i i = 1 :T−1
8 %S
9 %kron ( eye (3ˆ i i ) , [ ones (3ˆ(4 − i i ) −1, 1) , −eye (3ˆ(4 − i i ) −1) ] ) ;

10 %TS
11 %kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(4 − i i ) −1, 1) , −eye (3ˆ(4 − i i ) −1) ] ) , [ z e r o s (1 , i i

−1) , 1 , z e r o s (1 ,T−i i ) ] ) ;
12 %PTS
13 PTS = [PTS; kron ( kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(4 − i i ) −1, 1) , −eye (3ˆ(4 − i i ) −1)

] ) , [ z e r o s (1 , i i −1) , 1 , z e r o s (1 ,T−i i ) ] ) , eye (P) ) ] ;
14 %PTS v
15 PTS v = [ PTS v ; kron ( kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(4 − i i ) −1, 1) , −eye (3ˆ(4 − i i )

−1) ] ) , [ z e r o s (1 , i i ) , 1 , z e r o s (1 ,T−i i ) ] ) , eye (P) ) ] ;
16 %PITS
17 PITS = [ PITS ; kron ( kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(4 − i i ) −1, 1) , −eye (3ˆ(4 − i i )

−1) ] ) , [ z e r o s (1 , i i −1) , 1 , z e r o s (1 ,T−i i ) ] ) , eye (P∗ I ) ) ] ;
18 end
19
20 bcst16 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
21 Acst16 = [ repmat ( [ zero qc , zero qo , zero qh , z e r o s , zero v , zero w , z e r o y ] , P∗(

S∗(T−1)−3−9−27) , 1) , PTS, repmat ( [ z e ro z , 0 ] , P∗(S∗(T−1)−3−9−27) , 1) ] ;
22
23 %% CST 17 − Multi−stage e q u a l i t y c s t − qh − P∗(S∗(T−1)−3−9−27)
24 bcst17 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
25 Acst17 = [ repmat ( [ zero qc , z e ro qo ] , P∗(S∗(T−1)−3−9−27) , 1) , PTS, repmat ( [ z e r o s ,

zero v , zero w , zero y , zero qe , ze ro z , 0 ] , P∗(S∗(T−1)−3−9−27) , 1) ] ;
26
27 %% CST 18 − Multi−stage e q u a l i t y c s t − s − P∗(S∗(T−1)−3−9−27)
28 bcst18 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
29 Acst18 = [ repmat ( [ zero qc , zero qo , zero qh ] , P∗(S∗(T−1)−3−9−27) , 1) , PTS, repmat

( [ zero v , zero w , zero y , zero qe , ze ro z , 0 ] , P∗(S∗(T−1)−3−9−27) , 1) ] ;
30
31 %% CST 19 − Multi−stage e q u a l i t y c s t − v − P∗(S∗(T−1)−3−9−27)
32 bcst19 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
33 Acst19 = [ repmat ( [ zero qc , zero qo , zero qh , z e r o s ] , P∗(S∗(T−1)−3−9−27) , 1) ,

PTS v , repmat ( [ zero w , zero y , zero qe , ze ro z , 0 ] , P∗(S∗(T−1)−3−9−27) , 1) ] ;
34
35 %% CST 20 − Multi−stage e q u a l i t y c s t − qo − P∗ I ∗(S∗(T−1)−3−9−27)
36 bcst20 = z e r o s (P∗ I ∗(S∗(T−1)−3−9−27) , 1) ;
37 Acst20 = [ repmat ( [ z e r o q c ] , P∗ I ∗(S∗(T−1)−3−9−27) , 1) , PITS , repmat ( [ zero qh ,

z e r o s , zero v , zero w , zero y , zero qe , ze ro z , 0 ] , P∗ I ∗(S∗(T−1)−3−9−27) , 1)
] ;

38
39 %% ∗∗∗ Eps i lon FOR LOOP∗∗∗
40 f o r i t e r e p s = 1 : count eps
41
42 %% Prepar ing F i r s t Model
43 Acst eps = serv i ceOF pts ;
44 b c s t e p s = e p s i l o n ∗ ones (P∗T∗S , 1 ) ;
45 Acst theta = costOF s + [ z e r o s (S , l o c q e ) , −M∗ eye (S) , −ones (S , 1 ) ] ;
46 b c s t t h e t a = z e r o s (S , 1 ) ;
47
48 %% Solv ing F i r s t −Cost Model
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49 Acst = [ Acst theta ; Acst SAA ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ;
Acst14 ; Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s

50 bcst = [ b c s t t h e t a ; bcst SAA ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ;
bcst14 ; bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s

51 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ; Acst16 ; Acst17 ; Acst18 ; Acst19 ; Acst20
] ; % A matrix e q u a l i t i e s

52 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ; bcst16 ; bcst17 ; bcst18 ; bcst19 ; bcst20
] ; % b matrix e q u a l i t i e s

53 i n tcon = [ l o c v +1: l oc y , l o c q e +1: l o c z ] ; %s e t t i n g D.V. s to i n t e g e r s
54 LB = z e r o s (1 , l o c t h e t a ) ; %LB i s z e r o s f o r a l l v a r i a b l e s
55 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c qe −l o c y ) , ones (1 , l o c z −

l o c q e ) , i n f ] ; %UB i s ones f o r w, y , o , B.V. s , i n f f o r remaining
56 [ so l1 , va l1 ] = i n t l i n p r o g ( OF theta , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB,

so lve rOpt ions ) ;
57
58 %% Prepar ing Second Model
59 f p r i n t f ( ' Part 2 ' ) ;
60 x0 ( i t e r e p s , : )=so l1 ' ;
61 x0 ( i t e r e p s , l o c t h e t a )=e p s i l o n ;
62 e p s i l o n t w o = val1 ;
63 Acst eps = costOF s + [ z e r o s (S , l o c q e ) , −M∗ eye (S) , z e r o s (S , 1 ) ] ;
64 b c s t e p s = e p s i l o n t w o ∗ ones (S , 1 ) ;
65 Acst theta = serv i ceOF pts + [ z e r o s (P∗T∗S , l o c z ) , −ones (P∗T∗S , 1 ) ] ;
66 b c s t t h e t a = z e r o s (P∗T∗S , 1 ) ;
67
68 %% Solv ing Second−Shortage Model
69 Acst = [ Acst theta ; Acst SAA ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ;

Acst14 ; Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s
70 bcst = [ b c s t t h e t a ; bcst SAA ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ;

bcst14 ; bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s
71 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ; Acst16 ; Acst17 ; Acst18 ; Acst19 ; Acst20

] ; % A matrix e q u a l i t i e s
72 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ; bcst16 ; bcst17 ; bcst18 ; bcst19 ; bcst20

] ; % b matrix e q u a l i t i e s
73 i n tcon = [ l o c v +1: l oc y , l o c q e +1: l o c z ] ; %s e t t i n g D.V. s to i n t e g e r s
74 LB = z e r o s (1 , l o c t h e t a ) ; %LB i s z e r o s f o r a l l v a r i a b l e s
75 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c qe −l o c y ) , ones (1 , l o c z −

l o c q e ) , i n f ] ; %UB i s ones f o r w, y , o , B.V. s , i n f f o r remaining
76 [ so l2 , va l2 ] = i n t l i n p r o g ( OF theta , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB, x0 (

i t e r e p s , : ) , s o lve rOpt ions ) ;
77
78 %% Increment Eps i lon
79 e p s i l o n=e p s i l o n+step ;
80 end
81 end
82 % Output Resu l t s to Excel
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Appendix D
Matlab Code for Two-Stage DRO Model
Stochastic-robust models are created by running the DRO models with ρ = 0.

1 %% F i l e Names and Output S e l e c t i o n
2 c l e a r
3 SheetName=' Sheet1 ' ;
4 DataFileName = ' DataFi le twoStage . x l s x ' ;
5 ResultsFileName = ' Resu l t s . x l s x ' ;
6
7 %% Index I n i t i a l i z a t i o n
8 s e t s=readmatr ix ( DataFileName , ' Sheet ' , ' Set s ' ) ;
9 P=s e t s (1 , 2) ; %number o f products

10 I=s e t s (2 , 2) ; %number o f s u p p l i e r s
11 K=3; %number o f warehouse c a p a c i t i e s a v a i l a b l e
12 B=s e t s (3 , 2) ; %number o f p r i c e breaks o f f e r e d by s u p p l i e r s , 1 = no p r i c e breaks
13 T=s e t s (4 , 2) ; %number o f time p e r i o d s ;
14 S=s e t s (5 , 2) ; %number o f s c e n a r i o s
15 %% S e n s i t i v i t y Ana lys i s Var iab le
16 var = readmatr ix ( DataFileName , ' Sheet ' , ' Q5 data ' ) ;
17 sv tyVar iab l e = [ 0 . 1 5 ∗ var ; 0 .2∗ var ; 0 .25∗ var ; 0 .3∗ var ; 0 .35∗ var ; 0 .40∗ var ] ;
18 count svty = s i z e ( svtyVar iab le , 1) ;
19
20 %% Model Hyperparameters I n i t i a l i z a t i o n
21 e p s i l o n s t a r t = 0 . 2 0 ; %s e r v i c e l e v e l
22 s tep = −0.01;
23 count eps = f l o o r ( abs ( e p s i l o n s t a r t / s tep ) ) +1;
24
25 rho = 0 . 8 ;
26 qc va r s = [ ] ;
27 qo vars = [ ] ;
28 w vars = [ ] ;
29 i n v b y s = [ ] ;
30 q c b y i = [ ] ;
31 q o b y i = [ ] ;
32 OMcap last ep = [ ] ;
33 c n t c o r r e l = 1 ;
34
35 %% Model Parameter I n i t i a l i z a t i o n
36
37 Ac data=readmatr ix ( DataFileName , ' Sheet ' , ' Ac data ' ) ; %Port ion o f s u p p l i e r i ' s

co nt rac t that i s a c t u a l l y r e c e i v e d in t
38 A c i t s = [ ] ;
39 f o r c t = 1 :T
40 f o r c i = 1 : I
41 A c i t s = [ Ac i t s , Ac data ( : , ( c i −1)∗T+ct ) ] ;
42 end
43 end
44 A c i t s=reshape ( Ac i t s ' , 1 , I ∗T∗S) ;
45
46 Ao data=readmatr ix ( DataFileName , ' Sheet ' , ' Ao data ' ) ; %Port ion o f s u p p l i e r i ' s open

market capac i ty a v a i l a b l e in t
47 A o i t s = [ ] ;
48 f o r c t = 1 :T
49 f o r c i = 1 : I
50 A o i t s = [ Ao its , Ao data ( : , ( c i −1)∗T+ct ) ] ;
51 end
52 end
53 A o i t s=reshape ( Ao its ' , 1 , I ∗T∗S) ;
54
55 D data=readmatr ix ( DataFileName , ' Sheet ' , ' D data ' ) ; % open market purchase p r i c e f o r

product p , s u p p l i e r i , time per iod t , s c e n a r i o s
56 D pts = [ ] ;
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57 f o r c t = 1 :T
58 f o r cp = 1 :P
59 D pts = [ D pts , D data ( : , ( cp −1)∗T+ct ) ] ;
60 end
61 end
62 D pts=reshape ( D pts ' , 1 , P∗T∗S) ;
63
64 po data=readmatr ix ( DataFileName , ' Sheet ' , ' po data ' ) ; % open market purchase p r i c e

f o r product p , s u p p l i e r i , time per iod t , s c e n a r i o s
65 p o p i t s = [ ] ;
66 f o r c t = 1 :T
67 f o r c i = 1 : I
68 f o r cp = 1 :P
69 p o p i t s = [ po p i t s , po data ( : , ( cp −1)∗T+ct +(c i −1)∗P∗T) ] ;
70 end
71 end
72 end
73 p o p i t s=reshape ( po p i t s ' , 1 , P∗ I ∗T∗S) ;
74 p c p i = readmatr ix ( DataFileName , ' Sheet ' , ' pc data ' ) ; % base cont rac t p r i c e f o r

product p , s u p p l i e r i
75 pe p = readmatr ix ( DataFileName , ' Sheet ' , ' pe data ' ) ; %Emergency stock purchase p r i c e
76 C1 pi = readmatr ix ( DataFileName , ' Sheet ' , ' C1 data ' ) ; % c o s t to sh ip product p from

s u p p l i e r to WH
77 C2 p = 1.2∗ C1 pi ( 1 :P) ; % c o s t to sh ip product p from emergency stock to WH
78 C3 p = readmatr ix ( DataFileName , ' Sheet ' , ' C3 data ' ) ; % c o s t to sh ip product p

f rom by sc WH to h o s p i t a l
79 C4 k = [ 0 , 10000∗(1 :K−1) ] ; %c o s t to have capac i ty k at warehouse j
80 C5 p = readmatr ix ( DataFileName , ' Sheet ' , ' C5 data ' ) ; %ho ld ing c o s t per product p at

warehouse j
81 C6 = 1000 ; %c o s t to maintain s u p p l i e r r e l a t i o n s h i p
82 f h a t s = ones (1 , S ) /S ; %Scenar io p r o b a b i l i t i e s
83 F1 pi = readmatr ix ( DataFileName , ' Sheet ' , ' F1 data ' ) ; %R e l i a b i l i t y o f s u p p l i e r i (

por t i on o f product that pas s e s QC and i s usab le )
84 F2 pid = readmatr ix ( DataFileName , ' Sheet ' , ' F2 data ' ) ; %Fract ion o f normal p r i c e

charged by s u p p l i e r i f o r product p with d i scount d
85 F2 pid= [ ones (1 ,P∗ I ) , reshape ( F2 pid ' , 1 , P∗ I ∗(B−1) ) ] ;
86 Q1 ib 1 = readmatr ix ( DataFileName , ' Sheet ' , ' Q1 data ' ) ;% Quantity o f any product

where s u p p l i e r i o f f e r s d i s count d − has dimensions I ∗ (B+1)
87 Q1 ib 1 = [ z e r o s (1 , I ) , Q1 ib 1 , 10ˆ9∗ ones (1 , I ) ] ;
88 Q2 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q2 data ' ) ; %c ont r ac t max
89 Q3 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q3 data ' ) ; %c ont r ac t min
90 Q4 pi = readmatr ix ( DataFileName , ' Sheet ' , ' Q4 data ' ) ; %Nominal capac i ty o f s u p p l i e r i

in u n i t s o f product p
91 Q5 p = readmatr ix ( DataFileName , ' Sheet ' , ' Q5 data ' ) ; %Supply o f product p in

emergency s t o c k p i l e
92 K1 k = 16000 + 4000∗(0 :K−1) ; %warehouse inventory c a p a c i t i e s in square f e e t
93 K2 p = readmatr ix ( DataFileName , ' Sheet ' , ' K2 data ' ) ; %square f e e t r e q u i r e d to s t o r e

one un i t o f product p
94 V0 p = readmatr ix ( DataFileName , ' Sheet ' , ' V0 data ' ) ; %s t a r t i n g inventory
95 M=10ˆ9; %very l a r g e number
96 TS data = readmatr ix ( DataFileName , ' Sheet ' , ' TS data ' ) ;
97
98 %% Dec i s i on Var iab l e s
99 %qc : number product p purchased f rom by sc s u p p l i e r i to warehouses in time per iod t

100 z e r o q c = z e r o s (1 , P∗ I ∗B) ;
101
102 %qo : number product p purchased f rom by sc backup s u p p l i e r i to warehouses in time

per iod t
103 ze ro qo = z e r o s (1 , P∗ I ∗T∗S) ;
104
105 %qh : number product p shipped f rom by sc warehouses to h o s p i t a l s in time per iod t
106 zero qh = z e r o s (1 , P∗T∗S) ;
107
108 %s : number o f shorted u n i t s o f product p at h o s p i t a l s in time per iod t
109 z e r o s = z e r o s (1 , P∗T∗S) ;
110
111 %v : inventory l e v e l o f product p at warehouses in time per iod t
112 z e r o v = z e r o s (1 , P∗(T+1)∗S) ;
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113
114 %w: 1 i f warehouse j inventory capac i ty i s s i z e k and 0 otherwi se
115 zero w = z e r o s (1 , K) ;
116
117 %y : 1 i f s u p p l i e r i i s s e l e c t e d as a primary s u p p l i e r o f product p and 0 otherw i se
118 z e r o y = z e r o s (1 ,P∗ I ∗B) ;
119
120 %qe : number o f u n i t s o f product p sent f rom by sc emergency stock to warehouses in t

and s
121 z e r o q e = z e r o s (1 , P∗T∗S) ;
122
123 %theta i s an a u x i l i a r y v a r i a b l e f o r max shortage
124 z e r o t h e t a = 0 ;
125
126 %omega i s a dual v a r i a b l e
127 zero omega = 0 ;
128
129 %pi i s a dual v a r i a b l e
130 z e r o p i = 0 ;
131
132 %p s i p o s i s a dual v a r i a b l e
133 z e r o p s i p o s = z e r o s (1 , S ) ;
134
135 %phi neg i s a dual v a r i a b l e
136 z e r o p s i n e g = z e r o s (1 , S ) ;
137
138 %duals combined
139 z e r o d u a l s = [ zero omega , z e r o p i , z e r o p s i p o s , z e r o p s i n e g ] ;
140
141 %% Locat ions o f end o f DVs
142 l o c q c=P∗ I ∗B;
143 l o c q o=P∗ I ∗B+P∗ I ∗T∗S ;
144 l o c q h=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S ;
145 l o c s=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S ;
146 l o c v=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S ;
147 loc w=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K;
148 l o c y=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B;
149 l o c q e=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S ;
150 l o c t h e t a=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S+1;
151 loc omega=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S+1+1;
152 l o c p i=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S+1+1+1;
153 l o c p s i p o s=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S+1+1+1+S ;
154 l o c p s i n e g=P∗ I ∗B+P∗ I ∗T∗S+P∗T∗S+P∗T∗S+P∗(T+1)∗S+K+P∗ I ∗B+P∗T∗S+1+1+1+S+S ;
155
156 %% Object ive Function − Theta
157 OF theta = [ z e r o s (1 , l o c t h e t a −1) , 1 , z e r o d u a l s ] ;
158 OF dual main = [ z e r o s (1 , l o c v ) , C4 k , C6∗ ones (1 ,P∗ I ∗B) , z e r o s (1 , l o c t h e t a −l o c y ) , 1 ,

rho , −f h a t s , f h a t s ] ;
159
160 %% S e r v i c e Object ive Function
161 se rv i ceOF pts = [ repmat ( [ zero qc , zero qo , zero qh ] , P∗T∗S , 1 ) , eye (P∗T∗S) , repmat ( [

zero v , zero w , zero y , zero qe , z e r o the ta , z e r o d u a l s ] , P∗T∗S , 1 ) ] ;
162
163 %% ∗∗∗ S e n s i t i v i t y Ana lys i s Loop∗∗∗
164 f o r i t e r s v t y = 1 : count svty
165 %S e n s i t i v i t y Ana lys i s Var iab le
166 Q5 p = svtyVar iab l e ( i t e r s v t y , : ) ;
167
168 e p s i l o n = e p s i l o n s t a r t ;
169
170 %% CST 1 − dual c o n s t r a i n t 1 − S
171 Acst1= − [ z e r o s (S , loc omega ) , ones (S , 1 ) , −eye (S) , −eye (S) ] ;
172 bcst1= − z e r o s (S , 1 ) ;
173
174 %% CST 2 − dual c o n s t r a i n t 2 − S
175 %qc
176 q c c o e f f = [ ] ;
177 f o r cntOF = 1 : S
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178 q c c o e f f =[ q c c o e f f ; A c i t s ( ( cntOF−1)∗ I ∗T+1:cntOF∗ I ∗T) ∗ repmat ( eye ( I ) ,1 ,T) ' ] ;
179 end
180 q c c o e f f=repmat ( kron ( q c c o e f f , ones (1 ,P) ) ,1 ,B) ;
181 q c c s t = q c c o e f f . ∗ repmat ( [ ( repmat ( pc pi , 1 ,B) . ∗ F2 pid ) + repmat ( C1 pi , 1 ,B) ] , S , 1)

;
182 %qo
183 qocs t = [ p o p i t s + repmat ( C1 pi , 1 ,T∗S) ] . ∗ kron ( eye (S) , ones (1 ,P∗ I ∗T) ) ;
184 %qh
185 qhcst = kron ( eye (S) , repmat ( C3 p , 1 , T) ) ;
186 %s
187 s c s t=repmat ( z e r o s , S , 1) ;
188 %v
189 vcs t = kron ( eye (S) , repmat ( C5 p , 1 , T+1) ) ;
190 %w
191 wcst = repmat ( zero w , S , 1) ;
192 %y
193 ycs t = repmat ( z e r o y , S , 1) ;
194 %qe
195 q e c s t = kron ( eye (S) , repmat ( [ C2 p + pe p ] , 1 , T) ) ;
196 %theta
197 t h e t a c s t=z e r o s (S , 1 ) ;
198 %dual
199 d u a l s c s t =[−ones (S , 1 ) , z e r o s (S , 1 ) , eye (S) , −eye (S) ] ;
200
201 Acst2 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t ] ;
202 bcst2=z e r o s (S , 1 ) ;
203
204 %% CST 3 − Open market supply supply CST − p , i , t , s
205 %qc
206 q c c s t=repmat ( zero qc , P∗ I ∗T∗S , 1) ;
207 %qo
208 qocs t=eye (P∗ I ∗T∗S) ;
209 %qh
210 qhcst=repmat ( zero qh , P∗ I ∗T∗S , 1) ;
211 %s
212 s c s t=repmat ( z e r o s , P∗ I ∗T∗S , 1) ;
213 %v
214 vcs t=repmat ( zero v , P∗ I ∗T∗S , 1) ;
215 %w
216 wcst=repmat ( zero w , P∗ I ∗T∗S , 1) ;
217 %y
218 ycs t=repmat ( zero y , P∗ I ∗T∗S , 1) ;
219 %qe
220 q e c s t=repmat ( zero qe , P∗ I ∗T∗S , 1 ) ;
221 %theta
222 t h e t a c s t=z e r o s (P∗ I ∗T∗S , 1 ) ;
223 %duals
224 d u a l s c s t=repmat ( ze ro dua l s ,P∗ I ∗T∗S , 1) ;
225
226 Acst3 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t ] ;
227 bcst3 =[ kron ( Ao its , ones (1 ,P) ) . ∗ repmat ( Q4 pi , 1 ,T∗S) ] ' ;
228
229 %% CST 4 − Contract maximum CSTs − p , i , d
230 %qc
231 q c c s t=eye (P∗ I ∗B) ;
232 %qo
233 qocs t=repmat ( zero qo , P∗ I ∗B, 1) ;
234 %qh
235 qhcst=repmat ( zero qh , P∗ I ∗B, 1) ;
236 %s
237 s c s t=repmat ( z e r o s , P∗ I ∗B, 1) ;
238 %v
239 vcs t=repmat ( zero v , P∗ I ∗B, 1) ;
240 %w
241 wcst=repmat ( zero w , P∗ I ∗B, 1) ;
242 %y
243 ycs t=−repmat ( Q2 pi , 1 ,B) . ∗ eye (P∗ I ∗B) ;
244 %qe
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245 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
246 %theta
247 t h e t a c s t=z e r o s ( P∗ I ∗B, 1 ) ;
248 %duals
249 d u a l s c s t=repmat ( ze ro dua l s ,P∗ I ∗B, 1) ;
250
251 Acst4 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t ] ;
252 bcst4=z e r o s (P∗ I ∗B, 1) ;
253
254 %% CST 5 − Contract minimum CSTs − p , i , b
255 %qc
256 q c c s t=eye (P∗ I ∗B) ;
257 %qo
258 qocs t=repmat ( zero qo , P∗ I ∗B, 1) ;
259 %qh
260 qhcst=repmat ( zero qh , P∗ I ∗B, 1) ;
261 %s
262 s c s t=repmat ( z e r o s , P∗ I ∗B, 1) ;
263 %v
264 vcs t=repmat ( zero v , P∗ I ∗B, 1) ;
265 %w
266 wcst=repmat ( zero w , P∗ I ∗B, 1) ;
267 %y
268 ycs t=−repmat ( Q3 pi , 1 ,B) . ∗ eye (P∗ I ∗B) ;
269 %qe
270 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
271 %theta
272 t h e t a c s t=z e r o s ( P∗ I ∗B, 1 ) ;
273 %duals
274 d u a l s c s t=repmat ( ze ro dua l s ,P∗ I ∗B, 1) ;
275
276 Acst5=−[qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t ] ;
277 bcst5=−z e r o s (P∗ I ∗B, 1) ;
278
279 %% CST 6 − Contract order quant i ty exceeds p r i c e break min − p , i , d
280 %qc
281 q c c s t=eye (P∗ I ∗B) ;
282 %qo
283 qocs t=repmat ( ze ro qo , P∗ I ∗B , 1) ;
284 %qh
285 qhcst=repmat ( zero qh , P∗ I ∗B , 1) ;
286 %s
287 s c s t=repmat ( z e r o s , P∗ I ∗B , 1) ;
288 %v
289 vcs t=repmat ( z e r o v , P∗ I ∗B , 1) ;
290 %w
291 wcst=repmat ( zero w , P∗ I ∗B , 1) ;
292 %y
293 ycs t=−kron ( Q1 ib 1 ( 1 : I ∗B) , ones (1 ,P) ) . ∗ eye (P∗ I ∗B) ;
294 %qe
295 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
296 %theta
297 t h e t a c s t=z e r o s ( P∗ I ∗B, 1 ) ;
298 %duals
299 d u a l s c s t=repmat ( ze ro dua l s ,P∗ I ∗B, 1) ;
300
301 bcst6 = −z e r o s (P∗ I ∗B, 1) ;
302 Acst6 = −[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t

] ;
303
304 %% CST 7 − Contract order quant i ty i s l e s s than next p r i c e break − p , i , d
305 %qc
306 q c c s t=eye (P∗ I ∗B) ;
307 %qo
308 qocs t=repmat ( ze ro qo , P∗ I ∗B , 1) ;
309 %qh
310 qhcst=repmat ( zero qh , P∗ I ∗B , 1) ;
311 %s
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312 s c s t=repmat ( z e r o s , P∗ I ∗B , 1) ;
313 %v
314 vcs t=repmat ( z e r o v , P∗ I ∗B , 1) ;
315 %w
316 wcst=repmat ( zero w , P∗ I ∗B , 1) ;
317 %y
318 ycs t=−kron ( Q1 ib 1 ( I +1: I ∗(B+1) ) , ones (1 ,P) ) . ∗ eye (P∗ I ∗B) ;
319 %qe
320 q e c s t=repmat ( zero qe , P∗ I ∗B, 1 ) ;
321 %theta
322 t h e t a c s t=z e r o s ( P∗ I ∗B, 1 ) ;
323 %duals
324 d u a l s c s t=repmat ( ze ro dua l s ,P∗ I ∗B, 1) ;
325
326 bcst7 = z e r o s (P∗ I ∗B, 1) ;
327 Acst7 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t ] ;
328
329 %% CST 8 − WH inventory capac i ty CST' s − t +1, s
330 %qc
331 q c c s t=repmat ( zero qc , (T+1)∗S , 1) ;
332 %qo
333 qocs t=repmat ( zero qo , (T+1)∗S , 1) ;
334 %qh
335 qhcst=repmat ( zero qh , (T+1)∗S , 1) ;
336 %s
337 s c s t=repmat ( z e r o s , (T+1)∗S , 1) ;
338 %v
339 vcs t=kron ( eye (S) , [ repmat ( K2 p , 1 , (T+1) ) . ∗ kron ( eye (T+1) , ones (1 ,P) ) ] ) ;
340 %w
341 wcst=−repmat ( K1 k , (T+1)∗S , 1) ;
342 %y
343 ycs t=repmat ( zero y , (T+1)∗S , 1) ;
344 %qe
345 q e c s t=repmat ( zero qe , (T+1)∗S , 1 ) ;
346 %theta
347 t h e t a c s t=z e r o s ( (T+1)∗S ,1 ) ;
348 %duals
349 d u a l s c s t=repmat ( ze ro dua l s , (T+1)∗S , 1) ;
350
351 Acst8 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t ] ;
352 bcst8=z e r o s ( (T+1)∗S , 1) ;
353
354 %% CST 9 − WH inventory / f low balance CST − p , t , s
355 %qc
356 q c c s t=repmat ( kron ( reshape ( Ac i t s , I ,T∗S) ' , ones (P,P) ) , 1 , B) . ∗ ( repmat ( F1 pi , 1 , B)

. ∗ repmat ( eye (P) ,T∗S , I ∗B) ) ;
357 %qo
358 qocs t=repmat ( F1 pi , 1 , T∗S) . ∗ kron ( eye (T∗S) , repmat ( eye (P) ,1 , I ) ) ;
359 %qh
360 qhcst=−eye (P∗T∗S) ;
361 %s
362 s c s t=repmat ( z e r o s , P∗T∗S , 1) ;
363 %v
364 vcs t=kron ( eye (S) , [ [ eye (P∗T) , z e r o s (P∗T, P) ] −[ z e r o s (P∗T, P) , eye (P∗T) ] ] ) ;
365 %w
366 wcst=repmat ( zero w , P∗T∗S , 1) ;
367 %y
368 ycs t=repmat ( zero y , P∗T∗S , 1) ;
369 %qe
370 q e c s t = eye (P∗T∗S) ;
371 %theta
372 t h e t a c s t=z e r o s ( P∗T∗S , 1 ) ;
373 %duals
374 d u a l s c s t=repmat ( ze ro dua l s ,P∗T∗S , 1) ;
375
376 Acst9 =[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t ] ;
377 bcst9=z e r o s (P∗T∗S , 1 ) ;
378
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379 %% CST 10 − Inventory per iod 1 e q u a l i t y c o n s t r a i n t s a c r o s s s c e n a r i o s − p , ( s −1)
380 %qc
381 q c c s t=repmat ( z e r o q c , P∗S , 1) ;
382 %qo
383 qocs t=repmat ( ze ro qo , P∗S , 1) ;
384 %qh
385 qhcst=repmat ( zero qh , P∗S , 1) ;
386 %s
387 s c s t=repmat ( z e r o s , P∗S , 1) ;
388 %v
389 vcs t= kron ( eye (S) , [ eye (P) , z e r o s (P, P∗T) ] ) ;
390 %w
391 wcst=repmat ( zero w , P∗S , 1) ;
392 %y
393 ycs t=repmat ( z e r o y , P∗S , 1) ;
394 %qe
395 q e c s t=repmat ( zero qe , P∗S , 1) ;
396 %theta
397 t h e t a c s t=z e r o s ( P∗S , 1 ) ;
398 %duals
399 d u a l s c s t=repmat ( ze ro dua l s ,P∗S , 1) ;
400
401 bcst10 = repmat ( V0 p , 1 , S ) ' ;
402 Acst10 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t

] ;
403
404 %% CST 11 − WH inventory in per iod 1 and T+1 are equal − p , s
405 %qc
406 q c c s t=repmat ( z e r o q c , P∗S , 1) ;
407 %qo
408 qocs t=repmat ( ze ro qo , P∗S , 1) ;
409 %qh
410 qhcst=repmat ( zero qh , P∗S , 1) ;
411 %s
412 s c s t=repmat ( z e r o s , P∗S , 1) ;
413 %v
414 vcs t= kron ( eye (S) , [ z e r o s (P, P∗T) , eye (P) ] ) ;
415 %w
416 wcst=repmat ( zero w , P∗S , 1) ;
417 %y
418 ycs t=repmat ( z e r o y , P∗S , 1) ;
419 %qe
420 q e c s t=repmat ( zero qe , P∗S , 1) ;
421 %theta
422 t h e t a c s t=z e r o s ( P∗S , 1 ) ;
423 %duals
424 d u a l s c s t=repmat ( ze ro dua l s , P∗S , 1) ;
425
426 bcst11 = −repmat ( V0 p , 1 , S ) ' ;
427 Acst11 = −[ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t

] ;
428
429 %% CST 12 − Hosp i ta l demand s a t i s f a c t i o n c o n s t r a i n t s − p , t , s
430 %qc
431 q c c s t=repmat ( z e r o q c , P∗T∗S , 1) ;
432 %qo
433 qocs t=repmat ( ze ro qo , P∗T∗S , 1) ;
434 %qh
435 qhcst=eye (P∗T∗S) ;
436 %s
437 s c s t=eye (P∗T∗S) . ∗ D pts ;
438 %v
439 vcs t=repmat ( z e r o v , P∗T∗S , 1) ;
440 %w
441 wcst=repmat ( zero w , P∗T∗S , 1) ;
442 %y
443 ycs t=repmat ( z e r o y , P∗T∗S , 1) ;
444 %qe
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445 q e c s t=repmat ( z e r o q e , P∗T∗S , 1) ;
446 %theta
447 t h e t a c s t=z e r o s ( P∗T∗S , 1 ) ;
448 %duals
449 d u a l s c s t=repmat ( ze ro dua l s , P∗T∗S , 1) ;
450
451 Acst12 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t

] ;
452 bcst12 = D pts ' ;
453
454 %% CST 13 − Si ngu l a r WH capac i ty i s s e l e c t e d − s i n g u l a r
455 bcst13 = 1 ;
456 Acst13 =[ zero qc , zero qo , zero qh , z e r o s , zero v , ones (1 ,K) , zero y , zero qe ,

z e r o the ta , z e r o d u a l s ] ;
457
458 %% CST 14 − At most one d i scount i s app l i ed − p , i
459 %qc
460 q c c s t=repmat ( z e r o q c , P∗I , 1) ;
461 %qo
462 qocs t=repmat ( zero qo , P∗I , 1) ;
463 %qh
464 qhcst=repmat ( zero qh , P∗I , 1) ;
465 %s
466 s c s t=repmat ( z e r o s , P∗I , 1) ;
467 %v
468 vcs t=repmat ( zero v , P∗I , 1) ;
469 %w
470 wcst=repmat ( zero w ,P∗I , 1) ;
471 %y
472 ycs t=repmat ( eye (P∗ I ) ,1 ,B) ;
473 %qe
474 q e c s t=repmat ( zero qe , P∗I , 1 ) ;
475 %theta
476 t h e t a c s t=z e r o s ( P∗I , 1 ) ;
477 %duals
478 d u a l s c s t=repmat ( ze ro dua l s , P∗ I , 1) ;
479
480 bcst14 = ones (P∗I , 1) ;
481 Acst14 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t

] ;
482
483 %% CST 15 − Emergency stock supply c o n s t r a i n t
484 %qc
485 q c c s t=repmat ( z e r o q c , P∗S , 1) ;
486 %qo
487 qocs t=repmat ( zero qo , P∗S , 1) ;
488 %qh
489 qhcst=repmat ( zero qh , P∗S , 1) ;
490 %s
491 s c s t=repmat ( z e r o s , P∗S , 1) ;
492 %v
493 vcs t=repmat ( zero v , P∗S , 1) ;
494 %w
495 wcst=repmat ( zero w , P∗S , 1) ;
496 %y
497 ycs t=repmat ( zero y , P∗S , 1) ;
498 %qe
499 q e c s t= kron ( eye (S) , repmat ( eye (P) , 1 , T) ) ;
500 %theta
501 t h e t a c s t=z e r o s ( P∗S , 1 ) ;
502 %duals
503 d u a l s c s t=repmat ( ze ro dua l s , P∗S , 1) ;
504
505 bcst15 = repmat ( Q5 p , 1 , S ) ' ;
506 Acst15 = [ qccst , qocst , qhcst , s c s t , vcst , wcst , ycst , qecst , the tac s t , d u a l s c s t

] ;
507
508 %% ∗∗∗ Eps i lon FOR LOOP∗∗∗
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509 f o r i t e r e p s = 1 : count eps
510
511 %% Prepar ing F i r s t Model
512 Acst eps = serv i ceOF pts ;
513 b c s t e p s = e p s i l o n ∗ ones (P∗T∗S , 1 ) ;
514
515 %% Solv ing F i r s t Model−Cost
516 Acst = [ Acst1 ; Acst2 ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ; Acst14 ;

Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s
517 bcst = [ bcst1 ; bcst2 ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ; bcst14 ;

bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s
518 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ] ; % A matrix e q u a l i t i e s
519 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ] ; % b matrix e q u a l i t i e s
520 i n tcon = [ l o c v +1: l o c y ] ; %s e t t i n g B.V. s to i n t e g e r s
521 LB = [ z e r o s (1 , l o c t h e t a ) , −in f , z e r o s (1 , l o c p s i n e g −loc omega ) ] ; %LB i s z e r o s

f o r a l l v a r i a b l e s
522 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c p s i n e g −l o c y ) ] ; %UB i s

ones f o r w, y , o , B.V. s , i n f f o r remaining
523 [ so l1 , va l1 ] = i n t l i n p r o g ( OF dual main , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB)

;
524
525 %% Prepar ing Second Model
526 f p r i n t f ( ' Part 2 ' ) ;
527 x0 ( i t e r e p s , : )=so l1 ' ;
528 x0 ( i t e r e p s , l o c t h e t a )=e p s i l o n ;
529 e p s i l o n t w o = val1 ;
530 Acst eps = OF dual main ;
531 b c s t e p s = e p s i l o n t w o ;
532 Acst theta = serv i ceOF pts + [ z e r o s (P∗T∗S , l o c t h e t a −1) , −ones (P∗T∗S , 1 ) ,

z e r o s (P∗T∗S , l o c p s i n e g −l o c t h e t a ) ] ;
533 b c s t t h e t a = z e r o s (P∗T∗S , 1 ) ;
534
535 %% Solv ing Second Model−Shortage
536 Acst = [ Acst theta ; Acst1 ; Acst2 ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ;

Acst14 ; Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s
537 bcst = [ b c s t t h e t a ; bcst1 ; bcst2 ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ;

bcst14 ; bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s
538 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ] ; % A matrix e q u a l i t i e s
539 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ] ; % b matrix e q u a l i t i e s
540 i n tcon = [ l o c v +1: l o c y ] ; %s e t t i n g B.V. s to i n t e g e r s
541 LB = [ z e r o s (1 , l o c t h e t a ) , −in f , z e r o s (1 , l o c p s i n e g −loc omega ) ] ; %LB i s z e r o s

f o r a l l v a r i a b l e s
542 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c p s i n e g −l o c y ) ] ; %UB i s

ones f o r w, y , o , B.V. s , i n f f o r remaining
543 [ so l2 , va l2 ] = i n t l i n p r o g ( OF theta , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB, x0 (

i t e r e p s , : ) ) ;
544
545 %% Increment Eps i lon
546 e p s i l o n=e p s i l o n+step ;
547 end
548 end
549 % Output Resu l t s to Excel
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Appendix E
Matlab Code for Multi-Stage DRO Model
Stochastic-robust models are created by running the DRO models with ρ = 0.

1 %% DRO Two−Stage Model Code Lines (1 ) − (506)
2
3 %% CST 16 − Multi−stage e q u a l i t y c s t − qe − P∗(S∗(T−1)−3−9−27)
4 PTS = [ ] ;
5 PTS v = [ ] ;
6 PITS = [ ] ;
7 f o r i i = 1 :T−1
8 %S
9 %kron ( eye (3ˆ i i ) , [ ones (3ˆ(4 − i i ) −1, 1) , −eye (3ˆ(4 − i i ) −1) ] ) ;

10 %TS
11 %kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(4 − i i ) −1, 1) , −eye (3ˆ(4 − i i ) −1) ] ) , [ z e r o s (1 , i i

−1) , 1 , z e r o s (1 ,T−i i ) ] ) ;
12 %PTS
13 PTS = [PTS; kron ( kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(T−i i ) −1, 1) , −eye (3ˆ(T−i i ) −1)

] ) , [ z e r o s (1 , i i −1) , 1 , z e r o s (1 ,T−i i ) ] ) , eye (P) ) ] ;
14 %PTS v
15 PTS v = [ PTS v ; kron ( kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(T−i i ) −1, 1) , −eye (3ˆ(T−i i )

−1) ] ) , [ z e r o s (1 , i i ) , 1 , z e r o s (1 ,T−i i ) ] ) , eye (P) ) ] ;
16 %PITS
17 PITS = [ PITS ; kron ( kron ( kron ( eye (3ˆ i i ) , [ ones (3ˆ(T−i i ) −1, 1) , −eye (3ˆ(T−i i )

−1) ] ) , [ z e r o s (1 , i i −1) , 1 , z e r o s (1 ,T−i i ) ] ) , eye (P∗ I ) ) ] ;
18 end
19
20 bcst16 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
21 Acst16 = [ repmat ( [ zero qc , zero qo , zero qh , z e r o s , zero v , zero w , z e r o y ] , P∗(

S∗(T−1)−3−9−27) , 1) , PTS, repmat ( [ z e ro the ta , z e r o d u a l s ] , P∗(S∗(T−1)−3−9−27)
, 1) ] ;

22
23 %% CST 17 − Multi−stage e q u a l i t y c s t − qh − P∗(S∗(T−1)−3−9−27)
24 bcst17 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
25 Acst17 = [ repmat ( [ zero qc , z e ro qo ] , P∗(S∗(T−1)−3−9−27) , 1) , PTS, repmat ( [ z e r o s ,

zero v , zero w , zero y , zero qe , z e r o the ta , z e r o d u a l s ] , P∗(S∗(T−1)−3−9−27)
, 1) ] ;

26
27 %% CST 18 − Multi−stage e q u a l i t y c s t − s − P∗(S∗(T−1)−3−9−27)
28 bcst18 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
29 Acst18 = [ repmat ( [ zero qc , zero qo , zero qh ] , P∗(S∗(T−1)−3−9−27) , 1) , PTS, repmat

( [ zero v , zero w , zero y , zero qe , z e r o the ta , z e r o d u a l s ] , P∗(S∗(T−1)
−3−9−27) , 1) ] ;

30
31 %% CST 19 − Multi−stage e q u a l i t y c s t − v − P∗(S∗(T−1)−3−9−27)
32 bcst19 = z e r o s (P∗(S∗(T−1)−3−9−27) , 1) ;
33 Acst19 = [ repmat ( [ zero qc , zero qo , zero qh , z e r o s ] , P∗(S∗(T−1)−3−9−27) , 1) ,

PTS v , repmat ( [ zero w , zero y , zero qe , z e r o the ta , z e r o d u a l s ] , P∗(S∗(T−1)
−3−9−27) , 1) ] ;

34
35 %% CST 20 − Multi−stage e q u a l i t y c s t − qo − P∗ I ∗(S∗(T−1)−3−9−27)
36 bcst20 = z e r o s (P∗ I ∗(S∗(T−1)−3−9−27) , 1) ;
37 Acst20 = [ repmat ( [ z e r o q c ] , P∗ I ∗(S∗(T−1)−3−9−27) , 1) , PITS , repmat ( [ zero qh ,

z e r o s , zero v , zero w , zero y , zero qe , z e r o the ta , z e r o d u a l s ] , P∗ I ∗(S∗(T
−1)−3−9−27) , 1) ] ;

38
39 %% ∗∗∗ Eps i lon FOR LOOP∗∗∗
40 f o r i t e r e p s = 1 : count eps
41 %% Prepar ing F i r s t Model
42 Acst eps = serv i ceOF pts ;
43 b c s t e p s = e p s i l o n ∗ ones (P∗T∗S , 1 ) ;
44
45 %% Solv ing F i r s t Model−Cost
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46 Acst = [ Acst1 ; Acst2 ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ; Acst14 ;
Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s

47 bcst = [ bcst1 ; bcst2 ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ; bcst14 ;
bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s

48 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ; Acst16 ; Acst17 ; Acst18 ; Acst19 ;
Acst20 ] ; % A matrix e q u a l i t i e s

49 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ; bcst16 ; bcst17 ; bcst18 ; bcst19 ;
bcst20 ] ; % b matrix e q u a l i t i e s

50 i n tcon = [ l o c v +1: l o c y ] ; %s e t t i n g B.V. s to i n t e g e r s
51 LB = [ z e r o s (1 , l o c t h e t a ) , −in f , z e r o s (1 , l o c p s i n e g −loc omega ) ] ; %LB i s z e r o s

f o r a l l v a r i a b l e s
52 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c p s i n e g −l o c y ) ] ; %UB i s

ones f o r w, y , o , B.V. s , i n f f o r remaining
53 [ so l1 , va l1 ] = i n t l i n p r o g ( OF dual main , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB)

;
54
55 %% Prepar ing Second Model
56 f p r i n t f ( ' Part 2 ' ) ;
57 x0 ( i t e r e p s , : )=so l1 ' ;
58 x0 ( i t e r e p s , l o c t h e t a )=e p s i l o n ;
59 e p s i l o n t w o = val1 ;
60 Acst eps = OF dual main ;
61 b c s t e p s = e p s i l o n t w o ;
62 Acst theta = serv i ceOF pts + [ z e r o s (P∗T∗S , l o c t h e t a −1) , −ones (P∗T∗S , 1 ) ,

z e r o s (P∗T∗S , l o c p s i n e g −l o c t h e t a ) ] ;
63 b c s t t h e t a = z e r o s (P∗T∗S , 1 ) ;
64
65 %% Solv ing Second Model−Shortage
66 Acst = [ Acst theta ; Acst1 ; Acst2 ; Acst3 ; Acst4 ; Acst5 ; Acst6 ; Acst7 ; Acst8 ; Acst11 ;

Acst14 ; Acst15 ; Acst eps ] ; % A matrix non−e q u a l i t i e s
67 bcst = [ b c s t t h e t a ; bcst1 ; bcst2 ; bcst3 ; bcst4 ; bcst5 ; bcst6 ; bcst7 ; bcst8 ; bcst11 ;

bcst14 ; bcst15 ; b c s t e p s ] ; % b matrix non−e q u a l i t i e s
68 Acst eq = [ Acst9 ; Acst10 ; Acst12 ; Acst13 ; Acst16 ; Acst17 ; Acst18 ; Acst19 ;

Acst20 ] ; % A matrix e q u a l i t i e s
69 b c s t e q = [ bcst9 ; bcst10 ; bcst12 ; bcst13 ; bcst16 ; bcst17 ; bcst18 ; bcst19 ;

bcst20 ] ; % b matrix e q u a l i t i e s
70 i n tcon = [ l o c v +1: l o c y ] ; %s e t t i n g B.V. s to i n t e g e r s
71 LB = [ z e r o s (1 , l o c t h e t a ) , −in f , z e r o s (1 , l o c p s i n e g −loc omega ) ] ; %LB i s z e r o s

f o r a l l v a r i a b l e s
72 UB = [ i n f (1 , l o c v ) , ones (1 , l oc y −l o c v ) , i n f (1 , l o c p s i n e g −l o c y ) ] ; %UB i s

ones f o r w, y , o , B.V. s , i n f f o r remaining
73 [ so l2 , va l2 ] = i n t l i n p r o g ( OF theta , intcon , Acst , bcst , Acst eq , bcst eq ,LB,UB, x0 (

i t e r e p s , : ) ) ;
74
75 %% Increment Eps i lon
76 e p s i l o n=e p s i l o n+step ;
77 end
78 end
79 % Output Resu l t s to Excel
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Appendix F
Electronic Supplements
The complete two-stage and multi-stage datasets are attached to this submission

as electronic supplements. They are also available at the DalSpace website. The

two-stage dataset file is named ’CecilAsh2021 TwoStageData.csv’, and the multi-stage

dataset file is named ’CecilAsh2021 MultiStageData.csv’. The indexing convention is

described in the CSV file. Parameters are identified using the parameter notation

presented in Section 4.1.
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Appendix G

Copyright Permission Letter
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