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Inclusion of dispersion effects in density-functional calculations is now standard practice in com-
putational chemistry. In many dispersion models, the dispersion energy is written as a sum of
pairwise atomic interactions consisting of a damped asymptotic expansion from perturbation the-
ory. There has been much recent attention drawn to the importance of “many-body” dispersion
effects, which by their name imply limitations with a pairwise atomic expansion. In this perspec-
tive, we clarify what is meant by many-body dispersion, as this term has previously referred to two
very different physical phenomena, here classified as electronic and atomic many-body effects.
Atomic many-body effects refer to the terms in the perturbation-theory expansion of the disper-
sion energy involving more than two atoms, the leading contribution being the Axilrod-Teller-Muto
three-body term. Conversely, electronic many-body effects refer to changes in the dispersion co-
efficients of the pairwise terms induced by the atomic environment. Regardless of their nature,
many-body effects cause pairwise non-additivity in the dispersion energy, such that the dispersion
energy of a system does not equal the sum of the dispersion energies of its atomic pairs taken
in isolation. A series of examples using the exchange-hole dipole moment (XDM) method are
presented to assess the relative importance of electronic and atomic many-body effects on the
dispersion energy. Electronic many-body effects can result in variation in the leading-order C6

dispersion coefficients by as much as 50%; hence, their inclusion is critical for good performance
of a pairwise asymptotic dispersion correction. Conversely, atomic many-body effects represent
less than 1% of the total dispersion energy and are much less significant than higher-order (C8

and C10) pairwise terms. Their importance has been previously overestimated through empiri-
cal fitting, where they can offset underlying errors stemming either from neglect of higher-order
pairwise terms or from the base density functional.

1 Introduction

London dispersion1,2 is a weak type of van der Waals interac-
tion, but it is also the main source of attraction between non-
polar chemical species. While the energetic stabilization from
individual dispersion interactions is quite small, dispersion is
ubiquitous in chemistry and, collectively, these interactions can
determine adhesion3 and friction,4 surface adsorption,5 con-
ditions for phase changes,6 stability of supramolecular com-
plexes,7 packing in molecular crystals,8 and even the shapes of
biomolecules.9 However, despite the importance of dispersion, it
has until relatively recently been neglected in density-functional
theory (DFT),10–12 which constitutes the most popular class of
quantum-mechanical methods for computational studies span-
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ning the fields of chemistry, biochemistry, and materials physics.

Conventional methods within DFT include only local and semi-
local models of electron correlation, and hence do not include
the highly non-local correlations responsible for dispersion. To
correct for this shortcoming, many dispersion methods have
been proposed over the past 15 years.13–16 While explicitly non-
local dispersion functionals have been developed,17–21 and are
quite popular in solid-state applications, their computational cost
makes their use less than desirable for large systems. As a result,
we will focus here on dispersion corrections where the dispersion
energy is added to the energy obtained with some base density
functional:

EDFT = Ebase +Edisp, (1)

where Ebase contains a short-range local or semilocal corre-
lation functional. Dispersion corrections of this type include
Grimme’s series of dispersion corrections (DFT-D2,22 -D3,23 and
-D424), the Tkatchenko-Scheffler (TS25) and many-body disper-
sion (MBD26) methods, and the exchange-hole dipole moment
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(XDM27,28) method of Becke and Johnson.

The chemists’ picture of dispersion involves an instantaneous
dipole moment in one atom or molecule caused by fluctuations in
the electron distribution interacting with an instantaneous dipole
moment in a neighbouring atom or molecule.1 Hence, we think
of dispersion as a predominantly pairwise interaction. However,
much recent attention has been given to “many-body” disper-
sion effects,26 with claims of their importance for molecular crys-
tals,29 layered materials,30 surface adsorption,31 and in water-
protein interactions.32 To interpret these results, we must first
ask ourselves what exactly in meant by “many-body” dispersion.

To understand many-body effects on the dispersion energy, we
begin by considering its asymptotic perturbation-theory expan-
sion.2,33 In perturbation theory, we can write the (damped) dis-
persion energy as a sum of pairwise atomic terms:

E(2)
disp =−∑

i< j

(
C6,i j f6(Ri j)

R6
i j

+
C8,i j f8(Ri j)

R8
i j

+
C10,i j f10(Ri j)

R10
i j

+ . . .

)
,

(2)
where the sum runs over all pairs of atoms, i and j, the Cn’s are
the dispersion coefficients, and Ri j is the internuclear separation.
The fn(Ri j)’s are damping functions that prevent divergence of the
asymptotic expansion at small Ri j, and vanish in the asymptotic
limit. Higher-order terms involving more than two atoms also
contribute to the dispersion energy. The leading beyond-pairwise
contribution is the Axilrod-Teller-Muto (ATM) term,34,35 which
involves a sum over atomic trimers corresponding to the interac-
tion between three atomic dipoles:

E(3)
ATM = ∑

i< j<k

C9,i jk
[
3cos(θi)cos(θ j)cos(θk)+1

]
f9(Ri j,R jk,Rki)

R3
i jR

3
jkR3

ki
,

(3)
and there are even-higher-order terms for tetramers, pentamers,
etc.

We say that the dispersion energy is pairwise additive if it is
equal to the sum of the dispersion energies of all atomic pairs
in the system. In general, the dispersion energy is not pairwise
additive because of many-body effects, of which we can identify
two types. The first consists of non-additivity in the pairwise dis-
persion terms (Eq. 2) due to changes in the dispersion coefficients
when going from a single atom to an atomic pair, and to the whole
interacting system. This type of non-additivity is caused by elec-
tronic effects, mostly electron delocalization between the atom
under consideration and the rest of the system, particularly those
atoms directly bonded to it. Therefore, we refer to this source
of non-additivity as electronic many-body effects. The second
type of non-additivity arises from the inclusion of three-atom and
higher-order terms in the dispersion energy (Eq. 3 is the leading
term), which are absent if one considers atom pairs in isolation.
These are atomic many-body effects.

Our definition of electronic and atomic many-body effects can
be compared with Dobson’s classification of dispersion interac-
tions.36 Dobson-A effects are changes in dispersion coefficients,
relative to free-atom values, resulting from the immediate chemi-
cal environment (such as arising from hybridization and chemical
bonding). This can be thought of as encompassing only nearest-

neighbour interactions within a molecule or solid. Dobson-B ef-
fects concern changes in the pairwise dispersion coefficients aris-
ing from longer-range interactions, such as electron delocaliza-
tion or electrostatic interactions with distant atoms, as well as
three-body ATM terms. Finally, Dobson-C effects are due to in-
teractions between extended conducting systems at the infinite-
separation limit, which are not present in most chemical sys-
tems and are not considered here. From these definitions, atomic
many-body effects are thus only one aspect of the larger class
of Dobson-B interactions, while electronic many-body effects in-
clude all of Dobson-A and some Dobson-B dispersion contribu-
tions. Hence, with the electronic versus atomic classification, it is
possible to quantify how much each many-body effect contributes
to the total dispersion energy, whereas this is not possible in Dob-
son’s classification because the immediate chemical environment
of an atom cannot be precisely defined.

Electronic many-body effects are typically accounted for in clas-
sical force fields,37–39 and in early dispersion corrections,40–43

through atom typing. Here, atoms of a particular element will
be assigned set dispersion coefficients based on the bonding con-
nectivity. In DFT-based dispersion corrections, these effects are
included (to varying extents) by how the dispersion coefficients
are obtained. The Grimme dispersion corrections have their roots
in atom typing,22 and the coefficients primarily depend on the
coordination number of an atom.23 For the TS correction,25 the
C6 coefficients are obtained by a scaling of the free-atom values
based on atomic polarizabilities, which are in turn approximated
as being directly proportional to the atomic volumes.44–46 The
XDM and MBD models have more sophisticated means of obtain-
ing the dispersion coefficients and will be discussed in the follow-
ing sections. Within this work, we will focus on the XDM dis-
persion method, which has been shown to give consistent, excel-
lent performance for molecular complexes,47–50 molecular crys-
tals,51–55 metal surfaces,56–58 and layered materials,47,59 with-
out any modification or re-fitting.

Previous works have investigated the effect of the chem-
ical environment on the XDM C6 dispersion coefficients in
molecules,60–62 in layered materials,28,59 and for metal atoms
in bulk solids or at surfaces.28,56–58 In this work, we focus on
the more subtle changes in dispersion coefficients resulting from
neighbouring, weakly interacting atoms or molecules. The re-
sults highlight the importance of electronic many-body effects in
modeling dispersion. Conversely, we simultaneously demonstrate
that atomic many-body effects are much smaller in magnitude,
and can be safely neglected in most applications. It is shown that
the magnified role of the ATM term in other works is a result of
empirical parameterization of the three-body damping function,
allowing excessive repulsion from the C9 term to offset excessive
attraction from neglect of higher-order pairwise terms (C8 and
C10) or from the base density functional.

2 The XDM Dispersion Model
In the XDM model, which will be used throughout this perspec-
tive, the dispersion coefficients are functions of the electron den-
sity (ρ), its derivatives (∇ρ and ∇2ρ), and the kinetic-energy den-
sity (τ). The leading-order pairwise homoatomic dispersion coef-
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ficients are
CXDM

6,ii =
1
2

αi〈d2
X 〉i. (4)

Here, the atomic polarizability is

αi =

(
Vi

V free
i

)
α

free
i , (5)

which is proportional to the ratio of in-molecule and in-vacuo
(free) atomic volumes, with Vi = 〈r3〉i =

∫
wi(r)ρ(r)r3dr. 〈d2

X 〉i is
the exchange-hole dipole moment integral for atom i,

〈d2
X 〉i =

∫
wi(r)ρ(r)d2

X dr, (6)

and the wi’s are atomic partitioning weights.63 Similarly, the C9

triple-dipole term can also be evaluated in terms of the dipole mo-
ment integrals and polarizabilities.64 For a homoatomic trimer,
the C9 coefficient is

CXDM
9,ii =

3
8

α
2
i 〈d2

X 〉i. (7)

Higher-order pairwise dispersion terms, including C8 and C10, can
be evaluated using higher-order multipole moments (quadrupole
and octopole) of the exchange hole.27,45 The 2`-pole moments
are

〈M2
` 〉i =

∫
wi(r)ρ(r)

[
r`− (r−dX )

`
]2

dr. (8)

General formulae for the heteroatomic C6, C8, C10, and C9 disper-
sion coefficients are presented elsewhere.28,64

The dipole and higher-order multipole moments in Eqns. 6 and
8 can be evaluated using the exact exchange hole,

dddX (rrr) =

[
1

ρ(rrr) ∑
i j

ψi(rrr)ψ j(rrr)
∫

rrr′′′ψi(rrr′
′′)ψ j(rrr′

′′)drrr′′′
]
− rrr, (9)

but in practise they are usually computed semi-locally as a func-
tion of the electron density and its derivatives at rrr using the
Becke-Roussel (BR) model.65,66 While the exact formalism is
more accurate in free atoms,45 the BR model is more realistic
for atoms in molecules or solids since it implicitly models a local-
ized hole including both exchange and non-dynamical correction
effects.67

The BR model approximates the exchange hole as an off-center
exponential function centered some distance dX from the refer-
ence electron.66 This model is exact for the H atom,65 where
the exchange hole is simply the negative of the electron density
distribution, which takes the form of an exponential function cen-
tered at the nucleus. For many-electron atoms, the center of the
hole will be displaced slightly away from the nucleus, closer to
the reference point,27 as shown in Figure 1. Nevertheless, for
reference points far from the nucleus, the hole remains centered
on the atom, so more diffuse density distributions typically have
a larger proportion of points with both significant density and
large exchange-hole dipole moments, resulting is larger moment
integrals. Conversely, more compact density distributions tend to
have smaller moment integrals. This connection is key to under-
standing the reduction in moment integrals and C6 coefficients

Fig. 1 Sketch of the BR exchange hole in a many-electron atom; the
center of the hole is displaced away from the nucleus and towards the
reference electron.

previously seen in going from a free atom to an atom at a surface
or in a bulk metal.56 In the bulk, there are no reference points
far from any atomic centre, resulting in roughly a 50% decrease
in the moment integrals compared to the free-atom values.

3 A Model System: Drude Oscillators
Before proceeding to the discussion of atomic and molecular sys-
tems, we first consider a simple analytical model that underlies
several of the DFT dispersion corrections,25,26 involving the inter-
action between Drude oscillators. A Drude oscillator is a model of
the H atom, which consists of positive and negative point charges
of ±1 a.u. separated by a harmonic spring. The vibrational fre-
quency of the oscillator is

ν =
1

2π

√
k
µ
, (10)

where µ is the reduced mass. The polarizability of the system is
determined by the spring constant, k,

α =
e2

k
, (11)

where e = 1 a.u. is the electron charge. The homoatomic disper-
sion coefficient of an isolated Drude oscillator can be obtained
exactly68:

C6 =
3
4

α
2hν . (12)

This result is reproduced exactly by the XDM model. To evalu-
ate the dipole-moment integral, we use the wavefunction for the
ground state of a 3D harmonic oscillator:

ψ =

(
µk

π2h̄2

)3/4
exp

[
−1

2

(
µk
h̄2

)1/2
r2

]
. (13)

The dipole moment is simply dX = r, so the density-weighted in-
tegral gives

〈d2
X 〉=

3
2

e2

k
h̄

√
k
µ

=
3
2

αhν , (14)
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using the definition of α and ν . Thus, taking the dispersion coef-
ficient as one-half the product of the moment integral and polar-
izability (Eqn. 4), this reduces to the exact result of Eqn. 12.

For multiple interacting Drude oscillators, collective oscillations
give rise to the non-additive ATM term. However, it is also pos-
sible that the presence of neighbouring oscillators affect the po-
larizabilities, and hence the C6 dispersion coefficients. It is this
latter phenomenon that is the source of electronic many-body ef-
fects. For a system comprised of many interacting atoms, each
treated as a Drude oscillator, self-consistent solution is needed to
obtain each polarizability in the presence of all the other atoms.
Indeed, it is this picture that is at the heart of the MBD dispersion
method.26

In MBD, an initial set of dispersion coefficients is obtained from
the TS model25 as

CTS
6,ii =

(
αi

α free
i

)2

Cfree
6,ii =

(
Vi

V free
i

)2

Cfree
6,ii , (15)

where the volume scaling is expected to capture Dobson-A ef-
fects36 and (often incorrectly56,59) account for the majority of the
differences from the free-atom values. Next, the self-consistent
screening formalism (SCS)26 is used to model longer-range non-
additivities in the atomic polarizabilities and dispersion coeffi-
cients (Dobson-B effects36). Here, the atoms comprising the sys-
tem are each treated as a spherical quantum harmonic oscilla-
tor with a Gaussian density, analogous to the square of Eqn 13.
The initial polarizabilities of the oscillators are taken from the
TS model. The individual oscillators are then allowed to inter-
act electrostatically until a self-consistent set of polarizabilities is
obtained. These polarizabilities are used to calculate the SCS dis-
persion coefficients.

Finally, a coupled fluctuating dipole model Hamiltonian corre-
sponding to the SCS model is constructed using the self-consistent
frequencies and polarizabilities. This model involves the sum of
kinetic and potential energies of the individual oscillators, as well
as an empirically damped dipole-dipole Coulomb interaction en-
ergy. Diagonalization of the numerically solvable model Hamil-
tonian yields the MBD dispersion energy, taken as the difference
between the ground-state energies of the Hamiltonians with inter-
acting and non-interacting oscillators. This definition allows the
quantification of Dobson-B effects36 as the difference between the
MBD and TS dispersion energies. However, it should be stressed
that this interpretation of many-body effects is fundamentally tied
to the details of the TS and MBD methods and, specifically, to the
approximate harmonic-oscillator model used in the computation
of the corresponding dispersion energies. In contrast, our defini-
tion of atomic many-body and electronic many-body effects can
be generalized to any asymptotic dispersion correction. For anal-
ysis of electronic many-body effects, it is informative to consider
the changes between free-atomic, TS, and MBD C6 dispersion co-
efficients. Interestingly, MBD and XDM results are in excellent
agreement for the changes in dispersion coefficients between free
atoms and bulk metals,56 as well as for compression of bilayer
graphene.59

Fig. 2 Ratio of C6 dispersion coefficients for homoatomic dimers and
trimers, relative to free-atom values.
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4 Electronic Many-Body Effects in Small
Model Systems

In this section we apply the XDM model to several simple model
systems in order to illustrate atomic many-body effects (i.e. the
non-additivity in C6 dispersion coefficients with changes in chem-
ical environment) resulting from the introduction of neighbour-
ing atoms, molecules, or point charges. These tests will primarily
employ free atoms, as well as weakly interacting van der Waals
complexes consisting of atomic dimers and trimers. The com-
plexes are formed from spin-polarized H atoms, as well as the
closed-shell Kr and Zn atoms, which were chosen to include only
monoatomic species, covering a range of atomic sizes and polar-
izabilities. In this section, all calculations were performed with
the Gaussian 0969 and postg70 programs using the PBE0 func-
tional71 and the aug-cc-pVTZ basis set, following our previous
work on comparison of XDM and force-field dispersion coeffi-
cients.61,62 The BJ damping-function parameters were set to their
canonical values (a1 = 0.4186 and a2 = 2.6791 Å).48,72

Figure 2 shows the change in the computed XDM C6 dispersion
coefficients, expressed as a fraction of the free-atom values for the
H, Kr, and Zn homo-atomic dimers and trimers (D3h symmetry) at
a range of internuclear separations. The results are reminiscent
of our previous finding for the variation of the carbon C6 coeffi-
cient in graphite with respect to interlayer separation,59 and the
decreases in C6 at short internuclear separations are due to the be-
haviour of the moment integrals. This occurs because increasing
Pauli repulsion with neighbouring atoms upon compression of the
dimer or trimer causes the atomic densities to become more com-
pact, decreasing the moment integrals. Compared to the change
in moments, variation in the atomic polarizabilities with compres-
sion is minor. For the smallest (3 Å) separation considered, atomic
polarizabilities decrease by only 0.2-1% relative to the free-atom
values, while the decrease in C6 coefficients (3-11%) is roughly
a factor of 10 larger, confirming that reduction of the moment
integrals is almost exclusively responsible for the decrease in C6.

Next, we consider the case of interactions of the same three
monoatomic species (H, Kr, and Zn) with ions, represented by
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Fig. 3 Ratio of C6 dispersion coefficients, relative to free-atom values,
as a function of the distance to a point charge of ±1 a.u. (solid=positive,
dashed=negative).
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point charges. Figure 3 shows the change in the computed XDM
C6 dispersion coefficients, expressed as a fraction of the free-atom
values, as a function of the distance to a point charge of ±1 a.u.
The results are contrary to those for the vdW dimers and trimers,
with the presence of a point charge resulting in an increase in
C6. The increases in C6 follow the trend Kr<H<Zn, with larger
changes in C6 occurring for positive point charges. In this case,
the change in polarizability (0.5-8.5%) is comparable to, or larger
than, the change in moment integrals (0.6-4.7%). The presence
of the point charge serves to polarize the electron density, increas-
ing the atomic volume and polarizability. Concurrently, the polar-
ization results in an increased number of reference points far from
the nucleus with appreciable electron density, which increases the
moment integrals. Since the moment integrals are dominated by
contributions from the most diffuse orbitals, and hence the most
weakly bound electrons, the trend of Kr<H<Zn follows the com-
puted PBE0 HOMO energies (−10.8<−9.1<−6.5 eV) or the neg-
ative of the free-atom ionization potentials (−14.0<−13.6<−9.4
eV73).

We now consider hydrogen bonding in the water dimer
as an intermediate and more realistic case between the last
two: a dimer with strong electrostatic interaction between the
monomers. The homomolecular C6 of water, which is a sum over
all possible atomic pairs for a water-water interaction, is

C6,water =C6,O−O +4C6,O−H +4C6,H−H. (16)

To quantify the contributions to the molecular C6, the moment
integral for water is also a simple sum over atomic contributions,
and the polarizability is determined as α = 2C6/〈d2

X 〉. Results for
the homomolecular C6 are shown in Table 1 for an isolated wa-
ter molecule, the water dimer, and the chair conformation of the
water hexamer (S6 symmetry). For the dimer, the C6 for the H-
bond donor and acceptor are reported separately. In the hexamer,
all six molecules are symmetry equivalent and each act as both a
donor and acceptor.

The data in Table 1 show that hydrogen bonding can have a

Table 1 XDM homomolecular C6 dispersion coefficients for an isolated
water monomer, as well as the hydrogen-bonded dimer and the chair
conformation of the hexamer (S6 symmetry). Contributions from the mo-
ment integrals and polarizabilities are also shown. All quantities are in
atomic units.

System Molecular C6 〈d2
X 〉 α

Monomer 44.02 8.30 10.61
Dimer, donor 49.92 8.64 11.56
Dimer, acceptor 39.67 7.63 10.40
Hexamer 42.43 7.81 10.87

substantial effect on C6, with changes again on the order of 10%.
Consistent with the point-charge results, both the moment inte-
grals and polarizabilities contribute to the changes in C6 for water,
although the polarizability term has a larger effect for the H-bond
donor, while the moment integral has a larger effect for the H-
bond acceptor. In the H-bond donor, there is increased polariza-
tion, with a more positive hydrogen charge and more negative
oxygen charge than in the isolated water, resulting in a substan-
tial increase in C6. Conversely, in the acceptor, the formation of
the H-bond results in compaction of the oxygen lone pairs, pri-
marily reducing the moment integrals and dispersion coefficient.
In the hexamer, where all molecules act as both H-bond donors
and acceptors, the effects partially offset, with increased polar-
ization increasing the α term and Pauli repulsion decreasing the
〈d2

X 〉 term; the latter effect is larger, resulting in a net decrease in
C6.

As an aside, considering a calculation on an isolated water
molecule with aqueous PCM solvent74 results in a slight increase
in C6, up to 44.4 a.u. This is because the continuum solvent re-
sults in a slight increase in the polarizability of water, but the
overall contribution from the moment integrals is effectively con-
stant as the continuum model does not account for the effects of
Pauli repulsion with surrounding water molecules in solution.

Additionally, the choice of density functional can affect the cal-
culated dispersion coefficients, particularly if delocalization er-
ror75–78 is present, as it will increase the extent of polarization
and charge transfer between interacting molecules. While the re-
sults in Table 1 used the PBE0 hybrid functional,71 the PBE79

GGA gives marginally larger dispersion coefficients of 45.24 and
43.06 a.u. for water and water hexamer, respectively. For the wa-
ter dimer, the two interacting water molecules are inequivalent
and there is a slight charge transfer (0.008 e− with PBE0 and
0.011 e− with PBE), providing a greater potential for delocaliza-
tion error to affect the electron density distribution. This results
in PBE magnifying the changes in C6 relative to the isolated water
molecule, yielding values of 51.41 and 38.25 a.u. for the H-bond
donor and acceptor, respectively.

For comparison, changes in C6 with atomic environment
are much more significant going from free atoms to atoms in
molecules60 or bulk solids,56,59 where decreases in excess of 50%
are common. Nevertheless, the results here demonstrate that
even non-bonded contacts in vdW clusters, or hydrogen bonding,
can result in variations of atomic and molecular C6 coefficients on
the order of 10%. Thus, even in weakly interacting systems, elec-
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Table 2 Undamped XDM dispersion energies for atomic dimers and D3h
trimers, at internuclear separations of 6 Å, expressed as a percentage of
total dispersion energy (E6 +E8 +E10 +E9).

System E6 E8 E10 E9
H2 80.1 15.7 4.2 —
H3 80.0 15.7 4.2 0.1
Kr2 69.4 23.3 7.3 —
Kr3 69.2 23.2 7.3 0.3
Zn2 63.6 25.2 11.2 —
Zn3 63.3 25.0 11.1 0.6

tronic many-body effects can be significant and should be taken
into account in DFT dispersion corrections.

5 Higher-Order Pairwise Terms and Atomic
Many-Body Effects

We now consider the importance of atomic many-body effects.
For this, we return to the H, Kr, and Zn atomic dimers and trimers
to assess the relative magnitude of the various pairwise terms
compared to the leading atomic three-body contribution – the
ATM term. To avoid dependence on the choice of damping func-
tion, we consider the undamped dispersion energies at a rela-
tively large internuclear separation (6 Å), well beyond the sum
of van der Waals radii but still illustrative of typical interaction
distances in chemical systems.

Table 2 shows the relative contributions of the pairwise C6,
C8, and C10, and the 3-body C9 term, to the total dispersion en-
ergy. The atomic size and dispersion coefficients follow the order
H<Kr<Zn, and thus the percent contributions from the higher-
order terms follow this same trend. At constant internuclear sep-
aration, the larger the atomic size, the more important higher-
order dispersion-energy terms become, which makes sense be-
cause the interatomic distance is relatively farther away from the
infinite-separation limit for heavier atoms. Indeed, this is why the
Becke-Johnson damping function was designed to damp higher-
order terms faster than C6.80

Overall the contribution to the total dispersion energy follows
the expected trend of E6 > E8 > E10, with E9 � E10, in agree-
ment with previous results for molecular systems.64,81 The results
demonstrate that, for atomic trimers, the C9 term is very much
smaller than the C10 term and contributes less than 1% to the
total dispersion energy. Indeed, higher-order pairwise terms be-
yond C10 would have larger contributions to the dispersion energy
than the C9 triple-dipole term, but are not included in the XDM
dispersion energy since the statistics for dimer binding energies
do not improve appreciably with their inclusion.64 Thus, initial
findings for small model systems lead to the conclusion that the
3-body ATM term is negligible.

6 Importance of Higher-Order Pairwise
Terms for Molecular Systems

We now investigate the effect of including higher-order pairwise
(C8 and C10) dispersion terms on binding energies of molecular
dimers and lattice energies of molecular crystals. As a numeri-
cal experiment, the BJ damping function80 was parameterized by

truncating the XDM dispersion energy at the C6 or C8 terms. Ad-
ditionally, a multiplicative factor was also introduced to scale the
highest-order pairwise dispersion term, as in the D3 model.23,82

As usual with XDM, the damping parameters were fit to minimize
the root-mean-square percent (RMSP) error for the Kannemann-
Becke set of 49 molecular dimers (KB49).47,83 The performance
of the resulting XDM variants was then assessed for the X2329,51

set of lattice energies of 23 molecular crystals. The results are
shown in Table 3.

All calculations on the KB49 and X23 sets were performed using
plane-wave basis sets and the projector augmented wave (PAW)
method,84 with the Quantum ESPRESSO program.85 The wave-
function and density cut-offs were 80 and 800 Ry, respectively.
Both the PBE79 and B86bPBE79,86 density functionals were con-
sidered. The former is more popular in the literature for use with
other dispersion corrections, while the latter is our functional of
choice to pair with XDM due to its desirable large-gradient be-
haviour.28,87–90 The KB49 computations kept the molecules and
dimers fixed at their reference geometries83 and used cubic su-
percells with cell lengths of 40 Bohr. For the X23 crystals, the
geometries were obtained using our usual XDM implementation
(including C6, C8, and C10 terms) with a 4× 4× 4 k-point grid
and convergence thresholds of 10−5 Ry in the energy and 10−4

Ry/bohr in the forces. The lattice energies were then evaluated
with the various dispersion energy terms at the resulting geome-
tries.

Looking first at the results without scaling in Table 3, it is clear
that the C6 term alone provides insufficient dispersion stabiliza-
tion, resulting in underbinding of both the molecular dimers and
the molecular crystals. Adding the C8 term results in a large im-
provement in performance for both data sets. Indeed, during the
development of XDM, the C8 term was found to be essential for
an accurate description of π-stacking.80 Later results for super-
molecular complexes92 further highlighted the role of the C8 and
C10 terms. Returning to Table 3, adding the C10 term as well
results in further modest improvement. There remains some sys-
tematic underbinding of the X23, particularly with the PBE base
functional. This has been previously explained by the tendency
of GGAs in general, and of PBE in particular because of its en-
hancement factor,87–90 to overbind hydrogen bonds.93,94 Thus,
fitting results in excessive damping of the dispersion energy. Nev-
ertheless, our favoured B86bPBE-XDM functional, with C8 and
C10, gives good performance for both sets. In particular, the MAE
of 0.86 kcal/mol for the X23 set is considerably lower than results
obtained with other XDM-corrected GGAs and with other disper-
sion corrections.29

Inclusion of only the C6 term with multiplicative scaling
demonstrates a pitfall of empirical dispersion corrections. For
molecular dimers, the C6 term can be roughly doubled to aug-
ment the dispersion binding, giving KB49 error statistics that are
even better than those obtained with unscaled C6, C8, and C10

terms. However, this results in massive overbinding for the X23
molecular crystals. Attempting to capture higher-order dispersion
contributions with a scaled C6 terms results in too slow an asymp-
totic decay in the dispersion energy, overestimating the stabiliza-
tion from dispersion interactions with molecules beyond nearest
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Table 3 Optimum XDM damping function parameters and resulting performance on the KB49 and X23 benchmarks for various combinations of
dispersion-energy terms. 91 An “×××” indicates an unscaled term and “s” indicates multiplicative scaling, with scaling parameter given in the s column. All
errors are in units of kcal/mol (MAE, ME) or % (MAPE). MAE: mean absolute error; MAPE: mean absolute percent error; ME: mean error, a negative
value indicates underbinding.

Pairwise Terms Fit Parameters KB49 X23
C6 C8 C10 a1 a2 (Å) s MAE MAPE MAE ME

PBE-XDM
××× 0.4310 1.3059 – 0.754 19.7 1.73 -1.30
××× ××× 0.1786 2.9656 – 0.539 15.5 1.23 -0.90
××× ××× ××× 0.3414 2.7242 – 0.500 14.2 1.12 -0.77
s 0.0106 3.9474 2.3191 0.4690 13.2 1.65 1.45
××× s 0.4125 2.8534 3.1090 0.483 13.3 0.89 -0.10

B86bPBE-XDM
××× 0.1133 1.8834 – 0.830 22.1 1.97 -1.59
××× ××× 0.4642 1.7092 – 0.483 13.7 0.94 -0.38
××× ××× ××× 0.6632 1.4302 – 0.410 11.7 0.86 -0.26
s 0.3300 2.4391 2.0852 0.381 10.8 1.78 1.61
××× s 0.6897 1.5655 2.4615 0.395 10.9 0.84 0.08

Fig. 4 Potential energy surfaces for graphite exfoliation computed using
the B86bPBE functional with the various dispersion corrections shown
in Table 3. A reference QMC result 96 for the minimum-energy point is
shown for comparison.
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neighbours in the lattice. In the past, this has been suspected to
affect both the TS dispersion model51 and classical force fields,61

and the results in Table 3 provide a concrete demonstration of the
critical importance of C8 for molecular crystals.

Finally, the combination of an unscaled C6 and a C8 dispersion
energy scaled by a factor of 2.5–3 results in excellent performance
for both the KB49 and X23, slightly better than what is obtained
with unscaled C6, C8, and C10 terms. This is consistent with the
success of the D3BJ dispersion method,23,82,95 which also uses
this combination of unscaled C6 and scaled C8. However, given
that the resulting reduction of errors is small (particularly with
B86bPBE) and the scaling of the C8 is unphysically large, we pre-
fer the less-empirical conventional XDM form with unscaled C6,
C8, and C10 terms.

As an illustration of their differing behaviour at both short
and long range, the various XDM-based dispersion corrections

from Table 3 were used to compute potential energy surfaces for
graphite exfoliation. The results are shown in Figure 4. These cal-
culations used a 12× 12× 4 k-point grid, wavefunction and den-
sity cutoffs of 80 and 800 Ry, respectively, and a cold smearing
parameter of 0.001 Ry. The result with the B86bPBE base density
functional is repulsive along the full PES, as expected. Addition-
ally, as demonstrated previously,16,47 the canonical XDM result
(C6 +C8 +C10) is in excellent agreement with Quantum Monte
Carlo (QMC) reference data.96

Figure 4 shows that using the leading-order C6 dispersion-
energy term only results in substantial underbinding of the
graphite layers, capturing about two-thirds of the total exfolia-
tion energy obtained with C6, C8, and C10 terms. Scaling the C6

dispersion energy by the same factor optimized for the KB49 set
of molecular dimers instead results in overbinding. Also, this scal-
ing gives incorrect long-range behaviour of the dispersion energy,
with too much stabilization over the entire PES. Inclusion of both
C6 and C8 terms significantly reduces the underbinding seen with
C6 alone and recovers roughly 95% of the total exfoliation energy.
Scaling of the C8 term again overbinds but to a much smaller ex-
tent than in the case of the scaled C6. Finally, inclusion of C10 im-
proves agreement with the QMC reference and its relatively small
(5%) contribution supports neglect of even higher order pairwise
terms in the XDM dispersion energy.

7 Importance of ATM Terms for Molecular
Systems

Next, we assess the impact of atomic many-body (C9) dispersion
terms for the X23 set. As before, we will focus on the leading
atomic three-body dispersion contribution, the ATM term. To
compute the ATM term for molecular systems, a suitable form
for the damping function must be chosen, as this will ultimately
affect the relative magnitude of the ATM term at the equilibrium
geometries.64

Of the several choices of 3-body damping function used previ-
ously in the literature,64 one option is the same Becke-Johnson
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damping80,82 used for the pairwise terms in XDM,

f BJ
n (R) =

Rn

Rn +Rn
vdW

. (17)

Here, RvdW = a1Rc,i j + a2, where Rc is a sum of “critical” atomic
radii determined from ratios of the dispersion coefficients80 and
a1 and a2 are the functional-specific XDM damping parameters.
Another option is the Tang-Toennies damping function,97

f TT
n (R) = 1− e−bR

(
n

∑
k=0

(bR)k

k!

)
, (18)

where b = −a3RvdW,i j + a4 is a range parameter proportional to
the sum of van der Waals radiii, RvdW. In this perspective, we
use BJ damping, rather than TT, where the definition of the b
exponent (Eqn 18)98,99 is problematic. The value of this expo-
nent can become negative for some contacts, making the function
switch between damping energy contributions to zero or sharply
increasing them.

In addition to the type of damping function used, there are
various possibilities regarding the construction of the three-body
damping product. For the pairwise dispersion terms, the damping
is a simple function of the internuclear separation, Ri j. However,
for a three-body term, the damping function depends on three
internuclear distances, Ri j, R jk, and Rik. Since the damping func-
tion has to be symmetric with respect to the permutation of the
indices, the simplest is to use a product of three pairwise damping
functions, although a single damping function involving an aver-
aged distance could also be employed, as in the D3 dispersion
correction.23 Three examples, in order of increasing damping,
are the product of three f3 functions,100

f (3)9 = f3(Ri j) f3(R jk) f3(Rik), (19)

the product of three
√

f6 functions,101

f (
√

6)
9 =

√
f6(Ri j) f6(R jk) f6(Rik), (20)

and the product of three f6 functions,98,99

f (6)9 = f6(Ri j) f6(R jk) f6(Rik). (21)

In the interest of mathematical simplicity, and for consistency
with the pairwise terms, our ATM dispersion energy is computed
as

E(3)
ATM = s9 ∑

i< j<k

C9,i jk
[
3cos(θi)cos(θ j)cos(θk)+1

]
f BJ(3)
9 (Ri j,R jk,Rki)

R3
i jR

3
jkR3

ki

= s9 ∑
i< j<k

C9,i jk
[
3cos(θi)cos(θ j)cos(θk)+1

]
(R3

i j +R3
vdW,i j)(R

3
jk +R3

vdW, jk)(R
3
ki +R3

vdW,ki)
, (22)

which involves the product of three f3 BJ damping functions. The
s9 parameter is an empirical scaling factor, analogous to that used
for the C8 term in the D3 model.23

We consider the usual XDM dispersion energy, including C6, C8,
and C10 terms, as well as the two XDM variants with empirical
scaling of the C6 or C8 terms introduced in the previous section.

The BJ damping parameters and scale factors shown in Table 3
are retained and a scaled C9 term added to the dispersion energy,
with the s9 parameter fit to minimize the RMSP error for the X23
set. The results are shown in Table 4.

The X23 set was used for fitting since fits on the KB49 set re-
sult in either zeroing of the C9 term or unphysical negative co-
efficients with both base functionals and all XDM variants. This
occurs because, as seen previously,98 the ATM dispersion energy
is vanishingly small, except for π-stacked dimers, for which it is
repulsive. As GGAs, and particularly PBE, tend to underbind π-
stacking relative to H-bonding, inclusion of C9 increases the error,
unless negative scaling coefficients are permitted. However, for
the X23 set, the results show how the addition of C9 can improve
performance for molecular crystals in some specific cases.

As seen in the previous section, evaluating the dispersion en-
ergy using only a scaled C6 term, which works for molecular
dimers, results in severe overbinding for the X23 set due to re-
placement of the more rapidly decaying C8 term (Table 3). Hence,
addition of the generally repulsive C9 term can offset this error,
resulting in significant reduction of the MAE with both base func-
tionals. Interestingly, the optimum scaling of the C9 term with
PBE is very close to 1, explaining the good results obtained from
dispersion models including only C6 and C9 terms,98 but without
C8 or C10. However, once such higher-order pairwise dispersion
terms are included, the overbinding of the X23 set is reduced,
with a concomitant reduction in the optimum C9 contribution,
again yielding s9 values that are near zero or unphysically nega-
tive to offset errors from the base GGA functional. Similar results
to those presented in Table 4 are also obtained if a product of
three f6 BJ damping functions (as in Eqn. 21) is used, with MAEs
differing by only 0.02-0.07 kcal/mol.

While ATM terms are important in noble-gas trimers,100 and
can be added to MP2 theory to improve performance for molec-
ular trimers,99 errors in the base density-functional treatment
of such systems are much larger than the ATM dispersion ener-
gies.90,94,102–104 Thus, empirical fitting of these terms serves to
either reduce errors from the base density functional (for stan-
dard XDM) or from neglect of higher-order terms in the pairwise
expansion (for scaled C6-only XDM).

8 Summary
Returning to the titular question, “many-body” dispersion can re-
fer to two distinct phenomena, both of which cause the disper-
sion energy to be non-additive (i.e., it cannot be written as a sum
of the dispersion energies of all atomic pairs taken in isolation).
Electronic many-body effects refer to the change in the pairwise
(C6, C8, C10,...) dispersion coefficients resulting from changing
atomic environment. Atomic many-body effects correspond to
the non-additivity introduced by three-atom and higher order dis-
persion energy terms, the leading contribution being the Axilrod-
Teller-Muto three-body term, with C9 dispersion coefficient. Care
must be taken to distinguish between these two different phe-
nomena.

Accounting for electronic many-body effects is essential for a
good description of intermolecular interactions. These effects are
important because the pairwise dispersion coefficients change sig-
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Table 4 Optimum ATM term scaling parameter and resulting performance on the X23 benchmarks for various combinations of dispersion-energy terms.
An “×××” indicates an unscaled term and “s” indicates multiplicative scaling. The BJ damping parameters and C6 or C8 scale factors (where applicable)
are taken from Table 3. The C9 term uses BJ damping, as in Eqn 22. All errors are in units of kcal/mol. MAE: mean absolute error; ME: mean error, a
negative value indicates underbinding.

Pairwise Terms C9 Damping Parameters X23 MAE
C6 C8 C10 s9 no ATM with ATM

PBE-XDM
s 0.9960 1.65 1.06
××× s -0.0483 0.89 0.89
××× ××× ××× -0.6716 1.12 0.87

B86bPBE-XDM
s 1.1586 1.78 1.02
××× s 0.0961 0.84 0.83
××× ××× ××× -0.2924 0.86 0.85

nificantly with even small changes in chemical environment, for
instance, when van der Waals complexes are formed. Electronic
many-body effects are not captured by an atom-typed model
(D2), and can only be roughly approximated in a model that
depends on coordination numbers (D3) or atomic volumes (TS)
only. They can be captured in pairwise models, like XDM, if
the dispersion coefficients have a sufficiently sophisticated depen-
dence on the electron density. They are also captured implicitly
by non-local correlation functionals designed to account for dis-
persion interactions.

In contrast, atomic many-body effects are usually negligible.
Their dependence may previously have been overestimated based
on the ambiguity in the choice of damping function and as a re-
sult of empirical parameter fitting. Fitting the damping function
parameters or scaling the leading atomic many-body contribution
(the Axilrod-Teller-Muto term, ATM) can be used to compensate
for errors in the pairwise dispersion energy or in the base den-
sity functional. The magnitude of the atomic many-body effects
calculated with such dispersion functionals are not physically or
chemically meaningful.
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38 J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and D. A.
Case, J. Comput. Chem., 2004, 25, 1157âĂŞ1174.
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