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Abstract

Over the past several years, there has been increased research and industry interest in

finding ways to successfully integrate Distributed Generators (DGs) into distribution

networks. The main reason for the recent surge in interest is the demonstrable ben-

efits that DGs bring to power systems, such as notable reductions in power loss and

improved reliability. However, to take full advantage of these benefits, it is crucial

to determine optimal allocation (i.e., size and location) of the DGs in distribution

networks. This thesis proposes and develops a hybrid approach to determining opti-

mal sizing and location for Distributed Generator (DG) sources within a distribution

system. The approach uses the Combined Power Loss Sensitivity (CPLS) factor

along with the Improved Grey Wolf Optimizer (I-GWO) algorithm. In the proposed

method, CPLS is employed to find candidate locations for incorporating DG in a net-

work, and the I-GWO algorithm is used to determine optimal sizes and locations for

the DG from the CPLS-suggested candidate buses. The aim is to simultaneously min-

imize power loss, enhance voltage stability, and improve the voltage profile through

the application of the novel multi-objective strategy. The algorithm proposed in this

work is evaluated using IEEE-33 and IEEE-69 bus radial distribution networks, and

three types of DG contributions are investigated in order to compare performance and

efficiency metrics. The results indicate that the proposed hybrid method, when com-

pared to other popular optimization techniques , effectively achieves optimal results

with regard to its multi-objective functions.
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Chapter 1

INTRODUCTION

1.1 Background

An electric power system is divided into three main subsystems (generation, trans-

mission and distribution), with transmission lines connecting loads at distribution

system with power from generation stations . Although approximately 30% of power

losses in the system occur at the transmission level, nearly 70% of the losses occur

at the distribution level, making distribution systems a major focus of research. In

power systems, the distribution portion connects high-voltage transmission networks

to low-voltage consumer service points. Distribution systems are a critical part of

electric power systems, as the power supply on the consumer side requires efficient

distribution. Therefore, investment in distribution systems comprises a substantial

portion of the overall investment in power systems (Reddy et al., 2017).

Distribution systems also provide connections for major loads (e.g., commercial,

domestic, industrial) within a network. As a result, service quality can be heavily

dependent on power continuity and the maintenance of supply voltage with specific

frequencies and limits. Distribution systems typically encounter a number of chal-

lenges, including high R/X ratio in transmission lines, rapid spread in loads, power

loss, power factor, system reliability, and issues related to voltage profile. The instal-

lation of DGs units in the vicinity of load centers may assist in resolving or at least

mitigating some or all of these challenges (Abou El-Ela et al., 2016).

Nowadays, many traditional power plants are being replaced with DG units as

an alternative option for supplying load demand. The increased use of these units

in power systems brings notable advantages that includes decreases in distribution

network congestion, the ability to supply sensitive loads during power outages, and a

general improvement in system performance through better voltage profiles and de-

creased power loss. Along with enhanced performance, other motivations for adopting

DG in power grids are its reputation for being environmentally friendly as well as a

1
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gateway to renewable energy technologies, and its beneficial ability to position energy

generation in an open electric power market (Razavi et al., 2019).

Distributed generation, unlike centralized generation, produces electric power in

small generation units located near energy consumers. The units may be either a

conventional or renewable type. Also known as “dispersed” or “decentralized” gener-

ation. Figure 1.1 shows the difference between centralized generation system and DG

as decentralized generation system (Ehsan and Yang, 2018). DG can bring significant

economic and environmental advantages through optimal placement and sizing within

power systems (HA et al., 2017). Therefore, extensive research has been conducted

to determine the most appropriate location and size for DG units to achieve optimal

system performance.

Figure 1.1: Centralized and Distributed Generation System

1.2 Motivation

To obtain maximum benefits from distributed generation, it is crucial for researchers

and operators to find a way to determine DG units’ optimal location and capacity,

as errors in placement or size could cause more system loss than in systems that do

not have DG. System loss is already a major problem in utilities, so contributing to
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the problem by misplacing or inappropriately sizing DG units would cause issues not

just on the supply side but also on the demand side (Reddy et al., 2017). Due to

the critical importance of DG unit placement and sizing, solving the optimization

problem is the primary motivation of this thesis work.

1.3 Thesis Objective

Distributed generator (DG) is included within distribution systems for the following

main reasons: to reduce power loss, to lower Voltage Deviation (VD), and to boost

the Voltage Stability Index (VSI). In view of these goals, the present work uses a

hybrid of the CPLS factor and I-GWO algorithm to determine optimal location and

sizing for DG units within radial distribution systems. The primary contributions of

this study to the literature are given in the summary below:

• A hybrid optimization technique is introduced to remedy the shortfalls that

may occur in metaheuristic optimization techniques, especially with regard to

decreasing search space. The present work proposes a hybrid approach that

combines CPLS and the I-GWO heuristic optimization technique.

• The purpose in creating a hybrid approach using CPLS and I-GWO is to de-

termine optimized location and sizing for DG units within radial distribution

in order to minimize power loss, enhance voltage stability, and improve voltage

profile.

• The majority of the studies that focus on DG optimization problems tend to

deal only with single objective functions. The present research, however, con-

siders the optimization problem as multi-objective and aims for simultaneous

optimization of more than one function.

• The algorithm proposed in this work is evaluated using IEEE- 33 and IEEE-69

bus radial distribution networks. Additionally, three types of DG contributions

are investigated in order to compare performance and efficiency metrics.

• To measure the effectiveness of the proposed approach, comparison tests for I-

GWO along with some well-known optimization strategies are conducted. The
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comparisons use standard IEEE-33 and IEEE- 69 bus distribution systems under

a range of operating scenarios.

1.4 Thesis Outline

The rest of the work is organised as follows:

Chapter 2 – Literature Review.

The second chapter provides the reader with a comprehensive literature review about

few methods that have been proposed regarding DG allocation problem.

Chapter 3 – Heuristic Optimization Techniques.

This chapter reviews some of the heuristic optimization techniques that found in the

literature.

Chapter 4 – Overview of Proposed Hybrid Method.

This chapter explain the development and implementation of the proposed hybrid

technique which include Improved Grey Wolf Optimizer and Combined Power Loss

Sensitivity .

Chapter 5 – The Problem Formulation.

The mathematical formulation that includes the objective function and system con-

straints used are presented in this chapter.

Chapter 6 – Test Results and Discussion.

The developed approach is tested on a two radial distribution system and the results

obtained are discussed.

Chapter 7 – Conclusion and Future Research.

The last chapter presents the concluding remarks and the possible directions in which

this work can be extended.



Chapter 2

LITERATURE REVIEW

2.1 Introduction

Finding the optimal installation of distributed generator (DG) in various kinds of

distribution systems is an ongoing challenge for system planners, engineers, and re-

searchers in the field. Over the past decade, many different approaches have been

proposed and developed in the literature. This chapter looks at the main research

which has been conducted in relation to DG and also considers integration problems.

In addition, the chapter reviews and analyzes a few recent methods that have been

proposed regarding optimal DG sizing and placement.

2.2 Distributed Generator

Until recently, stand-by or back-up power sources for domestic and small-scale com-

mercial consumers was generally provided by small generation under conditions of

grid power outages. Diesel generation was one of the most types of DG back then.

However, thanks to recent improvements, DG technologies can now be applied to

domestic and small-scale commercial customers as well as support a whole network

operating parallel to the grid. DG energy technologies may be classified as being

either renewable or non-renewable. Renewable energy technology works with energy

sources from wind, tides, sun, geothermal, etc., while non-renewable technology in-

cludes gas turbines, micro turbines, internal combustion engines, and so on. Despite

being quite small in comparison to central generation, DG is still sufficiently large to

provide the power needs of a small-scale customer base (Kashem et al., 2006).

Distributed generators, which operate in distribution systems, provide electricity

in homes and small commercial businesses. There are several different types of DGs,

but one of the main feature of each is the real and reactive power injection. Table

2.1 lists the main DG type based on power injection (Kola, 2018).

5
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Table 2.1: DG type based on power injection and its technology.

No. DG Type Power Factor technology
1. Injecting only real power P+ 1 Solar or micro turbine
2. Injecting only reactive power Q+ 0 Capacitors bank
3. Real and reactive power injecting 0 < PF < 1 Synchronous machines

There are numerous environmental, economic and technical advantages to inte-

grating DG units in existing systems. The main advantages are listed below.

1. Environmental:

• Decreased greenhouse gas emissions.

• No waste water.

• Drastically reduces land use for transmission construction.

2. . Economical:

• Reduced costs associated with installation, operation, and maintenance

• Investment deferrals related to facility upgrades

• Lower reserve requirements and related expenditures.

• Lower fuel costs as a result of improved efficiency.

3. . Technical:

• Overall increases in system efficiency.

• Improved voltage profile.

• Improved power quality.

• Improved system reliability.

• Decreased system losses.
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2.3 DG Integration Challenges

As DG integration in electric power systems becomes increasingly viable, the benefits

of using DG are also becoming more evident. For instance, DG may be used to lower

congestion rates in transmission and distribution networks or to supply sensitive loads

during power outages. It may also be used to enhance system performance through

boosting voltage profiles and reducing power losses.However,DG brings in different

technical challenges such as power equality and voltage stability issues (Gupta and

Seethalekshmi, 2019).

Recently, the motivation to integrate DG into existing systems has been prompted

not only by technical but also environmental concerns (Heideier et al., 2020). As

the harmful environmental effects of traditional thermal power plants becomes more

widely known to their customer base, companies are looking for alternative substitutes

to generate electrical power to satisfy customer demand. This is happening at the

same time as renewable energy technologies are experiencing rapid advances and their

costs are decreasing. However, it is not enough simply to adopt a new technology

because of its environmental friendliness; in order to achieve optimal DG installation

outcomes, placement and sizing must be appropriate to the need. To determine the

right placement and sizing for DG, several different approaches such as deterministic,

heuristic and analytic procedures have been proposed and developed in the literature.

The next sections present a review of the most promising of these methods.

2.4 Sizing and Location

To maximize the advantages of integrating DG into existing systems, the DG units

need to be the right size and at the right location. Done correctly, DG can provide

benefits such as reduced overall operation and maintenance expenditures, improved

voltage profile, reduced system loss, better power quality, and enhanced reliability

and stability. Below is a selection of the main technical strategies and classifications

employed in DG allocation and sizing.
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2.4.1 Analytical Method

Despite being mostly inappropriate for larger and more complex networks, analyti-

cal approaches work well in smaller and less complex systems. According to Willis

(2000), Willis proposed using the well-known 2/3 rule (developed to determine suit-

able capacitor placement) for finding the best DG placement bus candidates. In other

words, the DG would be installed at a rating which is 2/3 that of the utilized load

and 2/3 the length of the radial feeder located down-stream of the source substa-

tion . The 2/3 rule, however, is best suited to distributed and all reacted loads that

are uniform, have a radial configuration, and contain a fixed conductor size across

the distribution network. Such parameters restrict the rule’s applicability, making it

appropriate mainly only to single DG planning systems.

Another approach employed an analytical DG placement and sizing strategy for

loss reduction in power distribution systems. This approach uses a novel expression of

the power flow problem that is direct, non-iterative, and does not apply convergence

issues (Elsaiah et al., 2014). Elsaiah found the proposed power flow solution to be

especially suited to power flow estimations that are fast and repetitive. The researcher

also devised a priority list according to loss sensitivity factors in order to determine

the best locations for the investigated DG units. As well, sensitivity analysis was

conducted to find the best power factor and size. Based on the outcomes, a number

of solutions were presented as viable options for decreasing overall system loss.

Keane and O’Malley (2005) investigated maximizing DG sizing for an Irish sys-

tem. Their experiment involved utilizing a constrained Linear Programming method.

The aim of the investigation was to see if Ireland could satisfy the European regulation

regarding the percentage of renewable resources to be applied for energy production

by 2010; for Ireland, the regulation stipulated 13.2%. In their investigation, the re-

searchers linearized the nonlinear constraints in order to apply them for the Linear

Programming strategy. As well, they installed a DG unit for each system bus and

ranked each candidate bus to accord with its optimal objective function value.

Hedayati et al. (2008) used a continuous power flow approach for determining

which buses were most vulnerable to voltage collapse. The most sensitive bus sets were

ranked according to severity, a designation which then was applied to allocate possible

bus locations for single or multiple DG source placements. The researchers Hedayati
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et al. (2008) suggested using an iterative method to optimally place the DG. Next,

a range of DG capacities that were fixed a priori were included in the distribution

system, after which a traditional power flow approach was used to calculate the

voltage profiles, power transfer capacity, and real power losses . Another DG of

identical capacity was used in a subsequent iteration and included in the next sensitive

bus. This process of iteration continued to the point when the system results had

achieved acceptable values. However, this strategy did not attempt to optimize DG

sizing .

Duong, in Hung et al. (2010), employed analytical expression to determine the

optimal power factor and size various kinds of DGs, with the aim of reducing losses

in distribution systems. The researcher tested three distribution systems of different

complexity and size applied a number of load flow solutions. The test results indicate

that loss reduction is significantly affected by the DGs location, operational power

factor and size. Duong Hung et al. (2010) noted that losses can be significantly

decreased if the DGs are correctly located, operated and sized.

Griffin et al. (2000) analyzed DG optimal location by considering two kinds of

continuous loads (uniform-increasing and uniform-distributed). Their main aim in

this work was decreasing line losses. The researchers found that optimal siting for

DGs in large part depends on load distribution in the feeder. Further, they noted

that there was a significant decrease in loss in cases where the DG was located at or

near the end of a load that was uniform-increasing, whereas the optimal placement

for uniform distribution was the middle of the load .

Another paper applied analytical studies to find optimal placement for DGs to

minimize total losses in different type of distributed load profiles (e.g., uniform, in-

creasing and centrally distributed) in radial systems. Optimal DG placement and size

were analyzed by looking at the impacts of static load models. However , as these

studies applied the phasor current injection technique with unrealistic load profile

assumptions namely, uniform, increasing, and centrally distributed).the solutions are

not applicable to real systems Gozel et al. (2005).

Mahmoud et al. (2015) used an analytical approach to investigate the viability of

minimizing power losses by finding optimal allocations of DGs in a range of electrical

distribution systems. The researchers’ strategy was applied find the most suitable DG
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combinations that would minimize loss. In their work, DG allocations were conducted

by employing two IEEE test systems (i.e., 33- and 69-bus systems).

2.4.2 Meta-heuristic Optimizations Method:

Metaheuristic methods, which are applicable to optimization problems, can be read-

ily modified to deal with the various aspects unique to studies on power systems.

Over the years, a broad range of optimization algorithms and strategies have been

used to tackle energy technology problems related to DGs. Of these, metaheuristic

global optimization approaches are becoming increasingly popular for solving real-life

problems and global optimization functions, due to their relative simplicity, adapt-

ability, and robustness. A selection of the main optimization methods applied in the

literature to address the DG integration problem is presented below.

According to Teng et al. (2002), Teng et al. proposed a value-based approach

Genetic Algorithm (GA) to tackle the DG issue. Their strategy was successful in

maximizing the DG benefit aspect of the cost/benefit ratio when applying relevant

boundary constraints (e.g., voltage drop, feeder transfer capacity, and ratio index).

One drawback in their proposal was the assumption that the DG bus locations would

be utility-provided. Other metaheuristic methods were developed that aim to position

DG units optimally within a network, including another work based on Backtracking

Search Algorithm (BSA) El-Fergany (2015). This approach is intended to place DGs

throughout Radial Distribution System (RDS). To do so, an objective function and

weighting factor are adopted to decrease the network’s real losses while improving the

voltage profile and subsequent operational performance. To test its viability, BSA is

tested on 33- and 94-bus on the system (El-Fergany, 2015).

Nguyen and Truong (2015) developed a reconfiguration strategy that used a

Cuckoo Search Algorithm (CSA) for reducing active power losses and optimizing

voltage magnitude. CSA represents a novel approach to metaheuristic algorithms

for solving optimization problems and is based on the cuckoo bird’s obligate brood

parasitism, where the cuckoo lays its eggs in other birds’ nests. The researchers test

the CSA’s effectiveness using 33-, 69- and 119-node distribution network systems.

In Prakash and Lakshminarayana (2016), Prakash and Lakshminarayana use

a Particle Swarm Optimization (PSO) algorithm to find a DG’s optimal size and
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placement. The authors analyze and compare IEEE 33- and 69-bus radial distribution

systems, with the individual systems applied to two cases. The results indicate that

the PSO approach used in this study is effective not only for determining the size and

location of a DG, but also for minimizing power loss Prakash and Lakshminarayana

(2016). Meanwhile, the researchers in Yammani et al. (2012) apply a population-

based algorithm known as shuffled frog leaping. Although this approach is useful in

solving a variety of complex nonlinear, non-differentiable and multimodal problems, it

significantly slows the speed of convergence and also leads to premature convergence.

In Li et al. (2013) adopted game optimization theory for optimizing multi-

objective functions in order to precisely determine a DG’s best-case size and place-

ment. The proposed strategy was tested on an 8-bus network. Around the same

time, Ameli et al. (2014) used a multi-objective PSO algorithm both for DG optimal

placement and sizing and for contract pricing the power generated. The strategy was

applied to a 33-node RDS. The authors found that their approach not only improved

the reliability of the power supply, but also enhanced the voltage stability and profile,

and cut power losses (Ameli et al., 2014).

A nature-inspired Whale Optimization Algorithm (WOA) was proposed for find-

ing optimal DG sizing. This approach employs the humpback whale’s hunting strate-

gies, which is known to be unique behavior among whales. The aim of the study was

to enhance the voltage profile and reduce system power losses using WOA. To that

end, the method was applied to IEEE 15-, 33-, 69- and 85-bus radial distribution

systems that had a range of different DGs Reddy et al. (2017).

An animal behavior-based algorithm was also applied in Sobieh et al. (2017) with

the Grey Wolf Optimizer (GWO). As with the other studies, the authors were looking

to optimize the placement, size and number of DGs in order to reduce power loss and

enhance the voltage profile in RDS. GWO was tested on IEEE 33- and 69-bus systems

under a variety of scenarios featuring DG units (Sobieh et al., 2017).

2.4.3 Hybrid Optimization Methods:

The hybrid approach addresses the inherent disadvantages found in the metaheuristic

optimization approach and also notably reduces the required search space. As its

name implies, the hybrid strategy combines two or more optimization methods to
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find the best solution Kola (2018). The next section presents the main research

conducted using the hybrid method.

In Gandomkar et al. (2005) , Gandomkar et al. employ a hybrid approach to solve

DG integration and sizing problems. The researchers use Genetic algorithm and

Tabu search together to decrease the real power loss that are dependent on boundary

conditions. In so doing, they limited DG number and gross capacity and enhanced

the objective function by applying penalty terms to deal with constraint violations.

The researchers in Tan et al. (2013) also employed a hybrid algorithm,this time is

population base and using PSO and Gravitational Search Algorithm (GSA). The goal

as , in the other works, was to determine the best size and placement in a distribution

system for the multiple DGs under study. Voltage profile and real power loss in the

system were considered in the tests, along with DG quantity, greenhouse gas emission

(Tan et al., 2013).

A hybrid algorithm was employed in Kefayat et al. (2015) , using an Ant Colony

Optimization (ACO) and Artificial Bee Colony (ABC) algorithm to test for ,among

other considerations, energy costs, emission, voltage stability, and total active power

losses. The objective in using ACO-ABC algorithm was find the optimal size and

location for the DGs. For the test, the authors applied two scenarios with different

energy source. (Kefayat et al., 2015) .

Mohan and Albert (2017) tested a hybrid GA-PSO algorithm with the intention

of reducing losses in a radial distribution system while sustaining reasonable voltage

profiles. The testing focused on the optimal placement and size of DGs with the aim

to boost voltage stability and decrease operational costs and loss. The authors tested

their algorithm on IEEE 33- and 69-bus systems (Mohan and Albert, 2017) .

In Jegadeesan and Venkatasubbu (2017), Jegadeesan and Venkatasubbu developed

a hybrid algorithm that combined GA with ABC. Their aim was to reduce loss by

determining optimal sizing and placement for multiple capacitors and DGs in radial

distribution systems. To test the hybrid algorithm, it was applied to IEEE 33- and

69-bus radial systems . In a related study, Javidtash et al. (2017) combined non-

dominated sorting GA with a fuzzy method in order to decrease real power loss, cost,

voltage deviations, and emissions. The hybrid algorithm was tested on a standard 34-

bus test micro grid (Javidtash et al., 2017).The researchers in Alzaidi et al. (2019)
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combined the metaheuristic WOA and Slap Swarm Algorithm (SSA) algorithms

into WOA-SSA. This strategy intended to reduce overall real power loss as well as

minimize voltage deviation through the installation of multiple DG units across two

radial distribution systems (Alzaidi et al., 2019) .

More recently,in Suresh and Edward (2020), a hybrid approach was used for

optimizing DG size and placement in distribution system in order to decreases losses.

The method combined the Grasshopper Optimization Algorithm (GOA) and the CSA

strategies, representing an upgrading of the GOA optimization behaviour. The author

applied the hybrid GOA-CSA algorithm in search of the best placement and size for

DG units to minimize power loss while optimizing power flow and enhancing voltage

profile. The proposed hybrid algorithm used MATLAB as platform, testing it on 33

and 69 IEEE systems (Suresh and Edward, 2020)

2.5 Summary

This chapter started with an overview of the distributed generations and their chal-

lenges in integrating into the system.This was followed by a review of different ap-

proaches for DG allocation problem.



Chapter 3

HEURISTIC OPTIMIZATION TECHNIQUES

3.1 Introduction

The branch of mathematics and computational science that deals with the procedures

and procedures employed to identify the “best” solution of a certain “optimization”

problem is know as optimization. In these problems the goal is to lessen or increase

one or more objective functions depending on one or more variables and some con-

straints. The constraints that indicate the nature of system for an optimization

problem which affect the objective function under consideration along with other op-

erational limitations.

Different methods can lead to solve the problems. Often, the objective function

and/or the limitations of system are non-linear in nature which change the optimiza-

tion problem into a non-linear problem. Nevertheless, a wide variety of optimization

problems such as linear programming have been solved using specially designed opti-

mization methods.

Power systems involve complex problems and are linked to a large amount of data

sets. In a simulation situation, even if one can create an exact algorithm, and uses it

to find the best optimal solution to a problem, the solution time and space complex-

ity may not allow the use of such system. However, problems whose dimensions and

complexity do not require the use of exact solution method can be solved by using

partial or approximate solutions. This is the case for many problems. The objective

of Heuristic algorithms is to use approximate solutions and identify the optimum so-

lution among all possible options. A search space is defined as the collections of all

possible solutions to a given problem. Heuristic solutions are systems that involve

a compromise between quality and speed at which solution can be found in order

to find a solution that is acceptable within a time frame that is reasonable. Many

difficult have been solved by evolving heuristic techniques. Hybrid techniques also

which involve combined heuristic techniques or use conventional techniques such as

14
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statistical analysis can solve extremely complicated problems (Pezzini et al., 2011).

Some Heuristic algorithms attain a sequence of locally best available choices and

create the solution in a progressive way. While they are efficient at computing, they

do not ensure or guarantee the overall optimum solution (global optimum). Actually,

at every stage a decision which looks good is made without taking into account

the future results. This creates an imperfect solution since it does not contain any

previous guarantee to be a globally best solution. Such algorithms are used when one

does not need a perfect answer, but an approximate answer fulfills the initial need. If

one needs to improve the quality of answer, different suitable heuristic methods can

be used to meet such requirements as discussed later (Pezzini et al., 2011).

A family of searching algorithms which could approach and solve complicated

optimization problems were first introduced in mid-80s and were called metaheuristics

(Mirjalili and Lewis, 2016). The most striking feature of metaheuristic algorithms

is that they are simple and require no special knowledge related to the optimization

problem under consideration. This is why most of these algorithms are able to provide

only approximate solutions.

Since Metaheuristic algorithms move towards an optimum solution by evaluating

an objective function and compare the later results with earlier optimized results,

therefore they can be viewed as advanced versions of heuristic algorithms. Meta-

heuristic algorithms are driven from nature and are built to solve problems in a

general method (Mirjalili and Lewis, 2016).

Metaheuristic algorithms which are inspired by nature, use biological or physical

phenomenons to solve optimization problems. They can be classified into four groups:

evolution-based, physics-based, swarm-based and human-based methods. A more

detailed overview of these algorithms is presented in next sections (Nadimi-Shahraki

et al., 2021).

3.2 Evolution Based Techniques

Natural laws of evolution are the source of inspiration for evolution-based methods.

The process of search begins with a randomly created population which is evolved

over later generations. The best thing about these algorithms is that they use the

best available set of individuals to form next group of individuals. In this method
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population is optimized over the course of generations. Below is the list of most

common evolution-based techniques:

3.2.1 Genetic Algorithms

The Genetic Algorithm (GA)is an advanced form of evolutionary search in general

evolutionary computation context. Holland (1975) first developed the GAs followed

by Goldberg and Holland (1988) and De Jong (1985). Three basic parameters

of genetics and natural selection namely selection, crossover and mutation are core

search strategies used by GAs. To choose parent individuals, selection is used which

is based on the fitness function. After parent chromosomes are selected, they move to

the crossover stage where they produce two descendants. Crossover is advantageous

in the sense that new individual can have best qualities of the both parents. The new

offspring will have slightly different genes which would be the result of applying the

mutation operator. Novelty in genetic material is ensured by the virtue of mutation.

Once this population is completed, the new generation would replace the older gener-

ation and selection-crossover-mutation process will start over for next generation. In

order to ensure the retention of best solution and not losing it by stochastic character

of above procedure, De Jong (1985) proposed a special procedure for replacement and

called it elitism. This procedure makes a copy of the best individuals from present

generation and pass it to the next generation without making any changes.

3.2.2 Genetic programming

If each individual in the population is considered a computer program in a genetic

algorithm, it can be termed as genetic programming. The reproduction method

comprises of selection of a computer program from available programs based on the

fact that how well it fits, i.e. fitter individuals have more chance of being selected,

and then allowing it to stay in by making a copy and adding to new population.

Then, the crossover program produces offspring program from the parents programs

which had been selected by virtue of their fitness. The size and shape of offspring

programs is different than that of parent programs. Mutation operation can also

be applied to genetic programing. After genetic operation is completed on current

population also known as old generation, the offspring population, also known as
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new generation, swaps the older population, also known as older generation. In the

new population, the fitness of each individual is measured, and the process starts

repeating itself over the course of many generation. The state of process at every

stage of highly decentralized, locally controlled and highly parallel process consists of

population based on current set of individuals.Table 3.1 shows more evolution based

algorithms.

The observed fitness of individuals dealing with the problematic environment in

the current population is the driving force behind this process. This algorithm will

generate population of programs which will express increased average fitness over the

course of many generations, as will be visible. The result of genetic programming

is typically the best so far individual appeared over a course of generations (Koza,

1995).

Table 3.1: Evolution -based optimization algorithms

Algorithm Year Inspiration Reference

Biogeography-Based Optimizer (BBO) 2009 Inspired by mathematics of biogeography (Simon, 2008)

Evolutionary Algorithms (EA) 2013 Inspired by genetic inheritance (Dasgupta and Michalewicz, 2013)

3.3 Physical – Based Techniques

Physical rules in the world are mimicked by Physics-based methods. The most com-

mon algorithms are:

3.3.1 Simulating Annealing

First algorithms extending local search methods which have a clear strategy to get out

of the local optima are commonly known as Simulating Annealing (SA) (Kirkpatrick

et al., 1983). Four component are required: A comprehensive explanation of system

configuration; a random producer of “moves” or reorganization or components in

a configuration; a quantitative objective function consisting of the compromises to

be made and an annealing timeframe of temperature and time period for which the

system needs to be advanced. The basic idea is to exclude the moves which result

in solutions of inferior quality from the local optima. This way, likelihood of having
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such moves decreases over time during search process. Despite having been proposed

in 1983, SA is still being studied and applied to many optimization problems. It is

also used as a component of other search algorithms. Further studies to produce more

effective SA models are being undertaken because of its excellent role in metaheuristic

field.

3.3.2 Gravitational Local Search Algorithm

To find superior solutions, this algorithm tries to find the optimal solution to the

problem by starting to search randomly in a solution space and then finding in the

“local” area around the starting stage. When present halt conditions are satisfied or

when a solution which is found which according to algorithm is the best solution, the

process completes. This type of algorithm is a repair-based system where a it starts

with a solution that’s already present and then tries to “repair” it by varying one or

more ingredients of solution in order to bring it near the optimal solution. This type

of algorithm employs natural laws of gravity that apply on a moving body through

space and mimics those principles of gravity to deal with solution at hand and create

a repaired solution that is optimal (Webster and Bernhard, 2003).

Table 3.2 shows more algorithms in this category.

Table 3.2: Physics -based optimization algorithms

Algorithm Year Inspiration Reference

Charged System Search (CSS) 2010 Inspired by principles from physics and mechanics (Kaveh and Talatahari, 2010)

Black Hole (BH) 2013 Black hole phenomenon (Hatamlou, 2013)

Atom Sereach Optimization (ASO) 2019 inspired by basic molecular dynamics (Zhao et al., 2019)

Henry Gas Solubility Optimization (HGSO) 2019 Inspired by Henry’s law (Hashim et al., 2019)

3.4 Swarm Based Techniques:

The third group of methods which are inspired from nature consists of swarm-based

techniques. These models imitate the social behavior of group of animals. The most

common algorithm are:
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3.4.1 Particle Swarm Optimization

Kennedy and Eherhart in mid-1990s developed the method called The Particle Swarm

Optimization (PSO) (Kennedy and Eberhart, 1995) . The behaviour of animals such

as birds and insects is simulated in the PSO algorithm using stochastic optimization

methods. In order to find the best optimal solution in a search space, these algorithms

use the exact same principles as birds and insects do to find the best place in a flock or

swam respectively. The beginning point of PSO algorithms is like bunch of particles

which comprise random available feasible solutions. In a swarm, every single particle

is given a starting velocity and they start moving in problem search space as soon

as they are assigned a velocity. From this search space, the algorithm starts picking

particles based on the best fitness which in turn tracks back to the best location

achieved by these particles across the whole crowd. Depending upon the application

of algorithm, the rules that govern the updating of PSO algorithms are based on

many striking features which are adjusted and modified.

3.4.2 Whale Optimization Algorithm

Mirjalili and Lewis introduced a new nature-inspired metaheuristic optimization algo-

rithm, known as WOA in 2016 (Mirjalili and Lewis, 2016). The biggest and intelligent

mammals in the world are whales. The special hunting method used by whales based

on bubble-net attacking technique to search food is the source of derivation for this

algorithm. Humpback whales swim around the target and create bubbles around

9-shaped path in order to search for food. Circling the target, bubble-net attacking

(exploitation phase) and searching for target (exploration phase) are the main steps

taken by whales in this process.

Table 3.3 shows Some recent algorithms in this category
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Table 3.3: Swarm-based optimization algorithms

Algorithm Year Inspiration Reference

Fruitfly Otimization Algorithm (FOA) 2012 Fruit fly (Pan, 2012)

Dolphin Echolocation (DE) 2013 Inspired by dolphin (Kaveh and Farhoudi, 2013)

Ant Lion Optimizer (ALO) 2015 Hunting mechanism of antlions in nature (Mirjalili, 2015)

Dragonfly Algorithm (DA) 2016 Behaviours of dragonflies in nature (Mirjalili, 2016)

Grasshopper Optimizer Algorithm (GOA) 2017 Mimics the behaviour of grasshopper swarms in nature (Saremi et al., 2017)

Harris Hawks Optimizer (HHO) 2019 Behavior and chasing style of Harris’ hawks in nature (Heidari et al., 2019)

3.5 Human Base Techniques

This group of metaheuristic techniques are inspired from human behaviors. Among

these methods, some of the most commonly used methods are:

3.5.1 Tabu Search

This method was presented by (Glover, 1986). In this strategy, a Tabu list which

consists of successive approximations, is created which helps in avoiding returning to

the same solutions which have already been explored. Because of the fact that the

Tabu list has a specific length, the list can be reconsidered after a number of stages.

First in-first out method is used whenever a new solution is added to the list i.e. each

new solution replaces the oldest solution. New approximation can be produced in

multiple ways. The Tabu Search (TS) algorithm employs the procedure given below:

at any stage, a fixed number of new approximations are created around the current

solution X. However, only those approximations are considered which are not listed

on the Tabu list. The best solution is included in the Tabu list and as well as used

to replace the current solution among new approximations.

3.5.2 Harmony Search

Geem et al. (2001) introduced a new metaheuristic algorithm in 2001, known as Har-

mony search algorithm. This algorithm is based on the technique used by musicians in

tuning. There are many benefits of the HS algorithm. One of the major points is that

by considering all of the current vectors or solution, a new vector solution produced.
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This method has gained a significant attention and has been utilized in a number

of science and engineering problems. However, like other metaheuristic algorithms,

there serious are issues with these types of algorithms. For numerical applications, it

easily finds itself in problems of conducting a local search. Some better versions of

HS algorithms were presented including improved harmony search (IHS) algorithm

, self-adaptive global-best harmony search (SGHS) algorithm , Global-best harmony

search (GHS) algorithm , and novel global harmony search (NGHS) algorithm in or-

der to improve their optimization performance.

Other human-based techniques are listed in Table 3.4

Table 3.4: Human-based optimization algorithms

Algorithm Year Inspiration Reference

Imperialist Competitive Algorithm (ICA) 2007 Inspired by imperialistic competition (Atashpaz-Gargari and Lucas, 2007)

League Championship Algorithm (LCA) 2009 Inspired by the competition of sport teams in a sport league (Kashan, 2009)

Teaching-Learning-Based Optimization (TLBO) 2011 Inspired by the influence of a teacher on learners (Rao et al., 2011)

Social-Based Algorithm (SBA) 2013 Inspired by social behaviour (Ramezani and Lotfi, 2013)

Coronavirus Herd Immunity Optimizer (CHIO) 2020 Inspired by herd immunity concept (Al-Betar et al., 2020)

Regardless of the nature, the population-based metaheuristic optimization algo-

rithms possess or share common feature. Exploration and exploitation are the com-

mon stages in the search process (Mirjalili and Lewis, 2016).

• Exploration stage:operators that explore global search space must be included

in the optimizer. In this stage, as much as possible randomization of movements

should be introduced as possible.

• Exploitation stage: This step comes after the exploration stage. It can be

defined as a process that investigates the promising search area in detail.

In general, the exploration is preferred at the early stages of search process. How-

ever, it is required to successively provide way to exploitation of potential solution

as the search process moves forward. Therefore, the exploitation is connected to the

ability of local search in the potential areas of design space identified in the explo-

ration stage. Due to the stochastic nature of the optimization process, the most
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difficult task is to find a suitable balance between exploration and exploitation of the

search space during the development of any metaheuristic algorithm. In general, one

should pay attention to find a balance between exploration and exploitation of any

search space, in order to improve the search capability. Since the balance between

exploration and exploitation is depending on the characteristics of the problem, it is

quite challenging to solve this problem. This requires dynamic change in the balance

during evolution process (Hussain et al., 2019).

3.6 Summary

The development of Heuristic approaches has been used to solve complex optimiza-

tion problems. This chapter provided a basic knowledge of most popular heuristic

optimization techniques, and how they are applied in common optimization problems.



Chapter 4

OVERVIEW OF PROPOSED HYBRID METHOD

4.1 Introduction

To enhance system performance, the present work proposes a structure for DG place-

ment and sizing that relies on multi-objective criteria. The proposed structure em-

ploys a hybrid approach consisting of combined power loss sensitivity (CPLS) and the

improved grey wolf optimizer (IGWO). An overview of the new method is presented

in the following sections.

4.2 Using Combined Power Loss Sensitivity to Optimize DG Location

and Placement

Various factors of real power loss sensitivity can be calculated to determine potential

optimal node placement for DGs. By estimating the sensitivity of nodes, the search

space can be decreased (Abdel-mawgoud et al., 2018). However, it is worth bearing

in mind that DG placement and installation do not have an effect on real power loss

only. This is because DGs are also able to supply reactive power, which means they

can also play a major role in reactive power loss. Combined loss sensitivity, therefore,

is formulated using data from real power loss as well as reactive power loss (Kumar

et al., 2017).

Combined power loss sensitivity (CPLS) analysis uses changes in active and reac-

tive power loss from active and reactive power that has been injected from a distribu-

tion network DG and capacitor. We can employ the forward-backward sweep-based

load flow algorithm to calculate CPLS for every bus using the following formulation:

∂Sloss (m, k) = ∂Ploss (m,k) + j∂Qloss(m,k) (4.1)

We can also express combined loss sensitivity in relation to reactive power as

23
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follows:
∂Sloss (m, k)

∂QK

= j
∂Qloss(m,k)

∂Qk

= X(m, k)

(
2Qk

|Vk|2

)
(4.2)

After determining loss sensitivity in relation to real power, combined loss sensitivity

in relation to the real power can be formulated as follows:

∂Sloss (m, k)

∂PK
=
∂Ploss (m, k)

∂Pk
= R(m, k)

(
2Pk

|Vk|2

)
(4.3)

Where Ploss (m,k) , ∂Qloss(m,k) are the active and reactive power loss between bus

m and k . whereas Pk and Qk are the active and reactive power at bus k

Using (4.2) and (4.3), based on simple implementation for distribution system

consists of two buses bus m and k ,we can determine CPLS for every bus according to

the forward-backward sweep-based load flow algorithm, as expressed in (4.4) below:

CPLS(m, k) = R(m, k)

(
2Pk

|Vk|2

)
+ jX(m, k)

(
2Qk

|Vk|2

)
(4.4)

Where ,

CPLS(m, k) CPLS value with respect to real and reactive power injenction at

bus k., R(m, k) and X(m, k) resistance and reactance of line between m ,k.

Vk is the voltage at bus k.

Those buses that feature high CPLS values may be designated as candidate buses in

capacitor and DG installations. CPLS may be used as a means to reduce program

simulation time as well as an algorithm’s search space (Muthukumar and Jayalalitha,

2016).

4.3 Grey Wolf Optimizer Algorithm

4.3.1 Introduction

As its name implies, the grey wolf optimizer (GWO) is based on the renowned hunting

instincts and social leadership of grey wolf packs as shown in Figure 4.1. In the

algorithm, three leader wolves (alpha[α], beta[β], and delta [δ]) work to find optimal

solutions by guiding the rest of the wolf pack (omega [ω]) into promising “hunting”
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zones, with the collective aim of finding an optimal global solution (Mirjalili et al.,

2014) .

Figure 4.1: Hierarchy Of Grey Wolf

Alphas (α): In a typical wolf pack, the leaders are one male and one female.

These two wolves share the task of decision-making in relation not only to hunting,

but also to resting places, waking time, etc. The alphas must mate within the pack.

Interestingly, alphas are rarely the strongest or largest members in a wolf pack, but

they are the most adept at managing the other wolves.

Betas (β): The next level down from alphas in the grey wolf pack hierarchy is the

beta level. Beta wolves are generally subordinate to alphas. Their main role is to

assist and support the alphas in making decisions and other pack-related activities.

In a pack, the betas represent the best replacement candidates for alphas, should the

alpha die or become infirm with age. Beta wolves respect and take direction from

alphas, but they are able to command lower-level wolves on their own. Other roles

played by beta wolves are advisor to alphas and pack disciplinarian.
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Deltas (δ): In the grey wolf pack, deltas are subordinate to alphas and betas, but

not to omegas. The delta wolves play roles such as hunters, sentinels, scouts, elders,

and caretakers. The hunters assist alphas and betas during the hunt. They may also

independently provide the pack with food. The sentinels serve as pack protectors. As

scouts, deltas warn the pack of any approaching danger. Elder deltas may be former

alphas or betas and provide the pack with seasoned experience. Caretaker deltas look

after the wolves that are sick, injured, or weakened with age.

Omega (ω): In a grey wolf pack, omegas are the lowest in rank. Their role is

essentially that of scapegoat. If they want to remain in the pack, omega wolves must

submit to all the other wolves, by, for instance, being the last to eat. Despite their

subordinate position, omegas are crucial to the strength of the pack. This is because

when omegas are lost (through death or desertion), internal fighting breaks out within

the ranks. The omegas thus serve as the primary vent for the pack’s disagreements

and frustrations. Therefore, the omegas are key to the pack maintaining its dominance

structure. Omegas may also occasionally serve as babysitters.

Along with social hierarchy, group hunting comprises another characteristic of

grey wolf social behaviour. Muro et al. (2011) breaks down the main components of

grey wolf pack hunting as:

• Tracking and chasing the prey while sometimes being visible to the prey and

sometimes not.

• Encircling, closing in on, and harassing the prey, with the intent of preventing

its escape.

• Attacking the prey.

The next section mathematically models the social hierarchy and hunting methods

of grey wolf packs, with the aim of designing and optimizing the grey wolf optimizer

(GWO).

4.3.2 Mathematical Model and Algorithm

In mathematically modelling a grey wolf pack’s social hierarchy through the design

of the GWO, we set the alpha (α) as the best-fit solution. The beta (β) and delta
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(δ) wolves are our second- and third-best solutions, respectively, while the remainder

of the potential solutions are the omegas (ω). Hence, for the hunting (optimization),

the GWO is steered according to the traits of the α, β, and δ wolves, while the ω

follow behind (Mirjalili et al., 2014).

One key trait of grey wolf hunting behaviour is encircling the prey, as mentioned

earlier. The mathematical modelling of encircling may be expressed using Eqs.(4.5)

and (4.6), as below:

~D =
∣∣∣~C · −→Zp(t)− ~Z(t)

∣∣∣ (4.5)

~Z(t+ 1) =
−→
Zp(t)− ~A · ~D (4.6)

where t indicates the current iteration, ~A and ~C denote coefficient vectors, ~Z repre-

sents a grey wolf’s position vector,and ~Zp demarcates the prey’s position vector. The

vectors and may be formulated as:

~A = 2~a · −→r1 − ~a (4.7)

~C = 2 · −→r2 (4.8)

where:

a components decrease linearly through the iterations from 2 to 0,

r1, r2 represent random vectors positioned between 0 and 1

Therefore, by using Eqs.(4.5) and (4.6), we can revise a grey wolf’s position within

a certain area near its prey for any random location.

Hunting the prey

As mentioned above, grey wolves track and chase their prey until finally encircling it.

These movements are typically initiated and led by the alpha wolves, with the betas

and deltas participating as support. For our abstract search space, we initially have

no clue where the optimum (our prey) is situated. So, to mathematically simulate the

wolves’ hunting behavior, we assume that our alphas, which are our best candidate

solutions, have some knowledge of the prey’s location, followed respectively by our
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betas and deltas. We thus save these three best solutions, while the remaining search

agents (the wolves) have their locations updated based on the current best position.

By employing Eqs.(4.9),(4.10) and (4.11), both the positions and scores for the

alphas, betas and deltas (i.e., our first three search agents, respectively) may be re-

vised, as follows:

−→
Dα =

∣∣∣~C1 ·
−→
Za − ~Z

∣∣∣ , (4.9)

−→
Dβ =

∣∣∣~C2 ·
−→
Zβ − ~Z

∣∣∣ (4.10)

−→
Dδ =

∣∣∣−→C3 ·
−→
Zδ − ~Z

∣∣∣ (4.11)

Then, by utilizing the following mathematical expressions, the prey’s position vec-

tor in relation to the alphas, betas and deltas may be formulated as:

−→
Z1 =

−→
Zα − ~A1 ·

(−→
Dα

)
, (4.12)

−→
Z2 =

−→
Zβ −

−→
A2 ·

(−→
Dβ

)
(4.13)

−→
Z3 =

−→
Zδ −

−→
A3 ·

(−→
Dδ

)
(4.14)

Equation (4.15) expresses how the best position may be formulated by averaging

those of the alphas, betas and deltas:

~Z(t+ 1) =

−→
Z1 +

−→
Z2 +

−→
Z3

3
(4.15)

Search agents are able to revise their positions within a two-dimensional search

space based on the alpha, beta, and delta wolves, as depicted in Figure 4.2. The figure

illustrates how the end position represents a random place inside a circle defined by

the alpha, beta, and delta positions within the allotted search space. Hence, the

alpha, beta, and delta wolves work together to estimate the prey’s position, while the

remaining wolves have their positions randomly updated near the prey.
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Figure 4.2: Attacking the prey

Attacking the prey

A hunt is considered ended when the prey stops moving. To mathematically model

the concept of approaching the prey, we chose to reduce the “a” value. In our model,

“a” is a random value occurring within the interval [-a,a], where “a” diminishes from

2 down to 0 during several iterations. As depicted in Figure 4.3(a), random values

of “a” occurring in [-1,1] indicate that the subsequent position for a search agent

may involve any position between where it presently is located and where its prey is

located.

Searching for prey

In general, grey wolf packs usually search for prey in accordance with the alpha, beta,

and delta wolves’ positioning. A typical strategy is to diverge from the other wolves

when searching for prey, and then to converge for the attack. The mathematical mod-

elling of divergence requires us to use random values that are either greater than 1

or less than -1 in order to prompt our search agent’s divergence away from the prey’s

position. The prompt to diverge leads to exploration, which enables a global search

by the GWO algorithm. Figure 4.3(b) illustrates how |A| > 1 prompts the wolves’
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divergence away from one prey in search of another prey with a better fit.

Figure 4.3: Searching for the prey

The operators proposed enable the search agents in the GWO algorithm to revise

their position according to those of the alpha, beta, and delta wolves and to direct

an attack against the prey. However, the solution search within the GWO algorithm

tends to stagnate with these types of operators. While the proposed encircling tech-

nique denotes a degree of exploration, the GWO requires additional operators for the

concept of exploration to be stressed (Mirjalili et al., 2014).

4.4 Improved Grey Wolf Optimizer (I-GWO)

As touched on previously in this chapter, the grey wolves’ hierarchical structure of

leadership and hunting strategy inspires the GWO algorithm. However, due to con-

sidering only the best alpha, beta and delta wolves for the movement method, the

algorithm has a number of limitations, the main ones being an imbalance between

exploitation and exploration, premature convergence, and a lack of population di-

versity (Tu et al., 2019). To mitigate these problems, we propose an improved grey

wolf optimizer (I-GWO) that incorporates a new search strategy via selecting and

updating.

The three phases of the proposed I-GWO are: initializing, movement, and selecting

and updating (Nadimi-Shahraki et al., 2021) .
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Initializing phase

This phase features number of wolves being randomly distributed within a given

search space.

Movement phase

In this phase, the I-GWO includes another movement strategy, namely the Dimen-

sion Learning-based Hunting (DLH) search strategy. The DLH method has each

individual wolf being taught (learned) by its neighbors in order to potentially assume

the new position of Zi(t).

In the DLH approach, every dimension of the Zi(t) wolf’s new position may be

formulated using Eq. (4.19). Each individual wolf learns from all neighbors as well as

from a randomly selected wolf (from Pop). Based on this strategy, another candidate

for the wolf Zi(t) position, called Zi−DLHA(t+ 1), is generated, in addition to the one

generated from Eq.(4.15), namely Zi−GWO(t+ 1).

To formulate the new wolf Zi(t) position, radius Ri(t) must be calculated by

finding the Euclidean distance separating the candidate position Zi−GWO(t+ 1) from

the present position Zi(t), as expressed in Eq. (4.16):

Ri(t) = ‖Zi(t)− Zi−GWO(t+ 1)‖ (4.16)

Next, neighboring wolves of Zi(t), as indicated by Ni(t), are formulated in Eq.

(4.17) with respect to radius Ri(t), with Di denoting Euclidean distance between

Zi(t) and Zj(t).

Ni(t) = {Zj(t) | Di (Zi(t), Zj(t))Ri(t), Zj(t) ∈ Pop} (4.17)

Following the building of the Zi(t) neighborhood, the multi-neighbor learning

stage proceeds, as expressed in Eq. (4.18)

Zi−DLHA(t+ 1) = ZL,d(t) + rand× (Zn,d(t)− Zn,d(t)) (4.18)
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Selecting and updating phase

The selecting and updating phase has roughly three steps. In the first step, a compar-

ison of the fitness values for the two candidates – Zi−GWO(t+ 1) and Zi−DLHA(t+ 1)

– is done to determine the better candidate, as expressed in Eq. (4.19):

Zi(t+ 1) =

{
Zi−GWO(t+ 1), if f (Zi−GWO) < f (Zi−DLH)

Zj−DLH(t+ 1) otherwise
(4.19)

In the second step, the new Zi(t + 1) position needs to be updated. So, if the

candidate’s fitness value is below Zi(t), the candidate updates Zi(t). If it is not

below Zi(t), the value stays the same in the Pop. After doing this process for every

individual, as a third step in the selecting and updating stage, the iterations (iter)

counter is raised by a count of one. This enables the search to be iterated until the

selected iteration number (maxiter) has been reached.

4.5 Proposed Technique

As detailed in the previous section, the I-GWO approach improves the wolves’ hunting

search strategy through the application of a new approach called dimension learning-

based hunting (DLH). However, when tackling more complex optimization problems,

the I-GWO strategy tends to converge towards local minima.

In optimization, aspects such as population diversity, exploration and exploitation,

and initial population characteristics need to be considered in the design of schemes

meant to improve performance and convergence (Tu et al., 2019). Equally important

is the trade-off between these factors that occurs during the process of optimization,

as it in large part determines the convergence performance. More specifically, if the

exploration aspect has too much weight in the formulation, the algorithm unable will

not be able to converge to the global optimum. Conversely, if the exploitation has

too much weight, there is a slow convergence, along with a tendency to fall into the

local optimum.

Population diversity is likewise an important aspect of the algorithm’s perfor-

mance. Low diversity means that search agents will cluster within a small location,

causing local convergence, while high diversity leads to a scattering of the search

agents across a broad area, resulting in poor convergence (Ibrahim et al., 2018).
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This work proposes a novel two-part hybrid approach for enhancing the I-GWO

algorithm’s performance. The first part of this new technique involves optimal siting

through the application of the combined power loss sensitivity factor (CPLS). The

second part determines optimal sizing for DGs at feasible locations through the ap-

plication of the improved grey wolf optimizer (I-GWO) metaheuristic optimization

algorithm. The proposed novel strategy is detailed below.
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i=i+1

d ≤ dimd+1

Dimension learning
base strategy ex-

pressed as in Eq.4.18

select and update

yes

no
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Figure 4.4: Flowchart of the Proposed Technique
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Implementation of proposed technique

The implementation of the proposed strategy occurs over a number of steps, with the

ultimate aim of obtaining optimal allocation for the DG units’ size and site. Figure

4.4 illustrates this process with a flowchart of instructions.

Step 1: Read system data.

Step 2: Perform load flow, determine CPLS, and calculate potential buses for DGs.

Step 3: Initialize maximum iteration (itmax), Number of Search Agents (NSA), and

problem constraints.

Step 4: Generate a population of grey wolves using the grey wolf optimizer, initializing

the position of the α, β, and δ wolves. Calculate objective function of the

population using the load flow approach.

Step 5: Check constraints for every search agent to determine the best solution. If the

constraints are satisfied, calculate multi-objective function; if the constraints

are violated, discard results.

Step 6: Update α, β and δ wolves’ positions, neglecting the omega’s position. Next, in-

clude the omega’s position using Eqs. (4.9),(4.10),(4.11) and (4.12),(4.13),(4.14)

to find the optimal solution thus far.

Step 7: Calculate the search agents’ new positions according to the positions of the α,

β, and δ wolves, as given in Eq. (4.15).

Step 8: Formulate the radius Ri(t) by utilizing the Euclidean distance from Eq. (4.16)

and building a neighborhood in Eq. (4.17).

Step 9: Perform the selecting and updating phase through selecting the lowest fitness

value between Zi−GWO(t+ 1) and Zi−DLHA(t+ 1), using Eq. (4.19).

Step 10: The stop criterion represents the maximum iterations in the proposed study.

When this criterion is satisfied, the simulation stops. The DG units’ optimal

sizing and site location, satisfying all the distribution system’s specified con-

straints, are then obtained.
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4.6 Summary

The steps of the proposed hybrid technique were discussed in detail in this chapter.

The steps of the novel strategy include using CPLS and I-GWO for finding optimal

allocations of DG and capacitors. Also discussed were the development and imple-

mentation of the proposed novel algorithm.



Chapter 5

THE PROBLEM FORMULATION

5.1 Introduction

To facilitate distributed generator (DG) planning within distribution networks, the

improved grey wolf optimizer (I-GWO) with the combined power loss sensitivity

(CPLS) approach are applied in this work. However, deploying DG in the grid re-

quires not only optimal planning of DG placement but also correct sizing of the units.

There are two main steps involved in DG planning: the first is determining the best

placement bus for radial distribution grids, and the second step is ensuring accurate

sizing of the DG. In addition to adhering to constraints regarding equality and in-

equality, the installed DG must be able to enhance the voltage profile and minimize

active power loss as well as optimize the voltage stability of the network. This chapter

explores the problem formulation and system constraints for solving issues around DG

rating and optimal placement, with the aim of finding both the optimal DG rating

and the optimal location bus for the radial distribution system being tested.

5.2 Load Flow Analysis:

Traditional Gauss Seidel (GS) and Newton Raphson (NR) strategies can be less than

efficient as analyzing tools for distribution systems. That is because these networks

have features such as unbalanced loads, high R/X and radial structure that may

require different approaches. More specifically, the special features of distribution

systems can make the analysis of their power flow computation relatively challeng-

ing in comparison to analyzing transmission systems. There are two categories of

approaches that have been used for analyzing balanced and unbalanced radial dis-

tribution systems. The first category employs techniques to modify conventional

methods (e.g., NR and GS), while the second category uses backward and forward

sweep-based processes that apply Kirchhoff’s laws. Recently, thanks mainly to their

37
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computational efficiency, low memory needs, and strong convergence features, back-

ward and forward sweep-based algorithms are increasing in usage in the analysis of

distribution system loads. The present study investigates the application of the back-

ward and forward sweep technique for determining possible solutions to load flow

(Eminoglu and Hocaoglu, 2008)

Figure 5.1: Single-line diagram of simple two-bus system with DG

Figure 1 depicts a single-line diagram for RDS. As shown, the load flow equa-

tions and transferred power for bus k are obtainable from the figure, as expressed in

(5.1),(5.2),and (5.3) below:

Pk = Pm − Pk, Load −Xm,k

(
P 2
m + jQ2

m

|Vm|2

)
(5.1)

Qk = Qm −Qk, Load −Xm,k

(
P̄ 2
m + jQm̄

m

|Vm|2

)
(5.2)

V 2
k = V 2

m − 2 (Rm,kPm +Xm,kQm) +
(
R2
m,k +X2

m,k

)(P 2
m + jQ2

m

|Vm|2

)
(5.3)

Where:

Rm,k, Xm,k resistance and reactance in the branch between buses k and m,respectively

Pm, Qm indicate active and reactive powers flowing in bus m, respectively.

Pk, Qk indicate active and reactive powers flowing in bus k, respectively.

Pk, Load , Qk, Load signify real and reactive demands in bus k, respectively; and

Vk, Vm represent voltage magnitudes in bus k and bus m, respectively.

5.3 Problem Formulation

When employing the proposed strategy, the DG integration problem can be framed

like a mixed integer nonlinear optimization problem that features highly nonlinear
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equality and inequality constraints. In using this approach, the optimal location, and

size of the DG units can be determined, with the aim of minimizing the multi-objective

function. This involves the aspect of real power losses. The branch current’s real and

reactive losses can be decreased through injections of real and reactive power via ca-

pacitors, along with appropriately rated DG units positioned at suitable locations and

having suitable voltage profiles. These DG units restricted with specific constraints

in the distribution network. The multi-objective function can be expressed as in the

equations below.

5.3.1 Minimizing Real Power Loss

F1 = Min real
(∑N

i=1
Si Total loss

)
(5.4)

Where:

F1 denoted to the single objective function for power loss minimization.

N Indicates the bus branch number, and

Si Total loss denotes total loss of complex power

Further, because total complex power comprises active and reactive power, the

active and reactive losses may be formulated as:

Pk, loss = Rm,k

(
P 2
k + JQ2

k

|Vm|2

)
(5.5)

Qk, loss = Xm,k

(
P 2
k + JQ2

k

|Vm|2

)
(5.6)

where (5.5),( 5.6) represent active power loss and reactive power loss for bus k,

respectively.

Distributed generation offers a viable and sustainable way to improve energy efficiency

while also lowering the cost of energy. Because of this, DG is being increasingly inte-

grated into distribution systems and must therefore be added to the analysis of power

flow. Active and reactive power flow that includes DG in bus k may be expressed as

presented below(Kansal et al., 2013).
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• Real power injections scenario . These function in fuel cells, PV cells, micro-

turbines, etc., and are formulated as in (5.7) and (5.8) :

Thus, when: PFDG = 1

Pk = Pm − Pk, Load − Pk, loss + Pk,DG (5.7)

Qk = Qm −Qk, Load −Qk, loss (5.8)

• Reactive power injections scenario . These function as KVAR compensators,

capacitors, synchronous compensators, etc., and are formulated as in (5.9) and

(5.10):

Thus, when: PFDG = 0

Pk = Pm − Pk, Load − Pk, loss (5.9)

Qk = Qm −Qk, Load −Qk, loss +Qk,DG (5.10)

• Real and reactive power injections scenario . These function in power factors

ranging from 0 to 1, and are formulated as in (5.11) and (5.12):

Thus ,when : 0 < PFDG < 1

Pk = Pm − Pk, Load − Pk, loss + Pk,DG (5.11)

Qk = Qm −Qk, Load −Qk, loss +Qk,DG (5.12)

Where,

Pk,DG represents real power as generated in the DG for bus k;

Qk,DG represents reactive power as generated in the DG for bus k; and

PFDG represents the power factor for bus k.
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5.3.2 Voltage Deviations:

For various reasons, distribution systems may experience voltage variations. For

example, line impedances may lead to major voltage drops, or available reactive gen-

eration may be unable to satisfy increasing customer demand for reactive power. As

well, the use of long radial feeders in rural locations may prevent reactive power trans-

mission. This will cause a drop in voltage at customer-connection load points. For

these reasons, load bus voltage positioned at remote ends is typically lower compared

to load bus voltage positioned closer to substations (Zimann et al., 2019).

Variations in voltage are referred to as voltage deviations. These may be defined

as differences between actual and nominal voltage levels, such that the smaller the bus

voltage deviation from nominal voltage, the more functional the system. The Total

Voltage Deviation (TVD) refers to the sum total of the squared value of absolute

voltage differences between nominal and actual voltage in all buses within a given

system (Saha and Mukherjee, 2019). This may be expressed as:

TV D =
NB∑
n=1

(Vn − Vref )2 (5.13)

Where,

Vn indicates bus voltage value for bus n;

Vref indicates reference voltage typically equal to 1 p.u., and

NB indicates bus number.

The objective function to improve voltage profile can be expressed as in 5.14:

F2 = TV D =
NB∑
n=1

(Vn − Vref )2 (5.14)

Where,

F2 The second objective function represented by Total of Voltage Deviation.

5.3.3 Voltage Stability Index:

In the present work, the voltage stability index (VSI) represents a distribution sys-

tem’s security level and measures each bus system’s vulnerability to voltage collapse
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using 5.15. Higher VSI values indicate a more stable bus and a relatively low poten-

tial for voltage collapse.(Murty and Kumar, 2015)

V SI(k) = |Vm|4 − 4 ((Pk + Pk, Load )X − (Qk +Qk, Load )R)2 − 4

((Pk + Pk, Load )X + (Pk + Pk, Load )R) |Vm|2 (5.15)

F3 =
1∑NB

n=1 V SI(n)

| (5.16)

Where,

V SI(k) indicates to the voltage stability index for at the bus k;

F3 indicates to the third objective function represented by voltage stability

index.

5.3.4 Multi-Objective Function

It was observed that most of the work done in DG optimization problems has been

focused on various single objective functions which often leads to a conflict between

these objectives (Kaur and Jain, 2017). However, in this work, the optimization

problem has more than one objective function and it is optimized, simultaneously.

The multi-objective function minimizes the power loss, improves voltage profile and

maximizes voltage stability index.The parameter of the proposed method can be

illustrated in Table 5.1 and the MOF is given by 5.17.

MOF = R1 ∗ F1 +R2 ∗ F2 +R3 ∗ F3 (5.17)

Where,

R1 represent the weighting factor related to power loss minimization

R2 indicates to the weighting factor related to total voltage deviation.

R3 weighting factor related to voltage stability

MOF represent multi-objective function.
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The value of the weight’s factors is designed to give the corresponding priority

to each objective function due to the presence of DG and depend on the required

analysis. The summation value of the weighting factors is equal to one.

R1 +R2 +R3 = 1 (5.18)

In this research,the power loss reduction is considered as the main concern of any

system .Therefore, the value of the weight for the power loss minimization received

a big value at 0.5, while the weight for the TVD minimization and voltage stability

maximization is 0.25 each.

5.4 Optimization Problem Constraints

5.4.1 Equality Constraints

Equality constraints comprise nonlinear power flow equations that express the need

for conserving real and reactive powers at RDS buses. Constraints involving active

and reactive power balanced at distribution system may be written as:

Psupply +
ND∑
d=1

PDG(d) = PT, Load + PT,loss (5.19)

Qsupply +
D∑
d=1

QDG(d) = QT, Load +QT,los (5.20)

Where,

Psupply and Qsupply denote active and reactive power originating in the main feeder,

respectively;

PT, Load and QT, Load represent the system’s total active and reactive load, respec-

tively;

PDG and QDG indicate DG-penetrated active and reactive power;

ND denotes total number of DG; and

PT,loss and QT,loss express total active and reactive system loss, respectively.
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5.4.2 Inequality Constraints

Two inequality constraint sets have to be satisfied. the boundary constraints imposed

on the system which consists of the voltage limits, and the DG technical constraints

which consists of DG size limits and DG power factor. They can be expressed as:

1. Limits to voltage:

Each bus in the system should be operated within the minimum and the maxi-

mum operating voltage values.

Vmin ≤ Vi ≤ Vmin (5.21)

Where Vmin and Vmin may be chosen as 0.95 p.u and 1.05 p.u, respectively

2. Technical constraints to DG:

• Firstly, Limiting the DG size so as not to exceed the power supplied by

the substation and restricting the power flow in feeders to ensure that they

do not approach their thermal limits are another set of the inequalities

imposed on the distribution system.

PDG,min ≤
ND∑
d=1

PDG(d) ≤ PDG,max (5.22)

QDG,min ≤
ND∑
d=1

QDG(d) ≤ QDG,max (5.23)

Where,

PDG,min and PDG,max represent a DG unit’s minimum/maximum allowed

output active power; and;

QDG,min and QDG,max represent a DG unit’s minimum/maximum allowed

output reactive power.

• Secondly, The DG power factor is allowed for values within upper and

lower limits determined by the type and nature of the DG to be installed
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in the distribution network.

PFDG,min ≤ PFDG ≤ PFDG,max (5.24)

More specifically, the power factor of DG ranges from maximum power

factor PFDG,max to minimum power factor PFDG,min.

Table 5.1: The parameter of the proposed method

The proposed Parameter IEEE- 33 Bus System IEEE- 69 Bus System
Max iteration 100 100

Max power factor 1 1
Min power factor 0.7 0.7

Max real Power (DG) 3000 KW 3000KW
Min real Power (DG) 300KW 300KW

Max reactive Power (DG) 1500 KVAR 1500 KVAR
Min reactive Power (DG) 150 KVAR 150 KVAR

5.5 Summary

This chapter discusses the mathematical formulation of the DG optimization problem.

In order to find the best location and size of DGs in radial distribution system.

Minimizing real power losses and improving voltage profile as well as preventing

voltage collapse by using voltage stability index are presented in this chapter. Equality

and inequality constraints are presented as well.



Chapter 6

TEST RESULTS AND DISCUSSION

6.1 Introduction

By employing both IEEE-33 and IEEE-69 radial distribution systems, the hybrid

combined power loss sensitivity (CPLS) and improved grey wolf optimizer (I-GWO)

methods will be tested for their performance capabilities. Also in this chapter, those

two methods’ efficiency and feasibility in allocating DG optimally for radial distri-

bution systems will be tested in comparison to well-known optimization approaches.

The simulations are conducted in MATLAB M-files, using MATLAB R2019b.

In the present study, we chose IEEE 33 and IEEE 69 bus radial distribution systems

for our test cases for three main reasons. Firstly, distribution networks are often

radially connected, and secondly, a distribution system’s radial nature contributes

to its simplicity and the cost-effectiveness of its configuration (Bouchekara, 2020).

A third consideration for choosing these two different sizes of systems was to use

them as suitable benchmarks for implementing our proposed strategy of evaluating

the algorithm’s robustness under a range of scenarios.

6.2 IEEE 33 Bus system

Figure 6.1 shows a standard 33-bus radial distribution system. This has been cho-

sen for the initial test system to show the proposed method’s effectiveness in multi-

objective function. There are 33 buses in the system and 32 branches featuring active

and reactive loads of 3.715MW and 2.3MVAR, respectively, operating with base values

of 10MVA and 12.66kV. Without DG installation, system power loss measures 210.99

kW, and 143.03 KVAR. Additionally, the system’s minimum voltage total 0.90378

p.u., the voltage stability summation total 25.54, and the voltage deviation summa-

tion total 1.80 p.u. Hamouda and Zehar (2006) present a detailed depiction for the

46



47

test system that includes data related to line and load. Further, multi-objective func-

tion is employed by utilizing CPLS and I-GWO for a population of 50 and maximum

of 100 iterations.

Figure 6.1: Single line diagram of a IEEE 33-bus system.

6.3 DG Identification for Allocation

In the simulation tests, CPLS analysis has been used to decrease search space and

provide an accurate solution toward DG localization recognition. Buses that have high

CPLS values are considered candidates for capacitor and DG installation. Figure 6.2

depicts candidate buses for the IEEE-33 bus system as 6, 8, 3, 28, 4, 5, 9, 24, 13, 10,

29, 31, 23, 20, 25, 30, and 2. CPLS has been utilized as a way to increase the search

efficiency for both the simulation time and the proposed optimization algorithm.

To measure how the different DGs affect the systems under study, three cases are

considered to assess voltage stability and DG allocation.

Case 1: System integration of Q-type-based DGs

The Q-type-based DG has been typically employed in distribution networks as a

means to enhance system capacity and voltage. This is accomplished by the injection

of reactive power into distribution systems (e.g., Synchronous motors, Capacitors,

and kVAR compensator). Table 6.1 depicts real and reactive power losses as well as

minimum voltage which occurs after different DG types are placed. As can be seen



48

Figure 6.2: Combined power loss sensitivity profile for IEEE 33 bus system

in the table 6.1, in a Q-type case, a 33-bus test system’s optimal placement location

is bus 8.

Figure 6.3: Voltage profile of IEEE-33 bus system.

Table 6.1 also shows that through the integration of Q-type-based DG in a distri-

bution system, there is a reduction in total active power loss of 120.38 KW, denoting

a power loss decrease of just under 43% and a minimum bus system voltage of 0.9390
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p.u.. Figure 6.3 depicts the IEEE-33 bus system voltage profile with/without place-

ment for various DG types. The figure indicates that Q-type DGs demonstrate a

more improved voltage profile in comparison to the Base case. Furthermore, as il-

lustrated in Figure 6.4, the system voltage deviation summation drops to 1.07, while

the system voltage stability index summation is raised to 27.9. Figure 6.5 presents

the convergence characteristics of the proposed hybrid technique for cases 1.

Table 6.1: DG Allocation in 33- bus system at different case studies

Base Case
Case 1

(Q-type)
Case 2

(P-type)
Case 3

(PQ-type)
DG Location - 8 6 6

DG Size
kW - - 2590.2 2559.7

kVAR - 1500 - 1761.9
PL

(kW)
210.99 120.383 111.027 67.868

QL
(kVAR)

143.03 82.549 81.682 54.834

Min bus voltage No. 18 33 18 18
Vmin
(p.u)

0.90378 0.93907 0.94237 0.95837

VSI 25.5 27.9 28.5 29.8
LR % 0.00 42.9 47.3 67.8

Case 2: System integration of P-type-based DGs

The P-type-based DG is currently the most popular in the industry for injecting

active power only into certain systems, e.g., photovoltaic (PV) systems. At bus 6,

the installed capacity value for single DGs is 2,590.2 kW. Table 6.1 presents the sizes

obtained for various DG types. From the table, losses after DG placement significantly

decrease (from 210.99 kW to 111.02 kW), giving a 47% reduction in power loss.

Moreover, if only P-type-based DG active power is injected, there is also an im-

provement in the voltage profile. Figure 6.3 depicts that the system’s minimum ob-

tained voltage has improved in comparison to the obtained voltage for DGs in Case

1. Additionally, the system voltage deviation summation drops to 0.92 as shown in

Figure 6.4, while the system voltage stability index summation rises to 28.5 . Figure
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6.6 illustrates the convergence characteristics of the proposed hybrid technique when

applied to the P-type case.

Figure 6.4: Summation of voltage deviation of different proposed cases for DG

Case 3: System integration of PQ-type-based DGs

PQ-type-based DGs provide better outcomes in comparison to either Q-type- or P-

type-based DGs, as the PQ-type injects both active and reactive power. Table 1

shows minimum voltages along with real/reactive power losses after placing various

DG types. From the table, bus 6 represents the 33-bus system’s optimal placement,

and there is an increase in the minimum voltage for the case PQ-type. Hence, it

can be inferred from Table 1 that in DGs which inject both kinds of power (active

and reactive), there is a greater reduction in losses in comparison with the other

mentioned DGs. Table 6.1 also presents that the losses in PQ-type DGs are lower

than the losses in the other mentioned DGs.

In addition to the above improvements, there is an improvement in the voltage

profile in PQ-type DGs, as illustrated in Figure 6.3. The figure shows that the min-

imum voltage obtained in the presented system is much better than that obtained

in the other mentioned types of DGs. Moreover, the system voltage deviation sum-

mation decreases to 0.56 (see Figure 6.4), while the system voltage stability index

summation rises to 29.8 . In Figure 6.7, the proposed hybrid technique’s convergence

characteristics in the IEEE 33-bus system PQ-type case units are shown.
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Figure 6.5: Convergence curve of the proposed method 33-bus system for case 1

Figure 6.6: Convergence curve of the proposed method 33-bus system for case 2

Figure 6.7: Convergence curve of the proposed method 33-bus system for case 3
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6.4 Validation

The results will be evaluated for the first system IEEE-33 bus system to prove the

efficiency of the proposed approach in DG allocation. The current study uses two

validation stages. In the first stage, the proposed technique is compared to that of

the original I-GWO, while in the second stage, the proposed technique’s optimization

is compared with other well-known optimization techniques.

6.4.1 Stage 1: Testing the effect of CPLS of the Proposed Technique in

Comparison to Original I-GWO

The proposed strategy has been evaluated in comparison to the original I-GWO to

determine the effectiveness of the proposed method’s sensitivity analysis. The results

of the simulation are conducted on an IEEE 33-bus system. In the test, Case 3 is

adopted, as it has more variables and is thus considered as the most complex. Table

6.2 shows a comparison of the proposed method and the I-GWO approach for values

of power loss reduction across 20 trials. In the I-GWO test system, all network buses

are assumed to be potential DG unit placement candidates. The sole exception to

this assumption is the first bus, which connects with the generation station’s main

feeder.

Table 6.2: A comparison between I-GWO and the proposed technique in terms of
power loss reduction

Method Average (KW)
Minimum (KW)

(Best)
Maximum (KW)

(Worst )
I-GWO 70.33 67.86 74.09

Proposed technique 68.46 67.86 70.90

After conducting the 20 trails, the average and best values for the proposed method

and the I-GWO approach indicate a better solutions convergence for the proposed

strategy than for the I-GWO. At the same time, the differences seen between the

proposed and the I-GWO approaches’ best and worst values point to the proposed

method’s superiority. While both the proposed and the I-GWO strategies share the

same best solution at 67.86 KW, the convergence curves indicate that the proposed

method had a faster convergence as shown in Figures (6.8a),(6.8b) .This convergence
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due to the reduction in the search space caused by CPLS.On the other hand, the

worst solution obtained by the proposed method and I-GWO technique was at 70.90

KW ,74.09 KW respectively as shown in (6.9a),(6.9b).

After carrying out 20 runs on the IEEE 33 bus system, we found that there is an 80%

chance for our proposed method to achieve the optimal solution of 67.86 KW, and a

20% probability for our approach to achieve results ranging between 68 KW and 70.9

KW, inclusive. However, the chance to obtain an optimal solution drops to 65% with

the I-GWO technique, while the probability for obtaining a local solution of 68 KW

to 74.09 KW is only 35%.

(a) The proposed technique (67.86) (b) I-GWO technique (67.86)

Figure 6.8: Convergence curve for the best solution in IEEE 33-bus system.

(a) The proposed technique (70.90) (b) I-GWO technique (74.09)

Figure 6.9: Convergence curve for the worst solution in IEEE 33-bus system.
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6.4.2 Stage 2: Validation of Proposed Technique in Comparison to

Well-known Optimization Methods

Tables 6.3, 6.4, and 6.5 summarize the results (e.g., DG size, DG location, minimum

voltage, total power loss) for both the proposed technique and some popular meth-

ods such as PSO, ALO, and WOA. Based on these summaries, it can be seen that

the proposed technique achieved better results in comparison to all other mentioned

methods. Moreover, as shown in the tables, when locating optimally-sized DGs in op-

timal locations, there is a notable decrease in total loss and improvements in voltage

profiles.

Table 6.3: Comparison between proposed results of 33-bus system for Case-1 and
other optimization techniques

WOA
(Reddy et al., 2017)

ALO
(VC et al., 2018)

Proposed method

DG Location 15 30 8
DG size (kVAR) 612.04 1258 1500

Vmin (p.u.) 0.9224 0.9165 0.93907
Power loss (KW) 183.93 151.37 120.383

Table 6.4: Comparison between proposed results of 33-bus system for Case-2 and
other optimization techniques

WOA
(Reddy et al., 2017)

ALO
(VC et al., 2018)

PSO
(Aman et al., 2013)

Proposed method

DG Location 15 30 7 6
DG size (kW) 1061 1542.67 2895.1 2590.2
Vmin (p.u.) 0.9327 0.9272 0.9501 0.94237

Power loss (KW) 133.5 125.16 114.89 111.027

Table 6.5: Comparison between proposed results of 33-bus system for Case-3 and
other optimization techniques

WOA
(Reddy et al., 2017)

ALO
(VC et al., 2018)

Proposed method

DG Location 15 30 6
DG size (kVA) 1255.89 1940.3 3017.4

Vmin (p.u.) 0.939 0.9386 0.95837
Power loss (KW) 108.4 78.43 67.868
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6.5 IEEE 69-Bus Test System

An IEEE 69-bus test radial distribution system is also considered here in order to

verify the proposed strategy’s effectiveness. As shown in Figure 6.10, the second

system comprises 69 buses and 68 lines, has its source at the first bus, and features

a total load of 3.80 MW/2.69 MVAR. Furthermore, the second test system functions

using a standard base voltage (12.66KV) along with standard base power (10MVA).

Prior to integrating the capacitors and DGs in the test system, there is an active

power loss of 224.99 KW in the system and the minimum bus voltage is at 0.9091

p.u. for bus 65. As well, the system voltage stability summation is at 61.21, while

the voltage deviation summation is at 1.83 p.u. Table B.1 shows the load and line

data for this system (Das, 2008).

Figure 6.10: Single line diagram of a IEEE 69-bus system.

6.6 DG Allocation Identification

In general, CPLS can be measured according to changes in active and reactive power

loss in relation to injected active/reactive power in the capacitors and DGs in a dis-

tribution network. Hence, buses that have high CPLS values are potential candidates

for capacitor and DG installation. As presented in Figure 6.11, candidate buses for

nearly half the system buses are: 57, 58, 7, 6, 61, 60, 10, 59, 55, 56, 12, 13, 14, 54, 15,
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53, 8, 64, 49, 11, 9, 17, 65, 16, 5, 48, 21, 19, 41, 63, 68, 34, 20 and 62. Here, CPLS

can be utilized for decreasing the total simulation time and the search agent in the

proposed optimization approach.

Figure 6.11: Combined power loss sensitivity profile for IEEE-69 bus system

An additional investigation is also considered in the present study that uses DG

outputs. The proposed hybrid approach is applied to a number of cases, as presented

in the following sections.

Case 1: System Integration of Q-type-Based DG

Table 6.6 presents reactive minimum voltage and power loss following Q-type-based

DG placement. Bus 61 is the optimal location in the 69-bus test system. Furthermore,

the total active power loss decreases to 152.04 KW for a drop of 32.4%, while bus

65 has the minimum bus system voltage of 0.9307 p.u.. As shown in Figure 6.12,

there is a significant enhancement of the voltage profile when the Q-type-based DG is

incorporated. Figure 6.13 shows the system voltage deviation summation drops down

to 1.50 p.u., while the system voltage stability index summation has increased up to

62.34,. Figure 6.14 presents the proposed hybrid method’s convergence characteristics

of the Q-type case.
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Table 6.6: DG Allocation in 69-bus system at different case studies

Base Case
Case 1

(Q-type)
Case 2

(P-type)
Case 3

(PQ-type)
DG Location - 61 61 61

DG Size
kW - - 1872.7 1828.5

kVAR - 1330 - 1300.6
PL

(kW)
224.99 152.041 83.222 23.168

QL
(kVAR)

102.197 70.535 40.568 14.410

Min bus voltage No. 65 65 27 27
Vmin
(p.u)

0.9091 0.9307 0.96829 0.97247

VSI 61.21 62.34 64.62 65.72
LR % 0.00 32.4 63 89.7

Case 2: System Integration of P-type Based DG

P-type based DG has been recently gaining in popularity. It is the preferred method

in the industry when injecting active power for radial distribution systems (e.g., PV).

Bus 61 shows the installed capacity value for a single DG as 1,872.7 kW. Table 6.6

presents the loss reduction and sizes for various DG types after placement. As can

be seen in the table, after placement of the DGs, losses decrease (from 224.99 kW to

83.222 kW), giving a 63% decrease in power loss. Additionally, the voltage profile is

enhanced when active power as P-type based DG is injected. Figure 6.12 depicts the

improvements in the system’s obtained minimum voltage in comparison with DG-

obtained voltage (as in Case 1). Figure 6.13 shows a reduction in the system voltage

deviation summation to 0.87, along with a 64.62 increase in system voltage stability

index summation. Figure 6.15 presents the proposed hybrid method’s convergence

characteristics for a P-type case.
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Figure 6.12: Voltage profile of IEEE-69 bus system.

Case 3: System Integration of PQ-type-Based DG

For the second test system, the PQ-type-based DG designates the optimal sizes and

locations for DG types utilizing the proposed technique. Table 6.6 presents a listing

of the obtained results. As can be seen, the PQ-type-based DG results are better

than those for either the Q-type or P-type. This is likely because PQ-type-based

DGs inject active and reactive power into the distribution network.

In Table 6.6, the minimum voltages and real reactive power losses are given for various

DG types after placement. As shown, bus 61 is the best placement in the 69-bus

system, as the minimum voltage has been enhanced to 0.9724 p.u. The results in

Table 6.6 also infer that employing a DG with the capability to inject active and

reactive power reduces losses in comparison to DGs that do not have that capability.

Additionally, the results indicate that the obtained DG size was found to be higher

for the PQ-type in comparison with obtained sizes for the other DG types. At the

same time, losses were lower in PQ-type-based DGs compared to the others which is

23.16KW.
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Figure 6.13: Summation of voltage deviation of different cases for DG for IEEE 69
system

Figure 6.12 shows an improvement in voltage profile for PQ-type DGs, indicating

that the obtained minimum voltage has been improved in comparison with that of

the other types of DGs. Figure 6.13 illustrates an enhancement of the system voltage

deviation summation (0.58), along with an enhancement of the system voltage stabil-

ity index summation (65.72). Meanwhile, Figure 6.16 depicts the proposed method’s

convergence characteristics of PQ-type case units in an IEEE 69-bus system. As

shown in the figure, the proposed method’s convergence curves indicate that the ap-

proach is a viable optimization strategy that can even determine an optimal solution

when the variables are increasing.

6.7 Validation

The proposed strategy will be evaluated for the second system IEEE-69 test system

both to compare the various IEEE test systems and to demonstrate the proposed

technique’s advantages. The current study uses two validation stages. In the first

stage, the proposed technique is compared to that of the original I-GWO, while in

the second stage, the proposed technique’s optimization is compared to those of some

popular optimization methods.
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Figure 6.14: Convergence curve of the proposed method 69-bus system at case 1

Figure 6.15: Convergence curve of the proposed method 69-bus system at case 2

Figure 6.16: Convergence curve of the proposed method 69-bus system at case 3
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6.7.1 Testing the effect of CPLS of the Proposed Technique in

Comparison to Original I-GWO

The structure proposed in this work utilizes a hybrid strategy comprising the improved

grey wolf optimizer and power loss sensitivity methods. The CPLS is considered

here as a way to decrease the search space and find the best solution for locality

recognition while avoiding local optima. The primary aim at this point is determining

CPLS effectiveness. The approach has already been tested in this study earlier on a

different IEEE system.The results of the simulation are conducted on an IEEE 69-bus

system. Case 3 is adopted, as it has more variables and is thus the most complex

of the three cases. In the I-GWO test system, all network buses are assumed to be

potential DG unit placement candidates. The sole exception to this assumption is the

first bus, which connects with the generation station’s main feeder.Table 6.7 shows

a comparison of the proposed method and the I-GWO approach for values of power

loss reduction across 20 trials.

Table 6.7: A comparison between I-GWO and the proposed technique in terms of
power loss reduction for IEEE-69 bus system

Method Average (KW)
Minimum (KW)

(Best)
Maximum (KW)

(Worst )
I-GWO 27.01 23.16 36.6

Proposed technique 23.32 23.16 24

After conducting the 20 trials, it can be seen that the proposed technique has a

lower potential for achieving a local solution compared with the I-GWO strategy. At

the same time, the clear differences between the proposed and the I-GWO approaches’

best and worst values point to the proposed method’s superiority. However, combining

the introduced CPLS and I-GWO techniques helps to balance the local and global

search methods, and deals appropriately with the local optima.

Figures (6.17a),(6.17b) show convergence curves for the best solution for both the

proposed technique and I-GWO technique in IEEE-69 bus at 23.16 KW.As shown in

Figure (6.18a),the worst solution of the proposed method is 24 KW, while it was 36.6

KW in case of I-GWO technique as shown in Figure (6.18b).
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(a) The proposed technique (23.16) (b) I-GWO technique (23.16)

Figure 6.17: Convergence curve for the best solution in IEEE 69-bus system.

(a) The proposed technique (24) (b) I-GWO technique (36.6)

Figure 6.18: Convergence curve for the worst solution in IEEE 69-bus system.

Based on the results on Figures (6.17) and (6.18) , The difference can be seen after

CPLS was installed. CPLS was able to reduce the search space of the optimization

problem as a result the proposed method was able to avoid the local solution as well

as arrive at the optimal solution faster.

Furthermore, after carrying out 20 runs on the IEEE 69 bus system, we found that

there is a 75% chance for our proposed method to achieve the optimal solution of

23.16 KW, and a 25% probability for results achieved by our strategy to fall between

23 and 24 KW, inclusive. Meanwhile, the chance for obtaining the optimal solution

drops down to 55% when the I-GWO approach is used. At the same time, we found
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that there is a 45% chance of remaining in a local solution of somewhere between 26

KW and 36.6 KW.

6.7.2 Validating Proposed Method in Comparison to Popular

Optimization Strategies

Tables 6.8, 6.9, and 6.10 summarize the results (e.g., DG size, DG location, minimum

voltage, total power loss) from both the proposed technique and some popular meth-

ods such as PSO, ALO, and WOA. Based on these summaries, Tables 6.8 and 6.9

there are small improvements can be seen . however, the proposed method achieved

better results in comparison to all other mentioned method in table 6.10.

Table 6.8: Comparison between proposed results of 69-bus system for Case-1 and
other optimization techniques

WOA
(Reddy et al., 2017)

ALO
(VC et al., 2018)

Proposed method

DG Location 61 61 61
DG size (kVAR) 1329.99 1329.9 1330

Vmin (p.u.) 0.9307 0.9307 0.93073
Power loss (KW) 152.06 152.064 152.04

Table 6.9: Comparison between proposed results of 69-bus system for Case-2 and
other optimization techniques

WOA
(Reddy et al., 2017)

ALO
(VC et al., 2018)

PSO
(Aman et al., 2013)

Proposed method

DG Location 61 61 61 61
DG size (kW) 1872.82 1872.82 2026.4 1872.7
Vmin (p.u.) 0.9683 0.9683 0.96 0.9682

Power loss (KW) 83.23 83.227 84.04 83.222
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Table 6.10: Comparison between proposed results of 69-bus system for Case-3 and
other optimization techniques

WOA
(Reddy et al., 2017)

ALO
(VC et al., 2018)

Proposed method

DG Location 61 61 61
DG size (kVA) 2217.39 2217 2243.8

Vmin (p.u.) 0.9724 0.9724 0.9724
Power loss (KW) 27.96 27.9 23.16

6.8 Scenarios for multi-objective function based weight factor values:

The objective function used in the present study is known as the multi-objective

function (MOF). In MOF, the optimization of three single-objective functions oc-

curs simultaneously, effectively maximizing line voltage stability while significantly

reducing power loss and enhancing the voltage profile. Each individual MOF term is

multiplied by a weight factor between (0,1), which is defined according to the impor-

tance of the term. For clarification purposes, I will now explain how weight factor

values impact the results.

To illustrate how weight factors of differing values (e.g., R1, R2, R3) can affect

MOF, we conduct a simulation using an IEEE 69 bus system. Note that the two

scenarios feature different values of weight factors. For our first test scenario, we

use case 2, as it is currently an industry favorite for power injection as active power,

such as photovoltaic (PV). In a situation without the installation of DG, the voltage

stability index registers as 61.21, the voltage deviation summation is around 1.83 p.u.,

and system power loss is approximately 224.99 KW.

In the first scenario, the primary system concern centers on power loss reduction.

Hence, the weight factor value of power loss reduction is 0.5, indicating its high

level of significance However, the weight factor for voltage stability maximization and

voltage deviation reductions is only half that of power loss reduction, or 0.25 for each

one individually. In applying the weight factor values, we see a decrease in losses

from 224.99 KW down to 83.22 KW, which represents a 63% reduction in power

loss. Additionally, the voltage stability index jumps from 61.21 up to 64.62, and the

voltage deviation total drops to 0.87. from 1.83 p.u.
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Unlike the first scenario, the system’s main concern for the second scenario is volt-

age stability. Accordingly, the weight factor value of voltage stability maximization

in this scenario is set at 0.5. Power loss reduction and voltage deviation reduction are

both set at 0.25, showing their lesser significance to the system. Under this scenario,

there is a drop in losses from 224.99 KW down to 98.9 KW. This represents a system

reduction loss of 56%, whereas the first scenario charted a reduction of 63%. Fur-

thermore, the objective of primary concern (voltage stability) in scenario two shows

only a slight increase to 65.51 in comparison to the objective of primary concern in

the first scenario (power loss reduction) which increased to 64.62. However, the slight

change still has an impact on the total voltage deviation, which edged up to 0.79 p.u.

in comparison to 0.87 p.u.

From these results, we can see that the voltage for the systems in both scenarios

is relatively stable, with all of the buses obtaining results within an acceptable range.

That having been said, it is still clear that scenario two added increased loss to the

system. Thus, these results support the values for the weight factors proposed in the

present study.

6.9 Summary

A multi-objective optimization strategy for determining optimal placement and sizing

of DGs was presented in this chapter. Three objectives were chosen for the optimiza-

tion problem: improvement of voltage profile, maximizing of system stability, and

minimizing of the system’s total real power loss. The adopted technique was used in

33-bus and 69-bus radial distributed systems. The results clearly showed the proposed

hybrid technique to be efficient as well as highly applicable in solving multi-objective

optimization problems related to DG allocation.
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CONCLUSIONS AND FUTURE RESEARCH

7.1 Conclusions

Power systems can be divided into three main subsystems, namely, generation, trans-

mission, and distribution. Of these three subsystems, distribution systems provide

power to the various commercial, industrial and domestic customers via remote gen-

eration stations, with the generated power being transferred (through high-voltage

transmission lines) to a load center. However, most distribution networks nowadays

are defined as “active”, which simply means that some of the power provided by these

systems is generated by distributed generator (DG) units within the distribution sys-

tem. As a relatively new addition to distribution systems, DG improves overall sys-

tem performance by reducing power loss and boosting system reliability and capacity.

The use of DG also lengthens the life of infrastructure and is more environmentally

friendly than conventional power sources. However, to achieve these benefits, the

Distributed Generators (DGs) must be placed at optimal locations and be optimally

sized. Therefore, the integration of DGs into distribution networks is essentially an

optimization problem formulated by system planner-designated constraints.

This study presented a novel approach aimed at finding the optimal sizing and

placement for DGs in a distribution system. The hybrid method developed in this

work combined the improved grey wolf optimizer (I-GWO) with power loss sensitivity

(CPLS), based on the simulation results the following may be concluded:

The CPLS sensitivity analysis introduced in the work was highly capable of de-

termining suitable candidate nodes. The overall aim was to include DG in the radial

distribution systems as a way to decrease search space in the optimization’s method-

ology.

The main reason for developing the hybrid strategy with I-GWO and CPLS was

to find optimal sizing and location for the IEEE 33 and IEEE 69 bus systems. The

66
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simulation results clearly demonstrated that the proposed algorithm could be applied

to determine both global and near-global best settings for control variables in IEEE

33-bus and IEEE 69-bus power systems. Moreover, the simulations revealed the

superiority of the proposed approach in comparison to other methods with the same

or similar objective.

Overall, the optimal sizing and location problem was solved for DGs involving

multi-objective functions. These include the three key aspects of improvements to

voltage stability, minimizing of power loss, and enhancement of voltage profile. More

specifically, the proposed strategy enhanced the voltage stability index in both of the

systems, pointing to an increase in the systems’ security levels. Loss reduction also

comprises a major objective function, with better results obtained for both systems

compared to other techniques when the proposed system was applied. Finally, voltage

deviation was reduced in both systems under this study’s novel approach, which is

an indication of power equality and improvements in the voltage profile.

This study compared different values for multi-objective weight factors, demon-

strating that the proposed weight factor values resulted in significant loss reduction

along with the maintenance of voltage within the acceptable range across all buses.

To validate the proposed approach, two standard distribution network IEEE 33-

bus and IEEE 69- bus systems employed, along with two validation stages. The first

stage compares the novel method with the I-GWO, and the second stage compares the

method’s optimization with some other popular optimization strategies. The results

indicate that the developed method give better results than the methods used for

comparison with regard to the required objective function. Furthermore, the results

showe that including PQ-type-based DGs in a system provides much better results in

comparison to the inclusion of either P-type-based or Q-type-based DGs. The study

results clearly demonstrate the proposed approach’s efficiency in determining optimal

sizing and location for DG.

7.2 Future Research

There are several potential directions in which the present research could be extended.

Some of these are listed below:
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• The developed strategy could be used to determine optimal ratings and locations

for multiple DGs.

• The approach developed in this thesis could be applied to improving I-GWO ex-

ploration and exploitation phases through hybridizing additional meta-heuristic

optimization methods.

• The multi-objective optimization problem presented in this work could be ap-

plied to minimize the substation total emission productions or substation total

electrical energy cost.

• The proposed strategy could also be utilized in other typical power system

optimization problems.
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Appendix A

IEEE 33 Bus System Data

Table A.1: A IEEE 33-Bus System Line and Load Data

Branch No. Sending Bus Receiving Bus R(ohm) X(ohm) PL(KW) QL(KVAR)

1 1 2 0.0922 0.047 100 60

2 2 3 0.493 0.2511 90 40

3 3 4 0.366 0.1864 120 80

4 4 5 0.3811 0.1941 60 30

4 5 6 0.819 0.707 60 20

6 6 7 0.1872 0.6188 200 100

7 7 8 1.7114 1.2351 200 100

8 8 9 1.03 0.74 60 20

9 9 10 1.044 0.74 60 20

10 10 11 0.1966 0.065 45 30

11 11 12 0.3744 0.1238 60 35

12 12 13 1.468 1.155 60 35

13 13 14 0.5416 0.7129 120 80

14 14 15 0.591 0.526 60 10

15 15 16 0.7463 0.545 60 20

16 16 17 1.289 1.721 60 20

17 17 18 0.732 0.574 90 40

18 2 19 0.164 0.1565 90 40

19 19 20 1.5042 1.3554 90 40

20 20 21 0.4095 0.4784 90 40

21 21 22 0.7089 0.9373 90 40

22 3 23 0.4512 0.3083 90 50

Continued on next page
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Table A.1 – continued from previous page

Branch No. Sending Bus Receiving Bus R(ohm) X(ohm) PL(KW) QL(KVAR)

23 23 24 0.898 0.7091 420 200

24 24 25 0.896 0.7011 420 200

25 6 26 0.203 0.1034 60 25

26 26 27 0.2842 0.1447 60 25

27 27 28 1.059 0.9337 60 20

28 28 29 0.8042 0.7006 120 70

29 29 30 0.5075 0.2585 200 600

30 30 31 0.9744 0.963 150 70

31 31 32 0.3105 0.3619 210 100

32 32 33 0.341 0.5302 60 40



Appendix B

IEEE 69 Bus System Data

Table B.1: A IEEE-69-Bus System Line and Load Data

Branch No. Sending Bus Receiving Bus R(ohm) X(ohm) PL(KW) QL(KVAR)

1 1 2 0.0005 0.0012 0.0 0.0

2 2 3 0.0005 0.0012 0.0 0.0

3 3 4 0.0015 0.0036 0.0 0.0

4 4 5 0.0251 0.0294 0.0 0.0

5 5 6 0.3660 0.1864 2.60 2.20

6 6 7 0.3811 0.1941 40.40 30.00

7 7 8 0.0922 0.0470 75.0 54.0

8 8 9 0.0493 0.0251 30.0 22.0

9 9 10 0.8190 0.2707 28.0 19.0

10 10 11 0.1872 0.0691 145.00 104.00

11 11 12 0.7114 0.2351 145.0 104.0

12 12 13 1.0300 0.3400 8.0 5.50

13 13 14 1.0440 0.3450 8.0 5.50

14 14 15 1.0580 0.3496 0.0 0.0

15 15 16 0.1966 0.0650 45.5 30.0

16 16 17 0.3744 0.1238 60.0 35.0

17 17 18 0.0047 0.0016 60.0 35.0

18 18 19 0.3276 0.1083 0.0 0.0

19 19 20 0.2106 0.0690 1.00 0.60

20 20 21 0.3416 0.1129 114.0 81.0

21 21 22 0.0140 0.0046 5.30 3.50

22 22 23 0.1591 0.0526 0.0 0.0

Continued on next page
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Table B.1 – continued from previous page

Branch No. Sending Bus Receiving Bus R(ohm) X(ohm) PL(KW) QL(KVAR)

23 23 24 0.3463 0.1145 28.0 20.0

24 24 25 0.7488 0.2475 0.0 0.0

25 25 26 0.3089 0.1021 14.0 10.0

26 26 27 0.1732 0.0572 14.0 10.0

27 3 28 0.0044 0.0108 26.0 18.60

28 28 29 0.0640 0.1565 26.0 18.60

29 29 30 0.3978 0.1315 0.0 0.0

30 30 31 0.0702 0.0232 0.0 0.0

31 31 32 0.3510 0.1160 0.0 0.0

32 32 33 0.8390 0.2816 14.0 10.0

33 33 34 1.7080 0.5646 19.5 14.0

34 34 35 1.4740 0.4673 6.0 4.0

35 3 36 0.0044 0.0108 26.0 18.55

36 36 37 0.0640 0.1565 26.0 18.55

37 37 38 0.1053 0.1230 0.0 0.0

38 38 39 0.0304 0.0355 24.0 17.0

39 39 40 0.0018 0.0021 24.0 17.0

40 40 41 0.7283 0.8509 1.20 1.0

41 41 42 0.3100 0.3623 0.0 0.0

42 42 43 0.0410 0.0478 6.0 4.30

43 43 44 0.0092 0.0116 0.0 0.0

44 44 45 0.1089 0.1373 39.22 26.30

45 45 46 0.0009 0.0012 39.22 26.30

46 4 47 0.0034 0.0084 0.0 0.0

47 47 48 0.0851 0.2083 79.0 56.40

48 48 49 0.2898 0.7091 384.70 274.50

49 49 50 0.0822 0.2011 384.0 274.50

Continued on next page
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Table B.1 – continued from previous page

Branch No. Sending Bus Receiving Bus R(ohm) X(ohm) PL(KW) QL(KVAR)

50 8 51 0.0928 0.0473 40.50 28.30

51 51 52 0.3319 0.1114 3.60 2.70

52 9 53 0.1740 0.0886 4.35 3.50

53 53 54 0.2030 0.1034 26.40 19.00

54 54 55 0.2842 0.1447 24.0 17.20

55 55 56 0.2813 0.1433 0.0 0.0

56 56 57 1.5900 0.5337 0.0 0.0

57 57 58 0.7837 0.2630 0.0 0.0

58 58 59 0.3042 0.1006 100.0 72.00

59 59 60 0.3861 0.1172 0.0 0.0

60 60 61 0.5075 0.2585 1244.0 888.0

61 61 62 0.0974 0.0496 32.0 23.0

62 62 63 0.1450 0.0738 0.0 0.0

63 63 64 0.7105 0.3619 227.0 162.0

64 64 65 1.0410 0.5302 59.0 42.0

65 11 66 0.2012 0.0611 18.0 13.0

66 66 67 0.0047 0.0014 18.0 13.0

67 12 68 0.7394 0.2444 28.0 20.0

68 68 69 0.0047 0.0016 28.0 20.0



Appendix C

List of Publications

The paper titled “ Optimal Planning of Distributed Generation Using Improved Grey

Wolf Optimizer and Combined Power Loss sensitivity” ,To be sent to IEEE of Elec-

trical Power and Energy System. In Press
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