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Abstract 

This study presents a sequential modelling framework of a mass evacuation 

decision support (MEDS) tool and develops countermeasures to improve mass 

evacuation processes. The study develops a large-scale traffic evacuation 

microsimulation model to design, test and evaluate contrasting evacuation 

scenarios, and evacuation improvement strategies, alternatively 

countermeasures. One of the notable contributions of this study is that it 

combines a flood risk and a traffic microsimulation model to assess evacuation 

operations under floods of different extremes. The microsimulation model uses 

evacuation demands obtained from a Halifax regional transport network model 

and considers a dynamic traffic assignment process to capture time-dependent 

traffic congestion propagation in the network. The study extends the 

microsimulation model by the inclusion of a transit network to meet the 

transportation needs of the transit-dependent population during evacuation. 

The study develops a Mixed Integer Linear Programming-based optimization 

model to identify marshal point locations and transit routes for a multimodal 

evacuation. The study leverages the simulation model to analyze further 

complexity, including vehicle collision-related traffic disruptions during 

evacuation. A combined Bayes theory and Monte Carlo simulation approach is 

adopted to determine the spatial and temporal distribution of collision hotspots 

and their occurrence during evacuation. The application of the developed 

modules has been instrumental in the design and implementation of 

countermeasures. The study designs, implements, and evaluates two strategic 

level countermeasures, namely staged and bus-based evacuation. The study 

innovates a fuzzy logic-based prioritization process for a staged evacuation 

based on the zonal vulnerability index. The study develops a Bayesian Belief 

Network-based vulnerability assessment model that provides a combined 

zonal vulnerability index considering geophysical, social and mobility 

characteristics. The study formulates a Knapsack optimization problem 

following a dynamic programming solution approach to allocate buses to 

evacuees. The uniqueness of the countermeasures developed in this research 

is that they ascertain a vulnerability-based prioritization of evacuees for 

evacuation. The countermeasures offer promising results in terms of 

evacuation time and network congestion improvements within the traffic 

microsimulation model. The MEDS tool will be helpful for emergency 

engineers and planners to understand potential impacts of wide-ranging 

magnitudes associated with a mass evacuation and plan mitigations 

proactively.      
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Chapter 1 

Chapter 1 Introduction 

1.1 Background and Motivation 

Evacuation is an important process to collectively move people from an area 

endangered by a natural or manmade disaster using multiple transportation 

modes and evacuation routes. The last several decades are known for many 

record-breaking hurricanes and evacuation events worldwide. Hurricane 

Katrina in 2005 was a Category 5 Atlantic Hurricane which made a landfall at 

Hallandale Beach and mainly devasted the city of New Orleans and adjacent 

areas. Katrina evacuation was criticized as unsuccessful by many stakeholders 

as it was poorly planned; for instance, the transit dependent population did not 

receive adequate attention in evacuation planning (Renne et al., 2011). 

Approximately one-third population of the city did not evacuate for several 

reasons, including lack of access to reliable transportation modes (Litman, 

2006; Renne and Mayorga, 2018). During Hurricane Rita in 2005, 3 million 

people evacuated from Louisiana and Texas creating a 100-mile-long traffic 

queue that left many people stranded on the roads for 10-12 hours and caused 

people to run out of fuel (Litman, 2006; Blumenthal, 2005). The estimated 

automobile evacuation time along the South Carolina Coast during Hurricane 

Florence was 36 to 48 hours (Marshall, 2018). Hurricane Florence caused more 

than 42 deaths and almost $50 billion USD economic damages in North and 

South Carolina and Virginia. The highest economic damage was caused by the 

Hurricane Katrina and Hurricane Harvey, which was $125 billion USD for 

each. These events resulted in mass evacuations, for example, in the state of 

Louisiana, around 1.7 million people evacuated during Hurricane Katrina 

2005, while in Florida 6.5 million people were under mandatory or voluntary 
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evacuations during Hurricane Irma 2017. Over 1.7 million people were 

evacuated from North and South Carolina and Virginia due to Hurricane 

Florence. Very recently, Hurricane Delta and Hurricane Laura hit the 

northern Gulf as Category 2 and Category 4 respectively with record surge and 

high wind. Hurricane Delta unleashed 9-foot surge and 16-inches of rain this 

year. 

The natural and manmade disasters are not uncommon in Canada. In May 

2019, the Chuckegg Creek wildfire spread into northern Alberta, Canada and 

grew triple in size in fewer than 24 hours. Around 3,000 people were told to 

evacuate from the affected area and be away for at least 72 hours. Eventually, 

the fire burned through 99,250 hectares of North Alberta land and destroyed 

over a dozen of homes (Short, 2020). One of the most significant and costly 

disasters in Canada is the Fort McMurray wildfire which caused a rapid 

evacuation of 88,000 people and $3.5 billion USD in insured losses (Mamuji, 

and Rozdilsky, 2019). While the West Coast of Canada is at risk of catastrophic 

wildfires, communities on the East Coast are vulnerable to hurricanes and 

floods. For example, Halifax has been imperiled by several catastrophic 

natural disasters, including Hurricane Juan 2003 and Hurricane Dorian 2019. 

The storm surge recorded during Hurricane Juan was between 2.04m and 

2.11m. It caused eight fatalities and over $300 million CAD in damage across 

parts of Atlantic Canada (Fogarty, 2003). Hurricane Dorian caused a crane to 

collapse onto a building that was under construction, cracking the crane in 

half. The hurricane left 80% of customers of Nova Scotia Power in the province 

without electricity (The Canadian Press, 2019). Historically, Halifax was also 

devastated by an explosion in 1917 when a French Cargo ship collided with a 

Norwegian vessel in a strait connecting upper Halifax Harbour to Bedford 

basin. Approximately 2000 people died and 9000 were injured in this disaster 

(The Editors of Encyclopaedia Britannica, 2008). Large-scale evacuations due 

to disasters create miles of traffic congestions in the network. In case of certain 
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evacuation cases, the condition worsens due to the lack of adequate planning, 

vehicle collisions and incidents as occurred during Hurricane Katrina, 

Hurricane Rita, Hurricane Irene, and Sandy. During Hurricane Harvey, 

people who chose not to evacuate trapped in their residents as there were no 

access points available to rescue them due to flooding. It is evident that 

evacuation is a process consisting of multiple interrelated aspects and 

therefore, there is a need to systematically understand the intricacies around 

evacuations for better preparedness and response during any disaster.     

Evacuation itself is a complex process. Although a mass evacuation is an 

uncertain event, traffic models can be an efficient tool to understand and 

analyze an evacuation operation. Information obtained from these models can 

assist in emergency planning and decision-making process. However, 

evacuation modelling is sophisticated as the evacuation process is susceptible 

to multiple disruption risks in the network. Moreover, other parameters, 

including network structures, vulnerable populations, and resource 

constraints are of concern when planning a mass evacuation. For example, the 

Halifax Peninsula in Canada has only five exit/entry points which poses threat 

to the network itself. This region is on hurricane path and susceptible to 

flooding. Affluence and poverty co-exist in this area. Being a historical city with 

narrow roads, the area faces mobility challenges during peak hours. Therefore, 

people exposed to geophysical, social, and mobility vulnerabilities in the 

peninsula may need prioritized evacuations or assistance with 

transportations. For example, evacuees with no vehicles may need to be 

evacuated first and it may require deploying other available modes in 

combination with automobiles for transit-dependent population and those who 

do not have easy access to personal vehicles. Particularly, transit and school 

buses are important not only for arranging transportation for those in need but 

also for best utilizing the network capacity and minimizing traffic congestions 

in the network. One of the successful utilization of transits was in the 
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evacuation of the World Trade Center and its surrounding area due to the 9/11 

terrorist attack in New York (Cavusoglu et al., 2013). Although the transit 

needs have been realized, it is still the most neglected element of evacuation 

planning (Clark and Habib, 2010). However, it urges to explore the 

unaddressed topics of a mass evacuation to understand its complex process. 

Therefore, there is a need of a flexible evacuation decision support tool that 

considers disruptions, and uncertainties to provide a holistic view to 

evacuation planning. 

To articulate a realistic and a comprehensive evacuation scenario within the 

evacuation modelling framework, it is imperative to capture multi-layer risks 

and uncertainties associated with a mass evacuation. The existing evacuation 

studies explored different challenges in evacuation independently, such as 

traffic congestions (Naghawi and Wolshon, 2011), road network disruptions 

due to explosion (Bae et al., 2014), among others. On the other hand, several 

researchers (Li et al., 2012a; Kaisar and Parr, 2012; Wang et al., 2014) 

evaluated different strategies towards improving evacuation times and traffic 

congestions in the network. However, most of these studies are automobile-

based, and experimental in nature, focused on highway corridors or small area 

evacuations. These studies did not explicitly consider traffic disruption risks 

and uncertainties in evacuation analysis. A large-scale traffic evacuation 

microsimulation model appears to be advantageous to address the current 

modelling issues as it is capable to track each vehicle or agent evacuating 

through the network, capture continuous changes in traffic conditions and the 

resulting driver’s routing policies through implementing a dynamic traffic 

assignment (DTA) process. A DTA-based traffic microsimulation model allows 

the manifestation of multi-faceted evacuation operations in the network. 

However, evacuation scenario testing considering different types of traffic 

disruptions and vulnerabilities requires further modelling efforts, including 

the development and coupling of multi-layer modules within a robust 
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evacuation modelling framework. The coupling of different evacuation modules 

ensures that the impact of an evacuation parameter is carried forward to the 

estimation of other interrelated parameters. Moreover, it widely opens the 

scope of each module for other large-scale modelling applications when 

combining within a robust evacuation modelling tool. For example, a flood risk 

model can be combined with a traffic simulation model to estimate the flooding 

related impacts on overall evacuation operation in the network. The outcome 

of the modules can further inform different planning decisions and 

countermeasure building process. Literature suggests that without any 

countermeasure applied, conventional evacuation generally associates 

spontaneous behavior of evacuees leading to disorganization and consequently 

to a prolonged and/or incomplete evacuation. Therefore, it prompts a more 

efficient evacuation system, particularly for areas that contain vulnerable 

populations who are at high-risk and need a priority-based evacuation. This 

study considers two countermeasures, namely staged and bus-based 

evacuation. Staged evacuation is a useful tool to maintain a priority-based 

entry of evacuation traffic to the network and thereby minimizes traffic 

congestions and evacuation times. The latter countermeasure considers transit 

and school buses for evacuation through developing an all-mode evacuation 

scenario. The countermeasures developed in this research ascertain a 

vulnerability-based prioritization of evacuees during a mass evacuation.  

In summary, it is evident that evacuation is convoluted by many factors of 

different levels and impacts, and it warrants the development of a 

comprehensive evacuation decision support tool that combines multiple 

modules to represent multi-layer complexities associated with a mass 

evacuation operation. The research addresses the current modelling issues by 

developing the abovementioned core components following cutting-edge 

modelling approaches and combining them within the proposed holistic 

evacuation modelling framework.     
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1.2 Objectives 

The overall goal of this research is to develop a comprehensive framework for 

a mass evacuation decision support tool that combines multiple modules to 

address multilayer complexities in assessing contrasting evacuation and 

countermeasure scenarios. To achieve the goal, the study would accomplish the 

following specific objectives. 

1. To conceptualize a framework for mass evacuation decision support 

tool. 

2. To develop a multimodal traffic evacuation microsimulation model 

that considers a dynamic traffic assignment process. 

3. To expand the mass evacuation decision support tool to incorporate 

a multitude of risks including vehicle collision. 

4. To develop countermeasure scenarios considering vulnerabilities to 

improve mass evacuation processes. 

Objectives 1, 2, and 3 are addressed in chapter 4, 5, and 6. Objective 4 

regarding countermeasures is explored in chapter 7, 8, and 9.  

1.3 Significance 

This study contributes to the field of evacuation research focusing on 

evacuation modelling that accounts for multi-layer complexities in evacuation 

scenario analysis. The study aims to resolve the existing evacuation modelling 

issues and ascertain vulnerability-based prioritization of the affected 

population for evacuation when evaluating countermeasure scenarios. This 

research develops an evacuation decision support tool that provides wide-

ranging flexibility to test and evaluate contrasting evacuation scenarios. The 

tool would help emergency planners better prepare for a mass evacuation of 
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the city and possibly save lives. Emergency planners can use the tool to change 

different evacuation parameters to create numerous evacuation scenarios to 

understand the challenges and develop plans to accelerate evacuation efforts. 

The tool will not only identify traffic operation challenges but also explore the 

variables of interests, and improvement strategies. Planners can test and 

evaluate different strategies such as setting all lanes outward from the 

evacuation point to the destination, changing traffic signal timing, optimizing 

marshal point locations for bus evacuation, among others. The study considers 

the Halifax Peninsula, a Canadian coastal community, as a case study to 

demonstrate the efficacy of the proposed evacuation modelling tool. The 

Halifax Peninsula has only five exit points which poses risk to the network 

itself and makes it vulnerable during a disaster. Moreover, the peninsula's 

narrow roads and lack of sufficient highways would make an evacuation 

particularly difficult. Although, this research demonstrates the successful 

application of the evacuation decision support tool for Halifax, the scenarios 

could be adapted to create simulations useful to planners in other parts of the 

country. 

1.4 Thesis Structure 

This thesis is comprised of ten chapters. Chapter two provides an overview of 

evacuation modelling, reviews the relevant studies, including evacuation 

behavior modelling, evacuation operation optimization and simulations, and 

countermeasure development. This chapter, through an extensive literature 

review, identifies the research gaps followed by stating research questions and 

concluding remarks.    

Chapter three discusses the conceptual framework of a mass evacuation 

decision support (MEDS) tool. The chapter describes different modules of the 
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tool and their roles in incorporating risks and uncertainties within the 

evacuation modelling framework.   

Chapter four focuses on the traffic microsimulation modelling of evacuation 

scenarios considering floods of different extremes. The chapter includes a 

synthesis of literature review in the field of traffic evacuation simulations to 

identify the room for methodological contributions. It presents a sequential 

modelling approach to combine a Halifax road network and a flood risk model 

with a traffic evacuation microsimulation model. It also describes the 

development process for each component. Furthermore, the chapter involves a 

discussion on the model results such as evacuation times, traffic congestions, 

evacuation completion and network performances for three flooding related 

evacuation scenarios. 

Chapter five explores multimodal evacuation. Transit buses are utilized in 

combination with automobiles to meet the transportation needs of the transit-

dependent population during evacuation. It first develops a Mixed Integer 

Linear Programming (MILP) model to optimize marshal point locations and 

transit routes to inform traffic microsimulation model for multimodal 

evacuation scenarios. The chapter presents an analysis of multimodal 

evacuation results and highlights the potential adaptive capacity of buses that 

can be used to accommodate for evacuees shifted from other modes of 

transportation. 

Chapter six presents a framework of traffic evacuation microsimulation 

modelling that accounts for network disruptions due to the risks inherent to 

traffic operation such as vehicle collision. The chapter presents a coupling of 

collision prediction and traffic microsimulation model to test and evaluate five 

different evacuation scenarios considering uncertain traffic disruptions. 

Finally, the chapter discusses the scenario outcomes and includes a conclusion.  
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Chapter seven presents a framework of vulnerability assessment modelling in 

the context of a mass evacuation. The chapter demonstrates a coupling of a 

flood risk model, a population synthesis, and the traffic microsimulation model 

to incorporate geophysical, social, and mobility characteristics in zonal 

vulnerability assessment. It identifies the factors influencing vulnerabilities 

and discusses the variations in vulnerabilities across the study area.  

Chapter eight presents the traffic microsimulation of a countermeasure, 

namely “staged evacuation”. The chapter presents a fuzzy logic-based staged 

evacuation model that informs a staged evacuation scenario within the traffic 

microsimulation model. The chapter also includes an evacuation scenario 

analysis when no coordination or countermeasure is applied. It presents a 

comparative analysis of evacuation as well as network performances for both 

simultaneous and staged evacuation scenarios. The novelty of this 

countermeasure is that it develops a prioritization process for staged 

evacuation. The chapter provides policy insights highlighting the need of 

integrating other different countermeasures with staged evacuation. 

Chapter nine describes a countermeasure that involves transit and school 

buses in combination with private cars in evacuation operations and is known 

as “bus-based evacuation”. The chapter presents an optimization model to 

allocate transit and school buses to evacuees based on the vulnerabilities that 

they are exposed to. It discusses the improvement in evacuation times and 

network congestion due to the inclusion of transit and school buses in 

combination with passenger cars.  

Finally, chapter ten includes a summary of the key research findings, and 

policy recommendations, a list of contributions, and offers insights towards 

future research directions. 
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Chapter 2 

Chapter 2 Literature Review 

2.1 Introduction 

This chapter synthesizes evacuation studies to provide an overview of 

evacuation research and modelling efforts made to date and to identify the 

gaps in this research field for contributions. Evacuation research has evolved 

in multiple directions and developed numerous evacuation models to predict, 

optimize, and simulate different aspects of evacuation events. The literature 

review in this chapter explores various evacuation research directions, 

modelling techniques utilized, and evacuation improvement strategies 

developed. A set of broader research questions are identified based on the 

literature review in this chapter. In addition to this literature review, each 

chapter onwards includes the review of existing evacuation studies to identify 

the specific gaps and enable methodological contributions.  

2.2 An Overview of Evacuation Research and Modelling 

Extreme weather events such as hurricane and flooding have become 

increasing risks in many coastal cities world-wide. Natural disaster has 

increased threefold since 1975 and the cities have faced enormous risks from 

Hurricane Katrina, Hurricane Rita, Hurricane Irma, Hurricane Harvey, 

Hurricane Florence, and Hurricane Michael. Hurricane Dorian, a Category 5 

Atlantic Hurricane, hit the Bahamas in 2019. It transitioned to an 

extratropical cyclone and strike Nova Scotia. About 80% of NS residents were 

without power and uprooted trees and fallen crane blocked major 

transportation routes. The most damaging NS hurricane in last century is 
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Hurricane Juan that unleashed the highest storm surge (Forbes et al., 2009). 

Significant research on weather forecast is accomplished. There are two 

weather forecast models such as European model known as European Center 

for Medium-Range Weather Forecasts (ECMWF), and American model which 

is called Global Forecast System (GFS) model. The models reliably forecast 

hurricane landfall in advance of 10 and 16 days, respectively. The forecast is 

useful to reduce risks, enhance emergency preparedness, and response. 

Evacuation is an effective mitigation measure during catastrophic events, be 

it natural or human-made. Mass evacuation research has recently gained 

attention and is evolving in multiple directions, including evacuation behavior 

analysis, and traffic evacuation operations. Evacuation behaviour analysis 

includes multiple resolutions of evacuation dynamics such as evacuation 

decisions, social network impacts, and mobilization time (Sadri et al., 2013; 

Sadri et al., 2017; Lindell et al., 2020). Collective evacuation decisions yield 

evacuation demand which is one of the key determinants influencing traffic 

evacuation operations. Significant studies focused on evacuation behaviour 

analysis such as several models (Hasan, et al., 2011; Lazo et al., 2015; Sadri et 

al., 2014; Sadri et al., 2015; Yang et al., 2016; Cheng et al., 2011) were 

developed to explore evacuee’s behavior and their evacuation decisions in 

response to an evacuation order. These studies explored how people with 

different socioeconomic characteristics decide to evacuate, choose their 

evacuation modes and destinations in response to an emergency evacuation 

order. Alawadi et al. (2020) developed an evacuation model to identify the 

influencing factors in making partial and full evacuation decision by 

households and found several influential factors, including precise landfall 

location, age and family bond, and household types. These studies revealed 

that an evacuation involves spontaneous behavior of evacuees that result in a 

sudden spike in traffic demand in the network. However, the transport 

network is not designed to accommodate for the resulting mammoth traffic 
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fleets. Furthermore, natural disasters are rare; hence, difficult to observe 

behavioural response. That being said, simulation technique is an effective tool 

to generate an understanding of the system responses. In the early stage of 

evacuation studies, several evacuation times estimate models were developed 

such as NETVAC (Sheffi et al., 1982), MASSVAC (Hobeika and Jamei, 1985; 

Hobeika and Kim, 1998), OREMS (Rathi and Solanki, 1993), and IMDAS (Han 

and Franzese, 2001). These models were developed at macroscopic level and 

are limited to specific emergency scenarios such as nuclear emergency. On the 

other hand, with the benefits of innovations in modern technology and the 

advancement in hardware computation ability, traffic microsimulation models 

have recently gained attention in evacuation studies. A study by Longo (2010) 

signified the use of simulation approach and models in emergency 

management. The author suggested that simulation forms a key method that 

enables understanding the complexity of a natural systems involved. Recent 

studies developed optimization (Sayyady and Eksioglu, 2010; Goerigk et al., 

2014; Kulshrestha et al., 2014), cell-based network optimization (Liu et al., 

2006; Li and Han, 2015), traffic simulation (Church and Sexton 2002; Zou et 

al., 2005; Li et al., 2012b), agent-based simulation (Wang et al., 2016; Chen 

and Zhan, 2008; Yu et al., 2018), and analytical simulation models (Chen et 

al., 2007; Jha et al., 2004) for testing and evaluating evacuation scenarios. A 

bunch of the abovementioned simulation studies adopted traffic 

microsimulation approaches; however, they predominantly focused on small-

scale simulation such as corridor and small area evacuation which warrants 

the development of a city-scale traffic evacuation microsimulation model that 

is capable to anticipate dynamic traffic diffusion and routing policies. A 

dynamic traffic assignment (DTA) module is found advantageous to represent 

time-dependent traffic congestion propagation, dynamic route choice behavior, 

and to process network paths for evaluating traffic operations (Abdelghany et 

al., 2000; Mahmassani, 2001; Peeta and Ziliaskopoulos, 2001). Moreover, the 
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existing studies modelled congested but undisrupted evacuation traffic flows 

while transport network is susceptible to uncertain disruption risks due to 

disasters such as hurricane, flooding, explosion, and traffic operation related 

disruptions, including vehicle collisions (Sohn, 2006; Tang and Huang, 2018; 

Bae et al., 2014). Any network disruption may significantly affect trave time 

reliability, prolong the evacuation time, and cause casualties (Li and Ozbay, 

2015; Mostafizi et al., 2017), which highlight the importance of assessing 

evacuation operations in combination with traffic disruptions. Further 

complexity of evacuation process comprises of the vulnerable population who 

might need prioritized evacuation or assistance with transportation. 

Hurricane Katrina evacuation unfolded the consequences that might result 

from evacuation planning without the consideration of the vulnerable 

population, for example, who do not have access to transportation. Moreover, 

Hurricane Rita evacuation revealed that people with their personal vehicles 

are also vulnerable at some extent given the vehicle incidents due to fuel 

shortages, and engine failure (Litman, 2006; Li and Ozbay, 2015). 

Furthermore, people who have a low income, living in a mobile house at a 

densely populated and geographically high-risk area also belong to the group 

of the vulnerable population (Wood et al., 2010; Smith et al., 2006). Therefore, 

vulnerability assessment considering social, geophysical, and mobility 

challenges needs to be an integral part of the evacuation planning. To 

holistically analyze evacuation planning process, it urges to consider 

transportation needs, social and other vulnerabilities, and traffic disruptions 

within a flexible mass evacuation decision support tool. 

Consideration of countermeasure is also vital in evacuation planning. 

Evacuation research has also been evolved around traffic operation 

management, including the development and implementation of evacuation 

countermeasures. Several studies focused on evacuation route planning and/or 

in combination with countermeasures such as contraflow. Contraflow involves 
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turning one or more inbound lane(s) towards outbound to increase the roadway 

capacity. Cova and Johnson (2003) developed a minimum cost flow problem 

that determine optimal lane-based evacuation routing plan in a complex 

network to minimize the evacuation time. They used a mixed-integer 

programming platform to solve the proposed optimization problem and utilized 

PARAMICS to assign the evacuation demand in a sample network. Han et al. 

(2006) analyzed the evacuation routing methods within DYNASMART-P. This 

tool adopts a simulation approach where the author evaluated different 

scenarios such as nearest exit static routing, Interstate Highway biased static 

routing, one destination dynamic routing, and nearest exit dynamic routing. 

The results of these simulations found that specifying one destination but 

allowing for dynamic routing was the best method to evacuate the entire town 

of 382,000 people in four hours (Han et al., 2006). Wolshon et al. (2005), and 

Urbina and Wolshon (2003) highlighted the possible strategies and flexibility 

on the highway evacuation routes with multi-lanes facility. For example, one 

of the inbound lanes could be reversed and used as an access for emergency 

services if needed (Fries et al., 2011; Wolshon et al., 2005). As an extension of 

these studies, Fries et al. (2011) also examined the Interstate I-26 Highway 

evacuation route in combination with a contraflow and considered it to be the 

most effective evacuation route. Although traffic operation research 

contributions are abundant, only few studies investigated strategic level 

countermeasures. Particularly, developing strategies for a large network that 

may suffer from time-varying different levels of severity during an evacuation 

is of paramount importance. Staged evacuation involves sequencing of zones 

based on the priority needs for evacuation. This strategy can also control traffic 

inflows in the network, best utilizes the network capacity and thereby 

minimizes congestion level. A successful implementation of this 

countermeasure would require multilayer planning efforts to address different 

issues such as whom and how to prioritize for staged evacuation. There is a 
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growing interest in studying nature, extents, procedures, and protocols in 

relation to staged evacuation. The existing staged evacuation studies (Zhang 

et al., 2014; Chiu et al., 2008; Mitchell and Radwan, 2006; Sbayti and 

Mahmassani, 2006; Chen, 2008) mainly focused on reducing network clearance 

time and improving evacuation and network performance. They mostly used 

one or two of the following criteria for prioritization of areas: the distance of a 

zone from the source of a threat, population density, destination, and shelter 

requirements. However, different groups of people in a region suffer from 

natural disasters disproportionately due to their varying socio-economic 

characteristics and geographical locations. During a natural or manmade 

disaster, people exposed to different types of vulnerabilities receive evacuation 

assistance to differing degrees. During Hurricane Katrina in New Orleans, 

36% people did not evacuate due to having no cars, limited direct access to 

transportation and a lack of an effective planning to assist this group of people 

for evacuation. Therefore, it is of utmost importance to prioritize people for 

evacuation based on the vulnerabilities they are exposed to. For example, 

downtown of a city may require a longer clearance time due to the 

concentration of the economic and population growth centers and this area may 

need to be prioritized as first for evacuation. Furthermore, although the 

importance of transit in evacuation is realized since Hurricane Katrina, it is 

yet the most neglected and underutilized resources in meeting the 

transportation needs of the vulnerable population as well as in managing 

traffic demand in the network during a mass evacuation. Majority evacuation 

studies mentioned above focused on an auto-based evacuation. Several studies 

(Naghawi and Wolshon, 2011; Yang et al., 2018, Khulshresta et al. 2014; 

Sayyady and Eksioglu, 2010; Bish, 2011; Goerigk et al., 2014) developed 

multimodal evacuation microsimulation and optimization models to evaluate 

the role of transit system in evacuation. However, when considering a mass 

evacuation, all modes available in the network, particularly, transit and school 



 

 

18 

  

buses may need to be deployed to evacuate a large group of population. The 

existing studies paid too little attention on the details of how all available 

modes can be optimally employed for evacuating residents based on their 

urgency, which warrants the development of a systematic process of bus 

allocation for evacuation to determine the optimum auto-bus composition in 

the network. 

2.3 Gaps in Existing Literature  

The literature review above presents a brief overview of wide-ranging 

evacuation modelling technique utilized in assessing contrasting evacuation 

scenarios. The chapter also reviewed countermeasure studies that 

predominantly emphasize on the highway capacity and traffic flow 

improvements in the network. It is evident from the literature review that 

despite the recent advancement in the field of traffic simulations, traffic 

microsimulation models are limitedly used in large-scale mass evacuation 

studies. The existing evacuation simulation studies involve hypothetical 

and/or small-scale network, conduct corridor-based evacuation analysis, and 

investigate different evacuation facet(s) sparsely using several independent 

evacuation modelling components. Moreover, the modelling scopes in these 

studies are kept within the auto-based evacuation and limited to specific 

scenario analysis. Although the significance of transit and school buses in 

evacuation has been realized since Hurricane Katrina 2005, most of the 

existing evacuation plans across North America rarely address the role of all 

modes in the evacuation plan (TRB, 2008). This research aims to develop a 

large-scale multimodal traffic evacuation microsimulation model utilizing a 

dynamic traffic assignment (DTA) procedure. The DTA module captures 

driver’s route choices in response to uncertainty and risks occurrence during 

the evacuation. In case of a mass evacuation, the overall evacuation process is 

convoluted by many factors and the operation may be susceptible to multilayer 



 

 

19 

  

risks such as flood related network connectivity losses, network constraints, 

uncertain network disruptions and resource limitations. Although different 

types of traffic disruptions and uncertainties have the potential to significantly 

influence the evacuation outcomes, literature review revealed that evacuation 

modelling very often overlooked these important aspects when assessing 

evacuation scenarios. The central contribution of this study is that it develops 

a mass evacuation decision support tool which is flexible to incorporate 

multiple types of disruptions and uncertainties to assess mass evacuations. 

This study utilizes a flood risk model that follows a digital elevation modelling 

approach to simulate flooding extents over a region. The model identifies the 

network links prone to inundation for a traffic microsimulation model. 

Moreover, this research develops a vehicle collision prediction model following 

a combined Bayes theory and Monte Carlo simulation approach to identify 

potential collision hotspots where the network disruptions is most likely to 

occur.  

This chapter also discusses the studies focusing on countermeasures and 

asserts that the countermeasure, namely staged evacuation is limitedly 

addressed in the existing evacuation studies. The literature review suggests 

that there is a clear gap in developing a prioritization process for a staged 

evacuation. This study develops a fuzzy logic-based prioritization process to 

test a staged evacuation scenario within the traffic evacuation microsimulation 

model. A Bayesian Belief Network-based vulnerability assessment model is 

developed to inform prioritization process in this study. Lastly, a 

countermeasure that involves all modes, particularly transit and school buses 

in evacuation is absent in literature. There is a need of rolling transit and 

school buses in evacuation that would efficiently manage traffic demand and 

best use the network capacity; however, it has remained as the discussion topic 

for several decades. Therefor, it is important to explicitly model a bus-based 

evacuation. As mentioned earlier, either most of the evacuation studies are 
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auto-based or focused on only the transit-dependent population. Moreover, the 

existing optimization model for bus allocation suffer from the exponential 

complexity and do not consider the priority needs of all evacuees within the 

optimization process. This research aims to develop an optimization model 

following a dynamic Knapsack algorithm to allocate transit and school buses 

to evacuees based on varying vulnerabilities that they are exposed to. The 

study proposes a dynamic programming to overcome the exponential 

complexity encountered by the existing evacuation optimization model.  

In summary, although significant number of studies on different aspects of 

evacuation are conducted independently, a robust evacuation modelling tool is 

absent that can be leveraged to combine multi-layer evacuation modules to 

holistically assess evacuation and countermeasure scenarios considering 

multiple aspects.    

2.4 Research Questions and Concluding Remarks 

The above discussion asserts that evacuation has significantly been researched 

in multiple directions. However, representing multi-layer complexities of 

evacuation dynamics and building capacity to combine different evacuation 

aspects require further investigation. Particularly, this thesis looks forward to 

addressing the following research questions. 

1. How to develop a holistic evacuation decision support tool that 

captures multi-layer uncertainty and risks in evacuation scenario 

testing and evaluation? 

2. How the tool can be leveraged to inform countermeasure scenario 

building process while ascertaining a vulnerability-based 

prioritization of evacuees for evacuation and resource allocations?  
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This study aims to address above research questions. The study proposes a 

state-of-the-art mass evacuation decision support (MEDS) tool which is 

expected to reasonably address complexities in assessing different evacuation 

and countermeasure scenarios. The literature review on multiple modules is 

further elaborated to identify modular-specific research gaps and the room for 

methodological contributions in the corresponding chapters onwards. The next 

chapter presents a conceptual framework of the proposed evacuation decision 

support tool and introduces its components briefly. 
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Chapter 3 

Chapter 3 Conceptual Framework 

3.1 Theoretical Context 

The necessity of accommodating for multi-layer complexities in evacuation 

modelling has motivated this research to develop a mass evacuation decision 

support (MEDS) tool. The architecture of the proposed tool is founded on the 

coupling of multiple modules, while the modules exchange information through 

different evacuation parameters to account for multilayer uncertainty and 

risks in assessing evacuation scenarios within a traffic evacuation 

microsimulation model. The complexities in different phases of evacuation may 

result from natural disasters, traffic operations, special needs of the vulnerable 

population, and the resource constraints. It is imperative that the evacuation 

modelling offers a flexibility to consider these aspects when simultaneously 

handling a large-scale traffic evacuation in the network. The proposed MEDS 

tool in this research follows a sequential modelling approach that enables it to 

incorporate different levels of complexities in assessing contrasting evacuation 

plans. The research leverages the tool to develop countermeasures to better 

manage traffic demand and improve traffic operations during evacuation. 

Furthermore, the research ascertains a vulnerability-based prioritization of 

zones to tackle disproportionate severity across the transport network. To 

assess zonal vulnerability, a vulnerability assessment is conducted accounting 

for social, geophysical, and mobility challenges in the context of a mass 

evacuation. Figure 3-1 presents a conceptual framework of the proposed 

evacuation decision support tool that combines multiple modules discussed 

above. 
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Figure 3-1 Conceptual framework of the proposed mass evacuation decision 

support (MEDS) tool  

 

3.2 Modelling Framework of the Proposed MEDS tool 

The proposed MEDS tool follows a sequential modelling approach to 

incorporate different types of traffic disruptions and uncertainties in assessing 

evacuation processes. The study first develops a flood risk model to identify 

network links prone to inundation and quantify the loss of network 

connectivity. Then, it develops a mass evacuation microsimulation model to 

assess traffic operations for the highest demand. The study explores a DTA 

process to capture the time-varying congestion effects and subsequent route 

choices within the traffic simulation model. This research leverages the 

microsimulation model to examine the impacts of traffic disruptions on 

evacuation processes. In the next phase, it inquires how to evaluate different 

types of countermeasures using the MEDS tool. This research considers 

strategic level countermeasure, namely staged evacuation. It also considers 

transit and school buses for evacuation through developing an all-mode 
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evacuation process. The tool estimates evacuation demand utilizing a Halifax 

regional transport network model (Bela and Habib, 2018). The traffic 

microsimulation model is coupled with a flood risk model, and a vehicle 

collision prediction model to incorporate traffic disruptions in the evacuation 

simulation process. The proposed modular-based evacuation decision support 

tool is further utilized to inform countermeasure development process with 

information regarding the flooding, traffic operation risks, and the 

vulnerabilities that people are exposed to. A vulnerability assessment model is 

developed to holistically assess geophysical, social, and mobility vulnerability 

and determine a combined zonal vulnerability index. Figure 3-2 presents the 

modelling framework of the proposed evacuation decision support tool 

demonstrating the coupling of different modules. 
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Figure 3-2 Modelling framework of the proposed mass evacuation decision 

support (MEDS) tool  
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3.2.1 Evacuation Demand Estimation 

The Halifax transport network model is utilized to estimate evacuation 

demand in the network. The model generates 24-hour origin-destination (OD) 

travel demand matrices for both auto and buses. Origin and destination refer 

to traffic analysis zone (TAZ) in this model. The model includes a transport 

network of 219 traffic analysis zones, 219 zonal centroids, 2249 link nodes, and 

2985 truck permitted links out of 5232 directional links. Among 219 TAZs, 93 

are urban, 93 are suburban and 33 are rural. 

3.2.2 Flood Risk Model 

The study utilizes a flood risk model (Macdonald and Webster, 2016) to identify 

the network links prone to inundation during floods of different extremes. The 

model considers five flooding scenarios to determine the extent of the impacts 

of flood over Halifax region. The scenario outcomes include the extent of 

inundation by road classes, length, and inundation depths. The information 

regarding network damages is utilized within the traffic evacuation 

microsimulation model to capture natural disaster related impacts on the 

evacuating traffic flows. 

3.2.3 Vulnerability Assessment Model 

The vulnerability assessment model utilizes factors affecting social, 

geophysical, and mobility challenges to assess vulnerabilities of TAZs following 

a probabilistic approach. This model takes inputs from a flood risk model, a 

population synthesis (Fatmi et al., 2017; Fatmi and Habib, 2018), and a traffic 

evacuation microsimulation model to compute the combined zonal 

vulnerability index.   
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3.2.4 Evacuation Scenario Development  

This research develops contrasting evacuation scenarios for testing and 

evaluation within the traffic evacuation microsimulation model. The proposed 

tool is first utilized to evaluate a base case scenario representing an evacuation 

when no disruption risks nor complexities are considered. The study utilizes 

the flood risk model to develop three evacuation scenarios that accounts for 

network disruptions due to floods of different extremes. Afterwards, a collision 

prediction model is developed to identify the collision hotspots during an 

evacuation and five more disruptive evacuation scenarios are derived from 

assorted vehicle collisions. All scenarios are accommodated within the traffic 

microsimulation model for testing and evaluations. 

3.2.5 Countermeasure Scenario Development  

The study further focuses on developing countermeasure scenarios to 

investigate the effects of different improvement strategies on the evacuation 

and network performances. Two countermeasures that operate at the strategic 

level ‘staged evacuation’, and ‘bus-based evacuation’ are developed and 

evaluated in this study. The study accounts for different zonal vulnerabilities 

in assessing countermeasure scenarios within the traffic evacuation 

microsimulation model. For example, the research develops a novel 

prioritization process for staged evacuation and considers the population’s 

vulnerabilities for prioritized resource allocation such as transit and school bus 

allocation for conducting an all-mode evacuation.   

3.3 Conclusions 

This chapter presents a conceptual framework of a mass evacuation decision 

support tool that combines multiple modules to holistically considers multi-

layer complexities in the analysis of a mass evacuation. The tool has the 
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capability to generate evacuation results from an aggregate level to a finer 

grained detail, which is critical to inform the evacuation improvement 

scenario-building process or to resolve the modelling issues in the existing 

evacuation studies. The tool bridges multiple modules to facilitate an 

accumulation of wide-ranging inputs within a single terminator for testing and 

evaluation of multiple evacuation scenarios. Multiple data sources are used to 

develop the modules. A modular-specific literature review, data used, details 

of the model technicality, methodological contributions, and modular specific 

outcomes will be presented in the following chapters.   
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Chapter 4 

Chapter 4 Mass Evacuation during 

Flooding1 

4.1 Introduction 

This chapter presents a mass evacuation microsimulation modelling 

framework that accounts for flood-related network disruptions in assessing 

evacuation scenarios. Extreme weather events are becoming more frequent, 

and flooding is the most common type of natural disasters among them in 

Canadian cities. Examples include the Toronto flood 2013, the Halifax winter 

storm 2015, and Hurricane Juan 2003. Regardless of the nature of disasters, 

evacuation is considered an effective way to save lives when the affected zone 

is not safe for habitation. City evacuation is complex and a highly uncertain 

undertaking. Particularly, it is hard to know how traffic would flow through 

the transport network subjected to disruption risks, and how severe the 

resulting traffic congestion would be during an evacuation. Depending on the 

severity of a natural disaster, all network links may not be useable during an 

evacuation. For example, during flooding, network links are subjected to 

complete or partial inundation which further decreases the evacuation 

gateway options as well as the network capacity. Interrupted vehicle paths 

lead traffic to bottlenecks and degrades the overall network system efficiency. 

 
1 This chapter is largely derived from the following peer-reviewed journal paper:  

• Alam, M. J., Habib, M. A., Quigley, K., and Webster, T. (2018). Evaluation of the Traffic 

Impacts of Mass Evacuation of Halifax: A Flood Risk and Dynamic Traffic 

Microsimulation Modelling. Transportation Research Record, 2672 (1), 148-160 
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In this context, coastal cities such as Halifax, the capital of Nova Scotia, face 

considerable challenges. The Halifax Peninsula serves as the city’s central 

business district and has only five exits/entry points. As downtown Halifax is 

the financial hub of the Province of Nova Scotia, its population nearly doubles 

during work hours. In addition, Halifax is also on a hurricane path, and 

extreme events such as hurricanes are common threats to the Atlantic Canada. 

The region has experienced natural disasters in the past that affected its 

critical infrastructures and the transport network. The city has two critical 

infrastructures, namely the Macdonald and the Mackay Bridge connecting 

twin cities Halifax and Dartmouth, and the low-lying transportation 

infrastructures such as the Bedford Highway and the Armdale Rotary. These 

major exit points of the peninsula are susceptible to risks of flooding or extreme 

winds. Given that the Halifax Peninsula provides an interesting test bed for 

developing a sequential evacuation modelling framework to assess flooding 

related network disruptions and associated challenges in a mandatory mass 

evacuation. The study aims to adopt a traffic microsimulation modelling 

approach to address the flood related network disruptions when handling and 

evaluating evacuation traffic flows within a traffic evacuation microsimulation 

model in parallel. 

The main technical objectives of this study are (i) to develop a flood risk model 

to identify the potential network links that are prone to inundation during 

floods of different extremes in the Halifax Peninsula, and (ii) to develop a 

dynamic traffic microsimulation model to predict evacuation traffic flows 

considering flooding related network disruptions. The flood model informs the 

traffic microsimulation model regarding flood related damages to the existing 

Halifax transport network. The traffic simulation model utilizes a dynamic 

traffic assignment module (DTA) to address the routing policies, the dynamic 

propagation of queues and spillback in the evacuation traffic stream. The 
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traffic assignment step uses the evacuation demand obtained from the Halifax 

regional transport network model (Bela and Habib, 2018). 

4.2 Literature Review 

Research on mass evacuation has been gaining attention in recent years to 

reduce loss of lives and properties during an emergency condition. Many recent 

disaster events have emphasized the importance of efficient and effective 

evacuation planning. Natural disasters are inherently rare events; they occur 

with potentially catastrophic consequences. Thus, it is hard in practice to 

quantify the extent of natural disaster related impacts on the overall 

evacuation process. Nevertheless, a long continuous rising trend in sea level 

warrants awareness on the extent and timing of coastal floods and associated 

damages. In this regard, high-resolution data resources of surface elevation 

are required for the analysis of the flood extent, associated damages, and/or for 

other large-scale modelling applications. In advancement with technology, the 

Light Detection and Ranging (LiDAR) is becoming a well-recognized data 

source for developing accurate surface models and providing a potential 

platform to develop a Digital Elevation Model (DEM) (Lohr, 1970). With the 

aid of a DEM, flooding limits can be mapped and analyzed in high resolution. 

Forbes et al. (2009) developed future extreme water level scenarios for the 

Halifax Regional Municipality (HRM) during floods by considering the rising 

mean sea level, land subsidence, storm surge, wave set up and run up, and 

harbor seiche. However, a hydraulically connected flood risk model is of 

paramount importance to predict network interruptions due to flooding at 

different extremes. This model then informs the microsimulation model by 

conveying the flood-related damages to the transport network. 

Simulation-based traffic network models are very effective for formulating, 

implementing, evaluating, and optimizing critical traffic operations in a 
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stochastic transport network (Ge and Menendez, 2014). These models can 

represent the actual traffic environment over a large network. They 

demonstrate an efficient traffic flow forecasting capability under critical 

conditions, including evacuating people to safe destinations considering flood 

related traffic flow disruptions. The available traffic simulation models use 

either static or dynamic traffic assignment (DTA) procedures to assign traffic 

into the network. The benefits of using DTA-based traffic simulation models is 

that this type of models is efficient to estimate time-dependent differential link 

flows in the network and generate time-dependent network performances at a 

fine-grained detail (Florian, 2001). Particularly, when the evacuation process 

is complex and traffic flow is critical during the evacuation. Therefore, 

advanced models including DTA-based microsimulation model are required to 

capture the complex interactions among vehicles, and to execute driver 

behavior considering all spatial attributes (e.g. paths, lane change) and 

temporal aspects (e.g. time-dependent congestion) under extensively congested 

traffic conditions in the network. 

A significant research has been conducted on developing traffic simulation 

models for time estimates during an evacuation in the network. Sheffie et al. 

(1982) was the first study to develop the Network Emergency Evacuation 

(NETVAC) model to estimate the evacuation time in the event of an emergency 

at several U.S.A nuclear power plant stations. Their model determined 

evacuees’ route choices based on the network familiarity and myopic view 

which can be captured by the speed on the outbound links. Dynamic Network 

Evacuation (DYNEV) model was developed by KLD associates (KLD 

Associates Inc., 1984) to estimate the network capacity and evacuation demand 

for nuclear power plant areas. Lieberman and Xin (2012) developed a 

macroscopic traffic simulation model with new features, including kinematic 

flow model, lane assignment model and a model to meter inflow into the links. 

Their model is used in DYNEV-II for large-scale evacuations, such as the 
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evacuation of 300,000 evacuees utilizing an available highway network of 3000 

links, 850 origins and 75 destinations. Though the network anticipated 

congestion initially, after 5 hours from the start of the evacuation, the 

congestion disappeared from the Emergency Planning Zone (EPZ). Chunfu et 

al. (2008) developed an evacuation model within the VISSIM platform to test 

an evacuation process for vehicles in the Beijing National Stadium’s parking 

lots and estimated the evacuation time for all vehicles. Several evacuation 

studies (Bae et al., 2014; Jha eta al., 2004) have evaluated strategies involving 

limited access to some facilities and roads to improve both total evacuation 

time and the needed time to only evacuate the population within the most 

dangerous areas. However, most of these studies are experimental in nature 

or deal with limited network simulation. There is a clear gap in prediction 

modelling that identifies traffic impacts at city scale. In addition, calibration 

and validation of a large-scale evacuation microsimulation model is critical but 

challenging. This study proposes a process to calibrate and validate driving 

behavior and route choice parameters utilizing a Latin Hypercube Sampling 

(LHS) technique. 

The modelling framework developed in this chapter fills the gap in literature 

by combining a GIS-based hydraulically connected flood risk model that 

generates fine-scale network disruptions and the microsimulation model that 

tests and evaluates evacuation traffic flows taking into account for flood 

related network disruptions. Moreover, this study examines how different 

levels of network damages is resulted from the flooding scenarios of different 

water levels, how it affects the network connectivity, and the overall 

evacuation performances.  
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4.3 Methodology 

This study develops a comprehensive framework of a mass evacuation 

microsimulation modelling to test different evacuation scenarios in the Halifax 

Peninsula transport network (Figure 4-1).  

 

Figure 4-1 A sequential modelling framework for evacuation of the Halifax 

peninsula 
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Figure 4-1 shows a sequential modelling framework where the dynamic traffic 

microsimulation model recognizes the interrupted network links informed by 

the flood risk model and utilizes evacuation demand obtained from the Halifax 

regional transport network model.  

4.3.1 Spatial Flood Risk Model 

4.3.1.1 Data Used 

The flood risk analysis requires the development of inventories of major 

Halifax transport network links (Figure 4-2) impacted under various flooding 

scenarios. Data used to develop the flood risk model include stream (water) 

network provided by the NS Topographic Database 2012 and LiDAR data 

obtained from the Halifax Regional Municipality (HRM). The LiDAR data is 

used to develop the DEM for the region. The road network data for Halifax is 

extracted from the National Road Network (NRN) Database 2014. All spatial 

data are projected in North American Datum (NAD) of 1983, Universal 

Transverse Mercator (UTM) zone 20 North. The vertical datum is referenced 

to the Canadian Geodetic Vertical Datum of 1928 (CGVD28). 

4.3.1.2 Flood Layer Generation 

Flood layers are generated using an Applied Geomatics Research Group 

(AGRG) proprietary tool that raises flood water on a flat plane (known as “still-

water”) to inundate low areas (Macdonald and Webster, 2016). As the tool 

requires an elevation model with correct connectivity, all culverts within the 

study area need to be represented as low areas in the DEM. First, the GIS-

based tool is used to generate an initial culvert database. The culverts are then 

used to notch the DEM to allow a path for the water to move, resulting in a 

hydraulically connected DEM. The flood levels (Forbes et al., 2009) for five 

scenarios selected for the analysis are listed below and shown in Appendix A 

(Figure A1 – Figure A3).  
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• Scenario 1 (2.9m): Water level 2.9 m relative to CGVD28, if 

Hurricane Juan occurred today on a higher high-water at large tide 

(HHWLT) 

• Scenario 2 (3.9m): Water level 3.9 m relative to CGVD28, if 

Hurricane Juan occurred today at HHWLT + conservative 100-year 

Sea Level Rise of 1m 

• Scenario 3 (7.9m): Water level 7.9 m relative to CGVD28, if 

Hurricane Juan occurred today at HHWLT + extreme 100-year Sea 

Level Rise of 5 m 

• Scenario 4 (15m): Water level 15.0 m relative to CGVD28, if Moderate 

Tsunami occurs 

• Scenario 5 (30m): Water level 30.0 m relative to CGVD28, if Large 

Tsunami occurs 

Three of the scenarios are related to the water level seen during Hurricane 

Juan, which made landfall in the HRM as a Category 2 hurricane on 

September 29, 2003 and produced a maximum recorded water level of 2.1 m 

CGVD28 (Lohr, 1970). Had Hurricane Juan occurred on HHWLT, the water 

level would have been 2.9 m CGVD28. If Hurricane Juan were to happen on 

HHWLT after a very conservative sea level rise of 1 m in 100 years, the water 

level would be 3.9 m CGVD28, and so on. The first three scenarios are selected 

for microsimulation modelling, as the peninsula becomes almost an island 

under the last two scenarios which might require an evacuation through airlift 

or an intervention by navy. 

4.3.1.3 Flood Depth Analysis 

The depth of water over the land for each of the flooding scenarios is 

determined by subtracting the flood water level surface from the DEM. The 
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analysis of the results provides a depth value in each 2m pixel. Some areas 

anticipate extensive flooding over roads (>2 km inundated). Thus, reporting 

the exact depth of water over each meter of road would produce extensive 

results that would require further summarization and analysis. Therefore, it 

was determined that the water depth would be divided into six categories as 

below: 

• Depth class 1: water depth ≤ 0.5m 

• Depth class 2: 0.5m < water depth ≤ 1.0m 

• Depth class 3: 1.0m < water depth ≤ 2.0m 

• Depth class 4: 2.0m < water depth ≤ 5.0m 

• Depth class 5: 5.0m < water depth ≤ 10.0m 

• Depth class 6: water depth > 10.0m  

4.3.1.4 Flood Risk Model Results     

The developed GIS-based flood risk model simulates each flooding scenario 

considered in this study and predicts the following flooding extents as shown 

in Figure 4-2. The Halifax Peninsula has five exits as shown in Figure 4-2, 

such as (i) Exit 1: Bedford Highway, (ii) Exit 2: Highway 102, (iii) Exit 3: 

Armdale Rotary, (iv) Exit 4: Macdonald Bridge, and (v) Exit 5: Mackay Bridge.  
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Figure 4-2 Flooding extent in the Halifax Peninsula under (a) 2.9 m, (b) 3.9m, 

and (c) 7.9m flooding scenarios 

 

The major street flooding is near exit 3 on Quinpool Road. The rotary (exit 3) 

is the most susceptible piece of road on the peninsula, with over 43% of the 

rotary impacted under 3.9 m flood scenario and over 88% impacted under 7.9 

m flood scenario. In addition, Bedford Highway (exit 1) is also inundated by 

47.8% of its total length in the 7.9 m flood scenario. The length of each road 

within the study area impacted by floods of different extremes is shown in 

Table 4-1. The affected links are identified on the Halifax maps in Appendix A 

(Figure A4 – Figure A6).  
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Table 4-1 Identified Flooded Links based on the Flood Risk Model Results 

Name of 

roads 

Flood water level 

(m CGVD28) 

Length of roads 

flooded (m) 

Original 

length of 

roads (m) 

% of roads 

impacted by 

flooding 

Armdale 

Rotary 

2.9 234.6 

1324.3 

17.7 

3.9 576.1 43.5 

7.9 1175.1 88.7 

Barrington 

Street 

2.9 0.0 

7782.2 

0.0 

3.9 162.4 2.1 

7.9 660.5 8.5 

Bedford 

Highway 

2.9 0.0 

3974.6 

0.0 

3.9 0.0 0.0 

7.9 1898.9 47.8 

Chebucto 

Road 

2.9 0.0 

2201.2 

0.0 

3.9 0.0 0.0 

7.9 79.0 3.6 

Joseph 

Howe Drive 

2.9 0.0 

2873.3 

0.0 

3.9 0.0 0.0 

7.9 149.2 5.2 

Kearney 

Lake Road 

2.9 0.0 

269.4 

0.0 

3.9 0.0 0.0 

7.9 110.2 40.9 

Quinpool 

Road 

2.9 245.4 

2420.7 

10.1 

3.9 398.4 16.5 

7.9 464.3 19.2 
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4.3.2 Dynamic Traffic Microsimulation Modelling  

4.3.2.1 Network Model and Data Used 

This study develops a microscopic traffic simulation model for Halifax. The 

traffic microsimulation modelling process follows four steps: (1) data 

processing, (2) network coding, (3) dynamic traffic assignment, and (4) 

calibration and validation of the model. Different data including, road 

geometry information from the Halifax Geodatabase 2012, travel demand data 

from the Halifax transport network model, and signal timing data from the 

HRM Public Work Traffic Study 2014 were used to develop the model. This 

study models at the finer level appropriately representing all essential traffic 

network modelling components that can be used in VISSIM. The Halifax 

transport network is built using open street map within VISSIM. The model 

can represent disaggregated network elements, including intersections, 

individual vehicle movement, driving behavior such as lane changes, 

acceleration, deceleration, traffic signals. It also can identify queue building 

and bottlenecks in the network. Hence, the model provides information for 

contrasting traffic operation scenarios. 

In total, the coded network has 1,310 links and connectors, including, bridges, 

highways, rotary, and all arterial roads within the study area. 41 major and 

12 stop sign-controlled intersections are coded in the network. All the 

intersections are modeled in greater details with actual traffic signal time and 

phase splits. A fixed signal timing plan obtained from the HRM traffic signal 

data is used to model the traffic signals. In this model, a signal controller is 

built for each of 41 intersections to regulate through and turning traffic flows 
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at intersection. Each signal phase is defined by a signal group under a signal 

controller a shown in Figure 4-3. 

Figure 4-3 Elements of traffic microsimulation model developed for testing a 

mass evacuation of the Halifax Peninsula 

 

The sequence e.g., red-green-amber and the split times obtained from traffic 

signal data are then included in the signal group. Signal controller controls the 

traffic entering the intersection; however, turning behavior is not regulated by 

the controller if not protected. To model the yielding behavior of the turning 

vehicles (left or right), conflicting areas are resolved, and priority rules are 

placed where necessary. This study resolves 1930 turning conflicts in the 

network where red color suggests the turning vehicles yield to vehicles from 

the opposite and/or transverse directions. Stop signs are implemented for the 

unsignalized intersections.  

4.3.2.2 Dynamic Traffic Assignment 

Vehicle trips are generated stochastically in the simulation using an average 

time gap between the entry of two successive vehicles in the network obtained 

from a Poisson distribution. The vehicle is then assigned a lane and a route 

based on the traffic congestion in the network ensuring less impacts on its 

desired speed and consequently travel times. A dynamic traffic assignment 

procedure is implemented to replicate a heavily congested transport network 

operation and capture driver’s route choices in response to congestion. In this 

process, total simulation period is divided into smaller evaluation intervals to 
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capture the changes in traffic conditions and subsequent changes in travel 

time. If a vehicle operates on a link/edge for more than one evaluation interval, 

still the model continues measuring the travel time for that vehicle, which 

manifests the actual heavily congested traffic condition in the network. The 

number of iterations required depends on the convergence criteria which are 

user defined. Travel time measured in the current iteration based on the 

following equation (PTV 6.0, 2014) will be used for path search in the next 

iteration.  

, 1, ,1 1
1 * *q e q e q e

i i iT T TC
Q q Q q

− 
= − + 

+ + 
                      (1) 

where, Q  measures the importance of measurements in the distant iteration, 

e , q , and i  are the index of the evaluation interval, iteration, and edge 

respectively. ,q e

iTC  is the measured travel time at edge i  in the evaluation 

interval e  at current iteration q . ,q e

iT  is the smoothed travel time at edge i

in evaluation interval e  at current iteration q that will be used for path search 

in the next iteration. Best path is identified based on the cost which is a 

function of travel time that changes over the course of an iteration. 

Consequently, multiple best paths are produced during an iteration and used 

for the next iteration until the model is converged. A logit function is used to 

distribute the traffic across the best paths identified.  

The microsimulation model developed in this study is extensively calibrated 

and validated. The business as usual (BAU) traffic flow from 0600 to 1000 is 

simulated for calibration and validation purposes where the simulation hour 

between 0600 - 0700 is used as warming period. The model is calibrated and 

validated for the hours between 0700 – 0900 using an advanced sampling 

method called ‘Latin Hypercube’. Three driving behavior parameters are 

considered for calibration purposes. The observed traffic count data obtained 
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from HRM is utilized for traffic volume-based validation purpose. This data 

was collected using Miovision cameras and the dataset contains traffic counts 

at one hundred and two locations. The details of calibration and validation of 

the model can be found in the following section. 

4.3.2.3 Calibration of Driving Behavior Parameters  

This study calibrates three car-following parameters of the Wiedemann 74 car-

following model. The parameters include (i) parameter 1-average standstill 

distance (ax ), (ii) parameter 2-additive part of safety distance ( _bx add ), and 

(iii) parameter 3-multiplicative part of safety distance ( _bx mult ) (Wiedemann, 

1974; Olstam and Tapani, 2004). These three parameters together give a car-

following distance according to the following equations (PTV 6.0, 2014). 

   d ax bx= +                           (2) 

where, 

d  is safety distance 

ax  is average standstill distance 

bx  adjusts time requirement values which can be written as: 

( )  _   _ * *bx bx add bx mult z v= +                      (3) 

where, z  is a value of range [0, 1], and normally distributed around 0.5 with 

a standard deviation of 0.15. 

v  is vehicle speed 

Literature suggests that the range of the values of the parameters lie between 

1-3m for ax  (Park and Schneeberger, 2003), and 0-3 for _bx add  and _bx mult  

used in Cobb Parkway model calibration (Miller, 2005). The combination of the 
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values of the parameters plays an important role to replicate actual traffic flow 

in the simulator. Very often, the number of combinations of the parameters is 

so large that it is difficult to evaluate possible scenarios within the feasible 

time limit. If there are n  variables, each having z  number of subdivisions 

within its range, the total number of possible combinations is 
nz . Supposing 

4n =  and 10z = , it gives a very large combination number (104 = 10000) to 

evaluate. Therefore, this study uses a Latin Hypercube Sampling (LHS) 

technique to control the number of parameter combinations and to reduce the 

simulation time and cost. It refers to a statistical method in which the ranges 

of the values of n  variables are subdivided into equally probable intervals, z . 

Next, sample points are selected from the interval to fill a Latin Square Grid, 

which contains pair variables along two axes and only one element in each row 

and each column (Figure 4-4). Thereby, the advantage of using this method is 

that it does not need more samples for more variables and the full range of the 

distribution can be sampled consistently. The LHS process is summarized 

below. 

• Step 1: Stratify cumulative probability function of each variable into 

three equally probable sub-divisions 

• Step 2: For each variable, a random sample is drawn from each 

stratum which ensures that samples more accurately reflect the 

distribution of the values in the input probability distribution. Thus, 

this method eliminates the insufficiency in Monte-Carlo simulation 

• Step 3: For any pair, randomly selected values must come from 

different strata 

 

 



 

 

45 

  

 

 

 

 

 

 

 

 

Figure 4-4 LH process to generate combination sets of driving behaviour 

parameters 

 

The LHS process has identified 13 parameter combinations as shown in Figure 

4-4. Each combination is considered for simulation. The goodness-of-fit of the 

model is measured in terms of R2 value which quantifies the closeness between 

the simulated and observed traffic count. The combination, which gives a value 

1 for ax , 0.6 for _bx add , and 0.7 for _bx mult  exhibits better network 

performance compared to other combinations in terms of R2 value. The study 

performs route choice parameter calibration for further improvement of the 

traffic flow in the simulator. 

4.3.2.4 Route Choice Parameter Calibration  

For further improvement of the traffic flow at a few local network links, route 

choices are calibrated in the simulator. Route choice calibration is conducted 

by adding link surcharges (i.e., cost components) to modify assignment results. 

Links that attract more traffic volume than observed can be assigned a positive 

surcharge, thus reducing their desirability. In the absence of well-defined 
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guidelines on the relationship between the surcharge value and traffic 

divergence, a surcharge value of 30 is considered as the starting value based 

on experience. Through several iterations, surcharge value 50 for 6 links, 100 

for 7 links, 150 for 2 links, 200 for 6 links, and 500 for 3 links have been 

imposed. Improvement is identified by comparing the simulated traffic flow 

with the observed traffic count at these links. 

4.3.2.5 Validation of Microsimulation Model  

This study has conducted a traffic volume-based validation using traffic count 

data obtained from the multiple data sources as mentioned earlier. The exit 

points and several nearby intermediate intersections totaling 21 locations are 

validated in terms of minimum deviation between the observed and simulated 

traffic counts. The goodness-of-fit of the model is evaluated by determining R2 

for the hours of 0700-0800 and 0800-0900. The validation results in Figure 4-5 

suggest R2 values of (a) 82% and (b) 84% respectively for these two hours. 

 

Figure 4-5 Validation of microsimulation model for (a) 0700-0800 and (b) 0800 

– 0900 

 

4.3.3 Evacuation Cases for Microsimulation Model 

This study follows a curb-side simulation approach to evacuate a demand of 

34,808 vehicles from the Peninsula. The demand is estimated for the period of 

0600 – 1000 using the Halifax transport network model following a simple four-

stage travel demand calculation method. The time 0900 – 1000 is considered 
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as the ending hour of the morning peak period in Halifax. The head count is 

maximum at 1000 representing the highest demand in this region and it is 

considered as the starting time of evacuation in this study. The study also 

assumes that it is a mandatory evacuation, and every resident will evacuate 

upon the evacuation order is issued. This study selects two shelters due to their 

sufficient accommodation capacity and safe distance from the Halifax 

Peninsula. The shelters include (i) Shelter 1- Charles P. Allen High School, and 

(ii) Shelter 2- Nova Scotia Community College (NSCC), Akerley campus 

(Figure 4-2). It is evident that not all evacuees would choose shelters as their 

destinations. Therefor, this study assumes that 20% of the total evacuees will 

take other shelters, for instance, the homes of relatives and friends. The rest 

can be accommodated within the selected shelters. In total, four evacuation 

cases are considered within the simulation model. 

• Case 1 (No links flooded): No links are affected by any flood scenario 

• Case 2 (2.9 m): 0.11% links of the modelled network are affected  

• Case 3 (3.9 m): 0.27% links of the modelled network are affected  

• Case 4 (7.9 m): 1.1% links of the modelled network are affected  

4.4 Results and Discussion  

4.4.1 Overall Evacuation Results 

Table 4-2 presents overall evacuation results for all evacuation cases tested 

within the traffic microsimulation model. The results from evacuation case 4 

(7.9m) suggest that the available vehicle paths from the origin zones to the 

shelter locations are disrupted by 31.2% relative to evacuation case 1 (no links 

flooded). The more severe the flood-related network damages, the fewer the 

alternative routes would be left for evacuees. The results suggest that the 
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capacity of the Halifax Peninsula transport network is limited to accommodate 

for the entire evacuation demand in the network if flood water level is 7.9 m 

(case 4) and above unless countermeasures are applied. Only 83% of evacuees 

can be admitted into the network and evacuated within 15 hours from the 

beginning of the evacuation under this flooding condition. Traffic congestion in 

the network is already at peak when even 17% of evacuees are not in the 

network in this case. A prioritizing and staged evacuation strategy could help 

to evacuate all evacuees under this circumstance. In the case of flood scenarios 

that demonstrate a lower rise in water level (2.9m and 3.9 m), almost all the 

evacuees can be evacuated within an evacuation time equal to or less than 15 

hours.  

Table 4-2 Overall Evacuation Results for the Halifax Peninsula  

Scenarios Case 1: No 

links flooded 

Case 2:   

 2.9 m 

Case 3: 

3.9 m 

Case 4:  

7.9 m 

Loss of Connectivity, % 0.0 23.3 23.7 31.2 

Total Departure, % 100 100 100 83 

Completed Evacuation, % 100 100 100 83 

Evacuation Time, hr. 11 13 15 15 

Increment in evacuation time 

w.r.t case 1, hr. 

- 2 4 4 

 

Furthermore, once the fully developed Halifax regional transport network 

model (Bela and Habib, 2018) becomes available, the study has updated the 

estimation process to obtain the highest evacuation demand, which is 

calculated as 65,000 vehicles. The evacuation cases are re-evaluated within an 

updated traffic simulation model in accordance with new demand and updated 

zoning system of the regional model. The modified evacuation results are 

presented in Table 4-3. This chapter analyzes the congestions for initial 

demand while the following chapters utilizes the results in relation to the 

updated highest demand for comparing with other evacuation scenario 
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outcomes. Clearance time across Halifax Peninsula zones for all flood scenarios 

are visualized in Appendix B (Figure B1 – Figure B4). 

Table 4-3 Halifax Peninsula Evacuation Results for the Highest Demand  

Scenarios Case 1: No 

links flooded 

Case 2:   

 2.9 m 

Case 3: 

3.9 m 

Case 4:  

7.9 m 

Loss of Connectivity, % 0.0 23.3 23.7 31.2 

Total Departure, % 100 100 100 87 

Completed Evacuation, % 100 100 100 87 

Evacuation Time, hr. 22 22 23 23 

Increment in evacuation time 

w.r.t case 1, hr. 

- 0 1 1 

 

4.4.2 Evacuation Completion Pattern 

Figure 4-6 presents (a) cumulative percent arrival, and (b) the hourly arrival 

of evacuees at shelters for all the evacuation cases considered in this study. 

The results in Figure 4-6a suggest that to complete a 50% evacuation it takes 

5.5 hours to 7.5 hours with the increase in water level by 2.9m in case 2 to 7.9m 

in case 4. In the case of a 7.9m flood scenario (case 4), the evacuees are 

distributed over 15 hours as the network has limited discharge capacity from 

the beginning of the evacuation due to flooding of the key links in the network. 

It can be concluded that the arrival rate of evacuees at shelters is uniform 

when the network has fewer route options. In case 2 (2.9m), part of Armdale 

Rotary (exit 3) on the west of the Halifax Peninsula (Figure 4-2) is affected. It 

interrupts traffic operations of several routes from the peninsula to shelter 1. 

The network disruption spreads to the east in case 3 (3.9m). During the flood 

of 7.9 m water level (case 4), Bedford Highway (exit 1) located on the west of 

the peninsula is also added to the list of the flooded links. The scenario presents 

a transport network that is immensely disrupted which ultimately causes an 

incomplete evacuation of the Halifax Peninsula. Figure 4-7 presents the 

visualization of the traffic flows and congestion spillback during the evacuation 

under a 7.9m flood scenario. Exit 1 and 3 are completely flooded in this 
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scenario. Further traffic flow visualization, travel times and traffic congestion 

measurements for all scenarios can be found in Appendix C. 

 

 

Figure 4-6 (a) Cumulative percent arrival and (b) hourly arrival of evacuees at 

shelters under different flood scenarios 

a 

b 

b 
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Figure 4-7 (a) Traffic congestion in the network during evacuating the Halifax 

Peninsula (b) long traffic queue across the Macdonald Bridge which is exit 4 

and (c) traffic congestion due to traffic flow on major arterial roads approaching 

exit 2  

Exit-2 

Exit-4 

Exit-5 
Exit-4 

Exit-2 

a 

b 
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4.4.3 Network Congestion  

4.4.3.1 Vehicle Density and Average Speed  

This study also examines the average speed and number of vehicles present in 

the network for each evacuation case. Flood-related damages to network links 

causes an increased number of vehicles to stay in the network. Figure 4-8 

shows that the number of vehicles in the network remains high over a longer 

duration in case 4 (7.9m) since there are fewer alternative evacuation paths. 

However, the congestion level in terms of number of vehicles in the network in 

different evacuation cases depends on the arrival rate of evacuees to the 

destinations. For example, the number of vehicles in the network varies in the 

range of 8,000 - 13,000 from case 1 to case 4. As indicated earlier, case 4 has 

the lowest arrival rate, the number of vehicles in the network has peaked at 

13,000 in this case. These vehicles create congested traffic conditions and 

thereby reduce the average speed in the network. 

 

Figure 4-8 Vehicle density and average speed profile for the evacuation of the 

Halifax Peninsula under different flooding scenarios 
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4.4.3.2 Traffic Flow Indicators 

Table 4-4 presents an in-depth evaluation of the network performance in all 

evacuation cases tested for the Halifax Peninsula. The traffic analysis results 

are tabulated for each of the four evacuation cases at one-hour interval within 

the respective entire evacuation times. Delays per vehicle increase with the 

increase in flood water level from case 2 to case 4 as does the total delay time. 

Initially, in each case, delay increases rapidly and reaches a maximum within 

4-7 hours from the beginning of the evacuation. The results indicate that 

vehicles accumulate and create congested traffic conditions in the network. 

The values of different criteria included in Table 4-4 also suggest a sustained 

congestion from 4th to 7th hour of the evacuation. Although evacuation case 3 

and 4 show similar level of traffic congestion, 100% of the evacuees are moved 

to safe locations in case 3 against the 83% in case 4. The total distance travelled 

is the lowest in case 4 as only 83% of evacuees complete trips from the 

peninsula to shelters.
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Table 4-4 Hourly Network Performance during Evacuation of the Halifax Peninsula 

Case Criteria 
1st 

hour 

2nd 

hour 

3rd 

hour 

4rth 

hour 

5th 

hour 

6th 

hour 

7th 

hour 

8th 

hour 

9th 

hour 

10th 

hour 

11th 

hour 

12th 

hour 

13th 

hour 

14th 

hour 

15th 

hour 

Case-1 

(No-

links 

flooded) 

Avg. delay per vehicle 17.79 22.70 25.81 32.14 33.85 27.91 22.64 14.64 11.55 17.41 13.87 
    

Avg. number of stops 

per vehicle 
117.4 94.1 80.9 89.1 93.1 98.8 117.4 120.3 140.9 203.3 149.1 

    

Total delay time 2382.78 4014.22 5151.85 6743.69 6258.01 4469.65 2720.20 1097.88 446.87 393.50 187.27 
    

Total travel time 3871.75 5685.24 6886.53 8245.07 7907.34 6203.40 4258.53 2177.23 945.17 669.97 435.32 
    

Total distance travelled 65933.3 74293.0 77201.8 66800.8 72596.7 74912.0 66214.6 46022.1 21782.9 12213.8 10968.4 
    

Delay stops avg. 11.98 18.43 21.97 28.19 29.51 23.09 17.38 9.83 6.55 10.31 8.26 
    

Case-2 

(2.9 m) 

Avg. delay per vehicle 20.27 29.94 35.09 36.01 37.17 35.79 33.47 31.83 32.67 29.11 27.06 20.06 8.18 
  

Avg. number of stops 

per vehicle 
107.8 105.7 61.5 72.9 75.4 74.7 76.9 79.5 108.3 140.3 193.0 170.0 71.8 

  

Total delay time 2418.71 5010.94 6950.63 8547.55 8403.50 7396.99 6103.95 4221.44 2702.76 1647.89 1007.10 422.67 54.78 
  

Total travel time 3489.31 5972.21 7956.98 9905.80 9880.28 8865.92 7584.86 5370.36 3480.34 2177.49 1429.75 660.09 150.12 
  

Total distance travelled 47438.7 43043.0 44780.6 60673.2 65781.2 64925.2 64847.3 49621.7 32911.8 22411.2 17911.7 10330.6 4201.9 
  

Delay stops avg. 15.18 25.71 32.37 32.92 33.72 32.24 29.74 28.52 28.44 24.05 20.12 14.20 5.15 
  

Case-3 

(3.9 m) 

Avg. delay per vehicle 21.23 32.29 35.95 40.23 41.19 41.15 41.98 40.37 43.68 46.31 45.75 43.12 40.87 40.80 29.70 

Avg. number of stops 

per vehicle 
71.15 60.79 64.24 64.01 75.61 74.64 72.62 73.43 73.02 60.60 83.70 101.99 101.70 94.03 77.69 

Total delay time 2581.84 4990.67 7205.36 9323.51 9363.47 8523.52 7900.22 7298.95 6183.01 4814.80 3978.87 3162.50 2235.51 1434.21 664.79 

Total travel time 3697.02 5831.13 8178.67 10352.28 10617.22 9657.15 8839.48 8401.02 6944.08 5261.69 4406.77 3609.78 2653.01 1711.65 874.33 

Total distance travelled 47817.3 36363.8 42156.9 44338.6 54437.7 49016.6 40331.9 47034.5 32380.4 18904.6 17768.2 18388.7 17032.6 11400.5 8531.4 

Delay stops avg. 17.23 29.46 33.35 37.70 38.07 38.04 39.10 36.95 40.68 44.17 42.81 39.71 37.44 37.65 26.93 

Case-4 

(7.9 m) 

Avg. delay per vehicle 25.49 34.69 39.14 45.10 47.09 44.46 42.32 43.65 40.76 42.37 37.53 42.26 39.40 26.24 2.72 

Avg. number of stops 

per vehicle 
122.6 96.2 65.3 54.2 67.4 86.3 101.1 66.3 100.7 86.2 37.5 35.6 52.3 93.6 24.6 

Total delay time 3147.99 6158.10 8275.63 10032.45 9898.87 8971.30 8142.71 7458.32 6397.76 5062.32 2996.80 1942.01 1204.39 484.15 18.05 

Total travel time 3955.89 7076.69 9159.57 10783.18 10694.39 9923.45 9119.81 8309.69 7319.49 5881.02 3662.42 2236.51 1481.46 750.80 118.74 

Total distance travelled 35634.0 40869.6 39524.7 33746.0 35573.3 42131.9 43541.1 37281.0 40301.7 35435.6 28475.8 12587.7 11626.5 10930.5 4064.9 

Delay stops avg. 20.05 30.62 36.37 42.89 44.47 41.14 38.16 40.90 37.02 39.08 35.43 40.16 36.35 21.08 1.46 

5
4
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4.5 Conclusions  

This chapter presented a dynamic traffic microsimulation modelling of a mass 

evacuation of the Halifax Peninsula considering floods of different water levels 

informed by a GIS-based flood risk model. The combined digital elevation and 

dynamic traffic assignment-based microsimulation modelling techniques are 

used to evaluate flood related damages to the network and the subsequent 

interruptions to evacuation traffic flows.  

The simulation results suggest that it would take 15 hours to evacuate 100% 

of evacuees from the peninsula with a flood water level of 3.9m. A flood of water 

level of 7.9m reduces evacuation paths from the peninsula to shelters by 31.2%. 

It creates a bottleneck traffic condition which allows only 83% of evacuees to 

reach shelters, against the 100% in case of 3.9m. The simulation results show 

that traffic accumulates increasingly as the evacuation time progresses, and 

flood water level rises in different evacuation cases. The number of vehicles 

peaks at 13,000 in case of 7.9m flood, indicating that the arrival rate of the 

evacuees is much lower than that of the other flood scenarios. Traffic 

congestion is found to peak within 4-7 hours from the beginning of the 

evacuation.  

This research contributes to the literature by developing a city-scale DTA-

based evacuation microsimulation model that considers traffic flow 

interruptions informed by a flood risk model. The study asserts that only auto-

based evacuation may require a longer evacuation times if no countermeasure 

is applied. For instance, 17% of residents could not be evacuated due to serious 

traffic congestion and network disruptions under an extreme flood risk 

scenario in Halifax. In addition, the model does not consider other types of 

risks and complexities, such as traffic disruptions, and the vulnerabilities that 

people are exposed to in assessing evacuation scenarios. Furthermore, 
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evacuating all citizens at once could take a longer time since spillback could 

gridlock the narrow roads of historical towns. The following chapters develop 

multiple modules and strategies to address further complexities, and to 

regulate traffic demand and congestion in the network during an evacuation. 

Such modular-based evacuation modelling tool will help emergency 

professionals, engineers, and planners to understand uncertainty, and risks 

associated with a mass evacuation and tackle multi-layer challenges in an 

efficient manner. 
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Chapter 5 

Chapter 5 Multimodal Evacuation2 

5.1 Introduction 

This chapter develops a multimodal traffic evacuation microsimulation model 

to explore how to evacuate all citizens, including public transit dependent 

populations, from an area affected by a natural or manmade disaster. It is 

difficult to observe disaster-related evacuation events and consequently, many 

coastal cities lack comprehensive multimodal models for evacuation planning 

(Clarke and Habib, 2012). The existing evacuation plans primarily focus on 

auto-based evacuation (Renne et al., 2011). However, it is also imperative to 

utilize transit systems during an evacuation to meet the transportation needs 

of the transit-dependent group. A special Transportation Research Board 

(TRB) committee produced a report entitled “The Role of Transit in Emergency 

Evacuation” explaining how transit can play a critical role in emergency 

evacuation (TRB, 2008). The committee reviewed the literature and examined 

emergency responses and evacuation plans of the 38 largest urban areas in the 

United States. The study asserted that it is a major concern that transit has 

not been included in evacuation plans. Notably, the New Orleans evacuation 

is an example of the importance of effective evacuation planning for transit-

dependent groups. In 2005, Hurricane Katrina hit New Orleans, and 36% of 

the population did not evacuate for the sole reason of not having a car (Renne 

et al., 2011). Another example exists in 2005 during Hurricane Rita, where 

 
2 This chapter is largely derived from the following peer-reviewed journal paper: 

• Alam, M. J., Habib, M. A., and Venkatadri, U. (2019). Development of a Multimodal 

Microsimulation-Based Evacuation Model. Transportation Research Record, 2673 

(10), 477-488 
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there were limited plans to evacuate the transit-dependent population along 

the Gulf Coast of the U.S. In this scenario, public transportation and school 

buses were not readily available, and the city declared ten pickup locations in 

an ad-hoc fashion having no prior evaluation of the needs for transit demand 

(Litman, 2006). Therefore, to adequately evacuate all citizens of an area, the 

transportation needs of transit-dependent groups should be taken into 

consideration. Although the elevated risk experienced by transit-dependent 

populations are well identified and realized (Renne et al., 2011; Litman, 2006; 

Wolshon et al., 2005), deficiencies still exist in public transportation planning 

for emergency evacuation (Hess, 2006; Hess and Gotham, 2007). In the absence 

of multimodal transportation modelling, transit systems may not be able to 

support emergency mass evacuations (Litman, 2006). Accordingly, transit 

agencies need to establish pick-up locations and transit routes proactively and 

develop plans for resource allocation. In summary, there are a limited number 

of studies on transit evacuation planning, but a clear gap exists in the 

literature. Unaddressed topics include the determination of emergency pick-

up locations, also known as ‘marshal point’ locations, transit evacuation routes 

and an exploration of network conditions with multimodal evacuation plans. 

This chapter addresses the deficiency in the existing traffic evacuation 

modelling by incorporating planning decision components (e.g., marshal point 

location and transit route choice decisions) within the evacuation 

microsimulation modelling framework to evaluate a multimodal evacuation 

plan.  

Therefore, the objectives of this chapter are to (i) develop an optimization 

model to determine marshal point locations and transit routes while 

addressing evacuation transit demand, and (ii) incorporate marshal point 

locations and transit route component within a microsimulation model for 

testing and evaluation of a multimodal evacuation operation. Transit demand 

and bus stops for multimodal evacuation are obtained from a Halifax transport 
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network model and Halifax Geodatabase, respectively (Appendix D). A Mixed 

Integer Linear Programming (MILP) technique is used to formulate the 

marshal point location and transit route choice problems. A novel solution 

approach using the “Branch and Cut” algorithm is implemented to determine 

marshal point locations and transit routes. The study has demonstrated the 

effects of Branch and Cut strategy on the optimization computation time. The 

method improves runtime and quality of solutions compared to traditional 

methods.   

5.2 Literature Review 

Evacuation research has recently evolved in the area of traffic operation 

management to evaluate hypothetical evacuation scenarios during an 

emergency and to develop evacuation plans and policies. The evacuation 

scenarios in several studies are evaluated using traffic simulation models, 

which have recently grown as a powerful tool for forecasting traffic flows. 

Specifically, they are advantageous for developing and comparing contrasting 

evacuation plans under different emergency conditions and providing insights 

into traffic congestion and bottlenecks during the evacuation. Many studies 

mentioned earlier developed traffic simulation models for testing and 

evaluation of different evacuation scenarios. Chapter 4, which is partially 

adopted from Alam et al. (2018), developed a traffic evacuation 

microsimulation model. The study suggested that it would require 15 hours to 

evacuate the Halifax Peninsula by auto. Zhang et al. (2013) developed a 

mesoscopic traffic simulation model in TRANSIM to test evacuation 

performance in the Gulf Coast road network under six evacuation scenarios. 

Table 5-1 includes a brief review of studies on evacuation planning and 

modelling. It illustrates the breadth of the evacuation studies using different 

methods including optimization, macro, micro and agent-based simulation 

modelling. Moreover, it categorizes the studies based on the utilization of 
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different modes in evacuation. Most of these studies focus on auto-based 

evacuation, which has motivated this study to develop a multimodal traffic 

evacuation microsimulation model to assist transit-dependent citizens in an 

emergency evacuation. 

The importance of public transportation in an emergency evacuation has been 

highlighted since Hurricane Katrina and Hurricane Rita in the U.S. There are 

limited studies on multimodal and/or transit-based evacuation modelling. 

Naghawi and Wolshon (2011) utilized a multimodal evacuation simulation 

model to evaluate different network loading scenarios for an evacuation. The 

study considered seventeen pick-up locations to evacuate the carless 

population using six bus corridors. The study concluded that average delays 

and queue length increased on interstate evacuation routes. Yang et al. (2018) 

developed a microsimulation-based multimodal evacuation model following 

linear programming to evaluate evacuees’ waiting time taking into 

consideration of the cooperative behavior of evacuees. However, the 

establishment of transit demand-sensitive marshal point locations and 

evacuation routes for a multimodal evacuation is of paramount importance for 

better understanding the critical role of transit in an emergency evacuation.  

In relation to identifying marshal point locations and transit routes, several 

studies (Kaisar and Parr, 2012; Wang et al., 2014) utilized optimization 

techniques, such as local search technique, linear, integer and mixed integer 

linear programing. A study (Abdelgawad and Abdulhai, 2012) utilized a 

“Branch and Price” algorithm in solving an integer programming (IP) problem 

to determine pick-up locations for a small-scale network of 500m radius and 

fourteen bus stops under a hypothetical evacuation scenario. Kulshrestha et. 

al. (2014) utilized a ‘cutting plane’ scheme to identify pick-up points for a 

network of twenty-two nodes. Kaisar et. al. (2012) developed a linear 

programming (LP) model to determine pick-up locations; however, mixed 
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integer linear programming (MILP) is more effective, particularly, when one 

or more decision variables are restricted to integer solution space. Another 

study (Albert, 1999) suggested that “Branch and Bound” is an efficient and 

reliable algorithm to solve MILP problem. However, the disadvantages of these 

algorithms are that they are slow and/or unreliable. For example, a cutting 

plane scheme is unreliable, while the branch and bound algorithm is slow 

(Albert, 1999). Therefore, this study adopts a novel approach that combines 

“Branch and Bound” and “Cutting Plane Scheme” to solve the proposed MILP-

based optimization problem regarding marshal point locations and transit 

routes. The combined solution approach is named the “Branch and Cut” 

algorithm. 

The resulting transit marshal points and routes are utilized to develop a 

multimodal evacuation microsimulation model. The microsimulation model 

simulates a multimodal evacuation of the Halifax Peninsula and analyzes the 

evacuation performance in terms of clearance time, hourly percent evacuation, 

and traffic congestions. Evacuation performance by both auto and transit are 

compared and evaluated for developing policy recommendations. 
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Table 5-1 A List of Studies on Auto-based, and Multimodal Evacuation Modelling  

Authors Methods Location Evacuation type Findings 

Li et al. 

(2012b) 

 

Dynamic traffic assignment 

within DYNASMART-P 

Greater Jackson area 

as destination for an 

evacuation of New 

Orleans 

Auto based ITS strategy could increase existing 

highway capacity by 20%. Contraflow plus 

ITS strategy could increase evacuation 

capacity from 38% to 79% 

Zou et al. 

(2005) 

Optimization modelling and 

microscopic traffic simulation 

modelling within CORSIM 

Ocean City, Maryland Auto based Six new evacuation plans are compared 

within an emergency evacuation system 

Kaisar and 

Parr (2012) 

Microscopic traffic simulation 

modelling within AIMSUN 

Evacuation of twenty-

two zones of Baltimore 

Downtown 

Auto based Comparison of different evacuation 

improvement strategies. Contraflow 

nearly doubles the evacuation capacity 

Church and 

Sexton 

(2002) 

Traffic simulation modelling 

utilizing PARAMICS 

Mission Canyon 

community evacuation 

due to wildfire 

Auto based Recommendations such as using only the 

vehicle that is needed, elevate awareness 

and educate citizens using the simulation 

model 

Shao et al. 

(2008) 

Traffic microsimulation 

modelling within VISSIM 

 

Beijing National 

Stadium Parking lot 

 

Auto based Total clearance time is found as 27 

minutes 

Wang et al. 

(2014) 

Dynamic traffic assignment 

within DynusT 

17.3 km2 of Jackson 

Downtown 

Auto based Three hours required to evacuate 55,281 

evacuees. Vehicle message sign is a 

promising strategy to improve evacuation 

performance. Contraflow should be 

carefully used for low demand 
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Authors Methods Location Evacuation type Findings 

Abdelgawad 

and 

Abdulhai 

(2012) 

Constraint programing 

approach  

 

A no notice evacuation 

of City of Toronto 

Transit based TTC fleet can evacuate all transit-

dependent population in 2 hours on 

average. Four subway lines of the City of 

Toronto can evacuate all subway riders in 

154 min on average 

Sayyady and 

Eksoglu 

(2010) 

 

Mixed integer linear 

programming and mesoscopic 

traffic simulation modelling 

within DYNASMART-P 

No notice evacuation 

of an area of 1-mile 

radius 

Transit based CPLEX is found time intensive compared 

to Tabu search and the model offers 

minimized casualties, and evacuation 

time 

Abdelgawad 

and 

Abdulhai 

(2010) 

Optimal Spatio-Temporal 

evacuation modelling and 

MDTCPD-VRP. Mesoscopic 

traffic simulation modelling 

within DynusT 

City of Toronto Multimodal On average auto clearance time is 2 hours 

and net clearance time is 8 hours. 

Average transit-based evacuation time for 

TTC fleet is on average 2 hours. 

Naghawi 

and Wolshon 

(2011) 

Traffic microsimulation 

modelling within TRANSIMS 

Southeastern 

Louisiana including 

Orleans and Jefferson 

Parishes 

Multimodal Traffic impact analysis for a multimodal 

evacuation operation with given network 

loading and transit scenarios 

Yuan and 

Puchalsky 

(2015) 

Dynamic User Equilibrium 

assignment within VISUM 

Philadelphia, 

Pennsylvania 

Multimodal Evaluates scenarios regarding changing 

demand and traffic control conditions and 

offers insights into planning questions 

including evacuation time, the effects of 

transit on evacuation 

Wang et al. 

(2016) 

Near-field tsunami evacuation 

modelling using agent-based 

programing in NetLogo  

Seaside, Oregon Multimodal 

evacuation by 

car and walk 

Mainly presents the impacts of variation 

in evacuees’ decision making, including 

decision making time and mode choice on 

the coastal community life safety, i.e., 

mortality rate 

6
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5.3 The Context and Problem Statement  

Halifax, the capital of Nova Scotia, is a city with narrow roads and limited 

exit/entry points. There is considerable marine movement through the Halifax 

Harbor, located alongside the Peninsula. Furthermore, Halifax is on a 

hurricane path that has previously caused devastation, as demonstrated in 

previous chapter and Alam et al. (2018). In 2003, Hurricane Juan made 

landfall in the Halifax Regional Municipality, causing eight fatalities. Just five 

months after Hurricane Juan, a winter storm nicknamed White Juan caused 

heavy snowfall in Halifax. Therefore, the Halifax Peninsula is a suitable 

candidate for empirical application of the proposed multimodal evacuation 

microsimulation model. This study considers a scenario in which residents of 

the Halifax Peninsula need to evacuate upon a mandatory evacuation order 

during emergency conditions. In response to the evacuation order, residents 

who own cars can evacuate themselves, while transit-dependent residents 

require assistance to move to safe locations. In the case of transit users, when 

the evacuation order is released, it is assumed that transit-dependent people 

from different zones (traffic analysis zones in this case) will gather at specified 

pick-up locations. Transit buses will be allocated to pick up evacuees waiting 

at pick-up locations and transport them to the shelters. The current Halifax 

evacuation plan considers almost all the existing bus stops as pick-up locations. 

Therefore, marshal point locations and transit evacuation routes need to be 

established prior to commencing multimodal evacuation. This study develops 

an optimization model to determine the marshal point locations and transit 

routes to evacuate transit-dependent population with a minimum time. The 

study does not consider the times or delays required by the evacuees to arrive 

at the marshal point locations. The planning decisions regarding marshal point 

locations and transit routes are then incorporated into the traffic 

microsimulation model to test the multimodal evacuation plan. 
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5.4 Methodology 

5.4.1 Optimization Modelling Approach  

To ascertain emergency transit marshal point locations and routes, this study 

uses a two-phase method to determine evacuation transit network: (i) marshal 

point location determination, and (ii) bus route determination. The proposed 

optimization model determines marshal point locations based on transit 

demand obtained from the Halifax regional transport network model (Bela and 

Habib, 2018). It minimizes the total walking distance from zone to marshal 

points. Data for walking distance from zones to bus stops is obtained from the 

2012 Halifax Geodatabase. Buses are allocated to the transit routes following 

the Halifax transit schedule within the microsimulation model. A bus can serve 

multiple marshal points until it has reached its capacity. This study uses 

multiple depots to dispatch buses. It is assumed that all buses are gathered in 

the depots before dispatch. All transit routes start from any of the depots and 

are extended to the shelters. As a transit route contains multiple marshal 

points, a bus can keep serving evacuees until it reaches its capacity. Transit 

evacuation routes are chosen such that all marshal points are contained within 

the routes and total travel time is minimized. 

5.4.1.1 Optimization Model for Marshal Point Location  

Let z Z  denote a TAZ, where  1, 2,3 . }{Z N=   is the set of all TAZs, and let 

s S  represent a bus stop, where  1, 2,3 . }{S N=   is the set of all bus stops. A 

binary variable zsy  is used to make the marshal point location choice decision, 

where it takes ‘1’ if a bus stop s  is selected as the marshal point for zone z

and ‘0’ otherwise. Bus stops located within a threshold walking distance thresholdd  

of TAZs are considered for selection through the optimization process. Each 

stop has a capacity of sq . sq  has significant contribution in determining the 
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minimum number of marshal point locations. This parameter is determined 

through an iterative process using different values for the bus stop capacity 

while satisfying distance criteria and evacuating all evacuees from TAZs. An 

overall capacity value for bus stop that yields the minimum number of marshal 

points is accepted. A variable zsx  is used to determine the share of the total 

demand at a TAZ, z  that approaches bus stop s  if s  is selected as the 

marshal point for z . The transit demand of TAZ, z  is denoted zD . Based 

on the definition of the variables, the optimization model in this study follows 

a Mixed Integer Linear Programming (MILP) approach as the zone to bus stop 

demand variable is restricted to integer solution space. Following the 

descriptions and notations, the MILP-based optimization model of marshal 

point location choice decision is developed such that overall walking distance 

is minimized during an evacuation. The model formulation and the solution 

approach are described as follows. 

Objectives: 

 *zs zs
z Z s S

Minimize y d
 

                 (1) 

 

Subjected to: 

i. * , ,zs zs thresholdy d d z s          

ii. ,zs z
s S

x D z


   

iii. ,zs s
z Z

x q s


   

iv. * ,  ,szs zs Mx y z    
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v. 0,  ,zsx z s    

vi.  0,1zsy =        

Constraint (i) ensures that walking distance from a centroid of a TAZ to a 

marshal point does not exceed a maximum threshold, constraint (ii) requires 

that all the residents in a zone must evacuate, constraint (iii) ensures that the 

capacity of a marshal point is respected, constraint (iv) ensures that no flow 

can be assigned to a stop if it is not selected as a marshal point, where M  is a 

large number, constraint (v) and constraint (vi) describe decision variables as 

positive integer and binary. 

The proposed “Branch and Cut” algorithm is implemented within the MPL 

Gurobi solver platform. This study utilizes “Branch and Cut” algorithm in MPL 

with all the conservative Gurobi cuts enabled. The cuts include Clique, Cover, 

GUB, MIR, Mod-K, and Network cuts, implied bound cuts, flow cover and path 

cuts, MIP separation and sub-MIP cuts, and zero-half cuts. Advantages of the 

proposed solution approach includes that it (i) improves constraint propagation 

and reduces the search space, and (ii) reduces the number of nodes by 

improving relaxation bounds. This optimization model provides marshal point 

locations which are further used for the bus route optimization model in the 

next section. 

5.4.1.2 Optimization Model for Bus Routes  

The marshal point locations obtained from the previous section identify the 

nodes of the network that will become the skeletal emergency transit network. 

The bus routes are identified from the existing set of bus routes. This study 

uses existing bus routes because of the network familiarity of transit users, 

drivers, and control room operators being an important factor for an efficient 

evacuation. The existing set of bus routes are obtained from 2012 Halifax 

Geodatabase. Note that according to the current traffic rules in Halifax, cars 
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are restricted to transit priority corridors when the bus lane is in effect. 

Marshal points contained within each route in the existing set are spatially 

identified. Marshal points contained in more than one transit routes are 

separately identified. The scheduled travel time is obtained from ‘Halifax 

Transit’. If a set of transit routes is R , then the existing set of routes can be 

expressed as follows: 

1 2 3 4 , , , ............. }{ nR r r r r r=                                            ( 2) 

where, ir  are the route IDs. 

If the set of marshal points identified is M , and the set of travel time for routes 

is RT , then these two sets can be presented as below: 

1 2 3 4 }{ , , , ........... nM M M M M M=                                                                (3) 

1 2 3 4 }{ , , , ...........R nT T T T T T=                                                                                   (4) 

Next, a parameter nra  is introduced to denote whether a marshal point lies on 

a route. Below is a description of the parameter: 

n

nr

it
a

1,     if  M  is on rou e, 

h
= 

r

0,     Ot erwise

 
 
 

                                                              (5) 

The following problem is then solved to determine the optimum bus routes, 

which yields minimum travel time and assigns at least one route to each 

marshal point. 

Objectives: 

 *r r
r R

Minimize Tp



                                                                                   (6) 
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Subjected to: 

vii. * 1,   nr r
r R

a p n


               

viii.  0,1rp =               

rp  is a binary variable that takes value 1 if route ir  is selected, and 0 otherwise. 

There are two constraints in the optimization problem: constraint (vii) states 

that each marshal point must be assigned to at least one route, and constraint 

(viii) describes the binary variable rp .  

In total, 135 marshal points out of 488 bus stops are identified through 

optimization modelling of marshal point locations. The number of marshal 

points chosen per route for one direction ranges from 9 to 22. The optimization 

process determines 12 bus routes to serve all 135 marshal points. 

5.4.1.3 Evaluation of Solution Approach 

The computation time is significantly smaller in the case of the implemented 

solution approach compared to traditional algorithm. To illustrate the 

improvements, the MILP problem is solved using “Branch and Bound” 

algorithm and the performance result is compared to that of the proposed 

solution approach. Figure 5-1 demonstrates the improvement in relative MIP 

gap over time achieved by both solution approaches. The MIP gap refers to the 

fractional gap between the integer objective and the objective of the best 

remaining node.  
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Figure 5-1 Efficiency of “Branch and Bound (B&B)” and “Branch and Cut 

B&C)” algorithm  

 

The results in Figure 5-1 suggest that the B&C algorithm outperforms B&B. 

It expeditiously achieves the desired gap and provides the optimal solution. 

The B&B method decreases the relative gap gradually with time and cannot 

provide the optimal solution within the same time incurred by B&C method. 

Moreover, the relative gap is always higher in B&B method, while the optimum 

solution is obtained by B&C method with negligible MIP gap.  

5.4.2 Multimodal Traffic Evacuation Microsimulation Model 

5.4.2.1 Network Coding   

This study develops a multimodal evacuation microsimulation model by 

including necessary transit network components into an auto-based 

evacuation microsimulation model, which was developed by Alam et al. (2018) 

for Halifax, Canada and presented in the previous chapter. The revised 

microscopic traffic simulation model contains altogether 1784 links and 

connectors that results in a road network of a total length of 480 km. The model 

still contains 41 major signalized and 12 stop sign-controlled intersections with 

2813 resolved turning conflicts in the network. The updated evacuation 
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microsimulation model contains 56 peninsula TAZs in alignment with the 

zoning system of the Halifax regional transport network model. The evacuation 

demand is updated, and the estimated new evacuation demand is 65,000 by 

auto and 8,400 by bus. In total, 12 transit routes and 135 marshal points 

obtained from optimization models are coded within the updated traffic 

evacuation microsimulation model. The number of waiting passengers ( zsx ) at 

marshal points is estimated through the optimization model and used to 

develop a bus-boarding-volume profile at each marshal point. The bus schedule 

is coded for each bus route. In total, 174 sixty-seated buses from Halifax 

Transit are used to evacuate the transit-dependent population; this was an 

average figure for Halifax Transit, while, standing room or articulated buses 

with higher capacity could be considered. As mentioned earlier, the two 

designated shelters used for evacuation in this study are C. P. Allen High 

School and Nova Scotia Community College (NSCC). The first shelter is located 

15 km away from the Peninsula, located at the end of the Bedford Highway 

and can be reached through Highway 102 and the second one is 9 km away 

from the peninsula taking the two bridges as travel routes.  

5.4.2.2 Calibration and Validation of the Multimodal Evacuation 

Microsimulation Model 

This chapter uses the calibrated values of driving behaviour parameters 

obtained through LHS techniques and link surcharge values obtained through 

route choice calibration in Chapter 4. A traffic volume-based validation similar 

to Chapter 4 is conducted to examine the deviation between the observed and 

simulated traffic volumes at key locations. A goodness-fit of the multimodal 

evacuation microsimulation model is found as 0.81 and 0.82 in terms of R2 for 

two morning peak hours 0700-0800 and 0800-0900, respectively. 
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5.5 Results and Discussions 

5.5.1 Multimodal Evacuation Performance Evaluation  

This study evaluates the performance of a multimodal evacuation from all 

traffic analysis zones to designated shelters through the Halifax transport 

network. Figure 5-2 shows the hourly percent cumulative arrival of auto users 

and the transit-dependent population when considering a multimodal 

evacuation in the Halifax Peninsula.  

 

Figure 5-2 Percent cumulative evacuation of auto and transit users with 

progression of evacuation time 

 

The results from simulation reveal that it requires twenty-two hours to 

evacuate auto users from the peninsula, while evacuation of the transit-

dependent population is completed within seven hours. A longer time with auto 

evacuation is mainly due to ‘at once’ evacuation at peak time through the 

narrow roads of a historical city like Halifax with limited access points. The 

transit evacuation results demonstrate an excess capacity of the transit system 

to provide transportation assistance for additional evacuees who might switch 
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from auto and other modes. The simulation enables buses to use full capacity 

depending on the availability of the demand at marshal points. Hence, 

evacuation of the transit-dependent population is rapid compared to 

evacuation of auto users when only transit-dependent populations are 

assumed to be evacuated by buses. At the ninth hour of evacuation, 70% of auto 

users arrive at shelters, which demonstrates a complete evacuation of 90% of 

TAZs in the peninsula. The remaining 10% of the zones predominantly in the 

downtown area that have a higher evacuation demand. The introduction of a 

larger demand of this nature within a short period creates localized congestion 

in the downtown network, particularly across arterial and key loading links, 

resulting in a slower evacuation process for these zones. Therefore, it can be 

concluded that there are certain zones that show significant delays in 

evacuation, which warrants a consideration for special evacuation plans, 

including staged evacuation, among others.  

This study also presents average travel time distribution at different cutoff 

times of the evacuation from all zones to shelter 1 and shelter 2, respectively 

(Figure 5-3a and Figure 5-3b). Results in Figure 5-3 show that at the initial 

time of evacuation, average travel time increases significantly for most of the 

zones. Travelling to shelter 1 requires relatively a higher travel time, which 

varies between 2-3 hours. More specifically, residents from 70% of the zones 

experience an average travel time of 1 - 2 hours to safely reach shelter 1 at the 

most congested periods of evacuation. This study also examines mode-specific 

travel time for multimodal evacuation. The simulation results suggest that 

average travel time for auto is 31.44 minute and 37.76 minutes for bus.  
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Figure 5-3 Average travel time distribution at different cut-off times of the 

evacuation from zones to (a) shelter 1 and (b) shelter 2. 

 

Figure 5-4 presents a frequency distribution of travel time for both auto and 

bus. The results show that approximately 69% of drivers experience a travel 

time equal to or less than average travel time (31.44 minutes), while the 

fraction is around 78% for buses, corresponding to an average travel time of 

37.76 minutes. 50% of auto require a travel time of 25 minutes or less, while 

for 50% of buses, it requires 30 minutes or less. Arguably, additional time is 

added to average bus travel time due to stops at marshal points.  

 

Figure 5-4 Mode-specific travel time distribution for multimodal evacuation of   

the Halifax peninsula 
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Travel time is slightly longer for transit users; however, with the benefit of 

higher bus capacity, the complete evacuation of transit users is faster than the 

evacuation of auto users as shown in Figure 5-2.  

5.5.2 Transit Evacuation Performance Evaluation 

5.5.2.1 Transit Demand Served 

Further analysis of optimization and simulation results focuses on evacuation 

demand served at different marshal points along transit lines. Figure 5-5 

illustrates all transit lines and marshal points obtained from the optimization 

models and presents the spatial distribution of transit demand served during 

the evacuation. The results show that most of the marshal points are 

concentrated in the Downtown core and South-End of the Peninsula. The 

derived transit lines overlap in different parts of the Peninsula, particularly in 

the downtown core, which results in 43 marshal points being served by 

multiple transit lines. This study measures the performance of marshal points 

served by 1, 1+, 2+ and 3+ transit lines. Table 5-2 shows that average demand 

served by 2+ marshal point is 2.7%, while this value is 1.04% and 1.8% for 1 

and 1+ marshal point, respectively.  
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Figure 5-5 Spatial distribution of transit demand served at marshal points 

along transit lines 

 

Table 5-2 Transit Demand Served by Different Categories of Marshal Points 

Marshal points served by 

transit lines 

% of total transit demand 

served 

% average demand served 

by each marshal point 

1 58 1.04 

1+ 19 1.8 

2+ 15 2.7 

3+ 8 0.7 
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5.5.2.2 Traffic Congestion along Transit Lines and Critical Links 

Spatial and temporal variation of traffic congestion along transit lines are 

examined in terms of average speed. Average speed is estimated at link level 

for different times of evacuation. Figure 5-6 presents average speed 

distribution for all transit lines in the network. The results from simulations 

suggest that average speed is relatively lower near exits, across key links of 

the downtown core of the Peninsula. Transit lines passing over arterial streets 

experience significant traffic congestion, as these streets primarily lead traffic 

to shelters through the highways, the roundabout, and the bridges. This study 

also presents temporal variation of traffic congestion during evacuation. 

Figure 5-7 shows that average speed is below 30 km/h for most transit lines 

until the fifth hour of evacuation. Following this, average speed improves, and 

traffic operates at around 35-40 km/hr. after the congested periods. This result 

will help determine the offsetting time of transit operations during an 

emergency. 
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Figure 5-6 Spatial variation of traffic congestion propagation measured in 

terms of average speed along transit lines and critical links 
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Figure 5-7 Temporal variation of traffic congestion propagation measured in 

terms of average speed along transit lines 

 

5.5.2.3 Pick-up and drop-off of Transit Passengers 

The study also analyzes the pick-up and arrival patterns of transit passengers. 

The simulation results, as shown in Figure 5-8, suggest that pick-up rate 

decreases and arrival rate at shelters increases with the progression of 

evacuation time. 
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Figure 5-8 Pick-up and arrival pattern of transit dependent population with 

progression of evacuation time 

 

Initially, the deviation between the number of individuals picked-up and 

dropped-off is higher. After 4.5 hours, demand for pick-up becomes lower in the 

network than the number of transit users arrived at shelters. Figure 5-8 shows 

that the arrival of transit users at shelters peaks in the sixth hour of 

evacuation. At this hour, buses are best utilized and 30% of buses operate in 

the network to serve marshal points. It urges a pre-bus evacuation planning to 

intersect two times demonstrating the peak bus demand and bus utilization. 

5.6 Conclusions 

This chapter presented a multimodal evacuation microsimulation model that 

incorporates strategic planning decisions, including marshal point location and 

transit route choice decisions. The model tests and evaluates network 

conditions with multimodal evacuation plans. One of the key contributions of 

this study is that it develops a novel solution approach “Branch and Cut” to 
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solve the proposed MILP-based marshal point location and transit route choice 

problem while addressing transit demand under emergency conditions. 

The proposed framework was empirically tested for a case study in Halifax, 

Canada. This study addressed the transportation needs of the transit-

dependent population in assessing a mandatory multimodal evacuation of the 

Halifax Peninsula. The optimization solution approach used in this study 

achieved optimum results faster with a negligible relative MIP gap compared 

to that of other traditional methods. The optimization process identified 135 

marshal points and 12 transit routes to serve around 8,400 transit-dependent 

individuals. This study simulated an evacuation operation where buses 

continued to pick up evacuees until they reached capacity or no demand was 

left at marshal points, depending on which occurred first. The optimization 

results informed the multimodal evacuation scenario-building process for the 

simulation model. The simulation of multimodal evacuation anticipated a 

duration of 22 hours to completely evacuate auto users, which is alarming for 

coastal city Halifax. However, the transit-dependent population was 

completely evacuated within 7 hours of the evacuation. The results also 

revealed that traffic congestion was the highest at the core of the peninsula. 

Additionally, average speed was found lower near exits. The congestion results 

will help to identify critical time segments of evacuation for transit operations.  

This study contributes to the literature by developing a multimodal evacuation 

microsimulation model that evaluates network conditions for a multimodal 

evacuation. The results provide insight into public transportation planning, 

including marshal point locations, and transit route choices for emergency 

evacuation, and managing multimodal evacuation traffic operations. It is to be 

noted that this study assumes that evacuees have full awareness regarding 

marshal point locations, and they will choose one based on their network 

familiarity and that they use frequently during their daily travel. However, 



 

 

82 

  

how to communicate evacuees and disseminate information among them is not 

explored in this research. It warrants the development of communication and 

dissemination plan to update evacuees with necessary information. 

Nevertheless, the results help emergency professionals and engineers to 

identify the excess capacity of the transit system that can accommodate for 

additional evacuees who might switch from other modes. 

However, the study found that evacuating all citizens at once takes a longer 

time since spillback gridlocks the narrow roads of the town. The condition can 

be exacerbated with other complexities and disruption risks associated with 

evacuation. The next chapter incorporates uncertainties and further 

evacuation disruption risks such as vehicle collision within the developed 

traffic evacuation microsimulation model. Such evacuation model combining 

vehicle collision prediction and traffic simulation model will be useful for an 

estimation of the upper limit of evacuation times.  
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Chapter 6 

Chapter 6 Modelling Traffic 

Disruptions3 

6.1 Introduction 

This chapter presents a traffic evacuation microsimulation model that 

accounts for traffic disruption risks in assessing a mass evacuation scenario. 

The evacuation of an urbanized population has become critical due to the 

increased concentration of population, business centers, economic 

infrastructures, and the resulting traffic congestion in the transport network. 

The world is currently facing unanticipated challenges due to frequent natural 

disaster events such as a hurricane and is under threat to manmade disasters 

such as a terrorist attack. The transportation system, a vital element of urban 

infrastructure, is vulnerable to natural and manmade catastrophes that may 

lead to a low level to a cascading failure of the system. The transport network 

plays a vital role in connecting people and delivering goods between distant 

places. Any disruption to a road network due to natural or man-made disasters 

could have a significant consequence including long-stranded traffic queues 

and unbound economic losses (Wisetjindawat et al. 2019; Tsuchiya and Okada 

2007). The issue is even more critical during an emergency evacuation when a 

 
3 This chapter is largely derived from the following peer-reviewed journal papers: 

• Alam, M. J., and Habib, M. A. (2020). Modelling Traffic Disruptions during Mass 

Evacuation. Procedia Computer Science, 170, 506-513 

• Alam, M.J., and Habib, M.A (2021). Mass evacuation microsimulation modelling 

considering traffic disruptions. Natural Hazards. https://doi.org/10.1007/s11069-021-

04684-y  
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transport network is only the means to move the affected people from the 

endangered area. Mostafizi et al. (2017) showed that tsunami related 

disruptions to several key links in the network increases the mean mortality 

rate by 5%. Alam et. al. (2017a) estimated a travel time delay cost of $22,000 

in the morning peak period due to a sudden 1-hour construction-related bridge 

closure in Halifax, Canada. Existing evacuation modelling research focuses 

more on the natural disaster related disruption risks. However, given the 

extent of the impacts of sudden network disruptions inherent to the traffic 

operations (Alam et al. 2017a; Alam et al., 2017b; Zhu et al. 2012), predicting 

collision rates is of paramount importance to assess the risks holistically when 

considering a mass evacuation. Accommodating for vehicle collision-related 

network disruptions within the evacuation modelling framework urges to 

develop an evidence-based probabilistic approach to identify the most likely 

collision locations, alternatively, the ‘hotspot’. Simultaneously, it is of utmost 

importance to investigate the effects of collision-related congestion spillback 

on the surrounding network and the total network clearance time. The 

capability of traffic microsimulation models to track each individual and 

represent heavily congested transport network has made them a good 

candidate for evacuation modelling in a disrupted network. Additionally, an 

advanced traffic microsimulation model with dynamic routing capacity is ideal 

to portray the disrupted and diverted evacuation traffic flows. Few studies 

(Wisetjindawat et al. 2019; Tsuchiya and Okada 2007; Alam et al. 2018) 

addressed natural disasters such as flooding or tsunami related network 

damages within the traffic evacuation simulation model. However, accounting 

for disruption risks inherent to the transport operations is almost absent, 

which requests further attention to comprehensively assess evacuation 

parameters during an emergency condition. This study aims to combine 

collision prediction and traffic microsimulation modelling for evacuation 
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testing within the disrupted network resulting from the incidents inherent to 

the traffic operations.  

Therefore, the objective of this study is to develop a probabilistic model to 

identify collision hotspots, and a mechanism for accounting collision related 

disruptions within traffic evacuation microsimulation model. In this study, a 

probabilistic model follows a combined Bayes theory and Monte Carlo 

simulation approach to identify hotspots at different times of an evacuation 

day. Unlike other studies, instead of placing pseudo collision disruptions by 

updating the link capacity, this study uses the proposed probabilistic model to 

internally implement the hotspots on the links in the traffic microsimulation 

model. The traffic evacuation microsimulation model is updated with network 

disruption information to test and evaluate evacuation scenarios in a disrupted 

network.  

6.2 Literature Review 

Traffic microsimulation model has gained popularity in evacuation research as 

it enables accommodating for the impacts of natural disasters, the network’s 

vulnerability to uncertain incidents and policy decisions when simulating 

evacuation plans. In addition, an advanced dynamic traffic microsimulation 

model is capable of reliably predicting driver’s re-routing in response to the 

sudden collision disruptions during an evacuation. Despite the advantage of 

traffic simulation modelling, simulations involving uncertain network 

disruptions are limited for mass evacuation. Network vulnerability has 

adequately been researched over the past few years (Günneç and Salman 2011; 

Sohn 2006; Dalziell and Nicholson 2001; Jenelius and Mattsson 2012; Tang 

and Huang 2018). These studies estimated the vulnerability of the road 

network to natural disasters, including earthquakes and floods. Network 

vulnerability due to natural catastrophes has further been evaluated in 
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combination with an evacuation event. For example, it has been found that 

natural disaster related network damage delays the complete evacuation 

and/or causes incomplete evacuation (Alam et al. 2018). Bae et al. (2014) 

considered network disruptions due to a hypothetical bomb blast in the 

network, where affected links are considered inactive from the start of the 

evacuation. This study evacuated people on a shortest-path basis; however, 

dynamic traffic congestion propagation due to network disruptions was not 

addressed. Mostafizi et al. (2017) determined the mortality rate against a 

tsunami moving inland. Several studies (Ferguson 2011; Watts et al. 2012; 

Huang et al. 2009) considered the traffic impacts of construction related 

network disruptions during daily commuting traffic conditions. Other studies 

(Jenelius 2010; Sohn 2006) focused on the network redundancy by observing 

the performance of a link when other links were disrupted in the network. 

Although, several research, for example, Li et al. (2015) investigated the traffic 

patterns and highway disruptions during hurricane Irene and Sandy, they did 

not analyze the effects of disruptions on evacuation traffic flows. However, the 

study asserted that there is limited difference in collision locations and 

occurrences pattern under both the evacuation and business as usual 

conditions. While network vulnerability and daily traffic flow disruptions are 

adequately addressed, an evacuation performance is rarely evaluated in the 

presence of uncertain collision-related network disruptions. Given the 

necessity of an efficient road transport system for an evacuation, it is critical 

to predict the locations where disruptions are most likely to occur in the 

network. This is also of paramount importance to identify the potential areas 

where the collision-related impacts would be the most severe during a mass 

evacuation.  

Li and Ozbay (2015) utilized a conditional probability function to accommodate 

disruptions in the network by a cell-based modelling method, which considered 

that the likelihood of a collision occurrence is a function of traffic flows. The 



 

 

87 

  

hypothetical disruption scenarios considered in the earlier studies either 

assumed pre-defined link closures or made capacity adjustments to the 

network links to replicate disruptions. They utilized a traffic flow data-driven 

conditional probability to identify collision locations. In this regard, locations 

that have lower traffic flows may be overlooked but be at risk of a collision due 

to other factors including roadway conditions. Moreover, during evacuation, 

the entire network has the potential to be grid-locked, which may overestimate 

the overall network disruptions when using the conditional probability 

function over only the volume-capacity ratio. In addition to traffic flow-related 

factors, there are other crucial factors including road surface conditions, 

alignment, and driver’s distraction that contribute to the likelihood of a 

collision occurrence. This study identifies key factors in collision occurrence for 

determining the candidate collision locations that further informs the hotspot 

identification process. A probabilistic modelling approach is adopted to 

estimate the candidate location’s probability to anticipate a vehicle collision. 

In this regard, the Bayes theory appears to be the most advantageous tool 

which enables determining the posterior probability of an event given the prior 

probability of the occurrence of that event.  

This study adopts a combined Bayes theory and Monte Carlo simulation 

approach to determine the hotspots using the identified candidate collision 

locations. The Monte Carlo simulation technique is employed to predict 

hotspots involving collisions at different times of day. This study utilizes a 

traffic microsimulation model to explicitly incorporate disruptions informed by 

the proposed probabilistic model. The sudden nature of collision occurrence is 

replicated by developing disruptions in the middle of the evacuation 

simulation. Evacuation efficiency and network performance are evaluated in 

terms of traffic flow density, queue propagation, percent completion of 

evacuation, and travel time changes.  
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6.3 Data Used 

This study uses the Nova Scotia Collision Record Database (NSCRD) for 

developing models. The data was obtained from Service Nova Scotia and 

Municipal Relations (SNSMR). All police reported collisions that occurred 

between 2007 and 2011 in Halifax, Canada are extracted from NSCRD. The 

database contains details regarding the time, location, and characteristics of 

the individuals involved in a collision. Additional information includes vehicle 

type, weather, lighting, driver conditions, and crash configuration. The 

NSCRD data includes road related information including the attributes road 

grade, road configuration, road surface, road divider, and road alignment 

pertaining to reported collisions. The attributes are further described by 

several sub-attributes, for example, the attribute ‘road grade’ is characterized 

by slope, level, and other road grade conditions. Moreover, age and gender 

information associated with each collision record in the dataset are also 

available. Additionally, the database records collisions due to driver’s 

distraction. Distraction types in the dataset include distraction by 

communication device, distraction by vehicle display, distraction due to 

inattention, and others. The data processing obtained 67,985 collision records 

that are occurred in Halifax. This study utilizes the collision data observed on 

a normal day traffic condition. It does not incorporate extraordinary human 

responses in the analysis. The rationale to use all collisions is mainly to predict 

hotspots where traffic safety issue exists and the collisions during panic 

conditions are likely to occur projected by five years of historical collision data. 

However, if the data observed on an evacuation day would be available, it can 

be useful to accommodate human factors into collision probability analysis.   
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6.4 Methodology 

This chapter develops a probabilistic model to identify hotspots where a 

collision is most likely to occur in the network. A combined Bayes theory and 

Monte Carlo simulation approach is adopted to determine the spatial and 

temporal distribution of the hotspots involving collisions. The identified 

hotspots are incorporated within a traffic microsimulation model to account for 

disruptions during a mass evacuation. The overall framework for the proposed 

modelling approach is presented in Figure 6-1.  

 

Figure 6-1 A comprehensive framework of collision hotspot identification for 

traffic evacuation microsimulation modelling 

  

6.4.1 Collision Hotspots Identification  

This study follows three stages to predict collision hotspots in the network: (1) 

identification of candidate collision locations utilizing contributing factors in 

vehicle collision occurrence, (2) determination of the likelihood of a candidate 

location to anticipate a vehicle collision using a Bayes theory-based 
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probabilistic model, and (3) identification of the hotspots for different times of 

a day using a Monte Carlo simulation approach. 

6.4.1.1 Candidate Collision Locations   

This study identifies candidate collision locations based on the factors affecting 

the likelihood of collision occurrence. The study conducts a sensitivity analysis 

of fifty-six variables that involve individual characteristics including age and 

gender, roadway conditions, such as road surface and alignment, and drivers’ 

distraction types associated with each collision reported in NSCRD. The data 

covering 2007 to 2010 collisions are used for identifying influential factors.  In 

the sensitivity analysis, each parameter that has a confidence interval 

excluding the null hypothesis (zero effects in magnitude) is identified (Figure 

6-2).  

 

Figure 6-2 Estimation of fifty-six variables affecting collision occurrence 
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In Figure 6-2, horizontal bar represents the confidence interval bounded by a 

minimum and a maximum value. Bars that lie on the right side of the ‘zero 

effect line’, and do not contain ‘zero’ demonstrate the significant association of 

the corresponding variables with the occurrence of vehicle collisions. A total of 

thirteen parameters under four categories are identified that demonstrate 

significant contributions to the vehicle collision occurrence as shown in Table 

6-1. The sensitivity analysis conducted in this study helps understand the 

factor types and their contributions to potentially triggering a vehicle collision. 

Table 6-1 Factors Affecting Collision Occurrence Identified through the 

Sensitivity Analysis 

 

Road surface Road alignment Distraction Gender 

Loose or excess sand, gravel, 

or dirt ( 28v ) 

Conf. Interval: [0.003, 0.046] 

Effects: 0.024; P: 0.0267 

Others ( 1v ) 

Conf. Interval: 

[1.810, 2.259] 

Effects: 2.034; P: 

0.0000 

Not distracted ( 21v ) 

Conf. Interval: 

[0.026, 0.093] 

Effects: 0.059; P: 

0.0005 

 

Female ( 18v ) 

Conf. Interval: 

[0.039, 0.108] 

Effects: 0.074; 

P: 0.0000 

Fresh and loose snow ( 31v ) 

Conf. Interval: [0.01, 0.025] 

Effects: 0.018; P: 0.0000 

Curved ( 2v ) 

Conf. Interval: 

[1.789, 2.224] 

Effects: 2.006; P: 

0.0000 

Distracted, 

inattentive ( 25v ) 

Conf. Interval: 

[0.006, 0.073] 

Effects: 0.04; P: 

0.0204 

Male ( 19v ) 

Conf. Interval: 

[0.038, 0.106] 

Effects: 0.072; 

P: 0.0000 

Icy ( 32v ) 

Conf. Interval: [0.009, 0.024] 

Effects: 0.016; P: 0.0000 

Straight ( 3v ) 

Conf. Interval: 

[1.776, 2.211] 

Effects: 1.993; P: 

0.0000 

Others ( 26v ) 

Conf. Interval: 

[0.003, 0.070] 

Effects: 0.037; P: 

0.0336 

- 

Packed snow ( 33v ) 

Conf. Interval: [0.007, 0.038] 

Effects: 0.022; P: 0.0050 

- - - 

Slush, wet snow ( 35v ) 

Conf. Interval: [0.006, 0.021] 

Effects: 0.014; P: 0.0006 

- 
 

- 
- 
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To identify the candidate collision locations, this study utilizes key factors 

listed in Table 6-1. The locations where the factors contribute to collision 

occurrence are flagged as candidate collision locations. The collection of the 

factors can be represented by 
factorsV , and the set of candidate collision locations 

can be represented by L , where: 

 1 2 3, , ,....factors tV v v v v=                              (1) 

 1 2 3, , ,.... nL l l l l=                (2) 

A candidate collision location may involve a vehicle and/or a non-vehicle 

collision. After the identification process of candidate locations, a Bayes theory 

approach is used to evaluate candidate locations in relation to the vehicle 

collision occurrence. 

6.4.1.2 Candidate Location Probability for a Vehicle Collision: A Bayes Theory 

Approach 

This study adopts a Bayes theory-based approach (Bayes 1763) to estimate the 

probability of a candidate location to anticipate a vehicle collision when the 

prior knowledge of the conditions related to the event is given. Let’s assume, 

.veh collE  represents an event of a vehicle collision at a location il where il L . 

.other collE refers to an event of a non-vehicle collision. factorsV  is a set of key factors 

that have a large association with the occurrence of vehicle collisions .veh collE . 

Now, the following formula can be utilized to estimate the probability of a 

location ( ), . .|
factors

i veh coll veh coll V
P l E to anticipate a vehicle collision. 

( )
, . , .

, . .

, . , .
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.
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.
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(

* ( )

)

| ) * (
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|

|
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( * (
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factors
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factors factors
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i veh coll V i veh coll

i veh coll veh coll V
V

i veh coll V i veh coll V

veh coll V veh coll

veh coll

veh coll

veh coll

veh coll

P l l
P

l

E P

E

E P

E

l E
P

P l

P l lP

=

=
2, . 2, . , . , .. .) | ) * ( ) ..... | ) * ( )( (

factors factorsv veh coll V veh coeh coll ve c vh colll i ve ll h oll V i eh colE P EP Pl l l l+ +

(3) 
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where, 

( ), . .|
factors

i veh coll veh coll V
P l E  represents the probability of a candidate location to 

anticipate a vehicle collision. 

,. .( | )
factorsi veveh col coll Vl hP E l  represents the probability of a vehicle collision occurrence 

given a location il . 

, .( )i veh colllP represents the probability of observing a candidate location il for 

vehicle collision occurrence. 

Following the process, the computation estimates the probability for each 

candidate location il L that anticipate a vehicle collision. The probabilities are 

then utilized to categorize the candidate locations into several groups by 

introducing different levels of probability criteria. The multiple sets of 

candidate locations allow to test and evaluate scenarios representing different 

levels of disruptions and complexity during a mass evacuation. Let ip  

represent a set of probability criterion and ip

jL the set of all sub - sets of 

candidate locations corresponding to criteria ip  as expressed in equation 4. 

 31 2

1 2 3, , ..........i kp p pp p

j kL L L L L=                                                                                   (4) 

 

Where, 31 2

1 2 3, , .......... kp pp p

kL L L L L , 31 2

1 2 3 .......... kp pp p

kL L L L      ,

 1 2 3, , ,...i kp p p p p= , and  1,2,3.........j k= . The equation 4 indicates that any 

location, il  may have a membership to more than one subset of ip

jL . 

Although all the candidate collision locations have potential to anticipate a 

vehicle collision, it is unlikely that all of them would anticipate a collision at 

the same time on a specific day. Therefore, this study implements a Monte 

Carlo simulation process to identify the hotspots involving collisions from 
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different sub-sets of candidate locations for different times of an evacuation 

day. 

6.4.1.3 Temporal Distribution of Hotspots Involving Collisions: A Monte Carlo 

Simulation Approach 

In this stage, hotspots involving collisions are drawn from each element of 
p
i

jL  

for different hours of an evacuation period using a Monte Carlo simulation 

technique. Thus, each element of 
p
i

jL  generates a sub-set of hotspots and all 

the sets of hotspots are collectively represented by ( )
p
i

T
t

L . Each sub-set of 

( )
p
i

T
t

L represents a collection of hotspots for different evacuation hours tT

corresponding to probability criteria ip  as formulated in equation 5. 

( )
( ) ( ) ( )  ( ) ( ) ( ) 

( ) ( ) ( ) 

1 2

1 2 1 2

1 2

1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2

, ...... , , ...... ,.......... , ...... , , ...... , , ...... ,.......... , ......

..... , ...... , , ...... ,.......... , ......

i t t

t k

t

p p

i i i i i ip T T T T T T

T p

i i iT T T

l l l l l l l l l l l l l l l l l l
L

l l l l l l l l l

 
 

=  
 
 

(5) 

( ) ( )  ( )  ( )  1 2

, ........
ki

t t t t

p p pp

T i i iT T T
L h h h=  

where,  1,2,3........i n= , ( )  ( )  ( ) 
1 2

31 2

1 2 3, .......... , , ..........
k

k

t t t

p p p
p pp p

i i i kT T T
h h h L L L L L  , 

( )  ( )  ( ) 
1 2

1 2

..........
k

t

pp p

i i iT T T
h h h     , and  1,2,3,........t t= . i  represents 

location IDs and same location can be selected at different hours within the 

same subset of ( )
p
i

T
t

L  and across different subsets if the location satisfies for 

multiple probability criteria.  

To validate the distribution of collision occurrence at hotspots, simulated  over the 

evacuation hours tT  under each probability criteria ip , an hourly distribution, 

observed  over the same period is obtained from the NSCRD 2011. The Monte 
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Carlo simulation is continued until the simulated distribution, closely matches 

with the observed distribution obtained from the provided dataset. The Monte 

Carlo simulation is implemented using Visual Basic of Applications (VBA) and 

includes the following steps: 

• Step 1: Start Monte Carlo simulation run, r  to select hotspots 

randomly from 
p
i

jL  for evacuation period tT , where  1,2,3........r n= . 

• Step 2: Compare the simulated distribution, simulated with the observed 

distribution, observed . 

• Step 3: If the deviation between two distributions is less than the 

desired threshold , stop simulation. 

• Step 4: If not, return to Step 1 to run simulation 1r + . 

At the end of Monte Carlo simulation, one or more hotspots for vehicle collision 

occurrence at different hours are determined, which are to be coded into the 

traffic evacuation microsimulation model. The mechanism to accommodate for 

disruptions within the traffic microsimulation model is described in section 6.6. 

6.5 Evacuation Scenarios considering Traffic Disruptions  

6.5.1 Candidate Collision Locations and Probabilities  

This study recognizes thirteen factors (
factorV ) that significantly contribute to the 

collision occurrence at candidate locations. In total, 128 candidate collision 

locations ( il L ) are identified in this study (Figure 6-3). Following a Bayes 

theory-based probability computation, the likelihood of candidate location, 

( ), . .|i veh coll veh coll V
factors

P l E  to anticipate a vehicle collision is estimated. Figure 6-3 

presents all the candidate locations that may anticipate a vehicle collision with 

a likelihood of 0.21% - 7%. Figure 6-4 shows the kernel density of collision 
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occurrence obtained from the Bayes probability analysis for the study area. 

The results reveal that the downtown core, commercial area and exit locations 

are highly likely to anticipate a vehicle collision.  

 

Figure 6-3 Visualization of all collision locations, hotspots for each probability 

criteria and major corridors for network performance analysis 
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Figure 6-4 Kernel density of collision occurrence 

 

Figure 6-3 illustrates several major corridors that are used for traffic impact 

analysis in this study. Both red and multicolored locations represent the 

hotspots obtained by Monte Carlo simulation described in the next section. 

Multicolor indicates that these locations satisfy in different probability criteria 

ip . 

6.5.2 Hotspots in Evacuation Period 

Four probability criteria ( ip ) are introduced, taking probability values of equal 

to or greater than 2%, 3%, 4%, and 5% for candidate locations to anticipate a 
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collision, which results in four sub-sets of candidate collision locations 
p
i

jL . 

Each subset is subjected to a Monte Carlo simulation for determining hotspots, 

( )
p
i

T
t

L at different times of an evacuation. Consequently, four sets of hotspots 

are obtained in relation to the four probability criteria shown in Table 6-2. 

Hotspots that are drawn for generating vehicle collisions, but that do not affect 

traffic movement within the evacuation area are excluded. For example, Table 

6-2 shows that scenario 1 considers only a location (i.e., location 7) while two 

locations were drawn through the Monte Carlo simulation for the period 1700-

1800.  

Table 6-2 Number of Hotspots and Hotspot IDs at Different Hours of 

Evacuation Period for Each Probability Criteria ( ip ) 

 

 

The simulated distribution of collision occurrence at hotspots is compared to 

the observed distribution for the given evacuation period. Figure 6-5 presents 

the deviation between the observed and simulated percent collisions at 

hotspots where the values deviate by 3% or less at each hour. 

 

 1 

Evacuation 

hours 

Scenario 1: 1 2%p   Scenario 2: 2 3%p   Scenario 3: 3 4%p   Scenario 4: 4 5%p   

Hotspot# 

from Monte 

Carlo 

Simulation 

Hotspot 

considered 

( )
1

t

p

TL  

Hotspot# 

from Monte 

Carlo 

Simulation 

Hotspot 

considered 

( )
2

t

p

TL  

Hotspot# 

from Monte 

Carlo 

Simulation 

Hotspot 

considered 

( )
3

t

p

TL   

Hotspot# 

from Monte 

Carlo 

Simulation 

Hotspot 

considered 

( )
4

t

p

TL   

1T : 1000-1100 1 No 1 No 1 No 1 No 

2T : 1100-1200 1  No 1 No 1 No 1 Loc 7 

3T : 1200-1300 1  Loc 1 1  No 1  Loc 3 1  Loc 5 

4T : 1300-1400 1  Loc 10 1  No 1  No 1  No 

5T : 1400-1500 1  Loc 3 1  No 1  Loc 10 1  Loc 10 

6T : 1500-1600 2  No 1 No 1 No 1 No 

7T : 1600-1700 2  No 1  Loc 7 1  No 1  Loc 3 

8T : 1700-1800 2  Loc 7 1  No 1  Loc 1 1  Loc 1 

9T :1800-1900 2  Loc 5 2  Loc 5 1  Loc 7 1  No 

10T : 1900-2000 1  No 1  Loc 10 1  No 1  No 

11T : 2000-2100 1  No 1  Loc 3 1  Loc 5 1  No 
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Figure 6-5 Observed and simulated distribution of collision occurrence at 

hotspots obtained from NSCRD and Monte Carlo simulation, respectively 

  

Starting with a 10% deviation between the observed and simulated 

distribution at the first run of the Monte Carlo simulation, this study achieved 

a deviation of 3% or less after 62,407 simulation runs. In Table 6-2, four 

scenarios regarding four probability criteria are presented in which collisions 

occur at different hours of an evacuation period. Apart from these, this study 

introduces an additional scenario that considers collisions taking place 

concurrently at the selected hotspots. Therefore, the evacuation scenarios to be 

evaluated in this study broadly include (1) Base case scenario: no disruptions, 

(2) Scenario 1 – 4: staggered disruptions, and (3) Scenario 5: concurrent 

disruptions. This study simulates the above evacuation scenarios considering 

two disruption conditions: removal and non-removal of traffic disruptions. The 

time for collision occurrence in Table 6-2 ranges from evacuation hour 10:00 to 

21:00. A starting time of 10:00 is due to the assumption that the population 

doubles in the morning within the study area presenting a critical evacuation 

scenario. A period of 10:00 to 21:00 is selected for a traffic disruption analysis 

based on the data revealing that collision occurrence is significant at this 

period. The collection of candidate collision locations, 
p
i

jL , sets of hotspots 
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( )
p
i

T
t

L for all probability criteria ( ip ) are shown previously in Figure 6-3. Now, 

according to the proposed framework in Figure 6-1, the hotspots involving 

collisions are to be coded into the traffic microsimulation model for evaluation.  

6.6 Traffic Microsimulation Modelling considering Traffic 

Disruptions 

To generate collision-related disruptions to the evacuation traffic flow at the 

hotspots identified, the traffic evacuation microsimulation model developed in 

the previous chapters is utilized (Alam et al., 2018; Alam et al., 2019). 

Collision-related disruptions are coded within the simulation model using the 

signal concept, where a red light represents a disruption at the specified time 

in the signal controller. Figure 6-6 presents all five scenarios with temporal 

distribution of collision occurrence at hotspot considering a non-removal of 

traffic disruption condition in the network.  

 

Figure 6-6 Coding of disruptions at hotspots within the traffic microsimulation 

model 
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It shows the length of red and green time in signal groups to represent a vehicle 

collision at a certain hotspot in different scenarios. As mentioned earlier, signal 

controller consists of signal phases and signal groups. A ‘red-green’ phase is 

used in this study to activate collisions at specified hotspots and times. In total, 

five new signal controllers are placed at five hotspots identified through the 

probabilistic model.  

6.7 Results and Discussions 

This study explores the impacts of collisions on a mass evacuation process 

considering a removal of traffic disruption condition utilizing a traffic 

evacuation microsimulation model. However, the study also presents the 

worst-case evacuation scenarios considering a non-removal of traffic disruption 

condition, because during panic situation, there might be circumstances at 

some hotspots making it difficult to remove the disruptions given the limited 

time and accessibility issues.  

As mentioned earlier, four scenarios (scenario 1 – 4) demonstrating staggered 

collision occurrence and scenario 5 representing concurrent collision 

occurrence at hotspots are considered for analyzing a mass evacuation under 

both removal and non-removal of traffic disruption conditions. A base case 

scenario involving no collisions in the network is also assessed. It has been 

observed that the staggered collision occurrence increases evacuation time by 

4.5% with respect to a base case scenario if the traffic disruption is removed in 

2 hours or less. Table 6-3 shows that it takes same evacuation time in both 

staggered and concurrent collision occurrence scenarios if traffic disruption is 

removed in 2 hours or less. However, in the case of a removal time above 2 

hours, it takes 24 – 33 hours to evacuate the peninsula depending on the 

removal time of traffic disruptions from the network in concurrent collision 

occurrence scenario.  
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Table 6-3 Overall Evacuation Time for Two Collision Scenarios considering the 

Removal of Traffic Disruptions 

Scenario Types 

Removal of Traffic Disruption  

In ≤ 2 hours In > 2 hours 

Staggered Disruptions 23 24-25 

Concurrent Disruptions 23 24-33 

 

This study also examines the evacuation time under concurrent collision 

occurrence scenario in relation to different times required to remove traffic 

disruptions from the network. Figure 6-7 illustrates that the evacuation time 

is 23 hours if traffic disruption is removed in 2 hours or less and climbs up to 

31 hours if the disruption is removed in >2 – 24 hours. 

 

Figure 6-7 Evacuation time in relation to the traffic disruption removal time 

in the network under a concurrent collision occurrence scenario 
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In non-removal of traffic disruption condition, it takes 33 hours to evacuate the 

peninsula. The following sections focus on further analysis of the results from 

traffic microsimulation model for both removal and non-removal of traffic 

disruption cases. The scenario evaluations are carried out in terms of 

evacuation completion, queue length, travel time and clearance time. 

6.7.1 Removal of Traffic Disruption 

6.7.1.1 Evacuation Completion and Travel Time Analysis 

This study analyzes the impacts of staggered collision occurrence on 

evacuation traffic flows considering the removal of traffic disruptions as shown 

in Figure 6-8.  

 

Figure 6-8 Visualization of percent cumulative evacuation completion for base 

case, and staggered collision occurrence scenarios under the removal of traffic 

disruption condition 
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Figure 6-8 shows percent cumulative traffic flows for base case, and staggered 

collision occurrence scenarios considering the removal of traffic disruptions 

from the network. The diagrams do not suggest a significant deviation between 

the lines representing base case and staggered collision occurrence scenarios. 

Although, changes in traffic flow indicators at regional level are not significant, 

local level impacts are evident when comparing travel time results from both 

removal and non-removal of traffic disruption cases. Figure 6-9 illustrates a 

box plot of individual travel time in the network and indicates that individual 

travel time is relatively lower in the case of removal of traffic disruptions case.  

 
Figure 6-9 A box plot analysis of individual travel time during an evacuation 
considering staggered collision occurrence 
 

In the case of concurrent collision occurrence scenario, evacuation time is way 

higher with respect to the base case scenario. Figure 6-10 shows that with the 

increase in the removal time of traffic disruption from the network, traffic 

throughputs drop, and evacuation time increases.   
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Figure 6-10 Percent cumulative completion of evacuation in concurrent 

collision occurrence scenario in relation to the removal time of traffic 

disruptions in the network 

 

Furthermore, the study also explores the impacts of concurrent collision 

occurrence at individual level as shown in Figure 6-11.  

 

Figure 6-11 Individual travel time analysis in concurrent collision occurrence 

scenario considering the removal of traffic disruptions in the network during 

an evacuation 
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Figure 6-11 presents the individual travel time when the disruptions are 

removed at different hours of evacuation period. Results show that 75% 

individuals anticipate approximately a similar travel time regardless of the 

time required to remove traffic disruption from the network. However, 25% 

individuals represented by the top whisker anticipate a minimum travel time 

of 13 hours in the network. In this study, scenario 5 is found to be the worst-

case scenario and is considered for further analysis. 

6.7.1.2 Clearance Time Analysis 

This study also assesses zonal clearance time considering the concurrent 

collision occurrence at hotspots. Clearance times are observed in relation to the 

time required for removing traffic disruption from the network. The study 

divides the Halifax Peninsula into four planning districts for analysis purpose. 

Table 6-4 shows the effects of traffic disruption of varying durations on the 

zonal clearance time for four planning districts such Downtown (DT), West-

End (WE), North-End (NE), and South-End (SE). Each row represents a traffic 

analysis zone within a certain planning district. 
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Table 6-4 Zonal Clearance Time Visualization in relation to the Traffic 

Disruption Removal Time considering Concurrent Collision Occurrence  

 

 

Table 6-4 shows that NE zones are marginally affected if the collision is 

removed in 2-20 hours. WE zones are directly connected to three exits making 

them partially immune to traffic disruptions during evacuation. DT being the 

city centre and SE, being located at the corner of DT, zones in these two 

2hr 4hr 6hr 10hr 12hr 14hr 16hr 18hr 20hr 22hr 24hr

12.08 10.58 12.25 12.83 15.08 18.25 18.67 20.83 23.00 24.58 26.67

9.92 12.42 13.33 16.50 18.42 16.83 19.92 20.58 22.67 29.17 26.67

7.17 9.50 11.25 12.58 14.42 16.42 18.67 20.33 22.42 24.42 26.58

12.08 10.92 14.92 14.92 17.67 22.83 18.67 25.58 26.67 27.50 27.67

24.08 24.00 25.92 25.92 24.33 31.92 24.25 30.83 31.42 31.92 31.92

6.92 8.92 8.58 12.58 14.50 16.42 18.50 20.67 23.25 24.50 26.67

25.92 25.92 25.92 25.92 30.83 27.08 31.92 26.08 25.92 31.92 27.08

7.17 8.50 25.92 12.50 14.50 16.42 18.42 31.92 22.50 24.50 26.67

11.42 14.75 8.67 13.50 15.42 16.33 9.42 10.75 13.42 24.33 26.42

6.50 7.92 8.50 6.08 5.92 5.92 5.92 6.67 6.42 24.25 6.67

25.17 25.58 25.92 25.92 20.83 31.92 23.17 31.92 31.92 31.92 31.92

9.42 7.00 8.25 6.08 6.17 5.83 6.08 6.50 6.42 6.17 7.17

7.00 8.17 8.25 6.08 6.33 5.75 5.75 6.67 6.67 5.92 6.92

6.50 7.92 7.17 5.83 5.83 5.75 5.67 20.50 6.83 6.75 7.08

14.42 20.00 13.00 12.83 14.58 16.67 18.58 20.58 22.50 24.58 26.67

6.92 7.75 15.58 6.33 14.33 11.42 6.08 6.67 6.50 24.33 26.33

6.92 8.00 8.33 6.33 6.42 5.75 5.75 6.50 6.83 24.42 26.25

5.58 7.08 7.17 6.08 5.75 9.42 7.42 6.08 11.42 11.42 6.92

6.42 8.17 8.42 5.75 6.17 5.92 5.83 6.67 6.25 24.25 26.42

6.42 8.75 7.33 6.17 6.08 6.00 6.08 6.25 6.67 24.25 7.17

5.25 11.75 8.50 15.50 6.42 6.00 6.08 6.50 6.25 6.33 6.00

7.08 7.83 8.25 6.33 10.42 5.92 11.42 6.67 6.67 24.33 26.33

5.83 7.83 8.25 6.08 6.08 6.00 6.08 6.08 6.58 6.00 6.00

14.42 7.67 8.42 6.17 6.42 6.00 6.00 6.75 6.75 24.33 26.33

7.00 7.50 8.42 5.83 6.50 6.00 6.08 6.75 6.58 6.75 6.58

7.08 9.08 7.58 12.58 14.33 16.67 18.50 20.42 6.67 24.50 26.50

7.25 8.67 8.50 6.33 14.33 16.42 6.08 20.58 6.83 24.42 26.33

10.33 9.50 11.75 12.92 15.00 17.92 18.67 20.92 23.08 24.58 26.67

7.83 9.50 8.83 12.75 14.67 16.58 18.67 20.50 22.50 24.50 26.67

7.08 8.92 8.50 12.42 14.42 16.42 6.33 20.42 22.42 24.42 26.50

9.58 9.42 12.00 13.58 17.08 16.58 18.67 21.75 25.75 24.50 26.50

9.25 10.75 11.92 12.92 16.42 16.58 18.67 22.58 25.33 24.50 26.50

7.33 9.25 10.42 12.83 14.75 17.58 18.67 21.00 22.92 25.25 26.67

10.83 13.75 10.17 14.50 14.92 16.75 18.67 20.83 22.75 24.58 26.58

15.42 7.33 8.50 7.50 5.83 5.92 6.00 13.75 12.42 24.25 7.00

7.00 8.83 8.75 12.42 14.33 10.17 18.58 20.58 22.58 24.42 26.17

8.17 9.25 9.33 12.83 15.00 16.50 18.42 20.83 23.00 24.50 26.33

7.75 9.17 9.25 12.83 14.92 16.33 7.67 20.83 22.75 6.83 7.58

9.58 9.42 12.08 13.75 17.58 16.67 18.67 22.08 25.75 24.50 26.33

6.92 9.17 8.83 12.50 14.58 16.92 18.58 20.50 22.83 24.58 26.50

9.75 9.08 11.00 12.92 14.83 17.75 18.67 20.92 22.92 24.67 26.67

6.33 16.75 8.25 10.50 8.42 13.42 16.42 5.92 6.83 24.25 7.08

13.42 7.00 8.42 6.00 5.67 5.92 15.42 15.75 16.42 24.25 7.08

6.08 7.33 12.58 16.50 6.00 16.25 6.08 6.42 15.42 24.25 26.33

8.42 7.17 14.58 13.92 14.33 16.92 5.75 20.33 7.42 24.33 26.33

4.25 7.75 4.25 6.50 7.42 4.33 13.42 4.25 14.42 16.42 4.25

6.25 6.67 9.58 13.33 6.08 16.83 6.25 6.75 7.08 6.17 6.08

5.83 6.92 16.58 6.17 5.75 10.42 5.83 8.75 6.42 13.42 15.42

6.00 15.75 10.58 6.17 14.42 5.83 10.42 5.92 6.67 8.42 6.92

5.92 12.75 8.58 5.92 5.67 5.83 5.92 11.75 6.25 6.00 6.58

6.25 7.00 8.67 5.67 5.67 5.83 5.75 14.75 6.42 6.00 9.42

5.42 6.33 7.25 5.83 16.42 5.42 12.42 5.83 6.25 6.33 6.75

5.42 6.08 8.67 5.75 5.75 5.83 5.67 5.83 6.58 6.08 5.67

DT
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Traffic disruption removal time, hr.Planning 
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districts are significantly affected by the collisions even the disruption is 

rapidly removed in 2 hours. 

6.7.2 Non-Removal of Traffic Disruption 

6.7.2.1 Evacuation Completion Analysis 

This study estimates arrival rates of evacuees at different times of an 

evacuation period for all scenarios, i.e., no disruption (base case scenario), 

staggered disruptions (scenario 1 – 4) and concurrent disruptions (scenario 5). 

Figure 6-12 presents the cumulative completion of evacuation in all cases 

considering no removal of traffic disruptions from the network.  

 

Figure 6-12 Percent cumulative completion of evacuation for base case, 

staggered and concurrent collision occurrence scenarios considering the non-

removal of traffic disruptions 

 

In the case of staggered disruptions, the traffic flow patterns are similar. It 

shows that although the congestion is higher in the mid-period of evacuation, 

the complete evacuation is achieved with a slight increase in evacuation time 

in the case of staggered disruptions. However, the results reveal that an 

evacuation with disruptions at different hotspots at the same time presents a 

critical condition that significantly prolong the evacuation. In the case of 
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evacuation scenario 5 (concurrent), the evacuation is completed in 33 hours, 

which is 11 hours higher compared to a base case scenario. The results suggest 

that evacuation modelling without considering collision-related disruptions 

may significantly underestimate the network clearance time. Moreover, due to 

road damages by a flood of 3.9m water level in the same network, a complete 

evacuation required an additional 1 hour (Alam et al. 2018). Meanwhile, due 

to collision-related disruptions, it takes an additional 11 hours compared to the 

base case scenario. Traffic congestion is found significantly higher in the case 

of scenario 5 as reflected in the flattened and deviated traffic flow line in Figure 

6-12. The variation in clearance time across the Halifax Peninsula zones under 

the concurrent collision occurrence scenario is shown in Figure B – 5 of 

Appendix B. 

6.7.2.2 Evacuation Traffic Congestion Analysis 

Queue length 

This study investigates traffic queue propagation due to collisions at hotspots 

in scenario 5 (Figure 6-13). 
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Figure 6-13 Queue propagation due to a collision at (a) location 1: Highway (b) 

location 1: Highway’s ramp (c) location 3: Arterial Street, and (d) location 10: 

Downtown Street 

 

Figure 6-13 presents the queue length at different times of the evacuation 

period at hotspots ‘location 1’, ‘location 3’, and ‘location 10’. The simulation 

results suggest that the hotspots’ traffic queues range from 0.28 km to 2.06 km 

depending on their locations in the study area. Figure 6-13a and Figure 6-13b 

show that traffic queue length increases along a highway and one of its ramps 

with the continuation of evacuation time due to a collision on the exit point 

(location 1) of the highway. The queue length on this highway reaches to a 

maximum value of 0.78 km at the 15th hour of evacuation. A collision on an 

arterial street (e.g., location 3) causes relatively higher congestion with respect 

to that of location 1. The reason is that this is a major connection between the 

city center and exits and therefore, anticipates a large traffic volume from the 

downtown and other parts of the area. This is also the reason for the queue 

a b 

c d 
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being at peak at this location immediately after a collision occurred as shown 

in Figure 6-13c. 

In the case of a collision at downtown street (location 10), queue starts to 

increase sharply right after the incident takes place until the 15th hour of 

evacuation. In the latter period, a decrease in traffic demand and a continuous 

evacuation through exit 4 (see Figure 6-3 for exit locations) reduces the queue 

length at this location.    

6.7.2.3 Corridor Traffic Congestion Analysis 

This study further investigates traffic congestion along five major corridors as 

shown in Figure 6-3, where corridor 1 contains the hotspot ‘location 1’ at the 

end and starts from around hotspots ‘location 3’ and ‘location 7’. Corridor 2 

does not include any hotspot, while corridor 3 passes through hotspot ‘location 

5’. Corridor 4 passes through hotspot ‘location 3’ and corridor 5 contains 

hotspot ‘location 10’. Figure 6-14 illustrates the density (vehicles/km) along 

different corridors over the evacuation times for base case scenario and 

scenario 5 (concurrent disruptions). 
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Figure 6-14 Traffic congestion measurements along different corridors 

resulting from vehicle collisions at hotspots in the Halifax Peninsula 

 

Density of a corridor is found higher if the corridor experiences a collision at a 

hotspot. A higher density value indicates a higher degree of congestion. The 

results reveal that at the start and end of the corridor 1, traffic congestion is 
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constantly higher for the entire evacuation period due to a collision at hotspots 

‘location 1’ and ‘location 3’ (Figure 6-14b). Corridor 2 does not contain any 

hotspot and is not shown in Figure 6-14, which anticipates a higher traffic 

volume resulting from disruptions in scenario 5 when vehicles bypass the 

hotspots taking this corridor. Corridor 3 includes a collision at location 5, which 

causes sustained high congestion along this corridor (Figure 6-14d). Corridors 

4 and 5 anticipate significant traffic congestion at their tails located in the 

downtown in the base case scenario. The existing level of congestion is 

aggravated due to the collision related disruptions at location 10 in scenario 5 

as shown in Figure 6-14f and Figure 6-14h.  

6.7.2.4 Zonal Traffic Congestion Analysis  

This study examines changes in the travel time of fifty-six traffic analysis 

zones due to simultaneous occurrence of collisions at different hotspots within 

the study area. The study compares the influence of a collision event to the 

travel time of TAZs located within a 3-km radius of different collision locations. 

Broadly, the hotspots identified include highway exit, arterial street, and 

downtown street. Figure 6-15 presents a box plot of travel time changes in 

TAZs due to collisions that occurred at these three location types. 
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Figure 6-15 A box plot of travel time changes in traffic analysis zones due to 

the collisions occurrence at downtown street, arterial street, and highway exit 

 

The results suggest that TAZs located within 3-km of downtown and arterial 

street hotspots anticipate a similar pattern of travel time changes and 

variability (represented by the bar width and median point in Figure 6-15). On 

the contrary, average travel time changes is higher in the case of TAZs within 

3-km of exit hotspots. The top and bottom longer whisker for TAZs located 3-

km of the exit hotspot demonstrate a higher variability in travel time gains or 

losses. The reason is that the evacuees of these TAZs adjust their exit choices 

due to the closure of their intended exit resulting from a vehicle collision. The 
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alternative exit choices include either nearby exits if accessible or a distant 

exit across the city. Traveling to nearby and distant exits gives a rise to the 

variability in travel time. The results highlight the significance of suitable 

alternative exits when any unexpected closure of a particular exit occurs. In 

addition, a collision elsewhere within a city center would expect to have severe 

impacts on the evacuation traffic flows. Based on the result analysis and 

discussions, this study can inform policies to identify alternative routes to 

substitute exits if a collision where to occur. 

6.8 Conclusions 

This chapter presented a framework of traffic evacuation microsimulation 

modelling that includes a probabilistic model to identify collision hotspots for 

the implementation into a mass evacuation testing and evaluation. The study 

developed an enhanced probabilistic model following a combined Bayes theory 

and Monte Carlo simulation approach to predict collision hotspots using a rich 

Nova Scotia Collision Record Database. One of the unique features of this 

study is that it develops and tests contrasting evacuation scenarios considering 

uncertain network disruptions within the traffic evacuation microsimulation 

model. 

The proposed framework is implemented to test and evaluate a case study in 

Halifax, Canada. Bayes theory analysis identified 128 potential collision 

locations in the study area among which, the Monte Carlo simulation approach 

identified five hotspots that impact the traffic movements within the 

evacuation area. A base case scenario without any collision disruptions, four 

scenarios with staggered collision disruptions, and a scenario with concurrent 

collision disruptions were evaluated in terms of overall evacuation 

performance, travel time changes and five corridor performances. The 

assessment of overall evacuation performance revealed that scenario 5, in 
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which all the collisions are assumed to occur concurrently, presented the worst-

case scenario in the Halifax transport network. In this scenario, it required an 

additional 11 hours for a complete evacuation in comparison to the base case 

scenario. Further simulation results suggest that in the case of staggered 

collision disruptions, the minimum evacuation time is 23 hours if the collision 

disruption is removed in 2 hours or less. The maximum evacuation time is 24 

hours with no removal of disruption or with removal after 2 hours in case of 

staggered collision scenario. The evacuation time turns out to vary within 23-

31 hours if the disruption is removed within 2-24 hours for a concurrent 

collision occurrence scenario. Although, regional level changes on evacuation 

performances are not evident in the case of staggered collision occurrence, 

individual level impacts refer to a reduced travel time if the collision is 

removed. The evaluation of the corridor performance suggests that corridors 

that pass across downtown area anticipate significant collision-related impacts 

and congestions compared to others. An interesting finding is that corridor 2 

plays an important role as a backup link, which anticipates diverted traffic 

volume in all disrupted scenarios. The results of this research provide insights 

into the network’s vulnerability to risks inherent to traffic operations during 

an evacuation. The results also help identifying hotspots to address uncertain 

network disruptions and backup links/corridors to accommodate the diverted 

evacuation traffic in the network. The estimation of the potential impacts of 

vehicle collision-related disruptions on the total network clearance time and 

percent completion of the evacuation are also conveyed through this research. 

This research acknowledges that the collision frequency may rise due to stress 

and rushing during evacuation as occurred in the case of Hurricane Irene and 

Sandy evacuation. The model developed in this study is flexible to take that 

into account for and evaluate more disruption scenarios in future. 

This study contributes to the coupling of collision research methods and traffic 

microsimulation modelling to address uncertain network disruptions during 
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an evacuation in the transport network. The study provides an extensive 

analysis of different evacuation scenarios considering staggered and 

concurrent disruptions. Traffic evacuation microsimulation model developed in 

this thesis demonstrates the capability to address natural disaster as well as 

traffic operation related complexities in assessing evacuation scenarios. The 

model provides an upper limit of evacuation times which is 33 hours 

considering vehicle collision related network disruptions; 22 hours being the 

lower limit of evacuation time for the Halifax Peninsula when considering an 

evacuation with no disruption risks accommodated. The results indicate that 

22-33 hours is significantly a long clearance time which warrants an effective 

pre-evacuation planning with adequate identification of the most vulnerable 

population and the development of possible evacuation countermeasures to 

conduct an efficient evacuation. Therefore, the rest chapters will focus on the 

vulnerability assessment and countermeasure developments utilizing the 

simulation outputs, and other sources of data. 
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Chapter 7 

Chapter 7 Vulnerability Assessment 

for a Mass Evacuation4 

7.1 Introduction 

This chapter leverages several components developed in the earlier chapters 

to inform the development of a vulnerability assessment modelling framework. 

Mass evacuation from a disaster-prone area to shelters has the potential to 

prolong the evacuation procedure during an emergency. Spatial zones that are 

at relatively a higher risk of natural disaster impacts and/or exposed to other 

vulnerabilities can be prioritized for evacuation. In current practice, zonal 

vulnerability is determined based on geophysical conditions that yield 

seriousness of risk and the social systems which refer to variations of risk (Kar 

and Hodgson, 2012; Schmidtlein, 2011). Most studies (Fernandez and Lutz, 

2010; Wood et al., 2010) are static in nature and perform independent 

processes. However, vulnerability in disaster-prone areas is dynamic and often 

stems from mobility complexity, including flood flows, and traffic movements. 

Vulnerability assessment taking an integrated approach is not well explored 

with respect to geophysical condition, social risk, and traffic movement; even 

though, this type of analysis would offer better understanding to develop 

effective evacuation plans. 

 

4 This chapter is partially derived from the following peer-reviewed journal paper: 

• Alam, M. J., and Habib, M. A. (2019). Vulnerability Assessment during Mass 

Evacuation: An Integrated Microsimulation-Based Evacuation Modelling 

Approach. Transportation Research Record, 2673 (10), 225-238 
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How quickly the population of a zone can be evacuated safely before a disaster 

impacts, is a critical aspect in emergency evacuation planning. The condition 

of a transportation network over the affected region, traffic flow pattern, 

network supply and evacuation demand determine the complexity of an 

evacuation operation from a traffic management point of view. For example, 

lower network capacity poses a higher risk for mass evacuation of an area. 

Simultaneously, meeting the transportation needs of the vulnerable 

population such as carless population group could elevate the complexity of an 

evacuation operation. The main challenge in estimating evacuation risk is that 

observation of an evacuation event is often not feasible, particularly in coastal 

areas, resulting in insufficient knowledge of traffic flow pattern. Additionally, 

difficulties in measuring social vulnerability for coastal areas results from a 

lack of understanding of demographic changes and key household decisions 

affecting land use patterns. Therefore, it is necessary to develop a sequential 

modelling system that includes modelling elements of long-term changes: such 

as residential mobility decisions, vehicle ownership, flood risks, traffic 

movement, and vulnerability assessment. Particularly, combining integrated 

urban systems and traffic microsimulation models is advantageous as the 

forecasted results can be used to develop evacuation plans for any number of 

years to come. Therefore, a modular-based evacuation modelling framework is 

of paramount importance for a reliable estimate of the vulnerability.  

The objective of this study is to conduct a comprehensive vulnerability 

assessment of traffic analysis zones while combining a Bayesian Belief 

Network-based vulnerability assessment model with different multilayer 

modules. The modules include (i) an integrated urban systems model that 

simulates land use variations and vehicle ownership over the course of time, 

(ii) a flood risk model that predicts flood severity and flood-related network 

disruptions, and (iii) a dynamic traffic assignment (DTA)-based 

microsimulation model that provides network supply constraints. Integrated 
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urban systems model simulates long-term changes in demographic 

characteristics, particularly, residential location choices and vehicle 

transaction decisions within a long-term simulator. The results of the long-

term simulator can then be used to determine the social vulnerability. The 

flood risk model informs flood severity and network disruptions for developing 

evacuation scenarios. Evacuation scenarios are simulated within the 

microsimulation model to measure mobility risk during an emergency. The 

proposed integrated modelling framework is empirically tested for assessing 

the vulnerability of areas identified as traffic analysis zones (TAZs) on the 

Halifax Peninsula, Canada. For the vulnerability assessment model, this study 

proposes a novel approach utilizing a Bayesian Belief Network (BBN) that uses 

information obtained from the integrated urban systems model, flood risk 

model, and traffic microsimulation model. It uses an Analytical Hierarchy 

Process (AHP) to determine the weighting factors of the vulnerability variables 

of interests. The vulnerability assessment model informs different evacuation 

planning scenarios for an empirical application.   

7.2  Literature Review 

The vulnerability of an area is measured by the extent of the potential impact 

and the degree of exposure, susceptibility, and resilience of that area (Balica 

et al., 2012; Fuch et al., 2011). Several methods are proposed in existing 

literature to estimate vulnerability in relation to natural disasters and/or 

socio-economic diversity. Fernandez and Lutz (2010) applied a multi-criteria 

decision making-analysis to develop a flood hazard zoning system for an urban 

area. This study modelled disaster impacts over an area and addressed the 

natural system component for vulnerability assessment. Rygel et al. (2006) 

explored how various groups of people are affected differently by a natural 

disaster based on socio-demographic heterogeneity. The authors assessed the 

vulnerability as a measure of resistance capacity of that area. They used a 
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principal component analysis to develop a socio-demographic index for urban 

flood hazard. A study by Balica and Wright (2009) also examined flood-related 

vulnerability by considering geological exposure and the social, economic, and 

institutional status of an area. The analysis was conducted at the city level; 

however, vulnerability may vary spatially across the city at finer level (e.g., 

TAZ). Abovementioned studies are static in nature and utilized cross-sectional 

information. On the other hand, integrated urban systems model dynamically 

simulates different longer-term decision processes. It captures the changes in 

the neighborhood composition in terms of population, socioeconomic, and 

demographic changes, and auto ownership; however, these aspects have often 

been overlooked for vulnerability assessment modelling. Chakraborty et al. 

(2005) studied evacuation risk by considering social and accessibility to 

resource attributes. Hsu and Peeta (2014) considered natural hazards and 

network supply attributes to determine emergency planning zones. Urban 

systems model can enhance the reliability of the vulnerability assessment 

given that the vulnerability can be measured by the degree to which societies 

or individuals are potentially threatened. For example, a marginalized group 

of people is likely to suffer from an evacuation. Over the past several years, 

transportation researchers have been attempting to design and evolve land use 

modelling systems. For example, ‘UrbanSim’ (Waddell et al., 2003), a 

macroeconomic model of location choice of households and firms. This executes 

macroeconomic and travel demand models, household and employment 

mobility and location choice models to forecast the way that demographics 

change, and travel conditions evolve in parallel. Another integrated urban 

modelling system named ‘Integrated Land Use, Transportation, Environment 

(ILUTE)’ is used to predict land development, location choice of households, 

firms, workers, vehicle ownership of households and travel conditions (Miller 

and Salvini, 1998). Similarly, an integrated urban model named ‘Integrated 

Transport Land Use and Energy (iTLE)’ (Fatmi and Habib, 2018; Fatmi et al., 
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2017) assumes that individuals and households are agent and parcels are the 

objects. The iTLE evaluates how people’s location choice behavior and vehicle 

ownership evolves at different life-stages. Such long-term simulators can 

anticipate residential location choice, vehicle ownership and travel behavior of 

households over time. These life-stage decisions are determinants of the 

vulnerability of a group of people or locality during a natural disaster and 

related evacuation phenomena. 

 Another major concern is that network disruption is hardly considered in 

evacuation operation studies. Any disruptions to network can significantly 

impact evacuation times which is a critical determinant to assess the mobility 

vulnerability of an area. Moreover, existing network disruption studies focus 

on small scale areas. For example, Dehghanisanij et al. (2013) determined the 

efficiency of disrupted and undisrupted network of fourteen links. The authors 

conducted a condition-based analysis and estimated a ratio regarding 

transport-related measures, such as vehicle miles travelled in disrupted and 

undisrupted networks. Tang and Huang (2018) assessed connectivity in terms 

of degree of road blockage for a network of nine major roads and eight 

intersections considering a seismic activity. However, to consider network 

disruptions for a mass evacuation, it warrants traffic modelling of the entire 

network that dynamically evolves at a finer grain time step. Particularly, a 

dynamic traffic assignment-based microsimulation model developed in this 

thesis is of paramount importance to capture routing policies and congestion 

propagation. Few studies (Yin et al., 2014; Ukkusuri et al., 2017) took 

integrated approaches which include models for evacuation decisions and 

transportation choice dimensions, i.e., departure time and route choice. These 

studies combined activity-based models with traffic simulation models. One of 

our earlier contributions (Alam et al., 2018) also developed a sequential 

modelling framework that includes a flood risk model, a regional transport 

network model and a traffic microsimulation model. However, vulnerability 
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assessment requests the distribution of population in different time periods, 

which is absent within these sequential evacuation modelling frameworks. 

This research aims to fill the gap by combining an integrated urban systems 

model and the sequential modelling approach (Alam et al., 2018) that offers 

reliable information on the condition of flood flows, demographic changes, 

network disruptions, and traffic patterns for the vulnerability assessment. 

Many studies (Wood et al., 2010; Balica et al., 2012; Balica and Wright, 2009; 

Chakraborty et al., 2005) contributed to the research of vulnerability 

assessment modelling. Methods used in these studies include indicator-based 

flood vulnerability assessment, construction of GIS-based composite 

vulnerability index, estimation of general flood vulnerability index using 

simple averaging method, and GIS-based risk score assignment. The limitation 

of these methods is that they cannot capture the uncertain features of the 

vulnerability. They are unable to address the causal relationships among 

various elements of the vulnerability. Moreover, they generally perform a 

single-directional vulnerability assessment at a time. However, the BBN 

modelling can compute posterior probability of unobserved variables 

depending on the variables that are observed. It can capture multi-directional 

causal relationships obtained from the integrated modelling systems and 

estimate various vulnerabilities in a single framework to determine the overall 

risk of the system. The Bayesian Belief Network modelling has recently been 

evolved and applied in the field of infrastructure system for risk and reliability 

analysis (Hosseini and Barker, 2016). However, its application in the 

transportation sector has not yet been explored. Moreover, weighting factors 

of variables of interests can be used within the BBN modelling framework to 

consider the relative influence of variables on overall vulnerability (Mimovic 

et al., 2015). This study couples Analytical Hierarchy Process with the BBN 

model to identify the riskiest zones during an evacuation of Halifax. 
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7.3 Methodology 

7.3.1 Vulnerability Assessment Modelling Framework 

This study develops a modular-based evacuation modelling framework for the 

vulnerability assessment in the context of a mass evacuation. The 

vulnerability assessment offers an opportunity to identify risky zones. To 

accomplish this task, the study develops a Bayesian Belief Network-based 

vulnerability assessment model which is coupled with three components: (i) an 

integrated urban systems model, (ii) a flood risk model, and (iii) a DTA-based 

evacuation microsimulation model. The urban systems model includes a long-

term simulator and a regional transport network model, as shown in Figure 

7-1. The long-term simulator generates synthesized population and addresses 

residential location choice and vehicle transaction behavior over the life course 

of the households (Fatmi and Habib, 2018). The model micro simulates key 

household decisions for 15 years ranging from 2007-2021, using 2006 as the 

base year. This model examines how key life stage transitions evolve over time, 

which is an important determinant of the vulnerability assessment. This study 

uses the urban systems model results from 2016 to test the efficacy of the 

proposed framework. The regional transport network model estimates 

evacuation demand, which determines risk regarding logistical constraints, 

and populates traffic flow within the microsimulation model. A flood risk model 

informs both the vulnerability assessment and the microsimulation model 

about flood severity and network disruptions. Microsimulation of evacuation 

scenarios generates network supply constraints for the estimation of mobility 

vulnerability. Details of traffic microsimulation, and flood risk models can be 

found in Alam et al. (2018) and are included in Chapter 4. The regional 

transport network model is described in detail by Bela and Habib (2018).  
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Figure 7-1 Modular-based vulnerability assessment modelling framework 

 

This study adopts an integrated approach of Bayesian Belief Network 

modelling and Analytical Hierarchy Process to develop the vulnerability 

assessment framework. The study will examine the development of the 

vulnerability assessment model utilizing the inputs from the urban systems 

model, flood risk and traffic microsimulation model, as well as analyze the risk 

results that will be obtained from the application of the proposed framework. 

7.3.1.1 Bayesian Belief Network Modelling Approach 

This study has adopted a Bayesian Belief Network modelling approach, which 

is based on a Bayesian theorem. It essentially estimates the probability to 

measure the lack of knowledge regarding the occurrence or non-occurrence of 

an event. The study utilizes BN to compute posterior probability of unobserved 

variables depending on the evidence of observed variables. In this study, 

uncertain variables are presented as nodes and casual relationships between 

nodes or variables are depicted as an edge connecting two nodes. Conditional 

probability tables (CPT) are developed to determine the strength of 
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relationships between variables. The BN that is developed in this study is a 

directed graph which does not allow any cycle in it.  

For the vulnerability assessment, let’s assume, a simple Bayesian Network 

seen in Figure 7-2, which includes a set of variables (e.g. 1v = no vehicle 

ownership, 2v  = presence of seniors in household, 3v = flood severity, 4v = 

clearance time, ……… nv ), 1 2 3{ , , ................ }nV v v v v= .  

The relationships between variables are represented by edges from node iv  to

jv . For example, edge 1 from 1v  to 4v  provides the conditional probability 

4 1( | )p v v  indicating 4v  is dependent of the value of 1v . As the edge goes out from 

1v  to 4v , 1v  is called parent node of 4v  and 4v  is called child node of 1v . 

 

Figure 7-2 An example of BN incorporating five variables 

 

Nodes which have no parent nodes are known as root nodes e.g. 1v and 2v  , and 

nodes having parent nodes, but no child nodes are called leaf nodes, e.g. 5v . 

The rest are known as intermediate nodes (e.g. 3v  and 4v ). Given the 

conditional probabilities (e.g. 4 1|v v , 4 2|v v ), the full joint probability of BN for 

v1 

v4 

v2 

v5 

v3 
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n  variables, 1 2 3, , ................ nv v v v  , can be estimated using the following 

equations: 

1 2 3 1 2 3 2 3 4 1

1
1

( , , ................ ) ( | , ........ ) ( | , ........ ).......... ( | ) ( )

                                     ( | .......... )

n n n n n n

n

k k n
k

p v v v v p v v v v p v v v v p v v p v

p v v v

−

+
=

=

= 
   (1) 

However, each node is conditionally independent of its non-descendants, given 

its immediate parent nodes. In that case, equation 1, for full joint probability, 

can be transformed into the following equation where each node is conditioned 

over its parents.  

1 2 3
,1

( , , ................ ) ( | ( )
n v

k
n k

parents ik

p v v v v p v v
=

=              (2) 

Where 
,

v
k

parents i
v  is a set of all parent nodes of variable kv  

One of the notable features of the BBN model is that it can update belief of any 

variable by observing evidence of other variables. For example, the conditional 

probability of variable, 1v , given the evidence, 2 3{ , ................ }nE v v v= , can be 

calculated as follows: 

1 2 3
1

2 3

( , , ................ )
( | )

( , ................ )

n

n

p v v v v
p v E

p v v v
=                    (3) 

Additionally, the relative importance of risks and the associated risk factors 

can be imported into Bayesian Belief Network to identify the most significant 

risk.  

To determine the degrees of the impacts of vulnerability variables, this study 

has adopted an AHP (Hosseini and Barker, 2016) approach. The proposed 

approach uses a scale ranging from 1-9 (Saaty, 1980) to make judgment for 

pairwise comparison of the variables. To determine the potential inconsistency 

in judgment, a consistency ratio (CR ) is estimated utilizing eigenvector method 

(Alonso and Lamata, 2005). First, a consistency index CI (used to measure the 
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inconsistency of pairwise comparison) can be estimated using the following 

equation: 

max

1
CI

 



−
=

−
                (4) 

Where max  is the largest Eigen value in reciprocal matrix, and   is the 

number of rows or column.  max is always greater than or equal to  . Three 

conditions together represent an instance of complete consistency (Saaty, 

1980), which includes: 

(i) 
ijx *

jkx  = ikx  ( , ,i j k )            (5) 

(ii) max =               (6) 

(iii) 0CI =               (7) 

Where 
ijx  represent the values in the comparison matrix. If there exists no 

absolute consistency in experts’ judgments, then max   and the following 

equation of consistency ratio can be used:   

CI
CR

RI
=                 (8) 

RI is the average value of CI  for a random matrix. This random matrix can be 

obtained from Forman (Forman, 1990). A CR  value greater than 0.1 requires 

revision of the judgment in the matrix because of inconsistent treatment of a 

factor rating. The vulnerability of areas is then determined utilizing the 

proposed modelling approach in light of information obtained from an 

integrated urban systems model, a flood risk model and a traffic 

microsimulation model.  
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7.4 Empirical Application of the Proposed Framework  

7.4.1 Determination of Variables Affecting Vulnerability 

In order to develop a set of variables within the BBN modelling framework for 

vulnerability assessment, this study relies on earlier studies that specifically 

focused on identifying factors affecting vulnerability. In total, 29 variables that 

affects social vulnerability are analyzed and are made concise into six variables 

for the vulnerability assessment during an evacuation. A brief review of 

variables can be found in Wood et al. (2010). The socio-demographic variables 

identified in this study are presence of female, children, and seniors in a 

household, household size and income, and no vehicle ownership. Extra safety 

awareness is perceived if female and children are present in household during 

an evacuation (Smith and McCarty, 2009). Females are more vulnerable than 

men because of their role as caregiver to children and seniors who need 

assistance, which prevent females from seeking safe places during an 

evacuation. Presence of seniors decreases evacuation rates as physical 

impairments and medical conditions limit the mobility of older persons, which 

enables a higher risk household. Larger households experience high logistic 

constraints. Another key factor for assessing vulnerability is income, which 

affects vehicle ownership of a household. ‘No vehicle ownership’ raises concern 

regarding transportation arrangements to evacuate the transit – dependent 

population. Flood severity and distance of a zone to the flood source are 

important measures for assessing the degree of vulnerability of that area 

(Smith and McCarty, 2009). The flood risk model used in this study revealed 

that a higher flood severity and a zone’s proximity to a flood source can cause 

higher inundation of the area and network links. Moreover, house type is 

another crucial factor that determines the susceptibility of an area to natural 

disasters. Due to the nature of construction, mobile houses are more likely to 

suffer from flood or storm damages (Smith et al., 2006). This study uses 
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clearance time, demand density and zone to exit distance to determine the 

degree of evacuation complexity. For example, exit closure is likely to increase 

clearance time and large population size adds difficulty in evacuation due to 

the requirements of extensive logistic support (Hsu and Peeta, 2014). Given 

the factors and causal relationships of the variables described above, the 

proposed BBN modelling framework is presented in Figure 7-3 followed by the 

estimation of the variables. 

Figure 7-3 Proposed BBN model for vulnerability assessment of the Halifax 

Peninsula  

 

7.4.2 Estimation of the Variables for BBN Model 

7.4.2.1 Estimation of the Social Vulnerability Variables through Urban 

Systems Modelling 

The long-term simulator used in this study yields socio-demographic variables 

identified in the previous section for the period of fifteen years (from 2007 to 

2021). This study uses the urban systems model results to assess the 
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vulnerability for the year of 2011. In this study, children presence is ‘True’ if 

the age of any household member is < 18 and ‘False’ if the age is > 18. In this 

case, the age group that is less than 18 represents young adult and children 

who are deemed to be vulnerable and dependent on others for evacuation. 

Similarly, for seniors, ‘True’ holds if the age is > 65 and ‘False’ if the age is < 

65. The number of females, children, and seniors are predicted for each TAZ of 

the Halifax Peninsula utilizing the urban systems model. Then, based on the 

total population in the zone, % female, % children, and % seniors are estimated. 

In relation to different income categories, % household having zero vehicle in 

a zone is also estimated using the similar technique. According to a study 

(Bongaarts, 2001) by the United Nations, a household with five members or 

more can be considered as a large household. The total number of individuals 

in a household is determined by carrying the IDs of all household members 

under a unique household ID in the simulator. Based on the number of 

members in the households, the total number of large households in a zone is 

estimated. A ‘True’ state is used in the BBN model if the number of household 

members is greater than or equal to 5 and ‘False’ if it is less than 5.  

7.4.2.2 Estimation of the Geophysical Vulnerability Variables through Flood 

Risk Modelling 

The extent of flooding over the Halifax region is determined utilizing a flood 

risk model described in Chapter 4. The flood risk model generates flood layers 

based on Hurricane Juan and overlays them with Nova Scotia road network to 

simulate the extent of the inundation over the region. The flood risk model 

contributes to this study with three flood severity scenarios and identifies 

network link disruptions in percent of the total link length. Moreover, the 

model informs if exit closures occur for each flood scenario. Flood severity is 

measured based on water level such as Low (2.9m water level), Medium (3.9m 

water level), and High (7.9m water level). The information obtained from the 

flood risk model is used to determine posterior probabilities of ‘exit closure’ and 
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‘zone-specific link disruption’ given their parent node ‘flood severity’. Boolean 

expression is used in this case. For example, based on flood risk model results, 

if the flood severity is high, an exit closure is certain which is represented by a 

value of 1 in the BBN model. In Table 7-1, several cases are shown where 

Boolean expression is used. Two states named ‘True’ and ‘False’ are used where 

‘True’ states the likelihood of occurrence and ‘False’ states the non-occurrence 

of a candidate event. 

 

Table 7-1 Sample Boolean Expression Used to Determine the Posterior 

Probabilities for Different Vulnerability Variables 

Variable Example of expression 

& description 

Zone-specific link disruption If (flood severity = VH = 15.0m water level, ‘True’, ‘False’) 

- if flood severity is very high with certain likelihood, 

disruption to links of a zone is also true at certain degree 

of belief 

Exit closure If (flood severity = High = 7.9m water level, ‘True’, False’) 

- if flood severity is high with certain likelihood, exit 

closure is true with a certain degree of belief 

Clearance time If (zone link disruption = True, exit closure = True, ‘True’, 

‘False’) - if zone link disruption and exit closure occur, 

clearance time is greater than 1.0 hour with certain degree 

of belief 

 

Geographic location of a zone is also important to assess geophysical 

vulnerability. The location of a zone with respect to exit and flood source are 

determined using the 2012 Halifax Geodatabase. Distance of any TAZ to a flood 

source is inversely related to the degree of impacts that zone experiences. This 

study introduces five classes of distances for the BBN model, such as class 1 if 

distance is < 100m, class 2 if distance is > 100m and <300m, class 3 if distance 

is >300m and <500m, class 4 if distance is >500m and <1000m, and class 5 if 

distance is >1000m, to measure the geophysical vulnerability. Distance is 

considered as a deterministic variable for BBN modelling.  
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7.4.2.3 Estimation of the Mobility Vulnerability Variables through Evacuation 

Microsimulation Modelling 

To obtain the zonal clearance time, a microsimulation model developed by 

Alam et al. (2018) is updated and utilized to simulate evacuation scenarios. 

The ‘clearance time’ required to evacuate each zone on the Peninsula is 

determined through the simulation. A higher clearance time poses higher level 

of risk to safely evacuate the residents (i.e. mobility vulnerability). The 

updated traffic evacuation microsimulation model of the Halifax Peninsula has 

five entry-exit points for evacuation. The exits include two bridges, two 

highways and a roundabout. The model treats areas as traffic analysis zone 

(TAZ) and simulates the evacuation of 56 TAZs on the Peninsula. The zoning 

system used in this study is in alignment with the zoning system of the Halifax 

transport network model developed by Bela and Habib (2018). The Halifax 

transport network model is utilized to estimate the evacuation demand on the 

Peninsula. After the simulation, the total time required to evacuate each TAZ 

is recorded. Boolean expression is used to obtain the posterior probability of 

‘clearance time’ given its parent nodes, ‘zone link disruption’ and ‘exit closure’ 

(see Table 7-1). A state ‘True’ is used for BBN modelling if the clearance time 

is ‘High’, meaning clearance time is > 1 hour, otherwise, ‘False’ is used. 

Moreover, greater distance to exit and higher demand density also elevate the 

mobility complexity during an evacuation. In this study, distance to exit is 

indexed as class 1 if distance is < 1.0 km, class 2 if distance is >1.0 km and <2.0 

km, class 3 if distance is >2.0 km and <3.0 km, class 4 if distance is >3.0 km 

and <4.0 km, and class 5 if distance is >4.0 km. Demand density is also 

normalized into five classes such as class 1: 0-0.2, class 2: 0.2-0.4, class 3: 0.4-

0.6, class 4: 0.6-0.8, and class 5: 0.8-1.0. The probabilities for nodes ‘social 

vulnerability’, ‘geophysical vulnerability’ and ‘mobility vulnerability’ in the BN 

are determined by the weighted sum of probabilities of their ‘parent nodes’. A 

label type node representing the weights of each variable is introduced in the 
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BN. Such weights can be obtained from engineering judgment and/or expert 

knowledge using any of the different decision analysis techniques. This study 

combines AHP with BBN to incorporate weights for each variable in the 

Bayesian Network-based vulnerability assessment model. The conditional 

probability table for the node of composite vulnerability is derived by weighted 

sum of social, geophysical and mobility vulnerability and then composite 

vulnerability is measured.  

7.4.3 Weighting of Variables for BBN Model 

This study utilizes AHP to determine the weighting factors for all variables of 

three vulnerabilities. For demonstration purpose, the weighting of variables 

affecting social vulnerability is presented in Table 7-2. For social vulnerability, 

AHP follows a four-step approach and V1 stands for ‘female presence’, V2 for 

‘children presence’, V3 for ‘senior presence’, V4 for ‘large household’, and V5 

for ‘no vehicle ownership’. First step involves pairwise comparison of factors 

informed by the local experts in the same field. Moreover, insights from the 

literature review presented in this chapter have assisted in understanding the 

relative significance of the factors. All the resulting weighting factors of 

variables of three vulnerabilities with the consistency ratio are presented in 

Table 7-3.
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Table 7-2 Four-step AHP for Weighting Factors of Five Variables Affecting Social Vulnerability 

 

Step 1: Pairwise comparison of variables based on scale 1-9  
Step 2: Normalization of the matrix in step 1 and setting priority by taking average of each 

row 

 V1 V2 V3 V4 V5   V1 V2 V3 V4 V5 Priority 

V1 1 1/3 1/3 3 1  V1 0.120 0.124 0.124 0.158 0.077 0.121 

V2 3 1 1 7 5  V2 0.360 0.374 0.374 0.368 0.385 0.372 

V3 3 1 1 7 5  V3 0.360 0.374 0.374 0.368 0.385 0.372 

V4 1/3 1/7 1/7 1 1  V4 0.040 0.053 0.053 0.053 0.077 0.055 

V5 1 1/5 1/5 1 1  V5 0.120 0.075 0.075 0.053 0.077 0.080 

Sum 8.333 2.676 2.676 19 13         

 

Step 3: Weighted Sum Estimation by multiplying criteria weight with each 

cell in step 1 and taking sum of each row 

Step 4: Calculate maximum Eigen value and CR 

 V1 V2 V3 V4 V5 
Weighted 

Sum 

Weighted 

sum 

For 

Priority 

in col 2 

For 

Priority 

in col 3 

For 

Priority 

in col 4 

For 

Priority 

in col 5 

For 

Priority 

in col 6 

Average 

Eigen 

value 

Criteria 

weight 
0.121 0.372 0.372 0.055 0.080         

V1 0.121 0.124 0.124 0.166 0.080 0.614 0.614 0.121 4.957 4.957 3.704 7.696 4.676 

V2 0.362 0.372 0.372 0.387 0.399 1.892 1.892 5.224 5.086 5.086 4.891 4.742 5.072 

V3 0.362 0.372 0.372 0.387 0.399 1.892 1.892 5.256 5.064 5.064 5.136 4.920 5.130 

V4 0.040 0.053 0.053 0.055 0.080 0.282 0.282 7.007 5.294 5.294 5.096 3.530 5.673 

V5 0.121 0.074 0.074 0.055 0.080 0.405 0.405 3.351 5.438 5.438 7.320 5.070 5.387 

       Maximum Eigen value 5.188 

       

Number of variables, n = 5, and RI = 1.12 

CI = (5.188-5)/(5-1) = 0.047 

CR = 0.047/1.12 = 0.042 

 

1
3

5

1
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Table 7-3 AHP-based Weight Assignment to Variables of Different 

Vulnerabilities and Consistency Ratios 

Vulnerability Class Variables Weight Assigned Consistency Ratio 

Social Vulnerability 

Female presence 0.121 

0.042<0.1 

Children presence 0.372 

Senior presence 0.372 

Large household 0.055 

No vehicle ownership 0.080 

Geophysical 

Vulnerability 

Flood severity 0.24 

0.01<0.1 
Distance to flood 

source 
0.67 

Mobile house 0.08 

Mobility Vulnerability 

High clearance time 0.68 

0.05<0.1 Demand density 0.11 

Distance to exit 0.21 

 

7.5 Results and Discussions 

7.5.1 Vulnerability Assessment Results 

This study develops a composite vulnerability as well as social, geophysical, 

and mobility vulnerability. It identifies risky zones based on the model results 

as presented in Figure 7-4. The results reveal that vulnerable zones are found 

to be sporadically located at the North- and South-end of the Peninsula, the 

downtown core, the Quinpool and Mumford area. Figure 7-4a shows that the 

North-end of the Peninsula is significantly vulnerable in terms of composite 

vulnerability. The composite vulnerability of this end is dominated by social 

and mobility vulnerability as seen in Figure 7-4b and Figure 7-4d respectively. 

Similarly, several zones located by Quinpool and Mumford road are low-income 

areas and found significantly socially vulnerable (Figure 7-4b). Mobility 

vulnerability of these zones is also observed to be significant (Figure 7-4d). 

Social vulnerability is likely to be concentrated at the downtown core and two 

ends of the Peninsula. The vulnerability results suggest that zones that are 
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socially vulnerable are a result of the presence of females and seniors in those 

zones.  

 

Figure 7-4 Vulnerability assessment in the Halifax Peninsula, including (a) 

composite, (b) social (c) geophysical, and (d) mobility vulnerability 

a b 

c d 
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In addition, no vehicle ownership status of the household adds to evacuation 

risk of a zone. The distribution of female is around 44% - 64% for all the 

Peninsula TAZs. In the case of the highly vulnerable locations identified above, 

senior population distribution is observed to be greater than 39%. Few TAZs 

in the North-end area show a senior population distribution of 25%, while the 

rest of the TAZs have a distribution of less than 20%. The distribution of no 

vehicle households on several North-end and downtown core zones range 

between 33%-43%, while the distribution is typically 20-25% or less for the 

rest. 

7.5.2 Relative Impacts of Variables on Vulnerability 

To examine the relative impacts of a specific variable in determining 

vulnerability, this study conducts a sensitivity analysis for the variables of all 

three different vulnerabilities. For demonstration purpose, this study presents 

the impacts of variables of social vulnerability. To analyze the impacts of 

causal factors of social vulnerability, the node ‘social vulnerability’ is set as the 

target node in BN and the impacts of its causal factors are measured in term 

of conditional probability. Initially, Tornado diagrams are created to determine 

the impacts of variables on social vulnerability over each TAZ. Impact results 

of all individual TAZs are then aggregated to show how the impacts of different 

variables on social vulnerability differ spatially over the Halifax region. An 

example of a Tornado diagram for certain TAZs (e.g., GIS zone ID-17, 90, 95 

and 100) is shown in Figure 7-5, where a variable with a wider bar reflects 

higher influence on vulnerability than variables with a smaller bar. The 

diagram shows the most sensitive parameters for a selected state of a target 

node (in this case, ‘True state’ for target node ‘social vulnerability’) sorted from 

the most to the least sensitive. We can select the number of parameters shown 

in Figure 7-5 between top 10 and all. For the sensitivity analysis, the 

percentage of change in all parameters is considered as 10%. The horizontal 
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axis shows the absolute changes in the posterior probability of social 

vulnerability for the state “True” when each of the parameters changes by the 

given percentage. The influence of the variables in relation to changing the 

vulnerability across TAZs can be derived from this Tornado diagram.  

 

Figure 7-5 Tornado diagram for sensitivity analysis of vulnerability variables 

 

Figure 7-6 shows how the degree of impacts of different variables (with a 

change of 10% in their current values) on the social vulnerability vary spatially 

over the Halifax region. Depending on the degree of the impacts of a variable 

corresponding to a TAZ (a spatial unit), the variable is assigned a rank in the 

parameter list of the Tornado diagram, which is used as the ‘spatial ranking’ 

in this study. A graduated color scale where the darkest represents a rank of 

1, meaning the highest changes in social vulnerability due to changes in the 

variable. On the contrary, the lightest color represents a rank of 5 meaning the 

least changes caused by the changes in variable. The results show that the 

variable, ‘female presence’ is a key determinant of social vulnerability. This 

variable rank first to third in the list of the parameters of Tornado diagram in 

relation to the absolute changes in social vulnerability of different TAZs. 

However, for the majority of the TAZs, it ranks first. The variable ‘senior 

 1 

 2 
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presence’ is found to be the most impactful variable for several TAZs in the 

core, the North- and South-end of the peninsula. ‘Children presence’, and ‘no 

vehicle ownership’ contribute to social vulnerability sporadically. Variable 

‘large household’ is found to be dominant in several downtown zones for the 

social vulnerability. The results suggest that ‘presence of seniors and children’, 

and ‘large household’ variables impact social vulnerability taking a rank in the 

parameter list from 1 to 5 while ‘no vehicle ownership’ holds its position from 

1 to 4.  

 

Figure 7-6 Sensitivity of social vulnerability variables over Halifax region 

where (a) female presence (b) children presence (c) senior presence (d) large 

household size (e) no vehicle ownership   

 

This study also evaluates the relative impacts of the respective variables on 

geophysical and mobility vulnerability. ‘Flood severity’ and ‘clearance time’ are 

a b c 

d

c 

e

c 
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found to be the most impactful variables in case of geophysical and mobility 

vulnerability, respectively.    

7.6 Conclusions 

This study presented a framework to conduct vulnerability assessment in the 

context of a mass evacuation. The novelty of this study is that it combines an 

integrated urban systems model, a flood risk model and a traffic 

microsimulation model which will offer a unique opportunity to develop 

evacuation plans for future years. The proposed framework utilizes the 

information related to changes in population distribution, auto ownership, and 

traffic flows. One of the unique features of this study is that it utilized a BBN 

modelling approach for vulnerability assessment while addressing uncertainty 

and causal relationships in different elements of the vulnerability. 

The proposed framework was empirically tested for a case study of Halifax, 

Canada. This study determined risky traffic analysis zones within the Halifax 

Peninsula in the light of information obtained from different models. Three 

vulnerabilities (social, geophysical, and mobility) were analyzed followed by 

developing a composite vulnerability within the BBN modelling framework. 

The AHP approach assigned different weighting factors to variables considered 

for BBN modelling. The probability estimation process has been enhanced by 

importing the importance of the risk and the risk factors into the BBN model. 

Composite vulnerability is found to be sporadically concentrated at the North- 

and South-End of the Peninsula, some parts of the downtown core, and the 

commercial area. A sensitivity analysis with a change of 10% in the values of 

each variable was conducted for an understanding of the impacts of variables 

on the respective vulnerability.  

The developed integrated vulnerability assessment model will help to 

understand the spatial shifting of the vulnerable areas for different time 
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horizon. The results will inform the prioritization of the areas based on a 

vulnerability index which can be the basis of zonal demarcation. It would be 

interesting to explore how zonal demarcation enriched with vulnerability 

information can assist a staged evacuation that would help minimize 

casualties, particularly focusing on the residents at the most perilous 

conditions. The remaining part of this thesis develops advanced models to 

devise countermeasures for improving the overall evacuation performances, 

particularly while ascertaining a vulnerability-based prioritization. The next 

two chapters capture vulnerability characteristics to prioritize zones for a 

staged evacuation and for allocating public transportation when considering 

an all mode evacuation scenario. 
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Chapter 8 

Chapter 8 Countermeasure: 

Vulnerability-based Staged 

Evacuation5 

8.1 Introduction 

This chapter develops a framework for mass evacuation modelling that 

considers staged evacuation during a hurricane or a flood for testing and 

evaluation. The strategic countermeasure, namely staged evacuation is 

important for a region like Halifax, which has a quite diverse population and 

a historical network that may suffer from time-varying different levels of 

severity during an evacuation. Staged evacuation involves sequencing of zones 

based on the priority needs for evacuation. It is a useful tool to control traffic 

inflows in the network, best utilizes the network capacity and thereby 

minimizes congestion level while moving the affected people to shelters or 

other identified safe zones efficiently. However, the process inherently induces 

ethical dilemmas and raises equity concerns. Different groups of people in a 

region suffer from natural disasters disproportionately due to their varying 

socio-economic characteristics and geographical locations. Therefore, pre-

evacuation planning without the consideration of vulnerabilities may give a 

rise to societal and equity issues (Whitefield, 2006). For instance, low mobility 

 

5 This chapter is partially derived from the following paper: 

• Alam, M. J., and Habib, M. A. (2021). A Mass Evacuation Modelling Framework to 

Account for Vulnerabilities in Staged Evacuation. Transportation Research Part A: 

Policy and Practice (under review)  
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people did not receive adequate attention during Hurricane Katrina in New 

Orleans. The group generally consists of seniors and persons of low-income, 

who do not own a car or have other options for evacuation. Several extreme 

events and large-scale evacuations have occurred in recent years and this trend 

highlights the vulnerability of cities to the impacts of the disasters. 

Simultaneously, in the past decade, hurricanes, wildfires, and tsunamis have 

broadened the understanding of evacuations and helped identify challenges, 

gaps, and opportunities for improvement. It has been observed that without 

any improvement strategy, alternatively countermeasure applied, 

conventional evacuation generally associates spontaneous behavior of 

evacuees leading to disorganization and consequently to a prolonged and/or 

incomplete evacuation. Therefore, a more efficient evacuation system is 

necessary, particularly for areas that contain vulnerable populations who are 

at high-risk and need a priority-based evacuation. 

People are exposed to social and geophysical vulnerability when social 

vulnerability originates from their socio-economic status, life stage 

transition(s), and vehicle ownership. Geophysical vulnerability stems from 

their topographic locations. In addition, a high traffic demand and a long 

clearance time refer to the mobility vulnerability of an area. For example, the 

evacuation of a city’s downtown area in the morning peak hours would be 

challenging and require a longer clearance time as the total population doubles 

at this period. Therefore, a systematic prioritization approach is of utmost 

importance to ensure that areas under perilous conditions have their priority 

needs considered when developing a staged evacuation plan. Generally, a 

staged evacuation is carried out by temporal and/or spatial shifting of evacuees’ 

departures and requires prioritizing the area for evacuation that further 

creates an ethical dilemma and equity issues. For instance, a challenge of a 

staged evacuations which has not yet been adequately addressed in existing 

studies includes how to prioritize a low-income area over an affluent area. 
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Several staged evacuation studies (Chen and Zhan, 2008; Zhang et al., 2014) 

focused more on the traffic operation side of a staged evacuation process. These 

studies considered the distance of an area to the source of a threat for 

prioritization; however, other criteria, such as traffic congestion determines 

the amount of time a zone gets evacuated and is a critical dimension to assess 

the mobility vulnerability of the area. Hsu and Peeta (2014) considered natural 

hazards and network supply attributes to determine network vulnerability. 

However, there is limited research that holistically considered vulnerabilities 

in the prioritization process of a staged evacuation. Therefore, the objective of 

this study is to develop a framework of staged evacuation planning and 

modelling that assesses the priority needs of the vulnerable populations in 

relation to their geophysical, social, and mobility characteristics. Particularly, 

vulnerability assessment is useful for the evacuation of Halifax Peninsula as 

it has a quite diverse population group across neighborhoods within a small 

region. For example, SE is an affluent area while WE and NE represent the 

low-income and working population groups. The novelty of this research 

includes the development of a sequential modelling system that comprises of a 

fuzzy logic-based modelling approach to ascertain a vulnerability-based 

prioritization in assessing staged evacuation scenarios within a dynamic traffic 

microsimulation. 

The identification and the prioritization of the areas containing vulnerable 

population for evacuation is dominated by human perception and is sometimes 

imprecise due to the use of non-numerical information regarding vulnerability. 

This warrants a probabilistic modelling or an approximate reasoning 

mechanism to handle the impacts of subjective information in human decision-

making process. Fuzzy logic theory can efficiently deal with imprecision in the 

decision-making process based on qualitative information. This study employs 

a prioritization exercise and adopts a fuzzy logic approach to quantify the 

subjective prioritization by the expert. The exercise utilizes an integrated 
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Bayesian Belief Network-based vulnerability assessment model that provides 

vulnerability information considering socio-economic, geophysical and mobility 

factors. The evacuation scenario obtained from the proposed staged evacuation 

model is tested and evaluated within a traffic evacuation microsimulation 

model. The microsimulation model implements a dynamic traffic assignment 

process to simulate two evacuation scenarios for evaluation: (1) simultaneous 

evacuation (without any countermeasure/ coordination), and (2) staged 

evacuation. The scenarios are evaluated and compared through the analysis of 

traffic flow parameters, network performances and clearance times. 

8.2 Literature Review 

Evacuation modelling is an important element of emergency planning for 

coastal communities and regions that are prone to impacts of natural disasters. 

Existing literature demonstrates different processes of evacuation planning 

and modelling. Ukkusuri et al. (2017) and Gehlot et al. (2019) developed multi-

agent microsimulation models called A-RESCUE (Agent-based Regional 

Evacuation Simulator with User Enriched Behavior) and a large version of A-

RECUE called A-RECUE 2.0, respectively to capture detailed household 

behaviors when simultaneously handling a large evacuation traffic at network 

level following an adaptive routing strategy. Several approaches including 

econometric modelling (Sadri et al., 2015), cell-based network optimization 

modelling (Liu et al., 2006; Li and Han, 2015), traffic microsimulation and 

agent-based simulation modelling (Wang et al., 2016; Chen and Zhan, 2008) 

are used for evaluating evacuation decisions, e.g., route choices and testing 

contrasting evacuation plans. The simulation studies implemented either 

static or dynamic traffic assignment procedures in the network to predict 

traffic flows and network clearance time for a small- to large-scale evacuation 

event. In recent years, researchers have developed advanced models for 

capturing mobilization time and social network characteristics in accurately 
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predicting evacuation demand (Sadri et al., 2013; Sadri et al., 2017). A recent 

study (Lindell et al., 2020) also focused on the household preparation time 

before the time household members decide to evacuate. Hence, delays in 

departure time were also estimated through this study. The study identified 

that storm characteristics, personal impacts and evacuation facilitators are 

key factors in the estimation of evacuation preparation time. Moreover, the 

Protective Action Decision Model (PADM) developed by Lindell and Perry 

(2012) signifies the importance of social warnings that may originate from 

multiple sources and be received by people directly or through intermediate 

media in building up people’s perceptions of risks, and protective measures. 

Evacuation is convoluted by many factors and yields a sudden spike in traffic 

volume through a complex process. Abovementioned studies evolve to capture 

different levels of resolution within evacuation process and identify key 

challenges associated with the transportation network, which is not capable of 

accommodating the sudden influx in traffic demand during an evacuation 

(Lindell et al., 2018). Limiting capacity of the road network causes a mammoth 

of traffic congestion and thousands of people trapped on the road for an 

unknown amount of time. For example, the estimated auto-evacuation time 

was 36-48 hours during Hurricane Florence (Marshall, 2018) and in the 

evacuation for Hurricane Rita, people were stuck on the road for 10-12 hours 

(Blumenthal, 2005). Therefore, it warrants the development of evacuation 

traffic demand management strategies to regulate network traffic flows 

resulting from different levels of resolution of the evacuation dynamics and/or 

to increase the network capacity for an efficient evacuation.  

Several studies devised different strategies including contraflow (Urbina, 

2002) and staged evacuation (Chen and Zhan, 2008) to best use existing traffic 

infrastructure and their capacity in order to evacuate affected people in an 

efficient manner. Traffic operation-based strategies such as contraflow 

increases the network capacity by reversing one or more lanes outbound. On 
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the other hand, staged evacuation considers sequencing of zones that are to be 

evacuated based on their priority needs. Simultaneous evacuation is 

adequately evaluated in the existing literature; however, limited studies 

focused on staged evacuation. There is a growing interest in studying nature, 

extents, procedures, and protocols in relation to staged evacuation. Table 8-1 

lists key studies and contributions in the field of staged evacuation. These 

studies encompass a wide variety of modelling methods ranging from network 

flow modelling to agent-based traffic simulation modelling and optimization 

techniques to devise and implement staged evacuation scenarios for prediction 

and evaluation. The staged evacuation scenarios considered in these studies 

are mainly focused on reducing network clearance time and improving 

evacuation and network performance. They used different criteria, including 

the distance of a zone from the source of a threat, population density, 

destination, and shelter requirements, and the first road segment’s capacity to 

define vulnerable areas and prioritize them for a staged evacuation. Chen and 

Zhan (2008) found that the effectiveness of a staged evacuation strategy 

depends on the structure of the network and the population density. For 

example, a staged evacuation works better in a grid network with a high 

population density. However, this study created zonal divisions arbitrarily, 

and did not consider any of the socio-economic or geophysical vulnerabilities 

for prioritization. Malone et. al. (2001) utilized a cell-based automata model to 

test a staged evacuation scenario in different counties of South Carolina. This 

study links the performance of staged evacuation to only the severity and the 

path of a hurricane. Chen (2008) evaluated the staged evacuation of the 

Galveston area and observed a 1-hour improvement in clearance time. This 

study experimented with a hypothetical staged evacuation scenario but lacked 

a detailed method for prioritizing zones. Zhang et. al. (2014) examined traffic 

operation within a traffic microsimulation model for a staged evacuation 

scenario. They considered demand pattern and network structure to prioritize 
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different regions for evacuation. Li et. al. (2012a) considered only geographical 

location to prioritize an area for evacuation. Abovementioned studies 

experimented several staged evacuation scenarios; however, there is a clear 

gap in developing prioritization processes that holistically evaluate 

vulnerabilities for testing as well as evaluating staged evacuation scenarios 

within a traffic microsimulation model. The existing studies did not outline a 

method for zonal prioritization based on vulnerabilities originating from 

geophysical, social and mobility challenges. Therefore, an integral planning 

and modelling approach is necessary to ascertain a vulnerability-based 

prioritization within staged evacuation model. 

The proposed framework in this study fills the gap in literature by developing 

a fuzzy logic -based staged evacuation model that ascertains a vulnerability-

based prioritization of zones at higher risks, informed by vulnerability indices 

when considering a staged evacuation. For a comprehensive vulnerability 

assessment, several vulnerability assessment models can be found in literature 

(Wood et al., 2010; Balica et al., 2012; Fuchs et al., 2011). A Bayesian Belief 

Network-based vulnerability assessment model (Alam and Habib, 2019a) 

provides vulnerability scores at the traffic analysis zonal level for this study. 

This study utilizes the output of the BBN model to design a prioritization 

exercise to receive expert opinion on how to prioritize traffic analysis zones 

given their vulnerabilities. Note that expert opinion is qualitative in nature. 

Fuzzy logic theory (Zadeh, 1965) is advantageous in creating approximate 

reasoning that can accommodate for imprecision in subjective judgment and 

quantifying the linguistic variables where conventional crisp choice models are 

not capable of handling the partial truth in decision making (Ridwan, 2004). 

Therefore, a fuzzy logic-based approach is adopted in this study to quantify the 

expert opinion in order to produce prioritization weights of traffic analysis 

zones.   
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One of the unique features of this study is that it develops a comprehensive 

staged evacuation modelling framework that addresses different aspects of 

vulnerabilities to prioritize areas for an evacuation and to predict the impacts 

of a staged evacuation on the traffic operation. The study employs a traffic 

microsimulation model to test and evaluate staged evacuation scenarios 

obtained from the proposed integral planning and modelling approach. The 

evaluation is carried out in terms of different traffic flow indicators including, 

traffic queues, clearance times, and intersection level of service (LOS). 
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Table 8-1 Key Studies and Contributions in the Field of Staged Evacuation 

Authors Methods Evacuation 

type 
Details/Contributions/Gaps Findings 

Chien and 

KoriKanthimath 

(2007) 

 

Analytical 

modelling 

Simultaneous 

and staged 

evacuation 

Used speed-density relationship to model 

congestion, which does not guarantee 

capturing time-varying congestion 

spillback in the network. Only demand 

density is used as the criteria for staging, 

which may overlook the population group 

at higher risk. 

Determined the minimum number of 

stages for a reduced evacuation time. 

Li et al. (2012a) 

Algorithm with 

three nested 

loops 

Staged 

evacuation 

Only geographic location of an area was 

used as the criteria for staging, which may 

overlook the residents that are socially 

vulnerable, and zones that require longer 

evacuation times. 

Determined the earliest departure of 

each group and allowed each evacuee 

to choose shortest path avoiding 

congestion during evacuation. 

Li and 

Claramunt 

(2018) 

Analytical 

multi-objective 

problem 

Staged 

evacuation 

Scenarios in relation to using multiple exit 

allocation and nearest exit selection are 

evaluated. Focused on different evacuee 

types. However, the vulnerable population, 

e.g., seniors, were not prioritized. 

Multi-exit allocation outperforms the 

nearest exit evacuation concept. 

Zhang et al. 

(2014) 

Traffic 

simulation 

modelling 

Staged 

evacuation 

Mainly focused on the traffic operation 

aspect. Demand pattern and network 

structure criteria were considered for 

staged evacuation. Effects of different 

levels of demand on the staged evacuation 

performances were discussed. 

Phased evacuation improved overall 

efficiency over non-phased scenario. 

High demand in the network could 

alter the advantage of staged 

evacuation. 

Liu et al. (2006) 

Cell 

transmission - 

based network 

flow modelling 

Staged 

evacuation 

Small scale network experiment. No risk 

criteria were considered for staged 

evacuation optimization.  

Optimized staged evacuation can 

mitigate congestion under various 

demand patterns. 

Chiu et al. 

(2008) 

Traffic 

simulation 

modelling 

Simultaneous 

and staged 

evacuation 

Staged evacuation in combination with 

contraflow is analyzed in this study.  

Network performance improvement is 

not evident in case of staged 

evacuation without contraflow 

operation. However, phased 

evacuation in conjunction with contra 

flow operation significantly improved 

1
5

1
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Authors Methods Evacuation 

type 
Details/Contributions/Gaps Findings 

travel time with moderate 

improvement for inland zones. 

Mitchell and 

Radwan (2006) 

Traffic 

simulation 

modelling 

Staged 

evacuation 

Considered other factors in addition to 

geographical constraints; however, socio-

economic characteristics and mobility 

issues are ignored to prioritize groups. 

Used Do-nothing assignment process which 

lacks actual representation of traffic 

congestion during an evacuation. 

Six strategies were evaluated. Split 

scenario has slight clearance time 

reduction due to large departure time 

shift resulting in underutilized 

capacity. At low trip density, exits are 

underutilized and shifting departure 

time merely delays the clearance time. 

Sbayti, and 

Mahmassani 

(2006) 

A modified 

system-optimal 

dynamic traffic 

assignment; 

DYNASMART-

P 

Simultaneous 

and staged 

evacuation 

A modified system-optimal dynamic traffic 

assignment is formulated to minimize total 

system trip time. Pre-evacuation traffic 

assignment path is assumed to be known, 

thereby static; however, impacted vehicles 

are provided with en-route information. 

Only trip time is considered for staging the 

demand. 

Three staging policies representing 

three evacuation demand levels were 

evaluated. Overall, with the staged 

evacuation, total evacuation trip time 

is reduced by 31% and total network 

clearance time is reduced by 20%. 

Bish et al. 

(2014) 

Mixed-integer 

programming 

planning model 

Staged 

evacuation 

Performed staging at household level. This 

method may be useful in case of a large 

demand to utilize the network capacity 

adequately. Evacuee types are defined 

based on destination and shelter 

requirements. However, other criteria, e.g., 

household level vulnerability may also 

create different group types. 

Explored demand management 

strategies and concluded that even 

with best managed supply strategies, 

there exists scenarios where the 

evacuation demand can cause 

congestion. Evacuee types based on 

destination and shelter requirements 

need to be included in evacuation 

planning. 

Chen and Zhan 

(2008) 

Agent-based 

modelling and 

simulation 

Simultaneous 

and staged 

evacuation 

Zonal division was done arbitrary. Network 

structures and demand density were 

highlighted in the study. Different network 

structures were evaluated in relation to 

staged evacuation performance. People 

from one zone was considered to leave at 

one time.  

Performance of evacuation strategy 

depends on the structure of the 

network and population density. In a 

grid network with densely populated 

area, staged evacuation has the 

potential to reduce the clearance time. 

Simultaneous evacuation strategy is 

the best when traffic is in free flow 

 

1
5

2
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Authors Methods Evacuation 

type 
Details/Contributions/Gaps Findings 

mode. For the ring road, there is no 

benefit of using staged evacuation. 

Chen (2008) 

Traffic 

microsimulation 

modelling 

Simultaneous 

and staged 

evacuation 

Hypothetical staged evacuation scenarios 

were evaluated and compared to 

simultaneous evacuation. No detailed 

method for sub-dividing and/or prioritizing 

area presented. 

There is an improvement of 1-hour 

reduced clearance time for Galveston 

area evacuation. Rapid response 

assumption is not supposed to lead to 

an effective evacuation; Ordering of 

zones influence overall staged 

evacuation performances. 

1
5

3
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8.3 Methodology 

The sequential evacuation modelling system proposed in this study involves: 

(1) design of a prioritization exercise for experts utilizing a Bayesian Belief 

Network-based vulnerability assessment model, (2) adoption of a fuzzy logic 

approach to determine the prioritization weights of traffic analysis zones based 

on the experts’ subjective prioritization in the exercise, and (3) utilizing the 

traffic evacuation microsimulation model for testing and evaluation of staged 

evacuation scenarios informed by the fuzzy logic-based staged evacuation 

model. The following sections describe each component sequentially.   

8.3.1 Design of a Prioritization Exercise 

This study designs a prioritization exercise, where experts evaluate the zonal 

vulnerability information and based on the perception of the zonal 

vulnerability, they prioritize zones for staged evacuation. To design the 

exercise, three vulnerabilities are considered: geophysical, social, and mobility 

vulnerability. In the case of zonal vulnerability, social vulnerability is 

estimated based on different factors, including percent of females, seniors, and 

children, income level, and vehicle ownership condition in a zone. Geophysical 

vulnerability is characterized by the distance of a zone from a flood source, and 

percentage of mobile homes. Mobility vulnerability is characterized by the 

zonal clearance time estimated from a traffic evacuation microsimulation 

model. A higher clearance time indicates a higher mobility vulnerability of a 

zone. As vulnerability is better described qualitatively, geophysical, social, and 

mobility vulnerability are categorized as Low, Medium, and High. A 

hypothetical pair of zones with similar vulnerability information is presented 

to the experts for prioritization. Each pair of zones is represented by two boxes 

on a single card as shown in Figure 8-1. 
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Figure 8-1 A sample card from the prioritization exercise  

 

8.3.1.1 Prioritization Exercise through a Stakeholder Workshop 

This study is informed from a stakeholder workshop titled “Improving 

Emergency Response to Extreme Coastal Weather”. It was organized by the 

MacEachen Institute for Public Policy and Governance and Dalhousie 

Transportation Collaboratory (DalTRAC) at Dalhousie University in Halifax, 

Canada. The workshop had 46 participants from many sectors including 

government and non-government organizations as well as federal, provincial, 

and municipal agencies. A composition statistic of the participants is presented 

below in Figure 8-2.  

Figure 8-2 Stakeholder categories by percentage 

 Card 1: Tick the box for the zone you choose to prioritize for evacuation 

 

 

 

 

 

 

Zone A 

Zone B 

Zone A 

Zonal Social Vulnerability: LOW 
 

 

Zone to Shelter Clearance Time: 12.5 

Hours 

Zone B 

Zonal Social Vulnerability: MEDIUM 
 

 

Zone to Shelter Clearance Time: 5.0 Hours 
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The participants work with Emergency Management Organizations (EMOs), 

NS Environment, Public Safety Canada, Public Health Agency Canada, MSC-

Atlantic, Canadian Armed Force, Care Facilities, Institute of Catastrophic 

Loss Reduction, where their responsibilities involve a significant amount of 

emergency planning and management activities, warning and preparedness 

during emergency conditions. They have significant experience in hurricane 

forecasting, evacuation drill and developing evacuation plans at community, 

national and international levels.  

The purpose of the workshop was to receive expert opinion on how to conduct 

a mass evacuation process. The workshop included focus discussions and 

participatory activities that inquired, for instance, “what are the major 

considerations in selecting areas to evacuate?” and “how would stakeholders 

prioritize areas for a mass evacuation?”. The prioritization exercise was 

designed as a part of this workshop and conducted in order to better 

understand the actual prioritization processes. The qualitative response from 

the experts was recorded, aggregated, and quantified by using a fuzzy logic 

approach to estimate the prioritization weight for each traffic analysis zone in 

Halifax.  

8.3.2 Fuzzy Logic - based Approach for Prioritization Weights 

The vulnerabilities of traffic analysis zones and the prioritization by the 

experts obtained from the workshop are subjective in nature that involves 

imprecise and non-numerical information. Therefore, this study adopts a fuzzy 

logic approach to analyze the qualitative response by the experts when 

prioritizing zones for evacuation. The proposed fuzzy logic framework provides 

a mathematical mean to quantify the qualitative judgments and facilitate 

ranking of zones for evacuation. 

The subjective prioritization information provided by the experts is 

incorporated into a fuzzy logic framework to determine a prioritization weight 
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for each traffic analysis zone (TAZ). Fuzzy sets are developed to define the 

geophysical, social, and mobility vulnerability by the fuzzy linguistic variables. 

A fuzzy set is a collection of elements in a universe of information and defined 

by a membership function. The membership function assigns membership 

values to the elements, which represent the membership or grade of a given 

element to the fuzzy set (Hawas, 2011). A fuzzy set can take any value within 

the closed interval [0, 1]. The larger value (i.e., closer to 1) represents the 

higher degree of membership. The value in between 0 and 1 expresses a partial 

membership of an element to a fuzzy set. The shape of the membership 

functions includes triangular, trapezoidal, gaussian, and sigmoidal. The 

simplest fuzzy membership function uses a linear relationship to define the 

membership grade of any element in the input space (Ali and Sumai, 2015). 

Triangular and trapezoidal are found to be the most efficient based on 

empirical evidence (Gholamy et al., 2020). Therefore, this study adopts a 

triangular shape for the analysis. Assume,   represents the membership 

values of a set of triangular membership functions and x  is the element of the 

function that takes the crisp values. The triangular membership functions can 

be described as follows: 

( )

,   r x

,   s x

0,           otherwise

x r
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s r

t x
x t

t s


− 
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− 
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 
 

                                                                         (1) 

A three-stage fuzzy logic approach is adopted in this study, which includes (1) 

fuzzification, (2) fuzzy inference, and (3) de-fuzzification. In the fuzzification 

stage, the membership function for each fuzzy set is determined. Fuzzy 

inference is the process used to populate the inputs and generate outputs based 

on certain fuzzy rules. Defuzzification is an important and a final phase which 

involves translating the fuzzy inference output to a crisp value.  
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8.3.2.1 Fuzzification: Linguistic Variables for Vulnerabilities and 

Prioritization 

This study develops fuzzy membership functions for three input variables: (1) 

geophysical vulnerability, (2) social vulnerability, and (3) mobility 

vulnerability i.e., clearance time. The element ( x ), alternatively score or index 

of input variables ‘geophysical vulnerability’ and ‘social vulnerability’ are 

obtained from a Bayesian Belief Network-based vulnerability assessment 

model. The input variables are classified based on the distribution of all zonal 

vulnerability scores. In case of social and geophysical vulnerability scores, 

most of the data points are below or equal to a score 0.1 (80%), and there rarely 

exists data points beyond 0.3. Thus, these two variables are classified into 

three groups and defined by its numerical element ( x ): Low (0.0-0.1), Medium 

(0.1-0.3), and High (>0.3). In the case of the variable ‘clearance time’ for 

mobility vulnerability, a traffic evacuation microsimulation model is used to 

estimate the zonal clearance time and define the linguistic term of this variable 

accordingly. The simulation model estimates that the clearance times for most 

of the zones are less than or equal to 10 hours, which comprises of around 93% 

of TAZs. Few TAZs require clearance time greater than 15 hours and the rest 

of the TAZs are evacuated in 10-15 hours. Therefore, mobility vulnerability is 

grouped into three classes: Low (0-10), Medium (10-15), and High (>15). To 

define the linguistic terms of the output variable ‘prioritization weight’, this 

study utilizes the workshop results. The percent experts prioritize zones with 

different vulnerability conditions are estimated. The study created four 

linguistic variables for the “Prioritization weight”. Based on the response from 

the workshop, it has been found that zones with any of six different 

vulnerability conditions (e.g., a condition refers to low social and medium 

mobility vulnerability) are prioritized by 10% or less participants, which gives 

the first linguistic variable classified as 0-10%. There are zones with another 

three different vulnerability conditions which are prioritized by 10% to 22% of 
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experts resulting in the next linguistic variable defined by 10% - 30%. 

Similarly, the other two linguistic variables are found to have weighting 

classes between 30 and 40% and > 40% respectively. As prioritization is a 

ranked variable and based on the order of weighting classes, the four linguistic 

variables for prioritization are termed as Low (0 - 0.1), Medium (0.1 – 0.3), 

High (0.3 – 0.4), and Very High (> 0.4). Table 8-2 presents linguistic terms and 

numerical elements for all the input and output variables. 

 

Table 8-2 Elements of Linguistic Variables for Each Attribute 

Linguistic 

variables 

Geophysical 

vulnerability score 

Social 

vulnerability 

score 

Mobility 

vulnerability 

(clearance 

time, hr.) 

Prioritization 

weights 

Low 0-0.1 0-0.1 0-10 0-0.1 

Medium 0.1-0.3 0.1-0.3 10-15 0.1-0.3 

High > 0.3 > 0.3 > 15 0.3-0.4 

Very high - - - > 0.4 

 

The information from Table 8-2 is then used to develop triangular fuzzy sets 

for all attributes considered in this study. Fuzzy sets for input and output 

variables are shown in Figure 8-3. Next, linguistic variables obtained from the 

fuzzification stage are used for making fuzzy inferences. 

8.3.2.2 Fuzzy Inference: Inferring Relations between Vulnerabilities and 

Prioritization 

This study uses a set of “If-Then” logic statements in the fuzzy inference phase. 

For example, the following logic is used for inferring the relationship between 

a zone’s vulnerability, and the prioritization of that zone. 

“IF Social vulnerability of a zone is [Low], and Clearance time is [Medium], 

THEN the prioritization of the zone is [Low]” 
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Based on the percent respondents that prioritize a zone given its 

vulnerabilities in the workshop, a set of fuzzy rules similar to above are 

created. Fuzzy rules are utilized to identify the fuzzified category of 

prioritization and a max.-min. composition method is used to calculate the 

corresponding membership values in this stage. The output from fuzzy 

inference further informs defuzzification process in the next phase.  

8.3.2.3 Defuzzification: Prioritization Weights for Traffic Analysis Zones 

To convert the fuzzy inference outputs to a crisp value, this study applies the 

center of gravity technique (Kikuchi and Miljkovic, 2001) in the defuzzification 

stage. The expression used to derive the crisp output value * is shown below: 

( )

( )
*

 d

 d

y  


  


=


                                  (2) 

Where, * is the crisp value, which continuously changes with the change in 

input values.  

8.4 Application of the Proposed Framework for 

Prioritization 

The computation at three fuzzy stages requires the following operations: (1) 

fuzzification that generates linguistic variables for the input and output 

variables, (2) fuzzy inference that outputs linguistic variables and 

corresponding membership values based on certain fuzzy rules and (3) 

defuzzification that computes crisp values for prioritization weights. As shown 

earlier in Table 8-2, three linguistic variables are defined for each of three 

input sets and four linguistic variables for an output set at the fuzzification 

stage. Using the definition of the linguistic variables presented in Table 8-2, 

the following input-output fuzzy sets are developed in Figure 8-3. 
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 Figure 8-3 Fuzzy sets for input and output variables  

 

Based on the outcomes of the prioritization exercise by the experts, this study 

develops thirteen fuzzy rules for the fuzzy inference stage. In this method, the 

input value of each variable defines one or two fuzzified category e.g., Low, 

and/or Medium and corresponding membership values are obtained using the 

membership functions shown in Figure 8-3. For example, a value in between 

0.1 and 0.2 for social vulnerability indicates both Low and Medium 

membership of the variable to the fuzzy sets. All the probable combinations of 

fuzzified categories are developed and matched with the applicable fuzzy rule. 

Suppose variable 1 indicates both the Low and Medium fuzzified categories in 

relation to its numerical score, and variable 2 belongs to a single category, for 

example, High. Then two possible combinations include (1) input variable 1 is 

Low, and input variable 2 is High, and (2) input variable 1 is Medium, and 

input variable 2 is High. The combinations are then matched with applicable 
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fuzzy rules to determine the fuzzified category for prioritization and 

corresponding membership values. The output fuzzified category and 

membership value obtained are then used in max.-min. composition process 

demonstrated in Table 8-3. The final fuzzy inference output i.e., membership 

values are utilized in the next phase ‘Defuzzificaion’ to obtain the crisp value 

representing prioritization weight of the intended zone. A sample calculation 

is shown in Table 8-3 for the demonstration of fuzzification, and the max-min 

composition method used in fuzzy inference stage. Furthermore, Figure 8-4 

shows the defuzzification process used to convert the fuzzy inference output to 

a crisp value. 

Table 8-3 Demonstration of Fuzzification, and Fuzzy Inference 

Zone: 54 

Fuzzification output 

Input variables Input values 
Fuzzified category from 

Figure 3 

Membership grade 

from Figure 3 

Social 

vulnerability 
0.22 

Medium 0.80 

High 0.20 

Clearance Time, 

hr. 
5.58 Low 1.0 

Fuzzy inference 

Applicable Rule # 

Input variables  
Max-min 

composition output Social 

vulnerability 
Clearance time 

Prioritization 

from exercise 

Rule: 3 Medium (0.80) Low (1.0) Medium Min (0.80, 1.0) = 0.80 

Rule: 6 High (0.20) Low (1.0) High Min (0.20, 1.0) = 0.20 

    

Prioritization 

Medium: 

Max (0.80) = 0.80 

Prioritization High: 

Max (0.20) = 0.20 

 



 

 

163 

  

 

Figure 8-4 Defuzzification for prioritization weights of traffic analysis zones 

    

The crisp value of 0.22 obtained through defuzzification represents the 

centroid of the shaded region in Figure 8-4 and is estimated using the center 

of gravity rule. The Area 1 under Medium membership function with respect 

to 0.80 and the Area 2 under the High membership function with respect to 

0.20 comprise the shaded region together. Both values of 0.8 and 0.2 are 

obtained from the fuzzy inference output for Medium and High prioritization 

respectively as shown in Table 8-3. This study identifies four planning districts 

comprised of traffic analysis zones within the Halifax Peninsula for the 

purpose of a staged evacuation. The prioritization weights of the zones are 

utilized to develop the prioritization ranking of these districts for evacuation. 

The developed traffic microsimulation model accounts for the ranks of the 

districts for evacuation when implementing the dynamic traffic assignment 

process. 

8.5 Traffic Microsimulation Modelling of Staged 

Evacuation 

The traffic evacuation microsimulation model developed in earlier chapters is 

utilized to test and evaluate staged evacuation scenarios in this chapter. In 

0.22 

0.22 

Area 

2 
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total, 65,000 vehicles are simulated for a simultaneous evacuation scenario 

considering two shelters and one external safe zone, representing a relative, 

and/or friends’ places. This scenario represents an evacuation scenario when 

no staged evacuation strategy is applied. To conduct a staged evacuation, a 

sequential staging of traffic demand is performed on an incremental basis. To 

sequentially assign evacuation traffic in the network following the 

prioritization ranking, a certain percentage of evacuation completion of the 

preceding zone needs to be estimated to determine the starting time of the 

succeeding zone. This study uses the same percentage of evacuation completion 

of preceding zones until the last zone participates in the evacuation. An 

iterative approach is adopted to identify the optimum evacuation completion 

percentage to obtain the starting times of the evacuation of different districts. 

Starting with a 25% completion, and with a 5% increment, different completion 

percentages ranging in between 25 to 50% are evaluated in terms of minimum 

total evacuation time required. The simulation suggests that using the 

evacuation starting times for four planning districts corresponding to the 

completion percentage of 25 to 35% yields the minimum total evacuation time. 

In the case of starting times in relation to a completion percentage above 50%, 

the total evacuation time is found higher compared to the evacuation without 

staging. Four origin-destination matrices are developed for the four planning 

districts and are assigned in the traffic evacuation microsimulation model 

using the final evacuation starting times. 

8.6 Results and Discussions 

8.6.1 Prioritization Weights of TAZs for Staged Evacuation 

For the analytical and staged evacuation process, all TAZs are grouped into 

four planning districts such as ‘Downtown (DT)’, ‘West-End (WE)’, ‘North-End 

(NE)’, and ‘South-End (SE)’ (Figure 8-5). Table 8-4 presents the proportion of 
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traffic analysis zones within all planning districts of the Halifax Peninsula 

under different categories of prioritization weights. The results reveal that the 

planning districts ‘DT’ and ‘WE’ contain traffic analysis zones with higher 

priority needs during the evacuation.  

 

Table 8-4 Prioritization Weights of Traffic Analysis Zones under Four Planning 

Districts 

 

Prioritization 

weights 

Proportion of traffic analysis zones (%) 

DT WE NE SE 

<0.1 50 75 81 82.3 

0.1-0.2 37.5 8.3 19 17.7 

>0.2 12.5 16 - - 

 

Poverty and affluence co-exist in Halifax neighborhoods (Prouse et al., 2015). 

It has been found that planning district ‘SE’ is the area of affluence and ‘NE’ 

is known as a working-class and low-income district with a negative reputation 

(Silver, 2019). Although, average income of the ‘NE’ district increased in 2010, 

it remained below the average stated in the Census of the Metropolitan Area. 

In the case of ‘WE’, which is an inner suburban area of Halifax, the average 

income has decreased over the last 30 years. ‘DT’ is a small district when 

compared to the others and has a highly dense population, predominantly 

students or young professionals, who share accommodations and use transit 

for travel. The percent of large and non-vehicular households is higher in ‘DT’ 

compared to other districts. In this district, 6.4% of the residents use transit 

for their travel. From a geophysical risk perspective, peripheral and several 

other zones in ‘NE’ and ‘DT’ are prone to inundation during a flood. Based on 

the prioritization results, the maximum weight assigned to different planning 

districts for social vulnerability are 0.13, 0.15, 0.24, and 0.11 for DT, NE, WE, 

and SE, respectively. From the mobility vulnerability perspective, DT is 

prioritized with a maximum weight of 0.3. Considering three different 

vulnerabilities, DT is the most vulnerable district, and it needs to be addressed 
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accordingly within the staged evacuation plan. Similarly, prioritization 

weights for other districts are analyzed to inform staged evacuation scenario 

building process within the traffic microsimulation model. The prioritization 

results reveal that social and mobility vulnerability have a large contribution 

to the prioritization process for staged evacuation. Without considering them 

and solely relying on the geophysical dimension, staged evacuation may not 

entirely encompass the areas or people at high risks that genuinely need to be 

incorporated into the special evacuation plans. The results also reveal that the 

prioritization of the planning districts is dominated by the mobility aspects 

indicating that special evacuation plans, or countermeasures need to focus on 

the reduction of evacuation times and network congestions in the network. For 

example, bus evacuation accommodating transit-dependent as well as a 

portion of auto-user could reduce the traffic in the network which will further 

reduce the evacuation time. 

8.6.2 Staged Evacuation Scenarios  

Based on the prioritization weights of traffic analysis zones obtained from the 

staged evacuation model, the prioritization results for all planning districts 

reveal that ‘DT’ ranks first and ‘WE’ ranks second for prioritization in relation 

to their social and mobility vulnerability. On the other hand, ‘NE’ ranks first, 

and ‘DT’ ranks second for prioritization when geophysical vulnerability is 

considered. However, this study adopts a holistic approach of combining all 

three types of vulnerabilities to identify prioritization ranking. Based on the 

scores of planning districts considered, the order of the planning districts for 

staged evacuation within the traffic microsimulation model is obtained as 

follows: DT>WE>NE>SE. Based on starting times obtained from the traffic 

simulation model, the demand assignment starts at 10:00 am for ‘DT’ followed 

by the assignment for ‘WE’ at 4.5 hours (2:30 pm), for ‘NE’ at 6 hours (4:00 pm), 

and for ‘SE’ at 6.5 hours (4:30 pm). 
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8.6.3 Overall Network Performance for Staged Evacuation  

This study examines overall network performance for a staged evacuation in 

Halifax. Figure 8-5 illustrates traffic flows across major arterial streets, 

highways, and bridges in the Halifax transport network. Downtown roads are 

highly congested due to a high population density and the presence of 

saturated intersections. The intersection ‘Lower at Duke Street’ in this 

planning district exhibits a level of service ‘F’ for most of the evacuation time 

(see Figure 8-6). The overall network performance results in Table 8-5 suggest 

that the average delays and the total distance travelled are higher between 

approximately the 4th and 10th evacuation hour. This is the time when traffic 

from all planning districts is admitted into the network. Therefore, the number 

of traffic and traffic movements peak at this period.  

This study also examines traffic congestion in terms of queue time experienced 

by traffic from different TAZs presented in Figure 8-7. It shows the box plot of 

the queue time for TAZs in four planning districts. TAZs in ‘WE’ experience a 

uniform and consistent congestion as this district is located close to three exits. 

For certain zones e.g., z14 and z25 of ‘NE’ district in Figure 8-7 , the box plot 

shows relatively a taller upper whisker indicating a greater chance for these 

zones to anticipate higher queue times.  
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Figure 8-5 Origins, shelter locations, and traffic flow visualization in the 

network 
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Figure 8-6 Level of Service (LOS) at intersections ‘Lower Water St at Duke St’ 

and ‘Hollis St at Duke St’ for a staged evacuation of the Halifax Peninsula 

 

The reason is that evacuees from these zones travel across the city to arrive at 

a distant shelter. Figure 8-7 also shows that Downtown traffic congestion is 

consistent as the box width is minimal.
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Table 8-5 Overall Network Performance for a Staged Evacuation 

Evacuation hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

Acting vehicle# in 

network 
2848 1604 1034 1100 5151 1656 8322 4503 2783 1455 1265 1297 1303 1313 1255 874 602 618 601 317 5 

Total arrival at shelters 2852 3381 1869 2297 2872 4995 5063 5312 4729 4556 3272 2969 3115 3158 3248 3020 2365 1648 1703 1421 744 

Avg. Travel Time (min) 45.5 37.9 36.1 32.7 48.6 40.4 72.7 70.1 44.3 27.7 23.8 26.4 25.1 25.0 24.1 21.6 20.5 21.5 21.1 19.7 18.5 

Avg. Delay (min) 8.6 14.1 12.1 6.9 6.4 17.8 17.4 27.1 16.1 8.8 3.9 4.2 3.8 3.7 3.6 3.8 3.1 3.1 3.1 3.3 3.6 

Avg. Speed (km/hr.) 27.3 19.8 21.0 30.1 27.6 18.1 16.2 12.5 18.6 25.5 33.9 33.7 34.3 34.7 34.7 34.0 35.6 35.1 35.4 35.0 35.4 

Total Distance 

Travelled (km) 
59.1 42.3 23.6 37.7 64.3 61.1 99.2 77.6 65.0 53.5 43.9 44.0 44.6 45.6 45.3 37.1 28.8 20.8 21.2 16.4 8.1 

Avg. Stop# 29.2 43.6 34.6 19.8 20.7 61.9 43.2 70.8 52.0 30.4 12.8 13.9 12.0 11.8 11.4 12.8 10.5 10.7 10.2 11.8 14.6 

 

Figure 8-7 Queue time experienced by traffic analysis zones within four planning district

1
7

0
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8.6.4 A Comparison of Simultaneous and Staged Evacuation 

8.6.4.1 Traffic Flow Attribute Analysis 

Table 8-6 shows the comparison of different network performance attributes 

for two alternative evacuation scenarios: simultaneous and staged evacuation. 

In the case of a staged evacuation process, though Downtown congestion did 

not improve significantly, most of the attribute values indicate an 

improvement for overall network performance. Travel time requirements, 

average delays, and the total distance travelled are lower in magnitude 

compared to those of a simultaneous evacuation. In comparison to a 

simultaneous evacuation, average travel time decreases by 39.5% in staged 

evacuation scenario during the most congested period. In addition, the average 

speed improves in the staged evacuation scenarios.  

8.6.4.2 Clearance Time Analysis 

This study examines evacuation performance across planning districts and 

traffic analysis zonal levels. Table 8-7 presents the total clearance time for each 

planning district in both simultaneous and staged evacuation scenarios. 

Furthermore, Figure B – 6 in Appendix B presents clearance time for each TAZ 

within the four-planning districts for staged evacuation. The results suggest 

that the clearance time improvement resulting from a staged evacuation is 

quite significant compared to an evacuation without any countermeasure, a 

decrease from 24.31% to 70.37% in clearance time for ‘WE’, ‘NE’ and ‘SE’. The 

clearance time improvement for ‘DT’ district is relatively less due to the 

presence of several densely populated traffic analysis zones and saturated 

intersections as consistent with the findings of Zhang et al. (2014). To 

investigate the improvement at traffic analysis zonal level, this study 

estimates zonal clearance time as shown in Table 8-7. The results reveal that 

75% of the traffic analysis zones in planning district ‘WE’ and ‘NE’ anticipate 
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a maximum decrease of 4.8 and 4.3 hours respectively in clearance time. ‘SE’, 

the area of affluence, also anticipates a maximum clearance time reduction of 

4.4 hours for 75% of its traffic analysis zones. An interesting finding is that 

although ‘SE’ ranks last in the prioritization process, due to the inherent 

transportation system efficiency, well connected and spacious roads, and less 

traffic volume benefit this district during an evacuation. However, accounting 

for vulnerabilities improves the staged evacuation process by reducing 

disparity among areas when prioritizing them in an equitable manner. On the 

other hand, the results for the DT evacuation indicate that a staged evacuation 

is not always an effective strategy that works for extreme events resulting in 

a mass evacuation. We need additional countermeasures combined with it. For 

example, DT’s clearance time decreases by 2.8 hours for 50% of the zones, 

which is relatively lower than the other districts (Table 8-7). There are also 

zones within the DT district that show a slight decrease (0.3 hours) in 

clearance time. This is likely a result of the limited design capacity of existing 

infrastructure and a high population density. As vulnerability-based staged 

evacuation in this study did not significantly improve operational efficiency for 

certain zones, there needs to be infrastructure improvement-based 

countermeasures implemented at different locations, particularly around 

vulnerable areas. 

In addition, a finer level analysis of microsimulation results is conducted for 

further understanding of the staged evacuation performance within the 

planning districts. Table 8-7 shows the percent to which individuals in each 

planning district are impacted due to a staged evacuation. The results reveal 

that though the clearance time for planning districts improves, there are 

individuals who are disadvantaged in a staged evacuation. The reason is that 

shifting of the departure times may cause an individual to travel in a congested 

traffic regime compared to a previous less congested traffic regime in 

conventional evacuation scenario.  
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Table 8-6 Comparative Network Performance for Simultaneous and Staged Evacuation 
 

Evacuation hour 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 

S
im

u
lt

a
n

e
o
u

s 

e
v
a
cu

a
ti

o
n

 

Avg. Travel Time (min) 54.3 71.7 80.1 78.5 61.1 52.6 35.6 30.5 27.0 26.0 25.2 28.7 27.4 27.0 22.4 23.7 23.7 21.9 22.7 23.9 24.1 

Avg. Delay (min) 8.6 17.9 23.5 24.8 24.6 19.5 12.9 8.1 5.1 5.3 5.6 6.6 6.3 6.5 3.5 3.8 3.9 3.0 3.3 3.4 3.3 

Avg. Speed (km/hr.) 26.9 17.7 13.4 12.3 12.7 15.7 20.7 26.5 31.9 31.1 30.9 28.8 29.2 29.7 34.5 34.1 34.0 36.6 35.3 35.4 35.6 

Total Distance Travelled 

(km) 
89.0 117.9 110.9 103.4 78.5 60.0 52.0 44.3 50.4 44.4 38.2 28.5 29.4 27.5 20.1 19.0 18.6 22.3 12.1 12.4 12.6 

Avg. Stop# 46.7 71.9 83.9 72.3 70.7 66.0 53.9 39.4 32.1 45.0 48.3 60.4 57.2 58.2 29.4 32.4 32.5 20.7 29.3 26.5 27.1 

S
ta

g
e
d

 

E
v
a
cu

a
ti

o
n

 

Avg. Travel Time (min) 45.5 37.9 36.1 32.7 48.6 40.4 72.7 70.1 44.3 27.7 23.8 26.4 25.1 25.0 24.1 21.6 20.5 21.5 21.1 19.7 18.5 

Avg. Delay (min) 8.6 14.1 12.1 6.9 6.4 17.8 17.4 27.1 16.1 8.8 3.9 4.2 3.8 3.7 3.6 3.8 3.1 3.1 3.1 3.3 3.6 

Avg. Speed (km/hr.) 27.3 19.8 21.0 30.1 27.6 18.1 16.2 12.5 18.6 25.5 33.9 33.7 34.3 34.7 34.7 34.0 35.6 35.1 35.4 35.0 35.4 

Total Distance Travelled 

(km) 
59.1 42.3 23.6 37.7 64.3 61.1 99.2 77.6 65.0 53.5 43.9 44.0 44.6 45.6 45.3 37.1 28.8 20.8 21.2 16.4 8.1 

Avg. Stop# 29.2 43.6 34.6 19.8 20.7 61.9 43.2 70.8 52.0 30.4 12.8 13.9 12.0 11.8 11.4 12.8 10.5 10.7 10.2 11.8 14.6 

 

Table 8-7 Comparison of Clearance Times for Simultaneous and Staged Evacuation  

Planning 

districts 

Fuzzy logic-

based                   

prioritization 

Total 

network clearance time 
Changes in zonal clearance time Percent individual impacted 

Prioritization 

rank 

Simultaneous 

evacuation (hr.) 

Staged 

evacuation 

(hr.) 

Percent 

reduction 

25% of 

zones 

(hr.) 

50% of 

zones 

(hr.) 

75% of 

zones 

(hr.) 

Travel time 

improvement (%) 

Travel time 

degradation (%) 

DT 1 21.8 21.2 2.68 0.3 2.8 4.3 65.41 -34.59 

WE 2 6.8 2.0 70.37 4.6 4.7 4.8 58.32 -41.68 

NE 3 18.2 13.8 24.31 3.3 3.5 4.3 68.37 -31.63 

SE 4 7.0 4.0 42.86 3.1 3.4 4.4 50.46 -49.54 

1
7

3
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8.7 Conclusions 

This study presented a mass evacuation modelling framework that includes a 

fuzzy logic-based staged evacuation and a dynamic traffic assignment-based 

evacuation microsimulation model. The staged evacuation model developed in 

this study assesses the priority needs of vulnerable populations by considering 

their geophysical, social, and mobility vulnerability for the implementation of 

a staged evacuation. The novelty of this study is that it develops a sequential 

modelling system that utilizes a fuzzy logic-based modelling approach to 

quantify expert opinion and ascertain vulnerability-based prioritization in 

assessing staged evacuation scenarios within a dynamic traffic 

microsimulation model.  

The study demonstrated the efficacy of the proposed framework with a case 

study of Halifax, Canada. The prioritization of the planning districts yielded 

that ‘DT’ should evacuate first, ‘WE’ second, ‘NE’ third and ‘SE’ last when all 

three vulnerabilities are considered. The staged evacuation model developed 

in this study demonstrated a decrease in clearance time for most traffic 

analysis zones in the range of 0.3-4.8 hours. The improvement in zonal 

clearance time achieved for ‘WE’ and ‘NE’ is in the range of 24.31-70.37%. 

These two districts are areas of low-income housing and the working 

population, respectively. It is evident that accounting for vulnerabilities into 

the prioritization process enables an efficient evacuation of areas that are 

vulnerable from a social, geophysical and mobility perspective. Simulation 

results revealed that ‘DT’ anticipates relatively less improvement in clearance 

time, which is due to the failure of local intersections and the presence of 

several densely populated zones in this district. An interesting finding of this 

study includes that ‘SE’ ranks last in the vulnerability-based prioritization 

process but gets evacuated faster. This result can be argued as the inherent 

transportation system efficiency, well connected and spacious roads, and less 
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traffic volume benefit this district during an evacuation. Moreover, a more 

disaggregate level analysis showed that there are individuals, who are 

disadvantaged by a staged evacuation; however, overall network and 

evacuation performance in all planning districts improved when a staged 

evacuation is conducted in contrast to a simultaneous evacuation. 

This study has several policy implications. The study outlined a process to 

address different vulnerabilities in the prioritization of evacuees for a mass 

evacuation. For example, ‘DT’ has flooding risk, is an area of a high dense 

population, and has a higher portion of residents with no-vehicle. The 

consideration of the combined vulnerabilities within the proposed framework 

identified the priority needs of the ‘DT’ and considered it to be the first to 

evacuate. The study also identified traffic operation-related issues as a result 

of the staged evacuation using the developed traffic microsimulation model. 

Despite the vulnerability-based evacuation, a staged evacuation could not 

significantly improve the traffic operation efficiency in DT. This warrants 

special plans which may include a bus-based evacuation and traffic operation 

improvement strategies (e.g., specific evacuation routes) to be integrated 

within staged evacuation planning. Moreover, the prioritization results can be 

use develop a zoning system and the related maps can be conveyed to all 

residents through mobile app or the EMO website while the map. The 

identified areas with priority needs can also be the focal point for the costal 

engineering and infrastructure protection planning. The appropriate 

engineering treatment to protect soil, properties, and infrastructure in the 

identified areas could incentivize the staged evacuation with strong and 

disaster-resilient built environment.  

The study contributes to literature by developing an enhanced staged 

evacuation modelling framework which will help deal with geophysical, social, 

and mobility issues together in addressing the priority needs of the vulnerable 

populations. The results also highlight the significance of a comprehensive 
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assessment of the priority needs of vulnerable populations for a staged 

evacuation. Although a vulnerability-based prioritization is ensured, 

evacuation of several zones in the peninsula is not improved. Therefore, this 

study has been motivated to focus on further countermeasure that could 

improve the evacuation time and network congestion. The next chapter 

discusses how all modes of transportation, particularly transit and school 

buses can be utilized for a mass evacuation.   
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Chapter 9 

Chapter 9 Countermeasure: Bus-

based Evacuation6 

9.1 Introduction 

This chapter presents an evacuation modelling framework to optimally utilize 

all available modes, particularly transit and school buses for a mass evacuation 

process. Typically, mass evacuations rely on automobiles. However, if there 

needs to be a large-scale evacuation within a short timeframe, all modes of 

transportation that are available within the network should play a role in 

evacuating people from the affected area in an efficient manner. Solely auto-

based evacuation is not sufficient for a large-scale evacuation, particularly for 

the evacuation of an urban area with a diverse group of populations. Residents 

who may lack access to private vehicles (i.e., captive transit riders) or who may 

choose not to use such vehicles (i.e., choice-based transit riders) during an 

evacuation may need assistance with transportation (Hess and Gotham, 2007). 

Moreover, transport network with limited exit points is likely to be grid-locked 

with a mammoth traffic fleet during an evacuation. Vehicles with high 

 

6 This chapter is largely derived from the following peer-reviewed papers: 

• Alam, M. J., and Habib, M. A. (2021). Development of an Evacuation Decision Support 

Tool: A Combined Optimization and Traffic Microsimulation Modelling Approach. 

Proceedings of the 100th Annual Meeting of Transportation Research Board, 

Washington, D.C., USA (No. 21-00878) 

• Alam, M. J., and Habib, M. A. (2021). A Dynamic Programming Optimization for 

Traffic Microsimulation Modelling of a Mass Evacuation. Transportation Research 
Part D: Transport and Environment (conditionally accepted) 
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occupancy e.g., buses can best utilize the network capacity and minimize traffic 

congestion during such conditions.   

Halifax is a historical city that has a quite diverse group of populations and a 

transport network with narrow roads and limited exit points. The vulnerability 

assessment in this research reveals wide-ranging socioeconomic 

characteristics across neighborhoods of Halifax, which highlights the 

importance of using all modes of transportation, particularly, transit and 

school buses for evacuation. However, most of the existing evacuation plans 

across North America rarely address the role of all modes in the evacuation 

plan. The mass evacuation that resulted from Hurricane Florence in 2018 

caused hundreds of thousands of people to use their personal vehicles to 

evacuate the city, resulting in backed up traffic on I-95 (Wilson, 2018). The 

estimated automobile evacuation time along the South Carolina Coast during 

Hurricane Florence was 36 to 48 hours (Marshall, 2018). Moreover, a longer 

clearance time may cause people to run out of fuel as occurred during 

Hurricane Rita in 2005 when people were on the roads for 10-12 hours 

(Blumenthal, 2005). It is evident that auto-only evacuation may create severe 

traffic congestion, particularly in Halifax due to the inherent network design 

problem. Therefore, it demands the development of a countermeasure that 

considers transit and school buses in combination with other available modes 

in the network for optimizing traffic compositions and consequently, improving 

mass evacuation process in terms of traffic congestion and evacuation times.  

The challenge with optimally utilizing all modes during an evacuation is that 

how to allocate buses while both the demand and the populations’ vulnerability 

require equal attention. Furthermore, many cities do not have adequate supply 

of buses to move all low-mobility evacuees (Wolshon et al., 2005), which urges 

to evaluate if the existing transit fleet is adequate to transport the target 

population. Otherwise, school buses may need to be considered to increase the 
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fleet capacity depending on the demand. That being said, it needs a systematic 

process to determine the optimum composition of auto-bus mix in the network.  

This study develops an evacuation modelling framework that considers all 

modes for evacuation and optimally allocate buses to evacuees based the 

vulnerabilities that they are exposed to. Therefore, the objectives of this study 

are to (i) develop an agent-based all mode allocation module (AMAM) 

accounting for the vulnerabilities that the evacuees are exposed to and the 

mode-specific capacities, and (ii) utilize a traffic evacuation microsimulation 

model to feed the AMAM with information regarding network supply 

sufficiency (i.e., bus capacity) to facilitate optimization process. The proposed 

optimization process formulates a dynamic Knapsack problem (Pan and 

Zhang, 2018) where bus capacity represents the component “Knapsack” and 

vulnerability is the component to be maximized. A vulnerability score 

comprising of social and mobility vulnerability measurements is utilized to 

demonstrate the degrees of individuals’ exposures to vulnerabilities. The 

maximization of the vulnerability scores indicates that people with a higher 

exposure to vulnerabilities are prioritized for bus allocation. A Dynamic 

Programming algorithm is used to solve the Knapsack optimization problem 

within a Python platform. The optimization process is iterated to test and 

evaluate alternative scenarios within AMAM and the traffic evacuation 

microsimulation model. The results from this research will help emergency 

professionals to identify the optimum resource allocation plan for an efficient 

evacuation following an iterative approach. The results are particularly useful 

when any empirical evidence or training data on optimum composition of auto-

bus mix in the network is limited due to the impossibility of observing an 

evacuation event and/or conducting a mass evacuation drill. The scenario 

testing within traffic evacuation microsimulation model demonstrates an 

improvement of overall evacuation performance measures in terms of network 

clearance time and the performance of traffic flow indicators.     
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9.2 Literature Review 

Auto-based evacuation studies are abundant in the existing literature and 

have been enriched over the past few years. Many studies identified challenges 

with auto-based evacuation, and proposed improvement strategies 

(Abdelgawad and Abdulhai, 2009; Ng and Waller, 2009; Wolshon, 2002; 

Urbina, 2002) to make evacuation operations efficient and safer. During the 

2005 Hurricane Katrina in New Orleans, the evacuation primarily relied on 

automobiles. The evacuation plan implemented for this hurricane did not 

develop a plan for the use of all modes, including public transit and school 

buses. As a result, a mammoth auto traffic fleet created unprecedented traffic 

congestion. This caused vehicles to run out of fuel due to long clearance times 

(i.e., approximately 20 hours), and it left many people, including the transit-

dependent population, with no option but to stay at home. The estimated 

number of buses required to evacuate New Orleans was 2000 but the city only 

had 500 transit and school buses available. Due to a lack of proactive and 

effective planning, the evacuation for Hurricane Katrina was not as successful 

as it should have been (Litman, 2006).  

Existing evacuation literature has discussed the planning for and modelling of 

auto-based, and multimodal evacuations. In the case of evacuations involving 

buses, public transit was mainly used for evacuating the vulnerable population 

who do not have cars or other options for evacuation. Although transit is not 

predominantly considered in evacuations, individuals who willingly choose 

buses or need to use buses as their method to evacuate have never received 

attention in literature. Since Hurricane Katrina, several studies shed light on 

how to evacuate transit dependent and carless populations using public 

transportation. These studies focused more on the bus operations, trip 

sequences and fleet sizes. Bolia (2019) developed an optimization model to 

determine the number of bus trips and bus trip sequences to evacuate a known 
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demand in response to a disaster. The study was not meant to formalize how 

to allocate any available mode, including buses to whoever needs them by any 

logical means. Instead, the study solely focused on transit network operation 

in the network. The study solved a transit network design problem by 

considering uncertainties including bus failure amid evacuation. Khulshretha 

et al. (2014) and Alam et al. (2019) developed optimization models to enhance 

multimodal evacuations by optimizing pick-up locations and bus routes. 

Cavusoglu et al. (2013) developed a simulation model that operated through 

two scenarios, one which considered transit-dependent populations, and one 

that did not. The objective of the study was to evaluate network performance 

during evacuation while considering both vehicle and transit operations. It was 

discovered that average travel speed reduced, and delays increased. The 

general purpose of this study was to explore potential impacts that may result 

from the evacuation of the vulnerable population, however, the evacuation 

scenario that utilized buses to evacuate the carless population experienced no 

changes in terms of traffic impacts. However, there is a significant gap in 

knowledge regarding the demand for buses due to evacuees’ exposure to 

different vulnerabilities, including social and mobility vulnerability. 

The aforementioned studies address several topics: challenges associated with 

auto-based evacuation, transportation needs of the transit-dependent and 

carless populations, and the service requirements for a transit operation 

during an evacuation. What are not adequately addressed in these studies 

include (i) access to all transportation modes for all evacuees so that they can 

choose specific modes to meet their needs or accommodate for uncertainties 

that may appear during evacuation, and (ii) the optimum composition of auto-

bus mix in the network to achieve an efficient transport network for 

evacuation. Lessons learned from Hurricanes Katrina and Rita highlight the 

significance of involving all modes in evacuations. Evacuation plans must 

account for all evacuating modes, including automobiles and buses available 
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in the network (Wendell, 2020). Otherwise, the sudden spike in traffic demand 

may create large-scale congestion. Consequently, should it be either vehicular 

traffic or buses, could be stranded on the road as it occurred in Houston during 

the evacuation due to Hurricane Rita (Renne et al., 2008; Zhao et al., 2010). 

Literature review clearly indicates that there is a major gap in understanding 

how to formalize an optimum auto-bus composition for an evacuation when 

there are concerns regarding the number of buses and the vulnerability 

considerations within the evacuation planning process.  

This study fills this gap by developing a novel framework to utilize all modes 

in an evacuation and to estimate an optimum composition of auto-bus mix that 

demonstrates improvements in the network performance during an 

evacuation. The study formulates and solves a mode allocation problem while 

the entire evacuation demand must be evacuated, and the mode-specific 

capacities are respected. There is always an ethical dilemma in how to allocate 

resources during an emergency. It is of utmost importance that resource 

allocation addresses the urgency of each evacuee. For example, evacuees 

exposed to a higher degree of social or mobility vulnerability should be 

prioritized for bus allocation. That being said, one’s vulnerability status may 

or may not be related to personal vehicle ownership. This research utilizes a 

score to explain the exposure of evacuees to different vulnerabilities, including 

mobility vulnerability obtained from the traffic microsimulation model used in 

this study. 

Broadly, the resource allocation problem for an evacuation involves two 

components such as demand (resource receivers/evacuees) and resource 

constraints (e.g., bus capacity) that change with the progression of evacuation 

time. When demands and the measurements of evacuees’ exposure to 

vulnerabilities at different evacuation times are given, the resource allocation 

(e.g., bus allocation) is then a combinatorial optimization problem. The 

optimization process finds an optimum set of demand for bus allocation while 
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ensuring that individuals with higher vulnerabilities are prioritized and the 

bus capacity is optimally utilized. Several widely used combinatorial 

optimization problems include the Traveling Salesman, Vehicle routing, and 

Knapsack problems. Knapsack problem involves maximizing the number of 

items (e.g., evacuees) and item values (e.g., vulnerability scores) while the 

Knapsack capacity (i.e., bus capacity) must be satisfied. The proposed 

optimization problem in this study completely assimilates to the Knapsack 

problem of combinatorial optimization. Knapsack is a widely known NP-

complete problem and there is no known polynomial solution algorithm to solve 

this nature of problem which is fast and exact (Cormen et al., 2009; Welch, 

1982). There are several solutions that can solve NP-complete problems in 

polynomial time, including Brute Force method, Dynamic Programming, 

Branch and Bound algorithm, Branch and Cut algorithm, and Greedy 

algorithm (Hristakeva and Shrestha, 2005). Brute Force is a straightforward 

problem-solving algorithm which systematically enumerates all possible 

combinations (2n) of the target items and identifies one with the maximum 

value. 2n is the total combination as there are two options for each of the n  

items: accept or reject. Thus, the complexity of this algorithm grows 

exponentially following ( )2nO . Due to complexity, this algorithm is suitable 

for small instances of Knapsack problem, while very often evacuation involves 

a larger optimization problem. Other abovementioned algorithms have their 

own advantages. Branch and Bound can solve some large optimization 

problems due to its capability to discard a subset of the solution set even before 

its construction if it cannot generate a solution within the estimated lower and 

upper bounds in the optimal solutions. Nonetheless, it still suffers from 

exponential complexity (Hristakeva and Shrestha, 2005; Goerigk et al., 2014). 

However, Dynamic Programming (DP) algorithm appears to be more suitable 

for solving a Knapsack problem. DP is efficient to deal with the problems 

involving re-occurrence of sub-problems. It computes a sub-problem only once 
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and stores the value in a table for later use. Thus, the algorithm efficiently 

reduces computation time by avoiding the solving of recurrent sub-problems 

each time. Therefore, this study adopts a Dynamic Programming algorithm for 

solving the proposed combinatorial optimization problem. DP can efficiently be 

used until the capacity is less than the demand, which represents an 

evacuation condition. This study improves the solution approach using DP for 

solving a large-scale evacuation optimization problem while algorithms used 

in solving other large-scale evacuation problems (Alam et al., 2019; 

Kulshrestha et al., 2014; Goerigk et al., 2014) may suffer from exponential 

complexity or local optima.       

The study establishes a feedback loop between optimization and traffic 

microsimulation models where optimization results are used in a traffic 

microsimulation model to determine whether any improvement in evacuation 

operations is achieved and/or if the fleet capacity is exhausted. Traffic 

microsimulation model updates the optimization module with this information 

to facilitate further testing of sequential scenarios. The iterations for testing 

sequential scenarios can be terminated upon achieving one or both criteria 

mentioned above. The proposed all mode evacuation strategy will help 

emergency managers and professionals iteratively evaluate contrasting 

evacuation scenarios considering all modes and make an informed optimal 

decision.   

9.3 Methodology 

This study develops a framework of an all-mode evacuation which accounts for 

evacuees’ exposure to different vulnerabilities and bus fleet capacity in the 

vehicle allocation process for a mass evacuation. The proposed framework 

involves a combined vehicle allocation and traffic evacuation microsimulation 

model. This framework allows emergency professionals to iteratively 

investigate whether the available vehicle fleets can accommodate the entire 
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evacuation demand if the demand is optimally assigned to all available modes. 

The tool enables evaluating alternative scenarios using a feedback loop 

between vehicle allocation and the traffic microsimulation model, following an 

“if-else” mechanism. Therefore, the methodology of this study is two-fold: (i) 

development of an all mode allocation module (AMAM) that follows a 

“Knapsack optimization” and adopts a solution algorithm “Dynamic 

Programming” to prioritize individuals with higher levels of vulnerabilities for 

bus allocation and optimize the use of limited bus capacity, and (ii) utilizing 

the traffic evacuation microsimulation model to simulate all mode evacuation 

scenario and update AMAM with bus capacity information for sequential 

scenario testing and evaluation. The study uses a score system to estimate the 

degrees of evacuees’ exposure to social and mobility vulnerabilities. The social 

vulnerability score for each individual is obtained from a Bayesian Belief 

Network-based vulnerability assessment model (Alam and Habib, 2019a). The 

mobility vulnerability is estimated in terms of the amount of average time 

required to travel from an origin zone to destination shelters. The traffic 

microsimulation model calculates the travel time between origin and 

destination for each individual using auto in the network. Individuals are 

selected from a synthesized population of Halifax obtained from integrated 

Transport Land Use and Energy (iTLE) modelling system (Fatmi and Habib, 

2018). Figure 9-1 presents overall framework of the proposed all mode 

evacuation model.  
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Figure 9-1 Evacuation modelling framework for bus allocation 

 

9.3.1 Knapsack Problem Formulation 

This study formulates a combinatorial optimization problem called “Knapsack 

problem”, that aims to best utilize the available Knapsack capacity (i.e., bus 

capacity), while prioritizing the maximum number of vulnerable evacuees for 

bus allocation. Let W  represents bus capacity and I represent a set of 

individuals attributed by departure time segment i . Each time segment, i
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contains a certain number of individuals denoted by iw . Each time segment, i

is characterized by a score, iv  reflecting individuals’ exposure to vulnerabilities 

within that time segment. The optimization can then be formulated as follows: 

Objective: 

i
i n

max v


                                                        (1) 

 

Subjected to: 

i
i n

w W


                 (2) 

,  as integer and ,  as double or integeri ii w v  

 0,1,2,3.......,i n=                (3) 

Knapsack problem is a NP-complete optimization problem, and no exact and 

fast algorithm is known to solve Knapsack in polynomial time. This study 

follows dynamic programming (DP) algorithm to solve the stated optimization 

problem. DP is a technique to design and implement an algorithm that 

disaggregates a large optimization problem into smaller sub-problems. DP can 

efficiently be used until the capacity is less than the demand, which represents 

an evacuation condition. The uniqueness of this algorithm is that it stores the 

solution of sub-problems for recursive use in later time.  

9.3.1.1 Dynamic Programming Algorithm for Sub-Problem Formulation 

Dynamic programming algorithm develops a matrix, K  with a dimension of 

1n +  rows and 1W + columns, where solutions to sub-problems are subjected to 

memorization for later use repeatedly. Each cell ( ,  )i j  of the matrix, K

represents the total Knapsack value that is calculated by including a subset of 

individuals preceding the current group in time segment i  while not exceeding 

the Knapsack capacity. The obtained Knapsack value at this point may result 
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from including or not including the current group of individuals. Note that the 

first row and column of K are set to zero. Then, the formula to determine the 

solutions to sub-problems starting from top-left corner to right-bottom corner 

of the matrix can be identified as follows: 

[ ][ ] [ 1][ ]K i w K i w= − , when [ ]iw i w             (4) 

[ ][ ] max[ [ 1][ ], [ 1][ [ ]] ]i iK i w K i w K i w w i v= − − − + , when [ ]iw i w         (5) 

[0][ ] 0K w = , and [ ][0] 0K i =              (6) 

 0,1,2,3.......,w W=                (7) 

Finally, the values corresponding to [ ][ ]K n W represents the Knapsack value 

calculated through assigning buses to individuals exposed to higher 

vulnerabilities without exceeding the bus capacity. This value represents the 

optimal value to the original Knapsack problem. The last thing this study has 

added to the formulation of the dynamic programming algorithm is a function 

to track individuals in different time segments that contributed to the optimal 

solution. This function starts tracking individuals using the value at [ ][ ]K n W

and ends at [0][0]K . Individuals, iw  at time segment i  are considered in the 

Knapsack solution if the following condition is met: 

[ ][ ]! [ 1][ ]K Rows Column K Row Column= −  where, Row = n , and Column = W        (8) 

If the condition is met, the function proceeds to the preceding group of 

individuals by shifting the cell to (Row-1, Column - [ ]iw i ). The process 

continues until it reaches [0][0]K . 

9.3.2 Traffic Evacuation Microsimulation Model 

This study utilizes a traffic microsimulation model developed in Chapter 4 and 

Chapter 5. The model includes a transport network that considers all available 
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modes for the evacuation of the Halifax Peninsula. Transit network consists of 

bus routes and marshal point locations as shown in Figure 9-2 and Figure 9-3. 

The model includes twelve transit routes and 135 bus stops obtained from 

Chapter 5.   

 

Figure 9-2 Road network elements of Halifax transport network, including bus 

stops in traffic microsimulation model 
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Figure 9-3 Bus routes obtained from the MILP optimization model in Chapter 

5 

 

9.4 Scenario Testing and Evaluations 

This study comprehensively tests scenarios of mass evacuation on the Halifax 

Peninsula, and demonstrates the benefits of using all modes, especially buses 

for evacuation. The study develops countermeasure scenario that allocates 

buses to accommodate for different levels of demand based on population 

vulnerabilities and available bus capacity. Four scenarios are developed where 

buses are allocated to an incremental demand across scenarios to gradually 

Transit lines 
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improve evacuation times and network performances. Individuals who do not 

have cars are assigned to buses by default for evacuation. The optimization is 

conducted to identify auto users for bus allocation based on their urgency. To 

develop sequential scenarios, this study assumes the first scenario, which 

considers 5% of auto users for bus allocations. If further evacuation 

improvements are needed and if there is still bus capacity left that can be 

utilized for accommodating more individuals, the AMAM performs further 

iterations for testing successive scenarios. The study increases the percent 

demand for bus allocation by 5% for successive scenarios. Four sequential 

scenarios are considered for the evaluation: (i) Scenario 1 – 5% demand, (i) 

Scenario 2 – 10% demand, (i) Scenario 3 – 15% demand, and (i) Scenario 4 – 

20% demand. Each scenario is implemented within the AMAM to identify the 

successful individuals that are assigned to a bus. The AMAM takes 

information from multiple sources to perform optimization such as time-

varying bus capacity from traffic microsimulation model, vulnerability scores 

from Bayesian Belief Network-based vulnerability assessment model, and 

simulation results. The simulation results for the four scenarios are evaluated 

and compared with respect to a base case scenario. Base case scenario 

represents the evacuation by auto and transit while transit is used to only 

evacuate people who do not have cars or other options for evacuation.  

9.5 Results and Discussion 

9.5.1 Overall Scenario Results 

The proposed framework first serves the target demand using a fleet of 322 

buses that Halifax Transit owns. There are also around 380 school buses in 

Halifax. If the transit fleet capacity is exhausted in a scenario, school buses 

are called within the traffic microsimulation model. Table 9-1 lists all 

sequential scenarios tested and evaluated using the framework. All scenarios 



 

192 

  

are compared to a base case scenario that uses buses for only evacuating 

transit-dependent population. The results from the scenario analysis reveal 

that traffic congestion can be improved by a reduction of vehicular traffic of 

3.9-7.7% from the network if 5-20% of the auto evacuation demand are served 

by buses. Figure 9-4 illustrates the improvement in queue length due to the 

implementation of the proposed scenarios. The queue length results suggest 

that with the increase in the number of individuals allocated buses from 

scenario 1 to scenario 4, traffic congestion, including queue length significantly 

decreases on major key arterial streets as shown in Figure 9-4a to Figure 9-4d. 

The improvement in congestion is also reflected in evacuation clearance time 

which anticipates a reduction of 9-22.7% with respect to a base case scenario. 

Figure B-7 – Figure B-9 in Appendix B also present the improvements in 

clearance time across all TAZs under the proposed evacuation scenario. The 

results suggest that except for scenario 1, municipal bus capacity is exhausted 

while the proposed AMAM utilizes school buses to accommodate the respective 

demand for evacuation. 

 

Table 9-1 Results for Bus-based evacuation 

Scenarios 

Demand 

assigned to 

buses 

Required 

transit bus 

Required 

School bus 

Vehicle traffic 

reduction w.r.t 

base case, % 

Clearance Time 

improvement 

w.r.t base case, % 

Scenario 1: 

5% demand 
8,725 193 0 3.9 9.0 

Scenario 2: 

10% demand 
14,900 322 5 4.7 13.6 

Scenario 3: 

15% demand 
18,150 322 34 5.5 18.1 

Scenario 4: 

20% demand 
21,400 322  88 7.7 22.7 

 

The results in Table 9-1 will assist decision makers in selecting one of the 

scenarios to be implemented. For example, one may select scenario 4 with the 

highest improvement in evacuation time, but with a large cost to deploy 410 (= 

transit bus-322+school bus-88) buses. They may also select scenario 1 which 
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only involves 193 municipal buses but demonstrates a relatively small 

improvement in terms of evacuation time. In total, 410 buses are used in the 

highest demand scenario, while there are 702 buses (= 322 buses of Halifax 

Transit + 380 School buses) available indicating that more individuals can be 

served by the remaining fleet capacity. Decision makers can easily evaluate 

municipal budget and the available lee way time to safely evacuate people 

when choosing a scenario. 
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Figure 9-4 Average queue length measured in four vehicle allocation scenarios where (a) Scenario 1- 5% demand, (b) 

Scenario 2- 10% demand, (c) Scenario 3- 15% demand, and (d) Scenario 4- 20% demand

1
9

4
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9.5.2 Prioritization Accounting for Vulnerabilities 

The proposed bus allocation process in this study prioritizes individuals 

according to their estimated vulnerabilities. The vulnerability score for an 

individual is calculated by the aggregation of scores for social and mobility 

vulnerability. All vulnerability scores are used to develop twenty classes with 

an interval of 0.05: V1 being the first and the lowest scored class and V20 being 

the last and the maximum scored class. Figure 9-5 shows the percent 

individuals that are assigned to a bus while accounting for different 

vulnerabilities.  

 

Figure 9-5 Percent individuals assigned to buses based on different 

vulnerabilities 

 

The results suggest that the percent individuals prioritized across zones for 

bus allocation comprise of a large group of individuals with relatively higher 

vulnerabilities, a category of V12 or above, in almost all scenarios, which 

supports the objectives of this study. Scenario 3 (15% demand) and scenario 4 
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(20% demand) show a similar pattern in bus allocation for individuals within 

the category mentioned above. The percent individuals that are assigned to a 

bus within this category are relatively higher and similar in both scenarios. 

Scenario 1 represents a 5% auto-based demand that is shifted to buses for 

evacuation. The proposed method intends to evacuate as many vulnerable 

people as possible by buses; that being said, a small size of 5% demand does 

not reflect the entire vulnerable population. The results suggest that it 

requires at least a 10% demand consideration to reflect a reasonable 

distribution of vulnerable population when allocating buses to evacuees from 

a wider area for evacuation. 

9.5.3 Addressing of Vulnerabilities across Planning Districts 

The study area has been sub-divided into four planning districts “Downtown 

(DT)”, “West-End (WE)”, “North-End (NE)”, “South-End (SE)” for analysis 

purposes. Figure 9-6a and Figure 9-6b show the vulnerability scores of 

individuals of different planning district who are assigned to buses for their 

evacuations in scenario 3 and scenario 4, respectively.  

 

Figure 9-6 Addressing vulnerabilities across planning districts for bus 

allocations in (a) scenario 3-15% demand, and (b) scenario 4-20% demand. 

 

Scenario 1 and scenario 2 serve a smaller demand and do not encompass all 

planning districts while prioritizing individuals with more vulnerabilities. For 

example, scenario 1 with a target demand of 5% only prioritizes individuals 
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from DT for bus allocation. The results suggest that the only difference 

between Figure 9-6a and Figure 9-6b is that the upper whisker in Figure 9-6b 

is relatively longer in the case of NE and WE. The reason being is that in 

scenario 4, due to increase in the target demand, more people from different 

zones become eligible for bus allocation based on their urgency.   

9.5.4 Critical Time Identification for Bus Allocation 

This study identifies the critical time segments of an entire evacuation period 

for bus allocation to improve overall evacuation operations. Figure 9-7a to 

Figure 9-7d illustrates the time segments when individuals have been assigned 

to buses.  

 

Figure 9-7 Time segments of an evacuation period that assigns buses to 

individuals under four scenarios (a) Scenario 1 –5% demand, (b) Scenario 2 – 

5% demand, (c) Scenario 3 – 5% demand, and (d) Scenario 4 – 5% demand. 

 

In the case of a smaller demand for bus evacuation, for example in scenario 1 

(5%) and scenario 2 (10%), bus allocation in a single time segment is found 

sufficient (see Figure 9-7a and Figure 9-7b). On the other hand, in the case of 
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scenario 3 (15%) and scenario 4 (20%), buses were allocated to individuals at 

different time segments to encompass a larger demand from a wider area. The 

results have certain policy implications. It helps decision makers to identify 

the critical time segments of an evacuation. For example, when individuals 

need transportation assistance the most and how effectively the demand can 

be accommodated given the limited capacity of buses.  

9.6 Conclusions 

This study presented a novel framework of an all-mode evacuation modelling 

that includes an All-Mode Allocation Module and a traffic evacuation 

microsimulation model. The contribution of this study is that it recognizes 

transit and school buses in evacuation operation and optimizes the composition 

of auto-bus mix in the transport network. Methodologically, the study 

contributes to solving bus allocation optimization problem by implementing a 

Dynamic Programming algorithm. In contrast, several solution algorithms 

used in other evacuation related integer and mixed integer linear 

programming problems may suffer from local optima or exponential 

complexity. This study also provides a comprehensive approach of mass 

evacuation microsimulation modelling and scenario testing.  

The study considered a case study of Halifax, Canada to demonstrate the 

efficacy of the developed countermeasure scenario in meeting the 

transportation needs of the entire population of the Halifax Peninsula, while 

simultaneously ensuring an improvement in evacuation time. Four sequential 

scenarios representing different levels of demand for bus allocation were 

evaluated within the developed tool. The results show that individuals with 

higher degrees of vulnerabilities are prioritized for allocating evacuation buses 

in case of all scenarios. The developed tool has the capability to identify the 

critical time segments of an entire evacuation period for bus allocation to 

improve overall evacuation operations. Moreover, if the bus fleet is large 
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enough to accommodate a significant proportion of evacuation demand, for 

example, 15% and 20% in this case, a vehicle traffic reduction of 5.5%-7.7% is 

achievable. This results in a potential reduction of evacuation times by 18.1%-

22.7%. All scenarios tested and evaluated demonstrate an improvement in 

clearance time and network performances. The simulation results reveal that 

a reduction of 9-22.7% in clearance time is obtained if the available bus 

capacity can accommodate 5% to 20% of auto-based evacuation demand. The 

transport network is also found to exhibit an improvement in traffic 

congestion. Queue length on major evacuation routes is found to decrease in 

all scenarios. In summary, the results from all mode evacuations scenario 

support the objective of this study and the rationale of developing an 

evacuation strategy that recognizes the role of all modes in evacuation 

operations. 

The study addresses the gaps in evacuation literature by considering and 

implementing the roles of all modes, particularly transit and school buses in 

evacuation operations. The proposed modelling approach in this study has the 

potential to assist emergency personnel in their decision-making process by 

enabling them to design and test alternative evacuation scenarios including 

resource allocation and management problems when considering a large-scale 

mass evacuation.  
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Chapter 10 

Chapter 10 Conclusions 

10.1 Summary of the Research  

The development of a mass evacuation decision support tool has emerged from 

the need to consider different types of traffic disruptions and uncertainties in 

assessing evacuation scenarios. Majority evacuation simulation studies 

explore evacuation times and traffic congestion for evacuation scenarios 

ignoring the potential impacts of traffic disruptions and the risk occurrence. 

Without considering this aspect, the evacuation scenario may not represent the 

actual evacuation conditions and the analysis may underestimate the 

clearance time and the traffic congestion in the network. This study 

contributes to a large-scale traffic microsimulation modelling that incorporates 

multiple modules for a greater representation of uncertainties and risks 

associated with mass evacuation processes. The further research gaps are 

identified through the review of countermeasure literature. Literature review 

suggests that the existing countermeasure modelling predominantly focuses 

on the traffic congestion improvement; however, lacks in addressing the 

vulnerable population and their priority needs in the implementation process. 

The prioritization of the vulnerable population for evacuation further creates 

ethical dilemma and requires a systematic prioritization process that 

holistically assess geophysical, social and mobility characteristics. 

Furthermore, the existing countermeasure studies undermine the potential 

advantages of using all modes for evacuations. Further evacuation modelling 

needs to consider all available modes particularly transit and school buses to 

meet the transportation needs of all and simultaneously improve the 

evacuation times and network congestion.  
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The study starts with developing of a large-scale traffic evacuation 

microsimulation model which includes a dynamic traffic assignment module to 

manifest drivers’ route choice decisions in a heavily congested transport 

network during an evacuation. This research is first of its kind which combines 

a flood risk and a traffic simulation model to inform evacuation scenario 

building process considering traffic disruptions due to floods of different 

extremes. Three flooding events such floods of a water level 2.9m, 3.9m, and 

7.9m CGVD28 resulted in three level of network disruption scenarios in this 

study. Note that among scenarios, 7.9m flood scenario refers to a long-term 

extreme weather conditions in future and is unlikely as it is based on the 100-

year sea level rise prediction. The results from the simulation suggest that the 

network disruption due to the flooding of links or exit points may lead to a 

prolonged and/or an incomplete evacuation. In the case of a flood of 7.9m water 

level, only 87% evacuation is completed due to 31.2% reduction of evacuation 

routes in the network. The results from this research indicate that coastal 

cities with limited exit points are vulnerable due to the possibility that one or 

more exit points may undergo water and the subsequent impacts can be as 

significant as found in the case of the Halifax Peninsula.  

Initially, the traffic simulation model was auto based. The study develops an 

evacuation transit network that consists of specific bus routes and marshal 

point locations. The study develops an optimization model that follows an 

advanced solution algorithm to determine optimum transit routes and marshal 

point locations. The solution approach is derived from the combination of two 

separate solution algorithm, which demonstrates an improvement in the 

quality of solutions and the computation time compared to that of each 

independent process. The identified transit network skeleton is coded within 

the already developed traffic microsimulation model. The simulation results 

reveal that bus has adaptive capacity to accommodate for not only the transit-
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dependent population but also those who may not choose private vehicles as 

their methods for evacuation or shift from other modes to transit.   

Besides considering natural disaster related network disruption risks, the 

developed MEDS tool addresses further complexities associated with 

evacuation operations within the traffic microsimulation model. The 

simulation model explicitly incorporates a collision prediction model developed 

through a combined Bayes theory and Monte Carlo simulation approach that 

identifies the collision hotspots and calculates collision probabilities during an 

evacuation. Vehicle collisions are generated at the hotspots within the 

microsimulation model utilizing a collision generation module. The analysis of 

evacuation scenarios considering uncertain network disruptions reveals that 

it may increase the clearance time up to 50% in the worst-case scenario 

compared to an undisrupted evacuation operation. This study has considered 

a worst-case scenario demonstrating five concurrent collisions at five hotspots 

in the network. Simulation results regarding staggered disruptions reveal that 

it takes at least 23 hours for a complete evacuation if the traffic disruption is 

removed in 2 hours or less. The evacuation time turns out to vary within 23-31 

hours if the disruption is removed within 2-24 hours for a concurrent collision 

occurrence scenario. 

The mass evacuation decision support tool is leveraged to test and evaluate 

totaling for twenty evacuation scenarios; one refers to base case scenario and 

the rest consider multi-layer complexities and implement countermeasures for 

assessing mass evacuations. The overall analysis of evacuation scenarios 

reveals that it may take 22-33 hours for the evacuation of the Halifax 

Peninsula depending on the nature and the severity of disruptions. The range 

of the evacuation times can be used by the emergency professionals in 

Emergency Management Office (EMO) or in other agencies for evacuation 

planning, including preparedness, response, and developing policies.  
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The MEDS tool is further utilized to conduct a zonal vulnerability assessment 

in the context of a mass evacuation. The vulnerability assessment in this study 

follows a Bayesian Belief Network modelling approach. The model identifies 

the factors affecting vulnerability and captures the causal relationships across 

different elements of the vulnerability. The study also quantifies the influence 

of the factors on the respective vulnerability on a spatial dimension through a 

parameter sensitivity analysis. For example, the factor ‘large household’ and 

‘no vehicle ownership’ are two key determinants affecting Downtown’s 

vulnerability during an evacuation. The vulnerability assessment provides 

insight into the potential areas that may require special evacuation assistance. 

The vulnerability assessment results can also be the basis for a zonal 

demarcation which further assists in prioritized evacuation.  

The evacuation modelling tool also implements five scenarios that test two 

countermeasures, namely staged and bus-based evacuation. The 

comprehensive scenario analysis helps understand the challenges associated 

with evacuation, the potential traffic impacts, the process to identify the 

appropriate countermeasures and the implementation techniques. In the 

existing studies, contraflow operation has been significantly researched and 

demonstrated significant increase in network capacity. Researchers claimed a 

significant network performance improvement along the highway. A strategic 

level countermeasure such as staged evacuation is not adequately explored in 

the existing literature. Furthermore, it lacks a systematic process to address 

the priority needs of the vulnerable population. This study developed a staged 

evacuation model that prioritizes areas under the riskiest conditions. The 

study follows a fuzzy logic approach to ascertain a vulnerability-based 

prioritization in this study. The prioritization results suggest that DT is to be 

evacuated first followed by WE, NE, and SE considering the combined effects 

of geophysical, social, and mobility vulnerability. It has been observed that the 

staged evacuation yields a reduction of 2.68 – 70.37% in clearance time for four 
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planning districts in the Halifax Peninsula. Although, staged evacuation 

modelling in this research ascertains a vulnerability-based prioritization, 

there are some areas that received less improvement in terms of network and 

evacuation performances. The staged evacuation scenario analysis suggests 

that staged evacuation may not always work better for certain geographic 

locations, network configurations and population density. A special plan for 

example, bus-based evacuation may need to be integrated to effectively use 

staged evacuation. To explore further countermeasure, the study develops an 

optimization problem to utilize all transportation modes in evacuation. 

Evacuees are assigned to buses based on the vulnerabilities that they are 

exposed to. The study formulates the bus allocation problem following a 

Knapsack optimization technique. It enhances the solution approach for 

solving Knapsack problem by utilizing dynamic programming. The bus-based 

evacuation modelling in this study offers promising results. Simulation results 

revealed that a reduction of 9-22.7% in clearance time is achievable if the 

available bus capacity can accommodate for 5% to 20% of auto-based 

evacuation demand. Using the results as the benchmark, decision makers can 

easily evaluate municipal budget and the available lee way time to safely 

evacuate people when choosing from different bus demand scenarios. 

In summary, the mass evacuation decision support tool provides a flexible 

platform for coupling multiple modules that mutually communicate with 

necessary information through different evacuation parameters for a holistic 

analysis of a mass evacuation. The tool is the first of its kind as it combines 

multiple modules to address uncertainties and risks associated with a mass 

evacuation which are very often overlooked in the analysis and evaluation of 

evacuation scenarios. The tool is useful as it enables countermeasure scenario 

building process and can be used by emergency professionals to understand 

what types of strategies are effective, how to plan countermeasure 

implementation process and what are the potential consequences associated 
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with countermeasure implementation. The developed MEDS tool is also 

transferable to assess evacuation scenarios in other areas as the information 

required by the modules are readily available in almost all other jurisdictions. 

For example, MEDS tool utilizes information from a regional transport 

network model, collision data, population synthesis and others. Particularly, 

the tool will be effective to plan evacuations using all modes available in other 

areas as it offers the flexibility to include additional modes of transportation 

within the evacuation plans. The tool can also be used for smaller community 

evacuations which would require to consider the household as the smallest 

spatial unit for trip production in the simulation. Even the evacuation of a 

concentrated demand zone, e.g., stadium evacuation can also be modelled 

using the developed MEDS tool. However, the computation time may vary from 

a scenario to another. 

10.2  Contributions of the Research 

The novel contribution of this study includes the development of a mass 

evacuation decision support (MEDS) tool that is flexible to consider multiple 

types of disruptions and uncertainties in assessing mass evacuations. The 

modular-based approach adopted in this study enables the MEDS tool to 

capture uncertainty and risks associated with a mass evacuation within a 

traffic evacuation microsimulation model. State-of-the-art modelling methods 

and techniques are used to develop the modules. The study also leverages the 

modules to inform a zonal vulnerability assessment. One of the unique features 

of this research is that it uses zonal vulnerability characteristics to ascertain 

vulnerability-based prioritization of evacuees when planning for 

countermeasures. The key contributions of this research include the 

development of the following modules using the cutting-edge modelling 

methods and techniques. 
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1. A major contribution of this research is that it develops a framework for 

a large-scale traffic evacuation microsimulation model which 

implements a dynamic traffic assignment (DTA) process. The DTA 

process captures dynamic traffic congestion propagation and driver’s 

route choices in response to continuously changing traffic conditions in 

the network. The microsimulation model generates scenario evaluation 

results at a finer grained detail that can further be utilized by other 

modules of different functions within the developed evacuation 

modelling framework. 

2. The study further contributes to developing a process mechanism to 

incorporate evacuation transit network component into the traffic 

microsimulation model. The study develops optimization models for 

marshal point location and transit route choice decisions to facilitate a 

multimodal evacuation scenario analysis and evaluation. The 

optimization problem is solved using an advanced solution algorithm 

“Branch and Cut” that generates high-quality solutions in a 

significantly reduced computation time compared to that of the 

traditional methods. 

3. One of the key features of this study is that it combines a flood risk 

model, and the traffic evacuation microsimulation model to examine the 

impacts of flooding related traffic disruptions on the evacuation 

processes. The flood risk model utilizes a high-resolution LiDAR data 

and follows a Digital Elevation Modelling (DEM) approach to simulate 

floods of different water levels over Halifax region. Thus, the research 

quantifies the natural disaster related impacts on the transportation 

infrastructures and evacuation traffic flows in the network.  

4. This research develops a collision prediction model to add capacity of the 

MEDS tool to accommodate for further underline uncertainty in 
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evacuation. The study explores a novel probabilistic approach combining 

Bayes theory and Monte Carlo simulation technique. Bayes theory 

involves a probabilistic estimation process which is critical to capture 

the uncertainty in the occurrence of vehicle collision. This research 

contributes to identifying influential factors affecting vehicle collision 

occurrence through a parameter sensitivity analysis. Unlike other 

studies, it determines the collision hotspots in the light of identified 

factors rather than using a single given criterion such as traffic volume. 

The research further advances the traffic microsimulation modelling by 

incorporating vehicle collision related traffic disruptions for assessing 

evacuation scenarios. 

5. Another key contribution of this study includes that it takes a holistic 

approach considering geophysical, socioeconomic and mobility 

challenges to assess zonal vulnerability in the context of a mass 

evacuation. The study contributes to developing a probabilistic 

vulnerability assessment model that overcomes the limitation of the 

traditional models. The vulnerability assessment in this study follows a 

Bayesian Belief Network (BBN)-based modelling approach. The unique 

strength of the developed BBN model is that it captures the causal 

relationship among variables affecting vulnerability. The BBN model 

utilizes the outputs from a flood risk model, a long-term simulator, and 

a traffic evacuation microsimulation model. The vulnerability 

assessment information from the BBN model further informs the 

countermeasure scenario building process. 

6. Finally, the study explores two strategic level countermeasures that 

simultaneously control a large traffic demand and best utilize the 

network capacity during an evacuation. One of the unique contributions 

of this study is that it develops a novel prioritization process following a 
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fuzzy logic approach for staged evacuation. Furthermore, it fills the gap 

in literature by considering all modes in evacuation, particularly, transit 

and school buses through the advanced optimization modelling. The 

study overcomes the computational challenges with combinatorial 

optimization by using a dynamic programming for Knapsack 

optimization. 

10.3 Future Research Directions 

This study presents the development process of a novel framework for a 

modular-based mass evacuation decision support (MEDS) tool that assesses 

evacuation scenarios considering the uncertainty and risks occurrence. 

Moreover, it also prioritizes evacuees for evacuation based on their priority 

needs. The results from microsimulation of evacuation scenarios subjected to 

different disruption risks provide insights into potential low to high level 

impacts in terms of evacuation times, and traffic congestion. The flood risk 

model used in this study simulates flooding extent for a single point of time. It 

does not consider the temporal aspect of flooding which could be useful to 

determine the timing of evacuation order. Furthermore, the study uses two 

shelters on the east and north side of the peninsula, respectively. The shelters 

are highway 102 and highway 118 bound and well spacious to accommodate 

for the demand used in this research. The use of other shelters may change the 

traffic flows and congestions in the network. Future study may use shelter 

location recommendations made by Alam et al. (2021) for the same study area. 

The multimodal traffic evacuation microsimulation model facilitates 

evacuation of transit-dependent population and the results indicate that bus 

has adaptive capacity to accommodate additional demand, e.g., in a scenario of 

mode-switching from auto to bus. As this study follows a curb-side simulation 

approach, evacuation of the residents with mobility issues is not adequately 
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addressed. It would be interesting if a new module is combined with the traffic 

microsimulation model to calculate the additional time required to move this 

specific group of residents from an origin location to a curbside. In the case of 

transit route optimization, a dynamic optimization with consideration of the 

temporal variation in simulated travel time could provide more insights into 

evacuation conditions. In addition, a heuristic/meta-heuristic may need to be 

developed for larger optimization or evacuation problems. One of the important 

elements of evacuation planning is communication strategy and dissemination 

of information regrading different aspects of evacuation, for example flooding 

extent, marshal point locations, bus routes and schedules. Further application 

of the MEDS tool in future should consider the communication and 

dissemination strategies in assessing evacuation processes. Particularly, it is 

important to implement communication and dissemination plans within the 

simulation model to convey real time information to drivers about the routes 

for shifting given the accident on route, or large congestion ahead in the 

network.  

The traffic microsimulation modelling of traffic disruptions due to vehicle 

collision during evacuation provides an upper limit of evacuation time while 

an evacuation scenario without considering any disruption offers a lower limit 

of evacuation time in this study. The study did not consider the adjustments 

in evacuees’ departure times in response to collision-related disruptions. An 

extension of this study should evaluate evacuation scenarios considering the 

changes in evacuation decisions in response to uncertainty and risks. 

Moreover, if the collision data observed on an evacuation day is found, it would 

be interesting to validate the collision prediction model developed in this study. 

The countermeasure scenario analysis using MEDS tool offers encouraging 

results. The developed staged evacuation model incorporates geophysical, 

social and mobility characteristics in prioritizing areas for evacuation. 
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However, the study did not track socio-economic characteristics of individuals 

when simulating traffic movement. In addition, the study did not consider trip 

chaining problems (e.g., pick-up kids and family members). Further research 

will be necessary that uses activity-based travel demand models for demand 

estimation and real-time bus supply assessment within all mode allocation 

module. In this research, MEDS tool uses information from iTLE. It would be 

interesting if the tool can be embedded within the iTLE, particularly, as a 

traffic assignment component. This coupling would enable to develop future 

evacuation plans using the long-term simulator of iTLE. Short-term simulator 

can inform the MEDS tool with activity-based travel demand information. 

MEDS tool can also be leveraged to develop a scenario building module that 

would enable emergency professionals playing with different scenarios and 

assist decision making process. It would also be worth to explore how the 

MEDS framework can be extended to incorporate an epidemiological model 

representing pandemic, e.g., COVID 19 and determine how the evacuation 

process would further be complicated. One of the important focus of future 

research could include collecting data or designing experiment to understand 

panic behaviour and replicate more planning scenarios within the developed 

modelling system in this research.   

10.4 Concluding Remarks 

This study advances the evacuation modelling literature by developing 

multiple modules that capture different types of uncertainties and risks in 

assessing evacuation processes within a traffic evacuation microsimulation 

model. The MEDS tool developed in this study assesses the impacts of natural 

disaster as well as traffic operation related network disruptions on evacuation 

process through a coupling mechanism. A novel prioritization method is 

developed in this research to better represent the vulnerable population and 

their priority needs within the implementation process of countermeasure, 
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namely staged evacuation. This research also addresses the gap in literature 

by utilizing all modes in evacuation through a combined optimization and 

traffic microsimulation modelling approach.     

The mass evacuation decision support tool will assist the transportation 

engineers/planners and management professionals at different levels of 

government to consider efficient and optimum evacuation strategies. 

Furthermore, organizations at municipalities and national levels can utilize 

the tool to evaluate the effectiveness of new infrastructure development for 

emergency situations. The scenario analysis using the tool will give insights in 

developing the contingencies and fiscal planning for emergency evacuation
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Chapter 12 Appendices  

Appendix A Flooding Extents 

 

Figure A – 1 Juan's peak water level of 2.1 m CGVD28, had it occurred on 

HHWLT the water level would have been 2.9 m CGVD28 
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Figure A – 2 The flooding extent of the Halifax Peninsula under a 15.0 m 

flooding scenario 

 

 

 

Figure A – 3 The flooding extent of the Halifax Peninsula under a 30.0 m 

flooding scenario 
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Figure A – 4 The flooded links of the Halifax Peninsula transport network 

under a 2.9 m flooding scenario 
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Figure A – 5 The flooded links of the Halifax Peninsula transport network 

under a 3.9 m flooding scenario 
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Figure A – 6 The flooded links of the Halifax Peninsula transport network 

under a 7.9 m flooding scenario 
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Appendix B Zonal Clearance Times 

 

Figure B – 1 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs when no flood occurs 
 

 

Figure B – 2 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs under a 2.9 m flooding scenario 
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Figure B – 3 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs under a 3.9 m flooding scenario 

 

 

Figure B – 4 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs under a 7.9 m flooding scenario 
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Figure B – 5 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs under a scenario of vehicle collisions at five critical locations 

 

 

Figure B – 6 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs under a staged evacuation scenario 
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Figure B – 7 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs when 10% auto-based demand are served by transit and school buses 

 
 

 

Figure B – 8 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs when 15% auto-based demand are served by transit and school buses 
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Figure B – 9 A 3-D visualization of clearance time across Halifax Peninsula 

TAZs when 20% auto-based demand are served by transit and school buses 
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Appendix C Evacuation Traffic Flows and Congestion 

 

Figure C – 1 Traffic flows in the Halifax transport network when no flooding 

occurs  
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Figure C – 2 Traffic flows in the Halifax transport network under a 2.9 m 

flooding scenario 
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Figure C – 3 Traffic flows in the Halifax transport network under a 3.9 m 

flooding scenario 
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Figure C – 4 Traffic flows in the Halifax transport network under a 7.9 m 

flooding scenario 
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Figure C – 5 Evacuees’ travel time in relation to their departure for evacuation 

when no flooding occurs 
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Figure C – 6 Evacuees’ travel time in relation to their departure for evacuation 

under a 2.9 m flooding scenario 
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Figure C – 7 Evacuees’ travel time in relation to their departure for evacuation 

under a 3.9 m flooding scenario 
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Figure C – 8 Evacuees’ travel time in relation to their departure for evacuation 

under a 7.9 m flooding scenario 
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Figure C – 9 Queue time anticipated with the progression of evacuation time 

under different flooding scenarios (each horizontal line represents a TAZ) 
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Figure C – 10 Traffic evacuation and congestion visualization within a traffic 

evacuation microsimulation model 
 

 

 

Figure C – 11 Percent accomplished evacuation through different exit points 

of the Halifax Peninsula 
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Appendix D Multimodal Evacuation 

 

Figure D – 1 Transit lines and bus stops data used for optimizing marshal 

point locations and evacuation transit lines 
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Figure D – 2 Transit demand data obtained from Halifax Network Model and 

used for optimizing marshal point locations and evacuation transit lines 

 

 

 

 

 

 

 

 


