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Abstract

Time series data consists of a series of measurements collected over a period of time.

This type of data is very relevant in several domains, including healthcare, manufac-

turing, finance, environment, and many more. For these domains it is frequently of

key importance to be able to predict the future values of these time series. Activity

monitoring is a task related to forecasting where time series data is used as input

signals to some events whose occurrence is supposed to depend on the values of these

series. These events are typically of critical importance to the end users and the goal

is to be able to anticipate them with sufficient lead time. Due to the uncertainty of

the future, forecasting and anticipating these scenarios could help prevent or mitigate

hazardous activities. In this thesis we address one such application - the anticipa-

tion of algae blooms in aquaculture industries. As algal blooms hinders the growth

of the aquaculture species, it is of high importance to monitor the farms, avoiding

serious damages to the species. In this thesis we propose a method for anticipating

algae blooms based on measurements of mussels’ valve openings that domain experts

think can be used as bio-sentinels of the blooms. We use machine learning models to

address this predictive task and obtain models that can predict future algal bloom

events based on the micro closures of the mussels. We focus our goal on predicting

the presence of the algae Alexandrium Tamarense in the water environment. Due to

the rarity of algae blooms, sampling procedures were used to balance the distribution

of the target variable to facilitate the task of the learning algorithms. Overall, the

experimental comparisons we have carried out have shown that we were able to obtain

very good results, particularly in terms of being able to anticipate a high percentage

of the blooms (80%) although with some false alarms (48%). Our results have also

shown the advantage of adding sampling procedures to overcome the imbalanced dis-

tribution of our target variable. In summary, in this thesis we have developed a series

of forecasting approaches based on feature engineering, machine learning models and

sampling methods that have shown a great potential in terms of preventing algae

blooms in aquaculture farms.
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Chapter 1

Introduction

In today’s world, massive amounts of data are produced continuously. Many organi-

zations are evolving to make use of this enormous amount of data that are produced.

Organizations are finding ways to capture the data and analyze it to make data-driven

decisions. In many cases, the data is generated as a time series, i.e., a set of values

measured over a time period.

The main challenges in applications involving time series data is to accurately

analyze the process that generates these types of data and make decisions accordingly.

Many organizations try to incorporate the time series data and make decisions by

predicting the future values of these time series. Forecasting denotes the process of

estimating the future values (for example, yn+1) from a time series denoted by Y

= {y1, y2, ..., yn}, where yi represents the measured value of variable Y at time i.

Forecasting the values of observations is one of the main objectives when modeling

time series data. Forecasting is useful in many domains including healthcare, where

for instance patient’s blood pressure is monitored continuously to make decisions [38],

finance [22, 40] and many others.

Many classical and machine learning methodologies have been developed to fore-

cast and predict the future values of time series. However, it is widely accepted

that no specific method is universally the best for all types of problems [23]. This

is consistent with the well-known No Free Lunch theorem for supervised learning,

which states exactly that there is no single algorithm that is most appropriate for all

tasks [79].

In certain domains, we may wish to not only forecast the future values of the

series, but also to anticipate specific events [20] that are associated with these val-

ues. This type of predictive task is usually known as activity monitoring [30]. It

involves identifying certain events that might occur in the future in a proactive man-

ner. Specifically, these events are identified when certain values of some time series

1
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cross pre-defined thresholds that may require action from domain professionals. Such

early forecast of events is crucial in certain domains as they empower the organiza-

tions to take appropriate actions to prevent or mitigate the damages that these events

may cause.

Activity monitoring is helpful in many domains like for instance health-care, where

an event may occur if some health parameters of a patient cross some thresholds.

For example, an acute hypotensive episode (AHE) event is triggered if 90% of the

mean arterial blood pressure values are below 60 millimeters of mercury during a 30-

minute interval being important to treat the patient to avoid causing organ damage,

which may happen if not treated in a timely manner. [39]. Anticipating this type

of events can also be helpful in wildlife photography, where the camera is triggered

for movements of animals or birds by identifying them early, rather than recording it

for a long time [51]. In activity monitoring, the main objective is not to accurately

predict the future values of a time series but to anticipate events that are associated

with these values and that may occur in the near future.

Frequently, the major challenge in activity monitoring tasks is that the events of

interests are rare, and learning the task of identifying those events is regarded as an

imbalanced learning problem and certain forecasting models find it hard to predict the

rare events [17]. Another challenge in activity monitoring is anticipating the events

with sufficient lead time, which benefits the organizations to assess the situation and

take appropriate actions before the events occur.

In this thesis, we address a concrete activity monitoring task: to forecast or antic-

ipate algae blooms in the context of aquaculture. Algae blooms are impactful events

that seriously damage water quality and can have serious consequences like the dying

of fish in the aquaculture farms. Domain experts experimented with placing certain

mussels in the aquaculture farms with sensors attached to their valves. They con-

cluded that the mussels behaved differently with the presence of algae in the water.

More specifically, if these mussels show a behaviour known as micro closures this is

considered to be an indicator of potential presence of algae in the water. Using data

collected from sensors in mussels’ valves, we analyze their behaviour in terms of micro

closures, and try to use this information as predictors for the machine learning mod-

els that were able to forecast the algal blooms. We apply several machine learning
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models (SVM [27], Random Forest [18] and XGBoost [25]) and compare them on the

task of detecting the algal bloom events based on the mussels’ behaviour.

Due to the damaging effects of algal blooms in the health of fish, aquaculture farms

need to avoid and/or quickly treat these blooms. In this context, forecasting algae

blooms is extremely relevant for aquaculture farms as it may allow treating the water

well in advance of the algal bloom occurrence. We have designed forecasting tasks

to predict the future occurrence of algal blooms in aquaculture using information

on micro closures in mussels’ valve openings. If successful, these forecasting models

have as main advantage the ability of avoiding the need to collect water samples and

analyse them in the lab to check for the presence of algae. By using only information

from the sensors at the mussels valves, our models allow aquaculture farms to save

money and resources while still being able to anticipate and treat algal blooms.

We use feature engineering techniques to manipulate the original valve opening

data with the goal of enriching the information provided to the models. We also use

sampling methodologies to balance our dataset which primarily consists of normal

events as opposed to the rare and more interesting algae bloom events. We try to

forecast algal bloom events for future timestamps of t + 1, t + 4 and t + 8 which

correspond to 30 minutes, 2 hours and 4 hours.

We evaluate the proposed methods using metrics such as F-score, Precision and

Recall, which are more useful on scenarios with imbalanced class distributions. We

tune specific parameters of the different machine learning models and sampling meth-

ods to achieve better results on the above mentioned metrics. Finally, we compare

the results among the different models and discuss the statistical significance of the

results.

In summary, the main contributions of this thesis are,

• An analysis of the potential of using information on mussels closure behaviour

as predictors to be used in prediction models for forecasting algae blooms in

aquaculture farms

• An application of machine learning models to forecast future algal bloom events

with different forecasting horizons

• An experimental comparison of different machine learning models in the task
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of forecasting algae blooms

The thesis is organized as follows. Chapter 2 presents the background for the work

of the thesis as well as related works. In Chapter 3 we introduce the case study that

motivates the work of the thesis. The proposed methods for forecasting algae blooms

are described in Chapter 4. In Chapter 5 we describe the experimental evaluation of

our proposal, while the conclusions and future work are described in Chapter 6.



Chapter 2

Background and Related Work

In this chapter, we present the background and related work to the topics addressed

in this thesis. It is organized into the following sections. In Section 2.1 we start by

defining the basic concepts of time series, its types and the problems. In Section 2.2,

we introduce the concepts of forecasting time series, challenges and current state of

the art approaches. This is followed by Section 2.3 which discusses forecasting model

evaluation and estimation methods. In Section 2.4, we address the topic of activity

monitoring, its challenges, related works and evaluation metrics. Finally, Section 2.5

summarizes the concepts of time series, forecasting and activity monitoring used in

this thesis.

2.1 Time Series

A time series is defined as a set of values occurring sequentially during a period

of time. For example, let Y be a time series of values, Y = {y1, y2, ..., yn} where

each yi is a value of Y measured at time i. For instance, the daily stock prices of a

company can be seen as a time series. Time series can be regular, if the measurements

are recorded at equally spaced points in time, or irregular, when the time interval

between each measurement is not regular. Time series data occurs in many relevant

application domains, including healthcare informatics where for instance we could

have a time series of the blood pressure values of a patient (e.g. [37, 39]), stock market

predictions (e.g. [22, 40]), energy consumption (e.g. [9]), intelligent transportation

systems (e.g. [50]) and fraud detection (e.g. [29, 80]).

Time series data may be described in terms of several types of properties, such as

trend, seasonality, cyclic, and irregular components [20]. Trend refers to an increase

or decrease in the mean value of the series, e.g. showing an upward or downward

trend in the stock prices of a company, whereas seasonality refers to a change in

values for certain periods of time related to the calendar of the year, e.g. the demand

5
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of ice-cream. Cyclic behaviour describes a time series with predictable oscillations

along time, and irregular components are defined as all other than the described

components that are neither systematic nor predictable. A time series is considered

stationary, if there is no systematic change in the mean or variance over a time period.

2.2 Forecasting

One of the main goals of time series analysis involves predicting the future values of

the series. This process is frequently called forecasting. It has been widely used in

many organizations where predicting the next value is crucial in making decisions. For

example, energy generation organizations which use renewable resources to generate

energy. These companies make use of the predicted values of consumption to generate

sufficient energy from other sources in order to satisfy the demand [36]. Forecasting

is usually focused on predicting the next value in a time series, but it is also used

to predict multiple steps ahead in future, which is called as multi-step forecasting.

But, difficulties can occur when predicting multiple steps ahead, due to the increased

uncertainty [76]. Apart from predicting a single value from a time series, it is also

possible to predict a range of values, since in certain domains one may be interested

to find prediction intervals where the intended value lies between the lower and upper

bound intervals [20].

2.2.1 Methods to Predict Future Values

We will discuss a few state of the art approaches of classical and machine learning

methodologies used to forecast future values of a time series.

Classical Forecasting Methods

This subsection deals with the classical approaches to time series forecasting. Since

forecasting involves predicting the future values in a time series, one simple method

called the average method that finds the average of all values until that point and use

this average as the forecast,

ŷn+1 = ȳ =

∑︁n
i=1 yi
n

(2.1)
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where ŷn+1 denotes the prediction of time series for time n+ 1.

Another simple method is the naive method that predicts the next value in the

time series as the last known value,

ŷn+1 = yn (2.2)

One of the most used classical methods for predicting univariate (using a single

variable to forecast) time series is the Auto-Regressive Moving Average (ARMA)

which combines two components: Auto-Regressive (AR) and Moving Average (MA).

In the Auto-Regressive method, the next value is predicted using the linear combi-

nations of the past p observations at prior timesteps with error term ϵn and a constant

term c [15].

yn = c+

p∑︂
i=1

ϕiyn−i + ϵn (2.3)

where ϕi denotes the model parameters, p represent the order of the model and ϵn

denotes the error.

On the other hand, Moving Average (MA) uses the linear combination of past

errors to predict the next values.

yn = µ+

q∑︂
i=1

θiϵn−i + ϵn (2.4)

where µ denotes the mean of observations, θi denotes the parameters of the model, q

represents the order of model and ϵn denotes the error.

Both the above methods are combined to produce effective prediction in ARMA(p,q).

This is used in prediction of future values considering it as a linear combination of

past values [20].

yn = c+

p∑︂
i=1

ϕiyn−i +

q∑︂
i=1

θiϵn−i + ϵn (2.5)

The variations of ARMA include ARIMA which includes an integration parameter

to model the next steps in the sequence as linear functions of differenced observations.

It is different from ARMA by a differencing pre-processing step, which is applied to

make the time series stationary and then ARMA modelling is applied [15].
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Another classical approach in forecasting is exponential smoothing. The forecasts

are produced by a weighted average of the past observations with the weights decaying

exponentially as it gets older [1]. The simplest in the class of exponential smoothing is

Simple Exponential Smoothing (SES), which is suitable for data with no trend or no

seasonal components [4]. In simple exponential smoothing, the weights of the recent

past observations is greater than the older observations as given by the equation

below,

yn+1 = αyn + α(1− α)yn−1 + α(1− α)2yn−2 + · · · , (2.6)

where α is the smoothing parameter which controls the rate at which the weights

decrease and the value of α lies between 0 and 1. If α is small, more weight is given

for observations in the distant past and if α is large, recent past observations gets

more weight [4]. The value of α is chosen based on the importance of values in recent

past. For example if α = 1, it follows the naive method which takes the value of the

recent observation, yn+1 = yn.

Machine Learning Approaches

Apart from classical approaches to forecast time series, there are various machine

learning approaches that are also used extensively in these tasks. The machine learn-

ing approaches aim to forecast the future values represented as the dependent feature.

This dependent feature is forecasted based on certain features known as independent

variables (input features). Frequently, the machine learning models use the past values

of a time series as inputs and predict the future values. Since time series comprises of

trend and seasonal components, certain machine learning methods incorporates this

information as input variables to improve the performance of the model [14]. Several

machine learning models have been compared with statistical methods to determine

their performance. Makridakis et al., [47] discussed several machine learning models

used in forecasting. Here we discuss a few approaches: Support vector regression

(SVR), Recurrent Neural Networks and Long short term memory (LSTM).

Support Vector Regression (SVR) is the regression variant of support vector ma-

chines (SVM), which tries to find one hyperplane approximating the data. It finds a

hyperplane in an N -dimensional space which best fits the data, where N represents

the number of features. This hyperplane is used to predict the continuous output [64].
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Figure 2.1: SVR with decision boundaries of distance ϵ
(figure taken from [66])

SVR has gained attention in a variety of time series problems including forecasting

energy consumption [83] and financial time series [46], due to the structure risk mini-

mization principle of SVM and great generalization ability. SVR deals with non-linear

regression problems (where it is hard to find a hyperplane approximating the data)

by converting them to linear tasks, by mapping them to a high dimensional space

with the use of kernels [83]. The equation to solve for linear estimation function is

given by,

y = f(x) = w · ϕ(x) + b (2.7)

where w is the weight vector, ϕ(x) is the non-linear mapping function from input

space to high dimensional space F and b is the threshold value [83].

SVR tries to find decision boundaries close to the hyperplane within an acceptable

distance ϵ [66], as shown is Figure 2.1. The main objective is to consider the points

within the decision boundaries as given by the −ϵ < w.ϕ(x) + b < +ϵ. SVR tries to

satisfy this condition but there may exist a few points outside the decision boundary.

Thus, SVR tries to capture the errors for data points outside of decision boundary.

We denote the deviation of points from the decision boundaries by ξi as shown in

Figure 2.1. Thus, the main objective of SVR is to minimize the errors as much as

possible, as given by the objective function,
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Minimize
1

2
||w||2 + C

n∑︂
i=1

|ξi| (2.8)

Subject to |yi − wixi| ≤ ϵ+ |ξi| (2.9)

where C represents the cost incurred due to each violation of error limit ϵ.

Sometimes, it becomes hard to find a hyperplane for non-linear problems to be

solved in the original dimension. Thus, kernels are used to map data points from low

dimensional space to higher dimension [83] and to make the optimization task feasible.

Kernels reduce the need to calculate the complex dot products of high dimensional

spaces [74].

Sagheer et al. [61] pointed out that Recurrent Neural Networks (RNN), is a class

of neural networks that performs well with time series forecasting. RNNs recognize

the past input sequences and help to predict the next values in the series. RNN stores

the activation from each time step in an internal state of the network to provide a

temporary memory. They retain information about the past and discover temporal

correlations between events. However, it is hard for RNNs to learn long range time

dependencies [53]. Thus, Long Short-Term Memory (LSTM) [42], that memorises the

sequence of data from earlier stages, is used to forecast the future values [67]. LSTM

has been widely used in many applications like natural language processing [70],

speech recognition [62] and forecasting economic and financial time series [67].

Sagheer et al. [61] used an extension to LSTM called Deep LSTM (DLSTM), to

forecast the petroleum production. DLSTM consists of multiple layers with each layer

having multiple cells as shown in Figure 2.2, where the input at time t is denoted by

Xt. The input Xt, is introduced to the first LSTM block along with previous hidden

state S
(1)
t−1, where 1 represents the block number. The hidden state at time t, S

(1)
t is

computed and goes to the next time step and also to next LSTM block and so on

until the last LSTM block gets compiled. Thus, it benefits from LSTM in a way that

each layer processes and subsequently passes it on to other layer until the last layer

produces the output [61].
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Figure 2.2: Deep LSTM Architecture (figure taken from [61])

2.3 Evaluating Forecasting Models

Model evaluation is a critical step to ensure the developed models perform well on new

time series data [20]. Basically, we estimate the loss that the models will experience

on unseen data. This section deals with the metrics used to evaluate the performance

of the forecasting models and the estimation methods used to obtain reliable estimates

of the values of these metrics.

2.3.1 Evaluation Metrics

The performance of predictive models is quantified by evaluation metrics. In this

section, we will discuss some absolute and relative metrics that can be used to evaluate

a forecasting model. First, we will deal with the absolute metrics used to evaluate the

forecasting model. We start by introducing the mean squared error (MSE) metric used

to evaluate the forecasting model, that calculates the mean of the squared difference

between the predicted and actual value,

MSE =

∑︁n
i=1(ŷi − yi)

2

n
(2.10)

where yî represents the predicted value, yi denotes the actual value and n number of
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observations.

A variant of MSE called root mean squared error (RMSE) is also used to evaluate

the forecasting model which calculates the square root of the mean squared error,

that calculates the squared root of the mean of the squared difference between the

actual and predicted values,

RMSE =

√︃∑︁n
i=1(ŷi − yi)2

n
(2.11)

Another metric, similar to RMSE, used to evaluate the model by finding the differ-

ence between actual and predicted is root mean squared logarithmic error (RMSLE).

RMSLE calculates the log error of the predicted and actual values and takes the

mean square of it. Basically, it identifies the relative difference between actual and

predicted values [2]. Thus, RMSLE treats big differences of actual and predicted

in the same way as small differences, since it evaluates on relative differences. The

formula to calculate RMSLE is given below,

RMSLE =

√︃∑︁n
i=1(log(yi + 1)− log(ŷi + 1))2

n
(2.12)

It produces small value error even if the differences between actual and predicted

are high. Thus, it differs from RMSE which produces a high error value, when the

differences are high. RMSLE is used when there is no requirement to penalize for

large differences.

Sometimes, to evaluate the forecasting models, mean absolute error (MAE) that

calculates the mean of the absolute difference between the predicted and actual values

is also used,

MAE =

∑︁n
i=1 |yî − yi|

n
(2.13)

The absolute metrics discussed above, work better when used in a single time series

problem, but is not as effective when evaluating multiple time series with different

magnitudes [59]. To evaluate models on different time series problems with different

magnitudes, relative metrics are preferred. Few relative metrics are discussed in this

section, for example, relative mean percentage error (MPE) is calculated as,



13

MPE =
100

n
·

n∑︂
i=1

yi − yî
yi

(2.14)

The relative mean absolute percentage error (MAPE) is formulated, as shown

below,

MAPE =
100

n
·

n∑︂
i=1

| yi − yî
yi

| (2.15)

Another metric used in evaluating the predictive models is mean absolute scaled

error (MASE) [43], which is computed as,

MASE =
1

n

∑︁n
i=1 |ŷi − yi|
Lossnaive

(2.16)

where Lossnaive represents the mean loss of the naive method in the data used to

obtain the model and is denoted below,

Lossnaive =
1

n− 1

n∑︂
i=2

|yi − yi−1| (2.17)

Another widely used metric in forecasting is R2 or the coefficient of determination,

that weights the individual scores by variance of the target variable [3]. R2 is a

statistical measure representing the proportion of variance of dependent variable as

explained by the variance of independent variables [41]. Thus, if R2 is 1, it means

that, all the variance of the dependent variable can be explained by the variances

of the independent variables. If R2 is 0, it means that none of the variance of the

dependent variable is explained by the variance of the independent variable and a

score less than 1 means, only a few of the dependent variables’ variance is explained

by the independent variables. The formula is given below,

R2 =

∑︁n
i=1(yî − ȳ)2∑︁n
i=1(yi − ȳ)2

(2.18)

where
∑︁n

i=1(yî− ȳ)2 represents the explained variance (explained sum of squares) and∑︁n
i=1(yi − ȳ)2 denotes the total variance.

Another metric that is used in time series problems is the Theil Uncertainty coef-

ficient (U), which provides a statistical measure of how well a time series of estimated

values compares with the time series of observed values [5]. It provides a conditional
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Figure 2.3: Simple holdout approach with train and test sets (figure taken from [20])

measure to find how well it predicts a variable with respect to another variable. Theil

uncertainty helps to find the effectiveness of a statistical algorithm. It finds the corre-

lation and not the correctness [6]. Thus, it does not penalize the algorithm for wrong

predictions. The formula for Theil coefficient (U) is given below,

U =

√︁∑︁n
i=1(yî − yi)2√︁∑︁n

i=1(yi − yi−1)2
(2.19)

2.3.2 Estimation Methods

Different methods have been proposed to reliably estimate the values of the predic-

tive performance metrics. The major groups of methods of predictive performance

estimation in time series are Out-Of-Sample (OOS) and Cross-Validation (CV) [20].

Out-Of-Sample Methods

Out-Of-Sample (OOS) methodology tests the model using data that is not used for

training the model, leaving a set of data exclusively for testing. Basically, it splits the

dataset into two parts: one part for training the model and another for testing. The

test set is held out to estimate the loss incurred by the model [20]. This approach is

referred to as holdout and is depicted in Figure 2.3, where it shows the split between

train and test data of a time series Y . For time series data we should make sure that

the test set is posterior in terms of temporal order to the training set. This method

does not make use of the whole dataset for performance estimation, but preserves the

temporal order of data as test set is chosen posterior to the train set.

Tashman et al., [71] identified the different strategies within OOS, which includes

different train/test split points and sliding windows. It selects random split points

within each available window selected by the sliding window approach. OOS also
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Figure 2.4: One iteration of repeated holdout approach with train and test sets chosen
from available window (figure taken from [20])

includes a randomized approach called repeated holdout, where it randomly sub sam-

ples the data, consisting of different sets of train and test data for each iteration.

This is illustrated in Figure 2.4, where it shows one iteration of repeated holdout [20].

Here, point a is chosen randomly from the available window, which marks the end of

train data and the start of test data. This selection is repeated several times and the

average scores on these repetitions will be the outcome of the estimation process.

Cross-validation Methods

Cross validation is one of the most commonly used methods when dealing with inde-

pendent and identically distributed data [20]. K-fold cross validation is a method to

randomly shuffles the data and splits into k-folds, where each fold is of size n/k, with

n being the total number of observations and k denotes the total number of folds

(blocks). This method makes use of the data efficiently with certain disadvantages

for time series data, since it does not maintain the temporal order of the data when

used in time series problems [8]. In K-fold CV, k − 1 folds are taken for training

and the remaining 1 fold is used for testing. This process is repeated for different

combinations of k-folds and the loss is measured in each iteration.

A major distinction between OOS and CV is that, OOS model is never tested on

past data [20].
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Figure 2.5: Variations on cross validation estimation procedures (figure taken
from [20])

Variations on Cross Validation

The most common cross-validation works by initial shuffling of data and then dividing

into k-folds; however, the Blocked Cross-Validation [68] (CV −Bl) is similar to usual

CV, but there is no initial random shuffling. Thus, the temporal ordering of data

within the block is preserved as compared to usual CV, but broken across the blocks.

The first image of Figure 2.5 depicts the CV −Bl scenario.

The modified cross-validation procedure [48] (CV − Mod) models the data by

removing certain data from the training set, which is correlated with test data. As

shown in the middle image of Figure 2.5, data in the training set is removed, for which

the temporal range lies within test data. Thus, independence between train and test

data is maintained in this method, but it leads to under-fit, since certain portion of

data is removed.

The hv-blocked cross validation (CV − hvBl) [58] models data the same way as

done by CV − Bl, but a certain amount of data adjacent to the test set is removed.

As depicted in the third image of Figure 2.5, it removes the data before the start and

after the end of the test data by a certain amount, thus creating a gap between train

and test.
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2.4 Activity Monitoring

In previous sections, we discussed the problem of forecasting time series. Activity

monitoring is a related problem that also involves time series data. Activity monitor-

ing involves identifying or anticipating specific events, that may occur in the future,

which are related to the values of a time series. Specifically, an event is identified by a

sequence of values in the time series crossing a certain threshold, which could be dis-

astrous in many domains including healthcare, finance, environment, etc. The main

goal of activity monitoring is to anticipate these future events in a timely manner

[20].

The motivation for anticipating the events is to detect any problems as early as

possible and to act in a timely manner to try to prevent or avoid them. Examples

of real world problems involving anticipating events include health care monitoring

systems, where an event is identified by a sequence of values of some critical health

parameter crossing a certain threshold, that might be the main cause of any problem

and anticipating those events would help in early diagnostics (for example, when a

series of blood pressure values decrease below the threshold) [20]. In power generation

from renewable sources, anticipating the solar or wind energy drop or increase in the

future, would help the operators to take proactive measures to compensate the energy

drop from the sources. It is also used in fraud detection systems to proactively react

to frauds. Identifying those events as early as possible is challenging, but doing so,

could save a lot of money and resources.

2.4.1 Challenges

The main challenge in anticipating the events of interest is that they are typically

rare, which means, their frequency of occurrence is low and this creates serious diffi-

culties to the prediction models as it becomes hard for the models to learn the rare

events. Thus, it can be seen as a highly imbalanced learning problem [17]. It is

quite similar to anomaly detection, which involves detecting values that deviate from

the normality. Though both these problems occur in imbalanced domains, anomaly

detection involves classifying the events as normal or abnormal. Whereas, activity

monitoring mostly occurs in time series domains and the task is to anticipate the rare
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events which are of interest to many domains. Also, it is important to issue alarms

in a timely manner before the events occur and the timeliness of alarms depends on

the domain and the problem. There exists a certain timeframe, before which the

alarm should be issued, which is useful in taking proactive measures or it becomes

less useful, if the alarm is issued at times closer to the event [20].

2.4.2 Modelling Approaches

The two commonly used approaches involved in activity monitoring are:

Profiling [30], where the model is built using only normal activity of data excluding

the abnormal cases. In this method, an alarm is issued for any activities different from

the normal. This method could be used in cases where there is no proper definition of

anomalies and anything other than normal is considered an anomaly. For example, it

is used in fraud detection systems, where any activity other than normal transaction,

causes an alarm to trigger.

Discriminating, where the model is built for learning how to discriminate anomalies

from normal activity, i.e. as a classification problem. It uses information from a time

series to classify the current state as leading to an anomaly or not. Thus, it issues

alarms if found to be an anomaly, based on many predictor variables.

We now discusse a few methods designed for activity monitoring. The pioneering

works of Weiss and Hirsh [77] include a model called Timeweaver, which uses a genetic

algorithm to identify a diverse set of prediction patterns and generate rules that

predict and generate alarms within specific time intervals using a sliding window.

This method was used to detect telecom equipment failures using a set of alarm

messages.

Another method for activity monitoring involves finding interesting patterns by

monitoring events [30]. First, a set of rules is generated, which distinguishes positive

events from normal and creates profiling monitors. Then, each monitor models and

describes how far it is deviated from typical behaviour and generates alarms if there

is enough evidence of unusual activity.

Stone and Veloso [69] approached activity monitoring as a layered learning prob-

lem and applied different layers to build up the model, as otherwise difficult to model
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from inputs to outputs. This method solves the problems by considering each prob-

lem as separate and solving one by one, rather than as a whole. They used layered

learning for modelling robotic soccer, where it is distinguished into three layers: 1)

Ball interception; 2) Pass evaluation and; 3) pass selection. The layers are applied in

sequential manner where one layer affects the next. Using layered learning method,

it is found to increase the efficiency of the decision-making system with high accu-

racy [69].

There are some situations where it is necessary to predict the class value of a

sequence early in time when the full length is not available [51]. In this method,

a probabilistic classifier is used to discover timesteps, where the accuracy for each

class is defined by a threshold. In such a case, the class label is predicted only if the

difference between the probabilities of top two classes is greater than the threshold.

This is identified by comparing shapelets of different timesteps in the time series and it

starts to classify only when the shapelets differs, thus reducing excessive classification

check. This method is used to trigger a camera event based on early identification of

birds [51].

Alternatively, there are some cases where it is required to transform into a forecast-

ing problem in combination with activity monitoring. In such cases, it is formulated

as a regression based approach [11], where the predictor values are forecasted initially

and based on the forecasted values, it is decided whether to trigger an event or not. A

classification model is also combined with regression to decide on the financial trading

actions to buy, sell or hold an asset [10].

In aquaculture domain, the shellfish farms are monitored by predicting the amount

of pollutants after high rainfall and high river flow [65]. It provides a decision support

system for health authorities and aquaculture industries to close the farms in advance,

if the predicted amount of pollutants is high. If unattended, the amount of pollutants

increases, causing damages and loss to the industries.

2.4.3 Metrics on Activity Monitoring

As discussed from previous subsections, the main goal in activity monitoring is to

anticipate the events in a timely manner rather than classifying them to be positive

or negative for each sequence [30]. Some of the commonly used evaluation metrics



20

in activity monitoring are recall, precision and F-score. Recall accounts for ratio of

events correctly predicted as positive to the number of positive events in the dataset.

Let FNm denote the number of false negatives in a test data set and let Tm̂

represent the total number of those events correctly predicted by a model m [20].

The recall for the model m is given by the following equation:

Rm =
Tm̂

Tm̂ + FNm

(2.20)

On the other hand, precision is defined as the ratio of number of events correctly

predicted to the number of events predicted as positive by the model.

Pm =
Tm̂

Tm̂ + FPm

(2.21)

where Pm denotes the precision, Tm̂ is the number of events correctly predicted (true

positives) and FPm is the false positives predicted by the model m.

There is a known trade-off between precision and recall when choosing the model

for prediction. F-score metric is used in order to maintain a balance between precision

and recall for classifying the events [7]. F-score is used in imbalanced classification

tasks where the events are rare, since precision would result in a very low value. F-

score is low whenever precision or recall is low. Thus, it captures the events if any one

score is low and produces a score close to the minimum score of precision or recall.

F = 2 ∗ Precision ∗Recall

Precision+Recall
(2.22)

2.5 Final Remarks

The dynamic nature of time series makes them one of the challenging research topics

to discover knowledge from data. Although many state of the art methods have been

proposed for forecasting the future values and predicting events, the problem persists

to accurately predict them.

We discussed the basics of forecasting, activity monitoring, their methods, related

works and evaluation metrics. The problems on uncertainty, class imbalance and

predicting rare events were also discussed in this chapter. We will explore more

about these topics when we describe our approaches in the next chapters.



Chapter 3

Case Study

We have discussed the background and state of the art methodologies in forecasting

and activity monitoring in the previous chapter. In this chapter, we will focus on the

application domain that drives the work of this thesis, providing necessary information

and discussing the problems and challenges of the domain. We start by introducing

the aquaculture domain and providing essential information on mussels and their

role in assessing water quality in Section 3.1. This is followed by the data collection

process in Section 3.2, where we provide information on the variables and features

of the obtained dataset. Later, in Section 3.3, we describe information about micro

closures in mussels, algae blooms and the relationship between them. Finally, in

Section 3.4, we discuss the class imbalance problem in the dataset and the challenges

in modelling this type of data.

3.1 Introduction

Aquaculture is one of the fastest growing food sectors in the world, accounting for

more than half of the world’s food production. It includes farming of fish, shellfish

and aquatic plants under controlled conditions. As the world’s demand for sea food

increases rapidly, there is a need to cultivate sea foods in coastal areas with the

advancements of technology [75]. With the rapid development of aquaculture, there

is an intensive growth of cultivation. But there are many problems in aquaculture

such as maintaining the water quality by removing toxins in the water and assessing

the pollutants in the water that cause diseases in fishes. Thus, a proper monitoring

and assessment system is required to maintain the growth of aquaculture and to meet

the global demand in the consumption of sea foods.

Some researchers suggest that the quality of water can be assessed based on the

amount of pollutants in the water due to high rainfall [65]. Researchers have found

that water quality can also be measured by the amount of certain types of algae

21
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present in the water that is measured by the number of algae cells per millilitre of

water. This measures the total algae count in that water environment which is used

to detect the presence of algal blooms. As certain types of algae are harmful, that

proliferates and causes harmful effects to the aquaculture species like dying of fishes.

We will discuss algal blooms in the coming sections. The main objective of our thesis

is to provide a solution to forecast the presence of algal blooms in advance without

the need to measure algae by sampling water and analysing these samples in the Lab,

saving time, energy and resources. This helps domain experts to treat the water, thus

saving the aquaculture species.

Recent research shows that certain types of mussels, when placed in aquaculture

farms, can be used to detect the presence of algae blooms in the water. They are a

particular animal species from a set of families called bivalve molluscs, grown both

in salt and freshwater ecosystems [52]. In this thesis, we will be working with the

Mytilus edulis species, which are a set of blue mussels, used to detect algae in water.

These mussels are extremely good at predicting different types of algae, however, we

will focus only on the algae, Alexandrium Tamarense. It is a species of dinoflagellates

known to produce saxitoxin, which is a neurotoxin that causes the human illness,

clinically known as paralytic shellfish poisoning. We will be trying to forecast and

assess the water quality in advance, based on the mussels’ activity in the aquaculture

farms. Thus, detecting the presence of algal blooms in advance will help to treat the

water and in saving the aquatic species from dying.

3.2 Dataset and Features

The dataset for our thesis project was originally collected by a research group at the

University of Quebec, Rimouski in 2019. The dataset consists of time series recordings

of the measurement of mussel valve openings from the sensors attached to the mussels’

valves which is recorded by a bio-monitoring system called valvometer. The dataset

includes information of 4 mussels recorded at regular time intervals of 0.1 seconds.

The values are measured in milli volts (mV). The values of mussel valve openings

recorded by the valvometer range between −20000mV and −80000mV, where −20000

represents the voltage when valves are opened to the most and −80000 representing

the voltage when the valves are fully closed. The valve openings for 4 mussels are
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Figure 3.1: First 5 rows of the original dataset showing mussels’ valve opening voltage

recorded for every 0.1s timestep during the period of 3 months (June - August), that

accounts for nearly 77 million measurements.

In this section, we will discuss the collected datasets and explain the features de-

rived from these data. First, we will discuss the mussel valve opening dataset. As

mentioned previously, the dataset includes the information of the valve openings of 4

mussels. The provided dataset consists of four columns, each describing the measure-

ments for one of the mussels. Figure 3.1 shows the first 5 rows of this dataset. The

columns M 1, M 2, M 3, M 4 represent the voltage recorded from the valve opening of

the four mussels. The five rows in the Figure 3.1 represent the information collected

for the first 0.5 seconds, since the data collected for each row is recorded at a time

interval of 0.1 second. Thus, the first column represents the timesteps and columns

2 to 5 depicts the voltage of valve openings of mussels measured by the valvometer,

with the values ranging between −20000mV and −80000mV, as mentioned earlier.

As the meaning of the voltage information is not easily interpretable, it is hard

to analyze the behavior of mussels with the voltage information. We have converted

it into a scale that is easier to understand. Domain experts have found that voltages

could be mapped to percentage of valve openings. This is done by mapping the

voltage values to percentage by finding the differences between the voltage value

and the minimum voltages of each mussel. Thus, −20000mV represents the valve is

100% open and −80000mV represents the valve is 0% open. For each recording, the

percentage of the valve opening is calculated by the formula below,

Percentageij =
Vij −min(Vi)

Di

∗ 100 (3.1)

Di = max(Vi)−min(Vi) (3.2)
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Figure 3.2: First 5 rows of the newly formed dataset showing mussels’ valve opening
percentage

where i represents each mussel, j representing each timestep, the voltage of mussel

i at timestep j is given by Vij, minimum of the mussel’s voltage is given by min(Vi)

and Di is the range of the voltages of mussel i.

Also, the date and time is calculated from the timesteps and added as a new

column, since this will help in deriving extra features on the datasets based on date

and time. Thus, after combining all these columns, the dataset looks like Figure 3.2,

where it shows the percentage of each mussel and the date and time information

of the recordings. The columns M 1, M 2, M 3, M 4 represent the voltage of the

valve openings of the mussels and M 1 OP, M 2 OP, M 3 OP, M 4 OP denote the

calculated opening percentage of the mussels’ valves, respectively.

The amount of algae Alexandrium Tamarense in the water environment from

where we extracted the voltage information on the mussels, is also measured on a daily

basis during the same time period. The measured algae from the water environment

ranges from 0 to 4480 algae cells per ml of water. Figure 3.3 shows the data of the

measured algae during the first 5 days. The column A.Tamarense denotes the amount

of algae per ml of water and Date represents the date of the measurements. In some

days we have an algae count of 0, representing the absence of the algae Alexandrium

Tamarense. From the Figure 3.3, we notice that during first 3 days, there is no algae

in water, however, there seems to be more algae on June 6 (240 algae cells/ml of

water) and June 7 (480 cells/ml). Since the recording of algae was obtained from

June 3, 2019 till August 31, 2019, we have the algae count information for 90 days.

The highest amount of algae Alexandrium Tamarense measured was 4480 algae cells

per ml in August 18, 2019.
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Figure 3.3: First 5 rows of the algae measurements in the water

3.3 Algae Blooms and Micro Closures

The main objective of this thesis is to predict future algae blooms, which are our

target events. Algae blooms are events that occur when the number of algae cells

per ml in water crosses a threshold, defined by the domain experts. For our thesis,

we define the threshold to be 200 algae cells per ml of water, as advised by domain

experts. If the algae cells in the water environment are greater than 200, we define

the event as an algal bloom.

Researchers have found that micro closures of the valve opening of mussels can be

seen as indicators of algal blooms. Micro closures are events that occur when mussels

open and close the valves within a short time interval and the amount of opening and

closing exceeds a threshold percentage as defined by the domain experts. The time

interval to calculate the differences depends on the knowledge of domain experts.

Biologists believe that micro closures indicate the presence of algae in water and

that more micro closures are indicative of more algae in the water. Thus, the amount

of micro closures of the mussels can help us to find the presence of algal blooms.

In Figure 3.4, we have 4 micro closures, numbered from 1 to 4, determined using

a threshold of ≥ 3% from the openings and timesteps of 0.3s. The first micro closure

occurs when there is an increase of 3% from 0.1s till 0.4s and then with an immediate

decrease of 3% from 0.4s to 0.7s. The second micro closure occurs, due to the decrease

in threshold value of 3% from 0.4s to 0.7s and with an immediate increase of value

≥ 3% from 0.7s to 1s. The third micro closure occurs due to the increase in valve

opening percentage of ≥ 3% from 0.7s to 1s and with an immediate decrease of 3%

from 1s to 1.3s and the fourth micro closure occurs due to a decrease of 3% from 1.8s

till 2.1s and with an immediate increase of more than 3% from 2.1s to 2.4s.
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Figure 3.4: Example of micro closures

Microclosuret =

⎧⎪⎪⎨⎪⎪⎩
True, if (vt − vt−3 ≥ 3 and vt−6 − vt−3 ≥ 3) (3.3)

True, if (vt−3 − vt ≥ 3 and vt−3 − vt−6 ≥ 3) (3.4)

False, otherwise (3.5)

3.4 Challenges in the Dataset

Having introduced the dataset in the previous sections, we discuss the challenges

in the original dataset in this section. As the concepts of micro closures and algal

blooms have been discussed in previous sections, there is a need to discuss the class

imbalance problem. This problem arises when there is a large difference between the

number of normal and target events. It occurs in many domains, where the target

events are fewer than the normal events. For our thesis, we formalize the threshold

for an algal bloom to be 200 algae cells per ml of water, as advised by domain experts.

Thus, normal events are times when the algae count is < 200 and the target events

are identified by times when algae counts are > 200. Distinguishing the events based

on the algae counts, we found that there is a huge difference in the count of normal

and target events in our dataset. As the target events are more important for the
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end users of this application, and they are rare (< 5% of the total events), we have

what is known as a class imbalance problem [17].

Since the target events are rare, it becomes hard to learn them [17]. This is

because machine learning models learn from the data we provide. This data is highly

imbalanced, thus leading the machine learning models to focus the learning on the

normal events, ignoring the important and target events as they have a more negligible

effect on the metrics. This means we need some procedure that somehow bias the

models towards the rare but more important events. Class imbalance problems and

some solutions are discussed in Chapter 4.



Chapter 4

Methodology

As we have seen, in the context of our application domain, monitoring consists of the

detection of algal blooms – our target events. The main objective of this thesis is to use

Machine Learning models to monitor water quality and anticipate the presence of algal

blooms without having to collect and analyse water samples from the aquaculture

farms. This chapter describes the methods followed to achieve this objective. As

discussed in the previous chapter, mussels can be used to infer water quality and thus

detecting algal blooms. In Section 4.1, we analyze the mussels’ behaviour with the

goal of anticipating future algal blooms by creating new features for our forecasting

models. Section 4.2 focuses on the proposed methodology for creating different models

to predict algal blooms. We introduce the sampling approaches to solve the class

imbalance problem of the resulting dataset in Section 4.3.

4.1 Feature Engineering

Given the description of the data in the previous chapter, the first task is to decide

the target variable and the predictor variables to be used by the prediction models.

This section deals with the manipulation of the data set to prepare it for building the

models. We define a few predictor features used by the model to predict the events

accurately. We also design the type of predictive task we solve to predict our target

(algal bloom) events where algae count ≥ 200.

Our initial trials involved learning a forecasting model with the original data set

consisting of just the valve opening percentages and the algae count. The results

with this approach were not satisfactory. It becomes challenging for the model to

learn the target events with just those features of the raw dataset. In this context,

we have decided to create new features that could help in forecasting algal blooms

by bringing new information as predictors. As we have stated earlier, micro closures

in mussels’ valve openings are crucial in detecting algal blooms, according to domain

28
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Figure 4.1: Manipulation of dataset over 30-minute intervals

experts (aquaculture researchers at the University of Quebec). Thus, the new pre-

dictor variables are created based on the concept of micro closures discussed in the

upcoming sections.

Since the main objective is to detect algal blooms that will happen in the future,

we try to predict the events at specific time intervals ahead of the current time. These

predictions will be obtained at a certain pace. In this thesis, we focus on predicting

future algal blooms every 30 minutes, as advised by domain experts. We transform the

original dataset, which was initially in a 0.1-second interval into 30-minute intervals

starting from noon of June 3 till noon of August 31, as shown in Figure 4.1. The

transformation of the dataset’s timestep into a 30-minute interval is explained in the

upcoming sections. The main task is to forecast the algal blooms in the future at a

given time t. We make these forecasts for 3 different future time horizons: the next 30

minutes; 2 hours; and 4 hours. This decision was based on the opinion of the domain

experts. This means that at time t we will have models that will forecast whether we

should expect an algae bloom (algae count ≥ 200) in the next 30m, 2h or 4h.

4.1.1 Independent Features

Supervised machine learning models distinguish the features into dependent (target)

and independent (predictor) features. As mentioned before, it was necessary to create

new independent features to help the models in the task of anticipating blooms. These

independent features are created based on the micro closures count over different

timesteps.
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Differences on Micro Closure Counts

As describe in the previous chapter, micro closures are events that occur when the

differences in the valve opening percentage over a short interval of time are greater

than a threshold defined by domain experts. Since micro closures are used to identify

the algae blooms, we create new features for the model using the total micro closure

count of all mussels. We calculate the total number of micro closures over a time

interval of 3 hours for every timestep (30 minutes), as suggested by domain experts.

For example, we calculate the sum of micro closures of all mussels on June 3 from 9

am to noon (3 hours) for the features with different time intervals and thresholds on

the noon of June 3 as explained below. As shown in Figure 4.2, we create a feature

“1s 1” by calculating the sum of all mussels’ micro closures over a time interval of

1 second and threshold of 1% within the 3-hour interval (9 am to noon). Likewise,

we create many such features by calculating the total micro closures over different

timesteps and thresholds within 3 hours interval for every 30 minutes.

We also create new features by finding the differences between the previously

calculated micro closures count over a time interval suggested by the domain experts.

For example, we calculate the difference of micro closure count over 3 hours on the

feature “1s 1”. As shown in Figure 4.2, we also create a feature called “Diff 1s 1”

by calculating the differences of “1s 1” over 6 timesteps (3 hours). The values for

“Diff 1s 1” starts at row 7 since we take differences over 6 timesteps and anything

before is identified as “NA” . For example, at row 7 of “Diff 1s 1”, we take the

differences between the value at row 7 and row 1 on the column “1s 1”. Thus, we

create more such features by taking differences over 3-hour interval on the previously

calculated features.

Standard Deviation of Valve Opening Percentage

We have also created features by calculating the standard deviation of the valve open-

ing percentage over a certain period of time. Standard deviation measures the spread

of a continuous variable. It provides information about the variation or deviation

in the data. A low standard deviation indicates more values are around the mean

value, whereas a high standard deviation represents a broader data spread. Thus, it

captures mussels’ activity over a certain time and useful in detecting any deviation
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Figure 4.2: Example of differences in micro closure count over 1 second and threshold
of 1%

Figure 4.3: Subset of data showing 4 rows of the maximum standard deviation of the
mussels over 1, 10 and 120 minutes

in the distribution of data. Since the dataset captures information on 4 mussels, we

calculate the maximum standard deviation of the 4 mussels valve opening percent-

ages. It provides a better understanding by capturing the highest deviation among

the mussels. As shown in Figure 4.3, we calculate the maximum standard deviation

of the 4 mussels over different time intervals. For example, we calculate the maximum

standard deviation of the mussels’ valve opening percentages over a period of the past

1 minute (11:59 am till 12:00 pm) on June 3, which forms the data for the column

“SD 1m” at noon on June 3. Also, we create new such features by calculating the

maximum standard deviation over different periods, namely of 10 and 120 minutes

for the columns “SD 10m” and “SD 120m”, respectively.
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Figure 4.4: Dataset showing 4 rows of the mean of 4 mussels over
10 seconds

Figure 4.5: Dataset showing 4 rows of the mean of 4 mussels over
1 minute

Mean of Valve Opening Percentage

We have also included the mean valve opening percentage over specific time windows

as another predictor. Compared to standard deviation that captures the data spread

over time, the mean statistic captures the valve’s typical opening percentage. It

provides more predictive power into the data by capturing the average trend of the

mussels’ valve opening. We create new features by calculating the mean over a certain

period for each mussel separately. As shown in Figure 4.4, we calculate the mean for

each mussel over 10 seconds starting before the time in “date time” column. The

columns “Mean 1 10s”, “Mean 2 10s”, “Mean 3 10s”, “Mean 4 10s” represents the

calculated mean of 4 mussels over a 10-second interval. For example, we calculate

the mean on the mussels’ valve opening percentage from 11:59:50 am till noon (10

seconds) for the data at column “Mean 1 10s” and row 1. Also, we created a feature

using mean over 1 minute time period as shown in Figure 4.5.

In summary, we have created a dataset with a series of features calculated for

every 30 minutes interval using the raw mussels’ data. Specifically, the following
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independent features are calculated on 30 minutes intervals: micro closure count over

different timesteps and thresholds, the difference of micro closure count over 3 hour

period, the maximum standard deviation of mussels’ valve opening percentage over 1,

10 and 120 minutes, and mean of valve opening over 10 seconds and 1 minute for each

mussel. Our approaches will use data sets containing these independent variables to

learn models to predict the target feature explained in the next section.

4.1.2 Target Feature

Since our thesis’s main objective is to forecast the events of algal blooms, we define

the forecasting task as classifying the events as normal or a bloom. The normal

events are situations when there are no algae or very few in the water environment,

according to a threshold defined by domain experts. The target is to be able to

forecast the critical events representing an algal bloom that should be taken care of

to avoid serious problems in the aquaculture farms. Thus, the target feature is a

binary variable with values bloom or normal.

Estimating the Algae Counts Over 30 Minutes Periods

The raw data set with the algae counts consists of daily measurements over three

months, as discussed in the previous chapter. Since our goal is to forecast algal

blooms every 30 minutes, we need a more granular information on the algae counts.

In this context, we have used a linear interpolation strategy to obtain a value of

algae count for each 30m using the daily values in the available data set. The algae

count for every 30-minute interval is calculated by linearly interpolating the algae

counts over successive days. For example, in Figure 4.6, we linearly interpolate the

algae counts for July 29 and July 30 with prerecorded values of 2440 and 4320,

respectively. We include in our dataset these linearly interpolated algae counts over

30-minute intervals.

The formula to find the interpolated value is given by,

IVi = Vt + [(i− 1) · Vt+1 − Vt

n
] (4.1)

where IVi represents the interpolated algae value at i-th timestep of the day with

i={1, 2, ..., n} , Vt and Vt+1 represent the algae counts at current and the following
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(a) Start sequence from noon of July 29 (b) End sequence till noon of July 30

Figure 4.6: Linear interpolation of algae counts over 30 minute
intervals

day, n represents the number of timesteps. In our thesis, we interpolate values over

30 minutes as advised by domain experts. Thus, we define n to be 48, as there are

48 30-minute intervals in a day.

For example, as shown in Figure 4.6, interpolated value at 12:30 pm of July 29 is

calculated by 2440 + (2 - 1) * (4320 - 2440)/48, which is equivalent to 2479.167 since

it is the first timestep of the day.

Creating the Target Feature

As discussed in the previous section, the algae counts are manipulated by linear

interpolation over 30-minute intervals. In our thesis, as advised by domain experts,

we will be forecasting algal blooms at timesteps t+1, t+4, and t+8 which correspond

to predict the events 30 minutes, 2 hours, and 4 hours ahead in the future, respectively.

To predict the events of algal blooms at the future timesteps, we manipulate the

dataset according to the future timesteps. For example, as shown in Figure 4.7, where

(a) denotes the actual algae counts at each timestep, (b) represents the dataset to

predict target variable at t+1 (30 minutes) timestep in future, (c) denotes the dataset

to predict t + 4 timesteps (2 hours) in the future and (d) denoting the dataset for

predicting target feature at t+ 8 timesteps (4 hours) in future.

Having the linearly interpolated algae counts dataset for the forecasting task, the

next step is to define the target variable. Domain experts suggest that the events are

considered “normal” when the algae counts are less than 200 cells/ml and “blooms”

when the algae count is greater than 200. Since our task involves detecting algae
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(a) Manipulation with original timestep
t

(b) Manipulation for t+ 1 timestep (30
minutes)

(c) Manipulation for t+ 4 timestep (2
hours)

(d) Manipulation for t+ 8 timestep (4
hours)

Figure 4.7: Linear interpolation of algae counts for predicting t + 1, t + 4 and t + 8
timesteps in the future
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Figure 4.8: Dataset showing 5 rows with Value and Class column

blooms, our target variable represents the events to be normal or a bloom. Thus,

the target variable is defined as a 2 class feature depicting algae blooms’ presence or

absence.

We obtain the target variable values using the interpolated dataset by classifying

it as “normal” if the algae counts at the future timesteps are < 200 and “bloom”,

if it is ≥ 200. This forms the dependent target variable for our forecasting models.

As shown in Figure 4.8, since the values for the first two rows are less than 200, the

target class column is classified to be “Normal” and for other rows, the values are

greater than 200; thus, classified as “Bloom”. Therefore, it is modeled as a (binary)

classification task involving the detection of the events as normal or bloom at the

future timesteps, namely t+ 1, t+ 4, and t+ 8.

4.2 Proposed Forecasting Methodologies

In this section we discuss the methodology followed to forecast algae blooms using

different machine learning algorithms. The basic idea in detecting the events is to

approximate a function h that maps a set of input features U to a target feature v,

which in our case is a binary variable indicating whether we anticipate a bloom or

not.

Our thesis’s main objective is to produce a forecasting model that predicts future

algae blooms. As researchers found out that micro closures in the mussels’ valves can

be used to detect the algal blooms in water, we have used several variables based on

the micro closure counts as predictors. These features represent the input variables U

for the various machine learning models built to predict the binary target variable v.

We do not include the algae counts measured at past time-steps as predictor features
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since the main objective of this work is to use mussels’ valve readings to avoid having

to measure algae counts, which is a time consuming and expensive process. Thus,

we have designed the forecasting task to predict future algae blooms using features

based on the micro closures in the mussels’ valves without the past algae counts as

predictors.

In Chapter 2 we discussed various models that can be used to forecast the next

values in a time series. In our thesis, we use the following models: SVM, Random

Forest, and XGBoost. This selection was based on the fact that these models provided

good performance to forecast algal blooms and are relatively easy to tune the model’s

parameters compared with, for instance, Neural Networks.

4.2.1 Support Vector Machines (SVM)

Support Vector Machine (SVM) [27] is a supervised machine learning model used in

classification and regression tasks. SVM’s primary objective in a binary classification

task is to find the best hyperplane separating the classes. It finds a hyperplane in

an N-dimensional space which best fits the data, where N represents the number

of features. This decision boundary separates the data points into different classes

representing the dataset. These hyperplanes provide a linear separation of the data

points in a binary classification problem.

There may exist many hyperplanes separating the data points. However, the

hyperplane that maximizes the distance from the decision boundary to all classes’

data points is chosen. Thus, the ideal hyperplane is chosen such that the distance

from the hyperplane to the nearest data point of all classes is the largest - known as

the maximum margin hyperplane.

The dimension of the decision boundary depends on the number of features in

the dataset. For example, if there are two features, the decision boundary is a line,

and for three features, the decision boundary becomes a 2-dimensional plane [35].

Figure 4.9 depicts the scenario of hyperplanes in 2D and 3D space.

The data points closer to the hyperplane are called support vectors [35]. These

support vectors influence the hyperplane’s orientation, and removing some of them

would change the hyperplane’s position. As the model tries to maximize the margin

of the data points from the hyperplane, support vectors play an essential role in
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Figure 4.9: Hyperplanes in 2D and 3D (figure taken from [35])

Figure 4.10: Support Vectors and Margin (figure taken from [35])

achieving it. Figure 4.10 depicts this scenario, where the ideal hyperplane is chosen

to maintain a large margin compared to a hyperplane with a small margin for the

same dataset.

The separating hyperplane in a SVM model is given by

f(x) = w · x+ b (4.2)

where w · x is given by
∑︁p

i=1wixi with i denoting the number of data points and

w represents any candidate solution [74]. The distance from the support vector to w

is given by 1/||w|| and the size of the margin separated by both classes is given by

2/||w||.
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A constrained optimization problem exists where the objective is to maximize the

distance from margin by minimizing ||w|| subject to yi(b+ wixi) ≥ 1, ∀i, where yi is

given by,

yi =

{︄
+1, for xr (4.3)

−1, for xl (4.4)

The constrained optimization problem can be solved by Lagrangian multiplier

method [74]. The main objective is to maximize the following expression with respect

to αi representing set of positive Lagrange multipliers with i=1,2,...,n,

LD =
n∑︂

i=1

αi −
1

2

n∑︂
i,j

αiαjyiyj(xi · xj) (4.5)

where, αi > 0 correspond to support vectors

In real-world scenarios, the data points are not always linearly separable. It

becomes difficult for the model to separate the classes in a non-linear dataset by a

line represented in 2 dimensions, as shown in Figure 4.11. However, we can classify the

data represented in low dimensions by transforming them to a high dimension where

we find a hyperplane to exist, separating the samples. For example, in Figure 4.12,

the data is transformed into a 3-dimensional space where a hyperplane separating the

2-class data is found. Thus, the data points from non-linear separable datasets are

mapped into higher dimensional spaces to find a hyperplane separating the data.

The solution to the optimization problem in Equation 4.5 involves computation-

ally complex dot products on high dimensional spaces. These dot products can be

replaced by kernel functions evaluated in the original smaller space to provide a sim-

pler calculation as given below,

K(xi, xj) = ϕ(xi) · ϕ(xj) (4.6)

where ϕ denotes the mapping function that is used to transform data points in original

space (low dimensions) to higher dimensions.

Thus, it reduces the need to calculate the complex dot products of high dimen-

sional spaces [74]. There are different types of kernels, including polynomial, Gaus-

sian, Radial Basis Function (RBF) and Sigmoid. Figure 4.12 shows an RBF kernel

that maps data points from 2-dimensions to 3-dimensions to classify them [13].
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Figure 4.11: Non-linear separable dataset (figure taken from [13])

Figure 4.12: Finding Hyperplane in 3D space by RBF kernel (figure taken from [13])
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There exists some trade-off in choosing the best hyperplane to classify the data

points which are controller by certain hyperparameters discussed in next chapter.

4.2.2 Random Forests

Random forests are one of the most prevalent machine learning algorithms used in

classification and regression. It is an ensemble tree based learning algorithm that

constructs many decision trees to obtain better prediction. Random forest is different

from decision trees as it is made up of various decision trees, each built differently

to ensure a certain level of diversity among them, as discussed in the sections below.

Since our objective is to forecast algal bloom events, we focus on the use of random

forests for classification tasks. We will discuss the decision tree classifier in brief before

looking into the random forest. As the name implies, the decision tree algorithm finds

decisions at each step, called the splitting node, and the data is split continuously

based on the features [56].

Decision tree consists of 3 components:

1. Nodes: test values of certain feature.

2. Edges: outcomes from the test node and connects to next node or leaf.

3. Leaf Nodes: predicts the outcome, representing the class.

A simple decision tree classification is shown in Figure 4.13, where the tree classi-

fies the fitness of a person based on age, eating habits, and workout plan. In the first

step, it divides the data into two groups, splitting at node “age” with values < 30

and > 30, which forms the initial splitting node. Then, it finds the next splitting

node based on the feature “eating pizzas” within the group age < 30. It splits the

data based on eating habits into two groups and classifies them as unfit or fit. On the

other hand, for data with age > 30, it splits into two more groups based on “exercises

in the mornings” and classifies them as fit or unfit. Thus, the decision tree splits

for features until it finds groups with similar classes, or it stops based on certain

conditions explained below.

The stopping conditions for a decision tree are:

• until all groups are pure (the groups having a common class)
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Figure 4.13: Decision Tree classification (figure taken from [21])

• given a limit on the depth of the tree, to avoid overfitting [56]

Thus, the decision tree classifier classifies the data by creating subgroups and main-

taining similar classes within each group, but different between groups [81].

We have introduced the working principle of decision trees, which forms the basis

of random forest classification. As discussed, Random Forest is a ensemble tree-based

classification algorithm used in classification and regression tasks [18]. Figure 4.14

shows a simple random forest classifier with nine different decision trees that operate

as an ensemble, where each decision tree predicts the output to be either 0 or 1.

The total predictions of the decision trees are six 1s and three 0s. Since the task is

classification, the random forest classifier predicts the overall result to be 1, based on

the majority votes.

The low correlation between the decision trees in the random forest helps predict

the correct output [18]. Thus, the random forest has a high chance of making correct

predictions, since the errors in a single tree do not affect other trees.

Random forest ensure diversity among the different trees using the following meth-

ods:

• Bagging, where each tree is obtained using a different training set, namely by

sampling with replacement (bootstrap sample) the rows of the original dataset

[57]. The final classifier is formed by aggregating individual classifiers and
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Figure 4.14: Random forest classification (figure taken from [81])

classifies the sample based on the majority votes of the individual classifiers.

• Feature Randomness, where for each tree node the best split test is selected

from a random subset of the features in the original data set [18].

To summarize, random forests combine different decision trees generated using

bagging and feature randomness. The parameters to improve the performance of the

random forest are discussed in the next chapter.

4.2.3 XGBoost

XGBoost (Extreme Gradient Boosting) is another machine learning algorithm used

in regression and classification tasks. XGBoost belongs to a family of boosting al-

gorithms and uses Gradient Boosting Machine (GBM) framework at its core. We

will discuss the basics of boosting and gradient boosting before discussing XGBoost.

Boosting is a sequential and iterative approach that combines many models [31]. In a

classification task involving boosting, the classification algorithm is iteratively applied

to the training data, each time using different weights on the samples. Boosting works

by sequential modeling and not by training models separately and puts more weights
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for instances that were predicted wrongly in the previous iterations. Thus, the main

objective of boosting algorithms is to correct the mistakes caused by previous models

and to produce a better prediction model.

Gradient boosting is a type of tree boosting algorithm that trains models in a

sequential and additive process. It identifies the shortcomings of the previous models

using gradients in the loss function. It minimizes the errors at each training data point

evaluated for the model [32]. The gradient boosting algorithm’s working hypothesis

is the following: first, a base learner selects a random sample of the training dataset

and updates the model parameters for the current iteration based on the previous

iteration’s gradients in the loss function; then, it trains based on the different random

sub-samples of the training data and updates the model parameters in each iteration.

XGBoost [25] is a scalable tree boosting algorithm that uses a gradient boosting

machine. The main goal is to minimize the regularized objective as given by,

Lt =
n∑︂

i=1

[l(yi, yî
(t−1)) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft) (4.7)

Ω(f) = γT +
1

2
λ||w||2 (4.8)

where, gi = ∂ŷt−1l(yi, yî
(t−1)) and hi = ∂2ŷt−1l(yi, yî

(t−1)) denotes the first and

second order gradient statistics on the loss function l(), respectively. The prediction at

the i-th instance and t−1 iteration is given by yî
t−1, l() is a loss function that denotes

the difference between yî
t−1 and yi. ft represents independent tree structures that are

added to minimize the regularization objective and Ω penalizes the complexity of the

model. Also, λ denotes the regularization parameter in Equation 4.8, T represents

the number of leaves in the tree, γ denoting the complexity cost, and the leaf weights

are represented by w.

To summarize, XGBoost is a machine learning approach based on a tree-based

ensemble technique that works by combining models sequentially and by correcting

the previous models’ errors.
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4.3 Handling Class Imbalance

Many supervised machine learning models assume the dataset to be balanced with

equal proportion of the target class values [12]. But, this is not the case in many

real world applications, where a large number of samples belonging to one class out-

numbers the samples in another class. This is known as class imbalance. It becomes

challenging for the machine learning models to generalize the data and classify cor-

rectly when the end-user is particularly interested in the less frequent class. Thus,

it becomes hard to identify samples belonging to the minority class affecting the

performance of machine learning models on the minority class.

Analyzing the data set of mussels and algae, we found more normal events than

algal blooms. This means that the class values in our dataset are not equally rep-

resented, and thus we have a class imbalance problem because we are particularly

interested in forecasting the less represented class [24], the blooms. Most machine

learning models are not appropriate to handle class imbalance datasets. One way to

solve a class imbalance problem is to change the distribution in the original data by

oversampling or undersampling the data to balance the classes of normal and target

events. We will discuss a few resampling methodologies used in our thesis in the

sections below.

4.3.1 Random Under-Sampling

Random under-sampling is one of the simplest methods used to re-sample the dataset [16].

It addresses the class imbalance problem by randomly removing some samples of

the most represented and least important class until the desired class distribution is

achieved [12]. Though under-sampling increases the models’ sensitivity towards minor

classes, it can remove potentially useful examples for the task of discriminating among

the class values. This method produces better results if the majority data points are

close to each other, and removing a few of them does not result in a significant loss

of data.
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4.3.2 Random Over-Sampling

Random over-sampling is another resampling method that works by introducing repli-

cas of the examples of the least represented class. It creates random duplicate samples

of the minority class and adds them to the training dataset. Thus, it helps balance

the distribution by random replication of minority data [12]. Random over-sampling

provides a better approach to solve the class imbalance problem without removing

any data. However, random over-sampling increases the size of the dataset, which

may be computationally expensive if the original data set is already too large [55].

4.3.3 SMOTE

SMOTE (Synthetic Minority Over-sampling TEchnique) is a combination of over-

sampling and under-sampling approaches, where minority samples are synthetically

created and added to the dataset [24], while majority class examples are randomly

removed, based on a specified percentage. The procedure used to introduce new mi-

nority class examples is different from other over-sampling methods that essentially

replicate examples. Alternatively, SMOTE creates samples by performing interpola-

tion on the existing samples of minority class. The over-sampling of the minority data

occurs by introducing synthetic samples that come along the line segment between

the chosen minority sample and any/all of its K nearest neighbors. The data points

from K nearest neighbors are randomly chosen based on the amount of sampling

required [16].

The method used by SMOTE case generation step is as follows [24]: initially, the

difference between the feature vector (sample) and its neighbor is calculated; then

it is multiplied with a random number chosen between 0 and 1 and is added to the

sample under consideration. Thus, an arbitrary point is selected on the line segment

between an existing minority class case and its neighbor, representing the synthetic

sample. Therefore, it effectively creates synthetic data samples on the line segment

between the two chosen minority data points. As shown in Figure 4.15, a neighbor

is chosen among the sample’s K neighbors, and synthetic data is introduced along

the sample’s direction. Thus, it introduces new synthetic data by interpolating the

sample features [16].
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Figure 4.15: Synthetic data points generated by SMOTE algorithm (figure taken
from [16])



Chapter 5

Experimental Evaluation of the Approaches

In the previous chapter we presented several machine learning models (SVM, Ran-

dom Forest, and XGBoost) that can be used to predict algal blooms. We have also

discussed a few sampling methods such as Random Under-Sampling, Random Over-

Sampling, and SMOTE to balance our dataset. This chapter describes the experi-

mental evaluation of these methods and discusses the obtained results.

5.1 Experimental Settings

Having discussed the machine learning models in previous chapter, we discuss the

experimental settings and parameter tuning to achieve better performance with the

models in this section. The experiments are carried out in the R programming lan-

guage and we use the packages e1071 [49], randomForest [45], xgboost [26] for the ma-

chine learning models SVM, Random Forest and XGBoost, respectively. For the sam-

pling methods Random Under-sampling, Random Over-sampling and SMOTE, we use

the functions RandUnderClassif , RandOverClassif , SmoteClassif respectively

from the R package UBL [16]. We use the R package performanceEstimation [72]

to carry out the experiments. In the sub-sections below, we describe some of the

parameters of these functions and how we have set them in our experiments.

5.1.1 Evaluation Metrics

The main objective of our thesis is to develop models to forecast algal blooms. We

have formalised this task as a classification problem in which for each test case we

classify it as a bloom or not. Given a set of test data, we predict their class labels

using the trained models. The models are evaluated based on the errors of their

predictions for the test data, using the metrics discussed below.

The predictions of a classifier for this type of binary classification tasks can be

depicted by a confusion matrix like the one shown in Figure 5.1, where the positive

48
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Figure 5.1: Confusion Matrix

events represent the algal blooms and the negative represent the normal events.

Accuracy

Accuracy (or its complement error rate) is one of the most used evaluation metrics in

a classification task, which measures the proportion of test cases predicted correctly.

It can be calculated from the confusion matrix of Figure 5.1 as follows,

Accuracy =
TP + TN

TP + FN + FP + TN
(5.1)

where, TP: True Positives, TN: True Negatives, FN: False Negatives and FP: False

Positives.

Although accuracy is one of the most used metrics in a classification tasks, it

should not be used when dealing with rare events [77]. It would produce high accuracy

even if the models predicted all the events to be normal and missed all the rare events.

For example, if there are 97 normal events, 3 target events, and the model predicts

all the events as normal, it still produces an acceptable accuracy score of 97%. But

the model fails to capture the rare target events. Thus, we do not use accuracy when

evaluating the performance of our forecasting models to detect the rare algal blooms.

The following metrics are preferred when evaluating a forecasting task that includes

rare events.

Precision

Precision measures the proportion of positive events predicted by the models that

are indeed true positives. As discussed in Chapter 2, it measures the ratio of true

positive to the sum of true positive and false positive from the confusion matrix as

given by,
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Precision =
TP

TP + FP
(5.2)

Having a high precision indicates that out of the total alarms produced, the models

were able to capture an increased number of algal bloom events.

Recall

End users frequently want the models to detect as many target events as possible

correctly, as the cost of missing an event is high in certain domains. Recall measures

the proportion of positive events captured by the model. It denotes the ratio of the

number of true positive events captured by the model to the total number of positive

events. Equation 5.3 presents the formula to calculate the recall score of a model,

Recall =
TP

TP + FN
(5.3)

Thus, having a higher recall, it concludes that the models were able to capture a

majority of the algal bloom events.

F-score

When evaluating a classification task, there is a trade-off between precision and recall

since, at times, both precision and recall cannot alone assess the predictive ability of

a model. As we want good scores of precision and recall, in our thesis, we use F-score,

which balances between precision and recall. Since, we want to capture as many algal

blooms (recall) and make sure the captured event is an algal bloom (precision), we

use F-score to provide a balance. The formula is given by,

F = 2 ∗ Precision ∗Recall

Precision+Recall
(5.4)

5.1.2 Estimation Methods

As discussed in Section 2.3, the two primary estimation methods for time dependent

data are Out-of-Sample (OOS) and Cross-Validation (CV). To recapitulate, in OOS

methodology, a certain proportion of data is used to train the model and a subsequent

part of the data is used for testing. In k-fold cross-validation (k-fold CV), the dataset
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Figure 5.2: Monte Carlo simulation (figure taken from [73])

is partitioned into k-folds random samples. The method uses k− 1 folds for training,

and the remaining one fold is allocated for testing. This is repeated K times leaving

each of the k folds as test set in turn, with the loss being evaluated in each iteration.

Cross-validation is not recommended in time series models due to the random

shuffling of the data, thereby losing sequential timestamp information [19]. Since we

have a time series dataset, we should never test on past data. Thus, we use Monte

Carlo simulations [73] to evaluate our forecasting model. We randomly select a series

of dates using the data before each of these dates for training and the subsequent

data for testing, always preserving the sequential timestamps of the data. Many such

iterations of Monte Carlo simulations are carried out with different train and test

data sets, and the overall estimated of the performance is obtained by averaging over

the scores achieved on each iteration. This process is depicted in Figure 5.2, where

we have r repetitions with wtrain and wtest representing the train and test window

samples respectively. In each iteration, the model is trained on wtrain samples and

tested on the respective wtest samples, and the error estimate is calculated at each

step. Finally, the average error estimate is calculated for the overall simulation over

r repetitions.

We use the R package performanceEstimation [72] to carry out these Monte

Carlo experiments. This package contains a function named performanceEstimation(),



52

that we use to run the experiments. In terms of parameterrs of this function we use

the method EstimationTask to specify the metrics that are to be estimated, using

the metrics parameter. Specifically, we set this parameter to the values F , rec, prec

to represent F-score, Recall and Precision, respectively. Moreover, we indicate as es-

timation method the value MonteCarlo. In our experimental evaluation, we obtain

the estimates using 20 repetitions of the Monte Carlo procedure with wtrain of 30%

and wtest of 30% of the available data.

5.1.3 Forecasting models

In this section, we discuss the strategy used to select the parameter settings of the

models which we apply to our data set. Hyperparameter tuning involves trying dif-

ferent values of the model’s parameters to find an optimal setting that improves the

models’ performance. The experiments are carried out with different models using

the Monte Carlo estimation method with 20 repetitions, each with 30% train and

30% test datasets. The models are evaluated on the metrics F-score, Precision, and

Recall. The parameters are selected from many alternatives based on the impact it

caused on the results of the algal bloom’s forecasting task.

Parameter Tuning in Support Vector Machines (SVM)

To reiterate from the previous chapter, a Support Vector Machine (SVM) is a super-

vised machine learning algorithm used in classification and regression tasks. The main

objective of SVM is to find the best hyperplane that classifies the data points. Thus,

choosing the best hyperplane involves finding the right parameters for the model. We

used the parameters regularization and gamma in our experiments, which influenced

the most on the results to forecast the algal bloom events. We use function svm from

R package e1071 [49] to model our forecasting task using SVM. We will discuss in

detail each parameter in the following subsections.

Regularization (cost). If an SVM tries to correctly classify all the data points,

it would be too specific in finding the decision boundary and would lead to overfit-

ting [27]. This is called a hard-margin decision boundary, as shown in Figure 5.3 (a).

It achieves good accuracy on training data but does not generalise well to the test
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(a) Hard Margin SVM (b) Soft Margin SVM

Figure 5.3: Hard Margin and Soft Margin SVM
(figure taken from [82])

data. To overcome this issue, SVM uses a soft-margin decision boundary that allows

for a few misclassifications but provides a significant margin between the support

vectors and the decision boundary. Figure 5.3 (b) depicts a soft-margin where the

decision boundary represents a line with some data being misclassified. The model

with a soft-margin decision boundary accounts for a more generalized one rather than

a model with hard-margin decision boundary.

Soft margin SVM concentrates on the following goals:

• to maximize the distance between decision boundary and support vectors

• to maximize the number of data points correctly classified

Some trade-offs exist between the goals mentioned above to obtain a decision

boundary with reduced margin and all training data being correctly classified or hav-

ing a decision boundary with high margins and some misclassified data points. This

trade-off is controlled by the regularization parameter (cost) [34]. The regulariza-

tion parameter (cost) penalizes for every misclassification. For high values of the

cost parameter, the misclassification cost is high, resulting in a hard margin decision

boundary. It tries to avoid any data point being misclassified and reduces the dis-

tance between data points and the decision boundary. Alternatively, if the cost of

misclassification is smaller, it produces a model with a soft margin decision boundary

with more misclassified data points. Thus, the regularization parameter influences

the performance of the model and it is required to tune it to achieve best results.
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Figure 5.4: SVM with different gamma parameter
(figure taken from [60])

Gamma. Another parameter that influences the SVM model with Radial Basis

Function (RBF) kernel is gamma, which represents the influence of a single data point

on the model. Gamma controls the distance to which each data point influences the

model [44]. Having low gamma values indicates the data points at far distances highly

influence the model, and a high value of gamma indicates the influence of data points

closer to the decision boundary. In other words, low values of gamma highly influence

large groups with similar data points, and a high value means that the points have

to be close enough to be considered as a group. Figure 5.4 explains different gamma

values where a low value of 0 resulting in a large group, and any data point in blue or

red can be classified to their respective group with loosely coupled boundary areas.

However, with a gamma value of 100, groups data in a tightly bounded area of red

or blue and any small noise could affect a data point to fall apart from the class

boundary.

Finding the best parameter values in SVM. We experimented with different

combinations of cost and gamma values on the train dataset with the experimental

settings discussed in the above sections. We tried all combinations of cost values of

1, 5, 10, 100 and gamma values of 0.01, 0.05, 0.1, 0.5. Thus, we experimented with

16 different combinations, and the results are compared using the metrics discussed

above. We achieved the best results on F-score with the combination of cost value of

1 and gamma value of 0.01 using the svm function from the R package e1071.
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Random Forest

As we have discussed random forests in the previous chapter, we will discuss the

hyperparameters and their importance in tuning them to improve the model’s per-

formance. As Random Forest consists of many different decision trees, the major

hyperparameters that impact our results include the number of trees in the model

and the number of features from which the best split test is selected at each decision

node. We use the R package randomForest [45] to build the random forest model to

forecast algal blooms. We experimented on the following parameters which had more

impact on the results.

Number of trees. As Random Forest involves building many decision trees, the

number of trees involved in the model is a crucial parameter. The variance is reduced

in the model for a high number of trees, but the training time complexity increases.

Thus, we tune the number of trees to achieve better performance. It is represented

by the parameter ntree in randomForest method.

Minimum Sample Size on Leaf Nodes. It is essential for a random forest to

manage the sample size on the nodes to consider them as leaves. It specifies the min-

imum number of samples to be present in the nodes to consider itself as a leaf [54].

Having a high minimum sample size makes the trees shrink and limits itself with

smaller trees. It reduces the computation time for predictions but with some misclas-

sified data. Figure 5.5 denotes a minimum sample value of 5. The leaf nodes that

satisfy the constraint of a minimum sample size of 5 are denoted in green color. The

node consisting of three samples do not meet the condition is represented in red color

and is not considered a leaf. Thus, its parent node becomes the new leaf. The image

on the right shows the final tree with new leaf nodes, which satisfy the constraint of a

minimum sample size of 5. This parameter controls the growth of the tree by setting

a minimum sample size on the leaf nodes. Low values of this parameter would make

trees with larger depths. It is denoted by nodesize in the randomForest method,

adjusted to improve the model’s performance.
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Figure 5.5: Minimum sample at leaf nodes (figure taken from [63])

Number of Candidate Features. The Random Forest model is highly influenced

by the candidate features at each splitting node [54]. It denotes the number of

candidate features that are randomly selected, from which a specific feature is chosen

at each split when the tree is grown. Low values of this parameter result in more

different and less correlated trees, which provides better stability when aggregating

results. This parameter is denoted as mtry in the randomForest R package.

Finding the best parameter values in Random Forest. We experimented on

the train dataset with different combinations of the number of trees with 500, 1000,

1500, 2000, minimum sample size on leaf nodes with 1, 2, 5, and the number of

candidate features with 4, 5, 6 and
√
p, where p denotes the number of variables. We

achieved the best results on F-score with the combination of ntree as 1500, nodesize

with the default value of 1, and the number of candidate features (mtry) with
√
p

using the experimental settings discussed in the previous sections.

XGBoost

As discussed in previous chapter, XGBoost is a tree boosting algorithm commonly

used in classification and regression tasks. In this section, we will be dealing with a

few parameters used in our experiments which had more impact on the results. We

use the R package xgboost [26] to build our XGBoost model using the experimental

settings discussed in the previous sections.

Number of Rounds. XGBoost undergoes numerous rounds of computation, rep-

resented by the number of rounds parameter. Every time the algorithm runs, it

enhances the model by correcting the errors in the previous iterations. However,
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having a high number of rounds increases the computation time and effort. It is re-

quired to test the model with a combination of different number of rounds and other

parameters to find the optimal value that maximizes performance. It is denoted by

nrounds in the R package xgboost.

Learning Rate (ETA). As discussed earlier, XGBoost undergoes numerous rounds

of computations and the weights are modified in each round. It also denotes the

amount of correction at each step. Having a low eta will produce a more robust

model since it makes very less correction at each step and reaches the best optimum

with higher number of rounds. Having a low eta takes more rounds to train the model

and thus, takes more computation time. However, having a high eta will produce re-

sults quicker at the cost of misclassifications, since it do not reach the best optimum

within fewer number of rounds. It is represented by eta in the R function xgboost and

the value ranges between 0 to 1, where an eta closer to 0 takes more time to process

but produces better results.

Objective Function. The main task of an objective function in XGBoost is to

reduce the loss in the model. We use multi : softprob as the objective function that

predicts the data point’s probabilities belonging to each class. It is also required to

specify the number of classes of the target variable in the dataset. We provide the

number of classes in the target feature using num class parameter as two since we

build a two-class model to predict if the event is a bloom or normal.

Finding the best parameter values in XGBoost. We experimented over a

different combination of the number of rounds with 500, 1000, 2000, learning rate

over 0.1, 0.3, 0.5, 0.7 and with the objective function of multi : softprob on the train

dataset. We obtained best results on F-score with the combination of the number of

rounds with 1000 and learning rate with 0.3 using the experimental settings discussed

in the previous sections.

5.1.4 Class Imbalance

To reiterate from the previous chapter, class imbalance problem affects the model’s

performance on our forecasting algae blooms task, since we are interested in the rare
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events of algal blooms. Thus, we solve it by sampling the dataset using different

methods discussed in Chapter 4. In this section, we will discuss the parameters and

tuning them to improve the performance of the model.

Random Under-Sampling

As random under-sampling removes some samples belonging to the majority classes

randomly with respect to the number of samples in minority classes, it is one of the

simplest methods to deal with the class imbalance problem [16]. We use RandUnder-

Classif function from the R package UBL [16] to perform random under-sampling on

the training dataset. This method takes in a parameter called C.perc which accepts

the values “balance”, “extreme”, and percentages of sampling of the classes. The

value “balance” produces a balanced number of samples in all classes by removing

few majority samples, whereas “extreme” would inverse the classes’ existing propor-

tion, transforming most frequent to less frequent and vice versa [16]. It also accepts

percentage values between 0 and 1, where 1 represents no sampling, and other values

represents the sampling percentage. For example, if C.perc is given a value of 0.2,

the class samples are reduced to 20% of their original size.

We experimented with different values of C.perc parameter and different values

of models’ parameters along with the monte carlo experimental settings discussed in

previous sections. The different values of C.perc parameters we experimented includes

“balance”, “extreme”, 0.1, 0.4, 0.6 on each of the forecasting models. We achieved the

best results on metric F-score using random under sampling on the models with the

values “balance” on SVM, “extreme” on Random Forest and “balance” on XGBoost

using the experimental settings discussed in previous sections.

Random Over-Sampling

As discussed in the previous chapter, random over-sampling introduces replicas of

the least represented class to the dataset. Balancing the proportion of the samples

in all classes by creating new samples of the minority class increases the dataset’s

size and also affects the computational capacity of the model. In our experiments,

we use the function RandOverClassif from the R package UBL to perform random

over-sampling. This function accepts a parameter C.perc with the values “balance”,
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“extreme” and percentages of over-sampling. The value “balance” creates minority

samples until it obtains a balanced proportion of classes and “extreme” reverses the

proportion making the least represented to be the most and vice versa. It also takes

in percentage of over-sampling with values greater than or equal to 1. For example,

the number of minority samples is doubled if C.perc takes a value 2 [16].

We experimented with different values of C.perc parameter and different values

of models’ parameters with Monte Carlo experimental settings discussed in previous

sections. The different values of C.perc parameter we experimented include “balance”,

“extreme”, 1.5, 2 and 2.5 on the previously mentioned models. We achieved the best

results on metric F-score using random over sampling on the models with the values

“extreme” on SVM, “extreme” on Random Forest and “balance” on XGBoost using

the experimental settings discussed in previous sections.

SMOTE

SMOTE (Synthetic Minority Over-sampling TEchnique) introduces minority samples

by synthetic creation and also removes certain samples of the least important class.

As we have explained the process of creating minority samples in the previous chap-

ter, we will deal about parameter tuning to achieve best performance using SMOTE

method. We use the function SmoteClassif from the R package UBL that imple-

ments SMOTE sampling, which accepts a parameter C.perc. This parameter takes

in the values “balance”, “extreme”, where “balance” provides a balanced proportion

of classes and “extreme” reverses the proportion making the least represented to be

the most and vice versa. This parameter also takes in percentages of over or/and

under sampling of the classes representing over-sampling, if the value is greater than

1 and under-sampling, if the value is less than 1. The other parameters that had

more impact on the results include k, representing the number of nearest neighbors

that is used to generate the samples [16], and the dist parameter that provides the

distance metric used in the nearest neighbors.

We experimented SMOTE sampling with different values of C.perc, k and dist

along with the different parameter values of the forecasting models using Monte Carlo

experimental settings discussed in previous sections. We experimented with the dif-

ferent values of C.perc with “balance”, “extreme”, 1.5, 2, 0.1 and 0.3, k with 4, 5, 6,
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and dist with “Euclidean” and “Manhattan”. We achieved the best results on F-score

using Smote sampling on the models with the values “balance” on SVM, “extreme”

on Random Forest and “balance” on XGBoost for the parameter C.perc with k as 5

and dist as “Euclidean” along with other settings discussed in previous sections.

Overall, we achieved the best results with the parameters cost as 1 and gamma

with 0.01 for SVM, ntree as 1500, nodesize with 1, and the number of candidate

features with
√
p for Random Forest and nrounds as 1000 and learning rate with

0.3 for XGBoost model, with Monte Carlo experiments of 20 repetitions each trained

on 30% samples and tested on 30% samples when evaluated on F-score metric. On

sampling the original dataset, we achieved the best results on the models SVM using

Smote with C.perc as “balance”, k as 5 and distance as “Euclidean”, Random Forest

using Random Under Sampling with C.perc as “extreme” and XGBoost using Ran-

dom Under Sampling with C.perc as “balance” apart from the experimental settings

discussed above.

5.2 Results and Discussion

This section deals with the discussion and comparison of the results. We carried

out the experiments on two different datasets – sampled and non-sampled datasets.

Although the overall motivation of our proposed method is to avoid having to measure

algae in water samples, and simply using mussels to forecast these values, we wanted

to see how far we were from the results we would obtain if we were allowed to use the

algae counts in the previous timestamps as predictors used by the models. Thus, we

experimented with predictor variables including algae counts at recent timestamps (t

and t− 1) and without the algae counts as predictors. In summary, we experimented

on the combinations of sampled and non-sampled datasets with and without algae

counts as predictors.

The machine learning models average and standard deviation results on the sam-

pled dataset in terms of the metrics F-score, recall, and precision are shown in Ta-

bles 5.1 and 5.2. The best results across different metrics and time horizons are

highlighted in bold. From Table 5.1, it can be found that XGBoost performed well
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across all forecasting horizons (30 minutes, 2 hours, and 4 hours) on the metrics F-

score and precision with the best values at 0.62 ± 0.1 and 0.52 ± 0.1 respectively, over

a 30-minute forecasting task. However, we achieved the best results using Random

Forest with 0.80 ± 0.05 on recall on the 30-minute forecasting task. When evalu-

ated on the 2-hour task, we achieved the best results using XGBoost on F-score and

precision with 0.61 ± 0.1 and 0.51 ± 0.1 respectively and Random Forest on recall

with 0.80 ± 0.05. With a 4-hour forecasting task, we achieved the best results using

XGBoost model on F-score and precision with 0.61 ± 0.1 and 0.51 ± 0.1, respectively

and using Random Forest on recall with a score of 0.80 ± 0.05. We conclude from

the results that XGBoost performed well with the best results over all future time

horizons on the metrics F-score and precision, and Random Forest achieved better

results on recall on the sampled dataset without algae counts as predictors. Overall,

Random Forest model produced a recall of 0.80, which means that it was able to fore-

cast 80% of the algal blooms. XGBoost produced a precision of 0.52, which means

that from the bloom alarms issued by the model only 52% were correct, the others

being false alarms.

The results of the experiment using algae counts as predictors on the sampled

dataset are illustrated in Table 5.2. From the results, we found that XGBoost per-

formed well with values 0.98 ± 0.03, 0.99 ± 0.03, and 0.97 ± 0.04 on the metrics

F-score, recall, and precision, respectively, on 30-minute task. It is also shown that

XGBoost achieved the best results over 2-hour forecasting task with 0.94 ± 0.05, 0.99

± 0.02 and 0.91 ± 0.04 and over 4-hour task with 0.90 ± 0.04, 0.97 ± 0.03 and 0.85

± 0.03 respectively, followed by Random Forest and SVM.

It is clear from the results of the two Tables 5.1 and 5.2 that the sampled dataset

with algae counts at t and t−1 timestamps as predictors produced better results than

the sampled dataset without those timestamps’ algae counts as predictors. Overall,

from the above two experiments’ results, XGBoost achieved the best performance,

followed by Random Forest and SVM on the sampled datasets. Also, the results

on the sampled dataset depict that the models provide better forecasts over shorter

periods into the future compared to far in time, although the differences are small.

Tables 5.3 and 5.4 illustrates the results on the metrics F-score, recall, and pre-

cision on the original non-sampled dataset without algae counts as predictors and
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Algorithm 30 mins 2 hours 4 hours

F Rec Prec F Rec Prec F Rec Prec

SVM 0.59 ±0.1 0.78 ±0.06 0.49 ±0.1 0.60 ±0.1 0.79 ±0.02 0.49 ±0.1 0.59 ±0.1 0.78 ±0.05 0.49 ±0.1

RF 0.61 ±0.1 0.80 ±0.05 0.49 ±0.1 0.60 ±0.1 0.80 ±0.05 0.48 ±0.1 0.60 ±0.1 0.80 ±0.05 0.49 ±0.1

XGBoost 0.62 ±0.1 0.79 ±0.07 0.52 ±0.1 0.61 ±0.1 0.78 ±0.04 0.51 ±0.1 0.61 ±0.1 0.78 ±0.04 0.51 ±0.1

Table 5.1: Results without algae count as predictors on
sampled dataset

Algorithm 30 mins 2 hours 4 hours

F Rec Prec F Rec Prec F Rec Prec

SVM 0.86 ±.03 0.98 ±.02 0.78 ±.05 0.86 ±.03 0.98 ±.03 0.78 ±.04 0.86 ±.05 0.97 ±.04 0.77 ±.05

RF 0.97 ±.03 0.98 ±.04 0.94 ±.03 0.92 ±.03 0.98 ±.03 0.90 ±.03 0.89 ±.02 0.93 ±.02 0.83 ±.02

XGBoost 0.98 ±.03 0.99 ±.03 0.97 ±.04 0.94 ±.05 0.99 ±.02 0.91 ±.04 0.90 ±.04 0.97 ±.03 0.85 ±.03

Table 5.2: Results with algae count as predictors on sampled dataset

with algae counts at recent timestamps, respectively. The non-sampled datasets’ re-

sults without the algae count information at previous timestamps are illustrated in

Table 5.3. It depicts that XGBoost performed well with the value of 0.55 ± 0.1 on

F-score and Random Forest achieved better results over recall and precision with 0.65

± 0.2 and 0.54 ± 0.1 respectively, over the 30-minute forecasting task. With 2 hours

forecasting task, Random Forest and XGBoost achieved similar results on F-score

with 0.54 ± 0.1, and Random Forest performed better over recall and precision with

0.64 ± 0.2 and 0.54 ± 0.1, respectively. Over the 4-hour forecasting task, Random

Forest and XGBoost achieved similar results on F-score and recall with 0.54 ± 0.1

and 0.63 ± 0.2, but Random Forest performed well on precision with 0.54 ± 0.1.

The results from Table 5.4 depict that XGBoost performed well on all metrics

(F-score, recall, and precision) with values 0.94 ± 0.03, 0.95 ± 0.04 and 0.93 ± 0.05

respectively, over a 30-minute forecasting task, followed by Random Forest and SVM.

When evaluated on a 2-hour forecasting task, XGBoost achieved better results on F-

score, recall, and precision with 0.93 ± 0.03, 0.94 ± 0.05, and 0.93 ± 0.05 respectively,

and on a 4-hour forecasting task, with F-score of 0.93 ± 0.05, recall of 0.94 ± 0.05 and

precision of 0.93 ± 0.05. It is also found that the models performed well in forecasting

algae blooms over 30 minutes compared to 2 hours and 4 hours time periods, but the
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differences are pretty small. From Tables 5.3 and 5.4, it clearly shows that the models

performed well in forecasting algae blooms when algae counts in recent timestamps

(previous and current) are used as predictors. Overall, on the original non-sampled

dataset, XGBoost performed well with algae counts as predictors, and Random Forest

performed well without algae counts as predictors.

Algorithm 30 mins 2 hours 4 hours

F Rec Prec F Rec Prec F Rec Prec

SVM 0.49 ±0.1 0.48 ±0.2 0.50 ±0.1 0.49 ±0.1 0.48 ±0.2 0.49 ±0.1 0.48 ±0.1 0.48 ±0.2 0.48 ±0.1

RF 0.54 ±0.1 0.65 ±0.2 0.54 ±0.1 0.54 ±0.1 0.64 ±0.2 0.54 ±0.1 0.54 ±0.1 0.63 ±0.2 0.54 ±0.1

XGBoost 0.55 ±0.1 0.64 ±0.2 0.53 ±0.1 0.54 ±0.1 0.63 ±0.2 0.53 ±0.1 0.54 ±0.1 0.63 ±0.2 0.52 ±0.1

Table 5.3: Results without algae count as predictors on
non-sampled dataset

Algorithm 30 mins 2 hours 4 hours

F Rec Prec F Rec Prec F Rec Prec

SVM 0.88 ±.02 0.83 ±.03 0.80 ±.03 0.88 ±.03 0.82 ±.04 0.80 ±.04 0.87 ±.02 0.82 ±.04 0.79 ±.05

RF 0.88 ±.02 0.84 ±.04 0.80 ±.03 0.88 ±.04 0.82 ±.04 0.79 ±.05 0.88 ±.02 0.82 ±.05 0.79 ±.04

XGBoost 0.94 ±.03 0.95 ±.04 0.93 ±.05 0.93 ±.03 0.94 ±.05 0.93 ±.04 0.93 ±.05 0.94 ±.05 0.93 ±.05

Table 5.4: Results with algae count as predictors on
non-sampled dataset

It is evident from the results of the four experiments illustrated in the above tables

that the models achieved better results on the sampled dataset compared to original

non-sampled dataset. It is also shown that tuning certain parameters of the forecast-

ing models and sampling methods produces better results. From the experiments,

we found that Random Forest performed well on the non-sampled dataset without

algae counts as predictors. However, XGBoost achieved better results in all other

experiments evaluated on the metrics F-score, recall, and precision. The models were

able to forecast about 80% of the algal blooms and out of the total alarms issued,

the models were able to forecast about 52% algal blooms. The results also depict

that the models are better in detecting the algal bloom events within a shorter time

interval into the future (30 minutes) compared to 4 hours. However, the predictions

at time intervals of 2 and 4 hours are not so bad and are just behind the forecasts of
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30-minute time intervals. As domain experts are interested in forecasting long peri-

ods into the future, it depends on the domain experts to critically decide the specific

time horizon. Finally, it is shown that knowing the algae counts at the current and

previous timestamps makes it more convenient for the models to predict future algal

bloom events. As discussed in the previous chapter, our main objective is to detect

algae blooms without measuring the algae counts at current timestamps. Thus, we

focus on the experiments without the algae counts as predictors since it becomes

challenging to measure the algae count at every timestamp, which violates our main

objective.

5.2.1 Statistical Significance of the Reported Results

It is essential to test whether the results we have reported are statistically significant,

i.e. to refute the hypothesis that the results are obtained by chance. We compared the

different approaches on a single task as well as on multiple tasks. We used Wilcoxon

Signed Ranks test [78] to test the statistical significance of the differences between

the approaches on a single task, and Friedman test [33] to compare them on multiple

tasks, followed by Nemenyi post-hoc test [28]. Since we are mainly interested on the

sampled dataset without algae counts as predictors, we focused this analysis of the

statistical significance on this dataset involving the forecasting tasks with different

future time horizons: 30 minutes, 2 hours, and 4 hours. The approach towards the

predictive task is known as workflow. It defines the implementation of the predictive

task given the train and test datasets. We define different workflows of our forecasting

task using the models SVM, Random Forest and XGBoost, where we perform the

implementation of the predictive task.

Comparison of Two Classifiers — Wilcoxon Signed Ranks Test

Wilcoxon Signed Ranks Test ranks the differences in the performance among two

classifiers on a task [28]. The null hypothesis of this test states that the difference

between the two workflows is zero. That means the hypothesis is rejected if the result

of the test has a p-value less than a specific threshold (typically 0.01 or 0.05, i.e.,

99% or 95% confidence to reject the hypothesis). We chose p-value as 0.05 in our

experiments on the Wilcoxon Signed Rank test since we wanted to achieve a minimum
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of 95% confidence, i.e., the hypothesis is rejected if p− value < 0.05. The results of

the Wilcoxon Signed Ranks Test against each metric(F-score, recall, and precision)

on all tasks of different time horizons(30 minutes, 2 hours, and 4 hours) are provided

below,

• F-score: The results of the tests on all models have p − value > 0.05 and do

not reject the null hypothesis on all tasks when evaluated on F-score.

• Recall: The results of the test on recall depict that it has significant differences

when compared among XGBoost and Random Forest and thus rejects the null

hypothesis. Whereas the results depict that XGBoost and SVM, SVM and

Random Forest are not significantly different, accepting the null hypothesis on

all tasks.

• Precision: The results of the test on precision show that it rejects the null

hypothesis and has significant differences among SVM and XGBoost on all tasks

but accept the hypothesis among SVM and Random Forest, Random Forest and

XGBoost on all forecasting tasks.

The above results are also summarized in table below,

Algorithm F-score Recall Precision

SVM RF XGBoost SVM RF XGBoost SVM RF XGBoost

SVM NA Accept Accept NA Accept Accept NA Accept Reject

RF Accept NA Accept Accept NA Reject Accept NA Accept

XGBoost Accept Accept NA Accept Reject NA Reject Accept NA

Table 5.5: Wilcoxon Signed Ranks Test on sampled dataset without algae counts as
predictors over all time horizons

Comparison of Multiple Classifiers — Friedman Test and Nemenyi

Post-Hoc Test

As Wilcoxon Signed Rank Test compares only two classifiers, Friedman test compares

multiple algorithms and workflows. Friedman test’s null hypothesis states that all



66

workflows are equivalent and the rankings across all the tasks are also equal [33].

The results of the Friedman test on all the classifiers and workflows show that all

the workflows reject the null hypothesis. Thus, we performed Nemenyi post-hoc test

to perform paired comparisons among all pairs of workflows. The null hypothesis of

Nemenyi test states that there is no significant differences among the ranks of certain

pair of workflows [28]. We performed the Nemenyi test among the different algorithms

on multiple tasks of the different time horizons (30 minutes, 2 hours, and 4 hours),

and the results are depicted below,

• F-Score: Rejects null hypothesis among SVM and XGBoost and accepts among

SVM and Random Forest, Random Forest and XGBoost.

• Recall: Rejects null hypothesis among SVM and Random Forest, but accepts

among SVM and XGBoost, Random Forest and XGBoost.

• Precision: Rejects null hypothesis among SVM and XGBoost and accepts among

SVM and Random Forest, Random Forest and XGBoost.

The results of Nemenyi test are summarized in the table below,

Algorithm F-score Recall Precision

SVM RF XGBoost SVM RF XGBoost SVM RF XGBoost

SVM NA Accept Reject NA Reject Accept NA Accept Reject

RF Accept NA Accept Reject NA Accept Accept NA Accept

XGBoost Reject Accept NA Accept Accept NA Reject Accept NA

Table 5.6: Nemenyi post-hoc Test on sampled dataset without algae counts as pre-
dictors over all time horizons

The above conducted tests depict the statistical significance to prove that the re-

sults are not obtained by chance. The results of Wilcoxon Signed Ranks test show that

the differences among the workflows of Random Forest and XGBoost are statistically

significant when evaluated for 95% confidence score on recall. Also, the differences

among the workflows of SVM and XGBoost are statistically significant over precision,

however the workflows are not statistically significant in their differences when eval-

uated over F-score for 95% confidence score. Nemenyi post-hoc test shows that the
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differences among the workflows on multiple tasks are statistically significant among

SVM and XGBoost when evaluated on F-score and precision, whereas, the difference

among the workflows of SVM and Random Forest are statistically significant when

evaluated on recall.

In summary, the predictive models performed better on forecasting tasks involving

shorter time intervals (30 minutes) compared to 4 hours, though the results were not

bad on a 4-hour forecasting task. Our results also show that the models performed

better on sampled datasets compared to the non-sampled (original) dataset. From the

results, we conclude that the models were able to forecast 80% of the total algal blooms

although with a considerable amount of false alarms (48%). From the statistical

significance tests, we conclude that the results were not obtained by chance and with

several observed differences being different with 95% statistical confidence.



Chapter 6

Conclusions

Time series data occurs in many application domains like finance, healthcare, energy,

and several others. Forecasting and activity monitoring are two frequent tasks asso-

ciated with this type of data. They support the application of data-driven decisions

to some of the organizations’ challenges allowing them to mitigate or prevent losses.

This thesis main objective involves activity monitoring that leverages time series

data to anticipate algal blooms in aquaculture farms. The detection of algal blooms

helps domain experts in making decisions to improve water quality. We defined ap-

proaches to build machine learning models in the context of forecasting algal blooms.

We leveraged the historical data and experimented to predict algal bloom events in

several future time horizons: 30 minutes, 2 hours, and 4 hours.

Following the advice of domain experts, our approach used as main source of

information data concerning the valve openings of a series of mussels that were placed

in the aquaculture farms. The first step of our approach consisted of a series of feature

engineering steps designed to produce a set of predictors based on the valve openings

that could help in the task of forecasting blooms. We have applied several machine

learning algorithms, such as SVM, Random Forest, and XGBoost, to the resulting

dataset. The models were learned with the goal of forecasting whether an algae bloom

was to occur. We have solved this task for three different forecasting horizons. We

have tried these approaches for different parameter settings, which were evaluated

and compared in Chapter 5.

A few sampling methodologies to balance the distribution of the target variable

in our our dataset have been tried since many machine learning models do not work

well with an imbalanced dataset [17]. We used a few sampling methodologies such as

Random Under Sampling, Random Over Sampling, and SMOTE sampling to balance

our datasets. We have tried a few parameters of sampling methods and tuned them

to achieve better results. Based on the results in Chapter 5, we found that these

68
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sampling strategies led to better results than the original imbalanced datasets.

We achieved the task of forecasting algal blooms with an F-score of 0.62, and pre-

cision of 0.52 using XGBoost, and a recall of 0.80 using a Random Forest model when

evaluated on a 30-minute forecasting task without using algae counts as predictors

at t and t − 1 timestamps. This means the models were able to forecast 80% of the

algal blooms at the cost of 48% false alarms. Our results also show that the scores

on a 4-hour forecasting task are just behind 30-minute forecasting task with 0.61 and

0.51 for F-score and precision, respectively, and 0.80 for recall.

We also achieved the best scores on F-score, recall and precision with 0.98, 0.99 and

0.97, respectively using XGBoost model when algae counts at t and t− 1 timestamps

are included as predictors on a 30-minute forecasting task. Thus, the results depict

that if the algae counts at the current, t and previous timestamps, t− 1 are used as

predictors, the models produced more precise and better results forecasting 99% of the

total algal blooms at the cost of 3% false alarms. However, it involves measuring the

current algae counts in the water at every timestamp, which is what we want to avoid

by using readings from mussels instead. Overall, we achieved the best results with

the sampled dataset compared to original dataset and on forecasting algal blooms for

time periods with a shorter time interval into the future (30 minutes) rather than 4

hours, although the differences are small.

6.1 Future Work

The methods discussed in this thesis can be improved in a number of ways leading

to the future work of this thesis. In this section, we outline some of the potential

lines of work that could build upon our thesis to achieve more precise forecasts in the

detection of algal blooms.

We have modeled the forecasting task to detect algal blooms using various machine

learning models, which support domain experts in making decisions concerning the

aquaculture farms. Domain experts suggest that other algae species also affect the

micro closures in the mussels’ valve openings. Due to the unavailability of the other

algae species data, we limited ourselves to the species Alexandrium Tamarense.

Thus, the predictions of algal blooms may be able to be improved with the integration

of other algae species’ counts and analyzing mussels’ behavior on those species.
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We modeled the forecasting task based on the four mussels’ valve opening per-

centage. However, having valve opening information of more mussels produces more

data for the models to learn the predictive task and could improve the predictions.

In the future, data from more mussels could be used to improve the performance of

the models in achieving better forecasts of algal blooms.
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