
MTLV: A LIBRARY FOR BUILDING DEEP MULTI-TASK
LEARNING ARCHITECTURES

by

Fatemeh Rahimi

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

April 2021

c⃝ Copyright by Fatemeh Rahimi, 2021

I dedicate this to all women in the computer science community who

believed in themselves, worked hard, and fought, to be in the place they

are today. You all are true inspirations.

I would also like to dedicate this to the 176 victims of flight PS752,

especially the 46 students who were looking forward to their future

when they perished. May they rest in peace.

ii

Table of Contents

List of Tables . v

List of Figures . ix

List of Abbreviations Used . xi

Abstract . xii

Acknowledgements . xiii

Chapter 1 Introduction . 1

1.1 Contributions . 2

Chapter 2 Related work . 4

2.1 Multi-Task Learning . 4

2.2 Pretrained language models . 5

2.3 Multi-task learning meets pre-trained language models 6

Chapter 3 Methodology . 7

3.1 Single-Task Learning (STL) . 7

3.2 Multi-Task Learning (MTL) . 8

3.3 Grouping Multi-head Learning (GMHL) 11

3.4 Grouping Multi-Task Learning (GMTL) 11

3.5 MTLV workflow . 12
3.5.1 Clustering the tasks (labels) 12
3.5.2 Design decisions . 14
3.5.3 Fine-tunning the model . 15
3.5.4 Visualize the learning . 15

Chapter 4 Experimental Results . 16

4.1 Data . 16

4.2 Pretrained Language Models . 17

4.3 Implementation details . 17

iii

4.4 Open-I Results . 18

4.5 OHSUMED Results . 22

4.6 Limitations . 24

Chapter 5 Conclusion . 27

5.1 Future Work . 28

Bibliography . 29

Appendix A Datasets Details . 31

Appendix B Library Structure . 35

Appendix C Open-I detailed results . 36

Appendix D OHSUMED detailed results 38

Appendix E MLflow Tracking UI . 41

iv

List of Tables

4.1 The details of the two datasets used in this research. The split
for the OHSUMED dataset is already provided with the dataset,
while Open-I dataset splitting was performed using multi-label
stratification method [20]. During the experiments, the vali-
dation set is always 15% of the training set. We used 20% of
OHSUMED dataset, which was extracted using stratified sam-
pling [20] to save computational cost. The total, train and test
are the count of unique documents in each set. 16

4.2 A list of pre-trained models along with their trained corpus used
in this research. All three models are the base version (their
encoder have 12 layers) of BERT and also have the same num-
ber of parameters (110 Milion) to provide a fairer comparison.
BERT-Base and BlueBERT-Base are trained on uncased corpus
while BioBERT was trained on cased corpus. Although different
variations of BioBERT and BlueBERT exist, we refer by these
short names to the ones with settings shown in this table. . . 18

4.3 We compare the four main Architectures explained in this work
for the Open-I dataset. We conclude the following: (1) Both
BioBERT and BlueBERT outperform BERT in different set-
tings; (2) BlueBERT outperforms the other two as it was trained
on both PubMed abstract and clinical notes which makes its con-
text more closer to radiology reports; (3) STL and GMTL appear
to have similar performance and both outperform the MTL ar-
chitecture. Although GMHL reports the poorest results, it is
important to note that we only experimented with a fixed learn-
ing rate, number of epochs and the overall loss function. The
number of clusters and the features used (either label name or
label description) for clustering the tasks are also indicated in
the clustering column. To compare these architectures, we only
use F1-macro and F1-micro results, while the subsetAcc (Ex-
act match ratio) is only reported for completeness, as it does
not consider partial correctness of labels. The complete table of
GMHL and GMTL experimental results is in Appendix C. . . 19

v

4.4 P-values from the Wilcoxon signed-rank test (a non-parametric
version of the paired T-test) for the Open-I dataset. To check
whether GMTL and MTL’s observed results are significantly dif-
ferent, we performed statistical tests and reported their p-value
in this table. The statistical significance test for BlueBERT,
which is the model that has the most related context to the
Open-I dataset p-value, shows that GMTL is statistically signif-
icant compare to MTL (as the p-value is less than 0.05, the null
hypothesis gets rejected). Although BERT and BioBERT do not
have a similar context to radiology reports, we still observe that
GMTL is statistically significant when using BERT, but it fails
to reject the null hypothesis for the statistical significance test
for BioBERT. 20

4.5 To further compare how Blue-BERT performs when comparing
MTL and GMTL architecture for the Open-I dataset, we listed
per label F1-score for each architecture and showed the count
and percentage of each label (class). The count shows how many
documents had the given class. It is observed that for most of
the classes, GMTL is performing better compared to MTL. The
higher scores are shown in bold. 21

4.6 The results obtained by only training on 20% of the original
OHSUMED dataset. BioBERT outperforms the other two as it
was trained on 1 million PubMed abstracts, which makes it close
to the context of the OHSUMED dataset. GMTL outperforms
MTL, while STL and GMTL performance is similar (except for
using BERT as shared layers). GMHL achieves the lowest results
among the other ones. The full table of GMHL and GMTL
experiments is in Appendix D) 22

4.7 P-values of statistical significance tests to compare GMTL and
MTL models when trained on the OHSUMED dataset. We re-
port the p-value of the Wilcoxon signed-rank test for both F1-
macro and F1-micro. If a p-value is less than 0.05, the com-
parison of GMTL and MTL is considered statistically signifi-
cant. The GMTL-BioBERT is statistically significant compared
to MTL-BioBERT when they are tested with F1-macro. Al-
though we could not reject the null hypothesis for BioBERT
when tested with F1-micro, we argue that F1-macro can be
trusted more when a dataset is imbalanced. The F1-score of
each class of both GMTL and MTL models when BioBERT is
their shared part is listed in Table 4.8. It is also observed that
BERT and BlueBERT models are statistically significant when
tested with F1-macro. 23

vi

4.8 The F1-score (of each class) of GMTL-BioBERT and MTL-
BioBERT when trained on OHSUMED is listed in this table.
The last column (count%) is simply showing how many times a
given class had documents corresponding to it. Although most of
the classes are outperformed in the MTL setting, the classes with
fewer documents in GMTL considerably outperformed MTL,
such as C22, C03, C02 and C07, which shows how GMTL is af-
fecting the performance of the OHSUMED dataset. The GMTL
architecture of this table is using label descriptions as features
for clustering and clustering the labels into five groups. The
higher scores are shown in bold. 25

4.9 The clock time for running Open-I and OHSUMED dataset ex-
periments is listed in the above tables. The clock time for
running Grouped multi-task learning (GMTL) architecture is
about three times less for the Open-I dataset and almost five
times less for the OHSUMED dataset than single task Learning
(STL) ones. Both Open-I and OHSUMED results (for GMTL)
are based on clustering to five clusters (group of tasks) except
GMTL-BioBERT trained on Open-I dataset, which is trained
with four clusters, so it has a lower clock-time compared to the
other Open-I results. 26

A.1 The Open-I dataset is a multi-label classification problem that
assigns a set of pathologies to radiology reports. The listed
pathologies are the classes of this dataset. Each class’s count
and percentage are indicated for the train and test set and also
their total. The last row of the label that shows the count for
all the labels is showing the unique number of reports. 32

A.2 The count per class(category) for the OHSUMED dataset is
reflected in this table. The category count and percentage in
parenthesize show how the data is distributed over all the cate-
gories. The last row of the table is showing the unique number
of documents in the dataset. 33

A.3 The categories or classes of OHSUMED dataset and what they
stand for are reflected in this table. 34

vii

C.1 Detailed results of GMHL architecture for Open-I dataset is
listed in this table. We experimented with clustering label names
and their description and a range of clusters (from 3 to 5). To
distinguish the best number of clusters we plotted the elbow
method and figured that this range is best suited for this dataset.
The best performing hyperparameters for the GMHL setting are
using 5 clusters with Label description embeddings as features,
which are highlighted in the table. 36

C.2 A comprehensive performance of GMTL architecture for Open-I
dataset is listed in this table. The results show that using Label
Description achieves the best performing results for all the 3
language models. The BlueBERT results outperform the other
two as it has the closest context to the Open-I dataset. The best
set of results per each model is highlighted in the table. 37

D.1 The full result of the OHSUMED dataset in GMHL architecture
is listed in this table. The number of clusters for best-performing
hyperparameters varies per language mode since BERT, BioBERT
and BlueBERT are achieve the best results when using 4, 3
and 5 clusters respectively. For all the models, using the la-
bel embeddings as features are outperforming label description
embeddings. The best performing configuration per model is
highlighted in the table. 39

D.2 This table lists the GMTL detailed performance for the OHSUMED
dataset. All the language models are performing best when their
number of clusters is 5. The BioBERT surpasses the other mod-
els as it has a closer context to the OHSUMED dataset. Al-
though BERT and BioBERT’s best-performed configuration is
using Label description, BluBERT uses Label embedding as the
clustering features. Highlighted cells are the best performing
settings of GMTL architecture per language model. 40

viii

List of Figures

3.1 This design is a typical single task learning architecture (in-
spired by BERT [5]) for solving a binary or multi-class classi-
fication problem, where a single layer is added on top of the
pre-trained language model to perform as a classification layer.
A set of tokens (T1 to Tn) from the input sentence (sequence
of words) is fed into a pre-trained language model. In the case
of BERT-family models, the CLS and SEP tokens are added
at the beginning and end of the input, respectively. The CLS
token is a classification token representing the whole sentence,
while SEP marks the end of the sentence. The output of the
pre-trained model is the sequence of token embeddings (E[CLS],
E1, E2, ..., En, E[SEP]). The first output, i.e. the CLS embed-
ding, is then given to the classification layer on top of the model
to perform binary/multi-class classification. 8

3.2 The multi-head architecture [15] is a type of MTL architecture
in which a set of layers are shared between all the tasks (hard
parameter sharing). The effectiveness of pre-trained language
models makes them a great fit for the shared part of this net-
work. On top of this architecture, separate heads are jointly
learning m different tasks. The number of layers for the shared
and task-specific heads are hyperparameters of this design. . 10

3.3 On the left, the architecture design of Single-Task Learning
(STL) is depicted. The same architecture is fine-tuned sepa-
rately for each task, such that m models are trained separately
for m tasks. A multi-task learning (MTL) architecture is shown
on the right, including a single model that learns m different
tasks jointly. In the binary classification task, the architec-
ture on the right is designed to solve a multi-label classification
(MLC) task. 10

ix

3.4 The Grouped Multi-Task Learning(GMTL) is located on the
left, while the Grouped Multi-Head Learning(GMHL) appears
on the right. Both of these architectures rely on a task clus-
tering algorithm. The GMTL design is inspired from previous
work in computer vision [17], where a few models (similar to
the model on the left) are fine-tuned to learn a group of tasks
(i.e. in this figure, the model is learning Task T1, T2 and T5).
We use the same group of tasks to build a GMHL architecture,
where a group of related tasks are located in each head. In
GMHL, a single model is used to train all the tasks. The input
of both these two designs is the CLS token embedding from the
last layer of the pre-trained language model. 11

3.5 MTLV workflow for GMTL and GMHL is depicted in this flowchart.
First, the label names or the description of the labels is given
to a pre-trained language model (BERT-family) to extract its
embeddings. Then the mean of the token embeddings is calcu-
lated and the elbow curve is plotted to help the user identify the
number of clusters. The embedding of each task and the num-
ber of clusters is passed to the k-medoid clustering algorithm
to cluster (group) tasks. Using the groups from the cluster-
ing algorithm to build either GMTL or GMHL architecture is
depicted in gray. Once the model and its architecture are de-
cided, it is trained on data and all the model parameters are
fine-tuned. While training and predicting, we log the parame-
ters and metrics of these architectures and later visualize them
in MLflow Tracking UI. 13

B.1 The structure of the MTLV library is depicted in this figure.
The mtl directory in the src includes all of the architecture and
implementations of this thesis. 35

E.1 In this figure the UI of the MTLV framework is depicted. After
training different models with a different set of design decisions,
it becomes necessary to keep track of their performance and how
they are learning in different settings. We use MLflow Tracking
to depict and compare these results and learning charts. . . . 41

E.2 In this figure, the comparison of learning from 2 GMTL archi-
tecture using BlueBERT and BioBERT as their shared layers
is depicted. MLflow Tracking UI allows users to compare the
learning of different heads of same run or architectures of dif-
ferent runs. 42

x

List of Abbreviations Used

Acronyms

BERT Bidirectional Encoder Representations from Transformers

GB Gigabyte

GMHL Grouped Multi-Head Learning

GMTL Grouped Multi-Task Learning

MLM Masked Language Modeling

MTLV Multi-Task Learning Visualizer

MTL Multi-Task Learning

NLP Natural Language Processing

NSP Next Sentence Prediction

STL Single Task Learning

UI User Interface

xi

Abstract

Multi-Task Learning (MTL) for text classification takes advantage of the data to train

a single shared model with multiple task-specific layers on multiple related classifica-

tion tasks to improve its generalization performance. We choose pre-trained language

models (BERT-family) as the shared part of this architecture. Although they have

achieved noticeable performance in different downstream NLP tasks, their perfor-

mance in an MTL setting for the biomedical domain is not thoroughly investigated.

In this work, we investigate the performance of BERT-family models in different

MTL settings with Open-I (radiology reports) and OHSUMED (PubMed abstracts)

datasets. We introduce the MTLV (Multi-task learning visualizer) library to facil-

itate building Multi-task learning-related architectures. This library uses existing

infrastructure (e.g., Hugging Face Transformers and MLflow Tracking) to allow users

to build and compare multi-task, multi-head, and single-task learning designs using

available models of the Transformers library. Following previous work in the computer

vision domain, we clustered tasks in few groups and trained each group separately on

separate models (Grouped Multi-Task Learning (GMTL)) and a single model with

different heads (Grouped multi-Head Learning (GMHL)) where each head includes a

group of tasks. Contextual representation of class labels (Tasks) and their descrip-

tions was used by the library as features to cluster the tasks. The set of models from

GMTL are trained separately, each for the set of tasks(groups) that is arrived from

task clustering. We experimented with a set of binary classification tasks that share

the same dataset (multi-label classification). The contributions of this research are:

(a) We observed that grouping tasks for training with few models (GMTL) outper-

forms both the multi-task (MTL) and multi-head learning settings (GMHL); (b) We

proposed an approach to use task (label) names and their description embeddings as

clustering feature of tasks; (c) Although GMTL have similar performance compared to

Single Task Learning (STL), GMTL is computationally less expensive than the STL

setting where a separate model is trained for each task; (d) Code of the MTLV library

is available as open-source on GitHub(https://github.com/fatemerhmi/MTLV)

xii

https://github.com/fatemerhmi/MTLV

Acknowledgements

I would like to express my sincere gratitude to my supervisor Dr. Evangelous Milios,

for his mentorship and continuous guidance during my master’s study and thesis.

Furthermore, I am grateful to my co-supervisor Dr. Stan Matwin for his great support

and guidance.

Many thanks to my colleagues in the MALNIS group, whom I learned so much

from and their inspiring research environment. I would like to especially thank Dr.

Martha Dais Ferreira, who has guided me throughout my thesis research with her

great comments and the time she dedicated to meeting me discussing my challenges.

Many thanks to Jeniffer David, Maksym Taranukhin, and Farshid Verno whom I had

the great pleasure of working with moreover receiving guidance and support during

my research projects.

Thanks to all of my family and friends for their continuous support.

Finally, special thanks to my brother Reza, who always believed in me and en-

couraged me to pursue science.

xiii

Chapter 1

Introduction

Multi-task Learning (MTL) is a learning paradigm where multiple tasks are being

learned jointly, usually with a single network. Learning a set of tasks together is

effective if the alignment between the tasks is high such that it is improving the

overall learning process (positive transfer). However, it is often observed that in MTL

settings, task objectives interfere, and the performance suffers (negative transfer).

Classification is one of the most well-explored supervised machine learning tech-

niques over the past several years. One of its forms is the multi-label classification,

where each instance may be associated with one or multiple classes. One of the

Multi-label classification challenges [21] is the volume of a dataset which refers to

the number of labels. The two challenges it brings during an experiment are; first,

the space of output labels grows, and the second one is the label imbalance issue.

Multi-label classification is an example of multi-task learning in which a set of binary

classification tasks share the same dataset.

One of the Multi-task learning architectures often used is hard parameter sharing

which means that some layers of the neural network is shared between all the tasks.

Since pre-trained language models (BERT-family models) have proven to be effective

for a wide variety of natural language processing (NLP) tasks, they are considered

a suitable architecture for the shared part of multi-task learning architectures. Al-

though BERT was trained on general domain text, other variations of it such as

BioBERT[9] and BlueBERT[14] were trained on more specialized context such as

biomedical and clinical domain.

One of the typical architectures of multi-task learning for hard-parameter sharing

is multi-head architecture [15] which includes a set of shared layers and a couple

of heads on top of the model that aims to learn different tasks. This architecture

has been widely used in different research domains, especially in natural language

processing where the shared layers are replaced with pre-trained language models

1

2

(i.e., BERT) [13, 11, 16]. Observing the effectiveness of using pre-trained language

models as the shared layers of multi-task and multi-head architectures, we also follow

the same footsteps.

Our motivation behind investigating Multi-task learning architectures is that not

only are they more computationally efficient comparing to single-task learning (espe-

cially when the number of tasks grows), but they also lead to positive transfer when

the correlated set of tasks share their features. The study of how to group tasks can

be viewed as an extension of clustering algorithms to the task level[22].

Previous work in computer vision [17] assigns tasks to few neural networks such

that each model learns a set of cooperating tasks. Inspired by that work, we devel-

oped a python library called MTLV (Multi-task learning visualizer) that implements

a set of multi-task learning architectures and can visualize their learning process

throughout their run. The visualization component is taking advantage of an exist-

ing infrastructure called MLflow Tracking to keep track of learning process of different

runs and let user compare them at ease.

We developed four main architectures in the MTLV framework, which are as fol-

lows: (1) Single-task learning (STL), where each binary classification is being learned

with separate models ending up with the same number of models as the tasks; (2)

Multi-Task Learning (MTLV) where all the tasks are being learned jointly together

with a single model; (3) Grouped Multi-Head Learning (GMHL) architecture where

we cluster tasks to few groups and place each group in a head-on top of a single

model similar to multi-head learning architecture; (4) Grouped Multi-Task Learning

(GMTL) which cluster the tasks similar to GMHL but learn them with few separate

models where each model aims to learn a group of tasks that are most related to each

other.

1.1 Contributions

This thesis investigates the positive or negative transfer of learning a set of binary

classification tasks jointly in different multi-task learning architectures using the de-

veloped framework (MTLV). MTLV uses existing infrastructure (e.g., Hugging Face

3

Transformers1 and MLFlow tracking2) to facilitate the process of training multi-task

learning architectures and also being able to query, investigate their performance and

compare their learning.

The contribution of this work can be summarized as follows.

• Evaluate BERT-family language models learning in different domains such as

biomedical and clinical context.

• Compared the learning process of three deep multi-task learning architectures

(MTL, GMTL, and GMHL) to single-task learning(STL).

• Analyse the computation cost of GMTL to STL models in addition to their

overall performance.

• proposed a clustering approach for binary text classification tasks that uses

tasks context features (embeddings) of label names and their descriptions as

task features.

• Code and documentation of the MTLV library is publicly available to let users

build their variation of proposed models and also designed to easily integrate

other models, datasets, optimization functions, and task clustering algorithms.

1https://github.com/huggingface/transformers
2https://github.com/mlflow/mlflow

https://github.com/huggingface/transformers
https://github.com/mlflow/mlflow

Chapter 2

Related work

The related work is divided into three parts. In the first one, we focus on multi-task

learning and its similar architectures, while the second part discusses the effectiveness

of pre-trained language models. Lastly, we discuss using pre-trained language models

as their shared part of multi-task learning architectures, which is the main focus of

this thesis.

2.1 Multi-Task Learning

Multi-task Learning (MTL) helps to improve the generalization of a model by leverag-

ing the information in the training sets of the related datasets [22]. MTL has proven

to be helpful in various applications such as computer vision, health informatics,

speech, and especially Natural Language Processing (NLP) [3] for a long time.

MTL has also proven to help the model to generalize more. A multi-task learn-

ing framework for sentence representations was presented and showed that learning-

related tasks (including skip-thought training, machine translation, entailment clas-

sification, and constituent parsing) jointly results in good generalization [19].

MTL contains mainly two techniques [15] of hard parameter sharing and soft

parameter sharing [10]. The former is when the shared part of the model is completely

shared between all the tasks, while the latter is more flexible and partially shared

across tasks.

MTL default setting is homogeneous-feature MTL [16] where it is considered to

consist of only one type of task [22]. The opposite to homogeneous-feature MTL is

heterogeneous-feature, consisting of different types of supervised tasks such as classi-

fication and regression problems [11, 13, 19].

It is often observed that tasks interfere with each other, and the model’s learning

leads to a negative transfer phenomenon. One way to prevent this behaviour is to

find correlated tasks using task clustering algorithms which is just an extension of

4

5

clustering algorithms to the task level rather than the data level. Which tasks should

and should not be trained together in one network when employing multi-task learning

has been investigated in [17]. That work also provides an empirical study of several

factors that influence multi-task learning, including network size, dataset size, and

how tasks influence one another when learned together. They also explore which tasks

should be learned together by proposing a framework in which they assign tasks to a

few neural networks such that cooperating tasks being learned by the same network.

2.2 Pretrained language models

Pre-trained language models such as BERT (Bidirectional Encoder Representations

from Transformer) have shown effectiveness in various NLP tasks such as classifica-

tion, sentiment analysis, question-answering, and named entity recognition. BERT [5]

was trained in a self-supervised multi-task objective (two supervised objectives),

which included a masked language modelling (MLM) head and next sentence pre-

diction (NSP). For the MLM task, they randomly hide 15% of words in a sentence

and train BERT to predict the missing words, while for NSP, the task aims to predict

whether two sentences are consecutive or not (binary classification).

Although the BERT language model was trained on Wikipedia and Book Corpus

(total of 16GB text), its performance suffers in biomedical and clinical context due

to the word distribution shift from the general domain to the more technical corpus.

BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical

Text Mining) [9] is a domain-specific language representation model pre-trained on

large-scale biomedical corpora that outperforms BERT on a variety of biomedical

text mining tasks such as biomedical named entity recognition, biomedical relation

extraction, and biomedical question answering. BioBERT includes five versions that

are pre-trained on either PubMed, PMC, or both of them.

Another BERT-family model is BlueBERT[14] which uses the pre-trained BERT

and continues to pre-train the model on PubMed abstracts and MIMIC-III clinical

notes.

6

2.3 Multi-task learning meets pre-trained language models

BERT’s effectiveness on the GLUE benchmark compared to its previous SOTA hugely

impacted transfer learning research in the NLP domain. Recent work on multi-task

learning has also taken advantage of the BERT-family models and has successfully

surpassed other models on the GLUE benchmark. BERT and PALS [18] outperformed

the BERT model by training all the GLUE benchmark tasks jointly. BAM [2] used

the BERT model in MTL settings differently and used knowledge distillation com-

bined with teacher annealing technique. Multi-Task Deep Neural Network (MT-DNN)

argued that language model pretraining and MTL are complementary technologies

and can learn better representation when combined [11]. MT-DNN also boosted the

performance of various NLU tasks using multi-task objectives.

BERT-family models have shown effectiveness in MTL architectures when used in

the biomedical domain. BERT was used as the shared part of a multi-task learning

design [13] to learn multiple biomedical and clinical NLP tasks jointly. That work

outperformed BERT on text similarity and relation extraction in the biomedical and

clinical context. CheXbert [16] is another example that uses BERT in their MTL

setting to predict pathologies for a large corpus of radiology reports (classification

task) with 14 heads on top of models of the BERT family.

Following the above work, we also used BERT-family models to evaluate our

proposed approaches, namely GMHL and GMTL. We evaluated our work with a bio-

medical dataset, OHSUMED [6], and a clinical one Open-I [4] which are both publicly

available. OHSUMED is a subset of the MEDLINE database, a bibliographic database

of peer-reviewed medical papers, while Open-I is a free-text radiology report dataset

along with a set of pathologies as their labels. The instances of these two datasets

might be associated with one or multiple classes (multi-label), which can be inter-

preted as a set of binary classifications that share the same dataset. We evaluate how

our grouping labels(binary classification tasks) are impacted when they are trained all

together (MTL), trained in a set of groups (GMTL, GMHL), or individually (STL).

Chapter 3

Methodology

In this research, we developed a library that lets users build and train different

multi-task learning architectures while also comparing their learning process. The

four architectures that the MTLV library supports are: Single-Task Learning (STL),

Multi-task learning (MTL), Grouped Multi-Head Learning (GMHL) and Grouped

Multi-Task Learning (GMTL) learning. Single task learning aims to learn each task

separately using a single model, while multi-task learning aims to learn a set of tasks

with one neural network. GMHL and GMTL are two architectures based on multi-

task learning, the goals of which are to cluster tasks from similar groups to learn

in the same single model (GMHL) or with few models per group (GMTL). In the

following sections, we define these models in detail and explain their architectures.

3.1 Single-Task Learning (STL)

In order to describe the problem, we first define the task and single-task learning.

Definition 1. Task. A supervised task Ti is defined as Ti ≜ {pi(x), pi(y | x),Li},
such that x is the inputs and y is the corresponding targets (labels). Different tasks

may vary based on input distribution (pi(x)), the label distribution given the input

(pi(y | x)), or the loss function (Li).

Definition 2. STL (Single-Task Learning). Given D a supervised dataset

that has n input and output pairs of x and y defined as D = {(x,y)n}. The single-

task learning goal is to minimize a loss function of with respect to the neural network

parameters θ (minθ L (θ,D)).

Solving a binary or multi-class text classification problem with a pre-trained lan-

guage model is an example of single-Task learning (STL) model. In Fig 3.1, an

example of such is depicted where a pre-trained language model is used to learn rep-

resentations of Sentence (Sequence) input S and classify the label with an additional

layer on top of a model (classification layer).

7

8

In the setting, where there are m tasks to learn, m separate models are trained

separately to learn these tasks. This design decision can become computationally

very expensive as the number of tasks grows.

Figure 3.1: This design is a typical single task learning architecture (inspired by
BERT [5]) for solving a binary or multi-class classification problem, where a single
layer is added on top of the pre-trained language model to perform as a classification
layer. A set of tokens (T1 to Tn) from the input sentence (sequence of words) is
fed into a pre-trained language model. In the case of BERT-family models, the CLS
and SEP tokens are added at the beginning and end of the input, respectively. The
CLS token is a classification token representing the whole sentence, while SEP marks
the end of the sentence. The output of the pre-trained model is the sequence of
token embeddings (E[CLS], E1, E2, ..., En, E[SEP]). The first output, i.e. the CLS
embedding, is then given to the classification layer on top of the model to perform
binary/multi-class classification.

3.2 Multi-Task Learning (MTL)

Definition 3. MTL(Multi-Task Learning) Given m supervised tasks {Ti}mi=1

multi-task learning aims to improve the learning of a model for each task Ti , by

using the knowledge learned jointly from all the m tasks.

According to the MTL definition, we can learn either different types of supervised

tasks (e.g. classification and regression problems) or only one type of task. The first

is called heterogeneous MTL, while the latter is homogeneous MTL(default multi-

task setting). This work focuses on homogeneous MTL for classification tasks where

all these tasks share the same dataset. The setting where some binary classification

tasks share the same data is often referred to as Multi-label classification.

9

The multi-label problem is an example of a multi-task learning problem, where,

given a sentence or sequence S, each label represents a different binary classification

task. Usually, a single model (MTL) or series of models (STL) predicts the positive

or negative label of each task. One of the Multi-label dataset challenges is the volume

problem which refers to the number and imbalance of output labels. It is often the

case to encounter an imbalanced dataset in real-world scenarios, which means that

the number of instances associated with some labels is much smaller (greater) than

the number of instances assigned to others.

Unfortunately, the design decision for a multi-task architecture can become chal-

lenging due to the variety of design choices. Because of the dependency of MTL on

the relatedness of tasks, architecture, and size of the network, it is often observed that

the same architecture might work for one set of tasks but not necessary for another.

This work proposes an open-source framework (MTLV) to easily let researchers exper-

iment with a set of MTL architectures variations by simply providing a configuration

file of their design choices. Furthermore, we develop MTLV in a way the researchers

can easily integrate their models, optimization function, and dataset preprocessing

(More details on MTLV library in Appendix B).

One of the most commonly used design choice in MTL is hard parameter sharing,

where a set of hidden layers (in this case, a pre-trained language models) is shared

between all tasks while having some separate layers (heads) on top of the model to

learn m different tasks jointly. This architecture is referred to as multi-head archi-

tecture [15] that is depicted in Fig 3.2. This architecture design divides the neural

network into two parts of shared layers and task-specific layers.

Shared layers of multi-head architecture play an essential part in this design be-

cause they enable positive transfer among correlated tasks.

A common approach to solve a multi-label classification problem (with L labels)

using pre-trained language models is to add a single classification layer on top of a

model (Fig 3.3), where the activation and loss Function of the last layer is sigmoid

and Binary Cross entropy respectively. This architecture can be interpreted as a

multi-task learning (MTL) architecture where all the binary classification datasets

are being learned jointly with a single model. An example of such a model is depicted

on the right-hand side of Fig 3.3.

10

Figure 3.2: The multi-head architecture [15] is a type of MTL architecture in which
a set of layers are shared between all the tasks (hard parameter sharing). The ef-
fectiveness of pre-trained language models makes them a great fit for the shared
part of this network. On top of this architecture, separate heads are jointly learning
m different tasks. The number of layers for the shared and task-specific heads are
hyperparameters of this design.

This typical approach works as follows: (1) The input of a pre-trained BERT-

family model which is a tokenized sequence of words is formed; (2) [CLS] and [SEP]

are the two special tokens used to form the inputs. The classification token named

[CLS] is added at the beginning of each input sequence, while [SEP] is added at the

end of the input sequence. [CLS] token is the classification token which represents

the context of the whole input sequence. This token is often used as a representation

(embedding) of all the input tokens (sentence or sequence embedding).

Figure 3.3: On the left, the architecture design of Single-Task Learning (STL) is
depicted. The same architecture is fine-tuned separately for each task, such that m
models are trained separately for m tasks. A multi-task learning (MTL) architecture
is shown on the right, including a single model that learns m different tasks jointly.
In the binary classification task, the architecture on the right is designed to solve a
multi-label classification (MLC) task.

11

3.3 Grouping Multi-head Learning (GMHL)

Following the design of multi-head architecture, we introduce an architecture where

each head learns a set of tasks. Grouped Multi-Head Learning (GMHL) architecture

aims to learn a set of groups of tasks jointly. Our hypothesis for this architecture

design is that each head will specialize in some related tasks and achieve positive

transfer. An example of GMHL architecture is depicted on right-hand side of Fig 3.4.

The hyperparameters of this design are loss function, the number of layers of

each head, the task groupings (which task in which head), learning rate, and which

pre-trained model to use as shared layers.

Figure 3.4: The Grouped Multi-Task Learning(GMTL) is located on the left, while
the Grouped Multi-Head Learning(GMHL) appears on the right. Both of these ar-
chitectures rely on a task clustering algorithm. The GMTL design is inspired from
previous work in computer vision [17], where a few models (similar to the model on
the left) are fine-tuned to learn a group of tasks (i.e. in this figure, the model is
learning Task T1, T2 and T5). We use the same group of tasks to build a GMHL
architecture, where a group of related tasks are located in each head. In GMHL, a
single model is used to train all the tasks. The input of both these two designs is the
CLS token embedding from the last layer of the pre-trained language model.

3.4 Grouping Multi-Task Learning (GMTL)

Following computer vision domain work [17], we design Grouping Multi-Task Learning

(GMTL) architecture, in which we train few models separately for a group of tasks.

The hypothesis behind designing this architecture is that each model specializes in

12

a set of related tasks, where learning one task can positively affect the other one

and finally leads to positive transfer. A sample of this architecture with pre-trained

models as the shared layers is shown in Fig 3.4.

3.5 MTLV workflow

As already described, we focus on four main architectures in this research. The two

architecture of STL and MTL are the ones that are designed (depicted in Fig 3.3) to

train per task or train all tasks jointly together. The hyperparameters of these two

architectures are the following: number of epochs, batch size, the tokenizer parameters

(maximum length, truncation, and padding), optimizer, and learning rate.

The other two architecture (GMTL and GMHL) follow a similar workflow as

depicted in Fig 3.5. The MTLV library workflow includes four steps to train GMHL

and GMTL models, which are as follows: (1) Clustering the tasks (2) Design, training,

and optimization decision (3) Fine-tunning the model (4) Visualize learning of heads,

labels, and model.

This framework simplifies the comparison of different architecture with an easy-to-

use user interface visualization. The visualization that MTLV provides is the MLflow

tracking system, a framework that supports the machine learning life cycle and helps

the user monitor the model during training and running. During training in the

backend, we log different values such as loss, F1-score micro, F1-score macro, and

subset accuracy using MLflow library and later visualization it with MLflow tracking

UI that shows the performance of different designs while also allowing the user to

compares how each label, head, and the model is learning.

3.5.1 Clustering the tasks (labels)

Before describing the approach that this research is proposing for clustering the tasks,

we first define Task Features and Task clustering.

Definition 4. Task Features. Given a supervised task Ti, task feature vector

Vi is formed to represent the task context and characteristics. Task features may be

labels, data distribution or classification model properties. The task feature vector

Vi is a d-dimensional vector representation (Vi ∈ Rd).

13

Figure 3.5: MTLV workflow for GMTL and GMHL is depicted in this flowchart.
First, the label names or the description of the labels is given to a pre-trained lan-
guage model (BERT-family) to extract its embeddings. Then the mean of the token
embeddings is calculated and the elbow curve is plotted to help the user identify the
number of clusters. The embedding of each task and the number of clusters is passed
to the k-medoid clustering algorithm to cluster (group) tasks. Using the groups from
the clustering algorithm to build either GMTL or GMHL architecture is depicted
in gray. Once the model and its architecture are decided, it is trained on data and
all the model parameters are fine-tuned. While training and predicting, we log the
parameters and metrics of these architectures and later visualize them in MLflow
Tracking UI.

In the context of our multi-label classification task, we address the problem as

a set of binary classification tasks, where a binary classification task is defined by a

single label representing the presence or absence of a specific pathology or diagnostic.

We represent each task by the contextual embedding of the name of its label. The

label names are first passed to a BERT-family model to extract their contextual

embedding. These embeddings are the task feature vectors used for task clustering.

Our hypothesis behind using contextual embeddings is that the model learning

the representation of one task can positively influence the learning of the other task in

the same model while learning all the tasks with the same model can cause negative

transfer if the tasks are not correlated.

The embedding of a label name consisting of multiple tokens is computed as the

14

average of the embeddings of all the tokens.

In general, task features for task clustering can consist of the parameters of a

model (gradients [17]), an embedding vector that represents an entire task text (i.e.

task2vec [1]).

One of the hyperparameters of the GMTL and GMHL architectures is which set of

tasks should be learned together. According to the task clustering definition, we pro-

pose an approach to cluster the dataset labels based on their contextual embeddings

as task features.

Definition 5. Task Clustering. Given m supervised tasks {Ti}mi=1, where Ti is

a supervised text classification task (i.e. binary classification), task clustering forms

several clusters based on task feature vectors (Vi) and a given distance metric (e.g.

euclidean distance) such that each cluster consists of similar tasks.

For clustering the labels(tasks), we used k-medoid clustering algorithm [8] (with

euclidean distance as the distance measure), where it attempts to minimize the sum of

dissimilarities of the other points in the cluster, given that in each cluster, one of the

points is the medoid of the cluster. In the k-medoid algorithm, the number of clusters

is a prior, making it a hyperparameter for our design decision. MTLV framework plots

the elbow method for a given dataset to help users identify the number of clusters.

In natural language processing (NLP) tasks, it is sometimes clearer to the user

which tasks are related by reading the corresponding documents of a task to find

correlated tasks based on related documents. MTLV also allows users to cluster the

labels with any given set of task groupings. We believe this feature is necessary as a

human insight (expert) to this approach can help the model learn better representa-

tions and help them evaluate their hypothesis.

3.5.2 Design decisions

According to the four architectures explained in this work (STL, MTL, GMTL, and

GMHL), users can choose from various configuration options. For GMHL and GMTL

designs, users must choose how the framework should cluster the tasks(labels) and

how many clusters. The first can be either using the label name or the label descrip-

tion of the binary classification task, while the latter can be decided with the elbow

plot. It is also possible to provide the framework with any given set of task groupings

15

instead of clustering approaches.

For all the architecture decisions, the user can choose from the pre-trained lan-

guage models in Table 4.2 as the shared layer of the network, and values for hyperpa-

rameters, including the number of epochs for training, batch size, tokenizer maximum

length and whether to truncate the inputs.

3.5.3 Fine-tunning the model

After grouping the tasks, making design decisions and choosing the hyperparameter,

the MTLV framework builds the model with corresponding heads and fine-tune all

the model parameters for the downstream tasks. The last layer embedding of [CLS]

token is passed as input to heads as a feature vector for classification. Both GMHL

and GMTL heads have the same activation and loss function. It is sigmoid for the

former and binary cross-entropy for the latter. The main difference is an extra step for

GMHL to calculate the overall loss of the model. Since each head of this architecture

has a separate loss, we use the overall sum loss and leave exploring the different loss

functions for future work. The network gets updated with the AdamW optimizer,

during training.

3.5.4 Visualize the learning

During the workflow of MTLV, we use MLflow to log parameters (key-value string

types for storing hyperparameters and design decisions), metrics(key-value where the

value is numeric and gets updated throughout the run (i.e. loss, F1-scores)), artifacts

(i.e. the trained weights, the classification report). After the experiments are over, in

the MLflow tracking UI, the user can query and compare different runs (More details

on Mlflow Tracking UI in Appendix E).

Chapter 4

Experimental Results

We experimented with the four main architectures STL, MTL, GMTL, and GMHL

that the MTLV framework supports and evaluated them with biomedical and clinical

domain datasets. Open-I and OHSUMED are the two datasets used to compare the

set of architectures from the MTLV framework to evaluate the effectiveness of learning

tasks jointly in three multi-task learning architectures.

4.1 Data

We chose Open-I and OHSUMED datasets for this research experiment. OHSUMED

includes peer-reviewed medical literature from the MEDLINE database, while Open-I

consists of free-text radiology reports from radiologists’ observations. The number of

labels and number of documents for each dataset is listed in Table 4.1

dataset #labels Total Train Test

Open-I 19 3,159 2,527 632
OHSUMED 23 34,389 27,556 6,833

Table 4.1: The details of the two datasets used in this research. The split for
the OHSUMED dataset is already provided with the dataset, while Open-I dataset
splitting was performed using multi-label stratification method [20]. During the ex-
periments, the validation set is always 15% of the training set. We used 20% of
OHSUMED dataset, which was extracted using stratified sampling [20] to save com-
putational cost. The total, train and test are the count of unique documents in each
set.

OHSUMED includes medical abstracts from the MeSH categories of the year 1991.

The task was to categorize the 23 cardiovascular disease categories. Although some

subset collection of the OHSUMED dataset exists (i.e. OHSUMED-10 [7]), we used

all the 23 categories from the original dataset. This collection consists of 34,389

unique documents of the medical abstracts. In this collection, there are 27,556 unique

16

17

abstracts for training and 6,833 for testing. The detailed list of how many documents

exists per category and what is the category themselves are in listed in Appendix A.

The original Open-I dataset includes 3,955 radiology reports. The two most im-

portant parts of these reports, which we used as input of the models, are FINDINGS

and IMPRESSION. Findings is a radiologist’s note on the observation, whether it is

normal or abnormal, while Impression summarizes the findings, which often includes

the diagnosis; therefore, it is the most important part of the radiology report. Accord-

ing to their radiology reports, this dataset has 1,719 different labels, which indicate

one or more pathologies for patients. We only selected the 19 top classes from this

list. Three preprocessing steps for using this dataset are as follows: 1. removing the

empty reports; 2. removing the duplicate reports; 3. removing the strings used for

de-identification, such as ”XXXX”. We ended up with a total of 3,159 reports to

work with. This set of reports is split with 80/20 training/test split and stratified

multi-label sampling [20]. The splitting leads to 2,527 reports for the train set and

632 reports for the test set. The count and percentage of each class of the Open-I

dataset are mentioned in Appendix A.

4.2 Pretrained Language Models

We chose three pre-trained language models for this research experiment listed in

Table 4.2. All the models listed in the table are BERT-family models trained on dif-

ferent domain corpus. BERT-base is trained on the general domain, while BioBERT

and BlueBERT are trained on biomedical and clinical domains. These models help us

to evaluate how MTLV architectures perform using a dataset from similar contexts.

The details of these three models are listed in Table 4.2

4.3 Implementation details

Our implementation is based on PyTorch and Huggingface Transformers library. We

used AdamW optimizer [12] which is a variant of the Adam algorithm and learning

rate of 2e-5 by following [5]. The batch size for both datasets was set to 16. All the

experiments used an NVIDIA V100 SXM2 (16GB memory).

Open-I was trained with ten epochs while OHSUMED with 12 (We found out that

18

Model Trained corpus # p case

BERT-Base Wikipedia and book corpus 110M uncased
BioBERT-Base v1.1 PubMed 1M 110M cased

BlueBERT-Base
pretrained on PubMed abstracts
and clinical notes (MIMIC-III)

110M uncase

Table 4.2: A list of pre-trained models along with their trained corpus used in this
research. All three models are the base version (their encoder have 12 layers) of
BERT and also have the same number of parameters (110 Milion) to provide a fairer
comparison. BERT-Base and BlueBERT-Base are trained on uncased corpus while
BioBERT was trained on cased corpus. Although different variations of BioBERT
and BlueBERT exist, we refer by these short names to the ones with settings shown
in this table.

most of the architectures converged with this setting). We also truncated documents

to 128 tokens for Open-I and 256 for the OHSUMED dataset based on their document

token length distribution. All the experiments for a given dataset used the same train

and test set for their fold for a fairer comparison. We used four-fold cross-validation

for Open-I and threefold for the OHSUMED dataset.

For statistical significance testing, we used the sample of size 10 for both OHSUMED

and Open-I datasets.

4.4 Open-I Results

We set up experiments for the four architectures mentioned with BERT, BioBERT

and BlueBERT language models as their shared layers. We experimented with two

different feature vectors for clustering the labels(binary classification tasks), namely

the label name and a short description of what each label represents, embedding

extracted from a BERT-family model. We also evaluate the number of clusters (3,

4, and 5) for the k-medoid clustering algorithm to cluster(group) the labels(tasks).

The number of clusters are concluded from plotting the elbow method. The results

are reported in Table 4.3. We only list the best performance of GMHL and GMTL

settings. The full results for the Open-I dataset are in Appendix C.

We use three measurements to evaluate our approaches, which are F1-score mi-

cro(F1 micro), F1-score macro(F1 macro) and subset accuracy. F1 micro calculates

19

the metric globally while F1 macro calculates metric for each class and finds their un-

weighted mean. F1 macro and f1 micro are two measurements we use to compare the

experiments as they represent the measurement better than subset accuracy, which

is just an Exact Match Ratio (EMR) that does not take into account the partially

correct labels and consider them as incorrect. The subset accuracy is reported in our

result tables for completeness.

Architecture Model clustering F1-macro F1-micro subsetAcc

STL
BERT - 91.40± 0.79 93.30± 0.48 86.16± 0.84
BioBERT - 91.49± 0.13 93.16± 0.21 85.52± 0.74
BlueBERT - 93.38± 0.41 94.58± 0.67 88.06± 1.43

MTL
BERT - 85.72± 1.66 90.43± 0.77 81.41± 1.69
BioBERT - 90.00± 1.07 92.69± 0.63 85.17± 0.90
BlueBERT - 90.64± 1.32 93.41± 0.82 86.63± 1.29

GMHL
BERT 5 (LabelDesc) 63.73± 5.38 82.23± 2.38 82.95± 1.95
BioBERT 5 (LabelDesc) 79.86± 4.16 88.73± 1.16 88.97± 0.94
BlueBERT 5 (LabelDesc) 76.36± 1.66 89.11± 0.11 89.16± 0.08

GMTL
BERT 5 (LabelDesc) 91.45± 0.24 93.22± 0.27 92.34± 0.36
BioBERT 4 (LabelDesc) 92.56± 0.40 94.25± 0.31 93.76± 0.46
BlueBERT 5 (LabelDesc) 93.86± 0.34 95.32± 0.15 94.40± 0.24

Table 4.3: We compare the four main Architectures explained in this work for the
Open-I dataset. We conclude the following: (1) Both BioBERT and BlueBERT
outperform BERT in different settings; (2) BlueBERT outperforms the other two as it
was trained on both PubMed abstract and clinical notes which makes its context more
closer to radiology reports; (3) STL and GMTL appear to have similar performance
and both outperform the MTL architecture. Although GMHL reports the poorest
results, it is important to note that we only experimented with a fixed learning rate,
number of epochs and the overall loss function. The number of clusters and the
features used (either label name or label description) for clustering the tasks are also
indicated in the clustering column. To compare these architectures, we only use F1-
macro and F1-micro results, while the subsetAcc (Exact match ratio) is only reported
for completeness, as it does not consider partial correctness of labels. The complete
table of GMHL and GMTL experimental results is in Appendix C.

We observed that BlueBERT usually outperforms the BERT and BioBERT model

since it is trained on both PubMed abstracts and MIMIC-III clinical notes, which

is closer to the context of Open-I reports. Among the architectures that binary

classification tasks are being learned jointly, GMTL performed the best while having

similar results compared to learning tasks individually (STL). Although GMHL had

20

poor performance compared to other architectures, it is important to note that the

architecture includes different hyperparameters to tune, and we only used a fixed set

of hyperparameters to experiment with. The GMHL results can be considered a fair

baseline for future work.

The standard way to solve a multi-label classification problem is to learn all the

labels in a single model (MTL Architecture). Table 4.3 shows that GMTL is outper-

forming the MTL setting when using any of the BERT, BioBERT and BlueBERT

models. We used the Wilcoxon signed-rank test (a non-parametric version of the

paired T-test) for statistical significance tests of all three language models in GMTL

and MTL settings. The p-value of GMTL and MTL significant test is calculated

and listed in Table 4.4. A p-value less than 0.05 shows a statistical significance

which is the case for most of the models. The BlueBERT language model has the

most related context to the Open-I dataset, which its p-value successfully shows that

GMTL-BlueBERT is statistically significant compared to MTL-BlueBERT for both

F1-micro and F1-macro metric. It is the same case for BERT, although it has been

trained on general domain text. Lastly, we found out BioBERT for GMTL is not

statistically significant from MTL, which is because although BioBERT was trained

on PubMed abstract articles, it has a different domain compared to radiology reports.

Model A Model B F1-macro p-value F1-micro p-value

GMTL-BERT MTL-BERT 0.002 0.004
GMTL-BioBERT MTL-BioBERT 0.02 0.77
GMTL-BlueBERT MTL-BlueBERT 0.002 0.004

Table 4.4: P-values from the Wilcoxon signed-rank test (a non-parametric version
of the paired T-test) for the Open-I dataset. To check whether GMTL and MTL’s
observed results are significantly different, we performed statistical tests and reported
their p-value in this table. The statistical significance test for BlueBERT, which is
the model that has the most related context to the Open-I dataset p-value, shows
that GMTL is statistically significant compare to MTL (as the p-value is less than
0.05, the null hypothesis gets rejected). Although BERT and BioBERT do not have
a similar context to radiology reports, we still observe that GMTL is statistically
significant when using BERT, but it fails to reject the null hypothesis for the statistical
significance test for BioBERT.

The p-value of F1-macro is always lower than the F1-micro, and the reason is

that the Open-I dataset is unbalanced. Although F1-micro helps to compare models,

21

F1-macro takes each class into account, making it a fairer comparison. We list all the

19 labels of the Open-I dataset and compare their F1-score per label to see how the

GMTL and MTL models perform per label(binary classification task) in table 4.5.

class(Pathology) F1-score(GMTL) F1-score(MTL) count(%)

Airspace Disease 95.8±±± 1.14 94.4± 2.07 25(3.2)
Atelectasis 98.1±±± 1.60 97.7± 0.48 66(8.3)
Calcified granuloma 96.4± 1.35 96.4± 1.35 55(6.9)
Calcinosis 96.5± 3.54 98.0±±± 0.94 61(7.7)
Cardiomegaly 96.5±±± 0.85 95.3± 0.82 75(9.5)
Cicatrix 93.4±±± 2.01 93.0± 2.58 42(5.3)
Deformity 78.6±±± 3.50 72.5± 5.25 23(2.9)
Effusion 93.4±±± 2.41 90.7± 2.58 33(4.2)
Emphysema 91.8±±± 1.55 89.7± 2.91 21(2.6)
Medical Device 85.9±±± 1.37 83.6± 2.91 26(3.3)
Nodule 93.9±±± 3.51 88.6± 4.33 22(2.8)
granulomatous disease 96.7±±± 1.83 94.9± 2.28 22(2.8)
indwelling catheters 89.0±±± 2.36 86.8± 3.97 25(3.2)
lung hyperdistention 97.3±±± 1.42 95.0± 0.67 41(5.2)
lung hypoinflation 97.8±±± 0.79 96.8± 0.79 56(7.1)
opacity 97.9±±± 0.32 97.4± 0.70 91(11.5)
spine degenerative 98.5± 2.12 98.5± 1.58 35(4.4)
surgical instrument 92.3±±± 1.16 90.0± 6.48 21(2.6)
thoracic vertebrae degenerative 97.8±±± 1.23 97.7± 1.06 53(6.7)

all 93.86±±± 0.34 90.64± 1.32 793(100)

Table 4.5: To further compare how Blue-BERT performs when comparing MTL and
GMTL architecture for the Open-I dataset, we listed per label F1-score for each
architecture and showed the count and percentage of each label (class). The count
shows how many documents had the given class. It is observed that for most of the
classes, GMTL is performing better compared to MTL. The higher scores are shown
in bold.

Although GMTL successfully outperformed the MTL architecture, its perfor-

mance is still close to STL. We recorded the clock time of each experiment (Table 4.9)

and observed that GMTL is about three times faster than STL when trained on the

Open-I dataset.

22

4.5 OHSUMED Results

Similar to Open-I, the same set of experiments was performed for the OHSUMED

dataset. As the original OHSUMED dataset was computationally expensive for most

of models we were training, we only used a 20% sample of the dataset. We exper-

imented with the four architectures that MTLV supports and three BERT-family

models (BERT, BioBERT, BlueBERT) and reported its results in Table 4.6.

Architecture Model clustering F1-macro F1-micro subsetAcc

STL
BERT - 59.56± 0.64 64.21± 1.06 32.86± 1.01
BioBERT - 70.36± 1.27 71.79± 0.47 41.22± 1.38
BlueBERT - 65.61± 0.62 69.20± 0.47 38.88± 1.57

MTL
BERT - 59.35± 1.57 64.82± 1.21 37.67± 0.24
BioBERT - 69.10± 0.72 72.41± 0.71 44.57± 2.16
BlueBERT - 62.70± 1.34 66.46± 0.81 39.81± 0.27

GMHL
BERT 4 (Label) 46.83± 1.98 60.24± 2.84 52.09± 2.94
BioBERT 3 (Label) 67.81± 0.80 72.33± 0.81 66.43± 0.73
BlueBERT 5 (Label) 54.43± 2.17 65.26± 0.70 58.05± 1.22

GMTL
BERT 5 (LabelDesc) 63.13± 0.64 66.30± 0.35 57.28± 0.88
BioBERT 5 (LabelDesc) 70.89± 0.63 72.43± 0.33 64.80± 0.35
BlueBERT 5 (Label) 65.92± 0.44 68.63± 0.66 59.76± 1.02

Table 4.6: The results obtained by only training on 20% of the original OHSUMED
dataset. BioBERT outperforms the other two as it was trained on 1 million PubMed
abstracts, which makes it close to the context of the OHSUMED dataset. GMTL
outperforms MTL, while STL and GMTL performance is similar (except for using
BERT as shared layers). GMHL achieves the lowest results among the other ones.
The full table of GMHL and GMTL experiments is in Appendix D)

As shown in Table 4.6, GMTL and STL performance achieve similar results and

outperform the other two architecture (MTL and GMHL) results. The table shows

that simply jointly training all the tasks brings negative transfer when the volume

of the dataset (number of labels) grows. Even so, the GMHL results reflected in the

table are disappointing. It is important to note that this architecture is only trained

on a fixed set of hyperparameters and not fully explored. Therefore we leave further

improving this architecture for future work. BioBERT language model surpasses the

other models since it was trained on the most related context as the OHSUMED

dataset, which consists of PubMed abstracts. BlueBERT also receives better perfor-

mance compared to BERT, which is only trained on the general domain.

23

We performed a statistical significance test (Wilcoxon signed-rank test) for the

three language models (BERT, BioBERT, BlueBERT) on the OHSUMED dataset

and reported their F1-macro and F1-micro p-values in Table 4.7. A p-value less than

0.05 shows statistical significance, which is the case for all models when tested with

their F1-macro. Although considering F1-macro and F1-micro together gives good

insights about the model’s overall performance, for an imbalanced dataset, model

performance is primarily reflected in F1-macro.

Model A Model B F1-macro p-value F1-micro p-value

GMTL-BERT MTL-BERT 0.002 0.002
GMTL-BioBERT MTL-BioBERT 0.002 0.375
GMTL-BlueBERT MTL-BlueBERT 0.027 0.193

Table 4.7: P-values of statistical significance tests to compare GMTL and MTL mod-
els when trained on the OHSUMED dataset. We report the p-value of the Wilcoxon
signed-rank test for both F1-macro and F1-micro. If a p-value is less than 0.05, the
comparison of GMTL and MTL is considered statistically significant. The GMTL-
BioBERT is statistically significant compared to MTL-BioBERT when they are tested
with F1-macro. Although we could not reject the null hypothesis for BioBERT when
tested with F1-micro, we argue that F1-macro can be trusted more when a dataset
is imbalanced. The F1-score of each class of both GMTL and MTL models when
BioBERT is their shared part is listed in Table 4.8. It is also observed that BERT
and BlueBERT models are statistically significant when tested with F1-macro.

BioBERT was trained on 1 million PubMed abstracts, which makes its context

the closest one to OHSUMED. The F1-macro for BioBERT is significantly signifi-

cant, while F1-micro is not. To further investigate why F1-macro can play a more

important role when comparing GMTL and MTL results, we listed the per-class F1-

score of 10 fold cross-validation for the OHSUMED dataset in Table 4.8. Although

the performance of each class in GMTL and MTL architectures are usually similar,

some of the classes with fewer data samples have significantly improved when using

GMTL, such as C02 by 11.9%, C22 by 36.6%, C03 by 4.1%. The overall F1-macro of

GMTL surpasses MTL by 1.76%. The last row of the table shows the unique number

of documents in the OHSUMED dataset.

GMTL and STL achieved comparable performance when trained on the BERT-

family models, except for the BERT model that GMTL-BERT outperformed the

STL-BERT. We argue that GMTL is a better design and approach compared to STL

24

that learns each task individually. As detailed in Table 4.9, we recorded the clock time

for STL and GMTL when trained on BERT, BioBERT and BlueBERT to compare

their computational cost.

4.6 Limitations

Although the MTLV library allows the user to set any set of hyperparameters for her

network, such as the number of epochs, learning rate, optimizer, we used the same

set of fixed values during our experiments for each dataset.

The GMTL and GMHL results rely heavily on the task clustering algorithm that

decides which tasks are getting learned jointly. The label name and its description

embeddings were used as a task feature, while no features of the tasks’ documents

were explored in this work. Also, the label description was found by searching for a

definition online while it would be more proper for an expert to deliver those expla-

nations for the model to learn embeddings and later for task clustering.

Only a single clustering algorithm(k-medoid) was used for all the experiments of

GMHL and GMTL.

The GMHL architecture had the most hyperparameters (number of layers per

head, overall loss, head initialization) and was only experimented with a set of fixed

hyperparameters that led to the poorest performance overall other architectures.

25

class F1-score(GMTL) F1-score(MTL) count(%)

C01 79.5± 1.35 79.5± 2.42 102(4.5)
C02 62.6±±± 5.4 53.7± 4.0 47(2.1)
C03 92.0±±± 2.94 87.9± 5.11 17(0.7)
C04 82.4± 1.51 84.9±±± 1.1 253(11.1)
C05 64.1± 2.92 65.0±±± 2.75 67(2.9)
C06 78.2± 1.14 78.9±±± 1.66 120(5.3)
C07 75.8±±± 3.79 70.3± 4.03 21(0.9)
C08 73.3±±± 3.02 72.7± 2.11 104(4.6)
C09 72.4± 2.67 73.7±±± 3.53 29(1.3)
C10 68.2± 2.04 68.2± 1.32 154(6.7)
C11 74.4± 1.65 77.2±±± 1.75 40(1.8)
C12 80.7± 1.06 82.4±±± 1.65 101(4.4)
C13 78.4± 2.22 79.4±±± 2.32 65(2.8)
C14 82.7± 1.06 84.0±±± 1.33 244(10.7)
C15 63.6± 1.71 65.1±±± 3.31 51(2.2)
C16 58.0± 2.75 59.7±±± 2.58 43(1.9)
C17 68.7± 1.83 70.3±±± 2.95 65(2.8)
C18 77.0± 2.31 78.70±±± 3.2 77(3.4)
C19 58.3± 3.56 63.4±±± 3.57 35(1.5)
C20 75.5± 2.01 75.8±±± 1.55 125(5.5)
C21 75.1± 2.02 76.4±±± 1.96 117(5.1)
C22 37.4±±± 6.47 0.8± 2.53 23(1.0)
C23 55.6±±± 4.5 46.1± 6.24 384(16.8)

all 71.08±±± 0.56 69.32± 0.95 2284(100)

Table 4.8: The F1-score (of each class) of GMTL-BioBERT and MTL-BioBERT
when trained on OHSUMED is listed in this table. The last column (count%) is
simply showing how many times a given class had documents corresponding to it.
Although most of the classes are outperformed in the MTL setting, the classes with
fewer documents in GMTL considerably outperformed MTL, such as C22, C03, C02
and C07, which shows how GMTL is affecting the performance of the OHSUMED
dataset. The GMTL architecture of this table is using label descriptions as features
for clustering and clustering the labels into five groups. The higher scores are shown
in bold.

26

(a) Open-I dataset

Architecture Clock time

STL-BERT 3.5 h
STL-BioBERT 3.5 h
STL-BlueBERT 3.6 h

GMTL-BERT 56.6 min
GMTL-BioBERT 45.0 min
GMTL-BlueBERT 1.1 h

(b) OHSUMED dataset

Architecture Clock time

STL-BERT 15.6 h
STL-BioBERT 15.0 h
STL-BlueBERT 15.8 h

GMTL-BERT 3.5 h
GMTL-BioBERT 3.1 h
GMTL-BlueBERT 3.3 h

Table 4.9: The clock time for running Open-I and OHSUMED dataset experiments
is listed in the above tables. The clock time for running Grouped multi-task learning
(GMTL) architecture is about three times less for the Open-I dataset and almost five
times less for the OHSUMED dataset than single task Learning (STL) ones. Both
Open-I and OHSUMED results (for GMTL) are based on clustering to five clusters
(group of tasks) except GMTL-BioBERT trained on Open-I dataset, which is trained
with four clusters, so it has a lower clock-time compared to the other Open-I results.

Chapter 5

Conclusion

In this work, we introduced a framework called MTLV (Multi-Task Learning Visual-

izer) which supports four main architectures of Single-Task Learning (STL), Multi-

task Learning (MTL), Grouped Multi-Head Learning (GMHL), and Grouped Multi-

Task Learning (GMTL). This framework evaluated the effectiveness of using multi-

task learning architectures compared to single-task learning. In the STL architecture,

each task is learned individually using the same number of models as tasks, while in

MTL, all the tasks are learned jointly. We introduced GMHL and GMTL architec-

tures where tasks are clustered using label name and descriptions features and later

assigned to different heads of a model or few models, respectively. We reported clus-

tering results with the K-medoid algorithm with only a few clusters based on the

elbow method.

Although learning all tasks together (MTL) has become a go-to approach to solve

a multi-label classification problem(a set of binary classifications that share the same

dataset), our experiments showed that STL and GMTL both outperform MTL. Our

statistical tests confirmed that GMTL is statistically significant compared to MTL

when testing their F1-macro scores. Although STL and GMTL produce similar re-

sults, we detected that STL is 3 to 5 times more computationally expensive when

comparing their clock-time. Finally, GMHL received the poorest results among all

the settings.

We used BERT-family models for training MTLV models and found out the corpus

context that a model is trained on strongly affects the results of our approaches.

Our experiments confirmed that the performance on biomedical and clinical datasets

improved with BioBERT and BlueBERT as the shared layer of the multi-task learning

design. Significantly, the BlueBERT-MTL achieved improvements over BERT-MTL

by 4.92% and 2.98% for F1-macro and F1-micro, respectively, when trained on the

Open-I dataset. BioBERT-MTL also surpasses BERT-MTL by 9.75% F1-macro and

27

28

by 7.59% F1-micro for the OHSUMED results.

Furthermore, we logged the parameters and metrics while the models were training

and visualize them using MLflow to evaluate their learning process.

5.1 Future Work

There are several directions that we can follow to explore the proposed approaches

of this work further. One such is the Grouped Multi-Head Learning (GMHL) ar-

chitecture, which can be further enhanced by exploring other heads’ initialization,

optimizing algorithms, or lowering its learning rates. The overall loss of GMHL can

include weighting algorithms to learn much each head should contribute to the overall

loss.

Another direction is to consider other clustering algorithms such as K-means or

Mean Shift to cluster the tasks based on the label name or label description embed-

ding. The label (task) clustering approach can also go beyond just using the mean of

the token embeddings of label names and use the count of labels as features to cluster

the tasks. This approach might be more useful in GMHL rather than GMTL, where

the label with a lower count gets assigned to the same head so that during training,

we force the model to learn them more by giving them a higher weight compared to

the other heads.

Another path to further explore could be the interpretability of GMHL, GMTL

compared to MTL network to investigate how heads affect the learning process and the

quality of the predictions. The visualization component of MTLV is taking advantage

of the existing infrastructure which is the MLFlow tracking system. A more advanced

system to both interpret and compare the runs is a suitable direction to follow.

Curriculum learning in combination with the proposed architecture is another

candidate for the future work of this research. Using curriculum learning, which is

a type of learning in which the model first learns easy samples of a task and then

gradually increases the task difficulty, is a proper direction to follow in combination

with the GMHL architecture.

Bibliography

[1] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran,
Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona.
Task2vec: Task embedding for meta-learning. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 6430–6439, 2019.

[2] Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D Manning,
and Quoc V Le. Bam! born-again multi-task networks for natural language
understanding. arXiv preprint arXiv:1907.04829, 2019.

[3] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167, 2008.

[4] Dina Demner-Fushman, Marc D Kohli, Marc B Rosenman, Sonya E Shooshan,
Laritza Rodriguez, Sameer Antani, George R Thoma, and Clement J McDonald.
Preparing a collection of radiology examinations for distribution and retrieval.
Journal of the American Medical Informatics Association, 23(2):304–310, 2016.

[5] J. Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-
training of deep bidirectional transformers for language understanding. In
NAACL-HLT, 2019.

[6] William Hersh, Chris Buckley, TJ Leone, and David Hickam. Ohsumed: An
interactive retrieval evaluation and new large test collection for research. In
SIGIR’94, pages 192–201. Springer, 1994.

[7] Thorsten Joachims. Text categorization with support vector machines: Learning
with many relevant features. In Machine Learning: ECML-98. Springer Berlin
Heidelberg, 1998.

[8] Leonard Kaufmann and Peter Rousseeuw. Clustering by means of medoids. Data
Analysis based on the L1-Norm and Related Methods, pages 405–416, 01 1987.

[9] Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim,
Chan Ho So, and Jaewoo Kang. Biobert: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics, 36(4):1234–
1240, 2020.

[10] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. Adversarial multi-task learning
for text classification. arXiv preprint arXiv:1704.05742, 2017.

29

30

[11] Xiaodong Liu, Pengcheng He, Weizhu Chen, and Jianfeng Gao. Multi-task deep
neural networks for natural language understanding. ArXiv, abs/1901.11504,
2019.

[12] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

[13] Yifan Peng, Qingyu Chen, and Zhiyong Lu. An empirical study of multi-task
learning on bert for biomedical text mining. arXiv preprint arXiv:2005.02799,
2020.

[14] Yifan Peng, Shankai Yan, and Zhiyong Lu. Transfer learning in biomedical nat-
ural language processing: An evaluation of bert and elmo on ten benchmarking
datasets. In Proceedings of the 2019 Workshop on Biomedical Natural Language
Processing (BioNLP 2019), pages 58–65, 2019.

[15] Sebastian Ruder. An overview of multi-task learning in deep neural networks.
arXiv preprint arXiv:1706.05098, 2017.

[16] Akshay Smit, Saahil Jain, Pranav Rajpurkar, Anuj Pareek, Andrew Y. Ng, and
Matthew P. Lungren. CheXbert: Combining Automatic Labelers and Expert
Annotations for Accurate Radiology Report Labeling Using BERT. arXiv e-
prints, page arXiv:2004.09167, April 2020.

[17] Trevor Standley, Amir Zamir, Dawn Chen, Leonidas Guibas, Jitendra Malik, and
Silvio Savarese. Which tasks should be learned together in multi-task learning?
In International Conference on Machine Learning, pages 9120–9132. PMLR,
2020.

[18] Asa Cooper Stickland and Iain Murray. Bert and pals: Projected attention layers
for efficient adaptation in multi-task learning. In International Conference on
Machine Learning, pages 5986–5995. PMLR, 2019.

[19] Sandeep Subramanian, Adam Trischler, Yoshua Bengio, and Christopher J Pal.
Learning general purpose distributed sentence representations via large scale
multi-task learning. In International Conference on Learning Representations,
2018.

[20] Piotr Szymański and Tomasz Kajdanowicz. A scikit-based python environment
for performing multi-label classification. arXiv preprint arXiv:1702.01460, 2017.

[21] D. Xu, Y. Shi, I. W. Tsang, Y. Ong, C. Gong, and X. Shen. Survey on multi-
output learning. IEEE Transactions on Neural Networks and Learning Systems,
31(7):2409–2429, 2020.

[22] Yu Zhang and Qiang Yang. A survey on multi-task learning. arXiv preprint
arXiv:1707.08114v2, 2017.

Appendix A

Datasets Details

The details of the Open-I and OHSUMED dataset that we choose for this research

are discussed here. The distribution of each class for Open I and OHSUMED are

depicted in Table A.1 and Table A.2 respectively.

Although The preprocessing steps for Open-I dataset is mentioned in this work,

note that the ”major” tag of the XML files are the Manual annotations while the

”automatic” tag is the MTL annotations [4].

The OHSUMED dataset is a subset of the MEDLINE database maintained by

the National Library of Medicine. MEDLINE database is a bibliographic database

of peer-reviewed medical literature that contains 23 categories. These 23 categories

counts, which are the classes of this multi-label dataset are listed in the table A.2.

The OHSUMED table classes are Medical Subject Headings (MeSH) categories of

cardiovascular diseases group which are listed in the table A.3.

31

32

Pathology total(%) train(%) test(%)

Airspace Disease 125(4.0) 100(4.0) 25(4.0)
Atelectasis 332(10.5) 266(10.5) 66(10.4)

Calcified granuloma 274(8.7) 219(8.7) 55(8.7)
Calcinosis 304(9.6) 243(9.6) 61(9.7)

Cardiomegaly 375(11.9) 300(11.9) 75(11.9)
Cicatrix 196(6.2) 154(6.1) 42(6.6)

Deformity 117(3.7) 94(3.7) 23(3.6)
Effusion 164(5.2) 131(5.2) 33(5.2)

Emphysema 105(3.3) 84(3.3) 21(3.3)
Medical Device 132(4.2) 106(4.2) 26(4.1)

Nodule 111(3.5) 89(3.5) 22(3.5)
granulomatous disease 111(3.5) 89(3.5) 22(3.5)

indwelling catheters 125(4.0) 100(4.0) 25(4.0)
lung hyperdistention 206(6.5) 165(6.5) 41(6.5)

lung hypoinflation 282(8.9) 226(8.9) 56(8.9)
opacity 455(14.4) 364(14.4) 91(14.4)

spine degenerative 175(5.5) 140(5.5) 35(5.5)
surgical instrument 105(3.3) 84(3.3) 21(3.3)

thoracic vertebrae deg. 265(8.4) 212(8.4) 53(8.4)

all 3159(100) 2527(100) 632(100)

Table A.1: The Open-I dataset is a multi-label classification problem that assigns a
set of pathologies to radiology reports. The listed pathologies are the classes of this
dataset. Each class’s count and percentage are indicated for the train and test set
and also their total. The last row of the label that shows the count for all the labels
is showing the unique number of reports.

33

category total(%) train(%) test(%)

C01 508(7.4) 406(7.3) 102(7.5)
C02 234(3.4) 187(3.4) 47(3.5)
C03 85(1.2) 68(1.2) 17(1.3)
C04 1265(18.4) 1012(18.3) 253(18.7)
C05 336(4.9) 269(4.9) 67(5.0)
C06 598(8.7) 478(8.6) 120(8.9)
C07 105(1.5) 84(1.5) 21(1.6)
C08 518(7.5) 414(7.5) 104(7.7)
C09 143(2.1) 114(2.1) 29(2.1)
C10 770(11.2) 616(11.1) 154(11.4)
C11 200(2.9) 160(2.9) 40(3.0)
C12 504(7.3) 403(7.3) 101(7.5)
C13 325(4.7) 260(4.7) 65(4.8)
C14 1220(17.7) 976(17.6) 244(18.0)
C15 255(3.7) 204(3.7) 51(3.8)
C16 217(3.1) 174(3.1) 43(3.2)
C17 323(4.7) 258(4.7) 65(4.8)
C18 384(5.6) 307(5.5) 77(5.7)
C19 173(2.5) 138(2.5) 35(2.6)
C20 623(9.0) 498(9.0) 125(9.2)
C21 587(8.5) 470(8.5) 117(8.6)
C22 101(1.5) 78(1.4) 23(1.7)
C23 1922(27.9) 1538(27.8) 384(28.4)

all 6891(100) 5538(100) 1353(100)

Table A.2: The count per class(category) for the OHSUMED dataset is reflected in
this table. The category count and percentage in parenthesize show how the data is
distributed over all the categories. The last row of the table is showing the unique
number of documents in the dataset.

34

Categories class

Bacterial Infections and Mycoses C01
Virus Diseases C02
Parasitic Diseases C03
Neoplasms C04
Musculoskeletal Diseases C05
Digestive System Diseases C06
Stomatognathic Diseases C07
Respiratory Tract Diseases C08
Otorhinolaryngologic Diseases C09
Nervous System Diseases C10
Eye Diseases C11
Urologic and Male Genital Diseases C12
Female Genital Diseases and Pregnancy Complicat... C13
Cardiovascular Diseases C14
Hemic and Lymphatic Diseases C15
Neonatal Diseases and Abnormalities C16
Skin and Connective Tissue Diseases C17
Nutritional and Metabolic Diseases C18
Endocrine Diseases C19
Immunologic Diseases C20
Disorders of Environmental Origin C21
Animal Diseases C22
Pathological Conditions, Signs and Symptoms C23

Table A.3: The categories or classes of OHSUMED dataset and what they stand for
are reflected in this table.

Appendix B

Library Structure

In this work, we developed a python package (library) that let user explore multi-

task learning architectures. The structure of the library associated with this thesis

is depicted in Fig B.1. The src directory contains all the source code of the library

where each subpackage focuses on a separate part of building and training the model.

For instance, the heads sub-package focus on how to cluster and build the grouping

of heads for Grouped Multi-task learning and Grouped Multi-head Learning archi-

tectures, while Sample configuration files of the hyperparameters which are given as

inputs are provided in the config directory. This library is available on GitHub 1.

src

mtlv ... This directory holds the packages for MTLV

library.

config.... The configuration files to build a model

based on.

datasets

heads

models

optimizers

tokenizers

utils

main.py

training.py

Figure B.1: The structure of the MTLV library is depicted in this figure. The mtl
directory in the src includes all of the architecture and implementations of this thesis.

1https://github.com/fatemerhmi/MTLV

35

https://github.com/fatemerhmi/MTLV

Appendix C

Open-I detailed results

We experimented with a set of hyperparameters for clustering the labels(tasks) of

the OHSUMED dataset, such as Label/Label description and the number of clusters.

The GMHL and GMTL detailed result of the Open-I dataset is listed in Table C.1,

and Table C.2 respectively.

Model # clusters Clustering F1-macro F1-micro subsetAcc

BERT

3
Label 46.69± 2.88 65.83± 3.65 68.06± 2.89
Label Desc 59.34± 2.56 77.02± 2.52 78.90± 2.32

4
Label 40.63± 2.03 55.66± 2.24 58.43± 1.67
Label Desc 61.81± 5.66 80.48± 3.16 81.67± 2.63

5
Label 50.57± 2.36 66.00± 2.08 66.94± 2.19
Label Desc 63.73± 5.38 82.23± 2.38 82.95± 1.95

BioBERT

3
Label 74.96± 3.14 88.16± 0.92 88.25± 0.77
Label Desc 73.49± 0.43 85.40± 0.41 86.00± 0.25

4
Label 75.28± 5.12 87.04± 2.07 87.43± 1.80
Label Desc 66.77± 4.30 82.51± 2.27 83.45± 2.06

5
Label 65.30± 3.28 83.30± 1.09 84.00± 1.19
Label Desc 79.86± 4.16 88.73± 1.16 88.97± 0.94

BlueBERT

3
Label 75.82± 4.96 87.78± 2.01 87.75± 1.81
Label Desc 71.85± 2.99 86.88± 0.99 87.18± 0.76

4
Label 69.74± 1.20 85.85± 0.37 85.39± 0.58
Label Desc 74.02± 2.99 87.27± 1.44 87.54± 1.32

5
Label 67.54± 0.96 83.19± 1.00 82.91± 1.25
Label Desc 76.36± 1.66 89.11± 0.11 89.16± 0.08

Table C.1: Detailed results of GMHL architecture for Open-I dataset is listed in this
table. We experimented with clustering label names and their description and a range
of clusters (from 3 to 5). To distinguish the best number of clusters we plotted the
elbow method and figured that this range is best suited for this dataset. The best
performing hyperparameters for the GMHL setting are using 5 clusters with Label
description embeddings as features, which are highlighted in the table.

36

37

Model # clusters Clustering F1-macro F1-micro subsetAcc

BERT

3
Label 90.64± 0.99 92.93± 0.73 92.25± 0.88
Label Desc 91.15± 0.51 93.35± 0.42 92.44± 0.53

4
Label 91.06± 0.53 92.97± 0.33 92.11± 0.75
Label Desc 91.39± 0.31 93.37± 0.40 92.52± 0.48

5
Label 90.82± 0.39 92.82± 0.28 91.76± 0.33
Label Desc 91.45± 0.24 93.22± 0.27 92.34± 0.36

BioBERT

3
Label 92.17± 0.68 94.15± 0.54 93.41± 0.49
Label Desc 91.79± 0.93 93.81± 0.87 93.23± 0.66

4
Label 92.20± 0.30 93.98± 0.32 93.18± 0.39
Label Desc 92.56± 0.39 94.25± 0.30 93.76± 0.46

5
Label 91.60± 0.56 93.40± 0.72 92.59± 0.94
Label Desc 91.49± 0.83 93.43± 0.53 92.38± 0.73

BlueBERT

3
Label 93.01± 0.54 94.65± 0.38 93.86± 0.37
Label Desc 93.20± 0.30 94.79± 0.34 94.37± 0.28

4
Label 93.53± 0.43 95.07± 0.47 94.35± 0.50
Label Desc 93.55± 0.62 95.03± 0.57 94.48± 0.55

5
Label 93.38± 0.39 94.83± 0.31 94.19± 0.31
Label Desc 93.86± 0.34 95.32± 0.15 94.40± 0.24

Table C.2: A comprehensive performance of GMTL architecture for Open-I dataset
is listed in this table. The results show that using Label Description achieves the best
performing results for all the 3 language models. The BlueBERT results outperform
the other two as it has the closest context to the Open-I dataset. The best set of
results per each model is highlighted in the table.

Appendix D

OHSUMED detailed results

Similar to Open-I we also performed the same set of experiments for the OHSUMED

dataset. The two main hyperparameters of GMHL and GMTL are the clustering

features and the number of clusters. We experimented with both the label names

and label descriptions of the OHSUMED dataset along with a range of numbers

for clusters (from 3 to 5) which were chosen from plotting the elbow method. The

full results for GMHL and GMTL architectures are depicted in Table D.1 and D.2

respectively.

38

39

Model # clusters Clustering F1-macro F1-micro subsetAcc

BERT

3
Label 43.76± 0.38 62.83± 0.84 55.09± 0.83
Label Desc 44.77± 0.26 62.70± 0.81 55.17± 0.51

4
Label 46.83± 1.98 60.24± 2.84 52.09± 2.94
Label Desc 31.04± 0.49 51.99± 1.01 42.49± 0.47

5
Label 38.40± 2.85 55.71± 1.12 46.33± 1.57
Label Desc 40.84± 0.98 58.98± 0.87 33.85± 0.27

BioBERT

3
Label 67.81± 0.80 72.33± 0.81 66.43± 0.73
Label Desc 51.96± 1.27 66.44± 0.31 59.62± 0.37

4
Label 59.73± 1.87 69.38± 0.19 63.17± 0.39
Label Desc 60.22± 2.24 70.03± 1.16 63.97± 1.32

5
Label 68.10± 0.45 70.75± 0.40 64.95± 0.29
Label Desc 54.84± 0.49 67.72± 0.54 61.07± 0.85

BlueBERT

3
Label 52.66± 0.85 63.81± 0.25 57.19± 0.60
Label Desc 51.21± 0.62 62.71± 0.73 56.14± 1.14

4
Label 47.39± 1.52 62.97± 1.10 55.70± 0.92
Label Desc 49.67± 3.32 62.89± 1.10 56.40± 1.59

5
Label 54.43± 2.17 65.26± 0.70 58.05± 1.22
Label Desc 50.80± 1.68 62.64± 1.55 55.73± 1.79

Table D.1: The full result of the OHSUMED dataset in GMHL architecture is listed
in this table. The number of clusters for best-performing hyperparameters varies per
language mode since BERT, BioBERT and BlueBERT are achieve the best results
when using 4, 3 and 5 clusters respectively. For all the models, using the label
embeddings as features are outperforming label description embeddings. The best
performing configuration per model is highlighted in the table.

40

Model # clusters Clustering F1-macro F1-micro subsetAcc

BERT

3
Label 62.96± 0.47 66.95± 0.49 58.29± 0.72
Label Desc 62.85± 0.31 66.54± 0.85 57.21± 1.46

4
Label 63.14± 0.67 66.33± 0.74 56.82± 1.04
Label Desc 62.66± 0.69 66.14± 0.61 57.16± 1.14

5
Label 62.50± 0.28 66.69± 0.17 57.73± 0.12
Label Desc 63.13± 0.64 66.30± 0.35 57.28± 0.88

BioBERT

3
Label 70.89± 0.63 72.43± 0.33 64.80± 0.35
Label Desc 70.51± 0.67 71.79± 0.69 63.99± 0.77

4
Label 70.13± 1.18 72.54± 0.80 64.84± 0.94
Label Desc 70.46± 0.80 72.10± 0.57 63.84± 0.94

5
Label 71.01± 0.69 72.97± 0.21 65.18± 0.44
Label Desc 71.23± 0.75 72.52± 0.16 64.37± 0.39

BlueBERT

3
Label 65.19± 1.24 68.44± 0.70 59.89± 1.42
Label Desc 64.94± 0.55 69.03± 0.34 61.02± 0.43

4
Label 66.04± 1.26 69.10± 0.99 60.29± 1.21
Label Desc 65.89± 0.71 68.57± 0.19 59.96± 0.31

5
Label 65.92± 0.44 68.63± 0.66 59.76± 1.02
Label Desc 65.31± 1.26 68.35± 0.27 60.18± 0.32

Table D.2: This table lists the GMTL detailed performance for the OHSUMED
dataset. All the language models are performing best when their number of clusters
is 5. The BioBERT surpasses the other models as it has a closer context to the
OHSUMED dataset. Although BERT and BioBERT’s best-performed configuration
is using Label description, BluBERT uses Label embedding as the clustering features.
Highlighted cells are the best performing settings of GMTL architecture per language
model.

Appendix E

MLflow Tracking UI

An example of the MLflow Tracking UI is depicted in Fig E.2.

Figure E.1: In this figure the UI of the MTLV framework is depicted. After training
different models with a different set of design decisions, it becomes necessary to keep
track of their performance and how they are learning in different settings. We use
MLflow Tracking to depict and compare these results and learning charts.

41

42

Figure E.2: In this figure, the comparison of learning from 2 GMTL architecture
using BlueBERT and BioBERT as their shared layers is depicted. MLflow Tracking
UI allows users to compare the learning of different heads of same run or architectures
of different runs.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	List of Abbreviations Used
	Abstract
	Acknowledgements
	Introduction
	Contributions

	Related work
	Multi-Task Learning
	Pretrained language models
	Multi-task learning meets pre-trained language models

	Methodology
	Single-Task Learning (STL)
	Multi-Task Learning (MTL)
	Grouping Multi-head Learning (GMHL)
	Grouping Multi-Task Learning (GMTL)
	MTLV workflow
	Clustering the tasks (labels)
	Design decisions
	Fine-tunning the model
	Visualize the learning

	Experimental Results
	Data
	Pretrained Language Models
	Implementation details
	Open-I Results
	OHSUMED Results
	Limitations

	Conclusion
	Future Work

	Bibliography
	Datasets Details
	Library Structure
	Open-I detailed results
	OHSUMED detailed results
	MLflow Tracking UI

