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Abstract

Movement of animals provides information on ecological processes that influence indi-
vidual survival and fitness like migration, foraging, and breeding. Over the past sev-
eral decades, large-scale interest in the tracking of aquatic animals has sparked both
technological and statistical innovation. Predicting accurate locations from noisy
tracking data, as well as classifying different kinds of movement that can be used to
infer animal behaviour, have emerged as prime objectives that can lead to better un-
derstanding of where animals go, and what processes might be driving their behaviour.
These goals persist across taxa, such that ecologists wish to apply similar methods to
data with varying structures. In tandem, coordinated efforts by international collab-
orative projects have generated massive datasets that require new solutions capable
of answering increasingly complex ecological questions.

This thesis develops new methods that can concurrently account for measure-
ment error in the tracking technology, and predict different kinds of movement using
switching hierarchical models. Traditionally, switching hierarchical models have been
fitted with techniques that sample from the likelihood or posterior distribution and
which are computationally intensive. Instead, the workhorse of this research is the
combination of the Laplace approximation and Automatic Differentiation, which is
shown to enable the rapid fitting of hierarchical models with large numbers of ran-
dom effects. Because switching hierarchical models have both continuous and discrete
random effects, an iterative procedure is adopted to efficiently optimize the marginal
negative log-likelihood.

The novel switching hierarchical model frameworks that are presented can accom-
modate different combinations of discrete and continuous space and time processes.
Throughout, simulations are used to demonstrate a high level of accuracy under each
of the contrasting scenarios. These methods are applied to animal tracking datasets
collected using a variety of technology, including both satellite and acoustic telemetry.
The general implementation developed here is versatile, and could be expanded to
incorporate alternative mixed-scale random effects (e.g., individual or temporal ef-
fects). A groundwork is thereby laid for the statistical innovation that will be needed
to accommodate the increasing size and complexity of contemporary animal telemetry
research.
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Chapter 1

Introduction

Animals move to maximize their growth and to enhance their probability of survival
and reproduction, and these individual animal movements have large-scale impacts
on populations and ecosystems through the transportation of nutrients and energy
(Hussey et al., 2015). For example, while movement of an individual directly influ-
ences abundance and diversity, it also facilitates the spread of pathogens or exotic
species and ecological processes like herbivory and predation (Kays et al., 2015). As
a result, understanding where, when, and why animal’s move, or the study of move-
ment ecology, can help to inform the management and conservation of both species
and ecosystems (Nathan et al., 2008). In aquatic environments, where direct obser-
vation of animal movement is often impossible, researchers are rapidly expanding the
use of electronic telemetry for documenting animal movement through space and time
(Hussey et al., 2015; Lennox et al., 2017a).

A number of types of electronic telemetry technologies can be used to document
animal movement. This thesis primarily concerns four types. The first is GPS tech-
nology, which generates location estimates via the Global Positioning System. The
second is Argos technology, which estimates locations using an algorithm applied

to measurements on the Doppler shift among multiple successive tag transmissions



2

registered by passing satellites of the ARGOS (Advanced Research and Global Ob-
servation Satellite) system (Hays et al. 2001; Jonsen et al. 2020; Fig 1.1). These first
two technologies are typically used by surface-breathing taxa, or other animals that
regularly break the surface, because the signals cannot be relayed through water (Teo
et al., 2004; Lennox et al., 2017a). Fewer GPS locations can typically be obtained
compared to Argos because relatively long transmission times (up to 30s) are required
for GPS fixes, although this has improved since the advent of Fastloc GPS which sig-
nificantly reduces transmission times (Witt et al., 2010). Alternatively, GPS locations
may be archived and then downloaded if retrieval of the tag is possible (Lennox et al.,
2017a,b). The third technology employs a geolocation algorithm to estimate locations
based on light level measurements from a sensor in conjunction with sunrise and sun-
set times (Block et al., 2011). Because surface transmission is not required (except
upon batch-download, e.g. pop-up archival tags) this technology is highly appropriate
for aquatic animals that do not frequently surface (Teo et al., 2004; Lennox et al.,
2017a). Finally, acoustic telemetry involves an acoustic tag that emits unique iden-
tifiers in the form of sonic signals - sound waves - that are registered and logged by
receivers fixed to either stationary or mobile platforms, producing presence-only data
of tagged animals at receiver locations (Whoriskey et al. 2019; Fig 1.1). These tags are
also well-suited to non-surfacing animals, and can additionally be placed on animals
of smaller size that are not capable of hosting the relatively large light-level tags, or

can be manufactured with a larger battery size to significantly increase tag longevity



Figure 1.1: Left: satellite tagged grey seal pup on Sable island, Nova Scotia. Pink
on the pup’s coat is temporary dye used to more easily relocate the pup. Right:
Acoustically tagged brown trout in Norway. Acoustic tags are surgically implanted.
Right photo credit: Rob Lennox.

(Lennox et al., 2017a). Although GPS, Argos, and geolocation technology sample
an animal wherever it travels, producing tracks in the form of paths over continuous
space, the predefined receiver locations of acoustic telemetry generate spatially dis-
crete locations of animal presence (Whoriskey et al., 2019). However, with enough
receivers properly arranged in space, a path can be estimated by location averaging
over temporal intervals (centers of activity; Simpfendorfer et al. 2002), triangulation
via hyperbolic positioning of detections from three or more receivers (Smith, 2013),
or hierarchical (state-space) modelling (Baktoft et al., 2017; Winton et al., 2018).
All of these kinds of technology produce error - noise - associated with the animal
locations. GPS locations are typically highly accurate, usually producing errors <
100m (Frair et al., 2010; Ironside et al., 2017), but errors on the order of kms can still
occur (Villepique et al., 2008). Argos technology (Fig 1.2) produces locations with
considerably more error, regularly several to tens of km in magnitude (Vincent et al.,

2002). Since CLS (Collecte Localisation Satellites; the company that processes the
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data to produce location estimates) switched their location algorithm from a least
squares method to a Kalman filter in 2011 (Jonsen et al., 2020), these errors have
improved, although they can still occur on the order of kms (Lopez et al., 2014).
Positions derived from archival light level technology contain significantly more error
than either GPS or Argos, with mean errors occuring on the order of hundreds of
km (Braun et al., 2015). Acoustic telemetry (Fig 1.2) data contain errors that are
less straightforward to quantify. They have often been summarized as a detection
range, i.e., the maximum distance from a receiver within which a tagged animal can
be detected (Kessel et al., 2014b). However, representing them as the relationship
between the distance from a receiver and the probability of detection is more precise
and informative (Kessel et al., 2014b). Noting that they are inversely and exactly
related, I will use the term detection range when the primary interest is in the distance
as a function of the detection probability, and the term detection efficiency when the
probability of detection as a function of distance is of more relevance. The probability
of detecting an animal when it is within range depends on a variety of factors including
distance, time, tag manufacturing specifications, habitat, and both anthropogenic and
environmental noise (e.g., currents or boats; Kessel et al. 2014b; Baker et al. 2014;
Brownscombe et al. 2019).

Accounting for error in aquatic telemetry data has become a primary interest over
the last couple of decades because accurate estimates of animal location can improve
the reliability of ecological inferences. Initially, various algorithms were developed

that identify and discard erroneous locations based on comparing characteristics of
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Figure 1.2: Ilustration of two of the main tagging technologies discussed within this
thesis. Left: Argos locations are generated by processing information on the Doppler
shift in frequencies between multiple transmissions. Right: Acoustic telemetry logs
the presence of tagged animals when they come within range of a receiver. This range
varies with time, space, and extrinsic environmental (e.g., waves and currents) and
anthropogenic (e.g., boat traffic) factors.

the data with prior knowledge of the ecology of the study animal, e.g., realistic swim
speed vs. observed speed, or based on perceived behaviour of the measurement error
distributions (Austin et al., 2003; Freitas et al., 2008; Meckley et al., 2014; Brown-
scombe et al., 2019). Inevitably, these filters can remove large parts of the data (up
to 30%, Austin et al. 2003), an unfortunate consequence given the financial resources
and animal welfare used to collect this information. Alternatively, state-space models
(SSMs) have recently become a popular method used to account for telemetry error
by predicting a true track from the noisy observations, while also quantifying the
animal movement process (Auger-Méthé et al., 2020).

SSMs are hierarchical models of time series data that include at least two equa-

tions: a measurement equation that relates the observations to the true values that
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we want to predict, and a process equation that stochastically models how the true
values evolve through time (Auger-Méthé et al., 2020). The general structure of a

simple SSM can be represented by

Measurement Equation yi = g(x¢) + 1, (1.1)

Process Equation x; = h(x-1) + € (1.2)

where y,; denotes the (possibly multidimensional) observations in time ¢, and they are
related to the true values, x; (also known as the states or random effects), through
some function g(+). In turn, the x; evolve through time according to some process h(-).
The measurement and process errors here are represented by m, and €;, respectively.
The derivation of SSMs is typically attributed to Kalman (1960), who introduced the
term “linear dynamic model” for an SSM where both the process and measurement
equations are linear and the 7, and €, are Gaussian random variables. In such a
case the optimal solution of the resulting model is obtained with the Kalman filter
(Kalman, 1960; Kalman and Bucy, 1961). The 1960s saw large-scale investment
into research on SSMs and filtering techniques that was linked to development of
navigation systems for submarines, aircraft, and spacecraft (Jazwinski, 1970). It is
within this period that terminology like “state space approach/methods/techniques”
came into play, and that extensions to SSMs like non-linearity (Jazwinski, 1970)
were developed. Now, they have become a staple in marine ecology (Auger-Méthé

et al., 2020), such that a wide variety of choices exist in both discrete and continuous
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time (Jonsen et al., 2003, 2005; Johnson et al., 2008; Dowd and Joy, 2011; Breed
et al., 2012; McClintock et al., 2012; Parton and Blackwell, 2017; Winton et al., 2018;
Michelot and Blackwell, 2019; Jonsen et al., 2020).

Within the context of animal movement, I will denote the y;.7 to be the full set
(from t = 1,...,T) of noisy locations in two coordinates, while the x;.7 are the true
and unknown locations. To fit an SSM, a researcher needs to calculate the marginal

likelihood of the observations, i.e.,

/ fyrr | xur, V) f(xur | ©)dxir, (1.3)

where ¥ and © denote the entire set of parameters associated with the measurement
and process equations, respectively. In a maximum likelihood framework, Eqn 1.3
can be optimized directly with respect to the parameters, whereas within a Bayesian
framework, Eqn 1.3 (with priors) becomes the quotient in a posterior likelihood cal-
culation. If both 1, and €; are Gaussian random variables, then an exact analytical
solution exists in the Kalman filter; this has been applied to animal movement in
Johnson et al. (2008). Although computationally efficient, Gaussian distributed mea-
surement error does not frequently occur in animal telemetry (Jonsen et al., 2005;
Breed et al., 2012; McClintock et al., 2015) unless pre-processing of the data to re-
move extreme outliers is employed (e.g., Johnson et al. 2008). In most other cases,
this integral is typically analytically intractable. To address this, one option is to dis-

cretize the state-space and predict location on a grid, using the likelihood of a hidden
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Markov model and turning this integral into a sum (e.g., Pedersen et al. 2011). Sam-
pling methods like particle filters or Markov Chain Monte Carlo provide a means of
approximating the likelihood or posterior distribution (e.g., Jonsen et al. 2005; Dowd
and Joy 2011; Breed et al. 2012; Parton et al. 2017), but this can come at a signifi-
cant computational cost. An alternative solution that has gained ground for fitting
state-space models to ecological time series is the use of the Laplace approximation
and Automatic Differentiation. Originally implemented through the software ADMB
designed for fisheries modelling (Automatic Differentiation Model Builder, Fournier
et al. 2012), a platform called Template Model Builder (TMB) now exists that makes
this combination accessible through the popular R statistical software (Kristensen
et al., 2016). As a result, Laplace’s method can now be used to approximate complex
integrals like that in Eqn 1.3, and the derivatives required to compute this approxi-
mation can be rapidly calculated via Automatic Differentiation (Skaug and Fournier,
2006). This combination has recently shown great promise and growth within the
movement ecology paradigm, such that several implementations of SSMs exist and
have been made available to movement ecologists through supplementary code or
secondary packages (Albertsen et al., 2015; Auger-Méthé et al., 2017; Baktoft et al.,
2017; Jonsen et al., 2020).

Although predicting the underlying true locations (location states) of an animal
is important, this is frequently only the beginning of the statistical analysis. Further

analyses vary based on the ecological question of interest, but can include studies
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on home range or utilization distributions (Calenge, 2006; Hoenner et al., 2012; Wil-
son et al., 2015), network analysis to infer habitat and social connectivity (Jacoby
et al., 2012; Scharf et al., 2016), resource selection functions to predict population
distributions as related to habitat resource availability (Avgar et al., 2016), identify-
ing migration pathways and diversity hotspots (Block et al., 2011), and investigating
niche partitioning (Block et al., 2011; Dwyer et al., 2020). In particular, since the
early 2000s there has been an increased interest in predicting the underlying motiva-
tions of animal movement. Because movement directly reflects an animal’s response
to its current physiological and biological needs and environmental characteristics
(Hussey et al., 2015), understanding why an animal is moving can help to inform
our knowledge of behaviours critical to survival such as foraging and reproductive
performance. Inferring these underlying behaviours from animal tracks is possible by
assuming that different types of movement can be discerned from changes in charac-
teristics of an animal’s path (Patterson et al., 2017). For example, while foraging is
often assumed to be characterized by a tortuous track, a more directed path may sug-
gest travelling between habitats (e.g., Jonsen et al. 2005). For these endeavours, the
tool of choice is often the hidden Markov model (HMM), which is highly appropriate
when the location data are accurate (Patterson et al., 2017; Auger-Méthé et al., 2020;
McClintock et al., 2020).

HMMSs are a large class of hierarchical models usually distinguished by a set of
observations that depend on an unobserved Markov chain (Zucchini et al., 2016).

Opinions on the relationship between HMMs and SSMs vary, with some researchers
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using both names to refer to the same types of models (Cappé et al., 2005), others
referring to HMMs as a special class of SSMs (McClintock et al., 2014), and still others
claiming that SSMs are a special case of HMMs (Costa et al., 2012). This is probably
partly fueled by the fact that early research and development of HMMs and SSMs
were for the most part independent (Cappé et al., 2005). HMMs, or at least maximum
likelihood theory and statistical inference for HMMs, were first introduced in 1966 by
Baum and Petrie. They were initially described as probabilistic functions of “s-state
Markov processes” (p.1554), because an HMM involves one stochastic process that
is a function of a second, unobserved, Markov chain (Baum and Petrie, 1966). Much
of their successive development was focused on automatic speech recognition (Baker,
1975; Rabiner, 1989). Despite their separate developmental histories, HMMs and
SSMs are both hierarchical models wherein the observations are dependent upon a
set of unobserved variables - random effects, or states - that follow a Markov process,
and the literature appears to have converged around the viewpoint that HMMs are
special cases of SSMs with discrete latent states (Auger-Méthé et al., 2020). Within
the context of this thesis, I will adopt the term HMM when the unobserved random
effects are discrete, and SSM when they are continuous. Furthermore, the SSMs
that T will fit will all account for error associated with the technology, in one way or
another.

The utility of HMMs for animal movement analysis was illustrated at least as
early as 2004 (Morales et al., 2004). Within the context of animal movement, the set

of observations follow a movement process, or one or more equations describing the
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evolution of the animal movement through time, and these equations harbor multiple
sets of parameters that are dependent upon the value of discrete random effects, or
states. Using expert knowledge on a tagged animal’s ecology, these sets of parameters
and random effects can then be interpreted as underlying motivations driving the ani-
mal’s movement (hereafter, behavioural states). Therefore, although the behavioural
states correspond to mathematical distinctions between different kinds of movements,
their interpretation is subject to human error, and they can only be interpreted as
“apparent” behaviours (hereafter, the “apparent” will frequently be dropped, e.g.,
“apparent foraging” will be referred to as “foraging”). The observations can consist
of either the location data (in latitude and longitude, e.g., Whoriskey et al. 2017) or
metrics derived from the observed track, like turning angles and step lengths (e.g.,
Morales et al. 2004; Langrock et al. 2012; Michelot et al. 2016). When formulated
within a maximum likelihood framework, several algorithms exist that enable rapid
calculation of the likelihood (Zucchini et al., 2016) and relative ease of model fitting.
Over the past two decades, significant resources have been poured into the develop-
ment of HMMs, such that current implementations can include a variety of movement
data streams (deRuiter et al., 2017; McClintock and Michelot, 2018), dependence of
the switching probabilities or observation distributions on environmental covariates or
temporal heterogeneity (Morales et al., 2004; Patterson et al., 2009; McKellar et al.,
2015; Michelot et al., 2016; Li and Bolker, 2017), a choice of distributions for the
state dwell-times (duration spent within a state before switching out; Langrock et al.

2012), multiple Markov chains to model movement simultaneously at different time
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scales (Leos-Barajas et al., 2017; Adam et al., 2019), and individual or group-level
heterogeneity through the use of discrete random effects (Schliehe-Diecks et al., 2012;
McKellar et al., 2015; deRuiter et al., 2017).

Although both SSMs and HMMs can be fitted individually, often movement ecol-
ogists want to predict both location and behavioural states simultaneously from their
data. Models that incorporate both sets of states are also commonly referred to as
SSMs, but within this thesis for clarity I will largely refer to them as switching hi-
erarchical models (SHMs), and reserve SSMs and HMMs for discussing models that
predict solely location or behavioural states, respectively. SHMs have been well de-
veloped within Bayesian implementations (e.g., Jonsen et al. 2005; McClintock et al.
2012; Michelot and Blackwell 2019; Parton et al. 2017). Within a maximum like-
lihood framework, I am unaware of any current implementations that use a single
model likelihood for fitting an SHM to predict continuous-space location states and
discrete-valued behavioural states. Others have used SSM and HMM implementa-
tions in succession, i.e., first predicting location states using an SSM and then fitting
HMMs to those predictions to predict behavioural states (e.g., Cote et al. 2020).
Within these implementations, error from the SSM may not be accounted for during
the behavioural state prediction. Alternatively, it is possible to account for this error
by fitting a continuous-time SSM, imputing many random sets of location states in
discrete-time from the SSM results, fitting a discrete-time HMM to each of those sets,
and pooling the HMM results (McClintock and Michelot, 2018).

Within this thesis, I develop a method for fitting SHMs comprising a single model
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likelihood within a maximum likelihood framework using the TMB platform that can
be applied to both satellite and telemetry data. This implementation avoids: 1)
the specification of priors, as are needed in a Bayesian analysis, 2) a large compu-
tational burden associated with sampling schemes, and 3) using the results of one
model likelihood as the response in a second. With 1), the implementation removes
subjective choices; with 2) it frees up computational resources such that model re-
sults and validation can be quickly reported, or resources can be reallocated to tackle
larger datasets or further model complexity; and with 3) it simultaneously accounts
for location and behavioural state error. Furthermore, by laying the foundation for
fitting these models within TMB, I expand and test the utility of this package for fitting
complex hierarchical models to animal movement data, and develop a method that
could be applied to scenarios outside of movement ecology.

The remainder of this thesis constitutes four independent research articles (plus a
Conclusion), each of which was a collaborative project led by me. That is, I largely
led the study design, methodological development, data analysis, and writing of the
manuscripts, with relevant advice and input from my supervisors and coauthors. The
layout is as follows.

The second chapter employs current standard likelihood theory (Zucchini et al.,
2016) to formulate the movement process of Jonsen et al. (2005) as an HMM in TMB,
and demonstrates the model on GPS, acoustic, and filtered light level geolocation
data. Although this model does not account for measurement error and can therefore

only be fitted to highly accurate data, it was a necessary step towards the ultimate
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goal of formulating a switching hierarchical model within TMB. Furthermore, this
model made a significant contribution to the literature within its own right. The
results of this chapter were published in Ecology and Evolution (Whoriskey et al.,
2017), and the model was made available through an R package swim (SWltching
Movement models), which was then used for an ecological study investigating the
association of grey seal (Halichoerus grypus) foraging behaviour with oceanographic
conditions (Nowak et al., 2020).

In the third chapter (which I have also published in Methods in Ecology and Evolu-
tion; Whoriskey et al. 2019), I pivot slightly to focus solely on acoustic telemetry, and
review the current statistical methods available to movement ecologists for analyzing
their (spatially discrete) detection data. These data are very versatile, and can be
summarized into many different response variables to investigate a variety of differ-
ent aspects of animal ecology. As a result, for several decades significant statistical
advances have been made in the analysis of these data, without any clear guide on
when/how to use the various available methods. The main goal of this chapter was
to provide this guide, and to draw the reader’s attention towards future directions by
garnering inspiration from other fields. Specifically, I contend that the reader should
look towards methods that could be applied to account for measurement error within
the technology, as is achieved in the following (fourth and fifth) chapters.

The fourth chapter contains the formulation of the switching hierarchical model
for spatially continuous data (specifically, satellite telemetry data) within TMB, and

makes this implementation available through swim. I achieved this by utilizing the
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key result that the maximum likelihood estimates of a subset of parameters can
be found by optimizing the likelihood while holding the remaining parameters fixed
at their maximum likelihood estimates (Patefield, 1977). Furthermore, I use this
implementation to document intraspecific variability in 67 post-breeding grey seals
on the East Coast of Canada. Thus, this chapter constitutes a significant contribution
to both the statistical and ecological literature, in entirely separate yet complementary
ways.

In the fifth chapter I use the basic tenets of my switching hierarchical model to de-
velop an analogous model for analyzing acoustic telemetry data. This implementation
capitalizes on the existing SSM available through YAPS (Baktoft et al., 2017), which
produces spatially continuous location predictions from acoustic telemetry data, but
advances it to additionally predict behavioural states. Although SSMs and HMMs
have traditionally not been as popular for analyzing acoustic telemetry data as com-
pared to satellite telemetry data, popularity is starting to increase (e.g., Whoriskey
et al. 2017; Bacheler et al. 2019; Cote et al. 2020). This chapter therefore presents a
timely contribution that synthesizes research from all of the previous chapters.

Throughout my research, I have learned and drawn from both statistical and eco-
logical disciplines. I have made connections in both fields, profiting from integrative
international collaborations like the Canadian Statistical Sciences Institute Project
“Advancements to state-space models for fisheries science” and the Ocean Tracking

Network. Finally, I have spent a significant amount of time in the field studying
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marine fishes and mammals, attending conferences, and hosting and attending work-
shops. The concluding chapter will synthesize the common themes throughout my
work and offer thoughts on future directions in both disciplines that have not only

been brought to light by my research, but also these additional enriching experiences.



Chapter 2

A Hidden Markov Movement Model for Rapidly

Identifying behavioural States From Animal Tracks

2.1 Introduction

Animals move to enhance their probability of survival and reproduction. Movement is
therefore a critical animal behaviour that reflects an animal’s response to its current
biological and physical needs and to its environment. Identifying these underlying
drivers of animal movement (behavioural states) is required for understanding how
and why animals use available space, and this knowledge informs the management
and conservation of both species and ecosystems. In aquatic environments, where
direct observation of animal movement and behavioural states is often impossible,
researchers are rapidly expanding the use of electronic telemetry for documenting
animal movement through time (Hussey et al., 2015).

Satellite telemetry and acoustic positioning systems are the most common types
of telemetry technology for estimating an aquatic animal’s location in continuous
space, and yield time series of locations along an animal’s path, usually referred to as
tracks. Inferring behavioural states from animal tracks is possible by assuming that

different types of movement, and therefore behavioural states, can be reflected by

17
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changes in characteristics of an animal’s path. For example, while foraging can often
be characterized by a tortuous track, a more directed path may suggest travelling
between habitats (Zollner and Lima, 1999; Jonsen et al., 2005).

Hidden Markov Models (HMMs) are a popular tool used to identify behavioural
states from animal telemetry data with negligible error (e.g., Morales et al. 2004; Lan-
grock et al. 2012). HMMs are a large class of models distinguished in the most general
case by a set of observations that depend on an unobserved, underlying Markov pro-
cess (Zucchini et al., 2016). In the context of animal movement, the latent Markov
process is used to model the discrete behavioural states of interest, while the set of
observations follow a movement process that can also be Markovian. The observa-
tions can consist of either location data (e.g., Jonsen et al. 2005) or metrics derived
from the observed track, like turning angles and step lengths (e.g., Morales et al.
2004; Langrock et al. 2012). While current HMMs can be fitted rapidly using max-
imum likelihood (ML) methods, with the exception of the formulation of Pedersen
et al. (2011), they are unable to account for measurement error associated with the
technology used to obtain animal tracks. For those tracks measured with error, state-
space models (SSMs) provide a more accurate and reliable method for identifying be-
havioural states, but are typically fitted using comparatively slow Bayesian methods
like Markov Chain Monte Carlo (MCMC) sampling because of large numbers of ran-
dom effects (e.g., Jonsen et al. 2005; McClintock et al. 2012; Jonsen 2016). Therefore,
the ideal tool for identifying behavioural states from animal tracks should incorporate

features of both HMM and SSM implementations, such that measurement error can
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be accounted for within a ML framework that keeps the computational burden of
estimation relatively small.

One particular SSM that has proven its utility through a wide range of applications
on different species is the Bayesian SSM with a first-Difference Correlated Random
Walk with Switching (DCRWS) process equation of Jonsen et al. (2005). This model
has been previously used to quantify foraging behaviour in cetaceans (Bailey et al.,
2009; Irvine et al., 2014), pinnipeds (Breed et al., 2009; Harwood et al., 2015), turtles
(Gonzélez Carman et al., 2012; Hart et al., 2012), sea birds (Reid et al., 2014),
and manta rays (Graham et al., 2012). Furthermore, it has been used to determine
migration corridors (Prieto et al., 2014), estimate intraspecific competition (Breed
et al., 2013), predator-prey relationships (Fitzpatrick et al., 2012), site fidelity (Block
et al. 2011), and to inform management and conservation of protected regions (Block
et al., 2011; Maxwell et al., 2011; Graham et al., 2012).

Here we introduce a new HMM for estimating behavioural states from highly ac-
curate animal tracks that is similar to the DCRWS SSM, but does not account for
measurement error. We directly implement the DCRWS process equation as the basis
for our HMM, but we adjust the model for fitting within a ML framework to allow for
rapid estimation. Model fitting and parameter estimation are performed using the
R-package TMB (Kristensen et al., 2016), which has previously shown great promise for
analyzing animal tracking data (Albertsen et al., 2015; Auger-Méthé et al., 2017). We

make this model, which we entitle the hidden Markov movement model (HMMM),
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available through the R package swim (see supplementary material). To demon-
strate the accuracy and applicability of the HMMM, we apply it to simulated animal
tracks and to real tracks from multiple aquatic species. We additionally compare our
HMMM results to those obtained using its Bayesian counterpart and to results from
the moveHMM package (Michelot et al., 2016). We assess the advantages and disadvan-
tages of each approach by comparing their computational efficiency, accuracy, and

sequences of behavioural states.

2.2 Methods

2.2.1 The DCRWS Movement Process

The SSM of Jonsen et al. (2005) estimates the true locations, behavioural states, and
parameters of a movement process from an Argos satellite system track. Given the
true location x; at time ¢, the DCRWS process equation is a correlated random walk

on the first differences of the true locations, d; = x; — X;_1:

dt - ,ybt71T(0bt71>dt—1 + N2<07 E) (21)
COS(thil ) _Sin(ebtA ) 0.l20n PO1on0Olat
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The stochastic term in the movement process is a bivariate Gaussian (Ny) with mean
0 and covariance matrix X, where o;,; and oy, are the standard deviations in the lat-
itude and longitude axes, respectively, and p is the correlation between the two axes.
Like Breed et al. (2012), we assume here that p = 0, implying that stochasticity in

the latitude and longitude directions are independent of each other. The parameter
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,_, describes the autocorrelation in both direction and speed, and T(6,,_,) is the
rotational matrix through space given the turning angle 6,, ,. Multiple values are
possible for 7, , and 6,,_,, and these parameter values are dependent on the be-
havioural state at time ¢ — 1, i.e., b;_;. This dependence provides the mechanism
for distinguishing between multiple behavioural states at each location. Typically of
interest are two states: the first is directed movement characterized by travelling in
the same direction (6 ~ 0) and at a similar, high speed (v > 0.5), and the second
is tortuous movement characterized by frequent course reversals (6 ~ m) at dissim-
ilar, slower speeds (7 < 0.5). Parameter sets for each state are identified with the

appropriate subscript, either 1 or 2.

2.2.2 The HMMM

Our HMMM uses the movement process described by (2.1), but instead of using a
Bayesian framework like Jonsen et al. (2005), we employ a ML framework and fit
the process equation as a HMM via TMB, which requires that the likelihood function
be coded in the C++ programming language. The probability distribution of the
movement process is conditional on the assumed behavioural states b;, and is given

by

f(d¢]br—1) ~ No(yp,_, T(6h, ,)di1, %) (2.2)

The likelihood of the HMMM is that of a HMM Zucchini et al. (2016):

8'P(d,)AP(d2)A - - - P(d,_1)AP(d,)1 (2.3)
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Assuming two behavioural states, the 2 x 1 vector § contains the initial probabilities
of being in each state. A is a 2 x 2 transition probability matrix containing the
switching probabilities «; ; that describe the probability of switching from state 7 at
time ¢t —1 to state j at time ¢. Because the rows of A sum to 1, we need only estimate
two switching probabilities instead of four; we choose to estimate a; ; and a9;. Pisa
2 x 2 diagonal matrix with diagonal entries equal to (f(d¢|b;—1 = 1), f(d¢|bi—1 = 2)),
i.e. the probabilities of being at the observed locations given each behavioural state
as described by the movement process. 1 is a 2 x 1 vector of ones. We estimate
the parameters of the movement process directly from the likelihood within TMB, and
then use the Viterbi algorithm to estimate the unobserved behavioural states Zucchini

et al. (2016).

2.2.3 Data Analysis and Simulation Study

To evaluate the performance of the HMMM, we compared it with two other ap-
proaches for estimating behavioural states from animal tracks with negligible mea-
surement error. The first was the switching movement process described by (2.1) and
(2.2), fitted using a Bayesian framework and Markov Chain Monte Carlo (MCMC)
sampling via rjags (Plummer, 2015). This first model is the DCRWS process equa-
tion of Jonsen et al. (2005) without measurement error, and therefore differs from the
HMMM solely in implementation (i.e., Bayesian vs. ML inference). Hereafter we refer

to it as the DCRWSyoum . Although the DCRWS o e has not been fitted before,
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implementations of the DCRWS for tracking data with minimal errors do exist (Jon-
sen, 2016), and the DCRWS o g is the most direct implementation of the DCRWS
when no measurement error is assumed. To fit the DCRWSyoar g, we used a burn-in
period of 40,000 samples, then sampled 20,000 from the posterior distribution but
only kept every 20th sample (thinning). We fitted and compared two MCMC chains
to each track to check for convergence. All prior distributions were specified as in
the R package bsam (Jonsen et al., 2005) that fits the original DCRWS SSM, with
the exception of those for the error covariance matrix ¥. Instead, by setting p = 0,
which we believe is more appropriate, we were able to specify separate vague uniform
priors on 0y, and oy, as opposed to using the original Wishart prior on the entire
matrix (Jonsen et al., 2005). Parameters and behavioural states were estimated as
the posterior medians of the samples from the two chains combined. We additionally
fitted a HMM to the turning angles (rad) and step lengths (km) of the animal tracks
with the R package moveHMM (Michelot et al., 2016), using a von Mises (mean p and
concentration parameter ¢) and Weibull (shape A and scale parameter k) distribution,
respectively. behavioural states were again identified via the Viterbi algorithm, using
functions from moveHMM.

We fitted these three models to three animal tracks: 1) a GPS track collected
by a Sea Mammal Research Unit head-mounted Satellite Relay Data Logger (accu-
rate GPS positions acquired when the head surfaces) deployed on an adult male grey

seal (Halichoerus grypus) at Kouchibouguac National Park, New Brunswick, in 2013;
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2) an acoustic Vemco Positioning System (VPS; positions from triangulation of de-
tections from multiple receivers in known locations; Smith 2013) track of an adult
male lake trout (Salvelinus namaycush) in northern Lake Huron in 2014; and 3) a
light-based geolocation track recorded by an immature female blue shark (Prionace
glauca) tagged near Halifax, Nova Scotia, with a Wildlife Computers miniPAT tag in
2014. Because geolocation data can be error-prone, the track was processed with the
Wildlife Computers (2015) GPE3 software (a SSM) to improve positioning accuracy
by estimating the true blue shark locations, as suggested by the manufacturers. Al-
though a SSM for geolocation data would have been the ideal approach for analyzing
the blue shark data, our approach of fitting HMMSs to true location SSM estimates has
been previously adopted (e.g., Eckert et al. 2008). Because the data were collected
in continuous-time but all three models assume underlying discrete-time Markov pro-
cesses, we had to approximate the locations in discrete-time, and then assume that
these were known. We linearly interpolated the datasets over time using a 6 hour, 15
minute, and 12 hour time step for the grey seal, lake trout, and blue shark data, re-
spectively, yielding datasets with 1227, 2187, and 393 locations. Different time steps
were required based on the different temporal resolutions of the tracks.
Additionally, using the parameter estimates from the grey seal HMMM and DCRWSyonmE

fits (Table 2.1), we conducted a simulation study to formally compare the accuracy
of the HMMM and DCRWSyonEg, and compare their results with those obtained
using moveHMM. We simulated 50 tracks corresponding to the HMMM from a known

parameter set with turning angles 6; = 0, 6, = 7, autocorrelation v; = 0.8, v, = 0.05,
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process error standard deviations oy, = 0.07, 0, = 0.05, and switching probabilities
arq = 0.89, a5 = 0.80. These two behavioural states are often interpreted as tran-
siting (01,71) and foraging (0s,v2). We then fitted the HMMM, moveHMM, and the
DCRWSyomE to each simulated track and calculated the parameter estimates and
interval measures of uncertainty for these estimates. For the HMMM and moveHMM,
this consisted of the 95% confidence interval based on the standard error estimates.
For the DCRWSyomE, we determined the 95% credible interval as the 2.5% and
97.5% quantiles of the posterior samples. We found the behavioural state error rate,
i.e. the proportion of states that were incorrectly identified, for each model, and addi-
tionally calculated the root mean squared error (RMSE) for each parameter estimate

© from the HMMM and DCRWS oz fits as

Jj=1

RMSEg = (% Zn:((i) — @)2> 1/2. (2.4)

We were unable to calculate the RMSE for the moveHMM fits because the data were
simulated according to the HMMM movement process and the moveHMM implementa-

tion does not involve the same parameters.

2.3 Results

2.3.1 Identifying behavioural States

We applied the HMMM, the DCRWSyoa g, and moveHMM to a grey seal, lake trout,
and blue shark track estimated with negligible measurement error. All three mod-

els performed similarly and identified two clearly distinct behavioural states for the



26

48°N

46°N

42°N

48°N

46°N

Latitude

44°N

42°N

48°N

46°N

42°N

T T T T T T T T
70°W 68°W 66°W 64°W 62°W 60°W S8°W 56°W
Longitude

Figure 2.1: behavioural states as obtained by fitting the HMMM (panel A),
DCRWSpyomE (panel B), and moveHMM (panel C) models to the grey seal track. Dif-
ferent behavioural states are indicated by grey (state 1) and blue (state 2) colors.
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Figure 2.2: behavioural states as obtained by fitting the HMMM (panel A),
DCRWSpyomEe (panel B), and moveHMM (panel C) models to the lake trout track.
Different behavioural states are indicated by grey (state 1) and blue (state 2) colors.
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grey seal and lake trout tracks (Figures 2.1,2.2). For both animals, HMMM and
DCRWSyomE parameter estimates were similar except for the tortuous turning an-
gle 65, which was estimated at a similar distance from the number 7 but in the
opposite direction (i.e., while one was estimated turning slightly to the left, the other
was estimated turning to the right; Tables 2.1, 2.2). This, along with the relatively
large confidence intervals for 65, is not unusual because together with small 75, it
suggests that the animal is exhibiting tortuous movement, in which case the mean
turning angle does not have as much influence because the animal is more equally
likely to travel in any direction. Switching probabilities (a1 and ay ;) were similar
amongst all three models for the seal track. moveHMM estimated switching probabilities
for the lake trout track different from the HMMM and DCRWSyoa g, although the
estimated probabilities amongst all three models led to similar decoded behavioural
state sequences. For the seal track, the DCRWSyonE took 6.4 hours to fit, moveHMM
took 0.9 seconds, and the HMMM took 0.06 seconds. For the lake trout data, the
DCRWSyomE took 9.4 hours to fit, moveHMM took 1.8 seconds, and the HMMM took

0.16 seconds.
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Table 2.1: Parameter estimates from three models fitted to a grey seal track. Lower
and upper columns are the lower and upper bound of 95% uncertainty intervals around
the estimates. These correspond to 95% confidence intervals for the HMMM and
moveHMM, and 95% credible intervals for the DCRWSyoa . The only two parameters
in common between all three models are the switching probabilities, ;1 and aq ;.

Parameter HMMM DCRWSNoME Parameter moveHMM
Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper
0, 0.022 -0.023  0.066 -0.017 -0.060  0.027 41 -0.010 -0.058  0.038
0 4.662 2.441  5.835 1.831 0.275  5.980 142 0.495 -0.358  1.348
Y 0.805 0.753  0.848 0.805 0.759  0.849 c1 0.685 0.640  0.730
Y2 0.055 0.013  0.201 0.048 0.003 0.128 co 0.069 0.002  0.135
Olon 0.071 0.068  0.074 0.071 0.068  0.074 A1 2.185 1.977  2.393
Olat 0.050 0.048  0.053 0.050 0.048  0.053 Ao 0.816 0.757  0.875
k1 15.342 14.381 16.304
ko 3.487 2.878  4.097
0,1 0.890 0.827  0.932 0.885 0.835  0.929 0.876 0.842  0.910
a1 0.198 0.133  0.285 0.204 0.141  0.292 0.111 0.090  0.158

Table 2.2: Parameter estimates from three models fitted to a lake trout track. Lower
and upper columns are the lower and upper bound of 95% uncertainty intervals around
the estimates. These correspond to 95% confidence intervals for the HMMM and
moveHMM, and 95% credible intervals for the DCRWSyoa . The only two parameters
in common between all three models are the switching probabilities, ;1 and s ;.

Parameter HMMM DCRWSNoME Parameter moveHMM
Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper
0, -0.118 -0.155 -0.082 0.119 0.084 0.155 41 0.021 -0.041  0.083
0 2.687 2,277  3.113 3.603 3.206  4.088 142 -0.746 -2.042  0.447
Y1 0.821 0.786  0.851 0.821 0.788  0.853 c1 3.123 2.488  3.763
Y2 0.128 0.083 0.191 0.123 0.075  0.177 co 0.113 0.033  0.238
Olon 0.001 0.001  0.001 0.001 0.001  0.001 A1 2.324 2.119  2.550
Olat 0.001 0.001  0.001 0.001 0.001  0.001 Ao 0.838 0.786  0.894
k1 16.128 15.274 17.029
ko 4.084  3.621  4.606
0,1 0.645 0.578  0.707 0.643 0.576  0.705 0.853 0.811 0.887

Qa1 0.288 0.212  0.377 0.289 0.214 0.384 0.102 0.077  0.132
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Figure 2.3: behavioural states as obtained by fitting the HMMM (panel A),
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All three models identified two states from the blue shark track, although half
of the switching probabilities estimated by moveHMM differed greatly from those esti-
mated by the HMMM and DCRWSyon e (Table 2.3), and this led to different state
sequences (Figure 2.3). Specifically, all three models estimated a high probability of
remaining in state 1, o 1, but moveHMM estimated a low probability of switching from
state 2 to state 1, ay;, while the DCRWSyoy e and HMMM estimated a high ag ;.
The switching probabilities of the HMMM and DCRWS o g therefore led to state
sequences containing long stretches of state 1 interspersed with short (length 1 or 2)
stretches of state 2. By contrast, moveHMM estimated a state sequence with longer
stretches of both behavioural states. While the DCRWSyoumr took 1.7 hours to fit to

the blue shark track, moveHMM took 1.2 seconds, and the HMMM took 0.02 seconds.

Table 2.3: Parameter estimates from three models fitted to a blue shark track. Lower
and upper columns are the lower and upper bound of 95% uncertainty intervals around
the estimates. These correspond to 95% confidence intervals for the HMMM and
moveHMM, and 95% credible intervals for the DCRWSyoa . The only two parameters
in common between all three models are the switching probabilities, oy, and a9 ;.
Because this track had some step lengths equal to zero, the two parameters (; and (s
were used to estimate zero-inflation for each behaviour when using moveHMM.

Parameter HMMM DCRWSNoME Parameter moveHMM

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

0, -0.021 -0.070  0.027 0.013 -0.040  0.062 75t -0.003 -0.025  0.019
0 0.528 0.232 1.131 -0.881 -0.006  0.157 142 0.013 -0.273  0.300
Y 0.923 0.846  0.963 0.932 0.873  0.987 c1 40.323 30.556  50.107
Y2 0.289 0.199  0.400 0.303 0.188  0.423 co 0.949 0.616 1.302
Olon 0.045 0.042  0.049 0.046 0.043  0.049 A1 1.806 1.608  2.029
Olat 0.042 0.039  0.045 0.042 0.038  0.045 Ao 1.069 0.927 1.232
k1 11.816 10.872  12.842

ko 6.610 5.255 8.314

G 0.029 0.014  0.059

) 0.035 0.013  0.091

o1 0.904 0.794  0.958 0.880 0.732  0.955 0.841 0.778  0.888

Q1 0.722 0.385  0.915 0.742 0.437  0.925 0.320 0.211  0.454
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2.3.2 Simulation Study

We simulated 50 tracks from the HMMM with a specific parameter set (represen-
tative of the grey seal track) to test the accuracy of the HMMM compared to the
DCRWSyonmEe and moveHMM. The HMMM and DCRWSyou e provided accurate es-
timates of the model parameters (Figure 2.4), but the DCRWS o p had a smaller
average (over the parameters) RMSE (0.120 vs. 0.140; Table 2.4). The RMSE for
individual parameters were similar (within 0.01) between the two models with the
exception of 6y, where the RMSE of the DCRWSyou e was smaller by 0.149 (Ta-
ble 2.4). The DCRWSyouEe additionally had the smallest behavioural state error
rate (0.175) which differed from the HMMM and moveHMM by approximately 1.5%
(0.189) and 18.7% (0.362), respectively. Finally, the average time needed to fit the
DCRWSyom e was 5.10 hours, while moveHMM took 1.2 seconds and the HMMM took

0.08 seconds.



0.04
0.02
0.00
-0.02
-0.04

0.85

0.80

0.75

0.70

0.074
0.072
0.070
0.068
0.066

0.95

0.90

0.85

0.80

04
D E— D E—
| |
I 1
1
1
: :
- _
T I
SHMMM DCRWSnome
Y1
—e —

L ] [
1
- .
o o
T T
SHMMM DCRWSnome
Olon
D E— D E—
1 1
1 1
X X
—_— _—
T T
SHMMM DCRWSnome
Q4
D E— _—

T T
SHMMM DCRWSnome

o = N W >~ 00O

0.25
0.20
0.15
0.10
0.05
0.00

0.054

0.052

0.050

0.048

0.046

0.35
0.30
0.25
0.20
0.15
0.10

Figure 2.4: Boxplots of parameter estimates
the DCRWSyoa g to 50 simulated tracks.

33

02

—_— _—
o
8
T I
SHMMM DCRWSnome
Y2
° o
° o
o
D E— °

—_—
T T
SHMMM DCRWSnome
Olat
—_— D E—

T I
SHMMM DCRWSnome
a2

1 1
—— %

|
—_—

T T
SHMMM DCRWSnome

obtained from fitting the HMMM and



34

Table 2.4: Parameter results from the simulation study (n=50) comparing the HMMM
to the DCRWSyone. The Lower and Upper columns correspond to the 95% confi-
dence and credible intervals for the HMMM and the DCRWS o g, respectively. The
Estimate, Lower, and Upper columns are averages taken over all simulations. The
RMSE columns contain the root mean squared errors.

Parameter True Value HMMM DCRWSNoMmE

Estimate Lower Upper RMSE Estimate Lower Upper RMSE

01 0 0.004 -0.035 0.042  0.020 -0.004 -0.043  0.035  0.020

0 T 3.433 1.599  4.730  0.978 2.931 0.483 5.400 0.829

" 0.80 0.797 0.752  0.836  0.021 0.797 0.756  0.839  0.021

Yo 0.05 0.060 0.018 0.321  0.044 0.052 0.007  0.138  0.037
Olon 0.07 0.070 0.067  0.073  0.002 0.070 0.067  0.073  0.002
Olat 0.05 0.050 0.048  0.052  0.001 0.050 0.048  0.052  0.001
01,1 0.89 0.890 0.844 0.924  0.018 0.886 0.842 0.922 0.018
a1 0.20 0.205 0.140 0.2900  0.034 0.208 0.143  0.293  0.033

2.4 Discussion

We have shown that the HMMM is a fast and reliable tool for estimating behavioural
states from animal tracking data that contain negligible error. Our simulation study
demonstrated the accuracy of the HMMM for estimating both the states and model
parameters. Our use of data from different species and derived by different telemetry
systems demonstrated the wide-ranging applicability of the HMMM. Coupled with
the existing documentation of the DCRWS SSM (more than 45 papers using this
model), we suspect that the HMMM will be an easily interpretable tool for ecologists
who are interested in implementing the DCRWS SSM and have highly accurate data,
which has an advantage over current methods with the DCRWS SSM of being fast to

fit (on the order of seconds) and avoiding convergence issues with MCMC samplers.
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HMMM implementation is available through the R package swim.

The HMMM, DCRWSyomE, and moveHMM all identified two behavioural states
from the grey seal track, consistent with previous analyses (Jonsen et al., 2005; Breed
et al., 2009, 2011). Grey seal tracks from Atlantic Canada typically show clear bouts
of directed and tortuous movement, and have been previously analyzed with the
DCRWS SSM (e.g., Jonsen et al. 2005); therefore, an Atlantic Canada grey seal GPS
track provided an ideal test for our study. For grey seals, tortuous movement is often
assumed to represent apparent foraging, while directed movement is often regarded as
travelling between foraging patches. The models identified several bouts of apparent
foraging behaviour in the Northwest Atlantic and in the Gulf of Saint-Lawrence,
specifically off the coasts of Nova Scotia, Prince Edward Island, New Brunswick,
and Gaspésie, areas of high biological productivity that are consistent with those
previously identified as grey seal foraging areas (Breed et al., 2009).

With the HMMM, DCRWSyoymE, and moveHMM, we identified two behavioural
states within the lake trout track. The Drummond Island lake trout population
spawn primarily at nighttime on rock rubble reefs in association with submerged
drumlins (Riley et al., 2014; Binder et al., 2015). Lake trout show multiple be-
haviours characterized by tortuous movement, including spawning on the reefs. For
example, lake trout (particularly males) often aggregate on the spawning reefs in the
weeks leading up to spawning, a behaviour known as staging (Muir et al., 2012).
Because egg surveys have verified that no spawning occurs in some locations where

our models identified tortuous behaviour (T. Binder, unpublished observations), we
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believe the models are distinguishing, more generally, reef and non-reef behaviours.
Being able to mathematically distinguish between reef and non-reef behaviours can
allow for identification of key lake trout habitats for conservation like spawning sites
in places where direct observation is difficult. Furthermore, by building a dependence
of the HMMM on one or more covariates, it may be possible to more acutely identify
spawning behaviour. For example, because the Drummond Island lake trout tend to
spawn at night close to the substrate, time of day and lake trout depth (which is often
recorded by positioning systems like the VPS) may provide sufficient additional infor-
mation for the HMMM to distinguish spawning behaviour from other reef-associated
behaviours. One possible way to achieve this is by allowing the switching probabilities
of the HMMM to depend on these covariates in a linear fashion (as in e.g., Bestley
et al. 2013; Michelot et al. 2016). Additionally, an extension to the HMMM which
could estimate more than two behavioural states may be able to distinguish reef from
spawning behaviour. We chose to model only two states so that we could more di-
rectly compare results of the HMMM to our implementation of the original DCRWS
SSM (the DCRWSyoag); however, the HMMM should be directly extendible.
When fitted to the blue shark track, moveHMM produced different state sequences
than the HMMM and DCRWSyon g, as moveHMM estimated longer stretches of be-
havioural state 2 than either of the other models. This is likely because moveHMM
models the distributions of the turning angles and step lengths calculated from an
animal path, which is fundamentally different from the movement process of the

HMMM and DCRWS oy . Furthermore, (McClintock et al., 2014) showed that the
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continuous-time analog to the movement process introduced by Jonsen et al. (2005)
and modeled by the HMMM has step lengths and bearings (turning angles) that are
correlated, whereas the step lengths and bearings of the process modeled by McClin-
tock et al. (2012) (close to that of moveHMM) are uncorrelated. moveHMM identified two
behaviours that were distinguished primarily by different step lengths, and therefore
travelling speeds, with state 1 characterized by longer step lengths and faster speeds,
and state 2 characterized by slower movement. The HMMM and DCRWSyonE
identified two behaviours that were distinguished by high (state 1) and low (state 2)
autocorrelations, or how related the speed at time ¢ was to the speed at time ¢t — 1.
By modelling autocorrelation, the HMMM and DCRWSyon g were able to directly
estimate persistence in animal movement. It is possible that the shorter sequences of
state 2 identified by the HMMM and DCRWS yoag resulted because the behaviours
they were trying to estimate occured on a finer time scale than was modelled, which
could make biological interpretation of these states difficult.

Our simulation study results suggested that while the DCRWSyoa e was slightly
more accurate than the HMMM), the difference was marginal. The two models per-
formed similarly while estimating model parameters with the exception of 65, which
the DCRWSyou e more accurately estimated. This result is likely explained by
the rather informative priors on #; and v, when fitting the DCRWSyor . The
DCRWSyomE also more accurately estimated the behavioural states, which may have

resulted from the fact that the DCRWSyon g directly samples each of these random
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effects from the posterior likelihood, while the HMMM uses a post hoc global decod-
ing algorithm (the Viterbi algorithm) to identify the most likely sequence of states.
Predictably, moveHMM had the highest behavioural state error rate of the three ap-
proaches, likely because it was fitted to simulated data from a movement process not
equivalent to its own. Finally, the HMMM was the fastest model to fit, with moveHMM
and the DCRWSyoup taking on average 15 times and 229,500 times longer to fit
than the HMMM, respectively. Quicker fits of the DCRWS o g may be achieved by
reducing burn-in and sampling sizes of the MCMC, but they would still take orders
of magnitude longer and may be less accurate. We chose these sizes based on prior
experience with fitting the DCRWS SSM, and to try to ensure convergence of the
MCMC chains during the simulation study.

Our HMMM is a major advance in using TMB to solve animal movement prob-
lems. Highly accurate data are becoming more common in the marine realm, and the
HMMM, as implemented through the R package swim, provides a fast and reliable
tool for making meaningful inference from animal movement data. Fast methods for
analyzing data will become more important as larger datasets are collected. The
HMMM therefore additionally provides a baseline method for movement modelling
in TMB that can be further developed for more specific and nontrivial animal move-
ment problems like determining relationships between movement and environmental

covariates, or accounting for measurement error.



Chapter 3

Current and Emerging Statistical Techniques for
Aquatic Telemetry Data: A Guide to Analysing

Spatially Discrete Animal Detections

3.1 Introduction

Aquatic animals live in habitats that create inherent challenges for those attempt-
ing to study their ecology, behaviour and physiology. Telemetry enables the remote
monitoring of free-living animals, whereby a signal emanating from a device (i.e.,
transmitter or tag) carried by an animal transfers information to a receiver. The
advent of telemetry tools has provided researchers with effective means of studying
aquatic animals in the streams, rivers, lakes, estuaries, and oceans of the world (Lucas
and Baras, 2000; Hussey et al., 2015).

Three common telemetry technologies used with aquatic animals are radio and
acoustic telemetry, and passive integrated transponders (PIT). Radio telemetry uses
radio signals that are detected by an antenna affixed to a receiver, whereas acous-
tic telemetry uses sound waves to transmit tag information to a hydrophone on a
receiver. The transmitters of both technologies are dependent on internal batteries

that, along with the tag-animal size ratio and tag settings, limit the duration of data
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collection. PIT tags rely on external energy derived from an electromagnetic field
emitted by receiver antennas, which prolongs the tag lifespan but requires close prox-
imity (Lucas and Baras, 2000). Despite design differences (Lucas and Baras, 2000;
Cooke et al., 2012), these three telemetry technologies all record one specific kind of
data: detection data that consist of time-stamped, tag-specific records registered and
stored by receivers when tagged animals are within range.

Recently, a shift from mobile tracking towards using fixed receiving stations that
automatically log detections has led to a large number of tagged animals and ex-
tensive receiver coverage crossing geopolitical boundaries (Donaldson et al., 2014).
The collection and aggregation of large aquatic detection datasets has created both
challenges and opportunities for the study of wild aquatic animals (Lennox et al.,
2017a). Although there have been substantial developments in the statistical anal-
ysis of aquatic detection data, to our knowledge, there have been no attempts to
synthesize the existing and emerging methods. Our goal is to provide this synthesis.
Although the methods we review are the most ubiquitous (today), they are not ex-
haustive. In particular, because detection data are limited to collection at discrete
locations, we do not review methods for spatially continuous data (e.g. movement
paths collected by satellite telemetry devices). It is possible to obtain estimates of
spatially continuous data from detection data using positioning systems (Niezgoda
et al., 2002; Smith, 2013) or by calculating centers of activity (Simpfendorfer et al.,
2002), in which case other statistical methods not reviewed herein may be used, for

example, home range analysis (Marshell et al., 2011), state-space models (Marins
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et al., 2014), or hidden Markov models (Whoriskey et al., 2017). We also do not
discuss software designed primarily for the data management and visualization of
aquatic detection data. These developments, e.g. the Ocean Tracking Network Tool-
box (otndc@dal.ca), ZoaTrack (Dwyer et al., 2015), the Integrated Marine Observing
System’s Animal Tracking Facility detection database and quality control procedures
(Hoenner et al., 2018), and the R (R Core Team, 2018) packages glatos (Holbrook
et al., 2017), and VTrack (Campbell et al., 2012), provide high-quality standardized
methods for handling detection data; however, they typically do not incorporate a
stochastic component.

First, we review statistical methods for detection data derived from fixed telemetry
arrays in aquatic environments. To illustrate the differences between statistical meth-
ods, throughout the review, we analyse a portion of a dataset collected on acoustically
tagged bull trout Salvelinus confluentus. Then, we comment on potential future di-
rections that could help advance our understanding of how aquatic animals interact
with each other, their environment, and humans in a rapidly changing world. To
close, we present a decision tree to summarize the differences among the statistical
methods and to help guide researchers on how to analyse their detection data given

the scientific questions of interest and sampling design.

3.2 Illustrative Dataset

Between 2010 and 2012, 187 bull trout were acoustically tagged and monitored by

an array of 42 receivers deployed in the Kinbasket Reservoir of British Columbia,



42

Canada (Fig 3.1). The full dataset was previously analysed in Martins et al. (2013)
and Gutowsky et al. (2016); for simplicity, we chose to analyse data collected only
during January 2011. The resulting dataset comprised three files: receiver metadata,
that includes the identities and locations of the deployed receivers, along with envi-
ronmental information; tag metadata, that consists of the unique tag ID codes and
other animal characteristics (e.g. length/ weight/sex); and detection data, i.e. the
records of tags registered by receivers at a specific date and time. Together, these data
(hereafter ‘detection data’) provide a comprehensive view on individual movements.

For any telemetry study, the question of interest and the spatiotemporal design of
the receiver deployments will influence the applicability of various statistical methods.
Once a method has been chosen, the detection data will need to be summarized
into an appropriate response variable (y). Examples include: counts of detections
(Zhang et al., 2015), counts or proportions of receivers visited within a specific time
scale (Udyawer et al., 2015), presence/absence data (Dudgeon et al., 2013; Kessel
et al., 2014a), time spent in particular areas or residency indices (Kessel et al., 2014a;
Ketchum et al., 2014), and movement rates (Stich et al., 2015). We discuss the form of
the response variable for each method reviewed below, and use the Kinbasket dataset

to illustrate the versatility of detection data.
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Figure 3.1: Study location of the illustrative dataset, i.e. the Kinbasket reservoir in
British Columbia, Canada, with the location of the dam in yellow, and the receiver
locations in dark blue. Detection range was assumed to be 500 m, a distance shorter
than the width of either Reach in most places.
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3.3 Review of Current Statistical Methods

3.3.1 Generalized Modelling Framework

Researchers who use telemetry are often interested in determining whether there is
a relationship between animal movement patterns and a set of putative explanatory
variables or covariates. Because many of the possible response variables are non-
Gaussian, traditional statistical methods like analysis of variance and linear regression
are not directly applicable. Generalized linear models (GLMs) enable the modelling
of non-Gaussian response variables provided they follow a distribution belonging to
the exponential family (Wood, 2006). A GLM links an observation y; to a set of

covariates X;:

1 = Ely;] (3.1)

() = XiB = Bo + frxia + Poxio + -+ + LrTik, (3.2)

where E[-] denotes the expectation of a random variable, g(-) is a monotonic link
function, and the vector 3 contains k41 entries that describe the relationship between
w; and the k covariates (plus an intercept) contained in each row vector X; (Wood,
2006).

Because telemetry does not directly measure animal absence, researchers must
decide whether to interpret a lack of detections as absence and encode them as zeros
within a dataset. The temporal resolution of the study directly affects the number

of zeros in the response, whereby many zeros will be included if animals are rarely
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detected over numerous short time intervals. Furthermore, environmental features like
topography, weather, and biological noise, as well as collisions with other telemetry
transmissions, can lead to false absences (Cagua et al., 2013). A dataset will be
more difficult to accurately model when the number of observed zeros is substantially
greater than the number predicted; such models may show evidence of overdispersion
(when the response variance is larger than expected) or lack of fit (Zuur et al., 2009).
In these cases, zero-inflated models may provide more accurate results (Zuur et al.,
2009).

Both discrete and continuous covariates can be included in GLMs if they are
linearly related to the response. For nonlinear relationships, generalized additive
models (GAMs) relate the response and covariates using a sum of smooth functions

f(+) of the variables (Wood, 2006), e.g.

9(pi) = filwin) + fowig, vi3) + - (3.3)

Detection data have been related to covariates like lunar phase and tidal stage
(Dudgeon et al., 2013), water temperature (Kessel et al., 2014a; Udyawer et al., 2015),
discharge (Richard et al., 2014; Stich et al., 2015), and diel period (Ketchum et al.,
2014; Zhang et al., 2015). Temporal data can also be used, often by summarizing the
response into temporal blocks and including the blocks as a covariate. Blocks can be
defined based on species ecology (e.g. reproductive timing), or anthropogenically (e.g.
by monthly intervals; Matich and Heithaus 2014). When investigating a temporal

trend in the response, temporal autocorrelation should be checked and accounted for
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if the assumption of independence is violated, e.g. by incorporating lagged temporal
variables (Kessel et al., 2014a) or including a correlation structure (Borger et al.,
2006).

Because most detection data are collected under the largely uncontrolled condi-
tions of the natural environment, some responses may only be independent when
conditioned upon other variables. These variables, also known as random effects, can
be accounted for by incorporating a second stochastic term into GLMs and GAMs
to form generalized linear mixed models (GLMMs) and generalized additive mixed
models (GAMMs; Wood 2006). In practice, random effects are often included to
account for variation within and among sampling units. For example, detection data
are usually collected on a random subset of individuals from a population. To con-
duct population-level inference, individual ID can be included as a random effect with
either, or both, an intercept and slope (Bolker et al., 2009). Random effects can also
be associated with space or time, e.g. receiver location (Ketchum et al., 2014) or age
and sampling year (Borger et al., 2006).

Generalized models were used to assess the factors affecting spatial distribu-
tion and movement of bull trout in the full complement of the illustrative dataset
(Gutowsky et al., 2016). Using a GLMM, Gutowsky et al. (2016) assessed the effects
of year, season, sex, and body size (covariates in X) on home range size (response
y; 95% minimum convex polygon). A GAMM was used to quantify the relation-
ship between total displacement (response y; sum of distances between receivers) and

sex, body size, and smoothed month. Larger [ coefficient values for spring and fall



47

suggested that bull trout home ranges were larger in those seasons than in winter
and summer. Additionally, a positive sex-size interaction term suggested that larger

females moved farther than smaller females.

3.3.2 Survival (Time-to-Event) Analysis

Telemetry measures animal positions over time and changes in position can be re-
lated to important ecological events. For example, tagged animals may disperse or
migrate (Kawabata et al., 2010), interact with humans (Thorley et al., 2007), pass
an obstacle (Castro-Santos and Haro, 2003; Naughton et al., 2005; Martins et al.,
2013), be depredated (Danylchuk et al., 2007; Lennox et al., 2017b), or die (Curtis
et al., 2015). These events can be analysed with GLMs using a binomial response,
where study animals are grouped into those that experience an event and those that
do not. Survival analysis extends the response by incorporating the time it takes for

the event to occur (e.g. y = 2 days) and estimates the survival function, S(t),

S(t) = Pr(T > 1), (3.4)

which describes the probability, Pr( - ), that an event will occur at some random
time T after the set time ¢ (Pollock et al., 1989a; Klein and Moeschberger, 2003).
Two common survival function estimators include the non-parametric Kaplan-Meier
and Nelson-Aalen estimators (Klein and Moeschberger, 2003). A log-rank test can
be used to compare the estimated survival curves of different groups (e.g. sex and

reproductive state or moult stage; Pollock et al. 1989b; Huserbraten et al. 2013).
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Further inference is possible with the hazard function h(t), which describes the
conditional rate of an event occurring during a period of time {¢,¢ + At} given that
it has not already been experienced (Klein and Moeschberger, 2003):

P[t§T<t+At|TZt]
At—0 At

. (3.5)

When the shape of the hazard or survival function is assumed, parametric sur-
vival analysis can be performed with error distributions (e.g., the Weibull) and this
allows for predictive extrapolation (Benoit et al., 2015). However, selecting a para-
metric hazard function requires accurate knowledge of the true shape, which is not
often known (White and Garrott, 1990; Murray, 2006). Consequently, using semi-
parametric Cox proportional hazards regression can be advantageous because there
is no assumption about the hazard shape, yet the response can still be compared to

a set of covariates X (Murray, 2006; Harrell, 2015),

h(t;) = ho(t;)c(X:8). (3.6)

The hazard h(-) is related to an arbitrary baseline hazard hg(-) that is treated non-
parametrically, and a known parametric function ¢(-) of the covariates and their coef-
ficients (Klein and Moeschberger, 2003). The Cox proportional hazards model is also
less sensitive to outlying observations than parametric models, but does require haz-
ard proportionality which can be verified graphically or by testing for independence

between Schoenfeld residuals and time (Harrell, 2015). Violations of this assumption
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may be compensated for by fitting stratified models (Harrell, 2015).

In telemetry studies, animals often go undetected for extended periods, either
because they leave the detection range of the array or because they are inactive. The
resulting monitoring gaps can cause discontinuity in the hazard function (Murray,
2006) and bias survival estimates (Bunck et al., 1995). The Andersen—Gill estimator
(Andersen and Gill, 2005) is a variation of the Cox proportional hazards model that
uses a counting process to account for discontinuous monitoring (Murray 2006; see e.g.
Johnson et al. 2004). In addition, individuals that fully drop out of the study before
the event occurs can be censored from survival analysis techniques without having to
be removed entirely (Pollock et al., 1989b). For example, Topping and Szedlmayer
(2011) used survival analysis to study the residency time (event = emigration) of red
snapper (Lutjanus campechanus), and censored fish that either died before emigration
or did not emigrate in order to retain them in the analysis.

An example of survival analysis using detection data can be found in Martins
et al. (2013), where the Kaplan-Meier estimator was used to compute the risk of
bull trout unintentionally passing through hydro-electric dam turbines (the event of
interest) from the full Kinbasket dataset. The Kaplan—Meier estimator exhibits larger
jumps in the survival curve for the fall and winter, suggesting that the risk of passing

through the dam was higher during those seasons.
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3.3.3 Mark-Recapture Models

Mark-recapture models are used for estimating movement or demographic attributes,
e.g. abundance or survival. These models are fitted to data collected by capturing
and marking a sample of animals from a population, subsequent release, and resam-
pling such that additional samples can include both marked and unmarked animals
(Amstrup et al., 2005). When using telemetry, mark-recapture models are applicable
if the tagging procedure is considered the marking process, and detections are the
recaptures. Few telemetry studies record the presence of untagged animals (but see
Dudgeon et al. 2015), therefore the most applicable mark-recapture models incorpo-
rate data collected on tagged animals only, which include known-fate, live-recapture,
and recovery models (Lindberg, 2012).

Known fate models (related to survival analysis) assume perfect detection prob-
abilities, which rarely occur in telemetry. Alternatively, live-recapture models are
highly applicable for analyzing detection data because they enable the joint esti-
mation of detection probability and demographic quantities. Among live-recapture
models, the Cormack—Jolly—Seber model is frequently used, often to estimate sur-
vival along migratory routes (e.g. Welch et al. 2009; Moore et al. 2015). The Cor-
mack—Jolly—Seber model is fitted using a product of probabilities with two basic
parameters: ¢ is the probability that an individual survives between detections, and
p is the probability that an individual is detected if alive and marked (Amstrup et al.,
2005). The response variable consists of a binary encounter history (absence = 0 and

presence = 1) for every marked animal that is recorded on a discrete temporal scale
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chosen by the researcher. If a single animal’s encounter history is encoded as 1101,
where the first digit is the initial capture and tagging, then the associated encounter

probability would be

opo(1 — p)op, (3.7)

if ¢ and p are assumed constant through time, or

¢1p2¢2(1 - p3)¢3p4, (3~8)

if these probabilities are allowed to vary. Because the Cormack-Jolly—Seber model
cannot distinguish between mortality and emigration, survival estimates are more
appropriately termed apparent survival (Williams et al., 2001).

A useful extension of the Cormack—Jolly—Seber model is the multi-state Arna-
son—Schwarz model, which estimates survival and detection probabilities as a function
of an observed animal state (Schwarz et al., 1993; Amstrup et al., 2005). The states
are assumed to follow a first-order Markov process governed by transition probabili-
ties (Amstrup et al., 2005). It has been applied to detection data to estimate daily
probabilities of horseshoe crab spawning (Limulus polyphemus; reproductive state;
Brousseau et al. 2004), survival of downstream migrating Atlantic salmon (Salmo
salar; location state; Holbrook et al. 2011), and movement probabilities along wall-
eye (Sander vitreus) migratory routes (location state; Hayden et al. 2014).

Recovery mark-recapture models are useful when the recapture process is terminal
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(Lindberg, 2012). Information on deceased individuals can be jointly modeled with
live detection data using the Burnham model (Burnham, 1993), which has been used
to provide more precise survival estimates (Sollmann et al., 2010) and to estimate the
joint probability that tagged individuals were caught and reported (Martins et al.,
2011). The Barker model is an extension of the Burnham model useful for analysing
temporally continuous detection data (Barker, 1997), and has been used to estimate
the effects of gastric lavage on common snook survival (Centropomus undecimalis;
Barbour et al. 2012). Finally, Fouchet et al. (2016) proposed an approach for tempo-
rally continuous data that combines survival analysis with an inhomogenous Poisson
process for modelling detection probability.

We fitted several Cormack—Jolly—Seber models using MARK (White and Burn-
ham, 1999) and RMark Laake (2013) to test whether sex or length were associated
with weekly bull trout survival, and whether the receiver array detection probability
changed over time. We compared candidate models using corrected Akaike’s infor-
mation criterion (AICc), and found that the best model estimated intercepts only
for both survival and the detection probability (Table 3.1). The apparent weekly
survival probability was estimated at 0.91. In addition, the detection probability was
estimated at 0.69, which suggests that a combination of receiver coverage/efficiency,
environmental conditions, and fish behaviour limited the array’s ability to detect bull

trout.
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Table 3.1: Model fits with corrected AIC (AICc) values from the mark recapture
analysis of the illustrative bull trout dataset. Construction of the model is given by
the Model formula, where ¢(-) denotes the effects related to the apparent survival
probability and p(-) denotes those related to the probability of detection. 1 denotes
an intercept only model. AAICc is the difference in AICc from the best model.

Model formula No. parameters AlICc A AlCc
o~ Dp(~ 1) 2 258.0  0.00
(~ length)p(~ 1) 3 250.4  1.41
o(~ sex)p(~ 1) 3 260.0  2.02
¢(~ sex x length)p(~ 1) 5 260.6  2.59
o(~ sex + length)p(~ 1) 4 261.5  3.42
o(~ 1)p(~ time) 4 261.5  3.50
¢(~ length)p(~ time) 5 263.3 529
o(~ sex)p(~ time) 5 263.6  5.58
¢(~ sex x length)p(~ time) 7 264.6  6.57
o(~ sex + length)p(~ time) 6 265.4  7.39

3.3.4 Network Analysis

Networks are mathematical objects consisting of nodes connected by edges (Dale and
Fortin, 2010). They can be used to study animal movement by analysing the rela-
tionships between nodes, which can represent receivers or tagged animals separately
(unipartite graphs; e.g. Jacoby et al. 2012) or simultaneously in the same graph (bi-
partite graphs; e.g. Finn et al. 2014). To study movement, nodes are often specified
as the stationary receivers and edges represent either the directed or undirected move-
ments of animals between receivers. Social aggregations can also be studied when the
animals are treated as nodes, e.g. by testing whether there exist preferred associa-
tions among individuals (Stehfast et al., 2013). A network’s response variable is an
adjacency matrix, which describes the connections between pairs of nodes (Farine and

Whitehead, 2015). For example, the adjacency matrix
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Rl R2 R3
RI{ 0 0 0
R2| 0 0 3 (3.9)

R3 0O 0 4

describes a system of three receivers (R1, R2, and R3), where three movements were
recorded from R2 to R3 and four records indicate animals staying at R3. Adjacency
matrices for null networks can also be of interest, e.g. to document potential direct

routes among receivers. For the above example, the following null network

R1 R2 R3
RI{ 1 1 o0
R 1 1 1 (3.10)

R3 0 1 1

indicates that movements are possible between all pairs of receivers except from R1
to R3 in either direction. Once the adjacency matrix is defined, visuals and metrics
can be calculated that describe the network connectivity (Dale and Fortin, 2010). For
example, the node degree is the number of incoming and outgoing edges of a node,
which describes the amount of traffic through a receiver and therefore may indicate
areas of importance (Jacoby et al., 2012; Farine and Whitehead, 2015), whereas edge
density is the fraction of observed edges to all theoretically possible edges, and can

help indicate the amount of random/non-random movement (Jacoby et al., 2012).
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Network metrics can be compared amongst groups, e.g. to determine sex-specific
differences in movement (Jacoby et al., 2012) or preferred areas (Stehfast et al., 2015).
When the groups are not necessarily known a priori, community detection algorithms
can be used to identify groups of receivers or animals that are closely related, for
example to identify home ranges (Finn et al., 2014). If an observed network can be
classified as a theoretical network pattern, then known properties can be interpreted
(e.g. Fox and Bellwood 2014). Finally, disrupting the networks by removing nodes
and studying the subsequent network fragmentation can help to assess the effects of
habitat disruption (Jacoby et al., 2012) and the protective capabilities of potential
marine reserves (Espinoza et al., 2015).

Direct hypothesis testing on network measures is possible using GLMMs, but the
assumption of independence may be violated (Farine and Whitehead, 2015). Permu-
tation and randomization techniques provide non-parametric methods for hypothesis
testing by comparing an observed statistic to those calculated from randomly gener-
ated networks (Dale and Fortin, 2010), and have been used to assess whether animals
are moving randomly (Espinoza et al., 2015). In addition, networks can be compared
to each other or other dyadic variables using a Mantel test which assesses the corre-
lation between two matrices (Urban et al., 2009; Farine and Whitehead, 2015), e.g.
to test whether yellowfin tuna ( Thunnus albacares) social associations are related to
pre-defined cohorts (Stehfast et al., 2013). Relationships between networks and more
than one covariate can be evaluated using the multiple regression quadratic assign-

ment procedure (Farine and Whitehead, 2015), which has been used to assess the
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Figure 3.2: Sex-specific results from applying network analysis to the illustrative
dataset. Yellow represents the position of the dam. Circles denote the receiver posi-
tions, and are weighted based on their node degree, i.e. the number of incoming and
outgoing edges of a node. Edges are weighted based on the number of directed bull
trout movements between receivers. Males are on the left (green), and females are on
the right (orange).

effect of environmental variables on small-spotted catshark (Scyliorhinus canicula)
movements (Jacoby et al., 2012).

We applied network analysis to the bull trout dataset (Figure 3.2) after summa-
rizing detection data into directed movements between pairs of receivers. Using the
R package igraph (Csardi and Nepusz, 2006) and treating the receivers as nodes, we
plotted a network for each sex making the size of each node proportional to its degree
and using weighted edges to represent the number of directed movements between
nodes. These networks suggest that the main pool of the reservoir experiences more
fish traffic compared to either of the reaches, and therefore likely contains important
bull trout overwintering habitat. In addition, a Mantel test between the two net-

works suggested a weak but statistically significant (r = 0.17, p < 0.05) correlation
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in movement patterns between the males and females.

3.4 Future Directions

3.4.1 Gaussian Random Fields

Gaussian random fields (GRFs) are a promising approach for analyzing detection
data within a spatial context. Specifically, GRFs estimate the residual spatial corre-
lation remaining after accounting for measured explanatory variables (Thorson and
Minto, 2015). In fisheries, they have been used to model the spatial dependence of
population processes and to understand the relationship between fish distribution
and habitat (Thorson and Minto, 2015; Thorson et al., 2015; Carson et al., 2017).
With telemetry data, GRFs have been used to show how the number of at-sea seal
encounters co-varied with bathymetry and distance to the seal haul-out site (Carson
and Mills Flemming, 2014). In that study, the receiver locations changed through
time; here, we demonstrate the potential of GRFs for detection data collected at
fixed locations by investigating whether the presence of the dam affects bull trout
distribution using the illustrative dataset. Because the GRF is a flexible hierarchical
model, these data could have been modeled in several different ways. For exam-
ple, we could have: modeled the duration or number of detections (e.g. Carson and
Mills Flemming 2014); accounted for false absences by using a zero-inflated distribu-
tion (e.g. Cosandey-Godin et al. 2015); or used a state-space model to account for
technological error (e.g. Thorson et al. 2015).

We assumed that the number of individuals y, detected at a given receiver location
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s (of which there are n) was Poisson distributed:

ys ~ Poisson(\;). (3.11)

We linked the mean of the distribution, A, to the linear predictor, 7,, through a

log-link function:

log(As) = ns. (3.12)

In turn, 7, was related to the distance between the receiver and the dam through the

linear equation:

ns = Bo + Brrs + &, (3.13)

where By represents the log of the number of detections expected when the distance
to the dam (x) and the spatial random effect (£;) both have no effect, and f; is the
regression coefficient for x,. The random effect & accounts for the effect of unknown
spatial factors influencing the response and we model it as a GRF, meaning that for
any & € D C R?, where D is the domain, we let & = (&1, ...,&,)7 be distributed as a

multivariate normal:

£ ~ MVN(0, %), (3.14)

Here, 3 is a n X n covariance matrix where the (i, j)th element of ¥ is defined by the
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Matérn covariance structure, which for i # j is defined as:

2

Covléi, &l = ¢ (khij)" Ky (khi ;) (3.15)

(V)QV_l

where K, is a modified Bessel function of the second kind, h;; is the Euclidean
distance between receiver locations s; and s;, the smoothness parameter v is set

2 are both estimated.

equal to 1, and the spatial scale x and marginal variance o
As in (Thorson et al., 2015), we used R-INLA (Illian et al., 2012) to simplify model
implementation with stochastic partial differential equations (SPDEs) and we used
TMB (Kristensen et al., 2016) to estimate the model parameters.

Model fitting resulted in parameter estimates of fy = 2.42 (95% CI: 1.73-3.12)
and 8; = —0.042 (95% CI: -0.063 to -0.022), indicating that as distance to the dam
increased the number of individuals detected decreased. This may result in part
because the distance from the dam increases proportional to the distance from the
main lacustrine habitat for most locations within the reservoir. In addition, the

spatial correlation of the GRF accounts for some of the bull trout distribution not

explained by distance from the dam (Figure 3.3).

3.4.2 Accounting for Spatial Correlation and Measurement Error

We expect that methods for estimating spatial correlation associated with animal
movement will grow in popularity as receiver coverage and method documentation
continue to expand. While we proposed the GRF as a flexible method for modelling

animal movement data with a spatial component, other spatial methods exist that



60

INLA Mesh

s

s
Bl
Y

VaVAVAVAY
Wi

2
V)

N
VAX’ K7

X
KK
V.

A

%\
K
i4i

\V)

7

':W % <>
KANIER)

25

exp(B1Xs) exp(E)
C) D)
\v\.}%:b\ e
- 0.4
\\\f’ ., — 0.2
. !

Figure 3.3: Results from the GRF analysis on the illustrative dataset. (a) shows the
mesh calculated by the INLA SPDE; (b) represents the expected number of bull trout
across the reservoir returned by the full model; (c) represents the expected number of
fish as influenced by distance from the dam; and (d) represents the expected number
of fish based on the effect of the GRF only. Yellow represents the position of the dam.
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could be applied to detection data. For example, one terrestrial study used a spatial
(and temporal) correlation structure within a GLMM to assess the factors affecting
home range size of radio-tracked roe deer (Capreolus capreolus; although home range
in this case was calculated from spatially continuous detection data, similar princi-
ples would apply to responses calculated from discrete detection data; (Borger et al.,
2006)). Network autocorrelation models (Leenders, 2002) could be used to estimate
the correlation between network attributes caused by receiver location. In addition,
spatial capture-recapture models are a spatial extension of mark-recapture models,
and are well established in terrestrial studies with encounter data like those generated
by camera trapping (Royle et al., 2014). These models involve hierarchical modelling
of a spatial point process of unobserved animal activity centres and a detection prob-
ability function depending on distance from the activity centres (Efford and Fewster,
2013). Despite similarities with terrestrial encounter data, we have seen few stud-
ies that apply spatial capture-recapture methods to aquatic detection data, but see
Raabe et al. (2014), who studied the survival and movement of PIT-tagged American
shad (Alosa sapidissima) using these methods.

Many studies have investigated the measurement error of aquatic tracking tech-
nology by estimating the detection efficiency (the frequency with which a receiver
will detect a fish within its given range; Simpfendorfer et al. 2008), detection range
(the probability of detection given distance from a receiver; Kessel et al. 2014b), or
the frequency of false detections (when a receiver logs a false ID or detects an absent

animal; Heupel et al. 2006). However, few studies incorporate this information into
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their biological inferences. Those that do may use it to pre-process their data (e.g.
Hoenner et al. 2018; Kessel et al. 2014a), or directly incorporate measurement er-
ror into the statistical method (Pedersen and Weng, 2013; Simpfendorfer et al., 2008;
Winton et al., 2018). Measurement error can additionally be used to help numerically
optimize the spatiotemporal design of a receiver array before deployment, resulting
in a study design with enhanced ability to acquire high-quality data (Pedersen et al.,
2014).

State-space models are hierarchical models that can pair a measurement equa-
tion with a model for animal movement, and simultaneously estimate both processes
(Auger-Méthé et al., 2017). Two notable examples with detection data include: (a) a
non-parametric function for detection probability paired with an Ornstein—Uhlenbeck
movement process to estimate the home range of a humphead wrasse (Cheilinus un-
dulatus; Pedersen and Weng 2013); and (b) a Gaussian decay measurement equation
coupled with a binomial spatial point process to estimate centres of activity of a black
sea bass (Centropristis striata; Winton et al. 2018). State-space models have gained
popularity for analyzing spatially continuous animal movement data, likely because
of their flexibility — multiple measurement error distributions can be included and
matched specifically to the tracking technology (e.g. Winship et al. 2012), and the
movement process can range from individual models of movement (e.g. Auger-Méthé
et al. 2017) to GRFs (e.g. Thorson et al. 2015). We believe that state-space mod-
els could provide a framework that improves the reliability of statistical analyses of

detection data.
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3.5 Broadening the Scope of Animal Movement Analyses

Telemetry technology will continue to improve technically in ways that will increase
study longevity, target more species or life stages, and expand the scope of data col-
lection (Lennox et al., 2017a). Study designs will also evolve, as auxiliary biological
and environmental variables are collected during sampling or independently, and as
telemetry networks facilitate the sharing of resources and multi-species data (Lennox
et al., 2017a). As a result, telemetry studies will have the potential to generate mas-
sive, interdisciplinary datasets, and statistical methods for analysing such complex
data will have to adapt appropriately. In the future, movement ecologists may look
to the burgeoning research field of human mobility, which has exploded since the
advent of the smartphone with GPS tracking and geolocated social media postings
(Thums et al., 2018). Because humans and non-human animals appear to conform
to similar ecological principles, e.g. site fidelity, aggregation, and sociality (Meekan
et al., 2017), movement ecologists will have the opportunity to readily appropriate

big data approaches from human mobility studies (Thums et al., 2018).

3.6 Discussion

To aid researchers in matching a statistical method to their data and study objec-
tive, we devised a decision tree which we present in Figure 3.4. We recognize that
accounting for every possible study design would be unrealistic, therefore we sug-
gest that researchers utilize our decision tree as a first general guide through some

of the possible statistical methods, not an exhaustive instruction catalog. We hope
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Figure 3.4: Decision tree for identifying appropriate statistical methodologies for
analyzing detection data collected by acoustic, radio, or PIT telemetry
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that a tree will help researchers narrow their selection, but then we strongly suggest
that this is followed by comprehensive study of the chosen method(s), and its(their)
accompanying assumptions. To that end, we summarize our guide below.

We suggest using mark-recapture methods when studying population dynamics,
especially when the detection ability of the array is suspect. However, note that the
most commonly used mark-recapture method, the Cormack—Jolly—Seber model, is
dependent upon the following assumptions: (a) tags are not lost and do not fail; (b)
survival is not influenced by the tag or tagging procedure; and (c¢) survival and detec-
tion probability do not vary among tagged animals. Preliminary laboratory studies
assessing tag attachment and retention can help to determine the risk of tag loss or
failure (Holbrook et al., 2013). Holding studies can be used to assess whether tag-
ging influences survival (Furey et al., 2016); however, tagging may negatively affect
multiple traits in a cumulative way such that the full influence is not understood by
assessing the effect on survival alone (Bodey et al., 2018). In fact, tagging can af-
fect traits like growth, swimming performance, and social interactions (Jepsen et al.,
2015), and these potential effects should be carefully considered in any analysis. Fi-
nally, some of the factors affecting individual variation in survival and detection (e.g.
sex, age) can be incorporated into the Cormack—Jolly—Seber model through stratifi-
cation or regression analysis (Williams et al., 2001).

To understand the occurrence of an event when temporal records for the event
exist, consider using survival analysis. Survival analysis can be used to understand

the survival of tagged animals; however, it is distinguishable from mark-recapture via
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their response variables. Survival analysis requires a temporal value for the response
(e.g. y = 12 hr), whereas mark-recapture uses a discrete time series (e.g. 1001101),
and time is often incorporated by allowing probabilities to be dynamic. Although
a temporal response can also be modelled using GLMs/GLMMs/GAMs/GAMMs,
survival analysis can account for the fact that for some study animals it may not
be possible to determine whether they experience the event (censoring). Censoring
is appropriate as long as the probability of being censored is independent of the
probability of the event (Harrell, 2015).

To describe the connectivity among receiver locations or tagged animals, we en-
courage the use of network analysis which provides easily interpretable visualizations
of this connectivity. However, network analysis does assume that all of the nodes of
a system are represented in the graph (Dale and Fortin, 2010) and is therefore more
useful for datasets collected by many receivers/individuals. Nodes and edges must
be carefully defined in order to accurately represent the study system; any deviations
from the true network, for example through data transformation, inclusion of false
absences, or exclusion of individuals, can significantly impact network measures and
the overall network structure (Farine and Whitehead, 2015).

If spatial correlation is of interest then researchers should use spatially explicit
methods like GRFs. It is possible to incorporate spatial information into some of

the other statistical methods we have described. For example, with network analysis
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a receiver node can include a location, and with regression-type analyses (e.g. Cor-
mack—Jolly—Seber models or GLMs) spatial references can be incorporated as covari-
ates. However, spatial models are distinguishable from these methods because they
estimate spatial correlation, which when ignored can invalidate analyses by violating
the assumption of independence (Thorson and Minto, 2015). In addition, estimat-
ing spatial correlation can show how unobserved/unmeasured variables correlated in
space affect the response variable (Carson and Mills Flemming, 2014; Thorson et al.,
2015). Network autocorrelation models, spatial capture-recapture, or spatial gener-
alized models (not reviewed here; see Zuur et al. 2009) can also be used to estimate
spatial correlation.

Finally, for most other scenarios, we recommend using GLMs/ GLMMs or GAMs/
GAMMs. Generalized modelling is arguably the most accessible statistical method
presented in this paper in terms of documentation and application. It is also flexible,
as several different response variables can be used, both linear and nonlinear covariate
relationships are possible, and random effects and correlative structures can be in-
cluded (Zuur et al., 2017). However, these methods come with their own assumptions
(e.g. distribution assumptions of the residuals) and complexities, therefore we would
encourage readers to consult more specific guides (e.g. Bolker et al. 2009) before

implementation.
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3.7 Conclusion

Telemetry is increasingly used to track aquatic animals. This has led to a massive
expansion in the volume and detail of ensuing movement data, and significant growth
in the availability of suitable statistical methods. It is often no longer sufficient to
rely on relatively simple descriptive analytical techniques, yet choosing from among
available methods can be daunting. We reviewed advanced statistical methods useful
for detection data in order to introduce them to aquatic telemetry users and provide
researchers with the tools necessary for more comprehensive detection data analysis.
We focused specifically on detection data recorded in aquatic environments, which
can differ in small but substantial ways from those collected in terrestrial studies.
For example, the camera traps often used in terrestrial studies can detect previously
unknown/unmarked individuals, whereas acoustic, radio, and PIT receivers can only
identify tagged individuals, thus hindering our ability to estimate population size from
these data using mark-recapture methods. However, some of the methods mentioned
here (e.g. spatially explicit capture-recapture) have been established in terrestrial
studies for 10+ years, and minor modifications could significantly enhance the analysis
of aquatic detection data. Going forward, we recommend that aquatic ecologists look
towards terrestrial studies and other fields like human mobility to help motivate the
statistical advances that will be needed to analyse detection datasets that are rapidly

growing in both size and complexity.



Chapter 4

Concurrent Prediction of Location and Behavioural
States Reveals Colony-Specific Foraging Tactics of

Adult Female Grey Seals

4.1 Introduction

Telemetry and archival data-logging devices are frequently used to record the move-
ments of free-ranging animals through time. However, data collected from marine
environments are often imperfect because of measurement errors associated with the
telemetry technology. As a result, early telemetry studies often used filters to re-
move erroneous locations and then the corrected data were used to describe where
the study individuals went and for how long. Now, advanced statistical modelling
can account for some of the technological error, and the corrected location data can
be combined with other information to study complex ecological processes like social-
ity (Scharf et al., 2016), niche partitioning (Dwyer et al., 2020), species distribution
shifts (Hazen et al., 2013), and foraging behaviour (Breed et al., 2009). To this end,
inferring the underlying motivations that manifest in movement is often of great inter-
est and can better inform our understanding of life history strategies and behaviours

critical to survival such as foraging and reproductive performance.
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How foraging behaviour impacts fitness is frequently explored within movement
ecology frameworks (e.g., Arthur et al. 2015). In pinnipeds, intraspecific variability
in foraging can result from a variety of factors or processes, including geographic dis-
tribution and niche partitioning (Breed et al., 2013; Wilson et al., 2015; Dmitrieva
et al., 2016). Geography often plays a key role in the decision of where to forage be-
cause locations will have different characteristics, e.g., oceanographic conditions and
biological productivity, that will influence prey species composition and abundance
(Nowak et al., 2020) and the presence of predators (Moxley et al., 2020). Intraspecific
niche partitioning may also play a role by reducing competition for local resources.
This kind of competition is likely exacerbated in pinnipeds because many species are
central-place foragers that compete for resources within the vicinity of the breeding
colony (Breed et al., 2013; Wilson et al., 2015). Niche partitioning may manifest
when individuals spatially segregate within geographic locations, as is seen in the
Caspian seal (Pusa caspica; Dmitrieva et al. 2016) and the grey seal (Halichoerus
grypus; Breed et al. 2006), or by depth in the water column, as has been documented
in the Galapagos sea lion (Zalophus wollebaeki; Villegas-Amtmann et al. 2013) and
the harbour seal (Phoca vitulina; Wilson et al. 2015). It may also be expressed by dif-
ferential prey selection (Beck et al., 2007), temporal segregation over a shared space
(Field et al., 2005), or a combination of the above factors (Field et al., 2005; Newland
et al., 2009). Discriminating among the factors that drive intraspecific variability in

foraging behaviour can be difficult. One approach is to test the differences in foraging
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distribution and behaviour of geographically separated breeding colonies under the
assumption that differences arise in response to variability in the nature and availabil-
ity of resources (Robson et al., 2004; Heerah et al., 2017). To achieve this, accurate
estimates of location are necessary.

State-space models (SSMs) and hidden Markov models (HMMs) are two statisti-
cal tools commonly used to account for measurement error associated with locations
derived from telemetry tags and to infer underlying motivators (e.g., foraging) of
animal movement. Both methods are hierarchical models for a time series of observa-
tions (here, two-dimensional locations) that are dependent upon a set of unobserved
random variables (also known as random effects). The term “SSM” is frequently used
when measurement error from the data-collection process is stochastically modelled
such that the random effects constitute true locations (Auger-Méthé et al., 2020).
The term “HMM?” is typically used when the data are measured with negligible er-
ror, but are assumed to be dependent on a set of discrete random effects that can
be predicted for each observation and used to infer animal behaviour (hereafter: be-
havioural states; Langrock et al. 2012). A model that incorporates both levels of
random effects, i.e., one that predicts both true locations and behavioural states, has
been referred to as a SSM or switching SSM (Jonsen et al., 2005; Auger-Méthé et al.,
2020). Here for clarity (see Section 4.3.2), we refer to such a movement model as a
switching hierarchical model (SHM), and reserve the terms SSM and HMM for mod-
els that predict only one set of random effects, either location states or behavioural

states, respectively.
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Although separately fitting either SSMs or HMMs to animal tracks can be achieved
via closed form solutions, e.g., the Kalman filter (Johnson et al., 2008) or the forward
algorithm (Zucchini et al., 2016), or via accurate approximation methods (Albertsen
et al., 2015), simultaneously predicting real-valued location states and integer-valued
behavioural states is a non-trivial problem for which solutions are desired because
many researchers collect error-prone movement data. Bayesian statistics can be used
(Jonsen et al., 2005; Michelot and Blackwell, 2019), as well as multiple imputation and
pooling of results (McClintock and Michelot, 2018). Alternatively, the combination of
Laplace’s method to approximate marginal likelihoods and Automatic Differentiation
to calculate numerical derivatives as implemented through the R package Template
Model Builder (TMB) has proven to be a useful tool for analyzing animal movement
data (e.g., Albertsen et al. 2015; Lawler et al. 2019; Jonsen et al. 2020) that can
produce accurate results comparable to well-established Bayesian methods while us-
ing a fraction of the computing time (Auger-Méthé et al., 2017; Whoriskey et al.,
2017). Although both SSMs and HMMs are individually well developed within the
TMB platform, a combined hierarchical model is not. Such a model would provide
ecologists with a highly efficient tool to study movement based on error-prone track-
ing data that 1) avoids the specification of priors, thus removing subjective choices;
2) frees up computational resources for reallocation towards analyzing larger datasets
or incorporation of additional model complexity; and 3) utilizes a single likelihood
function such that errors in both the location and behavioural state processes can be

simultaneously estimated.
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In this paper, we provide this tool by developing a framework for fitting switch-
ing hierarchical models to animal movement data within the TMB platform. Our
framework relies on the key result that the maximum likelihood estimates of a set of
parameters of interest can be found by optimizing the likelihood while holding the
remaining parameters fixed at their maximum likelihood estimates (Patefield, 1977).
We demonstrate the efficacy of our framework by analyzing 67 satellite tracks from
grey seals of multiple colonies in the Northwest Atlantic to infer foraging behaviour,
and illustrate its accuracy through parametric bootstrap simulation studies. Previous
research on this population suggests among-colony variability in diet. For example,
stomach samples analyzed from inshore and offshore grey seals in Eastern Canada
by Bowen et al. (1993) indicated that although the types of prey species present
overlapped, their relative compositions varied. Other research suggests similarities
in foraging decisions, e.g., Harvey et al. (2012) documented some geographic overlap
in foraging areas among Sable Island and Gulf of St. Lawrence seals. Although the
factors underlying variability in grey seal foraging tactics have been studied within

colonies, among-colony differences have not been broadly examined.

4.2 Study System and Data Collection

Grey seals are generalist predators that exploit a broad foraging range of coastal
and offshore habitats from Nantucket sound, Massachusetts, to the southern coast of

Labrador in the Northwest Atlantic (Bowen and Harrison, 2006; Breed et al., 2006).

The total population size in Eastern Canada has been increasing for more than 50
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Figure 4.1: Study area where grey seals from four breeding colonies were tagged in
Nova Scotia, Canada. Solid black lines denote the 200m isobath.

years and was estimated in 2016 to be 424,300 (Hammill et al., 2017). It includes
three breeding components located in the southern Gulf of St. Lawrence (10 breeding
colonies), on coastal Nova Scotia (7 breeding colonies), or at Sable Island, Nova
Scotia (a single and the largest breeding colony; Hammill et al. 2017; den Heyer et al.
2020). Females give birth from December to the end of January. They are considered
capital breeders because they fast during lactation and rely on body energy stores
accumulated during the months prior to parturition to fuel their metabolism and
milk production (Iverson et al., 1993). Lactation lasts 16-18 days and results in a

dramatic transfer of energy, with pups nearly tripling in size and females losing up
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to 40% of their body mass (Mellish et al., 1999). As a result, foraging is critically
important for females during the post-breeding season, when energy stores of the
adult female are severely depleted and she must prepare for delayed implantation and
foetal development (Beck et al., 2003a, 2007).

Betweeen 2003 and 2018, adult female grey seals were captured, anaesthetized
with Telazol, and tagged with satellite trackers (a combination of Wildlife Comput-
ers Mk10, SPOT, and SPLASH tags, as well as Sea Mammal Research Unit SRDL
7000 tags and Telonics ST-18 tags) that were affixed to the top of the individuals’
heads with 5 min epoxy and programmed to transmit every 15 mins. Further de-
tails on the standard tagging procedures used can be found in Breed et al. (2009)
and Nowak et al. (2020). Individuals were tagged near the end of lactation (mid
to end of January), and these tags were expected to remain with the seal until the
spring moult (approximately May-June). Study individuals were randomly selected
from females who had successfully raised a stage three pup (the stage immediately
preceding weaning). Females varied in age from newly matured to older individuals
(Table 4.1). The tagging sites consisted of four breeding colonies (Fig 4.1): Sable Is-
land (43 tagged individuals), Hay Island (14 individuals) and two colonies Mud (one
individual) and Noddy Island (nine individuals) grouped into one referred to as the
Southwest colony. The Sable Island colony is 493 and 231 km (great circle distance)
from the Southwest and Hay colonies, respectively, whereas the Southwest and Hay
colonies are themselves separated by 573 km. The distances among these colonies

are well within the observed foraging range of adult female grey seals (e.g., Fig 3 of
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Table 4.1: Tagging metadata for the 67 post-breeding female grey seals analyzed with
a switching hierarchical model

Year Island Age <15 15 < Age <30 30 < Age Total Tagged

2003 Sable 1 3 3 7
2004 Sable 1 2 0 3
2007 Sable 1 1 1 3
2011 Hay 2 2 0 4
2012 Hay 1 8 1 10
2016 Mud 7 1 1 9
2017 Noddy 1 0 0 1
2018 Sable 0 18 12 30

Breed et al. 2009 and Fig 2 of Nowak et al. 2020).

4.3 Methodological Development

4.3.1 The Movement Model

Our model is adapted from the DCRWS first presented in Jonsen et al. (2005). It is
a hierarchical model defined by three conditional distributions that we refer to as the

measurement, movement, and behaviour processes:

Measurement Process y; = (1 — jy)x;—1 + jix; + 1, (4.1)
Movement Process x; = x;-1 + 7, T(0p,)(Xi-1 — X;—2) + €; (4.2)
Behaviour Process b; ~ cat(¢,, ) (4.3)

We observe a set of 7" multidimensional, irregularly sampled, locations y;.r from a
stochastic process Yi.r ordered in time f. These observations are measured with

error, here denoted by 7,, which can take on one of two distributions. If the data are
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derived from Argos technology, we model them with a generalized ¢-distribution that
has a unique scale and degrees of freedom for each Argos class that are assumed to be
known, and an unknown and estimated inflation parameter ¢ multiplied by the scale
that is kept constant across all classes (Auger-Méthé et al., 2017). If the data are GPS,
then m, becomes a zero-mean Gaussian distribution with a diagonal covariance matrix
with entries wo, and wy,. We let x1.x be the N unobserved true locations (location
states) that we wish to predict from the observed yi.7. It is not necessary for N = T,
the observed locations are related to the unobserved through a linear interpolation
according to the j;, which is the proportion of time elapsed between the observation y;,
and the true (interpolated) locations x;_; and x;. We assume that the x;.y, ordered
in regular time 7, follow a second order Markov process Xy.7, governed by a turning
angle 0,,, autocorrelation parameter 7;,, and zero-mean Gaussian error term €;. The
covariance matrix of €; is diagonal, with elements oy,, 0/, > 0 that represent the
process error in longitude and latitude. The parameters 6, and ~,, are dependent
on a set of discrete random effects b.y that can be interpreted as representative of
different behaviours that drive the movement process (behavioural states). The by.x
are assumed to follow a Markov process By.y with parameters ¢, . Collectively, we
denote all parameters associated with the measurement {1, Wi, wiat}, Mmovement

{6v,s Vb:, Tions Olat}, and behaviour {¢y, |} processes as ¥, O, and @, respectively.
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4.3.2 The Iteration

The joint likelihood L in this scenario is:

Ly1:T7x1:N7b1;N(\Ij7 @7 (I)) = f(y1:T7 X1:N bl:N | \I], @, (I)) (44)

We need to optimize the marginal likelihood,

LY1;T(‘117 o, (I)) = / Z Ly1:T7x1:N7b1:N (\Dv o, (I)) dxy.y . (45)

b1
xi.y BN

Taking advantage of the hierarchy, we can re-express the marginal as a product of its

conditionals

Ly1:T(\II7 @7 @) = / Z f(YI:T|X1:N> qj)f(XI:N“?l:N, @)f(b1N|q)) Xm:N (46)

b1.
x1.n LN

= /f(Y1:T|X1:N7‘I’) (Zf(xlzN“)l:N,@)f(blzN|<I))> dxpy. (4.7)

by.
X1.N 1:N

In theory we could calculate this marginal by approximating the integral over x;.y
with Laplace’s method. In practice, numerical optimization of models with large
numbers of both discrete and continuous-valued random effects is infeasible (Altman,
2007; McKellar et al., 2015).

Instead, we choose to optimize this function iteratively. Patefield (1977) notes that
for parameters of interest {©, ®} and nuisance parameters ¥, the curvature of the full

likelihood is preserved by the maximized likelihood function MazL(-). Denoting all
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maximum likelihood estimates with a circumflex (hat), the Maz L(-) for our scenario

might look like:
MazL(©,®) = sup L(¥,0,®) = L(¥(O, D), 0, D). (4.8)
)4

This means that, if we can find the maximum likelihood estimates of ¥ (the measure-
ment error parameters), say \i!, then we can find the maximum likelihood estimates
of {©,®} (the movement and behaviour parameters), as well as their standard errors
from the Hessian matrix, by holding ¥ fixed at U. Furthermore, by strategically fixing
sets of parameters and random effects such that certain terms reduce to constants,
we can take advantage of well-established HMM and SSM likelihood frameworks.

First, by fixing x = x and ¥ = ¥, the likelihood reduces to an HMM (Zucchini

et al., 2016):
L (9,0,®) = > fyrr|%in, W) f(Xin[bin, ©) f (brv| ®) (4.9)
bi:n
=Y fGanlbiy, ©)f(biy|®) (4.10)
bi:n
— 0P (%) AP(%y) - - AP (R)1, (4.11)

where A is a matrix of switching probabilities, d is a column vector of the initial
behavioural state probabilities which we set equal to the stationary distribution, P(%X;)
is a diagonal matrix of the state-dependent distributions f(x;|b;, ©), and ¢ denotes

a constant resulting from treating all of the measurement process components as
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known. Second, by fixing b = band & = & (and optionally © = é), the marginal

likelihood reduces to that of an SSM:

LSSM(‘D,@><i3) = /f(Y1:T‘X1:Na\D)f(xlzN‘l;l:N>@)f(lslzN’qA)> dx.n, (4.12)
X1:N
= /f(Y1:T|X1;N,‘I’)f(XlzN\61;N,@)C dxi.n, (4.13)

where ¢ now represents a constant from fixing all of the behaviour components. This
lays the groundwork for fitting Eqns 4.1-4.3 by iteratively fitting a series of HMMs

and SSMs. We carry out the procedure for K iterations as follows:
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In effect we first linearly interpolate the observations via the function g(-) to

produce locations with error on a regularized time scale. Then, we assume that the
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measurement error is negligible and fit an HMM to the regularized observations to
estimate {é,é} and predict by.x. Next, fixing {©,,b,.,} at {@,QCD,ZA)M}, we fit a
SSM to the original (un-regularized) observations to estimate ¥ and predict %;.. This
combination of fitting an HMM followed by an SSM constitutes a single iteration. The
initial iteration is unique because the HMM is fitted to the regularized observations;
the rest of the iterations are identical to the first except that the HMM is fitted
to the location states predicted during the previous iteration’s SSM. After carrying
out K iterations, we contend that the true maximum likelihood estimates of our
parameters and random effects, {@, (i), Bl:N, X1:N, \if}MLE, can be well represented by
the iteration that achieved the highest value of the SSM likelihood at the parameter
estimates, LSSM(\i/(k),@(k), @(k)). In practice, we calculate negative log likelihoods
rather than likelihoods. In addition, although we calculate the constant ¢ in Eqn 4.13
so that we can accurately evaluate LSSM(\if(k), CI0N @3(’“)) and therefore identify the
best parameter estimates, we do not calculate the constant in Eqn 4.11 because it is

redundant.

4.3.3 Model Checking and Standard Errors

For model checking, we rely on one step ahead residual calculations during the HMM
step, also known as pseudoresiduals (Zucchini et al., 2016). These residuals assess
the goodness of fit of the HMM assuming that the true location predictions Xi.; are
accurate.

Standard errors are calculated in two ways. First, TMB uses the delta method and
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the observed information matrix to approximate the standard errors of the parameters
and location states in their observed spaces (Auger-Méthé et al., 2015). Patefield
(1977) outlines the theory that enables us to use these standard errors with our
iterative optimization scheme: that is, assuming that one of the HMM or SSM steps
finds the maximum likelihood estimates, the curvature (and therefore the Hessian)
will be preserved in the other step. We additionally use a parametric bootstrap
to quantify the standard errors, and compare these bootstrap estimates to those
calculated from the observed information. The bootstrap serves two purposes: 1)
it provides alternative estimates of the parameter standard errors to the asymptotic
estimates which might not be reliable; and 2) it provides a convenient framework
for evaluating the accuracy of the model akin to a simulation study. We simulate R
(indexed by r) random draws of the random effects {0} ,.y, X} .x} and observations,
YriT from {@, <f>, IA)LN, X1:N, \@}MLE, and re-fit our model to obtain R estimates of the
parameters and random effect predictions, {é:, &):78:,1:1\[7&:,1:1\1’ \i/:} . We then

MLE

calculate the bias and variance of an individual parameter p by

R
bias, = R™'> (pr—p)  Vo=5—=> (5 —p) (4.14)

r=1 r=1

(Davison and Hinkley, 1997). For the random effects, we calculate the behavioural

state error rate err, and the root mean squared error RMSE, . in longitude and
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latitude within each track (¢ denotes coordinate axis):

N
err, = N~ Z =) RMSE,. =N (&, — z5..)" (4.15)

i=1

Here, 1(-) now denotes an indicator function equal to 1 when the behavioural state

prediction 0}, is correct and 0 otherwise.

4.4 Data Analysis

4.4.1 Fitting Switching Hierarchical Models

Although satellite tracks were irregularly sampled in time, Eqn 4.2 evolves over regular
intervals, prompting the choice of a time step. We considered a 3 hour, 6 hour, and
12 hour time step between successive location states. These time intervals are similar
to the lengths of time steps chosen in previous grey seal foraging studies (e.g., 3
hours in Nowak et al. 2020 and 8 hours in Breed et al. 2013). We chose a 3 hour
time step based on inspection of QQ plots from the HMM iteration, and model
results. Observations collected after May 31 were removed, because the start of the
moulting season (May-June; Goulet et al. 2001) signifies the end of post-breeding.
Subsequently, the data were examined for temporal gaps, and following Lawler et al.
(2019), split into track segments when gaps longer than a specified group cutoff were
detected. Any segments with fewer than three observations and where the duration
of the segment lasted less than 3x the chosen time step for the model were removed.

This ensured that there would be at least three unobserved locations per segment
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to make a meaningful negative log-likelihood contribution for the movement process
(Eqn. 4.2), and at least one observed location per location random effect. For most
tracks, we used a cutoff of 6 hours (2x the time step). However, seal tracks collected
in 2003 and 2004 required a longer cutoff of 24 hours to satisfy these criteria. All
data were projected using the Mercator projection.

Significant outlying locations occurred. In order to reduce instances of NaN like-
lihood evaluations, we winsorized (Tukey, 1962) the data rather than removing these
locations entirely. First, we identified outliers based on the Freitas et al. (2008) fil-
ter using the prefilter function of the R package foieGras (Jonsen et al., 2020),
with the following criteria: 1) a max speed of 10ms™! (the actual max sustained
speed of a grey seal is approximately 3ms™!; Gallon et al. 2007); 2) internal angles
of 15 degrees coinciding with step lengths of 10,000m; and 3) internal angles of 25
degrees coinciding with a step length of 50,000m. Once we identified the outliers,
we scaled the observations based on the empirical distribution of the observed swim
speeds. We calculated the observed swim speed s; as s; = d;/A;, where d; is the
step length between y;_; and y;, and A, is the observed time difference. Then, for
each Argos class ac, we calculated the 25th and 75th percentiles of 3.7, @ac0.25 and
Qac,0.75, the interquartile range, I1Q Rac = ac,0.75 — Qac,0.25, and the upper outlier bound
qr. = 1.5%xIQR,.. Finally, we calculated the winsorized observation y;’ by scaling the

observed displacement (y, —y;_1) by a ratio of the upper outlier bound corresponding
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to the Argos class of y; to the observed speed, i.e.,

w
ac

Y =Yi1+ qS—(Yt ~Yi-1) (4.16)
t

Traditional winsorization replaces an outlier with the nearest unaffected value (Tukey,
1962). By using the upper outlier bound, and by calculating q,. for each Argos
location class, we aim to preserve the relative structure of the errors modelled in Eqn
4.1.

Finally, we fitted the switching hierarchical model to each track allowing for twenty
iterations. Throughout the analysis, we interpreted the first state (y; > 0.5 and
0, ~ 0) as travelling behaviour and the second state (7, > 0.5 and 0 < 0 < 27 with
a wide variance) as a composite of apparent foraging and haulout (Whoriskey et al.,
2017; Nowak et al., 2020). Further analyses were used to filter state 2 for foraging

behaviour (see Section 4.4.3).

4.4.2 Bootstrapping

Based on the model results, we ran bootstrap simulations for nine randomly selected
tracks (three from each of the colonies) to provide alternative estimates of standard
errors and to assess model accuracy. For each track, we ran 100 simulations that
maintained the observed time series of data gaps and error classes. We then calculated
the accuracy of the location and behavioural states and the parameters as stated
above. Furthermore, we calculated the bootstrap efficiency as V;fmb /V,, where V;fmb

is the variance calculated by TMB.
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To quantify differences in model performance among colonies, we tested for sig-
nificant differences in mean bias, RMSE, and error rates of the switching hierarchical
model using the R package npmv. This package provides nonparametric tests for mul-
tivariate responses based on rank values (Ellis et al., 2017). It additionally provides
subset algorithms to determine which variables displayed the significant differences,
and which factor levels contributed to their significance, using a Ryan adjustment to

an overall Type 1 error rate of a = 0.05.

4.4.3 Colony-Based Comparison

By fitting the switching hierarchical model, we obtained predictions of both location
and behavioural states along each female’s track, which we used to infer foraging be-
haviour (and therefore is actually apparent foraging). One individual did not exhibit
apparent foraging; this individual was excluded from further analysis on the foraging
state. With these states, we compared the spatial distribution of the full tracks and
of the foraging patches for our three grey seal colonies. For the full tracks, we fitted
a Gaussian kernel as implemented in the adehabitatHR package (Calenge, 2006) to
estimate the 95% utilization distribution (KUD) of each individually predicted track.
We denote this the “ranging” distribution. To avoid oversmoothing and a large over-
lap with land, we multiplied the smoothing parameter h for each track by 0.5, and
then removed any remaining parts of the distribution that overlapped with land.

To compare the distributions of foraging patches, we first identified a foraging

patch as a series of locations where a sequence of at least five successive foraging
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states occurred. If one track segment ended in a foraging patch and the next segment
began with one, these patches were considered to be part of the same patch if the
gap separating the two segments was < 24 hrs. For each patch we calculated the
minimum convex polygon (also using adehabitatHR), and its centroid. Patches where
the centroid occurred within 2 km (Breed et al., 2011) of land were assumed to be
haulout behaviour, and were removed from subsequent analysis. This then yielded the
(apparent) “foraging” distribution. For each of the full and foraging distributions,
we calculated the union of the polygons within each colony to estimate a spatial
distribution, and then we compared these distributions among colonies by quantifying
their overlap.

To quantify differences in movement and foraging tactics among colonies, we ap-
plied the non-parametric multivariate tests of npmv to the sets of movement param-
eters. We additionally calculated distance from the centroid of each foraging patch
to the colony as the least cost path around land, using the gdistance package (van
Etten, 2018). Then, we combined the mean distance per individual with the num-
ber, mean duration, and mean area of each foraging patch, as well as the proportion
of overall time spent within foraging patches. We treated these five variables as a
multivariate response and also tested for differences among colonies using npmv. Al-
though generalized linear mixed models are frequently used to test for differences
among derived metrics of movement paths, we opted to utilize npmv for two reasons.
First, it avoids distributional assumptions on metrics derived from random variable

predictions (the location and behavioural states). Second, it accounts for the fact
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that these metrics are likely inherently dependent, despite the fact that they may not

be correlated.

4.5 Results

Overall, a total of 126,578 locations were collected from the 67 females between the
individual-specific tagging dates and May 31 of the same year. On average, 1889
locations were collected per individual (range=241-4544) over an average of 78 days

(range=35-138).

4.5.1 Bootstrap Studies

The switching hierarchical model accurately predicted both behaviour and location
states (Fig 4.2). Mean accuracy for the behavioural states ranged between 0.69 and
0.91 (proportion of correctly identified states), while the mean RMSE ranged between
990-2487 m and 802-2416 m in the longitude and latitude directions, respectively. The
magnitude of the RMSE can be interpreted in Fig 4.3. A multivariate non-parametric
test with npmv suggested no significant difference among colonies in the mean accuracy
and RMSE (p= 0.45).

Bias did not appear to significantly differ among colonies (Figs 4.4, 4.5). We
conducted both univariate and multivariate nonparametric tests on the mean bias
using Kruskal-Wallis tests and npmv, respectively. The multivariate test on the bias
of the movement parameters and switching probabilities was insignificant (p=0.417),

as was a multivariate test on the bias in the variance parameters (ojon, 0jq, and
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Figure 4.2: Accuracy of the switching hierarchical model as determined by a para-
metric bootstrap on nine randomly selected grey seal tracks. Top: the proportion of
behavioural states correctly identified. Middle and bottom: RMSE in the longitude
(middle) and latitude (bottom) axes, with units in metres under the Mercator pro-
jection. For all plots, orange, yellow, and red denote tracks selected from the SW,
Hay, and Sable colonies, respectively. Individual names on the x axis denote a unique
alphanumeric describing the sampling year, the island of tagging, and the PTT used
for the tag.
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a unique alphanumeric describing the sampling year, the island of tagging, and the
PTT used for the tag of the grey seal that the bootstrap was based on.
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¥; p=0.957). All Kruskal-Wallis tests on single parameters were also insignificant
(p > 0.4 in all cases). In general, bias was low, although some parameters, appeared
more prone to bias than others (oyon, 014, and ¢). Additionally, the bias in 05 for the
Hay seal bootstraps does encompass the entire parameter range for all three tracks
(Fig 4.4). This unusually large bias corresponded with extreme values of bootstrap
efficiency (< 5071); Table 4.2). Otherwise, bootstrap efficiency ranged from 0.14 to
2.24. Most often (~ 73% of the time), bootstrap standard errors were larger than
those calculated by TMB, although over half of those that were larger (~ 54%) were
less than twice as large.

Although bias in the GPS variance parameters was low (Fig 4.5), estimates of
the process variance oy, and o;,,; and measurement error i) were consistently biased
negative among all colonies. Appendix A shows evidence that in some cases this bias
was correlated, i.e., that when an estimate of either oy, or o;,; was biased negative,

so was the estimate of ¢ (Figs A.1,A.2).

4.5.2 Switching Hierarchical Models and Intraspecific Variability in

Foraging

We obtained parameter estimates and random effect predictions for 67 seal tracks
(Fig 4.6, Fig 4.7). The individual tracks and the colony-based 95% kernel utilization
distribution show that although the spatial distribution of Sable seals overlapped
with both the Hay and Southwest colonies, the Hay and Southwest colonies did not

overlap (Fig 4.8, Table 4.3). The Southwest seals largely travelled south of Nova
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Figure 4.4: Bias in the movement parameters from fitting the switching hierarchi-
cal model to 100 simulated tracks parametrically bootstrapped from nine randomly
selected grey seal tracks. Note the different y-axis scales because different facets indi-
cate different parameters. For all plots, orange, yellow, and red denote tracks selected
from the SW, Hay, and Sable colonies, respectively. Individual names on the x axis
denote a unique alphanumeric describing the sampling year, the island of tagging,
and the PTT used for the tag.
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Figure 4.5: Bias in the variance parameters from fitting the switching hierarchical
model to 100 simulated tracks parametrically bootstrapped from nine randomly se-
lected grey seal tracks. Note the different y-axis scales because different facets indicate
different parameters. Absent boxplots result because not all of the grey seal tracks
used for the bootstrap included GPS locations. For all plots, orange, yellow, and red
denote tracks selected from the SW, Hay, and Sable colonies, respectively. Individual
names on the x axis denote a unique alphanumeric describing the sampling year, the
island of tagging, and the PTT used for the tag.
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Figure 4.6: Predictions of 67 individual tracks for female grey seals from three colonies
on the East Coast of Canada, obtained by fitting an iterative switching hierarchical
model to data collected between the individual-specific tagging date at the end of
January to May 31 of the same year. Shades of red, yellow, and blue designate

individuals from the Southwest (10), Hay (14), and Sable (43) colonies, respectively.
Solid black lines denote the 200m isobath.

Scotia into the Bay of Fundy and Gulf of Maine, with some dispersal as far as Cape
Cod, Massachusetts. The Hay Island female ranged from the northern part of the
Eastern Scotian Shelf and throughout the Gulf of St. Lawrence. The Sable females
mostly travelled throughout the Eastern Scotian Shelf, but ranged as far south as
Cape Cod, and into the south-eastern Gulf of St. Lawrence. The estimated total area
traversed by females from the three breeding components differed with the Southwest
seals using 89,166 km?, the Hay seals using 279,551 km?, and the Sable seals using
319,145 km?. Movements of females from the Sable Island colony overlapped with
those of females from the Southwest and Hay Island colonies by 57,534 and 126,189
km?, respectively. Overall, the Sable colony shared 58% of its ranging distribution

with the Southwest and Hay colonies, while the Southwest and Hay colonies shared
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Table 4.3: Proportion of distribution (ranging on the left and foraging on the right)
that colonies share with each other. An entry was calculated by taking the overlap
between the colonies denoted by the row and column and dividing by the total area
of the colony denoted by the column.

Ranging Distribution Foraging Distribution
Southwest Hay Sable Southwest Hay Sable
Southwest - 0 0.18 - 0 0
Hay 0 - 0.40 0 - 0.08
Sable 0.65 0.45 - 0 0.20 -

approximately 65% and 45%, respectively (Table 4.3).

The estimated model parameters demonstrated variability among the colonies
(Fig 4.7). We tested for differences among colonies in the parameters that govern
the individual movements of the animals {61, 02, 1, 72} by treating these as a
multivariate response using the nonparametric tests of npmv Ellis et al. (2017), and
found significance (p=0.003). Subset testing suggested that although the Hay and
Sable colonies share similar movement characteristics, the Southwest seals differ from
both of the other colonies (overall type I error rate controlled at a=0.05). Specifically,
the Southwest colony exhibited significant differences from the Hay and Sable colonies,
and these differences were largely driven by 7; (the movement persistence of the
inferred travelling state; overall type I error rate controlled at «=0.05). For the Hay
and Sable seals, behavioural state-dependent distributions were frequently defined by
differences in the v parameters (i.e., 71 # 72), while for the Southwest seals, there
was a higher incidence of the fs (mean turning angles) driving the state classification
(01 # 05 Fig 4.7).

We detected 600 foraging patches among the 67 tracks (Fig 4.8). Of these, 88, 155,
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Figure 4.7: Boxplots of the estimated parameters from the movement process (except
the process error) for the 67 grey seal tracks. The s denote the mean turning angle
of the tracks for each state, while the s can be interpreted as the persistence within
a track for each state. In all plots, red, yellow, and blue depict parameters for the
Southwest, Hay, and Sable colonies, respectively.
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Figure 4.8: Top: Ranging distribution over all of the predicted locations for each
colony, as estimated by 95% kernel utilization distributions. Bottom: Foraging
patches as estimated by minimum convex polygons for behavioural state predictions.
In both plots, red, yellow, and blue depict the Southwest, Hay, and Sable colonies,
respectively. Dotted black lines depict areas of overlap between colonies, and solid
black lines denote the 200m isobath.
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and 357 patches were found for the Southwest, Hay, and Sable colonies, respectively,
which totaled to an area of 8,595, 18,603, and 45,254 km?. Of the roughly 63,957 km?
of foraging patch area used by females from Sable and Hay islands, only 3,743 km?
overlapped in space. This equated to approximately 20% and 8% of the total Hay
and Sable colony foraging distributions, respectively (Table 4.3). No other overlap
was observed (Fig 4.8; Table 4.3).

We observed variability among colonies in several foraging metrics that we calcu-
lated (Fig 4.9). Means and standard deviations are formally reported in Table 4.4.
First, Southwest seals exploited on average 8.8 patches, while Hay and Sable seals
exploited 11.1 and 8.5, respectively. Second, Southwest seals exploited patches of
medial average size (0.037 km?) compared to Hay (0.034 km?) and Sable (0.050 km?)
seals. Third, the Southwest females spent the least amount of time within a patch
on average (59.5 hrs) compared to the Hay (68.7 hrs) and Sable (89.6 hrs) seals.
When standardized for the total duration of the track by dividing the time spent
foraging by the total time tracked, Southwest seals were observed to be foraging on
average 35.5% of the time, while Hay and Sable seals foraged 44.4% and 45.7% of
the time, respectively. Finally, the Southwest seals foraged on average the closest to
their colony (mean = 256 km), while the Hay seals exploited patches furthest from
their colony (mean = 428 km), (Fig 4.9). Although the Sable seals typically foraged
at distances in between the averages of the Southwest and Hay seals (mean = 280
km), they documented the maximum average distance among all females (730 km)

(Fig 4.9). A multivariate non-parametric test with npmv of the colonial differences in
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Table 4.4: Average count, area (km?), duration (hrs), proportion of time spent within,
and distance (km) from the colony of foraging patches. Entries are calculated from
the averages per individual within each colony. Standard deviations are in brackets.

Colony Count Area Duration  Proportion Distance

Southwest 8.8 (5.9) 0.037 (0.054) 59.5 (43) 0.36 (0.24) 256.4 (122.6)
Hay 11.1 (6.2)  0.034 (0.03) 68.7 (42.1) 0.44 (0.23) 428.3 (152.9)
Sable 8.5 (4.3)  0.05(0.08) 89.6 (53.7) 0.46 (0.2) 280.2 (145.7)

the number, mean area, mean distance, and mean duration of foraging patches per
individual, as well as the overall proportion of time spent foraging by individual was
significant (p=0.008). Subsequent subset testing suggested that the Hay seals were
significantly different from the Southwest and Sable seals, but that the Southwest and
Sable seals were similar, and that the mean area, mean distance and mean duration

drove the differences (overall type I error rate controlled at «).

4.6 Discussion

4.6.1 Iteratively Predicting Location and Behavioural States

Computationally efficient methods for fitting switching hierarchical models have re-
mained elusive. We develop such a method using maximum likelihood estimation
that provides quick and reliable inference. Our use of TMB and an iterative optimiza-
tion procedure reduced computation to minutes down from the hours that we have
previously used to fit the Bayesian model from which it was based on (the DCRWS of
Jonsen et al. 2005). Another popular method for predicting location and behavioural

states from tracking data is the R package momentuHMM (McClintock and Michelot,
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Figure 4.9: Foraging patch metrics per colony. Top row from left to right: 1) number
of patches per individual; 2) average patch size per individual; 3) average foraging du-
ration within a patch per individual; and 4) overall proportion of time spent foraging
compared to full duration tracked. Bottom row: on the left, least cost paths (dotted
lines) from the colony location (black stars) to the centroid of each foraging patch
(solid dots); on the right, average distance of the least cost paths per individual. In
all plots, colours depict each of the different colonies, with red, yellow, and blue for
the Southwest, Hay, and Sable colonies, respectively.
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2018). This modelling framework differs from ours in that McClintock and Miche-
lot (2018) make use of two separate likelihoods, while we use only one. Specifically,
McClintock and Michelot (2018) predict the location states using a continuous-time
model, and predict the behavioural states using the discrete-time step length and
turning angle model of moveHMM (Michelot et al., 2016). Our modelling frame-
work is faster than Bayesian implementations (e.g., Jonsen et al. 2005). Furthermore,
our general implementation could be applied to other modelling scenarios with large
numbers of mixed-scale random effects (e.g., year, individual, etc.) that otherwise
may not have been possible in a maximum likelihood framework. As a result, this
research outlines an effective framework for rapidly analyzing larger datasets that are
becoming increasingly available in both aquatic and terrestrial ecosystems.

As with all movement models, some subjective decisions were involved in model
fitting, including the choice of projection, the number of behavioural states, the time
step between successive location predictions, the group cutoff factor, and the starting
values. We chose the Mercator projection because it is widely used, and it preserves
local directions and shapes. We decided to model two behavioural states for consis-
tency with previous foraging studies on grey seals (Breed et al., 2009, 2011, 2013;
Nowak et al., 2020), but we recognize that it may be possible to infer additional be-
haviours if further information are collected (e.g., dive data; Carter et al. 2020). It
is possible that we overestimated foraging by classifying time resting at sea as for-
aging, as these two behaviours can look similar from two dimensional location data

(McClintock et al., 2017). Incorporating depth can help distinguish these behaviours;
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however, depth data were not available. We selected a three hour time-step based on
results from previous studies using the same movement process (Nowak et al., 2020),
and qualitative analysis of QQ plots and parameter values. For most seals we chose
the group cutoff to be twice our time step to prevent more than one linearly interpo-
lated location state to occur between observations. However, we had to increase this
group cutoff for 10 individuals, in which case we chose the smallest value that enabled
model fitting. Finally, although we subjectively chose sets of starting values based
on previous knowledge and model results, we objectively chose the best model fit by
selecting the one with the optimal negative log likelihood value for further analysis.
Although these models provide useful information on the movement of individuals,
fitting them can be challenging. We encountered NaN likelihood evaluations, lack of
convergence, false convergence, and parameter boundary issues. These challenges
are commonly encountered when maximizing likelihood functions. We combatted
them by winsorizing, by adjusting convergence criteria based on the evaluations of
the negative log likelihood and its gradient, by using multiple sets of starting values
for the parameters, by reducing the number of steps used in the iteration, and by

heuristically adjusting the time step and group cutoff factors.

4.6.2 Bootstrapping

The bootstrapping results indicate that our iterative modelling framework is accurate
(Figs 4.2, 4.3, 4.4, 4.5). Behavioural state accuracy, location RMSE, and parameter

bias were comparable across nine different seal tracks, suggesting that this method is
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accurate across varying parameter sets. Furthermore, the behavioural state accuracy
appears similar to that reported by Whoriskey et al. (2017), who fitted the HMM
equivalent of this model under the scenario where no measurement error is assumed
(see Chapter 2). In that paper, animal locations were simulated for a single track’s
parameter set, and the behavioural state accuracy of the HMM was 81.1%. Here,
our median behavioural state accuracy ranged from approximately 70% to 96%. Fur-
thermore, our average coordinate-wise RMSE (800 and 2500 m) coincides with those
of previously reported SSM techniques. Albertsen et al. (2015) evaluated the per-
formance of five SSMs and reported an average RMSE of ~900 and ~1,400 m in
longitude and latitude, respectively, although performance ranged by approximately
+500 m. Jonsen et al. (2020) compared their location predictions to GPS tracks
and showed that root mean squared distances (RMSDs) of 3-6 km can frequently
occur. These results are encouraging because they suggest that 1) our implementa-
tion often performs just as well predicting behavioural states as its analogue under a
no-measurement-error scenario, and 2) the accuracy of our location state prediction
is comparable to other frequently used methods.

Consistent bias occurred with the measurement and process errors, and we found
some evidence that the estimates of these parameters were inversely correlated (Figs
A1, A.2). Noting that larger values of 1 reflect smaller measurement errors, this
suggests that if the measurement error is overestimated, then the process error will
frequently be underestimated. This relationship could suggest an identifiability or

estimability issue between these parameters. We are not the first to document such
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problems in state-space modelling of animal movement. Auger-Méthé et al. (2015)
conducted a comprehensive analysis and simulation study that showed that parameter
bias and jagged, multimodal likelihood profiles can occur when analyzing animal
movement with simple Gaussian linear state-space models, and that this problem can
be exacerbated by a large amount of measurement error relative to process error. It is
important to recognize that estimation problems such as these can impact statistical
results, and therefore influence our interpretation of ecological processes. Auger-
Méthé et al. (2015) demonstrated this by investigating the displacement of polar
bears relative to sea ice drift, and showed that parameter estimation problems caused
an overprediction of energy expenditure. In our grey seal results, we are confident
in the state predictions because we show that both our state and location accuracy
remains high even with larger amounts of measurement error. However, based on our
results and those of (Auger-Méthé et al., 2015), future state-space modelling work for
animal movement data may benefit from reparameterizing the model such that the
ratio of the measurement to the process errors is estimated, rather than each of these
parameters individually.

We calculated two standard errors: that from the observed Fisher information,
and from a parametric bootstrap. The bootstrap estimates were most often larger
than those from TMB (Table 4.2). It is better to use the more conservative bootstrap
standard errors because for this hierarchical model it is not known what effective
sample size is needed for the asymptotics of the observed Fisher information to be

reliable.
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4.6.3 Intraspecific Variability in Grey Seal Foraging Behaviour

Intraspecific foraging variability among breeding colonies has been documented in
several pinniped species. For example, geographic separation of foraging habitat has
been documented in the Antarctic fur seal (Arctocephalus gazella; Boyd et al. 2002)
and the northern fur seal (Callorhinus ursinus; Robson et al. 2004), while variability
in foraging tactics (e.g. distance/time/depth travelled) has been observed in South
American fur seals (Arcto cephalus australis; Baylis et al. 2018) and Cape fur seals
(Arctocephalus pusillus pusillus; Botha et al. 2020). In colonial breeding species with
broad geographic distributions, some colonies may experience different environmental
conditions and food availability compared to others, and movement patterns may
reflect these discrepancies (Tremblay and Cherel, 2003). Furthermore, several studies
on fur seal species and colonial breeding sea birds (Grémillet et al., 2004; Boyd et al.,
2002; Baylis et al., 2018; Botha et al., 2020; Robson et al., 2004) suggest that colony-
based separation of foraging habitat is a common strategy used to reduce competition
for resources among colonies that occur in proximity.

We tested for differences in the post-breeding movement and foraging tactics of
adult female grey seals from three geographically distinct colonies. During the post-
breeding season, female grey seals focus their foraging effort on smaller fishes with
higher energy densities, e.g., sandlance and redfish, presumably in order to quickly
increase body lipid stores and thus increase probability of successful pregnancy (Beck
et al., 2007). The importance of foraging during this season, as well as the relatively

selective diet of females, makes post-breeding females an ideal demographic to study
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for detecting intraspecific variability in foraging tactics. We detected this variability
by using a novel iterative switching hierarchical model designed to predict behavioural
states that we interpreted as apparent foraging (hereafter, foraging). Our results
showed variability among colonies in the geographic distribution of foraging patches
and significant differences in the parameters governing the movement processes as
well as individual foraging tactics.

Evidence from diet, diving behaviour, and movement ecology indicate that in-
traspecific variability in grey seal foraging behaviour exists and is in part driven by
age and sex (Breed et al., 2006; Beck et al., 2007; Breed et al., 2011, 2013). We at-
tempted to control for such influences by studying only adult females at a time of their
annual life cycle when they are likely feeding heavily to recover energy stores depleted
during lactation. Three factors that we were unable to control are the difference in
sampling years, difference in age distributions, and difference in sample size between
the colonies. It is possible that the grey seals have altered their foraging tactics over
the sampling period (from 2003-2018). Non-parametric tests did suggest that Sable
females sampled in 2018 travelled further and spent a greater time foraging than
Sable females tagged between 2003 and 2007 (p<0.001). Geographically, the later
(2018) seals exploited an expanded range relative to the earlier (2003-2007) seals, i.e.,
the earlier seals largely remained on the Eastern Scotian Shelf, while the later seals
travelled into the Gulf of St. Lawrence and down to Cape Cod. Second, it is possible
that some of the intraspecific variability in foraging tactics is related to the age of the

tagged animals. We might expect differences in adult foraging distributions among
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animals that have recently matured (approximately ages 5-15), compared to those
that are experienced breeders (ages 15-30), and older females (ages >30). However,
age differences in diving behaviour have not been detected among adult females from
Sable Island (Beck et al., 2003b) and we did not have the sample sizes to reliably
test for these differences. For example, within the Southwest colonies, eight of the 10
tagged animals were <15 years old, whereas in the Sable colony only three animals
were <15 years old (Table 4.1). Finally, it is also possible that the observed intraspe-
cific variability, and specifically the larger distribution for the Sable colony relative
to the other colonies, resulted from the larger sample size (43 at Sable vs 10 and
14 at Southwest and Hay, respectively). However, our sample sizes are roughly pro-
portional to population size at these different colonies (in 2016, pup production was
estimated at 87,485, 12,441, and 2107 individuals for the Sable, Gulf of St. Lawrence,
and Southwest Nova Scotia components; den Heyer et al. 2020). Randomly select-
ing numbers of individuals from sub-groups proportional to the relative sizes of the
sub-groups is a common statistical technique called stratified random sampling with
proportional allocation (Lohr, 2010).

We documented a moderate amount of overlap in the ranging distributions be-
tween the Southwest and Sable colonies, and between the Hay and Sable colonies.
No overlap was observed between the Southwest and Hay colonies. Although each
colony shared between 45-65% of its ranging distribution, there was little overlap in

the estimated foraging patches. The Sable and Hay colonies, separated by only 291
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km, shared less than a quarter of their foraging habitat (20.0% of the Hay colony for-
aging distribution, and 8.3% of the Sable foraging distribution). Furthermore, neither
the Sable nor Hay seals foraged in the same areas as the Southwest colony. Most of
the shared distributions between the Hay and Sable colonies occurred on the Eastern
Scotian shelf, which is known to be highly productive (King et al., 2016). By contrast,
the Southwest seals avoided this area, despite the fact that they have the capacity to
exploit these same foraging grounds.

The difference between the larger overlap of the ranging distribution and the
reduced amount of foraging overlap may have resulted from a couple of factors. First,
it could suggest that foraging is underestimated by the discrete behavioural states.
Our model (via behavioural state classification) is designed to identify areas that
marine predators intensively exploit, likely because they are highly productive (Scales
et al., 2014; Nowak et al., 2020), and this presumably lowers the cost-benefit ratio
of foraging. However, there is evidence that grey seals also forage opportunistically
along routes of transit (Austin et al., 2006), which our model likely cannot identify.
Second, it is possible that the kernel utilization distribution slightly overestimated
the overlap in the ranging distribution, because this method necessarily smooths over
the tracking data. Comparison of the track predictions with the ranging distribution
suggest that any overestimation is minimal (Figs 4.6, 4.8). Third, female grey seals
may travel along similar routes to reach geographically distinct foraging grounds.
Although the grey seals share up to 65% of their total habitat, the fact that they

share less than 25% of their foraging habitat illustrates that a significant degree of
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separation exists to suggest colony-specific foraging habitat.

The pattern of shared foraging habitat coincides with the colony-specific distribu-
tions of movement parameters. That is, the parameters of the Southwest seals, which
did not exploit similar foraging patches to either the Hay or Sable colonies, signifi-
cantly differed from the other colonies. By contrast, the parameters of the Hay and
Sable colonies did not significantly differ, and the foraging patches of these females
did overlap. Unexpectedly, the behavioural state classification appeared to be more
driven by the mean turning angles #; and 6, and less driven by the autocorrelation
parameters v; and v, compared to the other colonies. This suggests that changes in
the movement persistence along the Southwest seals’ tracks are not as prominent as
they are within the other colonies.

Although females from the Southwest colony appear to be most different with
respect to foraging habitat and movement parameters, females from the Hay Island
colony are the most different with respect to the foraging tactics we calculated. Un-
der optimal foraging theory of central-place foragers, individuals that travel farther
to search for prey should increase their time spent actively foraging within patches
(Charnov, 1976; Friedlaender et al., 2016). This behaviour has been observed in
several marine predators, including baleen whales (Friedlaender et al., 2016; Doniol-
Valcroze et al., 2011) and sea birds (Boyd et al., 2014). Sable and Southwest seals
on average exploited non-overlapping grounds that were a similar distance away from
their respective colonies, which could be an indication that profitable foraging areas

exist at similar distances from each of these two colonies. By contrast, Hay seals
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exploited foraging patches significantly farther away from the colony than either the
Southwest or Sable seals (Fig 4.9). However, they did not appear to compensate for
increased distance by increasing their time spent foraging. In fact, it was females
from the Sable Island colony that spent a significantly larger amount of time foraging
once they were within a patch compared to either of the other colonies. The least
cost distance does not take into account distance travelled and haulout behaviour or
resting at-sea along a track. Future research on concurrent diet, total distance trav-
elled, haul-out, and resting at-sea would provide more information related to energy

expenditure that could help elucidate these relationships.



Chapter 5

Predicting Aquatic Animal Movements and
Behavioural States in Continuous-Time From

Acoustic Detections

5.1 Introduction

Telemetry is a staple technology used to track aquatic animals and infer how move-
ment relates to physiology, life history, oceanographic and environmental constraints,
and anthropogenic actions (Hussey et al., 2015; Hays et al., 2016; Lennox et al.,
2017a). Acoustic telemetry has been instrumental for monitoring the movements of
taxonomic groups like teleost fishes, elasmobranchs, and crustaceans that do not fre-
quently surface or that cannot accommodate a large tag burden (Hussey et al., 2015;
Lennox et al., 2017a). With acoustic telemetry, we can now track both large scale
movements of individuals over extensive periods of time (years) and across oceans
(McAuley et al., 2017), as well as fine-scale, high resolution movements restricted to
small study areas (e.g., 1.5 km?; Cote et al. 2019).

Acoustic telemetry consists of a two-part system wherein receivers record ID codes
that are transmitted from tags typically either surgically implanted or externally at-

tached to the study animals. A transmission can only be recorded by a receiver if
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it originates within the receiver’s detection range. When a receiver array is designed
such that detection ranges overlap and a transmission can be detected at multiple
receivers, algorithms based on the differences among arrival times of a single trans-
mission at several receivers can be used to calculate positions of the tagged animals
on a spatially continuous scale (e.g., Espinoza et al. 2011; Trancart et al. 2020; Bak-
toft et al. 2017). Positioning algorithms are often closed-source (but see Trancart
et al. 2020), expensive if implementation is carried out by the manufacturer, and the
output can contain large amounts of error (Roy et al., 2014; Baktoft et al., 2017).

A recently developed alternative to manufacturer positioning systems is the R
package Yet Another Positioning Solver, or YAPS (Baktoft et al., 2017). This open
source software fits a hierarchical (state-space) model to spatially discrete detections
with two levels: a measurement process that captures the variability in the transmis-
sion arrival times at different receivers relative to their expected arrival times, and
an unobserved movement process that assumes the underlying animal track follows
a Wiener process (i.e., exhibits Brownian motion; Baktoft et al. 2017). For model
fitting, YAPS utilizes the R package Template Model Builder (TMB), a highly effec-
tive framework for fitting multi-dimensional hierarchical models with random effects
to animal movement data (Albertsen et al., 2015; Auger-Méthé et al., 2017; Jonsen
et al., 2019). By accounting for stochasticity in both the measurement and movement
processes, YAPS achieves greater precision in the location predictions compared to the
(usually deterministic) classic time-difference-of-arrival methods like those provided

by manufacturers (Baktoft et al., 2017).
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State-space models (SSMs), including YAPS, have become a popular tool in ecology
(Auger-Méthé et al., 2020), and have proven particularly useful in movement ecol-
ogy for predicting true locations from data observed with measurement error (Jonsen
et al., 2005; Johnson et al., 2008; Patterson et al., 2008; Pedersen et al., 2008; Mc-
Clintock et al., 2012; Auger-Méthé et al., 2017). Another methodology that has seen
significant parallel development within movement ecology is the hidden Markov model
(HMM), which enables researchers to classify multiple discrete states influencing the
parameters governing the movement process, and these can be inferred to reflect an-
imal behaviour (Auger-Méthé et al., 2020; McClintock et al., 2020). Behaviours of
interest may include residency, foraging, migration, travelling, circum-topographical
exploration, or spawning (Patterson et al., 2009; Michelot et al., 2016; Whoriskey
et al., 2017). Behavioural states can be readily predicted from data sampled at regu-
lar temporal intervals via discrete-time HMMs (Michelot et al., 2016; Zucchini et al.,
2016), however, most aquatic research can only record movements at opportunistic
(irregularly sampled) times. Irregular sampling, if incorporated into animal move-
ment models, has often been integrated into the movement process through the use
of differential equations (e.g., Johnson et al. 2008), or into the measurement process
via linear interpolation (e.g., Jonsen et al. 2005; McClintock et al. 2012). Fewer stud-
ies incorporate it directly into the behavioural process (but see Parton and Blackwell
2017; Michelot and Blackwell 2019). When it is incorporated, standard machinery

for HMMs typically cannot be used because the movement of an animal no longer
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only depends on the current (active) state; this is called the snapshot principle (Pat-
terson et al., 2017). However, rigorous testing of the snapshot principle with respect
to animal movement has not been documented.

A few methods exist for predicting both behavioural states and location states
within a single statistical model (Jonsen et al. 2005; Pedersen et al. 2008; McClintock
et al. 2012, and see Chapter 4 of this thesis), which we call switching hierarchical mod-
els (SHMs). These efforts have traditionally focused on developing methods for satel-
lite telemetry, and few methods exist specifically for acoustic telemetry detections.
One exception is that of Dorazio and Price (2019), who developed a Bayesian SHM
for Gulf sturgeon (Acipenser oxyrinchus desotoi), but this method was designed for
linear movement throughout a river and was therefore formulated in one-dimensional
space. In the two-dimensional case, HMMSs have been directly fitted to positional data
(Whoriskey et al., 2017), and to location predictions from SSM-filtered positional data
(Cote et al., 2020). These methods necessarily involve multiple separate modelling
steps, e.g., a positioning algorithm to obtain an animal path from the detections,
potentially followed by data cleaning or filtering via one or more SSMs, and finally an
HMM to obtain behavioural states. A methodology that can simultaneously predict
behavioural and location states specifically from acoustic detections would provide a
more parsimonious solution.

Our research fills this gap by advancing the YAPS methodology to predict be-
havioural states along an animal path that is predicted from a set of acoustic teleme-

try detections. Because positions are sampled in continuous-time, we employ a



116

continuous-time Markov chain to model the behavioural state evolution. For model
fitting, we follow the iterative framework outlined in Chapter 4, which takes advantage
of maximum likelihood theory in both the HMM and SSM paradigms to efficiently
and accurately fit SHMs to animal movement data. We relax the snapshot assumption
such that we can adapt standard HMM computational tactics and use simulations
to evaluate the accuracy of our implementation. Model efficacy is demonstrated by
fitting both two- and three-state models to approximately six days’ worth of acoustic
detections collected on a female carnivorous fish, the northern pike (FEsox lucius),

throughout Hald Lake, Denmark.

5.2 Methods

In accordance with the original character of Baktoft et al. (2017), we name our be-
havioural YAPS methodology “Yet Another hidden Markov model Solver”, or YAMS
for short. YAMS has three goals: 1) predict a spatially and temporally continuous
path from a series of spatially discrete animal detections that are measured with er-
ror; 2) predict the sequence of behavioural states, and 3) estimate the parameters

governing the animal movement and detection processes.

5.2.1 Study System

Our study system is Hald Lake in Denmark, which covers an area of approximately 3.4
km? with a mean and max depth of 13.1 and 31 m, respectively (Jeppesen et al., 1999).

From April 2019 to February, 2020, 70 Thelma TBR 700 receivers were deployed over
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the entire range of Hald Lake. Three species were tagged as part of a broader ecolog-
ical study, including brown trout (Salmo trutta), European eel (Anguilla anguilla),
and northern pike. We limit our analysis to detections from a single adult (length
= 93.2 cm) female pike which was tagged with a Thelma D-HP9 tag (30.5 mm long
x 9 mm diameter, ~ 9 month duration) that transmitted at 71 kHz. Acoustic trans-
missions were programmed to occur at random times within a fixed interval of 10-30s
to reduce collisions. Our data include this random sequence of numbers, but other
datasets do not, either because of manufacturing errors or because the sequence is

not readily accessible by the consumer.

5.2.2 Data Notation

Detection data are structurally complex. They require a combination of three data
types: tag and receiver metadata, and logs of detections at each receiver, such that
a single observation consists of a time-stamp associated with a receiver location and
a tag ID (Whoriskey et al., 2019). Detections are limited by predefined receiver lo-
cations, and are thus spatially discrete and biased based on the study design. The
probability of detection varies based on a variety of factors including time, environ-
mental condition, and distance between the receiver and the tag; thus, true animal
absence cannot be measured, and the meaning of presence is dynamic because it is
recorded within a changing detection range. When detection ranges overlap, a single
data unit (transmission) leads to multiple observations (detections).

With these idiosyncracies in mind, we introduce the following indices and notation.
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Throughout, the index ¢ will be used for a variable ordered in time and range from 1
to N. The integer N therefore denotes the total number of data units (transmissions),
but not the total number of observations (detections). When indexed with a colon,
e.g., 1 : N, this entails all values including and between 1 and N. The index ¢ denotes
the coordinate axes, which in our case will be Eastings or Northings. Two indices
will be used for behavioural states: 7, and k, and these each range from 1 to m total
state values (in our case, m will equal either 2 or 3). In a minor abuse of notation but
for concision and ease of interpretability, r will be used to both denote the location
of a receiver (in which case it will be subscripted by c¢), and to index a variable at
a receiver (in which case r will be the subscript); a misconduct that is only mildly
offensive because, within our study, locations are unique among receivers. Finally,

bold characters denote vectors and matrices.

5.2.3 Model Definition

YAMS is an SHM that takes advantage of both the SSM and HMM paradigms. The

full model that we wish to consider is:
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Measurement = d., = (2271 (re — mci)2)0.5 (5.1)

0i — 0i—1 | 0i—1, 0,9 ~ N<5i—1 — 0o, 772)
\
Movement = {x | Zeio1 ~ N(zeio1, (2 Dy, - (t: — t:1))"?) (5.2)

Behaviour = {Pr(bi =k | by =) = Ajp(tios,t) (5.3)

For quick reference all terms in the equations above are described in Table 5.1.
Equations 5.1-5.3 demonstrate how this model is hierarchical with three levels that
relate to either the measurement process of detecting the tagged animals using acous-
tic telemetry (Eqn 5.1), the movement of the animal (Eqn 5.2), or the mathematical
states that are assumed to drive the movement process and that are interpreted as
behaviours (hereafter, behavioural states; Eqn 5.3).

Measurement We observe 7,.;, the time that a transmission arrives at receiver r.
Critically, this is distinguished from the time that the transmission originated at the
tag, which we denote t;. We calculate the distance between the receiver location 7.
and unknown tag location z.;, where ¢ denotes the appropriate coordinate axis, and

represent this with d,.;. Then, the expected travel time of a transmission is calculated
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Table 5.1: Parameter definitions for the YAMS formulation.

Term Definition

1 Index of observations ordered in time.

t; Irregularly observed time of origin of a transmission.

m Number of behavioural states.

g,k Indices for behavioural states.

c Coordinate axis.

Te Receiver location indexed by coordinate axis; because locations are
unique amongst receivers, r is used synonymously with receiver ID.

b; Behavioural state at time t;.

Te Location of animal at time ¢; in coordinate axis c.

Tri Observed time that a transmission arrives at a receiver.

i Predicted time that a transmission arrives at a receiver.

€ri Error between the observed and predicted time of arrival of an
acoustic transmission at a receiver.

T; A t-distribution with three degrees of freedom.

w Estimated scale parameter of T5.

dy; The distance between receiver r and the unobserved true location
of the animal at time ¢;. This is computed for all receivers and all
transmissions.

A, Random temporal interval between transmissions ¢;_; and ;.

0; Tag internal clock drift at time ¢; to account for variability with ¢;
and A,.

n? Variance for the random walk modelling the tag drift.

v Speed of sound. We keep this constant at 1465ms™*.

Dy, Diffusion parameter of the animal movement process.

Q Generator matrix of the continuous-time Markov process.

A(tiq,t;) Continuous-time analogue to the transition probability matrix.

from d,,; and the speed of sound v, and this is added to ¢; to get the expected time,
Ir,i, that a transmission arrives at a receiver. In some implementations of YAPS, v is
modelled as a Wiener process or included as data; here, we assume that it is constant,
i.e., v = 1465ms—!. The stochasticity of the transmission time ¢; depends on whether
the random transmission interval A; is known or not. When known, as is the case
in our implementation, ¢; is a sum of the previous transmission time t;_q, 4A;, and an

internal clock drift ¢; that is modelled with a random walk on its first differences with
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variance n?. Finally, errors in the expected vs. observed times of arrival can originate
from multiple sources including, for example, varying aquatic conditions affecting
the speed of sound or physical obstructions causing the transmissions to “bounce”
before reaching a receiver. This measurement error is accounted for by modelling the
difference between the observed and expected transmission arrival times, e,;, as a
scaled t-distribution with three degrees of freedom (73) and scale parameter w, as in
(Baktoft et al., 2017).

Movement The locations are assumed to follow a Wiener process (Eqn 5.2) with
diffusivity parameter Dy, which emulates discrete-time random walks in continuous-
time.

Behaviour Because the locations are modelled at irregular time intervals, we
choose to model the behavioural states with a continuous-time Markov process. This

process is governed by the generator matrix Q:

qi1 Q12 " Qim
q21 422 qim
Q= , (5.4)
dm1 4m2 Amm
that has dimension m x m, with ¢; = — Zi’j# ¢j, and all ¢;; > 0 for @ # j. The

negatives of the diagonal elements, —¢;; describe the rate of transition out of state
1, i.e., an animal will remain in state ¢ for an amount of time that is exponentially

distributed with rate parameter —g;; and mean —¢;; ! (Ross, 1996). The off-diagonal
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elements denote the rate of transitioning from state ¢ to state 5. Given that an animal
switches out of state 7, it will switch into state j # ¢ with probability —q;;' x ¢j (Ross,
1996).

Maximizing the likelihood of a hierarchical model of the sort formulated in Eqns
5.1-5.3 is difficult because of large numbers of mixed-scale random effects (Altman,
2007; McKellar et al., 2015). Rather than attempting to maximize the full likelihood
directly, we employ the procedure outlined in Chapter 4 to estimate parameters and
predict random effects via iterative optimization of an HMM and SSM likelihood. We

now describe the SSM and HMM likelihoods below.

5.2.4 State-Space Model Likelihood

Given predicted values of xy. that we treat as known, Eqns 5.2-5.3 are efficiently
maximized with the likelihood of a continuous-time HMM (see Section 5.2.5), which
we denote by Ly (O | X1.v), where © denotes the full parameter set of this like-
lihood. Then, given a known (predicted) sequence of behavioural states, the joint

likelihood for Eqns 5.1-5.2 is

L(\I’, XN, O | B) = H { (H f(@,i)) f(5i|5i—17 5i—1) (H f(xc,ilxc,i—la 62)> } )

=1 c=1

(5.5)

where f(-) denotes the appropriate probability distribution based on Eqns 5.1-5.2.
Importantly, the expression above denotes the joint likelihood (conditional on B) of

all of the parameters ¥ = {n?, Dy, } and random effects {8, x1.x}, and these random
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effects must be integrated over their respective state-spaces in order to obtain the
marginal likelihood necessary for maximum likelihood estimation of the parameters.

That is, we optimize:

N 2
Lssu (¥ | b) = / H { (H f(%i)) f(6ildi—1,0i—1) (H f(xc,i|$c,i17bi)> } d{x1.n, 0}

i=1 =1
{x1:N7 JI:N} ! ¢

(5.6)

Because this integral is analytically intractable, we approximate it using the Laplace ap-

proximation as implemented in TMB.

5.2.5 Hidden Markov Model Likelihood

Throughout this paper we interchange discrete-time and continuous-time to refer respec-
tively to regular and irregular sampling, as is pervasively adopted within the literature. In
reality, observing any biological or ecological process in continuous-time is near-impossible,
or at the very least practically infeasible; to do so would require technology capable of
recording infinite observations at infinitesimally small temporal intervals. In practice, all
animal movement data represent discrete-time realizations of continuous-time behavioural
processes. Consistent with this doctrine, we stress that the continuous-time processes that
we utilize enable the user to predict locations and behavioural states at the temporal in-
tervals of our choosing, which in our case are irregular. With this philosophy in mind, we
describe our continuous-time implementation of the forward and Viterbi algorithms, as well
as our calculation of pseudoresiduals.

As part of our model implementation, we fit a continuous-time HMM. In the classic

HMM framework (without temporal covariates; see e.g., Li and Bolker 2017), the probability
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of switching from state j from one time unit to the next is independent of the sampling
time because all of the temporal intervals are the same, and this probability is contained in
the jth row, kth column element of the transition probability matrix, which we represent
with A. For a Markov process, the probability of switching from b;_; to b; at some point
within the observed interval [¢;_1,t;) is not independent of the sampling time, but it can
be derived from the generator matrix Q. The Kolmogorov differential equations give us
the relationship between the transition probabilities from times ¢;_1 to time ¢;, which we

denote with A(t;_1,t;) (analogous to the discrete-time case), and Q.

At t) = Alti—1,1)Q. (5.7)

This is the Kolmogorov forward equation in matrix form in continuous-time (Ross, 1996),

which has the solution:

Aty ty) = e@itizn) (5.8)

Thus, for an irregular time interval (¢;,¢;—1), we now have Pr(b; = k | bj—1 = j) =
Ajk(ti—1,t;). We directly substitute these probabilities into the calculations for the for-
ward and Viterbi algorithms, as well as for the pseudoresiduals (Zucchini et al., 2016).
That is, the m x 1 vector of forward probabilities, a;, that contains the joint probabilities
of being in each state at time ¢; and observing all data from time t; to t;, is calculated

recursively as

oG = aiflA(tifl,ti)P()A(i) (59)
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as in (Lu, 2017) where P(x;) denotes the diagonal matrix with diagonal entries equal to
f(x; | Xi-1,b;), determined by Eqn 5.2. We carry these calculations through to time ¢y as

in the forward algorithm (Zucchini et al., 2016) to obtain the likelihood Lgasas as

Lymm(© | %) = anl (5.10)

= 7 A1, t2)P(%2) At t3)P(%3) - - A(tn_1, tn )P (ky)1, (5.11)

where © denotes the full set of parameters governing the movement and behavioural pro-
cesses in Eqns 5.2 - 5.3, 1 is a column vector of size m with all elements = 1, and 7 is
the initial distribution, i.e., the kth element corresponds to Pr(b; = k). We set m equal
to the stationary distribution of the continuous-time Markov chain which gives the limiting
proportion of time spent in each state (Cox and Miller, 1965), and can be interpreted as an
activity budget of the study animal (Lawler et al., 2019).

We implement the Viterbi algorithm in continuous-time in order to determine the most
likely sequence of hidden states given the model parameters by locally and recursively max-
imizing path segments from b;_1 to b; V i (Forney, 1973; Zucchini et al., 2016). Instead of
maximizing the posterior probability of the full path, Pr(b | X;.5), the algorithm equiva-
lently maximizes the joint probability of the observations and all possible behavioural state

sequences Pr(b,X1.y), which is more conveniently expressed by

N
=2

Maximizing this over all possible b would require m” calculations; the Viterbi algorithm

reduces the computation time to be linear in N by recognizing that we need only maximize
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Pr(b; | bi—1)Pr(x; | b;) for each i over all possible b;_; (Forney, 1973; Zucchini et al., 2016).
Because the transition probabilities of the Viterbi algorithm need not be time invariant
(Forney, 1973), we again directly substitute the appropriate elements of A(¢;_1,t;) wher-
ever Pr(b; | bi—1) is required. Similarly to other continuous-time switching animal movement
implementations (e.g., Parton and Blackwell 2017; Michelot and Blackwell 2019), our likeli-
hood enables switches between states to occur outside of the discretely sampled observation
times. Unlike these other approaches however, we do not concern ourselves with predicting
the times that the switches occur, rather we focus our state predictions on the sampling
times (i.e., the initiation times of the transmissions). Furthermore, our approach does not
allow for multiple behavioural state switches between observation times.

Finally, we use forecast pseudoresiduals (z;) to assess model validity. If the model is
appropriate for the observed data, then z; = &1 (Pr(f(i < x| X1 = f(l:i,l)), where
®~! is the inverse cumulative standard Normal distribution function, should be distributed
as a standard Normal distribution (Zucchini et al., 2016). In order to calculate z;, we
require Pr(b; =k | b;—1 = j), which we obtain from A(¢;_1,t;) and substitute directly into

the standard pseudoresidual calculation (Zucchini et al., 2016):

,Ati, ,tiF Ail
Zi :(P*l {at 1 (atlll) (X) }’ (513)

where F(x;) is a diagonal matrix with entries equal to the cumulative distribution function
of the observations given the current behavioural state. In practice, because each X; is
multidimensional where the coordinate axes are assumed to be independent of each other,
the pseudoresiduals are calculated for each coordinate axis separately. Importantly, these

residuals are dependent on the accuracy of the location state predictions, x. As a result,
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they can only be used to validate the model fit from Eqns 5.2-5.3, and cannot be used to

assess validity of Eqn 5.1.

5.2.6 Model Fitting

In practice, we carry out the iteration as follows. To optimize the SSM step, we require
a known sequence of behavioural states. To optimize the HMM step, reasonable location
values are necessary. As a result, to initialize the optimization we could either treat a
randomly generated sequence of behavioural states as known, or we need to obtain initial
values of the locations in continuous space. We choose the latter option, and achieve this by
fitting a one-behaviour SSM (YAPS) to the observed data. A HMM according to Eqn 5.11
(Section 5.2.5) is then fitted to these initial values, from which we obtain behavioural state
predictions and estimates of ©. The behavioural state predictions are then treated as known
in the SSM step (Eqn 5.6). In Chapter 4 the movement parameters were also fixed during
the SSM step; however, in this implementation we achieved better performance by treating
the Dy, as unknown during both the HMM and SSM steps. We run the iteration for a fixed
number of steps, and following the implementation of Chapter 4, assume that the parameter
estimates from the iteration with the maximum Lggas (¥ sz | b) (the likelihood of the SSM
step evaluated at the maximum likelihood estimates of the parameters) represent the global
maximum because this theoretically corresponds to the parameter set that is most likely
given the observed data. In practice, all calculations are performed on the negative log
scale.

We additionally note that while we iterate between the two likelihoods in Eqns 5.11 and
5.6, two other optimizations occur in order to predict the random effects. For the location

and drift states, the optimization is nested within the marginal likelihood calculations via
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TMB; for the behavioural states, it is implemented via the Viterbi algorithm ex post. Eqns
5.11 and 5.6 show clearly that we are iterating between the maximization of two conditional
likelihoods, which is a frequentist analogue to many Bayesian implementations of Markov
Chain Monte Carlo simulations, where proposed samples are iteratively obtained from many

conditional distributions (e.g., Parton and Blackwell 2017).

5.2.7 Analysis

We fitted YAMS to approximately six days’ worth of data collected on an adult female pike
tracked throughout Hald Lake in summer, 2019. Because many detections occur for a single
transmission, and because the transmission interval is often small compared to the temporal
scale of the study (in our case, 10-30 seconds), a relatively short study duration can yield a
large dataset. For example, in our analysis approximately 6 days of monitoring a single pike
resulted in 144,625 detections from 25,000 transmissions. Given that for N transmissions,
there are 4N random effects in our model, analyzing a dataset of this magnitude is difficult.
We therefore broke the dataset into groups of 5,000 transmissions, and fitted YAMS to each
group, with both two and three behavioural states. For each group, we ran the model for
10 steps.

To carry out a proper simulation study (see below), we required an estimate of the
detection efficiency. The terms detection efficiency and detection range are related, and in
practice are often used interchangeably. Range and efficiency both describe the relationship
between the probability of detection at a receiver and distance to the tag; we refer to
a receiver’s range when distance is the variable of interest, and its efficiency when the
response is the probability of detection. We calculated the efficiency based on model results

as follows: first, we computed all distances between each location of the predicted track
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and all receivers. We then binned these into groups based on 5m intervals of distance,
and calculated the proportion of receivers that registered a tag transmission. We fitted
a binomial generalized additive model to these data to quantify the detection efficiency

throughout the entire lake.

5.2.8 Simulation and the Snapshot Principle

When fitting continuous-time HMMs, it is necessary to consider whether the snapshot
principle holds, which is the assumption that the observed movement of an animal is only
dependent on the active behavioural state (Patterson et al., 2017). In our implementation,
we relax the assumption of the snapshot principle in order to utilize computationally efficient
machinery for approximating the likelihood and predicting the behavioural states. To assess
the validity of our approximation, we designed the following simulation study.

We simulated 30 tracks using the estimated parameters of the first group of 5,000 trans-
missions. First, we simulated 4999 transmission intervals from a Uniform distribution with
limits of 10 and 30 seconds, and 5000 tag drift times. Then, we simulated the embedded
Markov chain, i.e., the discrete chains of holding times within states and jumps to the
next state. With this embedded chain, we acquire the behavioural switching times, which
determine the active behavioural state at each observation time, i.e., it simulates the 5000
behavioural states. To test our approximation, we combined the behavioural switching
times with our observation times (and the corresponding states at switching with our be-
havioural state sequence), and simulated the animal locations based on these augmented
sequences. Once the full movement path (of 5000+ locations) was simulated, we removed
the locations and behavioural states corresponding to the exact switching times in order

to simulate the effect of the unobserved and unaccounted for behavioural switches. From
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Table 5.2: Three sets of results for the two- and three-state models fitted to each of the
five groupings of the pike dataset. In the first set, the results for D, estimated by the
HMM are reported, which govern the movement of the animal. The second set depicts
the activity budgets of the animal, as determined by the stationary distribution. The
third set is the mean time spent within a state as determined by the diagonal entries
of the generator matrix.

Group 1  Group 2 Group 3 Group 4 Group 5

Two-State Model
State 1 0.97 2.03 0.36 1.38 1.05
State 2 20.76 18.51 11.45 13.63 14.02
D,, Three-State Model
State 1 0.19 0.74 0.16 0.23 0.25
State 2 3.69 11.88 1.42 1.39 3.59
State 3 24.75 23.70 13.32 17.03 27.78

Two-State Model

State 1 0.56 0.65 0.59 0.74 0.78

State 2 0.44 0.35 0.41 0.26 0.22
m; Three-State Model

State 1 0.27 0.59 0.38 0.38 0.63

State 2 0.41 0.20 0.29 0.38 0.26

State 3 0.32 0.21 0.33 0.24 0.11

Two-State Model
State 1 11.51 12.61 13.83 22.00 15.47

State 2 9.15 6.78 9.67 7.85 4.47
—q;' Three-State Model

State 1 4.91 8.39 8.28 13.85 15.20

State 2 5.78 2.78 3.86 9.28 4.69

State 3 11.68 60.95 8.95 8.27 8.20

here, we randomly placed the track within the lake and calculated the distances from every
location to each hydrophone. In order to get a realistic representation of whether or not
a receiver would have detected the animal or not, we used the detection efficiency model
results to predict the probability that each receiver would have detected the simulated
track based on these distances, and then we simulated a detection at each receiver with a
Bernoulli trial. Finally, we fitted YAMS to each simulated dataset, and quantified the root

mean squared error of the parameter estimates as well as the behavioural state accuracy as
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the proportion of behavioural states correctly identified (see Chapter 4).

5.3 Results

5.3.1 Pike Dataset

We fitted models that assumed both two and three states to the pike dataset (Table 5.2).
According to QQ plots of the pseudoresiduals, both models appeared to fit well (Fig B.1).
Table 5.2 displays the estimated Dj, for each model for the full pike dataset. Increasing
state values correspond to increasing levels of dispersion, such that larger state values can
be interpreted as “faster” movement relative to smaller state values. For comparison across
groups, we will interpret any D, < 10 as slow movement, 10 < Dj, < 20 as medium
speed movement, and 20 < Dy, as fast. The two-state model identified a slow state for
all five groups. Fast movement was identified for the first group, while the other four
groups included a medium speed state. For this model, the slow state was observed along
most of the track (56-78% of the time), as determined by the activity budgets and the mean
durations spent within a state (Table 5.2). The three-state model identified at least one slow
state. Four of the five groups identified a second slow state, coupled with either a medium
speed state (groups 3 and 4) or a fast state (groups 1 and 5). Group 2 identified both a
medium speed state and a fast state. This model generally produced results consistent with
the two-state model, e.g., it also suggested that the pike spent most of its time in a slow
state (noting that multiple slow states were observed for most groups; Table 5.2).

Fig 5.1 reproduces the path of the pike coloured by behavioural state. For the duration
of the analyzed data, the pike travelled throughout the Southwest portion of the lake. It

appeared to exhibit higher speeds on the outer perimeter of the lake, and slower speeds
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Figure 5.1: Compiled model track and behavioural state results from fitting YAMS
to a set of acoustic detections collected on a female pike over six days in Hald Lake,
Denmark, which covers an area of approximately 3.4 km?. Top includes results from
the two-state model, while bottom contains the results of the three-state model.
Yellow, blue, and red colours denote behavioural states 1, 2, and 3, respectively.
Within a model result, increasing values of the behavioural states denote increasing
dispersion.
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towards the interior.

The increasing values of Dy, correspond well with the observed speeds of the animal
(Fig 5.2, 5.3). The distribution of speeds changed over data group, which can be seen from
the variability in the observed ranges of speeds in Figs 5.2 and 5.3. This also corresponds
with the dynamic values of Table 5.2. Greater segregation was observed among states in

the two-state model compared to the three-state model (Fig 5.2; Table 5.2).
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5.3.2 Simulation Study

We used the GAM depicted in Fig 5.4 to simulate the detections of an animal throughout
the lake given an underlying movement path. These results showed that detection efficiency
dropped rapidly and non-linearly within the lake, with predicted detection probabilities of
0.74, 0.42, and 0.08 at distances of 100, 250, and 500 m from the receiver. Although other
models were considered (e.g., mixed effects models to account for within-receiver variability),
our model that considered the variability in detection efficiency to be constant throughout
space was determined to fit the best based on cross-validation with 70% training and 30%
testing datasets.

We fitted YAMS to 30 simulated tracks under both a two-state and three-state scenario.
Within each simulation study, 12 of the models either exhibited false convergence, or did
not converge at all. These results were removed from further analysis. The simulation
study of the two-state model showed high levels of accuracy, with a mean behavioural state
accuracy of 0.94 (Fig 5.5). Location state accuracy was also high, with an average RMSE
of 1.29 and 1.34 m in the Eastings and Northings axes, respectively. The simulation study
of the three-state model showed lower levels of accuracy than the two-state model in the
behavioural state prediction, with an average proportion of 0.79 of the behavioural states
being correctly classified. However, the three-state model achieved higher precision in the
location state predictions, with average Easting and Northing RMSEs of 1.28 and 1.29 m

(Fig 5.5). Parameter results were also precise, as documented by Tables C.1, C.2.
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Figure 5.4: Results from a binomial-response generalized additive model fitted to
detection efficiency data derived from the YAMS predicted pike locations. Efficiency
was calculated for every 5m interval. Training data (70%) used to fit the model are
depicted in blue where the shade of blue denotes the number of detections used in the
calculation. The red line shows the fitted values from the model. Orange points are
the data used in testing the model (30%), while the red points are the corresponding
fitted values.
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Figure 5.5: Results from fitting YAMS to 18 simulated animal tracks based on results
from the first group of data. Top: behavioural state accuracy, calculated as the
proportion of correctly identified states. Bottom: location state accuracy, calculated
as the root mean squared error (RMSE; m) in both the Eastings and Northings axes.
Blue and green results denote the two- and three-state models, respectively.
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5.4 Discussion

This research combines the existing SSM of YAPS used to generate fine-scale positioning
predictions with the iterative model fitting framework of Chapter 4 to develop a novel SHM
designed specifically for acoustic detections. By incorporating a latent Markov chain into
the existing YAPS formulation, a researcher need not depend on positioning algorithms from
manufacturers, which can be expensive and contain larger amounts of error, and they can
conveniently utilize the same model likelihood that predicts the location states to predict
the behavioural states. We demonstrated the capabilities of this model to identify multiple
behavioural states of a predatory fish, and tested its accuracy using simulation studies.
Several decisions were made during model fitting that impacted the results.

To maintain consistency with YAPS, we chose a relatively simple process to model animal
movement. The movement parameter D;, of the Wiener process governs the dispersion of an
animal in any direction. More extensive information on how movement evolves through time
might be determined by incorporating more complex models of movement. For example,
using an Ornstein-Uhlenbeck process on the velocities, rather than a Wiener process on the
locations, could allow for estimation of drift or home range tendencies and autocorrelation
within the track (Johnson et al., 2008; Pedersen and Weng, 2013). Alternatively, modelling
the step lengths and turning angles as separate continuous-time processes could provide
more easily accessible interpretations of movement in continuous-time (Parton and Black-
well, 2017). In our pike analysis, we found that the relatively simplistic Wiener process was
sufficient to accurately identify behavioural states that corresponded well to differences in
the observed speed of the animal (Fig 5.3). Future research might benefit from investigating

the utility of more complex movement models, however, other researchers have rationalized
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the deliberate use of rather simplistic models in order to provide speedy and accurate results
(Jonsen et al., 2020). The choice of a movement model will likely always depend on the
interpretability and complexity of the mathematical equations used to describe the animal
movement, as well as the ultimate ecological goal of the research.

When fine-scale positioning of acoustically tagged animals is a primary research goal,
smaller transmission intervals and extensive receiver coverage over the entire study area
will often result in extremely large datasets. In our case, approximately six days’ worth
of observation on a single pike resulted in 25,000 transmissions. We were unable to fit a
single model to the full dataset because of computational limitations, therefore we split the
dataset into five groups of 5,000 transmissions each for model fitting. Consequently, we
obtained five different parameter sets for each of the two- and three-state models. Thus,
the meanings of the movement parameters D, were dynamic, and in some cases, resulted
in different interpretations of the states across time. For example, the third state of the
three-state model changed from a fast state in groups 1 and 2 to a medium speed state in
groups 3 and 4 and then back to a fast state in group 5. For the two-state model, this effect
appeared to be minimal, because the estimated D, remained relatively constant over the
five groups (Table 5.2). However, the dynamic effect on the three-state model was greater,
for example as larger values of D;, were estimated for state 2 towards the beginning and
end of the track (Table 5.2).

YAMS requires an ancillary stochastic step that we did not describe within this paper
because it was not altered from the original implementation in YAPS. Both the receivers
and tags of acoustic telemetry contain time keeping mechanisms, and these mechanisms
experience drift. Small values of drift, even microseconds, can lead to error in position

estimates on the order of meters because of the rate at which transmissions travel (speed
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of sound). Although we account for drift in the tag clocks within the YAMS measurement
process (Eqn 5.1), accounting for drift in the receiver clocks must also be achieved, and we
did this prior to fitting the movement models by using an SSM (via YAPS) to synchronize the
receiver clocks (Baktoft et al., 2019). Receiver synchronization, whether it is achieved by
an SSM or other tactic, is typically required regardless of which method is used to generate
positional estimates from acoustic detections (e.g., Smith 2013). Therefore, our model
remains statistically more parsimonious compared to fitting an SSM to predict locations
and then a separate HMM to predict behavioural states. The reader is referred to the guide
of Baktoft et al. (2019) for further information on synchronizing the receiver clocks, and
how to implement this step using YAPS.

In our continuous-time HMM formulation we are allowing the behavioural process to
switch between sampling times. However, in our movement process, we specify that the loca-
tion of an animal at time ¢; is only dependent on the behavioural state at time ¢;. For those
occasions where the behavioural state switches between sampling times, the movement-
behaviour dependence is not precise, because the movement of the animal depends on the
behaviours at both the current and the previous sampling times (by, , and by,). This is
called the snapshot principle (Patterson et al., 2017). To precisely model movement when
the switches occur, the times of switches would have to be predicted. This has been done in
Bayesian formulations (Parton et al., 2017; Michelot and Blackwell, 2019). Instead, we re-
laxed the snapshot assumption such that we could use HMM and SSM likelihood machinery
available through TMB to approximate our likelihood around the times of switches, and take
advantage of this platform’s relative speed compared to sampling techniques (Auger-Méthé
et al., 2015; Whoriskey et al., 2017). However, we specifically designed our simulation studies

to measure the error in our model fitting procedure incurred in part by this approximation.
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The results of our studies showed high levels of accuracy for the behavioural and location
states, suggesting that our model is accurate despite relaxing the snapshot assumption.
This is likely because the temporal resolution of our data (observations occurring randomly
every 10-30s) is fine relative to the scale of the behavioural states that we are predicting.
Longer transmission intervals (e.g., 60-120s is frequently used) might incur larger amounts
of error, therefore future researchers endeavouring to use this implementation should care-
fully consider the temporal scales of their inferred behaviours relative to their observations
and re-evaluate the snapshot principle with simulation studies when necessary.

The simulation studies showed a high level of accuracy attained by both the two- and
three-state models. We did have to omit approximately one third of the simulated tracks
based on false or lack of convergence. This was surprising because we encountered this very
infrequently during model fitting on the real data (we had false convergence for one out of
ten iterations when fitting the two-state model to the first group, and for two out of ten
iterations when fitting the three-state model to the fourth group), but may be explained by
the fact that sometimes simulations cannot fully capture the variability inherent to real-life
scenarios. When it is not possible to eliminate problematic tracks (e.g., when analyzing
real data), researchers may successfully fit models with TMB if they change starting values
either by adding a small amount of random noise or by selecting an entirely new set.

Interestingly, the three-state model more accurately predicted the location states, but
less accurately predicted the behavioural states compared to the two-state model. Con-
trasting estimates of behavioural state accuracy under different numbers of assumed states
exist in the literature. For example, Lawler et al. (2019) compared the ability of two differ-

ent HMMs (one with autocorrelation in the step lengths, the other without) to accurately
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predict states under both a two- and three-state scenario. Although the model with auto-
correlation performed worse with three states, the model without performed better (Table
3; Lawler et al. 2019). Our case might be explained by the fact that the three-state model
did involve considerably more switches (136-209; numbers varied because of the five groups
of data) among behavioural states than the two-state model (92-136). Although it does
not seem unreasonable that more states and more switches could result in larger amounts
of error, it is also possible that this error resulted from our approximation in likelihood
around the times of switches. However, we are unable to answer this question because our
simulation studies were unable to separate error inherent to the behavioural state predic-
tion from error specifically incurred by relaxing the snapshot assumption. Increasing error
could also be explained by the fact that the three-state model most often predicted two slow
states for each group, thus reducing the separation in D, that drives the state classification.
Regardless of the causes, our simulation studies illustrate an interesting trade-off between
location and behavioural state accuracy when deciding which model to use for ecological
interpretation. Although this result is specific to YAMS, future studies may want to inves-
tigate whether a trade-off in accuracy occurs while fitting other SHMs to animal movement
data.

We now offer interpretations of the two-state rather than the three-state model with
respect to pike ecology. We base this decision on 1) the average increase of 15% behavioural
state accuracy in the two-state model, 2) the relatively increased segregation of the two-
state movement parameters and observed speeds among groups compared to the three-state
model, and 3) the dynamic nature of the behavioural states among groups.

Pike are commonly referred to as sit-and-wait predators (Eklov, 1997). Lab experi-

ments have shown that pike often remain stationary, watching and then ambushing prey
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when they come within range (Savino and Stein, 1989; Harper and Blake, 1991). They
additionally suggest that pike will often track their prey slowly with an elongated posture
before attacking (Harper and Blake, 1991). During prey capture attempts, acceleration can
reach up to 96 ms~! (Harper and Blake, 1991). During escape, acceleration can be even
higher (120 ms~!; Harper and Blake 1991), thus, both behaviours are energetically costly
(Frith and Blake, 1995). In this study, we were able to classify slow, medium, and fast rates
of movement of our single northern pike. It is unlikely that our fast state identified acute
hunting or predator avoidance for three reasons. First, these events are nearly instanta-
neous, and our observed speeds did not reach those that have been previously documented

1 compared to

for these behaviours. Here, our maximum observed speed was ~ 1.15 ms™
maximum speeds of ~ 3 and ~ 4 ms~! for predatory and escape behaviours, respectively
(Harper and Blake, 1991). Second, the fast behaviour had a large variability in observed
speed, including values that might suggest stationary movement (Fig 5.2). Third, the fast
behaviour was persistent, i.e., the pike was observed to remain within this behaviour for an
extended period of time (~ 5-10 mins; Table 5.2), therefore it is unlikely that this animal
was consistently hunting or avoiding predators during these time periods given the energetic
cost (Frith and Blake, 1995). Rather, it is more likely that the fast behaviour is document-
ing exploratory travel throughout the lake, which could include either of the above rapid
response behaviours.

We offer two explanations for the slow behaviour. This state did not identify stationary
behaviour by itself, which is made evident by the fact that speeds within this state were

1 and the pike was observed to still be covering distance while

observed to be >0 ms™
within this state (Fig 5.1). However, it is possible that this state identifies a composite

of stationary behaviour and slow tracking of prey items before prey capture attempts as
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was documented in (Harper and Blake, 1991). Alternatively, it is possible that this pike
adopts a slow, steady speed at regular intervals and for a majority of its time (Table 5.2)
to conserve energy that may be needed for rapid acceleration at later, opportunistic times.
This has been proposed to explain an observed high proportion of low activity in another
ambush predator, the great barracuda Sphyraena barracuda (O’Toole et al., 2010). Fine
scale accelerometry data would help to distinguish between these two possible behaviours,

by correlating the timing of slow movement with fast-starts and transmission speeds.



Chapter 6

Conclusion

6.1 Summary of Research

This thesis demonstrates that combining the Laplace approximation and Automatic Differ-
entiation as made available by Template Model Builder (TMB) offers a powerful approach to
modelling animal movement. This combination is appealing because it can incorporate non-
Gaussian measurement errors and high numbers of random effects, and is computationally
efficient compared to likelihood sampling methods. Throughout my research, I used TMB to
fit a hidden Markov model (HMM), a Gaussian Random Field (GRF), and two separate
switching hierarchical models (SHMs). Model fitting encompassed a variety of data types,
including GPS, filtered light level data, Argos, and acoustic telemetry detection data, that
are sampled in both discrete and continuous space, and which I modelled in both discrete
and continuous time. By developing parallel methods for both satellite and telemetry data,
my research draws a powerful and timely link between the statistical regimes typically used
to analyze these data.

As with other model fitting platforms, assumptions should be carefully considered.
Specifically, the Laplace approximation is only accurate when the marginal likelihood is ap-

proximately Gaussian, or at least unimodal. This can sometimes be checked by examining
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the profile likelihood (as in Auger-Méthé et al. 2017), or by utilizing the checkConsis-
tency function of TMB. In addition, whether the data agree with the model family being
used can be checked with one step ahead prediction residuals (including pseudoresiduals;
Zucchini et al. 2016; Thygesen et al. 2017). Computationally efficient algorithms exist for
calculating residuals while fitting HMMs (Zucchini et al., 2016). However, the existing
strategy for computing residuals for state-space models (SSMs) within TMB requires cumu-
lative optimizations over the random effects. I investigated this strategy for a seal track
of ~2000 locations. Because it required 4000 optimizations, this computation took several
hours. For an acoustic telemetry dataset with 5000 locations and 5000 random tag drifts,
15000 optimizations would be required. Because I make use of the HMM framework when
fitting the SHMs, I chose to utilize solely the HMM implementation of the residuals, which
are calculated assuming that the locations states have been accurately predicted. Some
research suggests that SSMs of animal movement may not fit the data as accurately as is
assumed within the literature (Thygesen et al., 2017); future research would benefit from
rigorously testing the suite of models currently being used.

When fitting models that include behavioural states, additional assumptions are made
to interpret the states as individual behaviours. Avoiding the inclusion of too many states to
ensure feasible biological interpretation of results has been frequently discussed (e.g., Li and
Bolker 2017; Pohle et al. 2017). However, current research is largely incapable of validating
the interpretations themselves. For example, although we can interpret the behavioural
states of the grey seals in Chapters 2 and 4 as travelling and foraging based on classifying
the movement into two states representative of area-restricted search patterns, we cannot
be certain of the frequency that the individuals actually use this search tactic to forage.

Most studies generate predictions of apparent behaviour, and would benefit from being able
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to collect independent secondary evidence that can justify the interpretations. Although
more certainty in the state interpretations can perhaps be generated by utilizing further
data streams not included in this thesis, for example depth (deRuiter et al., 2017) and fine-
scale accelerometry data (Wang, 2019), true validation is rare. Promising research suggests
great future potential for validation from field observations (Farhadinia et al., 2020) and
animal-borne cameras (Volpov et al., 2015).

This thesis concerned itself with the movement of aquatic animals. As a result, I ini-
tially focused efforts on creating a faster, frequentist implementation of the first-Difference
Correlated Random Walk with Switching (DCRWS) originally implemented in the package
bsam (Jonsen et al., 2005). For many years, this was the tool of choice for fitting SHMs
to aquatic telemetry data because it incorporated measurement error distributions specif-
ically designed for Argos telemetry. An alternative option that has become popular for
analyzing animal telemetry data with error is the R package momentuHMM, which combines
the continuous-time SSM of crawl (Johnson et al., 2008) with the discrete-time HMM on
the distributions of step lengths and turning angles available through moveHMM (Michelot
et al., 2016). In Chapter 2 I showed that the two movement processes under a negligible
measurement error scenario can provide different results. Specifically, the DCRWS move-
ment process appears to be most applicable when the behaviours to be identified consist of
directed travelling and tortuous movement indicative of area-restricted search (Whoriskey
et al. 2017).

In practice, the moveHMM process often provides more accessible interpretations of animal
behaviour, for example, by directly modelling the mean step length of an animal, whereas
the DCRWS models the autocorrelation in step length. In addition, it allows for more

freedom in the state-dependent distributions in two ways. First, it contains two parameters
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(location and scale) that model each of the turning angles and step lengths along a track,
whereas the DCRWS only contains one autocorrelation parameter that acts on both the
step lengths and turning angles, and one location parameter that governs the turning angles.
Second, and directly following from the first point, the moveHMM process assumes that the
step lengths and turning angles are independent (McClintock et al., 2014), whereas they
are implicitly correlated in the DCRWS. This makes it more difficult to define and interpret
more than two states in the DCRWS, although significant research has cautioned against
the overfitting of models via the inclusion of too many states (Li and Bolker, 2017; Pohle
et al., 2017). My attempts to fit a step length and turning angle model (sensu Lawler
et al. 2019) in TMB were unsuccessful. Such a model includes an intermediate multivariate,
non-linear, non-stochastic equation to recreate an animal path from the unknown random

step lengths and turning angles, i.e., the link

d, [cos(f:) —sin(6y)
d;—1

Xt = X¢—1 + (X¢—1 — X¢—2), (6.1)

sin(6;)  cos(6y)

where d; denotes the step length between locations x;_1 and x;, and #; the turn angle
between x;_o, x;—1, and x; (Lawler et al., 2019). This step is necessary to provide an
appropriate link between the measurement error and the movement process. However, it
involves non-normal random effects, including a wrapped distribution, that require trans-
formation through copulas to establish normality. The combination of this link, coupled
with these transformations, unfortunately made estimation very slow and unreliable. Com-
pared to the step length and turning angle model, the DCRWS is relatively easy to fit, and
provides reliable results for those animals that consistently exhibit area-restricted search.

This thesis concerned data collected by many devices that can be broadly classified
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into two kinds: spatially continuous animal paths collected by satellite telemetry, and spa-
tially discrete detections of animal presence like those often registered by acoustic receivers.
Although state-space and hidden Markov modelling have become enormously popular for
analyzing animal paths, uptake within the acoustic telemetry world has lagged behind,
likely because the discrete nature of acoustic telemetry precludes these data from being
analyzed as a time series in the traditional sense. For example, a single tag transmission
can be registered at multiple receivers, yielding multiple locations for an individual at a sin-
gle moment in time. One early exception includes the work of Pedersen and Weng (2013),
who discretized the location state-space and used the likelihood of an HMM developed in
continuous-time to predict locations of a humphead wrasse (Cheilinus undulatus). This
implementation was subsequently reformulated with a continuous location state-space for
estimation via Markov Chain Monte Carlo sampling in Alés et al. (2016). These exam-
ples did not incorporate state-switching to predict underlying behaviours. Now, fine-scale
positioning methods have reconciled some of the differences between satellite and acoustic
telemetry data by producing paths from detection data, and as a result there is increas-
ing enthusiasm for predicting discrete behavioural states, which has become evident within
the literature (Whoriskey et al., 2017; Bacheler et al., 2019; Cote et al., 2020), at confer-
ences (e.g., International Statistical Ecology Conference 2020), and through my personal
interactions at various workshops (e.g., ideasOTN 2020 Telemetry Workshop Series). This
development highlights two secondary results: 1) despite inherent differences, it is possible
for the satellite and acoustic telemetry disciplines to adapt statistical techniques developed
by the other; and 2) there remains a discrepancy between satellite and acoustic telemetry
movement data that makes comparison of results from the two challenging unless paths can

be reconstructed from detections.
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6.2 Future Directions

This thesis has shown that significant knowledge can be gained by adapting methods for
data collected by one kind of technology that were originally developed (within the context
of animal movement) for another. For example, Chapter 3 adapted a GRF for detection data
that had previously been used to model at-sea seal encounters detected by Vemco Mobile
Transceivers (Carson and Mills Flemming, 2014) or dive behaviour determined by archival
data loggers (Carson, 2018). Furthermore, Chapter 5 developed an SHM for acoustic detec-
tions using a framework that was previously developed for satellite telemetry locations in
Chapter 4. Future research for analyzing acoustic detections could benefit from studying the
ability to incorporate and account for measurement error in satellite telemetry statistical
techniques.

Many researchers measure the effect of various factors on receiver detection efficiency,
typically through the use of stationary tags deployed throughout the study duration to mea-
sure temporal variability within specific habitats (Pedersen and Weng, 2013), mobile tags
towed throughout the study location (typically from a boat) to measure spatial variability,
or tags placed on/within different mediums (Dance et al., 2016). Most researchers recognize
the importance of accounting for variability in detection efficiency (Payne et al., 2010; Dance
et al., 2016; Reubens et al., 2019; Swadling et al., 2020) because it affects the quality of data
collection. However, statistical resources to accomplish this are limited. Researchers may
inflate their datasets based on standardized detection rates measured from stationary (de-
ployed) reference tags (Payne et al., 2010). Although this can be useful, stochastic methods
would likely provide a greater ability to capture uncertainty in the detection process. Those

who do account for variable detection efficiency using stochastic methods typically do so
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in order to produce fine scale position predictions (e.g., Pedersen and Weng 2013; Winton
et al. 2018; Hostetter and Royle 2020). Although fine-scale positioning is important and
increasing in popularity, many researchers are not capable of conducting one of these studies
either because of monetary restrictions or because it is not conducive to their study animal
or ecological question (e.g., wide ranging or burrowing animals). Stochastic methods that
can be used to account for statistical detection efficiency on detections without producing
positions are lacking in the literature and would provide an important contribution. One
technique that is very commonly used to analyze acoustic telemetry data is the generalized
mixed model (Whoriskey et al., 2019). By continuing to develop methods of quantifying
measurement error distributions as is commonly done in satellite telemetry analyses, and
by recognizing that it might be possible to re-express SSMs like those frequently used to
analyze satellite telemetry data as mixed models (Piepho and Ogutu, 2007), researchers
may be able to harness currently available and widely understood statistical machinery to
more accurately model animal detections.

This thesis was primarily concerned with the movement of individuals. Considerable
effort by others has focused on collective movement, e.g., by modelling the tracks of several
individuals simultaneously with individual random effects (deRuiter et al., 2017) or hyper-
priors (Jonsen et al., 2006). However, these analyses are typically limited to single species
and paths of animal movement. Multi-species studies are often of interest, for example
to examine niche overlap (Villegas-Amtmann et al., 2013), interspecific interactions and
competition (Heupel et al., 2019), and predator-prey relationships (Moxley et al., 2020).
These ecological processes can be more difficult to investigate when the different species of
interest have been tagged with contrasting technologies because the data to compare have

inherently different structures. Moxley et al. (2020) did investigate how the movement of
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satellite-tagged grey seals (Halichoerus grypus) varied with increasing predation pressure
from aerial and acoustically tracked white sharks Carcharodon carcharias), but they relied
more on visual comparisons of derived measurements rather than formally incorporating
statistical links between the two data structures. Instead, spatial statistics might provide a
convenient framework that can model movement from multiple individuals as well as stan-
dardize information across different data collection strategies. Prior research documents the
use of spatial models to analyze animal movement data. For example, spatial point process
models have been used to study habitat selection of northern fur seals (Callorhinus ursi-
nus; Johnson et al. 2013), and to recreate animal paths from acoustic detections (Winton
et al., 2018). GRFs have been used to model the movement of killer whales (Orcinus orca)
influenced by social dynamics of conspecifics (Scharf et al., 2016), the distribution of inter-
specific interactions in grey seals (Carson and Mills Flemming, 2014), and the distribution
of bull trout (Salvelinus confluentus) in relation to an anthropogenic structure (Whoriskey
et al., 2019). One benefit of the GRF is that the locations of the response variable are
determined prior to model fitting, thereby providing a potential solution to reconciling the
spatial scale differences between satellite and acoustic telemetry data. Furthermore, equa-
tions can be incorporated to account for sampling error (Thorson et al., 2015) or covariates
(Whoriskey et al. 2019; see Chapter 3), and multiple GRF's can be integrated into one hier-
archical model, for example to relate foraging behaviour of grey seals to distribution of prey
(Chapter 7 of Carson 2018). Spatial models, and specifically GRFs, have great potential
for modelling animal movement at a collective level, from multiple data sources, and across

species and trophic regimes.
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6.3 Concluding Remarks

Throughout my studies, I have been fortunate to be included in several fieldwork operations,
as well as tasked with the co-organization of various workshops. These opportunities have
yielded valuable lessons with great benefits towards my applied statistical research. First, I
have found that fieldwork opportunities can be hugely beneficial to an applied statistician.
By participating in the data collection itself, I have obtained a thorough understanding of
animal tracking data, and this has helped me to catch errors in my analysis, comprehensively
interpret the results, understand the limitations of the statistical methods used, and provide
suggestions on future work. Fieldwork experiences have additionally provided me with an
extraordinary appreciation for the physical and mental labor put forth by both the scientists
and the study animals in order to collect data. For example, it can take a team of four
to five scientists 20-60 minutes to safely capture a single grey seal and obtain simple but
important measurements of the animal (e.g., length, weight). I will also never forget the
feeling (pain) in my hands from holding an anaesthetized adult salmon in a trough of 5°C
ocean water for ~ 10 minutes during tagging and bloodwork sampling. For me, these kinds
of experiences have highlighted the need to safeguard collected data and to include as much
of it as possible in an analysis (e.g., through the modelling of measurement error).

The zenith of my experience co-organizing workshops was the ideasOTN (integrate,
describe, explain, and synthesize Ocean Tracking Network) Telemetry Workshop Series
(TWS), hosted over four days, that focused on designing, analyzing, and communicating
the results of telemetry studies. This workshop, hosted February 17-20, 2020, brought to-

gether over 50 international early career researchers (ECRs) in person, and was additionally
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live-streamed to allow those unable to travel to participate. Given that the COVID-19 pan-
demic erupted shortly after completion of the TWS, other workshops and even conferences
primarily adopted online platforms in 2020, and these experiences have highlighted that
there is a tremendous ability to connect with distant researchers and share educational
resources globally through the Internet. If possible, hosting workshop resources online in-
definitely, e.g., through GitHub and/or YouTube as was done with the TWS, can provide
huge benefits, including enabling the materials to persist, allowing other researchers to use
them as building blocks, and providing metrics of utility for grant applications/reports (e.g.,
number of accesses or views). However, in my experience, it is hard to recreate the full ben-
efits of in-person networking with online interaction. At the TWS, we put a huge amount
of effort into planning social activities to facilitate connections on both a professional and
personal level, and to help the ECRs learn from each other (through a panel discussion)
and teach each other (through a research rodeo that crowd-sourced solutions to research
questions). For me, these ancillary events help to foster an inclusive community within
academia and can facilitate the discussions that spark ideas for future research.

Over the last decade, collaborative groups have grown in popularity for providing plat-
forms under which marine science can be effectively conducted. These networks have actu-
ated the collection of massive datasets through the sharing of resources and infrastructure,
and have stimulated connections across disciplines including ecology, oceanography, statis-
tics, and sociology. The methods presented here are a direct result of two such groups, the
Canadian Statistical Sciences Institute Project “Advancements to state-space models for
fisheries science” and the Ocean Tracking Network. With their guidance and support, I

developed highly versatile frameworks that can quickly analyze large datasets and account
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for the autocorrelation and error pervasive in aquatic animal movement data. My experi-
ence as a graduate student, from collaborative research to workshops, has therefore helped
to advance statistical tools as well as translate them to ecologists, thus contributing to the

growth and momentum of the movement ecology discipline (Lennox et al., 2017a).
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Appendix A

Identifiability of Measurement and Process Error

For each bootstrap, we plotted the estimates of ¢~! against the estimates of o,y and oq.
We chose to plot ¢~! because as ¥ ~! increases, so does the magnitude of measurement
error. We additionally fitted a linear model to single combinations of the measurement

error vs. each of the process error parameters, i.e., for each bootstrap, we fitted

it~ Bo+ Bioton;  and Y ~ Bo + B10uar s, (A1)

where [y and (1 are the standard regression coefficients. In Figs A.1 and A.2, we plot each
of these regressions, and display the p-value for 8;. We chose these simpler models over
multiple regression with interactions for ease of interpretability. All R-squared values were
low (< 0.1), therefore we chose to display the /31 p-values for each regression. However,
these are meant for illustrative purposes only, and should not be interpreted as the results

of rigorous testing for identifiability.
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Figure A.1: Estimates of the longitudinal process error plotted against the inverse of
the estimated measurement parameter, ¢ for nine separate bootstraps based off of pa-
rameters from fitted switching hierarchical models. Increasing ¢ ~! causes increasing
measurement error. Each facet is unique to a bootstrap, with the name containing
an alphanumeric denoting the sampling year, tagging island, and tag PTT of the seal
track that formed the basis for the bootstrap. The purple line is the line of best fit,
and the p-value corresponds to the slope.
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Figure A.2: Estimates of the longitudinal process error plotted against the inverse of
the estimated measurement parameter, ¢ for nine separate bootstraps based off of pa-
rameters from fitted switching hierarchical models. Increasing ¢ ~! causes increasing
measurement error. Each facet is unique to a bootstrap, with the name containing
an alphanumeric denoting the sampling year, tagging island, and tag PTT of the seal
track that formed the basis for the bootstrap. The purple line is the line of best fit,

and the p-value corresponds to the slope.



Appendix B

YAMS Model Validation

The pseudoresiduals are presented for both the two- and three-state models fitted to the pike
dataset. Because all residuals should follow a N(0, 1) distribution, we pooled the residuals
from all five groups into one plot each for the Eastings and Northings axes. These residuals
assume that the location predictions are accurate, and can therefore not be used to validate

the measurement equation of YAMS.
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Figure B.1: QQ plots of the pseudoresiduals for the two-state (top) and three-state
(bottom) models fitted to the pike dataset. Residuals are calculated for each of the
coordinate axes, with Eastings on the left and Northings on the right.



Appendix C

YAMS Simulation Study Parameter Results

The accuracy of YAMS is demonstrated by its ability to recover parameter values during
simulation studies. We fitted the two- and three-state models to tracks simulated based on

the parameter values from the first group of 5,000 transmissions in our pike dataset.

Table C.1: Parameter estimates from a simulation study of the two-state model.
Parameter True Mean Median SD  2.5% Quantile 97.5% Quantile

Dy (HMM) 0974  0.468 0.267 0472 0.225 1.661
Dy (HMM) 20.763 14.408 15.308 2.814 7.229 16.746
q11 -0.087 -0.086  -0.077 0.042 -0.197 -0.056
g1 0.109  0.106 0.091 0.050 0.071 0.227
q12 0.087  0.086 0.077 0.042 0.056 0.197
g2 -0.109 -0.106  -0.091 0.050 -0.227 -0.071
D, (SSM) 0.974  0.976 0.966 0.135 0.830 1.306
Dy (SSM)  20.763 18.666  18.666 0.964 16.816 20.021
o 0.000  0.000 0.000 0.000 0.000 0.000
w 0.001  0.001 0.001  0.000 0.001 0.001
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Table C.2: Parameter estimates from a simulation study of the three-state model.

Parameter True Mean Median SD  2.5% Quantile 97.5% Quantile
Dy (HMM) 0.188 0.101 0.085 0.058 0.032 0.224
Dy (HMM)  3.692  1.728 1.617 0.607 1.074 3.166
Ds (HMM) 24.751 18974 19.051 1.628 15.969 21.947
q11 -0.204 -0.144  -0.139 0.029 -0.210 -0.110
o1 0.125  0.088 0.086 0.033 0.038 0.161
q31 0.011  0.019 0.013 0.017 0.000 0.055
q12 0.174  0.118 0.101 0.035 0.083 0.192
22 -0.173  -0.127  -0.116 0.047 -0.234 -0.074
32 0.075  0.066 0.061 0.028 0.029 0.123
713 0.029  0.027 0.026 0.018 0.000 0.055
23 0.048  0.039 0.036 0.022 0.012 0.082
433 -0.086 -0.084  -0.076 0.027 -0.152 -0.057
D, (SSM) 0.188  0.355 0.303 0.149 0.203 0.664
Dy (SSM) 3.692  3.540 3.396 0.933 2.469 5.732
D3 (SSM)  24.751 22.758  22.628 1.540 20.432 26.262
o 0.000  0.000 0.000 0.000 0.000 0.000
w 0.001  0.001 0.001  0.000 0.001 0.001
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