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Abstract 
 

Knee osteoarthritis (OA) can present through self-reported patient symptoms and 
joint-level manifestations, impairing mobility and function. Symptom relief and 
functional restoration of end-stage OA is typically treated with total knee 
arthroplasty (TKA) surgery. TKA success it not universal; over 20% of patients do 
not report satisfaction or clinically meaningful pain and function improvements post-
TKA. This thesis aimed to improve our understanding of multidimensional 
variability among OA patients, and investigate how variability manifests into 
different TKA outcomes. Four studies investigated relationships between patient-
reported measures and knee kinematics and kinetics during walking gait, 
characterized demographic and knee biomechanical variability (clusters) among OA 
and TKA populations, and addressed relationships between clusters and functional 
outcomes after TKA.  

The first study objective examined demographic and patient-reported factors pre-
TKA to two-years post-TKA associated with patient-reported TKA satisfaction using 
longitudinal analysis. Study 2 examine demographics, pre-TKA knee kinematics and 
kinetics during gait, and post-TKA gait changes associated with self-reported pain 
and function improvements one-year post-TKA using regression models. Studies 3 
and 4 characterize demographic and knee biomechanical variability among (3) pre-
TKA and (4) asymptomatic to post-TKA observations using machine-learning 
cluster analysis.  

Studies revealed that (1) pre-operative self-reported symptoms were not 
predictive of longitudinal satisfaction; however, findings support the ability to 
identify less satisfied patients as early as six-weeks post-TKA. (2) Frontal and 
sagittal knee kinematic patterns during gait pre-TKA, and less adduction angle 
reductions post-TKA were associated with greater self-reported pain and function 
improvements post-TKA. (3) TKA candidates and (4) patients along the OA 
continuum can be characterized by demographic and knee biomechanic clusters, 
separated by features corresponding to clinical OA severity.  

Collectively, these studies characterized temporal and multidimensional patient 
variability encompassing self-reported symptoms and knee biomechanics using data 
science and machine-learning strategies. Knee biomechanics provided important 
insights into mechanical factors impacting the patient experience, and biomechanical 
cluster profiling supported the ability to classify patients who may benefit most from 
TKA. Findings support the utility to reveal novel insights into the patient experience 
using advanced data science strategies, providing direction for innovations in OA 
management and TKA care. Presented methodologies are directly applicable to other 
clinical applications. 
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Chapter 1. Background and Literature Review  
 
 

1.1.  Knee Osteoarthritis: A Disease of Phenotypes 

Knee osteoarthritis (OA) is a degenerative joint disease that involves the entire joint 

during the disease process, including disruptions to joint cartilage, underlying bone, and 

the soft-tissue structures of the synovium, ligaments, and musculature surrounding the 

joint (Felson et al., 2000). Disease prevalence increases with age, and obesity, 

disproportionally affecting females (Dillon et al., 2006; Felson et al., 1987). OA 

development has also been attributed to joint level biomechanical factors, such as 

abnormal loading in response to deformity, obesity, or posttraumatic joint injury, in 

addition to systemic factors, such as genetics and metabolic influences (Bijlsma et al., 

2011; Felson et al., 2000). OA can present in terms of symptoms characterized by joint 

pain, swelling, and stiffness, or radiographically as shown by cartilage degradation and 

osteophyte presence within the joint structure (Bijlsma et al., 2011; Kellgren and 

Lawrence, 1957; Schaible, 2012). These burdens largely contribute to patient disability 

(Lang et al., 2018), difficulty walking (King et al., 2018), and all-cause mortality (Liu et 

al., 2017), making knee OA the fifth most common reason for inpatient hospitalization in 

Canada (CIHI, 2015a).  

In recognition of the complex onset and manifestation pathways of OA, recent efforts 

have been made to characterize the heterogeneity of OA in terms of phenotypes. 

Dell’Isola and Steultjens discussed phenotypes driven by pain, joint disease severity, 

mechanical alignment, inflammatory factors, metabolic disorders, and bone and cartilage 

metabolism (Dell’Isola and Steultjens, 2018). Kittleson et al. characterized phenotypes 

associated with pain, psychological distress, and radiographic severity (Kittelson et al., 

2016). Knoop et al. identified phenotypes by radiographic severity, muscle strength, body 

mass index (BMI), and depression scores (Knoop et al., 2011). Elbaz et al. reported 

phenotypes using spatiotemporal gait parameters (Elbaz et al., 2014). Further, Waarsing 

et al. identified four clusters by demographics, cartilage features, mechanical alignment, 

and self-reported symptoms, with clusters strongly characterized by joint-level structural 
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degradation (Waarsing et al., 2015), indicative of variable functional loadings 

(Andriacchi et al., 2009). Despite variability among studies, understanding possible 

phenotypes is relevant to developing treatments targeting individual OA manifestations 

or deficiencies.  

However, current phenotyping research remains in initial stages of study, and there 

are a number of factors that inhibit clinical utility of current findings. Reported 

phenotypes differ by study design and distinguishing features, whether they are 

descriptive of disease manifestation processes, or in terms of their clinical presentation. 

They tend to lack analysis on clinical relevance, such as treatment outcomes between 

phenotypes, or information on repeatability or stability on external datasets. Phenotypes 

have also been proposed to evolve over the course of the disease process (Castaneda et 

al., 2013), where end stage joint degradation converges along a common pathway for all 

severe knee OA patients (Felson, 2010). Yet, current phenotypes tend to be derived from 

cross-sectional datasets, captured at various times within the OA progression pathway 

(Deveza et al., 2017; Knoop et al., 2011; Waarsing et al., 2015). A clear approach to the 

context in which phenotypes are characterized is important if we want to distill 

multidisciplinary phenotype information into relevant and targeted OA management and 

intervention approaches specific to phenotype manifestations (Van Spil et al. 2020).  

 

1.2.  Total Knee Arthroplasty  

Total knee arthroplasty (TKA) is the most prevalent end state treatment for knee OA, 

and the second most common inpatient surgery performed in Canada (CIHI, 2015a). It is 

an elective surgery which involves the removal of native disease-compromised bone and 

replacing it with an articulating joint prosthesis composed of metal and plastic. The 

longstanding goal is the restoration of normal, natural function of the knee joint, and to 

relieve patient pain (Andriacchi, 1993; Noble et al., 2005). Treatment efficacy for TKA 

has been well established for end stage knee OA (Giesinger et al., 2014; Skou et al., 

2015), contributing to the increasing volumes of joint replacements being performed each 

year (CIHI, 2015b). However, surgical success is not guaranteed. Patient reported 
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satisfaction rates remain around 80%, low relative to other orthopaedic procedures; over 

2% of patients are at risk of revisions; and readmissions impact over 6% of patients 

within three months (Bourne et al., 2010; Husted et al., 2008; Noble et al., 2006; Scott et 

al., 2012). Surgical prevalence is also increasing among a changing demographic of 

younger and more physically demanding patients with higher functional expectations 

following surgery (Ravi et al., 2012; Scott et al., 2012), influencing surgical outcomes. 

For example, the Canadian National Joint Registry has shown that TKA recipients under 

age 65 have a greater three-year revision rate relative to the national average, with more 

revisions occurring among females (CIHI, 2015b). Registry studies in England have 

found patients under 55 to have greater incidence of revisions, and lower rates of 

satisfaction (Williams et al., 2013b). Adverse outcome frequency among specific 

demographics of patients has raised concerns of the potential overuse of joint 

replacement, and performing costly procedures without an indication of potential risks or 

benefits (Clavel et al., 2016). Poor outcomes in a subset of patients after TKA also 

signals the continued need to improve our understanding of outcome variability after 

TKA, and determine which patients are at risk for adverse outcomes, to drive evidence-

based surgical selection (Clavel et al., 2016; Kurtz et al., 2009) and appropriate models of 

care (Allen et al., 2016).  

 

A Standard Surgical Approach 

Despite evidence of variability among patients presenting for TKA, the surgical 

standard of care in traditional TKA is to induce a neutral (within 0 ± 3˚) “mechanical 

axis” alignment in all individuals through femoral positioning using intramedullary 

guides and two-dimensional frontal plane radiographs. This was historically associated 

with higher survival rates and reduced polyethylene wear (Bargren et al., 1983; Fang et 

al., 2009; Lotke and Ecker, 1977), however, a number of authors have proposed that this 

standard approach to joint alignment may not be optimal for all patient populations 

(Mooney et al., 2016; Parratte et al., 2010; Vanlommel et al., 2013). For instance, healthy 

populations have demonstrated large ranges in frontal plane alignment, statistically 

deviating from the defined 0 ± 3˚of a straight mechanical axis (Eckhoff et al., 2005; 
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Moreland et al., 1987). Despite intraoperative efforts to prevent high-risk loads, 

alignment achieved intraoperatively does not consistently relate to dynamic loading as 

captured during gait (Orishimo et al. 2012; Miyazaki et al. 2002; Rodriguez et al. 2016) 

and more immediate post-TKA loading does not reflect longitudinal patterns (Orishimo 

et al. 2012). Further, Vanlommel et al. and Salzmann et al. reported significantly better 

self-reported knee scores in pre-operatively varus individuals, whose post-operative 

alignment remained mildly varus (Salzmann et al., 2017; Vanlommel et al., 2013). 

Parratte et al. found no longitudinal survival improvement in 389 modern prostheses that 

deviated from a conventional axis after arthroplasty, attributing possible causes of failure 

to patient factors that included dynamic impact and gait (Parratte et al., 2010). These 

findings motivate the notion that TKA standard of care may not be optimal for all 

individuals, and in an effort to extend longevity, dynamic function may be a more 

effective target over frontal plane alignment alone. Innovations in TKA, such as robotic 

surgery will aim to address patient-specific mechanical targets. However, these 

innovative approaches are in their early stages, where current robotic surgeries only 

improve the precision of conventional TKA alignment practices (Mancino et al., 2020).   

 

Selecting Patients for TKA  

There is no standardized criteria for appropriate patient selection in TKA, where 

current triaging is based on clinical opinion. Radiographic scores, high patient pain and 

low quality of life have been ranked as the greatest contributors to TKA patient selection 

by Canadian orthopaedic surgeons (Frankel et al., 2016). However, a statistically driven 

patient selection protocol would require an understanding of the symptom state most 

associated with a defined optimal outcome after arthroplasty (Hawker et al., 2013; Losina 

and Katz, 2013). Since current knee arthroplasty methodology can be regarded as a 

standardized procedure catering to the norm, the clinical utility in characterizing TKA 

candidate variability may be in the ability to statistically identify patients who are at high 

risk pre-operatively, and to make clinical decisions that are appropriate to the patient’s 

health situation, as some candidates may fair well from an altered conservative treatment 

strategy (such as exercise and physiotherapy) over TKA (Skou et al., 2015). In the 
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Canadian context, efforts have been made to inform the development of a surgeon-patient 

decision-support tool (Hawker et al., 2015). Its development incorporated a mixed panel 

to address the needs of OA patients (Frankel et al., 2012), clinicians (Frankel et al., 

2016), and policy-makers (Clavel et al., 2016), from which six baseline criteria were 

defined. Although the effective development a decision-support tool could improve 

patient selection and mitigate the burdens associated with poor outcomes, the utility has 

been met with skepticism (Frankel et al., 2016; Wright et al., 2002), and at current, tools 

may not meet all desired needs from a policy standpoint (Clavel et al., 2016). More work 

is required to statistically identify high risk patients through an appropriate selection 

criterion, and mitigate the burdens associated with poor outcomes (Clavel et al., 2016; 

Kurtz et al., 2009).  

 

1.3.  Assessing TKA Outcomes  

1.3.1. Patient-Reported Outcome Measures 

TKA is commonly evaluated through patient-reported outcome measures (PROMs), 

which reflect patient symptoms and symptomatic relief associated with arthroplasty. 

PROMs are paper or electronic-based form tools that allow patients to self-report their 

perceptions of pain, quality of life, and function by rating perceived symptoms or 

difficulty performing daily tasks (e.g., walking, or climbing stairs). Treatment efficacy 

for TKA has been well established for end stage knee OA using PROMs criteria 

(Giesinger et al., 2015; Skou et al., 2015). PROMs in orthopaedics have been encouraged 

(Hurwitz et al., 2000), and tied to reimbursement in the United States (Centers for 

Medicare and Medicaid Services 2015). In England, national PROMs collection has been 

mandated, with the goal of using PROMs to understand risk factors for poor outcomes 

and prioritize patients for surgery (Health and Social Care Information Centre 2011). 

Part of the utility of PROMs reflects the overall success of TKA. Typical clinical 

endpoint indicators such as mortality or revision are relatively rare after TKA. For 

example, revisions might impact approximately 2.3% of TKA patients in Canada (CIHI, 

2015b), while up to half of TKA patients have been shown to report no clinically 



 

  6 

meaningful improvement in subjective outcome scores (Hawker et al., 2013). Therefore, 

in addition to providing important information on the patient experience, PROMs also 

provide a more sensitive metric due to the higher incidence of poor responses relative to 

clinical indicators. This balanced incidence has advantages during outcomes modeling, 

improving the power of prediction models when limited sample sizes are available. As 

we aim to continue to improve TKA outcomes, PROMs provide an appropriate measure 

for surgical success. 

 

Types of PROMS 

As defined by the Patient-Reported Outcomes Measures Working Group of the 

International Society of Arthroplasty Registries, PROMs can be categorized based on two 

application criteria: generic (or general health) scores and site specific scores (Rolfson et 

al., 2016). The former explains scores capturing overall patient health status, applicable 

in both the presence or absence of a disease or symptom. Examples include the Short 

Form 36-item (SF-36) general health score, using eight domains to address overall 

physical functioning, bodily pain, general health, vitality, social functioning, and 

emotional and mental health (McHorney et al., 1994, 1993). Similarly, the EuroQual 

(EQ) Visual Analog Scale (VAS), and the EuroQual five dimension (EQ-5D) general 

health score capture dimensions representing difficulty with walking, self-care, 

performing usual activities, pain/discomfort and anxiety/depression (Bansback et al., 

2012; Brooks, 1996). 

 Specific scores are designed to capture perceptions about a distinct disease or 

symptom, focusing on an area of interest. In knee arthroplasty, common joint-specific 

surveys include the Oxford-12 Knee Score (OKS) having domains for both knee pain and 

function (Dawson et al., 1998), and the Knee Injury and Osteoarthritis Outcome Score 

(KOOS) with five domains for pain, other symptoms, function in daily living, function in 

sport and recreation, and knee related quality of life (Roos et al., 1998). The Western 

Ontario and McMaster Universities Osteoarthritis Index (WOMAC) addresses three 

dimensions for pain, stiffness, and physical function (Griffiths et al., 1993), and in 

addition, the VAS Pain Score can be applied to a specific pain site of interest (Dolan and 



 

  7 

Sutton, 1997; Ferraz et al., 1990; Huskisson, 1974; Singer and Jr., 1998). Despite 

common use, satisfaction scores (e.g., VAS 0[unsatisfied] to 100[completely satisfied]) 

(Bullens et al., 2001; Dolan and Sutton, 1997; Singer and Jr., 1998), and expectation 

fulfillment (e.g., Knee Replacement Expectations Survey (KRES, 19[highest]-

95[lowest])) (Mancuso et al., 2001), do not clearly fall under the clinical PROM 

definition (Rolfson et al., 2016). However, such scores can capture the patient experience 

not addressed otherwise and have utility when used in combination with other measures. 

Both general health scores and disease specific tools are designed to measure 

independent constructs. In the assessment of OA and TKA, the score selected should be 

optimized to “accurately detect the type of change being quantified” (Beaton et al., 2001). 

Joint-specific scores have been demonstrated to be more sensitive to post-operative 

changes from TKA (Giesinger et al., 2014; Impellizzeri et al., 2011), and less susceptible 

to floor and ceiling effects (Escobar et al., 2007; Giesinger et al., 2014), with common 

tools such as WOMAC and OKS generally performing well among arthroplasty 

populations (Dunbar et al., 2001; Giesinger et al., 2014). However, the joint is not in 

isolation, and joint-specific scores alone may fail to capture overall health or constructs 

such as general satisfaction. As such, combinations of scores are often used to provide a 

more comprehensive picture of the patient experience. 

 

Using PROMs in Risk Factor Analysis  

Extensive research has been conducted to address risk factors associated with 

undesirable outcomes from TKA. Many pre-operative variables have been identified 

related to improved likelihood of optimal surgical outcomes. For example, patients who 

present with less pain while sitting or lying down (Bourne et al., 2010), more self-

reported pain and function severity (Scott et al., 2010), better general health scores 

(Baker et al., 2013), better mental health (Scott et al., 2010; Vissers et al., 2010), or not 

having a previous diagnosis of depression (Baker et al., 2013) have been associated with 

greater likelihood of TKA satisfaction. Post-operatively, improved satisfaction has been 

attributed to pain relief (Bourne et al., 2010; Mannion et al., 2009; Scott et al., 2010; 

Vissers et al., 2010), greater health-related quality of life (Scott et al., 2010; Vissers et al., 
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2010), better self-reported function (Bourne et al., 2010; Scott et al., 2010; Vissers et al., 

2010), and expectations being met (Bourne et al., 2010; Vissers et al., 2010). Older age 

(but not too advanced in age (Bourne et al., 2010)) and male sex have also been 

associated with better satisfaction relative to female (Baker et al., 2013; Williams et al., 

2013a). Patients presenting with worse self-reported pain, function, less co-morbidities, 

less pain in other joints, have been associated with greater improvements in self-reported 

WOMAC and OKS scores (Hawker et al., 2013; Judge et al., 2012).  Finally, contrary to 

satisfaction findings, younger age has been associated with more improvement in OKS 

and EQ-5D outcomes (Williams et al., 2013b). 

Despite exhaustive literature and routine PROMs collection, we continue to have an 

insufficient understanding of key drivers of patient outcomes, and what features (or 

combinations of) are most meaningful in outcome prediction. Research methods and 

outcome definitions also vary. Outcomes can be described in terms of “the destination” 

such as satisfaction (Bourne et al., 2010; Scott et al., 2010; Williams et al., 2013a) and 

expectation fulfillment (Scott et al., 2012). Alternatively, we can address outcomes in 

terms of patient responsiveness, “the journey”, captured by improvements in metrics such 

as pain or function (Escobar et al., 2013; Hawker et al., 2013; Williams et al., 2013a). 

This variability has resulted in conflicting responses (such as the influence of patient 

age), and a poor ability to translate findings into clinical use. As exceptionally stated by 

Losina and Katz “laying out a clear definition of what success means would allow us to 

more effectively target and address the challenges that prevent some patients from 

achieving it” (Losina and Katz, 2012). 

 

Using PROMs as Responsiveness Scores 

Recent emphasis on PROMs collection has led to the use of “responsive” scores to 

analyze changes in patient reported measures, i.e., the journey. Two examples of 

response measures include the minimal clinically important difference (MCID), and the 

minimally detectable change (MDC) criteria, which define statistical thresholds for pre to 

post-TKA PROMs changes. The MCID anchors PROM scores next to patients’ 

perceptions of “improvement” to detect clinically meaningful score changes, while MDC 
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is a distribution-based method, representing the smallest within-individual change that is 

larger than that of measurement error. Assessing group average change, or the percent of 

a group that achieved an MCID in an aggregated context is applicable (Quintana et al., 

2006), but more complexities need to be considered when making decisions for an 

individual patient (King, 2011). This is because MCID scores defined by anchoring 

methods can be heavily influenced by symptom severity at baseline (Escobar et al., 

2013), such that global responsiveness scores are not generalizable across all patients. 

Response scores also need to be specific to the procedure they are evaluating, and MCID 

developed for another treatment may not be sufficient for arthroplasty. For example, in a 

study conducted by Hawker et al. (Hawker et al., 2013) an MCID cut-off of 13.4 was 

applied in a pain domain of the WOMAC score for TKA patients based on a 

rehabilitation intervention among OA populations (Angst et al., 2002), differing from a 

23 point cut-off for post-TKA populations using the same questionnaire (Escobar et al., 

2007). Finally, PROM score ceiling effects may restrict rates of patients meeting MCID 

thresholds, despite having improved. Still, responsiveness scores have been 

recommended as part of PROMs assessment strategies by the International Society of 

Arthroplasty Registries Working Group (Rolfson et al., 2016), due to their ability to 

improve within and between-patient score interpretations from interventions. The 

limitations of these variables needs to be carefully understood prior to application to 

statistical techniques with the intention of informing patient care strategies. 

 

Limitations of PROMs 

The pre-operative condition of a patient has been shown to have a substantial impact 

on status post-operatively (destination), and the level of gain achieved (journey) (Dunbar 

et al., 2013; Fortin et al., 1999; Hawker et al., 2013; Jiang et al., 2017; Judge et al., 2012). 

In an early multicenter study conducted by Fortin et al., patients were stratified into high 

and low functioning groups pre-TKA based on median WOMAC function scores, and 6-

month patient-reported outcomes were compared between groups. Although both patient 

groups improved pre to post-TKA, the largest relative improvement was reported in the 

low-functioning group, even though post-TKA scores remained worse than the scores of 
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the high functioning cohort (Fortin et al., 1999). This concept was confirmed by other 

authors (Hawker et al., 2013; Jiang et al., 2017; Judge et al., 2012), where patients with 

worse pre-operative scores pre-TKA generally experienced a larger degree of 

improvement from surgery, however mean post-operative status may not reach that of the 

higher-functioning cohort. If a single patient were to be selected for surgery by their 

potential for functional improvement (journey) relative to their post-operative 

performance alone (destination), each measure would favor a different candidate. This 

concept is part of the ongoing determination of whether surgical success should be based 

on the degree of patient-perceived improvement, or the discrete status achieved post-

operatively (Losina and Katz, 2013).  

As a qualitative measure, PROMs experience a large degree of variability 

independent of arthroplasty and OA disease, and clinicians and researchers are well 

aware of the confounding limitations of PROMs. PROMs can be influenced by co-

morbidities (Dunbar et al., 2004; Hawker et al., 2013), baseline score status (Dunbar et 

al., 2004; Hawker et al., 2013; Jiang et al., 2017), patient demographics (Dunbar et al., 

2004; Jiang et al., 2017; Williams et al., 2013a), mental health (Jiang et al., 2017), 

expectations (Sullivan et al., 2011), perceptions of self-efficacy (Maly et al., 2006), 

injustice (Yakobov et al., 2014), and pain (Dave et al., 2017; Yakobov et al., 2014). This 

poor sensitivity means that a proportion of a poor functional response may be a reflection 

of auxiliary dimensions of patient health or perceptions. Further, some confounding 

factors such as mental health, depression, expectations, and anxiety pose challenges 

because they are seldom captured, and difficult to quantify. It is also often assumed that 

the independent measures included as patient factors adequately covered all modes of 

variability that would be required in determining the outcome. However, stochastic (time 

varying) patient responses may reflect biological or behavioral variability associated with 

day-to-day changes and perceptions, where the cause may be unknown. These inferences 

are therefore liable to induce response bias when data is only assessed at one or two time 

points, limitations that can be reduced through analysis using repeated measures.  

OA symptom severity described by a patient does not always align with the disease 

progression governed by radiographic scores (Bedson and Croft, 2008), therefore PROMs 
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do not provide an accurate indication of severity. Missing data is also commonplace in 

healthcare, and there is no established “acceptable” response frequency in PROMs 

registry-based research. To fill this gap, the Internarial Society of Arthroplasty Registries 

PROMs Working Group recently proposed a response threshold of 60%, recognizing 

patient reported outcome scores can be difficult to capture for reasons that are 

independent of survey logistics, with some jurisdictions performing better than others 

(Rolfson et al., 2016). In sight of these limitations, all incomplete or missing values 

should be reported at a per-item level to improve understanding of response bias (Rolfson 

et al., 2016). Data from questionnaire respondents who do respond may also not be 

representative of the true clinical population, reflecting a non-random subset of the 

population. Those with missing elements in arthroplasty studies have been characterized 

by worse pain and function (e.g., 15.2 vs 18.2, OKS scored 0-48) (Jiang et al., 2017), 

poorer mental health status, a greater prevalence of co-morbidities (Dave et al., 2017), 

and lower rates of satisfaction (Dunbar et al., 2001), resulting in analyses being 

conducted on an optimistic subset of the population. Finally, it is critical to note that most 

PROMs scores were designed to capture perceived symptom status (such as pain or 

function). They were not designed for predictive applications, and there is little evidence 

to support use of them for purposes such as prioritizing access to care (Baker et al., 2013; 

Judge et al., 2011). 

Unfortunately, from assessing PROM responses alone, it is impossible to tease out 

potential underlying factors associated with poor responses. For example, from PROMs 

we know that upwards of 11% of patients will show no clinical improvement in terms of 

pain and function after TKA (Alzahrani et al., 2011; Hawker et al., 2013).  Patients who 

report poor responses immediately following TKA will continue to experience pain and 

dissatisfaction at 10-15 years, without a quantifiable radiographic or clinical premise for 

their response (Ali et al., 2014; Robertsson et al., 2000). When compared to age-matched 

control groups with no knee disorders, TKA recipients also report larger functional 

limitations on self-reported scores (Noble et al., 2005). Perceptions in domains of 

function poorly translation into objective functional status, as they can be bias 

multidimensional confounding, narrowing the utility of PROMs when assessed in 
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isolation. In short, subjective measures scored between 0-100 provide clinicians with 

little insights into understanding the mechanisms associated with perceived limitations. 

Objective measures, including objective gait function might provide a complementary 

measure for understanding the cause of poor self-reported outcomes, and provide a 

vehicle for characterizing which patients experience the most functional improvement 

from arthroplasty and why.  

1.3.2. Biomechanical Gait Assessment   

Although not routinely incorporated into TKA evaluation, functional assessments 

provide an alternative means to measure patient functional status or outcome. 

Performance-based functional tests include the Timed Up and Go (TUG), Six-Minute 

Walk, Stair Climbing Tests and Sit to Stand Tasks, which demonstrate a patient’s ability 

to complete tasks unobstructed by confounders associated with patient perceptions. 

However, not all functional assessments are able to objectively quantify how a joint 

performs mechanically. Three-dimensional high accuracy dynamic gait analysis during 

walking provides a means to capture dynamic function at the joint level. Gait mechanics 

have been shown to worsen with osteoarthritis progression (Astephen et al., 2008a), 

severity seen on radiographs (Wilson et al., 2011) and pain (Henriksen et al., 2012; Maly 

et al., 2008). TKA aims to improve this worsened knee function, in part by improving 

patient gait (Andriacchi, 1993; Noble et al., 2005), where walking has been rated the 

most important activity of daily living by TKA patients (Noble et al. 2011; Scott et al. 

2012). Therefore joint-level gait assessment provides a relevant means to objectively 

assess function and performance of the joint both pre and post-operatively. 

Modern gait analysis uses rigid limb segment kinematic data and ground reaction 

forces to a mechanical model to determine joint motion and loading. It can provide an 

approximation of three-dimensional knee (and other lower extremity joint) angles and 

external moments defined anatomically in terms of flexion-extension, abduction-

adduction, and internal-external rotation. Raw data is captured using motion capture 

technology and a force platform system to acquire external ground reaction forces. Knee 

kinematics (knee motion) is captured by high accuracy optoelectronic motion capture 

systems, describing the three-dimensional motion of the joint, such as flexion range of 
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motion, in a limb segment rigid body coordinate system (Grood and Suntay, 1983). 

Kinetics (knee moments), are calculated using ground reaction forces and joint segment 

models, working up the kinetic chain from the most distal segment to the joint of interest 

(Costigan et al., 1992; Li et al., 1993; Vaughan et al., 1999). These models account for 

acceleration and mass moment of inertia at the segment level, providing approximations 

of the net resultant forces and moments acting on the joint. With appropriate 

biomechanical modeling, gait assessment provides an objective approach to examining 

joint-level performance with particular insights into the mechanical joint motion and 

loading environments.  

 

Gait Mechanics During OA Progression 

OA progression is marked by increasing pain and symptoms, and structural joint-level 

changes. During OA progression, severity can typically be characterized by the 

“stiffening” of the knee-joint during gait. In the sagittal plane, flexion and extension 

range of motion and range of moment magnitudes reduce with OA severity, resulting in 

less bi-phasic gait patterns (Astephen et al., 2008b). In the frontal plane, magnitudes of 

the knee adduction moment increase (Astephen et al., 2008a), with less mid-stance 

adduction moment un-loading (Hatfield et al., 2011), describing greater sustained medial 

compressive loads during weight bearing (Schipplein and Andriacchi, 1991). Greater 

overall knee adduction moment loading has been associated with cartilage volume loss 

(Bennell et al., 2011), and progression to TKA (Hatfield et al., 2015a). Both pre and post-

TKA, larger adduction moment magnitudes have also been linked to tibial component 

migration (Hilding et al., 1996; Wilson et al., 2010), an early indicator for implant failure 

(Ryd et al., 1995), making loading an important risk factor for joint longevity.  

There are generally two perspectives on “stiffening” of knee joint patterns with OA 

progression. One hypothesis suggests that some irregular gait patterns pre-date 

symptoms, and observed features such as a lack of extension are inducing greater 

moments on articular surfaces not adapted to handle maximal loads, thereby resulting in 

degeneration and pain (Andriacchi et al., 2004). The alternative proposes that “stiffer” 

features in the sagittal and frontal planes, such as less dynamic range of motion and 
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prolonged moment magnitudes, are a protective guarding mechanism against pain during 

loadbearing and avoidance of large flexion moments. Altered mechanics could also 

reflect a combination of these proposed manifestations, where in both interpretations, 

decreased function coincides with pain. Sagittal plane range of knee motion has been 

reported to explain up to 18% of pain intensity experienced in OA patients, where a 1° 

decrease in flexion and extension range corresponded to a 3% increase in patient-reported 

pain (Maly et al., 2008), with similar associations post-TKA after the removal of native 

articular surfaces (Bonnefoy-Mazure et al., 2017; Turcot et al., 2013). Inducing knee pain 

in healthy subjects using hypertonic saline injections, has also been found to result in a 

significant decrease in peak knee flexion moments, extension moments, and adduction 

moments (Henriksen et al., 2010). Similarly, pain relief through prescription drug use has 

been shown to result in increased flexion angles, adduction moment peaks, and gait speed 

in sample of 18 patients (Schnitzer et al., 1993). Lastly, in a recent analysis between 

asymptomatic and symptomatic individuals, both with evidence of structural knee OA 

(Kellgren-Lawrence Grade of 2), those with worse self-reported WOMAC pain, stiffness, 

and function scores, walked slower, with lower overall magnitudes of knee flexion 

moments, and less dynamic adduction moment magnitudes, suggesting symptoms, not 

the disease, are the key drivers to gait changes (Kellgren and Lawrence, 1957; Wilson et 

al., 2017). 

 

Gait Mechanics after TKA  

Post-TKA, biomechanical gait kinematic and kinetic patterns alter by shifting towards 

normative asymptomatic gait ranges, interpreted as a functional improvement post-TKA 

(Hatfield et al., 2011; Sosdian et al., 2014). For example, gait after surgical intervention 

has decreased overall knee adduction angles (Naili et al., 2017) and knee adduction 

moment magnitudes (Hatfield et al., 2011; Wilson et al., 2015). The latter contributing to 

more bi-phasic unloading of the joint during stance, an improvement relative to severe 

OA mechanics. In the sagittal plane, corrections include increases in knee flexion angle 

magnitudes (Hatfield et al., 2011; Naili et al., 2017; Wilson et al., 2015), flexion and 

extension motion (Bonnefoy-Mazure et al., 2017; Naili et al., 2017), and moment ranges 
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(Hatfield et al., 2011; Wilson et al., 2015). However, post-operative patterns do not return 

to healthy asymptomatic patterns (Paul Robert Biggs et al., 2019; McClelland et al., 

2010; Naili et al., 2017; Outerleys et al., 2021), with the most discriminating 

characteristics between asymptomatic and post-TKA mechanics occurring in the sagittal 

plane (Outerleys et al., 2021). The concept of a biomechanical ceiling effect, such that 

post-TKA gait patterns statistically map to disease-state gait over asymptomatic gait has 

been proposed in two recent studies (Paul Robert Biggs et al., 2019; Outerleys et al., 

2021). Gait analysis provides a means to quantify improvements, capture deficiencies in 

TKA gait relative to normative function, and inform operative strategies targeting 

specific mechanical corrections. Further, a lack of flexion angle and moment 

improvement post-TKA has been associated with patient-reported pain after TKA (Naili 

et al., 2017; Smith et al., 2004). These findings suggested perceived post-operative 

improvements experienced by patients may incorporate dynamic improvements in the 

sagittal plane. 

Only more recently has gait analysis been used to investigate how standard of care 

surgery may impact patients differently, such as male and female cohorts (Wilson et al., 

2015), varus and valgus alignment (Rodriguez et al., 2016), and obesity (Paterson et al., 

2020, 2017). For example, women have been shown to present for TKA less range of 

flexion and extension motion, less biphasic sagittal stance moments, and with greater 

flexion moment magnitudes, descriptive of a stiffer gait with a more constant sagittal 

loading pattern (Paterson et al., 2017; Wilson et al., 2015). Alternately, male surgical 

candidates have been characterized by greater magnitudes of frontal plane adduction 

moments. Although males and females both improved from surgery, females lagged in 

sagittal loading corrections, and male adduction moments magnitudes remained relatively 

heightened post operatively. Therefore, both sexes presented with, and resulted in, 

different gait features that would be characterized as unfavorable (Hilding et al., 1996; 

Wilson et al., 2010), with surgery addressing different function deficits between them. 

The reason for this is likely related to pre-operative functional status (Naili et al., 2017), 

sex-specific joint morphologies (Mahfouz et al. 2011) and neuromuscular control 

(Wilson et al., 2015). Similar indications have been captured in the examination of 
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alignment cohorts. Valgus aligned individuals pre-TKA have been shown to experience a 

14 times increase in knee adduction moment impulses from surgery (Rodriguez et al., 

2016). This degree of mechanical alteration was much larger than that experienced by 

their varus aligned counterparts, who showed a more typical adduction moment reduction 

from surgery. Patients whose surgical alignment more closely resembled their pre-

operative alignment have also been demonstrated to report better outcomes (Parratte et 

al., 2010). Similarly, Naili et al. proposed poor patient-reported outcomes to be partially 

explained by a lack of dynamic kinematic and kinetic corrections, despite alignment 

corrections in the frontal plane, a feature that surgery may be most able to address 

biomechanically (Naili et al., 2017). Therefore, despite the prescribed mechanics from 

standard TKA, patient-specific characteristics, such as sex or alignment, may be inducing 

variable mechanical changes, potentially contributing to the causes of functional and self-

reported limitations among some cohorts. It has been expressed that changes in post-

operative gait parameters should be investigated against patient-reported factors of pain, 

function, and quality of life, to determine the clinical relevance of gait corrections 

(Sosdian et al., 2014). If this variability can be properly characterized, there is an 

opportunity to treat patients on an individual basis incorporating functional parameters.    

Orthopaedic surgeons have expressed a need to measure function in a way that is 

meaningful (Frankel et al., 2016). When applied to clinical practice, gait may offer an 

objective assessment of the disease and functional recovery in a form that is less 

obstructed by the noise of co-founding dimensions, while also playing an important role 

in extending prosthesis longevity. In research, joint-level analysis can provide orthopedic 

surgeons and biomechanists with an objective approach to restoring normal function and 

directing them to the functional mechanisms that may be inhibiting task performance. 

Further investigations of mechanical cohorts and linking gait mechanics to other forms of 

outcomes may benefit our understanding of what corrections are clinically valuable 

among patient groups, and enable us to predict who may benefit most from standard of 

care procedures, and who might benefit from different functional targets. 
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1.4.  Data Science Applications in Total Knee Arthroplasty   

Directives to measure the value delivered from current care practices, and to select 

and prioritize patients accordingly (Clavel et al., 2016; Hawker et al., 2013), have been 

accompanied by a surge in registry programs and new demands on observational 

databases not designed for predictive modeling. Early valuations of these programs have 

reported no meaningful changes in patient selection, patient outcomes, or change in 

provider behaviors (Varagunam et al., 2014). A poor ability to realize and translate 

clinical and policy benefits from these programs leads to wasted expenditure, a lack of 

confidence in providers, and negative preconceptions and skepticism toward subsequent 

innovation (Frankel et al., 2016; Wright et al., 2002). Traditional analysis techniques on 

independently collected datasets may be limiting the value derived from current outcome 

programs, and overlook important signals in our data. There is a need to utilize the data 

we have, conduct linkages between diverse multidisciplinary datasets, and apply them to 

novel model frameworks. An open-minded approach towards new statistical and 

computer science data analysis strategies on linked datasets may provide novel 

information on the nature of our existing data. This may point us towards data features 

that are meaningful, and provide evidence for where time and resources should be 

dedicated for future data collection, guiding targeted research and deriving valuable 

clinical utility for OA and TKA care.  

1.4.1. Principal Component Analysis  

Principal Component Analysis (PCA) is a multivariate statistical technique and data 

reduction tool. Applications of PCA on gait waveforms has demonstrated the ability to 

characterize pattern changes in waveforms to improve analysis (Deluzio and Astephen, 

2007). Therefore, instead of conducting analysis on discrete points in a waveform, PCA 

offers a means to capture and “score” temporal changes, and apply overall waveform 

scores to statistical tests. Starting with a data matrix, X, data is centered about zero by 

subtracting the mean from each variable (%!"#$"%"& = [% − )̅]), and the covariance 
matrix, -, is calculated. The sum of the diagonal of -, returns the total variance in the 
dataset. The eigenvectors, /, of the covariance matrix describe the principal component 
vectors, which we call PCs; these are the dominant features in the original dataset. Next, 
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a change of basis is applied to represent the uncorrelated data set as a linear combination 

of the original matrix % using the equation 0 = /'[% − )̅]. This describes a projection of 
the original subjects’ waveforms onto the PCs, resulting in a new uncorrelated dataset, 

defined by matrix 0 (PC scores). PC scores can be applied to waveform interpretation 
and hypothesis testing to quantify group differences. The variability explained by each 

PC can be determined by dividing the eigenvalue by the total variability. The variability 

explained is highest for the first PC and descends thereafter, and therefore the majority of 

the variation can be explained by the first few PCs. 

Our research group has applied PCA to capture unique kinematic, kinetic and 

electromyography (EMG) pattern changes in gait at different states of OA progression 

and detected significant waveform pattern changes pre to post-TKA (Astephen et al., 

2008a; Hatfield et al., 2011, 2015a). PCA has been used to link gait patterns with patient 

symptoms after TKA (Smith et al., 2004), and to discriminate joint morphology features 

among 1000 knees stratified by sex and ethnic groups, used to described six 

morphological joint shapes (Mahfouz et al., 2011). To understand biomechanical 

variability, PCA was also advantageous in the characterization of intraoperative 

navigation kinematics in a sample of 340 curves, mathematically defining six dominant 

interpretable patterns, and characterizing how patterns change between the pre to post-

implant states (Young et al., 2015).  

1.4.2. Regression and Longitudinal Analysis  

Multivariate regression models are the most commonly used statistical tool in the 

determination of predictive factors of outcomes after surgery. Regression techniques can 

estimate factors that contribute to TKA progression (Hatfield et al., 2015a), and improved 

patient satisfaction (Baker et al., 2007; Bourne et al., 2010; Noble et al., 2006; Scott et 

al., 2010), mobility, function and pain (Alzahrani et al., 2011; Hawker et al., 2013; Turcot 

et al., 2013) and to understand the relationship between gait variables and PROMs (Smith 

et al., 2004; Turcot et al., 2013).  

Longitudinal data analysis models are an expanded case of general multivariate 

regression modeling, however longitudinal data offers the opportunity to account for 
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dependencies caused by repeated measures (i.e., within-individual changes in a response 

variable over time). Longitudinal analysis also provides a means to provide more 

accurate estimates of covariates and predictive ability, which could be subject to bias 

when assessed by cross-sectional inference alone. Further, generalized mixed effects 

models are robust in the handling of missing data (Gibbons et al., 2010), and making 

inferences about an individual (not a population) through the inclusion of random effects. 

Despite this, of the number of studies that have assessed predictors for poor patient 

outcomes in the literature, very few have assessed outcomes with more than two time 

points in the short or long term (Dave et al., 2017; Edwards et al., 2009; Høvik et al., 

2016; Jiang et al., 2017; Williams et al., 2013a). Fewer still employed longitudinal data 

analysis techniques (Edwards et al., 2009; Høvik et al., 2016; Jiang et al., 2017; Williams 

et al., 2013a).  

1.4.3. Data Mining and Machine Learning  

Applications for data mining and machine learning are emerging as new tools in the 

study of health outcome assessment. They are capable of extracting interesting and novel 

patterns from large datasets, and offer an improved ability to build novel relationships 

and predictions that can aid in our characterization of patient variability, and relate 

variability to outcomes after TKA.  

Data-mining and machine learning methodologies can generally be divided into i) 

unsupervised learning, and ii) supervised learning strategies. During unsupervised 

learning, the data is not labeled into a class or category, therefore inherent structures 

within the input data is deduced or learned without a priori (“from the former”) 

knowledge. During supervised learning, all data is labeled into specific class or 

categories. Relationships between the input data and the class label are learned, typically 

to determine a prediction of the class label using input data available. The following 

section will introduce supervised and unsupervised learning strategies applied in this 

thesis. 
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Cluster Analysis  

Multivariate unsupervised data partitioning (i.e., data clustering) can stratify data 

objects into several groups (clusters, or phenotypes) by modes of statistical similarity and 

separation (dissimilarity) without a priori knowledge of class separation (i.e., 

unsupervised learning). Cluster analysis has been recommended for OA phenotype 

research, to provide novel insights, extending beyond current knowledge (Spil et al., 

2020).  

The most common types of clustering methods include k -means, k -medoids, and 

hierarchical agglomerative (bottom-up) clustering. When clustering, typically the number 

of clusters, k, is defined, and the algorithm works to optimally separate the data into k 

distinct groups. Clustering by k -means methodology separates data objects into clusters 

based on Euclidean distance in space (Han et al., 2011). Starting with the initial dataset in 

multivariate feature space, k centroids are randomly established, representing the centroid 

of each cluster. Following a stepwise process, the Euclidean distance between each 

observation and each centroid is calculated. The observation of interest is then assigned 

to the cluster of the closest centroid. A new centroid of the winning cluster is calculated, 

the mean of the observations assigned to that cluster. This process is repeated for each 

data observation until convergence. K-medoids is very similar, except the medoid, not the 

mean, is calculated to define cluster centroid, making it a more robust method against 

outlier observations (Han et al., 2011). The most commonly used unsupervised clustering 

technique in the OA literature is hierarchical clustering (Deveza et al., 2017). Initially, 

each observation is considered a single cluster (a leaf) in a theoretical tree. At each step, 

the two clusters (leaves) whose merging is associated with the minimal increase in 

variance via Ward’s criteria are combined (two leaves are merged), forming a new cluster 

(Clatworthy et al., 2005; Ward, 1963). This process is repeated until all observations are 

members of a single root. Number of clusters from k=1:nobservations can be examined from 

the single tree, based on the number of splits at each node.   

Few studies have applied unsupervised methodologies to OA populations. Pinedo-

Villanueva et al. used hierarchical cluster analysis to identify and characterize a high pain 
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cluster after TKA (Pinedo-Villanueva et al., 2018). Behrend et al. used hierarchical 

cluster analysis to characterize three clusters based on self-reported Forgotten Joint Score 

outcomes (Behrend et al., 2016). Knoop et al. identified five clusters by k-means using 

features of radiographic severity, muscle strength, BMI, and depression scores (Knoop et 

al., 2011). Incorporating objective functional measures, Elbaz et al. used k-means to 

report four clusters using spatiotemporal gait parameters (Elbaz et al., 2014). Finally, 

Waarsing et al. used a model-based clustering approach to identify four clusters by 

demographics, cartilage features, mechanical alignment, and self-reported symptoms, 

with clusters strongly characterized by joint-level structural degradation (Waarsing et al., 

2015), indicative of variable functional loading (Andriacchi et al., 2009). Overall, 

clustering literature in OA and TKA remains in its initial stages, with few clustering 

variables typically addressing one specialty of OA or TKA research. Although valuable 

information on patient variability is has been found, common and relevant clustering 

themes between studies and on multidimensional datasets needs to be synthesized before 

we can translate findings into information that is meaningful clinically. 

Self Organizing Maps  

Self Organizing Maps (SOMs) are artificial neural networks that project high-

dimensional data onto a connected network of nodes. Each node is represented by a 

weighted vector equation, enabling input data to be mapped to the lower-dimensional 

SOM space (Kohonen, 1990, 1982). SOMs are similarity graphs and cluster diagrams, 

where similar features in the input feature space remain spatially proximal in the lower-

dimensional mapped space.  

 
Figure 1.1. Hexagonal (left) and rectangular node (right) SOM neighborhoods. 
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SOMs typically represent a two-dimensional network of nodes. These nodes connect 

to adjacent nodes via a neighborhood relationship, generally represented by proximal 

hexagonal or rectangular configurations (Figure 1.1). Each node can be defined by the 

equation, mi=[v1,v2,...,vn], where i denotes the index on the SOM grid, and v denotes 

vector weights for n clustering features. Nodes are initialized by randomly assigning an 

observation from the training dataset to each node. The SOM methodology then follows a 

recursive, stepwise learning process (Kohonen, 2013, 1990, 1982). First, a training 

observation is projected onto the SOM. A winning node is defined, satisfying the 

minimum Euclidean distance between the training observation and each node’s vector 

equation (i.e., “competitive learning”). The vector weights, 1, of the winning node and its 
neighboring nodes are then adjusted towards the input training observation. The 

magnitude of this adjustment is a function of the distance to the winning node, and a 

specified learning rate, 2. The learning rate parameter is decreased linearly to 0 over the 
learning process. The learning process is repeated, such that each observation is presented 

to the SOM iteratively until node weights converge, or based on a specified training time, 

3, the number of times the training set is presented to the SOM. 

SOMs have not been applied to OA or TKA populations. However, they have been 

applied to optical nerve imaging of glaucoma patients, demonstrating an ability to map 

glaucoma disease progression among across five different disease subtypes (Abidi et al., 

2018). SOMs were also paired with PCA in a Parkinson disease dataset to remotely track 

Parkinson disease progression, including motor feature data items (Nilashi et al., 2020), 

and identify limping and normal gait patterns using kinematics during treadmill walking 

(Caldas et al., 2018).   

 

Classification and Regression Trees  

Classification and Regression Trees (CART) is an application of top-down recursive 

partitioning, which has the ability to handle multidimensional features (Breiman et al., 

1984). CART learning leads to the creation of a flow-chart decision tree structure 
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comprised of a series of decision nodes defined by data factors, terminating at a final 

class definition, or the “leaf”.  Resultant trees can be translated into interpretable rulesets 

for each route to a class label, where rules are both mutually exclusive and exhaustive 

(Han et al., 2011). The CART algorithm determines the hierarchy of the attributes based 

on how adequately they discriminate the data into a given class, using a measure of the 

partition’s “purity”. An ideally “pure” partition would be characterized as having exactly 

different class labels for each branch of the partition. Mathematically, the impurity of a 

full dataset, 4, is calculated by the Gini index, which represents the probability, 5(, of 
patients belonged to class 6, out of 7 possible classes (Breiman et al., 1984; Han et al., 
2011) . During attribute selection, the impurity of a dataset given a possible partition 

node is calculated using a weighted sum of the impurity of the entire partition. Therefore, 

given patient attribute, 8,	a binary split, the partition would separate the dataset into 4) 
and 4*, respectively. In Equation 1, |4| denotes the absolute size (number of elements) 
of the respective dataset. This is repeated for each possible splitting attribute or splitting 

combination (if not binary). The attribute that maximizes the reduction in impurity is 

selected as the splitting criteria for the decision node, Equation 2. 

;6<6+(4) = 	 |-!||-| ;6<6(4)) +
|-"|
|-| ;6<6(4*)	       [1] 

Δ;6<6(8) = 	;6<6(4) − ;6<6+(4)		                    [2] 

Two recent studies by Lungu et al. demonstrated the application CART approaches in 

outcome prediction models for both TKA and total hip arthroplasty candidates, 

classifying patients based on self-reported WOMAC scores and their degree of artificial 

joint perception after surgery (Lungu et al., 2015, 2014). In the TKA study, prediction 

rules were developed based on a sample of 141 patients, to identify poor outcomes at six 

months post-TKA classified using WOMAC scores (Lungu et al., 2014). Using Pre-TKA 

WOMAC alone, Lungu et al.’s prediction rule reported an acceptable performance, with 

an area under Receiver Operating Characteristic (ROC) curves (AUC) score of 0.77, and 

a recall (true positive rate) of 82.1%. A study by Bade et al. applied CART classification 

to develop decision rules for predictions of functional performance in 119 patients at six 

months post-TKA using Timed Up and Go, Six-Minute Walk and Stair Climbing Tests 
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(Bade et al., 2012). Model independent variables (or attributes) included pre-TKA 

functional score tests and patient demographics. Bade et al. and Lungu et al. both 

reported pre-TKA functional tests to be the best predictors for post-TKA functional 

scores.  

 

1.5.  Collaboration and Utilizing Available Data  

Diverse multidisciplinary research and clinical groups have contributed extensive 

knowledge of the key drivers of patient variability, and how variability relates to 

outcomes after interventions such as TKA. Despite the amount of information collected 

on patients, currently knowledge remains insufficient to drive clinical decision-making. 

Some of the limitations of analyses to date may be reflect the nature in which phenotypes 

have been studied; by independent clinical and research groups, or using secondary data 

specific to their field of research. Current findings may represent research-area-specific 

phenotypes, without fully capturing the full multifactorial complexities of OA disease 

(Andriacchi et al., 2014). Using linkages to consolidate the diverse OA data assets 

immediately available, exploring new analysis methods capable of modelling complex 

multidimensional data, and incorporating multidisciplinary expertise to analysis and 

interpretation may uncover greater potential from our existing data assets.  
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Chapter 2. Thesis Objectives and Format 
 

The theme of this thesis was to investigate if symptomatic and functional variability 

among patients may be related to self-reported and objective functional outcomes after 

TKA. Four objectives investigated relationships between self-reported symptoms, knee 

biomechanical variability and self-reported outcomes after TKA, characterized 

demographic and knee biomechanical variability (clusters) among OA and TKA 

populations, and investigated the relationships between clusters and functional outcomes 

after TKA.  

 

2.1.  Objectives and Hypotheses 
 

Objective 1 

To characterize changes in patient-reported general satisfaction from six weeks to two 

years following TKA, and to identify self-reported factors and demographics associated 

poor general satisfaction longitudinally.  

 

Hypothesis  

A longitudinal approach would be able to identify patient factors that contribute to the 

odds of poor satisfaction after TKA, and identify when factors become meaningful in 

high-risk of poor satisfaction patient profiling. 

 

Rationale  

Despite broad knowledge of factors associated with satisfaction, we still have a poor 

ability to predict satisfied or dissatisfied patients. If we cannot identify which patients 

will be dissatisfied prior to arthroplasty (Baker et al., 2013; Judge et al., 2011), there is 

impetus to identify potential dissatisfied patients as early as possible in the care process 

post-surgery, as appropriate supports or interventions could be essential in achieving 

desirable outcomes longitudinally. 
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Objective 2 

i) To compare pre-TKA demographic and gait biomechanic (knee-joint kinematic 

and kinetic) differences between patients who self-report clinically meaningful 

improvements in pain and function post-TKA (responders) and those who do not 

(non-responders).  

ii) To compare pre to post-TKA gait biomechanic (knee-joint kinematic and kinetic) 

changes between responders and non-responders, and assess correlations between 

post-operative gait improvements and self-reported pain and function 

improvements after TKA.  

 

Hypothesis 

Knee-joint kinematic and kinetic factors pre-operatively and biomechanical gait changes 

experienced from surgery would be associated with PROMs improvements after TKA. 

 

Rationale  

PROMs improvements after arthroplasty have been associated with baseline gait 

mechanics (Naili et al., 2017; Smith et al., 2004; Turcot et al., 2013). TKA is inherently a 

mechanical surgery, and gait mechanics worsen with OA progression (Astephen et al., 

2008a), radiographic severity (Wilson et al., 2011), and with symptoms of pain 

(Henriksen et al., 2012; Maly et al., 2008). Objective assessment of gait severity at 

baseline may aid in identifying functional features most associated with PROM 

improvements post-TKA, providing important information for pre-operative candidate 

selection and expectation management. TKA also aims to improve knee function, in part 

by improving patient gait (Andriacchi, 1993; Hatfield et al., 2011; Noble et al., 2005). It 

remains unknown if patients who self-report poor outcomes do improve objectively in 

terms of gait function, and further, what gait function improvements are associated with 

PROMs improvements (Sosdian et al., 2014). Exploring this could motivate the 

importance of surgically targeting specific gait function changes during arthroplasty.   
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Objective 3 

i) To identify knee joint gait biomechanics phenotypes (clusters) among TKA 

candidates based on similarities in patient demographics, frontal and sagittal 

plane knee kinematics and kinetics during gait.  

ii) To compare objective functional gait improvements between phenotypes after 

standard TKA.  

 

Hypothesis 

Distinct biomechanical phenotypes exist within TKA populations, varying by levels of 

knee function severity. Patient phenotype categorization will be associated with the 

degree of objective functional improvement experience after TKA.  

Rationale  

Phenotyping discussions consistently propose the existence of biomechanically-driven 

OA subtypes (Andriacchi et al., 2014; Bannuru et al., 2019; Castaneda et al., 2013). To 

date, joint-level biomechanical variability among TKA candidates has primarily been 

assessed through a priori group definition, stratifying OA patients by sex (Paterson et al., 

2017; Wilson et al., 2015), frontal plane alignment (Turcot et al., 2012), obesity (Paterson 

et al., 2017), or patient-reported symptoms before (Thorp et al., 2007; Wilson et al., 

2017), and after TKA (Naili et al., 2017; Young-Shand et al., 2020). We still have little 

evidence into how patient demographic and joint-level features naturally separate. 

Unsupervised multivariate data partitioning strategies (i.e., data clustering) can 

characterize phenotypes by modes of statistical separation and similarity, and have been 

recommended for OA phenotype research (Spil et al., 2020). Few studies have applied 

unsupervised methodologies to OA populations, and none have investigated joint-level 

biomechanics, or addressed outcomes of interventions such as TKA at a cluster/group 

level. With the goal of individualizing treatment plans to patient groups, there is a need to 

better understand TKA candidate biomechanical variability and understand how 

biomechanical variability relates to outcomes after TKA.  
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Objective 4 

To quantify OA profiles through the continuum of OA progression using a novel 

unsupervised machine learning framework, and visually map variability in demographic 

and knee joint kinematic and kinetics during gait using self-organized maps (SOM).  

Hypothesis 

Mapped regions were hypothesized to demonstrate knee biomechanics variability 

associated with clinical OA disease severity, and provide evidence of OA phenotypes 

traveling a multitude of patient progression pathways which would have relevance for 

individual treatment strategies.  

Rationale  

To date, OA and TKA phenotypes have only been derived from cross-sectional datasets, 

captured at various static time points within the OA progression pathway, defined using 

variable severity criteria (Deveza et al., 2017; Knoop et al., 2011; Waarsing et al., 2015). 

Temporal snapshots may lack insight into phenotypes that span the longitudinal OA 

disease progression process, limiting our ability to understand if phenotype-specific 

progression pathways exist. As we aim to propose phenotype-specific prevention and 

intervention strategies, a longitudinal view of the OA progression pathway is required to 

identify OA phenotypes that impact clinical utility and personalized treatments (Felson, 

2010). 

 

2.2.  Thesis Format and Data Compilation  

This thesis is presented in four stand-alone chapters composed as original and 

independent manuscripts with a natural progression; each answering questions posed 

from the prior chapter. The first study, Chapter 3, focused on the patient experience over 

time. It explored longitudinal changes in patient satisfaction after TKA to identify risk 

factors for poor satisfaction outcomes. It was written for the Journal of Arthroplasty, and 

this manuscript is currently undergoing revisions to address reviewer comments. 
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Building off the patient experience, Chapter 4 brought in a second perspective, joint 

mechanics during gait. It aimed to investigate relationships between self-reported 

outcomes and changes in gait biomechanics after TKA, demonstrating that biomechanical 

variability relates to the patient experience. This work was written for and has been 

published in the Journal of Bone and Joint Surgery (Young-Shand et al., 2020).  

Motivated by knowledge that patient biomechanical variability relates to the patient 

experience, Chapter 5 aimed to use unsupervised partitioning strategies to investigate and 

characterize knee joint-level biomechanical phenotypes among patients prior to TKA. 

This work was the recipient of two awards at the Orthopaedic Research Society 

Conference in Austin Texas in 2019, the Orthopaedic Research Society Implant Section 

Poster Award, and the American Academy of Orthopaedic Surgeons Women’s Health 

Advisory Board Poster Award. As such, it was written for and submitted to the Journal of 

Orthopaedic Research in December of 2020.  

Finally, Chapter 6, takes a step back temporally. It aimed to provide indications of 

multivariable phenotypes incorporating patient demographics and knee joint-level 

biomechanics occurring longitudinally over the course of the OA disease process (from 

asymptomatic to post-TKA). It was written for and submitted to the Journal of 

Biomechanics in January of 2020.  

In order to answer our questions spanning different patient features and stage of the 

OA disease process, this work was conducted on compilated data sets available between 

research groups at Dalhousie University, and clinical orthopaedic registry and research 

datasets collected with the Nova Scotia Health Authority. Successful collaboration 

between our academic biomedical engineering group and orthopaedic surgeons has 

resulted in numerous academic publications and engineering innovations. The next phase 

of collaboration was to link our high-resolution biomechanics datasets to comprehensive 

clinical registries, with the aim of identifying novel linkages between patient factors and 

health outcomes. This work provides evidence and frameworks for strategic data 

collection and analysis going forward.   
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Chapter 3. Early Identification of Satisfaction After TKA  
 

3.1.  Introduction  

Total Knee Arthroplasty (TKA) is a high volume joint replacement surgery with 

increasing prevalence (CIHI, 2015b; Kurtz et al., 2011). Procedure rates are rising among 

younger, and more physically demanding individuals with high functional expectations 

(Ravi et al., 2012; Scott et al., 2012). Although TKA is widely recognized as an effective 

procedure, patient reported satisfaction rates remain around 80%, low relative to other 

orthopaedic procedures; over 2% of patients are at risk of revisions; and readmissions 

impact over 6% of patients within three months (Bourne et al., 2010; Husted et al., 2008; 

Noble et al., 2006; Scott et al., 2012). Common reports of poor PROMs in a subset of 

patients after TKA signals the continued need to improve our understanding of which 

patients are at risk for adverse outcomes to inform evidence-based models of care and 

maximize outcomes (Allen et al., 2016).  

General satisfaction with TKA can be influenced by a variety of factors, and has been 

attributed pre-operatively to severity of pain (Bourne et al., 2010; Scott et al., 2010), self-

reported function (Scott et al., 2010), and mental health scores (Scott et al., 2010; Vissers 

et al., 2010). Post-operatively, satisfaction has been attributed to pain relief (Bourne et 

al., 2010; Mannion et al., 2009; Scott et al., 2010; Vissers et al., 2010), health-related 

quality of life (Scott et al., 2010; Vissers et al., 2010), and self-reported function scores 

(Bourne et al., 2010; Scott et al., 2010; Vissers et al., 2010), in addition to considerations 

of expectations (Bourne et al., 2010; Vissers et al., 2010), procedure complications 

(Bourne et al., 2010), pain in other joints (Mannion et al., 2009; Scott et al., 2010), and 

personality traits (Giurea et al., 2016). Despite broad knowledge of features associated 

with satisfaction, we still have a poor ability to predict satisfied or dissatisfied patients. 

Specifically, pre-operative patient reported measures lack the predictive ability to identify 

satisfied patients post-operatively (Baker et al., 2013; Judge et al., 2011), and a recent 

review has suggested that many associations with satisfaction are controversial or 

equivocal due to methodological differences in study timelines, cohorts, and outcomes 

(Gibon et al., 2020). Although the myriad of dimensions that influence satisfaction are 
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complex, patients who do report poor responses in the years following TKA will continue 

to experience more pain or dissatisfaction at 10-15 years, without a quantifiable 

radiographic or clinical premise for their response (Ali et al., 2014; Robertsson et al., 

2000). This suggests that some patients are being missed who may have benefitted from 

early post-operative care strategies, conservative treatment strategies (Skou et al., 2015), 

or approaches that deviate from the standard of care (Vanlommel et al., 2013; Young-

Shand et al., 2020). Most post-operative assessments of satisfaction lack this longitudinal 

approach by measuring satisfaction at a single time point, typically between six months to 

two years post-TKA. Only one investigation has addressing earlier post-operative 

outcomes at three months (Williams et al., 2013a). If we cannot identify dissatisfied 

patients prior to arthroplasty (Baker et al., 2013; Judge et al., 2011),  there is impetus to 

identify dissatisfied patients as early as possible in the care processes, as appropriate 

supports or interventions could be essential in achieving desirable outcomes 

longitudinally. 

The objective of this study was to characterize changes in patient-reported general 

satisfaction from six weeks to two years following TKA, and to identify patient-reported 

outcomes and demographics that are associated with dissatisfaction. Longitudinal data 

analysis was used to identify when particular factors become meaningful in high-risk 

patient profiling, while confirming the relevance of factors up to two years post-TKA.  

 

3.2.  Methods 

This was a secondary study on a subset of patients recruited for a radiostereometric 

analysis implant migration study (Laende et al., 2019). Surgeries were performed by five 

high-volume surgeons at a single site for primary TKA between 2011 and 2014. Patients 

were asked to voluntarily participate in this study; inclusion criteria was ethical consent 

from patients. Pre-TKA patient factors and PROMs were collected during preadmission 

surgical visits, which included demographics (age, sex), body mass index (BMI), and the 

following questionnaires: 1) the Hospital for Special Surgery Knee Replacement 

Expectations Survey (KRES, 19[highest]-95[lowest]) (Mancuso et al., 2001), 2) the Pain 
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Catastrophizing Score (PCS, 0[least]-52[most]) (Sullivan et al., 1995) reflecting anxious 

preoccupation and a sense of helplessness regarding pain, shown to be an independent 

predictor of post-TKA chronic pain (Burns et al., 2015),  3) the joint-specific functional 

Oxford-12 Knee Score (OKS) (0[worst]-48[best]) (Dawson et al., 1998),  4) the visual 

analog scale (VAS) Pain Score (0[worst pain imaginable]-100[no pain]) (Whitehouse et 

al., 2003),  5) the UCLA Physical Activity Score (0[lowest]-10[highest]) (Naal et al., 

2009), 6) the EuroQoL EQ-VAS general health score (0[worst]-100[best]), and 7) the 

EQ-5D questionnaire based on five questions regarding difficulties with i) walking, ii) 

self-care, ii) performing usual activities, iv) experiencing pain/discomfort and v) 

anxiety/depression (5[best]-15[worst]) (Bansback et al., 2012). Post-TKA outcomes were 

collected longitudinally through follow-up mail-outs at six weeks, twelve weeks, six 

months, one and two years post-TKA. Follow-up questionnaires included numbers 3-7 

from those listed above. A Satisfaction VAS questionnaire was also asked pre-TKA and 

at each follow-up. Patients were asked “How satisfied are you with your knee today, in 

your opinion”, and indicated on a scale from 0 (unsatisfied) to 100 (completely satisfied). 

The satisfaction score was used to define a binary outcome; “satisfied” for scores ≥ 90, 
and “not fully satisfied” for scores ≤ 89. A binary cut-off score of 90 was selected as it 
approximated mean satisfaction scores at one year. Further, a study by Noble et al. 

(Noble et al., 2011) reported satisfaction on a similar population using both a VAS scale 

and the five-factor satisfaction scale of the New Knee Society Scoring System more 

commonly used (Bourne et al., 2010; Mannion et al., 2009; Robertsson and Dunbar, 

2001; Scott et al., 2010; Turcot et al., 2013; Vissers et al., 2010). Those categorized as 

“satisfied” using the five factor scale had mean satisfaction scores post-operatively that 

approximated 90 on the VAS scale, supporting the satisfaction threshold assumption 

applied for the purposes of examining clinically less satisfied TKA patients. The score of 

90 also agreed with an expected ~80% satisfaction rate for TKA candidates at one year.  

Patients missing pre-TKA satisfaction scores, and three or more satisfaction 

responses after TKA (i.e., missing ³4/6 responses total) were removed from analysis. 

Statistical analysis was performed using R (2015, R Foundation for Statistical 
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Computing, Vienna, Austria). Data analysis was performed on a de-identified database, 

under Research Ethics Board approval.  

3.2.1. Satisfaction at One Year  

Satisfaction scores at one year post-TKA were used to create stratified groups of 

“satisfied” and “not fully satisfied” at a common and stable time-point (Bourne et al., 

2010; Scott et al., 2010; Williams et al., 2013a). Mann-Whitney U tests, un-paired t-tests 

and chi-squared tests were used to identify differences between one-year satisfaction 

stratified groups in PROMs and demographics at each collection time.  

3.2.2. Longitudinal Satisfaction  

Wilcoxon signed-rank tests were used to identify changes in mean satisfaction scores 

between each follow-up time point. A generalized linear mixed effects model with a 

binomial logit link function was applied to examine pre and post-TKA PROMs and 

demographics associated with longitudinal satisfaction. This model accounted for 

dependencies caused by repeated measures and within subject variability. Patient-specific 

random effects were included, as were fixed effects to test for the effect of demographic 

and questionnaire factors. Influence of factors were presented as odds ratios (OR). For 

clinical interpretability, Pain VAS, EQ-VAS and OKS were standardized such that ORs 

represented 10% changes. Models were assessed using randomized quantile residual and 

Q-Q plots, Shapiro-Wilk normality tests, and the Akaike Information Criterion (AIC). 

Significant effects were those with a p-value ≤ 0.05. 

 

3.3.  Results 

Demographic and pre-TKA satisfaction scores were available for 110 primary TKA 

patients. After correcting for missing data points (dropouts), 86 patients with pre-TKA 

satisfaction responses were included. Questionnaire responses (nindividuals=86, 

jobservations=483) and missing data elements at each time point are summarized in Table 

3.1. Comparing demographic and PROM responses between drop-out and the study 
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group captured higher VAS pain scores in the drop-out group relative to the study group 

(p=0.03).  

 

 
Figure 3.1. Mean patient-reported satisfaction at each follow-up. Satisfied (right) is defined by 

VAS Satisfaction scores 90 ≥ at one-year post-TKA (n=80 unique individuals). 
 

Satisfaction at One Year 

Eighty patients completed satisfaction follow-up scores at one-year post-TKA, and 

were included in the one-year stratified analysis (n=80, j=455). Mean satisfaction scores 

at one-year were 91.8±14.4 (Table 3.1). Using a satisfaction threshold of ≥ 90, 82.5% 

(n=66/80) were categorized as satisfied (Table 3.1), with mean satisfaction scores of 

96.6±3.9 among the satisfied group, relative to 69.1±22.6 among those not fully satisfied 

(Table 3.2). Time series satisfaction scores between these groups is shown in Figure 3.1. 

Differences between those categorized as satisfied and not fully satisfied at one year were 

found in the pre-TKA data, with the not fully satisfied group having higher PCS (24.3 vs. 

13.0, p=0.02) and lower EQ-5D scores (0.46 vs. 0.63, p<0.001) (Table 3.2). There were 
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no differences in sex, or BMI between the one-year satisfied and not fully satisfied 

groups pre-operatively. Additional differences were found at six weeks post-TKA, with 

the one year not fully satisfied group, reporting lower OKS (25.2 vs. 30.3, p=0.01), worse 

Pain VAS (57.6 vs. 71.7, p<0.03), and lower EQ-VAS scores (62.3 vs. 77.3, p<0.01).  

 

Table 3.1. Patient factors, mean PROM responses, standard deviations, and missing data 
pre-TKA and at each follow-up time (n=86 unique individuals; j=483 observations). 
||Denotes time independent features captured pre-operatively. 

  
Baseline 
(Pre-TKA) 

6 Weeks 3 Months  6 Months 1 Year 2 Years 

Responses  86  85  83  81  80  68  

Age (years)|| 63.1 (8.7)           

Sex (F:M)||  55: 31           

BMI (kg/m2) || 34.6 (7.7)           

Knee Replacement 
Expectations|| 

41.2 (13.6)           

Missing  39            
Pain Catastrophizing Scale||  15.4 (13.0)           
Missing  18            

Mean Satisfaction VAS 26.3 (25.7) 78.3 (18.3) 86.9 (14.6) 90.9 (14.2) 91.8 (14.4) 92.6 (10.5) 
% Satisfied 3.5% 37.6% 62.7% 81.5% 82.5% 85.3% 
Missing 0 1 3 5 6 18 

Oxford Knee Score 21.3 (6.5) 29.3 (7.3) 36.4 (7.3) 38.8 (6.5) 39.6 (6.9) 39.9 (6.6) 
Missing  0  0  0  0  0  0  

Pain VAS 47.6 (22.5) 67.6 (22.9) 84.1 (17.4) 86.6 (21.3) 88.2 (19.6) 90.2 (16.0) 
Missing  0  1  2  0  0  0  

EQ-5D 0.60 (0.16) 0.73 (0.12) 0.79 (0.14) 0.82 (0.15) 0.84 (0.15) 0.83 (0.15) 
Missing  0  0  0  0  1  1  

EQ-VAS 67.2 (17.5) 74.4 (16.5) 79.9 (15.9) 83.4 (14.6) 83.7 (15.2) 82.4 (15.3) 
Missing  0  1  0  0  0  1  

UCLA Activity Score 4.7 (2.0) 4.6 (1.3) 5.2 (1.4) 5.7 (1.5) 5.5 (1.8) 5.5 (1.5) 
Missing  0  3  0  0  0  1  

 

 

Longitudinal Satisfaction  

Mean satisfaction scores increased over time, with significant differences between 

pre-TKA and six weeks (p=0.001), six weeks and three months (p=0.001), and three 
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months and six months (p=0.01). No statistical differences in satisfaction scores were 

captured between six-months up to the two-year follow-up point (p>0.4).  

Longitudinal analysis conducted on the entire dataset (n=86, j=483) found the 

strongest contributors for improved odds of satisfaction in an individual to be higher 

OKS (OR = 2.08, p<0.001), less pain (OR=1.69, p<0.001), and higher EQ-VAS scores 

(OR =1.34, p=0.03), where a one-point change in the OR of the @ coefficient represented 
a 10% increase in each score, Table 3.3. Although total EQ-5D Total scores were not 

significant in the model (p=0.07), breaking down EQ-5D responses by each of the five 

questions, question one was significant, which described greater odds of a satisfaction 

response in patients with less difficulty walking (one-unit decrease in EQ-5D question 

one: OR=2.33, p<0.05). Question two neared significance (p=0.07), which captured 

dimensions of self-care, included to optimize model AIC. All features remained 

significant after EQ-5D question two’s removal. When testing this model using a 

continuous VAS satisfaction outcome variable, only OKS and VAS Pain factors 

contributed to an improved satisfaction response (p<0.001). Patient age, sex, and BMI 

were not significant in the longitudinal analysis. 
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Table 3.2. Mean patient scores and standard deviations, based on one year Fully Satisfied and Not Fully Satisfied group stratification. Note: Six 
participants used in the longitudinal analysis did not have a satisfaction result at 1-year, and were therefore not included in the stratified group analysis 
(n=80 unique individuals; j=455 observations), ||Denotes time independent features captured pre-operatively; significant (p<0.05) features in bold. 

 

Baseline 
(Pre-TKA) 

6 Weeks 3 Months 6 Months 1 Year 2 Years 

  

1-Year 
Satisfied 

1-Year Not Fully 
Satisfied 

p 1-Year 
Satisfied 

1-Year 
Not Fully 
Satisfied 

p 1-Year 
Satisfied 

1-Year  
Not Fully 
Satisfied 

p 1-Year 
Satisfied 

1-Year 
Not Fully 
Satisfied 

p 1-Year 
Satisfied 

1-Year 
Not Fully 
Satisfied 

p 1-Year 
Satisfied 

1-Year 
Not Fully 
Satisfied 

p 

Age (years) || 62.6 (8.6) 65.4 (9.6) 0.3 

Sex (F:M)||  41 : 25 10 : 4 0.5                          

BMI (kg/m2)|| 34.0 (7.3) 36.0 (8.9) 0.4                          

 
Knee Replacement 
Expectations|| 

41.0 (13.3) 43.1 (16.7) 0.9                          

 
Pain 
Catastrophizing 
Scale|| 

13.0 (11.3) 24.3 (15.8) 0.02                          

Mean Satisfaction 
VAS 

26.4 (26.4) 27.9 (24.7) 0.6 81.2 (16.4) 68.6 (25.5) 0.05 90.0 (9.9) 70.9 (22.2) 0.001 93.9 (7.6) 75.6 (25.6) 0.01 96.6 (3.9) 69.1 (22.6) <0.001 95.0 (7.8) 80.1 (14.8) <0.001 

Oxford Knee Score 21.8 (6.3) 18.6 (7.5) 0.2 30.3 (7.4) 25.2 (6.3) 0.01 37.8 (6.0) 30.1 (10.2) <0.01 40.6 (4.5) 30.9 (8.2) <0.001 41.3 (5.3) 31.1 (7.6) <0.001 41.8 (4.8) 31.4 (8.4) <0.001 

Pain VAS 49.2 (23.6) 38.1 (19.1) 0.1 71.7 (22.0) 57.6 (22.3) 0.03 88.4 (11.8) 63.1 (23.5) <0.001 90.1 (18.7) 67.6 (25.4) <0.001 94.9 (9.2) 56.9 (24.8) <0.001 92.2 (14.9) 78.6 (19.3) 0.001 

EQ-5D 0.63 (0.1) 0.46 (0.2) <0.001 0.74 (0.1) 0.67 (0.1) <0.01 0.82 (0.1) 0.67 (0.2) <0.01 0.85 (0.1) 0.71 (0.2) <0.01 0.88 (0.1) 0.69 (0.1) <0.001 0.87 (0.1) 0.70 (0.1) <0.001 

EQ-VAS 68.9 (16.5) 64.1 (19.8) 0.4 77.3 (15.3) 62.3 (16.8) <0.01 83.7 (12.2) 64.7 (18.2) <0.001 85.4 (13.4) 74.6 (17.1) 0.01 87.7 (11.7) 65.0 (15.9) <0.001 84.0 (15.2) 74.6 (13.9) 0.02 

UCLA Activity 
Score 

4.9 (1.9) 4.5 (2.2) 0.4 4.7 (1.2) 4.3 (1.4) 0.4 5.2 (1.3) 5.1 (1.8) 0.5 5.9 (1.4) 4.9 (1.5) 0.03 5.6 (1.7) 4.6 (2.1) 0.04 5.7 (1.4) 4.8 (1.4) 0.07 
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Table 3.3. Factors associated with patient satisfaction (score ≥	90) as determined using a 
generalized linear mixed effects model. Pain VAS, EQ-VAS and OKS were standardized such 
that ORs represent 10% changes (n=86 unique individuals; j=483 observations); significant 
(p<0.05) features in bold. 

 β 95% CI β Odds ratio (β) Std. Error (β) Z value p 

(Intercept) -8.68 (-12.44, -4.92) 0.00 1.92 -4.52 <0.001 

Follow-up Time  0.02 (0.00, 0.03) 1.02 0.01 2.45 0.01 

Pain VAS 0.52 (0.32, 0.72) 1.69 0.10 5.08 <0.001 

EQ-5D Q1 (Mobility) -0.84 (-1.68, 0.00) 0.43 0.43 -1.97 <0.05 

EQ-5D Q2 (Self-Care) -1.48 (-3.10, 0.15) 0.23 0.83 -1.78 0.07 

EQ-VAS 0.29 (0.03, 0.55) 1.34 0.13 2.21 0.03 

Oxford Knee Score  0.73 (0.38, 1.08) 2.08 0.18 4.10 <0.001 
 

3.4.  Discussion 

Results revealed distinct temporal responses between satisfied and not fully satisfied 

groups that have not been previously captured (Figure 3.1). Patient satisfaction scores 

significantly improved within the first six months post-TKA (p≤0.01), and stabilized 
thereafter (p>0.4). Although there may be clinically meaningful information in 

satisfaction metrics closely following surgery, final satisfaction perceptions do not 

stabilize until 6 months post-operatively, likely coinciding with the period of post-

operative healing and improved physical function, with muscle recovery plateauing at 

approximately six months post-TKA (Stevens-Lapsley et al., 2010).  

At one year post-TKA, the incidence of a satisfied response (82.5%) aligned with 

satisfaction rates commonly reported in the literature (Bourne et al., 2010; Mannion et al., 

2009; Robertsson and Dunbar, 2001; Scott et al., 2010; Turcot et al., 2013; Vissers et al., 

2010; Williams et al., 2013a), yet the three month response was lower than satisfaction 

scores reported by Turcot et al. (62.7% in Table 3.1 vs. 79.5%) (Turcot et al., 2012). The 

Turcot patient cohort was slightly older with a lower mean BMI and less pre and post-

TKA pain severity than our study, which may account for some of this difference. Pre-
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operatively, satisfied patients in our study also self-reported less pain catastrophizing 

(PCS, p=0.02) relative to the not fully satisfied group by one-year post-TKA 

stratification. Although pre-operative pain catastrophizing has previously been 

association with poor TKA outcomes in terms of pain (Baert et al., 2016; Burns et al., 

2015) and quality of life (Yakobov et al., 2018), during longitudinal modeling, pain 

catastrophizing was not significant in influencing satisfaction outcomes (Table 3.3). Pain 

catastrophizing metrics were only available pre-operatively (a time independent-

variable), which included missing responses (18/86). Still, this feature remained 

insignificant after conducting a sensitivity analysis using a data subset with complete pain 

catastrophizing cases. Similarly, pre-operative general health scores were better among 

satisfied patients pre-operatively (EQ-5D, p<0.001), yet this score was also not relevant 

in longitudinal satisfaction modeling. It has been suggested that pre-operative data alone 

may not have the predictive capacity to identify satisfied patients post-operatively (Baker 

et al., 2013; Judge et al., 2011). Indeed, neither PCS nor EQ-5D total scores, which 

differed between satisfaction groups pre-operatively, were stable in separating satisfied 

patients using longitudinal models. Although general health and satisfaction are not 

clearly correlated (Fenton, 2012), other authors have found post-operative mental health 

scores to be associated with satisfaction post-TKA (Giurea et al., 2016; Scott et al., 2010; 

Vissers et al., 2010), and further work is needed to understand the relative importance of 

pain catastrophizing captured post-operatively on longitudinal satisfaction. Our findings 

support the notion that pre-operative scores should not be used to prioritize access to 

care, and if we wish to attempt to do so, examination of the next available time point 

would be more effective.  

As early as six weeks post-TKA, differences between satisfaction groups were 

identified in pain severity (VAS), joint-specific health (OKS), and general health (EQ-

VAS), agreeing with prior findings at three (Williams et al., 2013a), and six months 

(Scott et al., 2010), but also providing novel insight into divergence in these outcomes 

earlier than previously reported. Early patient perceptions of pain intensity, general 

health, and joint specific health at six weeks post-operatively has a lasting influence on 

satisfaction outcomes. Therefore, the potential influence of the underlying factors 
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captured in these PROMs begins very early in the post-operative period, but has a 

longitudinal influence on outcomes up to two years post-TKA. Early post-operative 

education and intervention may warrant further study to aid in changing this long-term 

outcome trajectory.   

Pain relief is a main expectation of patients undergoing TKA (Scott et al., 2012). In a 

comprehensive analysis of patient satisfaction and PROMs by Robertsson and Dunbar, 

pain-related domains were found to be the largest contributor to satisfaction followed by 

physical domains (Dunbar et al., 2013; Robertsson and Dunbar, 2001), supported in later 

studies (Baker et al., 2007; Bourne et al., 2010; Scott et al., 2010). We also found 

changes in pain to have a large effect on satisfaction (Pain VAS OR 1.69±0.10), however, 

the longitudinal effect of the function-based OKS was greater (OKS OR 2.08±0.18). 

Similarly, examination of patient responses longitudinally suggested that physical 

domains and general health contributed most to early satisfaction stratification, 

demonstrated by clinically significant score changes between baseline and six weeks. For 

example, clinically significant improvements in the OKS (Beard et al., 2015) were 

apparent only in the satisfied group at six weeks, yet clinically significant improvements 

in VAS pain (Katz et al., 2015; Tubach et al., 2005) occurred in both the satisfied and not 

fully satisfied groups at six weeks (Table 3.2). These findings suggest that less satisfied 

patients may be more perceptive to a lack of improvement in overall function early in the 

recovery process, having utility for early patient profiling. Further, the longitudinal 

satisfaction model specifically included the EQ-5D question 1 (perceived difficulty 

walking) over other dimensions of general health, which is a unique finding. The TKA 

patients in this study had a mean age of 63, and were therefore younger than the typically 

reported age of 70 in previous studies (Bourne et al., 2010; Robertsson and Dunbar, 

2001; Scott et al., 2010), potentially resulting in heightened functional awareness relative 

to populations previously studied. Still, the importance of functional measures on 

satisfaction agrees with prior findings using diverse tools including the OKS (Scott et al., 

2010), Western Ontario and McMaster Universities Arthritis Index (Bourne et al., 2010; 

Vissers et al., 2010), other functional scores (Noble et al., 2006; Scott et al., 2010), and 

from gait measures (Turcot et al., 2013). Recent work has also demonstrated a link 
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between objective joint-level gait mechanics and self-reported outcomes after TKA (Naili 

et al., 2017; Turcot et al., 2013). As TKA demographics become younger, with greater 

functional expectations (Ravi et al., 2012; Scott et al., 2012), these findings collectively 

demonstrate the importance of objective functional considerations to the patient 

experience longitudinally if we want to achieve optimal outcomes for all individuals 

(Wilson et al., 2019).  

 Although visually distinctive temporal differences were found between the 

satisfied and not fully satisfied group response profiles (Figure 3.1), significant 

differences between satisfaction scores were not apparent until 12 weeks, lagging other 

PROMs (Table 3.2). This result may be reflective of an acclimatization after the expiry of 

support sessions, such as physiotherapy, and return to everyday activities (e.g., work), as 

previous studies have identified associations between less social supports and low self-

reported quality of life, and between living alone and dissatisfaction post-TKA (Bourne 

et al., 2010; Desmeules et al., 2009). This delayed response might also reflect patient 

realization that the procedure may not meet expectations, or a surgical team’s ability to 

manage expectations closely following surgery, but be less effective with long-term 

management. There is variability in regards to the role of expectations on satisfaction 

(Culliton et al., 2012), where met expectations have been characterized as a leading factor 

when assessed post-operatively (Bourne et al., 2010; Noble et al., 2006; Scott et al., 2010, 

2012), but a poor predictor pre-operatively (Culliton et al., 2012; Mannion et al., 2009; 

Vissers et al., 2010). This study also found expectations to be a poor pre-operative 

predictor for satisfaction. Although it should be noted that our pre-operative expectation 

data included missing responses (39/86), this feature also remained insignificant after 

conducting a sensitivity analysis using a data subset with complete expectation scores. 

Future studies could include considerations of post-TKA expectations, surgical team 

interaction, post-operative programs and program duration to characterize possible 

contributors to response patterns. This would be needed to inform the development of 

targeted extended treatment, expectation management or shared decision-making 

programs (Allen et al., 2016; Bozic et al., 2013).  
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Achieving patient satisfaction post-TKA is complex and should not be a definitive 

goal for improving patient care, as satisfaction may be influenced by contradictory or 

non-modifiable factors (Gibon et al., 2020). Therefore, the anchoring of this study on 

satisfaction and self-reported tools, which can be heavily biased by external factors, was 

a limitation. As with most satisfaction studies, our “satisfaction” threshold of 90 

overlooks any distribution characteristics of the outcome variable, yet as discussed, this 

score agreed with an expected ~80% satisfaction rate for TKA candidates at one year, and 

our stratified groups were representative of prior literature. Other limitations include 

missing data. We restricted our study sample to include patients with three or more 

satisfaction responses after TKA, yet also had high missing data specifically in the 

mentioned domains of pain catastrophizing (missing 18/86) and expectations (missing 

39/86) which were only measured pre-operatively. We also found greater baseline pain in 

the excluded populations relative to our study population (p=0.03). Drop-out populations 

have been shown to be less satisfied (Robertsson and Dunbar, 2001), and results may be 

biased in terms of overoptimistic outcome scores. We also observed large response 

variance in self-reported scores, particularly among not fully satisfied individuals (Table 

3.2) and visible in Figure 3.1. For example, an individual with a satisfaction score of 0 

could be observed at 1-year post-TKA. This patient went on to undergo revision surgery. 

Sensitivity analysis removing this individual from our model did not alter our results. 

Longitudinal analysis is robust in the handling of missing data (Gibbons et al., 2010), and 

a sample of 86 individuals with 483 observations lends to the stability our findings with 

valuable temporal insights into individual patient outcome trajectories.  

This study provided novel insights into longitudinal changes in satisfaction follow 

TKA. Although it may not be feasible to identify patients at high-risk of long-term 

dissatisfaction pre-operatively (Baker et al., 2013; Judge et al., 2011), our findings 

support the potential to identify them as early as six weeks after surgery, suggesting the 

trajectory for recovery is set in the early post-operative period. Records of satisfaction 

scores over two-years of follow-up presents an opportunity to identify high-risk patients 

early in the post-operative care process, and inform early targeted supports or 

interventions. Our findings also highlight the importance of function in the patient 



 

  43 

experience. We recognize that global satisfaction cannot be the only outcome target for 

surgical and management refinement, and can be influenced by many and varied factors 

(Gibon et al., 2020). However, understanding the time course of satisfaction along with 

associated functional and quality of life metrics captured provides novel insight into the 

time course of the post-operative patient experience, making these findings relevant to 

providing appropriate supports for patients on poor trajectories, and achieving desirable 

outcomes longitudinally. 
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Chapter 4. Individual Gait Features are Associated with 
Clinical Improvements After TKA  

 

4.1. Introduction 

Upwards of 20% of patients with knee osteoarthritis (OA) do not report clinically 

meaningful improvements in pain and function or satisfaction after TKA (Escobar et al., 

2007; Hawker et al., 2013; Quintana et al., 2006; Robertsson et al., 2000), raising 

concerns over the potential overuse of TKA (Clavel et al., 2016). Appropriate patient 

selection would thus require an understanding of the symptom state most associated with 

meaningful improvements after arthroplasty, previously termed the “sweet spot” (Hawker 

et al., 2013; Losina and Katz, 2013). While patients with worse self-reported pain and 

function preoperatively experience greater PROM improvements from TKA (Hawker et 

al., 2013; Jiang et al., 2017; Judge et al., 2012) common PROM tools lack the predictive 

ability to identify optimal candidates pre-operatively (Hawker et al., 2013; Judge et al., 

2012, 2011). Used in isolation, PROMs also provide limited insights into potential 

underlying biomechanical mechanisms associated with why patients fare well or poorly. 

PROMs improvements after arthroplasty have been associated with baseline gait 

mechanics (Naili et al., 2017; Smith et al., 2004; Turcot et al., 2013). TKA is inherently a 

mechanical surgery, and gait mechanics worsen with OA progression (Astephen et al., 

2008a), radiographic severity (Wilson et al., 2011), and with symptoms of pain 

(Henriksen et al., 2012; Maly et al., 2008). Objective assessment of gait severity at 

baseline may aid in identifying functional features most associated with PROM 

improvements post-TKA, providing important information for pre-operative candidate 

selection and expectation management. TKA also aims to improve knee function, in part 

by improving patient gait (Andriacchi, 1993; Hatfield et al., 2011; Noble et al., 2005). It 

remains unknown if patients who self-report poor outcomes do improve objectively in 

terms of gait function, and further, what gait function improvements are associated with 

PROMs improvements (Sosdian et al., 2014). Exploring this could motivate 

investigations that assess the efficacy of surgically targeting specific functional deficits.   



 

  45 

This was an explorative study that aimed to compare pre-TKA demographic and 

knee-joint gait mechanic (kinematic and kinetic) differences between patients who self-

report clinically meaningful improvements in pain and function post-TKA (responders) 

and those who do not (non-responders), and to model preoperative demographics and gait 

features descriptive of responders. The secondary aim was to examine pre to post-TKA 

knee-joint gait mechanic changes among pain and function responders and non-

responders, and to examine correlations between gait changes and self-reported 

improvements.  

 

4.2. Methods  

4.2.1. Patients and Surgery 

Patients with end-stage knee OA scheduled to receive a primary TKA at a high-

volume academic orthopedic clinic (2003-2016) underwent gait assessment one-week 

prior to (n=135) and one-year post-TKA (n=109) (Figure 4.1). Patients were included if 

they were able to walk six meters unassisted, and were excluded if they screened positive 

for neurological disease, or other conditions affecting their gait or ability to safely 

participate. Surgeries followed a standard medial parapatellar approach, with distal femur 

cuts set to 5° of valgus, and tibial cuts targeting neutral mechanical alignment. The 

measured resection technique was used to obtain a balanced flexion-extension gap. 

Standard post-operative inpatient physiotherapy was used, with immediate 

weightbearing. Median hospital stay was three days. Outpatient physiotherapy was not 

standardized and was optional. Informed participant consent was obtained according to 

the institution ethics board.  

4.2.2. Gait Biomechanics  

Data on age, sex, mass, height, and OA severity graded by an orthopaedic surgeon 

using Kellgren-Lawrence (KL) global radiographic scores (Kellgren and Lawrence, 

1957) were collected as part of the pre-operative assessment. Infrared light-emitting 

markers were placed on participants according to a standardized protocol, which included 

four triads of markers attached to the pelvis, thigh, shank, and foot to establish limb 
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segment rigid body coordinate systems (Landry et al., 2007). To define local anatomical 

joint axes, four individual light-emitting markers were placed on boney landmarks, and 

eight digitized points (Landry et al., 2007). Participants walked along a five-meter 

walkway wearing comfortable shoes at a self-selected speed. Three-dimensional external 

ground reaction forces were recorded at 2000Hz with an AMTI Biomechanics Platform 

System (Advanced Medical Technology Inc., Watertown, MA) embedded in the 

walkway, synchronized to an Optotrak™ (Northern Digital Inc., Waterloo, ON) 

optoelectronic motion capture system sampling marker positions at 100Hz. Knee joint 

angles were calculated according to the joint coordinate system (Grood and Suntay, 

1983), and net resultant knee joint moments by inverse dynamics (Deluzio et al., 1993; 

Deluzio and Astephen, 2007; Li et al., 1993), amplitude normalized to body mass 

(Nm/kg). Following this protocol (Landry et al., 2007), a minimum of four walking trials 

were averaged and normalized for each participant to one gait cycle (0-100%) for 

flexion/extension angles, and to stance-phase (0-100%) for moments and adduction 

angles. 

Principal Component Analysis (PCA) was used to capture major features of 

participant variability in knee angle and moments waveforms, having demonstrated 

improved sensitivity over discrete gait parameters (Hatfield et al., 2015b; Smith et al., 

2004; Wilson et al., 2011). A large sample of pre-TKA (n=135) and one year (n=109) 

post-TKA patient waveforms were used to create robust PC models using a standardized 

protocol (Deluzio and Astephen, 2007). Three knee adduction moment, adduction angle, 

and flexion moment Principal Components (PCs), and four knee flexion/extension angle 

PCs were retained (Appendix A). These features have been previously shown to describe 

the major modes of variability in TKA (Hatfield et al., 2011) and osteoarthritis gait 

(Astephen et al., 2008b), or were features typically applied to functional assessment post-

TKA (Bonnefoy-Mazure et al., 2017; McClelland et al., 2011; Smith et al., 2004). 

Individual patient data was projected onto each PC, providing individual subject PC 

scores used in hypothesis testing.  
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4.2.3. PROMs 

WOMAC (Bellamy et al., 1988) PROM questionnaires were collected on a portion of 

gait participants one-week pre (n=59) and one-year post-TKA (n=46), meeting 

international PROMs collection standards (ICHOM, 2017). Patients with matched pre 

and post-TKA WOMAC scores (n=46) were included in analysis (Figure 4.1). Pre to 

post-TKA WOMAC (0[worst]-100[best]) pain and function score changes were used to 

categorize patients as responders in pain (≥23) and function (≥19) independently, using 

established WOMAC minimal clinically important difference (MCID) criteria (Escobar 

et al., 2007; Roos, 2018). Non-responder follow-up scores were assessed for ceiling 

effects (post-operative score of 100), ensuring WOMAC boundaries did not contribute to 

non-responder classification.  

  
Figure 4.1. CONSORT (Consolidated Standards of Reporting Trials) diagram of patient 
eligibility and selection processes. All participants were screened for neurological, previous lower 
extremity surgeries (e.g., arthroplasty in another joint), or other existing pathologies (e.g., 
rheumatoid arthritis) prior to gait recruitment. No baseline WOMAC differences were detected 
between subjects who did (n=46) and did not (n=13) have completed 304  post-TKA scores in 
any WOMAC domain (p>0.5). 
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4.2.4. Statistical Analysis  

Baseline Analysis (primary aim): Baseline variables (age, BMI, KL grade, 
WOMAC scores, gait speed) and PC score differences between pain and function 

responders and non-responders were compared using un-paired t-tests and Mann-

Whitney U tests. Correlations between baseline demographics and gait PC scores, against 

WOMAC pain and function changes (post−pre) were examined using Pearson’s 
correlation coefficients. Variables showing significant correlations with WOMAC pain 

and function were retained for multiple regression analyses. Binomial generalized linear 

models examined baseline demographics and baseline gait features associated pain and 

function responder classification independently, assessed using Akaike’s information 

criterion. Final models were presented using modified Poisson regression (Zou, 2004) for 

improved clinical interpretation (Knol et al., 2012), representing coefficients as relative 

risk ratios (RRs) and 95% confidence intervals (CI) derived from standard errors using 

the robust sandwich estimator. Features were scaled (0-10), where a one-point increase in 

RR was associated with a 10% change in PC score. All analyses were conducted in an 

exploratory fashion with p-values <0.05 considered significant in interpretation.   

Pre to Post-TKA Changes (secondary aim): Differences between pre and post-

TKA gait features within pain and function responder and non-responder groups were 

compared using paired t-tests. Correlations between changes in PC scores (post−pre), 
against changes in WOMAC pain and function were examined using Pearson’s 

correlation coefficients. 

 

4.3. Results 

4.3.1. Baseline Analysis  

Pain: Seventy-four percent (34/46) of patients met pain domain MCID improvement 
criteria and were classified as responders in WOMAC pain; 26% (12/46) were classified 

as pain non-responders. Pre-operatively, pain responders were more radiographically 

severe (p=0.03), more symptomatic (WOMAC Total, 54.7 95%CI 38.2-75.0 vs. 45.5 

95%CI 19.1-71.0, p=0.04), and walked at faster gait speeds (0.93±0.19m/s vs. 
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0.80±0.18m/s, p=0.04) than non-responders (Table 4.1). Pain responders also walked 
with lower adduction angle PC1 scores relative to pain non-responders pre-operatively 

(p=0.03), indicating lower overall knee adduction angle magnitudes (less consistently 

varus) throughout the stance phase of gait (Table 4.2, Figure 4.2).   

Patients who had less stance-phase flexion-extension angle range (PC4, r=-0.32, 

p=0.03), and lower stance-phase varus magnitudes (PC1, r=-0.37, p=0.01) pre-

operatively, were associated with more WOMAC pain improvement (Figure 4.3a-b). In 

multivariate modeling, lower stance-phase varus (adduction angle) magnitude was the 

only pre-operative feature predictive of being a pain responder (PC1, RR=0.92, p<0.05, 

Table 4.3).  

Function: Seventy-eight percent (36/46) of patients met function domain MCID 

improvement criteria and were classified as responders in WOMAC function; 22% 

(10/46) were classified as function non-responders. Pre-operatively, function responders 

were more radiographically severe (p=0.03) than function non-responders (Table 4.1). 

Function responders also had lower stance-phase varus (adduction angle) magnitudes 

(PC1, p<0.05) and less stance-phase flexion-extension angle range than non-responders 

pre-operatively (PC4, p=0.01) (Table 4.4, Figure 4.4). 

Patients who were younger (r=-0.41, p=0.005), had less stance-phase flexion-

extension angle range (PC4, r=-0.38, p=0.009) and lower varus magnitudes (PC1, r=-

0.34, p=0.01) pre-operatively, were associated with more WOMAC function 

improvement (Figure 4.3d-f). In multivariable modeling, function responder likelihood 

increased only if patients walked with less stance-phase flexion-extension angle range 

pre-operatively (PC4, RR=0.90, p=0.01, Table 4.3).  

4.3.2. Pre to Post-TKA Changes 

Pain and function responders demonstrated typically reported pre to post-TKA gait 

improvements (toward asymptomatic) in magnitude and pattern of adduction moment, 

flexion moment, and flexion angle features (Tables 4.2,4.4) (Hatfield et al., 2011; Wilson 

et al., 2015). The only gait changes captured among pain and function non-responders 
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included reductions in stance-phase varus magnitudes post-TKA relative to pre-

operatively (PC1 p≤0.005; Tables 4.2,4.4; Figures 4.2,4.4). Pain non-responders alone 

also showed more stance-phase flexion moment range post-TKA relative to pre-

operatively (PC2, p=0.03, Table 4.2). 

Patients who experienced less pre to post-TKA reduction in varus magnitudes from 

surgery (∆PC1, r=0.47, p=0.001), were associated with more WOMAC pain 

improvement (Figure 4.3c).  

Patients who experienced less reduction in stance-phase varus magnitude from 

surgery (∆PC1, r=0.38, p=0.009) and showed larger increases in early to mid-stance 

adduction moment range (∆PC2, r=0.32, p=0.03), were associated with more WOMAC 

function improvement (Figure 4.3g-h). 

 

Figure 4.2. Mean waveforms of pain responder (n=34) and non-responder (n=12) groups 
collected one-week pre-TKA and one-year post-TKA. Grey denotes 209 previously captured 

asymptomatic (mean age 51.6 ±9.0, BMI 26.7±4.5) gait patterns (mean ± 1SD). 
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Figure 4.3. Associations between demographic and gait features, and pre to post-TKA changes in WOMAC pain and function. (c & g) Positive 
changes in stance-phase varus magnitude (adduction angle PC1) represented an increase in varus alignment during stance, while negative changes 
represented more varus magnitude reduction (varus to valgus change). Less stance-phase varus magnitudes at baseline, and less pre to post-TKA 
reductions in stance-phase varus magnitudes post-TKA were each independently associated with more self-reported improvements in pain and 
function. (h) Positive changes in adduction moment range (adduction moment PC2) represented more medial compartment loading/unloading 
range during stance. Larger increases in dynamic loading range were associated with more improvement in self-reported function 

51 
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Table 4.1. Baseline demographic and self-reported WOMAC scores of pain and function responder and non-responder groups. Normally 
distributed variables represented as means and standard deviations, non-normally distributed variables represented as medians and 95% confidence 
intervals. Significant (p<0.05) features in bold. 

 
Total 

WOMAC Pain Domain  WOMAC Physical Function Domain 
 Responder Non-Responder p  Responder Non-responder p 

Subjects 46   34  12 
  

  36   10 
 

Males 17   12    5 
  

  13    4 
 

Females 29   22    7 
  

  23    6 
 

Age (years) 64.1 (6.6) 63.6 (7.0) 65.7 (5.4) 0.6 
 

63.5 (6.8) 66.4 (5.7) 0.2 

BMI (kg/m2) 32.6 (5.7) 32.7 (6.2) 32.5 (4.0) 0.9 
 

32.4 (6.1) 33.3 (4.1) 0.7 

Kellgren-Lawrence (KL) 
Grade|| 

4.0 (3, 4) 4.0 (3, 4) 3.0 (3, 3) 0.03 
 

4.0 (3, 4) 3.0 (3, 3) 0.03 

KL Score 0 0   0  0    0  0   

KL Score 1 0  0  0    0  0   

KL Score 2 0  0  0    0  0   

KL Score 3 13  9  4    9  4   

KL Score 4 14  14  0    14  0   

Pre-TKA Gait Speed (m/s) 0.9 (0.2) 0.9 (0.2) 0.8 (0.2) 0.04 
 

0.9 (0.2) 0.9 (0.2) 0.5 

Post-TKA Gait Speed (m/s) 1.0 (0.2) 1.1 (0.2) 1.0 (0.2) 0.2 
 

1.1 (0.2) 1.0 (0.2) 0.2 

WOMAC Total (/100) 47.9 (21.3, 75.6) 45.5 (19.1, 71.0) 54.7 (38.2, 75.0) 0.04 
 

46.1 (19.3, 70.7) 56.9 (38.3, 75.1) 0.1 

Pain (/100) 50.0 (26.3, 75 .0) 45.0 (24.1, 70.9) 62.5 (37.8, 78.6) 0.007 
 

47.5 (24.3, 75.0) 60.0 (37.2, 77.8) 0.07 

Joint Stiffness (/100) 50.0 (12.5, 75.0) 50.0 (10.3, 75.0) 50.0 (19.4, 75.0) 0.08 
 

50.0 (10.9, 75.0) 43.8 (15.3, 75.0) 0.6 

Physical Function (/100) 47.1 (25.6, 80.1) 44.1 (22.9, 82.4) 47.8 (35.2, 73.1) 0.2   46.9 (23.6, 74.5) 58.1 (34.7, 86.0) 0.07 
||Grades available for 27/46 participants, reasonably distributed between groups: Available for 23/34 pain responders, 4/12 pain non-responders, 23/36 function 
responders, and 4/10 function non-responders.  
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Table 4.2. Principal component results of pain responder and non-responder groups pre and post-TKA represented as PC score means and 
standard deviations. Significant (p<0.05) features in bold. 
WOMAC Pain Domain 

Feature  Interpretation Var. 
Exp. 

Pre-TKA   Post-TKA   Within group difference  

Responder 
(n=34) 

Non-responder 
(n=12) p   Responder 

(n=34) 
Non-responder 

(n=12)  p   Responder  p 

Non-
responder  

p 

Flexion Angle               

PC1 Gait cycle flexion angle magnitude 65.09% -13.70 (57.97) -10.55 (58.16) 0.9  21.44 (60.69) 21.35 (41.31) 0.1  0.02 0.1 

PC2 Stance to swing angle range 15.79% -2.23 (40.75) -7.12 (31.53) 0.7  7.88 (31.40) 4.67 (29.45) 0.2  0.3 0.4 

PC3 Phase shift: timing of stance and peaks 11.91% -8.20 (31.07) 2.22 (32.64) 0.3  4.38 (22.68) -0.99 (28.72) 0.8  0.06 0.8 

PC4 Stance-phase range of motion 2.60% -4.18 (12.70) 2.55 (11.83) 0.1  0.16 (11.16) 2.45 (17.43) 0.5  0.4 0.9 

Adduction Angle               

PC1 Stance-phase adduction angle magnitude 57.40% 3.10 (19.75) 17.52 (18.29) 0.03  -5.21 (20.04) -15.14 (20.77) 0.001  0.09 <0.001 

PC2 Mid-stance to terminal stance range  24.04% 3.10 (19.75) -1.21 (9.16) 0.8  -2.02 (13.00) -2.03 (7.53) 0.8  0.6 0.8 

PC3 Heal strike to mid-stance range  8.60% 0.10 (17.11) 0.45 (12.01) 0.9  0.20 (5.66) 3.26 (7.79) 0.9  0.9 0.5 

Flexion Moment               

PC1 Gait cycle flexion moment magnitude 72.59% 0.08 (2.03) -0.17 (1.62) 0.7  -0.48 (1.21) 0.01 (1.69) 0.5  0.2 0.8 

PC2 Stance-phase flexion moment range 16.53% -0.21 (0.63) -0.33 (0.43) 0.6  0.19 (0.61) 0.21 (0.65) 0.01  0.01 0.03 

PC3 Phase shift: timing of flexion peaks 3.90% 0.00 (0.47) -0.01 (0.27) 0.9  0.00 (0.29) -0.05 (0.26) 0.9  0.9 0.7 

Adduction Moment               

PC1 Stance-phase adduction moment magnitude 83.17% 0.06 (1.67) 0.05 (1.63) 0.9  -0.15 (0.88) 0.07 (0.86) 0.6  0.5 0.9 

PC2 First peak and mid-stance range 8.40% -0.14 (0.33) -0.28 (0.40) 0.2  0.09 (0.34) -0.09 (0.36) 0.003  0.006 0.2 

PC3 Mid-stance and second peak range 3.20% -0.07 (0.27) -0.08 (0.31) 0.9   0.13 (0.23) 0.17 (0.32) 0.02   0.002 0.06 
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Table 4.3. Baseline gait features and change in gait features contributing to clinically meaningful 
improvements in self-reported pain and function from multivariable modified Poisson regression. 
Items were scaled (0-10), where a one-point increase in RR was associated with a 10% change in 
PC score. Significant (p<0.05) features in bold. 

  
Interpretation RR 95% CI Estimate 

Std. 
Error 

p 

Pain domain (r2 = 0.14||):       
Adduction Angle PC1 Pre-TKA magnitude of stance-

phase varus alignment  

0.915  (0.838, 0.998) -0.089 0.045 <0.05 

Function domain (r2 = 0.15||):       
Flexion Angle PC4 Pre-TKA flexion angle range of 

motion during stance   

0.898  (0.827, 0.976) -0.107 0.042 0.01 

||Linear models were applied using the magnitude of WOMAC domain improvement as the 
independent variable to provide estimates of r2 

 
 

 
Figure 4.4. Mean waveforms of function responder (n=36) and non-responder (n=10) groups 
collected one-week pre-TKA and one-year post-TKA. Grey denotes 209 previously captured 

asymptomatic (mean age 51.6 ±9.0, BMI 26.7±4.5) gait patterns (mean ± 1SD).
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Table 4.4. Principal component results of function responder and non-responder groups pre and post-TKA represented as PC score means and 
standard deviations. Significant (p<0.05) features in bold. 
WOMAC Physical Function Domain 

Feature  Interpretation Var. 
Exp. 

Pre-TKA   Post-TKA   Within group difference  
Responder 
(n=36) 

Non-responder 
(n=10) p   Responder 

(n=36) 
Non-responder 

(n=10)  p   Responder  p 
Non-responder  

p 
Flexion Angle               

PC1 Gait cycle flexion angle magnitude 65.09% -14.90 (56.42) -5.59 (63.33) 0.7  20.43 (58.94) 24.96 (45.40) 0.2  0.01 0.2 

PC2 Stance to swing angle range 15.79% -0.33 (40.32) -14.92 (28.65) 0.3  7.06 (28.97) 6.98 (37.71) 0.03  0.4 0.2 

PC3 Phase shift: timing of stance and peaks 11.91% -8.91 (30.64) 6.86 (32.91) 0.2  3.89 (24.13) -0.29 (25.38) 0.8  0.05 0.6 

PC4 Stance-phase range of motion 2.60% -4.99 (11.58) 6.78 (12.84) 0.008  0.95 (10.85) 0.06 (19.36) 0.2  0.03 0.4 

Adduction Angle               

PC1 Stance-phase adduction angle magnitude 57.40% 3.75 (20.31) 18.07 (16.15) <0.05  -6.79 (19.81) -11.47 (23.49) 0.001  0.03 0.005 

PC2 Mid-stance to terminal stance range  24.04% 0.02 (16.64) -1.18 (10.03) 0.8  -2.24 (12.82) -1.26 (7.02) 0.8  0.5 0.9 

PC3 Heal strike to mid-stance range 8.60% 1.21 (9.91) -2.79 (8.69) 0.3  0.49 (5.95) 2.83 (7.62) 0.2  0.7 0.1 

Flexion Moment               

PC1 Gait cycle flexion moment magnitude 72.59% -0.03 (1.99) 0.18 (1.68) 0.8  -0.39 (1.23) -0.20 (1.80) 0.2  0.5 0.6 

PC2 Stance-phase flexion moment range 16.53% -0.29 (0.56) -0.07 (0.66) 0.3  0.24 (0.57) 0.03 (0.77) 0.2  <0.001 0.8 

PC3 Phase shift: timing of flexion peaks 3.90% 0.00 (0.43) 0.01 (0.45) 0.9  0.01 (0.29) -0.08 (0.27) 0.9  0.9 0.6 

Adduction Moment               

PC1 
Stance-phase adduction moment 
magnitude 83.17% 0.06 (1.64) 0.04 (1.73) 0.9  -0.10 (0.85) -0.05 (0.99) 0.7  0.6 0.9 

PC2 First peak and mid-stance range 8.40% -0.19 (0.38) -0.12 (0.27) 0.6  0.10 (0.35) -0.13 (0.31) 0.07  0.001 0.9 

PC3 Mid-stance and second peak range 3.20% -0.08 (0.26) -0.04 (0.36) 0.6   0.15 (0.24) 0.13 (0.31) 0.07   <0.001 0.3 
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4.4.  Discussion  

Functional responders were characterized biomechanically by less stance-phase 

flexion-extension angle range, and lower adduction angle magnitudes pre-operatively 

(Table 4.4, Figure 4.4). In multivariate modeling, less stance-phase flexion-extension 

range was the only feature predictive of being a functional responder (Table 4.3). This is 

in agreement with a similar study by Naili et al. (n=28) who reported less sagittal plane 

knee angle range pre-TKA (stance to swing, 45±6° vs. 52±5°) in patients meeting 
minimal detectable change criteria in knee-related quality-of-life scores (Naili et al., 

2017). Less sagittal range is typically associated with “more severe” or stiffer sagittal 

plane kinematics, resembling more severe OA pattern norms (Astephen et al., 2008a, 

2008b) (Figure 4.4). Younger age was also associated with more WOMAC function 

improvements univariately (r=-0.41, p=0.005, Figure 4.3). Although younger patients 

typically report less satisfaction post-TKA (Williams et al., 2013a), they have been 

associated with more self-reported improvements (Alzahrani et al., 2011; Williams et al., 

2013a), attributed to improved functional abilities captured within activities of daily 

living scores. Of the function responders ≤ 55 in this study, most (4/5) demonstrated 

stance-phase flexion-extension angle ranges (PC4) below the norm pre-operatively, 

potentially representing a young stiff sagittal kinematics subset. Stiff kinematics, coupled 

with more radiographic severity (p=0.03), and trends towards more symptomatic severity 

(Table 4.1) aligns with previous inferences that more severe patients (typically measured 

by PROMs) tend to have better arthroplasty outcomes (Fortin et al., 1999; Hawker et al., 

2013; Jiang et al., 2017; Naili et al., 2017). This study suggests severity could be captured 

objectively during gait with knee kinematics. Further, these kinematic features could be 

detectable in clinical settings through simple wearable or marker-less motion capture. 

The only biomechanical gait feature descriptive of pain responders pre-TKA were 

lower stance-phase varus magnitudes, suggested by comparative tests and in multivariate 

modeling (Table 4.2,4.3). Conversely, pain non-responders appeared more varus during 

stance pre-operatively. While static and dynamic varus alignment have both been 

associated with further medial compartment OA severity (Henriksen et al., 2012; 
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Miyazaki et al., 2002; Orishimo et al., 2012), less radiographic and symptom severity in 

pain non-responders (Table 4.1) suggests a potential kinematic subgroup of 

constitutionally varus aligned (Bellemans et al., 2012) or kinematically varus individuals 

(Chang et al., 2010). Although interesting, these results should be interpreted with 

caution. Our exploratory approach did not account for multiple comparisons. This, 

coupled with small non-responder group sizes increased the possibility of Type I errors, 

and resulted in large confidence intervals around our estimates. However, visualizations 

of kinematic data did suggest that 10/12 pain (and 9/10 function) non-responders had pre-

operative varus angle magnitudes above the norm.  If the soft tissue and musculature 

surrounding the joint has adapted to native varus kinematics (Young et al., 2015), 

mechanics after standard arthroplasty might be perceived as un-natural, potentially 

contributing to less self-reported pain and function improvements. It has been suggested 

that standardized alignment may not be optimal for all patients (Blakeney et al., 2018; 

Parratte et al., 2010; Vanlommel et al., 2013). Vanlommel et al. reported significantly 

better function and knee scores in pre-operatively varus individuals, whose post-operative 

surgical alignment remained mildly varus (Vanlommel et al., 2013). Under these 

assumptions, native varus magnitudes might be a false signal during arthroplasty patient 

selection, or this presentation with an absence of other severe OA features might 

characterize clinical candidate subgroups for whom neutral corrections are not “clinically 

relevant” (Sosdian et al., 2014). Investigating patient biomechanical variability with 

respect to outcomes in larger studies is an important area for further research. These 

groups might benefit from altered clinical or surgical approach (such as individualized 

alignment, or a high tibial osteotomy), relative to standard of care arthroplasty.  

Patients who self-report less pain and function improvement post-operatively 

appeared to demonstrate less objective functional improvements during gait. Non-

responders showed significantly reduced stance-phase varus angles post-TKA, yet lagged 

in terms of sagittal kinematic and kinetic loading pattern corrections typically reported in 

population average studies (Table 4.2,4.4) (Bonnefoy-Mazure et al., 2017; Hatfield et al., 

2011; Smith et al., 2004; Wilson et al., 2015). Naili et al. proposed poor patient-reported 

outcomes might be partially explained by a lack of dynamic kinematic and kinetic 
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corrections, despite alignment corrections in the frontal plane, a feature surgery may be 

most able to biomechanically address (Naili et al., 2017). Although our results suggested 

less three-dimensional corrections among non-responders overall (Tables 4.2,4.4), we did 

find frontal plane changes associated with self-reported pain and function gains. 

Specifically, less varus magnitude reductions (in both pain and function), and larger 

increases in dynamic frontal plane loading (PC2) (in function alone), were independently 

associated with more PROMs improvements (Figure 4.3). This was a unique finding, 

supporting our interpretation that standard arthroplasty might not be optimal for a subset 

of patients. Post-hoc tests also found no difference in the magnitude of varus reduction 

imposed among the five surgeons involved (p≥0.8). Further work should investigate if 

individualized frontal plane mechanics approaches during surgery and rehabilitation have 

subsequent benefits to the three-dimensional gait features not consistently addressed 

among non-responders by standard arthroplasty.  

Despite being a relatively large three-dimensional gait study sample, fewer non-

responders relative to responders makes generalizing results to the TKA population 

difficult. We instead aimed to provide insights between comprehensive biomechanical 

and clinical datasets, and share valuable information to guide targeted research. Our 

exploratory approach did not correct for multiple comparisons, and results should be 

interpreted as preliminary evidence of patient subgroups that may benefit from altered 

treatment approaches. Further, the power in our ability to detect pre to post-TKA gait 

changes among non-responders was low (9-32%). However, small permutations between 

pain and function non-responder groups (non-responder overlap of 8/12 and 8/10 

respectively), operated as a natural sensitivity analysis, improving confidence in findings 

reported in both domains. Radiographs for KL grade were not available for all 

individuals, nor were full-leg standing radiographs, limiting our ability to translate 

stance-phase findings to static alignment traditionally considered surgically. Using MCID 

thresholds to dichotomize outcomes was also not without limitations. MCID thresholds 

are not applicable for measuring individual change for all patients, nor do they translate 

well to global metrics, such as satisfaction (Katz et al., 2015; Williams et al., 2013b). 

MCID can further be influenced by symptom severity pre-operatively (Escobar et al., 
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2013), and questionnaire ceiling effects may restrict rates of patients meeting MCID 

thresholds, despite having improved. Still, PROM responsiveness scores have been 

recommended by the International Society of Arthroplasty Registries Working Group 

(Rolfson et al., 2016) and others (Roos, 2018), due to their ability to improve within and 

between-patient score interpretations from interventions. Pain and function domains were 

selected as they tend to be key outcomes assessed post-TKA, and the domains most 

associated with satisfaction (Scott et al., 2010). Seventy-four and 78% of patients met 

MCID pain and function thresholds, greater than a previous Canadian study (Hawker et 

al., 2013), but aligning closely with others (Escobar et al., 2007; Quintana et al., 2006) 

and the 20% dissatisfaction rate typically reported post-TKA (Robertsson and Dunbar, 

2001). WOMAC pain and function domains also tend to be less susceptible to floor and 

ceiling effects over joint stiffness (Dunbar et al., 2001); no study non-responders 

experienced ceilings post-operatively.  

This study contributes to the growing body of evidence which suggests variability in 

patient-reported outcomes may be partially explained by a combination of clinical and 

objectively measured knee joint biomechanical factors. Specifically, more “severe” 

objective gait features pre-operatively tended to be associated with a larger potential for 

both objective and self-reported functional improvements (Naili et al., 2017). A unique 

finding of this study was the indication of varus kinematic subgroups who may be 

susceptible to less pain and function improvements from standard arthroplasty, and that 

larger reductions in stance-phase varus alignment may be un-favourable to some patients. 

These trends warrant further investigation. Objective functional assessment pre-

operatively may aid in identifying the optimal functional state (the “sweet spot”) 

associated with patient-reported improvements, and help identify those who may benefit 

from an individualized approach; informing triaging, surgical planning and expectation 

management strategies. Our findings support the notion that TKA innovation needs to 

better understand three-dimensional knee mechanics at an individual level, to provide 

expected improvements for all patients.  
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Chapter 5. Biomechanics Phenotypes Among TKA 
Candidates   

 

5.1.  Introduction 

Osteoarthritis (OA) populations are increasingly being characterized as 

heterogeneous, composed of multiple distinct subtypes or phenotypes, presenting 

clinically through various forms of knee joint-level and symptom manifestations 

(Andriacchi et al., 2014; Bannuru et al., 2019; Castaneda et al., 2013; Lane et al., 2011). 

Regardless of OA phenotype presentation, the most common end-stage treatment for 

knee OA is total knee arthroplasty (TKA), an inherently mechanical surgery which 

follows a standardized approach for most patients regardless of the heterogeneity. 

However, patient-specific joint mechanics during gait pre-operatively, and the magnitude 

of change in joint mechanics as a result of surgical intervention may contribute to both 

patient-reported and objective functional outcomes after arthroplasty (P R Biggs et al., 

2019; Naili et al., 2017; Young-Shand et al., 2020). Specifically, OA patients with lower 

functioning gait patterns pre-operatively may experience greater self-reported and 

objective benefits from arthroplasty (Naili et al., 2017; Young-Shand et al., 2020). This 

work also proposed the existence of gait kinematic phenotypes, for whom standard TKA 

might yield better (and worse) patient-reported outcomes (Naili et al., 2017; Young-

Shand et al., 2020). Understanding these patient phenotypes is relevant to intervention 

strategies (Felson, 2010), as treatment targeting individual manifestations or deficiencies 

might yield greater self-reported improvements (Naili et al., 2017; Young-Shand et al., 

2020), and optimize the number of patients whose gait function is restored to healthy 

norms (Paul Robert Biggs et al., 2019; Outerleys et al., 2021). 

To date, joint-level biomechanical variability during gait among TKA candidates has 

primarily been assessed through a priori group definition, stratifying OA patients by sex 

(Paterson et al., 2017; Wilson et al., 2015), frontal plane alignment (Turcot et al., 2012), 

obesity (Paterson et al., 2017),  or patient-reported symptoms before (Thorp et al., 2007; 

Wilson et al., 2017), and after arthroplasty (Naili et al., 2017; Young-Shand et al., 2020). 

While helpful in understanding how specific patient groups respond to standard of care 
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surgery, these studies provide little evidence into how patient demographic and joint-

level features naturally separate. Data-driven strategies such as multivariate unsupervised 

data partitioning (i.e., data clustering) can characterize phenotypes by modes of statistical 

separation and similarity, and have been recommended for OA phenotype research (Spil 

et al., 2020). Few studies have applied unsupervised methodologies to OA populations. 

Knoop et al. identified five clusters by radiographic severity, muscle strength, body mass 

index (BMI), and depression scores (Knoop et al., 2011). Elbaz et al. reported four 

clusters using spatiotemporal gait parameters (Elbaz et al., 2014). Most recently, 

Waarsing et al. identified four clusters by demographics, cartilage features, mechanical 

alignment, and self-reported symptoms, with clusters strongly characterized by joint-level 

structural degradation (Waarsing et al., 2015), indicative of variable functional loading 

(Andriacchi et al., 2009). Phenotyping discussions consistently propose the existence of 

biomechanical-driven OA subtypes (Andriacchi et al., 2014; Bannuru et al., 2019; 

Castaneda et al., 2013), however prior studies lack information on joint-level 

biomechanics, and have not addressed outcomes of interventions such as TKA at a 

cluster/group level. With the goal of individualizing treatment plans to patient groups, 

there is a need to better understand TKA candidate biomechanical variability to inform 

targeted non-invasive rehabilitation approaches, surgical correction and decision-making 

strategies, or prosthesis innovations addressing phenotype-specific biomechanical 

deficits.  

The primary aim of this study was to identify knee joint biomechanical phenotypes 

(clusters) among TKA candidates based on similarities in patient demographics, frontal 

and sagittal plane knee kinematics and kinetics during gait. The secondary aim was to 

compare objective functional gait improvements between phenotypes after standard 

TKA. It was hypothesized that distinct biomechanical phenotypes exist within TKA 

populations, varying by levels of knee function severity (Young-Shand et al., 2020), and 

that patient phenotype categorization would be associated with the degree of objective 

functional improvement experience after TKA. 
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5.2.  Methods 

This was a secondary study of severe knee OA patients scheduled for TKA between 

2003 and 2016 recruited from a high-volume academic orthopaedic clinic to undergo 

three-dimensional (3D) instrumented gait analysis one week prior to (n=135) and one-

year post-TKA (n=109) (Young-Shand et al., 2020). Included patients were able to walk 

six meters unassisted without a walking aid. Patients were excluded if they screened 

positive for neurological disease, or other conditions that might affect their gait or ability 

to safely participate in walking trails. TKA followed a standard medial parapatellar 

approach, with femur and tibial cuts targeting neutral mechanical alignment. The 

measured resection technique was used to achieve a balanced flexion-extension gap. 

Informed consent was obtained from all participants according to the institution ethics 

board.  

5.2.1. Gait Analysis Data Collection  

Patient factors and demographics, including age, sex, mass, height, and OA structural 

severity, as graded by an orthopaedic surgeon using the Kellgren-Lawrence (KL) global 

radiographic score (Kellgren and Lawrence, 1957) were collected as part of a gait 

assessment protocol. Four triads of infrared light-emitting markers were attached to the 

surgical lower limb segments of the pelvis, thigh, shank, and foot to establish local rigid 

body coordinate systems. Individual light-emitting markers were placed on boney 

landmarks of the shoulder, greater trochanter, lateral epicondyle and lateral malleolus, 

while eight digitized points measured during quiet standing were used to define local 

anatomical joint axes following a standardized protocol (Landry et al., 2007). Participants 

walked along a five-meter walkway wearing comfortable walking shoes at a self-selected 

speed. An Optotrak™ (Northern Digital Inc., Waterloo, ON, Canada) optoelectronic 

motion capture system sampling at 100 Hz captured three-dimensional kinematics of the 

lower limb, and was synchronized to a walkway embedded AMTI Biomechanics 

Platform System (Advanced Medical Technology Inc., Watertown, MA) sampling at 

2000 Hz to capture three-dimensional external ground reaction forces. Knee joint angles 

during gait were calculated using the joint coordinate system (Grood and Suntay, 1983). 

Net resultant knee joint moments were calculated using inverse dynamics (Costigan et al., 
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1992; Deluzio et al., 1993; Li et al., 1993), amplitude normalized to body mass. Up to 

seven (minimum four) walking trials were averaged and normalized for each participant 

to one gait cycle (0-100%) for flexion/extension angles, and to stance phase (0-100%) for 

3D knee moments and adduction angles. 

5.2.2. Data Preparation for Clustering  

Principal Component Analysis (PCA), a multivariate statistical analysis and data 

reduction technique (Deluzio and Astephen, 2007), was used to extract temporal gait 

angle and moment features, having demonstrated improved sensitivity over discrete 

feature selection alone (Hatfield et al., 2011). Previously reported (Young-Shand et al., 

2020) frontal and sagittal knee angle and moment gait PCs that described major features 

of gait variability were extracted. Pre-TKA demographics (age, sex), body mass index 

(BMI), walking speed, and pre-TKA frontal and sagittal gait angle and moment PC score 

features previously found to differentiate sex (Wilson et al., 2015), OA severity 

(Astephen et al., 2008a, 2008b), symptoms (Thorp et al., 2007; Wilson et al., 2017), and 

self-reported patient outcomes (Naili et al., 2017; Young-Shand et al., 2020), were 

selected for cluster analysis (15 features, Table 5.1). 

Clustering can be sensitive to outliers, so all features were standardized to z-scores 

(mean=0, standard deviation=1) and assessed for outliers (Milligan and Cooper, 1988). 

One pre-TKA session with a feature exceeding Tukey’s outer (3*IQR) fence was 

removed, resulting in a cluster dataset of npre-TKA=134 patient waveforms. Of these 

patients, one-year matched pre to post-TKA instances were available from npost-TKA=105 

instances. One missing observation was due to data collection errors, the remaining were 

lost to follow up at the time of data extraction.  

5.2.3. Clustering and Statistical Analysis 

To gain insights into variations of joint-level biomechanical phenotypes among TKA 

candidates, machine learning based cluster analysis was applied to the pre-TKA dataset 

([134x15]; 15 features). Most clustering algorithms use proximity distance metrics (e.g., 

Euclidian or Manhattan distances) to summarize similarity (or dissimilarity) between data 

points. However, when using high-dimensional data, the distance between the furthest 
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and closest point (relative contrast) diminishes, reducing the ability of distance metrics to 

discriminate near and far neighbours (Lee and Verleysen, 2007). Dimension reduction 

methods can transform the high-dimensional data into a lower-dimensional space, while 

preserving the cluster structure and therefore restoring the relevance of distance metrics 

(Lee and Verleysen, 2007). As such, two-dimensional multidimensional scaling (MDS) 

(Gower, 1966), a dimension reduction technique using Manhattan distances was applied. 

This represented demographic and pre-TKA PC score data in lower-dimensional 

coordinates ([134x2]; 2 features) while preserving inherent multi-dimensional distances 

between observations from the original higher-dimensional space (Lee and Verleysen, 

2007). Hierarchical agglomerative (bottom-up) cluster analysis using Ward’s minimum 

variance criteria (Clatworthy et al., 2005; Ward, 1963) was then applied to the MDS 

coordinates, the most commonly used unsupervised technique in the OA literature 

(Deveza et al., 2017). Each observation is considered a single cluster (a leaf), and at each 

step, the two clusters associated with the minimal increase in variance via Ward’s criteria 

are combined (two leaves are merged), forming a new cluster. This process is repeated 

until all observations are members of a single root. Several clustering solutions (number 

of clusters k=2:10) were assessed using mean silhouette width criterion (Rousseeuw, 

1987). A silhouette width coefficient s of observation x measures how similar observation 

x is to its own cluster (cohesion) compared to other clusters (separation). A silhouette 

width close to -1 indicates observation x is “misclassified”, much closer to a 

neighbouring cluster over its own. A silhouette width close to 1 indicates observation x is 

“well clustered”, much closer to its own cluster over a neighbouring one. Thus, the best 

clustering solutions are the ones with the highest mean silhouette widths. We used an 

additional criterion, the Adjusted Rand Index (ARI), to quantify cluster stability, a metric 

bound by ±1 (0[completely random]-1[perfect agreement]) (Hubert, 1985). The cluster 
model of the full data set was compared with 100 subsets of the full dataset (fraction of 

0.8) for k=2:10, and mean ARI was reported. The selected clustering solution (k clusters) 

with the greatest mean s and ARI was chosen, reported in the Results.  

To validate clusters and to understand how clusters differ in TKA response, between-

cluster differences in person factors, demographics and gait features were examined pre-
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TKA (n=134) and pre to post-TKA in terms of gait changes (∆PCscore=PostPCscore–
PrePCscore, n=105 matched pre to post-TKA instances). Chi-squared (sex), Kruskal-

Wallace (KL score), and k-way ANOVA (age, BMI, gait speed, pre-TKA PC score, ∆PC 
score) tests with Tukey's honestly significant difference (HSD) were used. Intra-cluster 

pairwise pre vs. post-TKA (n=105) gait differences within clusters were examined using 

paired Student’s t-tests. Using Bonferroni corrections to adjust for multiple comparisons, 

observations at the 0.001 significance level were considered significant. All analyses 

were conducted using R (R Foundation for Statistical Computing, Vienna, Austria). 

 

5.3.  Results 

By applying silhouette and ARI criteria (s=0.37, ARI=0.57, Appendix B, Table B.1, 

Figure B.1), the best clustering solution had four (k=4) TKA candidate clusters with 

inherent similarities.  

5.3.1. Inter-Cluster Characterization Pre-TKA  

Cluster 1: ‘Higher functioning males’ was a small compact cluster (n=7, Appendix 

B Figure B.1) consisting of only males. Cluster 1 patients walked with faster self-selected 

gait speeds than clusters 2 and 3 (mean 1.2 SD 0.2 m/s; 3<2<,4,1; p<0.001), and had the 

largest flexion angle (PC4; 3,4,2<1; p<0.001) and flexion moment range (PC2; 3<2<4<1; 

p<0.001) among the clusters during stance pre-TKA. Cluster 1 also had the highest 

stance-phase adduction moment magnitudes (PC1; 3,4<2,1; p<0.001), and adduction 

moment range from the first peak to mid-stance (PC2; 3,2<4<1; p<0.001), and from mid-

stance to second peak (PC3; 3,2<1; p=0.001). Cluster 1 therefore showed the greatest 

dynamic loading/unloading kinetics and kinematic range patterns, representing a higher 

functioning male subset, most resembling asymptomatic patterns (Astephen et al., 2008a) 

(Figure 5.1, Table 5.1).  
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Figure 5.1. Mean pre-TKA gait waveforms by cluster; cluster 1 (solid), cluster 2 (dashed), cluster 
3 (dot-dashed), and cluster 4 (dotted). Grey denotes 209 previously captured asymptomatic (mean 
age 51.6 ±9.0, BMI 26.7±4.5) gait patterns (mean ± 1SD). 

 

Cluster 2: ‘Lower functioning males’ also consisted of mostly males (44/47) who 

walked with slower gait speeds than clusters 1 and 4 (mean 0.8 SD 0.2 m/s; 3<2<4,1; 

p<0.001), and trended towards being older (mean 67.0 SD 7.4 years; 1,4<2; p=0.006). 

Cluster 2 also had higher overall knee adduction moment magnitudes (PC1; 3,4<2,1; 

p<0.001) than clusters 3 and 4, yet walked with less biphasic kinetic and kinetic range 
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(more “stiff-kneed”) than cluster 1, demonstrated by less adduction moment range from 

first peak to mid-stance (PC2; 3,2<4<1; p<0.001), from mid-stance to the second peak 

(PC3; 3,2<1; p=0.001), and less stance-phase flexion moment range during stance (PC2; 

3<2<4<1; p<0.001). Cluster 2 therefore represented a slower, lower functioning stiff-

kneed male subset (Figure 5.1, Table 5.1).  

Cluster 3: ‘Lower functional females’ was mostly (32/34) female with the slowest 

gait speeds (mean 1.2 SD 0.2 m/s; 3<2<4,1; p<0.001) among the clusters. Cluster 3 also 

had the lowest overall flexion angle magnitudes (PC1; 3<2,4,1; p<0.001). Kinetically, 

cluster 3 had large overall flexion moment magnitudes (PC1; 1,4<3 & 2<3; p<0.001), the 

least stance-phase flexion moment range (PC2; 3<2<4<1; p<0.001), and less adduction 

moment change from first peak to mid-stance (PC2; 3,2<4<1; p<0.001), and mid-stance 

to the second peak (PC3; 3,2<1; p=0.001). Cluster 3 therefore captured a slow, lower 

functioning female subset, with the stiffest-kneed gait among the clusters (Figure 5.1, 

Table 5.1).  

Cluster 4: ‘Higher functioning females’ also consisted of mostly females (43/46) 

who walked with faster gait speeds (mean 1.0 SD 0.1 m/s; 3<2<4,1; p<0.001). Similar to 

the other female cluster, cluster 4 had lower overall knee adduction moment magnitudes 

(PC1; 3,4<2,1; p<0.001). However, cluster 4 also had more dynamic kinetic frontal 

(adduction moment PC2; 3,2<4<1; p<0.001) and sagittal (flexion moment PC2; 

3<2<4<1; p<0.001) loading range relative to clusters 2 and 3, yet was more stiff-kneed 

relative to cluster 1. Cluster 4 therefore represented a higher functioning female subset 

(Figure 5.1, Table 5.1).  

OA radiographic severity did not differ between clusters (Kellgren-Lawrence global 

rating, p=0.4 from 102/134 cases, Table 5.1). Pre-TKA, predominantly male clusters (1 

and 2) had greater overall adduction moment magnitudes relative to mostly female 

clusters (PC1; 3,4<2,1; p<0.001). Higher functioning clusters (1 and 4), walked at faster 

gait speeds (3<2<4,1; p<0.001) and had more dynamic loading/un-loading kinetics, 

shown by more stance-phase flexion (PC2; 3<2<4<1; p<0.001) and adduction (PC2; 

3,2<4<1; p<0.001) moment range relative to clusters 2 and 3.  
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Figure 5.2. Mean post-TKA gait waveforms by cluster; cluster 1 (solid), cluster 2 (dashed), 
cluster 3 (dot-dashed), and cluster 4 (dotted). Grey denotes 209 previously captured 
asymptomatic (mean age 51.6 ±9.0, BMI 26.7±4.5) gait patterns (mean ± 1SD). 
 

5.3.2. Inter-Cluster and Intra-Cluster Changes Pre to Post-TKA  

Pre to post-TKA (n=105, Figure 5.2, Table 5.2), both lower functioning male and 

female clusters (2 and 3) demonstrated greater increases in gait speed (4<2,3, p<0.001), 

and tended to demonstrate more improvements in knee flexion moment, and knee 

adduction moment loading patterns pre to post-TKA (Table 5.2), changes typically 
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expected to increase (improve) from surgery (Hatfield et al., 2011). For example, cluster 

2, lower functioning males, experienced improvements in frontal plane adduction 

moment features, shown by pre to post-TKA changes in adduction moment PCs 1-3. 

However, the magnitude of these changes did not differ by those experienced by other 

clusters. Cluster 3, lower functioning females, did demonstrate more gait feature 

improvements than the other clusters, generally in the sagittal plane. This was shown by 

greater increases in overall flexion angle magnitude (∆PC1; 2,4<3; p=0.001), stance to 
swing range (∆PC2; 1,4,2<3; p<0.001), and a larger decrease in overall flexion moment 
loading magnitude (∆PC1; 3<4,2,1; p<0.001).  

Conversely, the highest functioning phenotype, cluster 1, higher functioning males, 

experienced no significant improvement in any gait feature pre to post-TKA (p>0.02). 

Instead, this group showed trends towards reductions in flexion angle range (PC2; 

p=0.05) and increases in flexion loading magnitudes (PC1; p=0.04), changes that would 

typically move patterns further away from asymptomatic norms. Higher functioning 

females, cluster 4, only demonstrated a decrease in adduction angle magnitude post-TKA 

(PC1; p<0.001), with no other kinematic or kinetic gait features significantly improving.  



 

  70 

Table 5.1. Baseline demographic and gait feature (PC score, % variance explained) differences between clustered groups, with significant features 
bolded. Normally distributed variables represented as means and standard deviations, non-normally distributed variables represented as medians 
and 95% confidence intervals. PCs were defined such that larger values indicate greater magnitudes in the direction of the provided interpretation. 
E.g., larger Knee Flexion Angle PC1 indicates greater flexion angle magnitudes. 
Feature  

1: Higher functioning 

males 

2: Lower functioning 

males 

3: Lower functioning 

females 

4: Higher functioning 

females 
p Tukey HSD 

Male, Female (n) 0, 7 3, 44 32, 2 43, 3 <0.001  

Age (years) 59.1 (8.5) 67.0 (7.4) 62.9 (8.1) 62.6 (6.7) 0.006  

BMI (Nm/kg) 31.3 (5.0) 33.1 (6.2) 35.1 (6.6) 32.2 (5.7) 0.2  

KL Global Score 4.0 (3,4) 4.0 (3,4) 4.0 (3,4) 4.0 (3,4)   

KL Global of 0:1:2:3:4 0:0:0:2:4 0:0:1:9:25 0:0:1:12:15  0:0:0:16:17 0.4  

Gait speed (m/s)  1.2 (0.2) 0.8 (0.2) 0.7 (0.1) 1.0 (0.1) <0.001 3<2<4,1 

Knee Flexion Angles            

Gait cycle flexion angle magnitude (PC1; 65.1%) 30.3 (32.6) -12.2 (54.8) -77.5 (60.8) -1.4 (55.6) <0.001 3<2,4,1 

Stance to swing angle range (PC2, 15.8%) 24.2 (6.7) 6.0 (26.6) -15.9 (37.1) -1.5 (35.0) 0.004  

Phase shift: earlier terminal stance toe off (PC3; 11.9%)  12.6 (32.0) -7.1 (28.1) -8.4 (32.2) 3.4 (22.8) 0.08  

Stance-phase range of motion (PC4; 2.6%)  21.0 (12.8) 3.3 (10.5) -5.1 (8.6) 0.0 (13.2) <0.001 3,4,2<1; 3<2 

Knee Adduction Angles            

Stance-phase adduction angle magnitude (PC1; 57.4%)  3.7 (12.0) -1.1 (20.4) 0.5 (24.1) 10.2 (20.7) 0.06  

Knee Flexion Moments            

Gait cycle flexion moment magnitude (PC1; 72.6%) -1.5 (1.0) -0.4 (1.7) 1.0 (1.8) 0.4 (1.7) <0.001 1<4,3; 2<3 

Stance-phase flexion moment range (PC2; 16.5%)  1.2 (0.5) -0.3 (0.5) -0.8 (0.4) 0.0 (0.6) <0.001 3<2<4<1 

Phase shift: earlier flexion/extension peaks (PC3; 3.9%)  0.3 (0.5) -0.1 (0.4) 0.0 (0.4) 0.1 (0.4) 0.05  

Knee Adduction Moments            

Stance-phase adduction moment magnitude (PC1; 

83.2%) 
2.2 (1.2) 0.9 (1.1) -0.5 (2.0) 0.0 (1.6) <0.001 3,4<2,1 

First peak and mid-stance range (PC2; 8.4%)  0.5 (0.6) -0.2 (0.3) -0.4 (0.3) 0.1 (0.3) <0.001 3,2<4<1  

Mid-stance and second peak range (PC3; 3.2%)  0.3 (0.3) -0.1 (0.3) -0.1 (0.3) 0.0 (0.3) 0.001 3,2<1 
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Table 5.2. Change (Δ: post-TKA – pre-TKA) in gait speed and gait features (PC score) between and within clustered groups, with significant features 
bolded. Variables represented as means and standard deviations.  
  1: Higher functioning males   2: Lower functioning males   3: Lower functioning females   4: Higher functioning females      p 

 
Pre-TKA Post-TKA Δ p 

Pre/Post 
 Pre-TKA Post-TKA Δ p 

Pre/Post 
 Pre-TKA Post-TKA Δ p 

Pre/Post 
 Pre-TKA Post-TKA Δ p 

Pre/Post 
 Δ ANOVA 

Female, Male  0, 6       3, 34       26, 1       33, 2    
Gait speed 
(m/s) 

1.1 (0.1) 1.2 (0.1) 0.1 (0.1) 0.02  0.8 (0.2) 1.0 (0.2) 0.2 (0.2) <0.0001  0.7 (0.1) 1.0 (0.2) 0.3 (0.2) <0.001  1.1 (0.1) 1.1 (0.2) 0.1 (0.1) 0.005  <0.001 

Knee Flexion Angles    
PC1 28.7 (35.4) 57.1 (43.7) 28.3 (47.2) 0.2  -6.5 (56.4) 15.9 (45.4) 22.4 (43.9) 0.004  -75.9 (63.3) 15.8 (50.2) 91.7 (71.8) <0.001  -2.5 (58.5) 22.2 (64.7) 24.7 (89.2) 0.1  0.001 

PC2 22.8 (6.1) -7.6 (30.9) -30.4 (28.8) 0.05  3.2 (27.7) 11.3 (25.3) 8.1 (34.2) 0.2  -20.2 (35.8) 13.1 (30.1) 33.4 (36.3) <0.001  0.1 (34.5) -2.8 (28.1) -2.9 (40.6) 0.7  <0.001 

PC3 10.1 (34.3) 20.0 (22.7) 9.9 (15.4) 0.2  -10.7 (28.1) 4.0 (27.2) 14.7 (27.6) 0.003  -11.1 (30.2) -10.8 (22.0) 0.3 (28.9) 0.9  3.9 (18.0) 3.3 (22.7) -0.5 (23.4) 0.9  0.06 

PC4 21.9 (13.7) 14.1 (9.8) -7.8 (8.6) 0.08  2.9 (11.3) 5.0 (15.0) 2.2 (16.2) 0.4  -4.8 (8.6) -2.1 (11.9) 2.7 (11.6) 0.2  -0.2 (13.0) -0.4 (10.8) -0.2 (16.1) 0.9  0.4 

Knee Adduction Angles    
PC1 1.0 (10.5) -13.1 (20.3) -14.1 (16.6) 0.09  1.1 (21.1) -10.7 (17.9) -11.9 (24.6) 0.006  1.1 (26.3) -7.7 (25.5) -8.8 (34.8) 0.2  9.1 (20.0) -6.2 (17.0) -15.3 (23.2) <0.001   0.8 

Knee Flexion Moments    
PC1 -1.8 (0.9) -0.7 (1.3) 1.1 (0.9) 0.04  -0.6 (1.8) -0.2 (1.6) 0.4 (1.9) 0.3  1.3 (1.8) -0.3 (1.3) -1.6 (1.6) <0.001  0.3 (1.7) 0.0 (1.1) -0.3 (1.7) 0.3  <0.001 

PC2 1.1 (0.5) 1.4 (0.4) 0.3 (0.5) 0.1  -0.3 (0.5) 0.4 (0.8) 0.6 (0.8) <0.001  -0.8 (0.4) -0.1 (0.6) 0.7 (0.7) <0.001  0.0 (0.6) 0.2 (0.5) 0.1 (0.7) 0.2  0.009 

PC3 0.4 (0.5) 0.1 (0.5) -0.2 (0.3) 0.2  0.0 (0.4) 0.0 (0.3) 0.0 (0.4) 0.9  0.0 (0.4) -0.1 (0.3) 0.0 (0.4) 0.5  0.1 (0.5) 0.0 (0.3) -0.1 (0.4) 0.3  0.7 

Knee Adduction Moments    
PC1 2.2 (1.3) 0.9 (0.6) -1.3 (0.9) 0.02  0.9 (1.0) 0.1 (0.9) -0.8 (1.1) <0.001  -0.5 (2.1) -0.6 (0.9) -0.1 (1.8) 0.9  -0.2 (1.7) -0.1 (0.9) 0.2 (1.6) 0.5  0.008 

PC2 0.4 (0.5) 0.2 (0.5) -0.2 (0.3) 0.3  -0.3 (0.3) 0.0 (0.4) 0.3 (0.4) 0.001  -0.4 (0.3) 0.0 (0.3) 0.4 (0.3) <0.001  0.1 (0.3) 0.2 (0.4) 0.1 (0.4) 0.07  0.01 

PC3 0.2 (0.3) 0.5 (0.3) 0.2 (0.3) 0.09  -0.1 (0.3) 0.1 (0.3) 0.2 (0.2) <0.001  -0.1 (0.3) 0.0 (0.2) 0.1 (0.2) 0.01  0.0 (0.3) 0.1 (0.3) 0.1 (0.3) 0.005   0.3 
Tukey HSD results:  
Gait Speed: 4<2,3 
Knee Flexion Angle PC1:  2,4<3 
Knee Flexion Angle PC2: 1,4,2<3 
Knee Flexion Moment PC1: 3<4,2,1
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5.4.  Discussion  

Severe knee OA TKA candidates are heterogenous with respect to demographics and 

knee joint kinematics and kinetics during gait, and can be characterized by four clusters. 

Although previous studies have provided valuable evidence of a priori variability among 

TKA candidates (typically using bi-variate stratification), this is the first study to provide 

indications of multivariable patient profiles, and insights into feature combinations that 

represent inherent similarities and natural heterogenous subsets among typical TKA 

candidates, incorporating both patient demographics and knee joint-level biomechanics.  

Patient sex, in combination with knee kinematic and kinetic gait features were 

dominant in group separation, resulting in phenotypes of mostly male or female clusters. 

Few studies have addressed sex difference among TKA patients. Both Astephen Wilson 

et al. (Wilson et al., 2015) and Paterson et al. (Paterson et al., 2017) reported greater 

magnitudes of frontal plane adduction moments among men pre-TKA. Female TKA 

candidates have also been shown to present with less biphasic sagittal stance moments, 

greater flexion moment magnitudes, and less range of flexion and extension motion, 

descriptive of a stiffer gait with a more constant sagittal loading pattern (Wilson et al., 

2015). Our findings support this, such that both male clusters (1 and 2) had higher 

adduction moment magnitudes (PC1, 3,4<2,1), and females tended to have higher flexion 

moment loading magnitudes (PC1, 1<4,3; 2<3). However, our results also identified a 

sizable, lower functioning male phenotype (cluster 2), who had less dynamic biphasic 

flexion moments (PC2, 3<2<4<1) than the higher functioning females (cluster 4). As our 

lower functional females (cluster 3) exhibited distinctly more “severe” (Astephen et al., 

2008a) mechanics (Figure 5.1), mean sagittal plane kinetics of both our female groups 

combined would be consistent with less asymptomatic patterns than males. Therefore, 

less biphasic flexion-extension moments may not characterize pre-TKA females in 

general. It was interesting that a lower functioning female cluster did exist, exhibiting 

notably “more severe” knee joint kinematics and kinetics mechanics than any other 

cluster. Conversely, the lower functioning male cluster was most similar to the higher 

functioning female cluster. Females in an older adult population are predisposed to the 
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development of OA (Buckwalter and Lappin, 2000), have a greater incidence of 

radiographic and symptomatic OA severity (Felson et al., 1987; Srikanth et al., 2005), 

have been associated with worse self-reported disability (King et al., 2018), and tend to 

have less encouragement to undergo TKA (Borkhoff et al., 2009). These factors coupled 

with delayed interventions may contribute to the slower gait speed (Astephen et al., 

2008a), and more severe biomechanical presentation amongst female OA patients in this 

study, despite trending towards being younger (Table 5.1). Differences could further be 

associated with sex-specific joint morphologies (Mahfouz et al., 2011), perhaps 

influencing joint-level structural damage manifestations, and sex-specific neuromuscular 

control (Wilson et al., 2015). Unsupervised separation strategies enabled us to identify 

more complex combinations of patient sex and gait interactions inherent within the TKA 

candidate population, better complimenting individual variability, and aiding our ability 

to provide targeted treatment and management for all OA individuals (Bannuru et al., 

2019; Bierma-Zeinstra and Verhagen, 2011). Further, biomechanical assessment and 

cluster assignment may aid in the development of patient prioritization practices that are 

independent of possible gender bias, enabling timely interventions for all patients.  

Gait improvements post-TKA were cluster specific. Both male clusters had greater 

adduction moment magnitudes pre-TKA (PC1, 3,4<2,1), and post-TKA reductions in 

adduction moment magnitude were significant in the lower functioning male cluster 

(p<0.001), with trends towards reductions among higher functioning males (p=0.02), 

Table 5.2. No adduction moment reductions occurred among either female clusters 

(p>0.5), corroborating prior sex-specific findings (Wilson et al., 2015). Similarly, of the 

female clusters presenting with greater flexion moment loading (PC1, 1<4,3), reductions 

were only significant for the lower functioning female cluster (p<0.001), and not for the 

higher functioning female, or male cluster (Wilson et al., 2015). In general, the lower 

functioning female cluster, followed by the lower function male cluster, demonstrated the 

most improvement in knee joint kinematics and kinetics from arthroplasty relative to their 

higher functioning sex-matched clusters (Table 5.2). These improvements are typically 

expected after TKA, moving waveforms toward asymptomatic norms (Hatfield et al., 

2011) (Figures 5.1-5.2). Conversely, higher functioning females (cluster 4) only 
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demonstrated decreased adduction angle magnitudes during stance (PC1). Among TKA 

candidates with higher static and dynamic adduction angles pre-TKA, reductions in this 

feature have been associated with worse post-operative self-reported pain, function 

(Vanlommel et al., 2013; Young-Shand et al., 2020) and quality of life scores (Naili et 

al., 2017). High functioning males (cluster 1) showed no improvements among any gait 

feature pre to post-TKA (p≥0.02). Although this group was small, limiting the statistical 

power to detect changes, it is notable that some features trended away from asymptomatic 

patterns (i.e., worsened) pre to post-TKA, such as decreases in stance to swing flexion 

angle range (p=0.05) (Table 5.2). Overall, these higher functioning clusters lagged in 

terms of knee kinematic and kinetic improvements seen among the lower functioning 

clusters from arthroplasty (Table 5.2).  

In the patient-reported outcome literature, patients with worse self-reported symptoms 

preoperatively have been well characterized to experience the largest relative 

improvements in self-reported scores post-operatively (Hawker et al., 2013; Jiang et al., 

2017). In gait studies, both Naili et al. (Naili et al., 2017)  and Young-Shand et al. 

(Young-Shand et al., 2020) both stratified TKA patients based on self-reported 

improvements after TKA. Cohorts with more “severe” gait patterns pre-TKA tended to 

experience greater degrees of biomechanical improvement and self-reported 

improvement from arthroplasty. This is perhaps because patients with worse gait 

mechanics pre-operatively have more capacity for objective improvements from surgery, 

and are less likely to experience an improvement ceiling effect (Paul Robert Biggs et al., 

2019; Outerleys et al., 2021). The findings of this study support this theory, but further 

suggest the presence of a small (6/105, 6%) higher functioning male phenotype who may 

not experience any functional benefit from standard TKA, and a sizable (35/105, 33%) 

higher functioning female cohort whose biomechanical gain from TKA was negligible to 

small (Figures 5.1-5.2). A study by Knoop et al. (Knoop et al., 2011) used cluster 

analysis to identify subsets of OA patients. They characterized a “minimal joint disease 

phenotype”, a cohort of patients that were less symptomatic and may not have needed 

specific interventions to manage OA disease and symptoms. This “minimal joint disease 

phenotype” might coincide with our identified higher functioning male and female 
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clusters, despite not identifying OA radiographic severity levels differences between 

groups (Table 5.1). Knee mechanic characterization of phenotypes may enable us to 

prioritize patients who may most benefit from TKA. They may also identify those who 

might benefit from altered non-invasive clinical (Allen et al., 2016; Skou et al., 2015) or 

more conservative surgical approaches (such as unicompartment or biocompartment) as 

these techniques improve with robotic surgeries. Understanding of clusters might also 

provide valuable information around expectation management at a cohort level. Further, 

understanding the three-dimensional biomechanical corrections not addressed by standard 

arthroplasty among certain patient cohorts can inform surgical methodologies, prosthesis 

innovations, or rehabilitation strategies to correct cluster-specific deficits. 

A limitation of our study was the lack of information on self-reported patient scores 

(such as pain), which would have improved our ability to further characterize our 

subgroups in terms of illness or symptom presentation (Andriacchi et al., 2014; Bannuru 

et al., 2019; Castaneda et al., 2013; Lane et al., 2011). Prior work has found less severe 

symptoms to be weakly associated with less severe gait features (Thorp et al., 2007; 

Wilson et al., 2017), therefore we might expect the higher functioning cohorts to be less 

symptomatic. Designing future biomechanical studies specifically for phenotyping 

analysis can help to ensure comprehensive feature collection (Spil et al., 2020). 

Specifically, future work on larger samples should examine biomechanical variability in 

combination with attributes of self-reported scores pre and post-operatively, coupled with 

radiographic severity, static alignment, biomarkers, cartilage wear patterns, and 

mechanics at other joints (Paul Robert Biggs et al., 2019; Dell’Isola and Steultjens, 2018; 

Knoop et al., 2011; Waarsing et al., 2015), to enable a broader look at disease interactions 

of OA, and avoid research-area-specific phenotypes (Andriacchi et al., 2014). It might 

also be valuable to include a longitudinal sample of OA observations, to better 

characterize phenotypes associated with function along the disease severity continuum. 

Moderate to low cluster separation metrics by silhouette coefficient (s=0.37) was another 

limitation of our study, such that the presented clusters cannot be interpreted as truly 

distinct groups. This is unlikely a reflection of the data quality, but the continuum of gait 

patterns that patients demonstrate during the OA disease severity process (Astephen et 
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al., 2008a), and previously characterized interaction effects of symptoms such as pain 

(Thorp et al., 2007; Wilson et al., 2017), and sex (Paterson et al., 2017; Wilson et al., 

2015). Further work including the additional proposed attributes may include attributes 

lending to better separation. Another potential limitation was the inclusion of sex, a 

categorical feature and dominant in cluster characterization. Clustering algorithms are 

dependent on distance metrics, and there is no true “distance” between binary 

representation of male and female sex. Transforming all clustering features to z-scores, 

and conducting MDS prior to clustering ensured even feature weighting during 

unsupervised learning. Still, clustering methodologies were repeated without sex in an 

exploratory analysis. These waveforms are provided in Appendix B (Figure B.2-B.3), and 

were quite similar to those presented here, particularly in the sagittal planes. Without 

including sex (Figure B.2), the highest functioning group (cluster 1) again had the largest 

proportion of males (8:5), and the lowest functioning group (cluster 4) was mostly female 

(16:9). When removing sex, clusters were best characterized demographically by age and 

BMI, but not sex (p=0.4). The importance of sex on our study results, with only artifacts 

of sex being significant after this features’ removal limits the generalization of our 

findings, however, results are no less valid than a sex-stratified study design. It needs to 

be determined which classification method (including or excluding sex), is most relevant 

clinically and to patient outcomes as we look into applications to translate findings to 

general clinical practice.  

Phenotyping investigations consistently propose the existence of biomechanical-

driven OA subtypes (Andriacchi et al., 2014; Bannuru et al., 2019; Castaneda et al., 2013; 

Waarsing et al., 2015). This was the first study to characterize, in an unsupervised 

manner, the inherent variability among TKA candidates using biomechanical and 

demographic features. Four biomechanical and sex-specific clusters were characterized. 

Post-TKA, functional gains were cluster-specific; lower functioning clusters experienced 

more improvement, and results suggest the presence of cohorts who may not benefit in 

terms of joint-level biomechanics from TKA. These findings provide valuable 

information for patient triaging, expectation management, or aiding in the identification 

of gait deficits that standard arthroplasty is less likely to address at a cohort level. 



 

  77 

Building on this structure, cluster profiling applied to larger longitudinal datasets may aid 

in developing patient-specific surgical and non-surgical OA management approaches to 

meet individual function needs. 
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Chapter 6. Assessing OA Severity and Biomechanical 
Changes after TKA using Self-Organizing Maps  

 

6.1.  Introduction 

Knee osteoarthritis (OA) is a complex degenerative disease with marked 

heterogeneity, increasingly being characterized in terms of phenotypes (Andriacchi et al., 

2014; Castaneda et al., 2013; Deveza et al., 2017). Proposed phenotypes often include 

biomechanical or structural components deemed to emerge in both OA disease initiation 

and manifestation processes (Andriacchi et al., 2014; Bannuru et al., 2019; Bruyère et al., 

2015; Castaneda et al., 2013; Deveza et al., 2017). A growing number of studies have 

applied epidemiological or machine learning based unsupervised partitioning (i.e., 

clustering) to OA populations, to discover phenotypes that characterize biomechanically-

related variability associated with symptoms, muscle strength, obesity, radiographic 

severity, cartilage wear, knee alignment, or spatiotemporal features (Dell’Isola and 

Steultjens, 2018; Elbaz et al., 2014; Esch et al., 2015; Waarsing et al., 2015). This 

characterization of biomechanical OA variability is relevant to determining appropriate 

intervention strategies, as care guidelines propose treatments personalized to 

biomechanics profiles (Allen et al., 2016; Bruyère et al., 2015). 

 OA variability in terms of phenotypes are thought to evolve over the course of the 

disease process (Castaneda et al., 2013), with end stage joint degradation converging 

along a common pathway for all patients (Felson, 2010). To date, phenotypes have only 

been derived from cross-sectional datasets, captured at various static time points within 

the OA progression pathway, defined using variable severity criteria (Deveza et al., 2017; 

Knoop et al., 2011; Waarsing et al., 2015). These temporal snapshots lack insight into 

phenotypes that span the longitudinal OA disease progression process, thus limiting our 

ability to understand if phenotype-specific progression pathways exist. We argue that as 

we aim to propose phenotype-specific prevention and intervention strategies, a 

longitudinal view of the OA progression pathway is required to identify OA phenotypes 

that impact clinical utility and personalized treatments (Felson, 2010).  
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This study aimed to quantify OA profiles using a novel unsupervised machine 

learning framework, and visually map variability in demographic and knee joint 

kinematic and kinetics during gait using self-organized maps (SOM). The map 

encompassed changing gait patterns along the spectrum of knee OA clinical pathways: 

asymptomatic, moderate OA, severe OA (pre-TKA), and post-TKA. A decision tree 

characterizing patient cluster classification was used in SOM region and progression 

pathway interpretation. Mapped regions and clusters were hypothesized to demonstrate 

knee biomechanics variability associated with disease severity, and provide evidence of 

OA phenotypes traveling a multitude of patient progression pathways relevant to 

individual treatment strategies.  

 

6.2.  Methods  

6.2.1. Dataset and feature selection for clustering 

This is a secondary study using knee joint kinematic and kinetic gait laboratory data 

collected between 2001-2018 (n=945 gait session/observations; j=502 knees; Figure 6.1; 

Appendix C Table C.1). Participants belonged to six OA clinical groups: i) asymptomatic 

adults with no musculoskeletal injury, disease, or recent surgeries; ii) moderate knee OA 

patients diagnosed clinically according to the American College of Rheumatology criteria 

and not deemed TKA candidates (Altman et al., 1986); iii) severe knee OA patients, seen 

one-month pre-TKA; iv) TKA recipients, seen one and/or two years post-TKA; v) TKA 

revision patients seen one month pre-revision; vi) and one and/or two years post-revision.  

As part of the gait protocol, each participant walked along a five-meter walkway 

wearing comfortable walking shoes at a self-selected speed. Lower-limb external ground 

reaction forces and kinematics were captured using a force platform sampling at 2000 Hz, 

synchronized to an optoelectronic motion capture system sampling at 100 Hz. Knee joint 

angles during gait were calculated using the joint coordinate system (Grood and Suntay, 

1983).  Net resultant knee joint moments also represented in the joint coordinate system 

were calculated using inverse dynamics (Costigan et al., 1992; Deluzio et al., 1993; Li et 

al., 1993), and amplitude normalized to body mass. Principal Component Analysis (PCA) 
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was applied to frontal and sagittal plane angle and moment waveforms, resulting in a new 

uncorrelated dataset of PC scores and PC loading vectors describing the major modes of 

variability throughout the gait cycle (Deluzio and Astephen, 2007). Five flexion angle, 

adduction angle, flexion moment, and adduction moment PCs were retained to capture ≥ 

95% of the variance explained for each waveform (Jackson, 1993) (Appendix C Figures 

C.1-C.5).  

 

Figure 6.1. CONSORT diagram of patient eligibility and selection processes. All participants 
were screened for previous lower-extremity surgery (e.g., arthroplasty in another joint) as well as 
neurological and other existing pathological conditions (e.g., rheumatoid arthritis) prior to 

recruitment for the gait study. 
 

Kinematic and kinetic gait PC scores, participant age, sex, body mass index (BMI), 

gait speed, and percent of gait cycle in stance from each session comprised our initial 

study dataset ([945x25]; 25 features). Distance measures applied during clustering can be 

sensitive to magnitude and scale differences of input features, and outliers (Milligan and 

Cooper, 1988). The dataset was therefore standardized to z-scores (mean=0, standard 
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deviation=1), and 13 outlier observations exceeding Tukey’s outer fence (3*IQR) were 

removed ([932x25]) (Milligan and Cooper, 1988). To achieve a non-redundant and 

parsimonious feature set, redundancy was assessed using Pearson’s Correlation 

Coefficients (no features removed; maximum r=0.71). Feature relevance was assessed in 

terms of clinical group separation by ANOVA ! statistic feature ranking (Boyd and 
Little, 2005; Guo and Nixon, 2009) using a Bonferroni correction, accepting observations 

at the 0.002 significance level ("/25). Three weakly relevant features (p>0.002) were 
removed (adduction angles PC3-4, flexion moment PC5). Consistent with prior studies 

(Elbaz et al., 2014; Knoop et al., 2011; Waarsing et al., 2015), patient sex was also not 

included in cluster analysis, yet features of sex were expected to present in gait 

waveforms (Paterson et al., 2017; Wilson et al., 2015). Finally, due to small sample 

representation relative to the other clinical groups (n=9), pre and post-TKA revision 

sessions were removed. The final dataset included 923 gait observations and 21 features 

([923x21]; j=495; Table 6.1), divided into training (f=0.95, [878x21]; j=484), and test 

sets (f=0.05, [45x21], j=45). This maximized the size of our training data to achieve good 

clustering output, whilst maintaining the ratio of clinically classified patients in the test 

data.  

6.2.2. Clustering 

Self-Organizing Map (SOM) 

An unsupervised machine learning Self-Organizing Map (SOM) (Kohonen, 1990, 

1982) framework was applied to gain insights into the natural organization of OA gait 

biomechanics. SOMs are artificial neural networks that project high-dimensional data 

onto a connected (typically two-dimensional) network of nodes, thus providing an 

interactive visualization of the emergent clusters. Each node is represented by a weighted 

vector equation, enabling input data to be mapped to the lower-dimensional SOM space 

(Kohonen, 1990, 1982). SOMs are similarity graphs and cluster diagrams, where similar 

features in the input feature space remain spatially proximal in the lower-dimensional 

mapped space.  
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The SOM was initialized with an 11x11 (# =121 node) feature space with hexagonal 
nodes to achieve 5-10 observations per node (Westerlund, 2005). Each node was defined 

by the equation, mi=[v1,v2,...,v21], where i denotes the index on the 121-node SOM, and v 

denotes vector weights for the 21 clustering features. Nodes are initialized by randomly 

assigning an observation from the training dataset to each node. The SOM methodology 

then followed a recursive, stepwise learning process (Kohonen, 2013, 1990, 1982). First, 

a training observation is projected onto the SOM. A winning node is defined, satisfying 

the minimum Euclidean distance between the training observation and each node’s vector 

equation (i.e., “competitive learning”). The vector weights, %, of the winning node and its 
neighboring nodes are then adjusted towards the input training observation. The 

magnitude of this adjustment is a function of the distance to the winning node, and a 

specified learning rate, &. The learning rate parameter decreased linearly to 0 over the 
learning process, with initial learning rates &=0.06:1 tested in this analysis. This learning 
process is then repeated, such that each observation is presented to the SOM iteratively 

until node weights converge or based on a specified training time, ', the number of times 
the training set is presented to the SOM. Here, training times '=1000:3000 were tested, 
defined to approximate 10 times the number of mapped nodes (121*10=1210) 

(Westerlund, 2005). SOMs were generated for each learning rate and training time 

condition (Wehrens and Buydens, 2007). Under these conditions, ten SOM models were 

retained that minimized the Euclidean norm difference between each observation input 

vector and their assigned node vector, also termed quantization error, () (Kohonen, 
1990; Kohonen et al., 2009) (Appendix C Figure C.6).  

Hierarchical Clustering of the SOM and Statistical Analysis  

Each of the 10 retained SOMs were applied to hierarchical (bottom-up) clustering 

using Ward’s minimum variance criteria (Clatworthy et al., 2005; Ward, 1963), 

minimizing total within-cluster variance; the most commonly used approach in the OA 

literature (Deveza et al., 2017). When applied to a SOM, clustering is conducted on the 

weighted vector equation values (mi) of each node (Kohonen, 1990). Clustering solutions 

with number of clusters k=2:10 were assessed. The quality of each cluster was 

determined using silhouette width criterion (Rousseeuw, 1987). Silhouette width, *, 
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measured how similar node i was to its own cluster (cohesion) compared to other clusters 

(separation) bound by ±1 (-1[misclassified]-1[well-clustered]). The cluster model with 
the greatest count of positive * coefficients among nodes was selected. This selection 
approach maximized for the number of nodes better represented by their own cluster over 

a neighbouring one, and avoided representing some nodes very well, and others poorly 

within each cluster (Appendix C Table C.3).  

Final clusters were validated by examining inter-cluster differences among features 

highly relevant during feature ranking, and found to characterize OA clinical severity 

(Astephen et al., 2008a, 2008b), symptoms (Wilson et al., 2017),  self-reported outcomes 

(Young-Shand et al., 2020), and sex (Wilson et al., 2015). Chi-squared (sex), k-way 

ANOVA (PC scores, gait speed, percent stance, age, BMI), Kruskal Wallace tests (OA 

clinical classification) were used. Post-hoc tests were conducted using Tukey's HSD 

criterion for parametric features, and pair-wise Pearson’s chi-squared tests for categorical 

(nominal) features. Bonferroni corrections adjusted for multiple comparisons, with p-

values ≤ 0.002 accepted.  

6.2.3. Decision Rule 

Classification and regression trees (CART) (Breiman et al., 1984) were used to aid in 

SOM region interpretation. CART is an supervised modeling framework that predicts a 

target class by building a decision tree ruleset from input observations. Rulesets 

predicting which cluster each observation was most likely to belong to were derived from 

a second training set, composed of 80% of our original training data (n=703, j=438). Tree 

pruning (removal of decision nodes and branches) simplifies rulesets using only the most 

influential features, while preventing over-fitting. Ten-fold cross validation with 10 

repeats using a complexity parameter (cp), a penalty based on the number of nodes was 

used to prune the tree (Trost et al., 2016). Accuracy was optimized when the cp=0.01. 

Cluster classification performance was assessed on a secondary withheld test set from our 

original training data (f=0.20, n=175, j=159).  
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6.2.4. Outcomes by Cluster  

One hundred and two patients had matched gait data available pre and one-year post-

TKA. Student’s t-tests and chi-squared tests were used to compare baseline demographics 

and gait changes (PCscorepostTKA – PCscorepreTKA) between defined clusters. All analyses 

were conducted using R (R Foundation for Statistical Computing, Vienna, Austria). 

 

6.3.  Results 

6.3.1. SOM and Hierarchical Clustering 

The final SOM model is presented in Figure 6.2. Each node represents a different 

combination of knee biomechanics and demographics features, with similar feature 

combinations mapping proximal to each other. After applying hierarchical clustering, a 

three cluster (k=3) model was selected, having the least number of negative nodes (5/121) 

by silhouette coefficient (model s=0.16; Appendix C Figures C.8). The following 

provides an observation-based interpretation of each clusters.  

 
Cluster 1: ‘High Knee Function’ contained the largest proportion of the training 

data’s asymptomatic (86%, 193/225) and moderate OA (45%, 147/324) observations. 

Observations in this cluster were from younger participants (53.8±9.9 years; 1<2,3; 
p<0.001), with the lowest BMIs (27.9±4.7 kg/m2; 1<3<2; p<0.001), and fastest self-
selected walking speeds (1.4±0.2 m/s; 2<3<1; p<0.001). This cluster also spent the least 
amount of their gait cycle in stance (63.4±0.2 %; 1<3<2; p<0.001). In the sagittal plane, 
this cluster walked with greater overall knee flexion angle magnitudes throughout the gait 

cycle (PC1, 2<3<1, p<0.001), with more flexion angle range of motion (PC4, 3<2<1, 

p<0.001) and more biphasic flexion/extension loading/un-loading moments during stance 

(PC2, 2,3<1, p<0.001). In the frontal plane, they had higher overall stance-phase 

adduction angle magnitudes (more varus, PC1, 2,3<1, p<0.001) and more dynamic 

frontal plane un-loading/loading range patterns (first peak to mid-stance PC2, 2<3<1, 

p<0.001; mid-stance to second peak PC3, 2<3<1, p<0.001) (Figure 6.3, Tables 6.1-6.2).  
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Cluster 2: ‘Low Knee Function’ differed the most from Cluster 1. It contained the 
greatest proportion of severe knee OA (78%, 108/138) and post-TKA (58%, 111/191) 

participants. This cluster had a greater ratio of female observations relative to the first 

cluster (56% vs. 39%, p<0.001), with the greatest mean BMI (34.4±6.2kg/m2), and 
slowest walking speeds (1.0±0.2 m/s) among the clusters. Gait observations in this 
cluster spent a greater amount of the gait cycle in stance (66.9±2.1%), walked with the 
greatest knee flexion moment loading magnitudes overall (PC1; 2<1,3; p<0.001), the 

least knee flexion angle magnitudes (PC1; 2<3<1; p<0.001), least knee extension at heal 

strike and late stance (PC3; 2<1,3; p<0.001), and lowest flexion (PC2; 2,3<1; p<0.001) 

and adduction moment (PC2-PC3; 2<3<1; p<0.001) loading/un-loading ranges during 

stance (Figure 6.3, Tables 6.1-6.2).   

 

Table 6.1. Demographic and spaciotemporal features of clusters. Three-way ANOVA and pair-
wise Chi-squared (sex) post-hoc tests examined differences between clusters.  
  

1: High Knee 
Function 

2: Low Knee 
Function  

3: Moderate 
Knee Function p  Post-hoc  

Training Dataset (n=878) 
Clinical Group                 
Asymptomatic (n/225, %)  193 86% 7 3% 25 11%   
Moderate (n/324, %)  147 45% 66 20% 111 34%   
Severe/Pre-TKA (n/138, %)  8 6% 108 78% 22 16%   
Post-TKA (n/191, %)  31 16% 111 58% 49 26% <0.001  

Sex        
1 vs 2 p<0.001  
1 vs 3 p<0.001 

Female (n, %)  149 39% 162 56% 119 58%  
Male (n, %)  230 61% 130 45% 88 43% <0.001 

Age (years, SD) 53.8 (9.9) 63.9 (8.7) 63.0 (8.0) <0.001 1<2,3 
BMI (kg/m2, SD) 27.9 (4.7) 34.4 (6.2) 30.7 (4.6) <0.001 1<3<2 
Stance Percent (%, SD)  63.4 (1.5) 66.9 (2.1) 64.7 (1.5) <0.001 1<3<2 
Speed (m/s, SD)  1.4 (0.2) 1.0 (0.2) 1.2 (0.1) <0.001 2<3<1 
 
Test Dataset (n=45)         
Clinical Group                 
Asymptomatic (n, %)  9 43% 0 0% 2 17%   
Moderate (n, %)  11 52% 2 17% 4 33%   
Severe/Pre-TKA (n, %)  0 0% 6 50% 1 8%   
Post-TKA (n, %)  1 5% 4 33% 5 42% <0.001  
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Cluster 3: ‘Moderate Knee Function’ was spatially between the first two clusters 
visually in the SOM. It contained the largest proportion of moderate OA (34%, 111/324), 

and the second greatest representation of post-TKA (26%, 49/191) observations. This 

cluster also had a higher ratio of female observations (58% vs. 39%, p<0.001) than the 

first cluster, and mean BMIs (30.7±4.6 kg/m2), gait durations in stance (64.7±1.5%), 
and walking speeds (1.2±0.1 m/s) between the first two clusters.  Features of knee 
kinematics and kinetics during gait in frontal and sagittal planes were between Clusters 1 

and 2.  The only exception to this being stance-phase flexion angle range, which was 

lower in this intermediate group than Clusters 1 and 2 (PC4, 3<2<1, p<0.001) (Figure 

6.3, Tables 6.1-6.2).  

Mapping the test set (n=45) onto the final model, most asymptomatic individuals 

(9/11) mapped to ‘High Knee Function’, and most severe OA/pre-TKA individuals (6/7) 

mapped to ‘Low Knee Function’, aiding in interpretation validation (Table 6.1).  

From cluster and node-level interpretation (Abidi et al., 2018), progression of knee 

biomechanics severity (i.e., worsening) and OA clinical severity could generally be 

represented from bottom left (mostly asymptomatic, Cluster 1) to top right (mostly pre or 

post-TKA, Cluster 2), across the x-axis of the SOM, with age and BMI increasing, and 

gait speed decreasing stepwise across clusters (Table 6.1). Knee biomechanics during gait 

also worsened from bottom left to top right along the SOM, captured by decreases in 

knee flexion angle magnitudes (PC1; 2<3<1; p<0.001), flexion angle range (PC4, 3<2<1, 

p<0.001) adduction moment loading/un-loading range (PC2-PC3; 2<3<1; p<0.001) 

across clusters, and node-level interpretation of flexion and adduction moment PC2 

(Appendix C Figure C.7).  

To demonstrate the utility of the SOM in characterizing OA phenotypes and 

progression pathways, the mapped SOM locations of six participants’ gait observations 

longitudinally have been illustrated in Figure 6.2. These cases support a left-to-right 

progression pattern over time, but provide evidence of variable two-dimensional 

pathways during moderate OA progression (Figure 6.2b,d) and during post-TKA 

recovery (Figure 6.2e,f).  
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6.3.2. Decision Rule 

Cluster classification applied to CART using 10-fold cross-validation resulted in a 

tree-based decision rule (Figure 6.4). Overall accuracy applied to a withheld test set was 

76.6% 95% CI [70.0, 82.6], with the best classification performance achieved in Clusters 

1 and 2 (Table 6.3) 

6.3.3. Outcomes by Cluster  

Due to low representation of individuals classified in the ‘High Knee Function’ 

cluster pre-TKA (n=4), this high function cluster, and the intermediate ‘Moderate Knee 

Function’ cluster (n=15) were merged. Pre to post-TKA gait feature changes between this 

merged subset, and the ‘Low Knee Function’ cluster pre-TKA (n=83) were compared.  

TKA patients pre-operatively classified to the more severe ‘Low Knee Function’ 

cluster experienced greater improvements in objective function relative to the other 

clusters. For example, they experienced larger increases in gait speed (p=0.01), knee 

extension angle magnitudes (PC3, p<0.001), and frontal plane loading and un-loading 

moment range (PC2, p=0.02), with more decreases in adduction moment loading 

magnitudes (PC1, p=0.01). These changes move gait patterns towards more 

asymptomatic gait patterns (Astephen et al., 2008a). Alternatively, the merged ‘High 

Knee Function’ and ‘Moderate Knee Function’ clusters tended to show a decline in mean 

knee extension angle magnitudes (PC3), and an overall increase in adduction moment 

magnitude (PC1) during stance; changes that move gait patterns further from 

asymptomatic post operatively (Hatfield et al., 2011), Table 6.4. 
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Figure 6.2. Final SOM Model (11x11 grid), depicting cluster 1 (High Knee Function, blue), 
cluster 2 (Low Knee Function, red), and cluster 3 (Moderate Knee Function, yellow), generally 
describing OA progression from left (highest functioning) to right (lowest functioning) across the 
SOM. Example pathways of six individual patient pathways are shown in (a)-(f), described by A 
(asymptomatic), M (moderate), S (severe OA/pre-TKA) and TKA (post-TKA) clinical 
classifications. Subscripts represent the order of individual observations to provide longitudinal 
context. 
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Figure 6.3. Mean pre-TKA gait waveforms of Cluster 1 (blue solid), Cluster 2 (red dashed), and 
Cluster 3 (yellow dot-dashed). Grey denotes mean±sd of the clinically classified asymptomatic 

group (n= 236). 
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Figure 6.4. Classification and regression tree. Terminal node rows denote i) cluster classification of observations at node; ii) probability of 
observations belonging to clusters 1 (High Knee Function), 2 (Low Knee Function), and 3 (Moderate Knee Function) at node; iii) percent of total 

observations at node. 
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Table 6.2. PC score knee kinematic and kinetic gait features between clusters that were relevant 
during feature ranking and previously found to be clinically interpretable (Astephen et al., 2008a; 
Hatfield et al., 2011). Three-way ANOVA and Tukey HSD criteria examined mean differences 
between clusters.  

Interpretation 
(PC; Variance Explained)  

1: High Knee 
Function  

2: Low Knee 
Function 

3: Moderate 
Knee 

Function  

p-value 
Tukey 
HDS 

Flexion Angle (FA)  
Higher score: greater overall flexion angle magnitude 
throughout the gait cycle (PC1; 65%)  
  

32.46 (44.6) -45.47 (60.7) -4.79 (46.8) <0.001 2<3<1 

Higher scores: more knee extension in heal strike and 
late stance with earlier occurring peak flexion in 
swing (PC3; 11%)  
  

5.65 (20.5) -17.50 (28.3) 8.43 (21.9) <0.001 2<1,3 

Higher score: more flexion and extension angle range 
in stance (PC4; 5%)  
  

8.46 (16.7) -2.09 (14.1) -12.75 (15.5) <0.001 3<2<1 

Adduction Angle (AA)  
Higher score: greater overall adduction angle 
magnitude in stance (PC1; 56%)  
  

0.76 (19.9) -6.91 (21.3) -4.00 (19.0) <0.001 2,3<1 

Flexion Moment (FM)  
Higher score: greater overall flexion moment 
magnitude in stance (PC1; 50%)  
  

-0.25 (1.0) 0.60 (1.6) -0.11 (1.3) <0.001 1,3<2 

Higher scores: more flexion to extension moment 
range in stance (PC2; 38%)  
  

0.83 (0.9) -0.80 (0.8) -0.81 (0.9) <0.001 2,3<1 

Adduction Moment (AM)  
Higher scores: greater overall adduction moment 
magnitude in stance (PC1; 71%) 

 

0.04 (1.0) 0.02 (1.2) 0.22 (1.2) 0.09  

Higher score: more first peak to mid-stance adduction 
moment range in stance (PC2; 15%)   
  

0.32 (0.5) -0.43 (0.3) -0.05 (0.4) <0.001 2<3<1 

Higher score: more mid-stance to second peak 
adduction moment range in stance (PC3; 6%)   

0.15 (0.4) -0.13 (0.3) -0.06 (0.3) <0.001 2<3<1 

 
 
 
Table 6.3. Classification and regression tree classification performance by cluster.  
 1: High Knee 

Function 
2: Low Knee 
Function  

3: Moderate Knee 
Function 

Accuracy  0.869 0.851 0.811 

Sensitivity (True Positive Rate)  0.836 0.806 0.585 

Specificity (True Negative Rate)  0.889 0.880 0.881 
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Table 6.4. Baseline demographic and pre to post-TKA PC score changes between defined groups 
examined by Student’s t-tests and chi-squared tests. 

Feature  
Merged  

1: High Knee Function  
3: Moderate Knee Function 

2: Low Knee Function p-value 

Sex      
Female (n, %) 
 

12 , 63% 45 , 54%  

    Male 
 

7 , 37% 38 , 46% 0.5 

Age Pre-TKA (years, SD) 
 

64.1  (5.1) 64.4  (7.5) 0.9 

BMI Pre-TKA (kg/m2, SD) 
 

32.0  (4.9) 33.6  (6.0) 0.3 

Δ Stance Percent (%, SD) 
 

0.0 (1.1) -0.4 (2.1) 0.5 

Δ Speed (m/s, SD) 
 

0.1 (0.2) 0.2 (0.2) 0.01 

Δ Flexion Angle (FA) PC Scores (PC; Variance Explained) 
 

Higher score: increase in overall flexion angle 
magnitude throughout the gait cycle (PC1; 65%)  
  

21.1 (57.9) 42.0 (74.4) 0.3 

Higher scores: increase in knee extension in heal 
strike and late stance (PC3; 11%)  
  

-9.5 (19.2) 15.1 (30.3) 0.001 

Higher score: increase in flexion and extension 
angle range in stance (PC4; 5%)  
  

-4.9 (17.1) -0.4 (15.3) 0.3 

Δ Adduction Angle (AA) PC Scores (PC; Variance Explained) 
 

Higher score: increase in overall adduction angle 
magnitude in stance (PC1; 56%)  
  

-12.5 (22.5) -11.7 (27.0) 0.9 

Δ Flexion Moment (FM) PC Scores (PC; Variance Explained) 
 

Higher score: increase in overall flexion moment 
magnitude in stance (PC1; 50%)  
  

-0.1 (1.3) -0.5 (2.0) 0.5 

Higher scores: increase in flexion to extension 
moment range in stance (PC2; 38%)  
  

0.2 (0.8) 0.5 (0.8) 0.2 

Δ Adduction Moment (AM) PC Scores (PC; Variance Explained) 
 

Higher scores: increase in overall adduction 
moment magnitude in stance (PC1; 71%) 

 

0.3 (1.8) -0.6 (1.2) 0.01 

Higher score: increase in first peak to mid-stance 
adduction moment range in stance (PC2; 15%)   
  

0.1 (0.4) 0.3 (0.4) 0.02 

Higher score: increase in mid-stance to second 
peak adduction moment range in stance (PC3; 6%)   

0.1 (0.3) 0.2 (0.3) 0.2 

 

 



 

  93 

6.4.  Discussion  

SOMs quantified and visually represented the quality of a person’s knee 

biomechanics during gait along a multidimensional continuum. Cluster analysis aided in 

the directional interpretation of gait mechanicals within the SOM, where gait 

biomechanics worsening across the SOM, correlating to changes in clinical OA severity 

in terms of asymptomatic, moderate OA, and severe knee OA disease state descriptors 

(Astephen et al., 2008a). This provided construct validity, where OA progression status 

could generally be interpreted from bottom left to top right along the SOM, mirroring 

changes typically observed during OA progression (Astephen et al., 2008a), and post-

TKA (Hatfield et al., 2011; Young-Shand et al., 2020). The unsupervised nature of this 

analysis, objectively mapping demographic and gait observations without a priori 

knowledge, provides novel insights into heterogenous feature combinations (phenotypes), 

and how they progress longitudinally during the OA disease process and post-TKA.  

The three clusters described within the SOM model can be further characterized 

through subgroup interpretation at the node-level, where gait variability within clusters is 

not lost. For instance, exploratory analysis clustering the SOM into k=4 clusters defined a 

fourth cluster within the ‘High Knee Function’ region in the bottom left corner of the 

SOM. This new cluster had lower BMIs, shorter stance percent, and more 

flexion/extension moment range (PC2), corresponding to greater majority of clinically 

asymptomatic observations (Appendix Figure C.7). The inclusion of a fourth 

"asymptomatic” cluster captured the variability between asymptomatic and knee OA gait 

observations (Astephen et al., 2008a; Paul Robert Biggs et al., 2019; Outerleys et al., 

2021) within the larger ‘High Knee Function’ cluster. However, it also separated the 

remaining ‘High Knee Function’ nodes into two sections, suggestive of two diverging 

pathways to Moderate Knee Function regions. Higher order cluster and node-level 

interpretation allows us to characterize a high volume (up to 121) of functional regions or 

phenotypes within the SOM. This type of analysis may be advantageous for a disease 

such as OA. Although we speak of distinct phenotypes (Deveza et al., 2017), recent 

studies have demonstrated large degrees of overlap between clinically classified groups 

when attempting to separate them statistically (Paul Robert Biggs et al., 2019; Outerleys 
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et al., 2021). Therefore, distinct statistical boundaries between biomechanical phenotypes 

through OA progression and after interventions such as TKA may not exist. The 

acceptance of this continuum of variability is important as OA treatment and surgical 

interventions propose approaches specific to patient biomechanics-related profiles (Allen 

et al., 2016; Bruyère et al., 2015; Salzmann et al., 2017; Vanlommel et al., 2013).  

OA variability is generally discussed cross-sectionally at static time points within the 

OA disease process (Elbaz et al., 2014; Knoop et al., 2011; Paterson et al., 2017; 

Waarsing et al., 2015; Wilson et al., 2017, 2015; Young-Shand et al., 2020), with end-

stage progression considered to converge into common journey (Castaneda et al., 2013). 

Our SOM framework lends support that not all pathways are common. Figure 6.2b-d 

illustrates this with three moderate OA individuals who map to different SOM regions 

during their first gait observations, and progressed along different pathways. Further, 

individuals b and c both demonstrated stable mapping during their first two gait 

observations, with a change in functional mapping at observation three. In this case, a 

SOM map could provide novel utility to objectively illustrate and monitor individual OA 

journeys longitudinally. Monitoring these pathways would provide new longitudinal 

understanding of variability in disease manifestation, with the potential to predict patient 

trajectories or identify sudden declines in functional status. A valuable next step would be 

the investigation into frequent pathways from asymptomatic to end-stage OA. This could 

inform optimal timing of non-invasive therapies targeting current and anticipated 

symptoms or functional deficiencies (Allen et al., 2016; Bannuru et al., 2019), lending to 

more preventative and personalized care strategies.  

SOMs have unique utility for assessing treatment effects of non-invasive and surgical 

intervention strategies. For instance, post-TKA, the majority (58%) of gait observations 

mapped to the most severe ‘Low Knee Function’ cluster. The remaining 16% and 26% of 

observations mapped to the higher functioning ‘High Knee Function’ and ‘Moderate 

Knee Function’ clusters. Although some post-TKA mapping to more severe OA groups 

could be a factor of older age or greater BMI, decision trees classification was 

predominantly governed by gait features, with age and BMI ranked at lower importance 

in the CART (Figure 6.4). The concept of a biomechanical ceiling effect, such that post-
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TKA gait patterns statistically map to disease-state gait over asymptomatic gait is 

consistent with two recent studies (Paul Robert Biggs et al., 2019; Outerleys et al., 2021), 

highlighting deficiencies in TKA to restore normative function. It has also been 

demonstrated that gait improvements from arthroplasty are cluster specific (Young-Shand 

et al., 2019), and that individuals with higher gait functioning pre-operatively experience 

the least functional and self-reported improvements post-TKA (Naili et al., 2017; Young-

Shand et al., 2020). We also found TKA candidates mapping to ‘Low Knee Function’ 

regions experienced more functional benefit from arthroplasty (Table 6.4). Decision tree 

classification rules suggest an ability to identify this cluster with accuracies of 85.1% 

(Table 6.3). Features required for CART cluster prediction were also predominantly 

spatiotemporal and demographic with sagittal knee kinematics (Figure 6.4). With the 

exception of flexion moment range, these features could be easily captured in clinical 

settings through consumer-grade motion capture technologies. Future models should 

explore training SOMs on clinically captured gait features, in combination self-reported 

OA outcomes. Anchoring regions where conservative therapeutics or surgical 

intervention occurred against self-reported and biomechanics improvements presents an 

opportunity to assess multi-modal treatment efficacy, and systemize intervention timing 

and selection by SOM regions. This may be particularly relevant for TKA wait list 

management, to objectively prioritize patients by region with the greatest need and 

improvement potential (Clavel et al., 2016; Frankel et al., 2016). Post-operatively, SOMs 

can monitor health status and identify sudden declines (Figure 6.2f). Visually 

interpretable patient mapping may offer an unbiased vehicle for individualized 

intervention decision making, prioritization, and monitoring, or developing interventions 

targeting deficiencies tailored to SOM regions, potentially yielding greater response 

success. 

Females made up the majority of the asymptomatic group in the training dataset (138; 

61%), yet the minority in the ‘High Knee Function’ (149; 39%). Pair-wise post-hoc tests 

also found smaller ratios of females in the ‘High Knee Function’ cluster than the other 

more severe clusters (Table 6.1).  Gait differences exist between sexes, such as less 

stance-phase knee flexion moment range and stance phase flexion moment magnitudes 
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among healthy females (McKean et al., 2007) and lower knee adduction moments 

(Paterson et al., 2017; Wilson et al., 2015), knee extension at terminal stance among pre-

TKA females (Wilson et al., 2015), with some differences favouring female classification 

among more severe clusters in the decision tree (Figure 6.4). However, females in our 

clinically classified asymptomatic, moderate OA, and pre-TKA groups did not differ 

from males in BMI, age, or gait speed, with the exception of moderate OA females 

walking slightly slower than males (1.2m/s vs. 1.3m/s, p=0.004), yet well above the 

speed cut-off in the decision tree ruleset which would govern classification into low 

(<0.9m/s) vs. moderate or high knee function (>0.9m/s) clusters (Figure 6.4). Thus, 

severity-based gait features (not demographic or spaciotemporal features) were 

interpreted as the greatest influencer in classifying clinically asymptomatic females 

among the two lower functioning clusters. Our model supports evidence that female OA 

prevalence is underrepresented relative to males (Hawker et al., 2000), despite evidence 

of greater radiographic incidence and symptomatic severity of OA among females 

(Felson et al., 1987; Srikanth et al., 2005). For example, females demonstrate more self-

reported and objective function disability from OA (King et al., 2018; Wilson et al., 

2015),  wait longer to seek medical attention (Karlson et al., 1997), and are then less 

likely to be referred for TKA relative to males, despite standardized clinical presentation 

(Borkhoff et al., 2009; Hawker et al., 2000). After surgery, females also lag functionally 

relative to males (Wilson et al., 2015). This unfavourable patient journey is not specific 

to sex, but exists among racial boundaries as well (Ibrahim, 2010; Srikanth et al., 2005). 

These findings again demonstrate utility for patient mapping to support unbiased decision 

making around OA monitoring care, intervention timing, and surgical prioritization 

practices.  

Our exploratory approach interpreted and considered ten SOM models, selecting the 

best performing model by silhouette criteria. Although each model demonstrated clusters 

that mirrored typical OA progression patterns, the ten models were variable in terms of 

cluster size, demonstrative of weak model repeatability. The selected model also had a 

low mean silhouette width (0.16, Appendix C Figure C.8), meaning clusters should not 

be interpreted as distinct groups. This is unlikely a reflection of the sample size, data type 
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or quality, but the continuum of gait patterns observed through knee OA progression 

(Astephen et al., 2008a), post-TKA (Outerleys et al., 2021) and variability associated 

with symptoms of pain (Thorp et al., 2007; Wilson et al., 2017), sex (Paterson et al., 

2018; Wilson et al., 2015), and obesity (Harding et al., 2012), which may not separate 

well with distinct boundaries. Methodologies such as “fuzzy” clusters could be 

considered which do not assume distinct cluster separation. Similar to most phenotyping 

studies, this study used secondary data study from a large, longitudinal gait database. The 

lack access to complete self-reported OA outcomes, physical and biochemical OA 

attributes (pain patterns, alignment, radiographic severity, biomarkers, cartilage wear 

patterns) (Paul Robert Biggs et al., 2019; Carlesso et al., 2020; Dell’Isola and Steultjens, 

2018; Knoop et al., 2011; Waarsing et al., 2015) for SOM training was a limitation, 

restricting SOM region and pathway interpretation to being knee joint-specific 

(Andriacchi et al., 2014). However, our dataset does contain some information on which 

OA patients progress radiographically or symptomatically, and self-reported 

improvements post-TKA. Future work will address if radiographic and symptomatic OA 

progression follows different pathways (Costello et al., 2020), identify SOM regions 

associated with symptom presentation, and improved outcomes post-TKA. This model 

has the unique ability to characterize longitudinal observational data during the natural 

OA disease processes, and explore treatment responses, demonstrating clinical utility 

(Spil et al., 2020). 

This study was the first to propose a machine-learning framework to characterize and 

cluster multi-dimensional knee kinetic, kinematic and demographic data for diverse 

patients along the OA disease continuum; up to 121 location-based phenotypes can be 

characterized. Three large clusters were identified, aiding in SOM directional 

interpretation and coinciding with clinical OA severity from asymptomatic to end stage 

OA. A unique aspect of this framework is the ability to objectively track and characterize 

multivariable OA progression pathways longitudinally, and measure the effect of 

interventions on knee joint kinematic and kinetic function. Next steps require anchoring 

mapped locations relative to patient-reported outcomes after intervention, to identify 

high/low risk intervention regions. Validated progression maps could provide individual 
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trajectory models, aiding in intervention planning and outcome prediction, developing 

patient prioritization practices, or tailoring treatment to SOM regions targeting individual 

manifestations, potentially driving improved treatment success. 
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Chapter 7. Discussion  
 
 

7.1.  Summary of Findings   

This thesis investigated variability among patients with knee OA incorporating both 

the patient-experience, captured using self-reported outcome measures, and objective 

knee function, determined from joint-level gait biomechanics. It investigated 

relationships between individual variability and self-reported and gait function outcomes 

after TKA intervention. The following summarizes the key findings of this thesis.  

7.1.1. Function is an Important Part of the TKA Patient Experience  

Function, measured using both self-reported scores and joint-level biomechanics, 

contributes to the patient experience after arthroplasty. This was first demonstrated in our 

longitudinal satisfaction study (Chapter 3), where function-based OKS and patient 

perceptions with difficulty walking both surpassed the influence of pain domains in 

predicting satisfaction longitudinally (Table 3.3). Although pain is typically considered 

the most dominant domain in satisfaction determination (Scott et al., 2012), the relative 

importance of functional measures agrees with prior findings using diverse tools 

including the OKS (Scott et al., 2010), WOMAC (Bourne et al., 2010; Vissers et al., 

2010), self-reported activities of daily living (Noble et al., 2006), and from gait measures 

(Turcot et al., 2013). TKA is inherently a mechanical surgery altering patient 

biomechanics. Patients may therefore perceive a lack of improvement in overall function 

early in the post-TKA recovery process. Function captured through PROMs (or 

potentially during gait) may contribute to stratification of good and poor outcome groups 

as early as six weeks after TKA, having utility for early patient profiling and initiating 

appropriate support interventions.  

The second study of this thesis (Chapter 4) linked gait biomechanics to self-reported 

outcomes after TKA. Patients who report less pain and function improvement after TKA 

(non-responders) were found to demonstrate less objective functional improvements 

during gait. Non-responders showed significantly reduced stance-phase varus angles after 
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TKA, yet lagged in terms of sagittal kinematic and kinetic loading pattern corrections 

typically observed after arthroplasty (Hatfield et al., 2011). Surgical corrections have 

historically focused on frontal plane alignment and ligament balancing, treating patients 

uniformly. Naili et al. proposed that poor patient-reported outcomes might be partially 

explained by a lack of dynamic kinematic and kinetic corrections, despite alignment 

corrections in the frontal plane, a feature that surgery may be most able to address 

biomechanically address (Naili et al., 2017). Chapter 4 did identify novel links between 

frontal plane features and self-reported pain and function improvement. Specifically, less 

reduction in stance-phase varus (adduction angle) magnitude was independently 

associated with more improvement in PROM scores (in both the pain and function 

domains), as were larger increases in dynamic frontal plane loading (PC2) (in the 

function domain alone) (Figure 4.3). It has also been suggested that investigating patient 

factors such as pain, function, and quality of life relative to changes in specific gait 

parameters after TKA can aid in understanding the clinical relevance of surgical 

corrections (Sosdian et al. 2014). Chapter 4 provided links between biomechanical 

variability, biomechanical changes after TKA, and the patient experience. Objective gait 

function can provide new and valuable insights into patient variability and the 

mechanisms associated with why some patients may fair well or poorly. This evidence 

can be used to inform further investigations that aim to incorporate three-dimensional 

knee mechanics into personalized surgical innovation and care strategies.  

7.1.2. Pre-TKA Biomechanical Variability Impacts Outcomes  

To date, joint-level biomechanical variability during gait among TKA candidates has 

primarily been assessed through a priori group definition, such as the MCID stratification 

applied in Chapter 4. The findings of Chapter 4 demonstrated that knee biomechanical 

variability may influence the patient experience. The motivation behind Chapters 5 and 6 

was the need to better understand biomechanical variability in an unsupervised nature, by 

modes of statistical separation and similarity. This work was the first to apply 

multivariate partitioning strategies to characterize patient phenotypes incorporating both 

knee joint-level biomechanics and patient demographics.  
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Chapter 5 focused on the TKA candidate population by modeling variability among 

severe OA individuals. Four clusters were characterized, differing by sex and joint 

mechanic changes mirroring those observed during OA progression. This demonstrated 

the functional variability of patients undergoing TKA, likely representing patients 

undergoing surgery at different points in the severity pathway, and the variable 

biomechanical manifestations of OA. In general, clusters with more “severe” gait patterns 

pre-TKA tended to experience greater degrees of biomechanical improvement and self-

reported improvement from arthroplasty. This finding agrees with a priori results in 

Chapter 4, and the patient-reported outcome literature, where patients with worse self-

reported symptoms preoperatively typically experience the largest relative improvements 

in self-reported scores post-operatively (Fortin et al., 1999; Hawker et al., 2013; Jiang et 

al., 2017; Judge et al., 2012; Robertsson and Dunbar, 2001). We propose that patients 

with worse gait mechanics pre-operatively may have more capacity for objective self-

reported (Chapter 4) and objective (Chapter 5) improvements from surgery, and are less 

likely to experience an functional improvement ceiling effect (Paul Robert Biggs et al., 

2019; Outerleys et al., 2021). Knee biomechanic characterization of phenotypes may 

enable us to prioritize patients who may benefit most for TKA in terms of the patient 

“journey”, and those whose biomechanical gain may be negligible to small. For example, 

Chapter 5 identified a small (6/105, 6%) higher functioning male phenotype who may not 

experience any functional benefit from standard TKA, and a sizable (35/105, 33%) higher 

functioning female cohort whose biomechanical gain from TKA only included reductions 

to front-plane varus angles during stance. Objective phenotyping classification may 

provide a means to prioritize patients for surgery, or better manage patient expectations 

through discussions of phenotype-specific functional predictions. Further work 

addressing these clusters relative to self-outcomes might also aid in identifying those who 

could benefit from an altered or non-invasive clinical approach (Allen et al., 2016; Skou 

et al., 2015). 

7.1.3. Sex-Based Biomechanical Profiles May Reflect Bias in Arthroplasty 

An interesting finding of our TKA clustering study (Chapter 5), was the dominant 

separation of clusters by male/female sex. The lower functioning females exhibited 
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distinctly more clinically “severe” (Astephen et al., 2008a) gait mechanics than any other 

cluster. Conversely, the lower functioning male cluster was most similar to the higher 

functioning female cluster. We saw similar trends in our longitudinal SOM clustering 

paper (Chapter 6). Females made up the majority of the asymptomatic group in the 

training dataset (138; 61%), yet the minority in the ‘high-functioning gait’ cluster (149; 

39%). Pair-wise post-hoc tests also found smaller ratios of females in the high-

functioning cluster than the more severe clusters (Table 6.1).  Our model classifying 

more “asymptomatic” females among lower functioning clusters using objective criteria 

supports evidence that clinical OA prevalence in females is underrepresented relative to 

males (Hawker et al., 2000). Females in an older adult population are predisposed to the 

development of OA (Buckwalter and Lappin, 2000), have a greater incidence of 

radiographic and symptomatic OA severity (Felson et al., 1987; Srikanth et al., 2005), 

and have been associated with worse self-reported disability (King et al., 2018) and 

objective function disability (Wilson et al., 2015). We also know females wait longer to 

seek medical attention (Karlson et al., 1997), and are then less likely to be referred for 

TKA than males, despite standardized clinical presentation (Borkhoff et al., 2009; 

Hawker et al., 2000). After surgery, they lag functionally relative to males (Wilson et al., 

2015). This unfavourable patient journey is not specific to sex, but exists among racial 

boundaries as well (Ibrahim, 2010; Srikanth et al., 2005). Medical research and clinical 

practices cannot continue to fail to address systemic biases among females and racial 

ethnicities. Objective patient phenotyping by clusters classification or SOM patient 

mapping may provide an unbiased vehicle for decision making around OA care. 

Integrating objective and evidence measures into regular practice may support fair 

intervention timing, surgical prioritization practices, and patient monitoring.  

7.1.4. Data Science Strategies Can Support a Multidimensional and Longitudinal 
Perspective of OA Variability and TKA Patient Outcomes   

Utilizing SOM methodologies, Chapter 6 quantified and visually represented the 

quality of a person’s knee biomechanics during gait along a multidimensional continuum 

in a large longitudinal population. Gait biomechanics worsened across the SOM, 

correlating to changes associated with clinically defined OA severity (Astephen et al., 

2008a). Chapter 6 demonstrated that higher order cluster and node-level interpretation 
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allows us to characterize a high volume of functional regions or phenotypes within a 

SOM, with the potential to characterize biomechanical variability associated with natural 

patient variability, and differences associated with sex and symptoms of pain. SOM also 

provided a novel ability to objectively illustrate and monitor an individual’s OA journey 

over time. Regional mapped location interpretation, and the ability to observe an 

individual’s change relative to their prior state may be advantageous for OA monitoring, 

such that it enables a patient’s baseline status to operate as a personalized “asymptomatic 

control”. Further, as distinct statistical boundaries between biomechanical phenotypes 

through OA progression and after TKA interventions may not exist (Paul Robert Biggs et 

al., 2019; Outerleys et al., 2021), there may not be a region or phenotype for TKA 

intervention that results in a globally optimal outcome for all individuals. Instead, we can 

identify a number of regions based on expected individual or group-level disease state 

status. This group-level approach may provide more sensitivity relative to a global model, 

potentially improving confidence in predictions and an ability to better tailor OA 

management and treatment to individuals. 

In addition to being an interpretable feedback and monitoring tool, SOMs have the 

potential to incorporate all the key considerations and findings from this thesis i) a 

longitudinal trajectory or view (Chapter 3), ii) the ability to incorporate both self-reported 

and objective functional measures in patient mapping (Chapter 4), or any comprehensive 

collection of multidimensional patient variables, iii) the inherent incorporation of 

baseline functional and self-reported status for outcome prediction (Chapters 3, 4 and 5), 

iv) the ability characterize multi-dimensional variability or phenotypes (Chapter 5), and 

finally v) to support un-bias patient decision making around conservative or surgical 

interventions. SOMs have also uncovered novel phenotypes associated with patient self-

reported domains when modeled using PROMs data alone (Appendix D). Future work is 

required for model refinement and validation. First steps on our existing datasets will 

address if radiographic and symptomatic OA progression follows different pathways 

(Costello et al., 2020), and identify SOM regions associated with symptom presentation 

and improved outcomes post-TKA. Next steps could include incorporating new physical 

and biochemical OA attributes to SOM training (e.g., self-reported symptoms, pain 
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patterns, alignment, radiographic severity, biomarkers, cartilage wear patterns, frailty 

indicators) (Paul Robert Biggs et al., 2019; Carlesso et al., 2020; Dell’Isola and 

Steultjens, 2018; Knoop et al., 2011; Schmucker et al., 2019; Waarsing et al., 2015), or 

developing a minimal yet comprehensive dataset encompassing relevant features that 

could be captured clinically. Final utility might include anchoring all SOM regions 

against self-reported outcomes for OA various intervention strategies (including exercise 

or other conservative care). Tailoring treatment to SOM regions targeting individual 

manifestations has the potential to drive evidence-based decision making, preventative, 

and personalized care strategies in OA. My hope is that the collective findings of this 

work provide new insights and inspires new investigations employing unique data driven 

approaches to OA and TKA investigations incorporating multi-dimensional patient 

dimensions including self-reported and objective functional scores. I believe we have an 

opportunity to continue to utilize the data and modeling tools we have available to us, to 

expose new relationships, ultimately enabling us to “think what nobody has yet thought, 

about that which everybody sees” (Erwin Schrodinger). 

 

7.2.  Research Limitations  

 OA is a complex disease encompassing joint-level degradation, symptomatic 

presentation, mobility limitations, an inflammatory response, and metabolic influences 

which changes over the course of the disease’s progress. This thesis focused on mobility 

limitations as captured using knee joint level gait analysis, and symptomatic features as 

measured using self-reported scores. Although some components of this thesis were able 

to capture a longitudinal view of the OA disease process and TKA recovery, 

incorporating other dimensions of OA disease presentation (such as biomarkers or 

radiographic information) is required to create a more comprehensive picture of OA 

patient variability, perhaps uncovering feature combinations particularly meaningful in 

variability stratification and TKA outcome modeling.  

This work was conducted on a series of pooled retrospective datasets, designed for 

studies independent of this thesis project. Gait and navigation data collected during my 
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Master’s thesis, and time spent in industry examining intervention outcomes among frail 

elderly individuals helped motivate this work. I believe this thesis demonstrates an ability 

to extract novel findings from our existing datasets by creating linkages and looking at 

our data using different tools; providing evidence and frameworks to guide future OA 

and TKA patient modeling. Although this work was conducted on a unique high-volume 

dataset, containing high-accuracy biomechanics with self-reported outcomes, working 

with retrospective datasets alone has limitations. Datasets were originally composed with 

objectives that differ from those of this thesis, therefore recruitment, screening, inclusion 

criteria, and data collected may influence relationships and phenotypes derived (Spil et 

al., 2020). Physical study inclusion criteria, such as the ability to walk un-assisted,  also 

suggests findings may not generalize well to more global TKA populations. Not all 

studies collected self-reported metrics, radiographic severity or alignment information, 

resulting in incomplete variables in some instances. The variables collected also limit this 

work to a research-area-specific area of variability characterization and phenotyping 

(Andriacchi et al., 2014), best described by knee joint level biomechanical and self-

reported outcomes. Our retrospective datasets were all collected in the Halifax Regional 

Municipality, from the Dynamics of Human Motion Laboratory, or the Halifax Infirmary 

Orthopedic site. This means our patients population may be regionally different from 

other Canadian sites (more obese, with more co-morbid conditions (Canada and santé, 

2011)). Patients also saw a select number of TKA surgeons, who may not be 

representative of surgical centers at other sites within the province of Nova Scotia, or 

nationally. A multicentered approach and measuring stability by re-producing modeling 

frameworks on external datasets is required to achieve clinical utility. 

Recent studies (Paul Robert Biggs et al., 2019; Outerleys et al., 2021), and the 

clustering chapters presented here found a failure to reliably discriminate clinically 

classified groups when attempting to separate them statistically. This was interpreted to 

reflect the continuum of natural variability of OA patients and over the disease spectrum, 

where distinct boundaries between individual phenotypes and across clinically classified 

groups may not exist. Therefore, presented phenotypes cannot be interpreted as mutually 

exclusive groups. This has implications for surgical decision making, and we cannot 
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assume that an average response among a phenotype will apply for every individual. It 

should be noted that most machine learning clustering quality metrics, such as the 

silhouette coefficient presented here, assume that an optimal and complete separation 

within the data does exit. This may not be the case in many real-life data applications. 

However, future studies with larger datasets, more variables, and the sensitivity to 

characterize more phenotypes may be valuable to create clusters of similar phenotypes, 

and better understand expected variability within larger phenotype groups.   

Specific to modeling TKA outcomes, there remains a lack of consensus on what a 

good or poor outcome entails. Part of that is a reflection of the success of TKA, where 

strong clinical indicators such as mortality and infection (with very low incidence rates) 

generally do not apply.  It has been proposed that “expected health benefit [should] 

exceed the expected negative consequences by a sufficiently wide margin to make TKA 

worth performing” (Escobar et al., 2003), in the context of the “average patient seen by 

an average physician” (Brooks, 1996). A number of endpoints have been proposed for 

TKA outcomes assessment, with this thesis selecting satisfaction and MCID criteria in 

our studies, generally based on data availability and our desire to incorporate endpoint 

metrics that reflect the patient experience. Still, arthroplasty is a generally successful 

procedure, resulting in 74-83% of patients meeting “responder” or good outcome criteria 

in our studies (Chapters 3-4). The unbalanced nature of our success groups results in a 

lower power to detect changes within non-responder groups. Further, self-reported 

outcome scores are complex, and should not be a definitive goal for improving patient 

care, where scores may be influenced by contradictory or non-modifiable external factors 

(Gibon et al., 2020). We did not have access to auxiliary dimensions of depression or 

anxiety in most cases. Therefore, our results should be interpreted acknowledging the 

limitations of self-reported scores, discussed in detail in section 1.4.1. 
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7.3.  Future Directions  

The findings of this work have demonstrated that patient function captured using gait 

mechanics can provide important insights into patient biomechanical variability and the 

mechanical basis behind functional limitations of TKA intervention. Joint-level 

mechanics have not routinely been collected clinically, historically burdened by time and 

financial investment of data collection practices, coupled with a lack of convincing 

clinical utility. Modern gait collection protocols have the potential to efficiently capture 

detailed mechanical information on all arthroplasty candidates in clinically settings using 

consumer-grade marker-less motion capture. When gait mechanics are paired with other 

dimensions of patient health such as patient-reported outcomes, novel understanding of 

the mechanisms that may be impacting the patient experience can be gained.  

Determining the basis for poor arthroplasty outcomes has been a debate over the 30 

year history of the modern prosthesis. This work has demonstrated the utility of 

establishing unique linkages between diverse research datasets, and how data science and 

machine-learning approaches can enable us to analyze temporal and multidimensional 

datasets collectively, capturing new perspectives and providing novel insights into our 

datasets, such as how patient variability might be meaningful for patient care and 

outcomes. For example, this work has suggested that patients who present for TKA with 

greater varus kinematic magnitudes during stance-phase of gait and an absence of other 

severe OA features may characterize clinical candidate subgroups for whom neutral 

corrections may not be clinically relevant to self-reported improvements in pain and 

function. It has also characterized variability in TKA and OA continuum cohorts, and 

demonstrated a link between variability and gait improvement after arthroplasty. 

Investigating patient biomechanical variability with respect to outcomes in larger studies 

is an important area for further research, which may enable us to anchor post-intervention 

gait changes next to self-reported criteria such as “somewhat better” or “a great deal 

better”, and identify gait changes that are clinically meaningful to individuals (Escobar et 

al., 2007). Diverse longitudinal clinical datasets, paired with self-reported metrics, and 

other clinical indicators (such as comorbidities, radiographic severity, alignment, 

cartilage wear patterns, biomarkers, or frailty indicators) could populate a rich and 
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valuable dataset, and improve our understanding of the holistic patient picture. New 

feature inclusion may identify attributes that lend to better statistical separation and 

enable us to train and validate stronger variability and outcome models. This work could 

also inform strategic collection of features specifically optimized for phenotyping 

analysis (a multi-disciplinary minimal dataset) while supporting a comprehensive patient 

view (Spil et al., 2020). Therefore, a focus on working collaboratively, linking datasets 

between independent disciplines of OA and TKA research and utilizing data science and 

machine-learning strategies should be priority for future clinical and research investment, 

with the methodologies presented here directly applicable to other clinical applications. 

When paired with outcome information, findings can support better informed clinical 

decision making, and provide valuable direction for innovations in individualized OA 

management and TKA care, with the ultimate goal of improving outcomes for patients. 
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Appendix A  Supplementary Materials for Chapter 4 
 
 

 

Figure A.1. Knee adduction angle principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across the stance-phase of one gait cycle 
for PCs 1-3. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC 

scores across the stance-phase of one gait cycle for PCs 1-3. 
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Figure A.2.  Knee flexion angle principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across one complete gait cycle for PCs 1-
4. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC scores 

across one complete gait cycle for PCs 1-4. 
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Figure A.3. Knee adduction moment principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across the stance-phase of one gait cycle 
for PCs 1-3. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC 

scores across the stance-phase of one gait cycle for PCs 1-3. 
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Figure A.4. Knee flexion moment principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across the stance-phase of one gait cycle 
for PCs 1-3. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC 

scores across the stance-phase of one gait cycle for PCs 1-3. 
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Appendix B  Supplementary Materials for Chapter 5 

 
Table B.1.  Mean silhouette coefficient, s, and Adjusted Rand Index, ARI, for clustering 
solutions 2:10. Bold indicates best clustering solution. 
Feature k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 

s 0.31 0.35 0.37 0.35 0.36 0.33 0.34 0.35 0.35 

ARI 0.15 0.54 0.57 0.55 0.53 0.49 0.48 0.49 0.49 

 
 
 

 
Figure B.1. Silhouette plot of accepted clustering solution. Figure illustrates 

n	"#$%&'$(	%'	)*+($&,|	s-&#'	)*+($&,	(%*./+&$$&	0%1$. for 134 patients among cluster 1 (blue, higher 
functioning males), cluster 2 (orange, lower functioning males), cluster 3 (red, lower functioning 

females), and cluster 4 (purple, higher functioning females). 
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Figure B.2. Mean pre-TKA gait waveforms by cluster; Cluster 1 (solid), Cluster 2 (dot-dashed), 
Cluster 3 (dotted), and Cluster 4 (dashed) when sex is removed from clustering analysis prior to 
MDS coordinate definition. Grey denotes 209 previously captured asymptomatic (mean age 51.6 

±9.0, BMI 26.7±4.5) gait patterns (mean ± 1SD). 
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Figure B.3. Mean post-TKA gait waveforms by cluster; Cluster 1 (solid), Cluster 2 (dot-dashed), 
Cluster 3 (dotted), and Cluster 4 (dashed) when sex is removed from clustering analysis prior to 
MDS coordinate definition. Grey denotes 209 previously captured asymptomatic (mean age 51.6 

±9.0, BMI 26.7±4.5) gait patterns (mean ± 1SD). 
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Appendix C  Supplementary Materials for Chapter 6 
 
 

Table C.1. Mean (± 1 standard deviation) demographic, spatiotemporal, and PC score gait 
waveform features between the clinical groups applied to cluster analysis. Four-way ANOVA 
tests examined mean differences between groups. Full dataset (n=923). 

  
PC Var 
Exp. 

All Clinical 
Groups  

Asymptomatic Moderate 
OA 

Pre-TKA Post-TKA p  

Sex                    

Female, n (%)  454 (49) 146 (62) 114 (33) 79 (54) 115 (57)  
Male, n (%)  469 (51) 90 (38) 227 (67) 66 (46) 86 (43)  

Age (years) 59.36 ± 10.22 51.55 ± 10.74 59.19 ± 8.45 63.75 ± 7.96 65.64 ± 7.28 <0.001 

BMI (kg/m2) 30.63 ± 5.93 26.80 ± 4.59 30.75 ± 5.22 33.02 ± 5.96 33.20 ± 6.11 <0.001 
Stance 
Percent (%)  64.85 ± 2.32 63.43 ± 1.67 64.53 ± 1.96 66.25 ± 2.52 66.08 ± 2.21 <0.001 

Speed (m/s)  1.18 ± 0.24 1.34 ± 0.17 1.24 ± 0.19 0.91 ± 0.21 1.09 ± 0.18 <0.001 

Flexion Angle                    

PC1 65% -1.87 ± 61.04 41.61 ± 43.92 5.91 ± 49.22 -63.54 ± 63.18 -21.61 ± 49.37 <0.001 

PC2 14% 1.39 ± 28.30 -4.14 ± 24.50 3.01 ± 27.16 -3.18 ± 36.78 8.41 ± 25.57 <0.001 

PC3 11% -1.54 ± 26.03 2.79 ± 21.29 5.41 ± 24.49 -14.48 ± 27.31 -9.07 ± 27.41 <0.001 

PC4 5% -0.04 ± 17.72 4.46 ± 17.37 0.07 ± 20.67 -2.65 ± 12.80 -3.63 ± 14.40 <0.001 

PC5 3% 1.06 ± 13.00 0.57 ± 12.04 3.31 ± 14.72 -2.64 ± 11.74 0.49 ± 11.04 <0.001 

Adduction Angle       <0.001 

PC1 56% -3.09 ± 20.35 1.03 ± 19.44 -3.27 ± 20.54 1.80 ± 18.90 -11.16 ± 19.67 <0.001 

PC2 26% -1.72 ± 13.38 4.24 ± 12.50 -5.45 ± 13.26 -4.11 ± 14.03 -0.69 ± 11.39 <0.001 

PC5 2% -0.36 ± 3.45 0.68 ± 3.07 -0.85 ± 3.61 -1.37 ± 3.69 -0.00 ± 3.07 <0.001 

Flexion Moment       <0.001 

PC1 50% 0.05 ± 1.34 -0.18 ± 0.94 -0.16 ± 1.32 0.66 ± 1.75 0.25 ± 1.24 <0.001 

PC2 38% -0.09 ± 1.17 0.80 ± 0.87 -0.11 ± 1.29 -0.97 ± 0.72 -0.46 ± 0.77 <0.001 

PC3 4% -0.01 ± 0.37 0.09 ± 0.35 -0.07 ± 0.37 0.05 ± 0.39 -0.06 ± 0.32 <0.001 

PC4 2% 0.00 ± 0.29 0.10 ± 0.25 0.06 ± 0.31 -0.16 ± 0.23 -0.09 ± 0.27 <0.001 

Adduction Moment      <0.001 

PC1 71% 0.07 ± 1.13 -0.30 ± 0.78 0.42 ± 1.07 0.26 ± 1.55 -0.23 ± 0.97 <0.001 

PC2 15% -0.02 ± 0.52 0.26 ± 0.44 0.10 ± 0.53 -0.47 ± 0.41 -0.24 ± 0.38 <0.001 

PC3 6% 0.01 ± 0.34 0.11 ± 0.35 0.03 ± 0.36 -0.16 ± 0.30 -0.01 ± 0.27 <0.001 

PC4 3% -0.02 ± 0.24 0.06 ± 0.24 -0.02 ± 0.25 -0.07 ± 0.22 -0.09 ± 0.19 <0.001 

PC5 2% 0.01 ± 0.17 0.01 ± 0.17 0.03 ± 0.20 -0.02 ± 0.15 -0.02 ± 0.14 0.0069 
 
 
  



 

  140 

Table C.2. Mean (± 1 standard deviation) for all PC score gait waveform features between 
clusters. Three-way ANOVA and Tukey HSD criteria examined mean differences between 
clusters. Training dataset (n=878). 

Interpretation 
(PC; Variance Explained)  

Cluster 1 Cluster 2 Cluster 3 p Tukey 
HDS 

Flexion Angle   
Higher score: greater overall flexion 
angle magnitude throughout the gait 
cycle (PC1; 65%)  
  

32.46 (44.6) -45.47 (60.7) -4.79 (46.8) <0.001 2<3<1 

Higher scores: Less difference between 
mean stance magnitude and flexion 
peak (PC2; 14%) 
  

-3.74 (23.1) 6.24 (33.3) 3.62 (29.0) <0.001 1<2,3 

Higher scores: more knee extension in 
heal strike and late stance with earlier 
occurring peak flexion in swing (PC3; 
11%)  
  

5.65 (20.5) -17.50 (28.3) 8.43 (21.9) <0.001 2<1,3 

Higher score: more flexion and 
extension angle range in stance (PC4; 
5%)  
  

8.46 (16.7) -2.09 (14.1) -12.75 (15.5) <0.001 3<2<1 

Not interpreted (PC5; 3%)  
  

0.72 (12.3) 2.18 (12.5) 0.76 (15.2) 0.3 
 

Adduction Angle   
Higher score: greater overall adduction 
angle magnitude in stance (PC1; 56%)  
  

0.76 (19.9) -6.91 (21.3) -4.00 (19.0) <0.001 2,3<1 

Higher score: more abduction to 
adduction angle range in stance (PC2; 
26%) 
  

1.46 (12.6) -3.69 (12.9) -5.76 (14.2) <0.001 2,3<1 

Not interpreted (PC5; 2%) 
  

-0.26 (3.3) -0.59 (3.7) -0.37 (3.5) 0.5 
 

Flexion Moment   
Higher score: Greater overall flexion 
moment magnitude in stance (PC1; 
50%)  
  

-0.25 (1.0) 0.60 (1.6) -0.11 (1.3) <0.001 1,3<2 

Higher scores: more flexion to 
extension moment range in stance 
(PC2; 38%)  
  

0.83 (0.9) -0.80 (0.8) -0.81 (0.9) <0.001 2,3<1 

Higher scores: earlier occurring flexion 
moment loading acceptance (PC3, 4%) 
  

0.03 (0.4) -0.08 (0.4) 0.02 (0.3) <0.001 2<1,3 

Higher score: more extension to flexion  
moment range from heal strike to early 
stance (PC4; 2%)   

0.06 0.3  -0.13 (0.2) 0.09 (0.3) <0.001 2<1,3 
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Adduction Moment   
Higher scores: greater overall adduction 
moment magnitude in stance (PC1; 
71%) 
  

0.04 (1.0) 0.02 (1.2) 0.22 (1.2) 0.09 
 

Higher score: more first peak to mid-
stance adduction moment range in 
stance (PC2; 15%)   
  

0.32 (0.5) -0.43 (0.3) -0.05 (0.4) <0.001 2<3<1 

Higher score: more mid-stance to 
second peak adduction moment range in 
stance (PC3; 6%)  
  

0.15 (0.4) -0.13 (0.3) -0.06 (0.3) <0.001 2<3<1 

Higher score: heal strike to weight 
acceptance adduction moment range 
(PC4; 3%)   

-0.01 (0.3) -0.08 (0.2) 0.03 (0.2) <0.001 2<1,3 

Higher score: more heal strike and 
terminal stance abduction moment 
magnitude (PC5; 2%)  

0.02 (0.2) 0.01 (0.1) -0.02 (0.2) 0.030 3<1 

 

Table C.3. Hierarchical clustering on the 10 best performing SOM models defined in Figure C.6. 
Here, cluster performance was defined by counts of positive and negative node silhouette values 
(left) and mean silhouette width (right) for k clusters 2:5.  
 k=3 k=4 k=5 

 Negative 

Nodes 

Positive 

Nodes 

Negative 

Nodes 

Positive 

Nodes 

Negative 

Nodes 

Positive 

Nodes 

Model 1 -16 105 -25 96 -24 97 

Model 2 -9 112 -11 110 -20 101 

Model 3 -13 108 -19 102 -20 101 

Model 4 -18 103 -20 101 -16 105 

Model 5 -12 109 -7 114 -10 111 

Model 6 -10 111 -16 105 -23 98 

Model 7 -12 109 -14 107 -10 111 

Model 8  -9 112 -15 106 -15 106 

Model 9 -13 108 -13 108 -13 108 

Model 10  -5 116 -9 112 -19 102 
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Figure C.1. Pareto / Scree Plots illustrating PC score variance explained. Five PCs were retained 
for flexion angle (cumulatively 97.4% variance explained), adduction angle (96.4%), flexion 

moment (96.1%) and adduction moment (95.6%) features. 
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Figure C.2. Knee adduction angle principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across the stance-phase of one gait cycle 
for PCs 1-5. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC 

scores across the stance-phase of one gait cycle for PCs 1-5. 
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Figure C.3. Knee flexion angle principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across one complete gait cycle for PCs 1-
5. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC scores 

across one complete gait cycle for PCs 1-5. 
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Figure C.4. Knee adduction moment principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across the stance-phase of one gait cycle 
for PCs 1-5. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC 

scores across the stance-phase of one gait cycle for PCs 1-5. 
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Figure C.5. Knee flexion moment principal components. Left) loading vectors (solid) and 
corresponding variance explained (grey shaded region) across the stance-phase of one gait cycle 
for PCs 1-5. Right) Example waveforms with high (95th percentile) and low (5th percentile) PC 

scores across the stance-phase of one gait cycle for PCs 1-5. 
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Figure C.6. SOM training under a number of initializing and tuning conditions, including 
training time (&, defined as “rlen” above), initial learning rate, and (', defined as “alpha” above), 
under differing grid criteria for randomly selected seed values. The 10 best performing SOM 

models by quantization error (()) performance criterion where retained. 
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Figure C.7. Heat map of SOM at the feature level: Clinical Group, descriptive of 
1[asymptomatic], 2[moderate OA], 3[pre-TKA], 4[post-TKA] clinical classification (not applied 
to clustering); Sex, denoted as 1[male] and 2[female] (not applied to clustering); Age, participant 
age at the time of the gait observation in years; BMI, body mass index at the time of the gait 

observation in kg/m2; Stance Percent, percent of gait cycle in stance; Gait Speed, in m/s; Flexion 
Angle, Adduction Angle, Flexion Moment and Adduction Moment PC scores applied to 

clustering. Colours correspond to feature bar legends, low[blue]-high[red]. 

 



 

  149 

 

 

Figure C.8. Silhouette plot of accepted SOM clustering solution, where *2 is the silhouette width 
of each node for clusters 1 to 3. The number of nodes belonging to each cluster, and the mean 
silhouette width of each cluster are also provided (nodes in cluster k | mean silhouette width of 

cluster). 
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Appendix D Abstract: SOM Applied to Self-Reported Data  
 

 

Submitted to the Canadian Orthopaedic Association/Canadian Orthopaedic Research 

Society Conference 2021: 

 

Phenotypes Associated with Self-Reported Pain, Function and Pain Catastrophizing  

Among TKA Populations Using Machine Learning Based Self-Organizing Maps  

 
 

Purpose: Patient-reported outcome measures (PROMs) of osteoarthritis (OA) patients 

before and after Total Knee Arthroplasty (TKA) allows patients to share their self-

reported perceptions of pain, quality of life, and function; meaningful insights into patient 

health. However, responses can be influenced by external dimensions. Understanding 

variability and “phenotypes” within patient-reported responses is relevant to 

interpretation and tailoring interventions to the individual. The objective of this study was 

to use a data mining framework to map demographic and PROM response variability 

among patients pre and post-TKA, and to identify patient phenotypes within the map. 

 

Methods: Primary and revision TKA patients (n=876) completed joint-specific Oxford 

Knee Score (OKS, 0[worst]-48[best]) and Pain Catastrophizing (PCS, 0[least]-52[most]) 

questionnaires pre-TKA (n=608), and post-TKA at 6-months (n=84), one year (n=145), 

and two years (n=39). Of the full dataset (j=876), training (j=834), and test sets (j=42) 

were defined. Using the training dataset, patient age at the time of surgery, OKS 

(questions 1-12), and PCS (questions 1-13) were applied to an unsupervised Self-

Organizing Map (SOM) framework followed by hierarchical clustering. The ten best 

performing SOM models by quantization error were applied to hierarchical clustering. 

Cluster models (k=2:5) were assessed by counts of negative nodes using silhouette 

coefficients, where the cluster model with the least negative nodes was selected. Clusters 

were validated by examining inter-cluster differences by chi-squared and k-way 

ANOVA, Kruskal-Wallis, and Fisher Tests.  
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Results: A SOM model with four (k=4) clusters yielded optimum performance metrics. 

All clusters differed significantly in OKS dimensions of Pain (p<0.001), Function 

(p<0.001) and Total scores (p<0.001), and PCS dimension of Helplessness (p<0.001), 

Rumination (p<0.001), Magnification (p<0.001), and Total scores (p<0.001). In general, 

Cluster 1 was interpreted as a “high catastrophizing, poor pain and function phenotype”, 

with the highest PCS and lowest (worst) OKS among the clusters. Of the pre-TKA 

patients in the training set, n=141/578 were classified to Cluster 1. Cluster 2 was a “low 

catastrophizing, low pain and high function phenotype” with the lowest PCS and highest 

(best) OKS among the clusters (n=29/578 pre-TKA patients). Cluster 3 was a “moderate-

to-high catastrophizing, poor pain and function phenotype”, with moderate PCS and poor 

OKS (n=178/578 pre-TKA patients). Cluster 4 was a “low catastrophizing, poor pain and 

function phenotype”, with low PCS and poor OKS (n=230/578 pre-TKA patients). The 

test dataset projected on the SOM yielded very similar cluster distributions, providing 

validity to phenotype interpretation.  

 

Conclusions: Two-dimensional mapping quantifies and visually represents dimensions 

of self-reported pain catastrophizing and joint-level pain and function scores. This 

analysis identified “high catastrophizing, poor pain and function” (Cluster 1), and “low 

catastrophizing, poor pain and function” (Cluster 4) phenotypes, demonstrating that PCS 

and self-reported pain and function are not linearly associated for all patients. PCS has 

been demonstrated to be an independent predictor for chronic pain after TKA, and the 

ability to identify high-risk phenotypes prior pre-TKA is relevant to tailoring 

interventions to individuals. Future work incorporating detailed demographic and self-

reported dimensions to SOM clustering could aid in developing detailed patient profiles, 

and personalized care strategies.  
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Figure D.1. Left) SOM model; right) silhouette plot of accepted SOM clustering solution (mean silhouette width of 0.28), where !! is the 
silhouette width of each node for clusters 1 to 4. The number of nodes belonging to each cluster, and the mean silhouette width of each cluster are 

also provided (nodes in cluster k | mean silhouette width of cluster). 
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Figure D.2. Box plot of cluster distribution by clustered features.  
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Figure D.3. Heat map of SOM at the feature level. Colours correspond to feature bar legends, low[blue]-high[red].a 
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