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ABSTRACT 

Smart home for healthcare services has acquired more attention since the increasing development 

of the Internet of Things and the population ageing over the world. Human activity recognition 

(HAR) is one of the concerns of the smart home. Ambient sensors based HAR is one promising 

direction. This research proposes a deep learning-based stacking method for HAR using ambient 

sensors. We first generate base models of convolutional neural networks (CNNs) and long short-

term memory (LSTM) with different architectures, training data samples, and sliding window 

sizes. These base models are further integrated by a LSTM model to make final predictions. 

Furthermore, we propose a generative adversarial network to generate synthetic data as 

supplementary training data to tackle the problem of insufficient data. These two methods are 

used together on six real-world datasets. Results show that our proposed methodology 

statistically outperforms other approaches in the literature. 
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Chapter 1: Introduction 

Population ageing, which is now widespread globally, is a shift in the distribution of a country’s 

population towards older ages. Canada is no exception to this phenomenon. Canada Statistics 

projected that the proportion of seniors (those aged 65 and older) is about to reach at a minimum 

of 22.7% by 2033 in Canada. In addition, according to the Canadian Community Health Survey, 

the portion of the elderly with at least one chronic body condition has exceeded 50% and will 

continue to increase. The trend towards population ageing and the increasingly high proportion 

of seniors with chronic body conditions have both contributed to the rise in the demand for home 

healthcare. In 2017, the industry of home healthcare services in Canada was up 6.1% from the 

previous year. Among the various home health care services, smart home for elderly care is the 

fastest growing one, given it is expected to show an annual growth rate of 18.2% between 2020 

and 2023. Smart Home for elderly care aims to provide an environment where the elderly can 

live independently and safely while relieving caregivers’ stress through monitoring the elderly’s 

daily activities and providing feedback to caregivers. A key aspect of smart home for elderly care 

is the feedback provided to the caregivers, which can be records of resident’s daily activities 

events or alarms triggered by abnormal behaviours (e.g., coma, fall). One method for collecting 

this feedback is Human Activity Recognition (HAR). HAR uses various equipment to detect and 

recognize residents’ activities, collect that information, and process and analyse them later. With 

HAR’s help, the elderly and their caregivers can track the user’s living habits to help improve 

quality of life and health conditions [1]. 

Based on the devices used to record residents’ activities, there are two general HAR types: 

camera-based HAR and sensor-based HAR. The camera-based method uses cameras to collect 

vision-based data containing information about human activities. Although the camera-based 
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HAR benefits a lot from the fruitful information in the visual data, it still has drawbacks such as 

expensive computation cost, high dependence on the quality of the foreground segmentation, and 

the resident’s concern for the privacy, which has made sensor-based HAR more popular [2]  

Sensor-based HAR uses various sensors to collect data generated by residents’ activities. 

Therefore, it does not require as much computation resources nor invades privacy as much as the 

camera-based method. Sensor-based HAR can also be split into two categories: wearable sensors 

or ambient sensors. Wearable sensors are placed on the resident’s body and collect postural and 

locomotive data of the user. On the other hand, ambient sensors are placed in the living 

environment and record the resident’s daily activity information such as location and appliance 

being used. Ambient sensors typically include motion sensors, switch sensors, and pressure 

sensors. Although these categories are both feasible, users have shown resistance to wearing 

sensors on their bodies continually [3]. Consequently, HAR based on ambient sensors become 

increasingly promising [4].  

The core of HAR is to build a model for recognizing residents' activities with recognition 

accuracy. Various techniques have been applied to this problem of HAR, including, but not 

limited to, hidden Markov model (HMM), support vector machine (SVM), k nearest neighbour 

(kNN), and deep learning (DL). A review of the current literature on these techniques will be 

discussed in Chapter 2. Among these techniques, deep learning is becoming increasingly popular 

because of its ability to simultaneously learn features extraction and classification [5]. Also, 

stacking is a technique of interest frequently used to further improve classification performance, 

given its ability to improve the generalization capabilities of models by combining multiple 

classifiers. The details of the stacking will be further explained later. 
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On the other hand, most HAR research merely focuses on improving models' recognition 

accuracy and ignoring the data itself [6]. As a matter of fact, HAR's performance highly relies on 

both the quantity and the quality of the collected data. However, it is getting increasingly 

difficult to obtain enough data for HAR due to two facts [7]. The first is that collecting HAR 

related data in a smart home is time-consuming because it takes months to collect enough data to 

make HAR models learn the user's living habits efficiently. The second is that it is expensive to 

label activities on the data collected from sensors. Hence, the lack of sufficient data caused by 

high costs on time and money becomes another challenge that HAR based on ambient sensors 

needs to tackle. 

1.1 Research Objective 

The main objective of this research is to propose an improved deep learning-based stacking 

method for HAR based on ambient sensors. This includes proposing an approach of generation 

and an algorithm of integration. To achieve this objective, three phases of study will be carried 

out. The first is to explore feasible factors whose diversities can have positive impacts on the 

performance of stacking model. The next phase is to construct a deep learning-based model for 

integration. The third phase is to propose a stacking based algorithm amid HAR using ambient 

sensors.  

The second objective of this research is to solve the problem of insufficient data. A model based 

on generative adversarial networks (GANs), whose detail will be included in Chapter 2 and 

Chapter 4, is introduced. This model is called ASGAN (ambient sensor GAN). We will use 

ASGAN to generate synthetic data and further mix the synthetic data with real data collected by 

ambient sensors to train our proposed HAR model. To the author’s best knowledge, this is first 

work on implementing GAN in the area of HAR based on ambient sensors.  
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1.2 Thesis Structure  

The rest of this thesis is organized as follows: 

• Chapter 2 provides a current review on literature related to the HAR problem, including 

different types of HAR, its application, and various classification methods having been 

applied. Besides, literature reviews on the application of both stacking and GAN are also 

included.  

• Chapter 3 proposed a deep learning-based stacking method for HAR based on ambient 

sensors.  

• Chapter 4 proposed a GAN-based model, called ASGAN, aiming to generate synthetic 

ambient sensors data to tackle the lack of sufficient data and further improve the 

performance of HAR.  

• Chapter 5 presents the experiment and the corresponding experimental evaluation and 

result based on six ambient sensors based datasets for HAR.  

• Chapter 6 includes the conclusion and discussion of this research, as well as some 

suggestions for future work.  
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Chapter 2: Literature Review of HAR 

Human activity recognition (HAR) aims to determine residents’ activities inside smart homes 

with the help of various devices. Such devices include cameras, wearable sensors, and ambient 

sensors. Based on the devices used to record residents’ activities, there are two general HAR 

types: camera-based HAR and sensor-based HAR. The difference between these two types of 

HAR is in the data type used, which leads to different pre-processing feature extraction methods. 

The rest of this Chapter will bring more detail about these two different types of HAR.  

No matter what devices are used and regardless of which HAR type, HAR typically involves 

three steps [8]: pre-processing, feature extraction, and classification.  

1. Pre-processing: collect raw data from devices and organize them into a certain form for 

further utilization. 

2. Feature extraction: extract features containing useful information from raw data to 

construct the input. 

3. Classification: use a trained model to determine the given activity based on data derived 

from devices.  

In pre-processing, raw data is first collected from the devices. Then the data is organized into a 

certain form or processed by certain algorithms for further utilization. For example, firstly, 

videos are broken down into frames of pictures. Then human are further extracted from the 

background. What occurs during feature extraction influences the HAR's performance greatly as 

it involves extracting useful features from the raw data, filtering ineffective information, and 

reducing the computation cost [9].  
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2.1 Types of HAR 

2.1.1 Camera-based HAR 

The camera-based method uses cameras to collect vision-based data containing information 

about human activities. These data are usually videos that record residents' daily lives.  

Before HAR methods can analyze the human activities in these videos, the videos will need to be 

broken down into frames, and foreground segmentation or background subtraction will need to 

be conducted [10-15]. In other words, the resident and the background must be separated. This 

step can also reduce the computation cost required by further analysis. [12] used the mixture-of-

Gaussian model to classify each pixel based on whether the Gaussian distribution representing it 

most efficiently is considered part of the picture's background. However, this method does not 

work well when the background objects are clustering and do not stay wholly static. To tackle 

this problem, [13] proposed the codebook background subtraction algorithm, which has an 

advantage in dealing with a moving and clustering background. Instead of using traditional RGB 

cameras. [14] and [15] both used depth-sensing cameras. By doing so, they can directly track the 

user's joints without separating humans and backgrounds and conduct HAR more efficiently. 

However, only tracking the user's joints ignored information contained in the background 

objects. As a result, methods relying merely on tracking joints cannot handle human activities, 

which are the interaction between humans and backgrounds. On the other hand, [50] employed a 

hybrid model consisting of four CNNs. These CNNs were fed by different data: one CNN is 

based on RGB images, the other three CNNs are based on depth images of three different 

dimensions. This hybrid model utilizes information contained in both RGB images and depth 

images.  
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Although camera-based HAR benefits a lot from the visual data's fruitful information, it still has 

drawbacks such as expensive computation cost, a strict requirement for the environment, and the 

resident's concern for privacy [2]. The visual data itself cause an expensive computation cost. 

Like what was mentioned above, video streams typically will be first preprocessed. Then data 

after preprocessing will be processed to recognize activities by specific algorithms. Both 

preprocessing and recognition are required to be conducted in real-time, which will require much 

computation, especially given the large size of multiple image-base data nowadays. Camera-

based HAR requires a strict smart home environment to make sure the normal function of 

recognition algorithms. For example, when occlusions, where a room contains furniture or 

objects placed between the person and the camera, happened, algorithms may make inaccurate 

recognitions. Other factors, such as low light and changes in the layout of furniture, could also 

negatively influence the performance of camera-based HAR. Privacy concern is another 

problem. Given that the camera will collect visual data, including some sensitive information 

such as the user's appearance, users show vital concern for their privacy and the unpleasant 

feeling of "being watched" [2]. 

2.1.2 Sensor-based HAR 

Like what was mentioned above, camera-based HAR faces challenges including expensive 

computation cost, strict requirement for the environment, and the resident’s concern for the 

privacy. However, sensor-based HAR does not require as much computation resources nor 

invades privacy as much as the camera-based method. As a result, sensor-based HAR is more 

popular in the HAR area for smart home residents [2]. 

Sensor-based HAR can also be split into two categories: wearable sensors or ambient sensors. 

Wearable sensors are placed on the resident’s body and collect postural and locomotive data of 

the user. On the other hand, ambient sensors are placed in the living environment and record the 
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resident’s daily activity information such as location and appliance being used. Ambient sensors 

typically include motion sensors, switch sensors, and pressure sensors. Of the two types of 

sensor-based HAR, ambient sensors are more popular because users have shown resistance to 

wearing sensors [4] .  

Given the drawbacks mentioned earlier of the camera-based method and wearable sensors based 

method as well as the advantages of ambient sensors based method, this project will henceforth 

focus on ambient sensor-based HAR.  

Various conventional machine learning methods have been successfully used to analyze the 

activities recorded by ambient sensors. However, all of them faces two challenges: feature 

extraction and heterogeneity [16]. 

Firstly, the quality of feature extraction has great impacts on the performance of classifiers [5]. 

However, conventional machine learning methods require manual feature extraction and hence 

prior knowledge. Such prior knowledge helps to select the appropriate features. Let us consider 

HAR based on ambient sensors. First, sensor activation may reflect the activities that the resident 

is doing. If the sensor on the toilet is activated, then it is obvious that the resident is using the 

bathroom. Therefore, we may consider the activation status of sensors as a feature. The duration 

and the sequence of the sensors’ activation may also help us to identify the activity. If the motion 

sensors in the kitchen and the restroom were activated successively but only lasting for a few 

seconds and then the motion sensor in the bedroom was activated, it may indicate that the 

resident was passing through the kitchen and restroom to go to the bedroom. Hence, the duration 

and the sequence of the sensors’ activation may also be considered useful features. In the above 

examples, the activation status of sensors and the corresponding duration and the sequence are 

selected as features because we have prior knowledge that these features are useful. However, 
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given the complexity of the sensor network, some prior knowledge is hard to get. As a result, 

some features that are helpful to construct effective classifiers may be ignored. Also, conducting 

feature extraction manually is a poorly generalizable endeavour [5]. In other words, some of 

these hand-crafted features are not distinguishable enough to help build accurate classifiers [17]. 

Besides, some of those features extracted from raw data might be redundant and irrelevant, 

which is another challenge HAR has to face [9]. In the worst cases, such unhelpful features could 

even have negative impacts on the performance. 

Secondly, users and sensors layouts are the two most important factors of HAR. Different users 

may have diverse activity styles. On the other hand, different sensors layouts may generate 

significantly different sensory data. As a result, different users and sensors layouts can lead to 

the heterogeneity of the sensory data for activity recognition, which may cause drops in the 

recognition accuracy when the classifiers are not design for specific users and sensors layouts.  

Given these two challenges of feature extraction and heterogeneity, deep learning becomes an 

increasingly popular in recent years because it doesn’t need manual feature extraction and is 

flexible. Because of deep learning’s layer-by-layer structures, it can not only simultaneously 

learn data features and classifiers but also be flexibly unified to deal with sensory data generated 

by different users and sensors layouts [5,16], which will be further explained in the next section. 

Given deep learning’s potential to deal with challenges of feature extraction and heterogeneity, it 

is worthy of paying more attention to deep learning. The following section will provide a brief 

explanation of deep learning. 

2.2 Deep Learning for HAR  

Deep learning is a general term for Artificial Neural Network (ANN) algorithms consisting of 

multiple hidden layers. Such layers are made up by multiple artificial neuron cells.  
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For an artificial neuron cell, its mathematical model can be demonstrated as Figure 1. In Figure 

1, signals sent by other artificial neuron cells are xi. After being received, signals can be 

represented as the product of xi and 𝑤𝑖. In the cell body, all received signals are add as ∑ 𝑤𝑖𝑖 𝑥𝑖 +

𝑏, where b is the bias of the current cell, and are further processed by an activation function f. 

𝑦 = 𝑓(∑ 𝑤𝑖𝑖 𝑥𝑖 + 𝑏)          (1) 

 

Figure 1 Mathematical model of an artificial neuron unit [18] 

This whole process can be represented as Equation 1, where y is the signal outputted by the 

artificial neuron cell. Table 1 shows four different activation functions: sigmoid, tanh, relu, and 

softmax.   

For sigmoid activation, shown in Table 1, the value of output takes the value between 0 and 1. 

This range could be interpreted as the activation rate of the neuron, where 0 represents a neuron 

that is not activated at all, and 1 represents a fully activated neuron. Output of tanh takes the 

value between -1 and 1. Its output can also be considered as the activation rate of the neurons, 

where negative values represent inhibited neurons, and positive values represents activated 

neurons. Sigmoid and tanh are frequently used when the output is required to have both upper 

and lower limits like images. For instance, every pixel in an image can be expressed by a value 

between 0 and 1, or -1 and 1. On the other hand, unlike sigmoid and tanh, relu activation does 
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not have upper limit. When the inputted value is equal or less than 0, it won’t be activated. Relu 

is frequently in layers before the last output layer when there are no certain requirements for 

these layers’ outputs, given relu has the advantage that its gradient won’t vanish during training 

[19]. The last activation function in Table 1 is softmax. The output of softmax activation is a 

vector of k values that are between 0 and 1. Also, such k values sum up to 1. Therefore, the 

output of softmax can be considered as a probability distribution with k classes. Softmax is often 

used as the output layers in classification problems.  More detail of them will be explained in 

Chapter 3.  

Table 1 Mathematical equations and graphs of frequently used activation functions 

Name Mathematical Equation Graph 

sigmoid 𝑓(𝑧) =  
1

1 + 𝑒−𝑧
 

 

tanh 𝑓(𝑧) =  
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 

 

relu 𝑓(𝑧) = 𝑚𝑎𝑥(0, 𝑧) 

 

softmax 𝑓(𝑧𝑖) =  
𝑒𝑧𝑖

∑ 𝑒𝑧𝑘𝑘
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Deep learning has various architectures including fully connected neural networks (FCNN), 

convolutional neural networks (CNNs), and long short-term memory (LSTM). The following 

section will bring more detail about these three different architectures. 

2.2.1 Fully Connected Neural Networks 

Shown as Figure 2, a FCNN consists of layers where all neurons in a certain hidden layer are 

fully connected to the previous layer and the next layer. In a such network, hidden layers learn 

how to extract features and classify. FCNN has been applied to various areas such as agriculture, 

medicine, and finance [20-27]. In agriculture, [20] used a FCNN for fruit classification where 

texture and shape features of each fruit image are taken as the input. [21] utilized FCNNs to 

predict crop yield by taking as input parameters like environment temperature, rainfall, humidity 

etc. FCNN has also been applied to the medical area. [22-24] utilized FCNN to analyze patient’s 

symptom data to make diagnosis. In finance, [25,26] utilized the stock price with the help of 

FCNNs. Also, [27] constructed a FCNN to predict future failure of finance company according 

to the company’s financial report.  

 

 
Figure 2 The structure of a typical fully connected neural network [18] 
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2.2.2 Convolutional Neural Network 

Convolutional Neural Network (CNN), inspired by the architecture of the visual cortex, is a 

model resembling the connectivity pattern of neurons in the animal’s visual cortex. Figure 3 

provides an example of a typical CNN, where conv refers to convolution, pool refers to pooling, 

FC refers to fully connected. Unlike FCNN, where every neuron is fully connected to all the 

neurons from its previous layer and its next layer, each neuron in the convolution layer is only 

connected to neurons of a specific area from the previous layer. In other words, each neuron in 

the convolution layer is the convolution output of the previous layer’s neurons in a particular 

area. Therefore, CNN gains the ability to capture spatial and temporal information by conducting 

convolutions in every input area. Take the CNN in Figure 3 as an example, this CNN model has 

convolution layers and pooling layers. The convolution layers learn data representation while the 

pooling layers, following these convolution layers, play the role of down sampling. After 

learning feature extraction, fully-connected layers placed after the convolution and pooling 

layers fulfill the job of classification.  As a result of the convolution layers and fully-connected 

layers, the CNN gains the ability to simultaneously learn feature extraction and classifiers. To 

have a better understanding of how convolution works in CNNs, consider Figure 3. The black 

blocks in Figure 3 represent convolution kernels which move through the entire grey maps to 

extract features. Figure 4 provides a concrete worked out example of this convolution process. 

The area in the khaki color outlines the current position of the kernel as it slides through the 

input doing element-wise multiplication and addition. The element-wise multiplication and 

addition is represented by Equation 2, where 𝑦 refers to the result of the convolution, and 𝑥 is the 

elements of the input where the kernel is currently positioned, and w is the weight of the kernel. 

Using the equation, the result of convolution in the current khaki area, in Figure 4, is 429 

(18*1+54*0+51*1+55*121*1+75*0+35*1*24*0+204*1).  



 14 

 

Figure 3 An example of a typical CNN  

𝑦 = ∑ ∑ 𝑤𝑖𝑗𝑗 𝑥𝑖𝑗𝑖           (2) 

Like convolution, pooling is also conducted by a filter. Shown in Figure 5, there are two 

commonly used types of pooling: max pooling and average pooling: max pooling returns the 

maximum value covered by the pooling filter, and average pooling returns the average value. 

There is no guarantee that which one of these types of pooling work generally better than the 

other. But they all aim to reduce the size of the features extracted by the previous convolution 

layer. After the convolution layers and pooling layers learn the features, the extracted features 

are flattened into a vector from the matrix of a higher dimension, shown in Figure 3. The 

extracted features are flattened so they can be processed by the fully connected layer to finish the 

classification job.  

 

Figure 4 An example of how the convolution works in a CNN [35] 
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Figure 5 An example of the mechanism of pooling [35] 

2.2.3 Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) is another variant of deep learning. Shown in Figure 6, a 

typical LSTM features multiple LSTM layers. Such LSTM layers process current moment’s 

input 𝑥𝑡 with considering not only 𝑥𝑡 itself but also the last moment’s output ℎ𝑡−1. A LSTM 

layer is made up by LSTM cells whose architectures are shown in Figure 7. The LSTM cell has 

three special gates: forget gate, input gate, and output gate.  The information flow inside LSTM 

cell first go through forget gate, then input gate, and finally output gate.  

 

Figure 6 An example of a LSTM network 
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Figure 7 A LSTM cell consists of three gates: forget gate, input gate, and output gate. 

Inside a LSTM cell, shown in Figure 7, the first step is to decide what information contained in 

last moment’s cell state Ct-1 should be forgotten. The Cell state Ct-1 here is the information stored 

in the LSTM cell at the last moment t-1. This decision of which parts of information the cell 

should forget is made by forget gate. The forget gate uses output of last moment ht-1 and current 

input xt to output a forget rate 𝑓𝑡 between 0 and 1, where 0 represents that the information 

contained in Ct-1 is completely forgotten and 1 represents that the information contained should 

be fully accepted. The mathematical model of forget gate is represented by Equation 3, where Wf 

and bf are the weight and bias of forget gate. The values of Wf and bf are gained during training. 

Also,   here is the sigmoid activation shown in Table 1. Therefore, the information reserved by 

the forget gate is 𝑓𝑡𝐶𝑡−1.  

𝑓𝑡 = (𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)         (3) 

After forget gate is input gate, which outputs the current cell state 𝐶𝑡. Equation 4 is the 

mathematical model of input gate, where Wi and bi are the weight and bias of input gate, WC and 

𝑏𝐶 are the weight and bias of the LSTM cell, tanh is the tanh activation function shown in Table 

1. In input gate, (𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) is the information 𝑖𝑡 gained from the output of last step 

ht-1 and current input xt. And 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶) is the input rate between -1 and 1, 
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where -1 represents that 𝑖𝑡 should be completely eliminated from the information reserved by the 

forget gate, 𝑓𝑡𝐶𝑡−1, while 1 represents the opposite situation.  

𝐶𝑡 = 𝑓𝑡𝐶𝑡−1 + (𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) ∗ 𝑡𝑎𝑛ℎ(𝑊𝐶 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)   (4) 

Next, the updated current cell state 𝐶𝑡, gained by input gate, will be stored in the cell for further 

use at the next moment. Also, 𝐶𝑡 will be passed to output gate to generate current moment’s 

output ℎ𝑡. Output gate takes  ℎ𝑡−1, 𝑥𝑡, and 𝐶𝑡 as inputs to generate ℎ𝑡 by using Equation 5, where 

Wo and bo are the weight and bias of output gate. (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) is the output rate that 

decides what parts of current cell sate 𝐶𝑡 we are going to output. Also, it should be noticed that 

cell sate 𝐶𝑡 in output gate is regulated to values between -1 and 1 by using tanh activation. The 

motivation for using tanh here is that tanh activation’s gradient computation is less expensive 

than other activation functions.  

ℎ𝑡 = (𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)       (5) 

In summary, a LSTM cell uses forget gate to control what parts of last moment’s cell state 𝐶𝑡−1 

can be reserved. Next, input gate is utilized to output current cell state 𝐶𝑡 by adding information 

from last moment’s output ht-1 and current input xt to the reserved parts of 𝐶𝑡−1. Finally, output 

gate generates current output ht  by taking ht-1, xt, and 𝐶𝑡 as inputs. It can be seen that, besides xt, 

the cell sate 𝐶𝑡−1 and ht-1 also run through the entire LSTM cell. In other words, LSTM cells 

generate the output by considering the last moment’s information all the time. LSTM can always 

memorize what it has learned from previous moments and then pass such memories to the next 

moment. This is the reason why LSTM is good at time series data.  

Applications of LSTM are varied, including but not limited to application in robotics, speech 

recognition, and traffic forecasting. [28] used human-generated examples to train a robotic 

surgical manipulator on how to do knot winding trajectories with the help of LSTM. [29] applied 
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LSTM to speech recognition. In their work, they compared the bidirectional LSTM, where 

information could pass through in two directions (from X1 to Xt, and from Xt to X1), and 

unidirectional LSTM, where information can only be processed in one direction from X1to Xt, 

and determined that the bidirectional LSTM had a slight advantage. Motivated by the availability 

of ambulant traffic data and the rapidly increasing computation power in recent years, [30] 

proposed an LSTM model for short-term traffic forecasting. Besides the above applications, 

there are still many fields that have applied LSTM such as handwriting recognition [31], 

business process management [32], prediction in clinical events [33], and airport passenger 

management [34]. 

2.3. Stacking 

Stacking is a technique used to improve the classification’s performance by combining multiple 

classifiers. Shown in Figure 8, stacking first generates and trains multiple base models. Then a 

new training data set is made from these base model predictions and used to train a meta-model 

to make final predictions. The process of generating the base models is called generation and the 

process of training the meta model to use the base models’ outputs to make predictions is called 

integration. Generation and integration are two key considerations of the model stacking 

technique.  

1. Generation: generate multiple classifiers, or base models, and make predictions. 

2. Integration: make the final prediction based on outputs generated by base models  
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Figure 8 Demonstration of the process of stacking [40] 

The goal of generation is to guarantee the diversity of base models. Without such diversity, the 

model stacking technique is not capable of improving the performance because the same data are 

always processed the same way [35]. Researchers have tested several methods for guaranteeing 

diversity, including diversifying training datasets, feature extraction methods, model 

architecture, and classification algorithms. [36] guaranteed base model diversity by training 

multiple base models on different training datasets compiled from data collected using three 

different wearable sensors placed on the chest, wrest, and ankle. [37] guaranteed diversity in the 

base models by conducting different feature extraction methods to extract different features for 

training the base models. [38] combined the above approaches. They first constructed multiple 

datasets by combining data collected by different sensors. Then different features are extracted 

from above data. Such features were further used to feed the base models. In addition to focusing 

on the diversity of training dataset or feature extraction methods, another direction for 

diversifying base models is building base models with different architectures. [39] varied the 

architecture by building three CNNs with different kernel sizes in both the convolution layers 

and pooling layers. Instead of generating base models with only one algorithm, [16] diversified 

the architecture by applying multiple classification algorithms. 
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For integration, the goal is to utilize the outputs from the base models efficiently. There are two 

general methods for integration. The first is the most commonly used voting method where the 

predictions for each class by base models are summed, and the class with the majority vote will 

be the final prediction. The second is to build another classifier that calculates a final prediction 

using the outputs of the base models as input. 

Stacking has gained more popularity in recent years as a method aimed at improving the 

performance [4]. Considering model staking’s strong ability of enhancing model’s performance 

and deep learning’s great power of learning data representation, [4, 39] have even combined 

deep learning and model stacking to solve wearable sensor based HAR problems. Both 

researches show that the combined model outperforms previous state-of-the art results. However, 

to the knowledge of the author, there has been no research completed that combines deep 

learning and model stacking for HAR in a smart home environment with ambient sensors.  

2.4 GANs for HAR 

For HAR, collecting trainable data is a difficult task. For one thing, there should be volunteers all 

the time in order to monitor residents’ activities and then label every sensor events. For another 

thing, residents are required to be cooperative during the stage of collecting data. This would 

bring inconvenience to residents since their daily life is needed to be monitored during a given 

period. As a result, collecting trainable data has become one of the challenges that ambient 

sensor-based HAR needs to tackle. As a matter of fact, this problem is not limited to ambient 

sensor based HAR. Wearable sensor based HAR also faces such a challenge. More recently, with 

the development of generative adversarial networks (GANs), researchers begin to use GANs to 

tackle the insufficient data problem.  

As shown in Figure 9, a GAN consists of two networks: generator 𝐺, which generating synthetic 

data, and discriminator 𝐷, which distinguishes between real data and synthetic data. During the 
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training process, the generator's goal is to obtain a distribution that is close enough to the 

distribution of real data by improving the quality of the synthetic data. On the other hand, the 

discriminator continues to enhance its ability to distinguish between real data and synthetic data.  

 

Figure 9 Generative adversarial networks [45] 

The objective of GAN is to improve the generator’s ability of generating synthetic data and 

enhance the discriminator’s ability of distinguishing synthetic data simultaneously. Assume that 

𝑥~𝑝𝑑𝑎𝑡𝑎 is a set of samples from the set of real data, then 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)] is the logarithmic 

probability of real data x being recognized as real by discriminator. Hence, the goal of the 

discriminator is to maximize this logarithmic probability. On the other hand, assume 𝑧~𝑝𝑧 is 

samples of noise, then 𝐸𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] is the logarithmic probability that synthetic 

data, generated from noise z by generator G, being recognized as fake by discriminator D. 

Therefore, the goal of the generator is to minimize this probability. The objective of GAN can be 

expressed as Equation 6. It can be seen this objective requires GAN to simultaneously optimize 

both generator and discriminator by minimizing and maximizing the two types probability, 

which are mentioned above, respectively.  
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𝐸𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))] + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎
[𝑙𝑜𝑔𝐷(𝑥)]𝐺       𝐷  

𝑚𝑖𝑛 𝑚𝑎𝑥  (6) 

 

[6] is the first work to apply GANs to wearable sensor based HAR. They built different GAN 

models for every single activity. They used such GAN models to generate synthetic data and mix 

them with real data to train HAR models. Although this method increased the recognition 

accuracy, it requires adjusting the GAN model's architecture for every activity class. [6] built a 

GAN model that can handle all activity classes without further adjusting the architecture. By 

having such uniformed architecture, this GAN model can work more efficiently by saving time 

from adjusting architectures. Therefore, so far there are two ideas for applying GAN: build 

multiple GANs for different activities [6] or built one mere GAN [7]. Inspired by these two 

ideas, [18] proposed a hybrid method. They designed two GAN models: LSTM-based and CNN-

based. Then activities were split into two types: relatively long-term static activities (like sit and 

still) and faster-changing activities (like run). By comparing the performance of LSTM-based 

GAN and CNN-based GAN on these two types of activities, [18] concluded that LSTM-based 

GAN performs better on relatively long-term static activities, and CNN-based GAN was more 

suitable to generate synthetic data of other activities.  

To the author's best knowledge, there is currently no research on applying GANs to ambient 

sensor-based HAR. Given the insufficient data problem's negative influences on classifiers' 

performance and the success of applying GANs to oversample wearable sensor based HAR, it is 

worthy of working on GANs for ambient sensor based HAR.  
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Chapter 3: Deep Learning-Based Stacking method for HAR Based on 

Ambient Sensors 

For HAR using ambient sensors, one of the most important tasks is how to achieve high 

prediction accuracy [7]. Stacking is one of the technique most frequently used. It aims at 

improving machine learning models by combining multiple models. It involves two steps: 

generation and integration. For generation, multiple base models are first trained. Then their 

predictions are used to construct a new training set for the meta model. For integration, a meta 

model is trained by the new training data to learn how to avoid mistakes made by base models 

and hence make final predictions. There are two important considerations in these two steps: the 

diversity of base models and the algorithm of the meta model. Firstly, without diversity, base 

models will tend to make same mistakes in the way predicting certain data. As a result, the meta 

model cannot recognize this problem and learn how to improve the prediction by using base 

models that are better suited for that certain data. Also, it is important to note that base models 

must achieve relatively acceptable accuracy [40]. In other words, base models should maintain 

diversity and guarantee accuracy at the same time. Secondly, the algorithm of the meta model 

decides how predictions of base models are processed to make the final decision. Such algorithm 

should be able to learn how to make predictions using its base models’ predictions.  

This chapter will propose a method for ambient sensors based HAR combining stacking and 

deep learning. There are two motivations behind this. The first is the accuracy requirement for 

base models in the first consideration mentioned above. As a technique having strong ability of 

modelling complex, non-linear relationships, which is valuable for application in the HAR 

domain [41], deep learning is suitable to be chosen as the base models that can guarantee the 

required relatively acceptable prediction accuracy. Secondly, deep learning has strong abilities of 
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learning feature extractions and classification simultaneously. This makes deep learning also 

suitable to be meta model, given the core of integration is to use meta model to learn experiences 

from mistakes made by base models and then make final predictions.  

3.1 CASAS Dataset for HAR Using Ambient Sensors 

Before jumping into the proposed method, the detail of CASAS dataset we used in this research 

will be first provided to help have a better understanding of the data for HAR using ambient 

sensors. The CASAS project [42] treats the smart home as intelligent agents that can learn and 

use knowledge to detect residents’ activities. In such environments, the status of the residents 

and their physical surroundings are perceived using ambient sensors. The CASAS project 

datasets consist of data collected by ambient sensors in different smart homes. We used six of the 

datasets in the CASAS project for testing the proposed model. The statistical information, which 

includes the number of sensor events, sensors, and activities, for each of these datasets we used 

in the research can be found in Table 2. Figure 10 shows a sample of the Aruba dataset, an 

example of one of the CASAS project datasets. The dataset consists of data for every sensor 

event’s information, including the timestamp, sensor ID, and the activity label. For instance, the 

first line, or the first sensor event, in Figure11 provides such information: On the day of 2010-

11-04, sensor M004 was “ON” at the moment of 5:40:51.303739, and the activity of 

“Bed_to_Toliet” began.   

Table 2 Statistical information about datasets used in the research 

Dataset 
Number of 

Sensor Events 

Number of 

Sensor 

Number of 

Activities 

Aruba 1719558 39 11 

Twor 137789 71 13 

Cario 726534 32 13 

Tulum 486912 20 9 

Milan 433665 33 15 

hh101 326066 76 31 



 25 

 

 

 

Figure 10 Sample data from Aruba dataset 

To make this information usable, the data in the datasets is transformed and recorded in the form 

of a matrix. Assuming that we will trace back M sensor events each time when we try to 

recognize current sensor’s activity and there are N sensors in this smart home, then the matrix is 

represented in Table 3, where TM is the Mth sensor event, the first N columns records the status of 

N sensors at any given sensor event. And the number of sensor events being traced back is 

defined as the sliding window size. In Table 3, the sliding window size is M. Also, xM,N takes 

values of -1 or 1. When sensor N is activated at sensor event M, xM,N takes the value of 1. When 

sensor N is turn off, then xM,N takes the value of -1. Otherwise, xM,N will be 0. 

Table 3 Example of the raw data-based input 

 Sensor 1 …… Sensor N 
T1 x1,1 …… x1,N 

…… …… …… …… 
TM xM,1 …… xM,N 

 

By transforming the records of sensor events, shown as Figure 10, into the format demonstrated 

as Table 3, the input can not only contain the spatial information, the status of the sensor system, 

but also include the temporal information, the timestamp and the sequence of sensor events. 

Considering the spatial and temporal information included in the dataset and CNNs strong ability 
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to deal with spatial information and LSTMs ability to handle sequence processing tasks, we use 

these models as our base models.  

3.2 Generation of Base Models 

Like what mentioned before, the generation of base models is one of the vital parts of stacking, 

and the core of this process is to generate base models that have diversity. There are three 

influencing factors and parameters that could lead to such diversity: architectures, training data, 

and sliding window size. 

3.2.1 Architectures of Base Models  

The driving idea behind stacking is to train different base models with the hope that they can 

learn different features of data. The architecture of a model exactly decides how this model 

works. In this research, we designed six different architecture for base models. Three of them are 

based on CNN while the other three are based on LSTM. The reason of choosing these two 

variants is that CNN and LSTM process data from different perspectives. For CNN, it uses 

convolution to extract spatial features from data. For LSTM, it analyzes temporal information 

with the help of three special gates in LSTM units, which are explained in Chapter 2. The detail 

of these six base models is shown in Figure 11-16.  

The three CNN base models in Figure 11-13 are different in their convolution layers and fully-

connected layers. CNN-1 has four convolution layers and two fully-connected layers. Each 

convolution layer is followed by a max pooling layer. CNN-2 consists of eight convolution 

layers instead of four. Finally, CNN-3 has four convolution layers. But it has two more fully-

connected layers than CNN-1 and CNN-2. It should be noted that, as mentioned in Chapter 2, in 

CNN, convolution layers plays the role of feature extraction. On the other hand, fully-connected 

layers do the job of classification. As a result, CNN-2 put more efforts into feature extraction 
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than CNN-1 since CNN-2 has more convolution layers. On the other hand, CNN-3 focus more 

on classification due to its two more fully-connected layers than CNN-1.  

 

Figure 11 The architecture of base model CNN-1 with four convolution and two fully-

connected layers (FC). 

 

Figure 12 The architecture of base model CNN-2 with eight convolution and two fully-

connected layers 
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Figure 13 The architecture of base model CNN-3 with four convolution and four fully-

connected layers 

Similar to the three CNN base models, the three LSTM base models in Figure 14-16 are different 

in their LSTM layers and fully-connected layers. For LSTM, its LSTM layers extract features 

and pass them to fully-connected layers that fulfill the classification. Shown as Figure 14, 

LSTM-1 consists of one LSTM layer with 128 LSTM units and one fully-connected layer. 

LSTM-2, in Figure 15, also has one fully-connected layer but one more LSTM layer to enhance 

its ability of feature extraction. In more detail, the first LSTM layer of LSTM-2 has 256 units, 

and the second LSTM layer has 128 units. Lastly, LSTM-3 consists of one LSTM layer with 128 

LSTM units and two fully-connected layers. Compared with LSTM-1, LSTM-3 pays more 

resources to classification.  
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Figure 14 The architecture of base model LSTM-1 with one LSTM layer and two fully-

connected layer 

 

 
Figure 15 The architecture of base model LSTM-2 with two LSTM layer and two fully-

connected layer 
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Figure 16 The architecture of base model LSTM-3 with one LSTM layer and two fully-

connected layer 

By having such six different architectures, base models can make predictions from different 

perspectives to maintain the diversity of base models. 

3.2.2 Training Data of Base Models 

Training data is crucial in deep learning, which could directly influence the performance of the 

model regardless of the architecture of the model [43]. With the motivation to achieve the 

diversity from the perspective of training data, [44] applied k-fold training set to generate k folds 

and used these k different folds to further feed base models, which we will adapt in this work. To 

be more particular, we first divide the whole training data into k folds evenly. Next, we build k 

training subsets. Each training subset consists of k-1 folds. During training, each base model will 

randomly select one training sublets from them.  

3.2.3 Sliding Window Size of Base Models 

Sliding window size is the number of sensor events that a particular input contains. It identifies 

how much and what kind of information the model could acquire and utilize. Naturally that the 

sliding window size should be as large as possible since the more information about previous 

activities the model can recall, the better the performance should be. However, some of the 
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previous activities could be redundant [40]. For instance, going to the toilet one morning far in 

the past will not impact the current activity of cooking dinner. Hence, the sliding window size 

should be a reasonable value.  

In this work, we consider five different sliding window sizes: 50, 100, 150, 200, 250, 300. The 

reason for not considering higher values is that higher values will require computation more than 

what our devices used to run the model in this research can afford.  

3.3 Meta Model Based on LSTM 

The objective of a meta model is to decide how the base model outputs are utilized by combining 

the results from previous base models. Looking at this from another angle, the meta model acts 

as a classifier with the outputs of the base models as the input features. The core idea of the meta 

model is to learn whether base models have learnt the training data correctly. For example, if a 

base model incorrectly learned certain patterns of features extracted from the training data, and 

hence consistently misclassifies samples observing those patterns, then the meta model may be 

capable of learning this behavior and correct the predictions.  

Since the meta model takes output from base models as input, that output should be pre-

processed in advance. Shown in Table 4, all output from base models is merged as one matrix. In 

this matrix, each row is the prediction made by a base model. Assume there are m base 

models selected. Then the input can be expressed as: 

Table 4 The input of the meta model 

 Activity 1 …… Activity n 
B1 x1,1 …… x1,n 

…… …… …… …… 
Bm xm,1 …… xm,n 

Where n is the number of types of activities, Xm,n is the probability that the activity is predicted 

as Activity n by mth selected model, and Bm, is the mth base model.  
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This matrix consisting of predictions made by the base models is put into a meta model based on 

LSTM. A typical LSTM model consists of LSTM layers and fully-connected layers. The LSTM 

layer extract features from input data, and these features are further processed by the following 

fully-connected layers to make predictions. The meta model used in this research is shown as 

Figure 17. This meta model has one LSTM layers and one fully-connected layer. The first LSTM 

layer consists of 64 LSTM units. The following fully-connected layer has 32 neurons which 

process the features passed from previous LSTM layer to make the predictions. By having such 

arhchitecture, the inputted matrix’s shape is transformed from MN to 64, then to 32, finally to 

the size of outputs. It should be noticed that if the number of LSTM units after the input layer is 

too bigger or too close or too smaller than the number of base models M, the LSTM model will 

be either underfitting or overfitting. Overfitting refers to the situation where a deep learning 

model has too much neurons to achieve good performance. On the other hand, underfitting is the 

phenomenon where the deep learning model is trained not enough because the model itself has 

fewer neurons than expected to extract features. In our case, the largest number of base models 

will be 30. Therefore we select 64 LSTM units. For the following fully-connected layer, it 

conects the LSTM layer and the output layer. It should have neurons between 64 and the size of 

the output. In our case, the size of the output is the number of activties. Look back to Table 2, the 

lagerst number of activities we have among six datasets is 31. Therefore, we choose 32 neurons 

in the fully-connected layer.  
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Figure 17 The architecture of the meta model 

3.4 Pre-test 

In order to test whether the diversity of architectures, training data, and sliding window size 

influence on the performance, we conducted a pre-test. In this pre-test, we only use the data from 

the first month. Also, we split the data into three sets: set 1, set 2, and set 3. These three sets are 

used as training data, validation data, and test data set, respectively. 

3.4.1 Impact of Diversity of Architectures 

To test the influence caused by the diversity of architectures, we first trained different base 

models with different parameters. Then we selected the base model with highest accuracy on the 

test data from set 3 as the benchmark and build another two stacking models: Model 1 and 

Model 2. Model 1 and 2 have the same meta model instead of same base models. For Model 1, it 

has six base models with the same architecture of benchmark’s. However, Model 2 has six 

different base models with different six different architectures in Section 3.2.1. Therefore, 

benchmark, Model 1, and Model 2 represent non-stacking model, stacking model without the 

diversity of architectures, and stacking model having the diversity architectures. Figure 18 shows 

their performances on the datasets, measured by prediction’s accuracy. We also compared these 
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three models by applying the Friedman test with assuming they are similar. In brief, the 

Friedman test is a statistical test that is suitable to detect difference in machine learning 

algorithms across multiple test attempts [45]. By assuming there is no significant difference, the 

p value is 0.0111, which is smaller 0.05. This meant there was a significant difference in this 

group. In order to explore the cause of this difference, we conducted the Nemenyi test. Nemenyi 

test intended to find which groups of comparisons cause the significant difference when such 

significant difference is proved by the Friedman test. Figure 19 shows the result of the Nemenyi 

test. The result shows that the p value of the group of benchmark model and Model 2 and the 

group of Model 1 and Model 2 are both smaller than 0.05, which indicates Model 2, which 

consisted of various models with different architectures, is significantly better than the other two 

models. In other words, the diversity of architectures does have positive influence on the 

performance.  

 

Figure 18 Box plot comparison of the accuracy of Model Benchmark, Model 1, and 

Model 2 
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Figure 19 The result of Nemenyi test for group of Model Benchmark, Model 1, and 

Model 2 

3.4.2 Impact of Diversity of Training Data 

Like the pre-experiment in the last section, there also were three models trained to test the 

influence caused by the diversity of architectures: Model Benchmark, Model 3 whose base 

models were trained by same training data, and Model 4 whose base models were trained by 

different subsets of training data. Figure 20 shows their accuracy. We further conducted the 

Friedman test with assuming they are similar, and the p value is 0.0111, which is smaller than 

0.05. Therefore, we could conclude that there were significant differences between the three 

models. To figure out what caused it, we did the Nemenyi test. The result of the Nemenyi test is 

shown in Figure 21. The result shows that the p value of the group of Model Benchmark and 

Model 4 and the group of Model 3 and Model 4 are both smaller than 0.05, which indicates 

Model 4, which consisted of various models trained by different data, is significantly better than 

the other two models. In other words, the diversity of training data does have positive influence 

on the performance of HAR using ambient sensors.  
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Figure 20 Box plot comparison of the accuracy of Model Benchmark, Model 3, and 

Model 4 

 

Figure 21 The result of Nemenyi test for group of Model Benchmark, Model 3, and 

Model 4 

3.4.3 Impact of Diversity of Sliding Window Size  

Three models were used to test the influence caused by the diversity of sliding window size. 

Besides the Model Benchmark in previous two sections, there were also another two models: 
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Model 5 and Model 6. Model 5 was trained with base model of same sliding window size. 

However, Model 6 consisted of base models with different sliding window sizes. Figure 22 

shows their performances measure in accuracy. The result of the Friedman test shows that 

models in groups were significantly different, given that the p value was 0.0057, smaller than 

0.05. A Nemenyi test was done to explore the reason behind the difference. As shown in Figure 

23, the p value of the group of Model 6 and Model Benchmark is smaller than 0.05. This 

demonstrated that stacking base models with various sliding window sizes do help Model 6 

significantly outperform Model Benchmark, which means that maintaining the diversity of 

sliding window sizes indeed is helpful.  

 

Figure 22 Box plot comparison of the accuracy of Model Benchmark, Model 5, and 

Model 6 
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Figure 23 The result of Nemenyi test for group of Model Benchmark, Model 5, and 

Model 6 

3.4.4 Pre-test Conclusion  

In Section 3.4, we conducted a pre-test. This pre-test tested the performances of three groups of 

models to explore the influence of three factors, including the architecture, training data, the 

sliding window size, on the performance of stacking model. To test the difference between 

results, we also conducted both Friedman test and Nemenyi test. The results of these two 

statistical tests demonstrated that varying three factors mentioned above did improve the 

performance. Therefore, we decided to build base models with varying their architectures, 

training data, and sliding window sizes.  
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3.5 Proposed Deep Learning-based Stacking Method for HAR Based on Ambient Sensors  

 

Algorithm 1:  Deep learning-based stacking for HAR based on ambient sensors 

Input: Training Data 

Output: Stacking model based on deep learning 

Split the data into Training Data, Validation Data, and Test Data. 

Split Training data into K folds. 

for i=1 to M do 

Randomly select a fold k. Build a training set consisting of data from K-1 folds except 

the fold k.  

Randomly select an architecture from the 6 architectures in Section 3.2.1. 

Randomly select a sliding window size from 6 sliding window sizes in Section 3.2.3. 

Construct a base model-i with the selected architecture and sliding window size, 

Train a base model-i with training data from the training set built above.  

Generate Output-i by inputting data from Training Data and Validation Data. 

Generate Prediction-i by inputting data from Test Data. 

end 

Construct a set of training data for the meta model by merging M base models’ outputs. 

Construct a set of test data for the meta model by merging output from Prediction 1 to 

Prediction M. 

Train the meta model based on deep learning with training data for meta model and test data 

for meta model. 

Output the stacking model. 
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Alg. 1 summarises the method we developed. First, the dataset is split into three folds: Training 

Data, Validation Data, and Test Data. Then Training data is broken down into K folds to train M 

base models with different architectures and sliding window sizes. After finishing training base 

models, we input Training Data and Validation Data into base models to generate their 

prediction. We further merge the prediction into another dataset as the training data for the meta 

model. At last, the meta model is fed by the training data for meta data trained to get the final 

stacking model. 

3.6 Ambient Sensor Generative Adversarial Network  

Besides developing algorithms for recognizing activities, insufficient data is another problem in 

HAR using ambient sensors. The proposed ambient sensor generative adversarial network 

(ASGAN) aims to generate synthetic ambient sensor data to enlarge the training dataset and 

further improve the performance of HAR models.  

A typical GAN aims to learn the data distribution from a set of real data to further generate 

synthetic data drawn from the learnt distribution. GAN has two components: a generator and a 

discriminator. For the generator, it takes noise as input and transform them to synthetic data. For 

the discriminator, the goal is to distinguish real data and synthetic data.  

Our proposed ASGAN has the architecture shown as Figure 24. There is a generator and a 

discriminator. We denote these two components as G and D respectively. The generator plays the 

role of generating synthetic data while the discriminator tells whether received data is from real 

data, labeled as real, or synthetic data, labeled as fake. Given that ambient sensor data streaming 

for HAR has strong temporal features and LSTM’s strong ability of dealing with temporal data, 

we build both generator and discriminator based on LSTMs. 
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Figure 24 Proposed ASGAN’s architectures. This model consists of two components: 

generator G and discriminator D. 

The architecture of generator is demonstrated as Figure 25. There are three LSTM layers. They 

have 128, 32, 1 LSTM units respectively. To discuss the motivation behind this architecture, let’s 

look back to Section 3.2.3. In that section, we mentioned that we considered six sliding window 

sizes, ranging from 50 to 300. To make sure that our synthetic data can be used by all base 

models regardless of the sliding window size they take, we set the synthetic data’s value of 

sliding window size as 300. In this way, such synthetic data are trainable for all base models. For 

instance, base model with sliding window size of 50 can use the synthetic data with sliding 

window size of 300 by only inputting the last 50 rows of the synthetic data. The first two LSTM 

layers capture the temporal characteristic from input. The last LSTM layer then uses such 

characteristic to generate sequences of sensor data. Now look back to the architecture of 

generator. The output of the first LSTM layer, with 128 LSTM units, is a 300  128 matrix, 
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given that a LSTM layer’s output is a matrix whose number of rows is the input size and number 

of columns is the number of LSTM units. After the second LSTM layer with 32 units, the output 

becomes 300  32. Finally, the last LSTM later with only 1 LSTM unit outputs 300 sensory data 

containing the sequential information of ambient sensor’s activation. The number of LSTM units 

in each LSTM layer is getting decreased in order to reshape the output from 300  128 to 300  

1. Also, there are 128 units in the first LSTM layer because more units will take more 

computation resources than we can accept. Figure 26 demonstrated the architecture of 

discriminator, which has four LSTM layers. The first three layers extract features from input. 

Then the last layer labels the real data as real and the synthetic as fake.  

 

Figure 25 Generator of proposed ASGAN 
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Figure 26 Discriminator of proposed ASGAN 

Algorithm 2: Training Process algorithm for ASGAN 

Input: real data  

Output: synthetic data 

for i=1 to N do 

Generate 32 noise from standard normal distribution. 

Input noise above into generator G to obtain synthetic data.  

Draw 32 samples from real training data. 

Train discriminator D by feeding above synthetic data and real data samples. 

Generate another 32 noise from standard normal distribution and feed them to 

generator with minimizing 𝑉(𝐺) in Equation 7.   

end 

Use G to generate synthetic data 
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Algorithm 2 summarizes the training process for the proposed ASGAN.  First, we generate 32 

noise from standard normal distribution. The choice of 32 and normal standard distribution is 

based on [46], G will use such 32 noise as input to generate k batches of synthetic data. 

Afterwards, 32 samples from real training data will be randomly selected to train D along with 

32 data generated previously. During training, samples from real data will be labeled as real. On 

the other hand, samples from synthetic data will be labeled as fake. The goal of D is to 

distinguish between real and fake. After training D, another 32 noise will be drawn from 

standard normal distribution. Next, use the noise to train G with minimizing the value 𝑉(𝐺) in 

Equation 7, where 𝐺(𝑧) is the synthetic data generated by G, 𝐷(𝐺(𝑧)) is the probability that 

𝐺(𝑧) being predicted as real by D, then 1 − 𝐷(𝐺(𝑧)) is the probability that 𝐺(𝑧) being predicted 

as fake by D. Here, 𝑉(𝐺) is the expectation of synthetic data being predicted as fake by D. By 

minimizing 𝑉(𝐺), G improves its ability of fooling D. In other words, G is trying to generate 

synthetic data whose probability being predicted as fake by D is as low as possible. 

𝑉(𝐺) = 𝐸𝑧~𝑝𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]       (7) 

After repeating above steps for N iterations, we use this G to generated synthetic data to enlarge 

the training dataset with the goal to improve the performance of HAR models. 

In this chapter, we first proposed a deep learning-based stacking neural network for HAR using 

ambient sensors. This stacking model consists of two parts. The first part is the base models with 

different architectures, training data, and sliding window sizes. The second part is the meta 

model. In this stacking model, base models first make predictions based on inputs. Then the meta 

model will make the final prediction by using above base models’ predictions. We also proposed 

an ASGAN. ASGAN is a generative adversarial network for ambient sensor data. Both generator 
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and discriminator of this ASGAN are based on LSTMs. An algorithm of how to train ASGAN is 

also presented.  

To test these two proposed methods, the next chapter will conduct two experiments. The first 

experiment is to test the deep learning-based stacking neural network for HAR using ambient 

sensors. The second to test whether synthetic date generated by ASGAN can improve the 

performance of HAR using ambient sensors.  
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Chapter 4: Experiments and results 

In this chapter, our proposed methods are applied on the six datasets from CASAS dataset. First, 

we compared the proposed deep learning-based stacking method for HAR using ambient sensors 

with the best among other works in the literature. Then we conducted another experiment to test 

the ASGAN’s influence on the performance of HAR. All the models in experiments were 

executed using a single NVIDIA GeForce 750Ti GPU with 2GB memory. The programming was 

conducted using TensorFlow under Python environment.  

4.1 Deep Learning-Based Stacking Method for HAR Using Ambient Sensors 

We trained our proposed deep learning-based stacking method for HAR using ambient sensors 

on six datasets from CASAS.  

For each dataset, we split the data into training data for base models, validation data for base 

models, training data for the meta model, validation data for the meta model, and the test data for 

the meta model. Training data for base models and training data for the meta model are used to 

train base models and the meta model respectively. Validation data for base models and 

validation data for the meta model play the role of early stopping, which is the phenomenon 

where a model’s training will be stopped if its performance on the validation data will not be 

improved anymore. Test data for the meta model are employed to evaluate the meta model’s 

performance.  

Next, we trained 3 different models by using proposed deep learning-based stacking method for 

HAR using ambient sensors. These 3 models are different in the number of base models. The 

first model is named as Model BM10. It has the 10 base models (BM). The second model, Model 

BM20, has 20 base models. And the third model, Model BM30, has 30 base models. Also, we 

considered the best [42, 47-49] among other works found by the author in the literature as the 
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baseline. The results are evaluated by the human activity recognition accuracy. This accuracy is 

defined by Equation 8, where TP refers to true positives, TN represents true negatives, FP refers 

to false positives, and FN represents false negatives.  

 

Figure 27 Results of experiments on three stacking model compared with baseline 

Figure 27 shows the result. It can be seen all three models’ human activity recognition accuracy 

outperformed the baseline over every dataset by minimum 0.87 percentage points and maximum 

9.96 percentage points. Also, we conducted significance tests to investigate whether there is a 

significance statistical differences between our proposed method and other works. The 

significance test is conducted in pairs. Although t-test is the most commonly used method for 

significance test, it is not suitable when it comes to test different algorithms or models’ 

performance over different datasets due to the three drawbacks of t-test method [45]. Firstly, the 

t-test only makes sense when the differences over the data sets are commensurate. In other 

(a) Comparison of accuracy between baseline and three stacking models  

(b) Comparison of improvements on baseline between three stacking models  
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words, the expected accuracy of a model’s predictions on every dataset should be the same. 

However, such commensurability is not achievable because, in real world, each dataset has its 

own features such as activity distribution, sensors layout, etc. Secondly, t-test requires that tested 

data should be normally distributed. Considering that the nature of our dataset is about human 

activities, which is not guaranteed to observe any distribution, the requirement for normal 

distribution cannot be guaranteed either. Thirdly, t-test needs 30 datasets at least, which cannot 

be satisfied since we only have six datasets in our work. [45] suggests that Wilcoxon signed-

ranks test would be more proper when it comes to machine learning because Wilcoxon signed-

ranks test does not have above three drawbacks. It can be applied to datasets without the 

requirement for commensurability, normal distribution, or sizes (more than 30 datasets). Hence, 

we decided to use the Wilcoxon signed-ranks test.  

𝐻𝑢𝑚𝑎𝑛 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
      (8) 

𝑅+ = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)𝑑𝑖>0 +
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)𝑑𝑖=0         (9) 

𝑅− = ∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)𝑑𝑖<0 +
1

2
∑ 𝑟𝑎𝑛𝑘(𝑑𝑖)𝑑𝑖=0         (10) 

Wilcoxon signed-ranks test ranks the difference in performance (activity recognition accuracy in 

our case) of two models for each dataset, ignoring the signs, and compares the ranks for positive 

differences and negative differences. Let 𝑅+ be the sum of ranks for the datasets on which the 

second algorithm outperformed the first, and 𝑅−be the sum of ranks for the opposite. These two 

sums can be obtained by Equation 9 and Equation 10. Where 𝑑𝑖 is the difference between the 

performance of the two compared models on i-th dataset, 𝑟𝑎𝑛𝑘 is the rank function. Detail on 

how to calculate this rank will be provided in an example of BM10: the result of comparison 

between BM10 and the baseline is shown in Table 5. The difference between baseline’s and 

BM10’s accuracy on Aruba is 0.0159. Given 0.0159 is positive, BM10’s accuracy on Aruba has 
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a sign of +1 (-1 if the difference is negative, 0 if zero). Also, its index ranked by absolute 

difference is 2, given 0.0159 is the second smallest absolute difference in Table 5. Therefore, the 

Wilcoxon signed-ranked test is (+1) 2 = +2. Similarly, we can get the Wilcoxon signed-ranks 

on all six datasets, shown in Table 5. By using Equation 9 and Equation 10, we can get 𝑅+ =

21 (+2 + 1 + 5 + 4 + 3 + 6) and 𝑅− = 0. Hence, let T = min (𝑅+, 𝑅−) = 0. Looking up the 

table of exact critical values for T with  = 0.05 and N = 6 [45], the conclusion can be made that 

if T = 0, the null hypothesis can be rejected. Therefore, it can be concluded that BM10 is 

significantly better than the baseline. The results of the rest models are represented in Table 6. It 

can be seen that our three models are all significantly better than the baseline model.  

Table 5 Wilcoxon signed-ranks test for BM10 

Dataset 
Baseline’s 
accuracy 

BM10’s 
accuracy 

Difference 

 

Absolute 

Difference Sign 

Index 
Ranked by 
Absolute 

Difference 

Wilcoxon 

Signed-

Rank 

Aruba 0.9460 0.9619 +0.0159 0.0159 +1 2 +2 

Twor 0.8875 0.9006 +0.0131 0.0131 +1 1 +1 

Cario 0.9200 0.9901 +0.0701 0.0701 +1 5 +5 

Tulum2010 0.8810 0.9490 +0.0680 0.0680 +1 4 +4 

Milan 0.9342 0.9633 0.0291 0.0291 +1 3 +3 

hh101 0.8878 0.9874 0.0996 0.0996 +1 6 +6 

 

Table 6 Wilcoxon signed-ranks test results regarding proposed stacking method 

Comparison R+ R- T Significance 

BM10 and baseline 21 0 0 Significant 

BM20 and baseline 21 0 0 Significant 

BM30 and baseline 21 0 0 Significant 
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4.2 Ambient Sensor Generative Adversarial Network 

To test whether our proposed ASGAN can help improve the HAR performance by enlarging the 

training dataset, we trained 3 different models: Model BM10-ASGAN, Model BM20-ASGAN, 

Model BM30-ASGAN. These three models all share the same base models of BM10, BM20, and 

BM30. However, they are all trained by training data sets enlarged by ASGAN instead of 

training data sets consisting of mere real data. In detail, both training data for base models and 

training data for meta model are enlarged by ASGAN. The ratio of training data from real data 

and synthetic data generated by ASGAN is 1:1. 

Table 7 Improvement (percentage points) made by ASGAN 

Dataset 
BM10—ASGAN and 

BM10 

BM20--ASGAN and 

BM20 

BM30--ASGAN and 

BM30 

Aruba 1.15 1.68 0.44 

Twor 4.77 1.05 2.84 

Cario 0.45 0.42 0.2 

Tulum2010 0.44 0.87 1.56 

Milan 2.21 1.06 0.96 

hh101 0.66 2.1 0.15 

Average 1.61 1.20 1.03 

 

Table 8 Wilcoxon signed-ranks test results of ASGAN 

Comparison R+ R- T Significance 

BM10 and BM10-ASGAN 21 0 0 Significant 
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BM20 and BM20-ASGAN 21 0 0 Significant 

BM30 and BM30-ASGAN 21 0 0 Significant 

 

 

 

Figure 28 Comparison of accuracy between three pure data driven models and three 

mixed data models whose training data are enlarged by ASGAN 

Figure 28 and Table 7 presents the results of comparison of accuracy and the improvements 

made by models trained by data enlarged by ASGAN. It can be seen all three models trained by 

(a) BM10 and BM10-ASGAN 

(b) BM20 and BM20-ASGAN 

(c) BM30 and BM30-ASGAN 
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enlarged data outperforms models trained by mere real data. Similar to Section 5.1, we also 

conducted Wilcoxon signed-ranks test in pairs. The results of Wilcoxon signed-ranks tests are 

shown in Table 8. It can be seen that models augmented by ASGAN are all significantly better 

than their corresponding models that are only trained by real data. Also, it can be seen that the 

improvements achieved by ASGAN can be guaranteed regardless of the dataset or the number of 

base models (the minimum is 0.15 percentage points while the maximum is 4.77 percentage 

points). This proves that ASGAN can help HAR model accomplish a stable improvement.  
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Chapter 5: Conclusions and Future research  

Home healthcare is an increasingly growing industry stimulated by the phenomenon of 

population ageing. Among various home healthcare services, smart home for elderly care is the 

fastest growing one. As the key aspect of the smart home for elderly care, HAR has gained more 

and more attentions from researchers. Compared with HAR using cameras and wearable sensors, 

HAR using ambient sensors is getting more popular because it does not cause resident’s concern 

for privacy like camera-based HAR or require to be worn all the time like wearable sensor-based 

HAR. One of the primal concerns of HAR using ambient sensors is to construct a model that can 

recognize activities with high accuracy. Besides, the problem of insufficient data is another 

concern.  

This thesis aims to tackle these two problems. Firstly, we proposed a deep learning-based 

stacking method for HAR using ambient sensors. This method combined deep learning and 

stacking to construct a model that can recognize activities with high accuracy. Secondly, we 

constructed a GAN-based model, ASGAN, to tackle the problem of insufficient data. This 

ASGAN enlarged the training dataset by generating synthetic data.  

To test proposed methods, we conducted two sets of experiments. The first set compared 

baseline, the best among other works we could find, and the proposed deep learning-based 

stacking method on several datasets. The second experiment tested the influence of synthetic 

data on the stacking model’s performances. Wilcoxon signed-ranks tests are also conducted to 

prove the results’ statistical significance.  

The first experiment’s results show that the proposed deep learning-based stacking method for 

HAR using ambient sensors statistically improved the activity recognition accuracy by minimum 

of 0.87 percentage points and maximum of 9.96 percentage points, and the average is 5.21 
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percentage points. This improvement is achievable regardless the number of base models, given 

three stacking models (BM10, BM20, BM30) with different number of base models all 

outperform the baseline.  

The second experiment’s results show that models trained by training datasets enlarged by 

ASGAN statistically outperform models trained only by real data. Particularly, synthetic data 

generated by ASGAN help models achieved improvements on the activity recognition accuracy 

by minimum of 0.15 percentage points, maximum of 4.77 percentage points, and average of 1.28 

percentage points. Such improvements prove that proposed ASGAN indeed has positive 

influence on the performance of HAR model. What's more, this improvement achieved by 

ASGAN is stable, given that this improvement was accomplished on all six used datasets 

regardless of the number of base models.  

In summary, the contributions of this thesis to the area of HAR using ambient sensors are: 

• We proposed a deep learning-based stacking neural network for HAR using ambient 

sensors. This deep learning-based stacking neural network’s human activity recognition 

accuracy outperformed the best model among other works we could find in the area of 

HAR using ambient sensors. 

• We designed an ambient sensor generative adversarial network (ASGAN) to tackle the 

problem of insufficient faced by HAR using ambient sensors. This ASGAN can lead to 

stable improvements on the human activity recognition accuracy by enlarging the training 

data sets with generated synthetic data.   

There are still some future improvements that could be done on this research. Firstly, this 

research only focused on recognizing daily activities. However, there are some critical activities 

(e.g. fall, coma) that rarely happen and are not considered by most HAR related researches. Such 
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activities needed to gain more attention because residents could be in dangerous health condition 

once they happened. Therefore, one of the future works is to improve the HAR model’s ability of 

distinguishing critical activities. Secondly, in our research, we only considered one option (1:1) 

of the possible ratio of real data and synthetic data. Given the ratio of real data and synthetic data 

could also have impacts on the performance of HAR model. Thirdly, the focus of the research is 

to improve the performance of HAR using ambient sensors. However, HAR in real world still 

face challenges of designing the sensor network layout and lifelong learning. The performance of 

ambient sensor based HAR not only relies on the algorithm recognizing activities but also is 

influenced by the design of the sensor network’s layout. Hence, a suggested future research is to 

consider the influence of the design of the sensor network on the performance of HAR method. 

This would require researcher to consider the configuration of the sensor network and the 

mechanism of the HAR method simultaneously.  

Lifelong learning refers to the model’s ability of tackling concept drift (i.e., changes in the 

activity distribution, or the resident’s living habit) and class evolution (i.e., the emergence of new 

activities in the future). Conventionally, a static model is not capable of lifelong learning. 

Therefore, the second suggested future research is improving the HAR method the ability of 

learning new incoming data over time without forgetting the past data having learnt already.  
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