
ROBUST OPTIMIZATION ALGORITHMS FOR THE FLOW
SHOP AND JOB SHOP SCHEDULING PROBLEMS WITH
RANDOM FAILURES AND PREVENTIVE MAINTENANCE

by

Rafael Lucas Costa Souza

Submitted in partial fulfillment of the requirements
for the degree of Master of Applied Science

at

Dalhousie University
Halifax, Nova Scotia

December 2020

c⃝ Copyright by Rafael Lucas Costa Souza, 2020

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

Acknowledgements . viii

Chapter 1 Introduction . 1

1.1 Thesis Objective . 2

1.2 Thesis Organization . 2

Chapter 2 Literature Review . 3

Chapter 3 Background and Problem Definition 7

3.1 Machine Scheduling Preliminaries . 7
3.1.1 A classification scheme . 7
3.1.2 Flow shop scheduling problem (FSP) 11
3.1.3 Job shop scheduling problem 15

3.2 Maintenance Preliminaries . 16
3.2.1 Preventive Maintenance . 17
3.2.2 Breakdown . 18

3.3 Metaheuristics Preliminaries . 20
3.3.1 Simulated Annealing . 21
3.3.2 Genetic Algorithm . 23

3.4 Objective Function and Robustness 25

Chapter 4 Methodology . 28

4.1 Oracles . 28

4.2 Monte Carlo Simulation . 30

4.3 Flow Shop Optimization Algorithms 32
4.3.1 The optimization algorithms 32

4.4 Job Shop Optimization Algorithms 41

ii

4.4.1 Genetic Algorithm Applied to the Job Shop Scheduling Problem 41
4.4.2 The optimization algorithms 47

Chapter 5 Results and Discussion . 53

5.1 FSP Experiments . 53
5.1.1 Initial Parameter Setting . 53
5.1.2 Optimality Gap Analysis . 57
5.1.3 Final Experiments . 58

5.2 JSP Experiments . 62
5.2.1 Initial Parameter Setting . 62
5.2.2 Final Experiments . 67

5.3 Conclusion and Future Research . 70
5.3.1 Future Research . 71

Bibliography . 73

Appendix A Supplementary Material 77

iii

List of Tables

3.1 Summary of classification scheme 11

3.2 Example of a flow shop problem processing times. Source: Baker
[6] . 13

3.3 An example of a job shop problem. Source: Baker [6] 16

4.1 UML notation (adapted). Object Management Group [39] . . . 36

5.1 Processing times (Pij) example. 57

5.2 θj, βj, tpj, and trj parameters example. 57

5.3 Optimality gap example. 58

5.4 Taillard’s Instance Size. Source: Taillard [44] 67

iv

List of Figures

3.1 The operations arrangement of a job in a flow shop. Source:
Baker [6] . 12

3.2 The workflow of a pure flow shop. Source: Baker [6] 12

3.3 Example of some flow shop schedules. Source: Baker [15] . . . 14

3.4 Example of a job shop schedule. Source: Baker [15] 16

3.5 An example of the schedule horizon with proper preventive
maintenance scheduling. 18

3.6 An example of the schedule horizon with proper preventive
maintenance scheduling and random breakdowns. 19

3.7 A block diagram of a simple genetic algorithm procedure. . . . 24

4.1 Population creation example. 43

4.2 Example of a PPX crossover. 44

4.3 Roulette wheel selection . Source: Jun et al. [27] 45

4.4 Mutation Right Shift . 46

5.1 Sensitivity Analysis Temperature Update Factor Algorithm 4. 55

5.2 Parameter Estimation, Temperature Update Factor, Algorithm
6. 56

5.3 Execution time - FSP Algorithm 4 59

5.4 Improvement - FSP Algorithm 4 60

5.5 Execution time - FSP Algorithm 6 60

5.6 Improvement - FSP Algorithm 6 61

5.7 Execution time - FSP Algorithm 7 61

5.8 Improvement - FSP Algorithm 7 62

5.9 Test 1 - Gene Mutation Selection Rate - Oracle Z1 63

5.10 Test 1 - Gene Mutation Selection Rate - Oracle Z2 64

5.11 Test 1 - Gene Mutation Selection Rate - Oracle Z3 64

v

5.12 Test 2 - Population Mutation Rate - Oracle Z1 65

5.13 Test 2 - Population Mutation Rate - Oracle Z2 65

5.14 Test 2 - Population Mutation Rate - Oracle Z3 66

5.15 Test 3 - Population Size - Oracle 1 66

5.16 Test 3 - Population Size - Oracle 2 67

5.17 Test 3 - Population Size - Oracle 3 67

5.18 Test 4 - Maximum Number of Generations - Oracle 1 68

5.19 Test 4 - Maximum Number of Generations - Oracle 2 68

5.20 Test 4 - Maximum Number of Generations - Oracle 3 69

5.21 JSP Algorithm 11 result summary 69

5.22 JSP Algorithm 12 result summary 70

vi

Abstract

Inspired by a real-life problem in the kitchen cabinet manufacturing industry, this

thesis proposes a suite of algorithms for solving the flow shop and the job shop

scheduling problems (FSP & JSP) with both scheduled (preventive) maintenance

and random breakdowns. These algorithms aim at obtaining schedules that strike

a good balance between performance quality (i.e., shortest expected makespan) and

solution robustness (i.e., least affected by breakdowns).

The proposed scheduling framework approximates the fitness function of the orig-

inal problem using three surrogate functions. The first considers only the actual jobs,

the second adds scheduled maintenances and the third adds both scheduled mainte-

nances and deterministic breakdowns based on the mean time to failure of machines.

For the FSP, a local optimum solution of each surrogate problem is found either

through a local search heuristic or a simulated annealing algorithm. For the JSP,

given the extremely large search space, a genetic algorithm is used to find local opti-

mal solutions. These solutions are then simulated with random breakdowns and the

best among them is compared to the incumbent solution of the original problem. In

different variants of the algorithm, it either terminates once the new solution is found

to be worse than the incumbent, or non-improving solutions are accepted, yet with a

decreasing probability, in a simulated annealing style.

The first algorithm of the FSP showed no improvement over the initial solution

for the 25-machine, 75-job problem. The second algorithm did not perform well due

to premature termination. The third algorithm showed marginal improvement with

an average of 1.25% over the initial solution with a much higher average run time.

The first algorithm for the JSP showed an average marginal improvement of 5.33%

and a quick run time of 10.01 minutes for the 50-job, 15-machine problem. The

second algorithm showed good performance with an average improvement of 6.71%

in an average time of 5.11 hours. These results show that the proposed framework

can generate high-quality schedules while taking scheduled maintenance and random

breakdowns into consideration.

vii

Acknowledgements

I would like to start by thanking the person who motivated me in all the steps of

this work. She was always there for me and provided me with unconditional love and

emotional support. This work is dedicated to my mom, Gislene.

I owe my deepest gratitude to Dr. Ghasemi and Dr. Saif for providing invaluable

guidance, mentoring, encouragement, constructive criticism, and inspiration through-

out this whole project. Your patience, understanding, and resilience during this hard

time always made me feel confident to keep pushing forward.

I cannot forget my family away from home. Thanks Ken, Priscilla, Ian, Boston,

Luana, Lauryne, Thiago, Camila, Braeden, and João. They all kept me going, and

this thesis would never have been possible without them.

Finally, a great thanks to my family, friends, and colleagues whose names are not

mentioned here but had me in their minds.

viii

Chapter 1

Introduction

Scheduling happens at all times in our lives. We are always planning and allotting

portions of time to activities either at home planning our chores or at work planning

our daily activities. Pinedo [40] states that scheduling is a method of decision-making

that is a vital part of the service and manufacturing industries.

The work presented here was inspired by a project in Triangle Kitchen Ltd., a

company located in Atlantic Canada which is known to be a leader in the man-

ufacturing and wholesale distribution of cabinetry products and accessories. The

production planning team was facing numerous challenges when trying to properly

schedule their clients’ orders on the shop floor. The management was interested in the

creation of an automatic tool to generate good schedules considering the machinery

maintenance and the randomness of machine failures as part of their new scheduling

system. This problem was the spark that drove the development of this thesis.

For a company to thrive in its sector, it has to be competitive. Achieving and

maintaining a relationship of trust with clients is fundamental for any company to

accomplish competitiveness. Failing to completely deliver an order or failing to meet

a deadline leads to a penalty that can be incurred in monetary form or lost of trust

and goodwill. Only through proper scheduling and job sequencing, a company can

avoid logistics conflicts that impact the final delivery date of a product, project, or

service. Especially, in manufacturing, the production usually can be broken into

several smaller units of work (tasks) and these jobs can be then allocated to a limited

number of machines or people (resources). The allocation of tasks to limited resources

is denoted as “scheduling problem” Baker [6].

The majority of researches in machine scheduling, a more specific kind of schedul-

ing problem, consider that machines are available for processing at all times during

the scheduling horizon. In real industrial scenarios, machines are subject to stochas-

tic and deterministic unavailable periods of time. The stochastic stoppage during a

1

2

machine’s scheduling horizon may be due to machine breakdowns or any other unpre-

dictable reason that makes the machine unavailable for a period of time. Determinis-

tic stoppage may be due to, e.g., periodical machine maintenance, tool modification,

adjustments. with fixed and foreknown starting time and duration. Deterministic

stoppages, stochastic stoppages, and jobs compete for time in a set of machines at

the same time. In this thesis, the deterministic stoppage is going to be determined

by the unavailable period of time a machine stops for Preventive Maintenance (PM).

Breakdowns (BD) are randomly generated as the machine age increases over time.

Intuitively, any consideration regarding the schedule planning has to be done

in an integrated manner. Integrating the PM decisions with the jobs’ sequencing

regarding the average behaviour of random breakdowns will provide a smart robust

schedule capable of being used as a management tool for decision making inside a

company. To solve this problem, this thesis presents a suite of algorithms that aims

to integrally generate robust schedules applied to the flow shop scheduling problem

and two algorithms focused on the job shop scheduling problem.

The remainder of this Chapter presents the main objective of this thesis in section

1.1 and its organization in section 1.2.

1.1 Thesis Objective

The main objective of this thesis is to propose algorithms that optimize the sequence

of jobs, while taking into consideration scheduled preventive maintenance and random

machine breakdowns in a flow shop and job shop setting.

1.2 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 presents a literature

review relevant to the flow shop and job shop scheduling problems. In Chapter 3,

a brief background and problem definitions are provided. In Chapter 3.1.2, FSP

algorithms are presented and a sensitivity analysis is conducted. In Chapter 3.1.3, a

genetic algorithm is presented in detail, followed by the JSP algorithms. Finally, in

Chapter 5.3 the results are shown, the thesis is concluded, and directions for future

research are suggested.

Chapter 2

Literature Review

The scheduling theory field grew considerably after the publication of two papers by

Johnson [26] and Smith [43] during the mid 1950’s. Johnson [26] in 1954 presented

a famous algorithm to solve a two-machine job shop problem minimizing makespan.

Later in 1959, Wagner [45] presented the first known integer linear programming

mathematical model for the job shop scheduling problem. In 1960, Manne [35] pro-

posed a mixed integer linear program that has a smaller number of variables compared

to the one presented by Wagner [45]. Still on the exact formulation, other researchers

released their own formulations based on enumeration methods. Work published by

Brooks et. al. [10] and Lomnicki [32] are examples of this early research. Graham

[21] in 1979 outlined and classified the machine scheduling field in a 3-field problem

classification scheme α|β|γ.

Garey et. al. [19] in 1976 proved the complexity of the flow shop (FSP) and job

shop (JSP) scheduling problems. FSP is NP-complete when the number of machines

is greater than 3 and the JSP is NP-complete when the number of machines is greater

than 2. Exact methods that solve these classes of problems cannot provide optimal

solutions of large instances in reasonable times. Only small size instances could be

solved to proven optimality in the literature. Alternatively, approximate algorithms

were developed to effectively handle realistic instance sizes.

Constructive algorithms usually start with a set of parameters with no previous

feasible solution and create a proper feasible one by expanding itself step-by-step.

Nawaz et. al. [37] created an efficient algorithm that deals with the flow shop

scheduling problem when minimizing makespan, which, until this day is reported

in the literature (Ruiz et. al. [41]) to be one of the best construction algorithms re-

garding solution quality and computational time for FSPs. For JSPs, the most used

constructive algorithm cited in the literature is known as the shifting bottleneck pro-

cedure and was proposed by Adams et. al. [1]. Based on the disjunctive formulation

3

4

presented by Balas [7], Adams created a constructive algorithm that solves the JSP

minimizing makespan.

Deterministic scheduling problems with availability intervals have drew a consid-

erable attention from researchers at the beginning of the 21st century. The work

published by Lee [30], Schmidt [42] and Ma et. al. [34] summarized this field. Ag-

goune [2] demonstrated that, specifically for the FSP, there are two main branches

when describing machine unavailability: (a) the unavailability intervals have a fixed

length and the start times of each unavailability period are known in advance; (b)

the unavailability intervals have a predetermined time window so that the start time

have to be determined; Ma et. al. [34] pointed out that even though there are a

lot of research being conducted regarding single machine scheduling problem, parallel

machines scheduling problem, flow shop scheduling problem, and job shop scheduling

problem, there is a lack of research around the availability constraints.

On the deterministic unavailable periods of time, Kubzin et. al. [29] proposed an

algorithm that can solve in polynomial time for a two-machine flow shop scheduling

problem (F2|no − wait,m(0, 1)|Cmax) when one of the machines was subjected to

obligatory maintenance with the objective to minimize the makespan. Ruiz et. al.

[41] presented the performance evaluation of six different metaheuristic methods to

solve the flow shop scheduling problem with multiple types of maintenance policies.

One of the policies analyzed by Ruiz et. al. [41] is used in this thesis and was

introduced by Cassady et. al. [12]. Hadda et. al. [22] showed an improved heuristic

for the two-machine flow shop problem with unavailable periods on the first machine

assuming resumable activity, and proved it could be solved in a polynomial time.

Li et. al. [31] presented a discrete artificial bee colony algorithm to solve a multi

objective flexible job shop scheduling problem with maintenance activities. Khoukhi

et. al. [18] described a “dual-ant” colony algorithm that solves the flexible job shop

scheduling problem with one preventive period maintenance for each machine.

On non-deterministic unavailable periods of time, when the duration and start

time of these disruptions are stochastic (non-deterministic), Gholami and Zandieh

[20] integrated simulation with a genetic algorithm to solve the job shop scheduling

problem with stochastic breakdowns. Ming Wang [46] created a genetic algorithm

to handle the flexible job shop scheduling problem with known disruption periods

5

of time. Al-hinai et. al. [4] showed a two-stage hybrid genetic algorithm to solve

a bi-objective flexible job shop problem with random breakdowns. Nouiri [38] pro-

posed a two-stage particle swarm optimization algorithm to solve a flexible job shop

problem minimizing makespan, where the created schedule was proven more robust

and stable than the various benchmark data from the literature varying from Partial

FJSP to Total FJSP. Ahmadi et. al. [3] reported the performance evaluation of dif-

ferent evolutionary metaheuristics when solving a multi-objective job shop scheduling

problem with random machine breakdowns. GA was declared to be computationally

faster and provide better results when compared to particle swarm optimization and

randomized procedures.

Robustness is an important performance metric when dealing with scheduling

problems because it is a clear way to show the schedule’s adherence to the management

goal. Herroelen and Roel [23] specified that robustness can be divided into two groups:

(a) quality robustness and (b) solution robustness. Quality robustness is the measure

of the insensitivity of a given performance parameter like makespan or total tardiness

to the presence of uncertainty. Solution robustness, usually described as “stability”,

represents the insensitivity of each operation start time to changes in the original

baseline.

In a real-life scenario, the deterministic and non-deterministic unavailable periods

of time are not mutually exclusive. Even when scheduling maintenance ahead of time

periodically, machine failure can still impact the shop floor unpredictably. To the

best of our knowledge, there is no review paper available around this topic and the

research is still in its infant stage. Cui et. al. [14] addressed the single machine

scheduling problem with robustness integrating a maintenance policy. Le et. al. [33]

proposed a genetic algorithm approach for the single machine scheduling problem

with robustness regarding preventive maintenance and failure uncertainty. Cui et al.

[15] developed a proactive approach to solve integrated production scheduling and

maintenance planning in flow shops by creating a two-loop algorithm that tries to

optimize a robust surrogate function that inserts buffer times in a schedule to absorb

any unexpected breakdown. Their proposed strategy was simplistic and does not

represent the computational capabilities of modern systems. This thesis expands on

the work done by them and proposes three new algorithmic simulation optimization

6

strategies for the flow shop scheduling problem and proposes two more algorithms to

the job shop scheduling problem.

When compared to the work done by Cui et al. [15], the first proposed algorithm

for the JSP uses an additional surrogate model, called oracles though out this thesis,

to analyze the performance of a given neighbourhood with added preventive main-

tenances and breakdowns. The breakdowns happen at the computed mean time to

failure (MTTF) of the machines based on the provided machine parameters. The

other two algorithms try to get a faster conversion by using metaheuristics to explore

the neighbourhood of solutions instead of performing a complete neighbourhood cre-

ation. Inspired by the FSP algorithms, two new algorithms were created using the

same oracles and simulation structure but now ported to the JSP with added genetic

algorithm metaheuristic to smartly search for solutions.

Chapter 3

Background and Problem Definition

In this Chapter, the standard classification scheme for the machine scheduling research

field is described, then the basic concepts of the flow shop scheduling problem and the

job shop scheduling problem are presented. Next, the overall preventive maintenance

and random breakdowns assumptions are shown, followed by the description of the

metaheuristic strategies used, finally the objective function and all its impacting

metrics are outlined.

3.1 Machine Scheduling Preliminaries

Baker [6] describes that “machine scheduling problem” is a specialized scheduling

problem where the sequencing of jobs completely describes a schedule. In the next

subsections, we explore the machine scheduling field by initially describing the stan-

dard classification scheme. Next, we describe the flow shop scheduling problem (FSP)

and finally describe the job shop scheduling problem (JSP) .

3.1.1 A classification scheme

Early work by Graham [21] neatly organized and classified the scheduling study field

using a 3-field problem classification scheme α|β|γ. Schmidt [42] and Ma et al.[34]

expanded this classification scheme to the machine scheduling with unavailability

period problem. Let us consider m machines Mi and n jobs Jj and assume that each

machine can process one job at a time and that each job can be processed on at most

one machine at a time.

The field α = {α1, α2, α3} specifies the machine environment. Parameter α1 can

assume the following values:

• Single machine {α1 = ∅}, a problem where only one machine exists;

7

8

• Identical parallel machines {α1 = P}, a system where machines are the same

(i.e. with the same speed factor) and work in parallel;

• Uniform and unrelated parallel machines {α1 = Q}, a system where machines

are different (i.e. with different speed factor) and work in parallel;

• Flow shop environment {α1 = F}, a set of m machines in series that have to

process a set of jobs. Each job has to be processed at every machine once and

all jobs obey the same sequencing path through the machines. When a machine

completes a job, this job joins a First In First Out (FIFO) queue on the next

machine of the designed path;

• Job shop environment {α1 = J}, a set of m machines that have to process a

set of jobs. Each job may be processed at every machine once and has its own

predetermined sequencing path through the machines. Re-circulation, when a

job has to come back to a previous machine that it already has been through is

not permitted;

• Open shop environment {α1 = O}, a set of m machines that have to process

a set of jobs. Each job may be processed at every machine once and do not

have a predetermined sequencing path through the machines. It is open to the

scheduler to find the optimal sequencing of operations;

If Parameter α1 was set to P which represents a system with parallel machines,

Parameter α2 has to assume a value of {α2 = k} which represents the number of

parallel machines or the number of dedicated machine stages.

Parameter α3 is related to machine availability. Unavailable periods of time in a

machine are described in the literature [34] as “holes”. Parameter α3 can assume the

following values:

• {α3 = ∅} when no holes exists and machines are available continuously;

• {α3 = hjk} which specifies an arbitrary number of holes on each machine. If j

assumes the value of a positive integer, only that a specific machine has holes

on it. If no value is assigned to j, holes will be allowed on all machines. If k

assumes the value of a positive integer, it represents how many holes there are

9

on that corresponding machine. If no value is given to k, the number of holes

is considered arbitrary. The j subscript may not be added in the case of single

machine and only k holes will occur.

The second field β = {β1, β2, β3, β4, β5, β6} indicates a number of job and resource

characteristics. To better understand β1, we present the concept of preemption.

Preemption as defined by Pinedo [40] is the ability to stop the processing of a job on

a machine at any given time and substitute it by any other job. Any time that the

machine has spent executing that preempted job is not lost and it can be given to

another machine to continue working on it from that point forward. Parameter β1

can assume the following values:

• {β1 = ∅} when no preemption is allowed;

• {β1 = t− pmtn} when there are operations preemption;

• {β1 = pmtn} when there are arbitrary number of preemption;

Parameter β2 is related to resource availability and can assume the following

values:

• {β2 = ∅} when there is no resource constraints;

• {β2 = res} when there are a limited number of resources Rh where every job

requires at least rhj units of Rh during its execution;

• {β2 = res1} when there is only a single resource available;

Parameter β3 is related to the precedence of jobs. The precedence of jobs was

described by Pinedo [40] as the requirement that a job or a set of jobs may be finished

before the other job is permitted to begin in a specified machine. β3 can assume the

following values:

• {β3 = ∅} when there is no precedence relation;

• {β3 = chains} when a job has at most one predecessor and at most one succes-

sor;

10

• {β3 = intree} when a job has at most one successor;

• {β3 = outtree} when a job has at most one predecessor;

• {β3 = prmu} may appear only if in a flow shop setting and establishes that the

precedence of the jobs in the queue in front of every machine follow a First In

First Out (FIFO) structure.

Parameter β4 is related to the release date rj which is described as the earliest

date that a job is available to be processed in a machine. β4 can assume the following

values:

• {β4 = ∅} when every job is available at time 0 i.e. rj = 0;

• {β4 = rj} when the release dates are specified;

Parameter β5 is related to a constant upper bound on the number of a job’s

operation in a machine (mj) and can only occur if α1 = J . β5 can assume the

following values:

• {β5 = ∅} when there is no such bound;

• {β5 = mj <= m̄} when the number of job’s operations have to be smaller than

m̄;

Parameter β6 is related to the problem’s processing time. β6 can assume the

following values:

• {β6 = ∅} when there is no restriction on the processing times;

• {β6 = pij = 1} when unit processing times are considered;

• {β6 = plower < pij < pupper} when a lower and an upper bound are specified;

The third field γ refers to the chosen optimality criteria. The most common

minimization functions are:

• Makespan (Cmax) which represents the total length of the schedule i.e. the time

which the last job leaves the system;

11

• Maximum Lateness (Lmax) which represents a measurement of the worst viola-

tion of the due dates;

• Total weighted completion time (
∑︁

wjCj) which represents the total holding of

inventory costs induced by the schedule also referred as “weighted flowtime” in

the literature [6];

• Total weighted tardiness (
∑︁

wjTj) which represents the penalties given to all

the jobs which failed to be completed on time;

• Weighted number of tardy jobs (
∑︁

wjUj);

α β
γ

α1 α2 α3 β1 β2 β3 β4 β5 β6

∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ Cmax

P k hjk t− pmtn res chains rj mj <= m̄ pij = 1 Lmax

Q pmtn res1 intree plower < pij < pupper
∑︁

wjCj

F outtree
∑︁

wjTj

J prmu
∑︁

wjUj

O

Table 3.1: Summary of classification scheme

3.1.2 Flow shop scheduling problem (FSP)

Baker [6] and Pinedo [40] describe a flow shop scheduling problem in the following

manner: A flow shop considers that the machines are organized in series. Jobs that

arrive to be processed on those machines are broken down into small operations. Each

operation has to be performed by at least one machine and the machines need to be

different from one another. The sequence, i.e., the precedence structure in which these

operations will be processed on the machines, has to be described by the job. Each

job is a compilation of operations with the arrangement in which the operations will

be executed on the machine. A job is considered completed when all its operations

have been executed on that specific machine arrangement. All operations in all jobs

12

have to have the same machine sequencing, thus they will always follow the same

route within the machines.

Figure 3.1: The operations arrangement of a job in a flow shop. Source: Baker [6]

The flow of work in a FSP is considered unidirectional since the machines are

paired in series. The flow of work of a pure flow shop system is illustrated in Figure

3.2.

Figure 3.2: The workflow of a pure flow shop. Source: Baker [6]

There is a more general case of the FSP called “flexible” FSP. The only difference

between the pure FSP and the flexible FSP is that jobs may not use all machines. In

this case, a job is allowed to skip a machine if needed.

The basic pure flow shop problem has a set of important considerations:

• All jobs are available to be processed at time 0.

• The setup time, the time that a machine requires to be ready for an operation,

is considered 0 or is included in the processing time of that operation.

• All machines are available at all times.

• The machine sequencing and processing times of all operations are known in

advance.

13

• No preemption is permitted.

Baker [6] showed the following example of a flow shop problem containing j = 2

jobs and k = 4 machines. The processing times (pkj) can be seen on Table 3.2.

Job j 1 2
p1j 1 4
p2j 4 1
p3j 4 1
p4j 1 4

Table 3.2: Example of a flow shop problem processing times. Source: Baker [6]

The Gantt charts in Figure 3.3 show three possible schedules. The job’s operation

sequencing in Figure 3.3 (a) and Figure 3.3 (b) are the same, X1,2,3,4 = {1, 2} and

X1,2,3,4 = {2, 1} respectively, but in Figure 3.3 (c) it is not. Note that the job

sequencing changes from X1,2 = {1, 2} to X3,4 = {2, 1} on Machine 3 and 4. Job 2

was given the opportunity to break the queuing FIFO rule that exists between every

machine and was processed ahead of job 1, thus Figure 3.3 (c) would not be considered

a feasible solution if the system being analyzed is considered a permutation flow shop

system. Pinedo [40] explains that finding optimal solutions when such changes are

allowed is significantly harder even though changing the job sequencing throughout

the schedule can lead to a shorter makespan (as illustrated on Figure 3.3). In this

thesis, only the permutation flow shop is being considered and can be denoted as

(F |prmu|γ).

The NEH algorithm

A constructive algorithm differs from an optimization algorithm in the sense that it

is able to create a solution only from the input data without knowing any previous

feasible solution. To generate an initial feasible permutation flow shop schedule solu-

tion, the NEH algorithm was used in this thesis. It was initially introduced by Nawaz

et. al. [37] and it is known until this day to be one of the best algorithms to construct

schedules for the F |prmu|Cmax problem.

As Mokotoff [36] explains, the NEH algorithm works on the premise that a higher

priority has to be given to jobs with the longest total processing time. When enu-

merating and positioning your jobs in a schedule, the jobs with the longest total

14

0 2 4 6 8 10 12 14

Machine 1 1 2

Machine 2 1 2

Machine 3 1 2

Machine 4 1 2

(a) Cmax = 14. Source: Baker [6]

0 2 4 6 8 10 12 14

Machine 1 12

Machine 2 12

Machine 3 12

Machine 4 12

(b) Cmax = 14. Source: Baker [15]

0 2 4 6 8 10 12 14

Machine 1 1 2

Machine 2 1 2

Machine 3 12

Machine 4 12

(c) Cmax = 12. Source: Baker [15]

Figure 3.3: Example of some flow shop schedules. Source: Baker [15]

15

processing time should be placed first. Based on this simple idea, the algorithm is

presented on Figure 1.

Input:

The number of jobs n

The number of machines m

The processing times of job j on machine k as

Pjk(j = 1, . . . , n; k = 1, . . . ,m)

Output: X,Cmax

Step 1. For each job j calculate Pj =
∑︁m

k=1 Pjk.

Step 2. Arrange the jobs in descending order of Pj.

Step 3. The first two jobs from the list of Step 2 are selected and the best

sequence that minimizes the makespan (Cmax) is then calculated. The

sequence found relative to them is not changed for the other steps of the

algorithm. Set i = 3.

Step 4. Select the ith job from the list of Step 2. Calculate the best

sequence by inserting the job in all i available positions from the

previous partial sequence without changing any already assigned order.

Step 5. If n = i, STOP, Otherwise set i = i+ 1 and go to Step 4.
Algorithm 1: NEH Algorithm. Source: Nawaz et. al. [37]

3.1.3 Job shop scheduling problem

Baker [6] and Pinedo [40] describe the job shop scheduling problem in the following

manner: The main difference between the FSP and the JSP is that there is no unidi-

rectional flow of work. All elements that characterize the FSP are still present on the

JSP. There are a number of machines and a number of jobs to be processed. Each job

still carries its precedence arrangement. Every job has its own machine sequencing.

Re-circulation, when a job can visit a machine more than once, is also allowed but

not used in this thesis. Baker [6] provided the following example with 3 machines and

4 jobs of a job shop problem. Table 3.3 shows an example where (a) represents the

processing time and (b) represents each individual job routing.

To proper represent the problem in a Gantt chart, a triplet ijk was used to

16

(a) Processing times (b) RoutES
Operation Operation

1 2 3 1 2 3
Job 1 4 3 2 Job 1 1 2 3
Job 2 1 4 4 Job 2 2 1 3
Job 3 3 2 3 Job 3 3 2 1
Job 4 3 3 1 Job 4 2 3 1

Table 3.3: An example of a job shop problem. Source: Baker [6]

represent that job i, operation j requires machine k. Figure 3.4 shows a feasible

schedule based on Table 3.3.

0 2 4 6 8 10 12 14

Machine 1 221 111 431 331

Machine 2 212 412 322 122

Machine 3 313 423 233 133

Figure 3.4: Example of a job shop schedule. Source: Baker [15]

If for the FSP the maximum number of combinations that need to be analyzed

for an optimal solution is n!, we can infer that for the JSP this number increases to

at least (n!)m. Making it a generally harder problem when compared to FSP.

3.2 Maintenance Preliminaries

Machines will ultimately fail. Industrial machinery are not excluded from this rule.

The importance of taking into account the different failure behaviours of our schedule

is because they directly impact the availability of our resources. This thesis considers

preventive maintenance and random breakdowns to try to approximate as much as

possible to a real life scenario where machines undoubtedly fail. To better understand

the maintenance approaches used in this thesis, we present the concept of reliability

and maintainability. According to Ebeling [48] reliability is the probability that a

system or component will be operational for a certain period of time given a specified

set of parameters and settings. Maintainability, also defined by Ebeling [48], is the

probability that a system or component will be back to a specific functioning state

17

after a restoration or repair process was carried out given some recommended meth-

ods. In a system where machines are allowed to fail and then repaired, the interaction

of reliability and maintainability will provide the total run time, i.e., the availability

of our machines given a specified scenario. Deterministic downtime are introduced as

preventive maintenance and stochastic failures are introduced as random breakdowns

in this thesis. The next two subsections explain important concepts regarding Preven-

tive Maintenance (PM) in subsection 3.2.1 and the random breakdowns in subsection

3.2.2.

3.2.1 Preventive Maintenance

The health state and age of a machine will dictate when it will be prone to stoppage

due to failure. Theoretically, a machine will be stopped for preventive maintenance

after the reliability threshold has been exceeded, after which failure may occur. Pre-

ventive maintenance is scheduled to keep the reliability at or above a threshold. This

way we take control of when a machine will stop and restore its reliability to its

original state. When dispatching the operations of a job to the shop floor with many

machines, the preventive maintenance tasks will also compete for time on a machine.

Therefore, all considerations regarding the scheduling of preventive maintenance and

the sequencing of the operations of the jobs have to be done integrally to avoid logistic

conflicts on the machine floor.

In this thesis, the failure rates of the machines are dictated following a Weibull

distribution rate because it is one of the most studied and widely used in the literature.

Considering tj as the machine age, Ebeling [48] shows that the reliability of a machine

can be calculated following equation 3.1.

Rj = e−(tj/θj)
βj

(3.1)

Consider that tpj is the time that it takes to perform a preventive maintenance on

machine Mj, trj is the time that it takes to perform a corrective maintenance (CM)

on machine Mj, βj is the shape parameter of the Weibull distribution failure function

and θj is the scale parameter of the Weibull distribution failure function.

The challenge is to guarantee an optimal interval between each preventive main-

tenance task. T ∗
j is the optimal time interval that a preventive maintenance task has

18

to be scheduled so that the availability of the machine is considered optimal. Cui et.

al. [15] derived equation (3.2) based on the Weibull distribution.

T ∗
j = θj(

tpj
trj ∗ (βj − 1)

)
(1
βj

)
(3.2)

By scheduling the preventive maintenance tasks as late as possible in the machine’s

scheduling horizon while keeping its age smaller than T ∗
j , availability is maximized.

Every time a preventive maintenance is carried on a machine, its age is restored to

“as good as new” state. During the interval that exists between each preventive

maintenance task, the machine is available to process the job’s operations normally.

These intervals are identified as batches. The operations are scheduled in such a way

that they will always finish processing before a preventive maintenance task is carried.

If an operation would be “cut” by a preventive maintenance task, it is postponed to

the next batch.

Figure 3.5 illustrates the scheduling horizon of a machine after proper preventive

maintenance task scheduling. This is a single machine example with tpj = 2, T ∗
j = 10

and the processing time of job i is pi = {3, 2, 3, 4, 4, 2, 3, 2, 3, 4, 4, 2, 3, 5}.

Figure 3.5: An example of the schedule horizon with proper preventive maintenance
scheduling.

Note that jobs 4 and 10 had their start time postponed until the next available

batch, so they would not be interrupted midway by a preventive maintenance task.

The total run time T ∗
j was never exceeded in a batch.

3.2.2 Breakdown

Even with all effort to predict the specific time of failure deterministically, random

breakdowns are still likely to happen when a machine is running in real life. Cui

et. al. [15] explained that in each preventive maintenance batch, a breakdown can

19

be modelled as a stochastic point process, a non-homogeneous Poisson process to be

more specific. When a breakdown happens, corrective maintenance (minimal repair)

is carried out immediately to fix the machine. After a corrective maintenance, the

age of the machine is not restored to “as good as new”, but instead is assumed to be

restored to its age at the time of failure.

Based on the reverse function of the reliability (Equation (3.3)) it is possible to

create a sampling method to get the sampled breakdown times in a given machine

Mj during a batch.

F−1(p) = θ[− ln(1− p)]
1
β (3.3)

Cui et. al. [15] described Equation (3.4) that is the τ th breakdown time in a

batch, where ς is an uniformly distributed random variable ςχ ∼ U(0, 1).

btτj = R−1
j [

τ∏︂
χ=0

(1− ςχ)] (3.4)

Let us reconsider the preventive maintenance example from subsection 3.2.1. Fig-

ure 3.6 represents the same scheduling horizon now with random breakdowns being

generated and inserted along it. BDτ = {{6, 13}, {16}, {26, 31}, {}}

Figure 3.6: An example of the schedule horizon with proper preventive maintenance
scheduling and random breakdowns.

Random breakdowns are generated within each batch separately. It is possible for

more than one breakdown to happen in a given batch (note batches 1 and 3). If the

sampled start time of a breakdowns happens during or after a preventive maintenance

task (second breakdown during the first batch BD1 = {6, 13}) these are discarded

and not considered. Only breakdowns that happen inside the batch impact the result

of that specific batch on the schedule. After the corrective maintenance, the job

operation that was being executed can resume without any further penalty.

20

A simplified way to estimate a specific time of a failure is to consider the mean

time to failure (MTTF) of a machine. Ebeling [48] provided equations 3.5 and 3.6 to

compute the MTTF in a Weibull distribution governed process.

MTTFj = θjΓ(1 +
1

βj

) (3.5)

Γ(x) =

∫︂ ∞

0

yx−1e−ydy (3.6)

Computing the MTTF will prove sufficient to compute a scenario where both pre-

ventive maintenance and breakdown are added to the scheduling horizon. A machine

will stop working as if it has failed at the calculated MTTF. The MTTF is consid-

ered as a point of failure along the machine accumulated run-time. Only a corrective

maintenance is carried out at the MTTF, the machine’s age is untouched, and the

machine run-time is set to zero so that if its accumulated value reaches the MTTF

again, another failure is added. The machines will restore theirs age following the

previous preventive maintenance schedule.

3.3 Metaheuristics Preliminaries

Many useful algorithms rely on mathematical models such as linear, integer, and

nonlinear programming to achieve optimal solutions. For complex and large problems,

these techniques might not be able to provide an optimal solution, or even a feasible

solution within a reasonable time. When dealing with this category of problem a

heuristic method is commonly developed. A heuristic method as described by Hiller

et al. [24] tries to discover a very good feasible solution (not exactly optimal) for a

given problem. It is expected from a good heuristic that it can produce good or near

optimal solutions for large or complicated problems. The majority of the algorithms

try to search for a better solution in the solution space of the problem. Since many of

them are commonly written as an iterative algorithm, a better result is expected to

be found from a previously found best solution. Different algorithms have different

stopping criteria, the most commons are the total run time or iteration limit. The first

one stops the execution of the heuristic after a determined amount of time passed and

the later one stops the execution when a pre-determined number of runs are reached.

21

Even though heuristics have been proven useful, a well-constructed unique heuris-

tic has to be made for every single problem at hand. A new paradigm on how to design

such optimization heuristics has been researched recently and are called metaheuris-

tics. Metaheuristics are not specifically designed for a problem, instead it lays out

the general structure and the rules that have to be followed to design a good heuristic

that will fit a specific problem. Two different kinds of metaheuristics were used to

design parts of the algorithms presented in this thesis. The next two Subsections

explain the Simulated Annealing (SA) in Subsection 3.3.1 and Genetic Algorithm in

Subsection 3.3.2.

3.3.1 Simulated Annealing

The Simulated Annealing metaheuristic, as the name suggests, tries to mimic the

heat treatment process that are used to change the physical and electrical proper-

ties of materials such steel, aluminum, cooper and brass. It is known to be one of

the most widely used metaheuristics that started with work from Kirkpatrick [28]

and Cerny [13]. The main goal is to avoid local optimum and broadly search the

solution space for better solutions. Local optima in this context mean a solution

that is optimal only for the solutions that are immediately close to it. Due to the

limited knowledge of the solution space, one might fall into a local optimum if the

solution space is not well searched. The simulated annealing process tries to avoid

that by occasionally accepting a worse solution than the actual good solution based

on a neighbourhood search algorithm. This random search is intimately tied to the

temperature parameter. When the procedure starts, the temperature is set to a high

value which increases the probability of acceptance of new “trial solutions” even if

they are not better than the actual solution. After each iteration (or n iterations),

the temperature parameter is updated and the temperature drops down causing fewer

and less worse solutions to be accepted. After some time, the procedure stops at a

low temperature and the last solution found is reported as the approximation of the

optimum objective function value. The way the temperature parameter is updated

is called “temperature schedule” and is one of the most important parameters in this

procedure. It directly impacts not just the execution time of the algorithm but the

quality of the best solution.

22

Input:

Initial solution s0;

Initial temperature t0 > 0;

Temperature reduction function α;

Maximum number of repetitions nrep;

Objective function f ;

Output:

The approximation of the optimal solution;

repeat

repeat

Randomly select s ∈ N(s0);

δ = f(s)− f(s0);

if δ < 0 then
s0 = s

else

generate random x = U (0, 1) ;

if x < exp(−δ/t) then
s0 = s

end

end

until iteration cont = nrep;

Set t = α(t) ;

until Until stopping condition = True;

Algorithm 2: Simple Simulated Annealing Procedure. Source: Dowsland [17]

23

Let us denote by s0 the initial solution, t0 the initial temperature, α the tempera-

ture reduction function and N(s0) the neighbourhood of solutions from s0. A simple

Simulated Annealing is described in Algorithm 2. This simplistic approach to Sim-

ulated Annealing is memory-less, meaning that the solutions found throughout the

execution of the algorithm are discarded and only the last trial solution is declared as

the approximation to the optimal solution for the objective function. In this thesis, a

list was used to store every trial solution and the best solution found throughout the

execution of the algorithm is then chosen as the approximation of the optimal value

of the objective function.

3.3.2 Genetic Algorithm

Introduced by Holland [25] and later applied to the job shop problem by Davis [16]

the Genetic Algorithm, inspired by the theory of evolution from Charles Darwin,

uses breeding, selection, and mutation over many different generations to produce

a population with individuals that represent good solutions. The algorithm tries to

mimic the behaviour observed naturally called survival of the fittest, where individuals

that carry good genes have a better chance of survival.

A basic genetic algorithm starts with a finite set of individuals that are repre-

sented by a list of chromosomes. These chromosomes represent the traits of each

individual and a fitness function (cost function) can be used to evaluate the fitness of

each one of these individuals independently. The algorithm then randomly matches

two individuals forming pairs, then parts of the chromosomes are exchanged between

them, creating new individuals in a procedure called crossover. These new individ-

uals are expected to carry traits from both parents that would potentially lead to a

better solution. Next, each one of the newly created individuals is given a chance

to suffer a mutation, this will guarantee that some random variability is added to

the population. The individuals are evaluated and the worst performing ones are

“killed”, meaning that they are not added to the initial population of the next gen-

eration. This procedure cycles creating new generations until some stopping criteria

are reached, the diversity of the population is minimal, or the result is good enough.

The population is expected to converge since its size is finite. Figure 3.7 shows how

a basic genetic algorithm works.

24

Start

Initial pop-
ulation

Start generation

Random pairing
and crossover

Mutation

Evaluation
based on

cost function

Select individ-
uals based on

selection criteria

Next Generation

Stop criteria met?

Stop

yes

no

Figure 3.7: A block diagram of a simple genetic algorithm procedure.

25

This sub-section gives only the basic idea of a genetic algorithm, a more in-depth

explanation is widely available in the literature and is not covered here. Evolutionary

algorithms like the genetic algorithm are known to produce good results for the job

shop scheduling problem as Bierwirth et. al. [9] observed.

3.4 Objective Function and Robustness

The optimization algorithms proposed here need a way to quantify the solution of the

analyzed problems. This quantification has to be done in a way that the described

algorithms are able to minimize its resulting value. We define an Objective Function

(OF) that quantifies the metrics that need to be minimized in order to improve the

resulting schedules. This section briefly summarizes all the metrics that impact the

objective function, describes the concept of robustness, and finally present the derived

objective function. The following notations are used.

Indices:

i index of jobs;

j index of operation;

k index of machines;

Sets:

J set of jobs;

M set of machines;

O set of operations of Jk;

Parameters:

n number of jobs;

m number of machines;

For the flow shop problem, pik processing time of job i on machine k;

For the job shop problem, pijk processing time of job i, operation j on machine

k;

26

tpk average preventive maintenance time of the machine Mk;

trk average corrective maintenance time of the machine Mk;

βk the shape parameter of the failure function of the machine Mk;

θk scale parameter of the failure function of the machine Mk;

A set of jobs J is supposed to be processed on a set of machines M for mini-

mizing a bi-objective function. Every job Ji consists of a sequence of o operations

Oi0, Oi1, . . . , Oik for the flow shop problem or Oij0, Oij1, . . . , Oijk for the job shop

problem. Each operation has a fixed processing time p on machine Mk. Only one job

can be processed on a machine and a job can only be processed by one machine at

a time. The jobs are available at the beginning of the scheduling horizon. There are

an infinity capacity for the machines, therefore there is no buffers or waiting between

any machines. In the flow shop case, the jobs’ sequence is the same at every machine

(permutation flow shop), when dealing with the job shop case the jobs’ sequence is

unique for every machine and a machine sequence matrix is also provided to show the

sequence which each job Ji has to follow.

The machines are prone to failure and run time until a failure for said machines are

governed by a Weibull probability distribution. Machine Mk has the following set of

parameters: tpk, trk, βk and θk. Since the machines deteriorate over time, we consider

βk > 1. Random breakdown failures occur and impact product quality and system

stability. To overcome these breakdowns, preventive maintenance is carried out during

the machine’s up time, which improves the machinery condition and reduces the

chances of occurrence of breakdowns. The machine’s age is reset to 0 after each

preventive maintenance is carried out; in other words, the machine is restored to an

“as good as new” state. Even with all preventive measures, random (not predicted)

breakdowns may occur and, in this scenario, corrective maintenance should occur.

In the case of corrective maintenance, a minimal repair is carried out which will

restore the machine to a functioning state, but its age will stay the same as when

the failure happened. No additional time will be inserted in the job after a corrective

maintenance and the machine will resume the job it was doing prior to the failure.

The jobs’ sequencing must be decided as traditional flow shop and job shop

scheduling problems without any maintenance, yet maintenance policy decisions should

27

be taken into consideration. The number of preventive maintenance and their start

times for each machine in the scheduling horizon must be decided. The algorithms in

this thesis integrate the flow shop job sequencing decision or the job shop sequencing

decision with the preventive maintenance policy while also considering the random

breakdowns that make corrective maintenance necessary. A job schedule σ0 is cre-

ated and then executed on the shop floor. If a corrective maintenance happens, the

schedule is shifted and revised following the rescheduling policy. An actual schedule

σw is then obtained at the end of the scheduling horizon.

Robustness is an important metric that guarantees the schedule’s adherence to

the management’s goal. In this thesis, two different robustness metrics were used

and analyzed. The first robustness metric is defined as “quality robustness”, which

represents the schedule’s performance towards a defined metric. The chosen metric

for this study is the total length of the schedule, i.e., the makespan. The second

robustness metric is defined as “solution robustness”, which represents the stability

of the schedule. A schedule is considered stable when there are less divergence between

the start times of jobs of the planned schedule σ0 and the start times of jobs of the

realized or simulated schedule σw.

For the flow shop problem, the robustness of the solution is evaluated as fol-

lowing: for the quality robustness we declare Z1 = Ew[C
w
ik] that minimizes the ex-

pected makespan of the schedule and for the solution robustness we declare Z2 =

Ew[
∑︁n

i=0

∑︁m
k=0(S

w
ik − S0

ik)] that minimizes the total divergence between the planned

start time of every job in every machine to its realized start time based on σ0 and σw

respectively. For the job shop problem, the quality robustness is measured using Z1 =

Ew[C
w
ijk] and the solution robustness using Z2 = Ew[

∑︁n
i=0

∑︁n
j=0

∑︁m
k=0(S

w
ijk − S0

ijk)].

Since we are considering two performance measures, the objective function to be

minimized is defined in Equation (3.7), where ρ2 = 1− ρ1.

z = ρ1Z1 + ρ2Z2 (3.7)

The parameter ρ1 is a real number between 0 and 1 and serves as the weight given to

the quality robustness objective.

Chapter 4

Methodology

In this Chapter, all the procedures and methods that are used to achieve the ob-

jective of this thesis are outlined. First the surrogate models defined as “Oracles”

are described, then the simulation procedure is presented, followed by the formal de-

scription for the FSP optimization algorithms and its graphical representations, and

finally the formal description for the JSP optimization algorithms and its graphical

representations.

4.1 Oracles

The definition of the word “oracle” from the Collins English dictionary states: “4. a

person who delivers authoritative, wise, or highly regarded and influential pronounce-

ments.” [47]. In this thesis, oracles are self-contained entities, similar to the formal

definition of the word, that evaluate a feasible job sequence and return an expected

performance metric. These results are later used by the algorithms to find the best

performing job sequence. A complete solution is defined by (x,Y,ST), where x is a

given job sequence, Y is the preventive maintenance position matrix and ST are the

jobs start times matrix. We declared oracles to be used as criteria to analyze the job

sequencing x and its impact on the schedule’s makespan or objective function value.

Oracles 1, 2 and 3 are used to analyze an entire given neighbourhood X, which is a

matrix of different job sequences, and return the best found regarding the schedule’s

makespan. Oracle 4 evaluate a single job sequence using simulation to estimate the

average behaviour of the system.

Oracle 1, denoted as Z1(X), represents the best found schedule’s makespan value

without any consideration regarding maintenance and machine breakdown for a given

neighbourhood X. The schedule’s makespan is calculated directly assuming that all

machines are available at time 0 and throughout the horizon.

28

29

Oracle 2, denoted as Z2(X), represents the best found schedule’s makespan in-

cluding the preventive maintenance in every machine. According to maintenance

theory, aiming at the maximization of the machine’s availability, we build the op-

timal interval of preventive maintenance by deriving the following function T ∗
k =

θk{tpk/[trk (βk − 1)]}(
1
βk

)
. Machines can work if their ages are smaller than T ∗

k . A se-

ries of preventive maintenance are inserted as late as possible at every machine. The

matrix Y, which stores the preventive maintenance positions throughout the schedul-

ing horizon, is created. Using a job sequence and the created matrix Y we can

compute the schedule’s makespan directly assuming that all machines are available

at time 0.

Oracle 3, denoted as Z3(X), represents the best found schedule’s makespan in-

cluding the preventive maintenance and breakdowns that occur at the machine’s Mean

Time To Failure (MTTF). The preventive maintenance portion of this oracle is com-

puted exactly like in Z2(X) and the matrix Y is created as a result. Governed by a

Weibul probability distribution function, the average amount of time that a machine

runs until it fails can be derived by computing MTTFk = θkΓ(1 + (1
βk
)). A machine

is restored to age 0 after every preventive maintenance and the total time between

the end of a preventive maintenance to the start of another preventive maintenance

is called a batch. If a breakdown happens before the next preventive maintenance,

i.e., inside of a batch, the job affected by it is immediately suspended, a corrective

maintenance takes place and the job is immediately resumed. More than one break-

down may occur per batch. A matrix ST that represents how many breakdowns

happened within each batch is created. Using a job sequence, the preventive main-

tenance matrix Y, and the breakdown matrix ST we can compute the schedule’s

makespan directly assuming that all machines are available at time 0.

Oracle 4, denoted as Z4(x), represents the objective function value when the

machines’ failure uncertainty and preventive maintenance are considered. The pre-

ventive maintenance portion of this oracle is computed exactly like in Z2(X) and the

matrix Y is created as a result. Breakdowns are created in a simulation process fol-

lowing Algorithm 3 presented by Cui et al. [15]. As described, the average objective

function value over all scenarios (W) is declared as the expected objective function

value for the oracle.

30

4.2 Monte Carlo Simulation

A Monte Carlos simulation approximation of the expected realized schedule was de-

veloped by Cui et al. [15] for the flow shop problem and it is presented as follows.

Consider the objective function, where Cw
ik is the realized finish time of operation Okj

in scenario w, Sw
ik realized start time of operation Okj in scenario w, and ξwik is the

realized number of breakdowns when processing Okj, let us expand and analyze it

below.

z = ρ1Ew[C
w
ik] + ρ2Ew[

m∑︂
k=0

n∑︂
i=0

(Sw
ik − S0

ik)]

z = ρ1Ew[S
w
ik + pik + ξwiktrk] + ρ2Ew[

m∑︂
k=0

n∑︂
i=0

(Sw
ik − S0

ik)]

z = ρ1(Ew[S
w
ik] + pik + trkEw[ξ

w
ik]) + ρ2

m∑︂
k=0

n∑︂
i=0

Ew[S
w
ik]

− ρ2

m∑︂
k=0

n∑︂
i=0

Ew[S
0
ik] (4.1)

The exact value of Ew(S
w
ik) for any given solution cannot be obtained in polynomial

time, therefore, evaluations that are based on the schedule realization cannot be

obtained in reasonable time. S0
ik, Ew(ξ

w
ik) and pik can be calculated in polynomial

time. ξwik is governed by a Poisson probability distribution, according to maintenance

theory, with λik = (aik
θk
)βk − (bik

θk
)βk and Pr(ξwik = η) = (λik)

ηe−
λik
η! ∀η ∈ [0,+∞).

There is no close form to derive the expectation of the realized start time, however,

the expected value of ξwik can be derived.

For E[ξwik] = λik = (aik
θk
)βk − (bik

θk
)βk the values for aik and bik can be easily calcu-

lated. aik represents the age of the machine after job i in machine k and bik represents

the age of the machine before job i in machine k. After a preventive maintenance, the

machine’s age turns 0 and the machine starts to degenerate from that point forward.

Every preventive maintenance should be treated separately as a batch. A batch is a

collection of all operations in the same preventive maintenance period. Let Blk be

the number of batches in Mk, l be the lth batch in Mk, Lk be the number of batches

in Mk, nlk be the number of operations in Blk, and qlk be the total processing time

of operations in Blk.

31

The machine random breakdowns are modelled as a stochastic point process model

for each preventive maintenance period. Governed by a Weibull probability function,

machine failure is known to be a non-homogeneous Poisson process during a preventive

maintenance period. Rk = e
− tk

θk

βk

is the machine reliability, where tk describes the

machine age. The modelled sampling method to acquire the τ th breakdown time

in the machine Mk is btτk = R−1
k [

∏︁τ
χ=0(1 − ςχ)], where ςχ ∼ U(0, 1) is a uniformly

distributed random variable, and R−1
k (g) is the reverse function of Rk(g). The number

of scenarios (sample size) is W , and z(σ0) is the solution’s objective value. A detailed

description of the simulation procedure is described in Algorithm 3.

Input:

Number of scenarios W

Set zw = {0, 0, . . . , 0}(w = 0, 1, . . . ,W)

Jobs list X

Preventive maintenance matrix Y

Planned start times matrix ST

Output: z(σ0)

Step 1. Calculate aik, bik ∀i, k, and compute qlk, nlk ∀l, k.
Step 2. Set w = 1.

Step 3. For j = 1 to m, do:

3.1. Set {ξik∀k} = {0, 0, . . . , 0}; set l = 0; set n0 = 0.

3.2. Set τ = 0.

3.3. Generate random sample ςχ ∼ U(0, 1), and set

btτk = R−1
k [

∏︁τ
χ=0(1− ςχ)]

3.4. If btτk < a[1+nl−1]k, set ξ
w
[1+nl−1]k

= ξw[1+nl−1]k
+ 1; otherwise if ∃ δ that

satisfies a[δ+nl−1]k < btτj < a[δ+1+nl−1]k(∀δ ≤ nl−1), the set

ξw[1+nl−1]k
= ξw[1+nl−1]k

+ 1. Set τ = τ + 1. Go to 3.2.

3.5. l = l + 1. If l ≤ Lk, go to 3.2.

Step 4. Compute Sw
ik∀k,∀i, and the objective function value

zw = ρ1(C
w
ik) + ρ2(

∑︁m
k=0

∑︁n
i=0(S

w
ik − S0

ik)).

Step 5. Set w ← w + 1. If w < W , go to Step 3.

Step 6. Calculate z(σ0) =
∑︁W

w=1 z
w

W
.

Algorithm 3: Monte Carlo simulation procedure. Source: Cui et al [15].

32

The same approach was adapted and used to simulate the behaviour of the job

shop system.

4.3 Flow Shop Optimization Algorithms

The Flow Shop Scheduling Problem (FSP) assume that a number of machines to

process a number of jobs, the sequence in which the jobs are executed in the shop

floor is the same for every machine, i.e., all jobs follow the same route in the shop

floor. In this study, preventive maintenance and random breakdowns are added to

the scheduling horizon to better represent the behaviour of this system to an actual

industry setting.

Using the Oracles described in Subsection 4.1 three strategies were outlined to try

to find the best job sequencing that minimizes an Objective Function. Since Monte

Carlo simulation is very time consuming and computational hungry, there is a need

to minimize the amount of simulation runs to be executed. The first three Oracles

analyze a given neighbourhood of solutions (job sequences) and return the best job

sequencing regarding their own metrics. By doing all this computational effort early,

only three simulation procedures have to be carried to analyze these three good job

sequences. The expected best job sequencing for the overall problem should be also

the best job sequencing for the described Oracles.

The remainder of this Section outline in detail three different strategies created

to try to find the best job sequencing taking into consideration all the described re-

quirements for the flow shop problem with added preventive maintenance and random

breakdowns.

4.3.1 The optimization algorithms

The construction algorithm described by Nawaz et al. [37] named NEH method, is

known to be the best constructive heuristic regarding Fm//Cmax (flow shop scheduling

problem minimizing total makespan). The first job’s sequence x0 is always obtained

using the NEH method assuming that all machines are always available at time 0.

Algorithms 4, 6 and 7 try to optimize the jobs’ sequence by performing a two-loop

procedure. A inner loop that tries to improve the jobs’ sequencing locally based on

the evaluation of each oracle and an outer loop that focuses on the overall objective

33

function in the broader scope. The algorithms are described and followed by their

formal definitions below.

Algorithm 4 executes a full neighbourhood local search heuristic in the inner loop

and then uses the simulated annealing metaheuristic on the outer loop to escape

local optima and avoid the termination of the algorithm prematurely. The inner loop

can be described as follows: the neighbourhood (N(x0)) for a given jobs’ sequence

(x0) is created by switching the position of every two jobs (pairwise exchange). The

created neighbourhood has a size of n(n−1)
2

. For every neighbour x in N(x0) the values

of Z1(x), Z2(x) and Z3(x) are calculated using their respective oracles. The jobs’

sequences with the minimum objective value for Z1(x), Z2(x) and Z3(x) are selected

and declared as x∗
1, x

∗
2 and x∗

3 respectively. Then Z4(x0), Z4(x
∗
1), Z4(x

∗
2) and Z4(x

∗
3)

are calculated and the optimal solution x∗ is declared being the minimum objective

value found between Z4(x
∗
1), Z4(x

∗
2) and Z4(x

∗
3). A simulated annealing process is

initiated to loop over the inner portion of the algorithm to improve the quality of the

result; therefore, the outer loop can be described as follows: the initial temperature

is given by T , the update factor is described by α and the probability of acceptance is

calculated as Pracceptance = e
Z4(x)−Z4(x

∗)
T . If the optimal value found (Z4(x

∗)) is smaller

than the initial solution (Z4(x0)) or if the probability of acceptance is greater than

or equal to an uniformly random generated number between (0, 1], the solution (x∗)

is accepted as a new trial solution. The initial solution x0 is replaced by (x∗), the

temperature is updated to α ∗ T , and the inner loop is repeated. If none of those

conditions are met, the algorithm stops and best job sequence found throughout the

algorithm’s execution is declared as the approximation of the optimal solution.

Algorithm 6 executes a simulated annealing metaheuristic process with a k-pair

neighbourhood optimization heuristic in the inner loop and the outer loop repeats

the inner loop if a better solution is found. The inner loop can be described as

follows: three simulated annealing procedures will start in parallel, one for each oracle

(Z1(x), Z2(x) and Z3(x)). Let us consider Z1(x), the initial temperature is T , the

update factor is described by α and the probability of acceptance is calculated as

Pracceptance = e
Z1(xk)−Z1(x

new)

T . Denoted as N(x0), the neighbourhood for a given jobs’

sequence x0, which is a list with nbk members created by switching the position of

two randomly chosen jobs (pairwise exchange). For every neighbour (x) in N(x0) the

34

values of Z1(x) are calculated and the minimum one is chosen and declared as x∗. If

Z1(x
∗) is smaller than the initial solution Z1(x0) or if the probability of acceptance is

greater than or equal to an uniformly random generated number between (0, 1], the

solution x∗ is accepted. The initial solution x0 is replaced by x∗, the temperature is

updated to α ∗T , and the inner loop is repeated. If none of those conditions are met,

the algorithm stops, and x∗ is declared being the solution with minimal Z1(x) found

during the execution. This procedure happens similarly for Z2(x) and Z3(x). The

jobs’ sequence with the minimum objective value for each oracle is finally declared as

x∗
1, x

∗
2 and x∗

3 respectively. Then Z4(x0), Z4(x
∗
1), Z4(x

∗
2) and Z4(x

∗
3) are calculated and

the optimal solution x∗ is declared being the minimum objective value found between

Z4(x
∗
1), Z4(x

∗
2) and Z4(x

∗
3). The outer loop can be described as follows: if the optimal

value found Z4(x
∗) is smaller than the actual initial solution Z4(x0) the algorithm set

the initial solution as x∗ and it repeat the inner portion of the algorithm trying to

improve the solution, if no better solution is found the algorithm declares the best

job sequence found throughout the algorithm’s execution as the approximation of the

optimal solution.

Algorithm 7 executes a simulated annealing metaheuristic process with a k-pair

neighbourhood optimization heuristic on the inner loop and then uses the simulated

annealing metaheuristic on the outer loop to escape local optima and avoid the ter-

mination of the algorithm prematurely. The inner portion of this algorithm is the

same as the one described in Algorithm 6. The outer loop can be described as follows:

the initial temperature is given by T , the update factor is described by α and the

probability of acceptance is calculated as Pracceptance = e
Z4(xk)−Z4(x

∗)
T . If the optimal

value found (Z4(x
∗)) is smaller than the initial solution (Z4(x0)) or if the probability

of acceptance is greater than or equal to an uniformly random generated number

between (0, 1], the solution (x∗) is accepted. The initial solution is replaced by it,

the temperature is updated to α ∗ T and the inner loop is repeated. If none of those

conditions are met the algorithm stops and the best job sequence found throughout

the algorithm’s execution as the approximation of the optimal solution.

35

Graphical representation

To better represent the logic behind the proposed algorithms, a graphical representa-

tion using the UML (Unified Modelling Language) activity diagrams are presented.

UML activity diagrams are similar to flow charts which aim to represent the be-

haviour of a system, a complex operation, a complex business rule, single or multiple

use cases, business, or software processes [5]. The following notation was used for the

activity diagrams presented here. There are many other structures and standardized

symbols that are not covered in this text.

Symbol Name Description

Activity Symbol Encapsulate the symbols that represents a

model.

Activity Parameters Rectangles that sits on the border of the ac-

tivity symbol that represents the parameters

from outside of the activity that are used by

the modelled activity.

Start Symbol A black circle that represents the start point

of the modelled activity.

End Symbol A black circle inside a hollow circle with a

border that represents the end point of the

modelled activity.

36

Symbol Name Description

Flow Symbol An arrow that represents the flow of informa-

tion, action or data of the modelled activity.

Action Symbol A rounded rectangle with a description in-

side that represents an action of the modelled

activity. This description can contain plain

text or even code in a specific programming

language if needed.

Condition Symbol A diamond-shaped symbol that represents a

point of decision an branching. “<<” and

“>>” are used to encapsulate a description,

usually a question, that will lead to branch-

ing to one of the arrows leaving the symbol.

Fork Symbol A black bar with arrows pointing outwards

from it. Splits a single activity flow into mul-

tiple concurrent and parallel activities.

Joint Symbol A black bar with arrows pointing to it. Joins

two or more concurrent activities into a single

flow.

Table 4.1: UML notation (adapted). Object Management Group [39]

37

Algorithm 4: FSP optimization algorithm with complete neighbourhood explo-

ration and outer simulated annealing

38

Algorithm 5: FSP local k-neighbour optimization simulated annealing

39

Algorithm 6: FSP optimization algorithm with inner k-neighbour simulated an-

nealing

40

Algorithm 7: FSP optimization algorithm with inner k-neighbour simulated an-

nealing and outer simulated annealing

41

4.4 Job Shop Optimization Algorithms

In a Job Shop Scheduling Problem setting, all the aspects that characterizes the FSP

are still present. The main difference is that each job has its own machine requirement.

These machines are also prone to preventive maintenance and random machine break-

downs. The use of evolutionary metaheuristic, as the genetic algorithm described in

Section 3.3.2, is described in the literature as a good way to explore and find good

job sequencing for the JSP. By combining the genetic algorithm metaheuristic with

the same ideas behind the use of Oracles from the flow shop optimization algorithms,

two new algorithms to be applied to the JSP were created.

This Section starts by describing the genetic algorithm metaheuristic applied to

the JSP in detail, then outlines two new algorithms that tries to find the best job

sequencing for the job shop scheduling problem with added preventive maintenance

and random breakdowns.

4.4.1 Genetic Algorithm Applied to the Job Shop Scheduling Problem

In the next subsections, the main pieces of the genetic algorithm applied to the

job shop scheduling problem are explored by initially describing the chromosome

representation and the initial population creation, the crossover process is discussed,

the gene selection procedure is explained, the mutation procedure is addressed, and

finally the entire genetic algorithm algorithm is reviewed.

The Chromosome Representation and Initial Population

As discussed in section 3.3.2, a chromosome is an array that represents a solution.

The standard coding technique used to represent a solution in the early studies of the

genetic algorithm used binary or permutation representations. Using the same repre-

sentation techniques in modern optimization problems we will add infeasible solutions

(i.e. individuals) to the population set. To avoid this behaviour and not waste com-

putation resources to check, fix, or penalize a bad individual a job permutation with

repetition representation that covers all feasible solutions for the job shop scheduling

problem was proposed by Bierwirth [8] and is used in this thesis.

Let us consider Ji as the set of jobs to be processed, each of these jobs can be

42

further broken down to operations that require a predetermined machine Mk. The

number of operations for each job is the same i.e. the total number of operations

per job are the same as the number of available machines m. The sequence in

which each job has to visit the machines in the shop floor are given as input for

the problem. For the 3 jobs and 4 machines case, an example of a chromosome

(individual) created by permutation with repetition of jobs Ji can be written as

(J1, J2, J3, J3, J2, J1, J1, J1, J2, J3, J3, J2). Note that Ji appears in the array at most m

times and their positions are randomly chosen. Given the following machine sequence

matrix SEQik = (1, 2, 3, 4; 3, 1, 4, 2; 4, 2, 1, 3) and by reading the randomly created

chromosome from left to right, an array that represents a sequence of operations

(Oik) can then be written as (O11, O23, O34, O32, O21, O12, O13, O14, O24, O31, O33, O22).

This sequence of operations can be given to a schedule builder to evaluate any per-

formance metric of interest. Oracles described in section 4.1 are used as schedule

builders to evaluate the different performance metrics of the population set.

The pseudo-code of how to create an initial population of size popSize is described

bellow:

Input:

Number of jobs i;

Number of machines k;

Population size popSize;

Output: An array pop containing popSize individuals.

Create an empty array pop;

while The size of pop < popSize do

Create an individual incremental integer array starting from 0 up to i ∗k ;

Randomly permute the elements of the individual array;

foreach ind ∈ individual do
ind← ind mod i

end

Append individual to array pop;

end

Algorithm 8: Initial population creation pseudo code.

To illustrate Figure 4.1 shows an example of implementation of the population

creation procedure for i = 5 and k = 2.

43

Figure 4.1: Population creation example.

The Crossover Process

The crossover procedure will create new chromosomes (children) with parts of two

other chromosomes (parents) as described in section 3.3.2. A chromosome is a col-

lection of genes, each position inside a chromosome is called a “gene” in this study.

The Precedence Preservative Crossover (PPX) presented by Bierwirth et al. [9] was

used and is described as follows: Consider n as the length of one of the parent chro-

mosomes. To get the sequence in which the genes will be extracted from the parents,

generate an array with size n randomly filled with elements of the set {1, 2}. Follow-
ing the created gene sequence array, extract a gene from the selected parent, append

it to a new child array, and then delete the same gene on the other parent array. Re-

peat until both parents arrays are empty and the child array has n elements. Figure

4.2 shows the step-by-step example of this procedure.

Chromosomes Selection

In this thesis, to determine which individuals will participate in future generation

crossover process, the biased roulette wheel selection approach was used. In propor-

tion to its fitness value, a chromosome is given a chance to be selected. “Fitness” in

this context is the evaluation of a chromosome in a given metric of interest. Oracles

44

Figure 4.2: Example of a PPX crossover.

are used as schedule builders that provide a performance evaluation of a chromosome

in the presented algorithm. The name “biased roulette wheel” comes from the anal-

ogy of a spinning roulette wheel where good individuals (the ones with better fitness

value) have a bigger slot size than bad individuals. By randomly spinning the wheel,

45

one by one, individuals are chosen to enter the new population array. Figure 4.3

illustrates the method.

Figure 4.3: Roulette wheel selection . Source: Jun et al. [27]

It is clear that individuals that have better fitness values will also have a better

chance of survival. The roulette wheel can be implemented by the following Algorithm

9 by Burke et al. [11].

Mutation

As it happens in real life, the chromosomes in a generated individual can suffer random

mutations. Two parameters are used to control the mutation of the entire population:

the population mutation ratio and the gene selection ratio. The first parameter

stipulates the percentage of individuals (chromosomes) of the population that will be

mutated and the second factor stipulates the percentage of genes in a single individual

(chromosome) that will suffer mutation.

The mutation procedure starts by randomly selecting the individuals (chromo-

somes) from the population set that are going to be mutated based on the population

mutation ratio. For every selected individual (chromosome), tag the genes that are

going to suffer mutation following the gene selection ratio. The tagged genes shift

to the right and the mutated individuals (chromosomes) substitute those selected

initially. Figure 4.4 illustrates the right shift procedure.

Note that this procedure do not make the mutated individuals infeasible, so no

computation efforts are wasted to check, validate, and fix a mutated individual.

46

Input:

Population pop;

Population size n ;

Maximum population size popSize;

Output: A new population pop

Step 1. Evaluate the fitness of each individual fi;

Step 2. Compute the probability (slot size), pi, of selecting each one of the

individuals in the population: pi = fi/
∑︁n

j=1 fj ;

Step 3. Compute the cumulative probability, qi, for each individual:

qi =
∑︁i

j=1 pj ;

Step 4. Generate a random number, r ∈ (0, 1] ;

Step 5.

if r < q1 then
select the first chromosome

else
select chromosome xi such that qi−1 < r < qi

end

Step 6. Repeat steps 4 and 5 until popSize chromosomes were selected;

Algorithm 9: Roulette wheel procedure. Source: Burke et al. (Adapted) [11]

Figure 4.4: Mutation Right Shift

The Genetic Algorithm

The genetic algorithm is used to explore the solution space looking for a good solution

based on the performance evaluation given by one of the oracles described in section

47

4.1. The chosen stopping criteria is the maximum number of generations, as soon as

the algorithm performs a determined amount of generations, it stops and the best

individual is reported as the approximation of the optimal solution for that given

oracle. The approach described here uses an “elite” array to carry forward to new

populations members that were declared to produce good solutions for the job shop

scheduling problem with added preventive maintenance and random breakdowns.

These chromosomes are added at the beginning of the population creation step, and

it is updated at every loop of the main algorithm. Algorithm 10 represents the genetic

algorithm applied to job shop problem.

4.4.2 The optimization algorithms

Algorithms 11 and 12, similar to algorithms 4, 6 and 7, try to identify a job permuta-

tion with repetition individual that can be used to construct a robust schedule. The

algorithm performs a two-loop procedure, the inner portion explores many different

solutions using randomly generated individuals encapsulated in a genetic algorithm

metaheuristic, and the outer loop focus on the overall objective function. An array

of “elite” individuals that produce good solutions are carried forward, from one iter-

ation of the algorithm to the next, as part of the inner population creation for the

genetic algorithms procedures. The elite array has a fixed specified size and it follows

a FIFO rule, meaning that as soon as the maximum number of individuals is reached,

the first individual that enters the array will leave to make room for a newly found

elite individual. This elite array will induce the creation of good individuals since its

members’ genes will produce new individuals that inherit its good characteristics.

Algorithm 11 executes three parallel genetic algorithm metaheuristics with ran-

dom population creation in the inner scope, and the outer scope will call the inner

procedure again if a better solution is found aiming to improve the quality of the

result. The inner loop can be described as follows: Three parallel genetic algorithms

with independent random population creation procedures are started. If there are

any individuals in the elite array, these individuals are added to the initial popula-

tion of every genetic algorithm instance. Each one of the genetic algorithms tries to

optimize the results using one of the Oracles Z1(x), Z2(x) and Z3(x) as its perfor-

mance metric. When the genetic algorithm procedures finishes, the individuals that

48

Input:

Oracle or;

Elite array elite;

Maximum generation number maxGen;

Maximum population size popSize;

Population mutation ratio popMutationRatio;

Gene selection ratio geneSelectionRatio;

Output: A job sequence with repetition (x) that represents the

approximation of the Oracle’s optimal solution.

Initialization. Randomly generate a population set (oldPop) with popSize

individuals;

Randomly select and substitute individuals from oldPop with individuals in

elite;

Create an empty bestScoreProgress array;

while gen < maxGen do

Create a newPop empty array;

while newPop number of elements is smaller than popSize do
Append to newPop individuals generated by the PPX crossover

procedure by randomly selecting parents in oldPop.;

end

Mutate the entire newPop array following the popMutationRatio and

geneSelectionRatio;

Stack the oldPop and the newly created newPop;

Using the biased roulette wheel procedure, select up to popSize

individuals and set it as oldPop;

Append to the bestScoreProgress array the minimum objective value

found in oldPop and it’s corresponding chromosome;

end

Return x as the chromosome with the least objective function value from the

bestScoreProgress array;

Algorithm 10: The Genetic Algorithm Applied to the Job Shop Problem.

49

represent the optimal solution for every Oracle are then declared as x∗
1, x

∗
2 and x∗

3 for

Z1(x), Z2(x) and Z3(x) respectively. Then Z4(x
∗
1), Z4(x

∗
2) and Z4(x

∗
3) are calculated

and the optimal solution x∗ is declared being the minimum objective function value

found between them. The outer loop can be described as follows: The first x∗ from

the inner algorithm is declared as initial solution x0, the individual is added to an

elite array and the inner portion of the algorithm is called. From the second loop

forward, if the value of Z4(x
∗) is smaller than Z4(x0) the algorithm tries to improve

the solution again by appending the individual to the elite array, x0 is set to x∗ and

the inner portion of the algorithm is called. This procedure repeats until Z4(x0) is

better than Z4(x
∗), i.e., no better solution is found. The best job sequence found

throughout the algorithm’s execution is declared as the approximation of the optimal

solution.

Algorithm 12 executes three parallel genetic algorithms metaheuristics with ran-

dom population creation in the inner scope and the outer scope is a simulated an-

nealing procedure where bad solutions are accepted to escape local optima and search

for a better result. The inner loop of this algorithm is done exactly as described in

algorithm 11. The outer loop can be described as follows: The first x∗ from the inner

algorithm is declared as initial solution x0, the individual is added to an elite array,

the temperature T is set following the initial temperature and the inner portion of the

algorithm is called. From the second loop forward, if the value of Z4(x
∗) is smaller

than Z4(x
∗
0) the algorithm accepts this solution and tries to improve the solution again

by appending the individual to the elite array, x0 is set to x∗ and the inner portion

of the algorithm is called. If Z4(x0) is smaller or equal to Z4(x
∗) a uniform random

number between R = (0, 1] is created and a probability of acceptance is calculated

as Pracceptance = e
−(x∗0−x∗)

T . If R < Pracceptance the temperature T is updated following

the temperature update factor α, x0 is set to x
∗ and the inner portion of the algorithm

is called. If R ≥ Pracceptance the algorithm stops, and the best job sequence found

throughout the algorithm’s execution is declared as the approximation of the optimal

solution.

50

Graphical representation

Similar to what is shown on subsection 4.3.1, the JSP optimization algorithms are

graphically presented using the UML activity diagram of Algorithm 11 and Algorithm

12.

51

Algorithm 11: JSP optimization algorithm with inner genetic algorithm

52

Algorithm 12: JSP optimization algorithm with inner genetic algorithm and

outer simulated annealing

Chapter 5

Results and Discussion

This Chapter summarizes all the experiments and main discussions regarding the

application of the proposed algorithms. There is a Section for every class of problem

with their initial parameter estimation, followed by the final experiments and achieved

result, finally a conclusion and future research are outlined.

5.1 FSP Experiments

To understand the behaviour of the proposed algorithms when varying individual

parameters, the first part of this Section presents the initial parameter estimation

for the FSP optimization algorithms. Then the final experimental procedures are

outlined, and the results are discussed.

5.1.1 Initial Parameter Setting

The proposed test procedures were coded using Python 3.8 with Numpy 1.18, Numba

0.50.1, and Cython 0.29.21 frameworks and tested on a set of randomly generated

instances for evaluating the performance of the proposed algorithms. A computer

with a Ryzen 7 3800X with 3.9GHz clock speed processor and 32GB of 3600MHz

RAM memory was used to run the instances of these tests.

Even with all the effort to compute good parameters for the algorithms presented

here, they must be used as good starting points. The parameters found here are not

optimal for all problem sizes or instances. There are many iterations and relationships

that are not explored in this text and are out of the scope of this work.

Test 1 - Temperature Update Factor

When running a simulated annealing procedure, two factors are of extreme importance

to the expected average rate of improvement and total computational time: the initial

53

54

temperature T0 and temperature update factor α. The following tests only focus on

the temperature update factor. In Algorithms 4 and 6 there is only one simulated

annealing step in the outer loop and the inner loop of the algorithm, respectively.

Algorithm 4 generates n(n−1)
2

neighbours every time the inner loop is called. That

being the case, the exploration of different neighbours are higher and the expected

average improvement that is achieved at each iteration is also higher. On the other

hand, Algorithm 6 tries to search for good neighbours in a smarter way, trying to

achieve similar results in a faster manner. Algorithm 7 has simulated annealing in its

inner and outer loops and is affected by both update factors at the same time. It was

decided to extrapolate the decisions regarding the update factor from Algorithms 4

and 6 to Algorithm 7.

The following tests were designed to evaluate the impact of the temperature up-

date α on the time to solve and the average rate of improvement of every scenario. The

number of machines and the number of jobs were set tom = {15} and n = {20, 50, 70}
respectively. A total of 5 instances were created for each machine/job combination

and the average values for all scenarios are reported. The global parameters for each

instance were set as follows: the weight of solution robustness ρ = 1; the processing

times of each job are integers uniformly generated between [9, 29]; tpj is uniformly

generated between [12, 15]; trj was uniformly generated between [8, 12]; θk was uni-

formly generated between [60, 100]; βj was uniformly generated between [2, 3]. The

simulated annealing procedure had its parameters set as follows: for Algorithm 4 the

initial temperature was set to T0 = 0.8Z4(x
0) and for Algorithm 6 the initial tempera-

ture was set to T0 = 1Z4(x
0) and the number of neighbours to be created nbk was set

to 10% of n(n−1)
2

. α1 represents the update factor for algorithm 4 and α2 represents

the update factor for algorithm 6.

Figure 5.1 shows a summary of the results for Algorithm 4, looking at the average

execution time from the chart on the left, specially for the 70 jobs problem, the time

to solve tends to increase exponentially as α1 goes higher. The average improvement

is marginal and the bigger the instance, the more difficult it is to significantly improve

the solution.

Figure 5.2 shows the summary of the results for Algorithm 6. The average time

to run tends to go higher as α1 increases. The average improvement also tends to go

55

Figure 5.1: Sensitivity Analysis Temperature Update Factor Algorithm 4.

56

Figure 5.2: Parameter Estimation, Temperature Update Factor, Algorithm 6.

57

marginally higher as α1 increases. As the size of the instance increases, the harder it

is to find a significant improvement, similar to what happens in Algorithm 4.

5.1.2 Optimality Gap Analysis

To identify how close the algorithms approximate to the optimal solution, an enumer-

ation toy experiment was performed. A small problem with n = 5 jobs and m = 3

machines was randomly created.

Machine 1 Machine 2 Machine 3

Job 1 13 26 15

Job 2 23 20 25

Job 3 17 15 23

Job 4 10 10 9

Job 5 14 20 21

Table 5.1: Processing times (Pij) example.

Machine 1 Machine 2 Machine 3

θj 87 95 79

βj 2 3 2

tpj 12 12 15

trj 9 12 12

Table 5.2: θj, βj, tpj, and trj parameters example.

The total number of possible permutations of the job sequencing array is n!. In

this example, the total number of possible permutations is 5! = 120. By applying

Oracle Z4 to every possible job sequence, the optimal solution for the problem can

then be found. The job sequence [0, 2, 4, 1, 3] has the minimal objective function with

a value of 114.3995. The same problem is then given to each one of the algorithms

for the flow shop problem and the objective function (OF) values found for each

algorithm are listed in Table 5.3.

58

The simulated annealing procedure had its parameters set as follows: for Algo-

rithm 4 the initial temperature was set to T0 = 0.8Z4(x
0); for Algorithm 6 the initial

temperature was set to T0 = 1Z4(x
0); the number of neighbours to be created nbk

was set to 12 in every loop. The temperature update factor α1 was set to 0.60 and

α2 was set to 0.70.

Algorithm Job Sequence OF Value Optimality Gap Execution Time

Algorithm 4 [4, 2, 3, 1, 0] 115.553 1.01% 422s

Algorithm 6 [2, 3, 4, 1, 0] 119.001 4.02% 43s

Algorithm 7 [2, 3, 4, 1, 0] 119.001 4.02% 657s

Table 5.3: Optimality gap example.

We can observe that Algorithm 4 has a closer gap to the optimal solution when

compared to Algorithms 6 and 7. The job sequence [2, 3, 4, 1, 0] was found initially

by the NEH algorithm and neither Algorithms 6 or 7, by executing the simulated

annealing with a k-pairwise exchange neighbourhood construction strategy, was able

to improve it. Algorithm 6 only did a single loop taking only 43 seconds to execute

until completion, on the other hand Algorithm 7 reached the declared maximum

number of trials with no improvement stopping criteria with 20 loops executed taking

657s.

5.1.3 Final Experiments

The instances for this section were randomly created; the number of machines and

the number of jobs selected were m = {15, 30, 45} and n = {25, 50, 75} respectively.
Since this thesis was inspired by a medium size company, this combination of ma-

chines/jobs is accurate to what one can experience in a real life scenario. A total

of 5 runs were executed for each machine/job combination created and the average

values for all scenarios are reported. The global parameters for each instance were

set as follows: the weight of solution robustness ρ = {0.5}; the processing times of

each job are integers uniformly generated between [9, 29]; the preventive maintenance

time for every machine tpj was uniformly generated between [12, 15]; the corrective

maintenance time for every machine trj was uniformly generated between [8, 12]; the

59

scale parameter θk was uniformly generated between [60, 100]; the shape parameter

βj was uniformly generated between [2, 3]. The simulated annealing procedure had

its parameters set as follows: for Algorithm 4 the initial temperature was set to

T0 = 0.8Z4(x
0); for Algorithm 6 the initial temperature was set to T0 = 1Z4(x

0); the

number of neighbours to be created nbk was set to 10% of n(n−1)
2

for every different

n. The total number of scenarios created during the simulation procedure was set to

1000. The temperature update factor had to be set differently for each size of the

problem, for the 25 jobs problem, α1 was set to 0.75, for the 50 jobs problem α1 was

set to 0.80, and finally for 75 jobs problems α1 was set to 0.85. α2 was set to 0.75 for

every problem size. The α1 and α2 were extrapolated to Algorithm 7.

Figure 5.3 and Figure 5.4 show the summary of the results obtained after the

execution of Algorithm 4. The improvement obtained from the initial solution is not

impressive. This algorithm performs a complete neighbourhood search at the start

of execution and finding a better solution through pairwise exchange is deemed to be

challenging. The impact on the average time per loop is significant when moving from

a smaller problem size to a bigger one, for instance, there is an increase of 946.58%

on the execution time going from 25 jobs 15 machines to 75 jobs 45 machines.

Figure 5.3: Execution time - FSP Algorithm 4

Figure 5.5 and Figure 5.6 show the summary for Algorithm 6. By default, Al-

gorithm 6 stops if no improvements were found on the previous loop. Looking at

the average number of loops the Algorithm stops prematurely only executing one

iteration of the loop with none to minimal improvement over the initial solution.

60

Figure 5.4: Improvement - FSP Algorithm 4

Figure 5.5: Execution time - FSP Algorithm 6

Figure 5.7 and Figure 5.8 represent the summary for Algorithm 7. The improve-

ment over the initial solution observed on average is higher when compared to Algo-

rithm 6 since the Algorithm do not stop early and search more the solution space.

The average run time is higher in all cases when compared to Algorithm 6, for in-

stance, the 30 machines 75 jobs problem had an execution time increase of 1859%

taking on average 1.02 hours to complete.

Another important factor to point out is that the difficulty to find a better solution

increases as the size of the problem increases. The NEH algorithm used to generate

61

Figure 5.6: Improvement - FSP Algorithm 6

Figure 5.7: Execution time - FSP Algorithm 7

the initial feasible solution is known to be one of the best algorithms in finding a

great initial solution for the FSP. In the tests presented here, only marginally better

solutions were found when compared to the initial solution.

62

Figure 5.8: Improvement - FSP Algorithm 7

5.2 JSP Experiments

To understand the behaviour of the proposed algorithms when varying individual

parameters, the first part of this Section presents the initial parameter estimation

for the JSP optimization algorithms. Then the final experimental procedures are

outlined, and the results are discussed.

5.2.1 Initial Parameter Setting

This section explores the behaviour of the genetic algorithm by varying its param-

eters one by one. The parameters estimated here are not optimal for all problem

sizes or instances. There are many different relationships and iterations that are not

explored here and are out of scope of this work. Problem instances were created,

expanding the work done by Taillard [44] by adding the parameters needed to create

preventive maintenance and random breakdowns. The instances created by Taillard

provide the processing times of each operation in a machine and the machine sequence

requirement for each job. The chosen instance for this test is ‘ta01’ with 15 jobs and

63

15 machines. The time to perform a preventive maintenance and corrective mainte-

nance in a machine was calculated by taking the average of the processing times in a

machine and multiplying it by a factor ranging from 0 to 1. The multiplication factor

chosen for this section was 0.8 and 0.4 for the preventive maintenance and corrective

maintenance times, respectively. Similarly, the scale parameter of the Weibull distri-

bution which dictates the frequency that a preventive maintenance will happen, was

derived by multiplying the average of all processing times in a machine by an integer.

The chosen integer used in this section is 6 on average there will be the execution

of 6 operations in a given machine between each preventive maintenance. The shape

parameter was set to 2.5, the number of elite chromosomes was set to 4, ρ was set to

0.5 and a total of 25 runs was carried in each one of the tests.

The proposed test procedures were coded using Python 3.8 with Numpy 1.18,

Numba 0.50.1, and Cython 0.29.21 frameworks. A computer with a Ryzen 7 3800X

with 3.9GHz clock speed processor and 32GB of 3600MHz RAM memory was used

to run the instances of these tests.

Test 1 - Gene Mutation Selection Rate

The gene mutation selection rate changes a specific chromosome as discussed in sub

section 4.4.1 by randomly choosing some of the genes to be right shifted. This test

was designed to investigate the impact of varying the gene mutation selection rate

from 0.05 to 0.45 by increments of 0.05 on the overall performance of the job shop

genetic algorithm procedure. The maximum number of generations was fixed in 200,

the population size was fixed to 300 and the population mutation rate was fixed to

0.10. After 25 runs, the average of the results from Oracles Z1, Z2 and Z3 are shown

in Figures 5.9, 5.10, and 5.11 respectively.

Figure 5.9: Test 1 - Gene Mutation Selection Rate - Oracle Z1

64

Figure 5.10: Test 1 - Gene Mutation Selection Rate - Oracle Z2

Figure 5.11: Test 1 - Gene Mutation Selection Rate - Oracle Z3

The average of the schedule’s makespan goes higher as the gene mutation selection

rate increases. To avoid the degradation of the solution, a value around 0.05 is

recommended. The impact on the run time was minimal, thus not evidenced here.

Test 2 - Population Mutation Rate

The population mutation rate determines how many individuals in a given population

are randomly mutated. Test 2 was designed to evaluate the behaviour of the genetic

algorithm procedure when the population mutation rate changes from 0.05 up to 0.25

by increments of 0.05. The maximum number of generations was fixed in 200, the

population size was fixed to 300 and the gene mutation selection rate was fixed to

0.05. After 25 runs, the average of the results from Oracles Z1, Z2 and Z3 are shown

in Figures 5.12, 5.13, and 5.14 respectively.

The average makespan performance showed no meaningful improvement by setting

the population mutation rate between 0.1 and 0.2. Oracle Z2 behaved differently than

the others when the population mutation rate was 0.25. By trying to reach a more

stable population where good enough performance is observed, a population mutation

rate of 0.15 is recommended. The impact on the run time was not meaningful, then

it is not reported here.

65

Figure 5.12: Test 2 - Population Mutation Rate - Oracle Z1

Figure 5.13: Test 2 - Population Mutation Rate - Oracle Z2

Test 3 - Population Size

The population size dictates how many individuals are created and how many indi-

viduals survive at the end of each generation. The more individuals are added, the

more calculations are made, requiring more computational resources and considerably

increasing the average time to run. This parameter has to be balanced to achieve the

desired level of performance with a feasible run time. Test 3 varies the population

size from 300 up to 900 by increments of 150 individuals. The maximum number

of generations was fixed in 200, the gene mutation selection rate was fixed to 0.05,

and the population mutation rate was fixed to 0.15. After 25 runs, the average of

the results from Oracles Z1, Z2 and Z3 are shown in Figures 5.15, 5.16, and 5.17

respectively.

The variation of the population size did not increase the overall performance of

the algorithm when compared to the impact on the average time to run specially

for Oracle Z3. For instance, if considering the 300 population size as a baseline for

Oracle Z3 an improvement of only 1.59% on average on the makespan was observed

with an increase of 220.74% on the average run time. Since the observed improvement

is marginal and the impact on the average time to run is considerable, a population

66

Figure 5.14: Test 2 - Population Mutation Rate - Oracle Z3

Figure 5.15: Test 3 - Population Size - Oracle 1

size of 300 is recommended if trying to save resources and time.

Test 4 - Maximum Number of Generations

The maximum number of generations specifies how many iterations of the crossover/mutation

a population will go through until it stops. Test 4 was designed to analyze the impact

of the number of generations by varying from 100 up to 900 by increments of 200.

The population size was set to 600, the population mutation rate was set to 0.15, and

the gene selection rate was set to 0.05.

Similarly to what was observed in Test 3, this parameter impacts deeply the

average run time of the genetic algorithm. Considering 100 generations as a baseline

for Oracle Z1 the average improvement on the makespan is 3.91% compared to an

increase of 767.38% in the average run time of the genetic algorithm. Since the

decrease of the average makespan is slim when compared to the steep increase of the

average time to run, this parameter should be set to 100.

67

Figure 5.16: Test 3 - Population Size - Oracle 2

Figure 5.17: Test 3 - Population Size - Oracle 3

5.2.2 Final Experiments

For this section, Taillard’s instances ‘ta01’, ‘ta11’, ‘ta21’, ‘ta31’, ‘ta41’ and ‘ta51’ were

selected to test Algorithm’s 11 and Algorithm’s 12 performance. The instances sizes

are listed in Table 5.4.

Machines Jobs

ta01 15 15

ta11 15 20

ta21 20 20

ta31 15 30

ta41 20 30

ta51 15 50

Table 5.4: Taillard’s Instance Size. Source: Taillard [44]

68

Figure 5.18: Test 4 - Maximum Number of Generations - Oracle 1

Figure 5.19: Test 4 - Maximum Number of Generations - Oracle 2

The global parameters of the algorithm were set similarly on how it was done in

section 5.2.1. The preventive time factor was set to 0.8; the the corrective maintenance

time factor was set to 0.4; the scale parameter factor was set to 6; the shape parameter

was set to 2.5; the number of elite chromosomes was set to 4; ρ was set to 0.5; The

genetic algorithm parameters were set as follows: the population size was set to 150;

the gene selection rate was set to 0.05; the population selection rate was set to 0.15;

the maximum number of generations was set to 200. The number of scenarios /

iterations required by the simulation procedure was set based on the evaluation of a

95% confidence interval on the Normal distribution with an error bound of 1% of the

true mean value and was set to 4970 scenarios / iteration. The simulated annealing

parameters of Algorithm 12 were set as follows: the maximum number of iterations

was set to 100; the temperature update factor was set to 0.8 and the temperature

update run was set to 3. A total of 5 runs were executed for every instance and their

69

Figure 5.20: Test 4 - Maximum Number of Generations - Oracle 3

average behaviours are summarized in Figure 5.21 and Figure 5.22 for Algorithm 11

and Algorithm 12 respectively.

Figure 5.21: JSP Algorithm 11 result summary

For Algorithm 11 the average improvement over the initial solution is small, reach-

ing at most 5.43% of improvement on the ‘ta21’ instance. This can be explained by

the fact that only an average of 3.40 loops were done when solving this instance. Indi-

cating that the algorithm is stopping prematurely, thus not reaching a good solution

conversion. On the other hand, the execution time of only 5.21 minutes shows that

70

Figure 5.22: JSP Algorithm 12 result summary

this algorithm can be generally good to generate quick solutions that can be used by

the management as a starting point for further improvements.

For Algorithm 12 the ‘ta01’ instance observed an improvement of 12.71% on av-

erage over the initial solution with only 2.33 hours of average execution time. The

Algorithm was able to better improve problems with smaller size, only achieving an

improvement of 6.71% on the ‘ta51’ instance.

Algorithm 12 showed significant solution improvement over Algorithm 11 but with

relative higher execution time. The higher number of average loops allows Algorithm

12 to reach better conversion. The run time of 4.44h for the ‘ta41’ with 20 machines

and 40 jobs is not unreasonable since that the production management team can

execute this evaluation during the night in preparation for the next day’s shift.

5.3 Conclusion and Future Research

Inspired by a situation in a real-world company, this thesis proposes three algorithms

for the FSP and two algorithms for the JSP with integrated considerations regarding

preventive maintenance and random machine breakdown. Two performance metrics

71

were described as quality robustness and solution robustness and combinations of

both were used for schedule evaluation.

The algorithms were coded using Python 3.8 with Numpy 1.18, Numba 0.50.1,

and Cython 0.29.21 frameworks. The flow shop test instances were randomly created

using a set of predetermined parameters. The job shop test instances, on the other

hand, were created based on Taillard’s standard JSP library.

The first algorithm of the flow shop problem showed no improvement over the

initial solution. The second algorithm did not perform well because of its premature

termination, thus leading to a poor solution conversion. The third algorithm showed

marginal improvements over the initial solution with a much higher average run time.

The NEH algorithm showed to be a great start point and only pairwise neighbourhood

exploration, even with all effort, was not enough to provide considerable improvement

in a reasonable time.

The first algorithm of the job shop problem showed marginal improvements with

quick run time. The solution for a 50-job, 20-machine problem takes an average

of 10 minutes. By itself, the first algorithm can be used to generate good quick

starting points for the management team analysis. The second algorithm showed

good performance by running in reasonable times with considerable improvements

over the initial solution. The bigger the instance, the harder it is to improve using

the proposed algorithm.

5.3.1 Future Research

Quality Robustness: The objective function only takes into consideration the

schedule’s makespan as one of the objective function factors. Other different metrics

are also important and should be further analyzed, such as the number of tardy jobs,

weighted completion times, and maximum lateness.

Maintenance Policy: The presented preventive maintenance is a predictive sched-

uled time-driven model. Other policies as condition-based maintenance could be used

instead and its interaction with random breakdowns could be further explored.

Metaheuristics: Specially on the outer scope of Algorithm 12, using a different

metaheuristic could lead to better conversion of results. A good suggestion should be

using Tabu Search instead of simulated annealing.

72

Implementation: new GPU computing technologies are becoming more widely

available and coding these algorithms in a way that leverages the speed increase

of these technologies can improve the run time of the algorithm significantly.

Bibliography

[1] Joseph Adams, Egon Balas, and Daniel Zawack. Shifting Bottleneck Procedure
for Job Shop Scheduling. Management Science, 34(3):391–401, 1988.

[2] Riad Aggoune. Minimizing the makespan for the flow shop scheduling prob-
lem with availability constraints. In European Journal of Operational Research,
volume 153, pages 534–543, 2003.

[3] Ehsan Ahmadi, Mostafa Zandieh, Mojtaba Farrokh, and Seyed Mohammad
Emami. A multi objective optimization approach for flexible job shop scheduling
problem under random machine breakdown by evolutionary algorithms. Com-
puters and Operations Research, 73:56–66, 2016.

[4] Nasr Al-Hinai and Tarek Y. Elmekkawy. Robust and stable flexible job shop
scheduling with random machine breakdowns using a hybrid genetic algorithm.
International Journal of Production Economics, 132(2):279–291, 2011.

[5] Scott W. Ambler. The elements of UMLTM 2.0 style, volume 9780521616. Cam-
bridge University Press, 2005.

[6] Kenneth R. Baker and Dan Trietsch. Principles of sequencing and scheduling:
Second edition. John Wiley & Sons, Inc., New Jersey, 2018.

[7] Egon Balas. Machine Sequencing Via Disjunctive Graphs: An Implicit Enumer-
ation Algorithm. Operations Research, 17(6):941–957, 1969.

[8] Christian Bierwirth. A generalized permutation approach to job shop scheduling
with genetic algorithms. OR Spektrum, 17(2-3):87–92, 1995.

[9] Christian Bierwirth, Dirk C. Mattfeld, and Herbert Kopfer. On permutation
representations for scheduling problems. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 1141:310–318, 1996.

[10] George H. Brooks and Charles R. White. An algorithm for finding optimal or near
optimal solutions to the production scheduling problem. Journal of Industrial
Engineering, 16(1):34, 1965.

[11] Edmund K. Burke and Graham Kendall. Search methodologies: Introductory
tutorials in optimization and decision support techniques. Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Techniques, pages
1–620, 2005.

73

74

[12] C. Richard Cassady and Erhan Kutanoglu. Minimizing job tardiness using inte-
grated preventive maintenance planning and production scheduling. IIE Trans-
actions (Institute of Industrial Engineers), 35(6):503–513, 2003.

[13] Vladimir Černý. Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of Optimization Theory and
Applications, 45(1):41–51, 1985.

[14] Wei Wei Cui, Zhiqiang Lu, and Ershun Pan. Integrated production scheduling
and maintenance policy for robustness in a single machine. Computers and
Operations Research, 47:81–91, 2014.

[15] Weiwei Cui, Zhiqiang Lu, Chen Li, and Xiaole Han. A proactive approach to
solve integrated production scheduling and maintenance planning problem in
flow shops. Computers and Industrial Engineering, 115:342–353, 2018.

[16] Lawrance Davis. Job Shop Scheduling with Genetic Algorithms. In Proceedings
of the 1st International Conference on Genetic Algorithms, pages 136–140, New
Jersey,, 1985. L. Erlbaum Associates Inc.

[17] Kathryn A. Dowsland. Simulated annealing. In Modern heuristic techniques for
combinatorial problems, chapter Simulated, page 315. John Wiley & Sons, Inc.,
New York, NY, 1993.

[18] Fatima El Khoukhi, Jaouad Boukachour, and Ahmed El Hilali Alaoui. The
“Dual-Ants Colony”: A novel hybrid approach for the flexible job shop scheduling
problem with preventive maintenance. Computers and Industrial Engineering,
106:236–255, 2017.

[19] David S. Johnson Garey, Michael R. and Ravi Sethi. Complexity of Flowshop
and Jobshop Scheduling. Mathematics of Operations Research, 1(2):117–129,
1976.

[20] Mansour Gholami and Zandieh Mostafa. Integrating simulation and genetic
algorithm to schedule a dynamic flexible job shop. Journal of Intelligent Manu-
facturing, 20(4):481–498, 2009.

[21] Ronald L. Graham, Eugene L. Lawler, Jan Karel Lenstra, and Alexan-
der H.G.Rinnooy Kan. Optimization and approximation in deterministic se-
quencing and scheduling: A survey. Annals of Discrete Mathematics, 5(C):287–
326, 1979.

[22] Hatem Hadda, Najoua Dridi, and Sonia Hajri-Gabouj. An improved heuristic
for two-machine flow shop scheduling with an availability constraint and nonre-
sumable jobs. 4or, 8(1):87–99, 2010.

75

[23] Willy Herroelen and Roel Leus. Project scheduling under uncertainty: Survey
and research potentials. European Journal of Operational Research, 165(2):289–
306, 2005.

[24] Frederick S. Hillier and Gerald J. Lieberman. Introduction to operations research.
Number BOOK. McGraw-Hill Education, 2015.

[25] John H. Holland. Adaptation in Natural and Artificial Systems. The MIT Press,
Ann Arbor, 1992.

[26] Selmer M. Johnson. Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1(1):61–68, 1954.

[27] Jongyoung Jun, Joomyung Kang, Daein Jeong, and Haeseon Lee. An efficient
approach for optimizing full field development plan using Monte-Carlo simula-
tion coupled with Genetic Algorithm and new variable setting method for well
placement applied to gas condensate field in Vietnam. Energy Exploration and
Exploitation, 35(1):75–102, 2017.

[28] Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, 1983.

[29] Mikhail A. Kubzin and Vitaly A. Strusevich. Two-machine flow shop no-wait
scheduling with machine maintenance. 4or, 3(4):303–313, 2005.

[30] Chung Yee Lee, Lei Lei, and Michael Pinedo. Current trends in deterministic
scheduling. Annals of Operations Research, 70(0):1–41, 1997.

[31] Jun Qing Li, Quan Ke Pan, and M. Fatih Tasgetiren. A discrete artificial bee
colony algorithm for the multi-objective flexible job-shop scheduling problem
with maintenance activities. Applied Mathematical Modelling, 38(3):1111–1132,
2014.

[32] Z. A. Lomnicki. A “Branch-and-Bound” Algorithm for the Exact Solution of
the Three-Machine Scheduling Problem. Journal of the Operational Research
Society, 16(1):89–100, 1965.

[33] Zhiqiang Lu, Weiwei Cui, and Xiaole Han. Integrated production and preventive
maintenance scheduling for a single machine with failure uncertainty. Computers
and Industrial Engineering, 80:236–244, 2015.

[34] Ying Ma, Chengbin Chu, and Chunrong Zuo. A survey of scheduling with deter-
ministic machine availability constraints. Computers and Industrial Engineering,
58(2):199–211, 2010.

[35] Alan S. Manne. On the Job-Shop Scheduling Problem. Operations Research,
8(2):219–223, 1960.

76

[36] E. Mokotoff. Multi-objective simulated annealing for permutation flow shop
problems. Studies in Computational Intelligence, 230:101–150, 2009.

[37] Muhammad Nawaz, E. Emory Enscore, and Inyong Ham. A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem. Omega, 11(1):91–95,
1983.

[38] Maroua Nouiri, Abdelghani Bekrar, Abderrazak Jemai, Damien Trentesaux,
Ahmed C. Ammari, and Smail Niar. Two stage particle swarm optimization
to solve the flexible job shop predictive scheduling problem considering possible
machine breakdowns. Computers and Industrial Engineering, 112:595–606, 2017.

[39] Object Managemt Group. About the Unified Modeling Language Specification
Version 2.5.1, 2019.

[40] Michael L. Pinedo. Scheduling: Theory, algorithms, and systems, fifth edition.
Springer, Cham, Gewerbestr, fifth edit edition, 2016.

[41] Rubén Ruiz, J. Carlos Garćıa-Dı́az, and Concepción Maroto. Considering
scheduling and preventive maintenance in the flowshop sequencing problem.
Computers and Operations Research, 34(11):3314–3330, 2007.

[42] Günter Schmidt. Scheduling with limited machine availability. European Journal
of Operational Research, 121(1):1–15, 2000.

[43] Wayne E. Smith. Various optimizers for single-stage production. Naval Research
Logistics Quarterly, 3(1-2):59–66, 3 1956.

[44] Éric Taillard. Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2):278–285, 1993.

[45] Harvey M. Wagner. An integer linear-programming model for machine schedul-
ing. Naval Research Logistics Quarterly, 6(2):131–140, 1959.

[46] Yong Ming Wang, Hong Li Yin, and Kai Da Qin. A novel genetic algorithm for
flexible job shop scheduling problems with machine disruptions. International
Journal of Advanced Manufacturing Technology, 68(5-8):1317–1326, 2013.

[47] www.collinsdictionary.com/. Collins English Dictionary - Complete &
Unabridged, 2014.

[48] William Zimmer. An Introduction to Reliability and Maintainability Engineering,
volume 31. Waveland Press, 1999.

Appendix A

Supplementary Material

Description:

The accompanying zip folder contains all the algorithms implemented following what

is described during this thesis. All instances and data relevant to the execution of

said algorithms are also included.

Filename:

code.zip

77

	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Thesis Objective
	Thesis Organization

	Literature Review
	Background and Problem Definition
	Machine Scheduling Preliminaries
	A classification scheme
	Flow shop scheduling problem (FSP)
	Job shop scheduling problem

	Maintenance Preliminaries
	Preventive Maintenance
	Breakdown

	Metaheuristics Preliminaries
	Simulated Annealing
	Genetic Algorithm

	Objective Function and Robustness

	Methodology
	Oracles
	Monte Carlo Simulation
	Flow Shop Optimization Algorithms
	The optimization algorithms

	Job Shop Optimization Algorithms
	Genetic Algorithm Applied to the Job Shop Scheduling Problem
	The optimization algorithms

	Results and Discussion
	FSP Experiments
	Initial Parameter Setting
	Optimality Gap Analysis
	Final Experiments

	JSP Experiments
	Initial Parameter Setting
	Final Experiments

	Conclusion and Future Research
	Future Research

	Bibliography
	Supplementary Material

