
DATA STRUCTURES FOR GEOMETRIC RETRIEVAL IN TREE-LIKE
TOPOLOGIES

by

Serikzhan Kazi

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

at

Dalhousie University
Halifax, Nova Scotia
December 2020

© Copyright by Serikzhan Kazi, 2020

Table of Contents

List of Tables . v

List of Figures . vi

Abstract . viii

Acknowledgements . ix

Chapter 1 Introduction . 1

1.1 Organization of the Thesis . 3
1.2 Our Techniques . 5

Chapter 2 Preliminaries . 8

2.1 Notation . 8
2.1.1 Notation and Conventions . 8
2.1.2 Graph-Theoretic Notation . 9
2.1.3 Word-RAMModel and Information-Theoretic Lower Bound 9

2.2 Bitvectors and Sequences . 10
2.2.1 Bitvectors . 10
2.2.2 Sequences . 11

2.3 Trees . 12
2.3.1 Tree Extraction . 12
2.3.2 Succinct Representations of Ordinal Trees 13

Chapter 3 Path and Ancestor Queries over Trees with d-Dimensional Weight Vec-
tors . 16

3.1 Introduction . 16
3.1.1 Previous Work . 17
3.1.2 Our Results . 19

3.2 Preliminaries . 20

ii

3.2.1 Notation . 20
3.2.2 Representation of a Range Tree on NodeWeights by Hierarchical Tree

Extraction . 20
3.2.3 Path Minimum in 1D-Weighted Trees 22

3.3 Reducing to Lower Dimensions . 22
3.3.1 Space Reduction Lemma Using Range Trees with Branching Factor 2 23
3.3.2 Space Reduction Lemma Using Range Tree with a Non-Constant

Branching Factor . 25
3.4 Ancestor Dominance Reporting . 26

3.4.1 Path Dominance in (1, d, ϵ) . 27
3.4.2 2D Ancestor Dominance Reporting 29
3.4.3 Ancestor Dominance Reporting in (2, d, ϵ) and Generalization to

Higher Dimensions . 36
3.5 Path Successor . 37
3.6 Path Counting . 42
3.7 Path Reporting . 45
3.8 Conclusion . 46

Chapter 4 Data Structures for Categorical Path Counting Queries 48

4.1 Introduction . 48
4.1.1 Previous Work . 50
4.1.2 Our Results . 51

4.2 Categorical Path Counting . 52
4.2.1 Hardness of Categorical Path Counting 52
4.2.2 Uniform Partitioning of the Tree . 54
4.2.3 Categorical Path Counting . 56
4.2.4 2-Approximate Categorical Path Counting 57

4.3 Categorical Path Range Counting . 58
4.3.1 Path Range Emptiness Queries . 59
4.3.2 Categorical Path Range Counting in d Dimensions 59

4.4 Sketching Data Structures for Approximate Categorical Path Counting . . . 64
4.4.1 Sketches . 64
4.4.2 (1± ϵ)-Approximate Categorical Path Range Counting 65

4.5 Conclusion . 67

Chapter 5 Path Query Data Structures in Practice 69

5.1 Introduction . 69
5.1.1 Previous Work . 70
5.1.2 Our Results . 71

5.2 Preliminaries . 72
5.2.1 Balanced Parentheses Representations of Ordinal Trees 72
5.2.2 Heavy-Path Decomposition . 74

iii

5.3 Data Structures for Path Queries . 75
5.3.1 Data Structures Based on Heavy-Path Decomposition 75
5.3.2 Data Structures Based on Tree Extraction 77

5.4 Experimental Results . 83
5.4.1 Implementation . 83
5.4.2 Experimental Setup . 84
5.4.3 Space Performance and Construction Costs 86
5.4.4 Path Median Queries . 88
5.4.5 Path Counting Queries . 90
5.4.6 Path Reporting Queries . 90

5.5 Conclusion . 93

Chapter 6 Conclusion . 94

6.1 Results and Discussion . 94
6.2 Future Directions . 96

Bibliography . 99

iv

List of Tables

2.1 Primitive operations in trees. 14

3.1 Summary table for the some of the data structures in Lemma 3.8. . . . 33

5.1 Datasets description. 84

5.2 The implemented data structures. 85

5.3 Storage space and construction characteristics. 87

5.4 Average time of a path median or a path counting query, in µs. 88

5.5 Average time of a path reporting query, in µs. 91

v

List of Figures

1.1 An example of a weighted tree. The weights are shown inside the circles. 3

2.1 A wavelet tree for S = ecgbcahd and alphabet [a, h]. 11

2.2 An edit operation during tree extraction: removing the node y and
connecting all its children, in order, to y’s parent, node p. 12

2.3 Tree extraction. 13

2.4 Tree covering of Farzan and Munro [39], with parameter L = 5. . . . 15

3.1 A fragment of hierarchical tree extraction. 21

3.2 An illustration to the proof of Lemma 3.4. 24

3.3 The 2-maximal set in a tree T weighted over σ = 10. 29

3.4 Hierarchical tree extraction with branching factor 2. 31

3.5 An illustration to the proof of Lemma 3.8. 35

3.6 An illustration to the proof of Lemma 3.10. 39

4.1 Boolean matrix multiplication and categorical path counting. 53

4.2 An illustration to the proof of Lemma 4.2. 55

4.3 Disjoint decomposition of the rim in 2D. 62

5.1 An ordinal tree with its BP sequence. 73

5.2 Heavy paths in a tree. 74

5.3 Original tree T and transformed tree T ′ encoding HPD. 76

vi

5.4 An illustration to the procedure of finding the t-parent of v. 79

5.5 Average time to answer a query vs number of segments in HPD. . . . 89

5.6 Visualization of some of the entries in Table 5.4. 92

vii

Abstract

This thesis studies the generalizations of orthogonal range searching to the case in which one of
the dimensions is replaced with a tree topology. We design data structures for efficient support
of path queries, which generalize the corresponding range queries. We work in the word-RAM
model with word size w = Ω(lgn).

Let T be an ordinal tree on n nodes, each of which is assigned a d-dimensional weight
vector from [n]d = {1, 2, . . . , n}d, where d is a constant integer. We solve: (i) ancestor
dominance reporting, in O(lgd−1 n + k) time and O(n lgd−2 n) space (where k is the size of
the output, and d ≥ 2). Also achieved is a trade-off of O(lgd−1 n/(lg lgn)d−2 + k) time
and O(n lgd−2+ϵ n) space (d ≥ 3), for an arbitrary constant ϵ > 0; (ii) path successor, in
O(lgd−1+ϵ n) time andO(n lgd−1 n) space (d ≥ 1); (iii) path counting, inO((lgn/ lg lgn)d) time
and O(n(lgn/ lg lgn)d−1) space (d ≥ 1); (iv) path reporting, in O(lgd−1 n/(lg lgn)d−2 + k)
time and O(n lgd−1+ϵ n) space (d ≥ 2). All these bounds match or nearly match the best
bounds in corresponding range queries.

Next, we study trees in which each node is also assigned a category. For unweighted trees,
we solve categorical path counting, in O(t lg lgw σ) time and O(n + (n/t)2) space, for fixed
1 ≤ t ≤ n, implying linear space for O(

√
n lg lgw σ) time. By a reduction from Boolean

matrix multiplication, we show that the time is optimal within polylogarithmic factors, with
current knowledge and only combinatorial methods. For weighted trees, we solve categorical
path range counting in O(t lg lgn) time and O(n lg lgn+ (n/t)4) space, or O(t lgϵ n) time and
O(n+(n/t)4) space, which implies linear space forO(n3/4 lgϵ n) time. The solution is extended
to the trees weighted with vectors from [n]d, d ≥ 2, with time- and space-bounds which are
within polylogarithmic factors of the best bounds for point-sets. We also solve approximate
variations of these categorical queries.

Finally, we experimentally study the data structures for path median, path counting and
path reporting queries. We propose practical realizations of the best theoretical results, and
provide both succinct and pointer-based implementations. Our experiments show the viability
of the former in practical scenarios.

viii

Acknowledgements

I would like to thank my supervisor, Dr. Meng He, for honest feedback, for being generous with

his time and expertise, and for having highest expectations of me. It is to his guidance that I

owe my so-far proudest professional accomplishments. But first of all, I thank him for having

the faith to embark on this four-year-long journey.

I thank my Thesis Committee members, Dr. Norbert Zeh and Dr. Travis Gagie, for the

thoughtful comments on the thesis proposal, and for making me take heart again (and succeed)

in a project that I deemed dead-end.

I thank my Aptitude Defense committee members, Dr. Nauzer Kalyaniwalla and Dr. Qigang

Gao for the sincere interest they took in my research, and for the enlightening discussions we

had in the course of these years.

Dr. Vlado Keselj engaged my former-teacher self by entrusting me with leading TA roles

in his courses and involving me with the Dal competitive programming team. For all the

conversations about computer programming, algorithmic puzzles, and for the unwavering

confidence in my pedagogical abilities – thank you.

I thank the administrative staff of the Faculty of Computer Science for taking immaculate

care of the practical side of things. Big thanks are due to CS Help Desk staff, who went beyond

the call of duty in resolving technical issues and accommodating my requests (which I tried to

keep moderate).

Thanks also goes to my colleagues and Halifax-based friends – you know who you are!

Finally, I thankmy family, for the time they generously grantedme to realize my professional

goals – many an early morning and holiday season that I spent working were rightfully yours.

ix

Chapter 1

Introduction

In orthogonal range searching, one preprocesses a given finite set S ⊂ Rd into a data structure

so that the points inside an axis-aligned query (hyper-)rectangle can be efficiently searched.

Theoretical computer science owes remarkable new methodologies and elegant data structures

to the field (see [74, 21, 3] and references therein). Orthogonal range searching is among those

theoretical disciplines whose results enjoy deployment at industrial scale. Any textbook on

relational database management systems (RDBMS) is sure to include a question similar to “Give

me the number of the employees with age between x and y, earning between $A and $B per year”. The

latter is an instance of a 2D range counting query in the field’s parlance; the domain of each of

the two characteristics (age and income) is a linear order, and therefore the query is fully defined

by the lower and upper bounds on the relevant values.

At the same time, natural extensions of these types of queries to the case in which one of

the dimensions is a tree topology, are also conceivable [24, 6, 77]. There being a unique path

between any two given nodes in the tree, if a pair of nodes is specified instead of the lower and

upper limits of a linear order, the query is still well-defined. On the other hand, when tree

degenerates into a single path, the corresponding problems become identical.

Whereas grids may be our primary heuristic for imposing structure, a tree-shaped hierarchy

is also a versatile data organization tool. Trees are ubiquitous across disciplines. For example,

there are phylogenies in bioinformatics, abstract syntactic trees in translation and compilers,

inheritance hierarchies in object-oriented programming (OOP), and mark-up formats such

1

2

as XML. Linguists study semantic similarities between terms by querying an is-a relationship

tree [99] such as WordNet. In parallel computing, it is known that for any number A, message

passing in any area A network can be simulated with a certain tree on-line with slowdown of

only O(lgA)1 with high probability [80]. Finally, there are minimum spanning trees, which

non-redundantly capture connectivity information in graphs.

It is common that trees, apart from conveying a hierarchical or connectivity information,

also carry meaningful labels (weights) on their nodes. For example, in data mining, the nodes

in decision trees are naturally associated with the information gain, gain ratio, or Gini index

value that arises in the splitting process [63]. In the previous example of inheritance hierarchies

in OOP, a label can mark whether the corresponding derived class overrides a given abstract

method. Phylogenetic trees may contain molecular clock-related information at split junctures.

Mark-up formats are typically composed of various tags.

To capture even more aspects of the underlying phenomenon, the nodes of the tree can

further be weighted not with a single weight or label, but rather with a d-dimensional (d ∈ N)
vector of weights. Endowing the tree nodes with categories (or colours) further adds to the

expressive power of the models. All these scenarios generalize (multidimensional) orthogonal

point-sets and point-sets with categories, inRd+1. Preprocessing of such input trees for efficient

geometric retrieval is the topic of this thesis.

The problem of preprocessing a weighted tree to support various path queries has been

studied extensively [6, 24, 62, 77, 32, 70, 19]. Given a query path Px,y and a query rectangleQ,

a path query evaluates a certain function on those nodes of Px,y whose weights belong to Q.

For example, in path counting (resp. path reporting), the nodes of the given path with weights

lying in the given query interval are counted (resp. reported).

In Figure 1.1, two nodes, x and y, are marked and used in the running example that follows.

A path counting query with arguments Px,y and Q = [7, 9] would return a number 1, as the

only node on Px,y with the weight inside [7, 9] is the first child of the root. A path reporting

query with arguments Px,y and Q = [1, 4] would return the root and its second child as only

the weights of these nodes (resp. 2 and 3) fall within Q.

Research on path queries has spawned widely-used metrics such as the median [70], minim-

um/maximum [32, 19], mode/minority [36], and (α-)majority/minority [45].

This thesis, too, studies data structures for path queries. It differs from previous work on a

1We set lgx = log2 x, unless the base is explicitly specified.

https://wordnet.princeton.edu/

3

2

8

5

4 1

10

3

6

9

7x y

Figure 1.1: An example of a weighted tree. The weights are shown inside the circles.

few significant counts. First, the trees themselves are “multidimensional” in the sense that a

node in a tree is associated with not just a single weight, but rather with an entire vector (tuple)

of weights. Second, we are the first to study path query data structures on trees that are not

only “multidimensional” in the preceding sense, but can also be “coloured” in the sense that

each node is assigned a category. Third, we are the first to study some of the path queries even

for regular weighted trees (i.e. when d = 1), such as the path successor and the categorical path

range counting queries. Finally, we are also the first to experimentally evaluate the currently

best theoretical proposals in data structures for path queries in weighted trees.

1.1 Organization of the Thesis

This thesis is organized as follows.

Chapter 2 offers some background on the discipline. We first agree on notation and

conventions used throughout the work. We proceed by reviewing the fundamental building

blocks for our solutions. The topics reviewed range fromwell-known techniques such as efficient

storage and navigation in sequences and trees, to relatively recent ones such as succinct tree

representations and tree extractions.

Chapter 3 studies path queries over trees with multidimensional weight vectors on nodes,

and presents a set of results. We solve the path counting problem, where the number of nodes

lying on a given query path, with weight vectors belonging to a given query range, is to be

returned; we also solve the path reporting problem, where such nodes are to be explicitly

enumerated. We also describe a solution to the path successor problem; it asks for a node

4

(on the query path) with the weight vector lying in the query range, and such that the first

component of the weight vector is the smallest. Finally, we propose a solution to the ancestor

dominance reporting problem, where ancestors of a query node, with weight vectors dominating

that of the query node, are to be reported. This chapter is based on part of the joint work with

Meng He [64].

Chapter 4 then studies the generalization of categorical counting to tree topologies. We

solve the categorical path counting problem; it asks to count the number of distinct categories

occurring on a query path. We demonstrate the hardness of the categorical path counting

problem in unweighted trees by a reduction from the Boolean matrix multiplication problem.

Wemitigate the limitations posed by the thus established lower bound by solving an approximate

variant of the problem. Although Durocher et al. [36] introduced and solved for trees the

reporting version of the problem, we believe that neither the counting type thereof, nor the

approximate scenario has been studied before.

We further study the categorical path range counting problem, which now presents us not

only with a query path, but also a weight range in the form of an axis-aligned (hyper-)rectangle.

The query asks for the number of distinct categories on a query path, if only the nodes with

weights in the query rectangle are considered. In this weighted setting, we also describe an

approach based on sketches, whose properties make them desirable for use as (approximate)

summaries for categorical queries, at the cost of a certain failure probability. This chapter, too,

is based on part of the joint work with Meng He [66].

Furthermore, Chapter 5 considers the details of the practical implementation of several data

structures supporting path counting, path reporting, and path selection queries, and evaluates

the performance thereof on some interesting datasets. Here, the path selection problem asks for

the node with the kth (specified at query time) largest weight, on the given path. Described are

our experimental framework, the tools used, and key design choices made. We measure both

the space occupancy and the query times of the data structures we implement. This chapter is

also based on part of the joint work with Meng He [65].

Chapter 6 concludes the thesis by stating the obtained results, highlighting the techniques

we have developed. In a few concrete examples, we weigh in on the difficulties of porting the

existing approaches from point-sets to trees. We also discuss some open problems and possible

future research directions.

5

1.2 Our Techniques

Central to our techniques is the notion of tree extraction [70]. It allows for “subsetting” the tree

while retaining the partial order of the nodes. (Indeed, tree is a partial order in the sense that

two nodes x and y are in relation iff x is an ancestor of y.) The correspondence between the

nodes in the “host” tree and those in its extraction is the key to our approaches.

Going further still, we use hierarchical tree extraction of He et al. [70] to build, essentially,

the wavelet tree of a weighted tree. It is the key to our solutions in Chapter 3, and we also use

it in the actual succinct implementations in Chapter 5. Apart from many advantages (e.g. the

mapping infrastructure discussed in Section 3.2.2), one major plus of hierarchical tree extraction

is simplified space analysis. Indeed, the sum of the sizes of disparate data structures at each

level of extraction may not be as clear-cut as we would like, because of the lower-order terms

that are added together non-constant number of times.

In most use-cases of tree extraction, one stores the mapping structures explicitly. In solving

the path successor problem (Section 3.5) for a tree T weighted over {1, 2, . . . , n}, however, we
needed to search for the path maximum/path minimum on the query path, with an additional

requirement that only the nodes whose weights are in a certain given range are considered.

(Indeed, the path maximum/path minimum problem proper, i.e. without the latter non-trivial

requirement, has already been solved [32, 19].) We solve this problem for the special case

when the rangesQ considered are the ranges associated with the nodes of the range tree over

{1, 2, . . . , n}.The crux is that for such a range r (associated with a node) of the range tree, we

do not require an explicit mapping structure between the extraction of the r-weighted nodes

of T, and T itself. Solving this sub-problem was sufficient to find the path successor via binary

search.

For path counting in d dimensions, we use an another technique – tree covering (Section 2.3.2).

We recursively decompose the tree into mini- and micro-trees (collectively referred to as cover

elements). The answers for micro-trees are tabulated, and the roots of the cover elements store

the answers up-to the roots of the respective encompassing cover elements (the “global” input

tree for mini-trees, and a mini-tree for micro-trees). Here, a careful choice of the parameters of

tree covering and succinct storage of the pre-computed answers was the key to space-efficiency.

Furthermore, for the categorical version of path counting, we apply an interesting tree

mark-up technique (Lemma 4.1; see [36] and references therein). This technique helps to

6

balance pre-computation versus explicit on-the-fly computation, via a trade-off parameter t..

Namely, the marked nodes are akin to block borders in the sense that any path Px,y that is

longer than t can be decomposed into sub-paths Px,x′ , Px′,y′ , and Py,y′ , where x
′ and y′ are

marked, max{|Px,x′ |, |Py,y′ |} ≤ t.The answer to the query between any two marked nodes is

pre-computed and stored in a table, and the flanking ends of the path are explicitly traversed,

refining the overall answer. Not to be deceived by its simplicity, the technique is applicable

only if the query answer for Px′,y′ stays the same regardless of the “context” – the nodes x and

y.

Our approach to categorical path (range) counting is similar to that used in the best

categorical results for Rd, for d ≥ 2 [76]. Again, after pair-to-pair pre-computations, we walk

the flanking ends of the query path and find out whether a certain category has already been

accounted for by a range emptiness query in a monochromatic region. Here, we use either the

best results in path range emptiness or labeled ancestor queries.

Recall that for categorical counting, in contrast to the “plain” variant, simple-mindedly

adding the counts of the parts does not yield the count of the whole. (Indeed, therein lies the

intuitive “hardness” of categorical counting, which we formalize in Theorem 4.1 for paths.) In

approximate categorical path counting, we use a probabilistic technique called sketches, which

allows one to do exactly that (Lemma 4.8). At the logarithmic cost per operation, logarithmic

storage, a certain failure probability δ, and a certain tolerance of ϵ to deviations around the

true answer, one can maintain a summary. A summary is a probabilistic variant of a “count” in

the sense that the summaries for two sets can be added to obtain the summary for their set

union, and can be subtracted to obtain summaries for their set difference. Importantly, the

parameter ϵ remains intact in such additions and subtractions.

Further, in approximate categorical counting, we use the fact that summaries can be updated

in logarithmic time to obtain a space/time trade-off. Namely, we store summaries for only a

fraction of the nodes of the tree, and recover other summaries relevant to the query at query

time proper.

We extend most of our data structures to higher dimensions (i.e. to trees weighted with

multidimensional weight vectors) using the framework we develop in Section 3.3.1 of Chapter 3.

Once the base data structure is described, our job reduces to an appropriate choice of the

semigroup with the corresponding sum operator.

For our experimental studies, we design a practical variant of the time- and space-optimal

7

data structure of He et al. [70]. Instead of tree covering and hierarchical tree extraction with

non-constant branching factors, which are likely to have large constant factors in practice, we

use the balanced parentheses (BP) representation of trees, which has been extensively studied [7]

and is readily available in well-known libraries such as sdsl-lite. This results in a three-fold

increase in space and a sub-logarithmic increase in query time (with respect to the optimal

solution of [70]), but offers attractive trade-offs nevertheless, compared to the other data

structures studied.

Chapter 2

Preliminaries

This chapter lays the groundwork for subsequent chapters. Section 2.1 introduces notation

and basic terminology; its contents are rather conventional and intuitive, and therefore can be

consulted as needed. Sections 2.2 and 2.3 then offer background material of a more specialized

nature. Therein, we review previous results at the core of our toolset: storage and navigation in

sequences (Section 2.2) and trees (Section 2.3).

2.1 Notation

This section gives the notation we operate with, conventions we adopt, as well as the background

knowledge on the general concepts we rely on.

2.1.1 Notation and Conventions

Whenever possible, we try to follow standard notation. We assume base-2 logarithm, denoted

by lg, whenever no explicit base is given, and denoted as [n] the set {1, 2, . . . , n}, for any
n ∈ N. Also, [a, b] denotes the range of integers {a, a + 1, . . . , b}. The terms succinct and

compact are used interchangeably. A sequence or string of length n drawn from the alphabet [σ]

is a tuple from Cartesian product [σ]n, with its ith coordinate denoted by S[i]. Landau symbols

O/O/Ω/ω/Θ are defined as elsewhere in the literature [27], except for ˜︁O, which is used when

leaving out polylogarithmic factors. The primitive data structures we use as building blocks are

8

9

regarded as black-box interfaces with certain time/space guarantees; for the detailed exposition

of their inner workings, an interested reader is encouraged to refer to more comprehensive

sources on compact data structures, such e.g. as a recent book by Navarro [91].

Given a d-dimensional weight vector w = (w1, w2, . . . , wd), we define the vector wi,j

to be (wi, wi+1, . . . , wj). We extend the definition to a range Q =
∏︁d

i=1[qi, q
′
i] by setting

Qi,j =
∏︁j

k=i[qk, q
′
k]. Furthermore, a 3D orthogonal range is denoted as 3-sided iff it is bounded

one one side only, at each dimension. In general, a range is (3 + t)-sided if it is bounded on

both sides for t dimensions, and unbounded on one side for the remaining 3− t dimensions;

the definitions are analogous for any other dimensionality.

For brevity, we shall also use Iverson notation [55]: For a Boolean predicate P , the symbol

JP K ∈ {0, 1} equals 1 iff P = true. A sequence of objects I1, I2, . . . , Ik is denoted as {Ij}kj=1.

2.1.2 Graph-Theoretic Notation

We denote by |T | the size (i.e. the number of nodes) of the tree T, whose set of nodes is denoted

as V (T). For brevity, we write x ∈ T to denote x ∈ V (T), if no confusion ensues. The path

between the nodes x, y ∈ T is denoted as Px,y, both ends inclusive. We write Px,y ⊆ T to

indicate that a path belongs to a tree. During a preorder traversal of a given tree T , the ith node

visited is said to have preorder rank i. Preorder ranks are commonly used to identify tree nodes

in various succinct data structures which we use as building blocks. Thus, we also identify a

node by its preorder rank, i.e. node i in T is the node with preorder rank i in T . For a node

x ∈ T, its set of ancestors, denoted asA(x), includes x itself;A(x) \ {x} is then the set of the

proper ancestors of x. Given two nodes x, y ∈ T, where y ∈ A(x), we set Ax,y ≜ Px,y \ {y}.
Thus Px,y = Ax,z ⊔{z}⊔Ay,z, for any x, y ∈ T and z being the lowest common ancestor [13]

of x and y. Further, we denote by⊥ the root of the relevant tree; therefore, Px,⊥ stands for the

path from the root to the given node x. Finally, when the nodes of the tree T are associated

with scalar weights, we say that T is 1D-weighted, or simply weighted; both terms are used

interchangeably throughout the work.

2.1.3 Word-RAMModel and Information-Theoretic Lower Bound

Word-RAM model of computation emulates the operations available on modern CPUs. A

memory unit is a word of w = Ω(lgn) bits; basic arithmetic operations plus bitwise logical

operations (e.g. negation, AND, OR, left/right shifts) are assumed to be executed in O(1) time on

10

machine word-size operands. In addition, any location addressed by a machine word is fetched

in constant time. In practical terms, this model’s convenience lies in its ability to tabulate

pre-computed answers to certain queries, 1 when the relevant entity fits in a machine word.

For example, in [12] the answers to all possible ±1 range minima queries (i.e. when the input

array’s successive entries differ by ±1) inside blocks of size lgn

2
are stored in a table of size

O(2lgn/2 lg2 n lg lgn) = O(
√
n lg2 n lg lgn) = O(n) words, to be answered in O(1) time.

Information theory provides a framework for analyzing space occupancy of data structures.

The information-theoretic lower bound is the number of bits needed to represent an object,

with no a priori knowledge. For example, a sequence S ∈ [σ]n can be represented in n lgσ bits

by simply encoding each symbol from [σ] in binary. As trivially follows from the Pigeonhole

Principle, no shorter uniform-length codes would guarantee unique interpretation of an ar-

bitrary sequence. On the other hand, this barrier is crossed through the notion of entropy, to

achieve shorter expected lengths via variable-length codes [29]. Entropy of a sequence S ∈ [σ]n

is defined as

H0(S) = −
∑︂
c∈[σ]

nc/n · lg (nc/n),

and can be shown to be at most lgσ :

H0(S) =
∑︂
c∈[σ]

nc/n · lg (n/nc) ≤ lg
(︂∑︂
c∈[σ]

(nc/n · n/nc)
)︂
= lgσ,

by Jensen’s inequality. In practical terms, compression of S to nH0(S) (plus negligible terms)

generally improves space requirements as compared to straightforward binary encoding.

2.2 Bitvectors and Sequences

This section reviews compact storage and support of core primitives for bitvectors and sequences.

2.2.1 Bitvectors

In the context of this thesis, bitvectorB is a data structure occupying n+ O(n) bits of space to

encode a (static) subset of [n], and supporting the following primitives in O(1) time:

• access(B, i) return B[i];

1i.e. the so-called “Four Russians Speedup” [60]

11

1 2 3 4 5 6 7 8

e c g b c a h d [a . . .de . . .h]

1 0 1 0 0 0 1 0

c[a . . .d] b c a d e[e . . .h] g h

b a c c d e g h

a b c c d e g h

Figure 2.1: A wavelet tree for S = ecgbcahd and alphabet [a, h]; left subtree is for range [a, d].The
symbols c, b, c, a, and d follow the left path (shown with dashed arrows), while e, g, and h follows the
right path (dotted arrows). The 0/1-bitvector stored in each node marks which symbol follows which
path. The symbols retain their original order.

• rankt(B, i) return the number of t ∈ {0, 1} in B[1, i − 1], i.e. rankt(B, i) =∑︁i−1
j=1JB[j] = tK;

• selectt(B, i) return the position of the ith (1 ≤ i ≤ n) occurrence of t ∈ {0, 1}.

The central result concerning bitvectors is the following

Lemma 2.1 ([101]). Let B[1..n] be a bitvector withm 1-bits. Then B can be represented in lg
(︁
n
m

)︁
+

O(n lg lgn/ lgn) bits to support rank, select and access in O(1) time.

To simplify notation, we assume a bitvector is a data structure occupying n+ O(n) bits of

space, although generally lg
(︁
n
m

)︁
≤ n.

2.2.2 Sequences

An arbitrary sequence S ∈ [σ]n can be stored in space nH0(S)+ O(n lgσ) bits, supporting the

above primitives, now for arbitrary c ∈ [σ], in O(lgσ) time, in a structure known as wavelet

tree [90]. Intuitively, given an invariant that a sequence S consists of numbers in the range

[a, b], wavelet tree proceeds by splitting S into two complementary sub-sequences according to

whether the value falls into [a,m] or [m+ 1, b], wherem = ⌊a+b
2
⌋, and recursively building

wavelet trees for the sub-sequences. Figure 2.1 shows an example of a wavelet tree storing

12

p

y.

y1 yk. . .

×

Figure 2.2: An edit operation during tree extraction: removing the node y and connecting all its
children, in order, to y’s parent, node p.

the sequence S = ecgbcahd. At the topmost level, the alphabet [a, h] is partitioned into

[a, d]
⋃︁
[e, h], and a bitvector encodes which sub-tree inherits the corresponding element of

the sequence (0 for left, 1 for right). The actual sequences are given for illustrative purposes

only; stored is only a bitvector. Each level is thus nothing but a collection of bitvectors; a

rank/access is resolved by a top to bottom, and select – by a bottom-up pass on the tree.

2.3 Trees

This section gives the background onmore specialized concepts and data-structural components

in our solutions: compact storage of trees, fast navigation therein, and various decompositions.

2.3.1 Tree Extraction

Tree extraction [70] selects a subset of nodes while preserving the relative preorder ranks, as

well as the hierarchical relations among the nodes. Precisely, given a subsetX ⊆ V of nodes

(X is called the extracted nodes), the extracted tree TX is constructed from T as follows. Fix an

arbitrary node y /∈ X , and let p ∈ T be the parent of y (see Figure 2.2 for intuition on the

next few sentences). Let y be the ith child of p, in preorder. Let us erase, from T, the node

y together with its incident edges. This frees the ith slot in the list of children of p, as well

as the children y1, y2, . . . , yk of the node y. Then y1 becomes the ith child of p, y2 becomes

its (i + 1)st one, and so on, until yk becomes p’s (i + k − 1)st child. The node that was the

(i+1)st child of p prior to deletion becomes the (i+ k)th child of p, i.e. all the initial children

occurring after the ith are shifted to k positions to the right. After erasing all the nodes y /∈ X

in the described way, the resulting forest FX is either a tree (in which case we do nothing), or a

forest, in which case we create a dummy root r (with preorder rank and depth set to 0) that

13

becomes the parent of all the roots of the trees in FX , again preserving the relative preorder

ranks of the roots. See Figure 2.3 for an example of tree extraction.

An original node x ∈ X of T and its copy, x′, in TX are said to correspond to each other; x′

is also said to be the TX-view of x, and x is the T -source of x′.The TX-view of a node y ∈ T (y

is not required to be inX) is more generally defined to be the node y′ ∈ TX corresponding to

the lowest ancestor of y that has been extracted, i.e. to the lowest node inA(y)∩X. Figure 2.3

also gives examples on the sources, views, and the correspondence of nodes.

A)

B

C

D E

F

G

H

I

J

(a)

A’)-

C’

D’

F’

I’

J’

(b)

R)-̄

B”

E”

G”

H”

(c)

1(),)-)

0

1

1 0

1

0

0

1

1

(d)

Figure 2.3: Tree extraction. Original tree (a), extracted tree TX (b), extraction of the complement of
X, tree TX̄ (c) and the indicator tree (T, TX) (d). The blue shaded nodes in T form the setX. In the
tree TX , node C′ corresponds to node C in the original tree T , and node C′ in the extracted tree TX is
the TX -view of nodes C and E in the original tree T. Finally, node C in T is the T -source of the node C′

in TX . Extraction of the complement, TX̄ , demonstrates the case of adding a dummy root R.

A common scenario of using tree extraction in our solutions is captured in the following

Definition 2.1. For a given tree T and an extraction TX therefrom, let T ′ be a tree with the topology

of T and in which a node is labeled with 1 if it has been extracted into TX , or with 0 otherwise. Then

T ′ is referred to as the indicator tree of (T, TX).

Figure 2.3 also gives an example of an indicator tree.

2.3.2 Succinct Representations of Ordinal Trees

Succinct representations of unlabeled and labeled ordinal trees is a widely researched area. The

following lemma presents a previous result on unlabeled trees that will be used in our solutions.

Lemma 2.2 ([67]). An ordinal tree T on n nodes can be represented in 2n + O(n) bits of space to

support the operations in Table 2.1(a) in O(1) time.

In a labeled tree, each node is associated with a label over an alphabet. Such a label can

serve as a scalar weight; in our solutions, however, they typically categorize tree nodes into

14

Operation Description

(a)

depth(x) the number of nodes on Px,⊥
level_anc(x, i) the ith nearest ancestor of x (level_anc(x, 1) = x)
pre_rank(x) the number of nodes preceding x in preorder
pre_select(j) the jth node in preorder
LCA(x, y) the lowest common ancestor of x and y

(b)

depthα(x) the number of α-nodes on Px,⊥
level_ancα(x, i) the ith nearest α-ancestor of x (level_ancα(x, 1) = x if x is an α-node)
pre_rankα(x) the number of α-nodes preceding x in preorder
pre_selectα(j) the jth α-node in preorder

Table 2.1: Primitive operations in trees.

different classes. Hence we call these assigned values labels instead of weights. We summarize

the previous result used in our solutions, in which a node (resp. ancestor) with label α is called

an α-node (resp. α-ancestor):

Lemma 2.3 ([106]). Let T be an ordinal tree on n nodes, each of which is assigned a label over

[σ], σ ≤ n.Then, under the word-RAM with word size w = Ω(lgn), T can be represented using

n(lgσ + 2) + O(n lgσ) bits of space to support the operations in Table 2.1(b) in O(lg lgσ

lgw
) time.

Of particular interest is the following corollary to Lemma 2.3:

Lemma 2.4. Let T be an ordinal tree on n nodes, each of which is assigned a label over [σ]. If

σ = O(lgc n) for a positive constant c, then, under the word-RAM model, T can be represented using

n(lgσ + 2) + O(n) bits of space to support the operations in Table 2.1(b) in O(1) time.

An important special case of Lemma 2.4 is when σ = 2; here, T is referred to as a 0/1-labeled,

with the storage space correspondingly being 3n+ O(n) bits. From Lemma 2.4 it also follows

that an indicator tree (Definition 2.1) of (T, TX) occupies 3n+ O(n) bits of space, for any tree

extraction TX from T.

When translating node identifiers between T and TX , the following fact is immediate:

Proposition 2.1. Let T ′ be the indicator tree of (T, TX).Then, (i) the corresponding node x ∈ T of

a node x∗ ∈ TX can be recovered as

x = pre_select1(T
′, x∗);

15

a
b

c
d

e
f

i
j

k

h

l
g

m
n

o

p

q

r

s
t

u w
v

Figure 2.4: Tree covering of Farzan and Munro [39], with parameter L = 5.Mini-trees are represented
by splinegons. The mini-trees can share roots only, and there is at most one arc leading from a non-root
node of a mini-tree to the root of another mini-tree.

and (ii) the TX -view x∗ of a node x ∈ T can be computed as

x∗ = 1 + pre_rank1(T
′, level_anc1(T ′, x, 1)).

Tree covering. Tree covering first appeared in [51, 67, 39] as a method of succinct

representation of ordinal trees. The tree T is split into mini-trees, given a certain parameter L:

Lemma 2.5 ([39]). A tree with n nodes can be decomposed into Θ(n/L) subtrees of size at most 2L.

These are pairwise disjoint aside from the subtree roots. Furthermore, aside from the edges incident to

the subtree roots, there is at most one edge per subtree leaving a node of a subtree to its child in another

subtree.

Figure 2.4 gives an example of tree covering with parameter L = 5. Each of the mini-trees

in turn can be recursively decomposed into micro-trees, with another parameter L′ < L.The

idea is to choose the parameter L′ such that intra-micro-tree queries are executed in constant-

time by virtue of a pre-computed table T of size O(n), indexed by micro-trees. For any given

node x ∈ T, the solutions of [51, 67, 39] provide constant-time access to the mini-tree τ and

micro-tree τ ′ containing the node x, as well as the address of the micro-tree τ ′ in the table T,

using O(n) bits of space, with suitably chosen parameters L and L′.

Chapter 3

Path and Ancestor Queries over Trees

with d-Dimensional Weight Vectors

3.1 Introduction

The problem of preprocessing a weighted tree, i.e. a tree in which each node is associated with a

weight value, to support various queries evaluating a certain function on the node weights of a

given path, has been studied extensively [6, 24, 62, 77, 32, 70, 19]. For example, in path counting

(resp. path reporting), the nodes of the given path with weights lying in the given query interval

are counted (resp. reported). Path minimum queries, where a node with the smallest weight

on the given query path is to be returned, arises in the context of multi-terminal network

flows [54]. Precisely, the well-known Gomory-Hu theorem states that with a given graph G

with edge capacities, a certain tree T on the same set of nodes can be associated, so that the

minimum weight on the path from x to y in T equals the value of the maximum flow from x to

y in the original graph G. Path queries, therefore, address the general need of fast information

retrieval from tree-structured data.

For many applications, meanwhile, a node in a tree is associated not with just a single

weight, but rather with a vector of weights. Consider a simple scenario of an online forum

thread, where users rate responses and respond to posts. Induced is a tree-shaped structure with

posts representing nodes, and replies to a post being its children. One can imagine enumerating

16

17

all the ancestor posts of a given post that are not too short and have sufficiently high average

ratings. Ancestor dominance query, which is among the problems we consider, provides an

appropriate model in this case.

For a d-dimensional weight vector w = (w1, w2, . . . , wd), wi is referred to as the ith

weight of w.We then consider an ordinal tree T on n nodes, each node x of which is assigned

a d-dimensional weight vector w(x), each weight wi of which is in rank space [n]. For a

d-dimensional orthogonal range Q =
∏︁d

i=1[qi, q
′
i], a weight vector w is in Q iff ∀i ∈ [1, d]

it holds that qi ≤ wi ≤ q′i. In our queries we are given a pair of vertices x, y ∈ T, and an

arbitrary orthogonal rangeQ.With Px,y being the path from x to y in the tree T, the goal is to

preprocess the tree T for the following types of queries:

Path Counting: return |{z ∈ Px,y |w(z) ∈ Q}|;
Path Reporting: enumerate {z ∈ Px,y |w(z) ∈ Q};
Path Successor: return argmin{w1(z) | z ∈ Px,y andw(z) ∈ Q};
Ancestor Dominance Reporting: a special case of path reporting, in which y is the root of the

tree and q′i = +∞ for all i ∈ [d]. That is, the query reports the ancestors of x whose

weight vectors dominate the vector q = (q1, q2, . . . , qd).

This is indeed a natural generalization of the traditional weighted tree, which we refer to as

1D-weighted (or simply as weighted, when context is clear), to the case when the weights are

multidimensional vectors. At the same time, when the tree degenerates into a single path, these

queries become respectively (d + 1)-dimensional orthogonal range counting, reporting and

successor, as well as (d+ 1)-dimensional dominance reporting, queries. Thus, the queries we

study are generalizations of these fundamental geometric queries in high dimensions. We also

go along with the state-of-the-art in orthogonal range search by considering weights in rank

space, since the case in which weights are from a larger universe can be reduced to it [44].

3.1.1 Previous Work

Path queries in weighted trees. For weighted trees, Chazelle [24] gave an O(n)-word

emulation dag-based data structure that answers path counting queries in O(lgn) time; it works

primarily with the topology of the tree and is thus oblivious to the distribution of weights.

Later, He et al. [70] proposed a solution with nH(WT)+O(n lgσ) bits of space andO(lgσ

lg lgn
+1)

query time, when the weights are from [σ]; here,H(WT) is the entropy of the multiset of the

weights in T.

18

He et al. [70] introduced and solved the path reporting problem using (i) linear space and

O((1+k) lgσ) query time, or (ii)O(n lg lg σ)words of space butO(lgσ+k lg lg σ) query time,

in the word-RAM model; henceforth for this chapter, we reserve k for the size of the output.

Patil et al. [98] presented a succinct data structure for path reporting with n lgσ+6n+O(n lgσ)

bits of space andO((lgn+k) lgσ) query time. Although the latter solution uses less space than

the version (i) of the former when σ ≪ n, it suffers a logarithmic slowdown in the additive term.

An optimal-space solution with nH(WT) + O(n lgσ) bits of space and O((1 + k)(lgσ

lg lgn
+ 1))

reporting time is due to He et al. [70]. One of the trade-offs proposed by Chan et al. [19]

requires O(n lgϵ n) words of space for the query time of O(lg lgn+ k).

Orthogonal range queries. Dominance reporting in 3D was solved by Chazelle and

Edelsbrunner [25] in linear space with either O((1 + k) lgn) or O(lg2 n+ k) time, in pointer-

machine (PM) model, with the latter being improved to O(lgn lg lgn + k) by Makris and

Tsakalidis [82]. The same authors [82] developed, in the word-RAM, a linear-size, O(lgn+ k)

and O((lg lgn lg lg lgn+ k) lg lgn) query-time data structures for the unrestricted case and

for points in rank space, respectively. Nekrich [93] presented a word-RAM data structure for

points in rank space, supporting queries in O((lg lgn)2 + k) time, and occupying O(n lgn)

words; this space was later reduced to linear by Afshani [2], retaining the same query time.

Finally, in the same model, a linear-space solution with O(lg lgn+ k) query time was designed

for 3D dominance reporting in rank space [2, 17]. In the PM model, Afshani [2] also presented

an O(lgn+ k) query time, linear-space data structure for points in R3.

For the word-RAM, JáJá et al. [74] generalized the range counting problem for d ≥ 2

dimensions and proposed a data structure ofO(n(lgn

lg lgn
)d−2) words of space andO(

(︂
lgn

lg lgn

)︂d−1

)

query time. Chan et al. [21] solved orthogonal range reporting in 3D rank space in O(n lg1+ϵ n)

words of space and O(lg lgn+ k) query time.

Nekrich and Navarro [95] proposed two trade-offs for the range successor problem, with

eitherO(n) orO(n lg lgn)words of space, and respectively withO(lgϵ n) orO((lg lgn)2) query

time. Zhou [110] later improved upon the query time of the second trade-off by a factor of

lg lgn, within the same space. Both results are for points in rank space.

19

3.1.2 Our Results

As d-dimensional path queries generalize the corresponding (d+ 1)-dimensional orthogonal

range queries, we compare results on them to show that our bounds match or nearly match the

best results or some of the best trade-offs on geometric queries in Euclidean space. We present

solutions for the (we assume d is a positive integer constant):

• ancestor dominance reporting problem, in O(n lgd−2 n) words of space and O(lgd−1 n+

k) query time for d ≥ 2. When d = 2, this matches the space bound for 3D dom-

inance reporting of [2, 17], while still providing efficient query support. When d ≥
3, we also achieve a trade-off of O(n lgd−2+ϵ n) words of space, with query time of

O(lgd−1 n/(lg lgn)d−2 + k);

• path successor problem, in O(n lgd−1 n) words and O(lgd−1+ϵ n) query time, for an

arbitrarily small positive constant ϵ, and d ≥ 1. These bounds match the first trade-off

for range successor of Nekrich and Navarro [95]. 1 Previously this problem has not been

studied even on 1D-weighted trees;

• path counting problem, in O(n(lgn

lg lgn
)d−1) words and O((lgn

lg lgn
)d) query time for d ≥ 1.

This matches the best bound for range counting in d+ 1 dimensions [74];

• path reporting problem, in O(n lgd−1+ϵ n) words and O(lgd−1 n

(lg lgn)d−2 + k) query time, for

d ≥ 2. When d = 2, the space matches that of the corresponding result of Chan et

al. [21] on 3D range reporting, while the first term in the query complexity is slowed

down by a sub-logarithmic factor.

To achieve our results, we introduce a framework for solving range sum queries in arbitrary

semigroups and extend base-case data structures to higher dimensions using universe reduction.

A careful design with results hailing from succinct data structures and tree representations has

been necessary, both for building space- and time-efficient base data structures, and for porting,

using tree extractions (Section 2.3.1), the framework of range tree decompositions from general

point-sets to tree topologies (Lemma 3.4). The notion of maximality in Euclidean sense is central

to the solutions of orthogonal dominance problems. We employ a few novel techniques and

extend this notion to tree topologies and provide the means of efficient computation thereof

1Range successor can be generalized to higher dimensions via standard techniques based on range trees.

20

(Section 3.4). Furthermore, given a weighted tree T, we propose efficient means of zooming

into the nodes of T with weights in the given range in the range tree (Lemma 3.10). Given the

ubiquity of the concepts, these technical contributions are likely to be of independent interest.

3.2 Preliminaries

3.2.1 Notation

We use the symbol ⪰ for domination: p ⪰ q iff p dominates q, i.e. each of the weights of p is

greater than or equal to the corresponding weight of q; a vector p k-dominates q iff p1,k ⪰ q1,k.

With d′ ≤ d and 0 < ϵ < 1 being constants, a weight vectorw is said to be (d′, d, ϵ)-dimensional

iff w ∈ [n]d
′ × [⌈lgϵ n⌉]d−d′ ; i.e. each of its first d′ weights is drawn from {1, 2, . . . , n}, while

each of its last d−d′ weights is in {1, 2, . . . , ⌈lgϵ n⌉}. When stating theorems, we set i/0 ≜∞
for i > 0.

3.2.2 Representation of a Range Tree on NodeWeights by Hierarch-

ical Tree Extraction

Range trees are widely used in solutions to query problems in Euclidean space. He et al. [70]

further applied the idea of range trees to 1D-weighted trees. They defined a conceptual range

tree on node weights and represented it by a hierarchy of tree extractions. Let us summarize

how the hierarchy is built.

We first define a conceptual range tree on [n] with branching factor f , where f = O(lgϵ n)

for some constant 0 < ϵ < 1. Its root represents the entire range [n]. Starting from the root

level, we keep partitioning each range, [a, b], at the current lowest level into f child ranges

[a1, b1], . . . , [af , bf],where ai = ⌈(i−1)(b−a+1)/f⌉+a and bi = ⌈i(b−a+1)/f⌉+a−1.

This ensures that, if a given weight j is in [a, b], then j is contained in the child range with

subscript ⌈f(j − a + 1)/(b − a + 1)⌉, which can be determined in O(1) time. We stop

partitioning a rangewhen its size is 1, i.e. when b−a+1 = 1.This range tree hash = ⌈logf n⌉+1

levels. The root is at level 1 and the bottom level is level h.

For 1 ≤ l < h, we construct an auxiliary tree Tl for level l of this range tree as follows. Let

[a1, b1], . . . , [am, bm] be the ranges at level l. For a range [a, b], let Fa,b stand for the extracted

forest of the nodes of T with weights in [a, b].Then, for each range [ai, bi], we extract Fai,bi and

21

1

𝑇

6

1

3 2

4

6

1

5

6

1

r1

𝑇1

3

1

2 1

2

3

1

3

3

r2

𝑇2

1

1

2

1

1 2 2 2

1 2

𝐹5,6

𝐹3,4

𝐹1,2

Ball-inheritance data structure

Figure 3.1: A fragment of hierarchical tree extraction with branching factor f = 3, for a tree T weighted
over an alphabet of size 6.The labels are given inside the circles. For some nodes, the correspondence
across the levels of the hierarchy is shown using same non-plain colours and node shapes. Rounded
rectangular areas enclose the nodes of the corresponding forests. Dashed arrow maps a node in Tl to the
original node, and illustrate the ball-inheritance data structure of Lemma 3.2.

plug its roots as children of a dummy root rl, retaining the original left-to-right order of the

roots within the forest. Between forests, the roots in Fai+1,bi+1
are the right siblings of the roots

in Fai,bi , for any i ∈ [m− 1]. We then label the nodes of Tl using the reduced alphabet [f], as

follows. Note that barring the dummy root rl, there is a bijection between the nodes of T and

those of Tl. Let xl ∈ Tl be the node corresponding to x ∈ T. In the range tree, let [a, b] be the

level-l range containing the weight of x.Then, at level l + 1, if the weight of x is contained

in the jth child range of [a, b], then xl ∈ Tl is labeled j. Each Tl is represented by Lemma 2.4

in n(lg f + 2) + O(n) bits, so that the space cost of all the Tls is n lgn+ (2n+ O(n)) logf n

bits. When f = ω(1), this space cost is n+ O(n) words ([70]). This completes the outline of

hierarchical tree extraction, with Figure 3.1 showing an example thereof.

Furthermore, the following lemma maps xl to xl+1:

Lemma 3.1 ([70]). Given a node xl ∈ Tl and the range [a, b] of level l containing the weight of x,

node xl+1 ∈ Tl+1 can be located in O(1) time, for any l ∈ [h− 2].

Later, Chan et al. [19] augmented this representation with the ball-inheritance data structure

to map an arbitrary xl back to x:

Lemma 3.2 ([19]). Given a node xl ∈ Tl, where 1 ≤ l < h, the node x ∈ T that corresponds to xl

can be found using O(n lgn · s(n)) bits of additional space and O(t(n)) time, where
(a) s(n) = O(1) and t(n) = O(lgϵ n);

22

(b) s(n) = O(lg lgn) and t(n) = O(lg lgn); or

(c) s(n) = O(lgϵ n) and t(n) = O(1).

In what follows, we denote as Tv the extraction from T of the nodes with weights in v’s

range, for a node v of the range tree, denoted as R.

3.2.3 Path Minimum in 1D-Weighted Trees

In a weighted tree, a path minimum query asks for the node with the smallest weight in the

given path. We summarize the best result on path minimum; in it, α(m,n) and α(n) are the

inverse-Ackermann functions:

Lemma 3.3 ([19]). An ordinal tree T on n weighted nodes can be indexed (a) using O(m) bits of space

to support path minimum queries in O(α(m,n)) time and O(α(m,n)) accesses to the weights of

nodes, for any integerm ≥ n; or (b) using 2n+ O(n) bits of space to support path minimum queries in

O(α(n)) time and O(α(n)) accesses to the weights of nodes. In particular, whenm = Θ(n lg∗∗ n),2

one has α(m,n) = O(1), and therefore (a) includes the result that T can be indexed in O(n lg∗∗ n)

bits of space to support path minimum queries in O(1) time and O(1) accesses to the weights of nodes.

3.3 Reducing to Lower Dimensions

This section presents a general framework for reducing the problem of answering a d-dimen-

sional query to the same query problem in (d− 1) dimensions, by generalizing the standard

technique of range tree decomposition for the case of tree topologies weighted with multidi-

mensional vectors. To describe this framework, we introduce a d-dimensional semigroup path sum

query problem, which is a generalization of all the query problems we consider in this chapter.

Definition 3.1. Let (G,⊕) be a semigroup with support G and semigroup sum operator⊕. Let T be

a tree on n nodes, in which each node x is assigned a d-dimensional weight vector w(x) and a semigroup

element g(x) ∈ G.Then, in a d-dimensional semigroup path sum query, we are given a path Px,y in

T, an orthogonal query range Q in d-dimensional space, and we are asked to compute

⨁︂
z∈Px,y and w(z)∈Q

g(z).

2lg∗∗ n stands for the number of times an iterated logarithm function lg∗ needs to be applied to n in order for
the result to become at most 1.

23

When the weight vectors of the nodes and the query range are both from a (d′, d, ϵ)-dimen-

sional space, the (d′, d, ϵ)-dimensional semigroup path sum problem is defined analogously.

3.3.1 Space Reduction Lemma Using Range Trees with Branching

Factor 2

The following lemma presents our framework for solving a d-dimensional semigroup path sum

query problem; its counterpart in (d′, d, ϵ)-dimensional space is given in Section 3.3.2.

Lemma 3.4. Let d be a positive integer constant. Let G(d−1) be an s(n)-word data structure for a

(d− 1)-dimensional semigroup path sum problem of size n. Then, there is an O(s(n) lgn+ n)-word

data structureG(d) for a d-dimensional semigroup path sum problem of size n, whose components include

O(lgn) structures of typeG(d−1), each of which is constructed over a tree on n+1 nodes. Furthermore,

G(d) can answer a d-dimensional semigroup path sum query by performingO(lgn) (d−1)-dimensional
queries using these components and returning the semigroup sum of the answers. Determining which

queries to perform on structures of type G(d−1) requires O(1) time per query. 3

Proof. We define a conceptual range tree R with branching factor 2 over the dth weights of

the nodes of T and represent it using hierarchical tree extraction as in Section 3.2.2. For

each level l of the range tree, we define a tree T ∗
l with the same topology as Tl. We assign

(d− 1)-dimensional weight vectors and semigroup elements to each node, x′, in T ∗
l as follows.

If x′ is not the dummy root, then w(x′) is set to be w1,d−1(x), where x is the node of T

corresponding to x′.We also set g(x′) = g(x). If x′ is the dummy root, then its first (d− 1)

weights are−∞, while g(x′) is set to an arbitrary element of the semigroup. We then construct

a data structure, Gl, of type G
(d−1), over T ∗

l . The data structure G(d) comprises the structures

Tl and Gl, over all l.The range tree has O(lgn) levels, each T ∗
l has n+ 1 nodes, and the Gls

are the O(lgn) structures of type G(d−1) referred to in the statement. By the exposition of

hierarchical tree extraction in Section 3.2.2, all the structures Tl in total occupy n+ O(n) words,

and G(d) therefore occupies O(s(n) lgn+ n) words.

Next we show how to use G(d) to answer queries. Let Px,y be the query path and Q =∏︁d
j=1[qj, q

′
j] be the query range. To answer the query, we first decomposePx,y (see Section 2.1.2)

into Ax,z , {z}, and Ay,z, where z is the lowest common ancestor of x and y, found in O(1)

3It may be tempting to simplify the statement of the lemma by defining t(n) as the query time ofG(d−1) and
claiming thatG(d) can answer a query in O(t(n) · lgn) time. However, this bound is too loose when applying
this lemma to reporting queries.

24

…

… …

𝑧′

… …

… …
𝑧𝑣

… …

𝑥′

𝑥𝑣
…

Figure 3.2: An illustration to the proof of Lemma 3.4. Shown is a root-to-leaf path that contains both
xv and zv. Double circles represent the nodes with weights falling into the range of v’s j

th child. They are
retrieved via a call to level_ancj(Tl, ·, 1).The nodes x′ and z′ are the nodes corresponding to (resp.)
level_ancj(Tl, xv, 1) and level_ancj(Tl, zv, 1) in the next level of the hierarchy of extractions.

time via LCA in T1. It suffices to answer three path semigroup sum queries using each subpath

and Q as query parameters, as the semigroup sum of the answers to these queries is the answer

to the original query. Since the query on subpath {z} reduces to checking whether w(z) ∈ Q,

we show how to answer the query on Ax,z ; the query on Ay,z is then handled analogously.

To answer the query on Ax,z , we perform a standard top-down traversal in the range tree to

identify up to two nodes at each level representing ranges that contain at least one of qd and

q′d. Let v be the node that we are visiting, in the range tree R.We maintain current nodes, xv

and zv (initialized as respectively x and z) local to the current level l; they are the nodes in Tl

that correspond to the Tv-views of the original query nodes x and z. Nodes xv and zv are kept

up-to-date in O(1) time as we descend the levels of the range tree. Namely, when descending

to the jth (j ∈ {0, 1}) child of the node v, we identify, via Lemma 3.1, the corresponding

nodes in Tl+1, for the nodes level_ancj(Tl, xv, 1) and level_ancj(Tl, zv, 1), as illustrated

in Figure 3.2.

For each node v identified at each level l, such that v’s range contains qd but not q
′
d, we

check if it is its left child-range that contains qd. If so, we perform a (d − 1)-dimensional

semigroup range sum query with the following parameters: (i) the query range [q1, q
′
1] ×

[q2, q
′
2]× . . .× [qd−1, q

′
d−1] (i.e. we drop the last range); and (ii) the query path isAxu,zu , where

xu and zu are the nodes in Tl+1 corresponding to the Tu-views of x and z, with u being the

25

right child of v ; this is analogous to updating xv and zv, i.e. applying Lemma 3.1 to the nodes

level_anc1(Tl, xv, 1) and level_anc1(Tl, zv, 1). For each node whose range contains q
′
d but

not qd, a symmetrical procedure is performed by considering its left child.

The semigroup sum of the answers to these O(lgn) queries is the answer to the original

query.

3.3.2 Space Reduction Lemma Using Range Tree with a Non-Cons-

tant Branching Factor

This section presents a general framework for reducing the problem of answering a (d′, d, ϵ)-di-

mensional query to the same query problem in (d′ − 1, d, ϵ) dimensions, by generalizing the

approach of JáJá et al. [74] for the case of trees weighted with multidimensional vectors.

Lemma 3.5. Let d and d′ be positive integer constants such that d′ ≤ d, and ϵ be a constant in

(0, 1). Let G(d′−1) be an s(n)-word data structure for a (d′ − 1, d, ϵ)-dimensional semigroup path

sum problem of size n. Then, there is an O(s(n) lgn/ lg lgn + n)-word data structure G(d′) for a

(d′, d, ϵ)-dimensional semigroup path sum problem of size n, whose components includeO(lgn/ lg lgn)

structures of type G(d′−1), each of which is constructed over a tree on n+ 1 nodes. Furthermore, G(d′)

can answer a (d′, d, ϵ)-dimensional semigroup path sum query by performing O(lgn/ lg lgn) queries

in (d′ − 1, d, ϵ) dimensions using these components, and returning the semigroup sum of the answers.

Determining which queries to perform on structures of type G(d′−1) requires O(1) time per query.

Proof. We define a conceptual range tree with branching factor f = O(lgϵ n) over the d′th

weights of the nodes of T and represent it using hierarchical tree extraction as in Section 3.2.2.

For each level l of the range tree, we define a tree T ∗
l with the same topology as Tl. We assign

(d′ − 1, d, ϵ)-dimensional weight vectors and semigroup elements to each node, x′, in T ∗
l , as

follows. If x′ is not the dummy root, then w(x′) is set to be

(w1(x), . . . , wd′−1(x), λ(Tl, x
′), wd′+1(x), . . . , wd(x)),

where x is the corresponding node of x′ in T, and λ(Tl, x
′) is the label assigned to x′ in Tl. We

also set g(x′) = g(x). If x′ is the dummy root, then its first d′ − 1 weights are −∞ and last

d−d′+1 weights are−⌈lgϵ n⌉, while g(x′) is set to an arbitrary element of the semigroup. We

further construct a data structure, Gl, of type G
(d′−1), over T ∗

l . The data structure G(d′) then

26

comprises the structures Tl andGl, over all l.The range tree has O(lgn/ lg lgn) levels and each

T ∗
l has n + 1 nodes, and the structures Gl are the O(lgn/ lg lgn) structures of type G

(d′−1)

referred to in the statement. By the exposition of hierarchical tree extraction in Section 3.2.2,

all the Tls in total occupy n+ O(n) words. Therefore, G(d′) occupies O(s(n) lgn/ lg lgn+ n)

words.

Next we show how to use G(d′) to answer queries. Let Px,y be the query path and Q =∏︁d
j=1[qj, q

′
j] be the query range. As discussed in the proof of Lemma 3.4, it suffices to describe

the handling of the path Ax,z , where z is the lowest common ancestor of x and y.

To answer the query on Ax,z , we perform a top-down traversal in the range tree to identify

the up to two nodes at each level representing ranges that contain at least one of qd′ and q′d′ .

For each node v identified at each level l, we perform a (d′ − 1, d, ϵ)-dimensional semigroup

range sum query with parameters computed as follows: (i) the query path is Pxv ,zv , where xv

and zv are the nodes in Tl corresponding to the Tv-views of x and z; and (ii) the query range is

Qv = [q1, q
′
1]× [q2, q

′
2]× . . .× [qd′−1, q

′
d′−1]× [iv, jv]× [qd′+1, q

′
d′+1]× . . .× [qd, q

′
d],

such that the children of v representing ranges that are entirely within [qd′ , q
′
d′] are children

iv, iv + 1, . . . , jv (“child i” refers to the i
th child); no queries are performed if such children do

not exist. The semigroup sum of theseO(lgn/ lg lgn) queries is the answer to the original query.

It remains to show that the parameters of each query are computed in O(1) time per query. By

Section 3.2.2, iv and jv are computed in O(1) time via simple arithmetic, which is sufficient to

construct Qv . Nodes xv and zv are computed in O(1) time each time we descend down a level

in the range tree: Initially, when v is the root of the range tree, xv and zv are nodes x and z in

T1. When we visit a child, vj , of v whose range contains at least one of qd′ and q
′
d′ , we compute

(via Lemma 3.1) xvj as the node in Tl+1 corresponding to the node level_ancj(Tl, xv, 1) in

Tl, which uses constant time. Node zvj is located similarly.

3.4 Ancestor Dominance Reporting

This section proposes a solution to the ancestor dominance reporting problem. Our solution is

designed around the layers of maxima paradigm [25]. We consider a partial ordering of the nodes

of a weighted tree, in which two nodes are in relation iff one is the ancestor of the other, and

its weight is greater than that of the other. We then design data structures that allow iteration

27

through the set of the maximal elements – often referred to as the layer of maxima [25] – of this

partial ordering, as well as switching from one layer to the next.

This section comprises Sections 3.4.1 to 3.4.3. In Section 3.4.1, we solve the (1, d, ϵ)-dimen-

sional path dominance reporting problem, which asks one to enumerate the nodes in the query

path whose weight vectors dominate the query vector. Then, in Section 3.4.2 we solve the

2-dimensional ancestor dominance reporting problem. Finally, Section 3.4.3 uses the results of

the latter two sections to solve the (2, d, ϵ)-dimensional ancestor dominance reporting problem

and extends the result to the general d-dimensional case.

3.4.1 Path Dominance in (1, d, ϵ)

The strategy employed in Lemma 3.6 is that of zooming into the extraction dominating the

query point in the last (d− 1) weights, and therein reporting the relevant nodes based on the

1st weight and tree topology only.

Lemma 3.6. Let d ≥ 1 be a constant integer and 0 < ϵ < 1
d−1

be a constant number. A tree T on

m ≤ n nodes, in which each node is assigned a (1, d, ϵ)-dimensional weight vector, can be represented

inm + O(m) words, so that a path dominance reporting query can be answered in O(1 + k) time,

where k is the number of the nodes reported.

Proof. We represent the topology of T using Lemma 2.2. For any (0, d − 1, ϵ)-dimensional

vector g, we consider a conceptual 1D-weighted tree Eg by first extracting the node set

{x |x ∈ T and w2,d(x) ⪰ g}

from T . The weight of a non-dummy node in Eg is the 1
st weight of its T -source. If Eg has a

dummy root, then its weight is −∞.

Instead of storing Eg explicitly, we create the following structures, the first two of which

are built for any possible (0, d− 1, ϵ)-dimensional vector g:

• The indicator tree (Definition 2.1) Tg of (T,Eg);

• A succinct index Ig for path maximum queries in Eg (using Lemma 3.3(a));

• An arrayW1 whereW1[x] stores the 1
st weight of the node x in T ;

• A table C which stores pointers to Tg and Ig for each possible g.

28

For any node x′ ∈ Eg, its T -source x equals pre_select1(Tg, x
′) (Proposition 2.1). Then,

the weight of x′ isW1[x].With this O(1)-time access to node weights in Eg, by Lemma 3.3 we

can use Ig to answer path maximum queries in Eg in O(1) time.

We now show how to answer a path dominance reporting query in T . Let Px,y and q =

(q1, q2, . . . , qd) be respectively the path and the weight vector given as query parameters. First,

we use C to locate Tq′ and Iq′ , where q
′ = q2,d. As discussed in the proof of Lemma 3.4, it

suffices to show how to answer the query with Ax,z as the query path, where z = LCA(T, x, y).

To that end, we fetch the Eq′-view, x
′, of x, using Proposition 2.1 and analogously the view,

z′, of z. Next, Iq′ locates a node t
′ ∈ Ax′,z′ with the maximum weight. If the weight of t′ is

less than q1, then no node in Ax,y can possibly have a weight vector dominating q, and our

algorithm is terminated without reporting any nodes. Otherwise, the T -source t of t′ is located

as in Proposition 2.1. The node t ∈ T then claims the following two properties: (i) as Tq′

contains a node corresponding to t, one has w2,d(t) ⪰ q′; and (ii) as w1(t) equals the weight of

t′, it is at least q1.We therefore have that w(t) ⪰ q and duly report t. Afterwards, we perform

the same procedure recursively on paths Ax′,t′ and As′,z′ in Eq′ , where s
′ is the parent of t′ in

Eq′ and can be computed as the Eq′-view of the parent of t, using Proposition 2.1.

To analyze the running time, the key observation is that we perform path maximum queries

using Iq′ at most 2k + 1 times. Since both each query itself and the operations performed to

identify the query path use O(1) time, our algorithm runs in O(1 + k) time.

To analyze the space cost, we observe thatW1 occupiesm words. The total number of pos-

sible (0, d−1, ϵ)-dimensional vectors isO(lg(d−1)ϵ n). Since each Tg usesO(m) bits and each Ig

usesO(m lg∗∗m) bits, the total space space cost of storing Tgs and Igs for all possible vectors g is

O((m+m lg∗∗m) lg(d−1)ϵ n) = O(m lg∗∗m lg(d−1)ϵ n) ≤ O(m lg∗∗ n lg(d−1)ϵ n) = O(m lgn)

bits for any constant 0 < ϵ < 1/(d− 1), or O(m) words. Furthermore, C stores O(lg(d−1)ϵ n)

pointers. To reduce the space cost for each pointer, we concatenate the encodings of all the Tgs

and Igs and store them in a memory block of O(m lgn) bits. Thus, each pointer stored in C can

be encoded in O(lg(m lgn)) bits, and the table C thus uses O((lgm + lg lgn) lg(d−1)ϵ n) =

O(lgm lg(d−1)ϵ n) + O(lg lgn lg(d−1)ϵ n) = O(lgm lgn) + O(lgn) = O(lgm lgn) bits for any

constant 0 < ϵ < 1/(d − 1), which is O(lgm) words. Finally, the encoding of T using

Lemma 2.4 is 2m+ O(m) bits. Therefore, the total space cost ism+ O(m) words.

29

3.4.2 2D Ancestor Dominance Reporting

We next design a solution to the 2-dimensional ancestor dominance reporting problem, by first

generalizing the notion of 2-dominance in Euclidean space (Section 3.2.1) to weighted trees.

More precisely, in a tree T in which each node is assigned a d-dimensional weight vector, we say

that a node x 2-dominates another node y iff x ∈ A(y) and w1(x) > w1(y). (The semantics of

“2” in 2-domination is that only two dimensions are taken into account – the tree topology and

the first weight.) Then a node x is defined to be 2-maximal iff no other node in T 2-dominates

x. An example of a 2-maximal set of nodes is given in Figure 3.3.

5

3

8

4 9

2

1

7

6

10

Figure 3.3: The 2-maximal set in a tree T weighted over σ = 10. The numbers inside the circles
represent the assigned weights. The 2-maximal set is shown in shaded circles. The shaded nodes in any
upward path form a decreasing sequence.

The following property is then immediate: Given a set,X , of 2-maximal nodes, let TX be

the corresponding extraction from T . Let the weight of a node x′ ∈ TX be the 1st weight of its

T -source x. Then, in any upward path of TX , the node weights are strictly decreasing.

Now, TX is a valid input to the weighted ancestor problem of Farach and Muthukrishnan [38].

In this problem, one is given a weighted tree with monotonically decreasing node weights along

any upward path. We preprocess such a tree to answer weighted ancestor queries, which, for any

given node x and value κ, ask for the highest ancestor of x whose weight is at least κ. Farach

and Muthukrishnan [38] presented an O(n)-word solution that answers this query in O(lg lgn)

time, for an n-node tree weighted over [n]. With an easy reduction we can further achieve the

following result:

Lemma 3.7. Let T be a tree onm ≤ n nodes, in which each node is assigned a weight from [n]. If

the node weights along any upward path are strictly decreasing, then T can be represented using O(m)

words to support weighted ancestor queries in O(lg lgn) time.

Proof. LetW be the set of weights actually assigned to the nodes of T . We replace the weight,

30

h, of any node x in T by the rank of h inW, which is in [m].We then represent the resulting

tree T ′ in O(m) words to support a weighted ancestor query in T ′ in O(lg lgm) time [38]. We

also construct a y-fast trie [107], Y, on the elements of W ; the rank of each element is also

stored with this element in Y. Y uses O(m) space. Given a weighted ancestor query over T , we

first find the rank, κ, of the query weight inW in O(lg lgn) time by performing a predecessor

query in Y, and κ is further used to perform a query in T ′ to compute the answer.

We tackle the 2-dimensional ancestor dominance problem with the following data struc-

tures. We define a conceptual range tree R with branching factor f = ⌈lgϵ n⌉ over the 2nd

weights of the nodes in T and represent T using hierarchical tree extraction as in Section 3.2.2.

Let v be a node in this range tree R, and let Rl denote all the nodes on level l of R. In Tv
4, we

assign to each node the weight vector of the T -source and call the resulting weighted tree T (v).

We then defineM(v) as follows: If v is the root of the range tree, thenM(v) is the set of all

the 2-maximal nodes in T . Otherwise, let u be the parent of v. Then a node, t, of T (v) is in

M(v) iff t is 2-maximal in T (v) and its corresponding node in T (u) is not 2-maximal in T (u).

Thus, for any node x in T, there exists a unique node v in the range tree such that there is a

node inM(v) corresponding to x. Furthermore, for a non-leaf node v we define the setN(v)

as the set {t ∈ T | ∃ a child v′ of v such that t ∈M(v′)}.

We further conceptually extract two trees from Tl : (i)Ml is an extraction from Tl of the

node set

{x |x ∈ Tl and ∃ a node u ∈ Rl s.t. x has a corresponding node inM(u)};

while (ii)Nl is an extraction from Tl of the node set

{x |x ∈ Tl and ∃ a node v ∈ Rl s.t. x has a corresponding node inN(v)}.

Figure 3.4 provides an example of the treesMl andNl.

Furthermore, for each level l, we also create the following sets of data structures (when

defining these structures, we assume that the root, rl, of Tl corresponds to a dummy node s′ in

T with weight vector (−∞,−∞); the node s′ is omitted when determining the rank space,

preorder ranks, and depths in T). Each set of the data structures can be conceptualized as a pair,

4The tree extraction of all the nodes with weights in v’s range, where v is a node of the range tree.

31

14
10 8

16 14 13 2

15 9 12 511 3

7 6

𝑟2

4 1 8

7 6 2

5 3

10 1113

14

916 12

15
𝐹1,8 𝐹9,16

4 1 2 7 6 8 10 11 14

1316

15

129
3 5

𝑟3

𝐹1,4 𝐹5,8
𝐹9,12

𝐹13,16

1 2 4 3 6 5 7 8 10 12 11 14 16

9 13 15
𝐹1,2 𝐹3,4 𝐹5,6 𝐹7,8

𝐹9,10

𝐹11,12

𝐹13,14 𝐹15,16

𝑟4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

𝑟5

𝑇1

𝑇2

𝑇3

𝑇4

𝑇5

Figure 3.4: Hierarchical tree extraction with branching factor 2. For each 1 ≤ l ≤ 5 blue, circle-shaped
nodes in Tl are the nodes extracted to constructMl, while green, hexagon-shaped nodes in Tl are the
nodes extracted to constructNl.

32

consisting of a reporting structure proper and a certain navigational, auxiliary data structure;

below we introduce them in this particular order.

One set comprises the structuresDl and Al, defined as follows:

• Dl is a 1-dimensional path dominance reporting structure (Lemma 3.6) over the tree

obtained by assigning weight vectors to the nodes ofMl as follows: each node x
′ ofMl

is assigned a scalar weight w2(x), where x is the node of T corresponding to x′ ;

• Al is a weighted ancestor query structure over Ml (Lemma 3.7), when its nodes are

assigned the 1st weights of the corresponding nodes in T.

Another set comprises the structures El and Fl, defined as follows:

• El is a 1-dimensional path dominance reporting structure (Lemma 3.6) over the tree

obtained by assigning weight vectors to the nodes ofMl as follows: each node x
′ ofMl

is assigned a scalar weight w1(x), where x is the node of T corresponding to x′;

• Fl is a (1, 2, ϵ)-dimensional path dominance reporting structure (Lemma 3.6) over the

tree obtained by assigning weight vectors to the nodes of Nl as follows: each node x′

ofNl is assigned (w1(x), κ), where x is the node of T corresponding to x′, and κ is the

label assigned to the node in Tl corresponding to x
′.

Finally, the following data structures are also maintained:

• T ′
l , the indicator tree of (Tl,Ml);

• T ′′
l , the indicator tree of (Tl, Nl);

• Pl, an array where Pl[x] stores the preorder number of the node in T corresponding to a

node x inMl.

The features of some of these data structures are summarized in Table 3.1.

Before delving into details of the search algorithm, it may be useful to see the “big picture”,

first. A synopsis of a somewhat more detailed exposition given at the beginning of Section 3.4.2

could then go as follows. The search in the 2D case proceeds by eliminating the second weight

from consideration and heeding the first weight only. One employs two strategies to that end,

each necessitated by the anatomy of range trees. Recall that when descending down a path

in the range tree, the nodes of interest are those lying on the path together with their right

33

Nodes Assigned Weights Query Source

Dl ∀x′ ∈Ml w2(x) 1D ancestor dominance reporting Lemma 3.6

Al ∀x′ ∈Ml w1(x) weighted ancestor Lemma 3.7

El ∀x′ ∈Ml w1(x) 1D ancestor dominance reporting Lemma 3.6

Fl ∀x′ ∈ Nl (w1(x), label(x′′)), x′′ ∈ Tl (1, 2, ϵ)-dimensional ancestor dominance Lemma 3.6

Table 3.1: Summary table for the data structuresDl, Al, El, and Fl built in Lemma 3.8. Denoted by
w(x) is the original weight of the node x ∈ T that corresponds to x′. In the last row, x′′ ∈ Tl is the
node corresponding to x.

siblings. If a (range tree) node is strictly to the right of the search path, we are left with only the

first weight to worry about. Otherwise, the second weight is eliminated using the monotonicity

property of the maximal nodes. Finding out the right siblings to explore is a “meta” query of its

own, which is now (1, 2, ϵ)-dimensional owing to “small” second weights.

Having thus dealt with a higher-level view, we now describe the algorithm for answering

queries in detail, and analyze its time- and space complexity:

Lemma 3.8. A tree T on n nodes, in which each node is assigned a 2-dimensional weight vector,

can be represented in O(n) words, so that an ancestor dominance reporting query can be answered in

O(lgn+ k) time, where k is the number of the nodes reported.

Proof. Let x and q = (q1, q2) be the node and the weight vector given as query parameters,

respectively. We define Π as the path in the range tree between and including the root and the

leaf storing q2. Let πl denote the node at level l in Π; then the root of the range tree is π1. To

answer the query, we perform a traversal of a subset of the nodes of the range tree, starting from

π1.The invariant maintained during this traversal is that a node u of the range tree is visited

iff one of the following two conditions holds: (i) u = πl for some l; or (ii)M(u) contains at

least one node whose corresponding node in T must be reported. We now describe how the

algorithm works when visiting a node, v, at level l of this range tree, during which we shall

show how the invariant is maintained. Let xv denote the node in Tl that corresponds to the

Tv-view of x; xv can be located in constant time each time we descend down one level in the

range tree, as described in the proof of Lemma 3.4. Our first step is to report all the nodes in

the answer to the query that have corresponding nodes inM(v). There are two cases depending

on whether v = πl; this condition can be checked in constant time by determining whether q2

belongs to the range represented by v. In either of these cases, we first locate theMl-view, x
′
v,

of xv, using Proposition 2.1.

34

If v = πl, then the non-dummy ancestors of x′
v inMl correspond to all the ancestors of

x in T that have corresponding nodes inM(v). We then perform a weighted ancestor query

using Al to locate the highest ancestor, y, of x
′
v inMl whose 1

st weight is at least q1. Since the

1st weights of the nodes along any upward path inMl are decreasing, the 1
st weights of the

nodes in path Px′
v ,y are greater than or equal to q1, while those of the proper ancestors of y

are strictly less. Hence, by performing a 1-dimensional path dominance reporting query in

Dl using Px′
v ,y as the query path and q

′ = (q2) as the query weight vector, we can find all the

ancestors of x′
v whose corresponding nodes in T have weight vectors dominating q. Then, for

each of these nodes, we retrieve from Pl its corresponding node in T which is further reported.

If v ̸= πl, the maintained invariant guarantees that the 2nd weights of the nodes inM(v)

are greater than q2. Therefore, by performing a 1-dimensional path dominance reporting query

in El using the path between (inclusive) x′
v and the root ofMl as the query path and q

′′ = (q1)

as the query weight vector, we can find all the ancestors of x′
v inMl whose corresponding nodes

in T have weight vectors dominating q. By mapping these nodes to nodes in T via Pl, we have

reported all the nodes in the answer to the query that have corresponding nodes inM(v).

After we handle both cases, the next task is to decide which children of v we should visit.

Let vi denote the i
th child of v. We always visit πl+1 if it happens to be a child of v. To

maintain the invariant, for any other child vi, we visit it iff there exists at least one node in

M(vi) whose corresponding node in T should be reported. To find the children that we will

visit, we locate theNl-view, x
′′
v , of xv, using Proposition 2.1. Then the non-dummy ancestors of

x′′
v correspond to all the ancestors of x in T that have corresponding nodes in ∪i=1,2,...M(vi).

We then perform a (1, 2, ϵ)-dimensional path dominance reporting query in Fl using the path

between (inclusive) x′′
v and the root ofNl as the query path and (q1, κ+ 1) as the query weight

vector if πl+1 is the κ
th child of v, and we set κ = 0 if πi+1 is not a child of v. For each node, t,

returned when answering this query, if its 2nd weight in Fl is j, then t corresponds to a node

in M(vj). Since the node corresponding to t in T should be included in the answer to the

original query, we iteratively visit vj if we have not visited it before (checked using an f -bit

word to flag the children of v). Figure 3.5 illustrates the considerations in this paragraph.

The total query time is dominated by the time used to perform queries usingAl,Dl,El and

Fl. We only perform one weighted ancestor query when visiting each πl, and this query is not

performed when visiting other nodes of the range tree. Given the O(lgn/ lg lgn) levels of the

range tree, all the weighted ancestor queries collectively useO(lg lgn×(lgn/ lg lgn)) = O(lgn)

35

𝜋𝑙

𝜋𝑙+1

𝜅 + 1 𝑓…

2𝑛𝑑 weights all > 𝑞2

Figure 3.5: An illustration to the proof of Lemma 3.8. When visiting πl+1, we use the Al structure to
adjust query parameters. When deciding which children, among κ+ 1, . . . , f, to visit, we use the Fl

structure.

time. Similarly, we perform one query usingDl at each level of the range tree, and the query

times summed over all levels is O(lgn/ lg lgn+ k). Our algorithm guarantees that, each time

we perform a query using El, we report a not-reported hitherto, non-empty subset of the nodes

in the answer to the original query. Therefore, the queries performed over allEls use O(k) time

in total.

Querying the Fl-structures is O(k) time when visiting nodes not in Π, and O(lgn

lg lgn
+ k)

time when visiting nodes in Π. Indeed, Fl is built using Lemma 3.6 and therefore has O(1 + k)

query time. Per a range-tree node in Π we pay O(1) to initiate the search, hence the O(lgn

lg lgn
)

additive factor. On the other hand, the O(1)-time cost of initiating the search is charged to a

tree node that has been reported during the visit of the current range-tree node outside of Π.

We thus conclude that the query times spent on all these structures throughout the execution

of the algorithm sum up to O(lgn+ k).

Next, we analyze the space cost of our data structures. As mentioned in Section 3.2.2, all

the Tls occupy n + O(n) words. By Lemma 2.4, each T ′
l or T

′′
l uses 3n + O(n) bits, so over

all lgn/ lg lgn levels, they occupy O(n lgn

lg lgn
) bits, which is O(n/ lg lgn) words. As discussed

earlier, we know that, for any node x in T , there exists one and only one node v in the range

tree such that there is a node inM(v) corresponding to x. Furthermore,M(v)s only contain

nodes that have corresponding nodes in T.Therefore, the sum of the sizes of all theM(v)s is

precisely n. Hence all the Pls have n entries in total and thus use n words. By Lemma 3.6, the

size of each Dl in words is linear in the number of nodes inMl. The sum of the numbers of

nodes in theMls over all levels of the range tree is equal to the sum of the sizes of all theM(v)s

36

plus the number of dummy roots, which is n+ O(lgn/ lg lgn). Therefore, all theDls occupy

O(n) words. By similar reasoning, all the Els and Als occupy O(n) words in total. Finally, it is

also true that, for any node x in T , there exists a unique node v in the range tree such that there

is a node inN(v) corresponding to x. Thus, we can upper-bound the total space cost of all the

Fls by O(n) words in a similar way. All our data structures, therefore, use O(n) words.

3.4.3 Ancestor Dominance Reporting in (2, d, ϵ) and Generalization

to Higher Dimensions

Further, we describe the data structure for (2, d, ϵ)-dimensional ancestor dominance reporting,

and analyze its time- and space-bounds:

Lemma 3.9. Let d ≥ 2 be a constant integer and 0 < ϵ < 1
d−2

be a constant number. A tree T on

n nodes, in which each node is assigned a (2, d, ϵ)-dimensional weight vector, can be represented in

O(n lg(d−2)ϵ n) words, so that an ancestor dominance reporting query can be answered in O(lgn+ k)

time, where k is the number of the nodes reported.

Proof. In our design, for any (0, d − 2, ϵ)-dimensional vector g, we consider a conceptual

1D-weighted treeEg as the tree extraction from T of the node set {x |x ∈ T and w3,d(x) ⪰ g}.
Theweight of a node x′ inEg is the (2-dimensional) weight vectorw1,2(x),where x theT -source

of x′. IfEg has a dummy root, then its weight is (−∞,−∞). Rather than storingEg explicitly,

we follow the strategy in the proof of Lemma 3.6 and store indicator tree Tg for each possible g.

We also maintain arraysW1 andW2 storing respectively the 1
st and 2nd weights of all nodes of

T, in preorder, which enables accessing the weight of an arbitrary node of Eg in O(1) time. Let

ng be the number of nodes in Eg.We convert the node weights of each Eg to rank space [ng].

For each such Eg, we build the 2-dimensional ancestor dominance reporting data structure, Vg,

from Lemma 3.8. Thus, the space usage of the resulting data structure is upper-bounded by

O(n lg(d−2)ϵ n) words.

Let x and q = (q1, q2, . . . , qd) be the node and the weight vector given as query parameters,

respectively. InO(1) time, we fetch the data structures pertaining to the weight vector q′ = q3,d;

this way, all the weights 3 through d of the query vector have been taken care of, and all we need

to consider is the tree topology and the first two weights, q1 and q2, of the original query vector.

We localize the query node x to Eq′ by finding the Eq′-view x′ of x via Proposition 2.1 and

launch the query in Vq′ with x
′ as a query node, having reduced the components of the query

37

vector (q1, q2) to the rank space of Eq′ . The time- and space-bounds for the reductions are

absorbed in the final bounds. Indeed, adjusting the path in order to query Eq′ is constant-time,

whereas rank-space reduction is O(lg lgn) time using y-fast tries [107].

Instantiating Section 3.3 with g(x) = {x} and the semigroup sum operator ⊕ as the

set-theoretic union operator ∪, Lemma 3.4 iteratively applied to Lemma 3.8 yields

Theorem 3.1. Let d ≥ 2 be a constant integer. A tree T on n nodes, in which each node is assigned a

d-dimensional weight vector, can be represented in O(n lgd−2 n) words, so that an ancestor dominance

reporting query can be answered in O(lgd−1 n+ k) time, where k is the number of the nodes reported.

Analogously, Lemma 3.5 which is the counterpart of Lemma 3.4 when the range tree has a

non-constant branching factor f = O(lgϵ n), with Lemma 3.9 which concerns itself with the

(2, d, ϵ)-dimensional ancestor reporting, together yield a different trade-off:

Theorem 3.2. Let d ≥ 3 be a constant integer. A tree T on n nodes, in which each node is assigned a

d-dimensional weight vector, can be represented in O(n lgd−2+ϵ n) words of space, so that an ancestor

dominance reporting query can be answered in O((lgd−1 n)/(lg lgn)d−2 + k) time, where k is the

number of the nodes reported. Here, ϵ is an arbitrary constant in (0, 1).

3.5 Path Successor

We first solve the path successor problem when d = 1, and extend the result to d > 1 via

Lemma 3.4.

The topology of T is stored using Lemma 2.4. We define a binary range tree R over [n],

and build the associated hierarchical tree extraction as in Section 3.2.2; as in Section 3.4, Tl

denotes the auxiliary tree built for each level l of R, and Tv denotes the tree extraction from T

associated with the range of node v ∈ R.We represent R using Lemma 2.4, and augment it

with the ball-inheritance data structureB from Lemma 3.2(a), as well as with the data structure

from the following

Lemma 3.10. Let R be a binary range tree with topology encoded using Lemma 2.4, and augmented

with the ball-inheritance data structureB from Lemma 3.2(a). With an additional space of O(n) words,

the node xu,l in Tl corresponding to the Tu-view of x can be found in O(lg
ϵ′ n) time, for an arbitrary

node x ∈ T and an arbitrary node u ∈ R residing on a level l. Here, 0 < ϵ′ < 1 is an arbitrarily

small constant.

38

Proof. For a node u ∈ R at a level l, and a node x ∈ T, the query can be thought of as a chain

of transformations T → Tu → Tl. In the first transition, T → Tu, given an original node

x ∈ T, we are looking for its Tu-view, xu.That is, although Tu is (conceptually) obtained from

T through a series of extractions (i.e. as we construct the range tree), the wish is to “jump” many

successive extractions at once, as if Tu were extracted from T directly. This would be trivial

to achieve through storing an indicator tree per range u, i.e. for each pair (T,Tu), if it were

not for a prohibitive space-cost – the number of bits at least quadratic in the number of nodes.

One can avoid extra space cost altogether and directly use Lemma 3.1 to explicitly traverse the

hierarchy of extractions. In this case, the time cost is proportional to the height of the range

tree, and hence becomes the bottleneck.

In turn, in the Tu → Tl-transition, we are looking for the identity of xu in Tl. For this

second transformation, we recall (from Section 3.2.2) that Tu is embedded within Tl, and the

nodes of Tu must lie contiguously in the preorder sequence of Tl.

With these considerations in mind, we build the following data structures.

ForR, we maintain an annotation array I, such that I[u] stores a quadruple ⟨au, bu, su, tu⟩
for an arbitrary node u ∈ R at level l, such that (i) the weight range associated with u is

[au, bu]; and (ii) all the nodes of T with weights in [au, bu] occupy precisely the preorder ranks

su through tu in Tl.The space occupied by the annotation array I is clearly O(n) words (the

number of nodes in R is O(n)).

For each level L that is a multiple of ⌈lg lgn⌉, which we call a marked level, we maintain

a data structure enabling the direct T → Tu → TL-conversion. Namely, for each individual

node u on marked level L of R, we define a conceptual array Au, which stores, in increasing

order, the (original) preorder ranks of all the nodes of T whose weights are in the range

represented by u. Rather than maintaining Au explicitly, we store a succinct index, Su, for

predecessor/successor search [56] in Au. Assuming the availability of a O(nδ)-bit universal

table, where 0 < δ < 1 is a constant, given an arbitrary value in [n], this index can return the

position of its predecessor/successor in Au in O(lg lgn) time plus accesses to O(1) entries of

Au. The size of the index in bits is O(lg lgn) times the number of entries in Au. For a marked

(in fact, for any) level L all the Su-structures thus sum up to O(n lg lgn) bits. There being

O(lgn/ lg lgn) marked levels, the total space cost for the Su-structures over the entire tree R

is O(n) words.

Let us show how to answer queries using the data structures built. Resolving a query falls

39

into two distinct cases. The first is when the level l, at which the query node u resides, is

marked; the second is when it is not.

When the level l is marked, we use the structures Su stored therein, directly. We adopt

the strategy of He et al. [69] to find xu,l. First, for an arbitrary index i to Au, we observe that

nodeAu[i] ∈ T corresponds to the node (su + i− 1) in Tl.We thus fetch ⟨au, bu, su, tu⟩ from
I[u].Then the predecessor p ∈ Au of x is obtained through Su via an O(lg lgn)-time query

and O(1) calls to the B-structure, which results in O(lgϵ
′
n) time in total. We then determine

the lowest common ancestor s ∈ T of x and p, in O(1) time.

𝑠

𝑝 𝑥

𝑥𝑢,𝑙

(a)

𝑠

𝑝

𝑡

𝑥

𝑟
𝑥𝑢,𝑙

(b)

Figure 3.6: An illustration to the proof of Lemma 3.10. Node x, which could have weight in u’s range
or not, is represented by a dash-dotted circle. The subfigures (a) and (b) respectively represent the cases
in which the weight of s is in and not in u’s range.

If the weight of s is in [au, bu], then it must be present in Au by the latter’s very definition.

By another predecessor query, therefore, we can find the position, j, of s inAu, and (su+ j−1)

is the sought xu,l.This case subsumes all the corner cases, too: If the node x had the weight from

range [au, bu] itself, the predecessor query would duly return p = x; if p ̸= x and p ∈ A(x),

then p = s.

If the weight of s is not in [au, bu], a final query to Su returns the successor t in Au of s;

the node t must exist because of p. Let κ be the position of t in Au. Then the parent of the

node (su + κ− 1) in Tl is the sought node xu,l. Indeed, the node t /∈ A(x), because otherwise

the very first predecessor query would have returned t and we would have already found xu,l.

Figure 3.6 illustrates the discussions of this and the previous paragraphs.

We perform a constant number of predecessor/successor queries, and correspondingly a

constant number of calls to the ball-inheritance problem. The time complexity is thusO(lgϵ
′
n).

When the level l is not marked, we ascend to the lowest ancestor u′ of u residing on a

marked level l′, and reduce the problem to the previous case. More precisely, via the navigation

40

operations (level_anc to move to a parent, and depth to determine whether the level is

marked) available through R’s encoding, we climb up at most ⌈lg lgn⌉ levels to the closest

marked level l′. Let u′ be therefore the ancestor of u found on that marked level l′. We then

find the node x′
u′,l′ in Tl′ that corresponds to the Tu′-view of the node x in T. Afterwards,

we initialize a variable s to be xu′,l′ . At each level l′ ≤ l′′ ≤ l this variable s represents the

node x′′
u′′,l′′ ∈ Tl′′ that corresponds to the Tu′′-view of the node x ∈ T ; here u′′ is the node

of the range tree such that it is an ancestor of u and a descendant of u′.We descend down to

the original level l, back to the original query node u, all the while adjusting the node s as we

move down a level, analogously to the proof of Lemma 3.4. As we arrive, in time O(lg lgn), at

node u, the variable s stores the answer, xu,l.

In the second case, too, the termO(lgϵ
′
n) dominates the time complexity, as climbing from

the current level up to the closest marked level5 and back is an additive term of O(lg lgn).

Therefore, the query is answered in O(lgϵ
′
n) time.

Finally, each Tl is augmented with succinct indices ml (resp. Ml) from Lemma 3.3(b),

for path minimum (resp. path maximum) queries; here, the weights of the nodes of Tl are

the weights of their corresponding nodes in T.We now describe the algorithm for answering

queries and analyze its running time, as well as give the space cost of the data structures built:

Lemma 3.11. A 1D-weighted tree T on n nodes can be represented in O(n) words, so that a path

successor query is answered in O(lgϵ n) time, where 0 < ϵ < 1 is an arbitrary constant.

Proof. Let x, y and Q = [q1, q
′
1] be respectively the nodes and the orthogonal range given as

query parameters. As in the proof of Lemma 3.4, we focus only on the path Ax,z, where z is

LCA(T, x, y).We locate in O(1) time the leaf Lq1 of R that corresponds to the singleton range

[q1, q1]. Let Π be the root-to-leaf path to Lq1 in R; let πl be the node at level l of Π.We binary

search in Π for the deepest node πf ∈ Π whose associated extraction Tπf
contains the node

corresponding to the answer to the given query, as follows.

We initialize two variables: high as 1 so that πhigh is the root of R, and low as the height

of R so that πlow is the leaf Lq1 .We first check whether Tπlow
already contains the answer, by

fetching the node x′ in Tlow corresponding to the Tπlow
-view of x, using Lemma 3.10. If x′

exists, we examine its corresponding node x′′ in T (fetched via B). We check whether x′′ is

5One could reach the marked level in one leap, in O(1) time, using level_anc. This however has no bearing
on the asymptotical time bound, because we later descend to the original level one level at a time, anyway.

41

on Ax,z, using depth and level_anc operations. If x′′ ∈ Ax,z, then x
′′ is the final answer. If

not, this establishes the invariant of the ensuing search: Tπhigh
contains a node corresponding

to the answer, whereas Tπlow
does not.

At each iteration, therefore, we set (via level_anc in R) πmid to be the node mid-way

from πlow to πhigh.We then fetch the nodes x′, z′ in Tmid corresponding to the Tπmid
-views

of respectively x and z, using Lemma 3.10. The non-existence of x′ or the emptiness of Ax′,z′

sets low tomid, and the next iteration of the search ensues. (If z′ does not exist, z′ is set to

the root of Tmid.) A query to theMmid-structure then locates a node in Ax′,z′ for which the

1st weight, µ, of its corresponding node in T is maximized. Accounting for the mapping of a

node in Tmid to its corresponding node in T via B, this query uses O((lgϵ
′
n)α(n)) time. The

variables are then updated as high← mid if µ ≥ q1, and low ← mid, otherwise.

Once πf is located, it must hold for πf that (i) it is its left child that is on Π; and (ii) its

right child, v, contains the query result, even though v represents a range of values all larger

than q1 [95]. When locating πf , we also found the nodes in Tf corresponding to the Tπf
-views

of x and z; they can be further used to find the nodes in Tf+1, x
∗ and z∗, corresponding to

the Tv-views of x and z. We then usemf+1 to find the node in Ax∗,z∗ with the minimum 1st

weight, whose corresponding node in T is the answer.

The total query time is determined by that needed for binary search. An iteration of the bin-

ary search is in turn dominated by the path maximum query in Tmid, which is O((lg
ϵ′ n)α(n)).

Given the O(lgn) levels of R, the binary search has O(lg lgn) iterations. Therefore, the total

running time is O(lg lgn · lgϵ
′
n · α(n)) = O(lgϵ n) if we choose ϵ′ < ϵ.

To analyze the space cost, we observe that the topology of T , represented using Lemma 2.4,

uses only 2n+ O(n) bits. As stated in Section 3.2.2, all the structures Tl occupy O(n) words

in total. The space cost of the structure from Lemma 3.10 built for R is O(n) words. The

B-structure occupies another O(n) words. Theml- andMl-structures occupy O(n) bits each,

or O(n) words in total over all levels of R.Thus, the final space cost is O(n) words.

Lemmas 3.4 and 3.11 yield the following

Theorem 3.3. Let d ≥ 1 be a constant integer. A tree T on n nodes, in which each node is assigned a

d-dimensional weight vector can be represented in O(n lgd−1 n) words, so that a path successor query

can be answered in O(lgd−1+ϵ n) time, for an arbitrarily small positive constant ϵ.

Proof. We instantiate Section 3.3 with g(x) = x and the semigroup sum operator⊕ as x⊕ y =

42

argmin
t∈{x,y}

{w1(t)}. Lemma 3.4 applied to Lemma 3.11 yields the space bound of O(n lgd−1 n)

words and the query time complexity of O(lgd−1+ϵ n).

3.6 Path Counting

He et al. [70] have solved the path counting problem for 1D-weighted trees. Using the standard

technique of range trees, one accommodates the remaining (d − 1) weights at the cost of

polylogarithmic factors both in space and query time [93]. To do better than the straightforward

approach, one can use the tree covering technique, described in Section 2.3.2.

In this section we design a data structure to solve the path counting problem in the special

case of the nodes being assigned (0, d, ϵ)-dimensional weight vectors. It turns out that when

the weight vector of a node can be packed into O(lgn) bits, counting queries can be executed

in constant time. The key machinery used is tree covering.

Let T be a given ordinal tree on n nodes, each node of which is assigned a weight vector in

(0, d, ϵ) dimensions. Let r be the root of T. In our solution to the (0, d, ϵ)-dimensional path

counting problem for T,we set c = ⌈lgϵ n⌉, and use Lemma 2.5 to decompose T into mini-trees

with parameter L = c2d lgn. Each of the mini-trees is further subject to decomposition into

micro-trees with parameter L′ = c2d.We denote by rb the root of a mini- or micro-tree b, for

any b that shall be clear from the context. Each mini- or micro-tree b stores an array b.cnt,

indexed by a tuple from ([c]× [c])d, with the following contents:

• for a mini-tree b, an O(lgn)-bit number b.cnt[Q] stores the number of the nodes with

weight vectors falling within the range Q on the path Arb,r in T, where r is the root of

T ;

• for a micro-tree b′ inside a mini-tree b, an O(lg lgn)-bit number b′.cnt[Q] stores the

number of the nodes with weight vectors falling within the range Q on the path Arb′ ,rb
.

We also pre compute a look-up table D that is indexed by a quadruple from the following

Cartesian product:

• all possible micro-tree topologies τ, times

• all possible assignments λ of weight vectors to the nodes of τ, times

• all nodes in τ , times

43

• all possible query orthogonal ranges Q.

Let λ be a labeling of a micro-tree τ with (0, d, ϵ)-dimensional weight vectors. Then the entry

D[τ, λ, x,Q] stores the number of nodes on the path Ax,rτ in τ, such that their weight vectors

belong to the range Q.

We now show how to use these data structure to answer queries.

Lemma 3.12. The data structures in this section can answer a (0, d, ϵ)-dimensional path counting

query in O(1) time, for any constant integer d ≥ 1.

Proof. LetPx,y andQ be, respectively, the path and the orthogonal range given as the parameters

to the query. For the reasons given in Lemma 3.4, we describe only how to answer the query

over Ax,z, where z = LCA(T, x, y).We assume the encoding of T as in Lemma 2.4, so the LCA

operator is available; the space overhead is only O(n) bits, i.e. negligible with respect to the

space bound we are ultimately aiming at.

We further notice that answering the path counting query over Ax,z is equivalent to

answering two path counting queries, one over Ax,r and another over Az,r, and taking their

arithmetic difference. It is thus sufficient to describe the procedure of answering the query

over Ax,r, and analyze its running time, as the query over Az,r can be handled similarly.

The key observation is that overall we perform a constant number of constant-time opera-

tions. Indeed, using the data structures for navigating the mini- and micro-trees [39], we first

identify, inO(1) time, the mini-tree b and the micro-tree b′ containing the node x, as well as the

encoding of b′. From the (disjoint) decomposition of the path Ax,r = Ax,rb′
∪ Arb′ ,rb

∪ Arb,r,

it is now immediate that the answer to the query over Ax,r is resx = D[b′, lab(b′), x′, Q] +

b.cnt[Q] + b′.cnt[Q], where lab(b′) is the labeling of the micro-tree b′, and x′ is the preorder

number of the node x ∈ T in b′, provided by the standard encodings [51, 67, 39]. One finds

the answer resz to the path counting query over Az,r analogously. Then the final answer is

resx − resz.Therefore, our algorithm runs in O(1) time.

We now analyze the space cost of our data structures.

Lemma 3.13. The data structures in this section occupy O(n lg lgn) bits when ϵ ∈ (0, 1
4d
).

Proof. To analyze the space cost, we tally up the costs of the main constituents of our data

structure: the cnt-arrays stored at the roots of each mini- and micro-tree, and theD-table.

44

There being Θ(n
c2d lgn

) mini-trees, each of which contains an array of c2d elements, O(lgn)

bits each, the associated cnt-arrays contribute O(n
c2d lgn

× c2d × lgn) = O(n) bits.

Analogously, for theΘ(n/c2d)micro-trees, the net contribution of the associated cnt-arrays

isO(n/c2d×c2d× lg (c2d lgn)) = O(n lg lgn) bits, which is the space claimed in the statement.

It suffices to show, therefore, that the space occupied by theD-structure can not exceed

O(n lg lgn) bits; as demonstrated below, it is much less. Indeed, as mentioned in Lemma 2.5,

each micro-tree can have up to 2L′ = 2c2d nodes, which gives us less than 22·2L
′
= 22·2c

2d

possible topologies τ. In turn, each of the 2c2d nodes can independently be assigned cd possible

weight vectors; hence the number of possible configurations λ is at most (cd)2c
2d
(the number of

strings of length 2c2d over alphabet [cd]). Furthermore, the c2d query orthogonal rangesQmake

for 2c2d×c2d = 2c4d distinct queries, i.e. the number of nodes times the number of ranges. The

number of entries in the tableD is thus O(24c
2d · (cd)2c2d · 2c4d) = O((4cd)2c

2d
c4d).The term

c4d is O(lgn). To upper-bound the term (4cd)2c
2d
, we notice that cd = ⌈lgϵ n⌉d < 4

√︁
lgn/4

for sufficiently large n. Therefore, we have the following chain of inequalities for sufficiently

large n:

(4cd)2c
2d

<
(︂

4
√︁

lgn
)︂2c2d

<
(︂

4
√︁

lgn
)︂2

√︁
lgn

=
(︂√︁

lgn
)︂√︁

lgn

=
(︂
2lg

√︁
lgn

)︂√︁
lgn

= 2
√︁

lgn·lg
√︁

lgn < 2
√︁

lgn·
√︁

lgn

2 =
√
n

Thus, the number of entries in D is at most O(
√
n lg4dϵ n). Each entry holding a value of

O(lg c2d) = O(lg lgn) bits, the tableD occupies O(
√
n lg lgn lg4dϵ n) = O(n) bits, in total.

Finally, as shown above, the number of ways to assign weight vectors to nodes of a micro-tree

is a O(L′ lg lgn)-bit number. Thus, the storage space for the labelings of each of the Θ(n/L′)

micro-trees amounts to O(n lg lgn) bits.

With Lemmas 3.12 and 3.13, we have the following

Lemma 3.14. Let d ≥ 0, ϵ ∈ (0, 1
4d
) be constants. A tree T on n nodes, in which each node is

assigned a (0, d, ϵ)-dimensional weight vector, can be represented in O(n lg lgn) bits of space such that

a path counting query is answered in O(1) time.

Finally, instantiating Section 3.3.2 with g(x) ≡ 1 and ⊕ as the regular arithmetic addition

operation + in R, we can apply Lemma 3.5 to Lemma 3.14 iteratively and obtain the following

result:

45

Theorem 3.4. Let d ≥ 1 be a constant integer. A tree T on n nodes, in which each node is assigned

a d-dimensional weight vector, can be represented in O(n(lgn/ lg lgn)d−1) words such that a path

counting query can be answered in O((lgn/ lg lgn)d) time.

3.7 Path Reporting

In this section, we solve the path reporting problem. We use the following result of Chan et

al. [19]:

Lemma 3.15 ([19]). An ordinal tree on n nodes whose weights are drawn from [n] can be represented

using O(n lgϵ n) words of space, such that path reporting queries can be supported in O(lg lgn+ k)

time, where k is the number of reported nodes and ϵ is an arbitrary positive constant.

Lemma 3.15 implies the following

Lemma 3.16. Let d ≥ 1 and 0 < ϵ < 1
2(d−1)

be constants, and let T be an ordinal tree on n nodes,

in which each node is assigned a (1, d, ϵ)-dimensional weight vector. Then, T can be represented in

O(n lgϵ
′
n) words of space, for any constant ϵ′ ∈ (2(d− 1)ϵ, 1), so that a path reporting query can

be answered in O(lg lgn+ k) time, where k is the number of reported nodes.

Proof. In brief, we build a path reporting data structure from Lemma 3.15 for each possible

orthogonal range over the last (d− 1) dimensions. When presented with a query, we directly

proceed to the appropriately-tagged (by the last (d − 1) weights) reporting structure, and

launch the query therein. A detailed exposition follows.

We assume the encoding of T as in Lemma 2.4; the space incurred is only O(n) bits, i.e.

negligible with respect to the terms derived below.

For any (0, d− 1, ϵ)-dimensional orthogonal range G, we build an explicit 1D-weighted

tree EG as the extraction of the node set {v | v ∈ T and w2,d(v) ∈ G} from T . The weight of

a node in EG is the 1st weight of its T -source. If EG has a dummy root, then its weight is−∞.

EG is represented using Lemma 3.15, in space that is at most O(n lgδ n) words, for an

arbitrarily small positive δ. In order to adjust the nodes between T and EG, indicator tree TG

of (T,EG) is maintained.

Accounting for all possible ranges G, we therefore have O(n lgδ+2(d−1)ϵ n) words of space,

in total. Setting δ to be sufficiently small and assigning (δ + 2(d− 1)ϵ) to ϵ′ justifies the space

46

claimed. All the TG-structures collectively occupy O(n lg2(d−1)ϵ n) bits of space, which is O(n)

words.

Let Px,y and Q be, respectively, the path and the orthogonal range given as the query

parameters. Using the notation of Lemma 3.4, and for the same reasons as given therein, we

concern ourselves only with answering the query over the path Ax,z, where z = LCA(T, x, y).

To answer the query, we first locate the relevant tree EQ′ , where Q′ = Q2,d, and launch a path

reporting query in EQ′ , having adjusted the nodes x and z to their TQ′-views as described in

Proposition 2.1. Finally, the one-dimensional query in EQ′ executes in O(lg lgn+ k) time, by

Lemma 3.15, thereby establishing the claimed time bound. Each returned node x’s original

identifier is recovered as in Proposition 2.1.

Instantiating Section 3.3.2 with g(x) = {x} and the semigroup sum operator ⊕ as the

set-theoretic union operator ∪, Lemma 3.5 and Lemma 3.16 combined imply the following

Theorem 3.5. Let d ≥ 2 be a constant integer. A tree T on n nodes, in which each node is assigned a

d-dimensional weight vector, can be represented in O(n lgd−1+ϵ n) words such that a path reporting

query can be answered in O((lgd−1 n)/(lg lgn)d−2 + k) time where k is the number of the nodes

reported, for an arbitrarily small positive constant ϵ.

3.8 Conclusion

This chapter proposes solutions to the ancestor dominance reporting, path successor, path

counting and path reporting problems, over ordinal trees weighted with multidimensional

weight vectors. These problems generalize the classical orthogonal range searching problems, to

the case of one dimension being replaced by a tree topology.

In solving these problems, we combine diverse data-structuring ideas and propose a few

novel techniques that could be of interest in their own right.

We propose an O(n lgd−2 n) words-of-space data structure to answer an ancestor dominance

reporting query inO(lgd−1 n+k) time. For d = 2, this data structure provides a poly-logarithmic

query time while matching the corresponding space bound for 3D dominance reporting of [2,

17]. For d ≥ 3, it is possible to achieve a trade-off of O(n lgd−2+ϵ n) words of space and

O(lgd−1 n/(lg lgn)d−2 + k) query time. Here, k is the size of the output.

We solve the path successor problem inO(n lgd−1 n)words of space and timeO(lgd−1+ϵ n) for

d ≥ 1 and an arbitrary constant ϵ > 0.We propose a solution to the path counting problem, with

47

O(n(lgn/ lg lgn)d−1) words of space andO((lgn/ lg lgn)d) query time, for d ≥ 1. Finally, we

solve the path reporting problem in O(n lgd−1+ϵ n) words of space and O(lgd−1 n

(lg lgn)d−2 + k) query

time, for d ≥ 2.These results match or nearly match the best trade-offs of the respective range

queries. We are also the first to solve path successor even for d = 1.

By the dint of any two nodes uniquely determining a path, tree topologies generalize one-

dimensional arrays. And when tree degenerates into a single path, the path query problems

and their Euclidean counterparts become identical. The big question is, how far this similarity

stretches? And for which classes of problems can one hope to close the gap between the best

results on the either side?

Chapter 4

Data Structures for Categorical Path

Counting Queries

4.1 Introduction

Chapter 3 studied data structures for trees weighted with multidimensional weight vectors.

The path queries studied therein generalized the classical orthogonal range searching problems

in Euclidean space.

Going further, in some applications, of the actual interest (enshrined in the SQL clause

GROUP BY) is not so much each individual point itself as the distinct categories occurring in the

query region. For example, the number of distinct soil types in the query region is a a result of

a categorical range counting query, if the points on a map are marked by soil types. These distinct

values also find uses in SQL query optimization [23]. Categorical (or coloured) range searching

is thus an area of active research in computer science [59, 4, 76, 78, 79, 57, 94, 48, 22, 20].

To motivate the study of categorical path queries, let us annotate a phylogenetic tree for a

set of genomes by marking each speciation event with a type of mutation that caused it. The

number of distinct mutation event types between two given species then could in some contexts

serve as a proxy for evolutionary “distance” between them. A categorical path counting query,

which asks for the number distinct categories on a query path, provides an adequate model in

this case. These are the types of queries we consider in this chapter.

48

49

A few aspects make the categorical variants of range searching generally harder than their

“plain” counterparts. First, there can be far fewer categories than points. Second, such problems

are not easily decomposable — for two disjoint regions S1 and S2, knowing just the number of

distinct categories in each of them is insufficient to infer the count for the union S1 ∪ S2.

For all the progress in categorical reporting queries (see Section 3.1.1, and also [22, 20]),

with results almost matching the state of the art in regular reporting [21], efficient counting

(Section 3.6) in categorical setting remains elusive, with the currently best results standing at

O(n2 lg2 n)words andO(lg2 n) query time [59, 76], orO(n lg6 n)words andO(
√
n lg7 n) query

time [76], versus the optimal linear-space and O(lgn

lg lgn
)-time data structure for 2D orthogonal

range counting [74]. In contrast to the “plain” case, the categorical version of range counting is

deemed to be harder than its reporting counterpart [76], when d ≥ 2.

Generalizing the 1D categorical reporting problem, Durocher et al. [36] solved the top-k

colour reporting problem on trees. We believe that in trees, neither the counting problem in the

categorical setting, nor the scenario of weighted nodes has been studied before. In this chapter,

we formalize these problems and propose solutions to them.

We consider an ordinal tree T on n nodes, such that each node z of T is associated with a

category c(z) ∈ [σ]. Specified at query time is a query path Px,y between two nodes x, y in T.

We are to preprocess T into a data structure to compute in an efficient manner the number

nreal = |{c(z) | z ∈ Px,y}|. This is the categorical path counting problem studied in this

chapter.

Next, for d ≥ 1, we consider a tree T in which each node, in addition to a category, is

also associated with a weight vector w(z) ∈ [n]d. In addition to a query path Px,y, specified

at query time is then also an axis-aligned (hyper-)rectangle Q from [n]d.We are to preprocess

T into a data structure to compute in an efficient manner the number nreal = |{c(z) | z ∈
Px,y∧w(z) ∈ Q}|.This is the categorical path range counting problem studied in this chapter.

For both problems, a c-approximate (for c > 1) answer is a number nappr such that nreal ≤
nappr ≤ c · nreal. A (1± ϵ)-approximate (for 0 < ϵ < 1) answer is a number nappr such that
|nappr−nreal|

nreal
≤ ϵ.

All these problems generalize the corresponding categorical range counting problems in

Euclidean spaceRd+1, for respective d, by replacing one of the dimensions with a tree topology.

50

4.1.1 Previous Work

For points on a line, Gagie and Kärkkäinen [46] have proposed anO(n)-word solution to the 1D

categorical counting, with query timeO(lg1+ϵ n), for any ϵ > 0.Nekrich [93] proposed another

O(n)-space solution with query time O(lgσ/ lg lgn), where σ is the number of categories.

Grossi and Vind [57] solve the 2D categorical range counting problem in linear space and

O(n) time, and higher-dimensional variants in almost-linear space and O(n) time. The core idea

is to divide the universe of categories into chunks of size lgn, and use bitwise-OR when querying

the restriction of the input set to each such chunk. The best result with polylogarithmic time in

the two-dimensional categorical counting problem remains at O(n2 lg2 n) words and O(lg2 n)

query time [59, 76], with [76] also proposing an O(X lg7 n) query-time data structure with

O((n
X
)2 lg6 n + n lg4 n) storage space, for a trade-off parameter 1 ≤ X ≤ n; for X =

√
n,

the space is O(n lg6 n) and query time is O(
√
n lg7 n).Whereas Gupta et al. [59] use persistence,

Kaplan et al. [76] proceed by a disjoint decomposition of the region covering an individual

category, with the subsequent reduction to the rectangle-stabbing problem (the counting variant

of which asks to count all the rectangles containing the query point). In higher dimensions

(d > 2), [76] proposed an O(nd lg2d−2 n)-word data structure with O(lg2d−2 n) query time.

They also show that an algorithm for categorical range counting in R2 that answersm queries

over the set of O(n) points in O(min{n,m}ω/2) time would yield an algorithm for obtaining

the matrix productM ·M⊺ in O(kω/2) time, for any k×k matrixM over {0, 1},where ω is the

best current exponent for Boolean matrix multiplication. Further, Kaplan et al. [76] proposed

an O((n
X
)2d + n lgd−1 n)-word data structure with O(X lgd−1 n) query time, for a trade-off

parameter 1 ≤ X ≤ n.This implies an ˜︁O(n)-space data structure with ˜︁O(n 2d−1
2d) query time.

Nekrich [94] proposed an O(n(lg lgn)2)-word data structure to support (4 + ϵ)-approx-

imate 2D categorical counting in O((lg lgn)2) time, which also translates to a linear-size data

structure for points on an n× n grid, that returns in O(1) time a (1 + ϵ)-approximation for

the number of points in a 3-sided 2D query range, for a constant 0 < ϵ < 1. El-Zein et al. [37]

solved the approximate categorical range counting problem in 1D in succinctO(n) bits of space

and O(1) time. The core technique is to sample the prefixes of the array with exponentially

increasing number of distinct categories covered, and “sandwich” the query point between two

sampled values using transdichotomous data structures [42].

Lai et al. [78] used sketching data structures [28] to solve the approximate categorical range

counting problem in probabilistic setting. In d dimensions, they propose a data structure of

51

O(dn lgd−1 n) words of space, to support queries in O(d lgd+1 n) time, with probability 1− δ,

where 0 < δ < 1 is a given constant. Sketches approximate the number of distinct categories

occurring in a collection; they are small and additive, and in the solution of Lai et al. serve as

summary structures.

To the best of our knowledge, the only categorical range searching problem considered so

far for tree topologies is the top-k colour reporting problem, by Durocher et al. [36]. Therein, the

categories have priorities, and the k highest-priority categories occurring on the given path are

to be reported. Durocher et al. [36] introduce and solve this problem in (optimal) O(n) space

and O(1 + k) time. They use heavy-path decomposition (Sleator and Tarjan [104], see also a

review in Section 5.2) and chaining [88] to reduce the problem to two-dimensional reporting in

a narrow grid.

4.1.2 Our Results

For the categorical path counting problem, we propose a linear-space data structure with query

time O(
√
n lg lgσ

lgw
), where w is the word size on the word-RAM model. We show, by reduction

from Boolean matrix multiplication, that the query time is optimal within polylogarithmic

factors, with current knowledge and when only combinatorial methods are allowed. This

conditional lower bound is surprising, because the 1D counterpart in the Euclidean case admits

a linear-size solution with a sub-logarithmic query time, and a similar conditional lower bound

can only be proven in 2D. In other words, having a tree structure in the presence of categories is

about as hard as having a second dimension, making the query time go up from polylogarithmic

to polynomial, when the space usage is linear. This is however is not the case in the previous

work on path queries [36, 70, 64]. For a trade-off parameter 1 ≤ t ≤ n, we propose an

O(n+ n2

t2
)-word, O(t lg lgσ

lgw
) query time data structure. We also describe a linear-space data

structure that supports 2-approximate categorical path counting queries in O(lgn/ lg lgn)

time. These problems have not been considered in trees before.

We also generalize the categorical path counting queries to weighted trees. For d = 1,

we propose an O(n lg lgn + (n/t)4)-word data structure with O(t lg lgn) query time, or an

O(n + (n/t)4)-word data structure with O(t lgϵ n) query time. This implies a linear-space

data structure with O(n3/4 lgϵ n) query time. The corresponding O(n lg6 n)-word solution to

categorical range counting in R2 by [76] achieves O(
√
n lg7 n) query time. Compared to the

best result in the Euclidean counterpart, we thus sacrifice an ˜︁O(4
√
n)-factor in query time, to

52

accommodate the tree structure.

We further extend the approach to the trees weighted with multidimensional vectors from

[n]d, d ≥ 2.We describe anO(n lgd−1+ϵ n+
(︁
n
t

)︁2d+2
)-word data structure withO(t lgd−1 n

(lg lgn)d−2)

query time. For an ˜︁O(n)-space solution, this yields ˜︁O(n 2d+1
2d+2) query time. When d ≥ 2, this

result matches the best corresponding result in Rd+1 by [76], within polylogarithmic factors.

Our sketching data structure for unweighted trees solves the approximate categorical path

counting problem, which asks for a (1± ϵ)-approximation for the number of distinct categories

on the given path, with probability 1− δ.The data structure occupies O(n+ n
t
lgn) words of

space, for the query time of O(t lgn). For trees weighted with d-dimensional weight vectors

(d ≥ 1), we propose anO((n+ n
t
lgn) lgd n)-word data structure withO(t lgd+1 n) query time.

Here, 0 < ϵ, δ < 1 are arbitrarily small constants.

4.2 Categorical Path Counting

In this section, we consider the categorical path counting problem in the exact and approximate

formulations. First, in Section 4.2.1 we prove a conditional lower bound on the categorical

path counting problem in unweighted trees. Then, Section 4.2.2 offers some background on

the techniques used in our data structures. In Section 4.2.3, we design a data structure that

matches the lower bound within polylogarithmic factors when only combinatorial approaches

are allowed. Finally, in Section 4.2.4 we design a 2-approximate solution with much faster

query time.

4.2.1 Hardness of Categorical Path Counting

In this section we show a reduction from the Boolean matrix multiplication (i.e. matrix mul-

tiplication over {0, 1} such that the multiplication and addition are replaced by respectively

AND and OR) problem to the categorical path counting problem over unweighted trees.

Theorem 4.1. Let p(n) (for n ∈ N) be the preprocessing time of a categorical path counting data
structure and q(n) its query time, over an ordinal tree T on n nodes, each of which is assigned a category

over a finite alphabet. Then Boolean matrix multiplication on two
√
n×
√
n matrices can be solved in

O(p(n) + nq(n) + n) time.

Proof. Let A and B be two
√
n×
√
n Boolean matrices, and we are to compute the product

C = AB. Let ai,j, bi,j and ci,j be the elements in row i and column j of the matricesA,B and

53

r

2
x1

1
x2

2
1

3

x3 2y1

2
y2

3

3
y30 1 0

1 1 0
1 0 1

⎛⎜⎝
⎞⎟⎠

A

0 0 0
1 1 0
0 1 1

⎛⎜⎝
⎞⎟⎠

B

Figure 4.1: Two matrices A and B each of size
√
n×
√
n with n = 9 give rise to a tree over

√
n+ 1

categories. The dummy root is the node marked r, and the numbers inside circles, as well as the
distinct colours, denote the category of the corresponding node. The path shown in thick coloured
line corresponds to a path queried when computing the cell (2, 1) of the product A× B.This entry
corresponds to the product of the second row and the first column, respectively of the matrices A and
B (which are also colored).

C, respectively. For the ith row of A we construct the set Ai = {j | ai,j = 1}, and for the jth

column of B we construct the set Bj = {i | bi,j = 1}.We notice that ci,j = JAi ∩Bj ̸= ∅K.
As |Ai ∪Bj| = |Ai|+ |Bj| − |Ai ∩Bj|, it is sufficient to focus on computing |Ai ∪Bj|,

which in turn motivates the following construction of a tree T of size O(n) :

1. We create a dummy root r with dummy category
√
n+ 1;

2. The root r has 2
√
n children x1, x2, . . . , x√

n and y1, y2, . . . , y√n;

3. The subtree rooted at each xi, 1 ≤ i ≤
√
n, is a single path of length mi = |Ai|,

consisting of nodes xi,1, xi,2, . . . , xi,mi
, listed in preorder, i.e. with xi = xi,1 and xi,mi

being the leaf;

4. The subtree rooted at each yj, 1 ≤ j ≤
√
n, is a single path of length nj = |Bj|,

consisting of nodes yj,1, yj,2, . . . , yj,nj
, listed in preorder, i.e. with yj = yi,1 and yj,nj

being the leaf;

5. ∀ 1 ≤ i ≤
√
n and ∀ 1 ≤ j ≤ mi, the node xi,j is assigned a category – the jth largest

entry of Ai;

6. ∀ 1 ≤ j ≤
√
n and ∀ 1 ≤ i ≤ nj, the node yj,i is assigned a category – the ith largest

entry of Bj.

Thus T is a tree of size O(n), in which each node is assigned a category from [
√
n + 1]. See

Figure 4.1 for an example of the tree constructed for two matrices A and B. Now, it is clear

54

that computing |Ai ∪Bj| is nothing but a categorical path query with query parameters xi,mi

and yj,nj
(subtracting 1 from the result, to correct for the root r).

Assuming the preprocessing time of p(n), and when processing n (=
√
n ×
√
n) queries

each of time complexity q(n), we arrive at the time bound claimed.

Thus, Theorem 4.1 states that the Boolean matrix multiplication of two
√
n×
√
n matrices

can be computed using n categorical path counting queries in a tree of size O(n).This implies

that for any data structure for categorical path counting that uses p(n) preprocessing time for

a tree of size n, with q(n) time for a query, it follows that nω/2 = O(p(n) + n · q(n) + n), if

the best algorithm for Boolean matrix multiplication uses Θ(nω) time to multiply two n× n

matrices. Therefore, p(n) = Ω(nω/2) and q(n) = Ω(nω/2−1), in the worst case. Williams [109]

show that in the currently best algorithm for matrix multiplication, ω = 2.3727.Therefore,

with current knowledge, one cannot have preprocessing time faster than n1.8635 and query

time faster than n0.18635, simultaneously. At the same time, the best current combinatorial

algorithm for Boolean matrix multiplication has running time only a polylogarithmically better

than cubic [10, 18]. Thus, preprocessing time better than n3/2 and query time better than
√
n

simultaneously by purely combinatorial techniques can not be achieved with current knowledge,

save for polylogarithmic speedups.

4.2.2 Uniform Partitioning of the Tree

Next, we review a tree mark-up technique that we use in our solutions in Sections 4.2.3 and 4.3.2.

Lemma 4.1 ([36]). Given an ordinal tree T on n nodes and an integer t ≤ n which is called the

blocking factor, a subset V ′ ⊆ V of the nodes can be chosen, called the marked nodes, such that: (i)

|V ′| = O(n/t); (ii) for any x, y ∈ V ′ it follows that LCA(x, y) ∈ V ′; and (iii) a path containing

unmarked nodes only consists of less than t nodes and the edges between them.

Path decomposition using the marked nodes in particular and nodes with certain labels

in general is encapsulated in a decompose-operator introduced in Definition 4.1. Lemma 4.2

implements decompose, as a simple corollary to Lemma 2.3. In Definition 4.1 and Lemma 4.2,

T is an ordinal tree on n nodes, each of which is assigned a label over the alphabet [σ], where

σ ≤ n.

55

𝑦

𝑥

𝑧

𝑥

𝑦

𝑥′ 𝑦′

𝑧

𝑥

𝑦

𝑦′

𝑥′

𝑧

𝑥

𝑦

(b) (c) (d)(a)

𝑦′

𝑥′

Figure 4.2: An illustration to the proof of Lemma 4.2. Shaded nodes are marked. Subfig. (a) illustrates
the case of y being an ancestor of x. Subfigures (b)-(d) illustrate the case when x and y are not ancestors
of each other. In subfig. (b), there are marked nodes on both of the paths Px,z and Py,z, whereas in
subfig. (c) there are marked nodes on Px,z only. Finally, subfig. (d) shows the case when x′ = y′ = z.
In all subfigures, z = LCA(x, y).

Definition 4.1. For any pair of nodes x, y of T, for any α ∈ [σ], consider the α-nodes x′ and y′

on Px,y that are closest to respectively x and y.Then, the operation decompose(x, y, α) returns the

corresponding pair of nodes x′ and y′, or a special symbol undefined when no such x′ and y′ exist.

Lemma 4.2. The tree T represented via Lemma 2.3 supports decompose(x, y, α) in O(lg lgσ

lgw
) time.

Proof. LetK = K(T) be the data structure of Lemma 2.3. One then has the following cases

and the corresponding courses of action:

Case 1 If LCA(x, y) = y, we have x′ = level_ancα(K, x, 1). Node y′ is set to be y itself if y

is an α-node; if it is not, then y′ = level_ancα(K, x, a), where a = depthα(K, x)−
depthα(K, y).The result is undefined if y is not an α-node and a = 0.The case when

x is the ancestor of y is symmetrical. See Figure 4.2 (a) for an illustration.

Case 2 If x and y are not ancestors of each other, we set z = LCA(T, x, y). Depending on the

values a = depthα(K, x) − depthα(K, z) and b = depthα(K, y) − depthα(K, z),

there are four sub-cases:

a > 0, b > 0: One has x′ = level_ancα(K, x, 1), y′ = level_ancα(K, y, 1); see

Figure 4.2 (b).

a > 0, b = 0: This case is reduced to Case 1 by setting y := z; see Figure 4.2 (c).

a = 0, b > 0: This case is reduced to Case 1 by setting x := z;

a = 0, b = 0: Theresult isundefined if z is not anα-node, andx′ = y′ = z, otherwise;

see Figure 4.2 (d) for an illustration.

Figure 4.2 illustrates the essential configurations. We perform an constant number of operations,

each of which costs O(lg lgσ

lgw
) time; the claimed running time follows.

56

From the properties of tree extraction and Lemmas 2.3 and 4.2 it follows that

Proposition 4.1. In the tree T represented via Lemma 2.3, let Px,y ⊆ T be an arbitrary path

and α ∈ [σ] an arbitrary label. Let Tα be a tree extraction from T of the node-set X = {z ∈
V (T) | label(z) = α}. Let, furthermore, x′ and y′ be the nodes returned by decompose(x, y, α).

Then, all the nodes in Px,y ∩ X form a contiguous path π in Tα, with the end-points (xα, yα) =

(pre_rankα(T, x
′), pre_rankα(T, y

′)). Furthermore, the result of decompose(x, y, α) isundefined

iff Px,y ∩X = ∅.

4.2.3 Categorical Path Counting

In this section, we solve the exact categorical path counting problem. We do so by pre-computing

certain information, with additional work on top of it at query time. Hence the storage space

and explicit work at query time are balanced by a trade-off parameter.

Namely, the tree T is subject to the following preprocessing:

Nodes marking For the parameter t ≤ n to be chosen later, we mark O(n/t) nodes in T using

Lemma 4.1. LetK be the indicator tree (Definition 2.1) for the set of marked nodes in

T.We preprocessK using Lemma 4.2;

Path emptiness Let G be a copy of T labeled over [σ] in such a way that the node z ∈ V (G)

has label α iff its copy in T has category α.We preprocess G using Lemma 4.2;

Tabulation We store a table M such that, for the xth and yth (in preorder) marked node

of T , one has M [x, y] ≜ |{c(z) | z ∈ Px′,y′}| (i.e. M [x, y] is the number of distinct

categories occurring on the path Px′,y′ ⊆ T). Here, x′ = pre_select1(K, x) and

y′ = pre_select1(K, y) (by Proposition 2.1).

The data structures built in Section 4.2.3 result in the following

Theorem 4.2. Let T be an ordinal tree on n nodes, each of which is assigned a category over an

alphabet [σ], where σ ≤ n.Then, T can be preprocessed into a data structure of size O(n+ n2

t2
), for

some parameter 1 ≤ t ≤ n, so that a categorical path counting query is solved in O(t lg lgσ

lgw
) time. In

particular, setting t =
√
n yields a linear-space data structure with O(

√
n lg lgσ

lgw
) query time.

Proof. We preprocess the input tree T as described in Section 4.2.3. The structuresK,G and

M contribute respectively O(n),O(n) and O(n2/t2) words, and hence the claimed space.

57

We thus turn to answering queries and then analyzing the query time. Answering the query

when |Px,y| ≤ t is subsumed in our analysis. Hence let the query path Px,y be of length greater

than t.

First, a call to decompose(x, y, 1) onK returns two nodes x′ and y′ such that x′, y′ are

marked and max{|Px,x′|, |Py,y′ |} ≤ t..

Let xM and yM respectively be the relative preorder ranks of x′ and y′ among the marked

nodes of T ; one computes xM and yM using Proposition 4.1. We use xM and yM to address

the tableM.

The answer to our query is contained in the following sets of nodes: Group 0 : Px′,y′ (the

span); Group 1 : Px,x′ \ {x′}; and Group 2 : Py,y′ \ {y′}.We note that Groups 1-2 are each of

size at most t.

The strategy is to process each group sequentially, so that a category contributes to the

answer as long as it appears neither in the groups one has so far traversed, nor in the portion of

the path preceding the current node, in the current group.

Namely, the processing of Group 0 reduces to initializing the result counter res with

M [xM , yM].Next, one traverses Group 1 in the direction towards x. Let z be the current node,

and pz be the node immediately preceding z, on the current pathPx,x′ oriented from x′ towards

x.We check whether c(z) occurs in Ppz ,y′ using G and Proposition 4.1; if not, we increment

res. Finally, we traverse Group 2 in the direction towards y. Let z be the current node, and

pz be the node immediately preceding z, on the current path Py,y′ and in the direction of

traversal. We check whether c(z) occurs in Px,pz using G and Proposition 4.1; if it does not,

we increment res.

We call operations provided by Lemmas 2.3 and 4.2 O(t) times; the claimed time bound

follows.

4.2.4 2-Approximate Categorical Path Counting

We provide a 2-approximation for the number of distinct categories on Px,y by decomposing

the path Px,y as Px,z followed by Py,z, with z = LCA(T, x, y), and counting the number of

distinct categories in Px,z and Py,z separately. It turns out that in contrast to general paths

a query path in which one end is an ancestor of the other lends itself to efficient categorical

counting.

58

We apply the chaining approach of Muthukrishnan [88], by assigning weights to the nodes

of T as follows: If for q ∈ T one has c(q) = γ, then we identify q’s lowest proper ancestor p

such that c(p) = γ and set w(q) = depth(T, p).We set w(q) = −1, if there is no such p.We

use the result of He et al. [70] to encode, in a structure C , the weighted tree and support path

counting queries (see Section 3.1 for the definition) over its paths:

Lemma 4.3 ([70]). Let T be an ordinal tree on n nodes, each having a weight drawn from [m]. Under

the word-RAMmodel, T can be encoded inO(n) words to support path counting queries inO(lgm

lg lgn
+1)

time.

For the data structures built in Section 4.2.4, we claim the following

Theorem 4.3. An ordinal tree T on n nodes, each of which assigned a category, can be preprocessed

into an O(n)-word data structure to solves the 2-approximate categorical path counting problem in

O(lgn

lg lgn
) time. When one query node is an ancestor of the other, the answer is exact.

Proof. We preprocess the input tree T as described in Section 4.2.4.

The dominant-size data structure C is linear-size (Lemma 4.3); hence the claimed space.

We focus on how to answer the query on the path Px,z, where z = LCA(x, y), for the query

nodesx and y.Given the queryPx,z,we execute a path counting query inC with parametersPx,z

(as the query path) and (−∞, depth(z)) (as query weight range). By repeating the procedure

verbatim for Py,z, we return the sum of the two queries as the sought 2-approximation. We

note that when y is an ancestor of x, the answer is exact.

The total running time therefore is the sum of the running times of at most two path

counting queries, and the claimed time bound follows.

4.3 Categorical Path Range Counting

In this section, we solve the categorical path counting problem in the case of weighted trees,

including those weighted with multidimensional weight vectors.

In solving the categorical path range counting problem, we apply the marking technique of

Lemma 4.1, too. The core idea remains, but we guard against over-counting using somewhat

more complex data structures. Namely, in Section 4.3.1 we extend the repertoire of useful tree

operations (Table 2.1) by the path range emptiness query, which, in the case of unweighted trees

(Section 4.2.3), was simulated using labeled ancestors and labeled depth (Lemma 2.3).

59

4.3.1 Path Range Emptiness Queries

First, let us formally introduce path range emptiness queries:

Definition 4.2. For a constant d ∈ N, let T be an ordinal tree on n nodes, each node z of which

is assigned a weight vector w(z) ∈ [n]d. For any two nodes x, y ∈ T and any axis-aligned hyper-

rectangle Q from [n]d, a path range emptiness query is a path query that returns false if the set

{z ∈ T | z ∈ Px,y ∧ w(z) ∈ Q} is empty, and true, otherwise.

From Theorem 3.5 in Section 3.7 and the solution to the path reporting problem (see

Section 3.1 for the definition) by [19], it follows that 1

Lemma 4.4 ([19, 64]). Let T be an ordinal tree on n nodes, each of which is assigned a weight vector

from [n]d, where d ∈ N is a constant. Then, T can be preprocessed into a data structure so that a path

emptiness query is answered in

d = 1 : either (a) O(lg lgn); or (b) in O(lgϵ n) time. The data structures occupy respectively (a)

O(n lg lgn); and (b) O(n) words of space.

d ≥ 2 : O(lgd−1 n

(lg lgn)d−2) time, for an O(n lgd−1+ϵ n)-word data structure.

Since Lemma 4.4 presents different trade-offs to be used in different cases in our solutions

for different values of d, we shall refer to the query time as τd(n) and and to the space cost as

sd(n).

4.3.2 Categorical Path Range Counting in d Dimensions

As in Section 4.2, here we also trade explicit traversals for the storage for pre-computed inform-

ation, with a few notable differences to accommodate weights. Precisely, the preprocessing of

the tree T encompasses the following procedures and data structures:

Nodes marking We mark the nodes of T using Lemma 4.1, with blocking factor t;

Weights partitioning Along each of the d dimensions, we partition the space [n]d into ⌈n/t⌉
slabs, using axis-aligned hyper-planes, in such a way that each slab (possibly, except for

the last) contains exactly t nodes of the tree T (this is always possible, as the weights

are in rank space). More precisely, we maintain a list λi of slabs per weight component:

1The original sources state the results for path reporting but these results imply the results on path emptiness
as stated in Lemma 4.4.

60

λi,j ≜ {z ∈ T | (j − 1)t < wi(z) ≤ min{jt, n}}, for 1 ≤ i ≤ d and 1 ≤ j ≤ ⌈n/t⌉.
Slightly abusing notation, here we use “slab λi,j” to denote both the orthogonal range

and the corresponding set of nodes defined above;

Path emptiness For each category γ ∈ [σ], we build the tree extraction Tγ of all the nodes

with category γ.The nodes of Tγ inherit the weights of the original nodes in T . Each

Tγ, in turn, is associated with the following data structures:

• The path emptiness data structure Cγ of Lemma 4.4;

• y-fast tries [108] {Yγ,i}di=1 s.t. Yγ,j maps the jth weights of Tγ into rank space

[|Tγ|];

Mapping structures Maintained using Lemma 2.3 are also treesK and G:

• Let TX be the (conceptual) extraction of the set of marked nodes in T.ThenK is

the indicator tree (Definition 2.1) of (T, TX);

• G has the topology of T and is labeled over [σ] such that a node z ∈ G is given a

label γ iff its copy in T has category γ;

Tabulation For each of the Θ((n/t)2d+2) spans we pre-compute and store, in a tableM, the

number of distinct categories occurring in the span. Precisely, let the indices i1, i2, . . . , id

and j1, j2, . . . , jd be such that ∀k 1 ≤ ik ≤ jk ≤ ⌈n/t⌉ and two nodes x′ and y′ be

marked. Then, the span corresponding to this tuple of indices and the pair of marked

nodes is the set {z ∈ Px′,y′ | z ∈ ∩d
k=1(∪

jk
l=ik

λk,l)} (i.e. the set of nodes on the path

Px′,y′ such that their weights fall into the relevant rectangle in [n]d). One final de-

tail: To save space, the nodes x′ and y′ should be referred to by their relative preorder

ranks, say xM and yM , among the marked nodes. Now, M is a table whose element

M [xM , yM , i1, j1, i2, j2, . . . , id, jd] stores the number of distinct categories in the relev-

ant span.

Lemma 4.5. The data structures built in Section 4.3.2 occupy O(sd(n) + (n/t)2d+2) words of space.

Proof. Indeed, weights partitioning in total stores d copies of the nodes of T, as each node

is contained in exactly d distinct λi,j ; hence the contribution is linear. The sizes of the tree

extractions Tγ sum up to O(n), too. The structures Cγ occupy O(sd(n)) words of space, in

total. Each y-fast trie occupying linear space [108] and by design storing disjoint sets, the total

61

contribution of all the y-fast tries is linear. The mapping structuresK and G in total occupy

another O(n) words. Finally, the tableM is of size O((n/t)2d+2) words.

In Lemma 4.7, we describe how to resolve queries and analyze the query time. The main

idea is to divide the set of all the candidate nodes (i.e. the nodes that can potentially lie on the

query path with weight vectors in the query rectangle) into groups, one of which is “large”, and

several are “small”. We use a pre-computed result for a “large” group. Then, one walks the other,

“small”, groups while checking whether a new category is already contained in the preceding

groups. The latter is accomplished via restricting a previous group to a monochromatic region –

the tree extraction whose nodes have the same category.

To facilitate presentation, we abstract the procedure of zooming into a monochromatic

region in a lemma of its own:

Lemma 4.6. With respect to the data structures built in Section 4.3.2, letPx,y ⊆ T andQ be respectively

an arbitrary path and an axis-aligned rectangle in [n]d, where d ∈ N is a constant. Let, furthermore,

γ ∈ [σ] be an arbitrary category. Then, whether the set {z ∈ Px,y |w(z) ∈ Q∧ c(z) = γ} is empty
can be answered in O(τd(n)) time.

Proof. First, we adjust the query parameters Px,y and Q to the tree Tγ. We map the query

path to a path in Tγ in O(lg lgσ

lgw
) time (Lemma 4.2). We then use the y-fast tries {Yγ,k}dk=1 to

restrict the range Q to the rank space of the weights of Tγ. If Q =
∏︁d

k=1[ak, bk], then each ak

is searched for a successor in Yγ,k, and bk is searched for a predecessor in Yγ,k, which results in

an additive O(lg lgn) time, over all 1 ≤ k ≤ d.

Next, we launch a path emptiness query using Cγ for the query time of τd(n) (Lemma 4.4).

Both of the time bounds in the previous paragraph do not exceed τd(n), and hence the claim

follows.

To proceed with the formal statement and its proof:

Lemma 4.7. The data structures built in Section 4.3.2 solve a categorical path range counting query in

O(t · τd(n)) time.

Proof. Let Px,y and Q =
∏︁d

k=1[ak, bk] be the query arguments.

If |Px,y| ≤ t,we explicitly traverse the path Px,y and count the number of unique categories

encountered; the exact procedure is subsumed in the discussion that follows. We therefore

assume |Px,y| > t, and split the path Px,y into Px,x′ , Px′,y′ , and Py,y′ , where x
′ and y′ are

62

1

5

7 3

8 2

46

Figure 4.3: Disjoint decomposition of the rim in 2D (the tree dimension is omitted). The first weight
corresponds to the x-axis, the second weight – to the y-axis. The shaded region marks the span. The
dotted rectangle is the query rectangle, while solid lines denote the grid lines induced by the slabs λ.
The rectangular subdivisions marked 1 and 5 belong to a slab λ1,j for some j, whereas the subdivisions
7 and 3 belong respectively to the slabs λ1,j−1 and λ1,j+1. Furthermore, the subdivisions marked 8, 6
lie respectively on slabs λ2,k−1 and λ2,k+1, for some k. At the same time, 6 and 8 lie also on λ1,j−1.
The situation is symmetrical to the subdivisions 2, 4.

marked nodes that are on the path Px,y and are closest to respectively x′ and y′. To find x′ and

y′, we use decompose(x, y, 1) of Lemma 4.2. One has that |Px,x′ |, |Py,y′| ≤ t.

The grid of the marked nodes and the slabs induce a decomposition of the query region

into the span and the “rim” – the parts of the query region abutting it. Of these, the rim is

meant to be explicitly traversed. The details follow.

The span. First, we initialize the indices i1, i2, . . . , id and j1, j2, . . . , jd as ik := ⌈ak/t⌉
and jk := ⌈bk/t⌉, for all 1 ≤ k ≤ d. That is, ithk range contains ak, and jthk range contains

bk. Furthermore, let x′ and y′ be respectively the xth
M and ythM marked node, in preorder; one

computes xM and yM using Proposition 4.1. Now the tuple (xM , yM , i1+1, j1−1, i2+1, j2−
1, . . . , id+1, jd−1) determines a span, for which the answer – the number of distinct categories

occurring therein – is already pre-computed. We initialize the counter variable res holding

the answer to the query with the table entryM [xM , yM , i1 +1, j1− 1, i2 +1, j2− 1, . . . , id +

1, jd − 1].With this span, we also associate the pair of query arguments P (span) = Px′,y′ and

Q(span) =
∏︁d

k=1[ikt+ 1,min{(jk − 1)t, n}].

The rim. Our goal is to traverse the rim systematically, scanning for categories, while

being careful to neither double-count nor miss them. One thus takes note of a category only if

it has not been seen in “the past”. With this consideration in mind, we present a way of walking

63

the rim.

Consider all the nodes z ∈ Px′,y′ whose weight vector w(z) pushes z outside of the span.

The loci of such vectors in [n]d clearly can be covered with O(d) = O(1) disjoint axis-aligned

rectangles – henceforth canonical rectangles – in such a way that each canonical rectangle r

lies entirely within some λi,j. For each dimension k, there are up to two canonical rectangles

within slabs λk,ik and λk,jk .We assume the availability of such a coverD. (An example of such

a disjoint decomposition is shown in Figure 4.3.)

We then “separate” the prefix/suffix fromD by creating, out of each canonical rectangle

r, a canonical set s(r) as the set {z ∈ Px′,y′ |w(z) ∈ r}. As each r lies inside a slab, one has

|s(r)| ≤ t.

We enumerate the nodes in the rim in the (say) following order: the nodes of the prefix,

the nodes of the suffix, and the nodes in each canonical set. Within each set, the nodes are

conceptually ordered in the direction from x to y (the traversal order is ascertained via tree

operators of Lemma 2.2). As we walk through these sets, we refer to the processed sets as

previously seen. Importantly, the previously seen set contains the span as its first item.

Let us maintain a conceptual set E of query parameters: it consists of the pairs (path,

weight range) that specify the previously seen sets. For the span, this set of parameters is

(P (span), Q(span)) defined above. For the prefix and the suffix, the query path is respectively

the prefix and the suffix, and the weight range is Q. For a canonical set, the path is Px′,y′ and

the weight range is given by the associated slab.

Let z be a current node in our traversal of the rim, and let γ = c(z). The category γ

contributes towards res iff each of the path range emptiness queries executed using the query

parameters stored in E comes back as false. Each item of E is used to execute the query

described in Lemma 4.6. We however also need to perform the final test for γ: it involves the

part of the current set (be it the prefix, the suffix, or a canonical set) that precedes z in our

conventional x-to-y ordering. Regardless of whether the current set is the prefix, the suffix, or

a canonical set, we launch a path range emptiness query for the path Px,z \ {z} and the range

Q via Lemma 4.6.

The decomposition of the rim thus consists ofO(1) disjoint sets. Each set can be enumerated

in O(t) time, and therefore the entire rim is traversed in O(t) time. For each node traversed,

we consider all the previously seen sets, which is still O(t) time overall. The claim for query

time follows from the time bounds in Lemma 4.6.

64

Combining Lemmas 4.5 and 4.7 one has

Theorem 4.4. Let d ∈ N be a constant. Let T be an ordinal tree on n nodes, each node z ∈ T of

which is assigned a category c(z) ∈ [σ], as well as a d-dimensional weight vector w(z) in rank space,

where d ∈ N is a constant. Then, for the categorical path range counting problem there exists a data

structure such that it uses:

d = 1 : either

• O(n lg lgn+ (n/t)4) words of space for the query time of O(t lg lgn); or

• O(n+ (n/t)4) words of space for the query time of O(t lgϵ n);

In particular, one can have a linear-space data structure with query time O(n3/4 lgϵ n);

d ≥ 2 : O(n lgd−1+ϵ n + (n/t)2d+2) words of space for the query time of O(t lgd−1 n

(lg lgn)d−2); For an˜︁O(n)-space solution, one thus has ˜︁O(n 2d+1
2d+2) query time.

Here, 1 ≤ t ≤ n is a trade-off parameter set prior to construction.

4.4 Sketching Data Structures for Approximate Cate-

gorical Path Counting

In this section we solve the (1± ϵ)-approximate categorical counting problem, with probability

1 − δ, for arbitrarily small constants 0 < ϵ, δ < 1. Section 4.4.1 reviews the concept of

sketches [28, 78] that we use in our solutions. Then, Section 4.4.2 describes our data structures.

4.4.1 Sketches

For an arbitrary vector a = (a1, a2, . . . , an) ∈ Rn, Cormode et al. [28] introduce the Hamming

norm |a|H of a, defined as |a|H ≜
∑︁n

i=1 |ai|0, with |0|0 ≜ 0. It is clear that |a|H = |{ai | ai ̸=
0}|, i.e. the Hamming norm equals the number of non-zero components in a. Therefore, if

a ∈ (N ∪ {0})n is a frequency array, i.e. ai records the multiplicity of the number i in a certain

collection, then the number of distinct elements in the collection is given by the Hamming

norm of a.

Furthermore, with the vector a a certain length-m vector h(a), called a sketch, can be

associated, that possesses several properties turning h(a) into a useful summary structure.

While referring the reader to [28] and references therein for a discussion in more detail, we

state the main previous result used in our work:

65

Lemma 4.8 ([28, 78]). Let 0 < ϵ, δ < 1 be constants. Given a vector a, there exists a sketch, h(a),

that requiresm = O(1
ϵ2
· lg 1

δ
) words and allows approximation of |a|H within a factor of 1± ϵ of the

true answer with probability 1 − δ. Updating the sketch and computing |a|H both take O(m) time.

Furthermore, if a and b are two vectors, then h(a± b) = h(a)± h(b).

A clarification is in order regarding the update operation mentioned in Lemma 4.8. The

scenario of Cormode et al. [28] is that of observing a stream and at each instant maintaining

the sketch for the frequency array associated with the stream. Update refers to updating the

sketch upon observing the next value in the stream.

4.4.2 (1± ϵ)-Approximate Categorical Path Range Counting

We now use sketches for preprocessing the tree T for (1± ϵ)-approximate (with probability

1 − δ) categorical path range counting queries. We first solve the problem for unweighted

trees; Lemma 3.4 from Section 3.3 then extends the data structures to trees weighted with

d-dimensional weight vectors, where d ∈ N is a constant.

Recall that in Section 4.4.1, the sketch h(a) was used to approximate the number of non-

zero entries in a vector a. In the solution of Cormode et al. [28], this original vector a was the

frequency array of a stream. The gist of our solution is in treating certain paths Px,⊥ ⊆ T each

as a stream of its own and hence maintaining several sketch-summaries thereof. Namely, our

adaptation comprises [28, 78] (i) using the same transformation matrix for all computations; and

(ii) building the sketches using δ′ = δ
n2d+2 . Ensured by (i) is the “compatibility” (i.e. additivity

in the sense of Lemma 4.8) of any two arbitrarily chosen summaries — sketches are obtained by

a linear transformation [28, 78] of (in our case) the frequency array, with linearity implying

additivity. Guaranteed by (ii) is that even if each of the Θ(n2d+2) queries (i.e. Θ(n2) distinct

paths times Θ(n2d) distinct d-dimensional rectangles) fails independently with probability

δ/n2d+2, then the overall measure of the failure events is still δ.With (i) and (ii) in mind, the

value ofm in Lemma 4.8 works out to bem = O(1
ϵ2
lg 1

δ/n2d+2) = O(lgn).

We next describe how to preprocess T.

First, we apply Lemma 4.9 with parameter t to mark O(n/t) nodes in the tree (the proof of

Lemma 4.9 easily follows from the Pigeonhole Principle):

Lemma 4.9 ([71]). Let 1 ≤ t ≤ n be an integer parameter. There exists a level l′ no deeper than t

such that, when one marks the nodes on every tth level of the tree T, starting from l′, then there are

O(n/t) marked nodes in total.

66

Next, at each marked node z ∈ T, one stores the sketch h(z) as a summary of the categories

occurring on the path Pz,⊥. Indeed, let a(z) be the (conceptual) frequency vector for the

categories on the path Pz,⊥.Then we associate with z a length-m vector h(z) – the sketch of

a(z). One thus obtains

Lemma 4.10. The data structures built in Section 4.4.2 occupy O(n+ (n/t) lgn) words and answer

a (1± ϵ)-approximate categorical path counting query in O(t lgn) time, with probability 1− δ.

Proof. There are O(n/t) marked nodes, each storingm = O(lgn) words, hence the claimed

space.

The path Px,⊥ can be represented as Px,x′ ∪ Px′,⊥, where x
′ is the closest marked ancestor

of x′. If there is no such x′, then the depth of x is no greater than t and this case is solved by an

explicit traversal, as shown below. Let us therefore assume the existence of such x′.The case

x = x′ is trivial, as we use h(x′). If x ̸= x′, then by construction |Px,x′| ≤ t. We initialize

a zero-vector s of length m and the current node to x. We then ascend the path Px,x′ in the

direction of x′ until the current node equals x′. (Informally, the path Px,x′ in the direction

towards x′ is our “stream”, and the “next value” is the category of the next node encountered

on this path.) Let the category of the current node be j ∈ [σ]. Then the current sketch s is

updated using Lemma 4.8. This increment thus being an O(m) = O(lgn)-time operation, the

traversal’s time cost is O(tm) = O(t lgn). At the node x′, we return the sum of s and the

sketch h(x′) (which is pre-computed), as the sketch for the entire path Px,⊥.

Now, by virtue of the additivity property of sketches (Lemma 4.8), the answer to a query

with arbitrary query nodes x and y is simply

h(x) + h(y)− 2 · h(LCA(x, y)),

corrected for c(LCA(x, y)) using Lemma 4.8.

Furthermore, Lemma 4.8 implies that the sketches that are thus associated with a fixed tree

form a semigroup. Therefore, the combination of Lemma 4.10 and Lemma 3.4 from Section 3.3.1

yields the following

Theorem 4.5. Let 0 < ϵ, δ < 1 be arbitrarily small constants, and d ∈ N be a constant. Let,

furthermore, T be an ordinal tree on n nodes, each node z of which is assigned a weight w(z) ∈ [n]d,

as well as a category c(z) ∈ [σ].Then, there exists a data structure of O((n+ n
t
lgn) lgd n) words

67

that solve a (1 ± ϵ)-approximate categorical path range counting query in O(t lgd+1 n) time, with

success probability no less than 1− δ.

Proof. The set Rm forms a semigroup with respect to the regular component-wise addition

operation in vectors. Thus, when the marked nodes in Lemma 4.10 are assigned the sketches,

they are assigned semigroup elements in the sense of Definition 3.1 from Section 3.3. Unmarked

nodes are assigned conceptual zero-vectors in view of formal compliance with Definition 3.1;

since the sketches associated with unmarked nodes are never used for computations, this has

no effect on our algorithm.

Now, Lemma 4.10 provides the base data structure – of typeG0, in Lemma 3.4’s terminology

– for the application of Lemma 3.4. We iteratively apply Lemma 3.4 to Lemma 4.10. Since we

start with G0 – supplied by Lemma 4.10 – the Lemma 3.4 is applied exactly d times; hence the

space cost of O((n+ n
t
lgn) lgd n) words and the query time of O(t lgd+1 n).

Furthermore, our data structure fails iff at least one of theΘ(n2d+2) queries fails. The total

probability of failure therefore is at most the sum of the failure probabilities of each of these

Θ(n2d+2) queries. When building the data structure, therefore, we use a stronger guarantee of

δ′ = δ
n2d+2 , which also meansm = O(lg 1

δ′
) = O(lgn).

4.5 Conclusion

This chapter describes data structures that solve the categorical path counting problem, in both

weighted and unweighted trees. For unweighted trees, it shows a conditional lower bound via a

reduction from the Boolean matrix multiplication problem, and then presents a data structure

matching this lower bound up to polylogarithmic factors. The categorical path range counting

data structures devised for trees weighted with d-dimensional weight vectors also achieve the

best previous bounds on categorical range counting, save for polylogarithmic factors, when

d ≥ 2.

Namely, for a given 1 ≤ t ≤ n, we solve the categorical path counting in unweighted trees

in O(t lg lgw σ) time and O(n+ (n/t)2) space, which implies linear space for O(
√
n lg lgw σ)

time, where w = Ω(lgn) is the word size in RAM. For weighted trees, the categorical path

range counting is solved in O(t lg lgn) time and O(n lg lgn+(n/t)4) space, or O(t lgϵ n) time

andO(n+(n/t)4) space, and then extend to the trees weighted with vectors from [n]d, d ≥ 2,

68

We also present solutions to the categorical path counting problem in certain approximate

settings. One of our solutions is probabilistic and uses sketches, while the other one achieves a

2-approximation in sub-logarithmic time, for linear space, but applicable for unweighted trees

only. Namely, the data structure based on sketches uses O((n+ n
t
lgn) lgd n) words to solve

(1±ϵ)-approximate categorical path range counting query in trees weighted with d-dimensional

weight vectors in O(t lgd+1 n) time, with failure probability at most δ, for arbitrarily small

positive constants ϵ, δ and a constant d ∈ N.
Our results in Section 4.2 and Section 4.3 use the same underlying idea of balancing pre-

computation versus explicit traversals. Durocher et al. [36] slash the running time by a further
√
w when using the exact same approach for their linear-space path mode data structure for

unweighted trees. We however could not replicate this step in our solution (presented in

Section 4.2) to categorical path counting. It is therefore an open problem whether better time

than O(
√
n lg lgσ

lgw
) can be achieved for linear-space. For example, when σ = O(n), the query

time becomes O(
√
n lg lgn). Can one achieve O(n) space and O(

√
n) time, even if a speedup

by
√
w proves too ambitious?

Secondly, a lower bound for the categorical path range counting is an interesting open

problem, too. In the proof of their hardness results, Kaplan et al. [76] use an ingenious geometric

design based on perturbing the points of the original point-set and projecting the points to a

subset of the coordinate axes, when applying the inclusion-exclusion principle (akin to what we

did, albeit in a rudimentary form, in the proof of Theorem 4.1). One however has no obvious

way of “perturbing” the nodes of a tree, nor is there a way of ensuring “tree-aware” projections.

Chapter 5

Path Query Data Structures in Practi-

ce

5.1 Introduction

Chapter 3 studied the generalizations of the classical orthogonal range search problems to

trees weighted with multidimensional weight vectors. Therein, we developed a framework for

extending any data structure for a semigroup path sum query problem to higher dimensions,

and applied it to ancestor dominance reporting, path successor, path counting and path re-

porting. Chapter 4 further considered categorical versions of path counting, both in exact and

approximate settings.

At the same time, the sheer volume of raw data, the ever-growing need for low-latency

query responses, resource-limited environments such as in embedded and edge computing, all

drive the practical applications of the advanced data structures to the forefront. Apart from

emerging fields, queries on tree topologies are gaining ground even in established domains such

as RDBMS [103]. At the same time, the expected height of a tree T on n nodes (i.e. the height

over a fixed root of a tree selected uniformly at random from the set of the nn−2 labeled trees)

is
√
2πn [102], which calls for the development of methods beyond naïve.

All of this motivated us to design and implement the data structures for path queries and

evaluate their performance in practice. We perform experimental studies on data structures

69

70

that answer path median, path counting, and path reporting queries in 1D-weighted trees. These

query problems generalize (respectively) the well-known range median query problem in arrays,

as well as the 2D orthogonal range counting and reporting problems (defined in Section 3.1) in

planar point sets, to tree structured data.

Our practical realizations of the best theoretical results on the three queries include tree

extraction, heavy-path decomposition, and wavelet trees among its major components. Our

data structures are implemented in both pointer-based and succinct form, and hence we rely

also on primitives such as bitvectors, balanced parentheses sequences, and rank/select. Our

succinct data structures are even further specialized to be plain or entropy-compressed.

Through experiments on large sets, we show that succinct data structures for path quer-

ies present a viable alternative to standard pointer-based realizations, in practical scenarios;

occupying space close to a compact storage of the input, yet retaining competitive time guar-

antees, they represent an inflexion point between slow naïve solutions and rather fast but

space-prohibitive verbatim implementations of the advanced approaches.

To the best of our knowledge, the material of this chapter is the first foray of algorithm

engineering into path queries over weighted trees.

For a formal introduction, let T be an ordinal tree on n nodes, with each node x associated

with a weight w(x) over an alphabet [σ].Query arguments consist of a pair of vertices x, y ∈ T

along with a 1D interval Q. The goal is to preprocess the tree T for the following types of

queries:

Path Counting: return |{z ∈ Px,y |w(z) ∈ Q}|;
Path Reporting: enumerate {z ∈ Px,y |w(z) ∈ Q};
Path Selection: return the kth (0 ≤ k < |Px,y|) weight in the sorted list of weights on Px,y; k

is given at query time (and Q is not applicable). In the special case of k = ⌊|Px,y|/2⌋, a
path selection is a path median query.

5.1.1 Previous Work

Previous work on the query problems considered in this chapter includes that of Krizanc et

al. [77], who were the first to introduce the path median problem (referred to in this chapter as

PM) in trees, and gave an O(lgn) query-time data structure with the space cost of O(n lg2 n)

words. They also gave an O(n logb n) words data structure to answer PM queries in time

O(b lg3 n/ lg b), for any fixed 1 ≤ b ≤ n.Chazelle [24] gave an emulation dag-based linear-space

71

data structure for solving path counting (referred to as PC in this chapter) queries in weighted

trees in time O(lgn).

While [77, 24] design different data structures for PM and PC, He et al. [68, 70] use tree

extraction to solve both PC and the path selection problem (henceforth PS), as well as the path

reporting problem (PR, in this chapter), which they were the first to introduce. The running

times for PS/PC were O(lgσ), while a PR query is answered in O((1 + κ) lgσ) time, with

κ henceforth in this chapter denoting output size. Also given is an O(n lg lg σ)-word and

O(lgσ + κ lg lg σ) query time solution, for PR, in the RAM model.

Later, solutions based on succinct data structures emerged. (The convention throughout

this chapter is that a data structure is succinct if its size in bits is close to the information-

theoretic lower bound, reviewed in Section 2.1.3.) Patil et al. [98] presented an O(lgn · lgσ)
query time data structure for PS/PC, occupying 6n+ n lgσ + O(n lgσ) bits of space. Therein,

the tree structure and the weights distribution are decoupled and delegated to respectively

heavy-path decomposition [104] and wavelet trees [91]. Their data structure also solves PR in

O(lgn lgσ + (1 + κ) lgσ) query time.

Parallel to [98], He et al. [68, 70] devised a succinct data structure occupying nH(WT) +

O(n lgσ) bits of space to answer PS/PC in O(lgσ

lg lgn
+ 1), and PR in O((1 + κ)(lgσ

lg lgn
+ 1))

time. Here, WT is the multiset of weights of the tree T, and H(WT) is the entropy thereof.

Combining tree extraction and the ball-inheritance problem [21] (see also Lemma 3.2), Chan

et al. [19] proposed further trade-offs, one of them being an O(n lgϵ n)-word structure with

O(lg lgn+ κ) query time, for PR.

Despite the vast body of theoretical work, little is known on the practical performance of

the data structures for path queries, with empirical studies on weighted trees definitely lacking,

and existing related experiments being limited to navigation in unlabeled trees only [8], or to

very specific domains [1, 92]. By contrast, traditional orthogonal range queries are attracting

fair amount of attention from the experimental angle [9, 16, 72]. This chapter of the thesis

therefore contributes to remedying this imbalance.

5.1.2 Our Results

In this chapter, we provide an experimental study of data structures for path queries. The

types of queries we consider are PM, PC, and PR. The theoretical foundation of our work are

the data structures and algorithms developed in [68, 98, 69, 70]. The succinct data structure

72

by He et al. [70] is optimal both in space and time in the word-RAM model. However, it

builds on components that are likely to be cumbersome in practice. We therefore present a

practical compact implementation of this data structure that uses 3n lgσ + O(n lgσ) bits of

space as opposed to the original nH(WT) + O(n lgσ) bits of space in [70]. In the interests of

brevity, we henceforth refer to the data structures based on tree extraction using the prefix

ext. Our implementation of ext achieves the query time ofO(lgσ) for PM and PC queries, and

O((1 + κ) lgσ) time for PR. Further, we present an exact implementation of the data structure

(henceforth referred to using the prefix hpw) by Patil et al. [98]. The theoretical guarantees of

hpw are 6n+ n lgσ + O(n lgσ) bits of space, with O(lgn lgσ) and O(lgn lgσ + (1 + κ) lgσ)

query times for respectively PM/PC and PR. Although hpw is optimal neither in space nor in

time, on average it proves competitive with ext on the practical datasets we use. Further,

we evaluate time- and space-impact of succinctness by realizing plain pointer-based versions

of both ext and hpw. We show that succinct data structures based on ext and hpw offer an

attractive alternative for their fast but space-consuming counterparts, with query-time slow-

down of 30-40 times yet commensurate savings in space. We also implement a naïve approach

of not preprocessing the tree at all but rather answering the query by explicit scanning, in

pointer-based and succinct variations. The succinct solutions ext and hpw compare favourably

to the naïve ones, the slowest former being 7-8 times faster than naïve in PM, while occupying

up to 20 times less space. We also compare the performance of different succinct solutions

relative to each other.

5.2 Preliminaries

This section introduces main algorithmic techniques at the core of our data structures.

5.2.1 Balanced Parentheses Representations of Ordinal Trees

Compact representation of ordinal trees is a well-researched area, mainstreammethodologies in-

cluding balanced parentheses (BP) [73, 86, 50, 81, 85], depth-first unary degree sequence (DFUDS) [14,

51, 75], level-order unary degree sequence (LOUDS) [73, 31], and tree covering (TC) [51, 67, 39].

Of these, BP-based representations “combine good time- and space-performance with rich

functionality” in practice [8], and we use BP for succinct representation of trees, in our solutions.

BP is a way of linearising the tree by emitting ‘(” upon first entering a node and “)” upon

73

exiting, having explored all its descendants during the preorder traversal of the tree.

1

2

3

4 5

6

7

8

9

10

(((() ()) ()) ((()) ()))
1 1 1 1 0 1 0 0 1 0 0 1 1 1 0 0 1 0 0 0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Figure 5.1: An ordinal tree, preorder labeled. Sequences: (top) Balanced parentheses sequence BP;
(middle) bitvector, representing BP; (bottom) positions. In BP, “(” is 1. Arrows point to the opening
and closing parentheses, corresponding to the node. Shadings mark subtrees.

To develop intuition, let us refer to Figure 5.1. Technically, a BP sequence is nothing but

an ordinary bitvector (Section 2.2.1), with an opening parenthesis encoded as one, and the

closing parenthesis encoded as zero. Since we identify nodes with their preorder numbers,

we move back and forth between a node and its opening parenthesis using pos2node(·) and
node2pos(·) convenience wrappers around the corresponding rank and select calls, as in

node2pos(x) = select1(BP, x), pos2node(i) = rank1(BP, i) + 1, given that BP [i] is

an opening parenthesis. For further examples of BP primitives, one observes that a sub-tree

rooted at a particular node x is encoded in a portion between the parentheses-pair (say, at

positions i and j) corresponding to x. It follows that a node x is an ancestor of a node y if

and only if the interval of the former encloses the interval of the latter; the corresponding

primitive is is_ancestor(). For these i and j, a call to is_opening(i) returns true, whereas

is_opening(j) is false. Furthermore, for a closing parenthesis at j a primitive find_open(·)
is defined to return i; and enclose(i) returns the opening position of the tightest pair enclosing

i and j. Now, finding the LCA of two nodes would be equivalent to enclosing both of the

opening parentheses corresponding to these nodes by the tightest pair of matching parentheses.

To sum up, BP is one of the concrete tree representations that support the operations in

Table 2.1(a) in optimal time and space.

74

5.2.2 Heavy-Path Decomposition

Heavy-path decomposition (HPD) [104] is a well-known approach of imposing a structure on

trees. In a broader context, HPD could perhaps be conceptualized as another instantiation

of the folklore “smaller half trick”,1 when judicious partitioning of the problem results in

better time complexity. In HPD, for each non-leaf node, we define its heavy child as the child

whose sub-tree has the maximum cardinality (ties broken arbitrarily). For example, if a node x

has children y and z with sub-tree sizes 2 and 3 respectively, then z is x’s heavy child. HPD

decomposes the tree into a set of disjoint chains, in each of which a node is followed by its heavy

child. The crucial property is that any root-to-leaf path in the tree encounters O(lgn) distinct

chains. Indeed, when we descend to the heavy child, we are still in the same chain; when we

descend to a non-heavy child, hanging off the chain, the size of the sub-tree we found ourselves

in has shrunk by at least a half. To illustrate the decomposition, in Figure 5.2, there are five

chains overall: 1 → 2 → 3 → 5, three singleton chains 4, 6, and 10, and one more chain

7 → 8 → 9. The heads of these chains are, respectively, 1, 4, 6, 10, and 7. To characterize a

chain in plainer words: its tail is a leaf, and its head is either the root of the tree, or a node

that is not the heavy child of its parent. For example, in Figure 5.2, the head 7 of the chain

7→ 8→ 9 is not the heavy child of its parent, node 1.

1

2

3

4 5

6

7

8

9

10

1 2 3 5 4 6 7 8 9 10

heavy path 1 heavy path 2

Figure 5.2: Heavy paths in a tree. Heavy paths (shown in blue and orange) lie contiguously in a segment,
if one descends to a heavy child first during the depth-first search.

Assume each chain is preprocessed to answer some type of range query. Since a chain is a

1 See also [30] and [61], where the smaller half trick is used for finding repetitions in a string.

75

linear structure, we avail ourselves of the plethora of data structures for simple 1D arrays. Then,

since each path in a tree can be decomposed into O(lgn) disjoint sub-paths – sub-chains of

some chains – the entire query is spread across O(lgn) disjoint sub-queries over the already-

preprocessed chains. In practical terms, HPD enables traversing the path between two arbitrary

nodes x and y by skipping over the portions that lie in one chain.

There are many applications of HPD. Interesting examples include random access to

grammar-compressed strings [15] and compressed string dictionaries [40]. In these use-cases, by

contracting each chain into a node, a tree is condensed to guarantee a height of O(lgn). In the

context of our work, the role of HPD is that of enabling efficient path queries. To sum up the

section with a specific example, one could use HPD for path minimum queries (Section 3.2.3),

as follows: (1) each chain is individually preprocessed to answer RMQ in constant time [41];

(2) the query path is decomposed into O(lgn) disjoint segments each belonging to a distinct

chain; (3) the answer is combined to be the minimum of the sub-query call-back values. In

our running example in Figure 5.2, a minimum weight on the path from node u = 5 to node

v = 10 would be found querying three chains: 1→ . . . → 5 in its entirety, a sub-chain 7 of

7→ . . . → 9, and a singleton chain 10.

5.3 Data Structures for Path Queries

This section gives the design details of the hpw and ext data structures.

5.3.1 Data Structures Based on Heavy-Path Decomposition

We describe the approach of [98], which is based on heavy-path decomposition (HPD) [104]

described in Section 5.2.

Patil et al. [98] used HPD to decompose a path query into O(lgn) queries in sequences.

To save space, they designed the following data structure to represent the tree and its HPD.

If x is the head of a chain φ, all the nodes in φ have a (conceptual) reference pointing to x,

while x points to itself. A reference count of a node x (denoted as rcx) stands for the number of

times a node serves as a reference. Obviously, only heads feature non-zero reference counts –

precisely the lengths of their respective chain. The reference counts of all the nodes are stored

in unary in preorder in a bitvector B = 10rc110rc2 . . . 10rcn using 2n+ O(n) bits. Then, one

has that rcx = rank0(B, select1(B, x + 1)) − rank0(B, select1(B, x)). The topology

76

1

2

3

4 5

6

7

8

9

10

1

2 3 4 5 6 7

8 9 10

Figure 5.3: The original tree T (left) and its transformation T ′ (right). The tree T ′ encodes the structure
of the heavy-path decomposition of T.

of the original tree T is represented succinctly in another 2n + O(n) bits. In addition, they

encode the HPD structure of T using a new tree T ′ that is obtained from T via the following

transformation. All the non-head nodes become leaves and are directly connected to their

respective heads; the heads themselves (except for the root) become children of the references

of their original parents. All these connections are established respecting the preorder ranks of

the nodes in the original tree T. Namely, a node farther from the head attaches to it only after

the higher-residing nodes of the chain have done so. This transformation preserves the original

preorder ranks. Figure 5.3 presents an example of such transformation. On T ′, operation ref(x)

is supported, which returns the head of chain to which the node x in the original tree belongs.

To encode weights they call Cx the weight-list of x if it collects, in preorder, all the weights

of the nodes for which x is a reference. Thus, a non-head node’s list is empty; a head’s list spells

the weights in the relevant chain. Define C = C1C2 . . . Cn.Then, in C, the weight of x ∈ T

resides at position

1 + select1(B, ref(x))− ref(x) + depth(x)− depth(ref(x)) (5.1)

(where depth(x) and ref(x) are provided by T and T ′, respectively). C is then encoded in

a wavelet tree (WT). To answer a query, T, T ′, B, and Equation (5.1) are used to partition

the query path into O(lgn) sub-chains that it overlaps in HPD; and for each sub-chain, one

computes the interval in C storing the weights of the nodes in the chain. Im denotes the set of

intervals computed. Precisely, for a node x, one uses B to find out whether x is the head of its

chain; if not, the parent of x in T ′ returns one (say, y). Then Equation (5.1) maps the path Ax,y

to its corresponding interval in C. One proceeds to the next chain by fetching the (original)

77

parent of y, using T.Then, the WT is queried with O(lgn) simultaneous (i) range quantile2(for

PM); or (ii) 2D orthogonal range (for PC and PR) queries.

Range quantile query over a collection of ranges is accomplished via a straightforward

extension of the algorithm of Gagie et al. [47]. One descends the levels of the wavelet treeWC

maintaining a set of current weights [a, b] (initially [σ]), the current node v (initially the root

ofWC), and Im.When querying the current node v ofWC with an interval [lj, rj] ∈ Im, one

finds out, in O(1) time, how many weights in the interval are lighter than the mid-point c

of [a, b], and how many of them are heavier. The sum of these values then determines which

subtree ofWC to descend to. There being O(lgσ) levels inWC , and spending O(1) time for

each segment in Im, the overall running time is O(m lgσ) = O(lgn lgσ). PC/PR proceed by

querying each interval, independently of the others, with the standard 2D search overWC .

5.3.2 Data Structures Based on Tree Extraction

The solution by He et al. [70] is based on performing a hierarchy of tree extractions, as described

in Section 3.2.2. Namely, one starts with the original tree T weighted over [σ], and extracts two

trees T0 = T1,m and T1 = Tm+1,σ, respectively associated with the intervals I0 = [1,m] and

I1 = [m+ 1, σ], wherem = ⌊1+σ
2
⌋.Then both T0 and T1 are subject to the same procedure,

stopping only when the current tree is weight-homogeneous. We refer to the tree we have

started with as the outermost tree.

The key insight of tree extraction is that the number of nodes n′ with weights from I0 on

the path from u to v equals n′ = depth0(u0) + depth0(v0)− 2 · depth0(z0) + Jw(z) ∈ I0K,

where depth0(·) is the depth function in T0, z = LCA(u, v), u0, v0, z0 are the T0-views of u, v,

and z.The key step is then, for a given node x, how to efficiently find its 0/1-parent, whose

purpose is analogous to a rank-query when descending down a wavelet tree. Consider a node

x ∈ T and its T0-view x0.The corresponding node x′ ∈ T of x0 ∈ T0 is then called 0-parent of

x.The 1-parent is defined analogously. This is indeed a special case of the level_anc operator

in Table 2.1, since level_anc0(T, x′, 1) is nothing but the 0-parent of x′. Since level ancestors

are not used in this chapter (i.e. except for the special case mentioned), for clarity we use the

terms 0/1-parent, instead.

Supporting 0/1-parents in compact space is one of the main implementation challenges of

2In the range quantile problem, one preprocesses a numerical array a1a2 . . . an for queries that return the kth

smallest element among aiai+1 . . . aj , with k and i, j specified at query time.

78

the technique, as storing the views explicitly is expensive. In [70], the hierarchy of extractions

is done as described in Section 3.2.2, by dividing the range not to 2 but f = O(lgϵ n) parts,

with 0 < ϵ < 1 being a constant. They classify the nodes according to weights using these

f = ⌈lgϵ n⌉ labels and use tree covering (reviewed in Section 2.3.2) to represent the tree with

small labels in order to find Tα-views for arbitrary α ∈ [σ], in O(1) time. They also use this

representation to identify, in constant time, which extractions to explore. Therefore, at each of

theO(lgσ/ lg lgn) levels of the hierarchy of extractions, constant time work is done, yielding an

O(lgσ/ lg lgn)-time algorithm for PC. Space-wise, it is shown that each of the O(lgσ/ lg lgn)

levels can be stored in 2n+nH0(W)+O(n lgσ) bits of space in total (whereW is the multiset

of weights on the level) which, summed over all the levels, yields nH0(WT)+O(n lgσ/ lg lgn)

bits of space. The components of this optimal result, however, use word-parallel techniques

that are unlikely to be practical. In addition, one of the components, tree covering for trees

labeled over [σ], σ = O(lgϵ n) has not been implemented and experimentally evaluated even

for unlabeled versions thereof. Finally, lookup tables for the word-RAM data structures may

either be rendered too heavy by e.g. word alignment, or too slow by the concomitant arithmetic

for accessing its entries. In practice, small blocks of data are usually explicitly scanned [8].

However, we can see no fast way to scan small labeled trees. At the same time, a generic

multi-parentheses approach [91] would spare the effort altogether, immediately yielding a

4n lgσ+2n+ O(n lgσ)-bit encoding of the tree, with O(1)-time support for 0/1-parents. We

achieve instead 3n lgσ + O(n lgσ) bits of space, as we proceed to describe next.

We store 2n + O(n) bits as a regular BP-structure S (Section 5.2) of the original tree, in

which a 1-bit represents an opening parenthesis, and a 0-bit represents a closing one, and

mark in a separate length-n bitvector B the types (i.e. whether it is a 0- or 1-node) of the n

opening parentheses in S.The type of an opening parenthesis at position i in S is thus given by

access(B, rank1(S, i)).Given S andB, we find the t ∈ {0, 1}-parent of v with an approach
described in [69]. For completeness, we outline in Algorithm 1 how to locate the Tt-view of a

node v.

First, find the number of t-nodes preceding v (line 4). If none exists (line 5), we are done;

otherwise, let u be the t-node immediately preceding v in preorder (line 7). If u is an ancestor

of v, it is the answer (line 9); otherwise, set z = LCA(u, v). If z is a t-node, or non-existent

(because the tree is actually a forest), then return z or null, respectively. Otherwise (z exists

and not a t-node), in line 14 we find the first t-descendant r of z (it exists because of u). This

79

Algorithm 1 Locate the view of v ∈ T in Tt, where Tt is the extraction from T of the t-nodes

Require: t ∈ {0, 1}
1: function view_of(v, t)
2: if B[v] == t then ▷ v is a t-node itself
3: return rankt(B, v)

4: λ← rankt(B, v) ▷ how many t-nodes precede v?
5: if λ == 0 then
6: return null
7: u← selectt(B, λ) ▷ find the λth t-node
8: if LCA(u, v) == u then
9: return rankt(B, u)

10: z← LCA(u, v) ▷ z is LCA of a t-node u and a non-t-node v
11: if z == null or B[z] == t then ▷ z is a t-node⇒ ∄ t-parent closer to v
12: return rankt(B, z) ▷ or null
13: λ← rankt(B, z) ▷ how many t-nodes precede z?
14: r← selectt(B, λ+ 1) ▷ the first t-descendant of z
15: zt← rankt(B, r) ▷ zt is the Tt-view of r
16: p← Tt.parent(zt) ▷ p can be null if zt is 0
17: return p

𝑧

𝑢 𝑣

(a)

𝑧

𝑢

𝑟

𝑣

𝑝′

(b)

Figure 5.4: An illustration to the procedure of finding the t-parent of v and the Tt-view of v, given in
Algorithm 1. Sub-fig. (a) illustrates the case when z is a t-node, whereas in (b), one first maps r to a
node in Tt, finds the parent of the result, and then maps it back to the original node p′ ∈ T.

80

descendant cannot be a parent of v, since otherwise we would have found it before. It must

share though the same t-parent with v. We map this descendant to a node zt in Tt (line 15).

Finally, we find the parent p of zt in Tt (line 16). Figure 5.4 summarizes the discussions of this

paragraph.

The combined cost of S and B is 2n + n + O(n) = 3n + O(n) bits. At each of the

lgσ levels of extraction, we encode 0/1-labeled trees in the same way, so the total space is

3n lgσ + O(n lgσ) bits.

Query algorithms in the ext data structure proceed within the generic framework of

extracting T0 and T1. Let n
′ = |Pu0,v0|.We next describe the algorithms for PM and PC/PR.

Path median. In PM, we recurse on T0 if k < n′, for a query that asks for a node with

the kth smallest weight on the path Pu0,v0 ; otherwise, we recurse on T1 with k ← k − n′ and

u1, v1.We stop upon encountering a tree with homogeneous weights. This logic is embodied

in Algorithm 2. Theoretical running time is O(lgσ), as all the primitives used are O(1)-time.

We enter Algorithm 2 with several parameters – the current tree T , the query nodes u, v, the

LCA z of the two nodes, the quantile k we are looking for, the weight-range [a, b], and a

number w. These are initially set, respectively, to be the outermost tree, the original query

nodes, the LCA of the original query nodes, the median’s index (i.e. half the length of the

corresponding path in the original tree), the weight range [σ], and the weight of the LCA of

the original nodes. We maintain the invariant that T is weighted over [a, b], z is the LCA

of u and v in T. Line 2 checks whether the current tree is weight-homogeneous. If it is, we

immediately return the current weight a (line 3). Otherwise, the quantile value we are looking

for is either on the left or on the right half of the weight-range [a, b]. In lines 5-11 we check,

successively, the ranges [a0, b0] and [a1, b1] to determine how many nodes on the path from u

to v in T have weights from the corresponding interval. The accumulator variable acc keeps

track of these values and is certain to always be at most k.When the next value of acc is about

to become larger than k (line 11), we are certain that the current weight-interval is the one

we should descend to (line 12). The invariants are maintained in line 6: there, we calculate

the views of the current nodes u, v, and z in the extracted tree we are looking at. It is clear

that O(lgσ) levels of recursion are explored. At each level of recursion, a constant number of

view_of and depth operations are performed (lines 6-7). Hence, assuming the O(1)-time for

the latter operations themselves, we have a O(lgσ) query-time algorithm, overall.

81

Algorithm 2 Selection: return the kth smallest weight on the path from u ∈ T to v ∈ T

Require: z = LCA(u, v), a ≤ b, k ≥ 0

1: function select(T, u, v, z, k, w, [a..b])

2: if a == b then

3: return a

4: acc← 0

5: for t ∈ 0..1 do

6: iu, iv, iz← view_of(u, t), view_of(v, t), view_of(z, t)

7: du, dv, dz← depth(Bt, ix), depth(Bt, iy), depth(Bt, iz)

8: dw← du+ dv − 2 · dz
9: if at ≤ w ≤ bt then ▷ [a0..b0] = [a..c], [a1..b1] = [c+ 1..b], c = (a+ b)/2

10: dw← dw + 1

11: if acc+ dw > k then

12: return SELECT(Tt, iu, iv, iz, k − acc, w, [at..bt])

13: acc← acc+ dw

14: assert(false); ▷ unreachable statement – line 12 must execute at some point

Path counting and path reporting. A procedure for the PC and PR is essentially

similar to that for the PM problem. We maintain two nodes, u and v, as the query nodes with

respect to the current extraction T , and a node z as the lowest common ancestor of u and v

in the current tree T. Initially, u, v ∈ T are the original query nodes, and T is the outermost

tree. Correspondingly, z is the LCA of the nodes u and v in the original tree; we determine

the weight of z and store it in w, which is passed down the recursion. Let [a, b] be the query

interval, and [p, q] be the current range of weights of the tree. Initially, [p, q] = [1, σ]. First,

we check whether the current interval [p, q] is contained within [a, b]. If so, the entire set

Au,z ∪ Av,z belongs to the answer. Here, we also check whether w ∈ [a, b].Then we recurse

on Tt (t ∈ {0, 1}) having computed the corresponding Tt-views of the nodes u, v, and z, and

with the corresponding current range.

Algorithm 3 is adapted from [70], and reasoning similar to Algorithm 2 applies. Now we

have a weight-range [p, q], and maintain that [p, q] ∩ [a, b] ̸= ∅ (the appropriate action is in

line 12). In line 2 we check if the query range [p, q] is completely inside the current range. If so,

we return all the nodes (if report argument is set to true) and the number thereof (for counting

case). If not, we descend to T0 and T1 (line 14), as discussed previously. Algorithm 3 emulates

82

traversal of a path in range tree, maintaining the current weight range [a, b] and halving at at

each step (line 14). As operations in lines 15 and 16 are constant-time, the algorithm runs in

time O(lgσ).

Algorithm 3 Counting and reporting.

Require: z = LCA(u, v), p ≤ q

1: function countreport(T, u, v, z, w, [p, q], [a, b], vec = null, report = False)

2: if p ≤ a ≤ b ≤ q then

3: if report then

4: for pu ∈ A(u) and pu ̸= z do

5: vec← vec+ original_node(pu)

6: for pv ∈ A(v) and pv ̸= z do

7: vec← vec+ original_node(pv)

8: if a ≤ w ≤ b then

9: vec← vec+ original_node(pv)

10: return depth(u) + depth(v)− 2depth(z) + Jw ∈ [p, q]K

11: if [p, q] ∩ [a, b] = ∅ then
12: return 0

13: res← 0

14: for t ∈ 0..1 do ▷ [a0, b0] = [a,m], [a1, b1] = [m+ 1, b], m = (a+ b)/2

15: iu, iv, iz← view_of(u, t), view_of(v, t), view_of(z, t)

16: du, dv, dz← depth(Bt, ix), depth(Bt, iy), depth(Bt, iz)

17: res← res+ countreport(Tt, iu, iv, iz, w, [p, q], [at, bt], vec, report)

18: return res

To summarize, the variant of ext that we design here uses 3n lgσ+O(n lgσ) bits to support

PM and PC in O(lgσ) time, and PR in O((1 + κ) lgσ) time. Compared to the original succinct

solution [70] based on tree extraction, our variant uses about 3 times the space with a minor

slow-down in query time, but is easily implementable using bitvectors and BP, both of which

have been studied experimentally (see e.g. [8, 91] for an extensive review).

83

5.4 Experimental Results

We now conduct experimental studies on the data structures for path queries that we have

implemented.

5.4.1 Implementation

For ease of reference, we outline the implemented data structures in Table 5.2.

Naïve approaches (both plain pointer-based nv/nvL and succinct nvc) resolve a query on

the path Px,y by explicitly traversing it from x to y. At each encountered node, we either

(i) collect its weight into an array (for PM); (ii) check if its weight is in the query range (for

PC/PR); (iii) if the check in (ii) succeeds, we collect the node into a container (for PR). In PM,

we subsequently call the standard introspective selection algorithm [87] over the array of collected

weights. Depths and parent pointers, explicitly stored at each node, guide in traversal from x

and y upwards to their common ancestor. Plain pointer-based tree topologies are stored using

the forward-star [5] representation. In nvL, we equip nv with the linear-space LCA-support

structure of [13] to find lowest common ancestors of the query nodes in O(1) time.

Succinct structures extc/extp/hpwc/hpwp are implemented with the help of the succinct

data structures library sdsl-lite of Gog et al. [53]. To implement hpw and the practical

variant of ext we designed in Section 5.3.2, two types of bitvectors are used: a compressed

bitvector [100] (implemented in sdsl::rrr_vector of sdsl-lite) and plain bitvector (im-

plemented in sdsl::bit_vector of sdsl-lite). For nvc, the weights are stored using ⌈lgσ⌉
bits each in a sequence and the structure theoretically occupies 2n+n lgσ+ O(n lgσ) bits. For

uniformity, across our data structures, tree navigation is provided solely by a BP representation

based on [51] (implemented in sdsl::bp_support_gg), chosen on the basis of our benchmarks.

Plain pointer-based implementation ext† is an implementation of the solution by He

et al. [70] for the pointer-machine model, which uses tree extraction. In it, the views x0 ∈
T0, x1 ∈ T1 for each node that arises in the hierarchy of extractions, as well as the depths in

T, are explicitly stored. Similarly, hpw† is a plain pointer-based implementation of the data

structure by Patil et al. [98].

The source code of the library resides at https://github.com/serkazi/tree_path_

queries.

https://github.com/serkazi/tree_path_queries
https://github.com/serkazi/tree_path_queries

84

num nodes diameter σ logσ H0 Description

eu.mst.osm 27,024,535 109,251 121,270 16.89 9.52 An MST we constructed over
map of Europe [97]

eu.mst.dmcs 18,010,173 115,920 843,781 19.69 8.93 AnMSTwe constructured over
European road network [58]

eu.emst.dem 50,000,000 175,518 5020 12.29 9.95 An Euclidean MST we
constructed over DEM of
Europe [96]

mrs.emst.dem 30,000,000 164,482 29,367 14.84 13.23 An Euclidean MST we con-
structed over DEMofMars [89]

Table 5.1: Datasets description. DEM stands for Digital Elevation Model, and MST for minimum
spanning tree. Weights are over [σ], and H0 is the entropy of the multiset of weights. In DEM,
elevation (in meters) is used as weights. For eu.mst.osm, distance in meters between locations, and for
eu.mst.dmcs, travel time between locations, for a proprietary “car” profile in tenths of a second, are
used as weights.

5.4.2 Experimental Setup

The platform used is a 128GiB RAM, Intel(R) Xeon(R) Gold 6234 CPU 3.30GHz server

running 4.15.0-54-generic 58-Ubuntu SMP x86_64 kernel. The build is due to clang-8 with

-g,-O2, -std=c++17,mcmodel=large,-NDEBUG flags.

Query generation. We generated query paths by choosing a pair uniformly at random

(u.a.r.). To generate a range of weights, [a, b], we follow the methodology of [26] and consider

large, medium, and small configurations: givenK,we generate the left bound a ∈ [W] u.a.r.,

whereas b is generated u.a.r. from [a, a+ ⌈W−a
K
⌉].We setK = 1, 10, and 100 for respectively

large, medium, and small. To counteract skew in weight distribution in some of the datasets,

when generating the weight-range [a, b], we in fact generate a pair from [n] rather than [σ] and

map the positions to the sorted list of the input-weights, ensuring the number of nodes covered

by the generated weight-range to be proportional toK−1.

Experimental data. In the context of our experiments, a relevant dataset would both

have a tree inherent to it and “naturally-occurring” weights. While tree topologies per se are

abound (see e.g. University of Chile’s collection of balanced parentheses representations of

various tree-shaped entities [43]), large instances of “real-world” weighted trees are harder to

come by. We found Geographical Information Systems (GIS) to be a potential source of such data;

hence our choices of datasets outlined in Table 5.1.

85

Symbol Description
po
in
te
r-
ba
se
d nv Naïve data structure in Section 5.4.1

nvL Naïve data structure in Section 5.4.1, augmented with LCA of [13]

ext† A solution based on tree extraction [70] in Section 5.2

hpw† A non-succinct version of the wavelet tree- and heavy-path decomposition-

based solution of [98] in Section 5.3.

nvc Naïve data structure of Section 5.4.1, using succinct data structures to represent

the tree structure and weights

su
cc
in
ct

extc 3n lgσ + O(n lgσ)-bits-of-space scheme for tree extraction of Section 5.3.2,

with compressed bitvectors

extp 3n lgσ + O(n lgσ)-bits-of-space scheme for tree extraction of Section 5.3.2,

with uncompressed bitvectors

hpwc Succinct version of hpw, with compressed bitvectors

hpwp Succinct version of hpw, with uncompressed bitvectors

Table 5.2: The implemented data structures and the abbreviations used to refer to them.

In Table 5.1, we endow our datasets with descriptive handles, and give the relevant statistics,

including tree diameter (i.e. the longest distance in nodes between any two nodes of the tree),

alphabet size, and entropy of the weight-set.

We next proceed to describe in greater detail each of the entries of Table 5.1.

The eu.mst.osm dataset originates from Open Street Map (OSM) project [97]. Specifically,

we converted OSM data from [52] to *.sql insert-files using a well-known software tool [84].

Our instance of PostgreSQL RDBMS, extended with Postgis [34], was then populated with the

INSERT statements obtained using osm2po, thereby making the OSM data routable. Finally,

since the OSM data still contains information that is irrelevant to our purposes, we extract all

possible links in source target m format into a regular *.csv file, using a simple SQL-query.

3 Thus, each line in our final file states that there is a road from source to target of length m

meters, where the former two are some entities internal to OSM, and mere integer IDs for all

practical purposes.

Next, we find a largest-cardinalityminimum spanning tree (MST), for simplicity considering

the graph to be bidirectional. We then orient the tree via a depth-first-search from a randomly

selected but fixed source. The nodes are then assigned the weights of the incoming arcs (with

the source being assigned zero).

3There are other ways of accomplishing this step, e.g. via pgRouting at http://pgrouting.org/.

http://pgrouting.org/

86

The eu.mst.dmcs dataset is from the 9th DIMACS challenge [33], and was downloaded

from [58]. The graph was converted from the raw DIMACS format, keeping only the largest

strongly-connected component and removing multi-arcs. The metric is travel distance, in

meters [11]. The tree was obtained in the way exactly similar to the eu.mst.osm dataset.

Digital elevation models (DEM) lend itself to the conversion into weighted trees rather

naturally, as the (x, y) coordinates supply the basis for tree topology, and the elevation z serves

as the weight. These datasets represent elevations above certain levels on a planet’s surface

(eu.emst.dem, mrs.emst.dem) and are each a result of the following two-phase procedure.

We outline the procedure for the first dataset, as the procedure for the second one is

analogous.

The first, preprocessing phase, fetches original raw data from [96], as 30-by-30 degree

GeoTIFF tiles. Then the tiles are projected into Cartesian plane, in Transverse Mercator projection

using meters, via the gdalwarp tool of theGDAL Geospatial Data Abstraction software Library [49].

The projection is further dumped into theXY Z format via gdal_translate tool fromGDAL,

invoking the command gdal_translate with relevant input/output files and command-line

arguments. Here, what is referred to as a file in XY Z format is essentially a collection of

rows, containing x, y, and z values, being respectively the xy-coordinates of the projection

along the (original) elevation of the projected point. Finally, the nodata-values concomitant to

a projection were removed with UNIX’s standard sed editor.

The second phase constructs the Euclidean Minimum Spanning Tree (EMST) using the data

in the XY Z format obtained during phase one. We used The Computational Geometry Al-

gorithms Library [105]; namely, we trivially adapted the example at [35]. The Mars Elevation

(mrs.emst.dem) was obtained from [89] and processed similarly. Prior to building EMST,

eu.emst.dem and mrs.emst.dem datasets were sampled u.a.r. to have the sizes shown in

Table 5.1. In the case of mrs.emst.dem, the data has already been supplied in theXY Z format,

sparing us the projection and translation steps.

5.4.3 Space Performance and Construction Costs

Each data structure we implement (be it ever nv-, ext-, or hpw-family), taken individually,

answers all three types of queries (PM, PC, and PR). Hence, we consider space consumption first.

The upper part of the Table 5.3 shows the space usage of our data structures. The structures

87

Dataset nv nvL hpw† ext† nvc extc extp hpwc hpwp
sp

ac
e

eu.mst.osm 406.3 972.1 3801 5943 21.71 59.85 75.74 21.71 34.42
eu.mst.dmcs 406.4 974.0 4274 6768 34.46 82.16 106.0 29.69 48.77
eu.emst.dem 394.1 988.5 3342 4613 19.64 45.41 59.15 19.64 31.66
mrs.emst.dem 386.7 1005 3579 5383 17.35 51.71 66.02 17.35 28.80

pe
ak

/t
im

e eu.mst.osm 491.0/1 987.9/5 3785/28 9586/47 21.71/1 295.0/23 295.0/23 1347/62 1347/61
eu.mst.dmcs 439.8/1 1002/4 4403/19 12382/37 29.69/1 399.7/18 399.7/18 1360/42 1360/42
eu.emst.dem 401.0/2 1021/10 3460/47 5286/67 19.64/1 287.6/32 287.6/32 1333/115 1333/115
mrs.emst.dem 392.4/1 1016/5 3719/30 6027/46 17.35/1 269.3/22 269.3/22 1337/69 1337/69

Table 5.3: Storage space and construction characteristics. (upper) Space occupancy of our data structures,
in bits per node (bpn), when loaded into memory; (lower) peak memory usage (m bpn) and time (t in
seconds) during construction is shown as m/t.

nv/nvL are lighter than ext†/hpw†, as expected. Adding fast LCA support (in our implement-

ation of the solution of [12]) doubles the space requirement for nv, whereas succinctness (nvc)

uses up to 20 times less space than nv. The difference between ext† and hpw†, in turn, is in

explicit storage of the 0-views for each of the Θ(n lgσ) nodes occurring during tree extraction.

In hpw†, by contrast, rank0 is induced from rank1 (via subtraction) – hence the difference in

the empirical sizes of the otherwise Θ(n lgσ)-word data structures.

The succinct nvc’s empirical space occupancy is close to the information-theoretic minimum

given by lgσ + 2 (Table 5.1). The structures extc/extp occupy about three times as much,

which is consistent with the design of our practical solution (Section 5.3.2). It is interesting to

note that the data structure hpwc occupies space close to bare succinct storage of the input alone

(nvc). Entropy-compression significantly impacts both families of succinct structures, hpw and

ext, saving up to 20 bits per node when switching from plain bitvector to a compressed one.

Compared to pointer-based solutions (nv/nvL/hpw†/ext†), we note that extc/extp/hpwc/hpwp

still allow usual navigational operations on T , whereas the former shed this redundancy, to save

space, after preprocessing.

Overall, the succinct hpwp/hpwc/extp/extc perform very well, being all well-under 1

gigabyte for the large datasets we use. This suggests scalability: when trees are so large as not to

fit into main memory, it is clear that the succinct solutions are the method of choice.

The lower part in Table 5.3 shows peak memory usage (m, in bits per node) and construc-

tion time (t, in seconds), as m/t.The structures extp/extc are about three times faster than

hpwp/hpwc to build, and use four times less space at peak. This is expected, as hpw builds two

different structures (HPD and then WT). This is reversed for ext†/hpw†; time-wise, as ext†

performs more memory allocations during construction (although our succinct structures are

88

Dataset nv nvL ext† hpw† nvc extc extp hpwc hpwp

me
di

an
eu.mst.osm 658 475 4.22 6.10 7078 85.3 51.1 111 51.2
eu.mst.dmcs 566 412 5.16 6.28 6556 84.6 54.8 120 54.7
eu.emst.dem 710 436 4.44 5.10 9404 106 81.9 96.7 54.9
mrs.emst.dem 472 298 4.93 4.53 7018 124 97.0 88.3 49.5

eu.mst.osm 238 140 6.88 18.4 3553 247 167 139 56.9

la
rg

eeu.mst.dmcs 204 121 7.31 19.7 3300 253 178 142 57.3
eu.emst.dem 338 195 5.97 11.5 4835 215 168 105 55.9
mrs.emst.dem 232 174 5.25 8.40 3614 206 164 91 49.3

co
un

ti
ng

eu.mst.osm 244 143 5.47 17.8 3555 213 146 129 54.2

me
di

umeu.mst.dmcs 209 124 6.94 18.4 3297 224 160 133 56.5
eu.emst.dem 339 195 4.55 10.0 4840 178 140 100 54.9
mrs.emst.dem 237 143 5.91 8.74 3613 199 154 89.7 48.9

eu.mst.osm 239 139 5.25 15.4 3551 190 132 119 53.9

sm
al

leu.mst.dmcs 209 123 5.25 18.9 3300 206 148 126 55.2
eu.emst.dem 347 200 3.92 9.34 4832 154 124 94.9 53.2
mrs.emst.dem 238 144 4.82 7.41 3615 178 133 84.2 47.6

Table 5.4: Average time to answer a path median or a path counting query , in µs. A fixed set of 106

randomly generated path median and path counting queries is used. Path counting is given in large,
medium, and small configurations.

flattened into a heap layout, ext† stores pointers to T0/T1; this is less of a concern for hpw†,

whose very purpose is tree linearisation).

5.4.4 Path Median Queries

The upper section of Table 5.4 records the mean time for a single median query (in µs) averaged

over a fixed set of 106 queries, randomly generated using the approach in Section 5.4.1.

Our discussion focuses on the most salient features of the data.

Comparison of hpw and ext. Succinct structures hpwc/hpwp/extc/extp perform well

on these queries, with a slow-down of atmost 20-30 times from their pointer-based counterparts.

Using entropy-compression degrades the speed of hpw almost twice. Overall, the families hpw

and ext seem to perform at the same order of magnitude. This is surprising, as in theory hpw

should be a factor of lgn slower. There can be several contributing factors; two stand out.

First, take the number of chains in HPD. The discrepancy between the theoretical and

practical performance of hpw and ext is explained partly by the small number of segments

89

in HPD, averaging 9± 2 for our queries. (The number of unary-degree nodes in our datasets

is 35%-56%, which makes smaller number of heavy-path segments prevalent. We did not use

trees with few unary-degree nodes in our experiments, as the height of such trees are not large

enough to make constructing data structures for path queries worthwhile.) When the queries

are partitioned by the number of chains in the HPD, the curves for extc/extp remain flat

whereas those for hpwc/hpwp grow linearly. Let us study Figure 5.5 and take eu.mst.dmcs as

an example. When the query path is partitioned into 9 chains, extp is only slightly faster than

hpwp, but when the query path contains 19 chains, extp is about 2.3 times so. This suggests to

favour the ext family over hpw whenever performance in the worst case is important.

5 10 15

50

100

150

200

Number of chains in HPD

Av
er

ag
e

qu
er

y
ti

me
,

µ
s

eu.mst.dmcs

extc

extp

hpwc

hpwp

5 10 15

50

100

150

Number of chains in HPD

eu.emst.dem

Figure 5.5: Average time to answer a path median query, controlled for the number of segments in
heavy-path decomposition, in µs. Random fixed query set of size 106.

Second, consider the usage patterns for rank/select. Navigational operations in the

(succinct) ext and hpw, despite of similar theoretical worst-case guarantees, involve different

patterns of using the rank/select primitives. For one, hpwp/hpwc does not call LCA during

the search – mapping of the search ranges when descending down the recursion is accomplished

by a single rank call, whereas extp/extc computes LCA at each level of descent (for its

own analog of rank – the view computation in Algorithm 1). Now, LCA is a non-trivial

combination of rank/select calls. The difference between extp/extc and hpwp/hpwc should

therefore become pronounced in a large enough tree; with tangible HPD sizes, the constants

involved in (albeit theoretically O(1)) LCA calls are overcome by lgn.

90

Overall evaluation. Naïve structures nv/nvL/nvc are visibly slower in PM than in PC

(considered in Section 5.4.5), as expected — for PM, having collected the nodes encountered,

we also call a selection algorithm. In PC, by contrast, neither insertions into a container nor

a subsequent search for median are involved. Navigation and weights-uncompression in nvc

render it about 10 times slower than its plain counterpart. The nvL being little less than twice

faster than its LCA-devoid counterpart, nv, is explained by the latter effectively traversing the

query path twice — once to locate the LCA, and once again to answer the query proper. Any

succinct solution is about 4-8 times faster than the fastest naïve, nvL.

5.4.5 Path Counting Queries

The lower section in Table 5.4 records the mean time for a single counting query (in µs) averaged

over a fixed set of 106 randomly generated queries, for large, medium, and small setups.

Structures nv/nvL/nvc are insensitive to κ (i.e. the output size), as the bottleneck is in

physically traversing the path.

Succinct structures hpwp/hpwc and extp/extc exhibit decreasing running times as one

moves from the large to the small configuration – as the query weight-range shrinks, so

does the chance of branching during the traversal of the implicit range tree. The fastest

(uncompressed) hpwp and the slowest (compressed) extc succinct solutions differ by a factor

of 4, which is intrinsically larger constants in extc’s implementation compounded with slower

rank/select primitives in compressed bitvectors, at play. The uncompressed hpwp is about

2-3 times faster than extp, the gap narrowing towards the small setup. The slowest succinct

structure, extc, is nonetheless competitive with the nv/nvL already in large configuration,

with the advantage of being insensitive to tree topology.

In ext†-hpw† pair, hpw† is 2-3 times slower. This is predictable, as the inherent lgn-factor

slow-down in hpw† is no longer offset by differing memory access patterns – following a pointer

“downwards” (i.e. 0/1-view in ext† and rank0/1 in hpw†) each require a single memory access.

5.4.6 Path Reporting Queries

Table 5.5 records the mean time for a single reporting query (in µs) averaged over a fixed set of

106 randomly generated queries, for the large, medium, and small setups.

Structures hpwc/hpwp/extc/extp recover each reported node’s weight in O(lgσ) time.

Thus, when lgn≪ κ, the query time for both ext and hpw families become O(κ · lgσ). (At

91

Dataset κ nv nvL ext† hpw† nvc extc extp hpwc hpwp

eu.mst.osm 9,840 356 256 184 70.7 3766

la
rg

eeu.mst.dmcs 9,163 309 224 147 66.8 3485
eu.emst.dem 14,211 389 241 140 77.5 4926
mrs.emst.dem 10,576 267 178 89.2 55.1 3668

eu.mst.osm 1,093 322 222 43.7 28.8 3706

me
di

umeu.mst.dmcs 1,090 277 196 34.0 29.7 3434
eu.emst.dem 1,464 354 206 32.1 20.1 4880
mrs.emst.dem 1,392 250 151 22.1 15.6 3639

eu.mst.osm 182 311 212 13.8 19.0 3685 1965 485 795 226

sm
al

leu.mst.dmcs 236 271 193 13.2 21.0 3529 2518 632 1043 292
eu.emst.dem 215 353 203 10.2 12.7 4873 1276 378 590 205
mrs.emst.dem 117 242 145 8.88 9.57 3632 881 278 475 162

Table 5.5: Average time to answer a path reporting query, in µs. A set of 106 randomly generated path
reporting queries is used. The queries are given in large, medium, and small configurations. Average
output size for each group is given in column κ.

this juncture, a caveat is in order: The design of hpw [98], described in Section 5.3.1, allows a

PR-query to only return the index in the array C — not the original preorder identifier of the

node, as does the ext.) When κ is large, therefore, these structures are not suitable for use in PR,

as nv/nvL/nvcare clearly superior (O((1 + κ) lgn) vs O(κ)), and we confine the experiments

for extc/extp/hpwc/hpwp to the small setup only (bottom-right corner in Table 5.5).

We observe that the succinct structures extp and hpwp are competitive with nv/nvL, in the

small setting: informally, time saved in locating the nodes to report is used to uncompress

the nodes’ weights (whereas in nv/nvL the weights are explicit). Between the succinct ext and

hpw, clearly hpw is faster, as select on a sequence as we go up the wavelet tree tend to have

lower constant factors than the counterpart operation on BP.

Structures hpw† and ext† exhibit same order of magnitude in query time, with the former

being sometimes about 2 times faster on non-small setups. Among the two somewhat inter-

twined reasons, one is that hpw† returns an index to the permuted array, as noted previously.

(Converting to the original id would necessitate an additional memory access.) Secondly, in the

implicit range tree during the 2D search in hpw†, when the current range is contained within

the query interval, we start reporting the node weights by merely incrementing a counter —

position in the WT sequence. By contrast, in such situations ext† iterates through the nodes

being reported calling parent for the current node, which is one additional memory access

92

0 1,000 2,000 3,000 4,000 5,000

0
2
0
0

4
0
0

6
0
0

4µs5µs

bits-per-node

av
er

ag
e

qu
er

y
ti

me
,

µ
s

Median queries for eu.emst.dem dataset

nv
nvL

ext†

hpw†
hpwc

hpwp

extc

extp

0 1,000 2,000 3,000 4,000 5,000

0
1
0
0

2
0
0

3
0
0

3µs9µs

bits-per-node

Counting queries for eu.emst.dem dataset

nv
nvL

ext†

hpw†
hpwc

hpwp

extc

extp

0 1,000 2,000 3,000 4,000 5,000

0
2
0
0

4
0
0

6
0
0

4µs5µs

bits-per-node

av
er

ag
e

qu
er

y
ti

me
,

µ
s

Median queries for eu.emst.dem dataset

nv
nvL

ext†

hpw†
hpwc

hpwp

extc

extp

0 1,000 2,000 3,000 4,000 5,000

0
1
0
0

2
0
0

3
0
0

3µs9µs

bits-per-node

Counting queries for eu.emst.dem dataset

nv
nvL

ext†

hpw†
hpwc

hpwp

extc

extp

Figure 5.6: Visualization of some of the entries in Table 5.4. Inner rectangle magnifies the mutual
configuration of succinct data structures hpwp/hpwc and extp/extc. The succinct naïve structure nvc

is not shown.

compared to hpw† (at the scale of µs, this matters). Indeed, operations on trees tend to be little

more expensive than similar operations on sequences. That said, we note that in the small

setup, ext† is uniformly better than hpw†: the additive term influences the total running time

more than the reporting part.

Structures nv/nvL/nvc are less sensitive to the query weight-range’s magnitude, since they

simply scan the path along with pushing into a container. The differences in running time

in Table 5.5 between the configurations are thus accounted for by the container operations’

cost. Naïve structures’ query times for PR being dependent solely on the query path’s length,

they are unfeasible for large-diameters trees (whereas they may be suitable for shallow ones,

e.g. originating from “small-world” networks).

Overall evaluation. We visualize in Figure 5.6 some typical entries in Table 5.4 to

illustrate the structures clustering along the space/time trade-offs: nv/nvL (upper-left corner)

are lighter in terms of space, but slow; pointer-based ext†/hpw† are very fast, but space-heavy.

Between the two extremes of the spectrum, the succinct structures extc/extp/hpwc/hpwp,

whose mutual configuration is shown magnified in the inner rectangle, are space-economical

and yet offer fast query times.

93

5.5 Conclusion

We have designed and experimentally evaluated recent algorithmic proposals in path queries

in weighted trees, by either faithfully replicating them or offering practical alternatives. Our

data structures include both plain pointer-based and succinct implementations. Our succinct

realizations are themselves further specialized to be either plain or entropy-compressed.

Wemeasure both query time and space performance of our data structures on large practical

sets. We find that the succinct structures we implement present an attractive alternative to

plain pointer-based solutions, in scenarios with critical space- and query time-performance

and reasonable tolerance to slow-down. Some of the structures we implement (hpwc) occupy

space equal to bare compressed storage (nvc) of the object and yet offer fast queries on top of it,

while another structure (extc/extp) occupies space comparable to nvc, offers fast queries and

low peak memory in construction. While hpw succinct family performs well in average, thus

representing an attractive trade-off between query time and space occupancy, ext is robust to

the structure of the underlying tree, and is therefore recommended when strong worst-case

query-time guarantees are vital.

Our design of the practical succinct structure based on tree extraction (ext) results in

theoretical space occupancy of 3n lgσ + O(n lgσ) bits, which explains its somewhat higher

empirical space cost when compared to the succinct hpw family. At the same time, verbatim

implementation of the space-optimal solution by He et al. [70] draws on components that are

likely to be cumbersome in practice. For the path query types considered in this study, therefore,

realization of the theoretically time- and space-optimal data structure – or indeed some feasible

alternative thereof – remains an interesting open problem in algorithm engineering.

Chapter 6

Conclusion

We conclude the thesis by stating the results achieved, along with the highlights on the tech-

niques that enabled them (Section 6.1). Then in Section 6.2 we discuss possible directions of

research, and technical difficulties overcoming which would bring new results or improve the

existing ones.

6.1 Results and Discussion

Orthogonal range searching is a classical discipline in computer science. We study trees whose

nodes are assigned d-dimensional weight vectors, as generalizations of (d + 1)-dimensional

point-sets in Rd+1 (or the rank space [n]d+1). Since any two nodes in a tree uniquely define a

path, weighted trees do indeed generalize point-sets. In addition, when a tree degenerates into

a single path, both objects become identical.

For a formal setting, let d ≥ 0 is an integer constant, and 0 < ϵ < 1 be an arbitrarily

small constant. The input object is an ordinal tree T on n nodes, each of which is assigned a

d-dimensional weight vector (when d = 0, the tree T is unweighted).

This thesis comprises three main lines of research on preprocessing such a tree for efficient

online path queries.

The first line studies the generalizations of the classical orthogonal range searching prob-

lems – dominance reporting, range successor, range counting, and range reporting – to the case

94

95

of the weighted trees. We create a general framework for semigroup path sum problem, and

apply it to extend our base-case data structures for the above problems to higher dimensions.

We study the ancestor dominance reporting problem as a generalization of the well-known

dominance reporting problem. In T, a node dominates some other node iff the former is an

ancestor of the latter, and the former’s weight vector dominates that of the latter. Out data

structure usesO(n lgd−2 n) words of space and hasO(lgd−1 n+k) query time for d ≥ 2. When

d = 2, this matches the space bound for 3D dominance reporting of [2, 17], while still providing

efficient query support. When d ≥ 3, we also achieve a trade-off of O(n lgd−2+ϵ n) words of

space, with query time of O(lgd−1 n/(lg lgn)d−2 + k).

To achieve these results, we work in the layers of maxima [25, 83] paradigm for dominance

reporting, and provide efficient means of iterating through such layer, i.e. enumerating the

2-maximal nodes.

Next, for the same T, we study the path successor problem. Our data structure uses

O(n lgd−1 n) words and and executes queries inO(logd−1+ϵ n) time, where ϵ > 0 is an arbitrar-

ily small constant. When d = 1, these bounds match the first trade-off for the corresponding

range successor problem in 2D, given by Nekrich and Navarro [95].

Explicitly maintaining several tree extractions for various subranges of the weight alphabet

is clearly space-prohibitive. We propose a way of doing so fairly efficiently in linear space in

the special case of ranges that are the intervals represented by the nodes of a (binary) range

tree, which may be sufficient for some applications.

We next solve the path counting problem, in O(n(lgn

lg lgn
)d−1) words and O((lgn

lg lgn
)d) query

time. This matches the best bound for the corresponding range counting problem in d + 1

dimensions [74].

The solution was due to a careful choice of the parameters in the two-level partitioning

using tree covering (Section 2.3.2) and the ability to encode the partial answers in accordingly

smaller space with shrinking partition sizes.

Finally, we solve the path reporting problem in O(n lgd−1+ϵ n) words andO(lgd−1 n

(lg lgn)d−2 + k)

query time, for d ≥ 2. When d = 2, the space matches that of the corresponding result of

Chan et al. [21] on 3D range reporting, while the first term in the query complexity is slowed

down by a sub-logarithmic factor.

This result was achieved by directly applying our general framework of semigroup path sum

problem to the currently-best result on path reporting on 1D-weighted trees, by [19].

96

The second line of research is the study of the categorical path counting problem. In this

problem, T ’s nodes are assigned categories. We show a conditional lower bound on the hardness

of the categorical path counting problem, and provide a data structure whose query time

matches the lower bound within polylogarithmic factors. Further, we extend the solution to the

case of trees weighted with d-dimensional weight vectors, matching the best currently-known

data structures within polylogarithmic factors, both in space and time, when d ≥ 2.We further

solve the above two problems in approximate mode; the data structures we propose are simple

to the degree of being implementable.

Balancing pre-computation against explicit traversals with on-the-fly computations proves

to be an remarkably useful template for data-structuring. It is certainly not new and has

been applied in various contexts such as path queries proper [36] and categorical counting in

Rd [76]. We use the currently best results in path range emptiness queries and another useful

tree partitioning technique [36] to apply the template to exact categorical counting. The same

high-level idea is at work in one of our approximate solutions, too. It employs sketching and

yet another tree mark-up technique. The ability to update sketches fast, a feature that could

have been overlooked in a static data structure, was aptly used in the “explicit traversals” part

of the template.

We conclude the thesis by the study of the practical performance of the data structures

for path queries. For a 1D-weighted tree T, we implement the currently best data structures

for the path median, path counting, and path reporting problems. These problems generalize

respectively the well-known range median problem in 1D arrays, as well as the 2D path counting

and path reporting problems. We implement our data structures in either succinct or plain

pointer-based form. Through a series of experiments on large datasets, we show that succinct

data structures can serve as viable alternatives to traditional, pointer-based implementations,

being both fast and small enough. Our succinct implementations are further divided into

entropy-compressed and “plain” succinct forms, and we study the effect of entropy-compression

on space and time.

6.2 Future Directions

Being dependent on the output size, k, range searching problems of the reporting variety seem

to be the first candidates for closing the gap between the computation on trees and point-sets.

97

The challenge thus very often is in matching the additive term of the query time. Our solution

to the ancestor dominance problem is exponentially worse in the additive term, when compared

to the state-of-the-art in dominance reporting in 3D (O(lgn+ k) versus O(lg lgn+ k)). An

obvious question is, can we do better? In particular, can one generalize shallow cuttings [93, 2, 3],

which have been instrumental for the currently best results in dominance reporting [2, 17] to

trees?

The same question applies to the categorical version of path reporting – a natural extension

of the path reporting problem to the categorical case, where one needs to enumerate all the dis-

tinct categories, each at mostO(1) times, on a given query path. Nekrich [94] used an ingenious

data structure called path range trees for categorical range reporting and approximate categorical

range counting. Roughly, the modus operandi is to build a range tree by the x-coordinate and

to store certain, controlled amount of the lowest points (i.e. with the smallest y-coordinate)

pertaining to the nodes that “hang inwards” in the range tree (for these range-tree nodes, the

constraint on the x-coordinate is lifted, as illustrated in Figure 3.5). The snag in porting this

method to ordinal trees is precisely in the “lowest points” part – the entire bottom part (or,

alternatively, the crown) of the tree would qualify as such, and there is no obvious way of

limiting its size.

Indeed, the “lowest points” trick is omnipresent in the currently best solutions and trade-

offs (see [21, 110] to name a few). The other best trade-off in the path successor problem due to

Zhou [110] (which is O(n lg lgn) words of space and O(lg lgn) time; see Section 3.1.1) is harder

to achieve in trees copying the author’s blueprint only, owing to its use of sparsification via the

lowest points.

And then there is the block-shrinking technique of [36] that enabled a
√
w-fold speedup

in solving certain types of path frequency queries (here, w = Ω(lgn) is the word size in the

word-RAM). For example, for the path mode problem, they built a linear-space data structure

with O(
√︁

n
w
lg lgn) query time. The idea is to use the tree mark-up scheme of Lemma 4.1

recursively, with ever smaller block sizes. They observe that the information one needs to

explicitly store with each recursive mark-up (block-shrinking) is expressed in the number of bits

that is asymptotically smaller than the corresponding block size t. Roughly speaking, primarily

this reduced space usage for the pre-computed part (as in the tableM in Section 4.2.3) from

(n/t)2 lg t bits to (n/t)2 lg t′ bits, with t′ ≪ t. In the case of categorical path counting, however,

the partial answer (i.e. the number of distinct categories) can be Θ(t), so the block-shrinking

98

speedup is not directly applicable. If one is ever to shave off a factor of
√
w from our query

time for categorical path counting (Theorem 4.2), the techniques are likely to be quite different.

Furthermore, sketches seem to be relatively new to path queries, and practical performance

of our data structures would be interesting to evaluate experimentally, as Cormode et al. [28]

did on “real-world” streams. From a theoretical point of view, one can not but feel that our

solution in Section 4.4 is too coarse, and certainly rather straightforward. The next logical step

after the realization that the sketches behave as regular numbers is to try packing them into

fewer number of bits, in order to allow for multiple levels of decomposition. (For example, this

is done in Section 3.6 for storing answers pertaining to mini-trees.) It turns out, however, that

the p-stable distributions [28] that underlie the sketches by necessity assume unbounded values

(the proof is beyond the scope of the thesis).

Bibliography

[1] Andrés Abeliuk, Rodrigo Cánovas, and Gonzalo Navarro. Practical Compressed Suffix
Trees. Algorithms, 6(2):319–351, 2013.

[2] Peyman Afshani. On Dominance Reporting in 3D. In ESA, pages 41–51, 2008.

[3] Peyman Afshani and Konstantinos Tsakalidis. Optimal deterministic shallow cuttings
for 3-d dominance ranges. Algorithmica, 80(11):3192–3206, 2018.

[4] Pankaj K. Agarwal, Sathish Govindarajan, and S. Muthukrishnan. Range Searching in
Categorical Data: Colored Range Searching on Grid. In ESA, pages 17–28, 2002.

[5] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows - Theory,
Algorithms and Applications. Prentice Hall, 1993.

[6] Noga Alon and Baruch Schieber. Optimal preprocessing for answering on-line product
queries. Technical report, Tel-Aviv University, 1987.

[7] Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko Sadakane. Succinct
trees in practice. In ALENEX, pages 84–97, 2010.

[8] Diego Arroyuelo, Rodrigo Cánovas, Gonzalo Navarro, and Kunihiko Sadakane. Succinct
Trees in Practice. In ALENEX, pages 84–97, 2010.

[9] Diego Arroyuelo, Francisco Claude, Reza Dorrigiv, Stephane Durocher, Meng He,
Alejandro López-Ortiz, J. Ian Munro, Patrick K. Nicholson, Alejandro Salinger, and
Matthew Skala. Untangled monotonic chains and adaptive range search. Theor. Comput.
Sci., 412(32):4200–4211, 2011.

[10] Nikhil Bansal and Ryan Williams. Regularity lemmas and combinatorial algorithms.
Theory Comput., 8(1):69–94, 2012.

[11] Lilian Beckert and Valentin Buchhold. personal communication.

[12] Michael A. Bender and Martin Farach-Colton. The LCA Problem Revisited. In LATIN,
volume 1776, pages 88–94, 2000.

99

100

[13] Michael A. Bender, Martin Farach-Colton, Giridhar Pemmasani, Steven Skiena, and
Pavel Sumazin. Lowest common ancestors in trees and directed acyclic graphs. J.
Algorithms, 57(2):75–94, 2005.

[14] David Benoit, Erik D. Demaine, J. Ian Munro, Rajeev Raman, Venkatesh Raman, and
S. Srinivasa Rao. Representing Trees of Higher Degree. Algorithmica, 43(4):275–292,
2005.

[15] Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti,
and Oren Weimann. Random access to grammar-compressed strings and trees. SIAM J.
Comput., 44(3):513–539, 2015.

[16] Nieves R. Brisaboa, Guillermo de Bernardo, Roberto Konow, Gonzalo Navarro, and
Diego Seco. Aggregated 2d range queries on clustered points. Inf. Syst., 60:34–49, 2016.

[17] Timothy M. Chan. Persistent predecessor search and orthogonal point location on the
word RAM. ACM Trans. Algorithms, 9(3):22:1–22:22, 2013.

[18] Timothy M. Chan. Speeding up the four russians algorithm by about one more
logarithmic factor. In SODA, pages 212–217, 2015.

[19] Timothy M. Chan, Meng He, J. Ian Munro, and Gelin Zhou. Succinct indices for path
minimum, with applications. Algorithmica, 78(2):453–491, 2017.

[20] Timothy M. Chan, Qizheng He, and Yakov Nekrich. Further results on colored range
searching. In SoCG, volume 164, pages 28:1–28:15, 2020.

[21] Timothy M. Chan, Kasper Green Larsen, and Mihai Pǎtraşcu. Orthogonal range
searching on the RAM, revisited. In SoCG, pages 1–10, 2011.

[22] Timothy M. Chan and Yakov Nekrich. Better data structures for colored orthogonal
range reporting. In SODA, pages 627–636, 2020.

[23] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek R. Narasayya. Towards
estimation error guarantees for distinct values. In PODS, pages 268–279, 2000.

[24] Bernard Chazelle. Computing on a free tree via complexity-preserving mappings.
Algorithmica, 2:337–361, 1987.

[25] Bernard Chazelle and Herbert Edelsbrunner. Linear Space Data Structures for Two
Types of Range Search. Discrete & Computational Geometry, 2:113–126, 1987.

[26] Francisco Claude, J. Ian Munro, and Patrick K. Nicholson. Range Queries over
Untangled Chains. In SPIRE, pages 82–93, 2010.

[27] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

101

[28] Graham Cormode, Mayur Datar, Piotr Indyk, and S. Muthukrishnan. Comparing Data
Streams Using Hamming Norms (How to Zero In). IEEE Trans. Knowl. Data Eng.,
15(3):529–540, 2003.

[29] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

[30] Maxime Crochemore. An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett., 12(5):244–250, 1981.

[31] O’Neil Delpratt, Naila Rahman, and Rajeev Raman. Engineering the LOUDS Succinct
Tree Representation. InWEA, pages 134–145, 2006.

[32] Erik D. Demaine, Gad M. Landau, and Oren Weimann. On Cartesian Trees and Range
Minimum Queries. Algorithmica, 68(3):610–625, 2014.

[33] Camil Demetrescu, Andrew Goldberg, and David Johnson. DIMACS’09.
http://users.diag.uniroma1.it/challenge9/download.shtml. Accessed:
2019-07-27.

[34] Postgis developer community. Postgis spatial and geographic objects for postgresql.
http://postgis.net/. Accessed: 2019-07-27.

[35] GDAL devloper community. Euclidean MST Example. https://doc.cgal.org/
latest/BGL/BGL_triangulation_2_2emst_8cpp-example.html. Accessed:
2019-07-27.

[36] Stephane Durocher, Rahul Shah, Matthew Skala, and Sharma V. Thankachan.
Linear-space data structures for range frequency queries on arrays and trees.
Algorithmica, 74(1), 2016.

[37] Hicham El-Zein, J. Ian Munro, and Yakov Nekrich. Succinct Color Searching in One
Dimension. In ISAAC, pages 30:1–30:11, 2017.

[38] Martin Farach and S. Muthukrishnan. Perfect hashing for strings: Formalization and
algorithms. In CPM, pages 130–140, 1996.

[39] Arash Farzan and J. Ian Munro. A uniform paradigm to succinctly encode various
families of trees. Algorithmica, 68(1):16–40, 2014.

[40] Paolo Ferragina, Roberto Grossi, Ankur Gupta, Rahul Shah, and Jeffrey Scott Vitter. On
searching compressed string collections cache-obliviously. In PODS, pages 181–190, 2008.

[41] Johannes Fischer and Volker Heun. Space-efficient preprocessing schemes for range
minimum queries on static arrays. SIAM J. Comput., 40(2):465–492, 2011.

[42] Michael L. Fredman and Dan E. Willard. Surpassing the Information Theoretic Bound
with Fusion Trees. J. Comput. Syst. Sci., 47(3):424–436, 1993.

http://users.diag.uniroma1.it/challenge9/download.shtml
http://postgis.net/
https://doc.cgal.org/latest/BGL/BGL_triangulation_2_2emst_8cpp-example.html
https://doc.cgal.org/latest/BGL/BGL_triangulation_2_2emst_8cpp-example.html

102

[43] José Fuentes and Gonzalo Navarro. Experimental datasets graphs, trees, parentheses.
https://users.dcc.uchile.cl/~jfuentess/datasets/trees.php. Accessed:
2018-03-14.

[44] Harold N. Gabow, Jon Louis Bentley, and Robert Endre Tarjan. Scaling and Related
Techniques for Geometry Problems. In STOC, pages 135–143, 1984.

[45] Travis Gagie, Meng He, and Gonzalo Navarro. Tree Path Majority Data Structures. In
ISAAC, volume 123, pages 68:1–68:12, 2018.

[46] Travis Gagie and Juha Kärkkäinen. Counting Colours in Compressed Strings. In CPM,
pages 197–207, 2011.

[47] Travis Gagie, Simon J. Puglisi, and Andrew Turpin. Range quantile queries: Another
virtue of wavelet trees. In SPIRE, pages 1–6, 2009.

[48] Arnab Ganguly, J. Ian Munro, Yakov Nekrich, Rahul Shah, and Sharma V. Thankachan.
Categorical Range Reporting with Frequencies. In ICDT, pages 9:1–9:19, 2019.

[49] GDAL/OGR contributors. GDAL/OGR Geospatial Data Abstraction software Library.
Open Source Geospatial Foundation, 2019. URL: https://gdal.org.

[50] Richard F. Geary, Naila Rahman, Rajeev Raman, and Venkatesh Raman. A simple
optimal representation for balanced parentheses. Theor. Comput. Sci., 368(3):231–246,
2006.

[51] Richard F. Geary, Rajeev Raman, and Venkatesh Raman. Succinct ordinal trees with
level-ancestor queries. ACM Trans. Algorithms, 2(4):510–534, 2006.

[52] Geofabrik GmbH. OSM Europe Maps.
http://download.geofabrik.de/europe.html. Accessed: 2019-07-27.

[53] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. FromTheory to Practice:
Plug and Play with Succinct Data Structures. In SEA, pages 326–337, 2014.

[54] R. E. Gomory and T. C. Hu. Multi-terminal network flows. SIAM J. Comput.,
9(4):551–570, 1961.

[55] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science, 2nd Ed. Addison-Wesley, 1994.

[56] Roberto Grossi, Alessio Orlandi, Rajeev Raman, and S. Srinivasa Rao. More haste, less
waste: Lowering the redundancy in fully indexable dictionaries. In STACS, pages
517–528, 2009.

[57] Roberto Grossi and Søren Vind. Colored range searching in linear space. In SWAT,
volume 8503, pages 229–240, 2014.

https://users.dcc.uchile.cl/~jfuentess/datasets/trees.php
https://gdal.org
http://download.geofabrik.de/europe.html

103

[58] PTV Group. KIT roadgraphs.
https://i11www.iti.kit.edu/information/roadgraphs. Accessed:
07/12/2018.

[59] Prosenjit Gupta, Ravi Janardan, and Michiel Smid. Further Results on Generalized
Intersection Searching Problems: Counting, Reporting, and Dynamization. J. Algorithms,
19(2):282–317, 1995.

[60] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, New York, NY, USA, 1997.

[61] Dan Gusfield and Jens Stoye. Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci., 69(4):525–546, 2004.

[62] Torben Hagerup. Parallel preprocessing for path queries without concurrent reading. Inf.
Comput., 158(1):18–28, 2000.

[63] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[64] Meng He and Serikzhan Kazi. Path and Ancestor Queries over Trees with
Multidimensional Weight Vectors. In ISAAC, pages 45:1–45:17, 2019.

[65] Meng He and Serikzhan Kazi. Path Query Data Structures in Practice. In SEA, volume
160, pages 27:1–27:16, 2020.

[66] Meng He and Serikzhan Kazi. Data Structures for Categorical Path Counting Queries.
submitted, under review.

[67] Meng He, J. Ian Munro, and Srinivasa Rao Satti. Succinct ordinal trees based on tree
covering. ACM Trans. Algorithms, 8(4):42:1–42:32, 2012.

[68] Meng He, J. Ian Munro, and Gelin Zhou. Path queries in weighted trees. In ISAAC,
pages 140–149, 2011.

[69] Meng He, J. Ian Munro, and Gelin Zhou. A framework for succinct labeled ordinal trees
over large alphabets. Algorithmica, 70(4):696–717, 2014.

[70] Meng He, J. Ian Munro, and Gelin Zhou. Data structures for path queries. ACM Trans.
Algorithms, 12(4):53:1–53:32, 2016.

[71] David A. Hutchinson, Anil Maheshwari, and Norbert Zeh. An external memory data
structure for shortest path queries. Discret. Appl. Math., 126(1):55–82, 2003.

[72] Kazuki Ishiyama and Kunihiko Sadakane. A succinct data structure for
multidimensional orthogonal range searching. In DCC, pages 270–279, 2017.

[73] Guy Jacobson. Space-efficient Static Trees and Graphs. In FOCS, pages 549–554, 1989.

https://i11www.iti.kit.edu/information/roadgraphs

104

[74] Joseph JáJá, Christian Worm Mortensen, and Qingmin Shi. Space-efficient and fast
algorithms for multidimensional dominance reporting and counting. In ISAAC, pages
558–568, 2004.

[75] Jesper Jansson, Kunihiko Sadakane, and Wing-Kin Sung. Ultra-succinct representation
of ordered trees with applications. J. Comput. Syst. Sci., 78(2):619–631, 2012.

[76] Haim Kaplan, Natan Rubin, Micha Sharir, and Elad Verbin. Efficient Colored
Orthogonal Range Counting. SIAM J. Comput., 38(3):982–1011, 2008.

[77] Danny Krizanc, Pat Morin, and Michiel H. M. Smid. Range mode and range median
queries on lists and trees. Nord. J. Comput., 12(1):1–17, 2005.

[78] Ying Kit Lai, Chung Keung Poon, and Benyun Shi. Approximate colored range and
point enclosure queries. J. Discrete Algorithms, 6(3):420–432, 2008.

[79] Kasper Green Larsen and Freek van Walderveen. Near-optimal range reporting
structures for categorical data. In SODA, pages 265–276, 2013.

[80] Tom Leighton. Methods for message routing in parallel machines. In STOC, pages 77–96,
1992.

[81] Hsueh-I Lu and Chia-Chi Yeh. Balanced parentheses strike back. ACM Trans. Algorithms,
4(3):28:1–28:13, 2008.

[82] Christos Makris and Athanasios K. Tsakalidis. Algorithms for three-dimensional
dominance searching in linear space. Inf. Process. Lett., 66(6):277–283, 1998.

[83] Christos Makris and Konstantinos Tsakalidis. An improved algorithm for static 3D
dominance reporting in the pointer machine. In ISAAC, pages 568–577, 2012.

[84] Carsten Möller. OSMPO converter and routing engine. http://osm2po.de. Accessed:
2019-07-27.

[85] J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct
representations of permutations and functions. Theor. Comput. Sci., 438:74–88, 2012.

[86] J. Ian Munro and Venkatesh Raman. Succinct Representation of Balanced Parentheses
and Static Trees. SIAM J. Comput., 31(3):762–776, 2001.

[87] David R. Musser. Introspective Sorting and Selection Algorithms. Softw., Pract. Exper.,
27(8):983–993, 1997.

[88] S. Muthukrishnan. Efficient algorithms for document retrieval problems. In SODA,
pages 657–666, 2002.

[89] NASA. MOLA Mars Orbiter Laser Altimeter data from NASA Mars Global Surveyor.
https://planetarymaps.usgs.gov/mosaic/Mars_MGS_MOLA_DEM_mosaic_
global_463m.tif. Accessed: 10/01/2019.

http://osm2po.de
https://planetarymaps.usgs.gov/mosaic/Mars_MGS_MOLA_DEM_mosaic_global_463m.tif
https://planetarymaps.usgs.gov/mosaic/Mars_MGS_MOLA_DEM_mosaic_global_463m.tif

105

[90] Gonzalo Navarro. Wavelet trees for all. J. Discrete Algorithms, 25:2–20, 2014.

[91] Gonzalo Navarro. Compact Data Structures - A Practical Approach. Cambridge University
Press, 2016.

[92] Gonzalo Navarro and Alberto Ordóñez Pereira. Faster Compressed Suffix Trees for
Repetitive Collections. ACM Journal of Experimental Algorithmics, 21(1):1.8:1–1.8:38, 2016.

[93] Yakov Nekrich. A data structure for multi-dim. range reporting. In SoCG, pages
344–353, 2007.

[94] Yakov Nekrich. Efficient range searching for categorical and plain data. ACM Trans.
Database Syst., 39(1):9:1–9:21, 2014.

[95] Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In SWAT, pages 271–282,
2012.

[96] NGA and NASA. SRTM Shuttle Radar Topography Mission.
http://srtm.csi.cgiar.org/srtmdata/. Accessed: 10/01/2019.

[97] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org .
https://www.openstreetmap.org, 2017.

[98] Manish Patil, Rahul Shah, and Sharma V. Thankachan. Succinct representations of
weighted trees supporting path queries. J. Discrete Algorithms, 17:103–108, 2012.

[99] R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric
on semantic nets. In IEEE Transactions on Systems, Man and Cybernetics, pages 17–30, 1989.

[100] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM
Trans. Algorithms, 3(4):43, 2007.

[101] Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable
dictionaries with applications to encoding k-ary trees, prefix sums and multisets. ACM
Trans. Algorithms, 3(4), 2007.

[102] A. Rényi and G. Szekeres. On the height of trees. Journal of the Australian Mathematical
Society, 7(4):497–507, 1967.

[103] Teodor Sigaev and Oleg Bartunov. ltree module for PostreSQL RDBMS.
https://www.postgresql.org/docs/current/ltree.html. Accessed:
10/01/2020.

[104] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3):362–391, 1983.

[105] The CGAL Project. CGAL User and Reference Manual. CGAL Editorial Board, 4.14
edition, 2019. URL: https://doc.cgal.org/4.14/Manual/packages.html.

http://srtm.csi.cgiar.org/srtmdata/
 https://www.openstreetmap.org
https://www.postgresql.org/docs/current/ltree.html
https://doc.cgal.org/4.14/Manual/packages.html

106

[106] Dekel Tsur. Succinct representation of labeled trees. Theor. Comput. Sci., 562:320–329,
2015.

[107] Dan E. Willard. Log-logarithmic worst-case range queries are possible in space theta(n).
Inf. Process. Lett., 17(2):81–84, 1983.

[108] Dan E. Willard. Log-Logarithmic Worst-Case Range Queries are Possible in Space
Theta(N). Inf. Process. Lett., 17(2):81–84, 1983.

[109] Virginia Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd.
In STOC, pages 887–898, 2012.

[110] Gelin Zhou. Two-dimensional range successor in optimal time and almost linear space.
Inf. Process. Lett., 116(2):171–174, 2016.

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Abstract
	Acknowledgements
	Introduction
	Organization of the Thesis
	Our Techniques

	Preliminaries
	Notation
	Notation and Conventions
	Graph-Theoretic Notation
	Word-RAM Model and Information-Theoretic Lower Bound

	Bitvectors and Sequences
	Bitvectors
	Sequences

	Trees
	Tree Extraction
	Succinct Representations of Ordinal Trees

	Path and Ancestor Queries over Trees with d-Dimensional Weight Vectors
	Introduction
	Previous Work
	Our Results

	Preliminaries
	Notation
	Representation of a Range Tree on Node Weights by Hierarchical Tree Extraction
	Path Minimum in 1D-Weighted Trees

	Reducing to Lower Dimensions
	Space Reduction Lemma Using Range Trees with Branching Factor 2
	Space Reduction Lemma Using Range Tree with a Non-Constant Branching Factor

	Ancestor Dominance Reporting
	Path Dominance in (1,d,ε)
	2D Ancestor Dominance Reporting
	Ancestor Dominance Reporting in (2,d,ε) and Generalization to Higher Dimensions

	Path Successor
	Path Counting
	Path Reporting
	Conclusion

	Data Structures for Categorical Path Counting Queries
	Introduction
	Previous Work
	Our Results

	Categorical Path Counting
	Hardness of Categorical Path Counting
	Uniform Partitioning of the Tree
	Categorical Path Counting
	2-Approximate Categorical Path Counting

	Categorical Path Range Counting
	Path Range Emptiness Queries
	Categorical Path Range Counting in d Dimensions

	Sketching Data Structures for Approximate Categorical Path Counting
	Sketches
	(1pmε)-Approximate Categorical Path Range Counting

	Conclusion

	Path Query Data Structures in Practice
	Introduction
	Previous Work
	Our Results

	Preliminaries
	Balanced Parentheses Representations of Ordinal Trees
	Heavy-Path Decomposition

	Data Structures for Path Queries
	Data Structures Based on Heavy-Path Decomposition
	Data Structures Based on Tree Extraction

	Experimental Results
	Implementation
	Experimental Setup
	Space Performance and Construction Costs
	Path Median Queries
	Path Counting Queries
	Path Reporting Queries

	Conclusion

	Conclusion
	Results and Discussion
	Future Directions

	Bibliography

