COMPARING THE REPRESENTATION LEARNING OF
AUTOENCODING TRANSFORMER MODELS IN AD HOC
INFORMATION RETRIEVAL

Jeniffer David

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia
December 2020

(© Copyright by Jeniffer David, 2020

To my loving father

1

Table of Contents

[Abstractl v
[Acknowledgements| oo vi
[Chapter 1 Introduction| 000 1
(L1 Contributionsl oL 3
[Chapter 2 Related Work|. 5
2.1 Backgroundo 5
[2.2 Document and Passage Retrieval| 5
[2.3 Pretrained Language Models in Ranking| 7
[Chapter 3 Methodology| 11
[3.1 Autoencoding Transtormer Models for Passage Ranking| 11
8.2 Model Architecturelo oL 12
[3.3 Fine-tuning|o 14
3.4 Inferencelo 16
[3.4.1 Indexing 16

[3.4.2 Searching] 16

3.0 PFwvaluationlo 17
[Chapter 4 Experimental Results| 20
D 7 20
M2 Basellndo oo 21

4 Dl o e 22
(4.4 Empirical Analysis| oo 23
[4.4.1 Analysis on Inference|o 26

[4.4.2 Analysis by Answer-type]o 26

[4.4.3 Analysis on Semantic Similarity|o 27

4.5 [imitations of our workl.o 28

1l

[Chapter 5 Conclusion|. 30

(Bibliography| 32

|Appendix A Normalized Discounted Cumulative Gain (NDCG)| . . 38

[Appendix B Analysis on Training| 40

v

Abstract

Information retrieval (IR) saw a recent development in ranking models since the ad-
vent of deep learning techniques. Traditionally, classical IR methods, such as BM25,
assume query term independence, allowing them to precompute term-document scores
which makes them efficient for full-ranking. On the other hand, deep neural rank-
ing models, like BERT, depend on interaction signals between query and document
terms for successful retrieval, therefore being restricted to only late stage re-ranking,
even though they have superior retrieval performance. Recent work has shown that
with offline precomputation of the sentence embeddings, these computation-intensive
models can be used for full-ranking and made cost-effective when combined with any
indexing structure. However, BERT is not the only advanced language representa-
tion model that can be used for information retrieval. Various other models such
as RoBERTa, ALBERT, DistilBERT, ELECTRA and many others have surpassed
the performance of BERT in several NLP tasks. Since a large number of pre-trained
language models have been proposed lately, we believe it is the right time to eval-
uate their representational learning for ranking. Although these pre-trained models
share some fundamental characteristics, their performance varies because of differ-
ences in training data, or training procedure. They also differ in their computational
requirements. In this work, we evaluate the representational learning of the various
autoencoding transformer models extrinsically on the downstream task of Microsoft
MAchine Reading Comprehension (MS MARCO) passage retrieval. We observe that
BERT and its distilled version DistilBERT are the best performers in terms of ranking,
while DistilBERT achieves a good trade-off between effectiveness and computational
efficiency in ad hoc document retrieval. We discuss the empirical analysis of these
models and provide insights about their performance in tasks like semantic similarity.
We believe that our results shed some light on the selection of embeddings for ad hoc

retrieval and also serves as a benchmark for future search applications.

Acknowledgements

My sincerest gratitude to my supervisor, Dr. Evangelos Milios for his mentorship and
guidance during the course of my thesis.

Special thanks to my colleagues in MALNIS who have inspired and encouraged
me in all of my academic endeavours.

Thanks to all my friends and family for believing in me and their continuous

support.

vi

Chapter 1

Introduction

In recent times, the information retrieval (IR) community has benefited tremendously
from advancements in natural language processing (NLP) techniques. One particular
trend is the switch from traditional IR techniques to neural ranking models for ad
hoc information retrieval. In ad hoc retrieval task, the user specifies the information
he/she seeks in the form of a query to an information system which initiates a search
for the most relevant documents within a database in response to the query. The
key component of a search system is its ranking algorithm. Different ranking algo-
rithms have different models of relevance. Traditional IR models use term-frequency
to compute relevance between each query and document where the issue is lack of se-
mantics [14], whereas Learning-to-rank requires hand-crafted IR features to perform
supervised machine learning [43]. Since the re-emergence of neural networks in the
machine learning (ML) community, the focus has now shifted to the development of
neural ranking models for information retrieval. A neural ranking model is any model
that uses shallow or deep neural networks to rank search results for a given query.
The main setback of such models is that they are data-hungry and require thousands
(sometimes millions) of examples, to train effectively. Fortunately, with the introduc-
tion of large-scale IR datasets like MS MARCO [46] and TREC-CAR [13| 12, 1],
development of these models flourished rapidly and yielded promising results. Today,
deep neural ranking models are topping the IR leaderboards with their state-of-the-
art performance mainly because of their ability to handle the complexity of relevance

estimation in ranking [21].

Search applications in general consist of large multi-tier architectures for retrieving
relevant documents. The first layer may need to filter hundreds or thousands of
relevant documents out of a million, while the last layer may only need to retrieve
the top-10 of these hundred candidate documents [43]. The layer responsible for the

initial ranking needs to be fast and focus primarily on eliminating a vast majority of

2

the non-relevant documents. The layer that does the re-ranking of the initial results
must have sophisticated notions of relevance in order to produce more fine-grained
results. Many end-to-end systems follow this approach to ad hoc retrieval where
TF-IDF based methods like BM25 are used for fast and exact-term matching, while
neural networks are limited to re-ranking the top-n documents. The drawback of this
approach is that the re-ranker can only be as good as the initial retrieval model. And
so, using standard bag-of-words technique in the first layer might miss semantically
relevant documents in the initial retrieval. Hence, an initial retrieval algorithm should

contain some latent representation of intent that is expressed by the user’s query.

Deep neural ranking model architectures are generally representation-focused or
interaction-focused [20]. Representation-focused models produce high-level represen-
tations of the query and document texts, and use simple evaluation function (like
cosine similarity) to produce relevance score [27]. On the other hand, relevance
in interaction-focused models is about the detailed relation between the query and
document texts. It is a function of the direct interaction between the query and
document representations where complex functions (like deep neural networks) are
used to produce the relevance score (give an example using BERT attention). Re-
cently, BERT [I0], the pre-trained deep bidirectional Transformer, was re-purposed
for query-based passage re-ranking [47] beating other deep neural ranking models by
a huge margin. These BERT-based models [61, 47| use attention as the interaction
function to learn the interaction signals (i.e., [CLS| vector) between input texts. Al-
though the interaction signals by BERT’s attention mechanism can be effective for ad
hoc retrieval, they are time-consuming during inference in real-world search systems.
And so, the representation-based approach of BERT can be used to generate faster
inferences while providing rich contextual representations of the query and document

texts [40].

Given the successes of BERT in information retrieval and in general machine com-
prehension tasks [8], [61], we explore the possibilities of using other such powerful lan-
guage models that are pre-trained on large datasets and made publicly available. One
such family of pre-trained language models are called autoencoding transformer mod-

els because they use only the encoder part of the original transformer [58]. Some of

3

these models are BERT [10], ALBERT [34], RoBERTa [39], DistilBERT [56], ELEC-
TRA [5]. If the representational learning of BERT can be powerful enough for ad
hoc retrieval, then we hypothesize that every model that came after BERT must be
as powerful or even more powerful than BERT since they surpass the performance of
BERT in benchmark tasks like GLUE [59], RACE [33] and SQuAD [53], 52].

In our work, we use a simple triplet network architecture to produce fixed-size
embeddings of query and document text [54] and compute relevance scores for every
query-document pair based on cosine similarity of their embeddings. Fine-tuning
the models on the ranking task is done prior to inference. For applications like
online search, it is required to have the document embeddings pre-computed and
stored in an index for faster retrieval. This can be efficiently done by tools like
FAISS [30] that come with special in-memory data structure and indexing schemes.
Our experiments demonstrate the overall performance of the different autoencoding
transformer models in an end-to-end search system for the MS MARCO passage
retrieval tasi] which is an ad hoc retrieval task for passage-level documents. We
also analyse these models in terms of their inference speed and memory use, answer-
type and semantic similarity. Our experiments show that the differences between
most pairs of models are statistically significant, with the clear overall winner being
BERT. BERT when fine-tuned on the ranking task proves to be the most effective
for passage retrieval, but DistilBERT achieves the fastest results while being second-
best. Hence we conclude that the embeddings of DistilBERT are the most efficient
for passage retrieval task on both CPU and GPU hardwares.

1.1 Contributions

This thesis focuses on fine-tuning various autoencoding transformer models to produce
high-quality query/passage embeddings for the passage ranking task in a simple end-
to-end retrieval system. We are interested in understanding which model performs
empirically better than its contenders for the given architecture. We summarize our

contributions as below:

e Evaluate pre-trained language models in the Transformer family of BERT after

'https://github.com/microsoft/MSMARCO-Passage-Ranking

https://github.com/microsoft/MSMARCO-Passage-Ranking

4

fine-tuning for representation-focused learning on MS MARCO passage retrieval

task.

e Analyse the overall ranking performance on the MS MARCO development set
and compare the inference speed and memory consumed for each step by the

different models.

e Provide insights on their performance for specific answer types and the search

results on semantic similarity.

We conclude that BERT and DistilBERT outperforms all the other models in a
representation-learning setup for the ad hoc retrieval task, while there is no statistical
significance between BERT and DistilBERT in most cases. But more importantly, we
find that DistilBERT strikes the best balance between accuracy and speed /memory in
practice. Finally, we hypothesize based on our results that a promising direction for
future neural information retrieval research would be knowledge distillation of large

pre-trained language models for computational efficiency.

Chapter 2

Related Work

2.1 Background

This section provides some theoretical background on the main focus of this study
which is ad hoc document retrieval in IR. A document retrieval task aims at returning
the relevant documents to a user’s query. The exact answer to the user’s query can be
extracted from these relevant documents through a question-answering (QA) system.
Any intelligent agent that deals with real-world data for answering questions must be
able to read and understand text like a human [63]. Therefore, a fundamental ability
of any successful IR model is machine reading comprehension (MRC). Several public
question-answering (QA) datasets have facilitated research in this area and therefore
made deep learning possible. However, these large datasets are mostly synthetic
and non-realistic for benchmarking MRC models. With the release of large scale
real-world dataset like MS MARCO [46], we can fine-tune large pre-trained language
models using actual search queries. Our study analyses the embeddings of different
pretrained language models for the purpose of ranking passage-level documents and
in doing so, extending the application of these fine-tuned models in real-world search

systems.

2.2 Document and Passage Retrieval

In ad hoc document retrieval, the user specifies the information he/she seeks in the
form of a short query ¢ where the query is a set of keywords and the task is to
produce the best ranking of documents in a corpus based on a relevance function. In
general, a document may refer to any piece of text being retrieved, usually a passage,
a sentence, sometimes even several sentences or paragraphs. This step is crucial in any
QA system because the underlying modules will fail at extracting the right answer if

the retrieved documents are not relevant to the question asked by the user [26]. Since

5

6

the first QA systems like Baseball [I8], several studies have presented the challenges
in benchmarking QA systems and problems of passage retrieval [57, 41, 60, [15].

Research in this area was catalysed by the Text REtrieval Conference (TREC),
co-sponsored by the National Institute of Standards and Technology (NIST) and U.S.
Department of Defense. It started in 1992 as part of the TIPSTER Text program
attended by about 100 people working in 25 participating groups [22]. The main
purpose of this conference was to support research within the information retrieval
community by providing the infrastructure necessary for large-scale evaluation of text

retrieval methodologied!|
In the past, the most popular approaches were traditional IR models like TF-IDF

that performed exact-term matching between the query and document terms, e.g.,
BM25 [55], RM3 [29] and QL [42]. These approaches estimate document relevance
based on only the number of occurrences of the query terms in the document and so,
are only fit for tasks that require specific matching patterns like exact word match-
ing. Information like position and relationship with other terms in the document are
not taken into account. Moreover, the concept of relevance can be hard to capture
by these simple models because relevance is multidimensional and dynamic in na-
ture [4]. More recently, Learning to rank (L2R) approaches were used to enhance
IR technologies because many IR problems are by nature ranking problems [38, [36].
These algorithms are categorized into 3 approaches based on their training objectives:
pointwise, pairwise, and listwise. Although these models were the industry favorite
for many years and were a commercial success, their drawback was that they re-
quired handcrafted features to be trained meaningfully. For a more detailed overview
of these traditional IR models, we refer the readers to review the work by Mitra &
Craswell [43].

With the advent of deep neural networks, many exciting breakthroughs have hap-
pened in fields like speech recognition [23], computer vision [32, 35|, and natural
language processing (NLP) [I7, 3]. Some notable developments in the last few years
have shown that deep neural network models have a strong influence on the area of
IR as well [6, 27, 25| [49]. The deep neural models can be trained to learn sophisti-

cated notions of relevance that are often difficult to model by shallow or traditional

https://trec.nist.gov/overview.html

https://trec.nist.gov/overview.html

7

models. Another survey summarizes the latest research trends on ranking models
with deep neural networks describing the different types of model architecture and
learning [20]. In general, some of the most effective approaches to improve rank-
ing accuracy developed by the neural IR (Neu-IR) research are: Interaction-focused
architectures that learn to capture rich meaningful matching patterns or salient in-
teraction signals between the input texts in a layer-by-layer fashion [19, [60], 25, 47];
Representation-focused architectures focus more on finding high-level representations
of the input texts before allowing the query & document representations to interact
with each other to compute the relevance [27, 25| 62]; Hybrid architectures combine
the advantages of both representation-focused and interaction-focused architectures
for feature learning [44]. The key difference is that interaction between the query
and document terms happens early on in interaction-focused models and continues to
model relevance as a function of interaction whereas a representation-focused model
only allows query-document interaction at a much later stage, usually after the matu-
rity of its representations. Although interaction-focused models are better suited for
ad hoc retrieval, they are not efficient for online-computation when compared to the
representation-focused models. Hence, they are usually employed in a "telescope"
setting where the representation-focused models are used in the early search stage
and the interaction-focused models for late-stage re-ranking.

In TREC 2019, a new track called Deep Learning Track was introduced with the
goal of studying ad hoc ranking in a large data regime with two tasks namely, passage
ranking and document ranking. A total of 75 runs submitted by 15 groups using
various combinations of deep learning, transfer learning and traditional IR ranking
methods showed that deep learning runs significantly outperformed traditional IR
runs [7]. Out of all the neural approaches, it was found that the best-performing
runs tended to use transfer learning, employing a pretrained language model such as

BERT.

2.3 Pretrained Language Models in Ranking

For a few years now, several computer vision tasks have benefited from pretraining
the deep neural models on large ImageNet corpus [9]. These models learn general

image features which can help them in solving any downstream vision task (e.g.

8

captioning, detection) through transfer learning [28]. The same idea is used in
NLP where language models with millions of parameters are pretrained on large
corpus like Wikipedia, and later fine-tuned on downstream tasks (like classifica-
tion, sentiment analysis, question-answering, named entity recognition, paraphrasing)
to achieve state-of-the-art performance using two existing strategies: feature-based
[50, 24] and fine-tuning [51], [10].

One such powerful pretrained language model is BERT, which stands for Bidi-
rectional Encoder Representations from Transformers [I0]. The main motivation of
the authors was to improve the fine-tuning approach of previous pretrained language
models (OpenAl GPT [51]), arguing that the unidirectional architecture of standard
language models is not suitable for token-level tasks like question-answering where
context from both direction is important. In the unidirectional architectures, every
token can only attend to tokens before it in the self-attention layers of the Trans-
former [58|, going either from left-to-right or right-to-left. To overcome this problem,
they proposed a deep bidirectional Transformer architecture which uses "masked lan-
guage model" (MLM) pre-training objective that randomly masks 15% words of a
sentence and predicts these missing words. Additionally, they used “next sentence
prediction” (NSP) task for pre-training on BooksCorpus (800M words) [64] and En-
glish Wikipedia (2,500M words) and Google’s compute power. The base version
of BERT used in this work has 110 million parameters and 12 Transformer layers,
each with 768 hidden dimensions and 12 attention heads. The novel pre-training
tasks along with huge computation power unlike any other Neu-IR models are some
of BERT’s notable properties useful for ranking. Many researchers have fine-tuned
and extended the BERT model on the MS MARCO dataset demonstrating improved
performance. Here, feature-based approach in language modelling is synonymous
to representation-based approach in IR models, fine-tuning approach is similar to
interaction-based rankers.

Currently, many of the submissions on the MS MARCO passage ranking leader-
board?| are BERT-based models. One of the early implementations used the fine-
tuning approach to capture the cross-match attentions between the query and doc-

ument terms, using BERT as an interaction-based re-ranker [47], shown in Fig. [2.1]

Zhttps://microsoft.github.io/msmarco/

https://microsoft.github.io/msmarco/

9

This secured them a top place in the leaderboard beating other deep neural ranking
models at that time. Following that, another work extended the application to ad
hoc document retrieval where the documents are longer passages, typically containing
several sentences [61]. The popularity of BERT in passage re-ranking prompted the
investigation of its successes and failures on the MS MARCO dataset comparing its
results to that of BM25 [48]. Many of the fine-tuned BERT models in these work are
only used at the re-ranking step during inference [2] [1].

The feature-based approach of BERT was explored in the Sentence-BERT model
who showed that the computational overhead of BERT can be greatly minimized for
regression tasks like semantic textual similarity (STS) while maintaining its accuracy
[54], shown in Fig. They used siamese and triplet network architectures to derive
semantically meaningful embeddings and used these representations to compute the
similarity between sentences. Our work employs the same feature-based technique to
derive meaningful embeddings of the query and document to compute the relevance
score. We use triplet network structure since the MS MARCO training dataset is
available in triples of query, relevant document and non-relevant document, and fine-
tune on the ranking task. Another work showed that there is only a small degradation
in BERT’s performance when term-document scores are pre-computed for passage
ranking task by assuming query-term independence during inference [45].

Today there are more than 30 pretrained models provided in the Hugging Face
libraryf’] each of them improving upon the other in one or more NLP tasks and many
of them using some form of the original Transformer architecture [58]. A natural
question to ask is what happens when BERT is substituted by any of these (prefer-
ably newer) models? Can we expect an increase in performance due to increased
sophistication of the latest approaches? Are the performances significantly different?
Are all of them better than baseline models like BM25 in terms of IR metrics? To
answer these questions, we select 4 pretrained models, namely RoBERTa [39], AL-
BERT |[34], DistilBERT [56] and ELECTRA [5], that were introduced after BERT
and also belong to the same Transformer family as BERT, that is, Autoencoding
Transformer{’] We demonstrate the ranking performance of these models on the MS

MARCO passage ranking task and also analyse them on different answer types and

3https://huggingface.co/transformers/pretrained_models.html
“https://huggingface.co/transformers/model_summary.html#autoencoding-models

https://huggingface.co/transformers/pretrained_models.html
https://huggingface.co/transformers/model_summary.html#autoencoding-models

10

t t il o1 t
~ S
[cLs] || | reees [SEP] [cwsy || 00 | e [SEP]
Query Document Query Document
Interaction-focused Representation-focused

Figure 2.1: The two general neu-IR architectures in the context of BERT. In
interaction-focused BERT, the query and document are concatenated first and passed
through the layers of BERT for similarity score (S) computation. In representation-
focused BERT, the query and document are compared after passing through the
BERT layers to compute similarity.

semantic similarity:.

Some recent notable works that were developed in parallel to our research have
made promising progress in modelling query-document relevance patterns using BERT.
One such work augments BERT with more specific search knowledge tailored for those
search tasks with limited labeled data by tuning it on a large search log [8]. Other
implementations encode queries and passages using BERT and combine it with a
learning-to-rank (LTR) model constructed with TF-Ranking in order to further im-
prove ranking performances [2I]. Results in these papers are promising because they
show that the abilities of BERT in the neu-IR field are numerous and lessons from
their experiments can be used to improve existing online-search systems. Another
work that supports the conclusions of this work and possibly showing more promise
in this direction is using knowledge distillation to transfer the search knowledge within
BERT to smaller rankers while being nine times faster [16]. We hope the results of our
experiments will throw some light on the usage of these complex pretrained models

in real-world search systems.

Chapter 3

Methodology

Ranking for any search problem deals with finding and ordering the most relevant
documents for a query entered by the user. Although our work can be generalized
to documents of any size, we have only experimented with passage-size documents.
Irrespective of its length, a document is considered to be relevant if at least one of
its passages semantically matches the query. Hence, for ad hoc information retrieval
task, it is enough to compare only the passages of the documents with the query to
find the most similar document. A high-level architecture of a simple search system
is shown in Figure |3.1]

Our work implements full-ranking of passage-level documents for a given query
using deep pre-trained language models by leveraging their ability to generate deep
contextualized embeddings of any input text. By modelling relevance based on se-
mantics, we achieve high-recall information retrieval useful for later stages. By pre-
computing the embeddings of the documents, we reduce the time taken to compute
the embeddings of all documents at real-time for comparing with the query embed-
ding. The results of our first-stage full-ranking can be used for further filtering in

later stages. We leave the re-ranking for future research.

3.1 Autoencoding Transformer Models for Passage Ranking

The original Transformer has an encoder and decoder part using a stack of several
self-attention and fully connected layers [58]. Self-attention is the mechanism of
assigning an attention weight/score to a token corresponding to every other token
in the sequence. The output vector of each token is basically a weighted sum of its
attention values. In Transformers, this is done using multiple attention heads where
each head is responsible for calculating attention at different positions. The overall
network architecture of the Transformer encoder is shown in Fig. 3.2

In our work, we compare the models that rely on only the encoder part of the

11

12

Indexed
Documents

Search
@ J—‘J Wy Application
l Results <——|

User Backend

Figure 3.1: High-Level architecture of a typical ad hoc search. When a user enters a
query, the search application compares it with an index containing a large but finite
collection of document embeddings and stored in the backend. The results of the
search, which is usually a ranked-list of documents in decreasing order of relevance
to the query, is returned to the user.

original transformer. They do not mask the input tokens and so the attention heads
can look at all the tokens during prediction. However, during pretraining, inputs
are a corrupted version of the sentence and the task is to reconstruct the original
sentence. These models are named the autoencoding transformers as per the Hugging
Face library. For timing and computational reasons, we compare only the BERT,
RoBERTa, ALBERT, DistilBERT and ELECTRA models, and leave the others for
future work. In Fig. [3.3], a breakdown of an online search system shows the application
of an autoencoding transformer at the backend for extracting the query embedding.
The derivation of the embeddings and the similarity score computation is explained

in detail in the sections below.

3.2 Model Architecture

We follow the triplet network architecture of Sentence-Transformer for deriving the
query and document embeddings [54]. Each model is initialized with weights pre-
trained on one or more generic language modelling tasks (like Masked Language

Model, Next Sequence Prediction, Sentence Order Prediction and Replace Token

13

Cutput
sentence —

embedding

Pooling [

Pooler]

layer

Output
token
embeddings

Encoder-n]

Encoder
layers —

Fe s e @ w e e e
Fa s s s wE s owa

Encoder-2]

Encoder-1]

Token
embeddings

Tokens — ‘

| |

[CLS] || Helo word | | [SEP |

Figure 3.2: Overall network architecture of a Transformer encoder. After tokenizing
the input sentence, the tokens are passed through the encoder layers (n>6), followed
by a pooling layer to generate the contextualized output sentence embedding.

User
Query

Top-k

Relevant
Documents

Client/User End

Autoencoding
Transformer

Y

Query Precomputed
. Document
Embzddlng Embeddings

Q

:

[Caosine Similarity (EO, E,)

—{ Score all Documents

Server/Back End

Figure 3.3: Online similarity score computation for ranking and retrieval. The em-
bedding of the query is computed at server time and the embeddings of the documents
are precomputed offline. The cosine similarity score of the query and document em-
beddings is used to retrieve the final top-k relevant documents to the user.

14

Detection) and later, fine-tuned on the downstream triplet ranking task. We explain
the training (i.e. fine-tuning) and the inference (indexing and searching) in detail

below for all models.

3.3 Fine-tuning

We fine-tune the autoencoding transformer models on the ranking task. Each Trans-
former model generates its own token embeddings based on its vocabulary. Each
query and passage sequence is fed individually as sentence A and truncated if the
number of tokens exceeds the maximum sequence length. The positive passages are
those that are marked as relevant by human annotators for the given query while the
negative passages are any of the non-relevant passages chosen at random from the
collection. For every sequence, a special classification token ([CLS]) is appended at
the beginning and another special token ([SEP]|) is appended at the end to denote the
end of sentence A. The output vector of the last layer of every model is considered to
be the contextual token embeddings of that sequence. We derive fixed-size sentence
embeddings from these variable length token embeddings using the pooling strategies
mentioned in the Sentence-transformer paper [54]. The three pooling strategies are:
Using the final hidden state of the [CLS| token, computing the average of all out-
put token embeddings (AVG strategy), and computing the maximum value in each
dimension across all output token embeddings (MAX-strategy). Finally, the models
are trained on the Triplet objective function to learn meaningful representations of
the input text as shown in Fig. [3.4 The models train to rank relevant documents
higher than non-relevant documents by learning suitable embeddings that maximize
the distance between a query and a non-relevant passage and minimize the distance

between the query and the relevant passage.

Triplet Objective Function. Given a query ¢, a positive passage p, and a negative
passage n, our triplet loss fine-tunes the network such that the distance between ¢ and
p is smaller than the distance between ¢ and n. We minimize the following objective

function:

max (cos (eq, €,) — cos (eq, €n) + €,0) (3.1)

15

Relevant Non-relevant
Query Passage Passage
S S A S
Autoencoding Shared Autoencoding Shared Autoencoding
Transformer weights Transformer weights Transformer
- R — e S
v v v
Pooling Pooling Pooling
h v h
Ty Ty Ty
Que Relevant Mon-relevant
Embedrgin Passage Passage
Q) g Embedding Embedding
e _m*}_/ \._':D'_z

h

Triplet Loss (Q, D+, D-)

Figure 3.4: Fine-tuning the autoencoding transformer of Figure [3.3] The pretrained
language models are fine-tuned on the ranking task using triplet network architec-
ture to produce meaningful embeddings of the given query, relevant and non-relevant
documents. The network is trained to minimize the distance between the query em-
bedding (Q) and the relevant document embedding (D-+) and maximize the distance
between the query and the non-relevant document embedding (D-).

16

where e, is the embedding for x € {q,n,p}, cos(x) is the cosine-distance metric and
€ is the margin between positive and negative passages. We set the margin ¢ = 1 to

align with the setup of Sentence-Transformer [54].

3.4 Inference

After fine-tuning the Transformer models, we perform inference on the queries in
development set. For faster retrieval and to reduce online computation drastically,
we first precompute the passage embeddings and store them to a disk, preferably after
indexing. Typically at retrieval time, the user enters a query in plain text which is
encoded by the transformer model to obtain its embedding in the same latent space
as the passage embeddings. The relevance between the query embedding () and the
passage embedding D is given by the cosine distance between them. Given a query
@ and a passage D, the similarity score Sgp € R is computed after pooling the
output token embeddings Ex € RX*# where X € {Q, D} and H is the hidden units

size of the model:

So,p = cos(pooling(Eq), pooling(Ep))) (3.2)

where pooling(x) is the pooling function defined by AVG, MAX or CLS strategy.

3.4.1 Indexing

Before retrieval, we first derive fixed-size embeddings for the passages in our collection.
These pre-computed embeddings are stored in a forward index structure and saved to
the disk shown in Fig[3.5] We choose the FAISS library for building the index data
structure since it is extremely fast and practical for large-scale retrieval [30]. For
our experiments, we use the simplest index version that performs brute-force cosine
distance search on the vectors. It uses the vector ordinal as the key (first vector is 0,

second is 1, etc.) and stores them without any encoding/compression.

3.4.2 Searching

Using the trained ranking model and pre-computed document embeddings, we can
perform the search at real-time as shown in Figure [3.6] Using FAISS, we perform a

basic k-nearest neighbour search on the index of passage embeddings for each query

17

Embedder

Collection
of
Paszages

T

Autoencoding Transformer

Paszzage
Embeddings

Build an Index

Saved the index

Figure 3.5: Offline precomputation of document embeddings of Figure [3.3] Passages
in the collection are encoded using the fine-tuned autoencoding transformer shown
in Figure [3.4f These passage embeddings are subject to a fast and GPU-scalable
indexing like FAISS [30] which specializes in billion-scale datasets. The index is
saved to a persistent storage system to be used at the time of retrieval.

-

Using FAISS library

embedding. We set k=1000 to retrieve the top-1000 nearest neighbours of the query
vector along with their corresponding cosine distances. The search results are evalu-

ated by standard IR metrics as described below.

3.5 Evaluation

MS MARCO uses MRR@10 as the official evaluation measure. The search results are
evaluated on the top-1000 ranking passages retrieved for each query by the models.
Other important metrics like Average Precision, R-Precision, R@k used commonly

for evaluating ranking performance are also explained below:

Reciprocal Rank (RR) in information retrieval calculates the reciprocal of the
rank of the first relevant document in the search result. If the relevant document is
retrieved at rank 1, then RR is 1, if at rank 2, then RR is 0.5, if at rank 3 then RR
is 0.33 and so on. Mean Reciprocal Rank (MRR) is the average of RR values across
multiple queries. For multiple queries Q, the Mean Reciprocal Rank is calculated as

follows.

1&g
MRR = — .
RR 5 ; —— (3.3)

18

A

Query Text

Precomputed
Index of Passage
Embeddings

Autoencoding
Transformer

Query Embedding

Exhaustive search for
top-1000 similar
passages to the query

Ranked List of Passages

Rank 1
Rank 2
Rank 3

Rank 1000

Figure 3.6: At retrieval time, the user’s query is embedded using the fine-tuned
autoencoding transformer shown in Figure to compare with the index of pre-
computed passage embeddings shown in Figure [3.5] Then, an exhaustive search for
the top-1000 most similar passages is retrieved in the form of ranked list.

19

where rank is the position of the relevant document in the search result. MRR@10
sets a rank threshold at 10 and considers only the top-10 ranked documents for

evaluation. Documents at rank lower than 10 are ignored.

Average precision (AP) combines recall and precision for the ranked search re-
sults. It It finds the area under the precision-recall curve. Mean Average Precision
(MAP) is the mean of the average precision values for a set of n queries. It can be

expressed as follows: 5
1 P,Qr
MAP = — Sr 3.4
=", o

where 7 is the rank of each relevant document, R is the total number of relevant

documents, and PQr is the precision of the top-r retrieved documents.

Recall@k For a given query, recall@k is simply recall calculated only up to the
k-th retrieval. It is the most important metric to evaluate a first-stage retrieval. The
higher the recall@k, the better the chance for retrieval by a subsequent re-ranking
model. If TP is the number of true positives and FN, the number of false negatives,

then recall@k is calculated as follows.

TPQk
RecallQf = (TPGk) + (FNGR) (3.5)

Chapter 4

Experimental Results

We train the autoencoding transformer models, namely, BERT, RoBERTa, ALBERT,
DistilBERT and ELECTRA, on the MS MARCO dataset. Since the MS MARCO
training dataset is available in triples of query, positive and negative passages, we use
the triplet loss as our training objective. Only the base versions of the pre-trained
models (as available in https://huggingface.co/models) are fine-tuned on the MS
MARCO dataset for fairer comparison. All our models use the Transformer neural
architecture which has several (6 or 12) encoder layers stacked on top of each other
and perform self-attention on the incoming tokens. The output of the last encoder
layer for each token in the input text is pooled to generate fixed-sized embedding of

the entire input text (query/passage). More details on the models are available in
Appendix [B]

4.1 Data

MS MARCO or the MAchine Reading COmprehension dataset features 1,010,916
anonymized user queries sampled from Bing’s search logs and 8,841,823 passages
extracted from 3,563,535 web documents [46]. Since the questions in MS MARCO
correspond to user submitted queries from Bing’s query logs, their formulations are
often complex, ambiguous, and may even contain typographical and other errors. An
example of such a question issued to Bing is: “is a little caffeine ok during pregnancy”,
shown in Table [4.1] These questions represent human information seeking behaviour
and therefore not well-formatted at times. Non-question queries are automatically
filtered out by a machine learning based classifier.

Once the queries are filtered, the relevant documents are retrieved for each query
using Bing’s large-scale web index. At least 10 passages are automatically extracted
from these relevant web documents using Bing’s state-of-the-art passage retrieval

system. A human editor then selects the passages that can be used to answer the

20

https://huggingface.co/models

21

Query Relevant Passage Non-Relevant Passage

We don’t know a lot about
the effects of caffeine

during pregnancy on you It is generally safe for pregnant
and your baby. So it’s best women to eat chocolate because

. . . to limit the amount you get studies have shown to prove

is a little caffeine) . .

. each day. If you're pregnant, | certain benefits of eating chocolate

ok during pregnancy . . . o .
limit caffeine to 200 milli- during pregnancy. However, pregnant
grams each day. This is about | women should ensure their caffeine
the amount in 1.5 8-ounce intake is below 200 mg per day.

cups of coffee or one 12-ounce
cup of coffee.

Table 4.1: An example query, relevant and non-relevant passage from the MS MARCO
dataset.

query by setting "is_selected" to 1. For queries where no answer is present in the
extracted passages, "is__selected" is set to 0 for all passages. The passage annotations
by the human editors are non-exhaustive, therefore, there may be passages in the
collection that contain the answer to the queries but are annotated as "is selected":
0. In general, there exists a subset of queries with multiple answer passages and a
subset of queries with no answer passages. MS MARCO is a large-scale dataset whose
questions are derived from real user search queries and presents itself challenging for

benchmarking neural IR models.

4.2 Baseline

We choose our baseline as BM25 because it serves as a strong candidate for initial
retrieval when its parameters are tuned. BM25 treats the query as a “bag of words”
for ranking documents from the collection using a TF-IDF scoring function [55]. It
is based on exact-term matching, where all candidate passages must contain at least
one term from the user’s query. To get the BM25 retrieval results, we use the Lucene
toolkit Anseriniﬂ with its tuned parameters k; = 3.44, b = 0.87 optimized for average
precision (AP).

, tf (tg,d) - (ky + 1)
BM25(q,d) = idf (t,) -
&9 ;;; (ko) tf(tq,d)+k1-<1—b+b~ 'd')

avgdl

(4.1)

'https://github.com/castorini/anserini

https://github.com/castorini/anserini

22

Fine-tuning Indexing

MS MARCO friples |

Pre-trained Fine-tuned Offling)
Autoencoding —@—b Autoencoding ——@—b Passage Embedding —@—b Flat Irédnfgeogdlir?gssage

Transformer Model Transformer Model Precomputation

Inference

5 ®

Y

Online Query
Embedding @

Computation

h 4

Full-ranking

Figure 4.1: Experimental setup from training to inference. 1) & 2) The pre-trained
autoencoding transformer models are fine-tuned directly on the MS MARCO triples
for the ranking task. 3) The passage embeddings are computed and 4) saved to
an index. 5) At inference, first, the query embedding is computed online using the
fine-tuned model. 6) Finally, the passages in the collection are fully-ranked based on
relevance.

where, avgdl is the average length of documents, and k; and b are parameters that

are usually tuned on a validation dataset.

4.3 Setup

MS MARCO passage retrieval task provides 3 datasets: training, development and
evaluation. The original training set "triples.train.full" contains approximately 400
million tuples of a query, relevant and non-relevant passages. To align with the exist-
ing work [47], we only employ the 40M triples from "triples.train.small" for training
(10% subsample of the full dataset) to keep the training time desirable (approx. 10-15
hours per model) and evaluate our models on the development set since the relevance

judgements for the evaluation set are not provided. In our experiments, we stop

23

training after 125K global steps when the models have converged after learning the
first 2 million samples in batches of size 16, refer Appendix Bl To keep the training
data unarbitrary for all models, we sample the data sequentially. The development
set contains 6,980 queries with their relevance judgements. On average, each query

in the development set has at least one relevant passage.

We start training by loading the pre-trained weights of the respective models and
then fine-tuning them on the ranking task with the MS MARCO training data. We
choose "base-uncased" versions of BERT, DistilBERT and RoBERTa models, "base-
discriminator" for the ELECTRA model and "base-v1" for the ALBERT model to
make a fairer comparison. Following the experimental setup of [54], we use three
different pooling strategies, namely AVG, MAX and CLS-pooling to generate a fixed-
sized embedding for each text (query/relevant/non-relevant passage). We kept the
maximum sequence length at 128 tokens per sequence for computational reasons,
although the results of increased number of tokens (512) is discussed in Appendix [B]
We fine-tune all models with a triplet loss objective function (Eq. for one epoch

with batch-size of 16, Adam optimizer [31] with learning rate 2e~°

, and a linear
learning rate warm-up over 10% of the training data following the setup of [54]. A
step-by-step flow of the process is shown in Figure f.1] During inference, each model
searches for top-1000 relevant passages from the 8.8 million passages in the collection

for each query in the development set.

4.4 Empirical Analysis

We evaluate the performance of our models for the ranking task. We use a batch
size of 128 to encode the documents into fixed-size embeddings and normalize them
to calculate the inner product between the query and document embedding. The
FAISS [30] index used in our experiments is the 'IndexFlatIP’ which performs an ex-
haustive and exact search for top-1000 nearest neighbours. Highly similar documents
are ranked at the top and the performance is evaluated on MAP, R-PREC, R@1000,
MRR and MRR@10 metrics. The search results of each model are compared for sta-
tistical significance as shown in Table For the paired student t-test, we divide

the development set into 10 groups without replacement. Therefore, each sub-sample

24

Models Pooling MAP R@1000 MRR@10
BM25 - 0.1926 0.8526 0.1839
BERT Reranker [47] - - - 0.3470
Avg 0.3036 0.9259 0.2962
BERT CLS 0.2948 0.9211 0.2875

Max 0.2930 0.9206 0.2863
Avg 0.2783 0.9120 0.2715
RoBERTa CLS 0.2453 0.8637 0.2387
Max 0.2686 0.8968 0.2617
Avg 0.2703 0.8909 0.2633
ALBERT CLS 0.2733 0.8797 0.2664
Max 0.2785 0.8824 0.2719
Avg 0.2898 0.9222 0.2822
DistilBERT CLS 0.2939 0.9266 0.2870
Max 0.2985 0.9224 0.2913
Avg 0.2291 0.8131 0.2238
ELECTRA CLS 0.1922 0.7509 0.1875
Max 0.2517 0.8290 0.2457

Table 4.2: Models scored on the development set for different ranking measures based
on cosine-similarity between passage & query embeddings. Almost all autoencoding
transformer models beat the BM25 baseline irrespective of the pooling strategy used.
BERT exhibits top scores in Avg. and CLS pooling methods. DistilBERT tops the
chart when Max pooling is used. The highest scores for each pooling method across
models are in bold. Pairwise statistical significance test results for MRR@10 are
shown in Table L3l The difference in MRR@10 between BERT and DistilBERT is
not statistically significant, whereas all the other pairwise differences with these two
models are statistically significant.

has 698 unique query examples. We then compute the MRR@10 score for the pas-
sages retrieved for each query sub-sample by the different autoencoding transformer
models. Except for the results of some pairs of models (indicated in black in Table
, all other pairs of results are statistically significant. For completeness, we also
compare the performance of a BERT Reranker model trained using an interaction-
based approach to re-rank the top-1000 passages retrieved by BM25 during inference
in Table [47]. We included the results of the BERT g,s model to show the trade-
off in performance for computation time. The BERT Reranker model only performs
1000 inference computation per query compared to the 8.8M inference computations

of the representation-focused models.

25

BERT RoBERTa ALBERT DistilBERT ELECTRA
Avg CLS Max | Avg CLS Max | Avyg CLS Max | Avg CLS Max | Avg CLS Max
20
E <% N N B B B B B B B N N B B B
=5 A
m O N | B B B|B B B|N N N|B B B
"
<
= B B B B B N N N | B B B
20
s Ay N|N N N|N D D|R R R
~ wm
S
Qg @) Max | A A A D D D R R N
e %
= N N N D D D R R R
o0
=i N N|D D DJ|A A A
M wn
|
RO N|D D D|A A A
< %
= N D D A A A
£
£ = N N | D D D
&) wn
—
2o N|D D D
z ¥
= = D D D
2
é < Avg Max
= n
—
8) Max
—]
m =
=
Table 4.3: Statistical significance test for the MRR@10 values of different model

pairs for 10 sub-samples of the evaluation data. "N’ means the results of the pair in
comparison are not statistically significant (p > 0.05). The coloured letters indicate
that these model pair score differences are statistically significant and the initial letter
of the model with the highest MRR@10 value of the pair is indicated in red (B-BERT,
R-RoBERTa, A-ALBERT, D-DistilBERT and E-Electra).

26

4.4.1 Analysis on Inference

We study the performance of all models for different pooling strategies (AVG, MAX,
and CLS). The pooling strategy has a significant impact in RoOBERTa & ELECTRA
models and less impact in BERT, ALBERT and DistilBERT models as shown in
Table Even though all of these models belong to the same transformer family,
BERT & DistilBERT outperform the others in all ranking scores. This is in contrast
to our hypothesis wherein we expected the newer and advanced language models to
be better at semantic similarity when used this way. We hypothesize that BERT and
its distilled version DistilBERT outperform the other models due to the differences in
the pre-training tasks. The peak memory usage and required time during inference
for each of the transformer models is shown in Fig. [£.2] We believe that when choos-
ing the right embedding model, one must also be aware of its computational cost. We
benchmark our results using Huggingface’s implementation for benchmarking Trans-
former§] The required time shown here corresponds to time taken for each model
(only AVG pooling) to infer on a batch size of 8 and maximum sequence length of
64 tokens on CPU & GPU hardwares. This performance is highly dependent on the
hardware and version of software used. In addition to superior ranking performance,
DistilBERT is also one of the models that consumes less memory/time. This can be
attributed to the lower number of encoder layers (6) compared to the other models.
When running our inference on GPU, we find that the time taken per step is compa-
rable to the fast and simple BM25 (which takes ~0.07s/queryf’)). In terms of memory,
all computations can be fit on a single CPU/GPU of RAM 12GB. We benchmark our
results on a single Tesla V100-SXM2-16GB GPU, CUDA Version 11.0 and Pytorch
0.2.6.

4.4.2 Analysis by Answer-type

Real-world queries contain different types of questions. To understand the perfor-
mance of these models when faced with different types of queries, we classify them

based on the lexical answer type. We use the rule-based answer type classifierf] to

’https://huggingface.co/transformers/benchmarks.html

Shttps://github.com/castorini/anserini/blob/master/docs/
experiments-msmarco-passage.md

“https://github.com/superscriptjs/qtypes

https://huggingface.co/transformers/benchmarks.html
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/castorini/anserini/blob/master/docs/experiments-msmarco-passage.md
https://github.com/superscriptjs/qtypes

27

Required time per inference Peak memory usage per inference

218 - cru 4270 - U

4000 GPU

3500 3311,
3000
@
= 2500
g
E 2000
=

1500

1042 1042
1000
702
430
500
281 201

0 o
BERT ROBERTA ALBERT DISTILBERT ELECTRA BERT ROBERTA ALBERT DISTILBERT ELECTRA

=

Figure 4.2: Required time and peak memory usage per inference step for each trans-
former model. Speed is measured in clock seconds while memory is measured in

Megabytes when executed on both CPU & GPU hardwares.

Type DESC | NUM | HUM | LOC | ENTY | ABBR
of queries | 2316 | 1168 | 568 | 563 | 404 |9
BM25 019 [0.19 |023 |025 |0.21 |0.17
BERT 0.29 [0.27 |0.29 | 0.37 |0.25 |0.61

ALBERT 0.25 025 025 034 |0.24 0.30
RoBERTa 0.26 026 |0.27 |0.35 | 0.27 0.27
DistilBERT | 0.27 0.26 | 0.29 | 0.38 | 0.25 0.31
ELECTRA | 0.21 0.21 |0.19 |0.28 |0.20 0.15

Table 4.4: Average MRR values for different types of answer like description, numer-
ical, human, location, entity and abbreviation for 5028 queries in the evaluation set.
The answer types are sorted based on decreasing order of their counts.

identify answer types [37]. The queries are grouped into 6 answer types, namely ab-
breviation, location, description, human, numerical and entity. Queries that could
not be identified by the rule-based classifier are ignored. The MRR across these 6
types for 5028 queries having a valid answer type is shown in Table [4.4. BERT has
significantly higher MRR on abbreviation type queries, ELECTRA has the lowest
MRR on them. All models record lowest performance on entity type queries and sig-
nificantly higher on location type queries. DistilBERT has performance on par with
BERT failing only at abbreviation type questions.

4.4.3 Analysis on Semantic Similarity

Pre-trained Language Models can attain powerful performance because of their abil-

ity to capture deep semantic relationships. Being trained on a language modelling

28

task with large amounts of data, they are expected to produce deep contextualized
representations of words/sentences. With limited context, the models have to rely on
the learned distribution of the training data to embed the semantics of a sentence.
For some queries like "who is aida", the models retrieve lexically matching passages

at the least even if the intent is not very clear.

4.5 Limitations of our work

The results of our experiments are surprising because it proves our hypothesis wrong.
The newer and incrementally optimized models do not guarantee better performance
for retrieval task. Having said that, we also acknowledge the limitations of our exper-
iments. Many of our design choices are justified by less computational costs. Each
model comes with a range of checkpoints and varying architectures like tiny, small,
large but we only chose the base and uncased (if available) versions for a fairer com-
parison. Another limitation is the number of training examples, which is only 5% of
the triples.train.small subset of examples. We decide to stop training at this point
because we notice that all the models have converged on the validation set at 125K
global steps (see Appendix . Since the queries are short texts, the maximum length
of sequences in our dataset does not exceed 64 tokens. The number of tokens in
passages, however, can exceed 512 tokens which is the highest limit of most models.
Instead of truncating the tokens to 512, we set the maximum sequence limit to 128.
This again is due to computational reasons as we could not fit certain models in the
resources available to us. Nevertheless, for the models that did fit, we observed the
performance to be rather degrading as we can see the models struggling to learn bet-
ter sentence representations. Finally, we keep the set of hyperparameters (number
of epochs, optimizer, learning rate) fixed and do not search for the best set for each

model for fairer comparison.

29

‘Spepomt 9A1309dsal 9} Aq poadLIjel Iomsue doj oY) ST [oPOU [Ded I0] 910 UMOYS
odessed oy], "UOIJRN[RAD I0] 9OUDIDJRI S8 poplaodd)11} PUNOIS Pojejouur URWINY) ST ,JURAD[DY, I0] odesse ‘sodL) Iomsue

JUDIDPIP 9 oY) Jo ouo wory pardures st A1onb yoesy -1osejep A0p ODYVIN SIN 243 wogy uostreduoo 10y sorronb ojdwreg 6§ o[qe],

“dIys & Jo oUIRU Y} JO JUOI UL 'S'S S UOLRIASIGAE ST, /10] PURIS S S0P 1RUM | VULOHATH

Iy S)PURE] SUBIOJOA UL A\ POS[) SUWAUOIY 'SUOTIRIARI(QY PUR SWAUOINY Pajedy] VA | TMALIISI

aradure-joA “p BIUISIIA "BA OS[® ¢ O1[0)s0de IRDIA g UOTJRISIUIPY SURIDIOA ' "Iqqe INAGTY

T TOTRIADIG(R YA JO SUIeaw o], ‘SITRJY SueId)oA Jo juaunjreda(I0f spueis YA | BIMHAIOY UOTYRIADIC([B BA ST JRTM

"'$99R}G POYIU() AT} UI BIUISIIA JO 9)B)S Y} I0J SPURIS YA UOIJRIADIGR S, "IOMSUY JOmP) Rntictst

**'S9je)g PajIu() 9Y) Ul BIUISIIA JO 9)e)s a1} 10 Spue)s YA UOIIRIASICQR Y], 'IomMsUuy oIm{) | jueas[dy

~ronyara Aq dnoi8 1o voefd remorjred © 03 Surduo[oq Jjo UOHIPUOD YY) - S3001 | Y ILOHTH
Iemmorjred ' 01 3uIuO[Pq Jo pur Po[}es Suldq Jo UOIIPUOD dY], S}00I UaYo | TSI
“u8noy T, yoerg burey, £q 2861 ut peuriof ‘dnois doy diy uedLIsUIy UR ST S)00Y O], IMA9TV
~ronyaa Aq dnoi8 10 soed remornred ' 0 SUISUOPR(JO UOIITPUOD Y[} - SJ00I LARSICES (8] $)001 ST 9I9YM

0} I9J01 Os[e ARUI $3001 10 J00Y ‘punoIs mofaq st jery jue[d e jo jred oYy ST 1001 Y RS icts|

09 I9Jo1 os[e AeUl S300.1 IO J00Y ‘PuUNoIS mofaq si jey) juefd e jo jred oY) SI J00I1 YV | JURAS[Y

“rI[(RISUINA SB Paz110899ed are s)oolqus wewny urejrs)) ‘suonyeindod o[qeidumy | VYILOATH
*(90UOPIAD OYIIUSIDS AQ POIROIPUL Se) JT oIeJ[om JO 9Je)S PooSd ® Ul st [ewtue uy | LYHIISI

Pl Jo so10ads e st seads pareSuepus Uy ‘L107 ‘0¢ Arenuer pejepd() ‘eaog Iejiuus(Aq IMA9TV
*+‘08po[MOWY UOWWIOD JO 19))eW B SB)R} S[RWINY UOIUYS([RWIUY PIIA\ | RBIMALGOY | S[BWIUR o[qRIOUNA ST JRyMm
“poreSurpuy ‘(YD) pareSuepury A[[ROTILIY) SB PIISI[9SO} oIv So10ads pauejeat) ‘ARIOIFO 199

---uodeom e £q se ‘pany 10 papunom Suraq 0} a[qrydedsns 10 jo a[qeded ‘uonIUYLp S[qeISUMA | JUBAS[OY

U ST IUIRJ RWOH ‘(118 weaIp spoomAfjog se umouy Apremdod oy Ares] | VYILOATH
PIos $398 OYM 118 URLIOSIN P[O-TRIA-FT ® Jo A109s o) ST ®IPY (9007) ®IPY | TMAGMISIA
pareadde A[eurSLIo e} ue[yoROJN YeIvS AQ SUOS ® SI RIPY ‘SSR], poje[oy] IMAITY
(oureu) RIPY 998 ‘Oureu s 113 o) 104 Suos o) ynoqe St APIIR SIYT, | BIMHIOY RIPE ST OYM
(6861 YPIRIN £g WIOQ ‘IopUeXe[y 991) ALM) BSI(] RYSPAY A1) RYSeAy IaAg

*VIAV Punj yjjesm uSreaAos 9} 104 *(URIDISNUI) BIPY 89S ‘URIIISNUI 87} 10 | JueAS[oY

odesse PPOIN A1ond)

Chapter 5

Conclusion

Our work implements an IR system that is capable of fully ranking the documents
in a corpus based on its relevance to the user’s query using only the embeddings
of fine-tuned language models. The complexity and sophistication of deep neural
networks provides for high quality representation of the query and document without
compromising on inference time. Based on previous work on similar natural language
processing tasks, we incorporate the full ranking of the documents through triplet
network architecture and use directly the embeddings of the autoencoding transformer

models during inference.

We compare the performance of different language models against the overly-used
BERT as the ranker. This goal was mainly motivated by the increasing research
interests on general-purpose Language Models (L.Ms) capable of modelling the char-
acteristics of any language when trained vigorously on large amounts of data. Many
NLP tasks have seen improvement in their performances when fine-tuned on large pre-
trained models. As for the task of document ranking, not much evidence is out there
elaborating the usefulness of different language models. And so, we try to empirically
compare the performances of the different language model in a full-rank setting to
gain some insight about the ideal architecture for the ranking task. Experimental
results show that newer language models do not outperform BERT’s feature-based
ranking performance. The sentence embeddings of BERT, when derived using AVG or
CLS pooling techniques, has the highest MRR@10 value for the MS MARCO passage
retrieval task. DistilBERT, a distilled version of BERT, strikes the right balance be-
tween effectiveness and efficiency in retrieval, since its retrieval performance is on par
with BERT’s and time taken per inference step is much lower than its non-distilled

counterparts.

30

31

5.1 Future Work

Several possible extensions can be made to the IR system following the findings of this
thesis. If deep neural networks can be used for initial retrieval without sacrificing the
inference time, then a single model that satisfies all desiderata of an IR system would
save a lot of training time. Having an ensemble approach might not be beneficial in
the long run, especially when dealing with highly-complex deep network architectures.
Without the advancement of hardware components like GPUs & TPUs that support
these operations, we must rely on traditional IR algorithms that do not perform
semantically well. Hence, a standalone deep neural model that ticks all checkboxes
of a good IR system would benefit the community.

In the near future, we plan to test our hypothesis by doing an ablation study
to explain the performances of the models. One incremental development can be
made by making use of query expansion techniques previously experimented on sev-
eral dataset. A major drawback of using short queries is capturing the right intent.
A short query may lack much of the context necessary for these deep neural models
to produce good quality representations. And hence, the training data might not be
sufficient to capture all nuances of the domain and thus, lead to poor modelling of
intent. Although recent language models have overcome this drawback to a certain
level, it is proven that such models can benefit from introducing some additional con-
text to the queries. However, traditional word-based query expansion is not entirely
applicable to make use of BERT’s sensitivity to the addition of structure and con-
cepts. An interesting take would be to leverage Active Learning to generate useful
intent-matching expansion of queries. The language model would generate potentially
correct expansion of the short queries with a user in the loop giving feedback on the
right expansion, which would in-turn be fed to the model to retrieve the top-N doc-
uments relevant to the enhanced query. There can be either a generative model and
a ranker model ensemble or the same model can be optimized for different training
objectives. Finally, the performance of DistilBERT in our research and the recent
advancements in knowledge distillation (KD) using smallers rankers optimized for IR
[16] shows that KD is the best immediate solution for speeding-up the inference with-
out compromising on performance, especially for on-the-edge applications like mobile

applications.

Bibliography

1]

2]

13l

4]

5]

6]

7]

18]

19]

[10]

[11]

Zeynep Akkalyoncu Yilmaz, Shengjin Wang, Wei Yang, Haotian Zhang, and
Jimmy Lin. Applying BERT to document retrieval with birch. In Proceed-
ings of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP): System Demonstrations, pages 19-24, Hong Kong, China,
November 2019. Association for Computational Linguistics.

Zeynep Akkalyoncu Yilmaz, Wei Yang, Haotian Zhang, and Jimmy Lin. Cross-
domain modeling of sentence-level evidence for document retrieval. In Proceed-
wngs of the 2019 Conference on Empirical Methods in Natural Language Process-
ing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 3490-3496, Hong Kong, China, November 2019. As-
sociation for Computational Linguistics.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate.

Pia Borlund. The concept of relevance in ir. J. Am. Soc. Inf. Sci. Technol.,
54(10):913-925, August 2003.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and Christopher D. Manning.
Electra: Pre-training text encoders as discriminators rather than generators,
2020.

Nick Craswell, W. Bruce Croft, Jiafeng Guo, Bhaskar Mitra, and Maarten de Ri-
jke. Report on the sigir 2016 workshop on neural information retrieval (neu-ir).
SIGIR Forum, 50(2):96-103, February 2017.

Nick Craswell, Bhaskar Mitra, Emine Yilmaz, Daniel Campos, and Ellen M.
Voorhees. Overview of the trec 2019 deep learning track, 2020.

Zhuyun Dai and Jamie Callan. Deeper text understanding for IR with contextual
neural language modeling. CoRR, abs/1905.09217, 2019.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A
Large-Scale Hierarchical Image Database. In C'VPR09, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

Laura Dietz and John Foley. Trec car y3: Complex answer retrieval overview.
Text REtrieval Conference (TREC), 2019.

32

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

21]

22]

33

Laura Dietz, Ben Gamari, Jeff Dalton, and Nick Craswell. Trec complex answer
retrieval overview. Text REtrieval Conference (TREC), 2018.

Laura Dietz, Manisha Verma, Filip Radlinski, and Nick Craswell. Trec complex
answer retrieval overview. Text REtrieval Conference (TREC), 2017.

Hai Dong, Farookh Hussain, and Elizabeth Chang. A survey in traditional in-
formation retrieval models. pages 397 — 402, 03 2008.

Lea Frermann. Extractive NarrativeQA with heuristic pre-training. In Proceed-
ings of the 2nd Workshop on Machine Reading for Question Answering, pages
172-182, Hong Kong, China, November 2019. Association for Computational
Linguistics.

Luyu Gao, Zhuyun Dai, and Jamie Callan. Understanding bert rankers under
distillation. In Proceedings of the 2020 ACM SIGIR on International Conference
on Theory of Information Retrieval, ICTIR ’20, page 149-152, New York, NY,
USA, 2020. Association for Computing Machinery.

Yoav Goldberg. Neural network methods for natural language processing.
10(1):1-309. Publisher: Morgan & Claypool Publishers.

Bert F. Green, Alice K. Wolf, Carol Chomsky, and Kenneth Laughery. Base-
ball: An automatic question-answerer. In Papers Presented at the May 9-11,
1961, Western Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM
'61 (Western), page 219-224, New York, NY, USA, 1961. Association for Com-
puting Machinery.

Jiafeng Guo, Yixing Fan, Qingyao Ai, and W. Bruce Croft. A deep relevance
matching model for ad-hoc retrieval. In Proceedings of the 25th ACM Interna-
tional on Conference on Information and Knowledge Management, CIKM ’16,
page 5564, New York, NY, USA, 2016. Association for Computing Machinery.

Jiafeng Guo, Yixing Fan, Liang Pang, Liu Yang, Qingyao Ai, Hamed Zamani,
Chen Wu, W. Bruce Croft, and Xueqi Cheng. A deep look into neural ranking
models for information retrieval. Information Processing & Management, page
102067, 2019.

Shuguang Han, Xuanhui Wang, Mike Bendersky, and Marc Najork. Learning-
to-rank with bert in tf-ranking. Technical report, Google, 2020.

Donna Harman. Overview of the first trec conference. In Proceedings of the 16th
Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 93, page 3647, New York, NY, USA, 1993.
Association for Computing Machinery.

34

[23] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural net-
works for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal Processing Magazine, 29(6):82-97, 2012.

[24] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for
text classification. In Proceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), pages 328-339,
Melbourne, Australia, July 2018. Association for Computational Linguistics.

[25] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural
network architectures for matching natural language sentences. In Proceedings
of the 27th International Conference on Neural Information Processing Systems
- Volume 2, NIPS’14, page 2042—-2050, Cambridge, MA, USA, 2014. MIT Press.

[26] Haiqing Hu. A study on question answering system using integrated retrieval
method. 01 2006.

[27] Po-Sen Huang, Xiaodong He, Jianfeng Gao, li Deng, Alex Acero, and Larry Heck.
Learning deep structured semantic models for web search using clickthrough
data. pages 2333-2338, 10 2013.

[28] Mahbub Hussain, Jordan J. Bird, and Diego R. Faria. A study on cnn transfer
learning for image classification. In Ahmad Lotfi, Hamid Bouchachia, Alexan-
der Gegov, Caroline Langensiepen, and Martin McGinnity, editors, Advances
i Computational Intelligence Systems, pages 191-202, Cham, 2019. Springer
International Publishing.

[29] Nasreen Jaleel, James Allan, W. Croft, Fernando Diaz, Leah Larkey, Xiaoyan
Li, Mark Smucker, and Courtney Wade. Umass at trec 2004: Novelty and hard.
01 2004.

[30] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search
with gpus. ArXiv, abs/1702.08734, 2017.

[31] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. CoRR, abs/1412.6980, 2015.

[32] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton. Imagenet classification
with deep convolutional neural networks. Neural Information Processing Sys-
tems, 25, 01 2012.

[33] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. Race:
Large-scale reading comprehension dataset from examinations. arXiv preprint
arXw:1704.04683, 2017.

[34]

[35]

[36]

[37]

138

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

35

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush
Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of
language representations, 2019.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521:436-444, 2015.

Hang Li. Learning to Rank for Information Retrieval and Natural Language
Processing, Second Edition, volume 4. 04 2011.

Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th

International Conference on Computational Linguistics, 2002.

Tie-Yan Liu. Learning to rank for information retrieval. Foundations and Trends
in Information Retrieval, 3:225-331, 01 2009.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqgi Chen,
Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A
robustly optimized BERT pretraining approach. CoRR, abs/1907.11692, 2019.

Sean MacAvaney, Andrew Yates, Arman Cohan, and Nazli Goharian. Cedr:
Contextualized embeddings for document ranking. SIGIR’19, page 1101-1104,
New York, NY, USA, 2019. Association for Computing Machinery.

Sean MacAvaney, Andrew Yates, and Kai Hui. Contextualized pacrr for complex
answer retrieval. In TREC, 2017.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schiitze. Introduc-
tion to Information Retrieval. Cambridge University Press, USA, 2008.

Bhaskar Mitra and Nick Craswell. Neural models for information retrieval.

CoRR, abs/1705.01509, 2017.

Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using
local and distributed representations of text for web search. In Proceedings of the
26th International Conference on World Wide Web, WWW ’17, page 1291-1299,
Republic and Canton of Geneva, CHE, 2017. International World Wide Web
Conferences Steering Committee.

Bhaskar Mitra, Corby Rosset, David Hawking, Nick Craswell, Fernando Diaz,
and Emine Yilmaz. Incorporating query term independence assumption for effi-
cient retrieval and ranking using deep neural networks. 07 2019.

Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan
Majumder, and Li Deng. MS MARCO: A human generated machine reading
comprehension dataset. CoRR, abs/1611.09268, 2016.

Rodrigo Nogueira and Kyunghyun Cho. Passage re-ranking with BERT. CoRR,
abs/1901.04085, 2019.

36

[48] Harshith Padigela, Hamed Zamani, and W. Bruce Croft. Investigating the suc-
cesses and failures of BERT for passage re-ranking. CoRR, abs/1905.01758, 2019.

[49] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi
Cheng. Text matching as image recognition. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, AAAI’'16, page 2793-2799. AAAI
Press, 2016.

[50] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher
Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 2227-2237, New Orleans, Louisiana, June 2018.
Association for Computational Linguistics.

[51] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Im-
proving language understanding by generative pre-training. "Technical report,
OpenAlL", 2018.

[52] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know:
Unanswerable questions for SQuAD. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 2: Short Papers),
pages 784-789, Melbourne, Australia, July 2018. Association for Computational
Linguistics.

[53] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:
100,000+ questions for machine comprehension of text. In Proceedings of the 2016
Conference on Empirical Methods in Natural Language Processing, pages 2383—
2392, Austin, Texas, November 2016. Association for Computational Linguistics.

[54] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using
siamese bert-networks. In EMNLP/IJCNLP, 2019.

[55] Stephen Robertson, S. Walker, S. Jones, M. M. Hancock-Beaulieu, and M. Gat-
ford. Okapi at TREC-3. In Overview of the Third Text REtrieval Conference
(TREC-3), pages 109-126. Gaithersburg, MD: NIST, January 1995.

[56] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distil-
bert, a distilled version of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108, 2019.

[57] Ricardo Usbeck, Michael Réder, Michael Hoffmann, Felix Conrads, Jonathan
Huthmann, Axel-Cyrille Ngonga Ngomo, Christian Demmler, and Christina

Unger. Benchmarking question answering systems. Semantic Web, 10:1-12, 08
2018.

[58]

[59]

[60]

[61]

62]

63]

[64]

37

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.
CoRR, abs/1706.03762, 2017.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel
Bowman. GLUE: A multi-task benchmark and analysis platform for natural
language understanding. In Proceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 353-355,
Brussels, Belgium, November 2018. Association for Computational Linguistics.

Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power.
End-to-end neural ad-hoc ranking with kernel pooling. CoRR, abs/1706.06613,
2017.

Wei Yang, Haotian Zhang, and Jimmy Lin. Simple applications of BERT for ad
hoc document retrieval. CoRR, abs/1903.10972, 2019.

Hamed Zamani and W. Bruce Croft. Relevance-based word embedding. CoRR,
abs/1705.03556, 2017.

Xin Zhang, An Yang, Sujian Li, and Yizhong Wang. Machine Reading Com-
prehension: a Literature Review. arXiv e-prints, page arXiv:1907.01686, June
2019.

Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards story-
like visual explanations by watching movies and reading books. In Proceedings
of the 2015 IEEE International Conference on Computer Vision (ICCV), ICCV
'15, page 19-27, USA, 2015. IEEE Computer Society.

Appendix A

Normalized Discounted Cumulative Gain (NDCGQG)

The Normalized Discounted Cumulative Gain (NDCG) is an evaluation metric for IR
used to rate the ranking effectiveness of a web search engine. Each document in the
search result needs a non-binary graded relevance score to calculate the cumulative

gain. It makes two assumptions:

1. Highly relevant documents are more valuable than marginally relevant docu-

ments, which again are more valuable than non-relevant documents.

2. Highly relevant documents are only useful if they are ranked at the top of the

search list, so that the searcher does not have to pay much effort to find them.

NDCG penalizes highly relevant documents by discounting the graded relevance value
logarithimically proportional to the document’s ranked position and then normalizes
the score. Since the relevance judgements of the passages in the MS-MARCO col-
lection are binary, we set the grade value to 1. The NDCG@k for the base recall
k € 5,10,100, 1000 values agrees with the other metrics of having BERT and Distil-
BERT in the lead, although here, DistilBERT has the best performance in 2 out of 3
pooling strategies shown in Table

38

39

Pooling NDCG@5 NDCG@10 NDCG@100 NDCG@1000

Avg 0.3171 0.3505 0.4081 0.4239

BERT CLS 0.3074 0.3387 0.3969 0.4143
Max 0.3059 0.3402 0.3969 0.4137

Avg 0.2898 0.3225 0.3813 0.3989

RoBERTa CLS 0.2532 0.2831 0.3406 0.3601
Max 0.2794 0.3112 0.3677 0.3867

Avg 0.2806 0.3136 0.3690 0.3875

ALBERT CLS 0.2843 0.3164 0.3702 0.3881
Max 0.2902 0.3238 0.3777 0.3943

Avg 0.3031 0.3357 0.3940 0.4111

DistilBERT CLS 0.3088 0.3415 0.3981 0.4154
Max 0.3140 0.3449 0.4023 0.4188

Avg 0.2372 0.2648 0.3140 0.3358

ELECTRA CLS 0.1976 0.2226 0.2693 0.2920
Max 0.2606 0.2890 0.3407 0.3595

Table A.1: The NDCG@Qk score for 5, 10, 100 and 1000 values of k for each model.
The results are mostly consistent with the other metrics, with BERTy,, having the
highest score for all 4 metrics.

Appendix B

Analysis on Training

The model configurations used in our experiments is given in detail in Table [B.1]
The DistilBERT model used here is distilled from the BERT model bert-base-uncased
checkpoint. For more details on the model configurations, please refer the correspond-
ing papers.

When trained on the same subset of the dataset, the learning curve shown in
Figure [B.2] seems to converge at around 100k global steps for all models. Accuracy
on the validation dataset at the end of one epoch, which is 125k training steps.

We experimented with maximum sequence lengths of 512 tokens for all models for
training and inference. Clearly, increasing the number of tokens significantly impacts
the results and also computation complexity. We could not perform inference on
RoBERTa since our current hardware resources could not allocate enough memory

for the computation.

40

41

. Train Pretrain Params Vocab
Version data Layer Task (Mil.) size
(GB)]
bert-base-uncased 16 12 static-MLM + 110 30k
NSP
dynamic-MLM +
roberta-base 160 12 Full Sent. (no NSP) 125 50k
MLM +
albert-base-v1 16 12 S0P 11 30k
distilbert-base-uncased 16 6 MLM 66 30k
D Replaced Token
electra-base-discriminator 16 12) 110 30k
Detection

Table B.1: The pretrained model versions that were used in our experiments along
with other configuration details like the training data size, number of layers, the
language model task they were pre-trained on (MLM=Masked Language Model,
NSP=Next Sequence Prediction and SOP=Sentence Order Prediction), number of
parameters and the vocabulary size of the autoencoding models. The hidden units
size and the number of attention heads are 768 and 12 respectively for all models.

MAP R-Prec R@1000 MRR
BERT 0.2637 0.1617 0.8916 0.2685
RoBERTa - - - -
ALBERT 0.2492 0.1563 0.8430 0.2538
DistilBERT 0.2858 0.1784 0.9100 0.2900
ELECTRA 0.2175 0.1371 0.7933 0.2224

Table B.2: IR scores when the maximum sequence length is 512 tokens at training
and inference. Compared to other models except RoOBERTa, DistilBERT is the clear
winner.

42

Convergence
e
———
0.95 1
0.90 1
e
(¥
s
3
E 0.85
on
=
=
=]
=
0.80 1
0.75 4 —— BERT
FocBERTa
— ALBERT
= ELECTRA
0.70 1 — DistiIBERT
T T T T T T T
o 20000 40000 BOO00 BOOO0D 100000 120000
Steps

Figure B.1: Amount of time taken for training on 2M examples by each model relative

to the fastest training model which is ALBERT.

Before training

After training

- & Ouery s *
0 T e Non-relevant docs 5 + .
+
@ Relevant doc .
i
15 ' 0 + % #
: + . .
; B + i
04 : 5 . r
N + 44 + N
+
5 + "' . 0 4 - e
. s . ¥ . " :
+ + .t . H
o # & . * * -5 + - e -
* * ’ * +
* - :
-5 -10 + .
+ + N
+ * N N N
-10 v gy 4 . * . 4 ¥ 15 . * N
+ A L A Query N
I: * + Non-relevant docs #
-15 . —20{ ® Relevant doc .
T T T T T T T T T T T T T T T T
=15 -10 =5 o 5 10 15 20 =20 =15 =10 =5 o 10 15 20

Figure B.2: t-SNE plot of query and passage embeddings before and after training

the DistilBERT model.

	Title Page
	Table of Contents
	Abstract
	Acknowledgements
	Introduction
	Contributions

	Related Work
	Background
	Document and Passage Retrieval
	Pretrained Language Models in Ranking

	Methodology
	Autoencoding Transformer Models for Passage Ranking
	Model Architecture
	Fine-tuning
	Inference
	Indexing
	Searching

	Evaluation

	Experimental Results
	Data
	Baseline
	Setup
	Empirical Analysis
	Analysis on Inference
	Analysis by Answer-type
	Analysis on Semantic Similarity

	Limitations of our work

	Conclusion
	Future Work

	Bibliography
	Normalized Discounted Cumulative Gain (NDCG)
	Analysis on Training

