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ABSTRACT 

 

Determination of a collision free path for a robot between start and goal positions through 

obstacles cluttered in a workspace is central to the design of an autonomous robot path 

planning. This thesis presents an improved artificial potential field-based navigation 

algorithm for mobile robots that produce an optimal path for a robot to navigate in an 

environment. To complete the navigation task, the algorithm will read the map of the 

environment or workspace and subsequently create a potential map for the robot to 

traverse in the workspace without colliding with objects and obstacles. This method 

overcomes the issue of deadlock which was a major bottleneck in the case of artificial 

potential field method. The simulation results infer the ability of the proposed method to 

overcome the deadlock issue and navigate successfully from an initial position to the goal 

without colliding into obstacles in both static or dynamic environment. 

  



xi 
 

LIST OF ABBREVIATIONS AND SYMBOLS USED 

 

1D One dimensional 

2D Two dimensional 

3D Three dimensional 

𝑎(𝒙) Vehicle acceleration at the current vehicle position 𝒙 

ACD Approximate Cell Decomposition 

ACO Ant Colony Optimization 

ANN Artificial Neural Network 

APF Artificial Potential Field 

BPF Bacterial Potential Field 

Cfree Free space 

Cobstacle Obstacle space 

Cspace Configuration space 

CD Cell Decomposition 

EA Evolutionary Algorithm 

EAPF Evolutionary Artificial Potential Field 

ECD Exact Cell Decomposition 

𝑭(𝒙) Sum of the forces from the various potential fields computed at the 

current vehicle position 𝒙 

GA Genetic Algorithm 

GPS Global Positioning System 

m Vehicle mass 

PCD Probabilistic Cell Decomposition 

PF Potential Field 



xii 
 

PRM Probabilistic Road Map 

PSO Particle Swarm Optimization 

RRT Rapidly-exploring Random Trees 

RRT* Rapidly-exploring Random Trees-star 

SA Simulated Annealing 

SN Subgoal Network 

VD Voronoi Diagram 

VFF Virtual Force Field 

VFH Virtual Force Histogram 

VG Visibility Graph 

𝛺 The workspace 

𝛤 Boundary 

𝑈𝑎𝑡𝑡(𝑋) The attractive potential at point 𝑋 

𝑈𝑟𝑒𝑝𝑠(𝑋𝑖) Repulsive potential model of the i-th static obstacle 

𝑋 The position [𝑥, 𝑦]𝑇 of robot’s central point in movement space 

𝑋𝑆 The start point 

𝑋𝑔 The target point position [𝑥𝑔, 𝑦𝑔]𝑇 

𝜌(𝑋, 𝑋𝑔) The distance between the current location of the central point of 

mobile vehicle’s body and target point 

𝜌(𝑋, 𝑋𝑖) The shortest distance of between current location of the center of 

mobile vehicle’s body and the i-th obstacle 

𝑘  Proportional gain coefficient 

𝜌0 The effective effect distance of obstacle 

𝜌𝑎 Judgment distance of whether the mobile body reaches to the target 

point 



xiii 
 

𝑛 The summation of static obstacles 

𝜂 Proportional position gain coefficient 

𝐹(𝑞) Force at position 𝑞 

𝑈𝑎𝑑𝑑(𝑋) Added potential at position 𝑋 

𝑠 Proportional coefficient 

𝜎 Potential constant 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

 

ACKNOWLEDGEMENTS 

 

I am extremely thankful to my supervisor Professor Dr. Jason J. Gu for providing me 

with this wonderful opportunity to conduct my graduate studies with his research team. I 

am grateful for his thorough guidance and feedback, inspiration, and patience all through 

the dissertation work. I would also like to thank my parents and my sister for their 

blessings, patience, and support. 

 



1 
 

Chapter 1 

INTRODUCTION 

 

1.1 General 

Robotic is now gaining a lot of space in our daily life and in several areas in modern 

industry automation and cyber-physical applications. This requires embedding 

intelligence into these robots for ensuring (near)-optimal solutions to task execution. 

Thus, a lot of research problems that pertain to robotic applications have arisen such as 

planning of path, motion, and mission, task allocation problems, navigation and tracking. 

In the present work, a research is carried out on path planning. 

Moving from one place to another is a trivial task, for humans. One decides how to 

move in a split second. For a robot, such an elementary and basic task is a major 

challenge. In autonomous robotics, path planning is a central problem in robotics. The 

typical problem is to find a path for a robot, whether it is a vacuum cleaning robot, a 

robotic arm, or a magically flying object, from a starting position to a goal position 

safely. The problem consists in finding a path from a start position to a target position. 

This problem was addressed in multiple ways in the literature depending on the 

environment model, the type of robots, the nature of the application, etc. Safe and 

effective mobile robot navigation needs an efficient path planning algorithm since the 

quality of the generated path affects enormously the robotic application. Typically, the 

minimization of the travelled distance is the principal objective of the navigation process 

as it influences the other metrics such as the processing time and the energy consumption. 

This chapter presents a comprehensive overview on mobile robot global path planning 

and provides the necessary background on this topic. It describes the various global path 

planning categories and presents a taxonomy of global path planning problem. 

Nowadays, we are at the cusp of a revolution in robotics. A variety of robotic systems 

have been developed, and they have shown their effectiveness in performing different 

kinds of tasks including smart home environments, airports, shopping malls, 

manufacturing laboratories. An intelligence must be embedded into robot to ensure 

(near)-optimal execution of the task under consideration and efficiently fulfil the mission. 
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However, embedding intelligence into robotic system imposes the resolution of a huge 

number of research problems such as navigation which is one of the fundamental 

problems of mobile robotics systems. To successfully finish the navigation task, a robot 

must know its position relatively to the position of its goal. Moreover, it has to take into 

consideration the dangers of the surrounding environment and adjust its actions to 

maximize the chance to reach the destination. Putting it simply, to solve the robot 

navigation problem, we need to find answers to the three following questions: Where am 

I? Where am I going? How do I get there? These three questions are answered by the 

three fundamental navigation functions localization, mapping, and motion planning, 

respectively. 

• Localization: It helps the robot to determine its location in the environment. Numerous 

methods are used for localization such as cameras, GPS in outdoor environments, 

ultrasound sensors, laser rangefinder. The location can be specified as symbolic reference 

relative to a local environment (e.g., centre of a room), expressed as topological 

coordinate (e.g., in Room 23) or expressed in absolute coordinate (e.g., latitude, 

longitude, altitude). 

• Mapping: The robot requires a map of its environment in order to identify where he has 

been moving around so far. The map helps the robot to know the directions and locations. 

The map can be placed manually into the robot memory (i.e., graph representation, 

matrix representation) or can be gradually built while the robot discovers the new 

environment. Mapping is an overlooked topic in robotic navigation. 

• Motion planning or path planning: To find a path for the mobile robot, the goal 

position must be known in advance by the robot, which requires an appropriate 

addressing scheme that the robot can follow. The addressing scheme serves to indicate to 

the robot where it will go starting from its starting position. For example, a robot may be 

requested to go to a certain room in an office environment with simply giving the room 

number as address. In other scenarios, addresses can be given in absolute or relative 

coordinates. 

Planning is one obvious aspect of navigation that answers the question: What is the 

best way to go there? Indeed, for mobile robotic applications, a robot must be able to 
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reach the goal position while avoiding the scattered obstacles in the environment and 

reducing the path length. There are various issues need to be considered in the path 

planning of mobile robots due to various purposes and functions of the virtual robot 

itself. Most of the proposed approaches are focusing on finding the shortest path from the 

initial position to goal position. Recently, research is focusing on reducing the 

computational time and enhancing smooth trajectory of the virtual robot. Other ongoing 

issues include navigating the autonomous robots in complex environments. Some 

researchers consider movable obstacles and navigation of the multi-agent robot. 

Whatever the issue considered in the path planning problem, three major concerns should 

be considered: efficiency, accuracy, and safety. Any robot should find its path in a short 

amount of time and while consuming the minimum amount of energy. Besides that, a 

robot should avoid safely the obstacles that exist in the environment. It must also follow 

its optimal and obstacle-free route accurately. Planning a path in large-scale 

environments is more challenging as the problem becomes more complex and time-

consuming which is not convenient for robotic applications in which real-time aspect is 

needed. In this research work, the focus is on finding the best approach to solve the path 

planning for finding optimal path in a minimum amount of time. It is also considered that 

the robot operates in a complex large environment containing several obstacles having 

arbitrary shape and positions. 
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Chapter 2 

LITERATURE REVIEW 

 

2.1 General 

The mobile robot path planning is the task to find a collision-free path, through an 

environment with obstacles, from a specified start location to a desired goal location. 

This chapter classifies the various path planning approaches in different ways and gives 

some general information about traditional path planning methods in different 

environments such as the Visibility Graph method, Cell Decomposition method, and 

Artificial Potential Field method by literature survey. Further, the drawbacks related to 

the potential field method are also discussed. 

There are three useful terms that are commonly used in graph based path planning 

techniques; configuration space (Cspace), obstacle space (Cobstacle), free space (Cfree) and 

free path. 

Configuration space (Cspace) concept is basically used in robot path planning in an 

environment including stationary known obstacles. Configuration space is a 

transformation of physical space where the robot and obstacle have the real size into 

another space where the robot is treated as a particle. This is achieved by shrinking the 

size of the robot to a point while expanding the obstacles by the size of the robot. 

Free space (Cfree) is defined simply as the consist of areas which are not occupied by the 

obstacles of the configuration space. 

Obstacle space (Cobstacle) and free space are the two sub spaces in the Cspace. Cobstacle 

which are defined as a set of infeasible configurations that represents the obstacles 

existing in the Cspace. 

Free path is the path between the starting point and the goal point which lies completely 

in the free space and does not come into contact with any obstacle in the environment. 

[29] 

 

2.2 Path Planning Approaches 
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The origin of robot motion planning can be tracked to the middle of the 1960s [12]. It has 

been dominated by classical approaches such as the Roadmap, Cell Decomposition, 

Mathematical Programming and Artificial Potential Field. Representative proposals of 

Roadmaps approaches are the Visibility graph which is a collection of lines in the free 

space that connects the trait of an object to another. The Voronoi diagram of a collection 

of geometric objects is a partition of space into cells, each of which consists of the points 

closer to one particular object than any other [13]. The Silhouette approach consists of 

generating the silhouette of the work cell and developing the Roadmap by connecting 

these silhouettes curves to each other [14]. The idea of Cell Decomposition algorithms is 

to decompose the C-space into a set of simple cells, and then compute the adjacency 

among cells. In the Mathematical Programming approach, the requirement of obstacle 

avoidance is represented by a set of inequalities on the configuration parameters; the idea 

is to minimize certain scalar quantities to find the optimal curve between the start and 

goal position [15].  

In [16], 1381 papers dating from 1973 to 2007 were surveyed, which covered a sufficient 

depth of works in the robot motion planning field. In this work, a broad classification of 

heuristic techniques is presented, which facilitates its analysis and method’s expectations. 

Broadly, the given classification is as follows: Probabilistic, heuristic and meta-heuristic 

approaches [17]. In the former are the Probabilistic Roadmaps, Rapidly-exploring 

Random Trees, Level set and Linguistic Geometry. In the heuristic and meta-heuristic 

approaches are the Neural Networks, Genetic Algorithms (GAs) [18;19;20], Simulated 

Annealing [21], Ant Colony Optimization [22], Particle Swarm Optimization, Stigmergy, 

Wavelets, Tabu Search and Fuzzy Logic. All the mentioned methods have their own 

strengths and drawbacks; they are deeply connected to one another, and in many 

applications, some of them were combined together to derive the desired robotic 

controller in the most effective and efficient manner.  

These path planning approaches can be categorized into two categories based on the 

aspect of completeness. From the completeness point of view the approaches can be 

categorized as classical and heuristic methods. Classical methods aim to find an optimal 

path if exists or proves that there is no solution. Heuristic methods try to find a better 

solution (path) in a short time but do not guarantee to find a solution always. Some 
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example approaches for the above classification can be given as bellow. 

1. Classical approaches 

• Roadmap 

• Cell Decomposition (CD) 

• Artificial Potential Field (APF) 

• Mathematical Programming 

• Virtual Force Histogram (VFH) 

• Virtual Force Field (VFF) 

• Subgoal Network (SN) 

2. Heuristic-based approaches 

• Neural Network (NN) 

• Genetic Algorithm (GA) 

• Particle Swarm Optimization (PSO) 

• Ant Colony Optimization (ACO) 

• Simulated Annealing (SA) 

2.2.1 Roadmap Methods 

The roadmap approach, also known as the Retraction, Skeleton, Highway or the Freeway 

approach, is one of the earliest path planning methods that have been widely employed to 

solve the shortest path problem. This approach is dependent upon the  concept of 

configuration space (Cspace) and continuous path. In this approach, the Cspace is used and 

the key feature of this approach is the construction of a roadmap or a freeway. 

The roadmap method is based on capturing the connectivity if the robot’s free space in 

the form of a network of 1D curves (straight lines). This set line straight lines which 

connect two nodes of different polygonal obstacles lie in the free space Cfree represent the 

roadmap. All the segments that connect a vertex of one obstacle to a vertex of another 

without entering the interior of any of the polygonal obstacles are drawn. 
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If a continuous path can be found in the free space of the roadmap, the initial and goal 

points are then connected to this path to arrive at the final solution, a free path. If more 

than one continuous path is found and the number of nodes in the graph is relatively 

small, Dijkstra’s shortest path algorithm is often used to find the best path. 

Various types of roadmap approaches including the visibility graph, voronoi diagram, the 

freeway net and silhouette have become more popular in robot path planning in known 

environments than the others. 

One of the oldest path planning methods is the visibility graph method which was 

introduced by N.J. Nilsson early in 1969. The visibility graph is the collection of lines in 

the free space that connects a feature of an object to that of another. In its principal form, 

these features are vertices of polygonal obstacles. A basic example construction of 

visibility graph is given in Fig. 2.1(a). One of the disadvantages of visibility graph is that 

the resultant shortest paths touch the obstacles at the vertices or even edges and thus it is 

not safe. Even though such short comings are existing in VG method, it is still useful in 

the environments in which the obstacles can be represented as polygonal shapes. 

The Voronoi diagram is defined as the set of points that are equidistant from two or more 

object features. It is a collection of regions that divides the plane. When the edges of the 

convex obstacles are taken as features, the VD of the Cfree consists of a finite collection of 

straight line segments and parabolic curve segments. It is necessary to mention that the 

use of VD is highly dependent on the sensory range and its accuracy, because this method 

maximizes the distance between the obstacles and the robot. This has a capability of 

addressing the drawbacks of the VG. A simple VD example is given in Fig. 2.1(b). 
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Figure 2.1 Roadmap based path planning: (a) Visibility Graph, (b) Voronoi Diagram [29] 

The roadmap is classified as a complete approach, (i.e. it finds a free path, if one exists.) 

however, other non-complete (probabilistic) variations exist for constructing and 

searching the roadmap. Probabilistic roadmaps in general, improve the speed of the  

algorithm. However, the principle disadvantages of the roadmap approaches are: 

(i) The roadmap goal is to find a free path (not an optimal path or near-optimal) 

(ii) It is complex and not suitable for dynamic environments due to the need for 

reconstructing the roadmap whenever a change occurs. [29] 

2.2.2 Cell Decomposition (CD) Methods 

Cell decomposition method is highly used in literature in path planning problems. The 

basic idea behind this approach is to find a path between the initial point and the goal 

point that can be determined by subdividing the free space of the robot’s configuration 

into smaller regions called cells. In this representation of the environment it reduces the 

search space or in other words, the Cfree is decomposed into cells. After this 

decomposition process, a search operator is used to find a sequence of collision-free cells 

from starting point to the goal point. This connectivity graph is generated according to 

the adjacency relationships between the cells, where the nodes represent the cells in the 

free space, and the links between the nodes show that the corresponding cells are adjacent 

to each other. From this connectivity graph, a continuous path or channel can be 

determined by simply connecting adjacent free cells from the initial point to the goal 
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point. 

In the case of a cell is corrupted by containing a part of an obstacle, the corresponding 

cell is divided into two new cells and then the obstacle-free cell would be added to the 

collision-free path. Steps to be followed in CD based path planning approach for mobile 

robot can be described as bellow. 

• Divide the search space to connect regions called cells. 

• Construct a graph through adjacent cells. In such a graph vertices denote cells 

and edges connect cells that have common boundary. 

• Determine goal and start cells and also provide a sequence of collision-free cells 

from start to goal cells. 

• Provide a path from the obtained cell sequence. 

Different CD techniques have been introduced. 

• Exact Cell Decomposition 

• Approximate Cell Decomposition 

• Probabilistic Cell Decomposition 

Exact Cell Decomposition 

The principle of exact CD approach is to first decompose the free space Cfree which is 

bounded both externally and internally by polygons, into a collection of non-overlapping 

trapezoidal and triangles, called cells. The generated cells are complicated due to their 

irregular boundaries. This is performed by simply drawing parallel line segments from  

each vertex of each interior polygon in the configuration space to the exterior boundary 

as shown in Fig. 2.2. These individual cells are numbered and represented as the nodes in 

the connectivity graph. The connectivity graph is constructed by searching the adjacency 

relation among the nodes and linking the configuration space. A path in this graph 

corresponds to a channel in free space, which is illustrated by the sequence of stripe cells. 

Hence this channel is then translated into a path in this graph by connecting the centering 

points of cell boundaries together from the initial configuration to the goal configuration. 

Such configuration results in providing unnecessary turning points in the point in the 
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path, makes the motion unnatural. 

The exact cell decomposition is considered complete, but this accuracy is a more difficult 

mathematical process for which the computational time is high, especially in crowded 

environments. 

 

Figure 2.2 Exact Cell Decomposition (a) Configuration space (Cspace), (b) Path generated 

by connecting the connectivity graph in the free space (Cfree) [29] 

Approximate Cell Decomposition 

This approach of cell decomposition is different from the exact CD because it uses a 

recursive method to continuous subdividing of the cells until one of the following 

scenarios occurs. 

• Each cell lies either completely in Cfree space or completely in the Cobstacle region 

• An arbitrary limit resolution is reached 

Approximate cell decomposition method is also referred as “Quadtree” decomposition 

and it effectively reduces the computational complexity. This method is recursively 

decomposing the Cspace into smaller cells by dividing a cell into four smaller identical 

new cells each time in the decomposition process (see Fig. 2.3). This decomposition 

continuously subdivides the cells until it fulfills one of the above criteria with an arbitrary 

resolution limit. After the decomposition process, the free path can be found easily 

through the initial point to the goal point by following the adjacent, decomposed cells in 
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the Cfree. 

Both the exact and approximate cell decomposition methods have advantages and 

disadvantages. The decomposition should be guaranteed to be complete, meaning that if a 

path exists, exact cell decomposition will find the path, however, it is a more difficult 

mathematical process to get high accuracy. Approximate cell decomposition is not as 

expensive as exact cell decomposition, and can yield similar or if not exactly as the same 

results as those of the exact cell decomposition. However, cell decomposition approaches 

are not suitable for dynamic environments due to the fact that when a priori unknown 

object appears, a new decomposition must be performed. 

 

Figure 2.3 Approximate Cell Decomposition (a) Configuration space (Cspace), (b) 

Obstacle free path after approximate cell decomposition [29] 

Probabilistic Cell Decomposition 

Probabilistic cell decomposition (PCD) is similar to approximate CD method except the 

cell boundaries which do not have any physical meaning. PCD is a probabilistic path 

planning approach which combines two concepts of approximate cell decomposition and 

probabilistic sampling methods. PCD resembles an approximate cell decomposition 

method where the cells have a simple predefined shape. As in approximate cell 

decomposition methods, PCD divides the configuration space, Cspace into closed 

rectangular cells. PCD does not require an explicit representation of the obstacle 

configuration space, Cobstacle but collision avoidance algorithm is able to check the 
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collision free configuration space. Therefore, it does not know whether a cell is entirely 

free or entirely occupied by the obstacles. A cell is called “possibly free” as long as only 

collision free sample has been found in the cell. Accordingly, it is called “possibly 

occupied” if all the samples that have been checked are colliding. If both collision free 

and colliding samples have been found in the same cell, it is called “mixed” and it has to 

split up into possibly free and possibly occupied cells. Even though the approximate CD 

and PCD methods have the advantages of fast implementation, they are not reliable in the 

environments in which the free space, Cfree has a small fraction of the environment. [29] 

2.2.3 Artificial Potential Field Methods 

The potential field method is based on a grid representation by discretizing the space into 

fine regular grid of the configuration. This method involves modeling the robot as a 

particle moving under the influence of the artificial potential field that is generated by the 

obstacles and the goal of the configuration space. The potential field method is based on 

the idea of attraction/repulsion forces; the attraction force tends to pull the robot towards 

the goal configuration, whereas the repulsion force pushes the robot away from the 

obstacles. At each step, the total potential force, generated by the potential function at the 

robot’s current location, changes the direction and moves the robot incrementally to the 

next configuration. Thus, the computed information is directly used in the robot’s path 

planning and no computational power is wasted. 

The artificial potential field concept was first introduced by Khatib as a local collision 

avoidance approach, which is applicable when the robot has no a priori knowledge about 

the environment, but the robot can sense the surrounding environment during the motion 

execution. The only drawback of this method is the local minimum problem; since this 

approach is local rather than a global (i.e. the immediate best course of action is 

considered). The robot can get stuck at a local minimum of the potential field rather than 

its global minimum, which is the target destination. This is generally referred as 

“Deadlock” in robot path planning. 

Escaping the local minimum is enabled by constructing potential field function that 

contains no local minimum or by coupling this method with some other heuristic 

techniques that can escape the local minimum. The artificial potential field approach can 
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be turned into a systematic motion planning approach by combining it with graph search 

techniques [29]. We have discussed more about the artificial potential field approach in 

Chapter 3. 

2.2.4 Mathematical Programming 

Mathematical programming is another conventional path planning approach. This 

approach represents requirements by a set of inequalities for obstacle avoidance in the 

configuration space Cspace. Path planning problem is formulated as a mathematical 

optimization problem that finds a solution which defines a curve between the starting 

point and the goal point by minimizing certain parameter quantities. Since this type of 

optimization problems are nonlinear and many inequality constraints, numerical methods 

are used to find a solution. [29] 

2.2.5 Genetic Algorithm 

Genetic algorithm was introduced by John Holland in 1960s and it mimics the process of 

biological evolution in order to solve the problems. This technique is successfully applied 

in the optimization problems such as classical traveling salesman problem, etc. Various 

studies on GA have been done in path planning problems. GA is one of the widely used 

algorithms in path planning because of its global optimization ability. Path planning 

using GA shows good obstacle avoidance capability and path planning in unknown 

environments but it increases the length of individuals by adopting binary encoding and 

that causes low efficiency of the occupied memory. [29] 

2.2.6 Particle Swarm Optimization (PSO) 

Particle swam optimization is a population based algorithm inspired from animals’ 

behaviors that is use to find the global minimum by using particles to get influence from 

the social and cognitive behaviors of swarm. In the PSO, basic particles are defined based 

on their position and their velocity in the search space. Particles get attracted towards 

positions in the search space that represent their best personal finding and the swarm’s 

best finding (local-best and global-best positions). However, the PSO has its own 

weaknesses in terms of i) controlling parameters ii) premature convergence, and iii) lack 

of dynamic adjustment which results in the inability to hill-climb solution. In order to 
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overcome these drawbacks associated with the PSO, some modified versions of PSO 

have been introduced for path planning and mobile robot navigation. But in many studies, 

PSO has shown the performances better than GA. [29] 

2.2.7 Ant Colony Optimization (ACO) 

Ant colony optimization method is inspired from ants’ social behaviors and imitates the 

collective behavior of ants foraging from a nest towards a food source in order to find an 

optimum in the search space. Ants use a chemical substance called pheromone to mark 

the taken path and this helps them to track the path again. The quality of the path is 

assessed based on the amount of the pheromones left by the ants that passed from that 

route using factors such as Concentration and Proportion. Proportion and Concentration 

of the pheromones indicate the length of the route and the number of ants travelled 

through that route respectively. Ants chose the routes for travelling with the highest 

probability of proportion to the concentration of the pheromone. ACO uses a population 

of randomly initialized ants in the search space that forage towards the goal location to 

find the optimal path. The optimization of the path is achieved through evaluation of the 

amount of pheromones deposited by ants on the paths. [29] 

2.2.8 Artificial Neural Network (ANN) 

Neural Network (NN) is the study of understanding the internal functionality of the brain. 

NN has been widely used in optimization problems, learning, and pattern recognition 

problems due to its ability to provide simple and optimal solution. NN is defined as the 

study of adaptable nodes that would be adjusted to repeatedly solve problems based on 

stored experimental knowledge gained from process of learning. The use of simple 

processing which mimics the brains neurons is the fundamental aspect of ANN. Later, 

these elements connect to each other shaping a network. The overall operational 

characteristics of the network would be defined based on the potentials and the nature of 

neurons’ interconnection. The NN-based methods can be categorized based on various 

factors: 

• The configuration of their layers: Single Layer, Multi Layers, Competitive Layer 

• Their training methodology: Supervised training, Unsupervised training, Fixed 
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weights (No training), and Self Supervised training 

NN-based methods can also be categorized based on their pattern of neurons’ 

interconnection, the methodology they used to determine neurons’ connection weights, 

and also the neurons’ activation function. NN in robot navigation has been categorized in 

the three types i) Interpreting the sensory data, ii) Obstacle avoidance, and iii) Path 

planning. Hybrid approaches of NN in combination with other artificial intelligent based 

methods such as Fuzzy logic, knowledge based systems, evolutionary approaches are 

more appropriate for addressing the robot navigation problem in real-world applications 

[29]. 

2.3 Summary on Literature Review 

The detailed review on various path planning methods, presented in this chapter, reveals 

that all the methods, such as Visibility Graph, Voronoi Diagram, Exact Cell 

Decomposition, Approximate Cell Decomposition, Probabilistic Cell Decomposition, 

Artificial Potential Field, Mathematical Programming, Genetic Algorithm, Particle 

Swarm Optimization, Ant Colony Optimization and Artificial Neural Network, have their 

own advantages and disadvantages. For example, Visibility Graph method [32],[33] is 

complete and produces optimal length path in both two and three dimensional 

configuration space for a point robot subject in a static environment. However, this non-

optimal method, with heavy computation and high time complexity, produces a path 

closer to the obstacles. Again, Voronoi Diagram [32],[33] is complete and produces safer 

path, as they are furthest from the obstacles, in two dimensional or arbitrary configuration 

space for a point robot subject. However, it is non-optimal, and it requires long range 

sensor for local path planning. In general, the goal of the roadmap approaches is to find a 

free path not an optimal or near-optimal path, and it is complex and not suitable for 

dynamic environments due to the need for reconstructing the roadmap whenever a change 

occurs. On the other hand, the Exact Cell Decomposition [34] method is complete in a 

two dimensional configuration space for a point robot. Although, it is non-optimal and 

requires heavy computation and time. The Approximate Cell Decomposition [34] 

requires low computation in a two dimensional configuration space for a point robot. 

However, it is non-optimal and not complete. The heuristic methods [29] take less time, 
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allow parallel search for a point robot. However, they are not complete and not sound. 

Table 2.1 gives a comparative study on the advantages and disadvantages of the 

conventional methods. 

Table 2.1 Advantage and disadvantages of various methods[29] 

Algorithm Advantage Disadvantage 

APF Real-time, 2D or 3D, point or rigid 

robot 

Not-complete, non-optimal, local 

minima 

CD Complete, sound, 2D and 3D, point 

or rigid robot 

Non-optimal, heavy computation, 

time 

ECD Complete, 2D, point robot Non-optimal, heavy computation, 

time 

ACD Low computation, 2D, point robot Non-optimal, not-complete 

VG Complete, optimal length path, 2D 

or 3D, point robot, static 

environment 

Non-optimal, heavy computation, 

time complexity, path closer to 

obstacles 

VD Complete, safer path, 2D or 

arbitrary, point robot 

Non-optimal, long range sensor for 

local path planning 

Bug Complete, 2D, point robot Non-optimal, long path, time 

complexity 

Heuristic Less time, parallel search, point 

robot 

Not-complete, not sound 

 

Heuristic methods such as A* algorithm has a wide variety of scientific applications. 

However, it is computationally very expensive in a high dimensional grid, which is a 

major setback. Genetic Algorithm is one of the widely used algorithms in path planning 

because of its global optimization ability, good obstacle avoidance capability and good 

path planning in unknown environment. However, it opts for binary encoding which 

causes low efficiency of the occupied memory and slowdown. Furthermore, when an 

unforeseen obstacle blocks a planned path, re-planning is required, and it results a 

computationally taxing specially in unknown or dynamic environments. Again, the 
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complexity of the environment leads the increase of computational time of global path 

planning algorithms. Fuzzy Logic method can overcome this pitfall; however, it has the 

drawback of being not complete. It is evident from the existing literature that there is a 

lack of a path planning algorithm there that has low computational requirements, 

applicable in a wide variety of tasks, in two or three dimensional configuration space 

with no extra requirements or drawbacks. 

2.4 Objectives and scope of present study 

In this work, an improved artificial potential field method is proposed for path planning 

for mobile robotics that ensures a feasible and safe path for the robot navigation. This 

proposal uses concepts from the APF to solve efficiently a robot path planning problem, 

ensuring a reachable configuration set and controllability if it exists, outperforming 

current APF approaches. The APF is a reactive motion planning method with inherent 

well-known difficulties to find global optimal paths, because it cannot solve all local 

minima problems [23]. Hence, modern methods that overcome these challenges have 

been developed [24]. In one article, the APF is blended with Evolutionary Algorithms 

(EA) obtaining a different potential field methodology named Evolutionary Artificial 

Potential Field (EAPF) [25]. Here, the APF method is combined with GAs to derive 

optimal potential field functions [24]. Further, the variational planning approach uses the 

potential as a cost function, and it attempts to find a path to reach the goal point that 

minimizes this cost [26]. There are also many approaches based on bacterial genetic 

algorithm as well which produce a range of outcomes [27],[28],[6].  

Since the artificial potential field is one of the best methods that can be used for path 

planning in known or unknown environments as well as in static or dynamic 

environments, it has been chosen as the basic technique for present investigation. Even 

though it is simple in analysis and implementation, it is suffering from local minima 

problem which causes the deadlock of the robot. Number of research papers have 

addressed this problem and provided some solutions but only for special situations. 

The objective of this research is to develop an artificial potential field based path 

planning algorithm for solving deadlock problems in structured unknown environments. 

This algorithm should consider most of the situations where the deadlock can happen. To 
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materialize this approach, a new potential component is introduced which forces the 

robot to move away from the deadlock positions. 

2.5 Organization of thesis 

The thesis consists of five chapters. The first chapter of this work thoroughly deal with 

the autonomous robotics related definitions and applications, and mobile robot path 

planning and localization problem. In Chapter 2, we provide the necessary background to 

define the path planning problem, path planning algorithms and classification. Existing 

problems of the conventional approaches have been deeply reviewed in this chapter. 

Chapter 3 contains mathematical overview of the conventional Artificial Potential Field 

method. A detailed discussion of the proposed Artificial Potential Field based algorithm 

is also given. Chapter 4 contains the simulation study along with the performance 

analysis of the proposed method and results for the static environments is presented. The 

robustness of the proposed method is also examined. Chapter 5 contains a comparative 

study between the proposed improved Artificial Potential Field algorithm and a set of 

conventional approaches. Finally, chapter 6 provides conclusions and suggestions for 

future work. 
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Chapter 3 

IMPROVED ARTIFICIAL POTENTIAL FIELD 

 

3.1 General 

The potential field approach [11] is especially popular in mobile robotics as it seems to 

emulate the reflex action of a living organism. A fictitious attractive potential field is 

considered to be centred at the goal position [Fig. 3.1(a)]. Repulsive fields are selected 

 

 

Figure 3.1 Potential field approach to navigation: (a) attractive field for goal at lower 

right corner, (b) repulsive fields for obstacles, (c) sum of the attractive and 

repulsivepotential fields, (d) contour plot showing motion trajectory 

to surround the obstacles [Fig. 3.1(b)]. The sum of the potential fields [Fig. 3.1(c)] 

(a)                                                               (b) 

(c)                                                              (d) 
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produces the robot motion. Using 𝑭(𝒙) = 𝑚𝑎, with m the vehicle mass and 𝑭(𝒙) equal to 

the sum of the forces from the various potential fields computed at the current vehicle 

position 𝒙, the required vehicle acceleration 𝑎(𝒙) is computed. The resulting motion 

avoids obstacles and converges to the goal position. This approach does not produce a 

global path planned a priori. Instead, it is a real-time on-line motion control technique 

that can deal with moving obstacles, particularly if combined with manoeuvring board 

techniques. Various methods have been proposed for selecting the potential fields; they 

should be limited to finite influence distances, or else the computation of the total force 

𝑭(𝒙) requires knowledge of all obstacle relative positions. 

The potential field approach is particularly convenient as the force 𝑭 may be computed 

knowing only the relative positions of the goal and obstacles from the vehicle; this 

information is directly provided by onboard sonar and laser readings. The complete 

potential field does not need to be computed, only the force vector of each field acting on 

the vehicle. A problem with the potential field approach is that the vehicle may become 

trapped in local minima (e.g., an obstacle is directly between the vehicle and the goal); 

this thesis proposes a novel way to get the vehicle out of these false minima. Potential 

fields can be selected to achieve specialized behaviours such as docking (i.e., attaining a 

goal position with a prescribed angle of approach) and remaining in the centre of a 

corridor (simply define repulsive fields from each wall). The sum of all the potential 

fields yields an emergent behaviour that has not been preprogramed (e.g., seek goal while 

avoiding obstacle and remaining in the centre of the hallway). This makes the robot 

exhibit behaviours that could be called intelligent or self-determined. 

3.2 Artificial Potential Field 

In this chapter the work that has been done before on artificial potential field path 

planning in the obstacle avoiding scenario is studied. In the artificial potential approach, 

the obstacle to be avoided are presented by a repulsive artificial potential and the goal is 

represented by an attractive potential, so that a robot reaches the goal without colliding 

with obstacles. This approach is computationally much less expensive than the global 

approach and is therefore suited for real-time implementation. The artificial potential 
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approach, however, has been limited due to the existence of local minima, which can be 

overcome by using harmonic potential field [1]. A harmonic function should satisfy 

Laplace’s equation, it should not have local extrema in a space free from singularities, it 

should have second order derivatives. A harmonic function should also satisfy principle 

of superposition and principle of maxima and minima. These principles indicate that the 

harmonic function has its extremes only on the boundary, so it does not have local 

maxima/minima inside the boundary. Hence, it is convenient for us to define boundary 

conditions for boundary of all obstacles and boundary of goal. Panati et al. showed that 

the Dirichlet boundary condition states that the boundary of all obstacles will be assigned 

with the maximum value in the region and the boundary of goal position has the 

minimum value in the region. By defining the boundary conditions in this format the 

potential field is harmonic field with only global minimum [3]. 

     ∇2𝑉(𝑋) = 0 𝑋                    (3.1) 

subject to: 𝑉(𝑋𝑆) = 1, 𝑉(𝑋𝑇) = 0, and 
𝜕𝑉

𝜕𝑛
= 0 at 𝑋 = 𝛤, 

where 𝛺 is the workspace, 𝛤 is its boundary, 𝑛 is a unit vector normal to 𝛤, 𝑋𝑆 is the start 

point, and 𝑋𝑇 is the target point [4].  

According to above improved measures, the improved artificial potential field model is 

proposed. The attractive force model of the target to a full range of vehicle’s body is:                                                                                                                 

                                             𝑈𝑎𝑡𝑡(𝑋) = 0.5𝑘𝜌2(𝑋, 𝑋𝑔)                                                (3.2) 

where 𝜌(𝑋, 𝑋𝑔) is the distance between the current location of the central point of mobile 

vehicle’s body and target point; 𝑘 is a proportional gain coefficient; 𝑋 is the position 

[𝑥, 𝑦]𝑇 of robot’s central point in movement space; and 𝑋𝑔 is the target point position 

[𝑥𝑔, 𝑦𝑔]𝑇. 

Repulsive potential model of the i-th static obstacles on the full range of movement of the 

body is: 
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                         𝑈𝑟𝑒𝑝𝑠(𝑋𝑖) = {
0.5𝜂 (

1

𝜌(𝑋,𝑋𝑖)
−

1

𝜌0
)

2

‖𝑋 − 𝑋𝑔‖
2

, 𝑖𝑓 𝜌(𝑋, 𝑋𝑖) ≤ 𝜌0

0, 𝑖𝑓 𝜌(𝑋, 𝑋𝑖) > 𝜌0

         (3.3) 

where 𝑖 ∈ (1, 2𝑚, 𝑛) , 𝑛 is the summation of static obstacles; ρ(X, X𝑖) is the shortest 

distance of between current location of the center of mobile vehicle’s body and the i-th 

obstacle; 𝜌0 the effective effect distance of obstacle; and 𝜂 is proportional position gain 

coefficient. Therefore, the whole potential field becomes, 

𝑈 = 𝑈𝑎𝑡𝑡(𝑋) + ∑ 𝑈𝑟𝑒𝑝𝑠
𝑛

𝑖=1
(𝑋𝑖)              (3.4) 

      𝐹(𝑞) = −𝛻𝑈(𝑞)                      (3.5) 

3.3 Added Potential  

The problem that plagues all gradient descent algorithms is the possible existence of local 

minima in the potential field. Gradient descent algorithm is generically guaranteed to 

converge to a minimum in the field, but there is no guarantee that this minimum will be 

the global minimum. This means that there is no guarantee that gradient descent will find 

a path to the goal 𝑋𝑔. This problem is overcome by adding some potential to the local 

minima, so that it can differentiate itself from the global minima. 

 

Figure 3.2 Local minimum inside the concavity. The robot moves into the concavity 

until the repulsive gradient balances out the attractive gradient [1] 
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When the robot is in local minimum point, the “added potential” is brought to solve the 

problem of local minimum, the added potential model is: 

𝑈𝑎𝑑𝑑(𝑋) = {
𝑠𝜌2(𝑋, 𝑋𝑔) + 𝜎, 𝜌(𝑋, 𝑋𝑔) > 𝜌𝑎

0, 𝜌(𝑋, 𝑋𝑔) ≤ 𝜌𝑎 
         (3.6) 

where 𝜌𝑎 is the judgement distance of whether the mobile body reaches to a target point; 

𝑠 is a proportional coefficient and 𝜎 is potential constant. Therefore, the whole potential 

field becomes, 

      U = 𝑈𝑎𝑡𝑡(X)  + ∑ 𝑈𝑟𝑒𝑝𝑠(X𝑖)  +  𝑈𝑎𝑑𝑑(X)
𝑛

𝑖=1
                         (3.7) 

which is void of any local minima. 

3.4 Proposed Improved Artificial Potential Field Algorithm 

The proposed potential field method skeleton for robot trajectory planning is described as 

follows: 

1. Design the attractive PF 𝑈𝑔𝑜𝑎𝑙
 according to global state with parameter 𝑎. 

2. Design the set of repulsive PF 𝑈𝑖
𝑜𝑏𝑠 according to each obstacle with its parameter  

𝛽. 

3. Determine the total PF of the space 𝑈𝑞 = 𝑈𝑔𝑜𝑎𝑙 + ∑ 𝑈𝑖
𝑜𝑏𝑠𝑛

𝑖=1
. 

4. Assign the initial state 𝑄𝑖 to the path vector. 

5. Calculate the distance 𝑟𝑔𝑜𝑎𝑙 between 𝑄𝑖 and 𝑄𝑔𝑜𝑎𝑙. 

6. while (𝑟𝑔𝑜𝑎𝑙 > 𝜖 && 𝑠𝑡𝑒𝑝 < 𝑀𝐴𝑋𝑆𝑇𝐸𝑃) do 

6.1. Call the potential gradient descent algorithm to determine the next state. 

6.2. Add the current state to the path vector. 

6.3. Add the additional potential to the current coordinate. 

6.4. 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 + 1. 

end while. 
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Chapter 4 

SIMULATION STUDY 

 

4.1 General 

As we discussed in chapter 3, there are some drawbacks associated with the traditional 

potential field-based path planning algorithm. The traditional APF often suffers from 

which causes trapping or dead-lock due to local minima and goal non reachability issues. 

Even though this algorithm has become popular, these fatal problems make some 

limitations of using it in path planning. Aiming these shortcomings of the traditional 

potential field based path planning methods, an improved algorithm has been proposed. 

We propose an APF based path planning method which helps the robot perform a dead-

lock free motion. The proposed method is developed and proved for 2D path planning 

which may be extended straight forward for 3D problems too. In the proposed method, 

we have introduced an additional field component, which includes the location 

information to prevent from local minima related issues of the traditional method. As a 

result, the proposed method will create an improved potential field, which will help the 

robot to move towards the goal without hitting the obstacles. The proposed method fills 

the void of incompleteness of APF theoretically. It improves the applicability of the APF 

and excels in scenarios unconquerable by the APF. The main focus of this chapter is the 

experimental user study that was conducted to study the performance of the proposed 

method on several test environments. 

4.2 Experimental Setup 

The experimental setup of the project includes a working computer that can test the 

algorithm. The hardware used for simulation is a computer with the processor Intel Core 

i7-7700HQ, 24 GBs of RAM, NVIDIA GeForce GTX 1050 Ti graphics, and Crucial 1TB 

SSD. The software used for simulation is MATLAB 2020a. 

4.3 Task 

To perform the tests our first step is to create a map or environment with obstacles placed 

in places. Following that, we place the robot in starting coordinate and set its destination 
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to the target coordinate. Finally, we let the robot find its path through the obstacles, with 

the algorithm. 

4.4 Map 1: The map with random obstacles 

An environment is generated by placing obstacles in two zones. First, a few obstacles are 

placed in the direct diagonal path in front of the source point of the robot. As the path 

planning is simulated, the traditional APF falls in the deadlock. The proposed APF 

overcome the obstacles and finds a way to the goal. Now to make the environment a bit 

more complex, a few more obstacles are placed in the path taken by the robot. The 

proposed algorithm successfully finds a path to the goal. The coordinates of all the 

obstacles placed in the environment are shown in Table 4.1. 

Table 4.1 Obstacle configuration of the map 

No. of obstacle x y 

1 90 90 

2 100 70 

3 70 100 

4 60 100 

5 100 50 

6 84 96 

7 100 170 

8 110 150 

9 107 135 

10 100 200 

11 100 50 

12 80 190 

 

It can be observed from the Table 4.1 that the obstacles are strategically placed. The 

obstacles clearly create a challenge to the algorithm, and the algorithm aces it. The 

traditional APF algorithm fails to find a path as shown in Fig. 4.1. Fig.4.2 shows the path 

traced by the proposed APF algorithm. Fig. 4.3 shows the potential map after the path is 
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traced by the robot. The algorithm takes 0.66 second to complete. 

 

Figure 4.1 The traditional APF algorithm fails to reach the goal 

The traditional APF fails to cross the first group of obstacles, and gets stuck in a 

deadlock. It is clearly a limitation of the traditional APF algorithm. 

 

Figure 4.2 The improved APF algorithm reaches the goal 
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The proposed APF algorithm successfully navigates through both the set of obstacles to 

reach the goal. Recognizing the hurdles respectively the robot overcomes the set of 

obstacles in both the cases. It clearly concludes the excellency of the proposed improved 

APF algorithm. 

Figure 4.3 The added potentials by the improved APF algorithm 

It is observable from Fig. 4.3 that the proposed APF algorithm can overcome obstacles by 

adjusting the potential field. In both the hurdles, the robot increases the potential and 

successfully adapts to the environment. This concludes the utility of the proposed 

algorithm. 

4.5 Map 2: The cave 

The proposed improved APF algorithm excels in the environment with two set of 

obstacles. However, it is of much interest to see how it performs in a cave like obstacles 

in its path. An environment is generated to test the algorithm against a cave like 

structured obstacle. The coordinates of all the obstacles placed in the environment are 
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shown in Table 4.2.   

Table 4.2 Obstacle configuration of the cave map 

No. of 

obstacle 

x y 

1 130 150 

2 150 130 

3 145 145 

4 116 144 

5 144 116 

6 90 126 

7 126 90 

8 137 105 

9 107 135 

10 150 140 

11 140 150 

12 112 75 

13 76 112 

14 147 123 

15 123 147 

 

It can be observed from the Table 4.2 that the obstacles are placed in a cave like 

structure. The obstacles clearly create a challenge to the algorithm. The traditional APF 

algorithm falls in a deadlock as shown in Fig. 4.4. 
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Figure 4.4 The traditional APF algorithm fails to reach the goal 

The traditional APF fails to navigate out of the cave shaped obstacles, and gets stuck in a 

deadlock. It is clearly a limitation of the traditional APF algorithm. Fig. 4.5 shows that 

the proposed improved APF algorithm can successfully reach the goal. Fig. 4.6 shows the 

potential field map after the robot completes its journey. 

 

Figure 4.5 The proposed improved APF algorithm reaches the goal 
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The proposed improved APF algorithm successfully navigates through the cave shaped 

structure of obstacles to reach the goal. The superiority of the proposed improved APF 

algorithm hence can be concluded. The algorithm takes 2.11 seconds to run. 

Figure 4.6 The added potentials by the proposed improved APF algorithm 

It is observable from the Fig. 4.6 that the proposed improved APF algorithm can modify 

the potential in such a way that leads to overcoming local minima in an eclectic way. 

This concludes the superiority of the proposed algorithm. 

4.6 Map 3: The wall 

The proposed algorithm excels in the environment with random obstacles and the cave 

shaped obstacles. However, it is of much interest to see how it performs when the goal is 

separated by a wall. An environment is generated to test the effectiveness of the 

algorithm in a wall shaped obstacle separated goal structure. The coordinates of all the 

obstacles placed in the environment are shown in Table 4.3. 
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Table 4.3 Obstacle configuration of the wall map 

No. of 

obstacle 

x y 

1 150 160 

2 150 170 

3 150 180 

4 150 190 

5 150 200 

6 150 195 

7 150 185 

8 150 175 

9 150 165 

10 150 100 

11 150 110 

12 150 120 

13 150 130 

14 150 140 

15 150 150 

 

It can be observed from the Table 4.3 that the obstacles are placed in a wall shape parallel 

to the y-axis. The obstacles clearly set a challenge for the algorithm because primarily the 

robot will try to reach the goal from the other side of the wall. How the traditional APF 

performs in this scenario is shown in Fig. 4.7. 
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Figure 4.7 The traditional APF algorithm fails to reach the goal 

The traditional APF fails to succesfully navigate to the goal, which is on the other side of 

the wall. The robot gets stuck in the other side of the wall. It is clearly a limitation of the 

traditional APF. Fig. 4.8 shows how the proposed improved APF algorithm performs in 

the environment.  

 

Figure 4.8 The proposed improved APF algorithm reaches the goal 
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The proposed improved APF algorithm successfully navigate in the environment to reach 

the goal on the other side of the wall. The algorithm can overcome any amount of 

hollowness caused by the local minima. The superiority of the proposed algorithm over 

the traditional algorithm hence can be concluded. The algorithm takes 15.13 seconds to 

complete. Fig. 4.9 shows the potential field map after the algorithm is run in the 

environment. 

Figure 4.9 The added potentials by the proposed improved APF algorithm 

It is observed from the Fig. 4.9 that the proposed improved APF algorithm can modify 

the potential in an eclectic way such that obstacles of any shape can be overcome. This 

concludes the superiority of the proposed algorithm. 

4.7 Map 4: The bug trap 

The proposed algorithm excels in the environments with random obstacles, cave shaped 

obstacles and wall shaped obstacles. However, it is of much interest to see how it 

performs when the environment consists of a bug trap. A bug trap is a typical shaped 
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structure that the bug algorithm gets caught in and has to complete the whole outline 

before it can come out again and complete the path. An environment is generated to test 

the effectiveness of the algorithm in a bug trap shaped obstacles situation. The 

coordinates of all the obstacles placed in the environment are shown in Table 4.4. 

Table 4.4 Obstacle configuration of the bug trap map 

No. of 

obstacle 

x y 

1 61 108 

2 108 61 

3 115 55 

4 55 115 

5 122 57 

6 57 122 

7 65 128 

8 128 65 

9 129 72 

10 72 129 

11 131 81 

12 81 131 

13 127 88 

14 88 127 

15 96 127 

16 127 96 

17 102 126 

18 126 102 

19 107 124 

20 124 107 

21 112 122 

22 122 112 

23 117 117 
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It can be observed from the Table 4.4 that the obstacles are placed in the shape of a bug 

trap. The obstacles clearly set a challenge for the algorithm because the robot may tend to 

go inside the hollow and get stuck. How the traditional APF performs in this scenario is 

shown in Fig. 4.10. 

 

Figure 4.10 The traditional APF algorithm fails to reach the goal 

The traditional APF fails to navigate out of the bug trap, and gets stuck in a deadlock. It 

is clearly a limitation of the traditional APF algorithm. Fig. 4.11 shows how the proposed 

improved APF algorithm performs in the environment. 

 

Figure 4.11 The proposed improved APF algorithm reaches the goal 
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The proposed improved APF algorithm successfully navigates through the bug trap to 

reach the goal. The algorithm can overcome any type of bug trap problem due to its 

adaptibility. Hence the superiority of the proposed algorithm over the traditional 

algorithm can be concluded. The algorithm takes 1.43 seconds to complete. Fig. 4.12 

shows the potential field map after the algorithm is run in the environment. 

Figure 4.12 The added potential by the proposed improved APF algorithm 

It is observed from the Fig. 4.12 that the proposed improved APF algorithm can modify 

the potential in an eclectic way such that obstacles like a bug trap can be overcome. This 

concludes the superiority of the proposed algorithm. 

4.8 Map 5: The maze 

The proposed algorithm excels in several environments namely with random obstacles, 

cave shaped obstacles, wall shaped obstacles, and bug trap shaped obstacles. However, it 

is of much interest to see how it performs when the environment consists of a maze. An 

environment is generated to test the effectiveness of the algorithm in a maze situation. 
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The coordinates of all the obstacles placed in the environment are shown in Table 4.5. 

Table 4.5 Obstacle configuration of the maze map 

No. of 

obstacle 

x y 

1 140 200 

2 140 190 

3 140 180 

4 140 170 

5 140 160 

6 140 150 

7 140 140 

8 140 130 

9 50 200 

10 50 190 

11 50 180 

12 50 170 

13 50 160 

14 50 150 

15 50 140 

16 50 130 

17 100 80 

18 100 90 

19 100 100 

20 100 110 

21 100 120 

22 100 60 

23 100 70 

 

It can be observed from the Table 4.5 that the obstacles are placed in the shape of a maze 

with three parallel walls. The obstacles clearly set a challenge for the algorithm as this 
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maze is very tricky for the robot to solve. How the traditional APF performs in this 

scenario is shown in Fig. 4.13. 

 

Figure 4.13 The traditional APF algorithm fails to reach the goal 

The traditional APF fails to navigate through the maze to reach the goal, and gets stuck in 

a deadlock. It is clearly a limitation of the traditional APF algorithm. Fig. 4.14 shows 

how the proposed improved APF algorithm performs in the environment. 

 

Figure 4.14 The proposed improved APF algorithm reaches the goal 



39 
 

The proposed improved APF algorithm successfully navigates through the maze to reach 

the goal. The algorithm can solve a large range of maze problems due to its adaptibility. 

Hence the superiority of the proposed algorithm over the traditional algorithm can be 

concluded. The algorithm takes 4.93 seconds to complete. Fig. 4.15 shows the potential 

field map after the algorithm is run in the environment. 

Figure 4.15 The added potentials by the proposed improved APF algorithm 

It is observed from Fig. 4.15 that the proposed improved APF algorithm can modify the 

potential in an eclectic way such that any maze of obstacles can be solved. This 

concludes the superiority of the proposed algorithm. Table 4.6 shows the time taken by 

the algorithm to solve the aforementioned environments. 
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Table 4.6 Time taken by the algorithm in various environments 

Configuration Space Mean Time 

(sec) 

Map 1: The map with random obstacles 0.66 

Map 2: The cave 2.11 

Map 3: The wall 15.13 

Map 4: The bug trap 1.43 

Map 5: The maze 4.93 

 

It can be noticed that in all the taken complex cases the traditional APF algorithm fails to 

find a path, and the proposed improved APF finds a path successfully within limited 

amount of time. 
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Chapter 5 

COMPARISON OF THE PROPOSED ALGORITHM WITH OTHER 

ALGORITHMS 

 

5.1 Introduction 

In the previous chapter, the simulations of the proposed improved Artificial Potential 

Field algorithm were performed in various configuration spaces and the results were 

produced, which showed that it is very efficient in a broad range of configuration spaces. 

This chapter is dedicated to study and compare the performance of the proposed 

improved Artificial Potential Field algorithm with other relevant algorithms for robotic 

path planning such as Visibility Graph, Rapidly-exploring Random Trees (RRT), A*, 

Genetic Algorithm, and Fuzzy Logic. The MATLAB implementations of the methods are 

collected from MATLAB Central or other code repositories such as R. Kala code 

repository [30], [31], then the images are regenerated, and the results are reproduced in 

the same configuration of computer. In each case, a similar configuration space is created 

by creating the same obstacle map. Then at each step snapshots of both the algorithms is 

reproduced in the comparisons. At the end, a comparative time study is performed to 

show how the proposed improved Artificial Potential Field algorithm excels over other 

algorithms. 

5.2 Comparison between the proposed algorithm and the Visibility Graph method 

To compare the proposed improved Artificial Potential Field method with the Visibility 

Graph algorithm, a similar configuration space is taken. The algorithm used with 

Visibility Graph method to find the path from the graph is Dijkstra’s algorithm. At first 

step, the Visibility Graph method finds all the possible paths, then Dijkstra’s algorithm 

finds the shortest path among the possible paths. Fig. 5.1 shows the map of both the 

algorithms. 
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(a) 

 

(b) 

Figure 5.1 Configuration space of the two algorithms: (a) Visibility Graph, (b) improved 

Artificial Potential Field 

It is observable from the configuration space that both maps are same and hence a 

comparison can be performed. Fig. 5.2 shows the path of the robot taken in two 

algorithms. 
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(a) 

 

(b) 

Figure 5.2 Path taken by the robot in: (a) Visibility Graph algorithm, (b) improved 

Artificial Potential Field algorithm 

5.2.1 Advantages of proposed algorithm over Visibility Graph method 

From Fig. 5.2 it is observable that the path taken in the proposed improved Artificial 

Potential Field is smoother and more optimal as it avoids touching the corner of the 

obstacles, which is a common pitfall of the Visibility Graph algorithm. Further, the path 
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taken by the robot in improved Artificial Potential Field can be analyzed from the 

potential field of the configuration space and the modification performed by the robot to 

the potential field. Fig. 5.3 shows both the potential field maps.  

 

(a) 

 

(b) 

Figure 5.3 Potential field of the configuration space: (a) before the robot traversed, (b) 

after the robot traversed 
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From Fig. 5.3 it is observed that the proposed improved Artificial Potential Field 

algorithm can modify the artificial potential field of a configuration space in such an 

eclectic way that a wide variety of configuration space can be navigated using the 

algorithm. Moreover, the mean time taken by the Visibility Graph Dijkstra’s algorithm is 

1.12 seconds, and the mean time taken by the proposed improved Artificial Potential 

Field algorithm for the same configuration space is 0.39 seconds. It concludes the 

superiority of the proposed algorithm over the Visibility Graph method. Hence, the 

proposed improved Artificial Potential Field algorithm is more desirable.  

 

5.3 Comparison between the proposed algorithm and the Rapidly-exploring 

Random Trees (RRT) method 

To compare the proposed improved Artificial Potential Field algorithm with the Rapidly-

exploring Random Trees algorithm, the same configuration space is taken for both of the 

algorithms. Fig. 5.4 shows the map of both the algorithms. 

It is observable from the configuration space that both maps are same and hence a 

comparison can be performed. Fig. 5.5 shows the tree formed and the artificial potential 

field generated in the respective algorithms. 
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(a) 

 

(b) 

Figure 5.4 Configuration space of the two algorithms: (a) Rapidly-exploring Random 

Trees, (b) improved Artificial Potential Field 
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(a) 

 

(b) 

Figure 5.5 (a) The tree formed by the RRT algorithm, (b) the artificial potential field 

generated by the improved Artificial Potential Field algorithm 
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From Fig. 5.5 it is observable that in the RRT method, the tree has found the goal, and in 

the improved Artificial Potential Field method the field has been generated and the goal 

is at the global minima. It can also be seen that there are several local minima that the 

algorithm has to overcome. Fig. 5.6 shows the paths taken by both the methods. 

 

(a) 

 

(b) 

Figure 5.6 Path taken by the robot in: (a) Rapidly-exploring Random Trees method, (b) 

improved Artificial Potential Field method 
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5.3.1 Advantages of the proposed algorithm over Rapidly-exploring Random Trees 

(RRT) method 

From Fig. 5.6 it is observable that in case of RRT, the tree must grow in all direction first, 

to find the goal from the start. On the other hand, the improved Artificial Potential Field 

method has to develop the artificial potential field of the configuration space, which is 

much more robust. Further, the path taken by the robot in improved Artificial Potential 

Field can be analyzed from the potential field of the configuration space and the 

modification performed by the robot to the potential field. Fig. 5.7 shows both the 

potential field maps. 

From Fig. 5.7 it is observed that the proposed improved Artificial Potential Field 

algorithm can modify the artificial potential field of a configuration space in such an 

eclectic way that a wide variety of configuration space can be navigated using the 

algorithm. Moreover, the mean time taken by the Rapidly-exploring Random Trees 

algorithm is 5.36 seconds, and the mean time taken by the proposed improved Artificial 

Potential Field algorithm for the same configuration space is 0.39 seconds. It concludes 

the superiority of the proposed algorithm over the RRT method. Hence, the proposed 

improved Artificial Potential Field algorithm is more desirable. 
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(a) 

 

(b) 

Figure 5.7 Potential field of the configuration space: (a) before the robot traversed, (b) 

after the robot traversed 
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5.4 Comparison between the proposed algorithm and the A* algorithm 

To compare the proposed improved Artificial Potential Field algorithm with the A* 

algorithm, the same configuration space is taken for both of the algorithms. Fig 5.8 shows 

the map of both the algorithms. 

 

(a) 

 

(b) 

Figure 5.8 Configuration space of the two algorithms: (a) A* algorithm, (b) improved 

Artificial Potential Field 
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It is observable from the configuration spaces that both maps are same and hence a 

comparative study can be performed. Fig. 5.9 shows the heuristics performed and the 

artificial potential field generated by the respective algorithms. 

 

(a) 

 

(b) 

Figure 5.9 (a) The heuristics performed by the A* algorithm, (b) the artificial potential 

field generated by the improved Artificial Potential Field algorithm 
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From Fig. 5.9 it is observable that in the A* method, the heuristics have found the goal, 

and in the improved Artificial Potential Field method the field has been generated and the 

goal is at the global minima. It can be also seen that there are several local minima that 

the algorithm has to overcome. Fig. 5.10 shows the paths taken by both the methods. 

 

(a) 

 

(b) 

Figure 5.10 Path taken by the robot in: (a) A* method, (b) improved Artificial Potential 

Field method 
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5.4.1 Advantages of the proposed algorithm over the A* algorithm 

From Fig. 5.10 it is observable that in case of A* the parameters are calculated, which is 

computationally very much expensive. On the other hand, the improved Artificial 

Potential Field method has to develop the artificial potential field of the configuration 

space, which is computationally light and much more robust. It can be said that the 

proposed improved Artificial Potential Field algorithm is more desirable. Further, the 

path taken by the robot in improved Artificial Potential Field can be analyzed from the 

potential field of the configuration space and the modifications performed by the robot to 

the potential field. Fig. 5.11 shows both the potential field maps. 

From Fig. 5.11 it is observed that the proposed improved Artificial Potential Field 

algorithm can modify the artificial potential field of a configuration space in such an 

eclectic way that a wide variety of configuration space can be navigated using the 

algorithm. Moreover, the mean time taken by the A* algorithm is 128.64 seconds, and the 

mean time taken by the proposed improved Artificial Potential Field for the same 

configuration space is 0.39 seconds. It concludes the supremacy of the proposed 

algorithm over the A* method. Hence, the proposed improved Artificial Potential Field 

algorithm is more desirable. 
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(a) 

 

(b) 

Figure 5.11 Potential field of the configuration space: (a) before the robot traversed, (b) 

after the robot traversed 
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5.5 Comparison between the proposed algorithm and the Genetic Algorithm (GA) 

method 

To compare the proposed improved Artificial Potential Field algorithm with the Genetic 

Algorithm, the same configuration space is considered for both of the algorithms. Fig. 

5.12 shows the map of both the algorithms. 

 

(a) 

 

(b) 

Figure 5.12 Configuration space of the two algorithms: (a) Genetic Algorithm, (b) 

improved Artificial Potential Field 
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(a) 

 

(b) 

Figure 5.13 (a) The computations performed by the Genetic Algorithm, (b) the artificial 

potential field generated by the improved Artificial Potential Field algorithm 
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It is observable from the configuration spaces that both maps are same and hence a 

comparative study can be performed. Fig. 5.13 shows the generation computations 

performed and the artificial potential field generated by the respective algorithms. 

 

(a) 

 

(b) 

Figure 5.14 Path taken by the robot in: (a) Genetic Algorithm method, (b) improved 

Artificial Potential Field method 
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From Fig. 5.13 it is observable that in the Genetic Algorithm method, the heuristics have 

found the goal, and in the improved Artificial Potential Field method the field has been 

generated and the goal is at the global minima. It can also be seen that there are several 

local minima that the algorithm has to overcome. Fig. 5.14 shows the paths taken by both 

the methods. 

5.5.1 Advantages of the proposed algorithm over the Genetic Algorithm (GA) 

method 

From Fig. 5.14 it is observable that in case of the Genetic Algorithm, several generations 

are calculated, which is computationally very much expensive. On the other hand, the 

improved Artificial Potential Field method has to develop the artificial potential field of 

the configuration space, which is computationally light and much more robust. It can be 

said that the proposed improved Artificial Potential Field algorithm is more desirable. 

Further, the path taken by the robot in improved Artificial Potential Field can be analyzed 

from the potential field of the configuration space and modifications performed by the 

robot to the potential field. Fig. 5.15 shows both the potential field maps. 

From Fig. 5.15 it is observed that the proposed improved Artificial Potential Field 

algorithm can modify the artificial potential field of a configuration space in such an 

eclectic way that a wide variety of configuration space can be navigated using the 

algorithm. Moreover, the mean time taken by the Genetic Algorithm is 8.27 seconds, and 

the mean time taken by the proposed improved Artificial Potential Field for the same 

configuration space is 0.36 seconds. It concludes the supremacy of the proposed 

algorithm over the Genetic Algorithm method. Hence, the proposed improved Artificial 

Potential Field algorithm is more desirable. 
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(a) 

 

(b) 

Figure 5.15 Potential field of the configuration space: (a) before the robot traversed, (b) 

after the robot traversed 
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5.6 Comparison between the proposed algorithm and the Fuzzy Logic method 

To compare the proposed improved Artificial Potential Field algorithm with the Fuzzy 

Logic algorithm, the same configuration space is taken for both of the algorithms. Fig. 

5.16 shows the map of both the algorithms. 

 

(a) 

 

(b) 

Figure 5.16 Configuration space of the two algorithms: (a) Fuzzy Logic, (b) improved 

Artificial Potential Field 
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(a) 

 

(b) 

Figure 5.17 (a) Inputs of the Fuzzy Logic algorithm [31], (b) the artificial potential field 

generated by the improved Artificial Potential Field algorithm 
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It is observable from the configuration spaces that both maps are same and hence a 

comparative study can be performed. In order to solve the problem using fuzzy logic, first 

few inputs which best represent the situation that the robot is currently placed in is 

selected. The decision of motion is made purely on the basis of these inputs and not the 

actual scenario. For this problem 6 inputs are selected. These are distance from the 

obstacle in front, distance from the obstacle at the front left diagonal, distance from the 

obstacle at the front right diagonal, angle between the heading direction of robot and the 

goal, distance from the goal and preferred turn. The different inputs are summarized in 

Fig. 5.17. 

The last input, preferred turn indicates whether it would be beneficial to turn clockwise or 

anti-clockwise, all other inputs ignored. A simple rule is used to set the parameter. If the 

distance of the front obstacle is more than a given tolerance [31], the robot will turn 

towards the goal. If the front obstacle is close and a new front obstacle is encountered, 

turn using the side of the goal is preferred. If the front obstacle is close and the same 

obstacle as encountered in the previous step is found, the same turn as made previously is 

repeated. 

The fuzzy system produces a single output, which is the steering to make or the 

immediate angular speed. The fuzzy rules are written such that the robot avoids the 

obstacles and aligns itself toward the goal. The fuzzy system is a result of a lot of manual 

tuning of the rules and membership functions, over a wide variety of scenarios [31]. Fig. 

5.18 shows the path taken by both the methods. 



64 
 

 

(a) 

 

(b) 

Figure 5.18 Path taken by the robot in: (a) Fuzzy Logic method, (b) improved Artificial 

Potential Field method 
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5.6.1 Advantages of the proposed algorithm over Fuzzy Logic method 

From Fig. 5.18 it is observable that in case of the Fuzzy Logic algorithm, the direction of 

the robot is calculated at every step, which is computationally expensive. On the other 

hand, the proposed improved Artificial Potential Field algorithm has to develop the 

artificial potential field of the configurations space, which is computationally light and 

robust. In a complex configuration space, the Fuzzy Logic method would face 

difficulties, whereas the proposed method would navigate easily. Further, the path taken 

by the robot in the improved Artificial Potential Field can be analyzed from the potential 

field of the configuration space and the modifications performed by the robot to the 

potential field. Fig. 5.19 shows both the potential field maps. 

From Fig. 5.19 it is observed that the proposed improved Artificial Potential Field 

algorithm can modify the artificial potential field of a configuration space in such an 

eclectic way that a wide variety of configuration spaces can be navigated using the 

algorithm. Moreover, the mean time taken by the Fuzzy Logic algorithm is 2.67 seconds, 

and the mean time taken by the proposed improved Artificial Potential Field algorithm 

for the same configuration space is 0.34 seconds. It concludes the supremacy of the 

proposed algorithm over the Fuzzy Logic method. Hence, the proposed improved 

Artificial Potential Field algorithm is more desirable. 
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(a) 

 

(b) 

Figure 5.19 Potential field of the configuration space: (a) before the robot traversed, (b) 

after the robot traversed 
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Chapter 6 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Summary 

This thesis has proposed a path planning algorithm based on artificial potential field for 

mobile robots in structured environments. In order to do that the thesis has been oriented 

in a proper manner which includes discussion on path planning and obstacle avoiding 

methods, derivation of the theory using mathematics, a detailed simulation study of the 

proposed path planning method for path planning in real environments, and a 

comparative study to establish the efficiency of the proposed algorithm over other 

existing algorithms. The main objective of this research work is to introduce a path 

planning method to overcome the deadlock problem associated to the traditional one by 

optimizing the potential field in the traditional Artificial Potential Field method.  

In the first part of this thesis, a comprehensive overview of the mobile robot path 

planning is given, which provides a necessary background for this research. The various 

path planning categories are described, and a taxonomy of path planning problem is 

presented. Three fundamental navigation functions – localization, mapping and motion 

planning are discussed. The present research is basically an optimization problem to 

reduce the computation time and to enhance the smoothness of the trajectory of the robot. 

Then, a detailed literature review was carried out on various robotic path planning 

methods and the advantages and limitations of those methods were discussed. The ideas 

of Configuration Space, Free Space, Obstacle Space and Free Path were presented. The 

methods were categorized on the basis of completeness of the algorithm. On the basis of 

this review, Artificial Potential Field method was selected as the basic technique for the 

proposed path planning algorithm. 

Further, the Artificial Potential Field method was discussed in detail. A significant 

drawback of this method is deadlock which was encountered in the present thesis. To 

overcome the problem of deadlock, the concept of Added Potential was introduced. The 

process to address the deadlock problem using Added Potential concept was explained. 
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And finally, the improved Artificial Potential Field algorithm was developed and 

proposed. 

To check the efficiency of the proposed improved Artificial Potential Field method a 

detailed a simulation study was carried out for a wide variety of configuration spaces 

such as the map with random obstacles, the cave, the wall, the bug trap and the maze. The 

algorithm was tested against each of the maps by using MATLAB. It was observed that 

the robot was able to overcome each of the hurdles arrived at its path. It was also shown 

that the traditional Artificial Potential Field method failed to reach the goal in each of 

these complex configuration spaces. 

The performance of the proposed algorithm was also examined by a thorough parametric 

study with an objective to check the versatility of the same for different set of obstacles. 

Moreover, a comparative study was carried out to test the efficiency and smoothness of 

the proposed improved Artificial Potential Field algorithm over a set of traditional 

algorithms such as Visibility Graph, Rapidly-exploring Random Trees, A*, Genetic 

Algorithm, and Fuzzy Logic. In each of the test cases the proposed improved Artificial 

Potential Field algorithm had lower computation time and smoother path. The proposed 

method excelled in each cases and proved to be more desirable than the other methods. 

6.2 Conclusions 

In the present work, an improved Artificial Potential Field method was proposed to solve 

the problem of robotic path planning. 

The proposed method efficiently works for a wide variety of configuration spaces such as 

the map with random obstacles, the cave, the wall, the bug trap and the maze. 

It was shown that the harmonic potential field addresses the issue of local minima by 

application of the superposition principle, maxima principle and minima principle of the 

harmonic function. 

The mathematical background, characteristics and limitations of the traditional Artificial 

Potential Field method were studied. This method has several features such as good 

computational speed, capability to develop a smooth path, and compatibility to a wide 

range of applications. However, this method is inefficient in a region of local minima or a 
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deadlock. The present research was dedicated to find an economical solution to address 

this issue without generating a high time complexity or a coarse path. 

Further to address the local minima and deadlock in a better way, the proposed method 

has been improved by introducing a novel application of Added Potential (𝑈𝑎𝑑𝑑). This 

𝑈𝑎𝑑𝑑 was added to attractive potential (𝑈𝑎𝑡𝑡) and repulsive potential (𝑈𝑟𝑒𝑝𝑠) to produce the 

new improved potential field. This addition does not compromise the computation time 

and the smoothness of the path trajectory. This results in improved efficiency with no 

additional computation cost. 

In this regard, it is viable to mention that the popular heuristic method like A* could be 

used to solve the present problem of robotic path planning. However, this 

computationally heavy method would result in a slow and inefficient solution. 

The theoretical findings of the present research stand experimentally verified through a 

detailed simulation study. At first, the deadlock and goal-non reachability issues 

associated with the traditional potential field method were examined under different 

situations and the drawbacks were analyzed. Next, the novel application of Added 

Potential, proposed in this thesis, was incorporated with the existing method and the 

simulation results were examined. A comparative study of the traditional method and 

proposed method was carried out for different cases. It is observed that the novel method 

could overcome the drawbacks of the traditional method more efficiently. Hence, the 

mathematical background and concept of the proposed method is verified. 

Further, to examine the robustness of the proposed method, a parametric study was 

carried out for randomly distributed multiple obstacles by varying the number and 

location/coordinate of the obstacles. The performance criterion of this robustness study 

was the computation time and the smoothness of the path trajectory. In each case, the 

proposed method has shown much better performance than the traditional one. In 

addition to the simulation case study, a comparative runtime analysis with a number of 

environments was also presented. This analysis showed that the proposed method has the 

capability of guiding the robot without occurrence of the deadlock problem, which proves 

the superiority of the present algorithm over others. 
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Finally, a comparative study is performed between the proposed improved Artificial 

Potential Field method and a set of conventional path planning algorithms as mentioned 

in the previous section. The study concludes the supremacy of the proposed work over its 

counterparts not only in simplicity but also in time consumption and smoothness of the 

path. 

6.3 Future Scope of Work 

In future, the research work can be carried out in the following directions. 

• The path planning can be further developed to reach the goal through a smoother 

path avoiding the delays at all the local minima. This will make the path cleaner 

and linear. 

• To develop a more efficient path planning algorithm a new strategy can be 

adopted, in which the total area would be segmented into smaller parts. To exit 

from that smaller area would be the primary goal of the robot and this process will 

be repeated for the total area to achieve the major goal. This segmentation 

procedure would be highly effective against environments consisting of maze. 
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