
PERFORMANCE EVALUATION OF CONTROLLERS IN
LOW-POWER IOT NETWORKS

by

MIHEER KULKARNI

Submitted in partial fulfillment of the requirements
for the degree of Master of Computer Science

at

Dalhousie University
Halifax, Nova Scotia

December 2020

© Copyright by MIHEER KULKARNI, 2020

Table of Contents

List of Tables . iv

List of Figures . v

Abstract . vii

List of Abbreviations Used . viii

Acknowledgements . x

Chapter 1 Introduction . 1

1.1 Motivation . 2
1.2 Research Objective . 3
1.3 Contribution . 4
1.4 Thesis Outline . 6

Chapter 2 Background and Related Work 7

2.1 Background . 7
2.1.1 Software-Defined Network (SDN) 7
2.1.2 ONOS architecture . 9
2.1.3 ONOS Subsystem and Service 11
2.1.4 Internet of Things (IoT) . 12
2.1.5 Overview of RPL . 14
2.1.6 SDN in IoT Challenges . 16
2.1.7 ONOS Technical Challenges 17

2.2 Related Work . 18
2.2.1 SDN-IoT based designs . 18

Chapter 3 Design, Methodology and Evaluation 24

3.1 Research Methodology . 24
3.2 Problem Definition . 24
3.3 SDN-WISE Node Architecture Modifications 25
3.4 µSDN-ONOS Architecture . 28

3.4.1 Proposed Architecture . 29
3.5 Evaluation . 34

3.5.1 Node Architecture Comparison 34
3.5.2 Controller Comparison . 37

3.6 Discussions of Results . 39
3.6.1 Node Architecture Evaluation 39

ii

3.6.2 Controller Evaluation . 43
3.6.3 Real Sensor Data Evaluation 46

Chapter 4 Conclusion and Future Works 48

4.1 Conclusions . 48
4.2 Future Works . 49

Appendix A . 50

A.1 Implementation of Node Architecture Comparison 50
A.1.1 Network Setup Configuration 50
A.1.2 SDN-WISE Sink Node Changes 51
A.1.3 Parameter Evaluation . 53

A.2 Operation of µSDN-ONOS . 53

Bibliography . 58

iii

List of Tables

2.1 A comparison of features for SDN based works. 23

3.1 The Table showing protocol stack of µSDN and SDN-WISE . . 28

3.2 The Table showing parameter settings used in evaluation. . . . 36

iv

List of Figures

2.1 Traditional SDN architecture. 8

2.2 Layered ONOS architecture. 10

2.3 An example of IoT ecosystem. 13

2.4 An example of RPL DAG. 15

3.1 SDN-WISE node architecture with embedded controller. . . . 27

3.2 The µSDN-ONOS architecture 29

3.3 The µSDN-ONOS SensorNode Subsystem workflow. 30

3.4 The µSDN-ONOS FlowRule Subsystem workflow. 31

3.5 The µSDN-ONOS Packet Subsystem workflow. 32

3.6 The µSDN-ONOS DeviceControl Subsystem workflow 33

3.7 Examples of a)Grid and b)Random Topology. 34

3.8 Examples of a)MSP430 CPU and b)Zmote sensor. 36

3.9 Average Transmission Energy Consumption in Grid Topology. 39

3.10 Average Transmission Energy Consumption in Random Topology. 40

3.11 Average Controller-Node Round-Trip Time in Grid Topology. 41

3.12 Average Controller-Node Round-Trip Time in Random Topology. 41

3.13 Average Latency between Source-Destination in Grid Topology. 41

3.14 Average Latency between Source-Destination in Random Topol-
ogy. 42

3.15 Average PDR in a)Grid and b)Random Topology. 42

3.16 Average Throughput of controller in a)Grid and b)Random
Topology. 44

3.17 Average Controller response time in a)Grid and b)Random Topol-
ogy. 44

3.18 Average Topology Discovery time in a)Grid and b)Random
Topology. 45

v

3.19 Average Topology Update time in a)Grid and b)Random Topolo-
gies. 45

3.20 Real sensor Data Evaluation for PDR in grid Topology varying
a)Bit Rate and b)Source Nodes 46

vi

Abstract

Software-Defined Networking (SDN) enables network reconfiguration in response to

dynamic application requirements. Recently researchers have tried extending SDN

in the Internet of Things (IoT) networks, which required domain-specific customiza-

tion in SDN architecture and protocols. Several architectures and designs have been

proposed without adequate performance evaluation except for a couple: µSDN and

SDN-WISE. µSDN architecture is built on a standard protocol stack, whereas SDN-

WISE proposes a custom one. We first perform an extensive evaluation of these

two architectures in terms of energy consumption, latency, and packet delivery ratio

(PDR). The results confirm that µSDN can significantly reduce resource utilization

while offering high PDR compared to SDN-WISE. Thus, we recommend µSDN as a

potential architecture for low-power IoT networks. However, which SDN controller

the chosen architecture can use? There is no standard evaluation bench-marking

available. Thus, we evaluate the embedded (part of the IoT networks) µSDN and

standard (external to the IoT networks) ONOS controllers on their throughput, de-

lay, topology detection, and topology update time. We observe a trade-off between the

scalability and performance between the embedded and external controllers. Thus,

users can choose a controller based on their application demand, e.g., an embedded

one for low traffic rate from a small number of IoT sources.

vii

List of Abbreviations Used

API Application Programming Interface

CASAS Centre for Advance Studies in Adaptive System

CONF Configuration Messages

CP Control Plane

CSMA/CA Carrier Sense Multiple Access Collision Avoidance

DAG Directed Acyclic Graph

DAO DODAG Destination Advertisement Object

DIO DODAG Information Object

DIS DODAG Information Solicitation

DODAG Destination Oriented Directed Acyclic Graph

DP Data Plane

DTLS Datagram Layer Security

EA-SDN/NFV Energy Aware Network Function Virtualization

FSM Finite State Machine

FTQ Flow Table Query

FTS Flow Table Set

ILP Integrated Linear Programming

INPP In Network Packet Processing

IoT Internet of Things

IP Internet Protocol

LoWPAN Low-Power Wireless Personal Area Network

MAC Medium Access Control

MTU Maximum Transmission Unit

NFV Network Function Virtualization

NI Northbound API

NOS Network Operating System

NS Non-Storing

NSU Node Status Update

viii

ODL OpenDayLight

ONOS Open Networking Operating System

OS Operating System

PDR Packet Delivery Ratio

RDC Radio Duty Cycling

RPL Routing Protocol for Low-power and Lossy Network

RSSI Received Signal Strength Indicator

RTT Round-Trip Time

SDN Software Defined Network

SI Southbound API

SLIP Serial In-Line Protocol

SNR Signal-to-Noise Ratio

TCP Transmission Control Protocol

TD Topology Discovery

TI Texas Instruments

TM Topology Manager

UDGM Unit Disk Graph Medium

UDP User Datagram Protocol

WLAN Wireless Local Area Network

WSN Wireless Sensor Network

WSU Washington State University

ix

Acknowledgements

First of all, I would like to humbly thank my supervisor, Dr. Israat Haque, for

guiding and supporting me during the MCS study and research despite her busy

work schedule. She taught me the methodology to carry out research and provided

constructive feedback on my work time-to-time. I feel really honored to have worked

under her supervision and thank her for continuous support during my study at

Dalhousie.

I would also like to thank all of my fellow lab members from the Programmable

and Intelligent Network (PINet) research lab for their help and opinion regarding my

work. I would specially thank Dipon, one of my lab mates, for his feedback on my

work and help to complete my research. I am also thankful to Dr. Michael Baddeley

from Toshiba, UK, for his guidance and valuable feedback during the evaluation.

Finally, I want to thank my parents for their love, support, and selfless sacrifices

that they made to send me to such a prestigious university for my further education.

Without their support, I would not have been able to finish my work.

x

Chapter 1

Introduction

In the recent years, the Internet has gone under tremendous evolution. Furthermore,

with the advent of Internet of Things (IoTs), all devices with some processing and

network capabilities can communicate with each other and share information [8]. The

devices range from small temperature sensor to a big car. IoT has revolutionized the

field of smart technologies [25]. This has led to the development of several applications

like smart home, smart cars, smart healthcare, etc. to provide seamless delivery of

services in order to manage consumer needs. Software Defined Networking (SDN) is

one of the emerging technologies in the field of networking [21]. It has gained a lot

of ground, since its introduction in campus networks. SDN allows network admins

to configure the network without changing logic of each device [21]. Apart from

re-configuration, SDN also offers the global knowledge of a network, virtualization,

scalability, etc.

Each year billions of IoT devices are being added to networks. These devices

have low-power, low-processing abilities and operate in lossy radio medium. Also,

the rise in IoT network has introduced a large amount of data traffic and it becomes

more difficult to manage by legacy networks [18]. Can we use SDN to manage this

dynamic nature of IoT networks? Many SDN-IoT architectures have been proposed

to provide solution to increasing IoT data traffic. Some architectures use customized

external controller and some use embedded ones, i.e., controller is within the IoT

environment. In our thesis work, we investigate whether it is feasible to use embedded

controller for a low-power IoT network. For the first part of our work, we compare

two prominent SDN-IoT architectures based on our literature survey. We carry out

the comparison by extensively evaluating the performance of both architecture. After

establishing which architecture is suitable for low-power IoT networks, in the second

part of this work, we connect a standard SDN controller to the architecture and

compare the performance with an embedded controller. Finally, we propose under

1

2

which circumstances we can use embedded controller and how it is more useful than

the external one.

For example, we can deploy temperature or humidity sensors in a smart home

(bedroom, kitchen, etc.). These sensors can collect data and send it to the embedded

controller. If the number of sources is low (e.g., around 25), we can use embedded

controller, which can offer better performance than external controller for less number

of source nodes. But if there are more than 25 sources, we suggest to switch to external

controller for ensuring performance with scalability. Most of smart home applications

use less than 20 sensors [32]. Thus, the embedded controller would be useful in that

case.

1.1 Motivation

Every year billions of IoT devices are getting added to communication network [25].

The Norton report [27] from USA suggests that by year 2025 there will be 25 billion

IoT devices and with the advent of 5G, it is only going to fuel the growth of IoT

networks. The same report also estimates that by year 2025 the IoT and its related

application will provide business of 11 trillion US dollars [27]. As the IoT networks

begin to expand, it will lead to large influx of data and control traffic [18]. In order to

manage such large traffic we will need some sort of infrastructure which dynamically

program the network or deploy new services. To facilitate such demand we think of

SDN as a solution to support such dynamic network. We think SDN in IoT networks

can offer a good network framework and withstand future demand.

SDN is an emerging networking paradigm that promises to change current state of

traditional networks, by breaking vertical integration, separating the network’s con-

trol logic from the underlying routers and switches, promoting (logical) centralization

of network control, and introducing the ability to program the network [21]. The sep-

aration of logic, offers better deployment of network policies and their implementation

in switching hardware, and the forwarding of traffic, by breaking the network control

problem into tractable pieces. SDN makes it easier to create and introduce new ab-

stractions in networking, simplifying network management and facilitating network

evolution. SDN also offers global view which means a centralized controller can have

entire knowledge of underlying network [21].

3

On the other hand, IoT devices include small devices like sensors, actuators, etc.

These are small devices which operate on low-power, low bit rate, low processing

ability, and have lossy medium. The introduction of SDN in IoT networks given such

constraints can lead to additional overhead on these devices [6]. Moreover, to support

such large number of devices we need devices to support IPV6 addressing. We need

to consider all these challenges and redesign the SDN architecture and protocols.

Baddeley et. al propose a lightweight SDN framework µSDN [6] for low-power IoT

networks. They introduce different optimizations like protocol, memory, architec-

ture, and controller to overcome device overhead challenges. They use base Routing

Protocol for Low- power and Lossy Networks (RPL) [35] for communication between

controller and node. They offer a good solution but they do not show any extensive

evaluation of its performance and comparison with other existing architecture.

Gaullicio et al in their work of SDN-WISE [13] offer a stateful solution for WSNs

(Wireless Sensor Networks) and use an adapted version of SDN Openflow [23] pro-

tocol to suit for WSN domain. They use a customized external controller to program

underlying nodes. They do not offer an optimizations and neither show extensive

performance evaluation. The same authors introduce to connect Open Network Op-

erating System (ONOS) [34] a standard SDN controller to SDN-WISE architecture.

They wanted to show heterogenity by showing communication between sensor nodes

and Openflow switches. However, they do not show any evaluations in IoT networks.

Thus, almost no architecture shows any extensive evaluation of their performance and

its comparison with other existing work.

1.2 Research Objective

In order to overcome challenges of IoT devices, there were several architectures pro-

posed. Some were built using customized protocols and controllers whereas some used

extension of SDN OpenFlow version with traditional SDN controller. During our sur-

vey we found µSDN and SDN-WISE to be prominent architecture as they have proper

implementation in Contiki Operating System (OS) [11] built on Cooja hardware em-

ulator. Our main objective in this research was benchmarking SDN-IoT architecture

and controllers for low-power IoT network. We decided to compare their performance

by evaluating different performance metrics like Transmission energy consumption,

4

Controller-Node Round-Trip Time (RTT), Latency between a source-destination pair,

and Packet Delivery Ratio (PDR). These metrics are evaluated by varying bit rate

and hop distance. In second part of our work, we adapt the existing µSDN ar-

chitecture to be controlled by ONOS controller. We choose the ONOS controller

over OpenDaylight (ODL) based on the evaluation results presented in [9], where

ONOS outperforms ODL. We also perform evaluation of µSDN embedded controller

and ONOS controller. We used performance metrics like Throughput, Controller re-

sponse time, Topology update time, and Topology discovery time to compare both

controllers. Finally, we propose to use embedded controller for low-power IoT net-

works if data rate is low. The embedded controller is suitable for low-power networks

as.

• The embedded controller shows better performance in low-bit rate in which

most IoT devices operate.

• It has almost the same Throughput to that of complex ONOS controller for

low-bit rate.

• Responds quickly to flow requests in low-bit range.

• Offers better update time in case of any link failure.

1.3 Contribution

In this thesis, we start with an initial investigation of evaluating performance of two

state-of-the-art software-defined architectures µSDN and SDN-WISE for IoT net-

works. In particular, we use embedded controller for both the architectures for a

unbiased comparison. We do that by implementing the controller logic in SDN-WISE

sink node. We perform extensive evaluation of both architectures by varying bit rate

and hop distance. We evaluate various performance metrics like Energy consumption,

Controller-Node RTT, Latency between source-destination pair, and PDR for both

grid and random topology. Through our results, we observe that µSDN performs

better than SDN-WISE in terms of the mentioned performance metrics. We also

provide appropriate reasoning for this performance trend in both the architectures.

We implement both architecture in Contiki OS using Cooja network simulator.

5

After establishing which architecture is better for low power IoT network, we inte-

grate the existing µSDN architecture with standard SDN controller ONOS. ONOS is

a well known open-source distributed SDN controller with modular architecture [34].

We adapted the µSDN messages to that of ONOS to ensure compatibility. In par-

ticular, we develop an ONOS adapter that converts µSDN messages to ONOS and

vice-versa. Similarly, we make some design modification in µSDN architecture to

connect it with ONOS controller. We modify existing embedded controller to act as

border router to connect to the external controller. We also perform extensive per-

formance evaluation of embedded and ONOS controller, e.g., Throughput, Controller

response, Topology discovery time, and Topology update time with a varying flow

setup requests and number of nodes. The performance of embedded controller was

better than that of ONOS controller for low-bit rate. The summarized contributions

are as follows.

• We modify SDN-WISE node architecture to ensure evaluations are unbiased

and we compare its performance with µSDN.

• The evaluation results reveal that µSDN has better performance than SDN-

WISE in terms of energy, Node-Controller RTT, and PDR.

• We integrate µSDN architecture with ONOS controller.

• We design and develop an adapter for ONOS to convert message format of

µSDN.

• We perform extensive evaluation of embedded controller and ONOS on Con-

tiki OS using Cooja network simulator. We found that embedded controller

performs better in terms Controller response time, discovery and update time

at low-bit rate. The embedded controller has similar performance in terms of

Throughput to that of ONOS for low-bit rate. We provide appropriate reasons

for this performance trend.

• We propose to use embedded controller for low-bit rate and low-power IoT

networks.

• Finally, we provide the portable bench-marking code in our git [22].

6

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents two sections: Section

2.1 introduces the necessary background to understand this thesis and Section 2

discuss relevant research works. Chapter 3 presents the design and methodology of

the thesis. It contains four sections: Section 3.2 define the problem. In Section

3.3, we show design changes in SDN-WISE architecture , while in Section 3.4, we

present our µSDN-ONOS architecture, Section 3.5 presents two parts: section (3.5.1

and 3.5.2) presents necessary setup and description of parameters for the evaluation,

while the next Section 3.6 presents the results and discussion on performance trends.

Chapter 4 presents conclusion 4.1 and future research directions 4.2.

Chapter 2

Background and Related Work

In this chapter, we first discuss necessary background on some topics to better un-

derstand this thesis. Then, we review existing literature related to our work.

2.1 Background

2.1.1 Software-Defined Network (SDN)

SDN has brought a paradigm shift in programmable networks. It has provided an

opportunity for all network administrators to overcome the challenges of legacy net-

works [18]. The main feature of SDN is that it breaks vertical integration of networks

by separating the control plane and data plane, i.e., the control logic is separated from

the device. This separation allows the network switches to act as simple forwarding

devices and their control logic can be programmed using the centralized controller.

This reduces the effort of network operators to change the control logic by visiting

every device present in the network. Some of the advantages of SDN are as follows.

• A logically centralized controller allows to program network remotely, which

allows an easy way to update network policies.

• A physically distributed controller in a large network enhances the performance,

scalability, and reliability of networks.

• SDN allows the network to adapt to changes dynamically.

• The programmable networks allow the company to design more sophisticated

network functions, services, and applications like load balancing, traffic engi-

neering, etc.

• SDN provides a global network view meaning all applications can see the same

network information. This allows a more consistent and effective implementa-

tion of network policies.

7

8

Monitoring

Load
Balancing

Data
Center

Traffic Management

Mobility and
Wireless

Centralized Controller
Network
Operating
System

Application
Plane

Control
Plane

Data
Plane

Northbound
API

Southbound
API

Openflow,
Netconf

REST
API

Forwarding Devices- Routers, Switches.

Figure 2.1: Traditional SDN architecture.

A brief overview of SDN architecture is as shown in Fig. 2.1. The architecture

has three different planes and two APIs. We will discuss these components one by

one.

Data Plane (DP): It includes hardware devices like routers, switches, etc. These

devices are either connected via wireless radio medium or wired cables. The forward-

ing devices have well-defined instructions sets that allow them to perform certain

actions such as forward, drop, send it back to the controller when certain packets ar-

rive. The instructions are defined using Southbound API like OpenFlow [23], Netconf,

etc.

Southbound API (SI) : The flow table instruction sets of the data plane devices

are defined by the Southbound API. The SI also defines the communication protocol

between the data plane devices and control plane elements. The well-defined protocols

like OpenFlow are used to formalize the communication between control and data

plane elements [21].

Control Plane (CP): The control plane is called a network brain [21] because

all the control logic of data plane elements can be programmed on this plane. The

9

Network Operating System (NOS) provides the network programmers with necessary

abstraction to program underlying devices.

Northbound API (NI): The NOS can offer an API to application developers to

program the underlying data plane devices. The NI act as an abstraction for low-

level instructions used by southbound API. The NI is used as a common interface to

develop some SDN/NFV applications [21].

Application Plane: The application plane is a collection of several applications

where they leverage functions provided by NI to perform some controller related

operations like resource allocation, traffic monitoring, load balancing, etc. The ap-

plication plane allows administrators to define network policies, which are ultimately

translated to southbound-specific instructions, which then control the behavior of

data plane devices [21].

2.1.2 ONOS architecture

The Open Network Operating System (ONOS) is a distributed open source SDN

controller, which offers scalability and high performance while avoiding single of fail-

ure [34]. ONOS was designed, keeping in mind the needs of network operators who

wanted to build high carrier-grade solutions to reduce capital expenditure on tradi-

tional Silicon hardware while offering flexibility and ease of deploying new programs

with simplified interfaces and code modularity. ONOS supports both configuration

and real-time network monitoring, thus eliminating the need to continually re-run

routing rules and other communication protocols in device [34]. The ONOS cloud-

based controller has led to innovation and allowed end-users to create new applications

without worrying about data plane elements.

The ONOS platform includes.

• A set of control applications that offer extensibility, modularity, and distributive

SDN controller.

• Simplified management, configuration, and deployment of new software, hard-

ware, and services.

• A scale-out architecture to provide the resiliency and scalability required to

meet the rigors of production carrier environments.

10

ONOS Apps

NB Core API

Distributed Core
(State management,
device control etc.)

SB Core API

Providers

Protocols

- - - -
Subsystems

Figure 2.2: Layered ONOS architecture.

ONOS is a multi-layered controller with each layer designated with some func-

tionality. The architecture is as shown in Fig. 2.2 shows four different layers and two

APIs, which act as an abstraction for layers above and below them. Each layer can

be vertically sliced into different subsystems that we will discuss further [5].

Protocols: It is the lowest layer in ONOS. The components in the Protocols layer

are used to handle communication with underlying network elements like OpenFlow

switches, routers, etc. This layer consists of components, which act as communication

driver implementing the communication protocol as well as handle messaging between

devices and drivers [5].

Providers: The Provider layer is responsible for translating the abstractions from

higher layers to protocol specific operations and vice-versa. The Provider component

receives information from its Southbound part ,i.e., protocol layer and then wraps it

into a message format specific to higher layers where the information is stored and

processed further. The higher layers use SB core API to trigger events in Provider

layer to convert higher layer abstractions to protocol specific formats and sending

them to data plane devices. A Provider ID is associated with a Provider layer.

The main purpose of Provider ID is that it provides a unique identity to group of

components within a Provider layer. This allows devices and other entities to remain

associate with their set of components even if other components get uninstalled or

deleted [5].

11

Distributed Core: The component residing inside the Distributed Core layer is

referred to as Manager. The Manager receives information from Providers and serves

it to applications and other services. It exposes several interfaces like Northbound

service, Admin services, Provider registry, and Provider service. These interfaces act

as an abstraction for incoming and outgoing packets, flow rules, topology information,

etc. These abstractions can provide entire information on network topology and links

that can be used for further analysis. Also, the Manager has the task of indexing,

persisting, and synchronizing the information received by the Core. This includes

ensuring consistency and robustness of information across multiple ONOS instances

by directly communicating with stores on other ONOS instances [5].

ONOS Applications: The Application layer is the topmost tier of the ONOS archi-

tecture. The components of the Application layer leverage information like network

view, node status, etc., which it receives from the NB Core API. It also triggers some

critical actions like packet forwarding, which is important for each Subsystem to send

the information processed by them back to the device. Typically, ONOS applications

are triggered based on certain events from network devices on certain criteria [4] like

the Flowrule forwarding event is triggered when it receives Flow request from the

device. The corresponding Subsystem generates the flow rules and then those rules

are sent back to the device.

Thus, ONOS because of its code modularity and extensibility is widely used in

network functions that require scalability and adaptability [34]. In our work, we use

the components of these layers to adapt the network element’s message format to

ONOS format and vice-versa.

2.1.3 ONOS Subsystem and Service

A service is functionality that comprises of several components that are created by

vertical slice through different layers of ONOS stack [5]. Each vertical slice includes

the service or collection of components is called a Subsystem. Each of the Subsystem

components lies in any one of three layers of ONOS and can be identified by one or

more Java interfaces that they implement. Some of the primary ONOS subsystems

are as follows.

• Device Subsystem: It manages the inventory or list of devices present in the

12

network.

• Host Subsystem: It manages an inventory of hosts on end-to-end locations of

the network.

• Link Subsystem: Manages a list of links or connections between different devices

and hosts.

• Packet Subsystem: It allows the application to listen to incoming query packets

and manages the outgoing packet out messages to set rules on one or more

devices.

• Flowrule Subsystem It manages the inventory of flow rules, which are installed

on devices and provides the flow metrics.

• Topology Subsystem: It manages the time-ordered snapshots of network graph

views that are visible on the ONOS dashboard.

Thus, ONOS allows users to develop various services across the ONOS stack.

The different services can be packaged from various Subsystems to create an ONOS

application. These applications can be activated when required. ONOS allows users

to program in Java with Maven build configuration [5].

2.1.4 Internet of Things (IoT)

The Internet of Things (IoT) is a group of interrelated computing devices which are

capable of transferring information without any human interaction. These devices

are called unique identifiers that consist of sensors, actuators, microprocessors, etc.

These are called unique because each device has its unique ID that it uses while

communicating with other devices. These are also called low-power devices as they are

operated on low voltage ranges [25]. In the last decade, IoT has created a huge market

for itself. Many tech companies are looking to implement IoT platforms. There

are a lot of advantages of IoT, like manage a business environment without human

intervention, saves time, and it enhances productivity and customer experience. There

are a variety of fields where IoT can be used like healthcare, the automobile industry,

household appliances, etc. For example, Google Home is an IoT device that can

13

monitor the usage of your lights, heating, cooling, etc. This device can be remotely

controlled by a computer or smartphone [25]. Due to its applications and advantages,

it is estimated that IoT business will have a market value of 1 trillion USD by the

year 2025 [27].

Devices (Things)

Sensors

Data Collector
IoT

Gateway

Big Data
Analytics,

Applications,

Services.

Analyze Data and take
Business Action

Figure 2.3: An example of IoT ecosystem.

IoT ecosystem has three parts (Fig. 2.3): Data collection via sensors, transfer

the data, and analyze it. The fundamental characteristics of IoT are summarized

below [25]:

• Connectivity It is a basic characteristic that allows the device hardware to

communicate with other devices at different network layers.

• Things Any object or device, which has the ability to sense data and send it

over a network can be part of the IoT network.

• Data The data in IoT is the most important thing, which drives intelligence

and business action.

• Intelligence The aspect of intelligence deals with basically performing big data

analytics on gathered data from various IoT devices.

• Business Action This can be a manual action, action based upon a discussion

regarding improving consumer experience and digital transformation, often the

most important piece.

IoT is the future of networking. It connects billions of devices to the internet and

involves the use of billions of data points [25]. Along with these advantages, there

14

are some challenges like device restrictions, security, data management, interference

in the communication medium, and cost [25].

2.1.5 Overview of RPL

Routing Protocol for Low-power and lossy network (RPL) is a protocol that is widely

used in low power sensor networks [6]. It is based on the IEEE 802.15.4 standard for

wireless networks. IETF developed it as a standard routing protocol for this family

of network devices. RPL is a distance-vector protocol and uses optimized multi-hop

communication to send messages and be used in the one-to-one form. This way, it

helps reduce the memory requirement of the nodes [35]. RPL organizes the topology

in a tree-like structure as Directed Acyclic Graph (DAG), which means that a single

node is partitioned in two paths to two different nodes. Each node is associated

with a parent that acts as a gateway to that node. The parents are calculated using

Objective Functions (OF) decided by the roots of the DAG [2].

RPL creates a routing topology in the form of a Destination-Oriented Directed

Acyclic Graph (DODAG), which is a directed graph without cycles, oriented towards

a root node, e.g., a border router, sink node, etc. RPL uses three main types of

control messages.

• DODAG Information Object (DIO),

• DODAG Information Solicitation (DIS) and

• DODAG Destination Advertisement Object (DAO).

The process of the DODAG construction begins from the DODAG root. First, the

DODAG root broadcasts the DODAG information by transmitting a DIO message.

The neighbors of the root receive and process the DIO message. The DIO message

is processed and transmitted to other nodes one-by-one. Once a neighbor joins the

DODAG, it has a route towards the DODAG root, and the root becomes a DODAG

parent of the node. Next, the node calculates its rank in the DODAG and replies with

a DAO message to its parent to inform its participation. A node that has not received

any DIO messages and has not joined any DODAGs can request DODAG information

by sending DIS messages periodically to its neighbors. All of the neighbors repeat

this process until all of the nodes join the DODAG [2].

15

Figure 2.4: An example of RPL DAG.

To understand the working of RPL let us consider a topology as shown in Fig.

2.4. A network administrator configures one or more nodes as root node (node 1 in

2.4). The root node then starts sending multicast DIO messages to nearby nodes

to advertise its presence (node 2 and node 3 in 2.4). These nodes process the DIO

message mark node 1 as their parent node because they received a DIO message from

the lower rank node. Similarly, node 2 and node 3 will transmit DIO messages to

their neighboring nodes, this process will continue until all nodes form a DODAG tree.

Now a single node may receive multiple DIO messages from lower rank nodes but it

chooses the optimized path or route based on the objective function programmed

into nodes. The objective function contains different metrics like RSSI value, link

quality, etc. So, a node will select its parent based on its objective function. Now,

this upward route is established, the root nodes need to know if all nodes have joined

the DAG. So, for establishing a downward route all nodes send DAO messages to the

root node. In this way, all regular nodes and root nodes come to know about nodes

above and below them [2].

RPL is effective in allowing nodes to quickly send information up the tree [35].

However, the RPL graph forces nodes nearer the root to serve messages from nodes

further down the tree and exacerbates energy loss in nodes nearer the root. RPL

operates in two modes Storing and Non-Storing (NS) mode. In Storing mode nodes

maintain a routing table for their Sub-DODAG. In Non-Storing mode, nodes only

know their parent, and the root keeps a routing table for the whole DODAG and each

node use source routing to send packets to the destination. The Non-Storing mode

acts as controller-communication in SDN architecture. That’s why we use this mode

16

in our architecture [6].

2.1.6 SDN in IoT Challenges

SDN offers network programmability that allows the network to adapt to any pol-

icy changes dynamically. But for low-power IoT networks, SDN proves to be a big

overhead because of resource constraints (memory, energy, processing) and energy

limitations [6]. The challenges are explained as follows.

Hardware Restrictions: The low power IoT networks are comprised of small de-

vices like sensors, actuators, etc., which operate on battery and have power availability

up to a few weeks or months. In addition to this, these devices have low memory

and excessive radioactivity, which leads to depletion of energy. This is particularly

limiting for traditional SDN, which employs thousands of flows per second, and flow

table, which consists of hundreds of flow rules. These devices cannot handle such an

enormous amount of information [6].

Packet Fragmentation: The IEEE 802.15.4 standard for low-power IoT network

allows Maximum Transmission Unit (MTU) of 127B [6]. Even though 6LoWPAN [10]

standard has introduced Internet Protocol (IP) capabilities for low-powered devices

but by considering the link layer and IP layer header lengths it leads to reduced space

in packet. Therefore, a full IPV6 packet will be left with only 53B for application

data, which is very insufficient to carry even SDN control information. Thus, to

prevent packet fragmentation multiple transmissions per packet are carried out and

SDN control messages need to fit in allocated space [6].

Unreliable Links: The low-power devices operate in a lossy radio medium, which is

prone to unreliability. But to implement SDN, the network should be stable, including

all links. These unreliable links and multi-hop mesh networks add to more problems

to implement SDN. Even if the unreliability is ignored, a simple packet sent to the

controller for the update can lead to several delays or dropping of the packet [6].

Interference: The low-power devices operating using IEEE 802.15.4 standard are

sensitive to communication networks operating at high frequency [6] For example, If a

low-power IoT network is operating near an IEEE 802.11 [30] Wireless LAN (WLAN)

network on same frequency channel can affect transmission ability of sensors and can

lead to packet loss. This also prevents nodes from sending or receiving packets from

17

the controller, which can lead to failure of the SDN network.

Multi-hop Mesh Topology: The RPL is a distributed protocol that allows main-

taining topology reducing the control overhead in the network. The low-power devices

have reduced radio range, and a multi-hop packet transmission allows nodes to cover

the overall network by a single base station [6]. But introducing multiple hops in an

unreliable environment can lead to loss of packets, which leads to more consumption

of energy [6].

2.1.7 ONOS Technical Challenges

There were a lot of challenges that we faced while connecting ONOS with Cooja. A

majority of those were because of a lack of proper documentation. We will list down

some major challenges.

• The major challenge was that ONOS applications are written using Java as

the programming language, whereas µSDN is originally written in C language.

Since some of the modules (e.g., the controller) need to be written in Java, it

was cumbersome to convert all the code.

• ONOS is basically a Java-based controller that used Maven for its build. Re-

cently, ONOS changed its build from Buck to Bazel. Bazel is a more sophisti-

cated way of compiling a Java code developed by Google. Since the technology

is pretty recent, there are no discussion forums or proper documentation.

• The new Bazel build comes with the feature of writing Bazel build files for each

module. Since very few applications are developed in ONOS using Bazel, there

was no reference on how to start writing those files.

• Finally, some important libraries like RPL, Clock Timer are not available in

Java. These come in ready with the Contiki package itself. That was a big

challenge as timer and RPL are the essences of µSDN architecture.

The solutions to above challenges are given below.

• We had converted some of the control modules of µSDN to Java to ensure that

functionalities are the same in the ONOS controller as well. For this, we had

to subsequently convert packet structure and flow table modules as well.

18

• Since Bazel doesn’t have discussion groups or forums on the Internet. We had

to read the documentation provided by Google on how to import it in IDE like

IntelliJ idea, how to create modules, etc.

• The Bazel build file writing is very critical. When you install ONOS for the

first time using Bazel, some applications like OpenFlow, Forwarding, etc., which

are pre-installed. We referred to OpenFlow build files and saw how they were

written in Bazel configuration.

• For the RPL library, we had to create a packet that mimics RPL. For e.g., node

while connecting to the sink advertises itself by sending broadcast messages to

the sink and this information is sent to the controller via the new packet. For

the clock timer, we had to hard code the flow table refresh timers.

2.2 Related Work

The IoT network domain’s main challenges are resource constraints like memory, en-

ergy, and interference in the radio medium. In addition to that, implementing SDN

in this environment adds overhead to devices. To overcome these challenges, several

SDN-IoT architectures were proposed. Many of this architecture either used a cus-

tomized external controller or an embedded controller. In this section, we present

existing works related to our proposed framework. We thoroughly review the litera-

ture related to our work and point out the gaps in the present solutions.

2.2.1 SDN-IoT based designs

µSDN [6] is a lightweight SDN architecture for IoT networks. The authors propose a

modular architecture, where the µSDN stack sits above the IP layer within the IEEE

802.15.4 stack. It has added interoperability with underlying protocol and IPv6.

The authors tackle various SDN in IoT challenges by introducing different types of

optimizations like Protocol, Architecture, Memory and Controller. In protocol op-

timization, it eliminates the fragmentation by reducing the packet size and reduces

the packet transmission frequency. For architecture level optimization, it introduces

source routing, which automatically selects the optimum path to reach the final desti-

nation. It optimizes the memory of devices by re-using the flow table match-actions.

19

For instance, it reduces the repeated entries for the same forwarding actions. It does

so by using flow refresh timers that retain a specific flow rule for a fixed amount of

time. In the controller optimization, it uses an embedded custom controller, which

reduces the time for communication between nodes and the controller.

The µSDN stack provides a layered architecture and API to separate core func-

tion handling from the specifics of the SDN implementations. The architecture can

be split into two processes that are Stack process and the Core process. The Stack

process includes the Controller adapter, SDN engine, and Driver. The Controller

adapter exposes an abstract controller interface to the SDN layer that allows µSDN

protocol to be switched out to implement any other protocol. SDN engine defines how

messages to and from the controller are handled. SDN driver provides API for the

SDN engine by defining how the flow table is handled. Also, it handles functions like

setting up a flow table like creating firewalls, handling routing, or data aggregation

path [6]. µSDN uses a lightweight protocol for controller communication. It uses

User Datagram Protocol (UDP) over Datagram Layer Security (DTLS) for commu-

nication with controller outside mesh. It is highly optimized to ensure that there is

no packet fragmentation. The Core process includes Controller Discovery, Controller

Join, Configuration and metrics, Flowtable structure, and Overhead reduction [6].

The µSDN core processes handle the complete operation of the IoT network. The

three primary operations are controller discovery and join, Node Status Update (NSU)

and routing. The first phase of µSDN involves discovering the controller using the RPL

control message. When the controller node receives a DAO message from all nodes,

it sends a CONF message to configure various operations for the nodes. The next

step is that each node periodically sends information regarding its link quality, active

nodes, energy, etc. to the controller. These messages are the NSU control message

and it allows the controller to gather network information. After the initialization of

all nodes, the source node starts sending a data packet to the destination based on

the flow rule installed in its flow table. The intermediate nodes use source routing

to forward packets because of the RPL configuration [6]. Even though µSDN offers

a good solution but it lacks extensive evaluation of its performance. It compares its

solution with a standard RPL based network without SDN configuration.

Galluccio et al. propose SDN-WISE [13]. The SDN-WISE architecture extends

20

the OpenFlow approach of SDN. They provide a stateful solution where SDN-WISE

sensor nodes are encoded data structures namely WISE state arrays, Accepted ID

arrays, and WISE flow table. The nodes act as Finite State Machine (FSM) and

actions are based on rules installed in the flow table. Simple controller logic is used

to control the nodes. The controller logic allows nodes to be programmed, where

they can perform certain actions under one state, like forwarding, dropping packets

based on rules in flow tables. It uses a customized flow table namely the WISE flow

table, which contains matching rules and associated action [13]. The matching rule

is based on the packet header and node state. If rules are matched then the action

is taken, else packet is sent back to the controller. The SDN-WISE proposes to be

energy-efficient by introducing duty cycling and data aggregation [13].

In SDN-WISE architecture sensor nodes and sink, nodes are distinguished. A sink

node is a gateway between the data plane and the control plane. Each sensor node

consists of a transceiver and micro control unit (MCU). A forwarding layer runs MCU

and handles the packet as specified in the WISE flow table. It has four important

layers, which handle the overall operation forwarding, In-Network Packet Processing

(INPP), Topology Discovery (TD), Topology Manager (TM) and Adaptation. The

INPP is responsible for functions like data aggregation. The INPP concatenates all

similar data packets, which need to be sent the same path. This helps in reducing

network overhead. The TD layer gathers local information about nodes and controls

them as per controller instructions. It also allows the application layer to access

information using APIs. The TM layer is basically used to send information from

node to controller like Signal-to-Noise Ratio (SNR), the energy level of nodes, etc. It

controls all messages between the controller and the sink node. The adaptation layer

is responsible to format messages received from the sink node so that WISE-Visor

can process it and vice-versa. WISE-Visor is similar to a network operating system

that provides an abstraction to develop network functions or services [13]. SDN-

WISE is one of the first stateful solutions that proposes a solution for end-to-end

SDN implementation. However, it lacks any form of resource optimization. It has no

performance evaluation with other works.

Sensor OpenFlow [31] is one of the earliest proposals for using SDN in IoT

networks. Their work highlights the challenges of communication with the control

21

plane. They propose a low-power custom protocol rather than using OpenFlow di-

rectly. They also propose energy efficiency through data aggregation and reduce SDN

overhead using Control Message Quenching (CMQ). This reduces additional queries

on flow table misses and allows the network sufficient time to respond to the request.

This work is one of the earliest work, which proposes a good solution but does not

show any practical implementation.

CORAL-SDN [33] introduces a centralized network mechanism to adjust protocol

functionalities. It also proposes to introduce better network management and reduce

resource utilization. They implement this by adopting SDN for IPv6 based IEEE

802.15.4 RPL networks and try to deal with network overhead by reducing multiple

RPL transmissions at the beginning and thus provide more resources to SDN proto-

cols. CORAL-SDN architecture uses a customized external controller and does not

include any optimizations. They use their own set of protocols and have customized

WishFul NOS, which provides an abstraction to develop applications and services.

Even though they introduce some sort of optimization to reduce repeated transmis-

sions, but that is limited to memory utilization. Unlike, µSDN, which introduces

optimizations at protocol, controller, and at routing levels as well. This is the reason

we preferred to use µSDN over CORAL-SDN. Also, they do not show any extensive

performance evaluation or compare their work with previous works.

The authors of SD-NOS [4] facilitate the heterogeneity characteristic of IoT by

leveraging the controller Network Operating System (NOS). In their work, an inno-

vative integrated network operating system for the IoT, which is obtained as the evo-

lution of the Open Network Operating System (ONOS) is proposed. This integrated

NOS allows the sensor nodes to interact with OpenFlow switches and vice-versa.

The prototype is built using SDN-WISE [13] architecture. This prototype helps in

satisfying the IoT characteristic of heterogeneity.

They modified the different subsystems of ONOS, like Sensor Node, Device Con-

trol, Flow rule, and Packet according to the message format of SDN-WISE. They

used the SDN-WISE controller as a medium to connect with the ONOS controller

with OpenFlow switches connected to ONOS as well. They also show how messages

can be sent from IoT networks to wired OpenFlow devices and vice-versa [4]. This

prototype is only for demonstration purposes and no real performance evaluation is

22

done.

Anglers-Christos et. al in their work SD-WISE [3] propose to extend the SDN

approach in WSNs. They introduce an SD-WISE controller, which is a software

package consisting of a network operating system (NOS), called SD-WISE Operating

System (SD-WISE OS). It has several network applications that are similar to that

of ONOS. The SD-WISE node architecture has several layers, which host some NFV

applications. In their work, they basically show SD-WISE OS can be an alternative

to the existing ONOS controller. Their work is built on top of SDN-WISE [13],

where they introduce the SD-WISE controller instead simple SDN-WISE controller.

In this work, they use a customized external controller and do not show performance

comparison with traditional SDN controllers like ONOS. Our work was to compare

the performance of SDN-IoT architecture using embedded and standard SDN con-

trollers. Since SD-WISE is an extension of SDN-WISE work, it becomes more logical

to compare base SDN-WISE with µSDN architecture as no one has compared the

performance of these two SDN-IoT architectures.

Traditional WSN network solutions in [12,14–16,19,20] optimize communication

energy by deploying edge-disjoint routes or special spanning topologies. SDSense

[17] extends those design strategies in wireless SDN. The authors propose an agile

SDN based architecture for WSNs. In this architecture, they separate control tasks

into two parts, i.e., a local controller at the sensor level and a global controller. The

SDSense controller (global) handles all functions like topology management, resource

allocation, congestion control, etc. They design a model and develop an objective

function to allocate resources optimally. In their work, they evaluate their architecture

with spanning-tree structures and non-SDN based architecture. Their work does not

show performance comparison with other existing SDN-IoT architectures like SDN-

WISE, µSDN, etc. Moreover, their work focuses on the optimization of the controller

tasks and does not talk about optimization at low-power devices. The µSDN authors

have implemented optimizations at the controller level as well as sensor node level.

This is the reason we chose µSDN over SDSense.

Saha et. al in their work design an EA-SDN/NFV (Energy Aware Network Func-

tion Virtualization) [29] framework for low-power IoT network. They propose to

23

Approach IPv6 & RPL Type Placement Performance
µSDN X Customized Internal Yes

SDN-WISE × Customized External No
SD-NOS × Standard External No
SD-WISE × Customized External No

Sensor OpenFlow × Customized External No
CORAL-SDN X Customized External No

SDSense × Customized External Yes
EA-SDN/NFV X Customized Internal Yes

Table 2.1: A comparison of features for SDN based works.

reduce the energy utilization deploying NFVs. They develop an ILP (Integrated Lin-

ear Programming) problem to minimize the NFV nodes’ activation energy. They

develop a heuristic to solve the ILP problem and evaluate it using the Cooja simula-

tor. Their work is built on top of µSDN architecture. Also in their work, they show

a comparison with other base architectures. However, they do not show whether a

µSDN controller would be feasible for low-power IoT networks.

In summary, none of the existing works shows an extensive evaluation of their

architecture nor show any comparison with other existing works. Many works propose

using a customized controller for IoT networks, and very few show the use of standard

SDN controllers. Does this leave us with a dilemma in which SDN-IoT architecture

would be useful for the low-power IoT networks? Whether it is feasible to use a

standard SDN controller for such networks? In this work, we address these two

questions by providing an extensive evaluation of two architectures i.e. µSDN and

SDN-WISE architectures. We will show which architecture is better, and further, we

will analyze the performance of the customized internal controller and standard SDN

controller.

Chapter 3

Design, Methodology and Evaluation

3.1 Research Methodology

In this section, we present our problem definition. We then discuss modifications in

node architecture of SDN-WISE and µSDN while comparing their performance. We

also show our evaluation results and discuss their performance trend and point out

the reasons behind their behavior.

3.2 Problem Definition

The IoT networks have been on the rise exponentially especially in the last few years

[25]. The growth is expected to continue as we move towards smarter applications.

With the addition of billions of new devices in networks, it will become very diffi-

cult to manage such a huge infrastructure with the current legacy network [18, 25].

SDN can provide a good solution in this case because of its advantages like network

reconfiguration, global knowledge, etc [18]. Several architectures were proposed as

mentioned in the previous section. The main problem is that there has been no ef-

fort to benchmark any of this architecture. We found µSDN and SDN-WISE to be

prominent ones as they show proper implementation on Contiki OS using the Cooja

network simulator. The question then arises, which architecture would be more suit-

able for a low-power IoT environment. Thus, we compare the performance of these

two architectures using the Cooja simulator.

The µSDN uses an embedded controller, i.e., the controller is within the IoT

network. The embedded controller is similar to other nodes except the fact that

it has control logic and programs the neighboring nodes with flow rules. On the

other hand, SDN-WISE uses an external customized controller. Thus, to ensure fair

comparison we decided to include various controller modules of SDN-WISE within

the sink node. In the next section, we discuss modifications in SDN-WISE node

24

25

architecture.

The second part of our work deals with controller performance in SDN-IoT ar-

chitecture. After establishing, which SDN-IoT architecture is better in performance

metrics mentioned above, we connect ONOS, a standard external controller to µSDN

architecture. To integrate the ONOS controller with µSDN ,we have to adapt the

ONOS to understand messages from µSDN nodes. Thus, for this, we design an ONOS

application that adapts the messages incoming from nodes and converts it to a format

that ONOS can understand. In this second part, we ask the research question.

• RQ 1 is it feasible to use an embedded controller in a low-power and low-bit

rate IoT applications?

• RQ 2 Will a standard external SDN controller outperform an embedded con-

troller considering external controller is equipped with better memory and pro-

cessing capabilities?

Thus, to answer our questions we compare the performance of both controllers

for low and high bit rate environment. We implement this using the Cooja network

simulator. In the next section, we will discuss the modified µSDN architecture and

various components of ONOS subsystems that we had to develop and extend to allow

messages to be understood by ONOS.

3.3 SDN-WISE Node Architecture Modifications

In the first part of our work, we compare two SDN-IoT architectures, i.e., µSDN

and SDN-WISE (with embedded control logic). We have seen in the previous section

SDN-WISE is one of the earliest architectures to provide an SDN solution for IoT

networks. SDN-WISE distinguishes between the sensor node and the sink node. The

sink node act as a gateway that connects the IoT network to the external controller.

It also has an adaptation layer that converts the node message format to that of the

external controller. SDN-WISE uses a customized WISE controller, which programs

the underlying nodes. Since in the first part of our work we compare µSDN and

SDN-WISE architecture, it is important to understand the difference and similarities

between their node architecture. We have also compared SDN-WISE with external

26

controller to µSDN with the results included in [22]. The results confirmed that

µSDN performs better than SDN-WISE.

• The SDN-WISE uses an external controller whereas µSDN uses an embedded

controller.

• SDN-WISE uses customized protocols like TD, INPP, etc. for communication.

Whereas µSDN uses standard protocols like RPL, UDP, etc. for communicating

with the controller.

• SDN-WISE at Medium Access Control (MAC) layer uses Contiki-based Rime

protocol whereas µSDN uses standard Carrier Sense Multiple Access Collision

Avoidance (CSMA/CA) [26].

• Both SDN-WISE and µSDN use the ContikiMAC [26] protocol for Radio Duty

Cycling (RDC).

Thus, based on the above differences, the notable difference is the use of an exter-

nal controller in SDN-WISE and embedded controller in µSDN architecture. To solve

the difference and make sure that our comparison remains unbiased, we decided to

modify node architecture. We included three controller modules i.e. Topology Man-

ager (TM), Openpath and Response modules within the sink node. Fig. 3.1 shows

modified SDN-WISE node architecture with control modules within the sink node.

We modified only the sink node modules and rest other nodes were kept untouched.

Each module performs specific functionality of controller within a sink node.

• TM module: The use of the TM layer is to collect all sensor node information

like Signal-to-Noise Ratio (SNR), residual energy, node position, etc. from

underlying nodes. This allows the controller to get a consistent view of network

topology. Earlier this layer was within WISE-Visor, which required adaptation

from sink node to format message. Now since we moved this layer within the

sink node, no adaptation is required.

• OpenPath: This is basically a packet, which is sent by controller to set up a route

between different nodes. The OpenPath packet is also sent by the controller

to scan a network if a controller wants to update itself immediately instead of

waiting for an update from the nodes.

27

Topology
Manager

Openpath
module

Response
Module

TD
layer

FWD
layer

Sensor Node

Sink Node
(embedded controller)

Wireless
Radio

medium

Figure 3.1: SDN-WISE node architecture with embedded controller.

• Response These are packets that are generated by the controller in response

to flow request packets. The response packets send flow table rules to the

corresponding node.

Also, there are CONFIG messages, which are sent by the controller to control

the behavior of nodes like report timers, rate of generating payload, etc. but it needs

to be sent by the controller after all nodes have joined the topology. The µSDN also

has a similar message called as CONF, which is used to configure Flow entry lifetime,

Node update time, etc. but the controller sends CONF message automatically as

soon as node joins the RPL DAG.

Another difference between the µSDN and SDN-WISE architecture is at the MAC

layer. The µSDN architecture uses CSMA/CA [26] protocol whereas SDN-WISE

uses Rime protocol at their MAC layers, respectively. Thus, we changed the SDN-

WISE configuration and added CSMA/CA driver at its MAC layer. This difference is

important to fix because the MAC driver decides whether the communication energy

consumption will be high or low. Thus, to remain unbiased in our comparison we

decided to use CSMA/CA in both the architectures.

The table 3.1 shows the protocol stack that we used for evaluating both the

28

Layer µSDN SDN-WISE
Application Embedded SDN-WISE controller

Network IPV6 + RPL TD INPP Forwarding
MAC CSMA/CA CSMA/CA
RDC ContikiMAC ContikiMAC

Physical IEEE 802.15.4 IEEE 802.15.4

Table 3.1: The Table showing protocol stack of µSDN and SDN-WISE

architecture. The difference lies only at the network layer where µSDN uses RPL

protocol whereas SDN-WISE uses TD, INPP, and forwarding protocols. So, the node

architecture changes in SDN-WISE enable us to transform the sink node into an

embedded controller. The change in MAC layer driver also ensures that node energy

consumption comparison of SDN-WISE and µSDN remains the same at the MAC

layer and no particular architecture gets the advantage of using a different MAC

driver. Thus, these changes enable us to ensure that our performance comparison

remains unbiased.

3.4 µSDN-ONOS Architecture

The low-power IoT networks include devices that operate with limited resources like

memory, energy, etc. They also operate at a low bit rate so to ensure less communi-

cation energy is consumed. We have seen in Chapter 2 there are several architectures

proposed to implement SDN in low-power IoT networks. These architectures use

either an embedded or external controller. The embedded controller is similar to

other nodes except the fact that they are programmed with additional control logic.

On the other hand, we have an external controller that run control logic on a server

and are equipped with better processing resources. We need to understand which

controller behaves how in the context of performance, resource consumption, and

scalability. Thus, we compare an embedded controller with a standard SDN con-

troller like ONOS. For this purpose, we choose the µSDN node architecture based on

the initial investigation. In this section, we will discuss µSDN-ONOS architecture,

where we will discuss various subsystems of ONOS and the necessary changes.

29

3.4.1 Proposed Architecture

We have used µSDN as our base architecture based on results that we obtained

after comparing it with SDN-WISE architecture. We then integrate µSDN with the

ONOS controller. We had to develop an ONOS application that acts as an adapter

to convert messages received from µSDN node to a format that is compatible with

the ONOS controller. Similarly, ONOS after processing those messages sends them

back to µSDN node with the format similar to µSDN nodes.

SensorNode
Subsystem

FlowRule Subsytem Packet Subsytem DeviceControl Subsystem

ONOS Apps

Core

Provider

Protocol

Sensor node API

Sensor node Manager

Sensor node Provider

usdn Protocols

Flow rule API

Flow rule Provider

usdn Protocols

Packet Provider

Device control API

Device control Manager

Device control Provider

µSDN

IPV6

6-LoWPAN

IEEE 802.15.4

SLIP
Connection

Figure 3.2: The µSDN-ONOS architecture

The Fig. 3.2 shows an architecture of integrating µSDN and ONOS controller.

We have used four different subsystems of the ONOS controller. The subsystems are

vertically sliced along all the ONOS layers. Each subsystem has different components

in different layers marked in blue and red colors. The blue color components are

developed from scratch whereas the red color components are extended to support

µSDN events. These components are bundled into one single application and asso-

ciated with a ProviderID. This ProviderID is used to activate the application when

required. A forwarding application at Sensornode subsystem is used to send processed

messages back to µSDN node.

We have used the Serial In-Line Protocol (SLIP) connection to ensure connectiv-

ity between µSDN architecture residing in Cooja and ONOS instance that runs on

30

the host machine. Since the control logic is now transferred to ONOS, the µSDN

embedded controller acts as a sink node. We will describe each ONOS subsystem and

its workflow using a flowchart.

START

µSDN	Protocol

SensorNode Subystem

µSDN	Nodes

Messages

RPL DAO
Message

No Other
Subsystem

Flow Rules sent
back to nodes,

Configure nodes

Figure 3.3: The µSDN-ONOS SensorNode Subsystem workflow.

Workflow of Proposed Architecture:

The Fig. 3.3 shows the flow diagram for SensorNode subystem. The SensorNode

as the name suggests is used to handle all the information related to sensor nodes

present in the Cooja simulator. When a sensor node sends a RPL DAO message,

it is received at the Protocol layer. The µSDN protocol component extracts infor-

mation like source id from the message and raises an event in SensorNode Provider

component. The SensorNode Provider actively checks node status from the Protocol

layer and wraps this information into ONOS specific format and sends it to SensorN-

ode Manager. At the Core layer, SensorNode Manager stores the node information,

which allows ONOS to maintain a consistent view of network topology. This view

provides global knowledge to ONOS and helps it to take the right decision like packet

31

forwarding to the correct node. At the Application layer, the SensorNode API in-

troduces access to sensor node-specific data structures that allow ONOS to convert

control messages back to µSDN specific format. We use the SensorNode forwarding

application to forward these messages back to µSDN node. The point to be noted is

that ONOS receives a message from the sink node but the source can be any node

within the network topology.

START

µSDN	Protocol

FlowRule Subsystem

µSDN	Nodes

Messages

FTQ Message

SensorNode
Subsystem

FTS Message

Convert flow rule
back to µSDN

format

Other
Subsystems

No

Figure 3.4: The µSDN-ONOS FlowRule Subsystem workflow.

The Fig. 3.4 shows the flow diagram for ONOS FlowRule subsystem. The

FlowRule Subsystem is a combination of new as well as extended components. The

new components are designed to handle flow table structures of µSDN flow table.

The ONOS subsystems are originally designed to handle OpenFlow specific flow table

formats. The µSDN protocol extracts the FlowTable Query (FTQ) message and sends

it to the FlowRuleProvider. The FlowRule Provider is used to handle µSDN FTQ

messages. These messages are wrapped in ONOS specific format and based on the

decision made by ONOS the new flow rules, i.e., FlowTable Set (FTS) message need

to be sent back to the node. The FlowRule API has been extended to support rules

and flow table structures of µSDN. These FTS messages are then forwarded using

32

SensorNode subsytem and the messages are converted into µSDN format using the

flow table structures provided by FlowRule API.

START

µSDN	Protocol

Packet Subystem

µSDN	Nodes

Messages

NSU, CONF
messages

SensorNode
Subsystem

NSU, CONF packaged in
ONOS format

Update the
Configuration of

Nodes

Other
Subsystem

No

Figure 3.5: The µSDN-ONOS Packet Subsystem workflow.

The Fig. 3.5 describes the flow diagram for Packet subsystem. The Packet

Subsystem is designed only for the Provider layer. The main responsibility of the

Packet Provider is to handle different types of messages arriving at ONOS. Even

though the FTQ messages and RPL DAO packets are handled by FlowRule and

SensorNode subsystems, respectively, there are many other messages like Node Status

Update (NSU), CONF, etc., which need to be handled. The NSU messages carry

important information regarding nodes like energy level, RSSI, neighbor node, etc.

This information is important for the ONOS controller for different operations like

Topology management, routing, etc. Therefore, the Packet Provider wraps these

messages into ONOS specific format and forwards them to SensorNode subsystems

which further updates the µSDN nodes.

The Fig. 3.6 illustrates the flow of messages in DeviceControl subsystem. The

DeviceControl subsystem extends the current scope of standard ONOS operation. It

not only incorporates network flows but also the network device’s status. Whereas a

33

START

SensorNode Subsystem

DeviceControl Subsystem
µSDN	Protocol

µSDN	Nodes

STOP

Node Related
Information Instructions for

Node behavior

Turn ON/OFF
Nodes

Figure 3.6: The µSDN-ONOS DeviceControl Subsystem workflow

standard ONOS operation for a wired network considers all events like flows, devices,

etc. as equal and doesn’t serve according to priority. In a low-power IoT network, the

actions of ONOS are triggered proactively on the occurrence of any events. Thus, in

this case, ONOS needs to decide, which device operations are necessary and trigger

actions accordingly. This feature is very useful in low-power environments. The De-

viceControl API in northbound provides instructions depending on incoming traffic.

These instructions are pretty basic like turn on/off a sensor node. The instructions

are based on information received from the SensorNode subsystem like active nodes,

newly joined layer, etc. The DeviceControl Manager in the core layer is responsible

for keeping track of the instructions and then, forwarding them to the lower layers in

order to be sent to the appropriate device. In the Provider layer, the DeviceControl

Provider receives the device instructions and converts them into µSDN message for-

mat. The messages are then forwarded to sensor nodes via the µSDN protocols. The

point to be noted is that here flow rule operation is top-down.

µSDN Node Modification: Now since the control logic is now managed by the

34

(a) Grid Topology (b) Random Topology

Figure 3.7: Examples of a)Grid and b)Random Topology.

ONOS controller, we transform the embedded controller into a sink node that acts as

a border router. The sink node continuously listens to the port number on which the

ONOS application is running. The connection between the sink node and the ONOS

port is established using a SLIP utility. This allows messages to be sent from µSDN

nodes to ONOS and vice-versa. Thus, with all these changes we can integrate ONOS

with the µSDN architecture.

3.5 Evaluation

In this section, we present the environment setup that we use to evaluate both µSDN

and SDN-WISE architecture that are proposed in the previous sections. In the next

section, we will talk about setup for comparing embedded and ONOS controller. In

the end, we will discuss results and provide an appropriate reason behind the trends

that we observe after the evaluation.

3.5.1 Node Architecture Comparison

First, we compare µSDN and SDN-WISE architecture with both using an embedded

controller to ensure unbiased comparison. To compare both the architectures we use

the Cooja network simulator based on Contiki OS. We simulate the network for 50

node grid as well as random topology.

Environment: We use the Cooja network simulator based on Contiki OS. The

35

Contiki is an operating system for low-power wireless IoT devices. Contiki is designed

to run on devices that have low memory, low energy, and low communication band-

width. It provides three networking mechanisms namely TCP/IP stack, IPV6, and

Rime stack. The IPV6 mechanism supports the RPL protocol for a low-power IoT

network. The Contiki system includes a sensor simulator called Cooja, which sim-

ulates Contiki nodes. The nodes can be programmed using programming languages

like C and Java. We deployed SDN-WISE embedded controller functionality using C

language.

Topology and IoT Configuration: For the node architecture performance

evaluation we use both Grid (Fig. 3.7a) and Random topology (Fig. 3.7b) of 50

nodes. In each case of topology, we consider 10 source nodes, one controller node,

and rest as relay nodes. In both the topologies, each node has a transmission range

and interference range of 50m. For generating random nodes, we use different random

seeds for each simulation run. We select ten source nodes to avoid overwhelming the

nodes, especially for SDN-WISE. If we configure all nodes as sources, it can lead to

traffic congestion and impact the performance. Since our primary focus is to compare

different performance metrics of both architectures in a fair way, we ensure that both

networks are not overwhelmed with any congestion. However, in the case of controller

comparison we need to check the controller’s performance for a varying load. Thus,

we vary the number of sources from low to high (e.g. up to 50). We keep topology

size upto 50 nodes because of the limitations in Cooja simulator. It blocks all nodes

above 50 and do not show their output in log window [24].

In case of, µSDN we use Texas Instruments (TI) MSP430F5438CPU (Fig. 3.8a)on

EXP5438 platform and CC2420 radio. For SDN-WISE we use EMB-Z2530PA (Fig. 3.8b)

sensor nodes. For both architectures, we consider the power supply as 3V. The energy

consumption rate for the mentioned radio is 17.7mA for transmission and 20.01mA

for reception. The Link quality is kept at 90% as it is one of standard setting used

during evaluation of different metrics in Cooja simulator [6].

Performance Metric: For node architecture evaluation, we used following per-

formance metric.

• Transmission Energy Consumption: the total energy consumed by node for

transmission all packets.

36

(a) (b)

Figure 3.8: Examples of a)MSP430 CPU and b)Zmote sensor.

• Controller-Node Round-Trip Time: the total time to send a query packet from

a node to the controller and receive back the response at the node.

• Packet Delivery ratio: the ratio of number of packets received at destinations

to the number of packets sent by sources.

• Latency between source-destination pair the time taken by packets to reach the

destination node from a source.

Parameters Setting
Duration 5 min

Transmission Range 50m
Interference Range 50m

Max Bit rate 9 bit/sec
Link Quality 90%

Radio Medium UDGM (distance loss)
RPL mode Non-storing mode

RPL Route Lifetime 5min
Flowtable Lifetime 5min

Table 3.2: The Table showing parameter settings used in evaluation.

The table 3.2 describes various parameters and their corresponding settings in

the Cooja simulator that were used in the evaluation.

Scenario: We evaluated the architectures on two scenarios.

• Bit rate: the rate at which a node can transmit any packet. We varied the bit

rate and calculated the metrics.

37

• Hop distance: the number of intermediate nodes through, which packet has to

travel in order to reach the destination. We evaluated the metrics by varying

the hop distance.

Evaluation Setup: We evaluated both µSDN and SDN-WISE architecture based

on Transmission energy consumption, Controller-Node RTT, Delay between given

source-destination pair, and PDR on both grid and random topology of 50 nodes. We

vary the hop distances from the source nodes and the destination node to investigate

the effect of network size on the above-mentioned performance metrics. We also

investigate the effect of varying bit rates on the performance metric. For each set of

evaluations, we run the simulation 50 times. We take the average of the simulations

with a 95% confidence interval.

3.5.2 Controller Comparison

The second part of our work was to compare the performance µSDN with an embedded

controller and µSDN with an ONOS controller. The major focus of this part was to

compare two controllers. Therefore, we used performance metrics that are specific to

controllers.

Environment: The environment was similar to the previous experiment. We

used the Cooja network simulator and deployed µSDN and ONOS architecture. We

connect µSDN to the ONOS controller using a SLIP connection where the sink node

acts as an RPL border router to facilitate the connection. The border routers are

routers that can be found at the edge of a network. Their function is to connect

one network to an external network. The border router receives a prefix, i.e., IP

address of external network through the SLIP connection and it communicates with

the rest of the nodes present in the network. Once the border router receives the

prefix, it sets itself as DAG root after, which all nodes start communicating with the

border router using RPL protocol. The SLIP protocol is an encapsulation of internet

protocol designed to work on serial ports [28]. The microcontrollers and sensors still

use SLIP protocol because of its small overhead.

Topology and Controller Configuration: For controller comparison, we eval-

uate the performance metrics on-grid as well as a random topology for 50 node topol-

ogy. In the case of, µSDN ONOS we have 50 nodes including the sink node, which

38

is connected to the external ONOS controller. We have all nodes as source nodes to

maximize the flow requests sent to a controller. We use a similar node configuration

that we used for µSDN in the previous experiment. We use the ONOS 2.3 version,

which runs on a single machine and can have multiple instances running at the same

time. The ONOS is build using Bazel build configuration. We have our adapta-

tion application installed on ONOS, which needs to be activated before we start our

simulation.

Performance Metrics: We use following metrics to evaluate both the con-

trollers.

• Throughput: the ratio of the number of flow setup request that controller re-

sponded per second to the number of requests it received per second.

• Delay in Controller Response: the total time taken by the controller to respond

to a flow setup request.

• Topology discovery time: the total time taken by the controller to detect all

nodes that are present in the network.

• Topology update time: the total time taken by the controller to detect a link

failure in a network and update the topology.

The Cooja simulation settings are similar to that of the previous experiment as

shown in Table 3.2. The only change is that we have a max flow request rate of

102 flows/sec. ONOS being a wired and resourceful controller can handle a large

number of flows ranging in thousands. This would be unfair to compare with the

µSDN controller, which lacks resources. Thus, the bit rate chosen for this experiment

is between 50 to 100 bit/s as this is the range for a low-power IoT network, which

runs using the IEEE 802.15.4 standard [7].

Scenarios: The controller specific performance metrics were evaluated by varying

following parameters.

• Flow Setup Request Rate: the number of flow setup requests sent by source

nodes to controller per second.

• Number of Nodes: the total number of nodes present in network topology.

39

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 6 7 8 9

A
ve

ra
g

e
Tr

an
sm

is
si

o
n

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
m

J)

Bit Rate (bps)

μSDN
SDN-WISE

(a)

 100

 200

 300

 400

 500

 600

 700

 800

3 4 5 6 7

A
ve

ra
g

e
Tr

an
sm

is
si

o
n

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
m

J)

Hop Distance

μSDN
SDN-WISE

(b)

Figure 3.9: Average Transmission Energy Consumption in Grid Topology.

• Number of Links Failed: the total number links that are failed in a network.

Evaluation Setup: We evaluated both µSDN controller and ONOS controller

based on Throughput, Controller Delay in response, Topology discovery time, and

Topology Update time on both grid and random topology of 50 nodes. We vary the

flow request rate, the number of nodes and links failed to investigate the controller

performance. We also investigate the ONOS controller performance by enabling the

multi-thread option (not included because flow rate is not too high). For each set of

evaluations, we run the simulation 50 times. We take the average of the simulations

with a 95% confidence interval.

3.6 Discussions of Results

In this section, we will first discuss the evaluation results of the performance of µSDN

and SDN-WISE node architectures with an embedded controller. Then, we discuss

the evaluation of µSDN embedded controller and µSDN with an external ONOS con-

troller. We refer to SDN-WISE with an embedded controller as SDN-WISE. Similarly,

for µSDN-ONOS architecture, we refer to the border router as a Sink node. We will

discuss the reason behind their performance trend in low-power IoT networks.

3.6.1 Node Architecture Evaluation

In this section, we will show the evaluation results of µSDN and SDN-WISE archi-

tecture. We compare the different performance metrics as discussed in the previous

section 3.5.1.

40

 100

 150

 200

 250

 300

 350

 400

5 6 7 8 9

A
ve

ra
g

e
Tr

an
sm

is
si

o
n

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
m

J)

Bit Rate (bps)

μSDN
SDN-WISE

(a)

 150

 200

 250

 300

 350

 400

3 4 5 6 7

A
ve

ra
g

e
Tr

an
sm

is
si

o
n

 E
n

er
g

y
 C

o
n

su
m

p
ti

o
n

 (
m

J)

Hop Distance

μSDN
SDN-WISE

(b)

Figure 3.10: Average Transmission Energy Consumption in Random Topology.

Effect of Bit Rate and Hop Distance on Transmission Energy Con-

sumption: We can see Fig. 3.9 and Fig. 3.10 for the average transmission energy

consumption of nodes of µSDN and SDN-WISE for varying bit rate and hop distance.

We consider transmission energy for each packet transmission including Data packets,

FTQ, NSU, etc. From the figure, it is clear that the energy consumption of µSDN

nodes is lower than SDN-WISE. The main reason behind this can be the stateful na-

ture of SDN-WISE nodes, which consumes more energy to maintain its state arrays.

Also, it has a micro-control unit that can be responsible for more energy consumption.

µSDN, on the other hand, uses stateless nodes that do not have complex arrays and

therefore consume less energy. Also, it implements some optimization techniques like

protocol optimization that prevents each node from re-transmitting the same packet.

The µSDN uses flow table refresh timers that allows nodes to retain a flow entry and

allows quicker flow match. This prevents FTQ transmissions to controller. This helps

in reducing overall transmission energy consumption.

We see some spike in random topology energy consumption for the µSDN archi-

tecture, the main reason behind this is because nodes are placed close to each other,

which leads to interference and leads to the dropping of packets. These packets need

to be re-routed using a different route. Thus, this leads to more energy consumption.

Effect of Bit Rate and Hop Distance on Controller-Node Round-Trip

Time: We can clearly see from Fig. 3.11 and Fig. 3.12 that controller-node

round-trip time for µSDN is lower than that of SDN-WISE. The main reason behind

this performance trend is due to presence of source-routing in µSDN which prevents

intermediate nodes to transmit control packets. This reduces number of control pack-

ets arriving at controller and allows better processing in quick time. Whereas, for

41

 100

 150

 200

 250

 300

 350

5 6 7 8 9

A
ve

ra
g

e
C

o
n

tr
o

lle
r-

N
o

d
e

 R
o

u
n

d
-T

ri
p

 T
im

e
(m

s)

Bit Rate (bps)

μSDN
SDN-WISE

(a)

 100

 150

 200

 250

 300

 350

 400

3 4 5 6 7

A
ve

ra
g

e
C

o
n

tr
o

lle
r-

N
o

d
e

 R
o

u
n

d
-T

ri
p

 T
im

e
(m

s)

Hop Distance

μSDN
SDN-WISE

(b)

Figure 3.11: Average Controller-Node Round-Trip Time in Grid Topology.

 10

 20

 30

 40

 50

 60

 70

 80

5 6 7 8 9

A
ve

ra
g

e
C

o
n

tr
o

lle
r-

N
o

d
e

 R
o

u
n

d
-T

ri
p

 T
im

e
(m

s)

Bit Rate (bps)

μSDN
SDN-WISE

(a)

 20

 30

 40

 50

 60

 70

 80

 90

 100

3 4 5 6 7

A
ve

ra
g

e
C

o
n

tr
o

lle
r-

N
o

d
e

 R
o

u
n

d
-T

ri
p

 T
im

e
(m

s)

Hop Distance

μSDN
SDN-WISE

(b)

Figure 3.12: Average Controller-Node Round-Trip Time in Random Topology.

SDN-WISE the intermediate nodes also transmit control packets that leads to more

processing time at controller, which further affects the overall Round-Trip time. In

random topology, we observed that µSDN RTT is almost similar when control packets

from source nodes are considered and the time to respond for control packets from

intermediate nodes is ignored. Also, we observed a lot of interference is introduced

in nodes while sending packets in SDN-WISE for random topology.

 0

 5

 10

 15

 20

 25

 30

 35

 40

5 6 7 8 9

A
ve

ra
g

e
L

at
en

cy
 B

et
w

ee
n

 S

o
u

rc
e-

D
es

ti
n

at
io

n
 p

ai
r

(m
s)

Bit Rate (bps)

μSDN
SDN-WISE

(a)

 0

 10

 20

 30

 40

 50

3 4 5 6 7

A
ve

ra
g

e
L

at
en

cy
 B

et
w

ee
n

 S

o
u

rc
e-

D
es

ti
n

at
io

n
 p

ai
r

(m
s)

Hop Distance

μSDN
SDN-WISE

(b)

Figure 3.13: Average Latency between Source-Destination in Grid Topology.

42

 0

 5

 10

 15

 20

 25

5 6 7 8 9

A
ve

ra
g

e
L

at
en

cy
 B

et
w

ee
n

 S

o
u

rc
e-

D
es

ti
n

at
io

n
 p

ai
r

(m
s)

Bit Rate (bps)

μSDN
SDN-WISE

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

3 4 5 6 7

A
ve

ra
g

e
L

at
en

cy
 B

et
w

ee
n

 S

o
u

rc
e-

D
es

ti
n

at
io

n
 p

ai
r

(m
s)

Hop Distance

μSDN
SDN-WISE

(b)

Figure 3.14: Average Latency between Source-Destination in Random Topology.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3 4 5 6 7

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

Hop Distance

μSDN
SDN-WISE

(a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

3 4 5 6 7

P
ac

ke
t

D
el

iv
er

y
R

at
io

 (
P

D
R

)

Hop Distance

μSDN
SDN-WISE

(b)

Figure 3.15: Average PDR in a)Grid and b)Random Topology.

Effect of Bit Rate and Hop Distance on Latency between Source Des-

tination pair: The Fig. 3.13 and Fig. 3.14 show the results for latency in both

µSDN and SDN-WISE architecture in grid and random topology, respectively. We

can see µSDN has less latency compared to SDN-WISE. The point to be noted is that

communication happens only at the data plane. The main reason behind this per-

formance is due to difference in flow table structure. The µSDN flowtable is highly

optimized and allows flow match on packet’s index rather than on specific header

fields. On the other hand, SDN-WISE has pretty complex flow table and flow match

has to satisfy several header details of a packet. If conditions are not met, the packet

is dropped and source has to re-transmit the packet, which can lead to traffic con-

gestion. The µSDN has reduced packet re-transmission frequency that leads to less

congestion. The one more feature of µSDN flow table is that controller can configure

a whitelist that is processed before main flow table. The packets can be matched at

whitelist and forwarded further to destination. This reduces the latency in packet

transmission. These optimizations in µSDN flow table leads to less latency in µSDN

than SDN-WISE.

43

Effect of Hop Distances on Packet Delivery Ratio: From Fig. 3.15 we can

clearly see that µSDN has better PDR than SDN-WISE as the hop distance increases.

This can be attributed to various µSDN optimization techniques like Architecture and

Protocol optimization that they implemented in their architecture. The Architecture

optimization implements flow table refresh timers which retains a flow entry for longer

time and prevents packet drop. On the other hand, if SDN-WISE flow table doesn’t

find a match it drops the packet. The Protocol optimization prevents re-transmission

of packets by source nodes. While simulating random topology we observed a lot

of interference as nodes were placed close to each other, which led to interference.

But still, µSDN had better PDR than SDN-WISE. The reason for the PDR trend

in random topology is that interference-aware routing in µSDN, which allows µSDN

nodes to re-route the packets via another path and helps in improving PDR by a

significant margin. The SDN-WISE does not implement interference-based packet

re-routing, which leads to the dropping of a lot of packets.

In this section, we saw the performance results of both µSDN and SDN-WISE

architecture. We observe that µSDN shows better performance in terms of Transmis-

sion Energy consumption, Controller-Node RTT and PDR. The µSDN shows better

performance because of its various optimizations like Protocol, Architecture, and

Memory. These optimizations help the nodes to consume less energy while transmis-

sion. Also, features like source routing and flow entry retention help in improving

overall performance . On the other hand, SDN-WISE does not implement any of

these optimizations and uses stateful nodes, which leads to packet re-transmission by

nodes and more consumption of energy. Thus, based on above evaluation we chose to

use µSDN as our base architecture and integrate it with an external ONOS controller.

3.6.2 Controller Evaluation

In this section, we will show evaluation results of µSDN with embedded and ONOS

controller as proposed in section 3.4. We compare the performance of both the

controllers using the metrics discussed in section 3.5.2.

Effect of Flow Setup Requests on Throughput: The Fig 3.16 shows the con-

troller throughput from low to high flow requests rate for grid and random topologies.

We can see from Fig. 3.16 that the Throughput for embedded and ONOS controller

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

16 24 32 40 48 56 64 72 80 88 96 102

A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

o
f

 C
o

n
tr

o
lle

r

Flow Setup Request Rate
 Per Second

μSDN
μSDN-ONOS
Embedded (µSDN)
External (ONOS)

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

16 24 32 40 48 56 64 72 80 88 96 102

A
ve

ra
g

e
T

h
ro

u
g

h
p

u
t

o
f

 C
o

n
tr

o
lle

r

Flow Setup Request Rate
 Per Second

Embedded (µSDN)
External (ONOS)

(b)

Figure 3.16: Average Throughput of controller in a)Grid and b)Random Topology.

 10

 20

 30

 40

 50

 60

 70

16 24 32 40 48 56 64 72 80 88 96 102

A
ve

ra
g

e
L

at
en

cy
 o

f

 C
o

n
tr

o
lle

r
R

es
p

o
n

se
 (

m
s)

Flow Setup Request Rate
 Per Second

μSDN
μSDN-ONOS

Embedded (GLow)
External (ONOS)

A
ve

ra
g

e
D

el
ay

 in

C
o

n
tr

o
lle

r
R

es
p

o
n

se
 (

m
s) µSDN

(a)

 10

 20

 30

 40

 50

 60

16 24 32 40 48 56 64 72 80 88 96 102
A

ve
ra

g
e

L
at

en
cy

 o
f

 C
o

n
tr

o
lle

r
R

es
p

o
n

se
Flow Setup Request Rate

 Per Second

Embedded (µSDN)
External (ONOS)

A
ve

ra
g

e
D

el
ay

 in

C
o

n
tr

o
lle

r
R

es
p

o
n

se
 (

m
s)

(b)

Figure 3.17: Average Controller response time in a)Grid and b)Random Topology.

is the same for the low flow request rate. As the flow rate increases the Through-

put of embedded controller starts decreasing whereas for ONOS it remains same for

even high flow rates. The main reason behind this trend could be because embedded

controller is a low-powered device with low memory and less processing capabilities.

Thus, its performance starts degrading as the flow rate increases. On the other hand,

ONOS is running on a server with better resources and processing capabilities, which

allows it to handle a large number of flow requests. Even though we see a decrease

in embedded controller’s Throughput but point to be underlined is that its perfor-

mance is similar to that of ONOS at a low flow rate, which means their performance

is similar for low bit rate.

Effect of Flow Request Rate on Controller’s Response time: Fig. 3.17

shows that the delay in response for embedded controller is lower than the ONOS

controller at low flow request rates. The main reason behind this is that ONOS

requires a lot of coordination between the subsystems like Sensor node, Flow rule,

etc. This takes time for processing a flow request. On the other hand, embedded

controller is a lightweight controller within the IoT network. It uses small number

45

 50

 60

 70

 80

 90

 100

10 20 30 40 50

A
ve

ra
g

e
To

p
o

lo
g

y
D

is
co

ve
ry

 T

im
e

B
y

C
o

n
tr

o
lle

r
(m

s)

Number of Nodes

μSDN
μSDN-ONOS
Embedded (GLow)
External (ONOS)

µSDN

(a)

 50

 60

 70

 80

 90

 100

10 20 30 40 50

A
ve

ra
g

e
To

p
o

lo
g

y

 D
is

co
ve

ry
 T

im
e

(m
s)

Number of Nodes

Embedded (μSDN)
External (ONOS)

(b)

Figure 3.18: Average Topology Discovery time in a)Grid and b)Random Topology.

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5

A
ve

ra
g

e
To

p
o

lo
g

y
U

p
d

at
e

 T

im
e

B
y

C
o

n
tr

o
lle

r
(m

s)

Number of Failed Links

μSDN
μSDN-ONOS
Embedded (GLow)
External (ONOS)

Number of Links Failed

µSDN

(a)

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 2 3 4 5

A
ve

ra
g

e
To

p
o

lo
g

y

 U
p

d
at

e
T

im
e

(m
s)

Number of Links Failed

Embedded (μSDN)
External (ONOS)

(b)

Figure 3.19: Average Topology Update time in a)Grid and b)Random Topologies.

of functions to process flow requests, which take less time as compared to the ONOS

controller. But as the flow request rate increases the embedded controller fails to

respond to such a high number of requests and goes under saturation because of its

low memory and processing capabilities. The results show that embedded controller’s

response time is better than ONOS for a low flow rate.

Effect of varying nodes on Topology Discovery Time: The Fig. 3.18

shows the Topology Discovery time for embedded and ONOS controller for a varying

number of nodes. From Fig 3.18 it is clear that embedded controller requires less

time to detect all nodes present in topology. Whereas, ONOS controller has constant

time overhead as compared to the embedded controller while discovering all nodes.

The main reason behind this is because ONOS being an external controller, the RPL

DAO message needs to travel from the border router onto the backbone network to

reach the ONOS controller. This process leads to additional time for packets to reach

ONOS and that is the reason why we observe constant time overhead for the ONOS

controller. The results of Topology discovery time show that embedded controller

being in IoT network can detect all nodes in the topology in a quick time.

46

 0.5

 0.6

 0.7

 0.8

 0.9

 1

5 10 15 20 25 30 35 40

Pa
ck

et
 D

el
iv

er
y

R
at

io
 (P

D
R

)

Bit Rate (bps)

Embedded (μSDN)
External (ONOS)

(a)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

4 8 12 16 20 24 28 32 36 40 44 48

Pa
ck

et
 D

el
iv

er
y

R
at

io
 (P

D
R

)

Number of Source Nodes

Embedded (μSDN)
External (ONOS)

(b)

Figure 3.20: Real sensor Data Evaluation for PDR in grid Topology varying a)Bit
Rate and b)Source Nodes

Effect of Number of Links Failed on Topology Update Time: We can

see from Fig. 3.19 that Topology Update time for embedded controller is less as

compared to the ONOS controller. The embedded controller receives update quickly

than ONOS as the NSU packet do not have to travel via the backbone network to

reach the ONOS controller. This takes place in a non-real time system and leads to

additional time overhead. Another reason for this performance trend is that when

the NSU packet reaches the Packet subsystem of ONOS it requires coordination with

the Sensor node subsystem to register the topology changes, this coordination leads

to additional time consumption. Thus, the overall topology update time is increased.

Thus, the average topology update time for the embedded controller is better as

compared to the ONOS controller.

3.6.3 Real Sensor Data Evaluation

In this section, we have shown evaluation of the embedded controller for real sensor

data. This data consists of real time data collected from temperature sensors placed

in different floors of an apartment. We obtained the data set from Washington State

University (WSU) CASAS databases [1]. We have shown evaluation of the Packet

Delivery Ratio by varying the bit rate and number of source nodes. We use a grid

topology of 50 nodes. We kept the hop distance as 7 in both cases.

Effect of Bit Rate on Packet Delivery Ratio: The Fig. 3.20a shows us

results of the PDR of embedded and ONOS controller using real sensor data. In this

evaluation, we varied the bit rate and we see that as the bit rate increases, the PDR

of embedded controller starts decreasing but does not dip drastically. The PDR of

47

embedded controller is similar to that of ONOS controller at low bit rate for the real

sensor data.

Effect of Source Nodes on Packet Delivery Ratio: The Fig. 3.20b shows

us results of the PDR of embedded and ONOS controller using real sensor data by

varying the source nodes. In this evaluation, we observe that as the number of source

node increases, the PDR of embedded controller starts decreasing. The reason behind

this performance is because as the number of packets arriving at embedded controller

starts increasing, the embedded controller cannot handle such large amount of packets

due to its low memory and processing capabilities. On the other hand, the ONOS

can handle large amount of data packets as it has better resources. One more reason

is that ONOS is directly connected to sink node through a tunnel which almost acts

as a wired medium which prevents any packet loss. Whereas, embedded controller is

in radio medium which can lead to dropping of few packets.

In this section, we discuss the evaluation results of embedded and the ONOS con-

troller based on various performance metrics. We can clearly see that embedded per-

forms better in terms of Delay in Controller response time, Topology Discovery time,

and Topology Update time. The Throughput performance of both the controllers is

the same for the low flow request rate. The main reason behind this performance is

that the embedded controller being embedded in the IoT environment can respond

to messages in a quicker time and thus, can detect any topological changes. Also,

unlike ONOS it does not require any subsystem co-ordination, which reduces its re-

sponse time. Many of the applications like Temperature monitoring operate at a low

bit rate. Through our results, we show that embedded controller performs better

or almost similar to ONOS at a low bit rate in terms of Controller response time

and Throughput. We can prefer to use an embedded controller, which has similar

hardware to that of other nodes in a low-power IoT network.

Chapter 4

Conclusion and Future Works

4.1 Conclusions

In this work, we proposed to use an embedded controller for low-power IoT networks.

First, we considered two prominent SDN-IoT architectures, i.e., µSDN and SDN-

WISE. We compared their performance using different performance metrics. To make

our comparison unbiased, we introduced the embedded control logic in SDN-WISE

node architecture. Then, we modify the existing µSDN architecture to facilitate

connection with an external ONOS controller. Since the message format of both

µSDN and ONOS is not the same, we developed an adapter application consisting

of different components spread across various subsystems. We then compare the

performance of embedded controller and external ONOS controller. We also showed

the crossover points where the embedded controller goes into saturation.

To evaluate our first part of the work, we compared the performance of µSDN

and SDN-WISE approaches by deploying and simulating the architectures using the

Cooja simulator, which is based on the Contiki OS. We have found that µSDN solu-

tion performs better than SDN-WISE in terms of transmission energy consumption

and Controller-Node RTT. The µSDN also has provided better performance in terms

of PDR than that of SDN-WISE. We have evaluated the two controllers, i.e., embed-

ded and ONOS. We found that their performance is similar in terms of throughput

for a low flow rate. The embedded controller shows better performance in latency in

controller response time for a low flow rate. The embedded controller also has better

topology discovery and update time. We observe through our evaluation that embed-

ded controller can be preferred over external controller for low bit-rate applications.

In this work, we also evaluated the embedded controller and ONOS controller for

real sensor data. We observe that the embedded controller shows similar PDR to that

of ONOS. Thus, real sensor data results show that embedded controller has similar

performance to that of ONOS at low bit rate.

48

49

4.2 Future Works

In this work, we kept the RDC and MAC protocol stack the same for both µSDN and

SDN-WISE architecture to ensure unbiased comparison. It would really be interesting

to study the effect of different RDC and MAC protocols on the energy consumption

of nodes. In addition to that, we would intend to further study the performance of

embedded controller to external factors like radio interference, node failure, etc. The

main limitation of our work is when certain applications require a high bit rate with

high performance, the embedded controller will not provide similar performance for

high flow rates. For high flow rates, we have to switch to an external controller like

ONOS, which can handle a large number of flows. Thus, for future work, we propose

a mechanism that can switch between embedded and ONOS controller depending on

flow rates. This will make the network dynamic and would enable the application

user to switch between internal and external controllers depending on the application

data bit rate. We would also like to extend our work in order to support large

number of source nodes like humidity, temperature, and pressure sensors present in

applications like smart farm. We propose a hierarchical architecture where we use

separate embedded controllers configured to support each subnet of source nodes.

This topological information can be synced with one more intermediary node (sink

node). We think that by designing hierarchical architecture we can support both

performance and scalability using embedded controller.

Appendix A

A.1 Implementation of Node Architecture Comparison

A.1.1 Network Setup Configuration

Setup for µSDN: To evaluate different performance metrics we need to vary the

bit rate and hop distance. These parameters are stored as variables in source node

program. We can initialize these parameters before every simulation run. The node

variables are as shown in Listing A.1. The detailed program is available in usdn/ex-

amples/sdn/node.

Listing A.1: Node Configuration

/∗ Set Bit Rate value be f o r e every run ∗/

#i f n d e f CONF APP BR MAX

#d e f i n e CONF APP BR MAX 32

/∗ Set the source nodes ∗/

s t a t i c i n t app tx node [CONF NUM APPS] = {1 ,5 , 7 , 16 , 20 , 27} ;

/∗ Set the d e s t i n a t i o n node ∗/

s t a t i c i n t app rx node [CONF NUM APPS] = {4 ,2 , 6 , 9 , 12 , 22} ;

The hop distance can be varied from µSDN configuration file as shown in Listing

A.2. The more details about this file can be found in usdn/core/net/sdn.

Listing A.2: µSDN Configuration

typede f s t r u c t s d n c o n f i g u r a t i o n {
/∗ v i r t u a l network id ∗/

u i n t 8 t sdn net ;

/∗ hops from d e s t i n a t i o n ∗/

u i n t 8 t hops ;

} usdn con f t ;

50

51

Setup for SDN-WISE: Similarly, to evaluate different performance metrics for

SDN-WISE architecture we need to change its configuration file before every run. We

can define the bit rate directly by varying the values in file. For hop distance we vary

the value from main program. The structure is as shown in Listing A.3. The more

details can be found in sdnwise/node.

Listing A.3: SDN-WISE Configuration

/∗ Set the Bit Rate Value ∗/

#d e f i n e RF−SEND−DATA−RATE 32

#d e f i n e RF−RECEIVE−DATA−RATE 32

typede f s t r u c t n o d e c o n f s t r u c t {
/∗Network ID ∗/

u i n t 8 t my net ;

/∗ Hops from the Sink ∗/

u i n t 8 t hops f rom s ink ;

} node con f t ;

A.1.2 SDN-WISE Sink Node Changes

We have seen in Chapter 3 section 3.3 the modifications in SDN-WISE node ar-

chitecture. We added the Topology Manager, Response, and OpenPath modules in

SDN-WISE sink node to ensure that we have control logic within the IoT environ-

ment. We also changed the MAC driver to ensure that our comparison is unbiased.

The nodes initially send a beacon packet which tells the controller about nodes pres-

ence. This information is stored in Topology Manager. The implementation is as

shown in Listing A.4.

Listing A.4: Topology Manager SDN-WISE

/∗ Using scan network method to save topo logy ∗/

void scan network (u i n t 8 t nodes [] , node t ∗head)

{
/∗ The nodes array conta in s node id and network s i z e ∗/

i n t node id = nodes [3] ;

i n t ne twork s i z e = nodes [9] ;

52

/∗ Store node ID in l i nked L i s t ∗/

node t ∗new node ;

new node = (node t ∗) mal loc (s i z e o f (node t)) ;

new node−>data = node id ;

new node−>next= head ;

head = new node ;

p r i n t f (”Node ID %d added to the Topology ” , node id) ;

}

When a node sends a REQUEST message, the controller should send the flow rules

back to node. This is managed by sending a RESPONSE packet. The implementation

is as shown in Listing A.5.

Listing A.5: Response in SDN-WISE

/∗ Switch case i s app l i ed on packet header type ∗/

Case REQUEST:

hand l e r e sponse (p) ;

void hand l e r e sponse (packe t t ∗ p)

{
i f (i s my addre s s (&(p−>header . dst)))

{
e n t r y t ∗ e = g e t e n t r y f r o m a r r a y (p−>payload , p−>header . l en) ;

i f (e != NULL)

{
add entry (e) ; /∗Flow entry i s added in f low tab l e ∗/

}
p a c k e t d e a l l o c a t e (p) ;

}
e l s e {
match packet (p) ;

}
}

In some cases, the controller may want update itself with current network status

53

instead of waiting for regular update from nodes. Therefore, the controller sends

OpenPath message to get update from nodes. The detailed implementation of these

functionalities can be found in sdnwise/node.

A.1.3 Parameter Evaluation

In this work, we have evaluated Transmission energy consumption for both µSDN

and SDN-WISE architecture. To evaluate the energy consumption we have used

ENERGEST library which is available in the Contiki OS. We display the energy

values in our logs at regular intervals. Some of the details of implementation are as

shown in Listing A.6. The detailed code is available in usdn/core/net/sdn.

Listing A.6: Energy Evaluation in µSDN

/∗Update a l l en e rg e s t t imes . Should always be c a l l e d

be f o r e ene rg e s t t imes are read .∗/

e n e r g e s t f l u s h () ;

a l l t r a n s m i t = e n e r g e s t t y p e t i m e (ENERGEST TYPE TRANSMIT)

/ (RTIMER SECOND / 1000) ;

double cur r ent = (a l l t r a n s m i t ∗ current−tx) ;

/∗ Consider vo l tage as 3 v o l t s ∗/

double energy = cur rent ∗ 3 ;

LOG STAT (” en : ”) ;

p r i n t d i v i s i o n (energy , t ime on) ;

Similarly, energy consumption of SDN-WISE nodes are also calculated. The detailed

code is available in sdnwise/node/stats.

A.2 Operation of µSDN-ONOS

The µSDN operation starts with initialization of all nodes present in the topology.

The sink node acts as border router and serves as the DAG root node for rest of nodes.

The sink node receives a prefix of ONOS application through the SLIP connection

which allows further communication with other nodes. During the network initial-

ization, all nodes send DAO message back to sink node. The sink node sends these

message containing node information to ONOS SensorNode subsystem. The ONOS

54

stores this information in its format to maintain consistent view of the network. The

implementation is shown in Listing A.7, A.8, and A.9. The detailed implementation

of sink node with slip connection is available in usdn/examples/controller/sdn-sink.c

. The SensorNode details are available in onos/protocols/usdn/protocol/USDNMes-

sage.java

Listing A.7: RPL Configuration

s t r u c t r p l i n s t a n c e {
/∗ DAG c o n f i g u r a t i o n ∗/

r p l m e t r i c c o n t a i n e r t mc ;

r p l o f t ∗ o f ;

r p l d a g t ∗ cur rent dag ;

/∗DAO message c o n f i g u r a t i o n ∗/

u i n t 8 t my dao nodeno ;

u i n t 8 t my dao distance ;

u i n t 8 t mydao tag ;

} r p l i n s t a n c e t ;

extern r p l i n s t a n c e t r p l ;

Listing A.8: Implementation in Sink node

/∗ Wait u n t i l p r e f i x i s r e c e i v e d from SLIP ∗/

whi le (! p r e f i x s e t) {
e t i m e r s e t (&et , CLOCK SECOND) ;

r e q u e s t p r e f i x () ;

PROCESS WAIT EVENT UNTIL(e t ime r exp i r ed (&et)) ;

}
#i f RPL WITH NON STORING

ADD(” Links<pre>\n ”) ;

u i n t 1 6 t buf [] = { r p l . my dao nodeno , r p l . my dao distance ,

r p l . mydao tag = 1} ;

/∗ send data v ia s l i p connect ion ∗/

SEND STRING(&s−>sout , buf) ;

55

Listing A.9: Implementation in SensorNode Subsystem

// s t a t i c method in Sensor node which e x t r a c t s

// message from packet

USDNMessage getMessageFromPacket

(USDNnetworkPacket networkPacket) {
USDNMessage usdnMessage = n u l l ;

i n t sensorMessageType = networkPacket . getTyp () ;

// checks the packet type

switch (sensorMessageType)

{
case RPL:

RPLPacket rp lpacke t = new RPLPacket (networkPacket) ;

// message i s s to r ed as ob j e c t .

usdnMessage = new USDNRPLMessage(rp lpacke t . ge tDi s tance () ,

rp lpacke t . getNodeID ()) ;

break ;

}

When a node misses a flow entry, µSDN node sends a FTQ message to ONOS via

the sink node. The µSDN protocol component extracts the information and forwards

it higher layers of FlowRule subsystem. The FlowRule subsystem creates a FTS

message based on current network state and sends the FTS message to SensorNode

subsystem. The FTS message implementation is shown in Listing A.10.

Listing A.10: FTS in ONOS

s t a t i c FlowTableSetPacket getResponse ()

{
// Based on network s t a t e FlowRule prov ide r s e t s source

// and d e s t i n a t i o n address .

responsePacket . setTyp (USDNnetworkPacket .FLOWTABLE SET) ;

responsePacket . setNet ((byte) super . ge t Id ()) ;

responsePacket . setDst (new NodeAddress

(super . g e tDes t ina t i on () . address ())) ;

56

responsePacket . s e t S r c (new NodeAddress

(super . getSource () . address ())) ;

FlowtableEntry f lowTableEntry = new FlowtableEntry () ;

flowTableWindows . forEach (f lowTableEntry : : addWindow) ;

f lowTableAct ions . forEach (f lowTableEntry : : addAction) ;

responsePacket . setRule (f lowTableEntry) ;

r e turn responsePacket ;

}

The ONOS receives NSU packets from nodes regarding its distance, battery levels,

etc. These packets are sent at regular updates. The information must be stored in

ONOS format to update the network state. The implementation of NSU packets is

as shown in Listing A.11.

Listing A.11: NSU implementation in ONOS

pub l i c USDNNodeStatusMessage (i n t d i s tance ,

i n t batteryLeve l , i n t nofNeighbors ,

Map<USDNnodeId , Integer> neighborRSSI) {
super () ;

//The NSU data i s s to r ed in ONOS format .

t h i s . d i s t ance = d i s t anc e ;

t h i s . ba t t e ryLeve l = bat te ryLeve l ;

t h i s . nofNeighbors = nofNeighbors ;

t h i s . neighborRSSI = neighborRSSI ;

The FTS messages and CONF message must be sent back to nodes. This func-

tionality is handled by Sensornode forwarding application. This application converts

these message packets in µSDN format and sends it over backbone network channel.

The method is as shown in Listing A.12.

57

Listing A.12: Send Function

p r i v a t e void sendNetworkPacket

(USDNnetworkPacket networkPacket)

{
//Send message in form o f array over channel .

ChannelBuffer channe lBuf f e r =

ChannelBuf fers . wrappedBuffer (networkPacket . toByteArray ()) ;

}

In summary, we have tried to provide as much as details of our implementation.

Since, it is difficult to cover every aspect of code, we have provided details about our

code in git [22]. The research enthusiasts can clone the code and try to reproduce

the results.

Bibliography

[1] Washington state university casas datasets. http://casas.wsu.edu/datasets/,
September 2015. (Last accessed 17-November-2020).

[2] Hazrat Ali. A performance evaluation of rpl in contiki. volume 1, pages 17–24.
SICS, October 2012.

[3] Angelos-Christos G Anadiotis, Laura Galluccio, Sebastiano Milardo, Giacomo
Morabito, and Sergio Palazzo. SD-WISE: a software-defined wireless sensor net-
work. arXiv preprint arXiv:1710.09147, 2017.

[4] Angelos-Christos G. Anadiotis, Laura Galluccio, Sebastiano Milardoy, Giacomo
Morabito, and Sergio Palazzo. Towards a software-defined network operating
system for the iot. In INFOCOM proceedings, pages 1–6. IEEE, May 2015.

[5] You Wang Ayaka Koshibe. Systems components of onos architecture. https://
wiki.onosproject.org/display/ONOS/System+Components, September 2016.
(Last accessed 11-October-2020).

[6] Michael Baddeley, Reza Nejabati, George Oikonomou, Mahesh Sooriyabandara,
and Dimitra Simeonidou. Evolving SDN for low-power IoT networks. In IEEE
NetSoft, pages 71–79, 2018.

[7] Larry Burgess. Inexpensive low data rate links for the inter-
net of things. https://www.volersystems.com/wearable-devices/

inexpensive-low-data-rate-links-for-the-internet-of-things, Novem-
ber 2018. (Last accessed 22-October-2020).

[8] Matt Burgess. What is the internet of things? wired explains. https://www.

wired.co.uk/article/internet-of-things-what-is-explained-iot, Feb
2018. (Last accessed 1-November-2020).

[9] M. Darianian, C. Williamson, and I. Haque. Experimental evaluation of two
openflow controllers. In in the proceeding of IEEE ICNP workshop on PVE-
SDN, Oct 2017.

[10] C. Lakshmi Devasena. Ipv6 low power wireless personal area network (6lowpan)
for networking internet of things (iot) – analyzing its suitability for iot. volume 9.
IBS University, Hyderabad, India, 2016.

[11] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight and
flexible operating system for tiny networked sensors. In IEEE international con-
ference on local computer networks, pages 455–462, 2004.

58

59

[12] T Fevens, I Haque, and L Narayanan. A class of randomized routing algorithms
in mobile ad hoc networks. AlgorithmS for Wireless and mobile Networks (A
SWAN 2004), Boston, 2004.

[13] Laura Galluccio, Sebastiano Milardo, Giacomo Morabito, and Sergio Palazzo.
SDN-WISE: Design, prototyping and experimentation of a stateful SDN solution
for WIreless SEnsor networks. In IEEE INFOCOM, pages 513–521, 2015.

[14] I. Haque. On the overheads of ad hoc routing schemes. IEEE Systems Journals,
9(2):605–614, June 2015.

[15] I. Haque and C. Assi. Localized energy efficient routing in mobile ad hoc net-
works. The Willey Journal of Wireless and Mobile Computing, 7(6):781–793,
August 2007.

[16] I. Haque, C. Assi, and W. Atwood. Randomized energy-aware routing algo-
rithms in mobile ad hoc networks. In Proceedings of the 8th ACM international
symposium on Modeling, analysis and simulation of wireless and mobile systems,
MSWiM ’05, 2005.

[17] I. Haque, M. Nurujjaman, J. Harms, and N. Abu-ghazaleh. SDSense: An ag-
ile and flexible SDN-based framework for wireless sensor networks. The IEEE
Transactions on Vehicular Technology, 68(2):1866 – 1876, February 2019.

[18] I. T. Haque and N. Abu-Ghazaleh. Wireless software defined networking: A
survey and taxonomy. IEEE Communications Surveys Tutorials, 18(4):2713–
2737, 2016.

[19] I. T. Haque and Chadi Assi. OLEAR: Optimal localized energy aware rout-
ing in mobile ad hoc networks. In Proceedings of the 2005 IEEE International
Conference on Communications, ICC ’05, 2005.

[20] Israat Haque, Saiful Islam, and Janelle Harms. On selecting a reliable topol-
ogy in wireless sensor networks. In Proceedings of the 2015 IEEE International
Conference on Communications, ICC ’15, 2015.

[21] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve
Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined network-
ing: A comprehensive survey. volume 103, pages 14–76. IEEE, 2014.

[22] Miheer Kulkarni. Controller-compare-thesis. https://github.com/

MiheerKulkarni/Controller-Compare-Thesis, 2020. (Last accessed 11-
December-2020).

[23] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: enabling
innovation in campus networks. ACM SIGCOMM Computer Communication
Review, 38(2):69–74, 2008.

60

[24] Mansoor Alam Junghwan Kim Robert Green Nasseri Mona, Hussien Al-Omat
and Wei Cheng. Contiki cooja simulation for time bounded localization in wire-
less sensor network. In Proceedings of the 18th Symposium on Communications
Networking, page 250. ACM, 2015.

[25] Keyur K Patel, Sunil M Patel, et al. Internet of things-iot: definition, char-
acteristics, architecture, enabling technologies, application & future challenges.
International journal of engineering science and computing, 6(5), 2016.

[26] Pedro. Mac protocols in contikios. Autonomous Network Research Group, Uni-
versity of South California, 1(1):1–4, 2014.

[27] Steve Ranger. What is the iot? everything you need to know
about the internet of things right now. https://www.zdnet.com/article/

what-is-the-internet-of-things, February 2020. (Last accessed 6-October-
2020).

[28] J. Romkey. A non-standard for transmission of ip datagrams over serial lines:
Slip. pages 1–6. IETF, 1988.

[29] Dipon Saha, Meysam Shojaee, Michael Baddeley, and Israat Haque. An energy-
aware sdn/nfv architecture for the internet of things. In IFIP/IEEE Networking,
pages 1–3. IFIP, June 2020.

[30] S.V. Saliga. An introduction to ieee 802.11 wireless lans. IEEE, 2000.

[31] H. P. Tan T. Luo and T. Q. S. Quek. Sensor openflow: Enabling software-defined
wireless sensor networks. In IEEE Communications Letters, volume 16, pages
1–5. IEEE, November 2012.

[32] Kulesa Tamara. 8 sensors to help you create a smart home. ibm.com/

blogs/internet-of-things/sensors-smart-home/, 2016. (Last accessed 11-
December-2020).

[33] Tryfon Theodorou and Lefteris Mamatas. Coral-sdn: A software-defined net-
working solution for the internet of things. In Conference on Network Function
Virtualization and Software Defined Networks (NFV-SDN), pages 1–2. IEEE,
May 2017.

[34] Andrea Campanella Brian O’Connor David Bainbridge Ray Milkey
Thomas Vachuska, Jordan Halterman and Carmelo Cascone. Open net-
working foundation: Onos. https://www.opennetworking.org/onos/. (Last
accessed 12-October-2020).

[35] Tim Winter, Pascal Thubert, Anders Brandt, Jonathan W Hui, Richard Kelsey,
Philip Levis, Kris Pister, Rene Struik, Jean-Philippe Vasseur, Roger K Alexan-
der, et al. Rpl: Ipv6 routing protocol for low-power and lossy networks. IETF,
March 2012.

