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Abstract

Autonomous multi-robot path-planning and task-allocation to address unresponsive

or even evasive targets on or under the water is studied. Challenges in robot localiza-

tion and navigation in GPS-denied and communication constrained environments are

addressed. The mRobot node developed autonomously path-plans and task-allocates

to manage robotic collaboration in marine environments. The node is validated in

simulation and controlled in-water tests with a team of heterogeneous marine robots

(unmanned surface vehicle (USV), unmanned aerial vehicle (UAV), unmanned un-

derwater vehicle (UUV)) to survey static floating targets (of known pose) in three-

dimensions.

Then, a novel mutual-information incentivised Q-Learning algorithm is developed

for UUVs to search for static underwater targets of uncertain pose. The planning con-

siders the complex underwater environments where erroneous and false detections are

expected. Simulation and controlled two-dimensional experiments show the algorithm

performs notably better than alternative methods like greedy or Boustrophedon.

Lastly, a collaborative team of three UUVs is proposed to acoustically detect,

track, and localize a mobile, evasive underwater target with uncertain pose. A novel

algorithm combines predictive information measures with Q-Learning for trajectory

planning. The algorithm adapts to conditions that impact detection with acoustic

range-only measurements. Simulation results show superior performance of the 3-

UUV system compared to the long baseline method.
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Chapter 1

Introduction

1.1 Motivation and Thesis Contributions

Autonomous marine robots are now routinely considered for ocean monitoring, search

and rescue, and naval applications. Developments in their autonomy minimizes hu-

man involvement in the di�cult and harsh ocean environment [1] and expands their

capabilities for more complex missions. An example of a naval application is address-

ing unresponsive or even evasive targets on or under the water, specifically when there

is no prior information or situational awareness on their state, origin, or purpose.

If the target is a stationary non-responsive ship, below-water surveying could

detect and identify objects attached to its wetted hull, and provide indications of its

propulsive capabilities. Above-water situational awareness could yield information

on the target’s structure, purpose and, potentially, people and objects on-board. If

maritime interdiction operations are considered then the information from such a

multi-domain survey could determine if it is safe to attempt a boarding. If the target

is an iceberg, then a multi-domain survey could characterize its structure towards a

more informed approach to safely circumnavigate it. If the mission objective is to

search for a downed aircraft or boating accident, then the information collected in

such multi-domain surveys could inform the search on how to proceed [2].

Alternatively, if the targets are on the seabed and of uncertain location, then

an area survey must be executed to detect, localize and classify them. Naval mine-

countermeasures (NMCM) is a special case of the underwater target search, with a

requirement that all mines be detected and localized to an acceptable certainty in

the area survey. Previously, NMCM operations required ships and divers to complete

this dangerous task. With advances in marine robotics, it is now possible to com-

plete the surveys with unmanned underwater vehicles (UUVs) [3]. However, there

are limitations that challenge UUVs in fulfilling NMCM requirements. To start, the

acoustic sensors (sonar) used. Target detection by sonar is a↵ected by environmental

1
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conditions (physics of underwater sound propagation) like ambient noise, time-and

spatially-varying sound velocities, multi-path, reflections, scattering, and bathymetry

among others. Such conditions vary with location and time. Uncertain measurements

mean that 100% sensor coverage of the search area does not ensure 100% detection [4].

The underwater target localization problem requires an adaptive method for resolving

uncertain and false detection events to report a more accurate map of target place-

ment. The other significant challenge for UUVs in NMCM surveys (and underwater

applications in general) is self-localization and navigation without access to a global

positioning system (GPS) or high bandwidth communication. Often, in GPS-denied

conditions proprioceptive sensor fusion is relied upon for state-estimation. Combin-

ing internal sensors for localization or navigation without GPS influence or acoustic

position support is termed inertial/dead reckoning (DR). An individual underwater

vehicle relying on internal equipment can surface for GPS to update its state, at the

cost of e�ciency. The typical Inertial Navigation Systems (INS) can achieve a drift

in position error of 2%-5% of the total distance travelled. Smaller position error is

achievable with a higher accuracy (and more costly) INS [5]. However, the error is

unbounded and unavoidable with INS due to uncertainty in the measurements, and

environmental disturbances.

Lastly, if the target is a mobile underwater vehicle (marine mammal, submarine,

UUV) entering a marine protected area or sea-port without authorization, then more

advanced solutions are required to detect, localize and potentially track the target.

The absolute position of the target can be di�cult to obtain as the GPS is unavailable

due to the rapid attenuation of high-frequency electromagnetic waves (EM) under-

water [6]. To address this problem, acoustic long baseline (LBL) localization systems

can be used. LBL systems use a network of stationary underwater beacons that range

the target with acoustic measurements. Long baseline systems can provide accurate

localization; however, LBL beacons are non-trivial to deploy and calibrate, and have

very limited range [6]. They are better in small confined areas, but less so in open

ones. As an alternate method to stationary underwater beacons, sensors on mobile

UUVs may be an option to track the target.

This thesis makes contributions towards addressing these autonomous marine ve-

hicle path-planning and robotic collaboration challenges —to obtain information and
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situational awareness on marine targets depending on their pose uncertainty and

mobility. The thesis objectives are, therefore, to:

1. create a node that autonomously plans missions and distribute tasks for col-

laborative multi-robot systems across multiple domains (under-, on- and above-

water);

2. develop a light-weight autonomous planning algorithm for underwater search

missions with increased e�ciency and accuracy that is meant to be deployed on

embedded platforms, and

3. build on objectives 1 and 2 to develop an autonomous planning method for a col-

laborative system of three UUVs to detect, localize, and track an unresponsive,

mobile and evasive target.

1.2 Methodology

To achieve the objectives, this thesis explores the use of multi-robot systems to imple-

ment complex missions in marine environments. The problem of gaining awareness on

targets is addressed through in situ autonomous planning and robotic collaboration.

The ultimate goal is to study the e�cacy of an autonomous multi-robot system

to detect, localize and track a non-responsive and mobile underwater target. The

work is presented in three parts to systematically build and culminate in that goal.

Each chapter builds on the previous by developing a solution which addresses non-

responsive target(s) with progressively more pose uncertainty and mobility:

1. a single stationary target that is partially-submerged (floating) and its pose is

known with good certainty prior to the mission;

2. multiple stationary underwater targets (of unknown quantity) whose pose is not

known with good certainty, and

3. a single mobile and evasive underwater target whose location, velocity and head-

ing are not known with good certainty. Evasive refers to the target’s ability to

change speed and heading.
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Next, Chapter 2 provides a review of previous work on collaborative robot local-

ization and navigation to address targets in the marine environment.

Chapter 3 details the development and validation of a node, mRobot (for multiple

robot), which autonomously plans missions and distributes tasks for below-water,

surface and above-water marine robots towards situational awareness on a partially-

submerged target. Simulation and experimental validation of the systems’ capability

across multiple domains is described.

Chapter 4 describes an autonomous planning algorithm for underwater search

missions for targets (e.g. seabed mines) whose pose are only known to the extent

that they might exist in the area. The algorithm combines on-line reinforcement Q-

Learning trajectory planning with information gain rewards. To quantify the merit of

this proposed solution, its results are compared with the standard greedy and Bous-

trophedon approaches. A sensitivity study is provided which identifies the parameters

that drive the planner’s performance. Simulation and two-dimensional experimental

validation is undertaken.

Chapter 5 describes the development of a system which autonomously plans and

distributes missions for three collaborating UUVs to detect, localize, and track an

evasive target. The solution builds upon the prior two chapters. The mRobot node

is adapted to network the team of UUVs. The search channel formulation from

[7] is adapted to a dynamic channel and predictive information measures, and the

Q-Learning trajectory planner is expanded to policy learning for three UUVs. Simu-

lation results show an improved performance and capability over an LBL system.

Lastly, Chapter 6 provides conclusions and thoughts on future work.



Chapter 2

Literature Review of Marine Multi-Robot Collaboration

This chapter provides a review of research and development pertinent to collaborative

robotics in marine environments related to the three marine target types presented

in Chapter 1 —namely a static target of known pose, multiple stationary targets of

unknown pose, and a mobile target of unknown pose.

To start, relevant background in marine robot sensing is presented (section 2.1).

Then, the impact of underwater communication limitations on multi-robot collabora-

tion is outlined (section 2.2). Section 2.3 then defines robot localization and discusses

standard acoustic localization techniques and their limitations, while section 2.3 con-

cludes with multi-robot collaborative localization.

Robot navigation is addressed in section 2.4 with a review of multi-robot sys-

tems in marine applications. Firstly, the communication and navigation aid (CNA)

autonomous vehicle is presented. Secondly, work related to surveying a partially-

submerged target is reviewed. Thirdly, the challenges and current methods for marine

target searching are presented. A discussion on reinforcement learning-based path-

planners, as a proposed solution, is also provided. Lastly, mobile marine robots in

target-tracking and localization applications are reviewed.

Prior to the review, the definitions of terms used in the thesis are described. The

domain refers to whether the robot operates above or below-water. The environment

for a particular domain includes other physical properties like temperature, pressure,

obstacles, and fluid medium density. The term marine environment refers to both

above and below water domains. Any combination of multiple robots tasked to a

common goal or mission is referred to as a team. The act of working together to

achieve the goal is robotic cooperation. The amount that a team’s members interact

among themselves to achieve this goal can range from coordination to collaboration.

The distinction is based on how tightly coupled the team members’ individual tasks

are. In coordination the team may be centrally managed by a supervisor (such as

5



6

a robot, agent, or human operator) which assigns their allocated task so the robots

do not need to interact much among themselves to achieve the mission. An example

is two robots performing a side-by-side survey which is coordinated by a central

supervisor. The execution of the two tasks are not dependent on one another and

it may not matter that one finishes before the other. With collaboration, there

may be tight cross-robot timing constraints where one robot waits on the result of

another prior to planning and executing its task. One definition of collaboration is:

multiple assets working together directly and sharing resources to support a shared

goal [8], where asset refers to any robot or vehicle. A collaboration assembles a

robot team with consideration for the mission’s sensing requirements against each

robot’s individual capabilities (e.g. sensors, mobility, endurance, pose certainty, on-

board computations, environment, communications) and what each team member

contributes towards the common goal. The justification for collaboration is discussed

next.

A motivation to use robot teams is to better address more complex goals. A single

robot system is limited by one robot’s mobility, computation capability and sensors.

The capabilities of multi-robot systems applied to a common goal can be greater

purely from the amplification of having more robots. The force multiplication from

more robots contributes scaling and can o↵er a wider range of complementary sen-

sors. A collaborating multi-robot solution can reduce the time to complete a task, add

measures of redundancy, and provide more adaptability to address dynamic missions

[9]. However, collaboration is contingent upon some level of inter-asset communica-

tions which can increase mission complexity, as environmental conditions that impact

the communications channel become important. Given wireless communications be-

tween robots, how tightly coupled the assets are can manifest in the communications

bandwidth needed between members to execute the common task. The amount of

bandwidth between team members can vary, as in this thesis, due to the environ-

ment (communications channel) or a robot’s specific tasking. Given the underwater

communications challenge, there is still considerable value to use collaborative teams.

Furthermore, more complex goals can also be addressed by making the teams’ plan-

ning adaptive to the dynamic robot and environment.

Dynamic mission planning is an emerging requirement in real-world applications.
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Adaptive responses are necessary to address unanticipated robot-wide failure, sub-

system failure, loss of communication, environmental changes, or new information

that impacts the robot’s interactions with its environment. The potential of robots

collaborating in dynamic mission-planning, and to provide additional levels of redun-

dancy are other benefits that outweigh the complexity required in the development

and deployment of multi-robot systems.

To discuss and review work related to multi-robot collaboration and the localiza-

tion and navigation requirements, as it pertains to the three target types investigated

in this thesis, relevant background on marine sensing and communications is provided

next.

2.1 Background on Robotic Sensing

The taxonomy for sensors can depend on modality, function, whether it is propri-

oceptive or exteroceptive, interaction with the environment, and operating domain.

Table 2.1 summarizes some marine robot sensors with this taxonomy. The table is

drawn from [10], [11], [5], and [12]. The sensors shown will be touched on in this

subsection.

On-board a robot, vehicle sensors are necessary for basic functions. Examples of

mobile robot sub-systems include: propulsion, pose determination, attitude control,

navigation, power distribution, o↵-board communications, buoyancy (marine robots),

as well as faults and failure detection. Sensors in these sub-systems contribute to the

robot’s functioning. Of interest to this thesis are navigation sensors which will be

discussed later.

In the broader picture, the robot is a platform to support the payload sensors.

These sensors collect the data to fulfil the mission objectives. An example of a payload

sensor is a camera on an unmanned aerial vehicle to collect imagery for surveillance.

The robot platform can support the payload sensor by providing power, protection

against the environment, attitude stability, lift/locomotion to bring the camera to

where it is to perform its sensing, on-board processing, planning, decision-making,

communications with the operator, and pose information to geo-reference the sensing.

The selection of sensors must balance speed of operation, cost, error rate, robustness,

and power consumption [12].
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Table 2.1: Summary of sensor descriptions and their operating domain

below-water above-water 
radar  ✓
(radio detecting 
and ranging)

lidar           ✓ ✓
(light detection 
and ranging)
laser range 
finder

Estimates distance to objects in the environment 
using time of flight, phase-based, or triangulation 
methods

✓

infrared (IR) Fast and inexpensive proximity sensor, used to 
estimate range based on intenstity of returned signals

✓

sonar                                                         ✓ ✓
(sound 
navigation 
ranging)

multi-beam/ 
bathymetric

Multiple sonar beams that return depth measuremnts 
based on time of flight -  used to scan surfaces. 
Often used for creating 3D images of seabed or 
underwater structures

✓ ✓

forward looking 
sonar

Forward facing multi-beam sonar, more suitable to 
navigation target detection and guidance

✓ ✓

side-scan Multi-beam sonar that creates 2D images through 
intensity measurment returns

✓

camera monocular Single camera vision ✓
stereo Dual camera system that can determine rough depth 

estimates based on relationship between the cameras 
(similar to human vision)

✓

GPS Global Positioning System, using time-of flight 
singals from syncronized satelittes

✓

IMU ✓ ✓
(inertial 
measurment unit)

pressure sensor Depth measurement device (barometer or pressure 
sensor)

✓

compass Provides global heading reference, generally done 
by measuring the magnetice field vecotrs. Less 
common is the gyrocompas that uses a spinning disk 
and the earths rotation (not affected by other metalic 
objects)

✓ ✓pr
op

ri
oc

ep
tiv

e
ex

te
ro

ce
pt

iv
e

domain
sensor description

lighting and 
depth 

dependent

Uses radio frequency EM waves for detection of 
objects. Can be used to classify range, angle and 
velocity of object in the environment

Similar principles to the radar - utlizes light  instead 
of EM waves for measurements

An inertial navigation system (INS) can calculate 
postion, velocity, and attitude using IMU 
meaurments. In general an IMU will consist of three 
accelerometers and three gyroscopes to measure the 
6-DOF motion. Accelerometers and gyroscopes 
measure linear and angular acceleration respectively

Doppler velocity 
log (DVL)

Acoustic measurments to determine ground speed 
relative to sea floor. Determines surge, sway, and 
heave velocity vecotes based on the doppler shifted 
returns of acoustic pulses off the seabed.



9

Whether any particular sensor is a vehicle or payload sensor depends on its use. If

the camera were used for the robot’s obstacle avoidance it would be a vehicle sensor.

It is also common to classify robot sensors as proprioceptive or exteroceptive types.

Proprioceptive sensors measure quantities internal to the robot (e.g. motor speed,

acceleration, heading, battery status). They do not require that energy be put into

the environment. Exteroceptive sensors measure quantities that are external to the

robot like the environment, e.g. ambient lighting, ranges to targets, wind/current

speed.

Robot state estimation is achieved with vehicle sensors. These sensors include

proprioceptive types like GPS, inertial measurement units/INS and compasses. In-

ertial sensing requires external references to bound the otherwise unbounded error

growth. Therefore, active exteroceptive sensors for ranging like free space optical,

LIDAR, IR, radar, sonar, beacons are used. Passive exteroceptive sensors like cam-

eras for vision-based approaches can also be used to bound error growth [12]. With

the exception of GPS, radar and IR these sensors types are available both above and

below water for marine robots.

Robotic payload sensors vary vastly across domains and are application specific.

Sensing modalities like free space optical and electromagnetic (EM) waves are limited

in range underwater. These waves are very high frequency and rapidly attenuate

with range. At short ranges they are a good option as they have more bandwidth.

As well, optical sensing requires a light source and so robots that work in deeper

(greater than 20 ft) must carry su�cient lighting. Even at shallow depths, turbidity

will compromise image quality for visible wavelength cameras. Given the high specific

heat of water, infrared cameras are not e↵ective in water.

Underwater, acoustics provides the best sensing and communications modality

given the poor propagation of electromagnetic, optical and other energies in water.

However, underwater acoustic propagation is not without its limitations and su↵ers

from latency, frequency and range dependent losses, multi-path e↵ects, and ambient

noise [11]. More discussion of electromagnetic and acoustic frequencies in water is

discussed in the next section.

Acoustic energy is used in vehicle state estimation (e.g. altimeters) and payload
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sensing (e.g. sonar-based sea-floor mapping). Sonars can be downward-looking multi-

beam where multiple acoustic beams are emitted and reflected by targets (like the

seabed). Based on the two-way travel time of the reflected beam, the range between

transmitter and reflector can be determined. Many such returns can be assembled to

yield a three-dimensional image of the target (e.g. seabed, marine structure). Side

scan and forward-looking sonars are similar in principle to multi-beam but project

sideways and forward, respectively.

A robot’s navigation and localization accuracy depends on its sensor suite and the

state estimation algorithm which fuses them. Navigation and localization accuracy

could be improved through collaboration with other sensors (e.g. UUV or a stationary

beacon). As presented earlier in the chapter underwater sensing is best achieved with

acoustics. Similarly, acoustic methods are best for underwater communications as

well. The next sub-section provides background on acoustic communications as it

pertains to multi-robot collaboration.

2.2 Underwater Communications

The bandwidth, range between vehicles, and network topology are some of the param-

eters that define the communication channel for a multi-robot system [11]. Depending

on the operating domain a collaborative robot system will face di↵erent communica-

tion constraints. Radio frequency (RF) EM waves are e↵ective for above-water/in-air

communications. For example, as shown in [13] RF communication for a team of

collaborative unmanned aerial vehicles (UAVs) was utilized to improve navigational

accuracy over that of GPS. However, underwater RF electromagnetic waves do not

propagate far because of high absorption in those frequencies. The absorption is two

orders of magnitude greater in salt than in fresh water. The absorption coe�cient

(dB/km) in seawater at frequency f (kHz) can be written as the sum of chemical

relaxation processes and absorption by Eq. 2.1 [14]:
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where D is depth in km, T is temperature in °C, S is salinity in ppt, and f1 and

f2 are the boric acid and magnesium sulphate relaxation frequencies in kHz. The

insight to be gained from Eq. 2.1 is that lower frequencies travel further in water. As

the bandwidth is related to the carrier frequency this means that lower frequencies

have less bandwidth [15]. Therefore, there is a trade-o↵ between bandwidth and

propagation distance for a given carrier frequency. The general result is that EM and

free-space optical (FSO) waves are better than acoustic frequencies for short range

communication underwater. Acoustic frequencies become necessary at deep depths

and long ranges between transmitter and receiver; however, acoustic communications

(and sensing) are limited as follows [11]:

1. Low sound speed – high latency between transmission and reception over a

range of 100 meters or more results in outdated information, and signal scat-

tering. Low sound speed contributes to Doppler shifts on underway UUVs with

transmitter/receiver or wave action.

2. Losses – spreading, absorption, and scattering of acoustic signals underwater

lead to unreliable communication and potentially significant packet loss.

3. Multi-path – reflections and refractions of acoustic waves creates multiple prop-

agation paths between the transmitter and receiver, which leads to delays be-

tween the reception of the first and last instances of a message. Interference

between signals can become a problem when that delay is large enough.

4. Ambient noise – ships and underwater equipment are noise sources and can

create interference, which is more prominent over longer range missions and

communications.

A real-world example that highlights the relative performance of underwater ver-

sus in-air communication is provided in [16]. Ludvigsen et al. conduct experiments
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with a manned ship, UAV, UUV, and an unmanned surface vehicle (USV) in a network

of heterogeneous vehicles conducting a bathymetric mapping survey. As expected,

above water RF communications had good speed and reliability una↵ected by range;

however, the connection between the surface and underwater vehicle was intermittent

and poor quality at certain stages. The underwater communication quality was the

limiting factor in their system [16].

Overall, acoustic communications has developed to a point where underwater

network development is feasible and complex missions can be accomplished. Trans-

formational improvements to acoustic communication in the short term are unlikely

– meaning that multi-robot systems operating in marine environments must combat

and adapt to these issues through other means like collaboration.

In the literature there are a variety of recent studies that present cooperative

strategies as solutions to unstable networks between mobile nodes (i.e. multi-robot

systems). For example, Benavides et al. [17] contribute a discussion on recent ad-

vances in dealing with constrained communication environments in the application of

robotic exploration. Their proposal to improve exploration is through collaboration

between robots, using both survey and relay vehicles. Vehicle networks are becoming

a standard approach to address constrained underwater communications and opera-

tions over large spatial environments. Similarly, a common trend in current research

surrounds the use of USVs as acoustic-to-RF communication relays for heterogeneous

robot teams operating above and under-water.

In summary, a brief overview of underwater communications has detailed chal-

lenges that collaborative multi-robot systems face especially in the underwater do-

main. The concept of heterogeneous robot systems as members in a communica-

tion network for above and below water was introduced. Given the background on

underwater sensing and communications, it is now relevant to review how robotic

localization is performed and the advantage of collaborative localization.

2.3 Single-and Multi-Robot Marine Localization

This section introduces commonly used acoustic localization techniques and their

limitations. Then, collaborative localization is defined and recent research and devel-

opment in the area is reviewed. The ultimate goal for this subsection is to illustrate
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the benefit of mobile and collaborative localization methods in the marine environ-

ment.

The robotic localization problem aims to answer the question: where is a robot

within its environment? Siegwart and Nourbkhsh describe robotic navigation as built

upon four building blocks of perception, localization, cognition, and motion control

[18]. By definition, localization and navigation overlap in some aspects; however,

a distinction is made where localization is specific to how accurately a robot can

estimate its pose within its environment. Navigation is the ability for the robot to

transit between 2 points, avoid obstacles and find traversable paths. Accurate robot

localization is critical to geo-reference perceived marine targets for follow-on actions.

To start, Paull et al. [5] o↵ers an in-depth review on the state-of-the-art in under-

water localization as of 2014. The authors break down localization (and navigation)

techniques into the three main categories of inertial, acoustic, and geophysical. In-

ertial state-estimation was introduced in Sections 1.1 and 2.1 in the discussion on

proprioceptive sensing. The focus here is on underwater acoustic (exteroceptive)

methods. It is noted that the principles for underwater localization are the same

as those for above water vehicles. The transducers are of course di↵erent. For ex-

ample, unmanned aerial vehicles operating in GPS-denied environments face similar

localization challenges. Localization with acoustic transponders and modems based

on range and bearing measurements from a reference with good pose certainty has

become common. Here, the time-of-flight (TOF) for a transmitted signal determines

the range between a transmitter and receiver. Range-only measurements can bound

the position error of the receiver vehicle, eliminating the need for underwater vehicles

to surface for GPS. Paull et al. [5] summarize common localization methods using

acoustic TOF measurements. Commonly used methods include ultra-short baseline

(USBL), short baseline (SBL), long baseline (LBL), and a single fixed beacon. USBL

navigation allows underwater vehicles to localize relative to a ship (which knows its

position well from GPS), where range and bearing can be determined using TOF and

the phase di↵erences across the transceiver array. SBL triangulates with transceivers

at either end of a surface ship. USBL is limited in its range and SBL’s accuracy

depends on the ship’s length [5]. In LBL, acoustic triangulation determines the range
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of a transmitting (interrogating) underwater target from a set of widely-spaced geo-

referenced, fixed beacons. Another established method is a single fixed beacon system

which is more economical and faster to deploy. However, range measurements from

a single fixed beacon does not provide a unique solution for estimating a mobile tar-

get’s pose. A singe beacon could provide some bound on the pose error of a UUV

and is thus an improvement on dead-reckoning. LBL and single beacon systems use

the two-way travel time (TWTT) of the acoustic signal between the transmitting

target (e.g. UUV) and beacons to determine range. However, [5] present refinement

on TWTT where synchronized clocks on the beacons and transmitting target can

support one-way travel time (OWTT) ranging with LBL. However, OWTT range

measurements will not work to detect and localize an unresponsive target. The chal-

lenges of LBL include cost, the complexity to deploy and recover multiple beacons,

and the maintenance of their wireless network while deployed. Furthermore, the fixed

locations of LBL beacons inherently limits the range that they are e↵ective over. A

visual summary of these techniques [5] is shown in Fig. 2.1. From [5], TWTT will be

considered for this thesis. As well, this thesis considers the limitations of LBL which

could be improved upon with the proposed methodologies.

(a) (b) (c)

Figure 2.1: Traditional underwater localization or navigation using acoustic commu-
nication a) SBL, b) USBL and c) LBL; adapted from [5]

At the forefront of recent acoustic localization research is the use of intelligent

mobile beacons to aid localization, specifically of a collaborative nature. In cooper-

ative or collaborative localization (CL) the individual team members use on-board

proprioceptive sensors for inertial localization that is combined with range updates

from other team-members. Examples of underwater CL architectures include [9]
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where the authors describe how a single UUV and two USVs can be used to improve

the position estimation error of the underwater asset. Chitre [19] illustrates a CL

example between two heterogeneous UUVs (one supporting the other with more ad-

vanced DR equipment), while other examples of homogeneous UUV teams is also not

uncommon. Above water, teams of varying make-up can be used for collaborative

localization including UAVs, USVs and terrestrial robots. For example, in [13] the

authors explore localization and navigation techniques of a multi-UAV team where

GPS is either denied or nominal. The trend seen in both above-and underwater

CL is the use of a beacon vehicle that either has access to GPS or sophisticated lo-

calization sensors used to reduce the localization error of all team members within

communication range. The shared information between the beacon and other vehicles

is generally a pose estimate with a level of uncertainty. Measuring the propagation

delay of messages sent between the vehicles is used to estimate range if synchronized

clocks are available on both. However, if clock synchronization is not available then

two-way propagation delay may be used to measure the range [20]. Acoustic mobile

beacons like those integrated on a UUV, and especially those on a USV, compared to

the aforementioned baseline systems are operational over much larger areas. These

beacons may also be a cost-savings compared to say an USBL which requires ship

support. Some examples are presented next.

An example of collaborative localization research is provided by Bahr et al. [9]

who present a technique for underwater cooperative localization where team members

share range measurements acoustically to perform mobile trilateration. In [9] every

vehicle is equipped with proprioceptive sensors for dead-reckoning and exteroceptive

sensors to measure range and bearing to other team-mates. The approach provided

is flexible and decentralized as it does not require any vehicle to acquire all messages

that are broadcast. The method is beneficial as it helps solve a major challenge in

cooperative navigation and localization—the cross-correlation between shared posi-

tion estimates of the vehicles in the cooperation. For example, when robot A uses the

pose estimate of robot B to update its own position estimate (from a knowledge of the

relative range and bearing between the two) then the position estimates of vehicles

A and B are correlated [9]. The concept of mobile trilateration from [9] is explored

in this thesis, except for the case where the vehicle being localized is non-responsive
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and a collaborative team is attempting to track the target using active sonar TWTT

measurements. Another example of collaborative localization uses a surface relay in

the form of a USV.

Fallon et al. [21] built on [9] by introducing the concept of a single mobile surface

craft supporting the localization and navigation of multiple UUV team members.

This solution eliminates the need for UUVs to surface for GPS position fixes, and

thus improves mission e�ciency. This work published in 2010 claims to be the first to

show on-line localization and navigation of a UUV using range measurements from a

USV [21]. A discussion of scalability is o↵ered for this method where it is suggested

that one-way ranging allows for scalability to any number of UUVs within the USV

broadcast range. However, a limited underwater broadcast range is itself a restriction

on a system relying on a support USV. Ultimately, simulation and experimental

results were provided to show an error reduction of approximately 80%, which is

substantial. A single USV is used as a support vehicle for the collaborative system

proposed towards surveying a floating target (Chapter 3).

Related to surveying a floating target, a unique localization problem arises from

‘GPS shadows’ near the floating structure. This GPS shadow is the deterioration of a

GPS signal near, or under, floating structures [22]. Han et al. [22] propose a simulta-

neous localization and mapping (SLAM) solution for 3D reconstruction of a floating

structure with a single USV, where landmarks, surface texture, colouring, and other

environmental features are used to estimate the USV pose during its mapping survey.

A number of researchers address solutions to localize in these GPS shadows, although

a collaborative multi-robot solution has not been found by the present author.

In summary, a review of acoustic localization techniques was presented. The idea

of collaborative localization was introduced and discussed, where it was shown how

organized communication between robots can be utilized to improve localization and

information sharing. Included was a short discussion on the relevance of the localiza-

tion problem in relation to the 3D reconstruction of partially-submerged structures.

The following section transitions to a review of navigation, dynamic planning, and

collaborative robot systems towards addressing the three target types of interest in

this thesis.
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2.4 Marine Multi-Robot Navigation and Autonomous Planning

If localization answers the question of where does a robot exist within its environ-

ment, then navigation and planning answers the question: where should the robot

go, and how does it get there [18]? Siegwart and Nourbakhsh [18] suggest that the

functionalities for navigation are planning and reactive response, where the challenge

involves executing a course of action to acquire a goal.

Navigation objectives within a collaborative system can vary with the robotic

vehicle. For example, navigation objectives can include optimizing a trajectory for

a energy-e�cient survey or search mission or optimizing the way one asset aids its

team-mates. The benefits and complexities of multi-robot systems have been pre-

viously discussed. These complexities are largely in the multi-robot navigation and

planning phases. Developing an autonomous decision-making process to include task

allocation, coordination and planning scales in complexity with the number of assets

involved. The design of a multi-robot system must include consideration of the team

make-up (vehicle characteristics and sensors), system control (central or decentral-

ized), and the communication structure [23]. In summary, the multi-robot cooperative

navigation problem can be broken into three components in [11]:

1. shared task view and goal representation;

2. decision-making process, and

3. behaviours enabling agents to perform tasks (not discussed).

Understanding the shared task is important for multi-robot navigation and improving

team coordination. For example, shared task and goal representations is in relation

to area coverage percentage, operating within a time limit, or searching based on

probability distributions [11]. Another important consideration is data management

and the use of navigation techniques to improve the sharing of information. Decision-

making including task allocation and system hierarchies are also major considerations.

The following sub-sections review the use of multi-robot systems as well as their

planning towards the challenges of the three target types of interest in this thesis.

Firstly, the communication and navigation aid (CNA) vehicle is introduced as a col-

laborative asset to improve communications and information sharing between team
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mates. Secondly, multi-robot systems research work related to multi-domain surveys

on a floating target are presented. Thirdly, marine target search is reviewed —with

an introduction to reinforcement learning-based navigation as a proposed solution.

Lastly, a review is conducted on the state-of-the-art for autonomous target tracking.

2.4.1 Communication and Navigation Aid (CNA) Research

In multi-robot solutions the navigation and data flow are constrained by the com-

munication channel bandwidth. In GPS-denied or nominal conditions (specifically

underwater) cooperative/collaborative methodologies between robots has become a

solution for completing complex navigational challenges that are not otherwise possi-

ble without some level of cooperation. The CNA vehicle, often referred to as a beacon

vehicle, supports or aids other team-mates by providing information that can be used

to improve their state estimation through collaborative localization. The CNA is a

well researched topic and is an example of how collaborative navigation can improve a

solution over that of a single robot system. The CNA is also crucial for more reliable

communication networks between assets that are distributed above and below the

water to improve mission e�ciency, and allow for more timely and opportunistic task

allocation. A CNA team-mate is central to the system developed in Chapter 3. A

centralized architecture for dynamic planning with a lead UUV managing task allo-

cation is also applied to the collaborative-UUV tracking system proposed in Chapter

5. A review of the CNA literature is provided next.

To start, Chitre [19] o↵ers an optimized path-planning algorithm for a beacon

UUV to minimize errors accumulated by other UUVs. It is assumed that the beacon,

or CNA, knows its position well and transmits a signal periodically, which is used by

other UUVs within range to bound their position error. It is assumed that the UUVs

do not alter their depth so that the path-planning remains two-dimensional. The

CNA path-planning can be performed o↵-line prior to a mission or on-line during the

mission. On-line planning is a critical advancement as dynamic environments often

require adaptivity that cannot be accounted for o↵-line. The algorithm optimizes the

CNA path by deciding on a new heading at each time-step that minimizes the total

UUVs’ position errors [19]. In simulation, the author shows how the position error

of one or two survey vehicles can be bounded by one CNA. The proposed algorithm
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also considers look-ahead levels which account for future UUV positions (waypoints)

for better CNA planning [19]. However, a significant trade-o↵ between number of

look-ahead levels and computational cost must be managed. The concept of the

look-ahead level is applied to the problem of evasive target tracking (objective 3) in

this thesis.

Unlike the previous work, Fallon et al. [21] introduced the concept of a single mo-

bile surface craft to support localization and navigation of UUV team members. The

USV path should be planned based on the dedication of the communication system

to localization and the USV mobility compared to the UUV fleet. They conclude that

the major considerations be the communication system’s level of use, maintenance of

an upper bound on the UUVs’ pose errors, and transmissions occurring only when

there is su�cient error reduction [21]. They also discuss observability as it is criti-

cal to state estimation for cooperative navigation (and localization) with range-only

measurements. A definition of observability is as follows: if a UUV receives a range

measurement from another vehicle from the same relative direction then the linearised

system is unobservable. However, if a beacon vehicle were to manoeuvre to achieve

radial coverage of a survey UUV then the system would be fully observable. Fallon et

al. ultimately utilize two path-planning algorithms: a 45° zig-zag pattern behind a

single UUV, and another that circles a single UUV continuously to achieve full system

observability. As well, the authors o↵er insight and results suggesting that the e↵ects

of range on the range measurement itself is broadly independent. However, complet-

ing mobile versus stationary range measurements likely reduces the accuracy of the

range function [21]. The solution was demonstrated in simulation and experimentally.

A conclusion is that a USV as a CNA is beneficial for access to GPS and its higher

speed and maneuverability better supports the UUV fleet compared to a submerged

CNA. Others have built on this work with a more optimal planner.

Hu et al. [24] present a novel algorithm for cooperative navigation with a system

of surface and underwater marine vehicles. Like previous work, their USV has GPS

access and their UUV is enabled with an INS. They show an example of adaptive

USV path-planning to ensure a set ‘communications’ range is maintained, where the

USV uses line-of-sight (LOS) based proportional-integral-derivative (PID) control.

LOS PID control maintains a set radius between the UUV and USV based on range
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measurements between the two vehicles. However, their focus was to maintain com-

munications between the UUV, USV, and a base station as opposed to minimizing

UUV position error. Simulation results compared the UUV set point trajectory under

dead-reckoning to that of cooperative navigation. Their system was still successful

in bounding UUV position error [24] even though it was not the primary objective.

However, this method was not explored for more than one underwater vehicle, nor

verified experimentally where communication quality between the UUV and USV de-

pends on more than just range. An example of yet a more advanced USV planner

which aims to minimize the UUV pose estimate is described next.

Hudson and Seto [1][3] focused on algorithmic development for adaptive CNA

path-planning. Specifically, their algorithm built on [19] by applying distance penal-

ties to the path-planner to avoid losing communications while also avoiding collisions

between team-mates. They add to the discussion of trade-o↵’s in performance versus

computational cost with look-ahead levels. Their results illustrated that a distance

penalty is not required if the number of look-ahead levels is su�cient to avoid colli-

sion. The present work in Chapter 3 builds upon this algorithm to consider penalties

for extending beyond the communication range with both above- and below-water

team-mates, along with penalties for approaching the surface target too closely —to

remain covert. The team-mate and target-stand-o↵ constraints are implemented in

the underwater target tracking method proposed in Chapter 5. Furthermore, the pro-

posed algorithm utilizes collaborative planning with look-ahead levels that indirectly

influence the assets to maintain a reliable communication range while maintaining a

safe stand-o↵.

The CNA vehicle and its role within a collaborative marine robot system has been

discussed. A CNA-based multi-robot navigation solution could be used to address the

three target types in this thesis —it is only considered directly in Chapter 3 (floating

target with known pose). A review of research related to gaining awareness on a

floating marine target (Chapter 3) is presented next.

2.4.2 Multi-Robot Systems to Survey Floating Targets

Obtaining awareness on a partially-submerged target requires sensing in two-domains.

A single vehicle cannot complete an exhaustive survey of the target in both domains.
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A collaborative system of heterogeneous robots, which must communicate, is proposed

to address this. Examples of related work is in collaborative robot systems for data

collection in communication-constrained and other challenging environments. Some

examples are presented next.

To start, Faria et al. [25] considers the coordination of UAVs and UUVs for

oceanographic observation. They report the di�culty encountered with underwater

communication and limited observability of the autonomous UUVs during run-time.

Challenges were encountered assessing the UUVs’ activities and states at any one

instance in time, so adaptive mission-planning was di�cult. Ultimately, the solution

in [25] required a some level of operator influence during deliberation processes. Their

work provides an example where a CNA vehicle could have been used to establish

more reliable communication and information sharing with the UUVs.

Shkurti et al. [26] used a collection of marine robots (UUV, USV and UAV)

to assess the practicality of using them for repeat visual monitoring and inspec-

tion of underwater features like coral reefs. Their robot system was guided in real-

time with remotely-located marine biologists. The level of human interaction for

their system was greater than what is proposed in this thesis – where the proposed

mission-planning autonomously manages the missions to collect sensor measurements

on targets.

Manjanna et al. [27] examined a system with a USV that gathered measure-

ments in select underwater regions based on transmitted cues from distributed low-

cost drifting sensor nodes. Their strategic sampling approach was more energetically

favourable than the alternative method to exhaustively survey an area. However,

their work focused solely on finding the surface targets rather than surveying them

and thus is of less relevance to this thesis.

Eckstein et al. [28] deployed heterogeneous UUVs to cooperatively map unstruc-

tured underwater environments. Their UUVs could adaptively reconfigure to sense in

very di↵erent environments like the sea bed and sea cli↵s. Their contribution was a

mission-planner which coordinated the team’s behaviours and could receive and dis-

tribute waypoints, mission files and updated information from the central controller.

The concepts of their mission-planner inspired the centralized mission-planner devel-

oped in this thesis. The work in Chapter 3 is also built on previous research which
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established a communications network between under, on and well-above-the-water

marine robots [29].

Kwon, Park and Kim [30] created three-dimensional models of a floating target

with a wide-beam imaging sonar. These models were experimentally verified in a

controlled environment. More advanced is the previously introduced work of Han et

al. [22] who created a three-dimensional reconstruction of a semi-submersible o↵shore

platform with a USV. Their USV is equipped with lidar and sonar sensors to survey

a floating structure above and below the waterline. The above and below water data

is combined to obtain a volumetric point cloud of the structure. Their method is vali-

dated with field trials —surveying the o↵shore platform. The authors required an au-

tonomous system for three-dimensional reconstruction towards equipment/structure

maintenance in marine environments. Similarly, Papadopoulos et al. [31] provides an

example of a USV solution and a novel algorithm to combine above and below water

maps. Experimental results show positive results for three-dimensional reconstruc-

tion of a semi-submerged jetty. The authors stated that, while e↵ort was dedicated

to the three-dimensional surface reconstruction of structural systems, multi-domain

surveying of marine structures has been insu�ciently studied. Specifically referenced

is the BP oil spill in the Gulf of Mexico [31].

In general the floating target three-dimensional reconstruction problem is insuf-

ficiently addressed in robotics research. Solutions have used dive teams and above-

water sensors like cameras and lidar on manned aerial vehicles, which is a largely in-

e�cient [31]. Presently, there are no examples found that utilize heterogeneous robot

teams to accomplish the above and below water map-merging presented in Chapter 3.

Research addressing underwater target search with uncertain target poses is reviewed

next.

2.4.3 Underwater Target Search Research

For autonomous robotic target search, related work is in marine search and rescue

(SAR) and NMCM. The purpose is to identify the challenges in searching for marine

targets. A discussion on reinforcement learning-based path-planners, as a proposed

solution, is also provided.

A first example of target search research is provided by Dudek et al. [32] who
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address the search for multiple passive targets. Their work focused primarily on

finding drifting debris, sensors, or lost divers at sea, and their methods depend on

some information prior to a search. The e↵ectiveness of their methods were quantified

with metrics like distance travelled, failure rate, and computation time. Results

were obtained through simulation. As a development, the underwater target search

methods proposed in this thesis are not dependent upon prior information and are

focused on finding targets in environments where erroneous and false detections are

expected —not usually considered by others. The e↵ectiveness of the methods in this

thesis use energy consumption as a metric to compare search e�cacy.

In another example, Waharte and Trigoni [33] compare three heuristic methods

for target search (victims in search and rescue): greedy, potential-based and partially

observable Markov decision process (POMDP)-based. They reported that the third

method yielded the best results; however, in large environments the POMDP proved

too computationally expensive for optimal solutions. The operational environment

drives the navigation method selection through its size and level of clutter. In mar-

itime environments, the size of the search or survey area can be large; however, in

smaller environments like harbours and approaches clutter starts to be a consideration

in the search. The underwater planning methods proposed in this thesis prioritize

computationally light-weight and energy-e�cient methods.

In practice, when the environment spans large distances and has no prior map

(environment knowledge), widely-used paths like the common spiral and lawnmower

(Boustrophedon) could maximize potential to find a target as these are exhaustive

searches. Specifically, Bernardini et al. [34] propose a solution to the search and track-

ing problem that does not rely on the target state’s prior. Their method mitigates the

high computational requirement that plagues many solutions. Their proposed algo-

rithm utilizes both a spiral-out and a lawnmower pattern to maximize the likelihood

of finding a single target. Through their methods they obtained promising results

both in simulation and experimentation for large 100 kilometre square environments

[34]. The results from [34] are promising for a single target search in a large environ-

ment, but the method is less adaptable to a multiple target search where the targets’

pose uncertainty is high.

Methods for marine target searches do not always address environments that are
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di�cult to sense [7]. In NMCM survey planning it is important to consider the pos-

sibilities of false and missed detections. Additional planning and e↵ort applied to

resolving uncertain detections can ensure that safe follow-on actions with the target

can be pursued (e.g. mine disposal). Using NMCM as their motivational use case,

Baylog and Wettergren [7], [35], and [36] o↵er a method to improve UUV search

planning in the di�cult underwater environment. First, they define a search chan-

nel model of the underwater environment, and then pose the search problem with a

game-theoretic approach to maximize information flow when a UUV search is con-

ducted over a region of discrete cells. The underwater search performance depends

on the UUV sensor’s (sonar) ability to detect the target in its environment. This

ability is captured by modelling the sonar signal-to-noise ratio (SNR). Their work

develops a method to maximize information payout, which is a function of the SNR,

in each cell. An important distinction of their work is the information payout for

repeat searches in the same region. Multiple search optimization is an important

consideration when searching in areas where repeat surveys of the same region might

be required to resolve inconsistent or false detections (the target re-acquire phase in

NMCM). Simulation results are presented to compare a greedy search (incentivized

by the information gain measures) versus a classic Boustophedron to optimize the cell

visitation sequence. Their results show that the greedy method is a clear improve-

ment over the Boustrophedon in terms of information gained given the same UUV

search e↵ort, which is defined as the number of cell visits during the mission. Their

work was simulation-based and used an infinitely powerful and energetic agent with

no consideration for the robotics capabilities or dynamics. The work of Baylog and

Wettergen is extended in this thesis. A trajectory planner is developed with a rein-

forcement Q-Learning approach as an alternate way (as opposed to greedy approach)

to maximize information gain in an NMCM mission. Chapter 5 takes the work a

step further to consider predictive information measures and planning for a dynamic

target. The development of the information measure and search game optimization

is detailed thoroughly in Chapter 4.

As stated, the underwater target search method proposed in this thesis (Chap-

ter 4) implements reinforcement Q-Learning for trajectory planning. Reinforcement

Learning (RL) is a subcategory of Machine Learning (ML), which is generally used to
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solve sequential decision-making problems. RL is independent of environment mod-

els and no prior knowledge of the environment is required for the learning process

[37]. RL approaches allow a robot to develop a policy for decision making through

instant feedback from its own decisions. Specifically, Q-Learning is a value-based

reinforcement learning algorithm that develops a policy to inform an agent on actions

to take as it navigates towards a goal state [38]. For this application, as Q-Learning

learns, it can adapt to the dynamic underwater environment (bathymetry, acoustic

propagation). Examples of reinforcement learning applied to UUV navigation in this

environment will be described next.

Frost and Lane [39] studied Q-Learning for UUV path-planning of marine archae-

ological missions. They use a coarse resolution map of the environment to learn an

optimal policy o↵-line before deploying the UUV to search the environment. The au-

thors provide results from a study where they vary the parameters of the Q-Learning

algorithm to determine how to decrease convergence time. In the present work, the

convergence time for the on-line planning algorithm is minimal. This thesis will simi-

larly perform a parametric study of the Q-Learning parameters to assess their impact

on the planned path, given a dynamic environment, and search outcomes. The im-

plementation of the Q-Learning (or any other learning method) must consider what

can be implemented on an embedded platform like a UUV.

Lamini et al. [38] present a novel collaborative Q-Learning based planner to solve

the classic path-planning problem to find the shortest path-to-goal for multiple agents.

Their results report that their system reduces computation time over the classic A*

algorithm. The motivation for utilizing Q-Learning is apparent in the lightweight

nature illustrated by the performance in [38] and influenced the decision to use the

method in this thesis.

Gautam et al. [40] apply Q-Learning to UUV navigation in benthic ocean zones

for e�cient planning under ocean currents. The purpose of the work is to minimize

the time taken to travel between destinations. A cost function is proposed which

incorporates UUV interaction with ocean currents. Simulation results are provided

which conclude that Q-Learning was better with respect to computational complexity

and ease of environment simulation in comparison to the Genetic Algorithm and

Flower pollination algorithm. The work is of interest to the present thesis as e�cient
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planning is one of the main goals of the proposed search algorithm.

In summary, Q-Learning has been applied to robot path-planning in many other

applications. Information gain incentive planning is also not a new concept. However,

while the SNR (and resulting information gain) has always varied in an environment,

to the best of the authors knowledge, these elements have not been incorporated into

a Q-Learning-based mission-planner for NMCM underwater target searches.

2.4.4 Dynamic Target Localization and Tracking Research

The final focus of this review addresses mobile marine robots in target tracking and

localization applications (Chapter 5 and thesis objective 3). Towards localizing vehi-

cles underwater, the state-of-the-art acoustic localization techniques including LBL

and CL have been presented. As stated, the limitations of LBL is in its fixed range

and inability to optimize the sensor placements to better localize a mobile target

over time. Collaborative localization relies on some level of communications between

assets to bound the survey vehicles’ error in their state estimate, which is not suit-

able for tracking an unresponsive target. Unresponsive targets could be tracked and

localized using range-only methods with both surface and underwater vehicles.

One topic of research focus in marine mobile target tracking is range-only single-

beacon (ROSB) localization where the single-beacon is the mobile autonomous tracker.

The tracker periodically measures its slant range from the mobile target using sig-

nal time-of-flight [6]. Triangulation of the mobile target is achieved with many such

slant range measurements by the autonomous tracker. ROSB methods are gener-

ally broken into two streams: (i) determine the autonomous tracker’s optimal path

to achieve su�cient target pose observability and (ii) develop state-estimation algo-

rithms to solve the complex multi-modal probability density functions that describe

the target’s evolving state. The target state is described by a multi-modal distribu-

tion because, with only partial observability of the target position, the solution is

not unique. The interest in ROSB methods is driven by reduced cost and perhaps

more importantly, reduced complexity compared to multi-asset systems like LBL [6].

A ROSB tracking example is illustrated in Fig. 2.2 where the tracker is circling the

target while collecting slant range measurements towards localizing it.

In practice, Masmitja et al. [41] studied the optimal path for a mobile robot
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Figure 2.2: Illustrative ROSB tracking example of a tracker performing a circular
path around the target to achieve observability of the target pose.

localizing a static target with the ROSB method. Not surprisingly, their simulation

and in-water results with a wave-glider determined that a circular USV/target path

was optimal. Crasta et al. [42] extended the work of [41] to localize a mobile target

with an autonomous surface vehicle. Similarly, their optimal target trajectory was

circular as it maximized the target pose observability. Subsequently, they developed

a method to calculate the tracker’s optimal trajectory radius given the relative target

and tracker velocities. In practice, this solution is limited to targets that move quite

slowly relative to the tracker. The reason is that the tracker must travel significantly

further than the target to constantly circle the the target as it progresses on its path.

Consequently, the tracker’s power consumption and endurance become considerations.

Another ROSB limitation is that it obviously requires that the initial target pose be

known to the tracker.

Masmitja et al. [6] extended the previous work with a field study to evaluate the

best filter for the tracker’s estimate of the mobile target’s state (pose) using ROSB.

The tracker executes the circular trajectory used by Crasta et al. [42] at velocities

of of 0 m/s (static) and 0.2 m/s. The results show that a particle filter provided

the best state estimation performance compared to three other widely used state-

estimation techniques: an extended Kalman filter (EKF), an unscented Kalman filter

(UKF), and the maximum aposteriori estimation (MAP). A particle filter is used in
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the target tracking method developed in this thesis; however, the work in this thesis

aims to localize faster moving targets with larger initial target pose uncertainty.

An additional consideration for a USV tracker is obstacle avoidance. Agrawal and

Dolan [43] identify the need for responsive autonomous planning (obstacle avoidance)

to track surface targets in cluttered environments. In their research, Monte-Carlo

(MC) simulations are used to predict possible paths for a target surface vessel in a

discrete and limited search region with obstacles, based on the previous target path.

An optimal path estimation algorithm determines the most likely target vessel po-

sition at each time step based on the MC simulation. Then, a USV path-planning

algorithm based on an iterative A* heuristic method in 4-dimensional space is de-

veloped. The proposed algorithm looks to find the shortest path in time, while also

maintaining a safe distance from the obstacles in the cluttered environment. The USV

uses a lidar sensor to detect the target and obstacles. Their proposed obstacle avoid-

ance behaviour follows the COLREGS rulebook [44] that specifies 38 rules which

prevent collision between marine vehicles. Simulations and field results show that

this proposed modified Monte-Carlo (M-MC) algorithm outperforms other methods

like pure-pursuit path, constant bearing path, and the usual Monte-Carlo method.

The research highlights the additional obstacle avoidance complexity of tracking in

cluttered marine environments. Although the simulation and field trials are over a

relatively small 400 m ⇥ 400 m environment, the M-MC method was found to be the

most computationally expensive of the four algorithms considered. The environment

considered for the tracking problem in this thesis is substantially larger. While not

explored directly, the thesis’ proposed dynamic tracking algorithm can implement ba-

sic obstacle avoidance by setting the planning reward function to zero in regions with

known obstacles. Future work could consider testing in cluttered search environment.

An example of single-UUV (underwater) tracking is one that uses a reinforcement

learning-based approach. Sun et al. [45] apply a modified Q-learning method to

the single-UUV tracking problem. Their Q-Learning planner informs the UUV on a

heading change to follow the exact path of the target (pure-pursuit path). Simulation

results suggest that the proposed method is theoretically viable for such a task; how-

ever, the simulations assume instantaneous and reliable sensing of the target using
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vision from an optical camera and side-scan sonar. This thesis considers the com-

plexities of detecting a target acoustically, and also the case when the target has the

potential to transit faster than the UUVs. Beyond single-beacon tracking methods,

there are also examples of research with multi-UUV systems for underwater tracking.

More closely related to the work in Chapter 5, Salinas et al. [46] study multi-

UUV systems for underwater target tracking in 3D space. Salinas et al. analytically

determine the optimal tracker sensor placement. Specifically, the optimal tracker sen-

sor placement is the best geometric configuration of a sensor network to maximize

the range-related information available. A network of five or more beacons was con-

sidered. The authors assume an ideal range sensor with zero-mean additive white

Gaussian noise; however, they do not consider range or environmental factors that

can reduce the SNR and limit acoustic sensing and communication. Furthermore, the

tracker paths to achieve the optimal tracker configurations are not considered (unlike

the work in this thesis), such as their initial position, linear and angular speeds, and

initial course angle.

In conclusion, target-tracking and underwater localization is receiving research

attention. Methods that use both networks of stationary and mobile sensors have

been introduced. However, to the best of the author’s knowledge, a multi-UUV

triangulation method that considers the limitations of acoustic communication and

sensing has not been explored. Furthermore, adaptive planning that considers range

and environmental e↵ects on sonar SNR (and detection performance) has also not

been incorporated into a mobile tracking system.

2.5 Summary

The goal of this review was to explore the challenges and current research in multi-

robot collaboration. It covered relevant sensing, communication, localization and

navigation – as these are the building blocks of multi-robot collaborative systems. In

the author’s case, the multi-robot problem includes complexities introduced by large

marine environments with communication, sensing, and GPS-denied constraints.

The challenges of sensing and communicating in the marine environment was dis-

cussed. The concepts of collaborative localization and CNA navigation was presented
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to illustrate the potential for multi-robot systems to overcome these di�cult chal-

lenges. Current multi-robot systems were reviewed towards addressing the problem

of surveying a floating target. A review was also conducted on navigation methods

for underwater search and target tracking applications.

The next chapter presents the development of a multi-robot system that addresses

the problem of situational awareness on a partially-submerged target. The objective

is to present and validate a node for centralized autonomous mission-planning and

task-allocation for a multi-robot system to address the first thesis objective.



Chapter 3

Collaboration of Heterogeneous Marine Robots Towards

Multi-Domain Sensing on Partially-Submerged Targets

This chapter reports on a multi-robot system that collaboratively obtains above-

water, surface and below-water information on a floating target (Fig. 3.1). This

capability allows a ship to autonomously survey and obtain situational awareness on

a floating unresponsive target from a safe stand-o↵ prior to inspecting it more closely

or navigating around it.

Figure 3.1: Depiction of multi-domain collaborative robotic survey on a partially-
submerged target

The proposed solution is a collaborative system with an unmanned aerial vehicle

(UAV), an unmanned underwater vehicle (UUV), and an unmanned surface vehicle

(USV). The UAV captures visual imagery to create a three-dimensional model of the

target’s above-water geometry using photogrammetry. The UUV surveys the target’s

submerged hull with its integrated imaging and profiling bathymetric sonars. The

USV hosts an intelligent mission-planning node which manages the robotic collabo-

ration in a centralized architecture by autonomously planning and distributing the

missions for the UUV and UAV. The intelligent node also plans an adaptive USV

31



32

trajectory to support the UUV and UAV. The resulting above- and below-water sen-

sor data is fused at the water-plane to yield a three-dimensional representation of the

floating unresponsive target.

The work presented in this chapter is an extension of the work published in [2].

The work presented here is focused on the present author’s contribution of themRobot

node for managing robotic collaboration in multiple-domains, and the autonomous

planning algorithms towards surveying a floating target. The simulation and exper-

imental validation of the entire multi-robot system was a collaborative e↵ort by the

authors of [2]. The development and validation of the mRobot autonomous mission-

planning node contributes to the foundation of the collaborative target tracking sys-

tem presented later in Chapter 5.

The rest of this chapter is organized as follows. First, the mRobot node and the

autonomous mission-planning algorithms are presented. Then the setup and results

from simulations and in-water testing with a UUV, USV and UAV are described.

3.1 Collaborative Navigation and Multi-Robot Networking

The challenge in obtaining situational awareness on floating targets is that they simul-

taneously occupy the underwater and above-water domains. The proposed solution

must have the ability to overcome the challenges associated with navigating, com-

municating, and collecting sensor data in both environments. For this scenario, the

obstacles to overcome are as follows:

1. underwater localization over an extended range in GPS-denied environments

2. underwater acoustic communication limitations like bandwidth, latency, and

drop-outs, and

3. to establish a constant, or at least reliable, communications network between all

collaborating assets across the two (under and above-water) operating domains.

As described in Chapter 2, while acoustic methods are the best to transmit mes-

sages underwater, there are still limitations, which makes high bandwidth information

sharing with a UUV at extended ranges often impractical. Furthermore, the UUV



33

INS-based state estimation error grows unbounded if no external information is avail-

able to aid in estimating its pose [47]. The collected underwater sensor data is of

limited value if the UUV cannot accurately navigate to the target. The range of the

system is, therefore, restricted by the communication range between the unmanned

autonomous assets. In any collaborative network, the mission potential of the system

deteriorates if any of the assets lose their ability to communicate and share informa-

tion.

The proposed solution to network multi-domain robots is to designate the USV

as a communications and navigation aid (CNA) vehicle, and to have it host the

intelligent mission-planning node. A USV is ideal for the CNA role as it is located at

the surface/underwater interface, which allows it to relay information between assets

both above and below the water. The purpose of a CNA, which knows its pose to

GPS accuracies, is to extend the operating range of the collaborative system from

the command ship from which it deployed. The CNA also allows the UUV to remain

underwater for the entire duration of the mission via collaborative localization [47].

3.2 Multi-Robot Autonomous Planning and Task Allocation (mRobot)

This section details the mRobot node and the autonomous mission planning algo-

rithms which collects multi-domain sensor data on a floating target. Details of the

simulation environment and preliminary results are presented at the end of this sec-

tion.

The autonomous planning and task allocation tool, mRobot, is the ROS control

node to manage multi-robot collaboration (Fig. 3.2). mRobot is responsible for

networking and mission planning for the system of robots. The ability to network

and plan a mission across two domains to sense and characterize the same object is

the major contributions of the work in this chapter.

3.2.1 Robot Operating System (ROS)

The software developed to realize the new capabilities developed in this thesis, in-

cluding the mRobot node, was coded in C++ to work in ROS. ROS is a middleware

that manages robotic systems and includes software design and interfacing with hard-

ware. It is a collection of tools and libraries designed to develop software specifically
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Figure 3.2: Schematic of mRobot components for the UAV, USV, and UUV.
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for robot applications using a service-oriented architecture [48]. The author’s work

in simulations and interfacing with hardware for experimentation used ROS. There

are several motivating factors that led to the use of ROS. The most critical are its

modularity for code reuse and sharing, and its publish-and-subscribe architecture.

The distributed and modular-nature of ROS means that it fosters a large community

of contributors, third-party developers and forums that add considerable value on

top of the standard ROS system. Contributions from community members has led

to a collection of over 3000 packages that are available as open source resources [48].

These packages include everything from hardware drivers to high-level algorithms for

autonomous systems. This level of resource interoperability makes ROS attractive

for designing software at any level. The author has benefited from the use of ROS

packages others have developed and will contribute packages developed in the thesis

upon completion.

The ROS architecture facilitates near-seamless transitions from simulation to in-

terfacing with hardware for experimental validation. The publish-and-subscribe ar-

chitecture provides a framework for communication between robots, which is ideal

for developing collaborative robotics systems where management of communication

between assets (nodes) is critical.

Similar tools exist like MOOS-IvP which also has open source C++ modules

for developing autonomous vehicle software. MOOS-IvP would also be a valid tool

to have selected for the purposes of the author’s thesis. The Intelligent Systems

Laboratory currently has more e↵orts and resources for development using ROS for

collaborative robotics.

3.2.2 UAV and UUV Path-Planning

mRobot follows the standard ROS publish-and-subscribe architecture, where mes-

sages between the three autonomous vehicles (UUV, UAV, and USV) are published

through mRobot. It then uses in situ sensor measurements to continuously adapt to

best support each robot team member to collect sensor data. Specifically, mRobot

subscribes to the pose published by each robot and uses that information to man-

age the distribution of robot-specific tasks for the multi-domain survey mission. As

shown in the top left block of Fig. 3.2, mRobot starts a mission by first publishing
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a single waypoint to the UAV for an initial survey of a floating target. The purpose

of the initial survey is to acquire the pose of the target in the form of three coordi-

nate points describing the targets footprint and orientation. When the information

from the initial survey is returned, a mission callback generates an array of waypoints

for the UUV and UAV. As shown in the bottom left and right corners of Fig. 3.2,

waypoints are published sequentially to the UUV and UAV every time the previous

waypoint is acquired. mRobot determines that a waypoint is ’acquired’ when the

reported robot pose is within a pre-determined diameter of its respective waypoint

location. At the end of the survey, mRobot publishes a final waypoint to gather the

team at a pre-determined rendezvous point, and the mission is complete. At this

point data transfer between each robot can be completed and then delivered to a

base station (on the command ship) for post-processing.

The UAV and UUV survey missions are generated autonomously by mRobot based

upon the size and orientation of the floating target and the requirements of the

sensing equipment/techniques. Aerial photogrammetry requires a set of images where

the target must be entirely within the camera field of view (FOV), and ultimately

uses common features between images in the entire set to generate a point cloud.

Therefore, the challenge in generating a mission plan for the UAV is to obtain enough

images to capture the above-water target features. The challenge with underwater

survey planning is to ensure complete (exhaustive) coverage of the wetted hull through

multiple consecutive sonar scans. An example of the survey waypoints for the UAV

and UUV in simulation is shown in Fig. 3.3, where the target would be at the center

of the two paths.

The UAV path is layered in a descending rectangular spiral nominally around

the target. The red triangles shown in Fig. 3.3 for the UAV path corresponds to

waypoints where an image is taken. The algorithm to generate the waypoints was

established empirically by assessing the photogrammetry reconstruction quality on

objects both on land and in water, using di↵erent values of the path construction

parameters. These parameters are the UAV altitude, number of layers in the spiral

(di↵erent altitudes), number of waypoints per layer, and the length and width of the

rectangular path. The UAV planning algorithm generates a unique path, defined

by these parameters, for each mission given the camera FOV, the target’s pose and
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Figure 3.3: Sample waypoints for UUV and UAV missions in MATLAB simulations.

volume (length, width, and height as determined from an initial survey of the target)

as inputs.

UUV path-planning is conducted using a similar empirically-developed algorithm.

For the UUV, mRobot establishes a Boustrophedon survey path defined by the water

plane footprint of the target, the sonar sensor swath width, and a sensor overlap

percentage, which was tuned in simulation. Again, mRobot generates a unique path

for each unique target footprint.

3.2.3 CNA Adaptive Path-Planning

An important aspect of this solution is thatmRobot is hosted on the unmanned surface

vehicle, which allows the collaborative system to autonomously and adaptively plan

at an extended range from the command ship. The USV, acting as a CNA, requires

that mRobot adaptively generates a path for the USV to best support the UUV and

UAV. As shown in the top right corner of Fig. 3.2, mRobot uses pose information

from the UUV and UAV to compute and publish a USV heading to minimize the

UUV state-estimation error. The selected heading is constrained by communication
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quality, which is based on the range to each vehicle and command ship, a safe stand-

o↵ distance from the target, and collision avoidance radii from other robots in the

system. This aspect of mRobot was proven in simulation only. It was not a priority

for the in-water testing given the size of the in-water test facility. Fig. 3.4 summarizes

the adaptive CNA path-planning (Algorithm 1), which was modified from the works

of [47] and [3] to include planning constraints related to the target and command

ship. For every 10s-time step, Algorithm 1 cycles through possible heading options,

which are defined by the maximum turn rate of the USV. The radial and tangential

components of the UUV position error are used to calculate the cost of a heading

choice in Eq. 5. Equation 6 calculates a sum if more than one UUV is deployed;

however, this scenario is not explored in this work. Equations 7 through 10 are used

to add distance penalties to the cost of a heading choice if it leads the CNA too close

or too far from any asset (UUV, UAV, command ship station) in the system, or if it

leads the CNA too close to the target. Equations 9 and 10 are the additional cost

penalties for approaching too close to the target, or being too far from the command

ship, which were added to the algorithm from [3] to better suit the application to this

work. Ultimately, the most desirable heading option, with the least cost, is selected

at each time step. Fig. 3.5 shows a top-down two-dimensional view of the robot paths

for a MATLAB-simulated mission. The UAV and UUV paths are the same as shown

previously in Fig. 3.3, while the blue path illustrates the adaptive path of the USV

in its CNA role during the mission.
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Figure 3.4: Algorithm 1 for adaptive CNA path-planning in support of above- and
below-water team-mates, with distance penalties.
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Figure 3.5: MATLAB simulation showing top down 2D view of the paths taken by
the three autonomous vehicles during a survey mission. Circles in the image repre-
sent minimum and maximum distance constraints for the CNA during its adaptive
planning.

3.2.4 Simulations

Computer simulations were utilized as a testbed to develop and validate the mRobot

node, and to analyze concepts of operation for the multi-domain survey mission.

Simulations were performed with Gazebo [49], specifically within the underwater

world environment from the UUV Simulator package [50]. The UUV was simulated

with the IMOTUS in-house developed simulator with an upward looking bathymetric

sonar, while the USV was simulated with the Clearpath Heron simulator [51]. Lastly,

the UAV simulator was based on the Hector quad-rotor package with an optical

camera [52]. The unresponsive targets surveyed during simulated missions were the

Heron, a rectangular barge, and a large planning craft (Leeway Striker).

Computer simulations were carried out in both the open-ocean model environ-

ment, and in a model of Dalhousie University’s Aquatron Pool tank (Fig. 3.6), where
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Figure 3.6: Dalhousie University Aquatron Pool Tank model used in simulation.

in-water testing was ultimately carried out. Simulations in both environments facili-

tated analysis of the system in both small- and large-scale environments.

The simulations were used to primarily test the path-planning for the marine

robots. The major parameters considered in the planning for each robot are summa-

rized in Table 3.1.

Table 3.1: Summary of multi-robot simulation parameters [2]

marine robot simulation parameters varied

UUV · survey distance and time
· UUV path, position and depth
· number of sonar passes
· sonar range and radius

USV · communication between UAV–UUV
· detection distance from target
· assistance to UUV localization

UAV · survey distance and time
· path, position and altitude
· number and quality of images
· camera specifications



42

For each simulated mission, the UUV sonar scans the underside of the target

and above-water aerial images from the UAV were extracted and transformed into

point clouds (Fig. 3.7). The targets and their respective sonar scans generated

in simulation are provided in Fig. 3.8. Photogrammetry reconstructions were not

successful in simulation as there was not enough unique texture on the targets within

Gazebo to generate three-dimensional point clouds from the collected imagery. The

photogrammetry was instead validated using a drone in a lab setting with smaller

targets.

Gazebo provided an ideal environment to develop the proposed system, without

the implementation complexity of including hardware-in-the-loop. However, the re-

sults from the simulation proved successful in providing preliminary validation of the

multi-robot path-planning and task allocation node, and the overall order of opera-

tions for a multi-domain survey mission.

Figure 3.7: From simualtions (a) sonar output from IMOTUS UUV, (b) ship sur-
veyed from below with the IMOTUS UUV integrated with a 256-beam sonar,(c) top
isometric view of IMOTUS UUV surveying ship target, and (d) aerial imagery output
from Pelican UAV [2].
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Figure 3.8: Summary of data from simulations of surveys on a barge, USV, and large
planning craft in both the simulated Aquatron and open ocean environments [2].

3.3 Experimental Setup

The novel approach presented in this chapter was implemented and tested in-water

using a large indoor tank test facility with a UUV, USV and UAV. The objective

of these tank tests was to assess the e�cacy of acquiring and merging above- and
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below-water imagery with real systems.

Above-water imagery of the target is captured with a regular visible wavelength

video camera, which is merged with the below-water UUV bathymetric sonar im-

agery of the target. The merging of the above-water and below-water information

is performed in post-mission processing. In the future, the USV would perform the

merging autonomously. The algorithm developed by [2] for merging the imagery is

not discussed here.

This section describes the robots used in experimentation, and the specifics of

laboratory and in-water experimental setups. The individual robots are described

next. All three marine robots in this research used the service-oriented ROS software

framework for their middleware.

Unmanned underwater vehicle

A hover-capable UUV was desired as it is stable at very low, or hovering speeds.

It requires an on-board sensor to insonify the target’s wetted hull to identify hull

features. The IMOTUS UUV (Fig. 3.9A) is a spherically-shaped robot that di↵er-

entially drives thrusters to actuate all six degrees-of-freedom, to a top speed of 0.5

m/s. This hover-capable UUV was equipped with the Kongsberg M3 (500 kHz) and

Flexview (1200 KHz) bathymetric sonars, which can insonify a target from a slant

range of 150 m. For the in-water tests, these upward-looking sonars surveyed at a 4 m

range from the hull. The IMOTUS navigation system uses an extended Kalman filter

(EKF) for its pose estimation. The EKF performs sensor fusion of a pressure depth

sensor, a Doppler velocity log (DVL) and a north-seeking fiber optic gyro (FOG),

which provides the dead-reckoning used by IMOTUS for its underwater navigation

solution [53].

Unmanned surface vehicle

The USV used in experimentation is a catamaran hull with 150 lb of reserve buoyancy,

which was designed and constructed by the Intelligent Systems Laboratory (ISL) (Fig.

3.9B). It is propelled by a trolling motor that is mounted on the bow, which provides

a top speed of 3 knots. The USV can be remotely controlled through a hand-held

unit or autonomously through the mRobot ROS node. It is also equipped with an RF
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radio that can relay messages to/from its underwater acoustic modem.

Unmanned aerial vehicle

The specific requirement of the UAV used in the experiments was to be splash-proof

and positively buoyant in the event it went into the water. The ISL designed and built

the prototype Pelican (Fig. 3.9C) UAV for the in-water testing phase of this project.

The Pelican is a marinized quadrotor designed with a communication interface to

allow mRobot to access the on-board position estimates and control the UAV. It was

also necessary to have a marinized quadrotor that could tolerate the harsh elements

of a marine environment (higher moisture, salt, winds, etc.). Its payload sensor is

an optical camera mounted on a gimble. In autonomous mode, mRobot controls the

UAV but the operator can override mRobot ’s instructions with a remote controller.

The UAV receives its mission and sends back imagery along a separate WIFI link.

Figure 3.9: (a) IMOTUS hover-capable unmanned underwater vehicle, (b) Intelli-
gent Systems Laboratory’s high buoyancy unmanned surface vehicle, approaching
the camera, and (c) unmanned aerial vehicle, Pelican, designed to be marinized and
networked through the motion capture system and controlled through mRobot [2].

3.3.1 Laboratory Testing

mRobot and the Pelican UAV were tested in the ISL flying space (3 m ⇥ 4 m ⇥ 4 m).

The flight space is instrumented with a motion capture system [54] to provide ground

truth localization to verify the UAV on-board estimates. The motion capture system

fuses visual information from eight cameras, with the Motion Analysis (Rohnert Park,

California) proprietary software, to track markers placed on robots in the space to

determine their pose. The system provides pose accuracy to within fractions of a

millimetre in translation and 1/10th of a degree in attitudes.
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3.3.2 Aquatron Pool Tank Testing

The Aquatron Pool Tank at Dalhousie University (Fig. 3.10) was used to perform the

integrated in-water tests with the UUV, USV and UAV. The tank is 15 m in diameter

× 4 m in depth and filled with sea water. A GPS signal is not available within the

tank facility, nor is it feasible to cleanly access magnetic north for the compass of

either the UAV or USV. Consequently, the above mentioned motion capture system

was installed around the Aquatron Pool Tank to provide pose information to the

above-water robots.

Figure 3.10: All three marine robots collaborating in the trial. The USV is left in
the foreground. The surfaced UUV is right in the foreground (green surface with a
tether). The barge is behind both. The UAV is left of the barge. On the wall, the red
LED rings are three of the eight motion capture cameras installed at the Aquatron
Pool Tank [2].

During the in-water validation experiments, mRobot would conduct the mission as

described previously in Fig. 3.2. The result of the experimental procedure is above-

water image data from the UAV and underwater sonar data from the UUV. The two

sets of data are then merged together to form a complete three-dimensional model of

the floating target.
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Robot Networking

Given the relatively small Aquatron Pool Tank, WIFI was used between the UAV

and mRobot for data transmission. IMOTUS communicated with mRobot through a

tether integrated to its topside vehicle control computer. This setup facilitated the

transmission of incoming sonar images for development purposes. Given the shal-

low depth of the tank and its concrete walls and floor, acoustic communications was

not implemented. Underwater communications were emulated by sending the mis-

sions and messages using the user datagram protocol (UDP), common in underwater

communications, through the tether.

Floating Targets

Two floating targets were used. The first was a barge of 2.4 m long × 1.4 m wide

× 0.4 m deep (Fig. 3.11). The barge was an ideal first target to test as it exhibited

identical geometry and texture above and below the water. The barge’s symmetry

provided a baseline to analyze and compare the data quality collected across the two

domains, as the point clouds can be compared for the same symmetry and likeness.

To make the barge more responsive to the 500 kHz and 1200 kHz sonars, part of the

barge underside had a metal roofing panel attached to it. The panel has structural

ridges that provided larger scale features then what was inherently on the barge. An

identical roofing panel was sometimes placed on the top-side of the barge to test the

UAV optical camera photogrammetry against the same surface. The second target

was the unmanned surface vehicle (Fig. 3.12A) which is a twin-hull catamaran. Its

expression at the water plane were the two catamaran pontoons, the trolling motor

and the aluminum frame holding the pontoons together. The USV was an example

of a more complex target to survey by comparison to the barge.

3.4 Results and Discussion

In-water experimentation allowed for real-time tests of the networking and collabo-

ration of the three autonomous robots as a solution to collect multi-domain measure-

ments on both a barge and catamaran hullform USV target.

From the experimental results, the missions generated by mRobot for the UUV
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and UAV achieved their goals and collected data that was successfully merged, and

at a high enough resolution to distinguish features, on several scales, on the barge

and USV targets. The results are qualitative in nature, as the goal was to recreate

visual representations of unresponsive targets. The visual representations are used to

assess the target state and gain situation awareness.

The required resolution of the reconstruction is mission and environment depen-

dent. The quality of the resulting three-dimensional reconstruction is limited by the

resolution of the sonar (which the optical camera exceeds), which is dependent on

its operating frequencies and range from the sonar to the target. Ultimately, the

resolution of the three-dimensional target reconstruction is the size of the smallest

feature that can be detected. Depending on the target being surveyed, the required

resolution might be on the order of several centimetres to identify small objects at-

tached to the wetted hull, or on the deck of a non-responsive ship. In the instance of

surveying an iceberg, the required resolution might be on the order of a few meters,

where only a general idea of the mass distribution is su�cient.

The results of surveying the first target, the barge, are presented in Fig. 3.11

showing (a) the target, (b) the insonification of the underside with the Kongsberg

Flexview (1500 kHz) bathymetric sonar, and (c) an isometric view of the merged

optical camera photogrammetry and sonar point clouds. Notice the sonar image can

discriminate specific features of the barge, beyond its gross dimensions (e.g. the 15

cubes that make up the barge and their boundaries). A roofing panel was tied to the

barge underside to give it di↵erent features (and better response at higher sonar in-

sonification frequencies). The sti↵eners in the roofing panel, which are 5 cm wide, can

be clearly seen. The topside of the barge is captured well with the photogrammetry-

based point cloud where texture on the topside of the barge is visible, which clearly

surpasses the resolution of the sonar imaging at 1200 kHz. The process of merging

the above-and-below-water data was easier with the 1200 kHz sonar that produced

higher resolution images (⇡ 1 mm). The photogrammetry resolution was good and

exceeded that achieved by the sonar’s. As shown in Fig. 3.11, dimensions can be

extracted for features of interest on the top or bottom side of the floating target.
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(a) (b)

(c)

panel stiffener 
(~ 5 cm)

Figure 3.11: (a) UAV underway surveying barge target from the air, (b) Flexview
sonar imaging of the barge underside (underwater) from the IMOTUS UUV (notice
that the roofing panel sti↵eners running top to bottom are captured), and (c) optical
camera photogrammetry reconstruction merged with bottom-side sonar (isometric
view) [2].

The results of the multi-domain USV survey (Fig. 3.12) show an example of the

details that can be captured by the proposed robotic system. The sonar image reveals

the submerged portion (wetted hull) of the two pontoons, trolling motor, and even

the brace members that fasten the pontoons to the hull of the USV – features that

are 5 cm and smaller. The features and texture on the topside of the USV are also

captured well. The 4 cm diameter circular shaft extrusion (from the trolling motor)

on the topside of the USV was captured also. The teal streaks in the photogrammetry
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model that run at a 45° angle are due to the photogrammetry capturing features from

rope segments anchoring the USV.

The UAV photogrammetry images were easily transmitted with in-air radio to

mRobot. However, the extracted sonar images and resulting point clouds could not

have easily been transmitted through underwater acoustic modems - especially at

greater ranges between UUV and USV. Image compression and encoding techniques

will help overcome this challenge [55].

(a) (b)

(c)

trolling motor 
shaft (~ 4 cm)

Figure 3.12: (a) USV target, (b) Flexview sonar imaging of the USV underside (un-
derwater) from the IMOTUS UUV, and (c) optical camera photogrammetry recon-
struction merged with bottom-side sonar (isometric view).
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3.5 Summary

Simulations and controlled in-water experimentation provided preliminary validation

of the planning algorithms for a UUV, USV and UAV working collaboratively to

survey a floating target. mRobot is a stand-alone autonomous mission-planner that

creates missions for multi-domain robots towards a common goal. The aforementioned

components have been developed, tested and validated.

The results showed that the proposed solution can provide three-dimensional re-

constructions with a resolution of 5 cm (and smaller), which was shown from ex-

perimentation with a barge and USV target. The reported resolution is adequate

considering that the goal of this work is to provide the user with information on the

state of the target.

Future work for the system presented in this chapter will take the heterogeneous

collaborating robots into a larger in-water environment to test the underwater acous-

tic communications as well as study how to represent the in-situ sonar information

so that it can be transmitted to the USV. A larger environment will also allow for

experimental validation of USV path-planning in support of its team-mates, as well

as quantifying the benefit, in-terms of reconstruction quality, of its role in the system.

With regards to the merging of above- and below-water models, more complex and

larger targets will be trialed.

In the next chapter, the mRobot mission planner is applied towards gaining in-

formation on marine targets with uncertain poses. A dynamic planning method is

developed for underwater search missions with the goal to locate underwater static

targets of uncertain poses.



Chapter 4

Autonomous Underwater Search for Static Targets

The objective of a UUV in an exploration mission is to maximize its information

gathering about the environment it explores. For example, in a mine countermeasures

(MCM) survey the goal is to detect and localize targets, whose states are not known

prior to the mission (Fig. 4.1). The desired outcome of the search mission is an

occupancy grid map of the search area indicating the location of all targets present

as illustrated in Fig. 4.2.

Figure 4.1: Depiction of underwater search for hidden targets (NMCM).

The work presented in this chapter addresses the e�cacy of reinforcement Q-

Learning-based planning to localize targets in an area where the UUV’s sonar signal-

to-noise-ratio (SNR) may vary, and consequently, its probability of detection and

likelihood of false alarm.

The contribution of the work presented in this chapter is an adaptive mission /

path-planner which addresses the challenges of autonomous NMCM surveys in the

unstructured underwater environment where erroneous detections are expected, and

energy-e�cient missions and timely planning is desirable. Specifically, the contribu-

tions of this work are as follows:

52
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Figure 4.2: Example MCM search mission showing estimate occupancy grid (18 ⇥
18 cells) development over the duration of a mission with multiple search cycles (re-
plans).

1. Developments to the work of [7], [35], and [36], by applying Q-Learning to opti-

mize the search cell visitation sequence. To quantify the merit of the proposed

solution, its results are compared with the standard greedy and boustrophedon

approaches.

2. A sensitivity study of the proposed algorithm which identifies the parameters

that drive the proposed planner’s performance. With a machine learning ap-

proach, parameter sensitivity is not always apparent. The sensitivity study

results are summarized visually to illustrate the parameters’ impact on the

path-planning policy.

3. Simulation and two-dimensional experimental validation of the proposed algo-

rithm.

The rest of this chapter is organized as follows. The first section details the work

from [7], [35] and [36] which developed a method to measure and maximize mutual

information gain in uncertain search environments with varying probabilities of detec-

tion and false alarm. Next, the proposed autonomous mission-planning algorithm is

developed which combines information theoretic rewards with Q-Learning optimiza-

tion. Then a brief description of the simulation development and experimental vali-

dation environments follows. Finally, a sensitivity study is detailed, which is followed

by NMCM results from four di↵erent search environments which compare Q-Learning

to two classic UUV search planning methods (greedy, and nominal/boustrophedon).
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4.1 Optimized Mutual Information Gain Measure for UUV Search

Planning

The purpose of this section is to define the search channel, search game, and the

measure of information gained from UUV searcher agents in a target search mission.

The work is this section is condensed and summarized from [7], [35], and [36].

4.1.1 Search Game and Cell Search Channel

The information flow while a UUV explores its underwater search area is not dissimilar

to a communication channel and the message transfer between a transmitter and

receiver [7]. The message to communicate is the location of the targets —which

are initially unknown. Although, there may be prior knowledge on the likelihood

of target positions, either relative to each other, or within the search area itself.

The search channel definition is based on Shannon’s model of the communications

channel [56]. Firstly, the channel presumes a search area which is partitioned into L

independent cells (or subregions as in Fig. 4.2). Targets are placed in a subset of the

cells. The intended message, M = hM1,M2, ...,Mli, is the binary occupancy status

of the set of cells, and the UUV search is conducted to decode the intended message

as the estimate, M̂ . The search plan is then defined as the cell visitation sequence

executed by the searcher. Replanning during the search based upon the cell detection

outcome sequence Dl = hd1, d2, ..., dli, and the aggregate detection outcome sequence

D = hD1, D2, ..., Dli make up the decoding framework of the channel. The binary

cell search channel, and the search channel information flow are shown in Fig. 4.3,

respectively.

(b)(a)

evaluation
actual 

occupancy
grid

! search
planning 

search 
channel !"#! $!

cell 
visitations

detection 
outcomes

estimated
occupancy 

Figure 4.3: (a) binary cell search channel and (b) the search channel flow from [7].

The execution of a search plan is expressed mathematically as a sequential game

problem. In the context of search theory, a target search mission is a two-player game
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such that player one is the searcher, and player two, the target of the search, wants

to stay hidden [36]. A search game assumes independent target placement across the

set of cells, and it is assumed a cell is occupied if there are any targets within its

boundaries, and if not, it is unoccupied. The status of a cell is described as:

Ml =

(
1, 9x|x 2 Cl

0, otherwise.

(4.1)

where Cl is a cell in the discrete search region.

To quantify the amount of information passed through the channel during the

search, the probability space is first defined. The valid detection of a target within

cell l occurs with the probability PDl
, and false detections occurs with likelihood PFl

.

These search channel properties are determined from the receiver operator character-

istic (ROC) analysis commonly applied to underwater sonar applications [57]. The

relationship between the PDl
and PFl

is from the sensor’s ROC curve. As in [7], the

work here employs a theoretical ROC analysis that employs a Gauss-Gauss channel

model for energy detection. In this model the null hypothesis H0l maps to a signal

model where the energy detected by the sonar is noise alone (no target present). The

alternative hypothesisH1l rejects the null hypothesis if the detected energy level maps

to a model of acoustic signal and noise, and the received signal exceeds the prescribed

detection threshold. The final decision is made by applying the true detection and

false alarm likelihoods in the region (or cell) to determine whether the signal suggests

a target is present or if the signal is noise-only. The signal and noise within each cell

are modelled as zero-mean white Gaussian processes.

Of specific interest to the work here is the impact of variable probabilities of de-

tection and false alarm on search performance due to the environment [7]. When

detecting targets on the ocean floor the topography and texture can change signifi-

cantly, as perceived at sonar frequencies, throughout the search area, which in turn

a↵ects the search performance. As previously identified, other factors like multi-

path and time and spatially varying sound velocities can impact search performance.

From cell-to-cell, these variable environmental conditions are captured in the acous-

tic signal-to-noise-ratio (SNRl). Towards calculating the probability of false alarm

within a cell, let x̆ be the position where the false alarm occurs, and let �l be the

detection threshold in the log likelihood ratio space. Following the work of [58], the
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probability of false alarm is then calculated over the cell by:

PFl
(�l) =

Z

Cl

Pr(d = 1|x̆; �l)f(x̆|x /2 Cl)dx̆

⇡ Q�
2
N
(�̀l)

(4.2)

where �̀l = �l/�l is the normalized detection threshold, and

Q�2
⌫
(x) =

Z 1

x

1

2
⌫
2�(⌫2 )

t
⌫
2�1

exp(�
1

2
t)dt (4.3)

is the integral of the chi-squared distribution with ⌫ degrees-of-freedom (DOF). In this

target search game, the binary search channel has ⌫ = 4 DOF (or possible outcomes)

in a detection event: true positive, true negative, false positive, and false negative.

The probability of valid detection within a cell can be calculated by:

PDl
(�l) =

Z

Cl

Pr(d|x; �l)f(x|x 2 Cl)dx

= Q�
2
N

 
Q

�1
�
2
N
(PFl

)

SNRl + 1

!
.

(4.4)

Equation 4.4 is formulated for a ROC curve analysis without directly solving for the

detection threshold [7]. Figure 4.4 provides an example of four ROC curves from

regions of increasing SNR. Potential operating points are highlighted Fig. 4.4. The

information flow through the channel can be maximized by careful selection of PDl
(�l)

and PFl
(�l), [36].

4.1.2 Development of the Information Payout

From information theory, the mutual information gain is defined by the reduction

of Shannon entropy, or a reduction of uncertainty, about one random variable while

observing another random variable [59]. In this target search application the reduction

of entropy is the reduction of uncertainty about a cell’s occupancy after visiting and

observing the region. Entropy and information are measured in units of Shannons or

bits.

If the search is a single pass over a cell with a detection outcome, d1, the mutual

information gain can be calculated by:



57

Figure 4.4: ROC curves for four increasing levels of SNR. The operating point
determines the properties of the cell through selection of the relationship between
PDl

and PFl
.

I(Ml; d1) = H(Ml)�H(Ml|d1) (4.5)

such that H(Ml) and H(Ml|d1) are, respectively, the the prior and the posterior

entropy of the cell’s occupancy. The prior uncertainty of the cell’s occupancy, or the

entropy of the message, is given by:

H(Ml) = [PMl
log2(PMl

) + P
c

Ml
log2(P

c

Ml
)] (4.6)

where PMl
is the prior probability that the cell is occupied, and P

c

Ml
is the comple-

mentary probability that the cell is not occupied. Note that log2 is used as it follows

Shannon’s convention for measuring information [56] in the binary channel. This

convention leads to a normalization where I(Ml;Dl) 2 [0, 1].

In a similar form, the message posterior entropy is calculated with:

H(Ml|d1) = Pd1H(Ml|d1 = 1) + (1� Pd1)H(Ml|d1 = 0) (4.7)

where Pd1 is the marginal probability of detection, which is given by:
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Pd1 = PdPMl
+ PfP

c

Ml
. (4.8)

Given a positive detection event, the posterior probability that the cell is occupied is

given as:

PMl|d1=1 =
PDPMl

Pd1

(4.9)

and alternatively, if the detection event is negative, then the posterior probability of

occupancy is given by:

PMl|d1=0 =
(1� PD)PMl

1� Pd1

. (4.10)

The two posterior entropy components can be computed by:

H(Ml|d1 = j) = �PMl|d1=j log2(PMl|d1=j)� (1� PMl|d1=j) log2(1� PMl|d1=j) (4.11)

where j = 1 for the detection event and j = 0 for a non-detection event.

When considering the entire set of cells in a search environment, the information

collected upon completion of a search takes the form:

I(M;D) = H(M)�H(M|D) (4.12)

where H(M) is now the total uncertainty of the source message (occupancy grid)

and H(M|D) is the uncertainty of the message given the detection outcomes of the

executed search plan. From the assumption of independent cells, Eq. 4.12 can written

in the following form:

I(M;D) =
LX

l=1

[H(Ml)�H(Ml|Dl(nl))]. (4.13)

The message component posterior entropy of Eq. 4.13 is calculated over the set of all

detection events that can occur in n-passes (or n-searches) of the the cell, by:

H(Ml|Dl) = �
X

{Dl}

Pr(Dl) ·

2

4
X

{Ml}

PMl|Dl
log2(PMl|Dl

)

3

5 (4.14)

where PMl|Dl
is the cell’s posterior occupancy probability. PMl|Dl

can be calculated

using Bayes’ rule:
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P (Ml|Dl) =
Pr(Dl, x 2 Cl)

Pr(Dl, x 2 Cl) +Pr(Dl, x /2 Cl)
. (4.15)

Assuming that detection events are independent, the probability of a sequence of

detection events given that the cell is occupied can be calculated as follows:

Pr(Dl, x 2 Cl) =

"
nlY

i=1

Pr(di, x 2 Cl)

#
PMl

(4.16)

where the probability Pr(di, x 2 Cl) is PDi in the event of a detection (di = 1), and

by 1� PDi in the event of a non-detection (di = 0). If the cell is not occupied, then

the probability of a given set of n detections in a cell follows:

Pr(Dl, x /2 Cl) =

"
nlY

i=1

Pr(di, x /2 Cl)

#
P

c

Ml
(4.17)

where Pr(di, x /2 Cl) is given by PFi if di = 1 and by 1� PDi if di = 0.

Wait Time Information Measures

The complexity of the calculations in Eqs. 4.16 and 4.17 is determining the marginal

probabilities of every di↵erent possible detection outcome sequence in an n-pass search

of a cell. If the probabilities of detection and false alarm within the cell are held

constant for each visit to the cell, then the information obtained during that search

can be computed as a function of wait time probabilities [36]. Wait time event

probabilities indicate the number, n, of passes (e↵ort) that must occur before one can

expect detection events to happen. In other words, n denotes the number of search

passes that must be attempted to achieve r detections. For independent trials (or cell

searches), the rth detection event happens during the nth search pass (Wr = n) with

the wait time probability given by the negative binomial distribution [60]:

Pr(Wr = n) =

 
n� 1

r � 1

!
p
r(1� p)n�r (4.18)

where p is a fixed probability of occurrence Pd1 . Wait time probabilities are valuable

since in an n-pass search of a cell there are 2n di↵erent detection sequences possible,

while there are only 2n wait time outcomes. Therefore, using wait time measures

greatly reduce computation e↵ort when determining information measures.
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However, selecting occurrence probabilities (PD and PF ) that remain fixed over

the duration of a mission is a simplification that does not allow for a full optimization

of the information measure. In the more complex scenario where detection and false

alarm probabilities are allowed to vary over each search pass, wait time probabilities

cannot be calculated using Eq. 4.18. Instead, Baylog and Wettergren [35] provide

a wait time probability recursion developed from the Bernoulli trial event associated

with each search pass (i = 1 : n). Firstly, let P�l
(n, r) = Pr(Wr = n). Then, for the

first detection, r = 1,

P�(n, r) = p(n)[1� P⌃(n� 1, r)] (4.19)

and for each subsequent occurrence, r > 1,

P�(n, r) = p(n)[P⌃(n� 1, r � 1)� P⌃(n� 1, r)]. (4.20)

The above recursions are again conditioned on the occupancy of the cell such that

p(n) = PDl
when occupied and p(n) = PFl

when unoccupied.

The cumulative probability of detection (CPD) P⌃l
(n, r) denotes the marginal

wait time probability of making r detections during n-searches of a cell with:

P⌃l
(n, r) = P

d

⌃l
(n, r)PMl

+ P
f

⌃l
(n, r)P c

Ml
(4.21)

where P
d

⌃(n, r) is the probability of making r valid detections (true positives) with:

P
d

⌃(n, r) = Pr(Wr  n|x 2 Cl) =
nX

i=1

P
d

�l
(i, r) (4.22)

and P
f

⌃(n, r) is the probability of making r invalid detections (false positives) during

the same n-pass search with:

P
f

⌃(n, r) = Pr(Wr  n|x /2 Cl) =
nX

i=1

P
f

�l
(i, r). (4.23)

Finally, with the n⇥ r set of wait time probabilities P d

⌃(n, r)
n

r=1 and P
f

⌃(n, r)
n

r=1,

the channel information can be calculated as:

I(Ml;Dl) = I(Ml;W1l) +
nX

r=2

Pr(Wrl�1  n)I(Ml;Wrl
|Wrl�1  n) (4.24)
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where the first term I(Ml;W1l) is found with Eq. 4.5. The prior probability of cell

occupancy (Eq. 4.15), conditioned on the rth wait time event, now becomes:

PMl|Wrl
= Pr(x 2 Cl|Wrl

 n) =
P

d

⌃l
(n, r)PMl

P⌃l
(n, r)

. (4.25)

The r-criterion mutual information component of 4.24 is calculated as:

I(Ml;Wrl
|Wrl�1  n) = H(Ml|Wrl�1  n)�H(Ml|Wrl

,Wrl�1  n). (4.26)

Calculation of the r-criterion component in Eq. 4.24 involves four possible outcomes:

two occupancy outcomes and two-wait time outcomes. As (Wrl
 n,Wrl�1) = (Wrl



n) the latter term of Eq. 4.24 can be calculated by:

H(Ml|Wrl
,Wrl�1  n) = P

Wl|W�
l
H(Ml|Wrl

 n)

+ (1� P
Wl|W�

l
)H(Ml|Wrl

> n,Wrl�1  n).
(4.27)

Let P
Wl|W�

l
= Pr(Wrl

 n|Wrl
 n) be the marginal probability of the rth wait

time given the preceding (r � 1)th event such that:

P
Wl|W�

l
=

P⌃l
(n, r)

P⌃l
(n, r � 1)

. (4.28)

The right side of Eq. 4.27 combines weighted binary entropy terms, where for the

last term the required probability can be found by:

PMl|Wl>n,Wrl�1n =
[P d

⌃l
(n, r � 1)� P

d

⌃l
(n, r)]PMl

P⌃l
(n, r � 1)� P⌃l

(n, r)
. (4.29)

Maximization of the Information Payout

Having presented the method for measuring information gain, the next step is the

optimization of the payout for an n-pass search of each cell. In [36], Baylog and

Wettergren o↵er mathematical proof that the information gain through the search

channel can be optimized as there is local concavity of the information measure over

the subspace of ROC operating points, and the measure over the subspace of search

passes is submodular. The algorithm to maximize information flow through the search

channel is as follows [36]:
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1. For n = 1, ..., N and l = 1, ..., L, determine the optimal value for the probability

of false alarm PFl
and its corresponding information gain as:

I
⇤(n, l) = maxPFl

I(Ml;Dl(n)). (4.30)

2. Construct the information payout matrix by calculating the information gain

with increasing pass count:

⇡(n, l) = I
⇤(n, l)� I

⇤(n� 1, l). (4.31)

3. Determine a cell visitation sequence to maximize information gain based on the

payout matrix.

In this thesis, the Dlib optimization [61] C++ package is used to find I
⇤ in Eq.

4.30. The Dlib optimizer of choice performs a constrained maximization of the non-

linear information gain function.

As an example, a hypothetical search region is used which has 100 equally-sized

cells numbered 1 to 100. This sequence of cells is assigned increasing SNR values from

0.3 to 3, where cell #1 has the lowest value and cell #100 has the highest. Following

steps #1 and #2 of the above algorithm the information payout per visitation of each

cell is plotted in Fig. 4.5.

Figure 4.5 illustrates the properties of the information measure. Each line repre-

sents the incremental information gained as additional visitations are added for each

cell. The important properties to notice is that all payouts are monotonically decreas-

ing and non-negative [7]. However, the cell that o↵ers the largest information gain

varies with increasing cell visitation count. Another visual example of the payout

matrix calculated from Eq. 4.31 is shown in Table 4.1 where the information payout

of 6 cells is shown for 6 passes. Note that the cells referenced within the table are

not related to the cells in Fig. 4.5.
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Figure 4.5: Information payout in bits versus cell visitation count for 100 cells with
increasing SNR values applied. Adapted from [7].

Table 4.1: Information payout matrix for six random cells over six visitations illus-
trating the monotonically decreasing nature of the measure

In step #3 of the algorithm presented for maximizing information flow, Baylog and

Wettergren [7] suggest a greedy algorithm to determine the cell visitation sequence

(trajectory) of a UUV (or UUVs) conducting the search. Their greedy algorithm

selects the cell with the highest information gain and set that as the next cell to be

searched. The restriction set on the search game is limiting the searcher e↵ort by the

number of cell visitations allowed during the mission, for example total search e↵ort

is fixed at 4L = 400 cell visits. The greedy search shifts search e↵ort towards the

higher SNR cells and away from those with the least information gain.

Within this underwater search game formulation, another important parameter

to define is a replanning cycle. In a replanning cycle, the information payout matrix

is recalculated with updated beliefs of target placement PMl
based on the detection
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outcomes collected during the search. After a re-plan the information gain available

throughout the search area can change drastically from the initial payout matrix due

to the probabilistic nature of the search. For example, if no prior knowledge of object

placement is available at the start of the mission, the prior belief in each cell will

be PMl
= 0.5, which indicates no information is known about the occupancy of cell

l. If several positive detections have occurred in a specific cell then the outcome

will be a PMl
> 0.5. A cell with multiple non-detection events will have a resulting

PMl
< 0.5. For both cases the information payout for future visits to that cell will

be less. However, missed and false detections will also a↵ect the beliefs of target

placement. Therefore, a replanning cycle allows the searcher to refocus its e↵orts

towards cells with lower certainty and higher information gain to resolve uncertain

mixed detection outcomes.

With fixed search e↵ort and replanning conducted after every 1L cells searched,

Baylog and Wettergren [36] show their greedy approach is an improvement over the

classic boustrophedon search. The authors also conclude that the greedy search is

locally optimal for the restrictions of the search game, and for a UUV where e↵ort is

measured in cell visits.

In the next section, a reinforcement learning approach is proposed to plan the cell

visitation sequence (or searcher UUV trajectory) to maximize information gain. The

total search e↵ort is limited by UUV energy usage as opposed to the number of cells

visited.

4.2 Information Motivated Q-Learning Autonomous Trajectory

Planning

This section presents a novel planner which uses a machine learning approach that

exploits any apriori SNR variances and regions of higher information gain that arise

during the mission.

Reinforcement learning approaches, likeQ-Learning, enable an agent (e.g. a UUV)

to learn through interactions with its environment and feedback on its decisions. It

does not require a world model. Q-Learning develops a policy to inform the agent on

actions to reach a goal state, while also seeking to maximize reward collection [38].
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Q-Learning was a preferred choice for several reasons. It is flexible in implemen-

tation and computationally light-weight so it can run on an embedded UUV platform

for in situ planning [38]. For the same number of state-action pairs the computational

load of Q-Learning does not increase with more complex reward functions, since the

outcome only depends on feedback from the environment. For the present work, the

optimized cell information payout is the reward function. The reward includes the

mutual information gain and exclusion zones (obstacle/blackout avoidance areas).

States with SNR < 1 or known obstacles/occupancy can be avoided by pre-assigning

a reward of 0. As a tool, Q-Learning parameters are intuitive and easily tuned to max-

imize performance for the dynamic underwater environment. As a machine learning

method, it analyzes many possible state-action pairs in (near) real-time. The poten-

tial for solutions given large numbers of inputs and complex stochastic environments

is yet another justification to choose Q-Learning. Ultimately, the proposed solution

seeks to concentrate search e↵orts where the information gain is larger, while also

continuously responding to detection outcomes throughout the mission.

Q-Learning realizes the Bellman equation for optimality based on dynamic pro-

gramming. A form of this is shown in Eq. 4.32:

Q
new(st, at) (1� ↵) ·Qold(st, at) + ↵ · (rt + � ·maxaQ(st+1, a)) (4.32)

where st is the current agent state, ↵ is the learning rate, rt is the reward, � is the

discount factor, and at is any action the agent can take. Specifically, an allowed

action is the transition to any neighbouring cell. The resulting Q-values and Q-table

(not shown) define a policy for the quality of an action given a state where a higher

quality Q-value indicates a better action.

Table 4.2 summarizes the standard Q-Learning parameters � discount factor �,

learning rate ↵, and exploration vs exploitation ✏. Reward gain is added by the author

to weight the importance of reaching the goal cell. The Q-learning algorithm in its

entirety is shown in Algorithm 2 in Fig. 4.6.
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Table 4.2: Q-Learning Parameters

Figure 4.6: Q-Learning algorithm with information gain rewards.
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The selection of goal cell for the Q-Learning algorithm is similar to the greedy

method described in the previous section. The region in the environment with the

highest information gain potential is selected as the goal, and then Q-Learning de-

termines the policy to reach that state. After reaching the goal state, the pass count

of the searched cells is incremented and the reward matrix is updated with the infor-

mation payout values for the next visit to each cell, respectively.

The mRobot node developed in Chapter 3 is modified here to subscribe to the

state of the searcher UUV and distribute a trajectory to the UUV in real-time. A

summary of the proposed underwater search planner is presented in Fig. 4.7, with

the the author’s contribution highlighted in the blue dotted box.

Information 
gain 

optimization:
payout matrix

QLearning:
generate path to 

target cell 

path 
complete

re-plan 
criteria 

reached?

No

update belief map 
(occupancy grid)

Yes

Yes publish next 
waypoint to 

UUV

pause until 
waypoint obtained

No

Start:
initialize prior 

Figure 4.7: Underwater search planning flow diagram implemented within the mRobot
ROS node [4].
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4.3 Simulation and Experimental Configuration

A Gazebo virtual world was developed to evaluate the path-planner’s e↵ectiveness in

a controlled underwater environment through simulations. The ECA A9 autonomous

underwater vehicle (AUV) and the UUV Gazebo simulator tools were used [27]. April-

Tags uniquely labelled the targets in the UUV sensor’s (camera) FOV. This abstracts

out target features and eliminates the feature recognition problem as it is peripheral

to the path-planning objectives. To incorporate AprilTag, the AprilTag ROS package

was integrated into the Gazebo underwater world [62]. Initial experimental validation

of the adaptive path-planner was conducted in an indoor setting with a quadcopter

representing the UUV. The environments for experimentation and simulation are

shown in Fig. 4.8(a) and (b), respectively [4].

Figure 4.8: Robots (circled red) search for AprilTag targets [62] (circled black) in a:
(a) structured gym environment with the Parrot UAV (experiments) and (b) Gazebo
underwater world (simulations) with the ECA A9 AUV [27]

The simulation environment mirrors the square search region in Fig. 4.9 used

in experiments (Fig. 4.8a), with the search cells scaled up to 40 m ⇥ 40 m. Note

that the pattern of strong and poor sensing regions (white and gray cells, respectively)

was varied to represent di↵erent environmental conditions. Search areas with variable

environmental conditions were simulated by applying SNR values to each cell in either

a homogeneous or variable distribution [36]. The SNR is a property of the sonar’s

interaction with the environment, and varying the SNR value in a region is a method

used here to capture the varying conditions that a↵ect the search performance.
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Figure 4.9: Experimental setup floor plan showing the dimensions of the search region
and the 8 motion capture cameras. AprilTag targets are randomly distributed in the
64-cell search region, where the white and gray cells represent regions of di↵ering
environmental conditions and consequently, variable probabilities of detection and
false alarm [4].

4.4 Results and Discussion

This section provides results from sensitivity studies on the proposed algorithm, and

simulated NMCM search mission results.

4.4.1 Parameter Sensitivity Study

To begin, the influence of the discount factor � and reward gain on the UUV trajectory

is graphically demonstrated in Fig. 4.10 and 4.11. ↵ and ✏ are not explored here as

they only a↵ect the algorithm convergence rate, as the reward values in each state

are deterministic [63].

Figure 4.10 shows an example of a search region with a random SNR distribution

of values from 0� 3 over the cells. Note the ‘start’ and ‘goal’ points of the trajectory

are indicated. This map example will be used to highlight the influence of reward

gain and �.
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Figure 4.11 shows the environment of Fig. 4.10 under the case of low reward gain,

2.0 (Fig. 4.11a) and high reward gain, 24.0 (Fig. 4.11b) with � 2 {0.1, 0.3, 0.7, 0.9}.

Note that as � increases, the UUV path becomes more direct and thus more fuel

e�cient; however, the increase in information gain is smaller. The path is even more

direct with increased reward gain (Fig. 4.11(b)).

Figure 4.10: Simulated 64-cell search region with each cell assigned a randomly dis-
tributed SNR value from 0 ! 3. The colour map and scale show the optimized
information gain payout for each cell [7]. The start and goal cells have been identi-
fied.
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Figure 4.11: Q-Learning path for an agent navigating through the environment in
Fig. 4.10 with (a) low reward gain (2) and increasing values of discount factor and
(b) high reward gain (24) and increasing values of discount factor. The path of the
agent for each simulation is shown with red arrows. These results illustrate the impact
of an increasing reward gain and discount factor to draw the agent towards the goal
without wandering from the shortest possible path.

A comprehensive sensitivity study is now detailed using results from full simulated

search missions as described in section 4.3. Figure 4.12 shows the process for the

parameter sensitivity studies in (ROS) simulations for three environments:

1. Homogeneous SNR 3 environment: SNR = 3 applied to each cell (Fig. 4.16a)

2. Homogeneous SNR 1 environment: SNR = 1 applied to each cell (Fig. 4.17a)

3. Variable SNR gradient environment: SNR increases from 0.3 to 3 in a gradient

across the environment(Fig. 4.16b)
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Figure 4.12: Parameter study flow diagram [4].

For any change in parameter value, 100 simulations were performed, and the

results were averaged. To start, the discount factor and learning rate were both set

to mid-range values of 0.5 and the reward gain was studied over a range of 1.5 to

27. The reward gain value that produced the highest average information gain over a

search mission was selected. A second reward gain value was also selected to ensure

each study was more comprehensive. The same process was continued until each

variable was studied, and the best set of parameters was selected. The selected range

in reward gain encompasses low to high values of the parameter. As shown previously

in Fig. 4.11, a reward gain of 24 is su�ciently large to draw the agent to the goal node

on a direct path for most values of discount factor �. Larger values of reward gain do

not result in a statistically significant di↵erence in the path or total information gain.

The discount factor � is traditionally studied in a range from 0.1 to 0.99, which is a

range from short-sidedness (immediate desire for rewards) to striving for long-term

high rewards. Discount factor � � 1 can lead to divergence in Q-values [64].

For this study, the Q-Learning search was allotted the amount of energy required

by the Boustrophedon path to exhaustively search the 64-cell region three times. Two

replanning opportunities were allowed. For brevity, the results of this analysis are
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not all shown. The select example of the homogeneous SNR 3 environment is shown.

The SNR 3 environment is a good representative example as it provided the results

showing the greatest sensitivity to changing parameters. The increased sensitivity

occurred as it is the search region with the highest average SNR across all cells, and

therefore the highest total information gain potential.

Figure 4.13 and Table 4.3 shows the first results from the study that examined

increasing values of reward gain.

Figure 4.13: Reward gain parameter study for homogenous SNR 3 environment,
with error bars representing a 95% confidence interval. Maximum information gain
average (bits) is found with a reward gain of 6 and 24, respectively. The results
show no significant parameter sensitivity for total information gain. The average cell
visitation does increase with increasing reward gain.
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Table 4.3: Summary of results for the reward gain sensitivity study in an SNR 3
environment (Fig. 4.13)

The findings from Fig. 4.13 and Table 4.3 are that changing the reward gain

had no statistically significant impact on the total information gained during the

search missions. However, there does appear to be a trend of increasing average cell

visitations with increasing reward gain —which is expected. As seen in Fig. 4.11

higher values of reward gain lead to more direct paths to the goal, albeit with less

total information gained. For a UUV under-way in a horizontal plane, the majority of

the energy consumption is due to surge, yet significant energy is still required for yaw

control [65]. Heading changes between waypoints also increases the distance travelled

relative to the Euclidean distance between those two points. Therefore, navigating

with mostly constant headings is more e�cient, leading to the expectation that a

higher reward gain would lead to more cell visitations for the same given total energy.

Ultimately, a reward gain of 6 and 24 were chosen for the next study as they provided

they highest average information gain.

Figure 4.14 and Table 4.4 provide results from the discount factor � parameter

study for a reward gain = 6. Figure 4.15 and Table 4.5 provide results from the

discount factor � parameter study with a constant value of reward gain = 24.
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Figure 4.14: Discount factor, �, parameter study for homogenous SNR 3 environment
and a reward gain of 6, with error bars representing a 95% confidence interval. The
result is no significant sensitivity to changes in the � parameter.

Table 4.4: Summary of results for � sensitivity study in SNR 3 environment, with
reward gain held to a constant value of 6 (Fig. 4.14)
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Figure 4.15: Discount factor, �, parameter study for homogeneous SNR 3 environ-
ment and a reward gain of 24, with error bars representing a 95% confidence interval.
Again, showing the expected result of no significant sensitivity to changes in the
parameter.

Table 4.5: Summary of results for discount factor sensitivity study in SNR 3 envi-
ronment with reward gain equal to 24 (Fig. 4.15)
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The results from the two discount factor � studies provide similar insight, and

showed little statistical significance in the total information gain. For the study with

reward gain = 6, a similar trend of increasing average cell visitations is seen with

increasing � (Fig. 4.14). This result follows the same reasoning that direct paths are

more energy e�cient. In the second � study, no trend is seen for either information

gain or number of cells visited. This result should again be expected as a high reward

gain of 24 already drives the agent towards the goal at low � values. A reward gain

= 6 and discount factor � = 0.5 were selected as the best set of parameters moving

forward, as the highest average information gain was seen with those values.

The results from the ↵ and ✏ studies are also not shown for brevity reasons. The

expected result was seen from those studies: for a deterministic reward map, ↵ and

✏ will only a↵ect the convergence rate, and not the policy.

In summary, it was found that the reward gain and the discount factor � are the

only parameters that had any statistically significant e↵ect on the UUV trajectory

or the search outcome. While the trajectory varies, the total information gained

during the search mission is not significantly a↵ected from varying the Q-Learning

parameters. With low values of reward gain and discount factor �, the agent prior-

itizes immediate rewards with a slight sacrifice to e�ciency, while with high values

the agent is drawn to the maximum reward cells without much deviation from the

shortest path. The two opposing strategies converge to a similar information gain

total over the mission duration.

These results provide confidence that the proposed solution is suitable and insen-

sitive for a wide range of parameters. However, if the constraints of the mission were

di↵erent (shorter duration or less replanning cycles) the parameters could be easily

tuned to fit that scenario depending on the specific needs.

4.4.2 Search Mission results

TheQ-Learning information gain as a function of time was compared with the nominal

boustrophedon (lawnmower) and greedy (locally-optimal) planning methods (Figs.

4.16 and 4.17). The comparison is over four di↵erent 64-cell environments for SNR

= 3.0 (Fig. 4.16a), an SNR that decreases in a gradient from left to right (Fig.

4.16d), SNR = 1.0 (Fig. 4.17a), and an SNR that varies in distinct regions (Fig.
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4.17d). Both the experiments and simulations used these environments.

Again, two replanning opportunities were allowed for each method to provide equal

information gain potential. Each search method was allotted the energy to complete

the boustrophedon search. Thus time axes in Figs. 4.16 and 4.17 were normalized by

the boustrophedon search duration.

These results demonstrate the improved capability of Q-Learning to exploit SNR

heterogeneity and/or prior belief of cell occupancy throughout the environment. With

the exception of a small di↵erence between the simulation (Fig. 4.16c) and exper-

iments (Fig. 4.16b) for the SNR = 3.0 case, and a similar di↵erence in the SNR

= 1.0 case (Fig. 4.17c and Fig. 4.17b), there is agreement in the relative performance

of the 3 approaches between experimental measurements and simulation predictions.

Not unexpectedly, the greedy planner outperforms (or matches) the boustrophe-

don for most cases. The exception to that is seen in the SNR = 1 case where the

greedy planner performs the worst. The greedy planner works well when there are

areas of high information gain to exploit (gradient and zoned environments). In a

homogeneous search area of low SNR the greedy planner becomes ine↵ective relative

to the other two methods, as it makes energy ine�cient decisions with low payout.

For every result the greedy method utilizes all available energy first due to its local

approach that does not consider energy e�ciency in its cell selections. The dura-

tion of the greedy search in the experiment is even shorter due to the di↵erence in

holonomic constraints between the UAV and UUV, which had more of an impact on

the greedy search than the other methods. Conversely, the boutrophedon approach

takes the longest to complete the search being the most energy e�cient method, as

it utilizes the minimum the number of turns to cover the area.

Generally, Q-Learning outperforms both of them with slightly better performance

in variable SNR environments over homogeneous ones. Again, the greedy search

is more ine�cient as it chooses the best cells versus considering a more optimal

trajectory like Q-Learning.

The experiments at this stage are for initial validations to show the algorithm
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works and is correctly implemented in two-dimensions. The experiments were per-

formed with an unmanned aerial vehicle at constant altitude which is a near two-

dimensional system albeit with more degrees-of-freedom than some UUVs. This ap-

proach is part of the process that the Lab uses to mitigate risk prior to implementing

and deploying on expensive systems. Later phases of this research will consider the

holonomic constraints of UUVs.
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(a)

(b)

(c)

(d)

(e)

(f)

SNR = 3 (experiments)

SNR = 3 (simulation)

SNR = gradient (experiments)

SNR = gradient (simulation)

Figure 4.16: Performance comparison of the Q-Learning based planner against the
greedy and nominal boustrophedon algorithms for a 64-cell environment. (a) A ho-
mogeneous environment with a high SNR of 3.0 (high probability of detection). (b)
Experimental measurements from model-scale runs with a quadcopter and cell size of
0.6 m ⇥ 0.6 m.(c) Full-scale simulation with the ECA A9 AUV in Gazebo with cell
size 40 m ⇥ 40 m. (d, e, f) provide the same flow of results for a search region with
the SNR values decreasing in a gradient from left to right.) [4]



81

(a)

(b)

(c)

(d)

(e)

(f)

SNR = 1 (experiments)

SNR = 1 (simulation)

SNR = zoned (experiments)

SNR = zoned (simulation)

Figure 4.17: Performance comparison of the Q-Learning based planner against the
greedy and nominal boustrophedon algorithms for a 64-cell environment. (a) A ho-
mogeneous environment with a high SNR of 1.0 (low probability of detection). (b)
Experimental measurements from model-scale runs with a quadcopter and cell size of
0.6 m ⇥ 0.6 m.(c) Full-scale simulation with the ECA A9 AUV in Gazebo with cell
size 40 m ⇥ 40 m. (d, e, f) provide the same flow of results for a search region with
the SNR values varying in zoned regions (SNR of 1.0 & 3.0).)
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4.5 Summary

The development of the information measure for the underwater search channel was

defined. A novel Q-Learning approach to the underwater search problem with in-

formation gain rewards was developed. The proposed algorithm outperformed the

classic boustrophedon and greedy approaches in NMCM search missions, as shown in

both simulations and two-dimensional experimentation.

The next chapter pushes the problem further to consider a more capable and

intelligent underwater target. A collaborative robot system with 3 UUVs is proposed

to detect, track and localize an evasive underwater target. The solution builds upon

the information incentivizedQ-Learning algorithm and the multi-robot task allocation

mRobot ROS node.



Chapter 5

Collaboration of Marine Robots Towards Dynamic Target

Localization and Tracking

A mobile underwater vehicle that is unresponsive and evasive represents the most

capable and intelligent of the three targets considered in this thesis. The proposed

solution uses a collaborative system of three UUVs to detect, track, and localize the

target (Fig. 5.1).

Figure 5.1: Depiction of underwater collaborative tracking and localization of an
evasive target

First, an adaptive planner that combines Q-Learning with dynamic and predictive

information measures is developed for collaborative trajectory planning � which is

integrated with the mRobot node. Then, the simulation configuration, in particular

the acoustic environment, is presented. Lastly, results are provided comparing the

collaborative system against the standard LBL solution.

5.1 Autonomous Multi-Robot Target Tracking Algorithm

Estimating the current position, velocity, and heading of a non-responsive target is a

non-trivial problem. As presented in the literature, one solution is LBL localization

83
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that uses stationary acoustic beacons to range the target with two-way-travel-time

(TWTT) measurements. With this type of active ranging, the beacons transmit

an acoustic signal and measures the two-way-travel-time (TWTT) to determine the

distance to a target. An unambiguous solution is not possible unless three or more

measurements are available, which is the principle of trilateration [66]. The system

developed here uses trilateration and a particle filter for target state-estimation (the

state being its time-varying pose).

5.1.1 Target State Estimation

The filtering of available information to best estimate the vehicle state is the basis of

any navigation algorithm. The goal of recursive state estimation is a refined estimate

of the system state x, given its: prior state xt�1, an input, control or action u, and

measurement z [11]. In this work the target input or action is also based on the

estimate of its velocity and heading. As well, a particle filter is used to fuse the

measurements and estimate the state of the target.

Particle filtering (PF) is a sequential state estimation technique for stochastic non-

linear and/or non-Gaussian state-space models. A particle filter provides a strong

alternative to the commonly used extended Kalman filter. In particle filtering, con-

tinuous distributions are approximated by discrete random measures, which are com-

prised of particles (hypotheses in state space) and their associated weights [67]. Each

particle represents a potential solution to the target state, and the particle weight is

a measure of its importance, or likelihood. In short, the particles are sampled from

a prior distribution and then updated in future time steps based on the estimated

motion model of the target. When a measurement becomes available the particles are

re-sampled based upon their prior weights and their likelihood given the most recent

measurement, using Bayes’ rule. Then, the predicted target position (state) can be

given by the weighted mean of all the particles. The three more commonly used ways

are [68]:

1. weighted mean is chosen;

2. best particle (the one with the largest likelihood) is chosen, and

3. mean of the best group of particles is chosen.
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The first option is applied in this thesis. The entire PF algorithm is not shown here

as there are many references for this.

In this work, the target velocity v̂ and heading ĥ are estimated with running

averages based on the history of the target state estimate and a UUV kinematic

model in the horizontal plane by:

x̂t = ˆxt�1 + (v̂ · ts · cos(ĥ)) (5.1)

and

ŷt = ˆyt�1 + (v̂ · ts · sin(ĥ)) (5.2)

where ts is the time in between measurements.

To illustrate the principle of a working particle filter, a MATLAB simulation

was developed for a stationary LBL system tracking a point target. The target

is translating in the horizontal plane with a velocity of 2 m/s and a heading that

changes randomly by ±[0, 1] degrees per second. The measurement input into the

particle filter is the triliteration solution of three static beacons using ideal range

sensors with additive zero-mean Gaussian noise with 1 m variance. Acoustic delay is

considered for communication and ranging based on a sound speed in water of 1500

m/s. Figure 5.2 shows the target state estimate in four di↵erent time instances of

the described simulation. The particles updated according to the estimated target

motion model, given time in between measurements, are shown in magenta. The

re-sampled particles (given new measurement information) are shown in black, and

the measurement is shown in red. A PF with 1000 particles is implemented in this

work.
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16 76

132 532

Figure 5.2: Particle filter state-estimation applied to target tracking simulation at four
di↵erent instances in time. The first measurement becomes available at t = 16 s, and
the particles are then drawn from a prior distribution surrounding the measurement.
The particle distribution becomes more certain (less distributed) and the velocity and
heading estimates improve with each measurement.

The plots in Fig. 5.2 illustrate in this example how the distribution of the parti-

cles can change over time and become less distributed (or more certain) with more

measurements. The velocity and heading estimates are provided to illustrate how

the estimate of those parameters can adapt over time to respond to changes in the

target’s trajectory.
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In underwater applications the performance of a recursive state estimator relies

on the ability of the system to acoustically detect the target. Similar to the sonar

imaging techniques used to detect targets on the sea floor, the SNR quantifies a

sonar’s ability to range a target given an acoustic ambient.

5.1.2 Sonar Equation

The results and method presented in this chapter use the sonar equation to estimate

the acoustic channel for both communications and active sonar ranging. For active

acoustic ranging of a target the SNR can be approximated using the sonar equation

in the form of Eq. 5.3. One-way-travel communication SNR can be approximated

using the sonar equation in the form of Eq. 5.4 [69]

SNR = SL+ TS � 2(TL)�NL (5.3)

SNR = SL� TL�NL (5.4)

where SNR is the received signal-to-noise ratio in dB, SL is the source level, TS is

the target strength, TL is the transmission loss, and NL is the ambient noise level.

The source level is the ratio of the transmitted intensity 1 m from the source to a

reference intensity and can be calculated by [69]:

SL = 10log10P + 170.8 (5.5)

where P is the transmitted power in Watts.

The target strength is the ratio of the reflected signal intensity at 1 m from a

target to the incident intensity, in dB [69]. The target strength TS can be calculated

by:

TS = 10log10
�

4⇡
(5.6)

where � is the e↵ective cross-sectional area based on the target aspect angle.

The final term TL is the attenuation of the acoustic signal as it propagates through

the underwater channel. There are two components to transmission loss. The larger

of the two is geometrical spreading of the wavefront. In an infinite-sized medium
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the wavefront will spread spherically. In reality, the wavefront will spread spherically

until it reaches the water-surface or ocean-floor (e.g. in shallow water), which will

cause the wavefront to then spread cylindrically. The transmission loss for spherical

and cylindrical spreading can be calculated using Eqs. 5.7 and 5.8, respectively.

Equations 5.7 to 5.13 are summarized from [14].

TL = 20log10R + (↵vis + ↵B + ↵M)R (5.7)

TL = 10log10R + (↵vis + ↵B + ↵M)R (5.8)

The second, and lesser contribution to transmission loss, is absorption of the sound

as it propagates. The absorption loss has three components —viscous, boric acid

relaxation, and magnesium sulphate relaxation [14]. All absorption components are

modelled with a linear dependence on range ↵R, where ↵ is the absorption constant

(dB/km) and R is range (km). The viscous absorption coe�cient ↵vis is calculated

per Eq. 5.9, which is a function of frequency f, temperature in Celsius T, and depth

D.

↵vis = 4.9⇥ 10�4
f
2
e
�(T/27+D/17) (5.9)

The absorption second mechanism is the relaxation process of boric acid, whose co-

e�cient ↵B, can be described by:

↵B = 0.106
f1f

2

f
2
1 + f 2

e
�(pH�8)/0.56

. (5.10)

The final absorption mechanism is the magnesium sulphate relaxation process ↵M ,

which is described by:

↵M = 0.52(1 +
T

43
)(

S

35
)

f1f
2

f
2
2 + f 2

e
�D/6

. (5.11)

The terms f1 and f2 can be found with Eqs. 5.12 and 5.13:

f1 = 0.78
p

S/35eT/26 (5.12)

f2 = 42eT/17 (5.13)
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where S is salinity in parts per thousand (ppt). The acoustic modem parameters

used are from the Woods Hole Oceanographic Institute (WHOI) micromodem with

a carrier frequency fc = 24 kHz and P = 100 W [70].

In summary, the sonar equation gives an estimate of the SNR for acoustic ranging

given the position of the target relative to the sensing UUV. It is also applied to

estimate the SNR for communications between collaborating UUVs. In continuation,

the SNR impacts the information measure when ranging a target —similar to that

in Section 4.1.

5.1.3 Dynamic Information Motivated Q-Learning Trajectory Planner

The autonomous planner developed here builds on the information measure and chan-

nel definition presented in Section 4.1. The search game discussed previously was the

two-player game where the second player is the target whose objective is to stay hid-

den. When the second player can move in a manner that is uncertain to the searcher

it is called a rendezvous game. The information measures in a rendezvous game are

solved with a similar mathematical procedure, such that Eq. 4.24 still applies [7].

The proposal here is for the search channel defined in Section 4.1 to be adapted

to the underwater target-tracking problem. That is, the search channel becomes the

acoustic channel to range a target in the water-column rather than to detect it on

the sea floor. The environment is still partitioned into discrete cells.

To make decisions on where the each of the three UUVs should navigate, a pre-

diction of the target’s state into the future is required. First, the look-ahead level Ln

is defined as the estimated state of the target at a future time step tsn. The time step

ts is defined as the time it takes for a UUV to travel the distance across a cell. For

continuity, the cell sizes here are kept the same (40 m ⇥ 40 m) as in Chapter 4. Each

look-ahead level is used to predict the SNR in each cell at that time, per Eq. 5.3.

Following Eq. 4.24 a predictive information payout map is computed for each look-

ahead level. Multiple-pass search calculations (n > 1) are no longer considered as the

information payout per cell changes with each time step. Increasing the look-ahead

level inherently increases the computations. However, too few can lead to the planner

being near-sighted, which is making short-term decisions that could negatively a↵ect

future performance.
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The payout map’s size are parametrized by length and width so that computations

can be limited to a focused region around the target. For the results in this chapter

the map size was set to 3 km ⇥ 3 km. A map of this size is approximately equal to

the region around the target where the SNR > 0 (and information gain > 0), which

will be discussed further in section 5.2.1. As the payout maps no longer cover the

whole search area, they are centred around the estimated location of the target in the

final look-ahead level. To avoid the collaborating UUVs from approaching too close

to the target, a constraint is applied which sets the information payout to zero within

a set radius from the target.

An example of the proposed predictive information payout maps are shown in Fig.

5.3, where L = N predictive payout maps are shown for a target moving along the

x-axis with a constant position paralleling the y-axis at 1500 m.

Figure 5.3: Predictive payout maps for L = N look-ahead levels. The estimate of the
target position at each look-ahead is at the center of the white region that is the stand-
o↵ distance to the target. The heat-maps shows the predicted levels of information
gain (bits) for each cell (per look-ahead level), which decreases as a function of range
from the target. Maximum information gain is found next to the broadside of the
target where TS is maximum.

The important features to note in Fig. 5.3 is that the information payout (and

SNR) is maximum next to the broadside of the target where the target strength level

TS is maximum. As expected, the information gain is also a function of range to the

target.
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Q-Learning and Multi-Robot Goal State Selection

Similar to Algorithm 2 (Fig. 4.6), Q-Learning is applied here to generate path-

planning policies with information payout as the reward function. The modified

Q-Learning algorithm, denoted ’Algorithm 3’ in Fig. 5.5, plans trajectories for the

three collaborating UUVs to track the target. The major di↵erence here is the infor-

mation payout changes at each time-step, or each time a new action is selected, during

the learning process. The reward matrix is updated until a terminal look-ahead is

reached, which is used for the remainder of the learning process. The number of

look-ahead levels is therefore a tunable parameter. Note that if a UUV is located

outside of the focused payout map, then the starting state s is set to the nearest cell.

The learning environment here is no longer deterministic as the rewards in each cell

change after each action. The reward gain = 6 and discount factor � = 0.5 were

carried over from the previous sensitivity study in Chapter 4. The learning rate was

set to a constant ↵ = 0.1 and ✏ = 0.4 which are values often used in practice [71].

In most applications ↵ = 0.1 is a su�ciently small step-size that does not signifi-

cantly increase the time required for the learning process. An ✏-greedy approach with

✏ = 0.4 is practical as it balances exploration and exploitation by choosing between

two methods randomly. Future work could conduct a sensitivity study to determine

optimal parameters. Expectation is that the results would not vary in a statistically

significantly manner.

The problem of goal state selection is expanded to the three-vehicle problem. The

purpose is to position the vehicles in the best possible configuration in the the final

look-ahead LN . A simple selection process is used that balances the desire for high

rewards while maintaining space between the three UUVs to achieve the best possible

trilateration solution. The result of the selection process is a triangular configuration

of goal states that is illustrated in Fig 5.4. Note that the solution is for a target

travelling parallel to the x-axis.
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Reward

Q

replan

inform
ation gain (bits)

final lookahead L(N)

target sta
ndoff 

UUV standoff 

Figure 5.4: Outcome of goal selection process where the 3 goal states maximize
information payout with the imposed stand-o↵ constraints. Goal states are shown in
red, and the related stand-o↵ parameters are labelled.

Output: Q-table, Q(s,a), with optimized q-value for each state-action pair

return Q

Algorithm 3 Q-Learning Algorithm with Predictive Information Gain Reward Map

Require: 
!"#"$%: ! = {1,… , ,!}	

/0"12,%: / = 1,… , ,"
3$4#56	7#"518: 	3 ∶ !	×	/	×	;					(=,>257#"12,	?#@2A"	#"	$#0ℎ	C22D#ℎ$#6)

1,1"1#C1F$	G ∶ 	!	×	/		5#,627C@	

while Q is not converged

Begin:

%"#5"	1,	%"#"$	%	 ∈ !

while s is not the goal state
0ℎ22%$	#	I#%$6	A?2,	J5$$6@ −$8?C25#"12,	%"5#"$J@

# ← 5#,627	#	 ∈ /! ... (exploration)

# ← #5J7#8"G %, # ... (exploitation)
OR

5 ← 3 %, #, C

%# ← % + #

G %#, # ← 1−N O G %#, # +α O (5+ Q O 7#8"!G %#, ## )
% ← %′

C ← C + 1

C = ;$

for j = 1: N (increment thru N=3 UUVs)

Figure 5.5: Proposed Q-Learning algorithm with predictive information gain rewards
based on target state look-ahead levels.
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Given the proposed algorithm, the last decision for mRobot to manage is when a

re-plan (new trajectories) should be conducted. Ultimately, three criteria were chosen

that trigger a re-plan:

1. if the velocity-estimate change (% di↵erence) between a planning instance is

greater than a threshold;

2. if the heading-estimate change (% di↵erence) between a planning instance is

greater than a threshold, and

3. if a time limit is reached.

A more optimal solution to determine when a re-plan is warranted can be explored

in future work.

The entire autonomous planning and task allocation system, as it is implemented

within the mRobot ROS node, is summarized by Fig 5.6.

Yes No

START:
first detections of target occur 

Lookahead update:
1. calculate lookahead timestep

2. calculate target position at each lookahead

Information payout update:
generate predictive optimized information 

payout for each cell, in each lookahead level

Q-Learning:
select goal cells and 

output trajectory for 3 UUVs

re-plan
criteria 

reached?

SNR map update:
generate predictive SNR map for each 

lookahead level, L
Target state estimate  

update
(particle filter)

1. update estimate of target 
position

2. update predicted motion 
model (velocity & heading) 

UUV range 
measurments

publish
trajectories 
to UUVs

Figure 5.6: Autonomous target state-estimate and tracking algorithm implemented
in the mRobot ROS node for multi-UUV collaboration.
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There are several important parameters of the proposed solution that have been

introduced. Certain parameters were tuned during development, and from previous

studies. A complete sensitivity study was not completed. A list of the parameters

and the values used to obtain the results in this work are listed in Table 5.1.

Table 5.1: Parameters of proposed autonomous planning algorithm

Trials plan for dynamic tracking project 
 

 8 

reward function 
max lookahead levels LN 7 

payout map dimensions 3 km × 3 km 

Q-Learning 

discount factor " 0.5 

reward gain 6 

# 0.4 

$ 0.1 

replanning criteria 

velocity change threshold (% difference) 20 

heading change threshold (% difference) 20 

time limit (s) %!"# × &' 
 
 
 
 
5.2 Simulated Environment

The ECA A9 AUV and the UUV Gazebo simulator tools were used again to evalu-

ate the proposed path-planner’s e↵ectiveness in a controlled underwater environment

through simulations [27]. Each of the three collaborating assets and the target were

simulated by the ECA AUV simulator package. The following section describes the

simulated search region and acoustic environment.

5.2.1 Acoustic Environment

In this chapter, a few simplifying assumptions are made to the acoustic environment.

Firstly, the search area of interest in this chapter is the Bedford Basin (an inland

body of water near Halifax, Canada). The basin has a maximum depth of 71 m and

its bathymetry is shaped like a bowl with its deepest point close to the geometric

center [72]. However, in simulations the acoustic channel is simplified to a constant

depth of 40 m. Secondly, the target of interest is a Victoria Class submarine which
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has a 70.86 m length, 7.6 m beam, and 5.5 m draught [73]. The target is assumed to

be a rectangular prism for the purpose of reducing the complexity when computing

the target cross-section �. Thirdly, ↵ is assumed constant with all absorption model

parameters fixed at T = 10oC, S = 35 ppt, and pH = 8 [14]. The range in temperature

of a body of water can be large, where 10oC resides near the accepted yearly average

of the Atlantic Ocean. The range of salinity and pH are less significant, and the values

selected here match the results found in [74] for a similar 70 m depth environment.

Furthermore, if the SNR for one-way-travel communication is above 1 then it is

assumed that acoustic packets will be transmitted and received reliably.

Figure 5.7 plots the SNR in dB versus range using assumptions detailed in this

subsection. The source level of a target submarine can vary depending on its relative

aspect to the UUV. A typical value for the broadside of the submarine is 25 dB [57],

which was used for generating the plots in Fig. 5.7.

Figure 5.7: SNR versus range for both two-way acoustic ranging and one-way com-
munications for an acoustic environment with: (a) lower NL (85 dB) and (b) higher
NL (110 dB). Spherical and cylindrical spreading are modelled for comparison.

The respective noise levels in Fig. 5.7 were selected based on the communication

range provided by cylindrical wavefront model. In the low noise case (85 dB) the

communications go to the horizon at sea level (SNR > 1 at 6 km), while they

do not for the higher noise level of 110 dB. In continuation, the noise level also

impacts the target detection range. These respective noise levels will be applied

to test the proposed system’s ability to track a target in relatively high and low

noise environments. The noise levels are higher for the cylindrical spreading model to
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capture the additive noise from reverberation in a shallow environment. Environments

with both types of spreading and ambient noise levels are studied in this chapter, while

the spherical model is the baseline case. The ambient noise levels in an actual ocean

environment would vary spatially and with time.

Lastly, simulated UUV acoustic sensors are implemented to measure the TWTT

to the target based on a sound speed of 1500 m/s. The TWTT measurements are

subject to additive zero-mean Gaussian noise with 1 m variance. The detection out-

come is determined by applying the probabilities PDl
and PFl

from the optimization

process of Eq. 4.30. Delays due to time-of-flight for the range measurements and

communications between assets are modelled.

5.2.2 3-UUV Configurations for Target Tracking in Confined Spaces

The geometry of the Bedford Basin model used in simulation is shown in Fig. 5.8.

Figure 5.8: Simulated environment based on the Bedford Basin (Halifax, Canada).
The coordinate system is defined with the x-dimension on the long side of the envi-
ronment and the origin at the entrance to the basin from the Narrows.

Parameters of simulated environment were varied to test and compare the 3-UUV

collaborative system with the standard stationary LBL solution. The placement of
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the three LBL beacons (at the start positions of the UUVs) was varied, along with

the target velocity, target trajectory, and ambient noise level NL.

The two 3-UUV configurations (yellow, green) and the three target trajectories

considered in simulations are shown in Fig. 5.9. Tables 5.2 and 5.3 describe the

configurations and target trajectories. Note that communication between assets is

possible (Fig. 5.7) for the initial configurations. However, the target cannot be

reliably detected at all points on the trajectory lines. The mRobot node is located on

the lead UUV, labelled UUV 1, which subscribes to the state and measurements of

the other UUVs to conduct the mission-planning.

Figure 5.9: Bedford Basin showing the environment boundary and locations of LBL
beacons / initial UUVs’ positions. Yellow triangles represent configuration #1 that
provide a baseline set-up where the beacons and UUVs are within range of the target
at the start of the mission. The green triangles show configuration #2 which disperses
the beacons and UUVs to provide greater coverage of the environment. The numbers
within each triangle identify the number for the di↵erent beacons/UUVs. The three
target trajectories for the simulations are labelled T1, T2, T3. The grid-lines within
the rectangle are 1 km (y axis) and 2 km (x axis) spacing lines for reference.
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Table 5.2: Coordinates of LBL beacon and UUV start positions for the two configu-
rations as shown in 5.9.

Trials plan for dynamic tracking project 
 

 2 

 
Figure 2: Bedford basin showing approximated simulation environment boundary and placement of LBL 

beacons/ initial position of searcher AUVs. Yellow triangles represent configuration #1 and green 
triangles show configuration #2. The numbers within the tringles are the identifying number for the 

different beacons/AUVs. Three different approximate target trajectories tested in simulation are also 
highlighted at T1, T2 and T3. 

 
Table 1: Coordinates of LBL beacon and AUV starting positions for 2 configurations as shown in Figure 
2. The coordinate system relative to the basin was defined in Figure 1. 

configuration # beacon/ UUV #1  
initial pose (x, y) (m) 

beacon/ UUV #2  
initial pose (x, y) (m) 

beacon/ UUV #3  
initial pose (x, y) (m) 

1 (yellow) (700, 700) (700, 2700) (2000, 2000) 

2 (green) (1500, 700) (1500, 2700) (5700, 3000) 

Table 5.3: Target trajectories studied in simulation

Trials plan for dynamic tracking project 
 

 3 

Table 2: target trajectory description 

trajectory initial heading (°) 
(measured from positive x-axis) 

heading change (°) 
(at x = 4000 m) 

T1 9 0 
T2 0 port 17 
T3 32 starboard 34 

 
 
 
 
 
 
 

5.3 Results and Discussion

Trials matrix 1 (Table 5.4) details the baseline simulations where the beacons are

placed close to the basin entrance from the Narrows such that the target is more

likely to be detected early (yellow, configuration 1). The spherical spreading acoustic

model is used for configuration 1. Trials matrix 2 (Table 5.5) represents a more

realistic and challenging set-up with a cylindrical spreading acoustic model. The

distribution of beacons in configuration 2 are representative of a set-up more suitable

for the LBL system (green, configuration 2).

The average root-mean-square error (RMSE) is reported to compare the collab-

orative and LBL tracking solutions in each trials matrix. The RMSE measures the

di↵erence between the estimated and actual target state at one second intervals,

which is averaged over the duration of the mission. Note, the LBL solution uses

the same target state-estimation algorithm and sensor model as the 3-UUV collab-

orative system. The combined set of trials are not an exhaustive set of simulations.

Representative examples from both trials are presented and discussed next. All the

simulation trials results are in Appendix A.
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Results from configuration 1 trials are discussed first. The results from Table 5.4

(configuration 1) show the proposed 3-UUV collaborative system is a notably better

solution for the simulation parameters in trials 1-18. Not unexpectedly, the RMSE

for both increases with increasing ambient noise NL and target velocity.

Figure 5.10 plots the trajectories of all four vehicles from six trials in the 55

dB noise environment (trials 1-3, 7-9), which demonstrate the collaborative 3-UUV

system response to the target. Being able to track the target and adapt to evasive

manoeuvres was one of the main objectives. As shown in Fig. 5.10, the 3-UUV

collaborative system was able to track and maintain a stand-o↵ from the target when

it travelled at the same velocity (trials 1-3). When the target travelled twice as fast

(trials 7-9), the UUVs were still able to track the target and adapt to the heading

changes at 4000 m. However, the UUVs eventually fall out-of-range. The trajectory

plots for the other trials in Table 5.4 are not shown as they do not di↵er significantly

from Fig. 5.10.

Figure 5.11 plots the target state estimate-error versus time for the six trials shown

in Fig. 5.10. With the slower moving target (2 knots), the collaborative UUV system

was able to track and localize the target with low error for the mission duration (trials

1-3 in Fig. 5.11). The LBL solution eventually falls out of detection range and the

estimate error grows unbounded after 4000 m. Configuration 1 was at a disadvantage

for both the LBL and 3-UUV collaborative solution, as the error generally increases

with time. Specifically at high target velocity (4 knots), the 3-UUV collaborative

system is chasing the target early and is not able to provide a consistent estimate for

the full duration (trials 7-9). However, the advantage provided by the collaborative

system is clear.

Figure. 5.12 provides the estimate-error plots for the same six trials in the 80

dB noise environment (trials 10-12, 16-18). In these high noise trials, both solutions

provide a higher average error —as expected. The collaborative UUV system bounds

and maintains a relatively low error for the duration of trials 10-12, and again shows

improvement over the LBL system for the faster moving target in trials 16-18. In the

later three trials, the average RMSE for the collaborative UUV solution was 89.2 m,

101.7 m, and 121.5 m, which is quite high relative to the other fifteen trials. This

result can be explained by the presence of higher ambient noise and target velocity.
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Under such conditions the probability of making a valid detection is lower, and the

UUVs have less time to respond to the faster moving target. For both the high and

low noise cases, the di↵erent target trajectories do not significantly a↵ect the 3-UUV

system. However, in the high noise trials the LBL solution is not able to accurately

update its estimate of the target after it makes a heading change —a function of the

reduced detection range and the beacon configuration. This result is less significant

at lower target velocities when more measurements are possible for the LBL solution

due to more favourable sensing conditions and a longer measurement period.
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trial 7 NL = 55 dB, target vel. 4 kn

trial 8: NL = 55 dB, target vel. 4 kn

trial 9: NL = 55 dB, target vel. 4 kntrial 3: NL = 55 dB, target vel. 2 kn

trial 2: NL = 55 dB, target vel. 2 kn

trial 1: NL = 55 dB, target vel. 2 kn

Figure 5.10: Trajectories of the collaborating UUVs adapting to the target over the
tracking mission duration. Six trials are shown from configuration 1, where trials 1-3
are with a target velocity of 2 kn (or 1 m/s) and 7-9 are with a target trajectory of 4 kn
(or 2 m/s). The increasing dot size on the trajectory lines provides a reference for the
passage of time. The UUV system tracks the target successfully for the full duration
of trials 1-3. In trials 7-9 the faster moving target does outrun the UUVs; however,
the UUVs are still shown to track and adapt to changes in the target trajectory.
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trial 7 NL = 55 dB, target vel. 4 kn

trial 8: NL = 55 dB, target vel. 4 kn

trial 3: NL = 55 dB, target vel. 2 kn

trial 2: NL = 55 dB, target vel. 2 kn

trial 1: NL = 55 dB, target vel. 2 kn

trial 9: NL = 55 dB, target vel. 4 kn

Figure 5.11: Comparison of 3-UUV versus LBL target state estimate tracking solu-
tions over the mission duration, and the RMSE versus time for trials 1-3 and 7-9 in
configuration 1 (trials detailed in Fig. 5.10). The 3-UUV system provides a lower
average state estimate than the LBL for all trials —as the LBL solution falls out of
range at approximately 4000 m.
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trial 16 NL = 80 dB, target vel. 4 kn

trial 17: NL = 80 dB, target vel. 4 kntrial 11: NL = 80 dB, target vel. 2 kn

trial 10: NL = 80 dB, target vel. 2 kn

trial 18: NL = 80 dB, 
target vel. 4 kn

trial 12: NL = 80 dB, target vel. 2 kn

Figure 5.12: Comparison of 3-UUV versus LBL target state estimate tracking so-
lutions over the mission duration, and the RMSE versus time for trials 10-12 and
16-18. These trials have the same parameters as the trials in 5.11 with the exception
of increased noise (80 dB). Higher error is provided by both solutions in the higher
noise conditions, where the 3-UUV system again provides an improvement over the
LBL for all trials.
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Results are now discussed for the configuration 2 trials, corresponding to the green

triangles in Fig. 5.9. The average RMSE reported in Table 5.5 present a similar trend

to the first set of trials when comparing the LBL and 3-UUV collaborative solutions.

The total average error is larger for both systems due to the more di�cult acoustic

environment: cylindrical wavefront spreading and added noise due to reverberation.

The 3-UUV collaborative solution again provides a better solution for all trials.

Towards tracking the target, the trajectories in Fig. 5.13 illustrate the advantage

of the UUVs starting further downstream from the basin entrance in configuration

2. With a lower target velocity (2 knots in trials 20-22), the UUVs navigate closer

to the entrance of the basin to improve the detection probability, and then continue

to track the target for the duration of the mission. With a higher target velocity (4

knots in trials 26-28), the UUVs can still fully adapt to the evasive manoeuvres of

the target and maintain a good stand-o↵. The target does start to outrun the lagging

two UUVs in the last kilometre of the missions. Again, the trajectory plots for the

complete set of trials in configuration 2 are not provided as they do not provide any

further insight than in Fig. 5.13.

The sample of low ambient noise (85 dB) trials in Fig. 5.14 provide insight into

the challenges brought on by the more di�cult acoustic environment, and dispersed

beacon configuration. In the trials with low target velocity (2 knots in trials 20-22),

the LBL solution is unable to develop a strong estimate of the target pose prior to

approximately 2000 s, when the target comes into range. The 3-UUV collaborative

solution is challenged in a similar manner; however, an improvement is seen as the

error is minimized approximately 500 s earlier than the LBL solution. Note, these

times associate with a target location of approximately 1500 m and 2000 m in the

x-axis for the 3-UUV and LBL solutions, respectively. The UUVs’ abilities to mo-

bilize and head towards the target early in the mission provides the advantage seen

here. Consequently, the UUVs can also maintain and bound the estimate error for

the remainder of the missions. The LBL solution is only able to provide a window

from approximately 2000� 4500 m where the error is bounded and equivalent to the

3-UUV collaborative solution. Outside of that window, the target appears to leave

the region covered by the stationary beacons. The results are similar when the target

is in transit at 4 knots, with the exception that the error is larger for both tracking
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methods at the start and end of the trials (trials 26-28). The increased error observed

is of course expected, as the detection window is shorter and the delay in the TWTT

measurements and communications is more significant when the target travels with

higher velocity. However, the 3-UUV collaborative solution maintained a relatively

small bounded error through to the end of each trial. The target trajectory again

does not appear to play a significant role in either solution, with the exception of

trial 28 where there is a bump in estimate error at 4000 m (2400 s) when the target

changes its heading. Both solutions are able to recover and detect the large head-

ing change in trajectory T3. The LBL solution falls out-of-range shortly after. In

general, the LBL system provides a better estimate in trials where the target follows

trajectory T3, relative to the other two trajectories. This result can be explained by

the asymmetrical configuration of the beacons, which is more ideal when the target

navigates closer to centroid of the triangle of beacons (as in T3) prior to making a

heading change.

Continuing with results from configuration 2, a sample of the high noise (110 dB)

environment trials are shown in Fig. 5.15. The higher ambient noise and reverberation

in the acoustic environment increases the average error for both solutions, which again

a↵ects the LBL solution more. As in the other trials, the UUVs navigate to reduce

their respective ranges to the target where the sonar SNR is larger and detections

can be reliable, even in a high-noise environment. However, an increase in noise (and

a decreased SNR) directly reduces the detection range of a stationary beacon, and

the LBL system performance decreases in a proportional manner. Observing the low

velocity trials (29-31) first, the mobile UUVs can bound and reduce the estimate

error after approximately 2000 s, while the LBL solution is poor throughout. The

high velocity trials (35-37) approach the failure point for both systems; however, the

3-UUV collaborative system was able to provide short durations with low-error. Here,

the target trajectory does have a more significant impact on the results. The most

significant impact can be observed in comparing trials 36 and 37 (T2 and T3). In trial

37, the target heads towards the 3rd beacon/UUV and both systems see an improved

average estimate. In trial 36, the target maintains a larger stand-o↵ from the 3rd

beacon which increases the error for the LBL solution. The error is also higher for

the collaborative solution in trial 36 as the system has less time to adapt to the target
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and improve the measurements.

trial 21

trial 22 trial 28

trial 26: NL = 85 dB, target vel. 4 kn

trial 27: NL = 85 dB, target vel. 4 kn

trial 28: NL = 85 dB, target vel. 4 kntrial 22: NL = 85 dB, target vel. 2 kn

trial 21: NL = 85 dB, target vel. 2 kn

trial 20: NL = 85 dB, target vel. 2 kn

Figure 5.13: Trajectories of the collaborating UUVs adapting to the target over the
mission duration. Six di↵erent trials are shown from configuration 2, where trials 20-
22 have a target velocity of 2 m/s (or 1 kn) and 26-28 are with a target trajectory of 4
m/s (or 2 kn). The increasing dot size on the trajectory lines provides a reference for
the passage of time. The UUVs are able to track and adapt to the target throughout
the six trials. Specifically, in trials 26-28 the UUVs are still able to track the target
travelling at a higher velocity.
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trial 20: NL = 85 dB, target vel. 2 kn trial 26: NL = 85 dB, target vel. 4 kn

trial 27: NL = 85 dB, target vel. 4 kn

trial 28: NL = 85 dB, target vel. 4 kn

trial 21: NL = 85 dB, target vel. 2 kn

trial 22: NL = 85 dB, target vel. 2 kn

Figure 5.14: Comparison of 3-UUV versus LBL target state estimate tracking solu-
tions over the mission duration, and the RMSE versus time for trials 20-22 and 26-28
(trials detailed in Fig. 5.13). The 3-UUV system accurately tracks the target for
all trials after an initial duration when the UUVs converge to the target. The LBL
solution provides an accurate estimate of the target pose for a shorter period of time
in all trials.
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trial 29: NL = 110 dB, target vel. 2 kn trial 35: NL = 110 dB, target vel. 4 kn

trial 36: NL = 110 dB, target vel. 4 kn

trial 37: NL = 110 dB, target vel. 4 kn

trial 30: NL = 110 dB, target vel. 2 kn

trial 31: NL = 110 dB, target vel. 2 kn

Figure 5.15: Comparison of 3-UUV versus LBL target state estimate tracking so-
lutions over the mission duration, and the RMSE versus time for trials 29-31 and
35-37. These 6 trials have the same parameters as the trials in 5.14 with the excep-
tion of increased noise (110 dB). The significance of these results is again the superior
performance of the 3-UUV system. Trials 35-37 challenge both solutions, where the
LBL system is ine↵ective. The UUVs are able to provide short windows of accurate
estimates in trials 35-37.
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5.4 Summary

An autonomous trajectory planner was developed towards underwater evasive target-

tracking and localization. The information measure was adapted to the acoustic

channel for range only measurements of a mobile target. Predictive look-ahead in-

formation payout maps were developed as the reward for Q-Learning. Particle filters

performed the target state (pose) estimation and thus a prediction for the target state

with increasing look-ahead levels.

The simulated environment captured the acoustic propagation conditions for com-

munication and sensing based on the the sonar equation with assumed levels for the

ambient noise. Results from 38 simulated trials cases were presented with variable

target velocity, target trajectory, acoustic noise, and sensor configuration. The results

were used to compare the tracking solution for the proposed 3-UUV system and the

standard LBL method.

The proposed 3-UUV collaborative system can track the target through a simu-

lated Bedford Basin environment and provide better tracking than the LBL solution

for all trials cases. The 3-UUV system was able to navigate in order to increase the

target detection likelihood and ultimately provide superior performance. In trials

with increasing target velocity, the collaborative UUV system was able to react and

extend the window where target detections were reliable. As expected, the ability of

the mobile UUVs to optimize their position to sense the target provided a significant

advantage. Higher ambient noise and target velocities decreased the accuracy of both

solutions, where the final trials, 35-37, significantly challenged both systems.



Chapter 6

Conclusions and Future Work

This thesis studied autonomous multi-robot path-planning and task-allocation to-

wards gaining information on three types of marine targets with increasing uncertainty

and mobility. Firstly, a collaborative robot system was proposed as a method towards

surveying and creating 3D representations of stationary and partially-submerged tar-

gets. Results from simulation and controlled in-water testing were reported, which

demonstrated the ability of the mRobot ROS node to plan and distribute tasks to a

network of above-and-below-water robots. The contribution was the development and

validation of the mRobot node. Secondly, towards searching for underwater targets,

an autonomous algorithm was developed that combines optimized multi-pass infor-

mation measures with reinforcement Q-Learning as a method for trajectory planning.

The mRobot node was used to manage the planning and distribution of waypoints to

a UUV during search missions. A sensitivity study was completed, which illustrated

that the value of reward gain and discount factor � can play a significant role in

changing the trajectory of the UUV. In simulated NMCM target search missions, the

Q-Learning based planner showed improved information gain performance compared

to the boustrophedon and greedy approaches. This improvement was observed for

both homogeneous and variable SNR environments. Lastly, a collaborative UUV

system was developed as a method to detect, track, and localize unresponsive tar-

gets. The proposed system built on the previous chapters by adapting the information

measure into predictive look-ahead information payout maps. The predictive infor-

mation measures were used as the reward function for Q-Learning with three UUVs.

The mRobot ROS node was used again as a tool to manage the planning and task-

allocation. As expected, increasing acoustic noise and target velocity reduced the

e↵ectiveness of the 3-UUV system. However, the collaborating UUVs outperformed

the LBL solution for all of the trials considered in controlled simulations.

In conclusion, the robotic path-planning and task-allocation requirements varied
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significantly given static targets of known pose, static targets of unknown pose, or

mobile targets of unknown pose. Firstly, when surveying a floating target the main

challenge was communication and planning in multiple-domains. The planning was

aimed at overcoming constrained communication with the UUV. However, as the pose

of the static target was known prior to the mission, neither complex path-planning nor

tightly-coupled task-allocation was required to complete the survey. Secondly, search-

ing for underwater static targets of uncertain pose required planning that could adapt

to the continuous flow of information obtained during the search. In continuation,

dynamic planning that considered variability of environmental conditions and uncer-

tain detection outcomes was crucial to maximizing search performance underwater.

Lastly, tracking a mobile target of unknown pose required a combination of dynamic

state-estimation and tightly-coupled collaboration between the three UUVs. Tightly-

coupled task-allocation was essential to ensure each UUV maintained a stand-o↵ with

both the target and its team-mates to minimize the target state estimate error.

There are several considerations for future work in this thesis. Firstly considering

Chapter 3, the project will take the heterogeneous collaborating robots into a larger

in-water environment to test the underwater acoustic communications. A larger en-

vironment will also allow for experimental validation of the USV path-planning in

support of its team-mates, as well as quantifying the benefit of its role in the system.

With regards to the merging of above- and below-water models, more complex and

larger targets will be trialled. Secondly, immediate future work is conducting a more

exhaustive set of simulations to better understand the capability and limitations of

the collaborative UUV system for underwater target tracking. Di↵erent target sizes,

velocities, and trajectories will be explored. Thirdly, collaborative localization was

introduced as a method for improving and bounding the localization error of UUVs;

however, the state-estimate error of the underwater robots was not considered in this

thesis. Accounting for UUV self-localization error and implementing either a CL or

CNA method is an important consideration as future work for both Chapters 4 and

5. Lastly, controlled in-water testing would take a large step towards validating the

the proposed target tracking method.
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Appendix A

Complete Results for Target Tracking and Localization

Simulations

This appendix provides the complete set of target tracking simulations in Chapter 5

(Tables 5.4 and 5.5). The figures here are labelled by their trial number.

A.1 Configuration #1 Results

Figure A.1: Trial #1
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Figure A.2: Trial #2

Figure A.3: Trial #3
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Figure A.4: Trial #4

Figure A.5: Trial #5
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Figure A.6: Trial #6

Figure A.7: Trial #7
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Figure A.8: Trial #8

Figure A.9: Trial #9
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Figure A.10: Trial #10

Figure A.11: Trial #11
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Figure A.12: Trial #12

Figure A.13: Trial #13



128

Figure A.14: Trial #14

Figure A.15: Trial #15
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Figure A.16: Trial #16

Figure A.17: Trial #17
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Figure A.18: Trial #18
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A.2 Configuration #2 Results

Figure A.19: Trial #20
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Figure A.20: Trial #21

Figure A.21: Trial #22
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Figure A.22: Trial #23

Figure A.23: Trial #24
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Figure A.24: Trial #25

Figure A.25: Trial #26
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Figure A.26: Trial #27

Figure A.27: Trial #28
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Figure A.28: Trial #29

Figure A.29: Trial #30
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Figure A.30: Trial #31

Figure A.31: Trial #32
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Figure A.32: Trial #33

Figure A.33: Trial #34
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Figure A.34: Trial #35

Figure A.35: Trial #36
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Figure A.36: Trial #37


