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ABSTRACf 

Core samples collected around Atlantic Canada, specifically from the West Head salt 
marsh, Chezzetcook Inlet, enable temporal and spatial examination of benthic 
foraminiferal assemblages. Benthic foraminiferal zonations, representing specific 
environments above mean sea level, occur in salt marshes. Trochammina macrescens 
and Tiphotrocha comprimata indicate the higher high water (HHW) level, the 
maximum tidal extent during any time period and the most accurate former sea-level 
marker. Collected core samples yielded nine accurate sea-level points and one 
additional point was extrapolated from Baie Verte. Carbon-14 dating (corrected to 
sidereal years) permits the construction of a Holocene relative sea-level (RSL) curve 
by plotting corrected 14C dates (temporal) against corresponding sample depths 
(spatial). The curve produced for the Atlantic coast of Nova Scotia shows a rise in 
RSL for the last 7859 years and, more specifically, a RSL rise in Chezzetcook for 

i 

424 7 years. RSL curves are variable across Atlantic Canada and local isostatic 
adjustment associated with peripheral forebulge migration following deglaciation is 
probably the source of the overall variation. However, an acceleration observed 
between 5295-3819 ybp in this curve and a previous curve from Northern Nova Scotia 
is hypothesised to be a eustatic response, possibly correlated with an oscillation 
reported in South Carolina. 

Key Words: foraminifera, salt marsh, Chezzetcook Inlet, Holocene, relative sea level, 
peripheral forebulge, eustatic 
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CHAPTER 1 INTRODUCfiON 

1.1 Introduction 

Foraminifera are heterotrophic marine organisms belonging to the Phylum 

Protozoa, Class Sarcodina (Loeblich and Tappan 1964). Single or multi-chambered 

tests composed of chitinous, agglutinated, or calcareous material enclose living 

foraminifera (Boltovskoy and Wright 1976). Chitinous foraminifera use 

polysaccharides formed from N-acetyl-glucosamine in test formation. Agglutinated 

foraminifera cement particles onto tectin, an organic membrane, during test formation. 

Calcareous foraminifera, however, secrete a calcium carbonate test of either granular 

or hyaline character (Haq and Boersma 1978). 

Foraminiferal habitats include all marine environments from tidal marshes to 

the deepest abyssal plains. Factors which determine habitat for individual species 

include temperature, salinity, feeding rates, pH, water depth, turbidity, and inter- and 

intraspecific competition (Murray 1991; Boltovskoy and Wright 1976). Planktonic 

foraminifera, for example, occupy the photic zone in the open ocean, whereas benthic 

foraminifera live on the ocean bottom. 

1 

Foraminiferal associations in the stratigraphic record can indicate specific 

paleoenvironments. For example, foraminiferal zones, ranging vertically from lowest 

low marsh at mean sea level (MSL) to highest marsh at higher high water (HHW), 

exist in salt marshes. These zones, which occur in conjunction with floral assemblages 

and appear to be controlled by elevation relative to MSL (Scott 1977; Scott and 
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Medioli 1978; Scott and Medioli 1980; Scott et al. 1981), aid in constructing relative 

sea-level (RSL) curves. 

1.2 Purpose 

The purpose of this project is to measure the frequency distribution of 

populations of salt marsh foraminifera from cores collected in the West Head of 

Chezzetcook Inlet, Nova Scotia (Fig. 1.1 ), to qualitatively evaluate the frequencies 

obtained, and to determine the age by carbon-14 C4C) dating of selected samples. 

These analyses, coupled with selected samples from elsewhere in Atlantic Canada, 

permit construction of a Holocene RSL curve, using benthic foraminiferal assemblages 

indicative of HHW environments for elevation and 14C dates for timing. 

1.3 Scope 

The scope of this investigation includes cores containing HHW intervals 

collected within the West Head salt marsh; published data from Nova Scotia including 

Bedford Basin (Miller et al. 1982), Lunenburg (Scott and Medioli 1982), and Baie 

Verte (Scott et al. 1987a); and 14C dates. Previous work provides the basis for 

interpretation of foraminiferal zones (Scott and Medioli 1980). 

1.4 Physical Setting 

Chezzetcook Inlet is situated on the Eastern Shore of Nova Scotia 45 km ENE 

of Halifax at 44° 80'N and 63° 30'W. Spits and sand bars anchored in glacial 

2 
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Figw-c 1.1. A) A regional location map showing the location (box) of Chezzctcook. Inlet (after Honig. 1987). B) A map of 
Chezzetcook. Inlet showing the relative location of the West Head salt marsh (box) and some physical characteristica (after Scott 

and Medioli 1980). 
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drumlins characterize the estuary at its mouth. In the inlet itself, intertidal mudflats, 

salt marshes, and tidal channels are the dominant environments. 

Vertical vegetative zonations (Fig 1.2) characterize salt marshes globally 

(Chapman 1960,. as cited by Scott 1977; Scott and Medioli 1980), including Atlantic 

Canada, particularly Chezzetcook (Scott 1977; Scott and Medioli 

1980; Scott et al. 1981; Scott et al. 1988). The plant species Spartina altemiflora and 

Spartina patens typically characterize low marsh environments, Spartina patens 

indicates middle marsh, and Juncus gerardii, Solidago sempervirens, Potentilla anserina 

and Cyperaceae represent high marsh. 

Floral Faunal Tidal 

100 
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Figure 1.2. Chezzetcook salt marsh vegetation, floral 
zones, foraminifera, faunal zones, and tidal heights 
defmed by elevation above MSL (from Scott and 
Medioli 1978). 

1. 5 Previous Investigations 

Scott and Medioli {1978) showed two vertical foraminiferal zonations (Fig. 1.2) 

in the Chezzetcook salt marshes. The lower zone (Zone IT) ranges from 0 to +75 em 

above MSL and contains Ammobaculites dilatatus, Ammotium salsum, Miliammina 

5 
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fusca, and Trochammina inflata. Tiphotrocha comprimata, Trochammiria macrescens, 

and Haplaphragmoides manilaensis characterize Zone I which ranges from +75 em to 

+101 em above MSL. The +75 em boundary marks a compositional change in 

foraminiferal assemblages, whereas the + 110 em boundary marks the end of the 

foraminiferal range and the HHW level. Subzone IA occurs from 100 to + 110 em 

above MSL, marks the highest tidal levels, and consists primarily of high numbers of 

T. macrescens. Application of these faunal zones in the stratigraphic record can locate 

former sea-level positions. 

Several investigators have determined Nova Scotian Holocene RSLs. Scott et 

al. (1987b) used marsh foraminiferal zonations to produce local Holocene RSL curves 

(Fig. 1.3). Honig (1987) used estuarine sedimentation, coupled with microfauna! 

assemblages, along the Eastern Shore of Nova Scotia to show a transgressive sequence 

during the Holocene. Facies characteristics, micro faunal assemblages, stratigraphic 

relationships, and modem estuarine sedimentary processes show transgressive 

conditions in local areas (Boyd and Honig 1992). 
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Figure 1.3. RSL curve of Eastern Shore, Nova 
Scotia. Cl4 dates arc not corrected for sidereal 
yean (after Scott ct a1. 1987b). 
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Combinations of local RSL curves established other local trends· of Holocene 

RSL. Belknap et al. (1987) showed that the Maine coastline is transgressing in 

response to eustatic sea-level changes and isostatic subsidence (Fig. 1.4). Scott and 

Greenberg {1983) showed evidence for RSL increments in the Bay of Fundy using 

microfauna! data obtained from salt marsh peat (Smith et al. 1984). Studies using 

foraminiferal zonations in Prince Edward Island show an increasing trend of RSL rise, 

with the rate of rise greater in the east than the west {Scott et al. 1981 ). Scott et al. 

(1987b) compiled data from all of the Maritimes, showed regional trends, and 

compared them to theoretical models. 
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Figure 1.4. Regional RSL curve based on data from Mame 
(after Belknap et al. 1987). 
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Whereas local RSL curves can produce similar results, they cannot be 

extrapolated on a world-wide scale (Ota et al. 1988, Pirazzoli and Montaggioni 1988, 

Katupotha and Fujiwara 1988, Kayan 1988). Newman et al. (1989) plotted all known 

sea-level points against time, and found that no global trend for RSL existed in the 

Holocene (Fig. 1.5). 
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Figure 1..5. Scatter diagram representing global sea-level indicaton (from Newman et al. 1989). 

1. 6 Organization 

Chapter 1 introduces foraminiferal research and discusses the purpose, scope, 

and physical setting of the current Holocene RSL investigation. Chapter 2 outlines the 

methodology of this research, including data collection methods, sampling techniques, 

foraminiferal analysis, and 14C dating procedures. Chapters 3 and 4 deal explicitly 
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with results of foraminiferal analysis and 14C dating, and with discussion of results 

regarding Holocene RSL change in Nova Scotia. Finally, Chapter 5 concludes the 

investigation and summarizes main points of interest. 

9 
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CHAYfER 2 MEffiODS 

2.1 Introduction 

Cores were retrieved from Chezzetcook Inlet using a vibracore and Davis peat 

corer. Analysis of foraminifera and 14C dating of samples from the cores provided the 

essential data to construct a Holocene RSL curve. 

2.2 Vibracoring 

Subsurface samples were obtained using a Wink vibracore fitted with aluminum 

tubing (Honig 1987). A Honda 5 hp gasoline motor provided sufficient vibration for 

ground penetration. The vibrations generated by the motor were conducted through a 

369 em flexible rotating shaft plugged into the vibracore head attached firmly to the 

aluminum tubing. The vibrations produced along the outside edges of the aluminum 

tubing allowed the tube to penetrate through the soft sediments. 

When the vibracore reached its maximum penetration, the motor was switched 

off. The ground level was marked on the aluminum tubing.· If the core did not fill the 

aluminum tube, water was poured into the tubing until it reached a level of 10-15 em 

below the top, then the aluminum tubing was capped with a rubber stopper. An 

aluminum tripod was erected above the aluminum tubing. The core was then pulled 

out using a hand winch and a chain wrapped around the exposed tubing. The rubber 

stopper produced a suction vacuum preventing loss of material during extraction of the 

core. 

Cores were protected with a plastic cap and sealed using electrical tape. Cores 
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were labelled to indicate top, site number, depth intervals, location names, and dates. 

Each tube was cut at the ground level marker and the core measured to give total 

penetration depth. By measuring the distance between the top (ground level) and the 

sediment within the tubing, the degree of compaction caused by coring and friction in 

the tube was determined by comparing the distance the tube penetrated with the actual 

length of the sediment in the core tube. The top of the core was marked and the 

tubing was cut 15 em above the mark. The core tube was cut in 1. 5 m intervals, 

labelled, and the ends capped. All measurements and labelling were recorded in a 

field notebook. 

2.3 Splitting 

The aluminum tubing was split into two longitudinal sections using a radial arm 

saw and a U -shaped tray to house the tube as it was pushed past the saw. Ideally, 

splitting procedures resulted in shaving the aluminum tubing so that all but a few 

millimetres of aluminum were removed, thus preventing the core sections from falling 

apart before processing. 

During processing, any thin aluminum threads produced by the saw were 

peeled away. A thin wire was placed between the sawn halves and pulled along the 

section length, severing the cores into two portions. Each core half was relabelled, 

one half for analysis and the other half for archiving. Split core sections were 

wrapped in plastic wrap, placed in plastic layflat (D-tubes) tubing, taped shut, and 
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relabelled. Core sections are stored in a cold room at temperatures between 2-4 oc in 

the Centre for Marine Geology, Dalhousie University. 

2.4 Davis Coring 

Davis coring allowed sampling at specific depths. A 1-m Davis core steel 

section was pushed into the ground until approximately 30 em of the section remained 

above ground. Additional 1-m sections were attached if greater penetration was 

desired. The Davis core was triggered at the desired depth by activating a locking 

mechanism on an open core barrel by pulling upwards and a "snapshot" sample was 

retrieved thereafter by pushing downwards. After obtaining the sample, the Davis core 

was withdrawn and dismantled. The samples were labelled and stored in plastic 

containers. 

2.5 Sampling 

Vibracore sections were photographed and described to identify intervals used 

for foraminiferal and 14C analysis. Designated areas were removed from the cores 

with two spatulas. Typically, 20 cc of core material was removed for foraminiferal 

analysis, and 10 cc removed for 14C dating. Samples were taken above, at, and below 

textural boundary changes, and in 20-cm intervals· if the core section was 

homogeneous. Material removed from the cores during sampling was replaced with 

plastic wrap. Specific Davis core samples were chosen for foraminiferal analysis and 

14C dating. 
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Samples for foraminiferal analysis were processed through a >63 IJ.m sieve 

which retained foraminifera and a 500 Jlm sieve which retained coarse organic 

material. Material not passing through the >63 IJ.m sieve was collected in plastic 

containers, while material in the >500 IJ.m sieve was discarded. Light organic material 

was removed by decantation from the 63-500 IJ.m fraction and collected in plastic 

containers. All samples were stored in alcohol. 

Samples weighing 10 g were collected from peat and oyster shell layers within 

the vi bra- and Davis cores for 14C dating. These samples were oven dried at 5 5°C for 

several hours, weighed, and stored in sealed plastic containers. 

2.6 Foraminiferal Examination 

Foraminifera were rinsed in water through a >63 IJ.m sieve and placed in a 

liquid medium in a petri dish. Samples containing abundant foraminifera were split 

using a wet splitter to retrieve a statistically correct sample of at least 300 individuals 

(Scott and Hermelin 1993 ). All samples were examined under a dissecting microscope 

at 20x and 40x magnification. 

2.7 Carbon-14 Dating 

According to Ogden (1975), radiocarbon is produced when cosmic rays, in the 

form of neutrons, bombard atmospheric nitrogen (Eqn. 2.1 ). Atmospheric radioactive 

(2.1) 

carbon is quickly converted into carbon dioxide. Photosynthetic plants fix carbon 
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dioxide, and other organisms obtain this radioactive carbon by consuming the plants. 

After death, equilibrium with atmospheric radiocarbon no longer exists and natural 

radioactive decay begins. 

Selected peat and oyster shell samples were sent to Krueger Enterprises, Inc., 

Geochron Laboratories Division, Cambridge, Massachusetts. According to Krueger 

Enterprises, the peat samples were treated as follows: The entire sample was 

dispersed in a large volume of water and the clays and organic matter were eluted 

away from any sand and silt by sedimentation and decantation. The clay /organic 

fraction was then treated with hot dilute HCl to remove any carbonates. It was then 

filtered, washed, dried, and roasted in oxygen to recover carbon dioxide from the 

organic matter for the analysis. Oyster shell fragments, however, were treated as 

follows: The shells were cleaned thoroughly in an ultrasonic cleaner. They were then 

leached thoroughly with dilute HCl to remove additional surficial material which may 

have been altered, and ensure that only fresh carbonate material was used. The 

cleaned shells were then hydrolyzed with HCl, under vacuum and the carbon dioxide 

was recovered for analysis. 

All 14C dates obtained were based on the Libby half life of 5570 years and 

referenced to 1950. All dates were then converted to sidereal years using a 

microcomputer program supplied by M. Stuiver (Stuiver and Reimer 1987). 
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2.8 Summary 

Field cores from the West Head salt marsh provide stratigraphic data. 

Foraminiferal sample analyses locate former HHW zones spatially and 14C dating 

provides the temporal values necessary for the construction of a Holocene RSL curve. 
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CHAPTER 3 RESULTS 

3.1 Introduction 

Vibracores and Davis cores were taken in two transects from the West Head 

salt marsh, Chezzetcook Inlet. Transect 1 includes Cores 2, 5, 8, and 15 (Fig. 3.1) 

whereas Transect 2 includes Cores 8 and 12 and Davis core 13 (Fig. 3.2). Results of 

foraminiferal analyses and 14C dating of selected samples provide the necessary 

information for constructing a Holocene RSL curve. 

3.2 Core 2 Lithology 

Core 2 is 244 em long with a compaction measurement of 108 em (Fig. 3.1 ). 

The entire core is composed of salt marsh peat of varying composition. The upper 75 

em of the core contains rootlets, grass, and wood fragments dispersed in brown mud. 

Olive grey salt marsh occurs from 75-157 em depth. Salt marsh dispersed in brown 

mud forms the remaining core from 15 7 to 244 em. 

3.3 Core 2 Foraminiferal Assemblages 

Ten foraminiferal species occur in Core 2 (Table 3.1). Numbers of 

foraminifera ranged from 603-30976 per 10 cc of core, with an increase in abundance 

with depth. Cribrostomoides crassimargo is present only within the upper 2 em, 

whereas Miliamminafusca, Tiphotrocha comprimata, Trochammina inflata, and 

Trochammina macrescens occur in most samples from Core 2. Ammobaculites exigus, 
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De~th in core {em) 0-2 15-17 25-27 40-42 60-62 70-72 75-77 85-87 95-97 
Total number of species 7 4 5 5 3 4 4 6 4 -------
Total number of individuals/1 Occ 111 2 3528 603 2644 14088 6456 5616 6144 2372 

Ammobaculf!es exi9_us 
Ammotium sa/sum 
- ·----------------- --- ------
q!}bros!e._~~~~es crassirr'~rgo 0.4 ------
Haelof!_hT~flf!lDides f!!_anilaensis 0.2 0,1 ---
Miliammina fusca 3.6 3.9 1.5 16,6 0.2 0.9 1. 3 0,4 1 

eQ!ysaccam!!!l~~aiLJ?a 0.3 o. 1 ---
!JJ!!!~~~Oc/!B COI!J_E!l!_'[!~!a 5.8 16.3 6,6 12.9 0.9 1.1 4.4 1. 6 2.1 
Trochammlna Jnflata 3.4 2 1.5 0,5 0.1 2 0.1 ------
~ macrescens 86,5 77.8 90.2 69,9 98.9 97.9 94 95.8 96.8 
T. squamata 0.2 0.2 0.2 

Agglutinated for ami niter al fragments 

Deeth in core {em} 161-163 169-171 175-177 185-187 195-197 202-204 210-212 

Total number of species 6 5 4 4 5 5 
-

Total number of individuals/1 Occ 9496 12384 2912 11 536 6096 23208 

~~l!!!_~t!~~!!ff!es e~_ifjUS 0.1 ---
Ammoliwn sa/sum 0.1 --
Cribrostomoides crassimargo 
HaJ!JEphra9.moides manilaensis 
Miliammlna fusca 2.6 0,8 1.5 1 0.8 1 .8 

Poly_saccammina ipohalina 0.3 0,3 0.3 

Tiphotrocha comprimata 13.3 4.8 23.2 29.3 36.1 21.8 

Trochammina lnflata 4.1 2.3 5,5 5.7 3.5 7.4 

T. macrescens 79.8 91.9 68.9 64.1 59.3 68.6 

T. squamata --
Agglutinated for arnini feral frogments 56 4 8 

Table 3.1. Core 2 total species, population density, foraminiferal species percentage, 
agglutinated forarnlnifural lr<.HJIIIunl di!JtdlHJtions vursu.u duptll. 
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0.5 

23.7 

5.2 
68,8 
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4 4 4 5 
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0.1 
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Ammotium sa/sum, Haplaphragmoides manilaensis, Polysaccammina ipohalina, 

Trochammina squamata, and unidentifiable agglutinated foraminiferal fragments are 

rare. 

20 

T. macrescens is the most abundant species throughout the core, while M. 

fusca, T. comprimata, and T. inf/ata are less common (Fig. 3.3). All other species 

form insignificant proportions of the total. With depth, however, T. macrescens 

abundance decreases and T. comprimata abundance increases. M. fusca and T. inf/ata 

abundances fluctuate throughout the core but remain generally lower than T. 

macrescens and T. comprimata. 

3.4 Cores 5 and 8 Lithologies 

Core 5 (from Scott 1977) and Core 8 are lithologically comparable (Fig. 3.1). 

Core 5 is 1200 em long and has no compaction because it was drilled, not cored. The 

upper 155 em is salt marsh dispersed in brown mud. Mud replaces salt marsh at 155 

em and is present to a depth of 1150 em. Below this interval, salt marsh peat, present 

to 1170 em, is replaced by fresh water peat. A soil horizon occurs after 1200 em. 

Core 8 is 992 em long with a compaction measurement of 228 em. The upper 

10 em of the core is salt marsh dispersed in dark brown mud. During vibracoring, 

however, 100-150 em of salt marsh material in Core 8 was lost from plugging of the 

vibracore head and was replaced lithologically with the upper 15 5 em of Core 5 salt 

marsh. At 15 5 ern, therefore, dark olive grey mud containing shells and organic 

begins and continues to a depth of 534 em. Surface salt marsh occurs between 534-
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Figure 3.3. Core 2 lpOCios divcnity, apecica density, and foraminiferal percentagca plotted againJt core depth (without compaction added). 
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666 em as a result of switching aluminium tubes during vibracoring to achieve greater 

depths. Wood fragments are visible at 83 5 em. Olive grey mud occurs to the bottom 

of the core at 992 em. The salt marsh peat, fresh water peat, and soil horizon visible 

in Core 5 are known to exist in the Core 8 locality from deep penetrating Davis cores 

taken in the same position as Core 8. 

3. 5 Cores 5 and 8 Foraminiferal Assemblages 

Faunal assemblages of Cores 5 and 8 are comparable. The number of 

individuals ranges between 20-1918 per 10 cc (from Scott 1977). Miliamminafusca, 

Tiphotrocha comprimata, Trochammina inflata, and Trochammina macrescens are 

present throughout the cores, and dominate the upper 180 em. Ammonia beccarii, 

Ammotium sa/sum, Elphidium excavatum, Haynesina orbiculare, and Reophax nana 

are common at greater depths. Ammobaculites exigus, Ammobaculites dilatatus, 

Arenoparella mexicana, Buccellafrigida, Elphidium excavatum, Elphidium excavatum 

selseynesis, Eggerella advena, Polysaccammina ipohalina, Rosa/ina columbiensis, 

Textularia earlandi, and Trochammina squamata are rare. Other fossils present include 

gastropods, ostracods, and bivalves. Davis core 8 sampled the salt marsh and fresh 

water marsh sequences present at depth. 

3.6 Core 12 Lithology 

Core 12 is 567 em long (Fig 3.2) with a compaction measurement of 83 em. 

The upper 15 em contains salt marsh dispersed in brown mud. Again, during 
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vibracoring, 100-150 em of salt marsh material was lost from plugging of the 

vibracore head and was substituted with data from the upper 155 em of Core 5 (from 

Scott 1977). At 155 em, therefore, faintly laminated dark olive grey mud containing 

shells and organic materials abruptly replaces salt marsh. Dark brown peat occurs at 

537 em, after which, an oyster layer abruptly occurs between 549-551 em. Peat recurs 

to the end of the core at 567 em. 

3. 7 Core 12 Foraminiferal Assemblages 

Sixteen foraminiferal species occur in Core 12 (Table 3.2). Abundances range 

from 28-9200 foraminifera per 10 cc with the lowest abundances occurring around 445 

em. Trocham m ina m acrescens is present in most of the core whereas Tiphotrocha 

com prim ata, Trocham m ina inflata, and Trocham m ina squamata are present at various 

intervals throughout the core. Ammobaculites exigus, Ammobaculites dilatatus, 

Am m otium sa/sum, and Reophax nana are present in the upper portion of the core, but 

disappear with depth. Large numbers of unidentifiable fragmented foraminifera occur 

in the mud portion of the core. Haplophragmoides manilaensis is rare within the basal 

peats. Calcareous foraminiferal species, such as Elphidium excavatum, Elphidium 

subarcticum, Haynesina orbiculare, and Helenina andersoni are present in, and adjacent 

to, the oyster deposit. 

Other microfossils present include ostracods, planktonic foraminifera, and a 

thecamoebian. Few ostracods occur in the upper portion of Core 12. Planktonic 



Depth in core _{em) 0 20 29 45 63 92 11 0 130 141 155 185-187 205-207 

Total number of species 4 5 5 4 5 5 5 7 7 7 6 5 
-

Total number of lndividuals/1 Occ 555 630 1424 1835 1918 600 778 823 1409 888 164 145 

Ammobaculites dilatatus X 3,7 3.4 

A. exigus X 1 3 0,6 ---------- ----
Ammotlum sa/sum ~ X X X 4 5 4 18.3 11.7 --,---
Arenoe_areaal mexlcana X 

~g_erella advena X 

~J.~~m e~ca~~l!!_f!l ------
E. subarcticum 

--1-----

t!!Y?!9f!!J~moides manilaensis 
Haynesina orblcularB 
Helenina andersoni 
Miliammina fusca 27 34 1 3 5 2 24 43 81 81 84 62.8 1 1 -------~ -----
~axnana X 

IiE_hotrocha comprimata 5 8 33 24 21 1 3 7 2 1 1 9.8 
Trochammina inflata 2 25 4 1 9 9 1 2 6 3 2 1 
T. macrtJsctms 66 33 50 53 68 50 44 1 1 1 0 6 4.9 4.1 ----- -- ---- ---
T. squamata 69.7 

~glutinated foraminJ.!eral ~~~g~ents 1 6 1 4 -------
Ostracods 5 

Planktonic foraminifera 5 
Thecamoebians 

Table 3.2. Core 121otalapeciea, population denaity, foraminiferal species percentage, agglutinated foraminiferal fragments, ostracod, planktonic 
foraminifera, and thecamocbian diatributiona veraua depth. x repreaentea values leu than 1%. 

225-227 245-247 265-267 

9 8 8 

442 447 620 

7.7 7.6 3,5 

1. 6 1.8 0.5 
23.5 19.9 7.3 

2.9 15.4 1 .3 

0.7 1 . 1 1 .6 

1.1 0.2 0.2 

0.7 
11.8 8.3 30.2 

50 46.1 55.5 

94 74 49 
1 

1 



Depth in core (em) 285-287 305-307 325-327 345-347 365-367 385-387 405-407 425-427 445-447 465-467 485-487 
Total number of species 8 9 8 6 9 7 7 8 3 2 6 
Total number of individuals/10cc 544 1145 924 353 1140 1710 250 271 28 63 590 

Ammobaculites dilatatus 7.7 2.8 1. 7 1. 7 0.7 0.5 1.2 1 . 1 
A. exigus 3.1 4.4 3.7 2.8 3.8 0.8 2 3.3 
Ammotium sa/sum 20.6 51.7 72.4 40.8 45.9 28.3 40 39.9 
Arenopareaal mexicana 
Eggerella advena 
Elphidium excavatum 
E. subarcticum 
Haplaphragmoides manilaensis 
Haynesina orbiculare 
Helenina andersoni 
Miliammina fusca 9.7 5 5.5 13.3 25.5 35.1 22.8 6.6 3.6 0.2 
Reophax nana 8.3 13.7 0.3 6.3 20.1 7.2 16.2 0.2 
Tiphotrocha comprimata 0.2 0.1 0.3 0.7 
Trochammina inflata 1.4 1. 7 0.7 2.2 4.8 3.6 
T. macrescens 8.8 19.6 10.4 21.8 14.5 12.9 19.2 29.9 92.8 95.2 89.5 
T. squamata 41.5 1.4 4.2 19.5 2.4 2.3 7.6 0.7 3.6 5.9 

Agglutinated foraminiferal fragments 111 557 496 81 307 268 34 22 2 
Ostracods 
Planktonic foraminifera 
Thecamoebians 

Table 3.2. Continued 



Depth in core (em) 505~507 525-527 530-532 535-537 540-542 545-547 549~551 552-554 558-560 564-566 

Total number of species 3 4 3 4 3 4 3 8 3 4 

Total number of individuals/1 Occ 120 266 261 557 632 1063 269 1137 5616 9200 

Ammobaculites dilatatus 
A. exigus 
Ammotium sa/sum 
Arenopareaa/ mexlcana 
Eggerella advena 
Elphidium excavatum 6.3 0.7 
E. subarcticum 0.1 
Haplaphragmoides manilaensis 1. 1 0.3 
Haynesina orbiculare 0.6 
Helenina andersoni 0.1 
Miliammina fusca 1.5 
Reophax nana 
Tiphotrocha comprimata 0.4 0.2 0.1 0.3 
Trochammina inflata 0.8 1 . 1 2 0.3 0.2 0.2 1. 1 0.9 

T. macrescens 96.7 97 98.5 96.9 97.8 99.2 89.2 98 98.9 98 
T. squamata 2.5 0.4 0.9 1.9 0.2 4.5 0.3 0.1 0.9 

Agglutinated foraminiferal fragments 
Ostracods 
Planktonic foraminifera 96 
Thecamoebians 

Table 3.2. Continued 
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foraminifera are present in salt marsh deposits at the surface and within the oyster 

layer. One thecamoebian occurred at 265-267 em. 

27 

T. macrescens is the most abundant species between 0-110 em and below 445 

em, whereas T. comprimata and T. squamata are less common in the salt marsh and 

basal peats (Fig 3.4). A. salsum, M. jusca, and T. squamata are common in the mud 

between 110-445 em, where fewer A. exigus and A. dilatatus occur. Low numbers of 

calcareous foraminifera occur within the oyster layer interval. 

3.8 Core 15 Lithology 

Core 15 is 823 em long with no compaction ( Scott unpublished data) {Fig 

3.1). The upper 227 em is salt marsh dispersed in brown peaty mud. At 227 em, grey 

mud, containing rare organic matter, shells, and sand, replaces salt marsh. Salt marsh, 

containing wood fragments and coarse clasts, forms the basal portion of the core from 

804 to 823 em. 

3.9 Core 15 Foraminiferal Assemblages 

Twenty-three foraminiferal species occur in Core 15 (from Scott unpublished 

data) (Table 3.3). Abundances range between 6-4058 foraminifera per 20 cc with a 

general decrease in abundance with depth. Ammotium salsum, Miliamminajusca, 

Tiphotrocha comprimata, Trochammina inflata, and Trochammina macrescens are 

present in most of the core. Ammobaculites exigus and Reophax nana are present in 

the upper portion of the core, but disappear below 630 em. Trochammina squamata 
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Depth In core (em) 0 28 50 72 90 128 151 180 200 227 250 279 300 321 350 377 
Total number of species 5 7 7 8 8 5 8 8 11 10 10 8 9 9 11 12 
Total number of lndivlduals/20cc 459 1620 4058 726 1140 1264 1358 132 300 594 778 722 928 555 820 634 

Ammonia beccaril 0.3 0.2 0.7 0.6 
Ammobaculites dilatatus 
A. exlgus 0.1 0.4 1 0.7 0.3 1.1 0.9 0.2 0.2 
Ammotium salsum 0.2 0.2 1.1 6.2 3.1 25.8 38 27.3 69.7 57.1 65.1 67.2 60 57.1 
Arenoparella mexicana 
Buccella frlgida 
Elphidium excavatum f. clavatlum 
E. excavatum f. excavatum 
E. excavatum f. gunteri 0.3 
Eggerella advena 0.1 0.2 0.9 
Haplophragmoides manllaensls 0.3 
Havnesina orbiculare 0.2 
Miliammlna fusca 26.6 10.1 2.7 13.8 62.3 18.5 70.3 9.1 18.3 20.7 12.3 16.1 13.6 12.8 11.5 17 
Polysaccammina ipohallna 0.3 0.2 0.3 0.3 
Pseudothurammina llmnetis 9.6 1.9 0.3 0.3 0.8 1.2 6.1 2 0.5 0.2 
Reophax nana 0.6 0.6 0.3 0.8 1.3 2.7 2.6 5.5 8 5.9 9.8 9.5 
R scottil 0.3 
Rosalina columblensls 0.2 
Textularia earlandl 
Tiphotrocha comprlmata 2.2 23.7 15.2 37.5 8.3 17.6 3.7 8.3 4.7 7.2 1 2.2 1.1 1.4 1.5 0.9 
Trochammlna inflata 1.5 1.5 2.3 1.4 0.6 1.3 0.9 12.9 3 4.9 0.8 0.6 0.2 0.2 0.5 0.3 
T. macrescens 60.1 62.5 79.3 45.2 21 62.5 20.2 34.1 28.7 32.7 11.3 15.8 9.3 9.6 11.5 7.6 
T. squamata 3.1 2.3 3.2 1.5 1.7 1.7 2.6 3.9 5.3 

Planktonic foraminifera 
Thecamoeblans 1 

Table 3.3. Core 1' total apcciea, population denaity, foraminiferal species percentage, planktonic foraminifera, utd thecunoebiut diatributiona 

venus depth. 

395 412 427 446 469 482 
12 13 13 13 13 11 

409 664 772 514 794 364 

0.2 0.3 0.6 0.1 0.8 
0.3 

0.5 0.5 0.8 0.8 0.6 0.8 
69.4 77,6 81.3 75.1 70 62.6 

0.2 0.2 0.3 

0.2 0.5 0.2 0.3 1.4 
0.3 3.1 0.4 0.1 0.8 

0.2 

0.2 0.2 0.1 
0.2 0.3 0.6 0.3 0.3 

12.5 10.7 7 10.3 14 19.2 

9.5 5 3.6 3.5 4.7 4.9 

0.3 
0.5 1.2 0.5 0.4 1.4 1.1 

1 0.5 0.3 0.6 1 .1 0.5 
4.4 3.5 1.8 6.8 7.1 7.4 
1.2 0.8 0.3 

1 



Depth in core (em) 492 504 530 560 589 610 630 651 
Total number of species 14 14 1 6 11 13 12 9 8 
Total number of individuals/20cc 386 468 426 277 286 187 148 103 

Ammonia beccarii 1.8 1.5 8.7 0.4 1.7 4.1 
Ammobaculites dilatatus 0.2 0.2 
A. exigus 2.1 1.1 0.5 0.3 0.7 
Ammotlum salsum 50.8 57.3 39.4 58.8 36.1 26.4 17.6 8.7 
Arenoparella mexlcana 
Buccella sp. 
Elphldlum excavatum f. clavatlum 0.3 2.1 7.3 2.9 4.2 8.1 6.1 1.9 
E. excavatum f. excavatum 0.8 1.1 0.5 0.7 0.7 0.5 1 
E. excavatum f. gunter! 0.7 
Eggerella advena 0.3 0.2 
Haplophragmoides manilaensls 0.3 0.2 0.4 0.5 
Haynesina orblculare 0.5 0.9 1.9 2.2 13.7 15.2 40.5 70.9 
Miliammlna fusca 15.5 12.4 13.4 13.4 10.5 11.2 8.8 1.9 
Polysaccammlna lpohallna 
Pseudothurammina limnetls 
Reophax nana 4.7 13.2 7.3 4.3 6.3 1 0.7 
R. scottll 
Rosanna columblensls 
Textularia earlandl 0.2 
Tiphotrocha comprlmata 5.2 1.7 0.9 2.9 4.2 3.6 6.1 1 
Trochammlna lnflata 0.8 0.2 1.8 1.7 7.1 1 
T. macrescens 16.6 7.3 15.5 12.3 18.6 21.8 16.9 13.6 
T. squamata 0.5 0.9 3.1 1.7 0.5 2.7 

Planktonic foraminifera 
Thecamoebians 

Table 3.3. Continued 

670 692 710 720 730 750 
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103 122 323 201 796 659 
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0.5 
3.9 5.7 16.1 25.4 29.9 28.1 

76.7 71.3 74.9 65.7 68.6 66.8 
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occurs between 180-630 em and below 815 em. Calcareous species, including 

Ammonia beccarii, Buccellafrigida, Elphidium excavatum forme clavatium, Elphidium 

excavatum forme excavatum, Elphidium excavatum forme gunteri, and Haynesina 

orbiculare, are present only at depth. Ammobaculites dilatatus, Arenoparella 

mexicana, Eggerella advena, Haplophragmoides manilaensis, Polysaccammina 

ipohalina, Pseudothurammina limnetis, Rosalina columbiensis, Reophax scottii, and 

Textularia earlandi are rare. Other microfossils present include planktonic foraminifera 

and thecamoebians. 

M. fusca, T. macrescens, and T. comprimata are the most abundant species in 

the salt marsh, whereas T. inf/ata is less common (Fig 3.5). A. salsum is common in 

the upper mud, whereas the calcareous species are common in the lower mud. 

3.10 Davis Core Samples 

Davis cores 8 and 13 consist of salt marsh and fresh water peat used for 14C 

analysis (Table 3.4). Haplophragmoides manilaensis, Miliamminafusca, Trochammina 

Inflata, T. macrescens, T. squamata, and occur between 1020-1030 em. At 1150-1160 

em only M. fusca, T. Inf/ata, and T. macrescens are present. The 1170-1180 em 

interval is a fresh-water sample with no mature foraminifera, although some juvenile 

individuals may be present. 
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3.11 Carbon-14 Dates 

Carbon-14 dates were determined for six samples taken from both vibracores 

and Davis cores (Table 3.5). The depths of the samples ranged from 343-1160 em. 

Older dates occurred with increasing sample depth, varying from 1670 ybp in the 

shallowest sample to 7859 ybp in one of the deepest samples. The 1160 em date is 

from the same interval previously dated by Scott (1977) and reported by Scott (1987b}. 

The discrepancy between the Scott (1977) date and the present date is attributed to 

contamination of the Scott sample by reworked older material. In addition, Dr. D.B. 

Scott supplied one 14C date from Chezzetcook and two published dates (from Miller et 

al. 1992; Scott and Medioli 1982) (Table 3.6}. These varied in depth from 840-2800 

em and in age from 3819-7859 ybp. 

3.12 Summary 

Examination of vibracores and Davis cores collected from the West Head salt 

marsh revealed several patterns of foraminiferal distributions, which can be used to 

locate former sea-level points (HHW zonations), and aid in constructing RSL curves. 

All sea-level points were determined at or near a basal bedrock or glacial till sequence 

to avoid post-depositional compaction problems (Kaye and Barghoorn 1964, as cited in 

Scott 1977). Only non-contaminated samples are useful as former sea-level markers. 

These markers, coupled with 14C dating in sidereal years, permit the construction of a 

Holocene RSL curve. 
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I Sample I Davis Core 13 I Davis Core 8 I Davis Core 8 I 
Depth (em) 1020-1030 1150-1160 1170-1180 

H.manilaensis 1 0 0 

M.fusca 1 1 0 

T. inflata 14 4 0 

T. macrescens 1053 208 18* 

T. squamata 1 0 0 

Table 3.4. Numben of foraminifera individuals/lOcc from 14C Davis core samples. • These individuals could be juvenile forms. 

Sample Core2 Core 12 Core 12 Core 12 Davis core 13 Davis core 8 

Sample Number GX18458 GX18452 GX18453 GX18454 GX18459 GX18455 

Description peat peat oyster shell peat peat peat 

Depth (em) 235-237 545-541 549-551 564-566 1020-1030 1150-1160 

C14 Dates (ybp) 1735+-120 2495+-125 2495+-115 2710+-155 3820+-165 3830+-150 

Corrected Sidereal 1670 2554 2554 2879 4247 4247 
Dates (ybp) 

Table 3.5. Carbon-14 sample numbers, descriptions, depths, C14 dates, and corrected sidereal dates. 

Sample Locations West Head sah marsh (Core 15) Bedford Basin Lunenburg 
(piston core) (piston core) 

Sample Number GX5708 Bedford Basin GX6490 

Description sah marsh peat peat 

Depth (em) 823 2100 2800 

C14 Dates (ybp) 3525+-230 5830+-230 7070+-300 

Corrected Sidereal Dates (ybp) 3819 6676 7859 

Table 3.6 Locations, numbers, descriptions, depths, 14C dates, and corrected sidereal dates of 14C samples supplied by Dr. D.B. 
Scott, Miller et al. (1982), and Scott and Medioli (1982). 
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OIAPrER 4 DISCUSSION 

4.1 Introduction 

Marsh foraminiferal zones accurately locate former sea-level points (Scott and 

Medioli 1980). Increased elevation towards the HHW level provide the most accurate 

sea-level points because this elevation represents the maximum tidal limit above MSL 

during any time period. Several different hypotheses can explain RSL changes on 

global and local scales. In Nova Scotia, the dominant factors contributing to RSL 

change is hypothesised to be migration and collapse of the peripheral forebulge 

following deglaciation (Quinlan and Beaumont 1981) and a mid-Holocene warm 

period. 

4.2 Sea-level Points 

The presence of Miliamminafusca, Tiphotrocha comprimata, Trochammina 

inf/ata, and Trochammina macrescens throughout most of Core 2 represents low­

middle salt marsh (Zone ITA-B) environments based on foraminiferal salt marsh 

zonations (Scott and Medioli 1980) (Fig. 3.3). At 343-347 em depth (corrected for 

compaction), however, a faunal change toT. macrescens and T. comprimata signifies a 

former high salt marsh environment (Zone ffi) (Scott and Medioli 1980) representing 

former sea level. A 14C date indicates this level occurred 1670 ybp. 

A low-middle salt marsh fauna occurs in the upper 15 5 em of cores 5 and 8, 

whereas the remaining core contains Ammobaculites dilatatus, Ammotium sa/sum, 

Haynesina orbiculare, and M. fusca, representing low marsh fauna (Scott 1977). High 
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marsh foraminiferal zonations exist only in the lower 3 0-40 em of Core 5 and 

Ammonia beccarii occurs at depth, indicating warmer water conditions than present. 
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A low-middle salt marsh fauna occurs in the upper 155 em of vibracore 12 

representing low-middle salt marsh (Fig. 3 .4). Typical low marsh mudflat fauna 

occur to a depth of 508 em (corrected for compaction). The remainder of the core 

contains a high marsh fauna representing an accurate sea-level interval, except for the 

oyster bed located at depths between 63 2-63 4 em (corrected for compaction ) which, if 

in situ, could represent a former elevated MSL. Carbon-14 dates above, in, and below 

the oyster layer are 2554, 2554, and 2879 ybp, respectively. 

Typical low-middle salt marsh faunas are present in the upper 227 em of core 

15 (Fig. 3.5). Low marsh mudflat faunas grading into a shallow subtidal fauna occur 

to a depth of 804 em, below which a low-middle salt marsh fauna is present. At 815 

em a high marsh fauna is present and provides a sea-level point dated at 3819 ybp. 

The remaining core contains low-middle marsh fauna. The presence of A. beccarii at 

depth indicates former warmer water conditions. 

The high percentage of T. macrescens in Davis cores 8 and 13, both dated at 

4247 ybp, represents high salt marsh (Zone IA) (Scott and Medioli 1980) which is the 

most accurate former sea-level marker. Other published points from nearby include 

2100 em depth from Bedford Basin (Miller et al. 1982) and 2800 em depth from 

Lunenburg (Scott and Medioli 1982). Associated 14C dates are 6676 and 7859 ybp, 

respectively. A final sea-level point includes a date of 5295 ybp, where the 
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curve from Chezzetcook was extrapolated to this date based on a break in rate 

observed at this time from Baie Verte, Nova Scotia (Scott et al. 1987a). 

4.3 Causes of RSL Change 
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Raised marine features provide evidence that sea level is not constant (Stea 

1987). According to Pirazzoli (1991), possible causes of RSL change include 

modifications to ocean basin volumes, resulting from plate interactions and crustal 

deformation. A second possible mechanism includes fluctuations in sea water mass. 

Addition to or removal of water from the oceans would change the volume of the 

oceans and result in a corresponding change in sea level. For example, greenhouse 

warming may cause polar melting that would raise sea level several metres. 

Additionally, changes in ice volume during glacial and interglacial periods may alter 

sea level. Eustatic changes are observable on a global scale. Nova Scotia, however, 

is experiencing different RSL changes from nearby areas and, therefore, eustatic sea 

level change cannot be the complete explanation. 

Local variables influencing RSL include local tectonics, glacial isostatic 

adjustment, and sedimentation rates (Plint et al. 1992). In addition, changes in 

atmospheric pressure, winds, and currents can influence water masses and cause 

upward swelling in specific localities (Pirazzoli 1991). 
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4.4 Peripheral Forebulge Concept 

Wisconsinan glaciation reached its maximum advance 18 kybp (Fig. 4.1). At 

least part of the Atlantic region was covered by an ice mass more than 1 km thick, the 

edges of which extended offshore for approximately 100 km. Early offshore studies 

suggested a RSL at 15 kybp 120m below present-day MSL (King 1976, as cited by 

Scott and Medioli 1982). The absence of post-Wisconsinan raised marine features in 

Nova Scotia implies that present MSL is a highstand (Scott and Medioli 1982). 

Examination of foraminiferal samples collected in the West Head salt marsh, 

Chezzetcook Inlet, permits the construction of a late Holocene RSL curve that is not 

possible using data from offshore deposits. 

Figure 4.1. Maximum advance of Wisconsinan 

Glaciation 18 kybp (from Tarbuck and Lutgens 1982). 

According to Quinlan and Beaumont (1982) and Scott et al. (1987b), isostatic 

adjustment following deglaciation explains RSL variation in the Atlantic region. 

Glacial loading caused isostatic depression of the earth's crust and the formation of a 

peripheral forebulge around the ice margin. As the ice ablated, the displaced mantle 
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material and the peripheral forebulge migrated slowly towards the former ice centre. 

Relative sea levels vary in accordance with the position· of the peripheral forebulge 

(Fig. 4.2). Areas seaward of the peripheral forebulge, such as Sable Island, experience 

only submergence as the ice retreats, whereas areas landward, such as Nova Scotia, 

experience emergence followed by submergence. Prolonged emergence occurs with 

proximity to the former ice centre. 

Scott et al. {1987b) observed sea-level fore bulge zonations which correspond 

closely with the maximum ice zonation model (Quinlan and Beaumont 1982) (Fig 4.3). 

The similarities between the final zonation positions, as determined by all authors, 

suggests that the Quinlan-Beaumont model best explains the RSL record for the 

Maritimes. 

RSL 
ZONE A 

Present Dey 

B 

-E-- DIRECTION OF ICE RE"iREAT 
AND MIGRATION OF FORESULGE 

-' 
Ill 
a: 

Glacial Maximum 118 kybp) 

c 

0~ 

0 

Figure 4.2. Forebulge migration following deglaciation and various sea level responses auociated with location relative to 1bc 
forebulge. Point D experiences only submergence; point C experiences emergence followed by submergence; point B experiences 
prolonged emergence followed by submergence; and point A experiences only emergence (from Scott et al. 1986). 
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Figure 4.3. Observed versus theoretical RSL response in Maritime Canada following 
deglaciation. Observed zones are represented by dashed lines and small letters, whereas, 
theoretical zones are represented by capital letters and solid lines. Letters indicate type 
of response as outlined in Figure 4.2 (from Scott et al. 1987b ). 

4.5 Sea-level Implications 
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Each marsh point described above, representing a former sea-level position, 

aided in constructing a Holocene RSL curve (Fig. 4.4) for Nova Scotia by plotting 

sample depth representing elevation against 14C (sidereal) dates for timing. According 

to the curve, Atlantic Canada has experienced overall RSL rise for at least 7859 years. 

Other authors (Carter et al. 1989; Quinlan and Beaumont 1982; Scott and Greenberg 

1983; Scott et al. 1987b) showed similar trends of RSL rise. Prior to thissubmergence 

period, however, the Atlantic region emerged (Quinlan and Beaumont 1982; Scott and 

Medioli 1982; Scott et al. 1986; Scott et al. 1987b ). 

This curve corresponds to Zone C (Fig. 4.3) in the observed zonations of Scott 

1987b), located landward of the peripheral forebulge. As the ice ablated and the 

forebulge migrated towards the ice center, the Atlantic region emerged. After the 
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Figure 4.4. RSL curve of Atlantic Canada. based on foraminiferal assemblages collected from Chezzetcook. cores, 
points from Lunenburg (L), Bedford Basin (BB), and m extrapolated point from Baie Verte (?). 
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forebulge crest passed through the Atlantic region, the area submerged more than the 

previous emergence, and eliminated all formerly emerged marine features. 

Figure 4.4 suggests that a RSL rise of 59.2 em/century occurred during 7859-

6676 ybp. Rates then slowed to 13.8 em/century during 6676-5295 ybp. 

Extrapolation from another curve showing similar acceration rates produced the 5295 

ybp date. Rapid submergence rates of 72.5 em/century recurred between 5295-3819 

ybp .. Eustatic response to climatic warming may have resulted in this acceleration of 

RSL rise (Houghton et al. 1990). An average RSL rise of 21.3 em/century occurred 

from 3819 ybp to the present. 

Isostatic adjustment following deglaciation explains the overall trend of rising 

RSLs, but the accelerated sea-level response between 5295-3819 ybp may be a eustatic 

response to the mid-Holocene warm period. Higher sea levels are observed in the 

southern hemisphere for this period (Dominquez et al. 1987) and at least one 

verification of a highstand from the southeastern United States exists (Gayes et al. 

1992). Figure 4.4 contrasts earlier results from the Atlantic region, where no rapid 

acceleration was observed during the mid-Holocene (Scott 1977; Scott et al. 1987b), 

but supports Northumberland Strait data for the same time period (Scott et al. 1987a). 

4.6 Summary 

Isostatic response following deglaciation explains major variations in sea level 

in Atlantic Canada. Migration and collapse of the peripheral forebulge through the 

Atlantic coastal zone resulted in early regression (Scott and Medioli 1982) , followed 
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by transgression. The Atlantic coast of Nova Scotia has transgressed for at least 7859 

years and, specifically, Chezzetcook for the last 424 7 years. Although glacio-isostatic 

adjustment explains most sea-level variation, it appears that eustatic response 

associated with global warming occurred during the mid-Holocene. 



OIAPTER S CONCLUSIONS 

5.1 Conclusions 

Floral and faunal zonations in salt marshes are characteristic of specific 

environments. Floral preservation in the stratigraphic record is poor, whereas 

foraminiferal test preservation is excellent. Therefore, foraminiferal assemblages 

permit relocating paleoenvironments, such as high marsh, indicative of former RSL 

highstands. 

44 

Foraminiferal examination of samples taken from the West Head salt marsh, 

Chezzetcook Inlet, produced accurate markers of former sea levels. Tiphotrocha 

comprimata and Trochammina macrescens represent high marsh environments and the 

HHW point, the most accurate sea-level marker. Ammobaculites dilatatus, Ammotium 

sa/sum, Miliamminafusca, and Trochammina inflata represent middle-low marsh 

environments. Carbon-14 dating corrected to sidereal years of former sea-level points 

permitted the construction of a Holocene RSL curve (Stuiver and Reimer 1987). 

Glacio-isostacy resulting in migration of the peripheral forebulge following 

Wisconsinan deglaciation explains the various sea-level curves observed in Atlantic 

Canada. In addition, a mid-Holocene warm interval resulted in a eustatic RSL change 

detectable in Chezzetcook Inlet. Various rates of sea-level rise occurred in Atlantic 

Canada within the last 7859 year interval. Average rates of present sea-level rise are 

21.3 em/century. 
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SYSTEMATIC TAXONOMY 

Ammobaculites dilatatus Cushman and Bronnimann 
Ammobaculites dilatatus CUSHMAN and BRONNIMANN 1948b, p. 39, pl. 7, figs. 3, 
4. 
Ammobaculites foliaceus (H.B. Brady).- SCOTT and MEDIOLI 1980a, p. 39, pl. 1, 
figs. 6-8. 

Ammobaculites exigus (Cushman and Bronnimann) 
Ammobaculites exigus CUSHMAN and BRONNIMANN 1948b, p. 38, pl. 7, figs. 7, 
8. 
Ammobaculites dilatatus Cushman and Bronnimann.- SCOTT and MEDIOLI 1980a, p. 
39, pl. 1, figs. 6-8. 

Ammonia beccarii (LINNE) 
Nautilis beccerii LINNE, 1758, p. 710. 
Ammonia beccerii (Linne).- BRUNNICH 1772, p. 232. 

Ammotium sa/sum (Cushman and Bronnimann) 
Ammobaculites salsus CUSHMAN and BRONNIMANN 1948a, p. 16, pl.3, fig. 7-9. 
Ammotium sa/sum (Cushman and Bronnimann).- PARKER and ATHEARN 1959, p. 
340, pl. 50, figs. 6, 13.- BOLTOVSKOY and VIDARTE 1977, p. 38, pl. 1, fig. 14-
19.- ZANINEm ET AL. 1977, pl.2, figs. 4, 5.- BOLTOVSKOY and HINCAPIE DE 
MARTNfNEZ 1983, p. 212, pl.1, figs. 14-25.- SCOTT and MEDIOLI 1980a, p.37, 
pl.1, figs. 11-13. 

Arenoparella Mexicana (Kornfeld) 
Trochammina Inflata (Montagu) var. mexicana KORNFELD 1931, p. 86, pl. 13, fig. 5. 
ArenoparellaMexicana (Kornfeld).- ANDERSON 1951, p. 31, fig. 1.- BOLTOVSKOY 
and VIDARTE 1977, p. 38, pl. 2, fig. 1-3.- ZANINETTI ET AL. 1977, pl.2, figs. 3,7.­
BOLTOVSKOY and HINCAPIE DE MARTNiNEZ 1983, p. 212, pl.1, figs. 26-30.­
SCOTT and MEDIOLI 1980a, p. 41, pl. 4, figs. 8-11. 

Buccella frigida (Cushman) 
Pulvinulinafrigida CUSHMAN 1921 (1922}, p. 144. 
Eponides frigida (Cushman) var calida Cushman and Cole, 1930, p. 98/ pl. 13, fig. 
13a-c.- Phleger and Walton 1950, p. 277, pl. 2, fig. 21.- Parker 1952b, p. 449, pl. 5, 
fig. 3a, b. 
Eponides frigidus (Cushman) Cushman 1941, p. 37, pl. 9, figs. 16, 17.- Parker 1952b, 
p. 449, pl. 5, fig. 2a, b. 
Buccellafrigida (Cushman).- Andersen 1952, p. 144, figs. 4a-c, 5, 6a-c.- Gregory 
1970, p. 220, pl. 12, figs. 1-3.- C~le and Ferguson 1975, p. 33, pl. 8, fig. 8, 9. 
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Cribrostomoides crassimargo (Norman) 
Haplophragmium crassimargo NORMAN 1892, p. 17. 
Labrospira crassimargo (Norman).- HOEGLUND 1947, p. 11, fig. 1, text figs. 121-
125. 
Cribrostomoides crassimargo (Norman).- LESLIE 1965, p. 158, pl. 2, fig. 2a,b.­
WILLIAMSON 1983, p. 209, pl. 1, figs. 6-7 

Eggerella advena (Cushman) 
Vemeuilina advena CUSHMAN 1921, p. 141. 
Eggerella advena (Cushman).- CUSHMAN 1937, p. 51, pl. 5, figs. 12-15.- SCOTT 
and MEDIOLI 1980a, p. 38, pl. 2, fig. 7. 

Elphidiwn excavatwn (Terquem) 
Polystomella excavata TERQUEM 1876, p. 429, pl. 2, fig. 2a-d. 
Elphidium excavatum (Terquem).- CUSHMAN 1944, p. 26, pl. 2, fig. 40. 

Elphidiwn subarcticwn Cushman 
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Elphidium subarcticium CUSHMAN 1944, p. 27, pl. 3, fig. 34, 35.- Schnitker 1971, p. 
198, pl. 7, fig 3.- Cole 1981, p. 101, pl. 20, fig. 4. 

Haplaphragmoides numilaensis Anderson 
Haplophragmoides manilaensis ANDERSON 1953, p. 22, pl. 4, fig. 8. 
Haplophragmoides bonplandi TODD and BRONNIMANN 1957, p. 23, pl. 2, fig. 2.­
SCOTT and MEDIOLI 1980a, p. 40, pl. 2, figs. 4, 5. 

Haynesina orbiculare (Brady) 
Nonionina orbicularis BRADY 1881, p. 414, pl. 21, fig. 5. 
Haynesina orbiculare (Brady).- Banner and Culver 1978, p. 188. 

Helenina andersoni (Warren) 
Valvulinera sp. PHLEGER and WALTON 1950, p. 281, pl. 2, figs. 22a, b. 
Pseudoeponides andersoni Warren, 1957, p. 39, pl. 4, figs. 12-15.- Parker and Athearn, 
1959, p. 341, pl. 50, figs. 28-31. 
Helenina andersoni (Warren). SAUNDERS, 1961, p. 148.- SCOTT, 1977, p. 173, pl. 6, 
figs. 12, 13. 

Miliammina fusca (Brady) 
Quinquelouilinafusca BRADY 1870, p.47, pl. 11, figs. 2,3. 
Miliamminafusca (Brady).- PHLEGER and WALTON 1950, p. 280, pl. 1, figs 19a,b.­
BOLTOVSKOY and VIDARTE 1977, p. 39, pl. 3, figs. 7-9. 

Polysaccammina ipohalina Scott 
Polysaccammina ipohalina SCOTT 1976, p. 318, pl. 2, figs. 1-4, text figs. 4a-c.-
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ZANINETTI ET AL. 1977, pl. 1, fig. 7.- BRONNIMANN ET AL. 1979, pp. 33, 34, 
pl. 3, fig. 1-14; pl. 4, fig. 4, 6; pl. 5, figs. 1, 7. 

Pseudotluuanunina limnetis (Scott and Medioli) 
Astrammina sphaerica (Heron-Allen and Earland).- ZANINETTI ET AL. 1977, pl. 1, 
fig. 9. 
Tholsina sp. BOLTOVSKOY and VIDARTE 1977, p. 39, pl. 4, fig. 8. 
Thurammina? limnetis SCOTT and MEDIOLI 1980a, pp. 43, 44, pl. 1, figs. 1-3. 
Pseudothurammina limnetis (Scott and Medioli).- SCOTT, MEDIOLI, and 
WILLIAMSON 1981, pp. 126, 127. 

Reophax 1UliUl Rhumbler 
Reophax nana RHUMBLER 1911, p. 182, pl. 8, figs 6-12.- SCOTT and MEDIOLI 
1980a, p. 3 8, pl. 2, fig. 6. 

Reophax scottii Chaster 
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Reophax scottii CHASTER 1982, p. 57, pl. 1, fig. 1.- WILLIAMSON 1983, p.207, pl. 
1, fig. 11. 

Rosalina columbiensis (Cushman) 
Discorbis columbiensis CUSHMAN 1925, p. 43, pl. 6, fig. 13. 
Rosa/ina columbiensis (Cushman).- LANKFORD AND PHLEGER 1973, pp. 127-128, 
pl. 5, figs. 10-12. 

Textularia earlandi Parker 
Textularia earlandi PARKER 1952, p. 458 (footnote).-BOLTOVSKOY and VIDARTE 
1977, p. 39, pl. 4, figs.6,7.- BOLTOVSKOY and IDNCAPIE DE MARTNiNEZ 1983, 
p. 218, pl. 3, figs. 24, 25. 

Tiphotrocha comprimata (Cushman and Bronnimann) 
Trochammina comprimata CUSHMAN and BRONNIMANN 1948b, p. 41, pl. 8, figs. 
1-3. 
Tiphotrocha comprimata (Cushman and Bronnimann).- SAUNDERS 1957, p. 11.­
BOLTOVSKOY and VIDARTE 1977, p. 39, pl. 4, figs. 9, 10.- ZANINETTI ET AL. 
1977, pl. 1, figs. 4, 6.- SCOTT and MEDIOLI 1980a, p. 42, pl. 5, figs. 1-3. 

Trochammina injlata (Montagu) 
Nautilus inflata MONTAGU 1808, p. 81, pl. 18, fig 3. 
Trochammina inflata (Montagu).- PARKER and JONES 1859, p.347.- BOLTOVSKOY 
and VIDARTE 1977, p. 39, pl. 4, figs. 11, 14.- ZANINETTI ET AL. 1977, pl. 1, figs. 
1, 2.- SCOTT and MEDIOLI 1980a, p. 39, pl. 3, figs. 12-14. 
Siphotrochammina elegans ZANINEm ET AL. 1977, pl. 2, fig. 8, 10, 11. 
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Trocluunmina macrescens Brady 
Trochammina inflata (Montagu) var. macrescens BRADY 1970, p. 290, pl. 11, figs. 
5a-c. 
Jadammina poly stoma BARTENSTEIN and BRAND 1938, p. 381, figs. la-c, 2a-1. 
Trochammina macrescens Brady.-PHLEGER and WALTON 1950, p. 281, pl. 2, figs. 
6, 7.- BOLTOVSKOY and VIDARTE 1977, p. 39, pl. 4, figs. 12, 13.- SCOTT and 
MEDIOLI 1980a, p. 39, pl. 3, figs. 1-8. 

Trocluunmina squamata Parker and Jones 
Trochammina squamata PARKER and JONES, 1865, p. 407, pl. 15, figs. 30, 3la-c.­
SCOTT and MEDIOLI 1980a, p. 41, pl. 4, figs. 6, 7. 
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PlATE 1 

Plate 1 includes eight agglutinated species which can be observed in the West 
Head salt marsh, Chezzetcook Inlet. 

1 Ammobaculites dilatatus. 1. Side view (uniserial chambers missing). 

2-3 Ammobaculites exigus. 2. Side view. 3. Apertural view. 

4-5 Ammotium salsum. 4. Side view. 5. Apertural view. 

6 Miliamminafusca. 6. Side view of four-chamber side. 

7-8 Tiphotrocha comprimata 1. Dorsal view. 8. Ventral view. 

9-10 Trochammina inflata 9. Dorsal view. 10. Ventral view. 

11-12 Trochammina macrescens. 11. Dorsal view. 12. Ventral view. 

13-14 Trochammina squamata. 13. Dorsal view. 13. Ventral view. 





APPENDIX A 
CORE LOGS 

I 

Appendix A contains reproduced core logs for Cores 2, 8A, 8B, and 12. Original core 
data, including cores, site locations, core logs, core sample intervals, and 14C dating sample 
intervals are stored in the Centre for Marine Geology Core Room, Dalhousie University. 
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