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Abstract

Severe mental illness (SMI) refers to major depressive disorder, bipolar disorder and

schizophrenia. The early onset and prolonged course make SMI a leading cause of

disability in the population. There is a growing need to identify biological markers

of SMI to assist with early diagnosis and to inform treatment. Neuroimaging holds

substantial promise in this regard. I sought to examine brain correlates of vulnerabil-

ity to SMI. First, I examined SMI from a family history perspective and investigated

structural changes in youth at familial risk for bipolar disorder (BD). I found that

structural alterations in the inferior frontal gyrus were present not only in individ-

uals in the early stages of BD but also in their unaffected relatives. I subsequently

explored SMI from an early symptom perspective and demonstrated that attenuated

psychotic symptoms during adolescence are associated with reduced cortical folding,

even before the onset of psychotic illness. For biomarkers to be of clinical utility, they

must be reliable. Thus, for my next project I established the scan-rescan reliability

of nine commonly used structural MRI measures in our sample, including youth with

anxiety and attention-deficit / hyperactivity disorder. Finally, I have compiled data

from multiple developmental cohorts and built a machine learning model to quantify

neuroanatomical maturity. This study shed light on how deviation in developmental

trajectories relates to risk for SMI. The findings presented in my thesis contribute

to a better understanding of early structural brain markers associated with risk for

mental illness.
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Chapter 1

Introduction
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1.1 Overview

Severe mental illness (SMI) refers to functionally disruptive mental disorders that are

responsible for a large proportion of disability in the population (Uher et al., 2014).

SMI includes schizophrenia, bipolar disorder, and recurrent depression. SMI typically

onsets in adolescence or early adulthood and often follows a life course (Caspi et al.,

2020). Thus, there is great impetus to identify biological markers of SMI that may

be present before illness onset. Magnetic resonance imaging (MRI) is one promising

avenue for non-invasively investigating the neurobiology of psychiatric disorders. One

of the strongest predictors of SMI is having a close relative who is affected (Rasic,

Hajek, Alda, & Uher, 2014), inspiring this thesis to explore the relationship between

familial risk and the brain. Furthermore, SMI is often preceded by developmental

antecedents of mental illness (Uher et al., 2014). Therefore I will explore the relation-

ship between early antecedents and markers of brain development. Next, this thesis

will examine the reliability of commonly used structural brain measures. Finally, I

will conclude by using MRI to predict an individual’s stage of brain maturation and

describe how deviation from the expected brain development relates to mental illness.

1.2 Risk for severe mental illness

1.2.1 Family history

One in three offspring of parents with SMI are likely to develop a major mood or

psychotic disorder in the first two decades of life (Rasic et al., 2014). This estimate is

higher than previously thought because prior studies have often focused on disorder-

specific transmission from parent to child. Population cohorts (Dean et al., 2010),

genetic evidence (Selzam, Coleman, Caspi, Moffitt, & Plomin, 2018; Uher & Zwicker,

2017), and meta-analyses (Rasic et al., 2014) have shown us that parental history

of mental illness is associated with more broad transdiagnostic psychiatric outcomes

in children. In other words, family history for schizophrenia elevates one’s risk for

psychotic disorders, but also increases risk for mood disorders, and vice versa. How-

ever, the majority of individuals who develop SMI have no apparent family history

of mental illness (Al-Chalabi & Lewis, 2011), necessitating the need for supplemental

risk markers.
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1.2.2 Early antecedents

Longitudinal studies have shown that SMI is often preceded and predicted by de-

velopmental antecedents. Antecedents represent earlier and milder manifestations of

psychopathology that may be distressing to the individual without being severely

impairing. Prior literature has identified five antecedents as transdiagnostic predic-

tors of SMI: affective lability, anxiety, sleep problems, psychotic symptoms, and basic

symptoms (Uher et al., 2014).

Affective lability Affective lability corresponds to affect regulation in youth. In-

dividuals with high affective lability have the propensity to experience strong and

unpredictable changes in mood (Gerson et al., 1996). Recent work has shown that

elevated affective lability is a marker of familial risk for mood disorders (Zwicker,

Drobinin, et al., 2019).

Anxiety Anxiety disorders are common antecedents to SMI and precede SMI by

over half a decade (Duffy, Alda, Hajek, Sherry, & Grof, 2010). Offspring of parents

with mood disorders are twice as likely to have an anxiety disorder than the general

population (Duffy et al., 2010; Rasic et al., 2014; Weissman et al., 2006).

Sleep problems Sleep problems early in life are another non-specific predictor of

a range of physical and mental health problems later in life (Touchette et al., 2012).

Abnormal sleep is also a common symptom across disorders (American Psychiatric

Association, 2013).

Psychotic symptoms Psychotic symptoms, or early psychotic-like experiences,

most frequently include hallucinations in the absence of a psychotic disorder. Psy-

chotic symptoms in childhood and adolescence predict psychosis and SMI, especially

if persistent rather than transitory (Arseneault et al., 2011; Poulton et al., 2000;

Polanczyk et al., 2010).

Basic symptoms Basic symptoms describe subjectively perceived deficits or ab-

normalities in perception, cognition, language, and other important mental processes.

Compared to psychotic symptoms, basic symptoms are recognized by the individual
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experiencing them as atypical or unusual (Schultze-Lutter, 2009). Basic symptoms are

a strong predictor of schizophrenia (Klosterkötter, Hellmich, Steinmeyer, & Schultze-

Lutter, 2001; Schultze-Lutter et al., 2012).

I will examine psychotic symptoms and basic symptoms in closer detail in Chapter

3. Accumulation of several antecedents is associated with additional risk for SMI

(Paccalet et al., 2016). We have developed a youth experience tracker instrument as

an alternative to using multiple longer instruments to measure the aforementioned

antecedents (Patterson et al., 2020). I will examine individuals with high antecedent

burden in Chapter 5.

1.3 Brain correlates of SMI

Several studies suggest that alterations in brain development precede SMI onset and

may help predict which youth are at risk. Despite advances in our understanding of

the neurobiology of SMI, there are no MRI studies offering a complete picture of the

mechanisms involved in the causes of SMI nor have neuroimaging findings made their

way into informing clinical practice. Nevertheless, this section will provide a brief

overview of notable studies showcasing brain alterations across SMI.

1.3.1 Major depressive disorder

A meta-analysis of the first three decades of neuroimaging in major depressive disor-

der (MDD) found ventricular enlargement and increased cerebrospinal fluid (CSF)

volumes alongside smaller prefrontal and hippocampal volumes in MDD patients

compared to controls (Kempton et al., 2011). Several recent ENIGMA (enhanc-

ing neuroimaging genetics through meta-analysis) papers have established partially

overlapping findings. The examination of subcortical brain alterations revealed lower

hippocampal volumes in MDD patients compared to controls (Schmaal et al., 2016).

This was the only statistically significant result from one of the largest MDD studies

to date, and the effect was primarily driven by patients with recurrent MDD or early

age of onset.

A follow-up ENIGMA paper examined cortical alterations in adults and adoles-

cents with MDD from 20 cohorts worldwide (Schmaal et al., 2017). Adults with MDD
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had thinner cortical grey matter in the orbitofrontal cortex (OFC), anterior and pos-

terior cingulate, as well as the insula. Adolescents with MDD overall had lower total

surface area (SA) as well as regional reductions in the medial OFC and superior

frontal gyrus. Lower SA was also found in sensory-motor areas. The differences in

findings between adults and adolescents with MDD led the authors to suggest that

MDD may affect brain structure in a dynamic way across different stages of life.

Diffusion tensor imaging (DTI) is a technique that allows for in vivo exploration

of structural connectivity. Using this technique, a recent study has examined white

matter microstructure alterations associated with depressive episodes during adoles-

cence (Vulser et al., 2018). The work has revealed lower fractional anisotropy (FA) in

the corpus callosum of adolescents with subthreshold depression. More interestingly,

lower FA values predicted higher individual risk for depression during follow up. Fi-

nally, in the latest collaborative meta-analysis from ENIGMA, MDD was associated

with advanced brain aging (Han et al., 2020). We will explore the multivariate brain

age framework in Chapter 5 of this thesis, with application in MDD and beyond.

1.3.2 Bipolar disorder

Similar to MDD, one of the top structural brain changes associated with bipolar

disorder (BD) is grey matter loss in the hippocampus (Cao et al., 2016). Smaller

hippocampal volume was also related to worse memory performance in individuals

with BD who have experienced more manic episodes. These findings were corrobo-

rated and expanded upon the same year, with the largest investigation of subcortical

abnormalities in BD to date (Hibar et al., 2016). Patients with BD showed volumet-

ric reductions in the hippocampus and thalamus coupled with enlarged ventricles.

Sufficient sample sizes allowed for the comparison of BD type I and type II, however

the study did not detect any significant volumetric differences between the subtypes.

Lithium appeared to have a neuroprotective effect, especially on thalamic volumes.

The neuroprotective effects of lithium were also found recently on a multivariate mea-

sure of brain structure (Van Gestel et al., 2019), emphasizing the importance of taking

into account medication use in neuroimaging studies of psychiatric illness.

Cortical alterations have also been widely examined, including more recently in the

most well-powered study of BD to date (Hibar et al., 2018). Matching prior literature,
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BD was associated with lower cortical grey matter across the frontal, temporal, and

parietal lobes. The strongest effects were found in the inferior frontal gyrus (IFG),

the fusiform gyrus, and rostral middle frontal cortex. This report overlaps with prior

findings of familial predisposition for bipolar disorder being associated with structural

changes in the IFG (Hajek, Cullis, et al., 2013). I will examine this evidence in further

detail throughout Chapter 2.

White matter abnormalities are also assumed to be related to the pathophysiology

of BD. A recent meta-analysis across 26 cohorts has reported widespread microstruc-

tural abnormalities in BD (Favre et al., 2019). The findings revealed lower FA in

patients with BD compared to healthy controls in 29 out of 43 regions examined. The

highest effect sizes were reported for the corpus callosum (CC) and the cingulum. As

mentioned before, reduced FA within the CC was previously found in subthreshold

depression in adolescence and meta-analysis of MDD (Vulser et al., 2018; Wise et al.,

2016). As we will touch upon in a moment, reduced FA within the CC has also been

implicated in a meta-analysis of schizophrenia (Kelly et al., 2017), continuing a trend

of shared brain alterations across SMI.

Finally, there is growing interest to move beyond mass-univariate, structure by

structure, methods of finding group differences between patients and controls. Novel

techniques, such as statistical / machine learning (ML), are able to capture multivari-

ate alterations distributed throughout the whole brain. This approach may better

account for the widespread yet weak effects of brain changes found in SMI. To illus-

trate an example, a recent study used structural MRI to identify BD in a sample of

3020 individuals (Nunes et al., 2018). The authors’ algorithm was able to differentiate

BD participants from controls with an accuracy of over 65%. This level of perfor-

mance was well above chance, but also well below the threshold of clinical utility –

an apt description of the promising yet nascent literature applying ML in psychiatry.

1.3.3 Schizophrenia

Compared to healthy controls, patients with schizophrenia exhibit smaller hippocam-

pus, amygdala, thalamus, and intracranial volumes (van Erp et al., 2016). Indeed, re-

ductions in whole-brain volumes have been reported in both first-episode and chronic

schizophrenia patients, and are pronounced in those with a poor outcome (Haijma et
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al., 2013). In Chapter 3 I will similarly note reduced intracranial volume in youth

with psychotic symptoms.

The global reductions extend to measures of cortical thickness and surface area. A

39 centre worldwide collaboration reported that individuals with schizophrenia have

an overall thinner cortex, and to a lesser degree, a smaller surface area than in compa-

rable controls (van Erp et al., 2018). The largest effect sizes were observed in frontal

and temporal lobes. Regional specificity was reported for cortical thickness, with the

strongest bilateral reductions in the fusiform, inferior temporal, and parahippocam-

pal gyri. Prior longitudinal work has shown greater reduction in cortical thickness

among youth at clinical high risk who go on to develop psychosis (Cannon et al.,

2015). Similarly, using ML techniques to assess neuroanatomical maturity, Chung et

al., 2018, have shown that greater brain age deviation in youth was associated with

a higher risk for developing psychosis.

Furthermore, widespread reductions have been observed in another important

neurodevelopmental measure in schizophrenia. Several studies have found lower cor-

tical folding in individuals with psychotic disorders (Nanda et al., 2014; Nesv̊ag et

al., 2014). Aberrant gyrification has also been reported in people at genetic risk for

schizophrenia (Nanda et al., 2014; Falkai et al., 2007; Liu et al., 2017) and found to

be a predictor of poor treatment response in first-episode psychosis (Palaniyappan et

al., 2013). In Chapter 3 I will explore cortical folding in youth experiencing psychotic

symptoms.

Schizophrenia has been conceptualized as a disorder of global structural discon-

nectivity (Friston, Brown, Siemerkus, & Stephan, 2016). Hence neuroimaging work

in schizophrenia has been interested in the integrity of white matter bundles intercon-

necting the cortex. The largest study of white matter microstructure in schizophrenia

has found widespread reductions in FA, an indirect proxy for white matter integrity

(Kelly et al., 2017). FA was lower for patients across the whole-brain white matter

skeleton. Regional differences were accentuated in peripheral areas of the tract based

atlas. The largest effect sizes were observed in the anterior corona radiata and corpus

callosum, again partially reminiscent of the prior findings discussed in the context of

mood disorders.
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1.3.4 Transdiagnostic features of SMI

While summarizing the neuroimaging research I noted structural brain alterations

that are common across broad diagnostic families of disorders. For example, strong

effect sizes in the hippocampus, the corpus callosum, the prefrontal cortex across the

SMI spectrum, despite each disorder having been analyzed independently in reference

to healthy controls.

I am not the first to make this observation. In a meta-analysis of 193 studies,

Goodkind et al., 2015, argued for shared neural substrates across diverse forms of

psychopathology. This line of thinking has led to the re-examination of prior work

and the search for transdiagnostic as well as disorder-specific structural abnormalities

(Opel et al., 2020). At the same time, others have shown compelling evidence that a

pervasively thinner neocortex is a transdiagnostic feature of general psychopathology

(Romer et al., 2020). Romer et al., 2020, go on to argue that structural correlates

of mental disorders may not follow traditional diagnostic boundaries. In addition,

the authors warn against the pursuit of such specific correlates, as the endeavour

might limit progress towards more effective strategies for inference, prevention, and

intervention.

Whichever view is correct, neuroimaging will benefit from more case-to-case,

rather than case-to-control, comparisons in the search for biomarkers across the life

span.

1.4 Brain development during adolescence

Most psychiatric disorders onset in the first two decades of life (Kessler et al., 2005;

Caspi et al., 2020). In attempting to understand why many psychiatric disorders

emerge during adolescence, Paus, Keshavan, & Giedd, 2008, conceptualize the an-

swer as “moving parts get broken”. In other words, adolescence is characterized by

major changes in the brain, and during this vulnerable period, exaggerations or ab-

normalities in brain maturation or environmental insults might leave a lasting mark.

Thus, we should turn our attention to the ‘moving parts’ – or typical brain devel-

opment – to ground ourselves for the rest of the thesis, which focuses on how they

might ‘get broken’.
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1.4.1 Typical brain development

Subcortical development

A longitudinal study examined subcortical volume change across ages 8 to 22 (Tamnes

et al., 2013). The caudate, nucleus accumbens, putamen, cerebellum, and

thalamus showed the steepest volume declines during adolescence, followed by the

pallidum, hippocampus, and amygdala with lesser or non-significant declines.

In the opposite direction, the brainstem and lateral ventricles showed significant

increases throughout development.

A more recent longitudinal study examined datasets spanning three countries to

take a deeper look at the development of subcortical volumes (Herting et al., 2018).

Their account was somewhat discrepant, with observed increases in pallidum, hip-

pocampus, and amygdala volumes in the same 8 to 22 year old age range. The

study identified sex differences in developmental trajectories. In addition, sample

origin made a difference in the analysis, indicating that caution is warranted if at-

tempting to generalize subcortical findings from data based on a single cohort.

Gross cortical development

Mills et al., 2016, investigated structural brain development between childhood and

adulthood using data from four longitudinal samples. The authors found that whole

brain volume, a combined measure of grey and white matter including the cerebel-

lum, showed a non-linear decrease across adolescence, beginning to stabilize in the

early twenties. On the other hand, intracranial volume, a relatively crude but

widely used measure based on FreeSurfer’s registration scaling, showed an annual

increase of approximately 1%, beginning to stabilize in adolescence. Cortical grey

matter volume was the highest at eight years old, the youngest age investigated.

The authors noted an overall non-linear decline beginning at the youngest age, con-

tinuing to decrease through the twenties and beginning to stabilize in the thirties.

Finally, cerebral white matter volume showed an increase between late child-

hood to mid adolescence. In this instance, there was some inter-sample heterogeneity

in terms of when white matter volumes began to stabilize; mid or late adolescence.

Furthermore, the authors observed geographical differences, as white matter volumes
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estimated from youth in the United states tended to be smaller than those estimated

from European samples.

Cortical surface area and thickness

Cortical grey matter volume is a product of cortical surface area (SA) and

cortical thickness (CT). SA and CT have been shown to be genetically dis-

tinct (Panizzon et al., 2009) and influenced by different neurobiological mechanisms

(Winkler et al., 2010). Building on the work done by Mills et al., 2016, a follow-

up study examined the individual trajectories of SA and CT in the same four site

developmental sample (Tamnes et al., 2017).

The authors re-established the finding of cortical volume decreases across the

sample age range (7 to 30 years old), noting a slightly accelerated decrease during

adolescence. CT showed a non-linear decrease throughout the age range. This was in

line with similar work on developmental trajectories (Walhovd, Fjell, Giedd, Dale, &

Brown, 2017), in which the authors found continuous thickness decrease from 3 years

onwards using multiple methods. Furthermore, the CT decrease was more prominent

from ages 10 to 20, beginning to stabilize henceforth.

Tamnes et al., 2017, also reported more monotonic and steady decreases in SA

with age, corroborating prior results (Wierenga, Langen, Oranje, & Durston, 2014).

Thus the authors concluded that the largest contributor to cortical volume reductions

during adolescence is reduction in CT.

1.4.2 Reliability of brain data

Accurate accounts of typical or atypical brain development depend on the reliability

of the underlying neuroimaging data. Image artifcats can undermine the validity

of the interpretations we make from MRI data. For example, the effects of head

motion can resemble cortical grey matter atrophy on processed images (Reuter et al.,

2015). This can inadvertently affect the inferences made regarding developmental

trajectories (Ducharme et al., 2016). Reliability of common MRI measures has been

assessed in adults (Iscan et al., 2015), however such studies are perhaps in greater need

for developmental samples as younger individuals might have difficulty remaining still

for the duration of MRI scans. In Chapter 4 I assess the reliability of widely used
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MRI measures in youth at risk for SMI.

1.5 Research objectives

In the current thesis, I address the following research objectives:

1. Examine the relationship between family history of SMI, specifically mood dis-

orders, and changes in the prefrontal cortex.

2. Examine the relationship between developmental antecedents of SMI, specifi-

cally basic and psychotic symptoms, and cortical folding in youth.

3. Establish the reliability of structural MRI data in youth at risk for SMI.

4. Identify how risk factors associated with mental illness relate to individual de-

viation from typical brain maturation.
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2.1 Abstract

Background Larger grey matter volume of the inferior frontal gyrus (IFG) is among

the most replicated biomarkers of genetic risk for bipolar disorders (BD). However, the

IFG is a heterogeneous prefrontal region, and volumetric findings can be attributable

to changes in cortical thickness (CT), surface area (SA) or gyrification. Here, we

investigated the morphometry of IFG in participants at genetic risk for BD

Methods We quantified the IFG cortical grey matter volume in 29 affected, 32

unaffected relatives of BD probands, and 42 controls. We then examined SA, CT,

and cortical folding in subregions of the IFG.

Results We found volumetric group differences in the right IFG, with the largest

volumes in unaffected high-risk and smallest in control participants (F 2,192 = 3.07, p

= 0.01). The volume alterations were localized to the pars triangularis of the IFG

(F 2,97 = 4.05, p = 0.02), with no differences in pars opercularis or pars orbitalis.

Pars triangularis volume was highly correlated with its SA [Pearson r(101) = 0.88, p

<0.001], which significantly differed between the groups (F2,97 = 4.45, p = 0.01). As

with volume, the mean SA of the pars triangularis was greater in unaffected (corrected

p = 0.02) and affected relatives (corrected p = 0.05) compared with controls.

Conclusions These findings strengthen prior knowledge about the volumetric find-

ings in this region and provide a new insight into the localization and topology of

IFG alterations. The unique nature of rIFG morphology in BD, with larger volume

and SA early in the course of illness, could have practical implications for detection

of participants at risk for BD.
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2.2 Introduction

Bipolar disorders (BD) typically develop in late teens or early 20s and follow a re-

current course (Judd et al., 2002). The combination of the early age of onset and

life-long course make BD one of the top causes of morbidity and disability worldwide

(Judd et al., 2008). While heritability estimates for BD are as high as 89% (McGuffin

et al., 2003; Song et al., 2015) there are no widely accepted biological markers of the

disorder and diagnosis is made based on behavioural symptoms. This in part con-

tributes to the fact that correct diagnosis often lags behind symptom onset by up to

a decade (Ghaemi, Sachs, Chiou, Pandurangi, & Goodwin, 1999 Jan-Mar; Bschor et

al., 2012). Therefore, it is imperative to identify biological markers of the disorder

to assist with early diagnosis and to inform treatment (Conus, Macneil, & McGorry,

2014).

Neuroimaging holds substantial promise in investigating the neurobiology of psy-

chiatric disorders. The largest psychiatric neuroimaging study to date has found

structural brain differences in frontal, temporal and parietal regions in BD patients

compared with healthy controls (Hibar et al., 2017). At the same time, meta-analyses

of structural cortical alterations in BD have emphasized the heterogeneity of findings

across the literature (Selvaraj et al., 2012; Wise et al., 2017). The statistical hetero-

geneity likely reflects clinical heterogeneity, whereas brain changes in BD might not

only represent the biological markers of the disorder, but also progressive effects of

illness (Hajek et al., 2012; Moylan, Maes, Wray, & Berk, 2013), common comorbidi-

ties (Hajek, Calkin, Blagdon, Slaney, & Alda, 2015; Pavlova, Perlis, Alda, & Uher,

2015), and exposure to medications (Hajek et al., 2014; Hajek & Weiner, 2016). One

strategy that lends itself well to isolating the biological risk factors inherent to BD is

to use genetic high-risk (HR) design. This requires the study of healthy unaffected

offspring of parents with BD, who are at high genetic risk but have not yet expressed

any symptoms of the illness. Therefore, neurostructural alterations in HR individuals

cannot be a consequence of the illness burden, comorbidities, or treatments.

In our previous replication design HR study, we found larger right inferior frontal

gyrus (IFG) volumes among both unaffected HR subjects and affected familial par-

ticipants across two centres (Hajek, Cullis, et al., 2013). Other studies have reported

similar findings (Adler, Levine, DelBello, & Strakowski, 2005; Matsuo et al., 2012;
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Sarıçiçek et al., 2015; Roberts et al., 2016), making IFG volume change the most

replicated neurostructural finding in participants at genetic risk for BD. Aside from

the fact that IFG structural alterations are found in unaffected relatives, they are

also associated with the illness. In addition, IFG volumes are heritable (Winkler et

al., 2010). Thus, volumetric changes of IFG meet criteria for a psychiatric endophe-

notype (Gottesman & Gould, 2003). The localization to the rIFG also has good face

validity vis-à-vis its function. The right IFG is an area of the prefrontal cortex cen-

trally involved in response inhibition (Aron, Robbins, & Poldrack, 2014). Impaired

response inhibition underlies certain symptoms of mood disorders and is a candidate

neurocognitive endophenotype for BD (Bora, Yucel, & Pantelis, 2009). Indeed, hy-

poactivations of rIFG are frequently found in BD during inhibitory control tasks, and

are also present during euthymia (see Selvaraj et al., 2012; Hajek, Alda, Hajek, &

Ivanoff, 2013 for review).

Considering that IFG alterations are among the strongest candidates for a neu-

roanatomical signature of BD, it is important to better understand the underpinnings

of these changes. Cortical grey matter volume is a product of cortical surface area

(SA) and cortical thickness (CT). SA and CT have been shown to be genetically

distinct (Panizzon et al., 2009), influenced by different neurobiological mechanisms

(Winkler et al., 2010) and sometimes affected in opposite directions (A. Lin et al.,

2017). Thus, examining SA and CT differences separately might lead to the identifi-

cation of phylogenetically suitable markers that offer greater insight into the neuro-

biology of the disorder. Evolutionarily, gyrification (cortical folding) made possible

the expansion of the cortex within the constraints of the skull and can now be ac-

curately studied in-vivo (Schaer et al., 2008). This morphological measure captures

a developmental window distinct from CT (Schaer et al., 2009) and SA (Hogstrom,

Westlye, Walhovd, & Fjell, 2013). Studies of gyrification have yielded mixed results

in BD (McIntosh et al., 2009; Nenadic et al., 2015). Gyrification in individuals at

familial risk for BD remains to be examined.

In the current HR design study, we attempted to replicate the finding of enlarged

IFG in unaffected and affected offspring of BD parents relative to controls. In ad-

dition, we investigated the localization of volumetric changes within IFG and their

topology, with regard to CT, SA, and gyrification.
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2.3 Methods

2.3.1 Participants

Participants were recruited from an ongoing Offspring Risk for BD Imaging Study–ORBIS.

We recruited offspring from families of well-characterized adult BD probands who had

participated in previous genetic and HR studies (Duffy et al., 2002; Lopez de Lara

et al., 2010; Hajek, Calkin, et al., 2015) in Halifax, Nova Scotia. Participants aged

15–30 were eligible for inclusion, which represents the typical range of age at onset of

BD according to cross-sectional and prospective studies (Duffy, Alda, Hajek, & Grof,

2009; Ortiz et al., 2011). Consequently, these individuals remain at a substantial risk

of future onset of BD. Only the offspring, not the probands, participated in the MRI

study. As this is a part of an ongoing study, the sample included here was larger and

partially overlapping with the sample described in our previous publication – 103 v.

82 participants (Hajek, Cullis, et al., 2013).

In keeping with previous studies (Todd et al., 1996; Duffy et al., 2002), we included

participants with BD type I or type II, but not with BD NOS as probands for this

study. Similar to participants with BD I, the BD II individuals had a low prevalence

of comorbid conditions and an episodic course of illness. Family studies focusing on

similarly narrow diagnoses have generally found them to be part of the same genetic

spectrum (Gershon et al., 1982). Furthermore, neuroimaging studies show similar

findings for patients with BD I and BD II (Hamakawa, Kato, Murashita, & Kato,

1998; Winsberg et al., 2000; Dager et al., 2004; McGrath, Wessels, Bell, Ulrich, &

Silverstone, 2004; Silverstone, Asghar, O’Donnell, Ulrich, & Hanstock, 2004; Wu et

al., 2004).

The offspring from BD probands were divided into two subgroups. (1) The un-

affected HR group, which included 32 offspring without a personal history of Axis I

psychiatric disorders. These individuals were considered HR because they came from

multiplex families (more than one member affected with BD) and had one parent af-

fected with a primary mood disorder. (2) The affected familial group, which included

29 offspring meeting criteria for a lifetime Axis I diagnosis of mood disorders (i.e. a

personal history of at least one episode of depression, hypomania, or mania meeting

full DSM-IV criteria) and had one parent affected with a primary mood disorder.
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Depressive episodes were included because unipolar depression is characteristically

the first manifestation of illness in patients who later develop BD (Duffy et al., 2002;

Hillegers et al., 2005). Additionally, around 70% of depressed first-degree relatives of

BD probands are estimated to suffer from BD (Blacker & Tsuang, 1993). Lastly, we

recruited 42 control participants free of personal or family history of DSM-IV Axis I

psychiatric disorders.

Common exclusion criteria for all groups were a personal history of (1) any serious

medical or neurologic disorders, (2) substance abuse/dependence during the previous

6 months, or (3) magnetic resonance imaging (MRI) exclusion criteria.

2.3.2 Materials

Each participant received a complete description of the study and provided written

informed consent. The study was approved by the Research Ethics Boards of the

Izaak Walton Killam Health Center and the Nova Scotia Health Authority, Halifax,

Nova Scotia.

Probands, offspring and control subjects were interviewed by pairs of clinicians

(psychiatrists and/or nurses) using Schedule for Affective Disorders and Schizophre-

nia—Lifetime version (SADS-L) (Endicott & Spitzer, 1978) or Kiddie Schedule for

Affective Disorders and Schizophrenia, Present and Lifetime version (KSADS-PL)

(Kaufman et al., 1997) for participants under 18 years of age. Diagnoses were made

based on DSM-IV in a blind consensus review, by an independent panel of senior

clinical researchers using all available clinical materials.

2.3.3 MRI acquisition

MRI acquisitions were performed with a 1.5-Tesla General Electric Signa scanner

equipped with a single-channel head coil, located at the IWK Health Centre, Halifax,

Nova Scotia. After a localizer scan, a T1-weighted spoiled gradient recalled (SPGR)

scan was acquired with the following parameters: flip angle 40◦, echo time 5 ms,

repetition time 25 ms, field of view 24 cm × 18 cm, matrix 256 × 160 pixels, number

of excitations = 1, no interslice gap, 124 coronal 1.5 mm thick slices.
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2.3.4 MRI analysis

The structural T1-weighted scans were analyzed using FreeSurfer v5.3 (Fischl et al.,

2004). Briefly, FreeSurfer processing included automated skull stripping, bias field

correction, non-linear registration with a stereotaxic atlas and grey-white matter seg-

mentation and generation of cortical surface models. Utilizing these models, an au-

tomated labelling system subdivided the cerebral cortex into gyral-based regions of

interest (ROIs) corresponding to the Desikan–Killiany Freesurfer atlas (Desikan et

al., 2006). For each participant, we extracted cortical grey matter volume, thickness,

and SA for three subdivisions of the bilateral IFG: pars orbitalis, pars triangularis,

pars opercularis.

Furthermore, the pial surface reconstruction allowed us to measure the 3D local

gyrification index (lGI). The lGI measure provides a ratio of the convex hull (outer)

cortex SA to buried cortex SA. Thus, a greater lGI represents greater gyrification, or

more folding in each ROI and vice versa. Details of the automated lGI computation

can be found in the validation paper (Schaer et al., 2008) and on the FreeSurfer

website.

Raw images were inspected for motion, low contrast, and other artifacts. FreeSurfer

output was manually examined for skull stripping and segmentation errors. If found,

errors were manually corrected and the affected scans re-processed.

2.3.5 Statistical analyses

Statistical analyses were performed in R Studio (R version 3.3.3). Demographic and

clinical variables were compared with one-way Analysis of Variance (ANOVA) or a

χ2 test for categorical variables. For the primary analysis, we investigated group dif-

ferences in bilateral IFG volume. For this, we used Multivariate Analysis of Variance

(MANOVA), with the IFG volume and individual IFG subdivisions (pars orbitalis,

pars triangularis, pars opercularis) as the dependent variable, group status as an in-

dependent variable, age, sex, and estimated total intracranial volume (TIV) (Buckner

et al., 2004) as covariates. In follow-up one-way ANOVAs we explored the localization

of volumetric changes within the IFG. Volumes of IFG subdivisions served as depen-

dent variables with group status as the independent variable and age, sex, and TIV

as covariates. We controlled for multiple comparisons with the Benjamini-Hochberg

https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
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Table 2.1: Description of the participants

procedure (Benjamini & Hochberg, 1995) and report corrected p values. In subregions

with significant between-group volumetric differences, we further explored which to-

pographical features most contributed to these alternations (CS, SA, gyrification).

We used identical model specifications as above for these exploratory ANOVAs fol-

lowed by Bonferroni corrected pair-wise comparisons using Tukey’s Honest Significant

Difference (HSD) test to identify which groups were driving the significant omnibus

findings. We also used Pearson’s correlation coefficient to quantify the strength of

the relationship between regional volumetric differences and corresponding measures

of SA, thickness, and gyrification.

As several participants in the study were biologically related, we did sensitivity

testing of significant results using mixed effect generalized linear models structured

identically to the ANOVA but with the additional inclusion of family membership as

a random effect. Effect sizes are summarized with partial eta squared (η2p) and its

bootstrapped 95% confidence interval (CI) over 1000 simulations.

2.4 Results

We recruited 32 unaffected HR, 29 affected familial, and 42 control participants. The

groups did not differ in the proportion of females or intracranial volumes, but control

participants were older than the unaffected HR participants (see Table 2.1).
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When controlling for age and sex, MANOVA revealed that the unaffected, affected,

and control participants differed in the right (F2,192 = 3.07, p = 0.01), but not the

left (F2,192 = 1.61, p = 0.29), IFG volumes. The overall rIFG volume was largest in

unaffected and smallest in control participants.

Within the right IFG, we found the largest volume differences in the pars trian-

gularis (F2,97 = 4.05, p = 0.02, η2p = 0.08, 95% CI 0.001–0.18), see Fig 2.1. Post

hoc comparisons using the Tukey HSD test showed the volume of the right pars tri-

angularis was greater in unaffected HR (M = 5110.88 mm3, s.d. = 1118.43 mm3, p

= 0.02) and affected familial groups (M = 4915.17 mm3, s.d. = 798.88 mm3, p =

0.05) compared with control participants (M = 4400.67 mm3, s.d. = 771.70 mm3).

The group differences in pars triangularis remained significant when we controlled for

family membership (F2,97 = 3.12, p = 0.05). There were no significant volumetric

differences in the pars opercularis (F2,97 = 2.85, p = 0.06, η2p = 0.006, 95% CI 0–0.15)

or the pars orbitalis (F2,97 = 1.71, p = 0.2, η2p = 0.03, 95% CI 0–0.12).

The volume of the right pars triangularis was highly correlated with its SA [Pear-

son r(101) = 0.88, p <0.001] and ANOVA revealed significant group differences in

pars triangularis SA (F2,97 = 4.45, p = 0.01, η2p = 0.08, 95% CI 0.003–0.19). Post

hoc comparisons using the Tukey HSD test showed that as with volume, the mean

SA of the right pars triangularis was greater in unaffected HR (M = 1588.31 mm2,

s.d. = 313.29 mm2, p = 0.02) and affected familial groups (M = 1565.38 mm2, s.d. =

253.33 mm2, p = 0.03) compared with control participants (M = 1413.38 mm2, s.d.

= 221.22 mm2).

The correlation between the right pars triangularis grey matter volume and CT

was much lower than for SA, but still significant [Pearson r(101) = 0.28, p = 0.005].

However, we did not find differences between the groups in CT (F2,97 = 0.05, p =

0.95, η2p = 0.001, 95% CI 0–0.01) of the pars triangularis. As expected SA and CT of

this region were not associated [Pearson r(101) = -0.16, p = 0.11].

Pars triangularis volume and gyrification were not significantly correlated [Pearson

r(101) = –0.13, p = 0.19]. Likewise the groups did not differ in gyrification (F2,97 =

0.06, p = 0.94, η2p = 0.001, 95% CI 0–0.018) of the pars triangularis.
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Figure 2.1: Larger pars triangularis volume and surface area in affected familial and unaffected
High-Risk groups relative to control participants. Means ± s.e.m. (a) Anatomical subdivisions of
the inferior frontal gyrus (IFG). Significant group differences were localized to pars triangularis. (b)
Volume of pars triangularis. (c) Surface area of pars triangularis.
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2.5 Discussion

In this study, we replicated and extended the finding of increased right IFG volume as

a neuroanatomical marker of genetic susceptibility for BD. Using 3D representations

of the cortical sheet we found that the volumetric enlargement was linked to the

increased cortical SA, and not CT or cortical folding. Moreover, we localized the

largest volume and SA differences to the pars triangularis of the rIFG, providing a

more sensitive marker of genetic risk for BD.

2.5.1 Involvement of the IFG

Our finding of larger rIFG follows a well-established pattern of evidence implicating

this region of the prefrontal cortex in BD. The direction of the finding may seem

surprising, but regional cortical volume increases have been reported in other HR

and early-course BD imaging studies (Kempton et al., 2009; Frangou, 2011; Adleman

et al., 2012; Bauer et al., 2014; K. Lin et al., 2015). Increased IFG grey matter

volume has previously been found in the early course of BD, in patients with the first

episode of mania (Adler et al., 2005). Our previous exploratory, replication design,

multi-centre study has shown larger rIFG volumes in unaffected HR, affected familial

as well as in a third group comprising a clinical sample of young BD participants

(Hajek, Cullis, et al., 2013). Similar findings were replicated in more recent studies,

showing increased IFG volumes in both euthymic BD patients and healthy first-degree

relatives when compared with healthy controls (Sarıçiçek et al., 2015; Roberts et al.,

2016). In addition, the IFG has been shown to be sensitive to illness chronicity, with

studies finding a significant negative correlation between the duration of illness and

grey matter volume in this region (Matsuo et al., 2012; Hajek, Cullis, et al., 2013).

2.5.2 Localization to the pars triangularis

In this study, we found that the IFG neurostructural alterations were most pro-

nounced in the pars triangularis, a finding in concordance with the area’s functional

profile. Studies in healthy individuals and lesion studies have shown that the pars

triangularis of the IFG is not only associated with but also necessary for successful

response inhibition (Collette et al., 2001; Aron et al., 2014; Menon, Adleman, White,
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Glover, & Reiss, 2001). In fact, age-related improvements in activation of the pars

triangularis within the frontostriatal network underlie improvements in the norma-

tive development of self-regulatory control (Marsh et al., 2006). Impaired response

inhibition is central to many symptoms of mania, such as increased risk-taking, im-

pulsive behaviour, talkativeness, and excessive spending. Moreover, a meta-analysis

of neurocognitive studies in at-risk participants revealed response inhibition as the

most prominent endophenotype of BD (Bora et al., 2009). As would be expected, BD

is marked by diminished activity in the IFG, particularly during response inhibition

to emotional stimuli (Hajek, Alda, et al., 2013) and during reward processing (Singh

et al., 2014). Hypoactivity in the IFG has been reported in both BD patients and

youth at HR for the disorder as well as during manic and euthymic states (Foland-

Ross et al., 2012; Townsend et al., 2012; Roberts et al., 2013), further corroborating

the endophenotypic nature of the rIFG alterations.

2.5.3 Attribution to surface area

Cortical grey matter volume is a product of CT and SA. Evidence suggests that

CT is determined by asymmetric division of radial glia progenitors and reflects the

number of cells within cortical columns, while SA is linked to symmetric division

of progenitor cells in the ventricular and sub ventricular layers and relates to the

quantity of cortical columns (Rakic, Ayoub, Breunig, & Dominguez, 2009; Florio &

Huttner, 2014; Wierenga et al., 2014). Thus, the two measures develop with distinct

cellular mechanisms and show almost no genetic correlation (Panizzon et al., 2009).

The finding that increased pars triangularis volume was driven by SA and not CT

is in line with the general finding that individual variation in human cortical volume

is more attributable to variation in SA than CT (Im et al., 2008). Furthermore, the

SA of the right pars triangularis is significantly more heritable than its CT (Winkler

et al., 2010). Our finding is further supported by a recent BD twin-study showing

that genes influencing BD are associated with regional increases in SA (Bootsman

et al., 2015). Accordingly, a recent pilot study utilized regional increases in SA to

distinguish BD from major depressive disorders (Fung et al., 2015).
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2.5.4 Regional increases

Regional increases in brain volume or SA have been attributed to resilience (Ladouceur

et al., 2008), neuropathology (Adler et al., 2005), effects of medication (Yucel et al.,

2007; Hajek et al., 2014), or disrupted maturation (Konarski et al., 2008). The larger

pars triangularis volume and SA is unlikely to be a marker of resilience as it was

also larger in already affected participants. Furthermore, resilience would be difficult

to infer from the current status of unaffected HR participants as they are passing

through the HR age range and can develop BD in the future. Neuropathology, such

as hypertrophy due to preapoptotic edema is doubtful since our previous spectroscopy

work with a partially overlapping sample showed similar metabolite concentrations

surrounding the IFG between unaffected HR and control participants (Hajek et al.,

2008). Even more importantly, edema would likely lead to changes in both CT and

SA. Neurotrophic effects of medication, such as lithium, need to be considered. How-

ever, in our sample, the largest structural differences were found in the unaffected HR

participants who were medication naive. Normative brain maturation from childhood

to young adulthood involves grey matter reductions across the cortex. It has been

suggested that increased grey matter volumes in BD offspring might be indicative of

disruptions in normative brain growth, for example, through an aberrant synaptic

remodeling (Sowell et al., 2003; Herting, Gautam, Spielberg, Dahl, & Sowell, 2015).

However, while disrupted maturation is plausible, we controlled for age and prospec-

tive studies would be more suitable in inferring developmental trajectories.

2.5.5 Strengths and limitations

The strengths of this study are its hypothesis-driven approach, young sample, and

genetic HR design. We have conducted a targeted investigation of the IFG because

of its strong previously established involvement in BD. Furthermore, we investigated

this ROI in a relatively large dataset of 103 brain scans. The participants were mostly

in their 20s, recruited from the age range during which transition to BD approaches

peak incidence. We benefitted from also scanning unaffected offspring of BD probands

because neuroanatomical changes have previously been linked to confounds such as

illness burden, common comorbidities, and effects of treatment, none of which apply

to the unaffected group.
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There are several limitations of this study. While we characterized the structural

phenotype and topology of IFG alterations in BD, we did not include measures of cog-

nitive functioning or genetic markers. Future work should investigate the relationship

between pars triangularis structural change with neurocognitive test performance. In

addition, genotyping data would allow future studies to test whether the association

between IFG structural change is moderated by a polygenic risk score for BD. Fur-

thermore, our study was not designed to capture the effects of sub-syndromal features.

There was no association between cortical measures and clinical scales (Supplement

Figure A.1).

Our hypothesis-driven analysis was focused on the IFG, however, this is not the

only region involved in the disorder (Hibar et al., 2018) and BD biomarkers will

be further enhanced by incorporating information from additional brain regions and

their interactions, in a multivariate statistical-learning framework. Interestingly, pre-

vious machine-learning work has also supported the importance of IFG structure in

identifying participants at risk for BD (Hajek, Cooke, et al., 2015; Roberts et al.,

2017).

Currently, it is unknown if the pattern of SA increases without CT changes is dy-

namic through the development and course of illness. Future prospective longitudinal

studies can provide additional context into the developmental window of BD. Finally,

a proportion of our affected familial and unaffected HR participants were related

thus introducing non-independence of cortical structure. Our main findings remained

unchanged when we controlled for this by implementing mixed effects models with

family membership as a random effect.

2.5.6 Conclusion

In summary, we expanded the finding of increased rIFG volume as a marker of genetic

risk for BD. We localized the largest group differences to the enlargement of the right

pars triangularis and found that volumetric change was driven mainly by SA rather

than CT or folding. These findings strengthen prior knowledge about the volumetric

alterations in this region and provide new insight into the localization and topology

of IFG alterations, which aid in better understanding of brain risk factors associated

with BD.
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3.1 Abstract

Background Cortical folding is essential for healthy brain development. Previous

studies have found regional reductions in cortical folding in adult patients with psy-

chotic illness. It is unknown whether these neuroanatomical markers are present in

youth with subclinical psychotic symptoms.

Methods We collected MRIs and examined the local gyrification index in a sample

of 110 youth (mean age ± standard deviation 14.0 ± 3.7 yr; range 9–25 yr) with a

family history of severe mental illness: 48 with psychotic symptoms and 62 without.

Images were processed using the Human Connectome Pipeline and FreeSurfer. We

tested for group differences in local gyrification index using mixed-effects generalized

linear models controlling for age, sex and familial clustering. Sensitivity analysis

further controlled for intracranial volume, IQ, and stimulant and cannabis use.

Results Youth with psychotic symptoms displayed an overall trend toward lower

cortical folding across all brain regions. After adjusting for multiple comparisons

and confounders, regional reductions were localized to the frontal and occipital lobes.

Specifically, the medial (β = –0.42, pFDR = 0.04) and lateral (β = –0.39, pFDR =

0.04) orbitofrontal cortices as well as the cuneus (β = –0.47, pFDR = 0.03) and the

pericalcarine (β = –0.45, pFDR = 0.03) and lingual (β = –0.38, pFDR = 0.04) gyri.

Limitations Inference about developmental trajectories was limited by the cross-

sectional data.

Conclusion Psychotic symptoms in youth are associated with cortical folding deficits,

even in the absence of psychotic illness. The current study helps clarify the neurode-

velopmental basis of psychosis at an early stage, before medication, drug use and

other confounds have had a persistent effect on the brain.
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3.2 Introduction

Psychosis is marked by hallucinations, delusions and disturbances of affect and be-

haviour. It manifests in major depressive disorder, bipolar disorder and most notably,

schizophrenia. Although psychotic disorders are a leading cause of morbidity and dis-

ability worldwide (Global Burden of Disease Study 2013 Collaborators, 2015), their

etiology remains unclear (Radua et al., 2018). Multiple lines of evidence are converg-

ing to suggest that the disease stems from processes that affect neurodevelopment

(Rapoport, Giedd, & Gogtay, 2012). The neurodevelopmental hypothesis posits that

genetic and environmental risk factors perturb early brain development, leading to

symptoms later in life as the brain matures and copes with new stressors (Selemon

& Zecevic, 2015). One process necessary for healthy brain development is corti-

cal folding, which may be abnormal in the pathogenesis of schizophrenia (White &

Gottesman, 2012).

The process of cortical folding, or gyrification, results in gyri and sulci that give

the cortex its wrinkly appearance. The degree of cortical folding can be quantified

using the local gyrification index (LGI) (Schaer et al., 2008). The LGI is a ratio of the

total cortical surface to the superficially exposed outer surface tightly wrapping the

cortex without entering the sulci. Cortical folding is a uniquely mammalian solution

to increasing cortical grey matter without exaggerating head size. This process is

also key to the optimization of axonal wiring and the functional organization of the

brain (Klyachko & Stevens, 2003). The mechanisms of cortical folding are under

active investigation. Recent perspectives suggest that tightly coordinated molecular

genetic processes (Borrell, 2018) and biomechanical forces (Kroenke & Bayly, 2018)

are involved. Radial expansion of progenitor cells might be particularly significant (see

Fernández, Llinares-Benadero, & Borrell, 2016 for a review). Importantly, cortical

folding provides a window on early development (Schaer et al., 2009). The major

folding patterns are determined largely before birth and finish undergoing the most

rapid morphological changes by childhood (Armstrong, Schleicher, Omran, Curtis, &

Zilles, 1995 Jan-Feb). This sensitive period of neurodevelopment overlaps with the

timing of the most prominent environmental risk factors associated with psychosis

(Zwicker, Denovan-Wright, & Uher, 2018).

Large multisite neuroimaging studies have found reductions in cortical folding
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among adults with psychotic disorders (Nanda et al., 2014; Nesv̊ag et al., 2014).

Aberrant gyrification has also been reported in people at genetic risk for schizophre-

nia (Nanda et al., 2014; Falkai et al., 2007). By extension, recent work has shown

that scores indexing genetic liability to schizophrenia are associated with regional

reductions in the LGI (Liu et al., 2017). The prefrontal cortex has long been impli-

cated in schizophrenia (Weinberger, 1988). Early work that measured cortical folding

with manual tracing of MRI slices has shown lower frontal cortical folding in patients

with schizophrenia (Kulynych, Luevano, Jones, & Weinberger, 1997). Correspond-

ingly, recent work using automated 3D methods to quantify LGI have shown similar

reductions in prefrontal cortical folding (Palaniyappan, Mallikarjun, Joseph, White,

& Liddle, 2011).

The reported prefrontal LGI abnormalities are consistent with neuropathological

findings from other imaging modalities and postmortem data (Kelly et al., 2017;

Selemon, Kleinman, Herman, & Goldman-Rakic, 2002). Abnormal gyrification also

predicts poor treatment response in first-episode psychosis (Palaniyappan et al., 2013)

and has been used to distinguish patients with more severe illness from those with

milder forms (Guo et al., 2015). Taken together, the body of literature suggests

cortical folding alterations across the psychosis spectrum. However, whether or not

these alterations are present before illness onset has been more difficult to establish.

Adolescence has been described as a critical period of vulnerability for schizophre-

nia (Selemon & Zecevic, 2015). However, the majority of clinical high-risk studies

have focused on adulthood (Fusar-Poli et al., 2012). As such, the etiology of psychosis

can be clarified by examining cortical folding earlier, before the onset of a functionally

impairing illness. In the current study, we addressed this gap by examining the LGI in

adolescents from a cohort with enriched familial risk who had experienced psychotic

symptoms but did not meet the criteria for psychotic illness. We hypothesized that

psychotic symptoms would be related to lower cortical folding in symptomatic youth,

particularly in the prefrontal cortex.
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3.3 Methods

3.3.1 Participants

As part of the ongoing Families Overcoming Risks and Building Opportunities for

Well-being (FORBOW) study, we collected MRI scans from 110 participants aged

9–25 years. The FORBOW study is a longitudinal study enriched for the offspring

of parents with mental illness (Uher et al., 2014). Those at familial risk for men-

tal illness and participants from control families were invited to complete the MRI

study. The study protocol was approved by the research ethics board of the Nova

Scotia Health Authority. Participants provided written informed consent. For chil-

dren who did not have the capacity to make a fully informed decision, a parent or

guardian provided written informed consent and the child provided assent. Exclusion

criteria were a personal history of psychotic illness, any serious medical or neuro-

logic disorder, substance abuse or dependence during the previous 6 months, or MRI

contraindications.

3.3.2 Participant clinical and cognitive assessment

Parent assessment

We used the Schedule for Affective Disorders and Schizophrenia (SADS-IV) (Endicott

& Spitzer, 1978) and the Structured Clinical Interview for DSM-5 (SCID-5) (First,

2015) to establish diagnoses of mental disorders and psychosis according to DSM-IV

and DSM-5. Diagnoses were confirmed in consensus meetings with a psychiatrist

blind to offspring psychopathology.

Offspring assessment

Participating youth were interviewed using the Kiddie Schedule for Affective Disor-

ders and Schizophrenia, Present and Lifetime Version (K-SADS-PL) (Kaufman et al.,

1997). Offspring assessors were blinded to parent psychopathology. Full-scale intelli-

gence quotient (FSIQ) was assessed using the Wechsler Abbreviated Scale of Intelli-

gence, second edition (Wechsler, 2011). Psychotic symptoms were assessed using the

following instruments: the K-SADS-PL interview psychosis module and appendix,
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consensus-rated by child and adolescent psychiatrists blind to parent psychopathol-

ogy; in participants aged 3–12 years, the Structured Interview for Prodromal Syn-

dromes (SIPS) (Miller et al., 2003), measuring attenuated psychotic symptoms; the

“Funny Feelings” interview (Arseneault et al., 2011; Poulton et al., 2000; Polanczyk

et al., 2010) (we included only youth with symptoms rated as “definite psychotic

symptom” by consensus between 2 independent raters); the Schizophrenia Prone-

ness Instrument, Child and Youth version (SPI-CY) (Fux, Walger, Schimmelmann,

& Schultze-Lutter, 2013) for those aged 8 years and older, to assess abnormal ex-

periences in the domains of perception, cognition, language and affect that strongly

predict the development of psychosis (Klosterkötter et al., 2001; Schultze-Lutter et

al., 2012).

Consistent with our previous reports (MacKenzie et al., 2016, 2017), we created a

dichotomous variable for the presence of psychotic symptoms captured by any one of

the following: confirmed hallucinations or delusions on K-SADS-PL, positive symp-

toms on SIPS rated ≥ 3, definite psychotic symptoms confirmed through independent

curation, and high-risk basic symptom profiles of cognitive/perceptive disturbances

on the SPI-CY.

3.3.3 MRI acquisition

Images were acquired with a 3 T General Electric Discovery MR750 scanner equipped

with a 32-channel MR Instruments radiofrequency head coil. Scanning took place

at the Biomedical Translational Imaging Centre (BIOTIC) in Halifax, Nova Scotia,

Canada. Each participant was positioned supine in the MRI scanner, with their

head supported by foam padding to reduce movement. Ear plugs were provided

to minimize scanner noise. We collected a 3D T1-weighted brain volume imaging

(BRAVO) sequence with whole-brain coverage; 1 mm3 isotropic resolution; matrix

224 × 224; field of view 224 mm; 168 sagittal slices at 1 mm thickness; repetition time

5.9 ms; echo time 2.2 ms; inversion time 450 ms; flip angle 12◦; receiver bandwidth ±
62.5; number of excitations = 2; autocalibrating reconstruction for cartesian imaging

(ARC) phase acceleration = 2; ARC slice acceleration = 1; no phase wrap; scan

duration 5 minutes, 42 seconds.
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3.3.4 MRI analysis

Data were preprocessed using the open-source Human Connectome Pipeline (Glasser

et al., 2013). As part of the validated pipeline, we reconstructed the T1-weighted scan

surface using FreeSurfer version 5.3 (Fischl, 2012). An automated labelling system

subdivided the cerebral cortex into gyral-based parcellations corresponding to the

Desikan–Killiany atlas (Desikan et al., 2006).

Local gyrification index We quantified the 3D LGI from FreeSurfer output, as

the ratio of the total cortical surface area (including cortex buried in sulci) to the

outer cortex surface area, which tightly wraps the brain but does not enter the sulci.

Thus, a higher LGI represents more cortical folding in each brain parcel, and a lower

LGI represents less cortical folding. Details of the automated LGI computation can

be found in the validation paper (Schaer et al., 2008) and on the FreeSurfer website

3.3.5 Statistical analysis

We performed statistical analyses in R Studio (version 3.5.0) (Team & Others, 2015).

We compared demographic and clinical variables using t tests for continuous variables

and χ2 tests for categorical variables. The LGI for each of the 34 cortical parcellations

across both hemispheres served as the primary dependent variable. The primary

independent variable was the presence or absence of psychotic symptoms.

We tested the relationship between lifetime psychotic symptoms and LGI using

mixed-effect generalized linear models. We accounted for the non-independence of

brain data from related individuals by including the family identifier as a random

effect. We included age and sex as covariates in the model. We controlled for multiple

comparisons across brain parcellations using false discovery rate (FDR) (Benjamini

& Hochberg, 1995). We reported effect sizes using standardized regression estimates

(β) and their 95% confidence intervals (CIs).

To ensure that the observed relationship between cortical folding and psychotic

symptoms was not due to the use of psychoactive substances or other factors linked

to changes in brain structure, we conducted sensitivity analyses. In the brain regions

found to be significant after correcting for multiple testing, we further covaried for

lifetime cannabis use, lifetime stimulant use, FSIQ and estimated total intracranial

https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
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Table 3.1: Demographic and clinical characteristics of the study sample

volume (eTIV).

3.4 Results

3.4.1 Demographic variables

Of the 110 youth scanned, 48 (43.64%) met the criteria for a definite psychotic

symptom on 1 or more assessments. Table 3.1 summarizes demographic and clin-

ical characteristics by symptom status. General cognitive ability did not differ be-

tween participants with or without psychotic symptoms (t = 0.67, p = 0.51). We

found a statistically significant difference in eTIV (t = -3.15, p = 0.002): youth with

psychotic symptoms showed smaller eTIV (mean 1427.8 ± 168.0 cm3) than youth

without symptoms (1522.2 ± 138.6 cm3).
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Figure 3.1: Differences in mean cortical folding across the anatomical boundaries of the De-
sikan–Killiany atlas. Dark blue dots represent youth with psychotic symptoms (n = 48), light blue
dots represent those without (n = 62). We found an overall trend toward lower cortical folding in
youth with psychotic symptoms. (A) Regions of interest with mean local gyrification index < 3.0.
(B) Regions of interest with mean local gyrification index > 3.0.
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Figure 3.2: Lower prefrontal cortical folding in youth with psychotic symptoms (n =
48) versus those without (n = 62). Symptomatic youth in darker blue. Violin plots
present cortical folding distributions by symptom status. Box plots nested within
display median differences.

3.4.2 Overall differences in cortical folding across brain regions

We examined overall differences in cortical folding averaged across all brain regions.

In a model controlling for sex, age and familial clustering, average whole-brain cortical

folding was lower in youth with psychotic symptoms (β = -0.13, 95% CI -0.21 to -

0.05, p = 0.001). This effect was no longer statistically significant following covariance

for eTIV (β = -0.05, 95% CI -0.13 to 0.03, p = 0.22). Figure 3.1 shows the mean

differences in folding across all structures.

3.4.3 Prefrontal cortical folding

We used the same model to explore regional differences in cortical folding. In line with

our hypothesis, the exploratory analysis revealed lower prefrontal cortical folding in
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Figure 3.3: Lower occipital cortical folding in youth with psychotic symptoms (n =
48) versus those without (n = 62). Symptomatic youth in darker blue. Violin plots
present cortical folding distributions by symptom status. Box plots nested within
display median differences.

youth with psychotic symptoms (Figure 3.2). Specifically, the mixed effect generalized

linear models controlling for sex, age and familial clustering localized the lower cortical

folding to the medial (β = -0.42, 95% CI -0.71 to -0.12, p = 0.006, pFDR = 0.04) and

lateral (β = -0.39, 95% CI -0.66 to -0.12, p = 0.005, pFDR = 0.04) aspects of the

orbitofrontal cortex (OFC).

In sensitivity analyses of this finding, youth with psychotic symptoms robustly

showed lower OFC folding in models controlling for cannabis use, stimulant use,

FSIQ and eTIV, both medially (β = -0.34, 95% CI -0.63 to -0.04, p = 0.025) and

laterally (β = -0.28, 95% CI -0.54 to -0.01, p = 0.042).

3.4.4 Occipital lobe cortical folding

Along with the OFC findings, the exploratory analysis revealed three additional re-

gions that survived brain-wide correction for multiple comparisons in models con-

trolling for age, sex and familial clustering (Figure 3.3). Psychotic symptoms were

associated with lower regional gyrification in the occipital lobe, specifically the cuneus
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(β = -0.47, 95% CI -0.75 to -0.19, p = 0.001, pFDR = 0.03), the pericalcarine gyrus

(β = -0.45, 95% CI -0.73 to -0.17, p = 0.002, pFDR = 0.03) and the lingual gyrus (β

= -0.38, 95% CI -0.66 to -0.11, p = 0.006, pFDR = 0.04). We saw the same pattern

of results when examining symptoms from a dimensional perspective (Supplement

Figure A.2).

We conducted sensitivity analyses to determine if the differences in cuneus, per-

icalcarine and lingual cortical folding might be attributable to extraneous variables

rather than to symptom status. Again, we implemented models identical to the ex-

ploratory analysis while simultaneously covarying for cannabis use, stimulant use,

FSIQ and eTIV. As with the prefrontal results, the link between psychotic symptoms

and occipital folding remained significant for the cuneus (β = -0.46, 95% CI -0.74 to

-0.18, p = 0.001) and the pericalcarine (β = -0.40, 95% CI -0.69 to -0.11, p = 0.007)

and lingual (β = -0.35, 95% CI -0.63 to -0.07, p = 0.015) gyri.

3.5 Discussion

We sought to determine whether youth with psychotic symptoms displayed cortical

aberrations before the onset of impairing psychotic illness. To answer that ques-

tion, we examined 3D reconstructions of cortical folding, an early neurodevelopmental

marker of cortical expansion. We found a pattern of lower cortical folding in adoles-

cents who had psychotic symptoms but who did not meet the criteria for a psychotic

disorder.

3.5.1 Lower cortical folding

In our study, psychotic symptoms were related to lower cortical folding across all

brain regions, with statistically significant regional effects. This unidirectional pat-

tern is supported by the literature on brain structure among adult patients with

schizophrenia-spectrum disorders. Nesv̊ag et al., 2014 examined cortical folding

among 207 patients with schizophrenia and 206 controls. They found that patients

had a lower LGI in large clusters of the cerebral cortex, leading them to conclude that

reduced gyrification is a feature of the brain pathology in schizophrenia. Similar to

our work, no regions had significantly higher LGI among patients. Nanda et al., 2014

examined the LGI in 388 patients with psychotic disorders and 243 controls. Their
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multicentre study found that patients with psychotic disorders had a significantly

lower LGI than controls. Importantly, the directionality of the finding was consistent

with our findings, in that no regions were less folded among controls.

3.5.2 Differences in prefrontal cortex folding

Lower prefrontal cortical folding was localized to the medial and lateral OFC. Our

finding was in line with previous work implicating abnormalities in the OFC cor-

tical folding pattern in psychosis (Palaniyappan et al., 2013; Bartholomeusz et al.,

2013), first-episode schizophrenia (Takayanagi et al., 2010) and chronic schizophrenia

(Isomura et al., 2017). In our adolescent sample, this difference was unlikely to be at-

tributable to common confounders in psychosis research, such as illness burden or the

effects of medication. The localization to the OFC in our study was consistent with

prospective studies in patients at clinical high risk and in animal models. Patients at

clinical high risk who convert to psychosis show steeper rates of cortical thickness de-

cline and grey matter reduction in the OFC than non-converters at clinical high risk

and controls (Pantelis et al., 2003; Cannon et al., 2015). Furthermore, OFC neurons

have been shown to be common targets for both typical and atypical antipsychotic

drugs (Homayoun & Moghaddam, 2008).

Characteristics of schizophrenia include aberrant perception and cognitive deficits.

The OFC is involved in a number of disorder-related functions, such as sensory in-

tegration, learning, and social and emotional decision-making (Rolls & Grabenhorst,

2008; Seo & Lee, 2012). Our previous work examining cognition showed that youth

with psychotic symptoms exhibited deficits in executive functioning (MacKenzie et

al., 2017). We specifically found impaired emotional decision making, even after con-

trolling for general cognitive ability. The combination of a reduction in OFC folding

and impaired decision-making may be a neurocognitive marker of a propensity for

psychotic symptoms.

3.5.3 Differences in occipital cortex folding

We found lower cortical folding in the cuneus and the pericalcarine and lingual gyri.

The cuneus is located between the calcarine and parieto-occipital sulci. The peri-

calcarine gyrus can be visualized between the cuneus and lingual gyrus on a midline
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view of the brain. The lingual gyrus sits within the tentorial surface of the occipital

lobe, inferior to the calcarine sulcus.

Studies of cortical folding and functional connectivity in psychosis have found re-

duced cortical folding in the lingual cortex of patients with psychosis compared with

healthy controls (Palaniyappan et al., 2013; Palaniyappan & Liddle, 2014). They

also showed that the aberrant functional connectivity of the visual processing regions

was a better predictor of symptom persistence and burden than diagnostic informa-

tion. Our current work and aforementioned findings also correspond to studies ex-

amining volumetric data. Compared to healthy controls, patients with first-episode

schizophrenia demonstrated significantly reduced grey matter volumes in the lingual

gyrus (Chang et al., 2016). Significant cortical thinning has also been noted in this re-

gion in patients diagnosed with schizophrenia compared to matched controls (Schultz

et al., 2013; Kong et al., 2015). Finally, 22q11 deletion syndrome and genetic risk

for schizophrenia based on common genetic variation have been associated with vol-

umetric grey matter differences in the lingual gyrus and cuneus, as well as cortical

thinning in the cuneus and pericalcarine and lingual gyri (C. A. Thompson et al.,

2017; Walton et al., 2018).

A recent paper examined LGI in medicated young adults who met the criteria

for an at-risk mental state (Sasabayashi et al., 2017). In contrast to our findings of

decreased LGI, those in an at-risk mental state showed widespread increases in LGI.

Interestingly, increased gyrification in the cuneus, pericalcarine and lingual regions

was related to risk for transition to a psychotic disorder. This work underscores the

relevance of occipital cortical folding in the risk for psychosis, but the discrepancy

in the directionality of findings indicates the need for further longitudinal study of

the developmental transition period from adolescence to young adulthood in high-risk

populations.

3.5.4 Limitations

This study had several limitations. The onset of schizophrenia and other psychotic

disorders typically occurs in late adolescence or early adulthood. In our developmen-

tal sample, the age range overlapped with this period. In other words, our sample
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included participants younger than the age with the highest risk of onset, and par-

ticipants passing through this stage. Future studies can reduce this heterogeneity,

particularly in cohorts examining brain development at fixed age ranges. Further-

more, the cross-sectional nature of this work limited our ability to track prospective

developmental changes in regions with reduced folding. To address some of these

challenges, we propose the collection of longitudinal imaging follow-up data.

We were able to minimize confounds of illness burden, comorbidities and med-

ication use by studying youth. Nevertheless, a proportion of the sample had been

exposed to marijuana and psychoactive medication, both of which could have an ef-

fect on the developing brain (Shollenbarger, Price, Wieser, & Lisdahl, 2015; Spencer

et al., 2013). Sensitivity analyses suggested that these substances did not affect

the association between reduced cortical folding and psychotic symptoms. Cannabis

use remains an important covariate to control for, because adolescent initiation of

cannabis use has been linked to early-onset psychosis (Bagot, Milin, & Kaminer,

2015), and legalization of the substance may affect initiation or usage.

We found a significant difference in total intracranial volume in our sample. Youth

with psychotic symptoms had lower eTIV. Although this finding was not part of our

hypothesis, there is meta-analytic evidence for reduced intracranial and total brain

volume in schizophrenia (Haijma et al., 2013). Because certain structures scale with

intracranial volume (Buckner et al., 2004), we controlled for eTIV as a covariate.

This correction eliminated the overall average difference in cortical folding across the

brain, but the regional differences in frontal and occipital cortical folding remained

robust to this correction. Future work is needed to contextualize the clinical relevance

of eTIV differences in samples of risk-enriched youth.

Finally, we examined a single neurodevelopmental marker, but we know that cor-

tical folding is related to optimization of axonal wiring and functional organization

in the brain (Klyachko & Stevens, 2003). Future research should integrate addi-

tional imaging data, such as probabilistic tractography, intracortical myelination and

resting-state functional connectivity. For example, one multi-analysis study showed

that decreased frontal gyrification in adolescent schizophrenia may be associated with

widening of the frontal sulci and reductions in cortical surface area (Janssen et al.,

2014). Multimodal extension and synthesis with molecular genetic and neurocognitive
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data will bring new insights into the significance of our findings.

3.6 Conclusion

This study found regional reductions in cortical folding of adolescents who had ex-

perienced psychotic symptoms. The young age of the cohort helped to clarify the

neurodevelopmental basis of psychosis at an early stage, before medication, drug use

and illness burden could take a persistent toll on the brain.
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4.1 Abstract

Introduction A new generation of large-scale studies is using neuroimaging to

investigate adolescent brain development across health and disease. However, imaging

artifacts such as head motion remain a challenge and may be exacerbated in pediatric

clinical samples. In this study, we assessed the scan–rescan reliability of multimodal

MRI in a sample of youth enriched for risk of mental illness.

Methods We obtained repeated MRI scans, an average of 2.7 ± 1.4 weeks apart,

from 50 youth (mean age 14.7 years, SD = 4.4). Half of the sample (52%) had

a diagnosis of an anxiety disorder; 22% had attention-deficit/hyperactivity disorder

(ADHD). We quantified reliability with the test–retest intraclass correlation coeffi-

cient (ICC).

Results Gray matter measurements were highly reliable with mean ICCs as follows:

cortical volume (ICC = 0.90), cortical surface area (ICC = 0.89), cortical thickness

(ICC = 0.82), and local gyrification index (ICC = 0.85). White matter volume relia-

bility was excellent (ICC = 0.98). Diffusion tensor imaging (DTI) components were

also highly reliable. Fractional anisotropy was most consistently measured (ICC =

0.88), followed by radial diffusivity (ICC = 0.84), mean diffusivity (ICC = 0.81), and

axial diffusivity (ICC = 0.78). We also observed regional variability in reconstruction,

with some brain structures less reliably reconstructed than others.

Conclusions Overall, we showed that developmental MRI measures are highly re-

liable, even in youth at risk for mental illness and those already affected by anxiety

and neurodevelopmental disorders. Yet, caution is warranted if patterns of results

cluster within regions of lower reliability.
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4.2 Introduction

A new generation of large-scale studies (Alexander et al., 2017; Casey et al., 2018)

is using neuroimaging techniques to investigate adolescent brain development across

health and disease. These tremendous undertakings, often called “biobanks” for the

wealth of biological data that they collect, are particularly focused on mental health.

A primary goal includes identifying developmental trajectories of psychiatric illness

which in turn might help improve early detection and guide intervention (Alexander

et al., 2017; Casey et al., 2018). Such research is highly valuable, as epidemiologic

studies show that 75% of psychiatric disorders begin early in the lifespan, prior to

age 24 (Kessler et al., 2005; Kim-Cohen et al., 2003). However, identifying clinically

useful brain markers of illness, or “biomarkers,” hinges on the reliability of the MRI

data.

Reliability is the ability of a measurement to provide consistent results under

similar circumstances. Imaging artifacts, such as head motion, remain a challenge to

reliability (Reuter et al., 2015), and there are concerns that measurement error may

be exacerbated in pediatric clinical samples (Ducharme et al., 2016). Functional MRI

studies have begun to address within-subject reliability in youth as motion can have a

profound effect on functional connectivity estimates (Van Dijk, Sabuncu, & Buckner,

2012; Vetter et al., 2017). However, a large body of imaging research deals with brain

structure, and here too image artifacts are of concern. It has been shown that head

motion in healthy volunteers can resemble cortical gray matter atrophy (Reuter et

al., 2015). Children and adolescents might be particularly sensitive to scanner noise

and may have difficulty remaining still for the duration of the sequences. One study

examining pediatric MRI data has shown that low-quality data can affect inferences

regarding the developmental trajectories of cortical maturation (Ducharme et al.,

2016). These findings necessitate the assessment of the reliability of MRI data in

participants who are not merely undergoing normal development but are also showing

externalizing and internalizing symptoms or are at increased familial risk for mental

illness (Rasic et al., 2014).

In this study, we assessed the scan–rescan reliability of multimodal MRI in a
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sample of youth at risk for mental illness, including those already experiencing psy-

chopathology. We measured common structural imaging metrics reported in the lit-

erature and quantified regional reliability based on widely used brain atlases. We also

compared the reliability of structural measures to published estimates from samples

of healthy adults.

4.3 Materials and methods

4.3.1 Participants

We recruited 53 youth (mean age 14.7 years, SD = 4.4) at familial risk for mental

illness from FORBOW study, a longitudinal study enriched for sons and daughters of

parents with mental illness (Uher et al., 2014). Offspring at familial risk for mental

illness and participants from control families were invited to complete the MRI study.

Participants were scanned twice, an average of 2.7 ± 1.4 weeks apart. Exclusion crite-

ria were personal history of (i) psychotic illness, (ii) any serious medical or neurologic

disorders, or (iii) MRI contraindications. The study protocol was approved by the

Research Ethics Board of the Nova Scotia Health Authority. Participants provided

written informed consent. For children who did not have capacity to make a fully

informed decision, a parent or guardian provided written informed consent and the

child provided assent.

4.3.2 Parent assessment

We used the Schedule for Affective Disorders and Schizophrenia (SADS-IV; Endicott

& Spitzer, 1978) and the Structured Clinical Interview for DSM-5 (SCID-5; First,

2015) to establish diagnoses of mental disorders according to DSM-IV and DSM-5.

4.3.3 Offspring assessment

Participating youth were interviewed using the Kiddie Schedule for Affective Disorders

and Schizophrenia, Present and Lifetime Version (K-SADS-PL; Kaufman et al., 1997)

by assessors blind to parent psychopathology. Diagnoses were confirmed in consensus

meetings with a psychiatrist. Full-scale intelligence quotient (FSIQ) was assessed

using the Wechsler Abbreviated Scale of Intelligence (Wechsler, 2011).
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4.3.4 Socioeconomic status (SES)

Socioeconomic status was captured as a composite variable (range 0-5) indexing: (i)

maternal and (ii) paternal levels of education (iii) family household annual income,

(iv) ownership of primary residence, and (v) ratio of bedrooms to residents in house-

hold, as previously described (MacKenzie et al., 2017; Zwicker, MacKenzie, et al.,

2019). Higher numeric value reflects higher SES.

4.3.5 MRI acquisition

Images were acquired with a 3T General Electric Discovery MR750 scanner equipped

with a 32-channel MR Instruments RF head coil. Scanning took place at the Biomed-

ical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia. Each participant

was positioned supine in the MRI scanner with the head supported by foam padding

to reduce movement. Earplugs were provided to minimize scanner noise. We collected

a 3D T1-weighted (T1w) Brain Volume imaging (BRAVO) sequence with whole-brain

coverage, 1 mm3 isotropic resolution, matrix = 224 × 224, field of view (FOV) = 224

mm, 168 sagittal slices at 1 mm thickness, repetition time (TR) = 5.9 ms, echo time

(TE) = 2.2 ms, inversion time (TI) = 450 ms, flip angle = 12◦, receiver bandwidth =

±62.5, number of excitations (NEX) = 2, autocalibrating reconstruction for cartesian

imaging (ARC) phase acceleration = 2, ARC slice acceleration = 1, no phase wrap,

scan duration = 5 min 42 s.

In addition, we collected a T2-weighted fluid attenuated inversion recovery (FLAIR)

sequence using a T2 prep contrast option (T2PREP) with identical coverage, reso-

lution and acquisition orientation to the T1w sequence, TE = 98 ms, TR = 5,100

ms, TI = 1,427 ms, echo train length (ETL) = 250 echoes, flip angle = 90◦, receiver

bandwidth = ±62.5 kHz, NEX = 1, with prospective motion correction (PROMO)

enabled (White, Su, Schmidt, Kao, & Sapiro, 2010), ARC phase = 2.5, ARC slice =

1, scan duration = 5 min.

Whole-brain axial–oblique diffusion-weighted images were also acquired using a

single-shot spin-echo EPI pulse sequence, gradient directions = 30, b-value = 1,000

s/mm2, three b = 0 images interleaved every 15 volumes, TR = 8,000 ms, TE =

66.7, FOV = 216 mm, slice thickness = 2 mm, number of slices 76, matrix = 108 ×
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108, voxel = 23 mm isotropic, receiver bandwidth = ±250 kHz, ASSET phase accel-

eration factor = 2, phase-encode direction = AP, scan duration = 4 min 32 s. For

the purposes of estimating and correcting susceptibility-induced distortions, we also

acquired a second whole-brain axial–oblique diffusion-weighted sequence with match-

ing parameters except only 8 volumes at b = 0 and with opposite phase-encoding

direction = PA, scan duration = 64 s.

4.3.6 MRI processing

Scans were processed with the Human Connectome Project (HCP) Minimal Prepro-

cessing Pipeline (Glasser et al., 2013). The HCP pipeline is a well-documented set of

scripts developed to analyze high-quality multimodal MRI data. It leverages the most

widely used open-source MRI processing software: FreeSurfer 6 (RRID:SCR 001847;

Fischl, 2012) and the FMRIB Software Library (FSL, RRID:SCR 002823; Jenkinson,

Beckmann, Behrens, Woolrich, & Smith, 2012).

We have optimized the pipeline for our data by matching it to our acquisi-

tion parameters and by replacing the MNI template with a pediatric template for

registration. The modified pipeline is available and freely accessible on GitHub.

We used the NIHPD pediatric atlas (NIHPD Objective 1 atlases [4.5–18.5 years],

RRID:SCR 008794; Fonov et al., 2011) to minimize registration bias in our develop-

mental cohort. In order to measure cortical folding, we ran the local gyrification index

(LGI) analysis, the details of which can be found in the validation paper (Schaer et

al., 2008) and on the FreeSurfer website.

For gray matter reliability, we examined 34 cortical regions of interest per hemi-

sphere based on the FreeSurfer default Desikan–Killiany atlas (Desikan et al., 2006).

Thus, we measured cortical gray matter volume, cortical surface area, cortical thick-

ness, and LGI/cortical folding in 68 parcellations per individual at each time point.

Quality control was done both manually early in the processing stream and later with

an automated supervised-learning tool on the FreeSurfer segmented output. Manual

quality ratings of T1-weighted and T2-weighted images were performed by authors

VD and HVG. Automated quality control was done with the Qoala-T tool (Klapwijk,

van de Kamp, van der Meulen, Peters, & Wierenga, 2019). Qoala-T is an automated

machine learning model used to classify the quality of FreeSurfer output. Six scans

https://github.com/Washington-University/HCPpipelines
https://scicrunch.org/resources/Any/record/nlx_144509-1/SCR_001847/resolver?q=SCR_001847&l=SCR_001847
https://scicrunch.org/resources/Any/record/nlx_144509-1/SCR_002823/resolver?q=SCR_002823&l=SCR_002823
 https://github.com/GitDro/YouthReliability/tree/master/HCP_custom_pipeline
https://scicrunch.org/resources/Any/record/nlx_144509-1/SCR_008794/resolver?q=SCR_008794&l=SCR_008794
https://surfer.nmr.mgh.harvard.edu/fswiki/LGI
https://github.com/Qoala-T/QC
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from three participants were excluded after the combined quality control (largely due

to excess motion), bringing the total number of participants in the analysis to 50.

For white matter reliability, we examined white matter volume and diffusion ten-

sor imaging (DTI) metrics based on the 20-structure JHU DTI-based white-matter

tractography atlas (Mori, Wakana, van Zijl, & Nagae-Poetscher, 2005). Data inclu-

sion required absolute and relative motion to be under one and a half times the voxel

size. Briefly, the processing was done in three steps: (i) creating binary maps of the 20

tracts in MNI152-space, (ii) registering each binary map into subject diffusion–space

by combining and applying the nonlinear warps from MNI152 to NIHPD space, and

NIHPD space to subject T1-weighted space, and the rigid-body linear transform from

subject T1-weighted space to subject diffusion–space, (iii) using “fslstats” to report

each metric; white matter volume, fractional anisotropy (FA), mean diffusivity (MD),

axial diffusivity (AD), and radial diffusivity (RD) for each tract.

4.3.7 Statistical analysis

We used RStudio (R Version 3.6.2; RStudio version 1.2.5033; RStudio Team, 2019)

to calculate the intraclass correlation coefficient (ICC) for the processed scan–rescan

datasets. Reliability is the ability of a measurement to provide consistent results

under similar circumstances. Test–retest reliability assesses stability under repeated

tests, quantifying the extent to which measurements can be replicated. The ICC in-

dexes both correlation and agreement between measurements (Koo & Li, 2016) and is

commonly used to quantify reliability. We wanted to capture the variation in measure-

ments taken by MRI and introduced in postprocessing, on the same participant under

the same conditions weeks apart. We used ICC (1,1) for calculating scan–rescan reli-

ability implemented in the ICC package (Version 2.3.0; Wolak, Fairbairn, & Paulsen,

2012) which estimates the ICC and confidence intervals using the variance components

form a one-way ANOVA. We examined averaged ICC and the regional (parcellated)

ICC for all measures and classified reliability according to generally defined criteria

(Cicchetti, 1994): poor (<0.40), fair (0.41-0.59), good (>0.59-0.74), and excellent

(>0.74). The code, data and analysis, is available in a reproducible R notebook;

https://github.com/GitDro/YouthReliability. We also repeated the analysis on

a subsample of the participants scanned again twice, on average 14 months following

https://cran.rproject.org/web/packages/ICC/index.html
https://github.com/GitDro/YouthReliability
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their initial pair of scans (see Tables S1–S10).

4.4 Results

4.4.1 Demographic and clinical characteristics

We present results from 100 scans collected from 50 youth (64% female) imaged sev-

eral weeks apart (M = 2.70, SD = 1.36). The age range was 9–25 years old (M = 14.7,

SD = 4.4). The majority of the participants have a family history of mental illness:

25 (50%) with a family history of major depressive disorder, 13 (26%) with a family

history of bipolar disorder, and 2 (4%) with a family history of schizophrenia. Ten

participants (20%) were recruited from control families. A large proportion of the

scanned youth have been affected by mental illness: 26 participants (52%) had been

diagnosed with an anxiety disorder, 13 (26%) had been diagnosed with major depres-

sive disorder, and 11 (22%) have had a diagnosis of attention-deficit/hyperactivity

disorder (ADHD).

The sample was predominantly white (90%), with a minority (10%) comprised of

Indigenous and Black youth. The composite SES indicator was normally distributed

(M = 3.1, SD = 1.31). Full-scale intelligence quotient (FSIQ) for the sample was in

the normal range (M = 103, SD = 12.9).

4.4.2 Cortical volume

We observed “excellent” scan–rescan ICC for cortical gray matter volume (M = 0.90,

95% CI [0.84, 0.94]) averaged across the Desikan atlas regions (Figure 1a). The results

were consistent across the left hemisphere (M = 0.92, 95% CI [0.86, 0.95]) and the

right hemisphere (M = 0.89, 95% CI [0.82, 0.93]). As indicated by the high mean

ICC, the reliability for most of the structures (65 out of 68; 96%) was classified as

“excellent.” However, there was some regional variation (Appendix Supplement Table

A.1). The left supramarginal gyrus volume was the most reliably reconstructed, with

near-perfect ICC (ICC = 0.99, 95% CI [0.98, 0.99]). The volume of the left temporal

pole was the least reliably measured (ICC = 0.47, 95% CI [0.23, 0.66]), with the ICC

dipping into the “fair” classification and the lower bound of the confidence interval

crossing the “poor” threshold. The contralateral right temporal pole was the next
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Figure 4.1: Reliability of cortical gray matter measures. Scan–rescan reliability
of Desikan–Killiany regions. Intraclass correlation coefficient (ICC) values: poor
(<0.40), fair (0.41–0.59), good (>0.59–0.74), and excellent (>0.74). (a) Cortical
gray matter volume. (b) Cortical surface area. (c) Cortical thickness. (d) Local
gyrification index
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least reliably measured structure (ICC = 0.55, 95% CI [0.33, 0.72]). The only other

structure with a designation below “excellent” was the right frontal pole, for which

the ICC was only “fair” (ICC = 0.58, 95% CI [0.36, 0.74]). Cortical volume is a

composite measure comprised of cortical surface area and cortical thickness; thus, we

proceeded to examine the reliability of its components.

4.4.3 Cortical surface area

Averaged across the Desikan atlas regions, the ICC for cortical surface area (M =

0.89, 95% CI [0.82, 0.93]) was also deemed “excellent” overall (Figure 1b). Similar

degree of reliability was attained both in the left hemisphere (M = 0.91, 95% CI [0.85,

0.95]) and the right hemisphere (M = 0.87, 95% CI [0.79, 0.92]). Just as with the

volumetric results, the left supramarginal gyrus showed the highest ICC (ICC = 0.99,

95% CI [0.98, 0.99]). However, the ICCs for 12% of the Desikan regions were classified

as “good” or “fair” (Appendix Supplement Table A.2). The bilateral temporal poles

were the least reliably reconstructed structures (left; ICC = 0.65, 95% CI [0.45, 0.78],

right; ICC = 0.47, 95% CI [0.23, 0.66]). The frontal poles also showed lower ICCs

than most structures (left; ICC = 0.69, 95% CI [0.51, 0.81], right; ICC = 0.70, 95%

CI [0.53, 0.82]). The left insula, entorhinal cortex, and medial orbitofrontal cortex

were classified as “good” with respective ICCs of 0.72, 0.71, 0.64, 95% CI [0.55, 0.83],

[0.55, 0.83], [0.45, 0.78]. Finally, the right caudal middle frontal gyrus ICC confidence

interval ranged from “fair” to “excellent” (ICC = 0.70, 95% CI [0.53, 0.82]).

4.4.4 Cortical thickness

Across the Desikan atlas, the mean ICC for cortical thickness was “good” to “ex-

cellent” (M = 0.82, 95% CI [0.71, 0.89]). The results were consistent across the left

hemisphere (M = 0.83, 95% CI [0.73, 0.90]) and the right hemisphere (M = 0.81, 95%

CI [0.69, 0.88]). The regional variability was more apparent than for other measures

(Figure 1c), with 24% of the atlas below the “excellent” reliability designation (Ap-

pendix Supplement Table A.3). Cortical thickness reconstruction was most reliable

in the left superior frontal gyrus (ICC = 0.95, 95% CI [0.91, 0.97]). Once again, the

temporal pole reconstruction was least reliable bilaterally (left; ICC = 0.38, 95% CI

[0.12, 0.60], right; ICC = 0.41, 95% CI [0.16, 0.62]). Of note, two additional regions
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had the lower bound of the confidence interval cross into “poor” reliability. This

included the right entorhinal cortex (ICC = 0.60, 95% CI [0.39, 0.75]) and the left

medial orbitofrontal cortex (ICC = 0.56, 95% CI [0.34, 0.73]).

4.4.5 Cortical folding (LGI)

We also found “excellent” scan–rescan ICC (M = 0.85, 95% CI [0.75, 0.91]) for the

measurement of cortical folding (Figure 1d). The average ICC across the right hemi-

sphere was “excellent” (M = 0.85, 95% CI [0.76, 0.91]) and “good” to “excellent”

across the left hemisphere (M = 0.84, 95% CI [0.74, 0.90]). Regional reliability was

fairly consistent, with most structures displaying “excellent” reconstruction, and the

rest (eight structures) achieving “good” ICCs. None of the confidence intervals dipped

into the “poor” classification (Appendix Supplement Table A.4). Cortical folding re-

construction was most reliable in the right precentral gyrus (ICC = 0.95, 95% CI

[0.92, 0.97]). As expected by now, the bilateral frontal (left; ICC = 0.62, 95% CI

[0.41, 0.76], right; ICC = 0.66, 95% CI [0.48, 0.79]) and temporal poles (left; ICC

= 0.63, 95% CI [0.43, 0.77], right; ICC = 0.68 95% CI [0.50, 0.81]) had the com-

parably lowest ICC estimates in measures of regional gyrification. The gyrification

measurement of entorhinal cortex was also among the least reliable (left; ICC = 0.65,

95% CI [0.45, 0.78], right; ICC = 0.71, 95% CI [0.54, 0.82]), however, still “fair” to

“excellent.”

4.4.6 White matter volume

We observed remarkable reliability of white matter volume measurements averaged

across the JHU white-matter tractography atlas (M = 0.98, 95% CI [0.97, 0.99]).

Near-perfect reliability was observed in the reconstruction of the cingulum near the

cingulate gyrus (ICC = 0.99, 95% CI [0.99, 1.00]) and other white matter tracts

(Appendix Supplement Table A.5). The lowest regional reliability was observed in

the cingulum near the hippocampus (ICC = 0.96, 95% CI [0.93, 0.98]), which was

nevertheless categorized as “excellent.”
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Figure 4.2: Scan–rescan reliability of diffusion tensor imaging (DTI) measures.
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4.4.7 Diffusion tensor imaging (DTI) measures

Fractional anisotropy (FA)

Next, we examined white matter FA, which is often used to index microstructural

integrity. Scan–rescan ICCs were “excellent” averaged across the JHU atlas (M =

0.88, 95% CI [0.79, 0.93]), Figure 2. The left superior longitudinal fasciculus was

measured most reliably across scan sessions (ICC = 0.95, 95% CI [0.91, 0.97]). The

forceps minor, also known as the anterior forceps, runs bilaterally and had the lowest

reliability estimates for FA (ICC = 0.76, 95% CI [0.61, 0.86]). The test–retest ICCs

for all regions of the atlas fell into the “excellent” range; however, a number of the

regions had the lower confidence interval overlap with the “good” threshold (Appendix

Supplement Table A.6).

Radial diffusivity (RD)

Radial diffusivity has been previously used as a proxy measure for myelin damage

or demyelination. In our study, we found the measure to be, on average, of “good”

to “excellent” reliability (M = 0.84, 95% CI [0.73, 0.90]). The forceps major, also

known as the posterior forceps, was the white matter fiber bundle with the highest

RD reliability (ICC = 0.94, 95% CI [0.90, 0.97]). The right hippocampal cingulum

bundle had the lowest scan–rescan reliability (ICC = 0.69, 95% CI [0.52, 0.81]). Of

note, the lower confidence interval around the ICC was “fair” for five white matter

tracts (Appendix Supplement Table A.7).

Mean diffusivity (MD)

Mean diffusivity summarizes the average diffusion properties of a voxel and can be

sensitive to pathology such as edema and necrosis, among others. Overall, mean atlas-

averaged ICCs were “good” to “excellent” (M = 0.81, 95% CI [0.69, 0.89]). Based on

the lower CI bounds, six white matter tracts overlap with the “fair” reliability classi-

fication (Appendix Supplement Table A.8). Among those are the bilateral cingulum

bundles surrounding the hippocampus (left; ICC = 0.65, 95% CI [0.46, 0.79], right;

ICC = 0.63, 95% CI [0.43, 0.77]) and the corticospinal tract (left; ICC = 0.69, 95%

ICC [0.52, 0.81], right; ICC = 0.66, 95% CI [0.48, 0.79]). Once again, the highest
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scan–rescan reliability was observed in the measurement of the forceps minor (ICC

= 0.91, 95% CI [0.85, 0.95]) and forceps major (ICC = 0.93, 95% CI [0.89, 0.96]).

Axial diffusivity (AD)

Axial diffusivity measures water diffusion along the principal axis of diffusion and may

be correlated with axonal injury. AD had the lowest average ICC of the DTI scalars in

our study (M = 0.78, 95% CI [0.65, 0.87]). While the overall ICC can be classified as

“good” to “excellent,” there is some regional variability of note (Appendix Supplement

Table A.9). The right hippocampal cingulum bundle had the lowest scan–rescan

ICC, with the lower confidence interval crossing into the “poor” classification (ICC

= 0.53, 95% CI [0.30, 0.70]). Nevertheless, some regions stood out for their excellent

scan–rescan reliability, such as the forceps major (ICC = 0.93, 95% CI [0.88, 0.96])

and the bilateral anterior thalamic radiation (left; ICC = 0.90, 95% CI [0.84, 0.94],

right; ICC = 0.90, 95% CI [0.83, 0.94]).

4.5 Discussion

In this paper, we report the reliability of nine MRI-derived measures of cortical and

white matter morphology and integrity based on 100 scans from 50 youth. Despite

the high prevalence of anxiety and ADHD disorders in our young sample, we found

good to excellent reliability for all measures. White matter volume was most consis-

tently reconstructed with a scan–rescan ICC of 0.98 averaged across the white matter

atlas. Axial diffusivity was the least reliable, with an average ICC of 0.78 across

scan sessions. We also observed regional variability in reconstruction, with many

structures showing excellent stability across measures, and some showing poor to fair

reconstruction. This analysis might be of particular interest for hypothesis driven

studies focusing on select regions of interest, and for exploratory and predictive mul-

tivariate studies to cross reference the pattern of findings to their reported reliability

distributions.

The excellent reliability of gray matter measures should be interpreted in the con-

text of prior work. While the reliability of functional MRI data in youth has received

some attention (Thomason et al., 2011; Vetter et al., 2017), literature examining the



56

reliability of structural MRI data remains sparse. Therefore, we interpret the con-

sistency of our data by comparing it to similar work in adult samples. Iscan and

colleagues (Iscan et al., 2015) reported a comparable analysis to ours. Their study

included 40 healthy controls (age 18–65), scanned twice, whose MRI images were pro-

cessed in FreeSurfer. Overall, 25 individuals passed their thorough quality control. In

the approved scans, reported ICCs for cortical thickness/ surface area/ volume were

0.81, 0.87, and 0.88; remarkably similar to our values of 0.82, 0.89, and 0.90. The

closeness of these values carries two messages: (i) It is possible to collect highly reli-

able MRI data from young people with anxiety and/or ADHD, and (ii) after proper

quality control, the reliability can compare to that attained from scans of healthy

adults.

4.5.1 Regional reliability of grey matter

We extended our gray matter analysis to investigate the reliability of cortical folding

(LGI), an important neurodevelopmental marker that is essential to the optimization

of axonal wiring and the functional organization of the brain (Klyachko & Stevens,

2003). With an ICC of 0.85, cortical folding was of excellent reliability, ranking

between measures of cortical thickness and cortical surface area. Cortical folding

reliability was slightly lower than what was reported (ICC = 0.94) in a recent paper

(Madan & Kensinger, 2017). The difference can be attributed to several factors, as

the prior work focused on healthy adults who were scanned either 10 times or with

a sequence specifically optimized for brain morphology research. To our knowledge,

the current study is the first to report on the reliability of this morphological measure

in a pediatric risk sample.

Out of all the cortical gray matter measures, cortical thickness had the lowest ICC

overall and had the most structures categorized to be of poor reliability based on their

lower bound confidence interval. The average thickness of the cortical mantle is 2.5

mm (Fischl & Dale, 2000) which is close to the 1 mm spatial resolution of most scan

sequences. Thereby cortical thickness measurements may be particularly sensitive to

motion artifacts even in high-quality data (Alexander-Bloch et al., 2016).

The structures with the least reliable cortical thickness reconstructions were the

temporal pole, frontal pole, medial orbitofrontal gyrus, and the entorhinal cortex.
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The temporal and frontal poles also exhibited reduced reconstruction consistency in

analysis of gray matter volume and surface area, and are known to be problematic in

the literature (Klapwijk et al., 2019). The medial orbitofrontal gyrus and entorhinal

cortex are localized to the inferior aspect of the brain, and their location makes them

particularly affected by susceptibility gradients from air-filled cavities, the bone–tissue

interface, and orbital artifacts. However, the orbitofrontal and entorhinal cortices

are both essential to fundamental aspects of memory and cognition and have been

implicated in a wide range of disorders (Baiano et al., 2008; Rolls & Grabenhorst,

2008). Our results suggest the need for stringent quality control and adequately

powered samples in future studies of the cortical thickness of these areas.

4.5.2 Regional reliability of white matter

In contrast, white matter volume had the highest reconstruction reliability in our

study. The near-perfect ICC, both regionally and overall, makes the measure par-

ticularly suitable for longitudinal research. However, the assessment of white matter

microstructure with diffusion tensor imaging (DTI) was more variable. DTI is widely

used to infer white matter microstructure, structural connectivity, and axonal health.

Our results ranged from good to excellent (ICC 0.78–0.88) for the four DTI measures,

with axial diffusivity (AD) being the least reliable and fractional anisotropy (FA) the

most reliable. This mirrors the relative interest attained for these measures in the

research community. AD may be a correlate of axonal injury (Budde, Xie, Cross, &

Song, 2009); however, the measure is less widely used than FA which has been the

most popular correlate of white matter integrity (Soares, Marques, Alves, & Sousa,

2013). Regionally, none of the lower confidence intervals for FA ICCs crossed below

the good into the fair or poor classification.

Across all DTI measures, the only region with the lower bound confidence interval

in the poor classification was the hippocampal cingulum bundle. This white matter

tract, along with the cingulum cingulate bundle, had the lowest scan–rescan reliabil-

ity estimates for AD, MD, and RD. The cingulum bundle is a large white matter tract

interconnecting the frontal, parietal, medial temporal, and other areas and has been

implicated in a spectrum of neuropsychiatric disorders (Bubb, Metzler-Baddeley, &
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Aggleton, 2018). Its size and midline positioning might make it particularly suscepti-

ble to motion artifacts and spatial misregistration errors, and thus, a similar warning

akin to low reliability areas of cortical thickness applies here as well.

Lower scan–rescan reliability also applied to the corticospinal tract. Interpreting

these findings in the context of prior research might be illuminating. Investigations of

the underlying reliability of white matter measures in pediatric samples have mainly

been restricted to small samples, specific illness, or a limited number of white matter

tracts (Alhamud, Taylor, Laughton, van der Kouwe, & Meintjes, 2015; Bonekamp et

al., 2007; Carlson et al., 2014). However, a recent paper has examined FA reliabil-

ity in a well-powered sample comprising of both an adult and an adolescent group

(Acheson et al., 2017). Similar to our results, the authors found that in adolescents,

the lowest reliability was observed in the corticospinal tract. This observation held

in adults, signifying low reliability of the corticospinal tract across development. The

corticospinal tract is a white matter motor pathway, and thus, the reliability concerns

might not be immediately relevant to psychiatric research.

4.5.3 Comparisons with functional MRI

Lastly, our structural MRI reliability estimates were higher than those reported in

functional MRI literature. An early account provided the first empirical evidence of

the longitudinal reliability of resting state fMRI in children (Thomason et al., 2011).

The authors obtained positive ICC values for the majority of brain voxels, indicating

stability within participants across measurements. The first group to investigate the

reliability of resting state fMRI in clinical developing groups observed fair (>0.40)

to good (>0.70) ICC in the short term (Somandepalli et al., 2015). The authors

noted higher ICC in typically developing children compared to those with ADHD.

A more recent report examined reliability in adolescent fMRI within a 2-year period

(Vetter et al., 2017). The investigators found both variability and stability, with the

reliability results dependent on task domain and region of interest. For example,

whole-brain ICC was lower (0.44) in cognitive control paradigms and higher (0.74) in

reward paradigms. There was great variability across regions of interest, with ICCs

ranging from poor (0.19) to excellent (0.84). Two recent meta-analyses suggest that

even these modest fMRI reliability values are potentially optimistic.
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One meta-analysis examined a decade of test–retest reliability work surrounding

functional connectivity. The authors concluded that most functional connections ex-

hibited “poor” ICC of 0.29 (95% CI [0.23, 0.36]; Noble, Scheinost, & Constable, 2019).

Another recent meta-analysis examined test–retest reliability of common task-based

fMRI measures (Elliott et al., 2020). Echoing the previously mentioned findings, their

work revealed poor to fair overall reliability (ICC = 0.40) across 90 studies. However,

it is worth noting that contrasting the reliability of structural and functional MRI

is not an apples-to-apples comparison. The excellent structural reliability we report

in this manuscript is based on the consistent reconstruction of a priori anatomically

defined regions. Functional reliability deals with spatial, temporal, and frequency

domains that often try to map onto fluid brain processes. Nevertheless, the discrep-

ancy between the two modalities is worth acknowledging as it can have practical

applications, such as sample size requirements for biomarker discovery (Elliott et al.,

2020).

4.5.4 Limitations

There are several limitations to this study. Sample size is of concern, not in respect

to accurately estimating reliability but to problems of scale. Our approach of manual

ratings for raw data followed by automated quality assessment for processed data

can become resource intensive for large-scale projects, such as the modern biobanks

collecting tens of thousands of scans. Our relatively small number of excluded scans

would grow substantially in those samples and could potentially vary between groups

of interest, for example, those with or without psychopathology. Nevertheless, this

is actively being addressed with behavioral interventions before or during scanning,

with optimized sequences utilizing prospective motion correction, as well as at the

study design phase with oversampling of at-risk youth.

We were also restricted to a single scan site, and data were acquired on the same

scanner at all time points. In our study, we found that results generalized to the

same scanner over a year later (Appendix Supplement Table A.10). However, large

collaborative efforts are often made possible by acquisitions on scanners from different

manufacturers at sites that may be continents apart (P. M. Thompson et al., 2014).

This can increase variability that confounds the effects of interest. Nevertheless, these
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challenges are being overcome with the standardization of scanning parameters and

statistical techniques that correct for site differences (J. Chen et al., 2014). Lastly,

beyond site differences, variations in data analysis methods are more likely to have a

stronger effect on neuroimaging results, but are also being addressed (Nichols et al.,

2017).

Another limitation is our choice of parcellation scheme for assessing regional relia-

bility of cortical areas and white matter tracts. The construction of an accurate map

of the major subdivisions of the human brain is a century-old endeavor with an ac-

companying and equally long debate on what constitutes a boundary. There are other

parcellations than the one used in this paper that are more biologically grounded, ac-

counting for cortical architecture, topography, and functional connectivity (Glasser,

Smith, et al., 2016). However, given that it is impossible to exhaustively test each

parcellation, we decided to focus on those most likely to be commonly used in the

field. The Desikan atlas has over 5,000 citations on PubMed, and the JHU atlas has

almost 2,000. They come default or preinstalled with commonly used MRI software,

including FreeSurfer and FSL, respectively. Thus, these atlases are the starting point

for a great number of neuroimaging researchers and a basis of comparison for those

on the cutting edge who choose to use newer or custom parcellations.

4.6 Conclusions

In conclusion, while researchers should be cognizant of regional variability in recon-

struction, pediatric MRI brain data can be highly reliable overall. Furthermore, the

high reliability was established in youth at risk for mental illness or those already

affected by anxiety and neurodevelopmental disorders. This bodes well for work

investigating the neurodevelopmental markers of mental illness at an early stage, be-

fore medication, drug use, and other confounds take a persistent toll on the brain.

Confidence in the data quality of high-risk youth samples is also a prerequisite for

improved diagnosis and development of personalized prevention strategies based on

brain markers.
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5.1 Abstract

Introduction The majority of psychiatric disorders onset in the first two decades of

life. Because a multitude of subtle developmental brain deviations may be associated

with risk of mental illness, there is a need for a general index of deviation from typical

development. In the present youth study, we examined the extent to which environ-

mental adversity, developmental antecedents, major depressive disorder (MDD), and

functional impairment correlate with deviation from normative brain development.

Methods We applied gradient boosting to train a brain age prediction model in a

training set of 1299 typically developing youth (age range 9-19 years old, M = 13.5,

SD = 3.04), validated the model in a holdout set of 322 youth (M = 13.5, SD = 3.07),

and used it to predict age in an independent risk enriched test sample (M = 13.6, SD

= 2.82). We tested associations between the brain age gap (predicted - chronological

age) and a range of risk factors, psychopathology and functional outcomes associated

with mental illness.

Results The mean absolute error (MAE) was 1.53 years in the training set, and

generalized to the validation set (1.55 years) and independent at-risk sample (1.49

years). The brain age estimate was highly reliable in repeated scans (intra class

correlation = 0.94). Experience of multiple environmental advertises (β = 0.18, p =

0.02, 95% CI [0.04, 0.31]), presence of MDD (β = 0.59, p = 0.01, 95% CI [0.18, 0.99])

and functional impairment (β = 0.16, p = 0.01, 95% CI [0.05, 0.27]) were associated

with a positive brain age gap.

Conclusions Several indicators of mental illness had a tendency of reflecting in

an older appearing brain. Overall, deviation from normative brain age might be a

general indicator of ill brain health.
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5.2 Introduction

Most psychiatric disorders onset in the first two decades of life (Kessler et al., 2005;

Caspi et al., 2020). The highest risk of mental illness onset coincides with a period

of rapid brain development. Cortical grey matter volume shows a non-linear decline

during adolescence, explained by reductions in cortical thickness and surface area

(Tamnes et al., 2017; Walhovd et al., 2017). Cortical white matter volume increases

from childhood until mid to late adolescence (Mills et al., 2016). Aberrations or exag-

gerations of these typical developmental changes are likely related to the etiology of

mental illness (Huttenlocher, 1994; Paus et al., 2008; Whitaker et al., 2016). Thus it

is paramount to determine how biological and environmental factors impact develop-

mental trajectories (Casey et al., 2018). Deviation from expected trajectories can be

captured with an innovative approach capable of assessing neuroanatomical maturity

(Franke, Luders, May, Wilke, & Gaser, 2012; Brown et al., 2012; Chung et al., 2018).

Advances in machine-learning (ML) algorithms combined with access to large

databases of brain scans have made it possible to estimate brain-predicted age, or

brain age, from MRI images (Cole & Franke, 2017). By analysing scans from typi-

cally developing individuals, ML determines the relationship between neuroanatomy

and chronological age, across the age range, thereby mapping normative developmen-

tal trajectories. Once trained, the ML algorithm is able estimate brain age from

previously unseen MRI scans from different individuals and populations. The differ-

ence between a person’s predicted age and their chronological age results in the brain

age gap (Franke & Gaser, 2019). A wide gap suggest deviation from normative brain

developmental trajectories and has been associated with a spectrum of ill health.

In adults, increased brain age has been associated with cognitive impairment,

traumatic brain injury, Alzheimer’s disease, and increased risk of mortality (Cole,

Ritchie, et al., 2017; Cole & Franke, 2017; Franke & Gaser, 2019). A higher brain

age, suggestive of an older-appearing brain, has also been associated with severe

mental illness (SMI), including both mood (Han et al., 2020) and psychotic disorders

(Schnack et al., 2016). A recent analysis of over 40,000 scans has revealed that

all clinical groups, including those with major depressive disorder (MDD), bipolar

disorder (BD) and schizophrenia exhibited a positive brain age gap when compared

to healthy controls (Kaufmann et al., 2019). Thus, while the brain age literature is
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well established in studies of adults, less is known about how the brain age gap relates

to mental illness in adolescence.

Prior work has established the validity of brain age prediction in the developmental

context, with the ability to reliably differentiate between age groups (childhood, early

adolescence, middle adolescence, late adolescence) (Franke et al., 2012; Brown et al.,

2012). The brain age gap has been related to cognitive performance in typically

developing youth (Lewis, Evans, & Tohka, 2018). However, applications in mental

health contexts have been more limited. The few available adolescent brain age

studies have shown an increased brain age gap associated with MDD (de Nooij et

al., 2019) or risk for conversion to psychosis (Chung et al., 2018). Building on the

prior literature, we wanted to examine if the brain age gap may work as a general

biomarker of deviation from typical development associated with multiple adverse

exposures and outcomes.

In the present study we built a model optimized for predicting age in typically

developing youth. We then applied the model in a well characterized high-risk sam-

ple of youth in order to calculate the brain age gap for each individual. Considering

that there is no single indicator of ill mental health in the developmental context, we

implemented a multi-prong approach (Polanczyk et al., 2010). First, we examined

the effect of multiple negative environmental factors, such as low socio-economic sta-

tus and maltreatment on predicted brain age. Second, we investigated the effect of

early transdiagnostic symptoms for mental illness. Third, validating prior work, we

examined if presence of MDD was associated with increased brain age. Lastly, we

examined the effects of functional impairment on brain age. Given prior evidence, we

expected that all indicators would non-specifically reflect in a positive brain age gap,

signifying a global factor of ill-being.
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5.3 Methods

In this study we implemented a testing, validation, and application strategy. In order

to model normative development, we acquired scans from typically developing youth

from neuroimaging databases. The scans were then partitioned into a training set,

for building the model, and validation set, for assessing generalized performance.

An independent cohort, enriched for risk for mental illness, was used for hypotheses

testing. The inclusion age criterion was 9 to 19 in order to capture development

during adolescence.

5.3.1 Sample

We leveraged publicly available MRI data in order to build multivariate models

for predicting chronological age of typically developing youth. A summary of the

datasets, all of which have been used in prior publications, is available in Table 5.1.

Each cohort collected data with the participants’ informed consent and approval by

local institutional review and ethics boards. Inclusion criteria for the typically de-

veloping cohorts was participants ages 9 to 19 years old, with IQ above 75 where

applicable, passing automated quality control. Figure 5.1 shows sample size, age, and

sex distribution of included cohorts.

We then applied the best model to an independent sample of youth at risk for

mental illness (FORBOW), Demographics Table 5.2. FORBOW exclusion criteria

were personal history of 1) psychotic illness or autism spectrum disorder, 2) any

serious medical or neurological disorders, or 3) MRI contraindications and 4) Full

scale intelligence quotient (FSIQ) below 75 on the Wechsler Abbreviated Scale of

Intelligence (Wechsler, 2011).

Data partition

Training set 80% (1299) of the typically developing controls were used for model

training.

Validation set 20% (322) held out controls were used for model validation and

estimation of model bias (Smith, Vidaurre, Alfaro-Almagro, Nichols, & Miller, 2019).
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Table 5.1: Description of the cohorts
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Table 5.2: Demographics of risk enriched FORBOW cohort.

SMI = Severe Mental Illness, MDD = Major Depressive Disorder, ADHD = Attention-
Deficit/Hyperactivity Disorder FSIQ = Full Scale Intelligence Quotient. SES = Socioeconomic
status (larger number represents higher SES)

n (%) n scans
Female 79 (53%) 187
Family history of SMI 118 (68%) 248
Lifetime MDD 24 (16%) 64
Lifetime Anxiety Disorder 63 (42%) 159
Lifetime ADHD 37 (25%) 96
Any cannabis use 15 (10%) 43

Mean SD
FSIQ 106 13.5
SES (0-5) 3 1.42

Test set We tested hypotheses in a separate at-risk cohort (FORBOW), fully inde-

pendent from training and validation. This included 338 scans from 150 individuals

(see Supplemental Table A.11 for scan timing breakdown).

5.3.2 FORBOW assessments

Polyenviromic risk score (PolyE)

The adversity score was calculated as a mean of 10 binary indicators of socio-economic

adversity and victimization: (1) biological mother’s education, (2) biological father’s

education, (3) home-ownership status, (4) annual household income, (5) emotional

abuse, (6) physical abuse, (7) sexual abuse, (8) neglect, (9) exposure to violence at

home and (10) bullying. Our prior work goes into greater detail on these indicators

(Zwicker, MacKenzie, et al., 2019). Considering that there is no psychometrically

derived cut-off for this measure, in instances where binarizing for visualization was

necessary PolyE was considered high if there was any childhood maltreatment.

Youth Experience Tracker Instrument (YETI)

The YETI is a brief self report measure of six antecedents that precede and pre-

dict mental illness: affective lability, anxiety, depressive symptoms, basic symptoms,

psychotic-like experiences, and sleep (Patterson et al., 2020). The questionnaire was
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designed to facilitate early identification of risk for severe mental illness and has been

validated in the FORBOW cohort. A score of ≥ 8 indicates high antecedent burden.

Major depressive disorder (MDD)

Participating youth were interviewed using the Kiddie Schedule for Affective Disorders

and Schizophrenia, Present and Lifetime Version (K-SADS-PL; Kaufman et al., 1997)

by assessors blind to parent psychopathology. Diagnoses were confirmed in consensus

meetings with a psychiatrist.

Columbia Impairment Scale (CIS)

The CIS is a 13 item scale that provides a global measure of impairment (Bird, Shaffer,

Fisher, Gould, & et al, 1993). The questionnaire taps into a number of functional

domains, including relationships with family at home, relations with peers, academic

functioning, and involvement in general hobbies/interests. A score ≥ 15 indicates

clinically significant functional impairment (Attell, Cappelli, Manteuffel, & Li, 2018).

We averaged both child and parent reporting on the CIS.

5.3.3 MRI acquisition

Images were acquired with a 3T General Electric Discovery MR750 scanner equipped

with a 32-channel MR Instruments RF head coil. Scanning took place at the Biomed-

ical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia. We collected a

3D T1-weighted (T1w) Brain Volume imaging (BRAVO) sequence with whole-brain

coverage, 1 mm3 isotropic resolution, matrix = 224 × 224, field of view (FOV) =

224 mm, 168 sagittal slices at 1 mm thickness, repetition time (TR) = 5.9 ms, echo

time (TE) = 2.2 ms, inversion time (TI) = 450 ms, flip angle = 12◦. In addition, we

collected a T2-weighted fluid attenuated inversion recovery (FLAIR) sequence using

a T2 prep contrast option (T2PREP) with identical coverage, resolution and acquisi-

tion orientation to the T1w sequence, TE = 98 ms, TR = 5,100 ms, TI = 1,427 ms,

echo train length (ETL) = 250 echoes, flip angle = 90◦.
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5.3.4 MRI processing and features

Data across all cohorts was processed with FreeSurfer 6 software (RRID:SCR 001847;

Fischl, 2012); FreeSurfer website. In depth reporting of the processing in the FOR-

BOW sample as well as assessment of MRI reliability is available in our prior work

(Drobinin, Gestel, et al., 2020); GitHub repository .

Automated quality assurance was done with the Qoala-T tool (Klapwijk et al.,

2019); Qoala-T website. Qoala-T is machine learning tool designed to automatically

classify the quality of FreeSurfer output. We report on data that was recommended

for inclusion by Qoala-T.

For cortical features to be used in the machine learning analysis, we compiled 34

cortical structures per hemisphere based on the FreeSurfer default Desikan–Killiany

atlas (Desikan et al., 2006). We included cortical gray matter volume and corti-

cal surface area measurements for each structure. We excluded cortical thickness

measurements for several reasons: (1) Cortical thickness measurements are the least

reliable and most sensitive to MRI artefacts (Drobinin, Gestel, et al., 2020; Iscan et

al., 2015), (2) cortical thickness measurements are more scanner specific than other

measures (Fortin et al., 2018) and there is no agreed upon way to standardize them

within a cross-validation framework, (3) we wanted to maintain an adequate ratio of

features/predictors to sample size. Overall, we included 136 cortical features.

We also included bilateral global (e.g. intracranial volume) and subcortical mea-

sures (e.g. amygdala volume) from the FreeSurfer output. This totalled 53 additional

structures, for an overall total of 189 features for use in training (see Supplement

Table A.12 for full feature list).

5.3.5 Statistical analysis

All statistical analyses were performed in R Studio (R Version 3.6.3; RStudio version

1.3.959; RStudio Team, 2019). Machine learning was performed within the tidymodels

framework (Kuhn & Wickham, 2020). Tidymodels (version 0.1.1) is a standardized

collection of packages for modelling and machine learning in R: tidymodels website.

Associations with clinical variables were analysed with mixed effect linear models

implemented in the lme4 package version 1.1.23 (Bates, Mächler, Bolker, & Walker,

2015).

https://scicrunch.org/resources/Any/record/nlx_144509-1/SCR_001847/resolver?q=SCR_001847&l=SCR_001847
https://surfer.nmr.mgh.harvard.edu/
https://github.com/GitDro/YouthReliability
https://github.com/Qoala-T/QC
https://www.tidymodels.org/
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Data pre-processing and cross-validation The volume of the 5th ventricle was

removed due to near zero variance, reducing the feature set to 188. We implemented

10 fold cross-validation, repeated 10 times, with the folds stratified by the scan age.

Model specification and tuning The model setup was to predict scan age using

cortical and subcortical brain features. We implemented the XGBoost machine learn-

ing algorithm version 1.0.0.2 (T. Chen & Guestrin, 2016) due to its top performance

in many machine learning challenges as well as successful use in the largest brain

age study to date (Kaufmann et al., 2019). The primary performance metric was to

minimize mean absolute error (MAE), expressed in years.

The model was specified with the parsnip package from the tidymodels framework.

The XGBoost model was set to regression mode, with 1500 trees. The following hyper-

parameters were tuned through cross validation: tree depth, min n, loss reduction,

sample size, mtry, and learn rate. Package specific nomenclature for these parameters

is available in Supplemental Table A.13. Tuning was done with grid search (latin

hypercube sampling, size = 500). The method involves near-random sampling of

parameter values from a distribution of all possible parameter values.

Finalizing and visualizing model From the tuned cross validated results, we

selected the best model (lowest MAE) using the “one standard-error rule” (Breiman,

Friedman, Stone, & Olshen, 1984). In other words, we picked the most simple model,

in terms of tree depth, that is within one standard error of the best performing model.

The depth of the tree represents the degree of feature interaction, and can lead to

high non-linearity and variance (James, Witten, Hastie, & Tibshirani, 2013). The

best model was then finalized on the whole training set and predictions were made

on the validation set and on the FORBOW test set. The final fitted model is freely

available for researchers to make predictions on their own developmental data: GitHub

link .

Neuroanatomical contribution to age prediction was visualized using the variable

importance plots (vip) R package version 0.2.2. The resulting importance of specific

brain regions in predicting age was plotted with the ggseg R package version 1.5.4

(Mowinckel & Vidal-Piñeiro, 2019).

https://github.com/GitDro/DevelopmentalBrainAge
https://github.com/GitDro/DevelopmentalBrainAge
https://github.com/koalaverse/vip/
https://github.com/LCBC-UiO/ggseg
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Brain age prediction and bias correction The finalized XGBoost model was

used to predict scan age in the validation and test sets. We also computed the brain

age gap by subtracting the true scan age from the predicted age. Across regression

methods there is a tendency for prediction bias towards the group mean (Smith et al.,

2019). In the context of brain age studies this is seen as a slight age overestimation in

younger participants and underestimation of predicted age in the older participants.

To adjust this, we used a linear bias correction method proposed by prior research

(de Lange & Cole, 2020; Smith et al., 2019). We fit a linear regression model on

the validation set: predicted age = α + β1(scan age) + ε. To attain a bias corrected

prediction we subtracted the intercept from the predicted age and then divided it by

the slope. The slope and intercept are generalizable when applied to new data (Peng,

Gong, Beckmann, Vedaldi, & Smith, 2019), thus we used these coefficients from the

validation set to correct the bias in the test set without requiring any information

about the independent test sample.

Hypotheses testing We used mixed effect linear models to determine the asso-

ciation between the corrected brain age gap and the variables of interest. We ran

separate models with the PolyE, YETI, MDD, and CIS as the primary independent

measures and the brain age gap as the dependent measure. As recommended by

prior work (Le et al., 2018), we covaried for the effects of age, age2 and sex in the

main analyses. For sensitivity analysis we additionally covaried family history of SMI,

socio-economic status (SES), any prior cannabis use, and IQ. We modelled multiple

observations from each participant by including the scan id as a random effect. We

also accounted for the non-independence of brain data from related individuals by

including the family identifier as a random effect. We reported effect sizes using

standardized regression estimates (β) and their 95% confidence intervals (CIs).
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Figure 5.1: Age and sex distributions of all datasets. Risk enriched FORBOW sample
highlighted above.

N = 398

N = 150

N = 158

N = 395

N = 179

N = 257

N = 234
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5.4 Results

5.4.1 Brain age model performance

Training performance We built a brain age model using magnetic resonance

imaging scans of typically developing youth from 6 cohorts (n = 1299; age range

9-19 years old). The top model had an MAE of 1.53 years in cross-validation. See

Supplement Table A.14 for top 10 models and their parameters.

Validation performance The model performed with an MAE of 1.55 years on the

validation set, similar to the cross-validation performance. As expected, the brain age

gap was correlated with age, showing bias (r (320) -0.73, p < 0.001). We assessed the

relationship between the predicted age and the chronological age: predicted age =

6.41 + 0.55(scan age) + ε. As recommended in the literature, we subtracted the

intercept from the predicted age and then divided it by the slope for bias correction.

This procedure inflated the variance of the predicted age, increasing the MAE to 1.98,

however it eliminated the correlation between the brain age gap and chronological age

(r(320) < 0.001, p = 1). See Figure 5.2 for model performance across datasets.

Test performance Our target of interest was the independent FORBOW cohort,

where the unmodified model performed with an MAE of 1.49 years. We used the

coefficients from the validation set to bias correct the predicted age. After bias

correction the MAE was 1.86 and the brain age gap did not significantly correlate

with chronological age (r (336) = -0.07, p = 0.2).

5.4.2 Reliability of predicted age

While the reliability of individual brain imaging measurements has been established,

the short-term reliability of brain age estimation is unknown. In 50 individuals re-

scanned within weeks of their first scan the intraclass correlation coefficient (ICC 1,1)

for predicted brain age was 0.94 (95% CI 0.90, 0.96) indicating excellent reliability.
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Figure 5.2: Predicted brain age and chronological age at time of scanning in
validation (20% holdout set) and independent test set (FORBOW cohort).

MAE = mean absolute error, corrected MAE = bias corrected MAE.

MAE = 1.55
corrected MAE = 1.98

MAE = 1.49
corrected MAE = 1.86
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Figure 5.3: Top cortical grey matter volume and subcortical contributions to age
prediction.

Desikan-Killiany (DK)

Subcortical segmentation (aseg)

5.4.3 Neuroanatomical contribution to age prediction

The machine learning model relied on a diverse set of features to make accurate age

prediction. Among them were global measures, such as brain segmentation volume,

information from the ventricles, parietal regions and a number of other cortical vol-

umetric measures, as well as subcortical data including the hippocampus and the

brainstem. Figure 5.3 shows the top grey matter volume and subcortical contribu-

tions in the prediction model. Supplemental Figure A.3 lists the relative contribution

to brain age prediction of the top 30 structures.

5.4.4 Association with exposures and outcomes

PolyE First we examined how an aggregate measure of multiple adverse environ-

mental events (PolyE) relates to brain development. After controlling for age, age2

and sex we found that PolyE was significantly associated with a positive brain age
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gap (β = 0.18, p = 0.02, 95% CI [0.04, 0.31]). In other words, adversity is associated

with older looking brains (Figure 5.4). This effect remained after additionally con-

trolling for the effects of family history of SMI, any lifetime cannabis use, and IQ (β

= 0.17, p = 0.02, 95% CI [0.03, 0.31]).

Figure 5.4: Brain age gap as a function of adverse environmental events (PolyE).
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YETI Next we tested the association between the Youth Experience Tracker In-

strument (YETI) and the brain age gap. We found that the dimensional measure

of antecedent burden was not significantly associated with deviation from expected

brain age (β = 0.10, p = 0.09, 95% CI [-0.01, 0.21]). Individuals high on the symp-

tom scale were shifted to the right of the brain age gap distribution, towards an older

appearing brain, however there was substantial overlap 5.5.

Major depressive disorder We found that MDD was associated with increased

positive brain age gap (β = 0.59, p = 0.01, 95% CI [0.18, 0.99]). The effect of an

older appearing brain in MDD (Figure 5.6) held when further controlling for family
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Figure 5.5: Brain age gap as a function of high number of symptoms on the YETI
scale (antecedent burden).
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history of SMI, socio-economic status, any lifetime cannabis use, and IQ (β = 0.42,

p = 0.05, 95% CI [0.01, 0.84]).

CIS Finally, we examined the effect of functional impairment on the brain age gap

(Figure 5.7). The main analysis showed that increasing functional impairment relates

to higher predicted brain age (β = 0.16, p = 0.01, 95% CI [0.05, 0.27]). The effect

held in the subsequent sensitivity analysis (β = 0.13, p = 0.02, 95% CI [0.02, 0.24]),

see Supplemental Figure A.4 for forest plot of effects across models.

High total loading It has been suggested that a small segment of the population

carries a large burden in reference to a number of negative outcomes (Caspi et al.,

2016). In an exploratory analysis we wanted to examine this effect in our cohort by

selecting the individuals that score in the top 20% on the three dimensional measures.

We did not find a statistically significant effect of this total high loading (β = 0.37,

p = 0.12, 95% CI [-0.09, 0.83]). However, our sample size was underpowered for this
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Figure 5.6: Brain age gap as a function of Major Depressive Disorder.
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analysis, as thankfully a minority of individuals met these joint criteria (n = 18).

Nevertheless, Figure 5.8 shows that this trend might warrant future attention.
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Figure 5.7: Brain age gap as a function of functional impairment (CIS).
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Figure 5.8: Brain age gap as a function of scoring in the top 20% on 3 measures of
antecedents, environmental adversity, and functional impairment. A. Forest plot with
summary of effect sizes across measures. 95% confidence interval lines are presented
with an inner CI of 85%. B. Density plot of brain age gap as function of high total
loading.
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5.5 Discussion

In this work we were able to accurately and reliably predict age using neuroanatom-

ical data from a large sample of typically developing youth. The prediction accuracy

generalized to an independent cohort of youth enriched for risk of mental illness

(FORBOW). Within FORBOW we found that a number of factors linked to the

causes and consequences of mental illness are associated with discrepancies between

predicted and chronological age. The spectrum of adverse experiences, from early

antecedents for mental illness, to environmental adversity, adolescent onset depres-

sion and functional impairment, all had a tendency of reflecting in an older appearing

brain. These effects were present against the backdrop of profound neurodevelop-

mental change accompanying adolescence. Overall, deviation from chronological age

might be a general indicator of unwellness rather than a marker of a specific exposure

or outcome.

Our accuracy in predicting chronological age falls in line with prior developmental

work with MAEs from one to two years (see Franke & Gaser, 2019 for comprehensive

review of the last decade of brain age studies). We were able to achieve a one and a half

year MAE while maintaining consistent scale, generalizability and reliability. To our

knowledge we have aggregated the largest developmental sample in the study of brain

age and leveraged it to show consistent performance between training, validation and

independent testing. We did not observe any increase of the prediction error when the

model was applied to a cohort of youth enriched for risk of mental illness. Familial risk

did not have a significant effect on prediction. Our results show that in the interplay

of biology and circumstance, deviation from chronological age more strongly reflects

what happens throughout life rather than genetic contributions present from the

beginning.

Many individuals experience adversity in childhood and adolescence. In line with

our hypothesis, we found that cumulative exposure to adversity was associated with

advanced brain age. This novel approach to capturing aggregate adversity can be in-

terpreted in the context of existing neuroimaging literature on the underlying compo-

nents of the dimensional measure. Community disadvantage and lower socio-economic

status have previously been associated with reduced cortical tissue volume, both glob-

ally and regionally (Gianaros et al., 2017; McDermott et al., 2019). Our measure also
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assessed childhood maltreatment, including physical, sexual, emotional abuse and

neglect. Maltreatment has been shown to have lasting effects on the stress response

system and neurobiological development (Bremner & Vermetten, 2001; Teicher et al.,

2003). The most prominent neuroanatomical effects include grey matter reductions

in fronto-limbic structures such as the prefrontal cortex and hippocampus, enlarge-

ments in the ventricles, and reductions in the size of the corpus callosum (Hart &

Rubia, 2012; Teicher et al., 2004). Considering that typical development from late

childhood to early adulthood involves widespread decreases in cortical volume (Mills

et al., 2016; Tamnes et al., 2017), the machine learning model is likely sensitive to the

additional decreases associated with adversity, resulting in a prediction of advanced

maturation, or a higher brain age. Correspondingly, disproportionate increases in

measures such as ventricular volumes, which increase with chronological age, would

also be associated with higher brain age.

We also hypothesized that developmental antecedents for mental illness would be

associated with increased brain age gap. While higher levels of antecedents shifted

the distribution towards increased brain age, the effect was not statistically signif-

icant. This was unexpected because we previously found that the basic symptoms

and psychotic-like experiences captured by the YETI were associated with reduced

cortical folding in this cohort (Drobinin, Van Gestel, et al., 2020). It is possible

that early pre-prodromal symptoms are associated with subtle cortical alterations

that are masked amid the developmental changes occurring in adolescence. Our prior

work found reductions in the orbitofrontal and occipital areas, none of which feature

prominently in the list of structures that contribute most to accurate age prediction

(Supplement Figure A.3). Our current findings compare to those from Chung et al.,

2018, where prodrome symptoms were associated with increased brain age, but were

not robust enough to predict conversion to illness.

In our final analyses we examined the relationship between depression and the

brain age gap, and concluded the investigation by demonstrating the functional rele-

vance of the brain age gap beyond diagnostic group differences. In the present study,

MDD was associated with increased brain age, confirming our hypothesis. This find-

ing was supported by a recent, well powered study of increased brain age in adults

with MDD (Han et al., 2020). Another recent longitudinal study has shown that for
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youth with MDD compared to controls, brain age deviated from chronological age

at follow up (de Nooij et al., 2019). Finally, functional impairment is a necessary

criterion to meet threshold for many mental health diagnoses and is an important

outcome measure in its own right (Attell et al., 2018). Our results showed that func-

tional impairment, as captured by a widely used youth impairment scale, is associated

with deviation from chronological age. In one of the largest neuropsychiatric stud-

ies to date, Kaufmann et al., 2019, have demonstrated that increased brain age was

associated with several disorder specific functional measures. Our study expands on

this finding by demonstrating a more generalized effect of functional impairment on

brain age during adolescence.

5.5.1 Limitations and future directions

There were several limitations to this study. Prediction error can be further reduced

in a number of ways. For example, some scan sites only provided ages as whole

integers, imposing a built in cap on prediction accuracy. Furthermore, state of the

art deep learning methods, specifically convolutional neural networks (CNN) have

shown greater accuracy than offered by more “shallow” machine learning techniques

in adult samples (Cole, Poudel, et al., 2017). An additional benefit of CNNs would

include less processing requirements for MRI data with traditional software. Further

still, we focused on a broad range of cortical and subcortical measures. However, the

feature set can be expanded to include multimodal data for improved accuracy and

perhaps more importantly mechanistic inference (Engemann et al., 2020).

The brain age gap addresses two major challenges and opportunities in neuroimag-

ing: high dimensionality of brain data and individual level prediction. Regions across

the brain are analysed in aggregate through a multivariate framework in order to

make accurate individual-level predictions. This process is then summarised by an

intuitive single number; the brain age gap. However this reduction in complexity is

a double edged sword when it comes to identifying the mechanisms responsible for

brain age deviation. Our efforts at interpretable machine learning offered an explana-

tion for which structures contributed most to brain age prediction. By incorporating

diffusion, myelination, and data from other modalities future studies may be able
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to capture different aspects of pathophysiology contributing to brain age gaps. Per-

haps the best example of such work was done by Brown et al., 2012. The group

examined age-varying contributions of different imaging measures to the prediction

of age in healthy individuals. For example, diffusion measures from white matter

fiber tracts were found to be most relevant between the ages of 12 to 15. Improve-

ments on such study designs, done at a population neuroscience level, might offer

mechanistic insights into the pathophysiology of brain age deviation in the context of

neuropsychiatric disorders.

A new generation of large-scale studies (Alexander et al., 2017; Casey et al., 2018)

investigating adolescent brain development across health and disease might provide

the data needed to address some of the mentioned limitations. Furthermore such

longitudinal biobanks might offer enough power to examine smaller groups that show

distinct developmental trajectories. For example, in our study individuals scoring

highly on measures of adversity, antecedents and impairment hinted at a particularly

strong deviation from chronological age. However the subsample was very small and

the exploratory analysis was not statistically significant. Future work can target such

subsamples and others in further detail with adequate power to jointly examine the

effects of lifestyle factors and medical conditions that are also known to have an effect

on brain health (Smith et al., 2019).

5.5.2 Conclusion

In conclusion, we have shown that several factors, including adversity, early an-

tecedents for mental illness, adolescent onset of depression, and functional impair-

ment, were associated with a higher brain age gap in youth. In the spirit of open

science we have shared our brain age algorithm with the wider scientific community

and offered avenues for future studies of neurodevelopmental trajectories.



Chapter 6

General discussion

In this section I will summarise my main findings and discuss broader aspects of how

they fit in the context of current perspectives in neuroimaging.

6.1 Inferior frontal gyrus in BD

In Chapter 2 (Drobinin et al., 2019), I replicated and extended the finding of structural

changes in the right IFG volume as a neuroanatomical marker of familial susceptibility

for BD. Using 3D representations of the cortical sheet I found that the volumetric

enlargement was linked to the increased cortical SA, and not CT or cortical folding.

Moreover, I localized the largest volume and SA differences to the pars triangularis

of the rIFG, providing a more specific marker of familial risk for BD.

This is a very specific finding: right hemisphere, prefrontal cortex, inferior frontal

gyrus, pars triangularis, cortical surface area. However, the way in which it may be

referenced has a surprising level of flexibility. Hong, Yoo, Han, Wager, & Woo, 2019,

brought light to this issue by highlighting how flexibility in testing spatial hypotheses

allows presenting any result as a replicated finding. The authors found that almost

half of the ‘replicated’ findings had spatial co-ordinates more than 15 mm away from

the ‘original’ findings, which is enough to cross boundaries between structures. This

is also very relevant for functional MRI research. For example, literature describing

‘canonical cognitive control networks’ have sometimes displayed vastly different spa-

tial activation maps for those networks. The field would benefit from researchers,

myself included, being more mindful of the specificity of prior literature when pro-

viding supporting or contrasting evidence.

Nevertheless, this chapter showed the unique nature of rIFG morphology in BD,

with larger volume and SA early in the course of illness, providing a new insight into

the localization and topology of a prior finding.

84
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6.2 Cortical folding and psychotic symptoms

In Chapter 3 (Drobinin, Van Gestel, et al., 2020), I wanted to determine if youth

with psychotic symptoms displayed cortical aberrations before the onset of impairing

psychotic illness. Thus I examined 3D reconstructions of cortical folding, an early

neurodevelopmental marker of cortical expansion. I found a pattern of decreased

cortical folding in adolescents who had psychotic symptoms but who did not meet

the criteria for a psychotic disorder.

The results of this study mirror the results of many studies in psychology and

neuroscience, in that effect sizes are small and the groups overlap substantially. Small

effect sizes face a challenge from the commonly used mass-univariate approach to

statistical analysis. In essence, the model of interest is tested for each brain structure

in turn, then thresholded by the number of tests done. In the end a few regions

might show statistically significant associations with the clinical variable or group

of interest. To illustrate an example, Schmaal et al. (2016) examined subcortical

brain alterations in MDD. While the study had thousands of participants, only the

hippocampal volume differences were significant after correcting for multiple testing.

Returning to my study, after correcting for multiple testing we found only a few

differences in frontal and occipital areas. However, if we revisit Figure 3.1, we see a

general trend of lower cortical folding in youth with psychotic symptoms across all

examined regions. Rather than discarding these data, there has been growing interest

in better utilizing the joint contributions of small effect sizes (Woo, Chang, Lindquist,

& Wager, 2017), such as with mutivariate methods I employed in Chapter 5. Such

work has the potential to bring deeper insights into the brain changes shared across

disorders.

6.3 Reliability of developmental MRI

In Chapter 4 (Drobinin, Gestel, et al., 2020), I reported the reliability of nine MRI-

derived measures of cortical and white matter morphology and integrity. Despite the

high prevalence of anxiety and ADHD disorders in our young sample, we found good

to excellent reliability for all measures. White matter volume was most consistently

reconstructed. Cortical thickness was overall less reliable than surface area. Axial
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diffusivity was the least reliable measure experiment-wide. There was regional vari-

ability in reconstruction, with some structures being more reliably reconstructed than

others. Overall, the take-away is that it is important for researchers to be aware of

the underlying reliability of their data, and easily spot if certain results are clustering

in areas of low reliability.

One extension to the work would be to explore the reliability of a more com-

prehensive brain parcellation, specifically the multi modal parcellation devised by

Glasser, Coalson, et al., 2016. I suspect the smaller regions of interest would reduce

the reliability. On a similar note, reporting the overall reliability of the data, with-

out excluding scans that failed QC might have also been of interest to the broader

scientific community.

During the writing of this chapter I developed a greater awareness of open science

practices and was inspired to open up the data, code, and analysis to the broader

scientific community (Drobinin, 2020). While I found the process educational and

enjoyable, even individuals who advocate for reproducibility of neuroscience research

nevertheless acknowledge that there is a cost of reproducibility (Poldrack, 2019).

In other words the field is balancing the incentive structure for taking the time to

implement open science practices compared to completing additional projects sooner.

Furthermore, reliability is not the same as generalizability. For example, while cor-

tical thickness estimates might be reliable within-scanner, harmonization techniques

might be required if aggregating datasets from across different studies and scanners

(Fortin et al., 2018). This is something I encountered in practice in Chapter 5.

Additionally, the relatively lower reliability of fMRI should not be used as the sole

basis for making recommendations. Reliability should be considered alongside validity

and the research questions at hand (Noble et al., 2019). Others have argued that

depending on the measurement, fMRI can be highly reliable (Kragel, Han, Kraynak,

Gianaros, & Wager, 2020). To illustrate the point further, a functional connectivity

profile, despite being based on connections with ‘low reliability’, nevertheless offers

enough sensitivity to robustly identify individuals with near perfect accuracy (Finn

et al., 2015).

Overall, I established that developmental MRI data can be of very high quality

and apt for use in developing brain biomarkers. Summaries of reliability are available
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for easy lookup by region and hemisphere for any interested researchers.

6.4 Deviation from typical development

In Chapter 5 I accurately and reliably predicted chronological age using neuroanatom-

ical data from a large sample of typically developing youth. The prediction accuracy

generalized to an independent cohort of youth enriched for risk of mental illness (FOR-

BOW). Within FORBOW, I found that a number of factors linked to the risks and

consequences of mental illness are associated with discrepancies between predicted

and chronological age. The spectrum of adverse experiences, from early antecedents

for mental illness, to environmental adversity, adolescent onset depression and func-

tional impairment, resulted in an older appearing brain. Overall, the work showed

that the brain age gap might be a general indicator of unwellness rather than a marker

of specific exposure or outcome.

In order to build better biomarkers, brain models need to be assessed across differ-

ent samples, research contexts, and populations (Woo et al., 2017). There are a few

barriers to this goal. The present study required a sufficient number of developmental

scans as well as a phenotype that was consistent across samples. I focused on age

because it is present for all data, and as a first foray into machine learning it was

beneficial to optimize for an objective marker. However, there would be barriers if

the main phenotype of interest was a cognitive test, or a symptom scale, as those can

vary significantly between studies. Future work should consider cross-compatibility

of measures during the design phase to enhance the ever growing collaborative envi-

ronment in science.

Finally, the model has been trained and tested on predominantly White samples.

Thus when we discuss generalizability we should also consider the built in bias in

machine learning algorithms trained on majority groups. Neuroscience, along with

other fields, can benefit from improving representation and increased diversity.

6.5 Conclusion

In conclusion, I examined brain correlates of familial risk and early antecedents for

mental illness. Furthermore, I established the reliability of widely used MRI measures
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in a developmental sample. Finally, I examined how increases in neuroanatomical ma-

turity relate to mental illness. These findings contribute to the field of developmental

neuroimaging of at-risk youth.
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Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting Linear Mixed-
Effects Models Using lme4. Journal of Statistical Software, 67 (1), 1–48. doi:
10.18637/jss.v067.i01

Bauer, I. E., Sanches, M., Suchting, R., Green, C. E., El Fangary, N. M.,
Zunta–Soares, G. B., & Soares, J. C. (2014). Amygdala enlargement in un-
affected offspring of bipolar parents. Journal of Psychiatric Research, 59 , 200–
205. doi: 10.1016/j.jpsychires.2014.08.023

Benjamini, Y., & Hochberg, Y. (1995). Controlling the False Discovery Rate: A
Practical and Powerful Approach to Multiple Testing. Journal of the Royal
Statistical Society. Series B (Methodological), 57 (1), 289–300.

Bird, H. R., Shaffer, D., Fisher, P., Gould, M. S., & et al. (1993). The Columbia
Impairment Scale (CIS): Pilot findings on a measure of global impairment for
children and adolescents. International Journal of Methods in Psychiatric Re-
search, 3 (3), 167–176.

Blacker, D., & Tsuang, M. T. (1993). Unipolar relatives in bipolar pedigrees: Are
they bipolar?. Psychiatric Genetics , 3 (1), 5–16.

Bonekamp, D., Nagae, L. M., Degaonkar, M., Matson, M., Abdalla, W. M. A., Barker,
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N., . . . Hibar, D. P. (2016). Subcortical brain alterations in major depressive dis-
order: Findings from the ENIGMA Major Depressive Disorder working group.
Molecular Psychiatry , 21 (6), 806–812. doi: 10.1038/mp.2015.69

Schnack, H. G., van Haren, N. E., Nieuwenhuis, M., Hulshoff Pol, H. E., Cahn, W., &
Kahn, R. S. (2016). Accelerated Brain Aging in Schizophrenia: A Longitudinal
Pattern Recognition Study. American Journal of Psychiatry , 173 (6), 607–616.
doi: 10.1176/appi.ajp.2015.15070922

Schultz, C. C., Wagner, G., Koch, K., Gaser, C., Roebel, M., Schachtzabel, C., . . .
Schloesser, R. G. M. (2013). The visual cortex in schizophrenia: Alterations of
gyrification rather than cortical thickness-a combined cortical shape analysis.
Brain Structure & Function, 218 (1), 51–58. doi: 10.1007/s00429-011-0374-1

Schultze-Lutter, F. (2009). Subjective symptoms of schizophrenia in research and the
clinic: The basic symptom concept. Schizophrenia Bulletin, 35 (1), 5–8. doi:
10.1093/schbul/sbn139

Schultze-Lutter, F., Ruhrmann, S., Fusar-Poli, P., Bechdolf, A., Schimmelmann,
B. G., & Klosterkötter, J. (2012). Basic symptoms and the prediction of
first-episode psychosis. Current Pharmaceutical Design, 18 (4), 351–357.

Selemon, L. D., Kleinman, J. E., Herman, M. M., & Goldman-Rakic, P. S. (2002).
Smaller frontal gray matter volume in postmortem schizophrenic brains. The
American Journal of Psychiatry , 159 (12), 1983–1991. doi: 10.1176/appi.ajp
.159.12.1983

Selemon, L. D., & Zecevic, N. (2015). Schizophrenia: A tale of two critical periods
for prefrontal cortical development. Translational Psychiatry , 5 (8), e623. doi:
10.1038/tp.2015.115

Selvaraj, S., Arnone, D., Job, D., Stanfield, A., Farrow, T. F., Nugent, A. C., . . .
McIntosh, A. M. (2012). Grey matter differences in bipolar disorder: A meta-
analysis of voxel-based morphometry studies. Bipolar Disorders , 14 (2), 135–
145. doi: 10.1111/j.1399-5618.2012.01000.x

Selzam, S., Coleman, J. R. I., Caspi, A., Moffitt, T. E., & Plomin, R. (2018). A
polygenic p factor for major psychiatric disorders. Translational Psychiatry ,
8 (1), 205. doi: 10.1038/s41398-018-0217-4

Seo, H., & Lee, D. (2012). Neural basis of learning and preference during social
decision-making. Current Opinion in Neurobiology , 22 (6), 990–995. doi: 10
.1016/j.conb.2012.05.010



107

Shollenbarger, S. G., Price, J., Wieser, J., & Lisdahl, K. (2015). Impact of cannabis
use on prefrontal and parietal cortex gyrification and surface area in adolescents
and emerging adults. Developmental Cognitive Neuroscience, 16 , 46–53. doi:
10.1016/j.dcn.2015.07.004

Silverstone, P. H., Asghar, S. J., O’Donnell, T., Ulrich, M., & Hanstock, C. C.
(2004). Lithium and valproate protect against dextro-amphetamine induced
brain choline concentration changes in bipolar disorder patients. The World
Journal of Biological Psychiatry: The Official Journal of the World Federation
of Societies of Biological Psychiatry , 5 (1), 38–44.

Singh, M. K., Kelley, R. G., Howe, M. E., Reiss, A. L., Gotlib, I. H., & Chang, K. D.
(2014). Reward processing in healthy offspring of parents with bipolar disorder.
JAMA psychiatry , 71 (10), 1148–1156. doi: 10.1001/jamapsychiatry.2014.1031

Smith, S. M., Vidaurre, D., Alfaro-Almagro, F., Nichols, T. E., & Miller, K. L. (2019).
Estimation of brain age delta from brain imaging. NeuroImage, 200 , 528–539.
doi: 10.1016/j.neuroimage.2019.06.017

Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker’s guide to
diffusion tensor imaging. Frontiers in Neuroscience, 7 . doi: 10.3389/fnins.2013
.00031

Song, J., Bergen, S. E., Kuja-Halkola, R., Larsson, H., Landén, M., & Lichtenstein,
P. (2015). Bipolar disorder and its relation to major psychiatric disorders:
A family-based study in the Swedish population. Bipolar Disorders , 17 (2),
184–93. doi: 10.1111/bdi.12242

Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L.,
& Toga, A. W. (2003). Mapping cortical change across the human life span.
Nature Neuroscience, 6 (3), 309–315. doi: 10.1038/nn1008

Spencer, T. J., Brown, A., Seidman, L. J., Valera, E. M., Makris, N., Lomedico,
A., . . . Biederman, J. (2013). Effect of Psychostimulants on Brain Structure
and Function in ADHD: A Qualitative Literature Review of MRI-Based Neu-
roimaging Studies. The Journal of clinical psychiatry , 74 (9), 902–917. doi:
10.4088/JCP.12r08287

Takayanagi, Y., Takahashi, T., Orikabe, L., Masuda, N., Mozue, Y., Nakamura, K.,
. . . Suzuki, M. (2010). Volume reduction and altered sulco-gyral pattern of
the orbitofrontal cortex in first-episode schizophrenia. Schizophrenia Research,
121 (1), 55–65. doi: 10.1016/j.schres.2010.05.006

Tamnes, C. K., Herting, M. M., Goddings, A.-L., Meuwese, R., Blakemore, S.-J.,
Dahl, R. E., . . . Mills, K. L. (2017). Development of the Cerebral Cortex across
Adolescence: A Multisample Study of Inter-Related Longitudinal Changes in
Cortical Volume, Surface Area, and Thickness. Journal of Neuroscience, 37 (12),
3402–3412. doi: 10.1523/JNEUROSCI.3302-16.2017

Tamnes, C. K., Walhovd, K. B., Dale, A. M., Østby, Y., Grydeland, H., Richardson,
G., . . . Fjell, A. M. (2013). Brain development and aging: Overlapping and
unique patterns of change. NeuroImage, 68 , 63–74. doi: 10.1016/j.neuroimage
.2012.11.039



108

Team, R., & Others. (2015). RStudio: Integrated development for R. RStudio, Inc.
, Boston, MA URL http://www. rstudio. com, 42 .

Teicher, M. H., Andersen, S. L., Polcari, A., Anderson, C. M., Navalta, C. P., & Kim,
D. M. (2003). The neurobiological consequences of early stress and childhood
maltreatment. Neuroscience & Biobehavioral Reviews , 27 (1), 33–44. doi: 10
.1016/S0149-7634(03)00007-1

Teicher, M. H., Dumont, N. L., Ito, Y., Vaituzis, C., Giedd, J. N., & Andersen, S. L.
(2004). Childhood neglect is associated with reduced corpus callosum area.
Biological Psychiatry , 56 (2), 80–85. doi: 10.1016/j.biopsych.2004.03.016

Thomason, M. E., Dennis, E. L., Joshi, A. A., Joshi, S. H., Dinov, I. D., Chang, C.,
. . . Gotlib, I. H. (2011). Resting-state fMRI can reliably map neural networks in
children. NeuroImage, 55 (1), 165–175. doi: 10.1016/j.neuroimage.2010.11.080

Thompson, C. A., Karelis, J., Middleton, F. A., Gentile, K., Coman, I. L., Radoeva,
P. D., . . . Kates, W. R. (2017). Associations between neurodevelopmental genes,
neuroanatomy, and ultra high risk symptoms of psychosis in 22q11.2 deletion
syndrome. American Journal of Medical Genetics Part B: Neuropsychiatric
Genetics , 174 (3), 295–314. doi: 10.1002/ajmg.b.32515

Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A., Rente-
ria, M. E., . . . Alzheimer’s Disease Neuroimaging Initiative, EPIGEN Con-
sortium, IMAGEN Consortium, Saguenay Youth Study (SYS) Group (2014).
The ENIGMA Consortium: Large-scale collaborative analyses of neuroimag-
ing and genetic data. Brain Imaging and Behavior , 8 (2), 153–182. doi:
10.1007/s11682-013-9269-5

Todd, R. D., Reich, W., Petti, T. A., Joshi, P., DePAULO, J. R., Nurnberger, J.,
& Reich, T. (1996). Psychiatric Diagnoses in the Child and Adolescent Mem-
bers of Extended Families Identified through Adult Bipolar Affective Disorder
Probands. Journal of the American Academy of Child & Adolescent Psychiatry ,
35 (5), 664–671. doi: 10.1097/00004583-199605000-00022
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Appendix A

Supplemental material

A.1 Larger right inferior frontal gyrus volume and surface area in

participants at genetic risk for bipolar disorders

A subset of the participants has completed the Hamilton Depression Rating Scale

(HAM-D) and Young Mania Rating Scale (YMRS) within one month of scanning.

There were no statistically significant associations between the cortical measures and

the clinical scales, with the greatest negative relationship being between right pars

triangularis thickness and YMRS (Pearson r(28) = –.25, p = .19), see Supplement

Figure A.1 below.
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Figure A.1: Correlation heat map between right hemisphere pars triangularis struc-
tural measures and clinical scales of mania and depression. Based on 30 individuals
with available data within 1 month of scanning.
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Figure A.2: Correlation matrix heat map between A. the left hemisphere and B. the
right hemisphere ROIs and dimlifepsychot, a dimensional variable indexing psychotic
symptoms. Based on 48 scans from individuals experiencing psychotic symptoms.

A.2 Psychotic symptoms are associated with lower cortical folding in

youth at risk for mental illness

As a supplementary analysis, we examined psychotic symptoms from a dimensional

perspective. We see a pattern of results similar to the categorical analyses, however

there is a greater shift towards the prominence of occipital findings; pericalcarine

β = -0.28, p < 0.001, cuneus β = -0.25, p < 0.001, lingual β = -0.24, p = 0.001.

The lateral orbitofrontal (β = -0.15, p = 0.04) but not the medial orbitofrontal (β =

-0.14, p = 0.06) gyrus remains significant after correcting for multiple testing. The

effects are even larger when restricting analysis to the group with psychotic symptoms,

suggesting that multiple definite psychotic symptoms are associated with even greater

reduction in cortical folding (Supplement Figure A.2). Overall, dimensional capture

of psychotic symptoms is negatively associated with the degree of cortical folding.
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A.3 Reliability of multimodal MRI brain measures in youth at risk for

mental illness
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Table A.1: Grey matter volume reliability
Left Hemisphere Right Hemisphere

ROI Overall ICC 2.5% CI ICC 97.5% CI 2.5% CI ICC 97.5% CI

Banks of the Superior
Temporal Sulcus

0.95 0.93 0.96 0.98 0.91 0.95 0.97

Caudal Anterior Cingulate 0.86 0.71 0.82 0.89 0.84 0.91 0.95

Caudal Middle Frontal 0.90 0.94 0.97 0.98 0.72 0.83 0.90

Cuneus 0.96 0.92 0.95 0.97 0.95 0.97 0.98

Entorhinal 0.79 0.72 0.83 0.90 0.60 0.75 0.85

Fusiform 0.96 0.90 0.94 0.97 0.95 0.97 0.98

Inferior Parietal 0.97 0.93 0.96 0.98 0.96 0.98 0.99

Inferior Temporal 0.98 0.97 0.98 0.99 0.95 0.97 0.98

Isthmus Cingulate 0.93 0.92 0.95 0.97 0.85 0.91 0.95

Lateral Occipital 0.96 0.91 0.95 0.97 0.94 0.97 0.98

Lateral Orbitofrontal 0.87 0.82 0.89 0.94 0.75 0.85 0.91

Lingual 0.97 0.96 0.97 0.99 0.92 0.96 0.97

Medial Orbitofrontal 0.88 0.70 0.82 0.89 0.89 0.94 0.96

Middle Temporal 0.96 0.95 0.97 0.98 0.93 0.96 0.98

Parahippocampal 0.90 0.85 0.91 0.95 0.80 0.88 0.93

Paracentral 0.93 0.92 0.95 0.97 0.84 0.91 0.94

Pars Opercularis 0.90 0.95 0.97 0.98 0.72 0.83 0.90

Pars Orbitalis 0.85 0.68 0.81 0.89 0.82 0.89 0.94

Pars Triangularis 0.94 0.92 0.95 0.97 0.86 0.92 0.95

Pericalcarine 0.95 0.91 0.94 0.97 0.91 0.95 0.97

Postcentral 0.96 0.97 0.98 0.99 0.88 0.93 0.96

Posterior Cingulate 0.93 0.88 0.93 0.96 0.88 0.93 0.96

Precentral 0.94 0.91 0.95 0.97 0.90 0.94 0.96

Precuneus 0.93 0.97 0.99 0.99 0.79 0.87 0.93

Rostral Anterior Cingulate 0.93 0.89 0.94 0.96 0.86 0.92 0.95

Rostral Middle Frontal 0.94 0.95 0.97 0.98 0.84 0.91 0.95

Superior Frontal 0.94 0.97 0.98 0.99 0.82 0.89 0.94

Superior Parietal 0.91 0.96 0.98 0.99 0.72 0.83 0.90

Superior Temporal 0.97 0.96 0.98 0.99 0.94 0.96 0.98

Supramarginal 0.92 0.98 0.99 0.99 0.76 0.86 0.92

Frontal Pole 0.68 0.64 0.78 0.87 0.36 0.58 0.74

Temporal Pole 0.51 0.23 0.47 0.66 0.33 0.55 0.72

Transverse Temporal 0.90 0.84 0.91 0.95 0.82 0.89 0.94

Insula 0.87 0.75 0.85 0.91 0.83 0.90 0.94



117

Table A.2: Cortical surface area reliability
Left Hemisphere Right Hemisphere

ROI Overall ICC 2.5% CI ICC 97.5% CI 2.5% CI ICC 97.5% CI

Banks of the Superior
Temporal Sulcus

0.95 0.92 0.96 0.97 0.91 0.94 0.97

Caudal Anterior Cingulate 0.89 0.80 0.88 0.93 0.83 0.90 0.94

Caudal Middle Frontal 0.84 0.97 0.98 0.99 0.53 0.70 0.82

Cuneus 0.96 0.92 0.95 0.97 0.94 0.96 0.98

Entorhinal 0.74 0.55 0.71 0.83 0.62 0.77 0.86

Fusiform 0.95 0.87 0.93 0.96 0.95 0.97 0.98

Inferior Parietal 0.97 0.93 0.96 0.98 0.96 0.98 0.99

Inferior Temporal 0.95 0.91 0.95 0.97 0.92 0.96 0.97

Isthmus Cingulate 0.93 0.90 0.94 0.97 0.86 0.92 0.95

Lateral Occipital 0.97 0.92 0.96 0.97 0.97 0.98 0.99

Lateral Orbitofrontal 0.81 0.70 0.82 0.89 0.67 0.80 0.88

Lingual 0.96 0.94 0.97 0.98 0.91 0.95 0.97

Medial Orbitofrontal 0.77 0.45 0.64 0.78 0.82 0.89 0.94

Middle Temporal 0.97 0.95 0.97 0.98 0.94 0.97 0.98

Parahippocampal 0.88 0.84 0.91 0.95 0.77 0.86 0.92

Paracentral 0.95 0.93 0.96 0.98 0.91 0.94 0.97

Pars Opercularis 0.93 0.93 0.96 0.98 0.83 0.90 0.94

Pars Orbitalis 0.90 0.86 0.92 0.95 0.79 0.88 0.93

Pars Triangularis 0.92 0.92 0.95 0.97 0.81 0.89 0.93

Pericalcarine 0.94 0.87 0.92 0.95 0.93 0.96 0.98

Postcentral 0.91 0.98 0.99 0.99 0.73 0.84 0.90

Posterior Cingulate 0.90 0.82 0.89 0.94 0.85 0.91 0.95

Precentral 0.86 0.94 0.97 0.98 0.61 0.76 0.85

Precuneus 0.93 0.98 0.99 0.99 0.79 0.88 0.93

Rostral Anterior Cingulate 0.89 0.84 0.91 0.95 0.78 0.87 0.92

Rostral Middle Frontal 0.91 0.94 0.97 0.98 0.76 0.86 0.92

Superior Frontal 0.89 0.95 0.97 0.98 0.69 0.81 0.89

Superior Parietal 0.89 0.98 0.99 0.99 0.67 0.80 0.88

Superior Temporal 0.98 0.97 0.98 0.99 0.95 0.97 0.98

Supramarginal 0.92 0.98 0.99 0.99 0.74 0.84 0.91

Frontal Pole 0.69 0.51 0.69 0.81 0.53 0.70 0.82

Temporal Pole 0.56 0.45 0.65 0.78 0.23 0.47 0.66

Transverse Temporal 0.93 0.88 0.93 0.96 0.87 0.92 0.96

Insula 0.74 0.55 0.72 0.83 0.62 0.76 0.86
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Table A.3: Cortical thickness reliability
Left Hemisphere Right Hemisphere

ROI Overall ICC 2.5% CI ICC 97.5% CI 2.5% CI ICC 97.5% CI

Banks of the Superior
Temporal Sulcus

0.93 0.91 0.95 0.97 0.86 0.92 0.95

Caudal Anterior Cingulate 0.81 0.65 0.78 0.87 0.72 0.83 0.90

Caudal Middle Frontal 0.91 0.85 0.91 0.95 0.85 0.91 0.95

Cuneus 0.89 0.81 0.89 0.94 0.80 0.88 0.93

Entorhinal 0.61 0.43 0.63 0.77 0.39 0.60 0.75

Fusiform 0.87 0.83 0.90 0.94 0.73 0.84 0.90

Inferior Parietal 0.93 0.89 0.94 0.96 0.88 0.93 0.96

Inferior Temporal 0.87 0.76 0.85 0.91 0.80 0.88 0.93

Isthmus Cingulate 0.75 0.64 0.78 0.87 0.55 0.71 0.83

Lateral Occipital 0.87 0.79 0.87 0.93 0.76 0.86 0.92

Lateral Orbitofrontal 0.68 0.50 0.68 0.81 0.49 0.67 0.80

Lingual 0.84 0.73 0.83 0.90 0.76 0.85 0.91

Medial Orbitofrontal 0.62 0.34 0.56 0.73 0.48 0.67 0.80

Middle Temporal 0.85 0.81 0.89 0.93 0.68 0.81 0.89

Parahippocampal 0.88 0.79 0.88 0.93 0.79 0.88 0.93

Paracentral 0.86 0.79 0.88 0.93 0.76 0.85 0.91

Pars Opercularis 0.90 0.87 0.92 0.96 0.78 0.87 0.92

Pars Orbitalis 0.75 0.60 0.75 0.85 0.60 0.75 0.85

Pars Triangularis 0.92 0.87 0.92 0.95 0.87 0.92 0.95

Pericalcarine 0.73 0.54 0.71 0.83 0.60 0.75 0.85

Postcentral 0.80 0.91 0.95 0.97 0.47 0.66 0.79

Posterior Cingulate 0.87 0.76 0.85 0.91 0.80 0.88 0.93

Precentral 0.82 0.85 0.91 0.95 0.56 0.73 0.83

Precuneus 0.93 0.88 0.93 0.96 0.87 0.92 0.96

Rostral Anterior Cingulate 0.74 0.60 0.75 0.85 0.56 0.72 0.83

Rostral Middle Frontal 0.93 0.85 0.91 0.95 0.91 0.95 0.97

Superior Frontal 0.95 0.91 0.95 0.97 0.90 0.94 0.97

Superior Parietal 0.92 0.89 0.94 0.96 0.84 0.90 0.94

Superior Temporal 0.92 0.87 0.92 0.96 0.85 0.91 0.95

Supramarginal 0.93 0.90 0.94 0.97 0.85 0.91 0.95

Frontal Pole 0.69 0.62 0.76 0.86 0.42 0.62 0.77

Temporal Pole 0.40 0.12 0.38 0.60 0.16 0.41 0.62

Transverse Temporal 0.82 0.71 0.82 0.90 0.71 0.83 0.90

Insula 0.63 0.46 0.66 0.79 0.41 0.61 0.76
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Table A.4: Local gyrification index reliability
Left Hemisphere Right Hemisphere

ROI Overall ICC 2.5% CI ICC 97.5% CI 2.5% CI ICC 97.5% CI

Banks of the Superior
Temporal Sulcus

0.85 0.68 0.81 0.89 0.81 0.89 0.94

Caudal Anterior Cingulate 0.82 0.68 0.81 0.89 0.73 0.84 0.91

Caudal Middle Frontal 0.93 0.91 0.95 0.97 0.87 0.92 0.96

Cuneus 0.90 0.87 0.92 0.95 0.79 0.87 0.93

Entorhinal 0.68 0.45 0.65 0.78 0.54 0.71 0.82

Fusiform 0.83 0.65 0.79 0.87 0.80 0.88 0.93

Inferior Parietal 0.92 0.82 0.90 0.94 0.91 0.95 0.97

Inferior Temporal 0.78 0.53 0.70 0.82 0.76 0.86 0.92

Isthmus Cingulate 0.83 0.70 0.82 0.89 0.76 0.85 0.91

Lateral Occipital 0.92 0.84 0.90 0.94 0.89 0.94 0.96

Lateral Orbitofrontal 0.79 0.65 0.78 0.87 0.66 0.79 0.88

Lingual 0.89 0.81 0.89 0.93 0.83 0.90 0.94

Medial Orbitofrontal 0.73 0.54 0.71 0.82 0.59 0.75 0.85

Middle Temporal 0.81 0.60 0.75 0.85 0.80 0.88 0.93

Parahippocampal 0.79 0.64 0.78 0.87 0.66 0.79 0.88

Paracentral 0.84 0.80 0.88 0.93 0.68 0.81 0.88

Pars Opercularis 0.92 0.87 0.92 0.95 0.85 0.91 0.95

Pars Orbitalis 0.78 0.61 0.76 0.85 0.67 0.80 0.88

Pars Triangularis 0.88 0.79 0.87 0.93 0.82 0.89 0.94

Pericalcarine 0.91 0.89 0.94 0.96 0.81 0.89 0.94

Postcentral 0.93 0.86 0.92 0.95 0.89 0.93 0.96

Posterior Cingulate 0.82 0.71 0.82 0.89 0.71 0.82 0.89

Precentral 0.95 0.90 0.94 0.97 0.92 0.95 0.97

Precuneus 0.89 0.84 0.90 0.94 0.79 0.87 0.93

Rostral Anterior Cingulate 0.80 0.68 0.81 0.89 0.67 0.80 0.88

Rostral Middle Frontal 0.90 0.84 0.90 0.94 0.83 0.90 0.94

Superior Frontal 0.88 0.82 0.89 0.94 0.78 0.87 0.92

Superior Parietal 0.89 0.86 0.92 0.95 0.77 0.86 0.92

Superior Temporal 0.93 0.89 0.94 0.96 0.86 0.92 0.95

Supramarginal 0.91 0.82 0.89 0.94 0.87 0.93 0.96

Frontal Pole 0.64 0.41 0.62 0.76 0.48 0.66 0.79

Temporal Pole 0.66 0.43 0.63 0.77 0.50 0.68 0.81

Transverse Temporal 0.92 0.87 0.92 0.96 0.85 0.91 0.95

Insula 0.85 0.77 0.86 0.92 0.73 0.84 0.91
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Table A.5: White matter volume reliability
ROI Hemisphere 2.5% CI ICC 97.5% CI Classification

Anterior Thalamic Radiation lh 0.96 0.98 0.99 Excellent
Anterior Thalamic Radiation rh 0.97 0.98 0.99 Excellent
Cingulum Cingulate Gyrus lh 0.99 0.99 1.00 Excellent
Cingulum Cingulate Gyrus rh 0.98 0.99 0.99 Excellent
Cingulum Hippocampus lh 0.93 0.96 0.98 Excellent
Cingulum Hippocampus rh 0.95 0.97 0.98 Excellent
Corticospinal Tract lh 0.96 0.98 0.99 Excellent
Corticospinal Tract rh 0.97 0.98 0.99 Excellent
Forceps Major both 0.97 0.98 0.99 Excellent
Forceps Minor both 0.95 0.97 0.98 Excellent
Inferior Fronto-Occipital Fasciculus lh 0.95 0.97 0.98 Excellent
Inferior Fronto-Occipital Fasciculus rh 0.96 0.98 0.99 Excellent
Inferior Longitudinal Fasciculus lh 0.95 0.97 0.98 Excellent
Inferior Longitudinal Fasciculus rh 0.97 0.98 0.99 Excellent
Superior Longitudinal Fasciculus Temporal lh 0.98 0.99 0.99 Excellent
Superior Longitudinal Fasciculus Temporal rh 0.97 0.98 0.99 Excellent
Superior Longitudinal Fasciculus lh 0.98 0.99 0.99 Excellent
Superior Longitudinal Fasciculus rh 0.99 0.99 1.00 Excellent
Uncinate Fasciculus lh 0.97 0.98 0.99 Excellent
Uncinate Fasciculus rh 0.96 0.97 0.99 Excellent
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Table A.6: Fractional anisotropy (FA) reliability

ROI Hemisphere 2.5% CI ICC 97.5% CI Classification

Anterior Thalamic Radiation lh 0.73 0.84 0.90 Excellent
Anterior Thalamic Radiation rh 0.73 0.84 0.90 Excellent
Cingulum Cingulate Gyrus lh 0.81 0.88 0.93 Excellent
Cingulum Cingulate Gyrus rh 0.69 0.81 0.89 Excellent
Cingulum Hippocampus lh 0.88 0.93 0.96 Excellent
Cingulum Hippocampus rh 0.72 0.83 0.90 Excellent
Corticospinal Tract lh 0.74 0.85 0.91 Excellent
Corticospinal Tract rh 0.69 0.81 0.89 Excellent
Forceps Major both 0.90 0.94 0.97 Excellent
Forceps Minor both 0.61 0.76 0.86 Excellent
Inferior Fronto-Occipital Fasciculus lh 0.84 0.91 0.95 Excellent
Inferior Fronto-Occipital Fasciculus rh 0.83 0.90 0.94 Excellent
Inferior Longitudinal Fasciculus lh 0.91 0.95 0.97 Excellent
Inferior Longitudinal Fasciculus rh 0.88 0.93 0.96 Excellent
Superior Longitudinal Fasciculus Temporal lh 0.89 0.94 0.96 Excellent
Superior Longitudinal Fasciculus Temporal rh 0.90 0.94 0.97 Excellent
Superior Longitudinal Fasciculus lh 0.91 0.95 0.97 Excellent
Superior Longitudinal Fasciculus rh 0.89 0.94 0.96 Excellent
Uncinate Fasciculus lh 0.65 0.78 0.87 Excellent
Uncinate Fasciculus rh 0.69 0.81 0.89 Excellent
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Table A.7: Radial diffusivity (RD) reliability

ROI Hemisphere 2.5% CI ICC 97.5% CI Classification

Anterior Thalamic Radiation lh 0.77 0.86 0.92 Excellent
Anterior Thalamic Radiation rh 0.80 0.88 0.93 Excellent
Cingulum Cingulate Gyrus lh 0.77 0.86 0.92 Excellent
Cingulum Cingulate Gyrus rh 0.58 0.73 0.84 Good
Cingulum Hippocampus lh 0.57 0.73 0.84 Good
Cingulum Hippocampus rh 0.52 0.69 0.81 Good
Corticospinal Tract lh 0.59 0.74 0.84 Excellent
Corticospinal Tract rh 0.53 0.70 0.82 Good
Forceps Major both 0.90 0.94 0.97 Excellent
Forceps Minor both 0.87 0.92 0.96 Excellent
Inferior Fronto-Occipital Fasciculus lh 0.79 0.87 0.93 Excellent
Inferior Fronto-Occipital Fasciculus rh 0.80 0.88 0.93 Excellent
Inferior Longitudinal Fasciculus lh 0.82 0.89 0.94 Excellent
Inferior Longitudinal Fasciculus rh 0.67 0.80 0.88 Excellent
Superior Longitudinal Fasciculus Temporal lh 0.85 0.91 0.95 Excellent
Superior Longitudinal Fasciculus Temporal rh 0.85 0.91 0.95 Excellent
Superior Longitudinal Fasciculus lh 0.87 0.92 0.96 Excellent
Superior Longitudinal Fasciculus rh 0.83 0.90 0.94 Excellent
Uncinate Fasciculus lh 0.70 0.82 0.89 Excellent
Uncinate Fasciculus rh 0.63 0.77 0.86 Excellent
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Table A.8: Mean diffusivity (MD) reliability

ROI Hemisphere 2.5% CI ICC 97.5% CI Classification

Anterior Thalamic Radiation lh 0.79 0.87 0.93 Excellent
Anterior Thalamic Radiation rh 0.81 0.89 0.93 Excellent
Cingulum Cingulate Gyrus lh 0.69 0.81 0.89 Excellent
Cingulum Cingulate Gyrus rh 0.53 0.70 0.82 Good
Cingulum Hippocampus lh 0.46 0.65 0.79 Good
Cingulum Hippocampus rh 0.43 0.63 0.77 Good
Corticospinal Tract lh 0.52 0.69 0.81 Good
Corticospinal Tract rh 0.48 0.66 0.79 Good
Forceps Major both 0.89 0.93 0.96 Excellent
Forceps Minor both 0.85 0.91 0.95 Excellent
Inferior Fronto-Occipital Fasciculus lh 0.74 0.84 0.91 Excellent
Inferior Fronto-Occipital Fasciculus rh 0.78 0.87 0.92 Excellent
Inferior Longitudinal Fasciculus lh 0.75 0.85 0.91 Excellent
Inferior Longitudinal Fasciculus rh 0.59 0.74 0.84 Excellent
Superior Longitudinal Fasciculus Temporal lh 0.82 0.89 0.94 Excellent
Superior Longitudinal Fasciculus Temporal rh 0.81 0.88 0.93 Excellent
Superior Longitudinal Fasciculus lh 0.84 0.91 0.95 Excellent
Superior Longitudinal Fasciculus rh 0.80 0.88 0.93 Excellent
Uncinate Fasciculus lh 0.69 0.81 0.89 Excellent
Uncinate Fasciculus rh 0.60 0.75 0.85 Excellent
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Table A.9: Axial diffusivity (AD) reliability

ROI Hemisphere 2.5% CI ICC 97.5% CI Classification

Anterior Thalamic Radiation lh 0.84 0.90 0.94 Excellent
Anterior Thalamic Radiation rh 0.83 0.90 0.94 Excellent
Cingulum Cingulate Gyrus lh 0.50 0.68 0.81 Good
Cingulum Cingulate Gyrus rh 0.63 0.77 0.86 Excellent
Cingulum Hippocampus lh 0.48 0.67 0.80 Good
Cingulum Hippocampus rh 0.30 0.53 0.70 Fair
Corticospinal Tract lh 0.43 0.63 0.77 Good
Corticospinal Tract rh 0.47 0.66 0.79 Good
Forceps Major both 0.88 0.93 0.96 Excellent
Forceps Minor both 0.76 0.86 0.92 Excellent
Inferior Fronto-Occipital Fasciculus lh 0.70 0.82 0.89 Excellent
Inferior Fronto-Occipital Fasciculus rh 0.80 0.88 0.93 Excellent
Inferior Longitudinal Fasciculus lh 0.63 0.77 0.86 Excellent
Inferior Longitudinal Fasciculus rh 0.55 0.72 0.83 Good
Superior Longitudinal Fasciculus Temporal lh 0.70 0.82 0.89 Excellent
Superior Longitudinal Fasciculus Temporal rh 0.70 0.82 0.89 Excellent
Superior Longitudinal Fasciculus lh 0.77 0.86 0.92 Excellent
Superior Longitudinal Fasciculus rh 0.72 0.83 0.90 Excellent
Uncinate Fasciculus lh 0.67 0.80 0.88 Excellent
Uncinate Fasciculus rh 0.60 0.75 0.85 Excellent
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Table A.10: Scan-rescan ICC averaged across the Desikan atlas regions for common
structural measures. A/B scans (N=100) from the main results. C/D ICC from a
subset of scans (N=46) collected an average of 14 months after the A/B scans. ICC
= intraclass correlation coefficient. LGI = local gyrification index. CI = confidence
interval.

Measure A/B ICC C/D ICC
Cortical Grey Matter Volume 0.90, 95% CI [0.84, 0.94] 0.92, 95% CI [0.83, 0.96]
Cortical Surface Area 0.89, 95% CI [0.82, 0.93]. 0.92, 95% CI [0.83, 0.96]
Cortical Thickness 0.82, 95% CI [0.71, 0.89]. 0.80, 95% CI [0.61, 0.91]
Cortical Folding (LGI) 0.85, 95% CI [0.75, 0.91] 0.83, 95% CI [0.66, 0.92]

In addition to the 100 scans from 50 individuals reported on in the manuscript

(timepoints A/B), we have collected an additional 46 scans from 23 individuals (time-

points C/D). These scans were collected an average of 14 months after the A/B scans

and allow us to address the generalizability of the findings to the same scanner over

a year later.

Overall, conducting the analysis in an identical way to the original sample, we

again find excellent reliability in the subset of the same individuals scanned 14 months

later. Furthermore, supplement table 10 shows the high consistency of the results.
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A.4 Brain Age Supplement

Table A.11: Scans across time points. The study design includes short term relia-
bility (weeks) and stability scans as well as longitudinal follow up (months/years).

Scan time N Description

A 150 Baseline scan
B 49 Short term repeat of A
C 86 Longitudinal follow up 1
D 21 Short term repeat of C
E 24 Longitudinal follow up 2
F 3 Short term repeat of E
G 4 Longitudinal follow up 3
H 1 Short term repeat of G
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Table A.12: List of features used in model training and prediction

FS InterCranial Vol FS L Lingual Area FS L Inferiorparietal GrayVol
FS BrainSeg Vol FS L Medialorbitofrontal Area FS L Inferiortemporal GrayVol
FS BrainSeg Vol No Vent FS L Middletemporal Area FS L Isthmuscingulate GrayVol
FS BrainSeg Vol No Vent Surf FS L Parahippocampal Area FS L Lateraloccipital GrayVol
FS LCort GM Vol FS L Paracentral Area FS L Lateralorbitofrontal GrayVol
FS RCort GM Vol FS L Parsopercularis Area FS L Lingual GrayVol
FS TotCort GM Vol FS L Parsorbitalis Area FS L Medialorbitofrontal GrayVol
FS SubCort GM Vol FS L Parstriangularis Area FS L Middletemporal GrayVol
FS Total GM Vol FS L Pericalcarine Area FS L Parahippocampal GrayVol
FS SupraTentorial Vol FS L Postcentral Area FS L Paracentral GrayVol
FS SupraTentorial Vol No Vent FS L Posteriorcingulate Area FS L Parsopercularis GrayVol
FS SupraTentorial No Vent Voxel Count FS L Precentral Area FS L Parsorbitalis GrayVol
FS Mask Vol FS L Precuneus Area FS L Parstriangularis GrayVol
FS BrainSegVol eTIV Ratio FS L Rostralanteriorcingulate Area FS L Pericalcarine GrayVol
FS MaskVol eTIV Ratio FS L Rostralmiddlefrontal Area FS L Postcentral GrayVol
FS L LatVent Vol FS L Superiorfrontal Area FS L Posteriorcingulate GrayVol
FS L InfLatVent Vol FS L Superiorparietal Area FS L Precentral GrayVol
FS L Cerebellum WM Vol FS L Superiortemporal Area FS L Precuneus GrayVol
FS L Cerebellum Cort Vol FS L Supramarginal Area FS L Rostralanteriorcingulate GrayVol
FS L ThalamusProper Vol FS L Frontalpole Area FS L Rostralmiddlefrontal GrayVol
FS L Caudate Vol FS L Temporalpole Area FS L Superiorfrontal GrayVol
FS L Putamen Vol FS L Transversetemporal Area FS L Superiorparietal GrayVol
FS L Pallidum Vol FS L Insula Area FS L Superiortemporal GrayVol
FS 3rdVent Vol FS R Bankssts Area FS L Supramarginal GrayVol
FS 4thVent Vol FS R Caudalanteriorcingulate Area FS L Frontalpole GrayVol
FS BrainStem Vol FS R Caudalmiddlefrontal Area FS L Temporalpole GrayVol
FS L Hippo Vol FS R Cuneus Area FS L Transversetemporal GrayVol
FS L Amygdala Vol FS R Entorhinal Area FS L Insula GrayVol
FS CSF Vol FS R Fusiform Area FS R Bankssts GrayVol
FS L AccumbensArea Vol FS R Inferiorparietal Area FS R Caudalanteriorcingulate GrayVol
FS L VentDC Vol FS R Inferiortemporal Area FS R Caudalmiddlefrontal GrayVol
FS L Vessel Vol FS R Isthmuscingulate Area FS R Cuneus GrayVol
FS L ChoroidPlexus Vol FS R Lateraloccipital Area FS R Entorhinal GrayVol
FS R LatVent Vol FS R Lateralorbitofrontal Area FS R Fusiform GrayVol
FS R InfLatVent Vol FS R Lingual Area FS R Inferiorparietal GrayVol
FS R Cerebellum WM Vol FS R Medialorbitofrontal Area FS R Inferiortemporal GrayVol
FS R ThalamusProper Vol FS R Middletemporal Area FS R Isthmuscingulate GrayVol
FS R Caudate Vol FS R Parahippocampal Area FS R Lateraloccipital GrayVol
FS R Putamen Vol FS R Paracentral Area FS R Lateralorbitofrontal GrayVol
FS R Pallidum Vol FS R Parsopercularis Area FS R Lingual GrayVol
FS R Hippo Vol FS R Parsorbitalis Area FS R Medialorbitofrontal GrayVol
FS R Amygdala Vol FS R Parstriangularis Area FS R Middletemporal GrayVol
FS R AccumbensArea Vol FS R Pericalcarine Area FS R Parahippocampal GrayVol
FS R VentDC Vol FS R Postcentral Area FS R Paracentral GrayVol
FS R Vessel Vol FS R Posteriorcingulate Area FS R Parsopercularis GrayVol
FS R ChoroidPlexus Vol FS R Precentral Area FS R Parsorbitalis GrayVol
FS OpticChiasm Vol FS R Precuneus Area FS R Parstriangularis GrayVol
FS CC Posterior Vol FS R Rostralanteriorcingulate Area FS R Pericalcarine GrayVol
FS CC MidPosterior Vol FS R Rostralmiddlefrontal Area FS R Postcentral GrayVol
FS CC Central Vol FS R Superiorfrontal Area FS R Posteriorcingulate GrayVol
FS CC MidAnterior Vol FS R Superiorparietal Area FS R Precentral GrayVol
FS CC Anterior Vol FS R Superiortemporal Area FS R Precuneus GrayVol
FS L Bankssts Area FS R Supramarginal Area FS R Rostralanteriorcingulate GrayVol
FS L Caudalanteriorcingulate Area FS R Frontalpole Area FS R Rostralmiddlefrontal GrayVol
FS L Caudalmiddlefrontal Area FS R Temporalpole Area FS R Superiorfrontal GrayVol
FS L Cuneus Area FS R Transversetemporal Area FS R Superiorparietal GrayVol
FS L Entorhinal Area FS R Insula Area FS R Superiortemporal GrayVol
FS L Fusiform Area FS L Bankssts GrayVol FS R Supramarginal GrayVol
FS L Inferiorparietal Area FS L Caudalanteriorcingulate GrayVol FS R Frontalpole GrayVol
FS L Inferiortemporal Area FS L Caudalmiddlefrontal GrayVol FS R Temporalpole GrayVol
FS L Isthmuscingulate Area FS L Cuneus GrayVol FS R Transversetemporal GrayVol
FS L Lateraloccipital Area FS L Entorhinal GrayVol FS R Insula GrayVol
FS L Lateralorbitofrontal Area FS L Fusiform GrayVol
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Figure A.3: Neuroanatomical contribution to age prediction visualised with a variable
importance plot.
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Figure A.4: Results from 3 primary brain age dimensional models and their sensitivity
analyses.
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Table A.13: Parsnip standardized parameter names with their matching names in the
underlying xgboost engine. Engine default values in brackets. Table and additional
documentation available on the tidymodels website.

parsnip xgboost

tree depth max depth (6)
trees nrounds (15)
learn rate eta (0.3)
mtry colsample bytree (1)
min n min child weight (1)
loss reduction gamma (0)
sample size subsample (1)
stop iter early stop

Table A.14: Parameters of top 10 best (lowest MAE) XGBoost models in cross-
validation. The final model was selected by lowest tree depth within a standard error
of best absolute performing model. Final model parameters in bold below.

mtry min n tree depth learn rate loss reduction sample size .metric mean (MAE) n std err
36 17 9 0.015337 1.610e-07 0.3169 mae 1.523 100 0.008356
62 36 10 0.016105 2.353e-05 0.5631 mae 1.523 100 0.008136
88 22 13 0.014384 5.690e-06 0.5778 mae 1.525 100 0.008075
61 12 6 0.013062 8.068e-04 0.4874 mae 1.526 100 0.007807
176 5 10 0.011077 9.034e+00 0.2078 mae 1.528 100 0.008351
177 10 10 0.006773 3.157e-06 0.4177 mae 1.530 100 0.007813
92 14 11 0.005258 3.304e-06 0.4001 mae 1.535 100 0.008140
44 16 4 0.019228 3.387e-09 0.7696 mae 1.535 100 0.008000
186 17 11 0.026158 1.057e-06 0.3057 mae 1.535 100 0.008781

https://parsnip.tidymodels.org/reference/boost_tree.html
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Figure B.1: License to include “Larger right inferior frontal gyrus volume and surface
area in participants at genetic risk for bipolar disorders”



133

Figure B.2: License to include “Psychotic symptoms are associated with lower cortical
folding in youth at risk for mental illness license”
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Figure B.3: License to include “Reliability of multimodal MRI brain measures in
youth at risk for mental illness”
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