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Abstract

The service system design problem aims to select the location and capacity of service

facilities and customers’ assignments to minimize the setup, access, and waiting time

costs. This thesis addresses the case when there is uncertainty about the demand

for service, considering two service systems that can be modelled as independent net-

works of M/M/1 and G/M/1 queues. Robust optimization, with both Budgeted and

Ellipsoidal uncertainty sets, is used when the demand rate is unknown. However,

the arrival pattern can still be reasonably approximated as a Poisson process or fol-

low a General distribution, respectively. We use distributionally robust optimization

with a Wasserstein ambiguity set to address the case when the demand distribution

is estimated from a limited sample. For both models, we can reformulate both the

robust and distributionally-robust problems as mixed-integer second-order conic pro-

grams. For the M/M/1 model, these problems can be solved directly on commercial

solvers, even though the nominal problem has a non-convex cost function. Extensive

numerical experiments on benchmark test instances are conducted to compare the

different approaches used to handle uncertainty and investigate the effect of problem

size and parameters. On the other hand, for the G/M/1 model, we use a Lagrangian-

Relaxation approach to solve the problems and conduct numerical experiments based

on small instances to confirm the validity of the proposed reformulations.
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Chapter 1

Introduction

This thesis focuses on the service system design problem (SSDP), also known in the

literature as the facility location problems with immobile (fixed) servers, stochastic

demands, and congestion [17]. Besides the setup and transportation/access costs con-

sidered in classical facility location problems, the implicit cost of customers’ waiting

time for service is an integral part, and a distinctive feature, of service system design

problems. Generally speaking, the service system design problem aims to locate ser-

vice centers (SCs), determine their capacities, and assign customers to those centers

to minimize the total cost, including the costs of installing and accessing the SCs

and the queuing delay costs. This problem arises in different planning contexts, such

as locating emergency medical centers [60], grocery stores, government offices, refuse

collection and disposal centers, and designing private communication networks.

In an era when the service sector represents approximately 65% of the global

GDP [2], optimizing the design and operation of service systems has become a task of

paramount importance. Apart from their economic role, service systems impact our

everyday experiences. A tangible example of this can be patient wait times in Nova

Scotia (NS), Canada. According to a new study conducted by the Fraser Institute

[1, 8], an independent Canadian public policy research and educational organization,

patients in Nova Scotia, in 2019, waited 33.3 weeks from referral by a family doctor

to treatment. This study shows a 190% increase in wait times from 1993 to 2019.

The authors estimate the economic cost of this wait time to be $134 million dollars

for a median wait time of 17.1 weeks after seeing a specialist. Additionally, this study

shows that NS has higher wait time costs than some other provinces, including some

1
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with larger populations (e.g., Saskatchewan), and NS has the largest wait-list size for

health services in Canada amounting to 5.8% of its total population.

Therefore, designers of service systems strive to balance economic considerations,

such as cost and server utilization, with service quality considerations, such as avail-

ability and waiting times, to maximize customers’ satisfaction. In particular, avoid-

ing excessive waiting times has been considered a primary objective in the literature

[5, 6, 32]. Another way to establish this balance is to minimize the costs of providing

the service and add a constraint that puts a minimum threshold on the service quality

[46, 49]. This thesis seeks to design a service system using the first approach, i.e., min-

imizing the total cost, including the service quality cost. Given that customers’ arrival

in most cases is random and uncontrollable, installing a sufficient service capacity in

SCs and cleverly allocating customers to these centers is crucial for avoiding congested

systems and thus dissatisfied customers. There are two approaches suggested in the

literature to incorporate the service capacity into the model as a decision variable. In

some references, a finite set of different capacity levels is considered [3, 32, 54], and

in others it is assumed to be a continuous real-valued decision variable [23, 33, 56].

In this thesis, the second approach is chosen.

Moving to the customers’ allocation to the service facilities, two scenarios can

be considered: user-choice or direct-choice allocations. In a user-choice allocation,

customers will choose a facility in a utility-maximizing fashion [18]. In contrast, in

a direct-choice allocation, the goal is to allocate the customers to the facilities in a

way that the total cost of the system is minimized, which includes the setup, access,

and queueing delay costs [32, 54, 33]. Our models in this thesis belong to the second

category.

The problem is further aggravated by the facts that service systems are usually

designed under considerable uncertainty about the future demand for service, and

waiting times in queuing systems are quite sensitive to the arrival rate (i.e., demand)

of customers, especially when the servers’ utilization factor is close to unity. The
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combined effect of these factors makes the practice of ignoring the uncertainty in

arrival rates and designing service systems based solely on the expected/most likely

arrival rates, often leading to undesired outcomes. For instance, in a single-server

facility with Markovian arrival and service patterns (i.e., modelled as an M/M/1

queuing system) and an estimated utilization factor of 90%, if the real arrival rate

turns out to have been underestimated by 5%, the average waiting time in the system

will be almost double of what has been originally estimated. On the other hand,

the facility/queuing system will become unstable if the arrival rate turns out to have

been underestimated by 10% or more. Therefore, with the inevitable presence of

uncertainty about future demand, one is motivated to utilize a robust approach to

design the service system. To address this demand uncertainty, we focus on M/M/1

and G/M/1 systems. We assume that the service provision at each SC can be modelled

as a Poisson process with a finite rate. By using this assumption, as a service provider,

we can control our service rate and have enough information to be sure about it. First,

we consider the M/M/1 system as it is simple to use, and researchers have extensively

studied this system in the literature. Besides, it provides a good approximation when

the utilization factor is high. However, it is unlikely to be sure about the arrival

pattern in real-life cases, whether it is Markovian or not. Thus, that is why we also

study the G/M/1 system.

In this thesis, we address the issue of demand uncertainty in service systems and

try to mitigate its impacts on the economic and service quality metrics by proposing

two robust frameworks for service systems design. In both frameworks, we assume

that the system designer has access to a finite number of independent future demand

scenarios, which could be based on historical data or experts’ opinions. In the ro-

bust optimization framework, we use these scenarios to construct uncertainty sets

of specific structures, and then optimize the total cost of the service system while

considering the worst-case demand realization in the uncertainty set. Two uncer-

tainty set structures are considered: ellipsoidal and budgeted uncertainty sets. In the

distributionally-robust optimization framework, we assume that the system designer
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aims to minimize the worst-case expected value of the service system’s total cost,

where the expectation is taken with respect to the worst-case probability distribu-

tion among a distributional ambiguity set that is constructed based on the future

demand scenarios. In particular, the distributional ambiguity set includes all proba-

bility distributions that are within a specific distance from the empirical distribution

constructed from the sample data points, where the distance between probability dis-

tributions is measured using a 1-Wasserstein metric. We compare the solutions and

objective values of the two frameworks against a nominal problem that assumes that

the demand is certain. In all cases, the total cost includes the setup cost of servers,

the access cost of customers to service facilities, and the implicit cost of customers’

waiting time in the system. The mathematical models corresponding to all consid-

ered cases were reformulated as mixed-integer second-order conic programs. For the

M/M/1 case, these reformulated programs can be directly handled using commercial

solvers, whereas, for the G/M/1 model, Lagrangian relaxation and decomposition

techniques are used to solve these programs.

The remainder of this thesis is organized as follows. The next chapter provides

brief reviews of the SSDP and the frameworks for decision making under uncertainty

utilized in this work. Chapter 3 describes the service system design problems which

can be modelled as a network of independent M/M/1 queues. It also presents the for-

mulations for the nominal, robust, and distributionally robust optimization problems.

Chapter 4 has the same scheme as Chapter 3, but it studies the service system design

problems that can be modelled as a network of independent G/M/1 queues. Chapter

5 presents the experiments performed on all the models and the results. Chapter 6

concludes this thesis and proposes ideas for future research. Throughout this thesis,

we use upright characters for vectors and italicized characters for scalars.



Chapter 2

Literature Review

This thesis focuses on the SSDP. This Chapter provides a brief review of this problem

and the frameworks for decision making under uncertainty used in this work.

2.1 Service System Design Problem

Among the first studies that addressed the SSDP is the work of Amiri [5], which

considers a basic setting in which the arrival of customers’ demands can be modelled

as a Poisson process, whereas the service times in each SC are independently and

identically distributed according to an exponential distribution. Hence, this problem

can be modelled as a network of independent M/M/1 queues, where the decision

variables to be determined are the number, locations, and capacities of SCs. The

author applied the proposed model, which is presented as an integer programming

problem, to design a telecommunication network. Still, it can also be used by planners

to design other types of service systems. In the model proposed in [5], the number,

locations, and capacities of service systems are decision variables that need to be

determined, and the waiting time (queueing) cost is incorporated in the total cost

that should be minimized. The contribution of [5] is to present a realistic model for

the SSDP and develop an effective solution procedure for the problem. Later, Amiri [6]

emphasized the importance of considering a back-up service in a reliable SSDP, which

means customers are assigned to a primary and secondary or back-up facility, and this

assumption is added to the formulation of the basic model proposed in [5]. Also, Amiri

[7] considered the same basic model in [5] under the time-varying demand conditions

5
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as the demand requirements of the customers could vary during different busy-hours.

Amiri’s basic model [5] was later extended by Wang et al. [55]. In contrast to the

centrally located customers in [5], they assumed that customers are free to choose

and will logically choose the closest open SC. This closest assignment assumption

was enforced by adding an explicit constraint. They also included restrictions on the

maximum expected waiting time at any open facility and the number of facilities to

be opened. Later, Wang et al. [56] proposed several models for locating the facilities

subject to congestion. Contrary to their model presented in [55], Wang et al. [56]

considered this problem from both the service provider and the customers’ perspective

together. Thus, the key point in [56] is balancing the service costs against service

quality, which can be measured through travel and service time delays.

Assumptions of the M/M/1 queuing model might become quite restrictive for real-

life situations. For example, while customers’ arrival to a SC is usually random (i.e.,

Markovian), the service time is often quite controllable and thus can have a general

probability distribution. To address this case, Vidyarthi and Jayaswal [54] modelled

the SSDP as an M/G/1 queueing network and proposed an exact (ε-optimal) algo-

rithm to solve it. Furthermore, SCs typically have multiple parallel servers. Therefore,

treating each SC as an M/M/1 queue, in this case, is just an approximation that be-

comes better as the utilization factor approaches one. Castillo et al. [23] studied the

SSDP considering two capacity choice scenarios: the situation where each open facil-

ity has one server whose service rate can be any positive number, and the situation

where the number of parallel servers at each open facility can be any positive integer

but the service rate per server is fixed. Besides, the second scenario uses approxima-

tions for the expected number of customers and the optimal number of servers for

two reasons. First, as the exact performance expressions can only be defined for the

number of servers with integer values, they solve the problem’s continuous relaxation.

Second, there are no exact results that allow them to express the optimal number

of servers at each facility in a closed-form. Moreover, these approximations lead to

the expressions that they obtained for single-server facilities. Hence, they express
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the optimal service rate and the optimal number of servers in closed-forms in the

first and second scenarios. As a result, they were able to eliminate both the service

rates and the number of servers from their models and tractably formulated them

as mixed-integer nonlinear programs. Besides, they showed that the problems for

both scenarios are structurally identical, which implies that the facilities with mul-

tiple servers can be modelled and compared with single-server facilities. Similarly,

Syam [53] developed and solved a comprehensive nonlinear location-allocation model

for SSDP that incorporates several relevant costs and considerations, including, ac-

cess, service, and waiting costs, and queueing considerations such as multiple servers,

multiple order priority levels, multiple service sites, and service distance limits.

All of the previous models considered the demands to be inelastic. Still, Aboolian

et al. [3] studied the problem of maximizing the overall profit of a system while con-

sidering the elasticity of demand. Their models belong to the class of location models

with immobile servers with equilibrium constraints. They modelled the problem as

a network of M/M/1 and M/M/s queues separately. This work can be applied for

finding exact optimal solutions for large-scale instances when they separated capacity

assignment from the customer assignment and location subproblems. Berman and

Kaplan [16] were the first to explicitly model demand losses resulting from the elas-

ticity while considering the travel distance and congestion for single-facility systems.

Besides, they assumed that a finite set of facility locations are given, and they did

not impose any service level constraints in their model. Berman et al. [15] also con-

sidered distance-sensitive demand models, but in contrast to Aboolian et al. [3] , no

equilibrium-type constraints were imposed in their work. Compared to Berman and

Kaplan [16], Berman et al. [15] assumed that the facilities could be located at any

point in the network. Moreover, they included a service level constraint in their model

and considered opening more than one facility. Marianov et al. [44] and Marianov et

al. [45] also focused on these types of problems without any explicit equilibrium con-

straints. Later, Zhang et al. [60], studied a multilocation model with elastic demand

and congestion, in which they modelled each facility as an M/M/1 queue. They used
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the total time (travel, waiting, and service) as a proxy for accessibility, and assumed

that customers at the same demand zones would choose the same facility with the

minimum total time. However, this assumption prevented them from identifying an

equilibrium allocation of customers to facilities. Later, Zhang et al. [59] extended

the work of Zhang et al. [60] by incorporating the possibility that customers from

the same demand zones can patronize different facilities, which usually guarantees

the existence of an equilibrium allocation and result in a completely different mod-

elling approach. In contrast to Aboolian’s work, the objective of these two papers is

maximizing accessibility.

In designing a service system network, the location of SCs has a significant impact

on the congestion at each of them, and affects the quality of service. The locations

of facilities should be determined in a way such that they would be accessible from

demand zones within a reasonable time. Besides, customers’ waiting time should

also be as short as possible, i.e., SCs should have sufficient capacities. As a result,

ensuring both convenience and enough capacity should be considered while designing

a service system network. To address both considerations, Marianov and Serra [46]

presented several probabilistic, maximal covering, location-allocation (MCL) models

for congested systems. In their first model, they considered an M/M/1 queueing sys-

tem that addresses the issue of the location of a given number of facilities so that

the maximum number of customers is served within a standard distance. Then, in

their second model, they formulated several maximal coverage models, using one or

more servers per SC. Using probabilistic constraints, these models restrict either the

response time or the queue length to be smaller than a predetermined value. The

contribution of these models is that the value of service quality can be explicitly

observed in the optimization model. Thus, when designing a system, these models

would allow the designer to trade off investment and operating cost versus service

quality. Marianov et al. [47] used the same design scheme but for the hierarchical

location-allocation models in which facilities at different levels provide different types

of services. In [46], either the number or the capacity of the facilities (or both) are



9

assumed to be fixed. The demand arrivals are supposed to be Poisson, and the ser-

vice time follows an exponential distribution. In contrast to [46], Baron et al. [9]

worked on models with the general spatial distribution of the demand arrivals and

service processes, without fixing either the number or the capacity of the facilities,

or their potential locations in advance. They also assumed that the demand arrivals

are distributed over a certain space, such as a line, or a network. Like Wang et al.

[55], Baron et al. [9] imposed the closest assignment assumption in their models and

included a service-level constraint that limits the waiting times at facilities. The con-

tribution of their work is defining a location vector, which ensures identical customer

demand at all facilities. However, Castillo et al. [23] argued that this assumption is

not appropriate for models with immobile servers, and it is essential to consider what

information customers have about waiting time. Although customer choice processes

are not incorporated explicitly in their models, their results show that customers

choose a facility that is not close but has less waiting time.

All the models above treated the capacity cost as a linear function of service

rate or the number of servers. However, in reality, capacity costs are often affected by

economies-of-scale. Recently, Elhedhli et al. [33] considered the service system design

problem with a general continuous capacity case and accounted for economies-of-scale

in its cost through an increasing concave function. This problem is formulated as a

non-linear mixed-integer program with linear constraints and an objective function

with both convex and concave terms. Furthermore, two solution approaches were

proposed. In the first, the problem was reformulated as a mixed-integer nonlinear

program that could be approximated using piecewise linearization; whereas in the

second, they used Lagrangian relaxation to decompose the problem and reformulate

the subproblems as mixed-integer second-order cone programs.

In most cases listed above, the demand arrival process is usually assumed to be

Poisson, and the service process is typically assumed to be exponential. Similarly, in

this thesis, we first consider a SSDP that can be modelled as a network of independent
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M/M/1 queues. On the other hand, by assuming a general distribution for demand

arrivals, as opposed to Poisson distribution, we propose a more realistic and general

case in which a system can be modelled as a network of independent G/M/1 queues.

Generally speaking, from the Queuing Theory’s perspective, predicting the mean

waiting time or queue length in a steady-state condition could be very challenging

when considering models with G/G/1 queues. Therefore, approximations are used

to deal with this challenge. One of the widely used approximations for waiting time

developed by Kingman [42], which can also be applied for G/M/1 and M/G/1 queues.

Doshi [28] also studied the G/G/1 queues with vacations or setup times and developed

a decomposition for the waiting time distribution. Later, Aden et al. [4] studied the

G/M/1 queues with setup times and retrieved the waiting time decomposition result

of Doshi [28]. Besides, they established a decomposition for the attained waiting

time. The martingale techniques, transform techniques, and sample-path arguments

are the methods they used in their work. Moreover, they made use of the duality

between attained and virtual waiting time process. Chu and Ke [25] developed an

estimation of mean response time for a G/M/1 queue using the Empirical Laplace

function approach. They obtained an estimate of the response time by applying a

data-based computation procedure.

2.2 Optimization Under Uncertainty

2.2.1 Robust Optimization (RO)

In all previous models, it has been assumed that the SC designer knows the demand

arrival and the service rates with certainty. However, it is often the case that these

parameters are uncertain and known only to lie in an uncertainty set. In such cases, it

might be desirable to protect against this uncertainty in demand arrival or service time

by employing a Robust Optimization (RO) approach that requires the constraints to

hold for all realizations of the uncertain parameters within the uncertainty set, and
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minimizes the cost function corresponding to the worst-case among these realizations.

So, this so-called Robust Counterpart (RC) can also be tractably reformulated as

an optimization problem that depends on both the uncertainty set and objective

function/constraints with uncertain parameters. The RO approach is particularly

appealing when the probability distribution of the uncertain parameter is unknown;

thus, it can be a good alternative for stochastic programming (SP).

Soyster [51] was the first to apply RO on a linear optimization model to generate

a feasible solution for all the parameters that lie within a box, i.e., hyper-cubic set.

Although the box uncertainty sets are easy to handle and often lead to a deterministic

problem, they are too conservative. Later, Ben-Tal and Nemirovski [12, 13, 14], and

El-Ghaoui et al. [29, 30] made a significant improvement in addressing this over-

conservatism by proposing an Ellipsoidal uncertainty set. Though this approach

leads to a nonlinear model in the form of a conic quadratic problem and could be

more expensive computationally, it is still convex. Moreover, Bertimas and Sim [20]

introduced a new class of uncertainty set, referred to as the budgeted uncertainty set

that preserves the linearity of the problem and allows the degree of conservatism to

be fully controlled by selecting the uncertainty budget.

According to Charnes and Cooper [24], when a constraint is affected by an uncer-

tain parameter, the goal is to satisfy that constraint with a certain probability, e.g.,

1−ε, where ε ≥ 0. Thus, a smaller ε applies more protection and assures that the con-

straint is satisfied for more realizations. It has been shown that chance constraints can

be conservatively approximated using robust optimization, which enables uncertainty

sets to be calibrated such that they provide a probabilistic guarantee of feasibility

[20]. More precisely, for a given sample of observations of the uncertain parameter,

we can define an uncertainty set that is large enough to contain (1−ε)×100% of these

realizations, and the solution obtained will be feasible in at least (1 − ε) × 100% of

cases, which makes this approximation conservative. In this thesis, we use two types

of uncertainty set, Budgeted and Ball, and calibrate them using the chance constraint
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approximation.

2.2.2 Distributionally-Robust Optimization (DRO)

The RO approach assumes an oblivious decision-maker, i.e., one that does not know

the probability distribution of the uncertain parameter. Although RO solutions pro-

tect from extreme unfavourable scenarios, they are considered too conservative and

often lead to poor expected performances. On the other extreme, if the decision-maker

has access to sample data that enables reasonably accurate estimation of the uncer-

tain parameters’ true probability distribution, implementing a risk-neutral approach

like SP might be a more favourable alternative. In reality, however, decision-makers

often have small-size samples of reliable historical data or future predictions they can

utilize. In such a case, implementing a classical SP might lead to substantial dis-

appointments when implementing the solution obtained with out-of-sample data, an

over-fitting phenomenon referred to as the optimizers’ curse [50]. One way to over-

come this issue is by considering a family of distributions (referred to as the ambiguity

set) that contains the true probability distribution with a high probability, instead

of a single distribution, when making a decision. With a risk-averse decision-maker

who desires to protect itself against the worst-case distribution within the ambiguity

set, this is called Distributionally Robust Optimization (DRO). In other words, DRO

bridges SP and RO and serves as a unifying framework for them. More specifically,

when the ambiguity set includes only a single (nominal/empirical) distribution, it

reduces to SP. When it includes all the distributions supported on the uncertainty

set, it reduces to RO.

Different classes of ambiguity sets have been considered in DRO, including moment-

bases ambiguity sets that contain all distributions that satisfy certain moment con-

straints [27, 36, 58]. On the other hand, statistical-distance-based ambiguity sets

are defined as balls in the space of probability distributions by using a probability

distance function such as the Prohorov metric [34], the Kullback-Leibler divergence



13

[40], or the Wasserstein metric, also known as the Kantorovich metric, [48]. These

statistical-distance-based ambiguity sets include all the distributions that are close

enough to a nominal or most likely distribution with for the prescribed probability

metric. In this case, the radius of the ambiguity set can be tuned, which means that

the level of the conservatism of the optimization problem can be restrained. Hence,

the ambiguity set is a vital ingredient of any distributionally robust optimization

model.

In this thesis, Wasserstein ambiguity set is used as it has powerful properties that

are demonstrated by Mohajerani Esfahani et al. [35] as follow: 1. Finite Sample

Gaurantee: For a carefully chosen size of the ambiguity set, the optimal value of

the DRO problem offers a confidence bound on the out-of-sample performance of the

optimal solution of the DRO problem. 2. Asymptotic Consistency : As the number of

realizations goes to infinity, the optimal value and the data-driven optimal solution

converge to the optimal value and the optimal solution of the stochastic programming,

respectively. 3. Tractability : For many objective functions and feasible sets, the DRO

is computationally tractable. These properties were originally identified by Bertimas

et al. [19] as desirable properties of data-driven solutions for stochastic programs.

Moreover, the Wasserstein ambiguity set makes it possible to control the model’s

conservativeness and contains all the continuous and discrete distributions that are

sufficiently close to a discrete empirical distribution (the center of the ambiguity set).

2.3 Research Gap and Contributions

All of the prior SSDP models assume that the demand arrival rates are known with

certainty, which is not the case in a realistic situation. Among the few recent refer-

ences that consider uncertainty in SSDP is the work of Juan Ma et al. [43], which

studies a capacity planning problem for a service provider that process transactions

arrival from its client, where the arrival rate is uncertain. In their work, they assume

that the transaction arrival rate is uniformly distributed over a predefined interval,
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and propose a chance-constrained model as a standard M/G/1 queue. Considering

the uniformly distributed assumption makes it possible for them to solve their model

analytically.

In this thesis, we also focus on designing and configuring service systems when

the customer arrival rate is uncertain. In contrast to [43], both RO and DRO ap-

proaches are considered to deal with the uncertainty. In the RO framework, two

uncertainty sets structures are considered: Ball and Budgeted uncertainty sets. In

the DRO framework, Wasserstein ambiguity set is used. Besides, we propose new

mixed-integer second-order conic (MISOC) mathematical reformulations for all the

considered cases. We model the SSDP as a network of independent M/M/1 and

G/M/1 queues. For the M/M/1 case, all the proposed formulations can be solved

directly using commercial solvers, whereas for the G/M/1 case, Lagrangian relaxation

and decomposition techniques are used to solve these models as the structure of this

problem is difficult to handle directly using commercial solvers.



Chapter 3

Service System Design Problems Modelled as a Network of

M/M/1 Queues

3.1 Problem Description

Let I := {DZi}mi=1 be a set of demand zones and J := {SCj}nj=1 be a set of potential

SC locations. Each demand zone needs to be assigned to a single SC to satisfy

its demand. We assume that a demand zone arrival to its assigned SC follows a

Poisson process (i.e., inter-arrival times of individual customers are exponential i.i.d.

random variables) having rate ξi, i ∈ I. Initially, we will assume that these rates are

known with certainty, whereas the uncertain case will be addressed later. Likewise,

we assume that service provision at SCj can be reasonably modelled as a Poisson

process with a finite service rate (i.e., capacity) µj, which is not known a priori but

can be determined by the system designer. The single assignment assumption might

not be optimal as the Hakimi property ([37, 38]) does not hold for the SSDP, but

practical considerations might require it.

With that, each SC can be modelled as an M/M/1 queueing system, and the

service system becomes a network of independent M/M/1 queues. The M/M/1 model

is a single service facility with one server, infinite buffers to store demands for service,

and the first-come-first-served queue discipline. The setup cost of SC is proportional

to their service rate, i.e., each service rate unit at SCj costs fj. There is a demand

zone access cost cij per unit demand if DZi is assigned to SCj. Furthermore, to

discourage excessive waiting, customers’ waiting time in the system is penalized at a

constant rate of t per unit time. The objective is to determine the locations of SCs

15
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to open, their service capacities to install, and the assignment of customers to SC

to minimize the total expected cost, which includes setup, access and waiting time

costs. To formulate the problem, we use the following decision variables:

yij =

 1 if DZi is assigned to SCj

0 otherwise

µj = service rate/capacity of SCj.

Therefore, the SSDP can be formulated as

[NP ] : min
y,µ

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξiyij + t
∑
j∈J

∑
i∈I
ξiyij

µj −
∑
i∈I
ξiyij

(3.1a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.1b)

∑
i∈I

ξiyij ≤ µj ∀j ∈ J (3.1c)

yij ∈ {0, 1}, µj ≥ 0 ∀i ∈ I,∀j ∈ J. (3.1d)

The three terms in the objective function (3.1a) represent the capacity-dependent

setup cost, the customers’ access cost from demand zone i to SCj, and their gross

waiting time cost, respectively. constraints (3.1b) ensure that every demand zone is

assigned to exactly one SC. Constraints (3.1c) guarantee that each demand zone is

assigned to an open SC only and that the total demand arrival rate to the SC does

not exceed its service capacity.

The proposed formulation results in a nonlinear mixed-integer program with linear

constraints. When ξi, i ∈ I is known with certainty, we refer to (3.1) as the nominal

problem (NP). At first glance, one might suspect that (3.1) is a convex optimization

problem. However, careful examination reveals that it is not, and hence cannot be

solved using classical convex optimization techniques. The following lemma states

this observation. But for ease of exposition, let us first define the variable sj =∑
i∈I
ξiyij, j ∈ J .
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Lemma 3.1. In the domain s ∈ [0,µ], the function f(s,µ) =
s

µ− s
is element-wise

convex in s and µ, but not jointly convex in both.

Proof. We know that a function f(x) is convex if and only if

∂2f

∂x2
≥ 0, (3.2)

and a function f(x1, x2) is convex if and only if all the following conditions are met

for all possible values of x1 and x2

∂2f

∂x2
1

≥ 0 (3.3a)

∂2f

∂x2
2

≥ 0 (3.3b)

∂2f

∂x2
1

.
∂2f

∂x2
2

−
[ ∂2f

∂x1∂x2

]2

≥ 0. (3.3c)

Using the definitions (3.2) and (3.3), and knowing that s ≤ µ, we will get

∂2f

∂s2
=

2µ(µ− s)

(µ− s)4
≥ 0 (3.4)

∂2f

∂µ2
=

2s(µ− s)

(µ− s)4
≥ 0 (3.5)

∂2f

∂s2
.
∂2f

∂µ2
−
[ ∂2f

∂s∂µ

]2
=

4sµ

(µ− s)6
− (µ + s)2

(s− µ)6
− (µ + s)2

(µ− s)6
=
−2(µ2 + s2)

(µ− s)6
≤ 0. (3.6)

Now, from (3.4) and (3.5), we conclude that f is element-wise convex in s and µ but

(3.6) does not satisfy (3.3c) which means that f is nonconvex.

Before tackling the uncertain case, we begin by reformulating the nominal problem

into a structure that is easier to handle.
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3.1.1 Reformulation Into a Mixed-Integer Second-Order Conic

Programming Problem

For a given feasible y, let s̄j =
∑
i∈I
ξiyij. Thus, the nominal problem reduces to

min
µ

[∑
j∈J

fjµj + t
∑
j∈J

s̄j
µj − s̄j

]
+
∑
j∈J

∑
i∈I

cijξiyij (3.7a)

s.t. s̄j ≤ µj ∀j ∈ J. (3.7b)

which decomposes by j to n subproblems. Each subproblem can be stated as Vj(s̄j) =

min
µj≥s̄j

fjµj +
ts̄j

µj − s̄j
, which is a single-variable convex minimization problem. By

setting its first derivative equal to zero, we get

fj +
−ts̄j

(µj − s̄j)2
= 0⇒ fj =

ts̄j
(µj − s̄j)2

µj − s̄j =

√
ts̄j
fj
⇒ µ∗j = s̄j +

√
ts̄j
fj
≥ s̄j,

which renders constraints set (3.7b) redundant. By substituting µ∗j back in the sub-

problem we have

V ∗j (s̄j) = fj

[
s̄j +

√
ts̄j
fj

]
+

ts̄j√
ts̄j
fj

= fj s̄j +
√
tfj
√
s̄j +

√
tfj
√
s̄j

= fj s̄j + 2
√
tfj
√
s̄j.

(3.8)

Thus, by using result (3.8), the SSDP can be reformulated as

min
y

∑
j∈J

∑
i∈I

cijξiyij +
∑
j∈J

∑
i∈I

fjξiyij + 2
∑
j∈J

√
tfj

√∑
i∈I

ξiyij (3.9a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.9b)

yij ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (3.9c)

Next, let us define zj ≥
√∑

i∈I
ξiyij, and replace

√∑
i∈I
ξiyij in the objective function

with zj, and add this constraints set to the mathematical model. Furthermore, since
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yij ∈ {0, 1}, we can replace it with y2
ij. These transformations enable us to rewrite

(3.1) as

min
y,z

∑
j∈J

∑
i∈I

cijξiyij +
∑
j∈J

∑
i∈I

fjξiyij + 2
∑
j∈J

√
tfjzj (3.10a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.10b)

zj ≥
√∑

i∈I

ξiy2
ij ∀j ∈ J (3.10c)

yij ∈ {0, 1}, zj ≥ 0 ∀i ∈ I,∀j ∈ J. (3.10d)

The objective function is linear in both y and z, whereas constraint (3.10c) is a

second-order cone (SOC) constraint. This mathematical model can be solved directly

on commercial solvers like Cplex or Gurobi.

3.2 The Robust Optimization (RO) Problem

It is often the case that customers’ demand is not known with certainty, but can

rather be represented as a parameter that lies within an uncertainty set. In such

case, it might be desirable to protect against this uncertainty in demand by em-

ploying a robust optimization approach. In general, in this approach, a risk-averse

decision-maker who aims to avoid large losses might opt to minimize the worst-case-

scenario loss, which means that, for a given x, if h(x) : supξ∈Ξ g(x, ξ), where Ξ is the

uncertainty set, we aim to find minx∈X h(x), or equivalently minx∈X supξ∈Ξ g(x, ξ),

which is called the Robust Counterpart (i.e., select x ∈ X such that when the most

adverse scenario ξ ∈ Ξ is realized, the loss is minimized). Using this perspective, the

robust counterpart of (3.9) can be stated as follows:
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min
y

sup
ξ∈Ξ

[∑
j∈J

∑
i∈I

(cij + fj)ξiyij + 2
∑
j∈J

√
tfj

√∑
i∈I

ξiy2
ij

]
(3.11a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.11b)

yij ∈ {0, 1} ∀i ∈ I,∀j ∈ J. (3.11c)

In this section, we consider two classes of uncertainty sets, Budgeted and Ball uncer-

tainty set, and show how the robustified problem can be tractably formulated.

3.2.1 Budgeted Uncertainty Set

First, we consider the budgeted uncertainty set introduced by Bertsimas and Sim [20],

defined as ΞBu := {ξ ∈ Rm
+ | ξi = ξnomi + ξ̂iwi,

m∑
i=1

|wi| ≤ Γ, |wi| ≤ 1}. For this set,

wi is the primary uncertain parameter, Γ ∈ [0,m] is the uncertainty budget, and ξ̂ is

the maximum absolute deviation from the nominal value. To tractably reformulate

(3.11a), we utilize the scheme based on Fenchel duality proposed by Ben-Tal, Hertog,

and Vial [11]. This is possible since the objective function is concave in yij which is the

optimization variable. We first state the Theorem we will use in this reformulation.

Theorem 3.1 ([11],Theorem 2). The vector y ∈ Y satisfies the robust constraint

g(y, ξ) ≤ 0,∀ξ ∈ Ξ if and only if y and v ∈ Rm satisfy the single inequality

(FRC) δ∗(v | Ξ)− g∗(y, v) ≤ 0,

where δ∗ is the support function of set Ξ, defined as

δ∗(v | Ξ) := sup
ξ∈Ξ

ξ
ᵀv (3.12)

and, g∗(., .) is the partial concave conjugate with respect to the first variable and

defined as

g∗(y, v) := inf
ξ∈Ξg

vᵀ
ξ− g(y, ξ), (3.13)
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and g(., .) is a mapping defined over the convex domain Yg × Ξg with Yg ⊆ Rnand

Ξg ⊆ Rm.

This theorem represents a general Fenchel Robust Counterpart (FRC) formula-

tion for a general robust constraint g which indicates that the computations involving

g∗ are completely independent from those involving Ξ. Based on this theorem, Ben-

Tal et al. [11] illustrate how to compute δ∗(v | Ξ) and g∗(y, v) in (FRC) for several

choices of Ξ and g, respectively. One of this results states that the robust counterpart

of
K∑
k=1

f ′k(y, ξ) can be shown as follow:


δ∗(v | Ξ)−

K∑
k=1

(f ′k)∗(pk, y) ≤ 0

K∑
k=1

pk = v.

(3.14)

Corollary 3.1. When the uncertainty set is ΞBu, objective function (3.11a) can be

tractably reformulated as

min
y,δ,p1,p2,v,θ,φ

∑
i∈I

ξnomi vi + Γθ +
∑
i∈I

φi + t
∑
j∈J

fjδj

s.t. θ + φi ≥ ξ̂ivi ∀i ∈ I

p1i ≥
∑
j∈J

(cij + fj)yij ∀i ∈ I

δjp2i ≥ y2
ij ∀i ∈ I,∀j ∈ J

p1i + p2i = vi ∀i ∈ I

yij ∈ {0, 1}, δj, p1i, p2i, vi, θ, φi ≥ 0 ∀i ∈ I,∀j ∈ J.

Proof. First, considering result (3.14), we need to find the support function, which
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becomes

δ∗(v | ΞBu) = sup
ξ∈ΞBu

ξ
ᵀv

=
∑
i∈I

ξnomi vi + sup
wi

∑
i∈I

ξ̂iwivi

s.t.
∑
i∈I

wi ≤ Γ (θ)

0 ≤ wi ≤ 1 (φi).

and can be written in the dual form as

∑
i∈I

ξnomi vi + inf
θ,φ

[
Γθ +

∑
i∈I

φi

]
(3.15)

s.t. θ + φi ≥ ξ̂ivi ∀i ∈ I

θ, φi ≥ 0 ∀i ∈ I.

Next, to calculate
K∑
k=1

(f ′k)∗(pk, y), we define f ′1 and f ′2 as follows


f ′1 :=

∑
j∈J

∑
i∈I

(cij + fj)ξiyij

f ′2 := 2
∑
j∈J

√
tfj
√∑

i∈I
ξiy2

ij.

(3.16)

So, the conjugate functions for f ′1 becomes

(f ′1)∗(p1, y) = inf
ξ≥0

p1
ᵀ
ξ− f1(y, ξ)

= inf
ξ≥0

∑
i∈I

p1iξi −
∑
j∈J

∑
i∈I

(cij + fj)ξiyij

= inf
ξ≥0

∑
i∈I

ξi

[
p1i −

∑
j∈J

(cij + fj)yij

]
. (3.17)

This minimization over ξi ≥ 0 returns 0 if p1i ≥
∑
j∈J

(cij + fj)yij,∀i ∈ I and −∞

otherwise. So, (f ′1)∗ = 0, and the constraint p1i ≥
∑
j∈J

(cij + fj)yij,∀i ∈ I is added to

the reformulated problem. Next, by decomposing f ′2 by j, the conjugate function of
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f ′2j can be written as

(f ′2j)∗(p2, y) = inf
ξ≥0

p2
ᵀ
ξ− f2j(y, ξ)

= inf
ξ≥0

∑
i∈I

p2iξi − 2
√
tfj

√∑
i∈I

ξiy2
ij

= inf
ξ≥0,ψj

∑
i∈I

p2iξi − 2
√
tfj
√
ψj

s.t. ψj ≤
∑
i∈I

ξiy
2
ij (ηj).

In this case, we assemble the dual problem based on Lagrangian duality. For any

ηj ≥ 0, the Lagrangian function

L(y, p2, ηj) = inf
ξ≥0,ψj

[∑
i∈I

p2iξi − 2
√
tfj
√
ψj + ηj

(
ψj −

∑
i∈I

ξiy
2
ij

)]
provides a lower bound for (f ′2j)∗(p2, y). Since (f ′2j)∗ is convex, and satisfies the weak

Slater’s condition, the strong duality holds; thus, the bound is tight at optimality

[21], and we have

(f ′2j)∗(p2, y) = max
ηj≥0

L(y, p2, ηj)

= max
ηj≥0

[
inf
ξ≥0

(∑
i∈I

p2iξi − ηj
∑
i∈I

ξiy
2
ij

)
+ inf

ψj

(
ηjψj − 2

√
tfj
√
ψj

)]
.

The first inner minimization over ξi ≥ 0 can be written as inf
ξ≥0

∑
i∈I
ξi(p2i− ηjy2

ij), which

equals 0 if p2i ≥ ηjy
2
ij, ∀i ∈ I and −∞ otherwise. The second minimization over ψj

is a convex function; therefore, it can be solved by setting its first derivative equal to

zero:

ηj −
2
√
tfj

2
√
ψj

= 0⇒ ηj =

√
tfj√
ψj
⇒ ψ∗j =

tfj
η2
j

.

by substituting this value in the second minimization problem, it reduces to −tfj
ηj

.

With that, the partial concave conjugate function for every j becomes

(f ′2j)∗(p2, y) = max
γ
−tfj
ηj

s.t. p2i ≥ ηjy
2
ij ∀i ∈ I.
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which, by defining δj =
1

ηj
, can be written as

(f ′2j)∗(p2, y) = max
γ
−(tfj)δj

s.t. p2iδj ≥ y2
ij ∀i ∈ I.

So, (f ′2)∗ becomes

(f ′2)∗(p2, y) = −min
δ

t
∑
j∈J

fjδj (3.18)

s.t. δjp2i ≥ y2
ij ∀i ∈ I,∀j ∈ J.

Now, (f ′2)∗ is a linear function with rotated second-order cone constraints. Substitut-

ing (3.15),(3.18) and the result from (3.17) in (3.14) completes the proof.

Therefore, the robust counterpart of the nominal problem becomes

min
y,δ,p1,p2,v,θ,φ

∑
i∈I

ξnomi vi + Γθ +
∑
i∈I

φi + t
∑
j∈J

fjδj (3.19a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.19b)

θ + φi ≥ ξ̂ivi ∀i ∈ I (3.19c)

p1i ≥
∑
j∈J

(cij + fj)yij ∀i ∈ I (3.19d)

δjp2i ≥ y2
ij ∀i ∈ I,∀j ∈ J (3.19e)

p1i + p2i = vi ∀i ∈ I (3.19f)

yij ∈ {0, 1}, δj, p1i, p2i, vi, θ, φi ≥ 0 ∀i ∈ I,∀j ∈ J. (3.19g)

The objective function is linear, whereas constraint (3.19e) is a second-order cone

constraint. This mathematical model can be solved directly on commercial solvers.
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3.2.2 Ball Uncertainty Set

Next, consider the case when Ξ is a Ball uncertainty set of the form ΞBa := {ξ ∈

Rm
+ | ξ = ξnom + ξ̂, ‖ξ̂‖2 ≤ r}. This is a special case (with Σ = 1/r) of the El-

lipsoidal uncertainty set introduced by Ben-Tal and Nemirovski [13] that takes the

form ΞE := {ξ ∈ Rm
+ | ξᵀΣξ ≤ 1, Σ � 0}. Note that the Fenchel duality scheme

we used with the budgeted uncertainty set effectively decomposes the dependence of

the reformulation between the uncertainty set and the constraint function. There-

fore, in order to tractably reformulate the objective function (3.11a) with any other

uncertainty set, we need only to replace the support function δ∗(v | Ξ), whereas the

concave conjugate function remains unchanged. With the ball uncertainty set, the

support function becomes

δ∗(v | ΞBa) = sup
ξ∈ΞBa

{ξᵀv | ξ = ξ
nom + ξ̂}

= sup
ξ̂

ξ̂
ᵀv + (ξ

nom)ᵀv

s.t. ‖ξ̂‖2 ≤ r.

where sup‖ξ̂‖2≤r ξ̂ᵀv is the definition of the dual norm of the Euclidean norm, and

evaluates to r‖v‖2. More generally, the dual of the lp-norm is the lq-norm, where q

satisfies
1

p
+

1

q
= 1. Thus, the objective function (3.11a) can be replaced with

min
y,δ,p1,p2,v

∑
i∈I

ξnomi vi + r‖v‖2 + t
∑
j∈J

fjδj

s.t. p1i ≥
∑
j∈J

(cij + fj)yij ∀i ∈ I

δjp2i ≥ y2
ij ∀i ∈ I,∀j ∈ J

p1i + p2i = vi ∀i ∈ I

yij ∈ {0, 1}, δj, p1i, p2i, vi ≥ 0 ∀i ∈ I,∀j ∈ J.
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Next, let us define u ≥
√∑

i∈I
v2
i , and replace

√∑
i∈I
v2
i in the objective function with

u and add this constraint to the mathematical model. Therefore, the robust problem

can be reformulated as

min
y,δ,p1,p2,v,u

∑
i∈I

ξnomi vi + ru+ t
∑
j∈J

fjδj (3.20a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.20b)

p1i ≥
∑
j∈J

(cij + fj)yij ∀i ∈ I (3.20c)

δjp2i ≥ y2
ij ∀i ∈ I,∀j ∈ J (3.20d)

p1i + p2i = vi ∀i ∈ I (3.20e)∑
i∈I

v2
i ≤ u2 (3.20f)

yij ∈ {0, 1}, δj, p1i, p2i, vi, u ≥ 0 ∀i ∈ I,∀j ∈ J. (3.20g)

Again, this is a mixed-integer programming problem with the second-order cone con-

straints (3.20d) and (3.20f) that can be solved using commercial solvers.

3.3 The Distributionally-Robust Optimization (DRO) Problem

In the RO framework, the realizations of the demand (uncertain parameter) are not

representative of the demand distribution, and we assume that we do not have any

information about this distribution. Instead, we use these realizations merely to

construct the uncertainty set. However, if we are confident that these data points

can be representative of the population distribution, DRO is a good alternative for

approximating the true demand distribution.

Formally, the DRO problem is stated as min
x∈X

sup
Fξ∈D

EFξ
[g(x, ξ)], where the uncer-

tain parameter ξ follows a probability distribution Fξ that belongs to a distributional

ambiguity set (DAS) D, i.e., we minimize the worst-case expected loss, where the

expectation is taken with respect to the probability distributions in the DAS. In this



27

section, we will use the Wasserstein-metric-based ambiguity set introduced in [35],

which can be described as follows: Given a finite set Ξ̂ :=
{

ξ̂1, . . . , ξ̂N
}

of sample

points, each representing a historical or predicted realization of the uncertain pa-

rameters, an empirical distribution F̂ξ can be constructed such that each discrete

point in the sample set has an equal probability of
1

N
, i.e., F̂ξ :=

1

N

N∑
n=1

δ
ξ̂n

, where

δξ : Σ 7→ {0, 1}, δ
ξ̂n

(A) =

 1 if ξ̂n ∈ A

0 otherwise
is a Dirac measure concentrating unit

mass at ξ̂n, and Σ is a Borel σ-algebra on Ξ. The Wasserstein ambiguity set Dε(F̂ξ,Ξ)

will be constructed as a ball around the empirical distribution and includes all proba-

bility distributions supported on Ξ ⊂ Rm that are within a distance ε ≥ 0 of the refer-

ence/empirical distribution F̂ξ, where the distance is measured using the Wasserstein

metric, which is also referred to as the Kantorovich-Rubinstein metric [41]. Formally,

the Wasserstein ambiguity set can be stated as

Dε(F̂ξ,Ξ) :=
{
Fξ ∈M(Ξ) : dW

(
F̂ξ, Fξ

)
≤ ε,P(ξ ∈ Ξ) = 1

}
,

where the Wasserstein metric dW :M(Ξ)×M(Ξ)→ R is defined as

dW(F1, F2) := inf


∫

Ξ2

‖ξ1 − ξ2‖Π(dξ1, dξ2)

∣∣∣∣∣∣ Π is a joint distribution of ξ1 and ξ2

with marginals F1 and F2 respectively

 ,

where ‖ · ‖ represents an arbitrary norm on Rm and the probability space M(Ξ)

contains all probability distributions supported on Ξ. The decision variable Π can

be viewed as a transportation plan for moving a mass distribution described by F1

to another one described by F2. Thus, the Wasserstein distance between F1 and F2

represents the cost of an optimal mass transportation plan, where the norm ‖ · ‖

encodes the transportation costs.
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Starting with the reformulated problem (3.9), the single-stage distributionally-

robust SSDP can be stated

min
y

sup
Fξ∈Dε(F̂ξ)

EFξ

[∑
j∈J

∑
i∈I

(cij + fj)ξiyij + 2
∑
j∈J

√
tfj

√∑
i∈I

ξiyij

]
(3.21a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.21b)

yij ∈ {0, 1} ∀i ∈ I,∀j ∈ J.

(3.21c)

Assumption 3.1. In the Wasserstein distributional ambiguity set Dε(F̂ξ,Ξ), (i) the

support set is a bounded polyhedron defined as Ξ := {ξ ∈ Rn | Cξ ≤ d}, for some

C ∈ R|L|×n and d ∈ R|L|; and (ii) the norm used in the Wasserstein metric definition

is an l1-norm.

Now, moving to the distributionally-robust objective function (3.21a), we utilize

Theorem 4.2 in [35], which applies since the inner function inside the brackets is

concave in ξ and Ξ is a convex and closed set (Assumption 4.1, [35]).

Lemma 3.2. Objective function (3.21a) is equivalent to:

min
y,λ,δ,r,s,α

λε+
1

N

N∑
n=1

sn

s.t. t
∑
j∈J

fjδjn +
∑
l∈L

dlαln +
∑
i∈I

rniξ̂
n
i ≤ sn ∀n ∈ N

y2
ij ≤ δjn

[
rni − (cij + fj)yij +

∑
l∈L

αlnCln

]
∀i ∈ I, j ∈ J,∀n ∈ N

rin ≤ λ ∀i ∈ I,∀n ∈ N

− rin ≤ λ ∀i ∈ I,∀n ∈ N

yij ∈ {0, 1}, λ, δjn, rni, sn, αln ≥ 0 ∀i ∈ I,∀j ∈ J,∀n ∈ N,∀l ∈ L.

Proof. According to ([35], Theorem 4.2) the DRO problem

sup
Fξ∈Dε(F̂ξ,Ξ)

EFξ
[g(y, ξ)]
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is equivalent to

inf
λ,s,r,ν

λε+
1

N

N∑
n=1

sn (3.23)

s.t. [−g]∗(rn − νn, y) + σΞ(νn)− rᵀnξ̂n ≤ sn ∀n ∈ N

‖rn‖∗ ≤ λ ∀n ∈ N.

where [−g]∗(rn − νn) denotes the conjugate of −g evaluated at rn − νn and σΞ rep-

resents the support function of Ξ. Besides, in the proof of the same theorem, it has

been shown that the optimal value of (3.23) coincides with the optimal value of the

following RO problem

inf
λ,s,r

λε+
1

N

N∑
n=1

sn (3.24a)

s.t. sup
ξ∈Ξ

(
g(y, ξ)− rᵀnξ

)
+ rᵀnξ̂

n ≤ sn ∀n ∈ N (3.24b)

‖rn‖∗ ≤ λ ∀n ∈ N. (3.24c)

To prove Lemma (3.2), we are going to use result (3.24) that uses the robust constraint

(3.24b), which can be written as follow

sup
ξ∈Ξ

(
g(y, ξ)− rᵀnξ

)
= − inf

ξ∈Ξ

(
rᵀnξ − g(y, ξ)

)
, (3.25)

where

g =
∑
j∈J

∑
i∈I

(cij + fj)ξiyij + 2
∑
j∈J

√
tfj

√∑
i∈I

ξiyij.

which can be decomposed by j. Now, for each j, (3.25) can be represented as

− inf
ξ∈Ξ

∑
i∈I

rniξi −
∑
i∈I

(cij + fj)ξiyij − 2
√
tfj

√∑
i∈I

ξiyij

 (3.26)

s.t.
∑
i∈I

Cliξi ≤ dl ∀l ∈ L.
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By defining a new variable ζj =
∑
i∈I
ξiy

2
ij (3.26) becomes

− inf
ξ,ζj

∑
i∈I

rniξi −
∑
i∈I

(cij + fj)ξiyij − 2
√
tfj
√
ζj (3.27)

s.t.
∑
i∈I

Cliξi ≤ dl (αln)

ζj ≤
∑
i∈I

ξiy
2
ij (γjn).

In this case, we have to assemble the duality problem based on Lagrangian duality.

For any γjn ≥ 0 , the Lagrangian function

L(y, α, γjn) = − inf
ξ,ζj

[∑
i∈I

rniξi −
∑
i∈I

(cij + fj)ξiyij − 2
√
tfj
√
ζj

+
∑
l∈L

αln

(∑
i∈I

Cliξi − dl
)

+ γjn

(
ζj −

∑
i∈I

ξiy
2
ij

)]
.

provides an upper bound for (3.27). Since it satisfies the strong duality conditions,

the bound is tight at optimality and we have

min
α,γjn

L(y, α, γjn) = min
α,γjn

[
− inf

ξ

(∑
i∈I

ξi

[
rni − (cij + fj)yij +

∑
l∈L

αlnCli − γjny2
ij

])
(3.28)

− inf
ζj

(
− 2
√
tfj
√
ζj + γjnζj

)]
+
∑
l∈L

αlndl.

The first inner minimization over ξi ≥ 0 would be equal to 0 if rni − (cij + fj)yij +∑
l

αlnCli ≥ γjny
2
ij,∀i ∈ I and −∞ otherwise. The second minimization over ζj is a

convex function; therefore, it can be solved by setting its first derivative equal to zero

γjn −
2
√
tfj

2
√
ζj

= 0⇒ ζ∗j =
tfj
γ2
jn

.

by substituting this value in the second minimization problem, it reduces to
tfj
γjn

.

With that, (3.28) becomes

min
α,γjn

tfj
γjn

+
∑
l∈L

αlndl

s.t. γjny
2
ij ≤ rni − (cij + fj)yij +

∑
l∈L

αlnCli ∀i ∈ I,∀n ∈ N.
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which by defining δjn =
1

γjn
, the problem can be written as

min
α,δjn

tfjδjn +
∑
l∈L

αlndl

s.t. y2
ij ≤ δjnrni − δjn(cij + fj)yij + δjn

∑
l∈L

αlnCli ∀i ∈ I,∀n ∈ N.

So, (3.25) becomes

min
α,δjn

t
∑
j∈J

fjδjn +
∑
l∈L

αlndl (3.29)

s.t. y2
ij ≤ δjnrni − δjn(cij + fj)yij + δjn

∑
l∈L

αlnCli ∀i ∈ I,∀j ∈ J,∀n ∈ N.

Finally, the norm constraint simply reduces to |rin| ≤ λ, ∀i ∈ I,∀n ∈ N. Combining

the aforementioned derivations leads to the desired result.

With that, the distributionally-robust service system design problem can be tractably

formulated as a mixed-integer second-order conic program

min
y,λ,δ,r,s,α

λε+
1

N

N∑
n=1

sn (3.30a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (3.30b)

t
∑
j∈J

fjδjn +
∑
l∈L

dlαln +
∑
i∈I

rniξ̂
n
i ≤ sn ∀n ∈ N (3.30c)

y2
ij ≤ δjn

[
rni − (cij + fj)yij +

∑
l∈L

αlnCln

]
∀i ∈ I, j ∈ J,∀n ∈ N (3.30d)

rin ≤ λ ∀i ∈ I,∀n ∈ N (3.30e)

− rin ≤ λ ∀i ∈ I,∀n ∈ N (3.30f)

yij ∈ {0, 1}, λ, δjn, rni, sn, αln ≥ 0 ∀i ∈ I,∀j ∈ J,∀n ∈ N,∀l ∈ L.

(3.30g)

In constraint (3.30d), the term inside the brackets can be replaced by a single variable.



Chapter 4

Service System Design Problems Modelled as a Network of

G/M/1 Queues

In this chapter, we are going to focus on a SSDP that can be modelled as a network

of G/M/1 queues. Since we assume that we do not know the demand distribution for

sure, and we use RO, and DRO to deal with it, it is also unlikely that we can be sure

about the arrival pattern, whether it is Markovian or not.

4.1 Problem Description

Let I := {DZi}mi=1 be a set of demand zones and J := {SCj}nj=1 be a set of potential

SC locations. Each demand zone needs to be assigned to a single SC to satisfy

its demand. We assume that a demand zone arrival to its assigned SC follows a

General distribution (i.e., inter-arrival times of individual customers, Ti, are generally

distributed i.i.d. random variables with variance σ2
i , i ∈ I) with the mean arrival rate

ξi = 1/Ti, i ∈ I. Initially, we will assume that these rates are known with certainty,

whereas the uncertain case will be addressed later. Likewise, we assume that service

provision at SCj can be reasonably modelled as a Poisson process with a finite rate

(i.e., capacity) µj, which is a decision variable.

With that, each SC can be modelled as an G/M/1 queueing system and the service

system becomes a network of G/M/1 queues. The G/M/1 model is a single service

facility with one server, which has infinite buffers to store demands for service, and

the first-come first-served queue discipline. The setup cost of SC is proportional to

32
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their service rate, i.e., each service rate unit at SCj costs fj. There is a demand zone

access cost cij per unit demand if DZi is assigned to SCj. Furthermore, to discourage

excessive waiting, customers’ waiting time in the system is penalized at a constant

rate of t per unit time. The objective is to determine the locations of SCs to open,

their service capacities to install, and the assignment of customers to SC to minimize

the total expected cost, including setup, access and waiting time costs. To formulate

the problem, we use the following decision variables:

yij =

 1 if DZi is assigned to SCj

0 otherwise

µj = service rate/capacity of SCj.

The simplest queueing model is the M/M/1 model presented in Chapter 3, in which

the expected waiting time could be calculated exactly. However, for more realis-

tic queueing models, finding exact solutions becomes more challenging to achieve.

There are many relatively accurate but complicated approximations, such as the ones

proposed by Buzacott and Shanthikumar [22], and Connors et al. [26] for G/G/s

queueing models. The most widely used approximation was developed by Kingman

[42] for the G/G/1 queueing models. Later, Hopp and Spearman [52] developed an

estimate on the expected waiting time, based on Kingman’s G/M/1 and Whitt’s

G/G/s [57] approximations as follow:

E[Wq] =

(
C2
a + C2

s

2

)(
ρ
√

2(s+1)−1

1− ρ

)(
1

µ

)
, (4.1)

where Ca and Cs are the coefficients of variation of inter-arrival times and service

times, respectively, and ρ is the utilization factor. Now, considering (4.1), and using

Little’s Formula, the expected waiting time (including service time) of customers at

SCj in a service system with G/M/1 queues can be written as

E[wj] =

(
C2
a + 1

2

)
ρj

µj(1− ρj)
+

1

µj
. (4.2)

Here, we assume that Ca =
σ

T
is constant across the system, given a homogeneous

and infinite calling population. By substituting ρj =
Λj

µj
, where Λj =

∑
i∈I
ξiyij, in (4.2)
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we get

E[wj] =

(
C2
a + 1

2

)
Λj

µj(µj − Λj)
+

1

µj
. (4.3)

If we state the waiting time in terms of yij and µj, we would have

E[wj(y,µ)] =

(
C2
a + 1

2

) ∑
i∈I
ξiyij

µj(µj −
∑
i∈I
ξiyij)

+
1

µj
.

Therefore, the service system design problem can be formulated as

min
y,µ

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξiyij + t
∑
j∈J

∑
i∈I

ξiyijE[wj(y,µ)] (4.4a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.4b)

∑
i∈I

ξiyij ≤ µj ∀j ∈ J (4.4c)

yij ∈ {0, 1}, µj ≥ 0 ∀i ∈ I,∀j ∈ J. (4.4d)

In this formulation, the three terms in the objective function (4.4a) represent the

capacity-dependent setup cost, access cost, and the waiting cost, respectively. Con-

straints (4.4b) ensure that every demand zone i is going to be assigned to exactly one

SC. Constraints set in (4.4c) guarantee that each demand zone is assigned to an open

SC only, and the total demand arrival rate to the SC does not exceed its service ca-

pacity. The proposed formulation results in a nonlinear mixed-integer program with

linear constraints. When ξi, i ∈ I is known with certainty, we refer to (4.4) as the

Nominal Problem.

By defining R =
C2
a + 1

2
for each facility, the last term in (4.4a) can be written as

t
∑
j∈J

Λj

[ RΛj

µj(µj − Λj)
+

1

µj

]
= t
∑
j∈J

[ RΛ2
j

µj(µj − Λj)
+

Λj

µj

]
= t
∑
j∈J

[ Rρ2
j

1− ρj
+ ρj

]
.
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As a result, the nominal problem becomes

min
y,µ,ρ

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξiyij + t
∑
j∈J

[ Rρ2
j

1− ρj
+ ρj

]
(4.5a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.5b)

∑
i∈I

ξiyij ≤ µj ∀j ∈ J (4.5c)

∑
i∈I

ξiyij = ρjµj ∀j ∈ J (4.5d)

yij ∈ {0, 1}, µj ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J. (4.5e)

Note that in problem (4.5), if R = 1, and we simplify the term
[ ρ2

j

1− ρj
+ ρj

]
in the

objective function (4.5a), (4.5) reduces to the nominal problem (3.1) in the M/M/1

model.

4.1.1 A Piecewise Linear Approximation

In this section, we apply an approximate solution approach to solve the nominal

problem (4.5) based on a piecewise linearization of the nonlinear function g(ρ) =
ρ2

1− ρ
. First, we show how the breakpoints of linear segments are defined so that

the approximation error does not exceed a predefined threshold ε, i.e., the piecewise-

linear function ĝ should satisfy 0 ≤ g(ρ)− ĝ(ρ) ≤ ε for every possible ρ, an approach

that was first applied in Elhedli’s work [31]. After identifying the breaking points,

we provide the approximated model’s formulation using special ordered sets of type

2 (SOS2) introduced by Beale and Forrest [10].

Let us assume that ĝ, the piecewise-linear function, has n+ 1 breakpoints located

at p0, p1, ..., pn, and its line segments are tangent to the original function g at n points

q1, q2, ..., qn where pk−1 < qk < pk. Assuming, without loss of generality, that p0 = 0,

and given that ĝ is linear in the interval [pk−1, pk], it is possible to find both qk and pk

when pk−1 is known. As a result, all the breakpoints and points of tangency can be
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identified recursively. Each line segment of ĝ can be divided into two smaller parts

at the tangency point, i.e., the line segment in the interval [pk−1, pk] can be divided

into two parts in intervals [pk−1, qk] and [qk, pk], respectively. To find qk, we consider

the first part and solve

g(qk) = ĝ(pk−1) + g′(qk)(qk − pk−1), (4.6)

which is the equation of the segment in the interval [pk−1, qk]. Then, using the calcu-

lated qk and considering the line segment in the interval [qk, pk], we can find pk. First,

consider the segment in the interval [qk, pk]

ĝ(pk) = g(qk) + g′(qk)(pk − qk), (4.7)

and as we want to ensure that the difference between g and ĝ does not exceed ε, we

should substitute (4.7) in the following equation

g(pk) = ĝ(pk) + ε. (4.8)

Thus, (4.8) becomes

g(pk) = g(qk) + g′(qk)(pk − qk) + ε. (4.9)

Now we can find pk by solving (4.9). For the next recursion, we can similarly use

pk to find qk+1 and pk+1, and so on. This algorithm terminates when pk reaches or

exceeds a pre-defined upper limit of p. Using the results (4.6) and (4.9) for g(ρ), the

approximation formulas are

q2
k

1− qk
= ĝ(pk−1) +

[
1

(1− qk)2
− 1

]
(qk − pk−1)

p2
k

1− pk
=

q2
k

1− qk
+

[
1

(1− qk)2
− 1

]
(pk − qk) + ε,

and as ρ < 1, the stopping criterion is selected to be p ≥ 0.99. If ρ = 1, g(ρ) goes to

infinity, and the system becomes unstable. Hence, p = 1 can not be included in the

set of breaking points as it violates constraint (4.8).
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Moreover, since ρ < 1, constraint (4.5c) becomes redundant in the presence of

constraint (4.5d), and can be eliminated. Besides, since yij ∈ {0, 1}, it can be replaced

with y2
ij. Therefore, the piecewise approximation of (4.5) can be reformulated as

min
y,µ,ρ,θ,λ

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξiyij + tR
∑
j∈J

θj + t
∑
j∈J

ρj (4.10a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.10b)

ρj =
∑
k∈K

λjkpk ∀j ∈ J (4.10c)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.10d)

∑
k∈K

λjk = 1 ∀j ∈ J (4.10e)

∑
i∈I

ξiy
2
ij ≤ ρjµj ∀j ∈ J (4.10f)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K (4.10g)

yij ∈ {0, 1}, µj, θj ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J. (4.10h)

In this formulation, the objective function (4.10a) is linear in y,µ, ρ, θ, and λ, whereas

constraint (4.10f) is a second-order cone constraint that is converted from equality to

inequality. Since problem (4.10), tries to minimize the objective function over µ and ρ,

which have positive coefficients in the objective function, it forces µ and ρ to take the

minimum values possible; thus, the equality holds at optimality. Constraints (4.10b)

ensures that every demand zone is assigned to only one SC. Besides, constraints

(4.10c)-(4.10e) are SOS2 constraints using |K| breakpoints and the variable λ is the

ordered set of non-negative variables λjk, of which at most two consecutive ones can

be non-zero.
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4.2 The Robust Optimization (RO) Problem

In this section, we introduce the robust counterpart of (4.10), which can be stated as

follows:

min
y,µ,ρ,θ,λ

∑
j∈J

fjµj + tR
∑
j∈J

θj + t
∑
j∈J

ρj + sup
ξ∈Ξ

∑
j∈J

∑
i∈I

cijξiyij (4.11a)

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.11b)

ρj =
∑
k∈K

λjkpk ∀j ∈ J (4.11c)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.11d)

∑
k∈K

λjk = 1 ∀j ∈ J (4.11e)

sup
ξ∈Ξ

∑
i∈I

ξiy
2
ij ≤ ρjµj ∀j ∈ J (4.11f)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K

(4.11g)

yij ∈ {0, 1}, µj, θj ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J.

(4.11h)

Solving this problem provides a conservative approximation of the robust counterpart

of the nominal problem (4.10) as the objective function (4.11a) and constraints (4.11f)

are going to be robustified individually. Similar to the M/M/1 case, we consider two

classes of uncertainty sets: Budgeted and Ball uncertainty set, and show how the

robustified problem can be tractably formulated as a mixed-integer second-ordered

cone programming problem.

4.2.1 Budgeted Uncertainty Set

To tractably reformulate (4.11), we need to reformulate the objective function (4.11a)

and constraint (4.11f), which are both linear in ξ.
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Note that the term supξ∈Ξ

∑
j∈J

∑
i∈I
cijξiyij can be written as

∑
j∈J

∑
i∈I

cijξ
nom
i yij + sup

wi

∑
j∈J

∑
i∈I

cij ξ̂iwiyij

s.t.
∑
i

wi ≤ Γ (θ′)

0 ≤ wi ≤ 1 (φ′i),

and its robust counterpart can be obtained directly through LP duality as

∑
j∈J

∑
i∈I

cijξ
nom
i yij + inf

θ′,φ′
(Γθ′ +

∑
i

φ′i) (4.12a)

s.t. θ′ + φ′i ≥
∑
j

cij ξ̂iyij ∀i ∈ I (4.12b)

θ′, φ′i ≥ 0 ∀i ∈ I. (4.12c)

Moreover, by using the same approach, the left hand side of constraint (4.11f) becomes

∑
i∈I

ξnomi y2
ij + sup

wi

∑
i∈I

ξ̂iwiy
2
ij

s.t.
∑
i

wi ≤ Γ (γj)

0 ≤ wi ≤ 1 (ηij).

and its robust counterpart can be obtained directly through LP duality as

∑
i∈I

ξnomi y2
ij + inf

γ,η

(
Γγj +

∑
i∈I

ηij

)
(4.13a)

s.t. γj + ηij ≥ ξ̂iyij ∀i ∈ I,∀j ∈ J (4.13b)

γj, ηij ≥ 0 ∀i ∈ I,∀j ∈ J. (4.13c)
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By substituting results (4.12) and (4.13) into the objective function (4.11a) and con-

straint set (4.11f) respectively, (4.11) can be tractably reformulated as

min
y,µ,ρ,θ,λ,θ′,φ′,γ,η

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξ
nom
i yij + Γθ′ +

∑
i∈I

φ′i (4.14a)

+ tR
∑
j∈J

θj + t
∑
j∈J

ρj

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.14b)

θ′ + φ′i ≥
∑
j∈J

cijξiyij ∀i ∈ I (4.14c)

ρj =
∑
k∈K

λjkpk ∀j ∈ J (4.14d)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.14e)

∑
k∈K

λjk = 1 ∀j ∈ J (4.14f)

∑
i∈I

ξnomi y2
ij + Γγj +

∑
i∈I

ηij ≤ ρjµj ∀j ∈ J (4.14g)

γj + ηij ≥ ξ̂iyij ∀i ∈ I,∀j ∈ J

(4.14h)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K

(4.14i)

yij ∈ {0, 1}, µj, θj, θ′, φ′i, γj, ηij ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J.

(4.14j)

The objective function is linear, whereas constraint (4.14g) is a second-order cone

constraint.

4.2.2 Ball Uncertainty Set

To tractably reformulate (4.11) using the Ball uncertainty set, we need to robustify

the objective function (4.11a) and constraint (4.11f) which are both linear in ξ.
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First, let us consider the objective function, in which supξ∈Ξ

∑
j∈J

∑
i∈I
cijξiyij can be

written as

sup
ξ̂

∑
j∈J

∑
i∈I

cij ξ̂iyij +
∑
j∈J

∑
i∈I

cijξ
nom
i yij (4.15)

s.t. ‖ξ̂‖2 ≤ r. (4.16)

where sup‖ξ̂‖2≤r
∑
j∈J

∑
i∈I
cij ξ̂iyij evaluates to r‖cᵀy‖2.

Next, let us define u ≥
√∑

j∈J

∑
i∈I
c2
ijy

2
ij, replace

√∑
j∈J

∑
i∈I
c2
ijy

2
ij with u, and add this

constraint to the mathematical model. Thus, the objective function becomes

min
y,µ,ρ,θ,u

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξ
nom
i yij + ru+ tR

∑
j∈J

θj + t
∑
j∈J

ρj (4.17)

s.t.
∑
j∈J

∑
i∈I

c2
ijy

2
ij ≤ u2. (4.18)

Moving to the left hand side of constraint (4.11f), it can be written as

sup
ξ̂

∑
i∈I

ξ̂iyij +
∑
i∈I

ξnomi y2
ij (4.19)

s.t. ‖ξ̂‖2 ≤ r. (4.20)

where sup‖ξ̂‖2≤r
∑
i∈I
ξ̂iyij evaluates to r‖y‖2. By defining u′j ≥

√∑
i∈I
y2
ij, replacing√∑

i∈I
y2
ij with u′j in constraint (4.11f), and adding it back to the model, the robust

counterpart of problem (4.11) becomes
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min
y,µ,ρ,θ,λ,u,u′

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξ
nom
i yij + ru+ tR

∑
j∈J

θj (4.21a)

+ t
∑
j∈J

ρj

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.21b)

∑
j∈J

∑
i∈I

c2
ijy

2
ij ≤ u2 (4.21c)

ρj =
∑
k∈K

λjkpk ∀j ∈ J (4.21d)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.21e)

∑
k∈K

λjk = 1 ∀j ∈ J (4.21f)

∑
i∈I

ξnomi y2
ij + ru′j ≤ ρjµj ∀j ∈ J (4.21g)

u′j
2 ≥

∑
i∈I

y2
ij ∀j ∈ J (4.21h)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K (4.21i)

yij ∈ {0, 1}, µj, θj, u, u′j ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J. (4.21j)

The objective function is linear, whereas constraint (4.21c), (4.21g), and (4.21h) are

second-order cone constraints.
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4.3 The Distributionally-Robust Optimiztion (DRO) Problem

Starting with the reformulated problem (4.10), the single-stage distributionally-robust

SSDP can be stated as

min
y,µ,ρ,θ,λ

∑
j∈J

fjµj + sup
Fξ∈Dε(F̂ξ)

EFξ

[∑
j∈J

∑
i∈I

cijξiyij

]
+ tR

∑
j∈J

θj (4.22a)

+ t
∑
j∈J

ρj

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.22b)

ρj =
∑
k∈K

λjkpk ∀j ∈ J (4.22c)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.22d)

∑
k∈K

λjk = 1 ∀j ∈ J (4.22e)

sup
Fξ∈Dε(F̂ξ)

EFξ

[∑
i∈I

ξiy
2
ij

]
≤ ρjµj ∀j ∈ J (4.22f)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K

(4.22g)

yij ∈ {0, 1}, µj, θj ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J.

(4.22h)

Under Assumption (3.1), and focusing on the distributionally-robust objective func-

tion (4.22a), we utilize the following Corollary from [35]:

Corollary 4.1 ([35],Corollary 5.1). Suppose that the uncertainty set is a polytope,

that is, Ξ = {ξ ∈ Rm : Cξ ≤ d} where C is a matrix and d a vector of appropri-

ate dimensions, and consider the affine function a(ξ) := aᵀξ + b. The worst-case
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expectation supFξ∈Dε(F̂ξ)EFξ

[
a(ξ)

]
evaluates to

inf
τ,sn,πn

τε+
1

N

∑
n∈N

sn

s.t. b+ aᵀξ̂
n + πn(d− Cᵀ

ξ̂
n) ≤ sn ∀n ∈ N

‖Cᵀπn − a‖∗ ≤ τ ∀n ∈ N

πn ≥ 0 ∀n ∈ N.

Thus, according to this Corollary, objective function (4.22a) can be tractably

reformulated as

min
y,µ,ρ,θ,τ,s,π≥0

∑
j∈J

fjµj + τε+
1

N

∑
n∈N

sn + tR
∑
j∈J

θj + t
∑
j∈J

ρj (4.23)

s.t.
∑
j∈J

∑
i∈I

cij ξ̂
n
i yij +

∑
l∈L

(
dl −

∑
i∈I

Cliξ̂
n
i

)
πln ≤ sn ∀n ∈ N∣∣∣∣∣∑

l∈L

Cliπln −
∑
j∈J

cijyij

∣∣∣∣∣ ≤ τ ∀i ∈ I,∀n ∈ N.

The norm constraint in the Corollary reduces to a constraint on the absolute value

since l∞-norm is the dual norm in this case. Now, moving to the distributionally-

robust constraint (4.22f) and using the Corollary again, sup
Fξ∈Dε(F̂ξ)

EFξ

[∑
i∈I
ξiy

2
ij

]
can be

tractably reformulated as

inf
τ′,s′,π′≥0

τ ′jε+
1

N

∑
n∈N

s′nj (4.24a)

s.t.
∑
i∈I

ξ̂ni yij +
∑
l∈L

(
dl −

∑
i∈I

Cliξ̂
n
i

)
π′lnj ≤ s′nj ∀n ∈ N,∀j ∈ J (4.24b)∣∣∣∣∣∑

l∈L

Cliπ
′
lnj − yij

∣∣∣∣∣ ≤ τ ′j ∀i ∈ I,∀j ∈ J,∀n ∈ N. (4.24c)

and by defining a′nj = s′nj −
∑
i∈I
ξ̂ni yij , we can rewrite (4.24a) and (4.24b) as follow

inf
τ′,s′,π′≥0

τ ′jε+
1

N

∑
n

(
a′nj +

∑
i∈I

ξ̂ni y
2
ij

)
(4.25a)

s.t.
∑
l∈L

(
dl −

∑
i∈I

Cliξ̂
n
i

)
π′lnj ≤ a′nj ∀n ∈ N, ∀j ∈ J. (4.25b)
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Using results (4.23), and (4.25), problem (4.22) can be tractably reformulated as

min
∑
j∈J

fjµj + τε+
1

N

∑
n∈N

sn + tR
∑
j∈J

θj + t
∑
j∈J

ρj (4.26a)

s.t.
∑
j∈J

∑
i∈I

cij ξ̂
n
i yij +

∑
l∈L

(
dl −

∑
i∈I

Cliξ̂
n
i

)
πln ≤ sn ∀n ∈ N (4.26b)

∑
l∈L

Cliπln −
∑
j∈J

cijyij ≤ τ ∀i ∈ I,∀n ∈ N (4.26c)

∑
j∈J

cijyij −
∑
l∈L

Cliπln ≤ τ ∀i ∈ I,∀n ∈ N (4.26d)

∑
j∈J

yij = 1 ∀i ∈ I (4.26e)

ρj =
∑
k∈K

λjkpk ∀j ∈ J (4.26f)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.26g)

∑
k∈K

λjk = 1 ∀j ∈ J (4.26h)

a′nj = s′nj −
∑
i∈I

ξ̂ni yij ∀n ∈ N, ∀j ∈ J (4.26i)

1

N

∑
n∈N

∑
i∈I

ξ̂ni y
2
ij + τ ′jε+

1

N

∑
n∈N

a′nj ≤ ρjµj ∀j ∈ J (4.26j)

∑
l∈L

(
dl −

∑
i∈I

Cliξ̂
n
i

)
π′lnj ≤ a′nj ∀n ∈ N,∀j ∈ J (4.26k)

∑
l∈L

Cliπ
′
lnj − yij ≤ τ ′j ∀i ∈ I,∀j ∈ J,∀n ∈ N

(4.26l)

yij −
∑
l∈L

Cliπ
′
lnj ≤ τ ′j ∀i ∈ I,∀j ∈ J,∀n ∈ N

(4.26m)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K (4.26n)

yij ∈ {0, 1}, µj, θj, τ, sn, πln, τ ′j, π′lnj ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J,∀n ∈ N,∀l ∈ L.

(4.26o)

Again, this is a mixed-integer second-order conic programming problem.
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4.4 Solution Method

In this section, we propose a Lagrangian Relaxation (LR) approach to solve the

deterministic and robust optimization models for the G/M/1 problem. This method

enables us to decompose problems (4.10), (4.14), and (4.21) into smaller problems,

which make it easier to solve. Moreover, as the solution obtained from the LR is, in

general, not feasible, we use Dantzing-Wolfe decomposition to get a feasible solution

for these problems.

4.4.1 Deterministic Problem

Consider problem (4.10). Then, by relaxing the constraints set (4.10b), using multi-

plier δ ∈ Rm
+ , we get the Lagrangian subproblem

[LSP ] : min
y,µ,ρ,θ,λ

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξiyij + tR
∑
j∈J

θj + t
∑
j∈J

ρj (4.27a)

+
[∑
i∈I

δi(1−
∑
j∈J

yij)
]

s.t. ρj =
∑
k∈K

λjkpk ∀j ∈ J (4.27b)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.27c)

∑
k∈K

λjk = 1 ∀j ∈ J (4.27d)

∑
i∈I

ξiy
2
ij ≤ ρjµj ∀j ∈ J (4.27e)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K

(4.27f)

yij ∈ {0, 1}, µj, θj ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J.

(4.27g)

By simplifying the objective function, (4.27) becomes
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[LSP ] : min
y,µ,ρ,θ,λ

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

(cijξi − δi)yij + tR
∑
j∈J

θj + t
∑
j∈J

ρj (4.28a)

+
∑
i∈I

δi

s.t. (4.27b)− (4.27g). (4.28b)

Moreover, (4.28) can be decomposed by j to n subproblems. Hence, the decomposed

subproblem for every potential SC location j ∈ J is

[LSPj] :βj = min
y,µ,ρ,θ,λ

fjµj +
∑
i∈I

(cijξi − δi)yij + (tR)θj + tρj (4.29a)

s.t. ρj =
∑
k∈K

λjkpk (4.29b)

θj =
∑
k∈K

λjkĝ(pk) (4.29c)

∑
k∈K

λjk = 1 (4.29d)

∑
i∈I

ξiy
2
ij ≤ ρjµj (4.29e)

λjk ≥ 0, SOS2 ∀k ∈ K (4.29f)

yij ∈ {0, 1}, µj, θj ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I. (4.29g)

Solving (4.28) provides a lower bound for given δi,∀i ∈ I. Thus, to find the best (the

highest) bound, we solve the Lagrangian Dual Problem (LDP)

max
βj ,δi

∑
j∈J

βj +
∑
i∈I

δi,

where βj is the optimal value of LSPj.

LDP can be reformulated as a linear program. To do that, let Hj = {hj} be the

index set of feasible solutions of (4.29). Thus, βj can be written as an optimization

over the set Hj, i.e.,

βj = min
hj∈Hj

fjµ
hj
j +

∑
i∈I

(cijξi − δi)y
hj
ij + (tR)θ

hj
j + tρ

hj
j .
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With that, the Lagrangian Dual Problem can be formulated as

[DMP ] : max
β,δ

∑
j∈J

βj +
∑
i∈I

δi (4.30a)

s.t. βj +
∑
i∈I

y
hj
ij δi ≤ fjµ

hj
j +

∑
i∈I

cijξiy
hj
ij + (tR)θ

hj
j + tρ

hj
j (wjhj)

∀j ∈ J,∀hj ∈ Hj.

(4.30b)

which is referred to as the dual master Problem.

In general, the solution obtained from the Lagrangian Relaxation is not feasible

to problem (4.10) as it violates constraint (4.10b), and the optimality gap is strictly

positive. Thus, to get a feasible solution, one way is to apply the Dantzing-Wolfe

decomposition approach, in which we consider an integer version of the dual problem

of [DMP ]. The [DMP ] is an LP; hence, its dual problem (with the integrality

constraint) is

[MP ] : min
w

∑
j∈J

∑
hj∈HJ

[
fjµ

hj
j +

∑
i∈I

cijξiy
hj
ij + (tR)θ

hj
j + tρ

hj
j

]
wjhj (4.31a)

s.t.
∑
j∈J

∑
hj∈HJ

y
hj
ij wjhj = 1 (δi) (4.31b)

∑
hj∈HJ

wjhj = 1 (βj) (4.31c)

wjhj ∈ {0, 1} ∀j ∈ J,∀hj ∈ Hj,

(4.31d)

which is called the (Dantzing-Wolfe) master problem. Note that to obtain a feasible

solution for the original problem, we must force the integrality of wjhj . The description

of the algorithm, known as Kelly’s Cutting Plane algorithm, will be provided at the

end of this section. Furthermore, the pseudocode of this algorithm, for the G/M/1

nominal problem, is shown in Algorithm 1.
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4.4.2 RO Problem (Budgeted Uncertainty Set)

Recall problem (4.14). Then, by relaxing constraints sets (4.14b), and (4.14c), using

multipliers υ and χ ∈ Rm
+ , respectively, the Lagrangian subproblem becomes

[LSP ] : min
∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξ
nom
i yij + Γθ′ +

∑
i∈I

φ′i + tR
∑
j∈J

θj (4.32a)

+ t
∑
j∈J

ρj +
[∑
i∈I

υi

(
1−

∑
j∈J

yij

)]
+
[∑
j∈J

∑
i∈I

cij ξ̂iyijχi − θ′
∑
i∈I

χi −
∑
i∈I

φ′iχi

]
s.t. ρj =

∑
k∈K

λjkpk ∀j ∈ J (4.32b)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.32c)

∑
k∈K

λjk = 1 ∀j ∈ J (4.32d)

∑
i∈I

ξnomi y2
ij + Γγj +

∑
i∈I

ηij ≤ ρjµj ∀j ∈ J (4.32e)

γj + ηij ≥ ξ̂iyij ∀i ∈ I,∀j ∈ J

(4.32f)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K

(4.32g)

yij ∈ {0, 1}, µj, θj, θ′, φ′i, γj, ηij ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J.

(4.32h)

By simplifying the objective function, (4.32) becomes

[LSP ] : min
y,µ,ρ,θ,λ,θ′,φ′,γ,η

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

[
cijξ

nom
i + cij ξ̂iχi − υi

]
yij − θ′

[∑
i∈I

χi − Γ
]

−
∑
i∈I

φ′i(χi − 1) + tR
∑
j∈J

θj + t
∑
j∈J

ρj +
∑
i∈I

υi (4.33a)

s.t. (4.32b)− (4.32h). (4.33b)

This problem is feasible only when
∑
i∈I
χi ≤ Γ, and χi ≤ 1, and they force both θ′, and

φ′i to take value of zero, respectively. Moreover, (4.33) can be decomposed by j to
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n subproblems. Hence, the decomposed subproblem for every potential SC location

j ∈ J is

[LSPj] :βj = min
y,µ,ρ,θ,λ,γ,η

fjµj +
∑
i∈I

[
cijξ

nom
i + cij ξ̂iχi − υi

]
yij + tRθj + tρj (4.34a)

s.t. ρj =
∑
k∈K

λjkpk (4.34b)

θj =
∑
k∈K

λjkĝ(pk) (4.34c)

∑
k∈K

λjk = 1 (4.34d)

∑
i∈I

ξnomi y2
ij + Γγj +

∑
i∈I

ηij ≤ ρjµj (4.34e)

γj + ηij ≥ ξ̂iyij ∀i ∈ I

(4.34f)

λjk ≥ 0, SOS2 ∀k ∈ K

(4.34g)

yij ∈ {0, 1}, µj, θj, γj, ηij ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I.

(4.34h)

Solving (4.33) provides a lower bound for given values of χi, and υi,∀i ∈ I. Thus, to

find the best (highest) bound, we solve the Lagrangian Dual Problem (LDP)

max
βj ,υi

∑
j∈J

βj +
∑
i∈I

υi,

where βj is the optimal value of LSPj.

LDP can be reformulated as a linear program. To do that, let Hj = {hj} be the

index set of feasible solutions of (4.34). Thus, βj can be written as an optimization

over the set Hj, i.e.,

βj = min
hj∈Hj

fjµ
hj
j +

∑
i∈I

[
cijξ

nom
i + cij ξ̂iχi − υi

]
y
hj
ij + (tR)θ

hj
j + tρ

hj
j .

With that, the Lagrangian Dual Problem can be formulated as
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[DMP ] : max
χ≥0,β,υ

∑
j∈J

βj +
∑
i∈I

υi (4.35a)

s.t. βj +
∑
i∈I

y
hj
ij υi −

∑
i∈I

cij ξ̂iy
hj
ij χi ≤ fjµ

hj
j (4.35b)

+
∑
i∈I

cijξ
nom
i y

hj
ij + (tR)θ

hj
j + tρ

hj
j ∀j ∈ J,∀hj ∈ Hj (αjhj)∑

i∈I

χi ≤ Γ (ω)

(4.35c)

0 ≤ χi ≤ 1 ∀i ∈ I (δi).

(4.35d)

which is referred to as the dual master Problem.

In general, the solution obtained from the Lagrangian Relaxation is not feasible to

problem (4.14) as it violates constraints (4.14b) and (4.14c), and the optimality gap

is strictly positive. Thus, to get a feasible solution, one way is to apply the Dantzing-

Wolfe decomposition approach, in which we need to solve an integer version of the

dual problem of [DMP ]. The [DMP ] is an LP; hence, its dual problem (with the

integrality constraint) is

[MP ] : min
α,ω,δ

∑
j∈J

∑
hj∈HJ

[
fjµ

hj
j +

∑
i∈I

cijξ
nom
i y

hj
ij + (tR)θ

hj
j + tρ

hj
j

]
αjhj

+ ωΓ +
∑
i∈I

δi (4.36a)

s.t. −
∑
j∈J

∑
hj∈HJ

αjhj(cij ξ̂iy
hj
ij ) + ω + δi ≥ 0 (χi) (4.36b)

∑
j∈J

∑
hj∈HJ

y
hj
ij αjhj = 1 (υi) (4.36c)

∑
hj∈HJ

αjhj = 1 (βj) (4.36d)

αjhj ∈ {0, 1}, ω, δi ≥ 0 ∀i ∈ I,∀hj ∈ Hj.

(4.36e)
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which is called the (Dantzing-Wolfe) master problem. Note that to obtain a feasible

solution for the original problem, we must force the integrality of αjhj .

4.4.3 RO Problem (Ball Uncertainty Set)

Recall the robust counterpart of problem (4.21). Let us rewrite the objective function

as follow

min fjµj +
∑
j∈J

∑
i∈I

cijξ
nom
i yij + r‖cᵀy‖2 + tR

∑
j∈J

θj + t
∑
j∈J

ρj.

Now, by using the Cauchy-Schwarz inequality we have

‖cᵀy‖1 =
∑
j∈J

∑
i∈I

| cijyij | .1 ≤
(∑
j∈J

∑
i∈I

| cijyij |2
)1/2(∑

j∈J

∑
i∈I

12
)1/2

=
√
m× n‖cᵀy‖2

⇒ 1√
m× n

‖cᵀy‖1 =
1√

m× n
∑
j∈J

∑
i∈I

cijyij ≤ ‖cᵀy‖2.

Thus, we can rewrite the approximated problem for (4.21) as follow:

min
y,µ,ρ,θ,λ,u′

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξ
nom
i yij +

r√
m× n

∑
j∈J

∑
i∈I

cijyij (4.37a)

+ tR
∑
j∈J

θj + t
∑
j∈J

ρj

s.t.
∑
j∈J

yij = 1 ∀i ∈ I (4.37b)

(4.21d)− (4.21j). (4.37c)
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Now, by relaxing constraint (4.37b), using the multiplier α ∈ Rm
+ , the Lagrangian

subproblem becomes

[LSP ] : min
y,µ,ρ,θ,λ,u′

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

cijξ
nom
i yij +

r√
m× n

∑
j∈J

∑
i∈I

cijyij (4.38a)

+ tR
∑
j∈J

θj + t
∑
j∈J

ρj +
[∑
i∈I

αi

(
1−

∑
j∈J

yij

)]
s.t. ρj =

∑
k∈K

λjkpk ∀j ∈ J

(4.38b)

θj =
∑
k∈K

λjkĝ(pk) ∀j ∈ J (4.38c)

∑
k∈K

λjk = 1 ∀j ∈ J

(4.38d)∑
i∈I

ξnomi y2
ij + ru′j ≤ ρjµj ∀j ∈ J (4.38e)

u′j
2 ≥

∑
i∈I

y2
ij ∀j ∈ J (4.38f)

λjk ≥ 0, SOS2 ∀j ∈ J,∀k ∈ K

(4.38g)

yij ∈ {0, 1}, µj, θj, u′j ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I,∀j ∈ J.

(4.38h)

By simplifying the objective function, (4.38) can be written as

[LSP ] : min
y,µ,ρ,θ,λ,u′

∑
j∈J

fjµj +
∑
j∈J

∑
i∈I

[
cij(ξ

nom
i +

r√
m× n

)− αi
]
yij (4.39a)

+ tR
∑
j∈J

θj + t
∑
j∈J

ρj +
∑
i∈I

αi

s.t. (4.38b)− (4.38h). (4.39b)
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Besides, (4.38) can be decomposed by j to n subproblems. Hence, the decomposed

subproblem for every potential SC location j ∈ J is

[LSPj] :βj = min
y,µ,ρ,θ,λ,u′

fjµj +
∑
i∈I

[
cij(ξ

nom
i +

r√
m× n

)− αi
]
yij (4.40a)

+ (tR)θj + tρj

s.t. ρj =
∑
k∈K

λjkpk (4.40b)

θj =
∑
k∈K

λjkĝ(pk) (4.40c)

∑
k∈K

λjk = 1 (4.40d)

∑
i∈I

ξnomi y2
ij + ru′j ≤ ρjµj (4.40e)

u′j
2 ≥

∑
i∈I

y2
ij (4.40f)

λjk ≥ 0, SOS2 ∀k ∈ K (4.40g)

yij ∈ {0, 1}, µj, θj, u′j ≥ 0, 0 ≤ ρj < 1 ∀i ∈ I. (4.40h)

Solving (4.39) provides a lower bound for given αi,∀i ∈ I. Thus, to find the best (the

highest) bound, we solve the Lagrangian Dual Problem (LDP)

max
βj ,αi

∑
j∈J

βj +
∑
i∈I

αi,

where βj is the optimal value of LSPj.

LDP can be reformulated as a linear program. To do that, let Hj = {hj} be the

index set of feasible solutions of (4.40). Thus, βj can be written as an optimization

over the set Hj, i.e.,

βj = min
hj∈Hj

fjµ
hj
j +

∑
i∈I

[
cij(ξ

nom
i +

r√
I × J

)− αi
]
y
hj
ij + (tR)θ

hj
j + tρ

hj
j .
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With that, the Lagrangian Dual Problem can be formulated as

[DMP ] : max
β,α

∑
j∈J

βj +
∑
i∈I

αi (4.41a)

s.t. βj +
∑
i∈I

y
hj
ij αi ≤ fjµ

hj
j +

∑
i∈I

[
cij(ξ

nom
i +

r√
I × J

)− αi
]
y
hj
ij (4.41b)

+ (tR)θ
hj
j + tρ

hj
j (wjhj)

∀j ∈ J,∀hj ∈ Hj,

which is referred to as the dual master problem.

In general, the solution obtained from the Lagrangian Relaxation is not feasible to

problem (4.21) as it violates the constraint (4.21b), and the optimality gap is strictly

positive. Thus, to get a feasible solution, one way is to apply the Dantzing-Wolfe

decomposition approach, in which we solve an integer version of the dual problem of

[DMP ]. Since the [DMP ] is an LP; hence, its dual problem (with the integerality

constraint) is

[MP ] : min
w

∑
j∈J

∑
hj∈HJ

[
fjµ

hj
j +

∑
i∈I

(
cijξ

nom
i +

rcij√
I × J

− αi
)
y
hj
ij (4.42a)

+ (tR)θ
hj
j + tρ

hj
j

]
wjhj

s.t.
∑
j∈J

∑
hj∈HJ

y
hj
ij wjhj = 1 (αi) (4.42b)

∑
hj∈HJ

wjhj = 1 (βj) (4.42c)

wjhj ∈ {0, 1} ∀j ∈ J,∀hj ∈ Hj,

(4.42d)

which is called the (Dantzing-Wolfe) master problem. Note that to obtain a feasible

solution for the original problem, we must enforce the integrality of wjhj .

In all the aforementioned models presented in this section, we start with initial

multipliers for the [LSPj] and solve these problems to get a lower bound and a set of

solutions. Then upon solving the [DMP ], we obtain new multipliers for the [LSPj]
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and an upper bound. In each iteration, the new multipliers are updated and used

in the subproblems to get new solutions and a new lower bound. Besides, all the

solutions from the subproblems are used to generate new cuts that are added to the

[DMP ]. We iterate between theses two problems until the lower bound and the upper

bound converge to the Lagrangian bound. Algorithm 1 shows a pseudocode of the

solution method.

Algorithm 1: Kelly’s Cutting Plane Algorithm For The G/M/1 NP

Initialization: δ ≥ 0, Hj ← ∅, UB ←∞, LB ← −∞ ;

while UB − LB > ε do

∀j ∈ J , solve [LSPj](δk) to obtain Xk = (yk,µk, ρk, θk), and LBk.

Update the lower bound as LB = max(LB,LBk);

Generate a new cut from Xk as β ≤ fµk + (cᵀξ− δ)yk + (tR)θk + tρk and

append it to [DMP ]; i.e., Hj ← Hj ∪ {k};

Solve [DMP ] to update UB and obtain new multipliers δk+1 for the next

iteration.

end

Declare LB as the Lagrangian bound.

As we mentioned earlier, we need to solve the master problem to find a set of

feasible solutions for the original problem as some of the constraints are violated. For

each j ∈ J , decision variables wjhj , in the Deterministic and RO-Ball master problems,

and αjhj , in RO-Budgeted Mater problem, corresponding to a set of feasible solutions

obtained from subproblem j in all iterations. Besides, for each j, only one wjhj , and

αjhj would be equal to one, and the rest becomes zero. In problem (4.31), let w∗jhj

be the optimal solution of the binary master problem, then we can retrieve a feasible

solution for the original problem as follows:

µj =
∑
hj∈Hj

µ
hj
j w

∗
jhj

yij =
∑
hj∈Hj

y
hj
ij w

∗
jhj
.

The same applies to other cases. Moreover, the relative optimality gap is computed
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as the difference between the optimal value obtained from the Dantzing-Wolfe decom-

position and the Lagrangian bound, divided by the Lagrangian bound. Constraints

(4.31b), (4.36c), and (4.42b) guarantee that every demand zone i is assigned to one

facility only. Constraint sets (4.31c), (4.36d), and (4.42c) ensure that only one as-

signment is selected for each facility.



Chapter 5

Numerical Results

5.1 Test Problems

We test on benchmark instances introduced in Holmberg et al. [39], which were

originally developed for the capacitated facility location problems with single sourcing.

They consist of four sets of test problems, randomly generated with different sizes

and properties. To evaluate the performance of proposed models, we use two test

problems with different sizes from the first set, one problem from the second set, and

one from the last set of Holmberg test problems. The reason for this selection is that

the test problems from these three sets are meant to test the effect of changing the

setup cost (f), the capacity, and the different sizes. Instances of the same size, in

each set, have the same demands and access costs. Since the models in this thesis

consider the capacity as a decision variable, we only pick one instance of each size

m× n = 50× 10, 50× 20, 150× 30, and 200× 30 to show the effect of the problem

size on the computational performance with a different setup and waiting time costs.

However, the third set’s test problems are quite different as they have the same setup

cost f and capacity for the problems with the same J , but differ in demands and

access costs. The setup costs are assumed to be $10 and $20 per customer per unit

time, the access costs are considered for per unit of demand, and the waiting cost t

is assumed to be $100 and $500 per unit time. Moreover, for the RO models, two

sizes of the uncertainty sets, which contain 70% and 90% of the sample data, are

considered for the test problems. Data samples of size N = 10 were drawn uniformly

and random from U(0, 2ξnom), where ξnom is the nominal (deterministic) demand.

58
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For the DRO problem, the values of 100 and 500 are used for ε, which indicates

our allowance for moving the masses between probability distributions, i.e., as ε

gets bigger, we could move more masses between the distributions. The realizations

used in RO problems are also used here as the historical or predicted realizations

of the uncertainty parameter (the demand). We used a box support set defined as

0 ≤ ξ ≤ 2ξnom. The cut-off time and optimality gap are set to 10, 000 seconds and

0.1% for all the instances. All these models are coded in MATLAB and solved using

Gurobi 9.0.1.

5.2 Results For The M/M/1 Problem

Tables 5.1 and 5.2 depict the computational results of direct solution with Gurobi

for the M/M/1 Deterministic Problem with different values of t and f . The tables

report the total cost($), the computation time in seconds (CPU), the number of open

facilities (OF), and the optimality gap (%). Besides, the contribution of each cost

component (setup cost (SC), access cost (AC), and waiting time cost (WTC)) in the

objective function is reported with the maximum and minimum utilization of the

open facilities (U-Max, and U-Min).

Table 5.1: Computational Performance: Deterministic Problem, t = 100

f m n TC
CPU
(s)

OF
SC
(%)

AC
(%)

WTC
(%)

U-Min
(%)

U-Max
(%)

Gap
(%)

p1a 10 50 10 26171 2.00 5 55.63 24.15 20.22 80.97 87.43 0.0000
p1b 20 50 10 42857 13.29 4 67.95 16.54 15.52 85.75 91.20 0.0573

p2a 10 50 20 42688 56.42 7 66.88 12.35 20.77 83.39 88.45 0.0959
p2b 20 50 20 74286 64.80 4 76.87 10.55 12.59 89.82 93.62 0.0613

p3a 10 150 30 46865 10004.00 5 63.37 20.71 15.91 80.75 91.15 0.6647
p3b 20 150 30 79529 10005.00 4 74.69 13.16 12.15 90.86 93.29 0.2566

p4a 10 200 30 92561 10007.00 14 65.64 14.85 19.51 75.70 88.82 0.4833
p4b 20 200 30 160230 10002.00 11 75.84 9.92 14.24 87.94 92.80 1.0226
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Table 5.2: Computational Performance: Deterministic Problem, t = 200

f m n TC
CPU
(s)

OF
SC
(%)

AC
(%)

WTC
(%)

U-Min
(%)

U-Max
(%)

Gap
(%)

p1a 10 50 10 28297 18.88 4 51.45 25.05 23.50 75.05 83.82 0.0166
p1b 20 50 10 45611 11.48 4 63.84 15.75 20.41 78.85 88.10 0.0979

p2a 10 50 20 45736 90.52 4 62.42 17.13 20.45 81.52 88.00 0.0000
p2b 20 50 20 77475 503.06 2 73.70 13.97 12.33 91.95 92.57 0.0978

p3a 10 150 30 49838 10008.81 4 59.59 20.97 19.44 84.06 87.05 0.5482
p3b 20 150 30 83533 10010.00 4 71.11 12.55 16.34 87.29 90.75 0.4017

p4a 10 200 30 99453 10078.00 11 61.09 16.00 22.91 78.48 86.87 1.6409
p4b 20 200 30 169470 10008.00 10 71.71 10.32 17.98 82.84 90.50 2.3525

Considering these two tables and Figures 5.1 and 5.2, and putting the test prob-

lems in four different groups, the following observations can be made:

(a) (b)

(c) (d)

Figure 5.1: TC and SC For M/M/1 Deterministic Problem Using Different Setup Costs
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(a) (b)

Figure 5.2: TC and WTC For M/M/1 Deterministic Problem Using Different t Values

• In each group, an increase in f increases SC and TC, which is expected. In-

creasing the setup cost means that opening a facility would be more expensive,

and as it is proportional to the capacity, the system tries to counter this increase

by attaining higher utilization of existing servers and decreasing the total ca-

pacity. Besides, attaining higher utilization leads to having smaller WTC as a

percentage of TC. Here is an example from Table 5.2 that shows the decrease

in the total capacity when f increases: in p1a and p1b, the system opens facili-

ties 1, 2, 5, and 7 for both problems, with the following capacities: p1a: 640.64,

298.97, 607.70, and 241.17, and p1b: 610.28, 279.06, 623.10, and 176.28 for

facilities 1, 2, 5, and 7, respectively.

• Increasing t leads to an increase in TC. An increase in t means a larger waiting

penalty for congestion, which leads to a system with more uniform utilization

among the open facilities or a system with a larger total capacity. In both

cases, the maximum utilization decreases, which means fewer customers are

waiting in the system. However, in most cases, WTC increases as t increases,

and the reason is that a decrease in the number of customers in the system is

too small compared with the increase in t, leading to an increase in WTC. As

an example, for p3b with different t, the system opens the same facilities, but
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the total capacity for t = 100 is 3211.60, and when t = 200, the total capacity

becomes 3311.27. However, in p2a, when t = 100, the system opens facilities

1, 10, 11, 14, 16, 18, 20 with the total capacity of 3298.269, whereas with t = 200

it opens facilities 2, 7, 8, 14 with the total capacity 3322.589.

• As the number of demand zones and the potential facility locations increases,

the computational time increases and the problems become harder to solve to

optimality.

Tables 5.3 and 5.4 summarize the computational results for the M/M/1 RO problem

with the Budgeted uncertainty set, and Tables 5.5 and 5.6 illustrate the results for

M/M/1 RO problem with Ball uncertainty set. These are the results of a direct

solution with Gurobi with different values of f and t. Because of the random nature

of the realizations, we report the computational results for three randomly generated

realizations of data samples. According to the tables, an increase in f and t increases

TC for both types of uncertainty sets. Besides, other observations can be made as

follow:

• For each Trial, in both RO problems, an increase in the uncertainty budget

increases TC as we become more conservative. In cases where the number

of facilities remains unchanged, the total capacity increases as the uncertainty

budgets increase to accommodate higher demands. Moreover, when the number

of facilities increases or decreases, the total capacity also increases or decreases.

• Figure 5.3 compares the costs of using the RO problem with both uncertainty

sets (we consider Trial 3 as an example) when using the same uncertainty bud-

get. As shown in the figures, for the same problem, there is not much difference

between the costs obtained from using the budgeted or ball uncertainty sets as

we use the same realizations to calibrate the uncertainty sets.

Tables 5.7 and 5.8 summarize the computational results of direct solution with Gurobi

for the M/M/1 DRO Problem, with different values of f , t, and ε. For this model, we
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(a) (b)

(c) (d)

Figure 5.3: Costs of Using RO-Budgeted and RO-Ball with The Same Uncertainty Budget

could only solve the smallest instance of the selected test problems with optimality

gap of less than 7% within the cut-off time. Hence, we tried smaller instances based

on the Holmberg instances of different sizes m × n = 15 × 5, 25 × 5, and 25 × 10.

Moreover, because of the random nature of the realizations, we report the results

for three randomly generated realizations of data samples. According to the results,

similar observations to the RO models could be made regarding the increase in f

and t. Besides, as ε increases, TC also increases, which is expected. The reason for

that is when we increase ε, we are allowing more probability mass to be transported

between scenarios, including high-cost ones, which costs us more. Now, the question

is how we should properly choose the ε. Mohajerani Esfahani and Kuhn [35] provide
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a formula for the out-of-sample probabilistic performance guarantees as a function

of ε. They observe that by starting from ε = 0, the out-of-sample performance is

high, and as ε increases, the out-of-sample improves up to a certain point (critical

Wasserstein radius) and then increases again. Thus, we should try to choose ε to

optimize the out-of-sample performance, and ensure a certain expected out-of-sample

performance guarantee; i.e., the out-of-sample expected cost should not be higher

than the objective value of the DRO problem. Besides, it seems here that in all three

Trials for p1a and p1b, when ε = 500, the entire probability mass was transported to

the worst-case scenario, so we are solving the RO problem for these instances.

Table 5.3: Computational Performance: RO-Budgeted for Three Trials, t = 100

Γ70% Γ90%

f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)
p1a1 10 50 10 40392 28.62 6 0.0000 41221 37.18 6 0.0270
p1a2 10 50 10 40795 25.90 7 0.0001 41738 31.62 7 0.0359
p1a3 10 50 10 41600 33.60 6 0.0000 41959 33.84 7 0.0000

p1b1 20 50 10 67203 41.02 4 0.0681 68641 66.79 5 0.0006
p1b2 20 50 10 68020 43.87 5 0.0669 69649 35.77 5 0.0000
p1b3 20 50 10 69356 73.55 5 0.0004 69939 95.93 5 0.0767

p2a1 10 50 20 65628 8418.50 8 0.0987 66030 10011.00 8 0.2880
p2a2 10 50 20 65636 8646.00 7 0.0967 66117 8198.90 7 0.0939
p2a3 10 50 20 67275 10028.59 8 0.9339 67865 10017.00 8 0.7098

p2b1 20 50 20 116310 10008.00 4 1.1935 117040 10015.00 4 1.4605
p2b2 20 50 20 116690 10012.00 4 1.2120 117570 10013.00 4 1.3755
p2b3 20 50 20 119240 10009.00 4 1.7098 120460 10012.00 5 2.7844

p3a1 10 150 30 72591 10013.00 7 1.5312 73044 10013.00 7 1.5976
p3a2 10 150 30 72816 10010.00 7 1.4744 73066 10014.00 6 1.7001
p3a3 10 150 30 72423 10011.00 7 1.6583 73241 10010.00 6 1.5789

p3b1 20 150 30 124690 10010.00 5 1.2752 125480 10007.00 5 0.8265
p3b2 20 150 30 124900 10016.00 5 1.3684 125340 10009.00 5 1.3690
p3b3 20 150 30 124350 10011.00 5 1.2145 125800 10008.00 5 1.3414

p4a1 10 200 30 144990 10019.00 16 1.2216 146550 10015.00 15 2.1173
p4a2 10 200 30 143710 10011.00 15 1.1939 144410 10013.00 15 1.1869
p4a3 10 200 30 146920 10010.00 16 2.1956 147240 10016.00 16 1.2808

p4b1 20 200 30 255680 10008.00 13 1.3528 258510 10011.00 12 2.9755
p4b2 20 200 30 253400 10008.00 12 2.1296 254710 10017.00 12 2.9486
p4b3 20 200 30 258920 10014.00 11 2.3929 259390 10020.00 12 1.3912
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Table 5.4: Computational Performance: RO-Budgeted for Three Trials, t = 200

Γ70% Γ90%

f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)
p1a1 10 50 10 43349 232.92 5 0.0545 44198 94.77 5 0.0010
p1a2 10 50 10 43768 79.96 5 0.0000 44748 96.72 5 0.0000
p1a3 10 50 10 44576 253.63 5 0.0489 44943 52.59 5 0.0000

p1b1 20 50 10 70740 980.86 4 0.0819 72211 224.05 4 0.0005
p1b2 20 50 10 71629 969.37 4 0.0962 73290 219.90 4 0.0758
p1b3 20 50 10 73117 1140.10 4 0.0959 73726 145.91 4 0.0021

p2a1 10 50 20 69967 10004.00 4 1.8503 70394 10017.00 4 2.1436
p2a2 10 50 20 70290 10008.00 4 2.7963 70790 10011.00 6 3.0172
p2a3 10 50 20 71737 10011.00 4 2.7351 72456 10011.00 5 2.6672

p2b1 20 50 20 121270 10005.00 4 2.8179 122010 10021.00 4 2.5912
p2b2 20 50 20 121590 10003.00 4 4.5537 122510 10004.00 4 4.0223
p2b3 20 50 20 124250 10007.00 4 4.4186 125300 10003.00 3 4.3572

p3a1 10 150 30 76696 10011.00 5 2.2043 77166 10011.00 5 2.2482
p3a2 10 150 30 76893 10015.00 5 1.9900 77159 10012.00 5 2.3063
p3a3 10 150 30 76530 10014.00 5 2.1420 77401 10010.00 5 2.2750

p3b1 20 150 30 129990 10008.00 4 3.0686 130820 10015.00 4 3.1985
p3b2 20 150 30 130191 10009.69 4 1.8567 130640 10012.00 4 3.0387
p3b3 20 150 30 129785 10026.48 4 2.1542 131280 10005.00 4 2.1478

p4a1 10 200 30 154600 10011.00 12 2.2881 156520 10011.00 13 2.4511
p4a2 10 200 30 153530 10017.00 12 3.5097 154120 10014.00 12 2.3192
p4a3 10 200 30 156560 10010.00 12 2.3585 156970 10010.00 12 2.4769

p4b1 20 200 30 266960 10015.00 8 3.5754 270000 10008.00 10 2.2324
p4b2 20 200 30 264560 10010.00 7 2.4643 265990 10009.00 9 2.2249
p4b3 20 200 30 270290 10013.00 9 2.1086 270820 10007.00 8 2.1790



66

Table 5.5: Computational Performance: RO-Ball for Three Trials, t = 100

r70% r90%
f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)

p1a1 10 50 10 41432 78.91 6 0.0033 41536 196.89 6 0.0916
p1a2 10 50 10 41930 43.44 7 0.0000 42772 69.41 8 0.0145
p1a3 10 50 10 42305 91.91 7 0.0151 43599 84.79 7 0.0000

p1b1 20 50 10 67925 2588.00 6 0.0977 68097 169.30 6 0.0204
p1b2 20 50 10 68740 5632.90 6 0.0998 70113 2558.70 6 0.0996
p1b3 20 50 10 69356 561.86 6 0.0999 71481 485.31 6 0.0621

p2a1 10 50 20 65824 10009.00 8 0.8448 66573 10010.00 8 2.2932
p2a2 10 50 20 66885 10016.35 8 0.9867 67561 10009.00 8 1.0268
p2a3 10 50 20 67424 10008.00 8 1.1160 68013 10011.00 8 1.2101

p2b1 20 50 20 116880 10012.00 4 3.1535 117740 10010.00 7 2.7803
p2b2 20 50 20 119070 10006.00 6 3.0962 120080 10007.00 5 2.7695
p2b3 20 50 20 119510 10019.00 6 2.4738 120810 10006.00 5 2.9089

p3a1 10 150 30 73426 10008.00 7 1.5370 73912 10009.00 6 1.8950
p3a2 10 150 30 73135 10009.00 7 1.7055 73671 10008.00 7 1.7382
p3a3 10 150 30 73258 10010.32 6 1.7187 74346 10017.00 7 1.7648

p3b1 20 150 30 125690 10007.00 6 1.7361 126580 10004.00 6 2.0347
p3b2 20 150 30 125290 10010.00 6 1.9193 126280 10010.00 5 1.9271
p3b3 20 150 30 125730 10020.30 6 2.3996 127330 10005.00 6 1.7641

p4a1 10 200 30 147950 10012.00 21 2.1819 149970 10011.00 21 1.4799
p4a2 10 200 30 146750 10011.00 20 2.4547 148810 10008.00 22 1.7673
p4a3 10 200 30 148610 10012.00 22 2.7922 150720 10010.00 22 3.3924

p4b1 20 200 30 258360 10008.00 15 1.5991 263320 10022.00 18 2.1781
p4b2 20 200 30 255500 10011.18 14 1.6256 264060 10011.00 20 4.2212
p4b3 20 200 30 258310 10010.00 16 1.8922 260670 10034.00 14 1.9283



67

Table 5.6: Computational Performance: RO-Ball for Three Trials, t = 200

r70% r90%
f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)

p1a1 10 50 10 44478 4320.50 6 0.0838 44585 330.26 6 0.0842
p1a2 10 50 10 44998 1476.10 6 0.0791 45873 407.34 6 0.0000
p1a3 10 50 10 45391 1756.10 6 0.0938 46745 111.79 7 0.0993

p1b1 20 50 10 71924 10006.00 4 1.4279 72142 10004.00 5 1.1347
p1b2 20 50 10 72789 10005.00 4 1.0153 74213 10005.00 4 0.9249
p1b3 20 50 10 73439 895.45 5 0.0779 75632 10012.00 5 0.7374

p2a1 10 50 20 70803 10005.00 7 3.8798 71493 10010.00 6 5.6245
p2a2 10 50 20 71991 10003.00 7 4.3702 72592 10007.00 6 3.6476
p2a3 10 50 20 72425 10005.00 7 3.6793 73046 10006.00 5 3.8198

p2b1 20 50 20 122504 10007.85 5 4.8673 123330 10009.00 4 5.1318
p2b2 20 50 20 124739 10015.83 6 5.4745 127020 10018.00 6 6.1330
p2b3 20 50 20 126120 10011.00 6 5.7015 127570 10005.00 5 6.2035

p3a1 10 150 30 77984 10007.00 6 2.9448 78333 10018.00 6 2.8361
p3a2 10 150 30 77459 10008.00 6 2.5006 78137 10011.00 6 2.7758
p3a3 10 150 30 77762 10014.63 6 2.8483 79434 10007.00 6 4.3585

p3b1 20 150 30 130860 10014.00 4 1.9835 131510 10005.00 4 0.0214
p3b2 20 150 30 130820 10006.00 5 1.8477 132530 10006.00 5 3.1304
p3b3 20 150 30 131330 10006.00 5 2.0248 132420 10007.00 4 1.5064

p4a1 10 200 30 160400 10018.00 16 5.0855 161550 10010.00 19 3.3296
p4a2 10 200 30 157730 10021.00 18 4.5382 161220 10009.00 17 5.4007
p4a3 10 200 30 158550 10016.00 16 2.8482 160040 10010.00 13 3.0893

p4b1 20 200 30 273710 10009.00 12 3.4997 278320 10007.00 13 3.8224
p4b2 20 200 30 270860 10015.00 14 3.8021 275250 10009.00 14 3.8447
p4b3 20 200 30 272040 10014.00 12 3.1091 278380 10016.00 13 4.5543
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Table 5.7: Computational Performance: DRO for Three Trials, t = 100

ε = 100 ε = 500
f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)

p1a1 10 15 5 11343 1211.71 5 0.0989 16177 596.78 5 0.0805
p1a2 10 15 5 10853 324.88 5 0.0851 16177 347.30 5 0.0772
p1a3 10 15 5 11153 799.30 5 0.0228 16177 573.62 5 0.0772

p1b1 20 15 5 17329 953.83 5 0.0246 25485 588.35 5 0.0863
p1b2 20 15 5 16619 1730.80 5 0.0632 25485 806.92 5 0.0859
p1b3 20 15 5 17019 4281.60 5 0.0813 25485 1022.50 5 0.0792

p2a1 10 25 5 16393 632.74 5 0.0946 23674 708.37 5 0.0775
p2a2 10 25 5 16569 746.21 5 0.0932 23899 772.79 5 0.0750
p2a3 10 25 5 16912 647.28 5 0.0694 24014 560.36 5 0.0836

p2b1 20 25 5 25230 880.09 5 0.0927 36979 1365.30 5 0.0960
p2b2 20 25 5 25751 1400.10 5 0.0805 37416 1145.80 5 0.0806
p2b3 20 25 5 26153 2802.60 5 0.0785 37582 1043.00 5 0.0911

p3a1 10 25 10 15310 7101.90 10 0.0016 22018 5773.20 10 0.0809
p3a2 10 25 10 15547 3702.80 10 0.0822 22291 8107.70 10 0.0914
p3a3 10 25 10 15774 7331.50 10 0.0832 22373 1760.30 10 0.0774

p3b1 20 25 10 24389 10001.00 10 1.6309 35879 10001.00 10 1.8664
p3b2 20 25 10 24994 10001.00 10 2.4197 36269 10004.00 10 1.3297
p3b3 20 25 10 24994 10001.00 10 2.0358 36406 10001.00 10 1.4408

p4a1 10 50 10 27846 10007.00 10 1.3027 35154 10009.00 10 1.3868
p4a2 10 50 10 27703 10002.00 10 2.7408 34843 10003.00 10 2.5811
p4a3 10 50 10 29209 10002.00 10 2.2486 36471 10002.00 10 2.6596

p4b1 20 50 10 45333 10006.00 10 1.4481 57113 10004.00 10 1.2302
p4b2 20 50 10 45172 10002.00 10 3.7029 56815 10002.00 10 2.8510
p4b3 20 50 10 48175 10002.00 10 3.4178 59803 10002.00 10 2.5798
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Table 5.8: Computational Performance: DRO for Three Trials, t = 200

ε = 100 ε = 500
f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)

p1a1 10 15 5 12449 1806.06 5 0.0342 17625 525.76 5 0.0116
p1a2 10 15 5 11955 1704.00 5 0.0685 17625 1360.30 5 0.0201
p1a3 10 15 5 12272 1305.30 5 0.0966 17625 705.65 5 0.0089

p1b1 20 15 5 18706 3035.19 5 0.0692 27474 1658.30 5 0.0973
p1b2 20 15 5 18016 387.27 5 0.0973 27474 431.99 5 0.0792
p1b3 20 15 5 18388 1597.50 5 0.0713 27474 1405.10 5 0.0814

p2a1 10 25 5 17657 1863.80 5 0.0850 25406 884.18 5 0.0782
p2a2 10 25 5 17993 2108.70 5 0.0288 25658 1057.00 5 0.0849
p2a3 10 25 5 18343 2237.30 5 0.0012 25773 1193.70 5 0.0898

p2b1 20 25 5 26945 1649.10 5 0.0005 39231 1908.20 5 0.0005
p2b2 20 25 5 27531 4252.90 5 0.0055 39686 1038.90 5 0.0919
p2b3 20 25 5 27915 2236.20 5 0.0831 39884 1744.80 5 0.0869

p3a1 10 25 10 16825 10002.40 10 1.9736 24266 10004.00 10 2.6749
p3a2 10 25 10 17226 10009.00 10 1.4586 24511 10001.00 10 0.5461
p3a3 10 25 10 17494 10001.00 10 1.9603 24597 10002.00 10 1.5517

p3b1 20 25 10 26524 10001.00 10 3.3008 38764 10001.00 10 3.6196
p3b2 20 25 10 27795 10001.00 10 6.1498 39377 10002.00 10 3.8310
p3b3 20 25 10 27783 10002.00 10 5.3197 39467 10003.00 10 3.0318

p4a1 10 50 10 30786 10004.16 10 4.9518 38215 10002.00 10 3.9563
p4a2 10 50 10 29965 10002.00 10 3.7541 37881 10002.00 10 4.7544
p4a3 10 50 10 31880 10002.00 10 6.4004 39762 10002.00 10 4.3208

p4b1 20 50 10 49261 10002.00 10 6.2528 61935 10002.00 10 5.6710
p4b2 20 50 10 48502 10002.00 10 5.5064 60417 10002.00 10 4.0772
p4b3 20 50 10 51432 10002.00 10 5.3749 63846 10002.00 10 4.9091

5.2.1 Deterministic VS. Uncertain Demands

In this section, we will compare the Deterministic model with the models when un-

certainty is considered. For this purpose, we choose Trial 2 as an example. Figure

5.4 shows the objective function values (costs) for each problem, considering the De-

terministic model and the RO models using both uncertainty sets. One may ask the

reason for proposing the RO models as the costs in these problems are almost double

the costs of the Deterministic problem. There are a couple of observations that can

be made from the Deterministic model:
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• Sensitivity to the Capacities and the Demands: Considering the expected num-

ber of customers in the system
∑
j∈J

∑
i∈I
ξiyij

µj −
∑
i∈I
ξiyij

, we realize that if µj =
∑
i∈I
ξiyij,

this number can go to infinity; therefore, the whole system can become unsta-

ble. Hence, this problem can be further complicated and become sensitive to

the capacities installed and the demand experienced. As a result, it is crucial

to include uncertainty when designing a service system.

• Out-of-Sample Data: Now, let us move to the feasibility constraint
∑
i∈I
ξiyij ≤ µj.

Here, to have a better insight, we use test problem p1b from the Deterministic

problem when t = 100. Considering the optimal solution (µ∗, y∗) for this prob-

lem, we generated 30 realizations from U(0, 2ξnom) within the uncertainty set

and the feasibility constraint was tested using these new realizations (demands).

We found out that 80% of the realizations was not feasible for the Deterministic

problem as the feasibility constraint was violated. Although the other 20% of

the realizations were feasible, we know that the cost with the same optimal

solution would be higher as they are not the initial demands that we solve the

problem to optimality with.

• The Number of Open Facilities and Customers’ Assignment: Comparing the

results for the Deterministic Problem and RO problems, we can see that the

number of open facilities can vary when considering uncertain demands. Be-

sides, with a different number of open facilities, the assignment of customers

would be different. However, there are some cases that the number of open

facilities remains unchanged. In this case, the system’s total with uncertain

demands would be larger, and the assignment of customers could be different.

As we mentioned earlier, the RO approaches are meant to protect the model from

the worst-case scenario (demand); therefore, they are considered too conservative and

have a poor performance. Moreover, they are based on the assumption of having no

knowledge about the probability distribution of the uncertain parameter. Thus, as an
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(a) (b)

(c) (d)

Figure 5.4: Costs of Considering The Deterministic Model VS. RO Models (Trial 2)

alternative, we proposed the DRO model. We choose two small instances, with dif-

ferent values of f and t, from the DRO test problems to compare the results from the

Deterministic, RO, and DRO models. Figure 5.5 compares the costs obtained using

these three approaches for Trial 1, in which we tried four values for ε to demonstrate

the results better. As we use a Box as a support set in the DRO problem, we report

the RO problem’s results when using a Box as an uncertainty set. The observations

that can be made from the results and Figure 5.5 are as follows:

• The costs attained from the DRO problems are in between the ones achieved

from the Deterministic and RO problems, which is expected. DRO is still
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(a) (b)

Figure 5.5: Costs Obtained From Three Models

conservative, but less conservative than the RO approach.

• As ε increases, the costs also increase, and at some point, when ε is big enough

for the problems, the objective function values remain unchanged. This is when

the unchanged costs would be equal to the costs obtained from the RO problem.

5.3 Results For The G/M/1 Problem

In this section, we summarize the results for the Deterministic, RO-Ball, and DRO

problems. For these models, we could not solve big instances, so we generated smaller

instances based on the Holmberg test problems with sizes ofm×n = 6×3, 10×5, 15×5,

and 15× 10 to evaluate the performance of the proposed models.

Tables 5.9 and 5.10 summarize the computational results for the G/M/1 Deter-

ministic problem using the Lagrangian-Relaxation approach, with different values of

t, f , and Ca. The tables report the total cost, the number of iterations (Iter.), the

computation time in seconds (CPU), the number of open facilities (OF), and the op-

timality gap (%). Besides, the contribution of each term (setup cost (SC), access cost

(AC), and the waiting time cost (WTC)) in the objective function is reported with
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the maximum and minimum utilization of the open facilities (U-Max, and U-Min).

Considering these two tables, and putting the test problems in four different groups,

the following observations can be made:

Table 5.9: Computational Performance: Deterministic Problem, t = 100

Ca = 0.5

f m n TC Iter.
CPU
(s)

OF
SC
(%)

AC
(%)

WTC
(%)

U-Min
(%)

U-Max
(%)

Gap

p1a 10 6 3 4139 14 86.40 2 53.75 34.00 12.25 73.42 81.55 0.00%
p1b 20 6 3 6281 13 66.64 2 66.43 22.40 11.17 79.59 86.36 0.00%

p2a 10 10 5 5883 23 237.60 3 60.47 25.89 13.65 75.88 82.04 0.00%
p2b 20 10 5 9283 31 568.45 2 69.77 20.69 9.54 83.30 89.06 0.00%

p3a 10 15 5 13108 52 10451.00 3 68.82 21.34 9.84 84.62 87.82 0.20%
p3b 20 15 5 22204 37 10060.00 3 77.77 14.37 7.86 88.84 89.17 1.80%

p4a 10 15 10 13008 31 4053.80 5 71.44 16.16 12.40 68.67 87.27 0.00%
p4b 20 15 10 22461 30 10636.00 5 78.97 10.88 10.15 79.95 90.32 3.80%

Ca = 2
p1a 10 6 3 4826 13 56.16 2 54.75 29.67 15.58 59.39 69.88 0.50%
p1b 20 6 3 7259 21 209.50 1 61.10 27.29 11.61 79.37 79.37 1.90%

p2a 10 10 5 6858 27 504.82 2 57.58 28.01 14.41 65.15 74.50 0.00%
p2b 20 10 5 10627 37 992.35 2 68.35 18.08 13.58 71.87 80.51 0.00%

p3a 10 15 5 15331 48 6253.60 4 66.06 20.55 13.38 8.60 77.46 2.10%
p3b 20 15 5 24259 55 13725.00 1 72.48 19.87 7.65 88.83 88.83 3.20%

p4a 10 15 10 14988 39 8818.10 7 66.57 20.43 13.00 13.13 50.55 0.00%
p4b 20 15 10 24259 33 13561.00 1 72.48 19.87 7.65 88.83 88.83 19.50%

• In each group, an increase in f increases SC and TC, which is expected. Increas-

ing the setup cost means that opening a facility would be more expensive, and

as it is proportional to the capacity, the system tries to counter this increase by

attaining larger utilization and decreasing the total capacity. Besides, reaching

larger utilization leads to having smaller WTC.

• Increasing t leads to an increase in TC. An increase in t means a larger waiting

penalty for congestion, which leads to having a system with more uniform uti-

lization among the open facilities or a system with a larger total capacity. In

both cases, the maximum utilization decreases, which means fewer customers

are waiting in the system. However, in most cases, WTC increases as t in-

creases, and the reason is that an decrease in the number of customers in the

system is too small compared with an increase in t.
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Table 5.10: Computational Performance: Deterministic Problem, t = 200

Ca = 0.5

f m n TC Iter.
CPU
(s)

OF
SC
(%)

AC
(%)

WTC
(%)

U-Min
(%)

U-Max
(%)

Gap

p1a 10 6 3 4566 11 43.47 2 53.01 30.82 16.18 65.32 76.05 0.00%
p1b 20 6 3 6896 18 83.81 2 64.52 20.77 14.71 73.42 81.55 2.10%

p2a 10 10 5 6501 30 448.46 2 56.36 29.55 14.09 70.90 79.95 0.00%
p2b 20 10 5 10018 34 858.70 2 68.25 19.18 12.57 77.47 84.99 0.00%

p3a 10 15 5 14190 42 3546.40 3 67.02 19.71 13.27 79.37 83.82 0.00%
p3b 20 15 5 24237 42 10314.00 3 73.63 16.52 9.85 80.14 88.49 7.60%

p4a 10 15 10 14295 38 8427.50 7 66.24 21.05 12.71 6.48 82.61 1.10%
p4b 20 15 10 23304 37 14784.00 1 72.99 20.68 6.32 91.83 91.83 4.60%

Ca = 2
p1a 10 6 3 5438 20 58.96 2 54.73 26.33 18.94 51.96 62.48 2.90%
p1b 20 6 3 7799 20 75.91 1 62.01 23.64 14.35 72.79 72.79 0.00%

p2a 10 10 5 7655 32 601.34 2 57.37 25.10 17.54 57.26 67.68 0.00%
p2b 20 10 5 11676 54 1836.10 1 62.57 24.69 12.73 77.47 77.47 0.00%

p3a 10 15 5 17187 70 10021.00 3 63.62 20.77 15.62 59.96 75.53 6.60%
p3b 20 15 5 25775 61 14071.00 1 71.30 18.70 9.99 84.99 84.99 5.20%

p4a 10 15 10 17168 49 10388.00 3 63.44 20.99 15.58 64.47 68.47 5.30%
p4b 20 15 10 29595 56 14179.00 5 70.66 13.63 15.72 58.88 73.14 26.90%

• An increase in Ca increases TC but may increase or decrease WTC. Generally,

as Ca increases, we have higher variability in the system, thereby resulting in

increasing the WTC. On the other hand, as an increase in Ca can be interpreted

as having a more congested system, the system tries to overcome this increase

by having more uniform utilization among the open facilities or installing a

larger total capacity for the system, leading to a decrease in WTC.

• As the number of demand zones and the potential facility locations increase,

the computational time increases, and the problem becomes harder to solve to

optimality.

• We use a piecewise linear approximation to solve the G/M/1 Nominal problem.

If we generate enough breaking points for this approximation, and for Ca = 1,

the objective values would be equal or very close to the objective values obtained

from the M/M/1 problem. Following is the results for some of the problems,

with t = 100 that solved to optimality:
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M/M/1 G/M/1
p1a 4323 4322
p1b 6551 6551
p2a 6176 6176
p2b 9652 9652
p3a 13648 13648
p4a 13605 13597

Table 5.11: Computational Performance: RO-Ball, t = 100

Ca = 0.5
r = 70% r = 90%

f m n TC Iter. CPU (s) OF Gap TC Iter. CPU (s) OF Gap
p1a 10 6 3 4818 13 37.24 2 0.00% 4970 15 125.68 2 0.00%
p1b 20 6 3 6967 13 32.71 2 0.00% 7119 14 88.83 2 0.00%

p2a 10 10 5 6445 32 606.83 3 0.00% 6494 24 351.55 3 0.00%
p2b 20 10 5 10032 24 236.72 4 1.60% 10078 24 813.48 4 1.50%

p3a 10 15 5 13883 57 3862.90 4 0.00% 13947 54 8161.30 4 0.00%
p3b 20 15 5 22703 43 10281.00 3 1.00% 22774 41 10495.00 5 0.30%

p4a 10 15 10 13463 39 4805.80 5 0.00% 13480 32 4435.60 5 0.00%
p4b 20 15 10 22602 32 10199.00 6 0.60% 22984 30 10076.00 5 2.60%

Ca = 2
r = 70% r = 90%

f m n TC Iter. CPU (s) OF Gap TC Iter. CPU (s) OF Gap
p1a 10 6 3 5519 15 37.59 2 0.60% 5642 11 37.80 2 0.00%
p1b 20 6 3 7920 20 64.21 1 0.00% 8170 19 144.95 2 0.90%

p2a 10 10 5 7598 28 261.18 4 1.30% 7550 23 176.02 3 0.00%
p2b 20 10 5 11331 32 538.62 2 0.00% 11599 29 482.59 4 1.80%

p3a 10 15 5 15857 68 10141.00 3 0.00% 15928 68 10022.00 3 0.10%
p3b 20 15 5 26084 52 10543.00 3 3.60% 26396 48 10411.00 4 4.70%

p4a 10 15 10 15767 47 8193.00 6 0.90% 15790 39 10310.00 6 0.90%
p4b 20 15 10 27428 36 10881.00 5 17.80% 27023 36 12657.00 5 10.70%

Tables 5.11 and 5.12 summarize the computational results for the G/M/1 RO prob-

lem with the Ball uncertainty set using the Lagrangian-Relaxation approach, with

different values of t, f , and Ca. An increase in t, f, Ca, and the uncertainty budget

leads to an increase in TC. In this thesis, we could only evaluate the performance of

the RO model with the Ball uncertainty set, but, the model for RO problem with the

Budgeted uncertainty set was derived but not numerically tested.



76

Table 5.12: Computational Performance: RO-Ball, t = 200

Ca = 0.5
r = 70% r = 90%

f m n TC Iter. CPU (s) OF Gap TC Iter. CPU (s) OF Gap
p1a 10 6 3 5251 14 55.68 2 0.00% 5405 14 70.22 2 0.00%
p1b 20 6 3 7588 17 82.04 2 0.50% 7744 14 98.10 2 0.40%

p2a 10 10 5 7269 26 317.06 3 2.10% 7276 23 234.52 4 1.50%
p2b 20 10 5 10886 25 400.38 4 1.50% 10784 30 533.28 2 0.00%

p3a 10 15 5 14975 58 4638.00 3 0.00% 15047 71 10116.00 3 0.10%
p3b 20 15 5 24514 46 10791.00 3 1.50% 24776 41 10058.00 4 2.80%

p4a 10 15 10 14880 43 7565.60 6 0.90% 14903 44 6622.20 6 0.90%
p4b 20 15 10 26382 35 10382.00 6 11.80% 26714 32 11058.00 6 16.30%

Ca = 2
r = 70% r = 90%

f m n TC Iter. CPU (s) OF Gap TC Iter. CPU (s) OF Gap
p1a 10 6 3 6130 17 65.76 2 0.80% 6253 16 42.52 2 0.00%
p1b 20 6 3 8913 19 88.25 2 3.70% 8778 27 132.53 1 0.00%

p2a 10 10 5 8359 31 363.96 2 0.00% 8420 34 349.32 2 0.00%
p2b 20 10 5 12500 38 1496.10 2 0.00% 12561 33 519.96 2 0.00%

p3a 10 15 5 17373 72 10270.00 2 0.10% 17462 57 5834.30 2 0.00%
p3b 20 15 5 27924 63 10238.00 3 6.90% 29110 53 10349.00 3 10.00%

p4a 10 15 10 17160 50 10412.00 2 0.00% 18112 43 10311.00 4 6.00%
p4b 20 15 10 30631 40 11067.00 5 23.30% 30965 41 11464.00 6 28.70%

Tables 5.13 and 5.14 summarize the computational results of direct solution with

Gurobi for the G/M/1 DRO problem, with different values of f, t, ε, and Ca. Accord-

ing to the results, similar observations as to the two previous models could be made

regarding an increase in f, t, and Ca. Besides, as ε increases, TC also increases, which

is expected.

As for the DRO problem, we could solve a small number of instances to optimality

or with a small gap. In this thesis, we use the support set as a Box, as everything

is linear and easier to deal with; however, trying other support sets may improve the

reformulation or even the model’s performance. Moreover, without the optimality

proven for the test problems, it is hard to make accurate comparisons as we did for

the M/M/1 DRO problem.
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Table 5.13: Computational Performance: DRO, t = 100

Ca = 0.5
ε = 100 ε = 500

f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)
p1a 10 6 3 6911 178.82 1 0.0810 7714 10026.00 2 4.8577
p1b 20 6 3 10099 871.91 1 0.0855 11753 10002.00 2 3.9023

p2a 10 10 5 9015 10010.00 3 15.7623 10839 10035.00 3 13.8333
p2b 20 10 5 13379 10016.00 1 7.3772 17800 10005.00 4 15.9758

p3a 10 15 5 16482 10018.00 1 5.0145 24309 10005.00 5 12.8207
p3b 20 15 5 26167 10026.00 1 2.8376 37448 10009.00 1 1.1625

p4a 10 15 10 15631 10026.00 2 7.7138 24758 10004.00 6 20.7164
p4b 20 15 10 24239 36.73 1 0.0819 35445 10020.00 1 2.7818

Ca = 2
ε = 100 ε = 500

f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)
p1a 10 6 3 7605 10010.00 1 3.2271 8704 10007.00 2 18.1216
p1b 20 6 3 11133 10025.00 1 0.6781 13289 10177.00 2 13.3278

p2a 10 10 5 10084 10006.00 2 22.8208 12454 10058.00 3 24.1376
p2b 20 10 5 14575 10016.00 1 12.7750 19547 10026.00 2 21.5405

p3a 10 15 5 17824 10041.00 1 12.3047 25278 10010.00 1 15.0671
p3b 20 15 5 28126 10012.00 1 9.7179 39831 10018.00 1 5.3354

p4a 10 15 10 17448 10047.00 2 15.0336 24688 10006.00 1 18.6072
p4b 20 15 10 26101 10033.00 1 5.4342 37750 10024.00 1 9.2348

Table 5.14: Computational Performance: DRO, t = 200

Ca = 0.5
ε = 100 ε = 500

f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)
p1a 10 6 3 7289 113.71 1 0.0873 8318 10545.00 2 9.3262
p1b 20 6 3 10624 743.11 1 0 12568 10668.00 2 5.9834

p2a 10 10 5 9810 10031.00 3 21.0569 12131 10005.00 3 22.8334
p2b 20 10 5 14300 10061.00 2 13.0218 18632 10012.00 3 19.7392

p3a 10 15 5 17878 10057.00 2 12.1609 24419 10022.00 1 11.7942
p3b 20 15 5 27083 10004.00 1 5.6251 38541 10035.00 1 3.2342

p4a 10 15 10 15996 10036.00 1 8.5172 26379 10004.00 6 24.7127
p4b 20 15 10 25112 10062.00 1 1.6630 36505 10019.00 1 6.7209

Ca = 2
ε = 100 ε = 500

f m n TC CPU (s) OF Gap(%) TC CPU (s) OF Gap(%)
p1a 10 6 3 8206 10005.00 1 5.3993 9679 10005.00 2 25.6414
p1b 20 6 3 12012 10002.00 1 7.1373 14599 10017.00 2 19.5934

p2a 10 10 5 11022 10005.00 2 27.9566 13968 10005.00 3 31.0607
p2b 20 10 5 15587 10019.00 1 17.6210 22445 10010.00 4 32.0077

p3a 10 15 5 18956 10023.00 1 15.9588 27410 10007.00 2 21.4801
p3b 20 15 5 29766 10042.00 1 10.5955 41821 10004.00 1 12.757

p4a 10 15 10 17722 10022.00 1 15.8480 28482 10006.00 2 28.8512
p4b 20 15 10 27664 10012.00 1 10.3544 39675 10012.00 1 12.5253
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Table 5.15 shows the Lagrangian Relaxation performance for the G/M/1 Deter-

ministic problem. Although we could get solutions directly from Gurobi for some

small instances in a short time, for medium and large instances, it exhibits a poor

performance within the cut-off time. In contrast, the Lagrangian Relaxation approach

led to better solutions and good bounds within the same cut-off time or even in a

shorter time.

Table 5.15: Lagrangian Relaxation Performance For the Deterministic Problem

NP NP-LR NP NP-LR
CPU(s) Gap(%) CPU(s) Iter. Gap(%) CPU(s) Gap(%) CPU(s) Iter. Gap(%)

Ca = 0.5, t = 100 Ca = 0.5, t = 200
p1a 5.50 0.0005 86.40 14 0.0000 14.13 0.0000 43.47 11 0.0000
p1b 8.21 0.0019 66.64 13 0.0000 6.08 0.0050 83.81 18 2.1000
p2a 122.68 0.0000 237.60 23 0.0000 107.54 0.0000 448.46 30 0.0000
p2b 268.26 0.0000 568.45 31 0.0000 246.93 0.0000 858.70 34 0.0000
p3a 10012.00 18.2859 10451.00 52 0.2000 10014.00 18.7790 3546.40 42 0.0000
p3b 10010.00 30.7822 10060.00 37 1.8000 10010.00 32.8750 10314.00 42 7.6000
p4a 10007.00 31.8389 4053.80 31 0.0000 10009.00 31.9003 8427.50 38 1.1000
p4b 10008.00 43.5678 10636.00 30 3.8000 10009.00 48.9858 14784.00 37 4.6000

Ca = 2, t = 100 Ca = 2, t = 200
p1a 17.57 0.0000 56.16 13 0.5000 15.08 0.0001 58.96 20 2.9000
p1b 6.86 0.0000 209.50 21 1.9000 20.04 0.0000 75.91 20 0.0000
p2a 137.65 0.0000 504.82 27 0.0000 162.54 0.0000 601.34 32 0.0000
p2b 367.06 0.0000 992.35 37 0.0000 351.61 0.0000 1836.10 54 0.0000
p3a 10010.00 20.0170 6253.60 48 2.1000 10014.00 21.6630 10021.00 70 6.6000
p3b 10010.00 29.9094 13725.00 565 3.2000 10010.00 30.0803 14071.00 61 5.2000
p4a 10012.00 33.7112 8818.10 39 0.0000 10016.00 34.3758 10388.00 49 5.3000
p4b 10009.00 44.5217 13561.00 33 19.5000 10015.00 47.3098 14179.00 56 26.9000

5.3.1 Deterministic VS. Uncertain Demands

This section discusses the importance of considering uncertainty when designing a

service system, as shown in section 5.2.1. Figure 5.6 shows the objective function

values (costs) for each problem, using the deterministic model and the RO model

using the Ball uncertainty set. Similar observations could be made as in section

5.2.1:
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• Sensitivity to the Capacities and the Demands: Considering the expected num-

ber of customers in the system
∑
j∈J

RΛ2
j

µj(µj − Λj)
+

Λj

µj
, where Λj =

∑
i∈I
ξiyij, we

realize that if µj = Λj, this number can go to infinity; therefore, the whole

system can become unstable. Hence, this problem can be further complicated

and become sensitive to the capacities installed and the demand experienced.

As a result, it is crucial to include uncertainty when designing a service system.

• Out-of-Sample Data: Now, let us move to the feasibility constraint
∑
i∈I
ξiyij ≤ µj.

Here, to have a better insight, we use test problem p4b from the Deterministic

problem when t = 200 and Ca = 2. Considering the optimal solution (µ∗, y∗)

for this problem, we generated 30 realizations from U(0, 2ξnom) within the un-

certainty set (the Box uncertainty set), and the feasibility constraint was tested

using these new realizations (demands). We found out that 67% of them were

not feasible for the Deterministic problem as the feasibility constraint violated.

Although the other 33% of the realizations were feasible, we know that the

cost with the same optimal solution would be higher as they are not the initial

demands that we solve the problem to optimality with.

• The Number of Open Facilities and Customers’ Assignment: Here, the same

observations can be made about the M/M/1 model. Let us consider p4b, with

t = 100, r = 70% and Ca = 0.5 as an example. The number of open facilities

in the Deterministic problem is 6, with the total capacity of 1736.85, and the

number of open facilities in RO-Ball is also 6 (the same facilities), but with the

total capacity of 1778.80.

Again, as we use a Box as a support set in the DRO problem, we should consider

the results from the RO problem when using a Box as an uncertainty set when it

comes to comparison. However, since we could not solve most of the DRO problems

to optimality, this comparison would be meaningless, but it is suspected that the

following results will be realized:
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• The costs obtained from the DRO problem should be between the ones achieved

from the Deterministic and RO problems.

• As ε increases, the costs should also increase, and at some point when ε is big

enough, the objective values should remain unchanged. At this moment, the

unchanged costs should be equal to the costs attained from the RO problem.

(a) (b)

(c) (d)

Figure 5.6: Costs of Considering The Deterministic VS. RO Model



Chapter 6

Conclusion

This thesis focused on investigating and developing novel approaches for service sys-

tem design that account for the uncertainty in demand for service. In Chapter 3,

under the assumption that the demands arrival can be modelled as a Poisson pro-

cess, and the service process follows the exponential distribution, we modelled this

problem as a network of independent M/M/1 queues. Moreover, in Chapter 4, we

only changed the assumption for the demand arrival rate and modelled the prob-

lem as a network of independent G/M/1 queues. Modern methods in robust and

distributionally-robust optimization were used to address some variations of both

problems, applying different uncertainty (ambiguity) schemes.

For the M/M/1 network, we proposed MISOC models for the Nominal, RO, and

DRO problems, which could be solved using the commercial solvers, such as Cplex

or Gurobi. Testing for the Deterministic and RO problems reveals that these models

can reach good results for small/medium problems in a reasonable time, but not for

big size problems. However, the DRO model only shows a good performance for

small problems. Moreover, due to very high sensitivity of the problem to the demand

patterns, we explained the importance of designing a system that can be immune

against the uncertainty in demands, although it would be more expensive.

For the G/M/1 network, we started with the MISOC reformulation of the Nom-

inal problem, combined with a piecewise linear approximation based on the SOS2

constraints. Using this model, we proposed MISOC reformulations for the RO and

DRO problems. We then proposed a Lagrangian Relaxation approach to deal with

81
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larger problems for Nominal and RO problems, in which the subproblems are also

MISOC programs. We could only solve small problems for this part, and testing for

the Nominal and RO problems reveals their good performance on the tested instances.

However, the DRO model only showed a good performance for a very limited num-

ber of problems. We also explained that it is crucial to consider uncertainty when

designing a service system, and introduced the DRO approach as an alternative to

RO approaches.

Future research directions may include extending the proposed approaches for

situations when each service facility has more than one server (M/M/s or G/M/s)

or has a general service time (M/G/1 and M/G/s). Moreover, the capacities could

be allowed to be selected from a finite number of discrete levels instead of being

continuous decision variables. In this thesis, we used a Box as a support set for the

DRO problem; hence, another extension could be using DRO without any support

set or infinite support. Besides, the models’ performance can be improved by trying

other alternatives, such as using valid cuts, or using other approximation schemes.

Also, meta-heuristic algorithms are another approach to solve large-scale problems.
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