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Abstract 

The Semantic Web is regarded as the next generation of World Wide Web, in which human 

and machine readable and understandable knowledge is exchanged. The Semantic Web 

allows the generation of new knowledge by analyzing the underlying semantics through a 

variety of reasoning mechanisms. Plausible reasoning provides a non-deductive and 

exploratory approach to infer new knowledge from large data-sets. Plausible reasoning 

generates meaningful associations between data elements by analyzing the semantics of 

the data to identify plausible knowledge that can assist in complex decision making, 

especially when dealing with incomplete knowledge. Hence, plausible reasoning is an 

interesting and viable approach for semantic data analytics, providing an exploratory 

approach to ‘Big’ data analytics.  

  

In this thesis, we investigate plausible reasoning for semantic data analytics focusing on 

(a) identification and formal definition of plausible patterns; (b) implementation of a 

plausible reasoning framework capable of providing semantic analytics; and (c) evaluation 

of the efficacy of plausible reasoning for analyzing large volumes of health data.  

 

We used knowledge graphs, a Semantic Web inspired knowledge representation 

formalism, to encode semantic associations between entities. To infer new knowledge, we 

identified six plausible patterns—i.e. generalization, specialization, interpolation, a 

fortiori, (dis)similarity, that are applied to three types of semantic relationships—i.e. 

conceptual hierarchy, partial order and equivalence. We developed a plausible extension 

to the Web Ontology Language (OWL) in terms of PL-OWL to represent order-based 

relationships. The plausible patterns are employed by our SeDan (SEmantics-based Data 

Analytics) framework that uses the OWL 2 QL profile (underpinned by DL-Lite family) 

to support query answering over knowledge graphs. 

To evaluate our approach, we designed a real-world medical setting in which SeDan is 

required to answer intelligent medical questions from BioASQ challenges, using the large-

scale SemanticMEDLINE database, while the standard clinical ontologies, DrugBank and 

Disease Ontology, provide the supplementary semantics. In addition to providing plausibly 

inferred answers, the correctness of the answers and the underlying reasoning processes 

are important. The experimental results show SeDan expands the query answering 

coverage of the database by 37 percent, while 88 percent of the plausible answers are 

clinically reasonable, verified by a domain expert. 
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Chapter 1: Introduction 

Data analysis includes the interpretation of data aiming to derive new insights and induce 

further interesting knowledge. Exploratory Data Analytics (EDA) approaches, like 

plausible reasoning, are akin to natural experiments, in which the investigator leverages 

the available data to make assumptions, examine possible outcomes and present 

alternatives. The gained insights may be plausible, but they complement hypothetico-

deductive approaches by generating data-driven inferences that identify underlying 

patterns and correlations between data elements that can be further used for analytical 

query answering over large-scale data (Ge, 2017; Kell & Oliver, 2004; Panahiazar, 

Taslimitehrani, Jadhav, & Pathak, 2014; Tukey, 1977). 

Exploratory data analytics approaches combine data sources with data-driven methods of 

thinking, reasoning and analysis, which are different from traditional statistics and 

hypothesis testing techniques (Krumholz, 2014). Effective exploratory data analytics 

leverages the semantics of the concepts and their relationships, as represented in the data, 

to explore the underlying data (Tickoo & Iyer, 2017). This in-depth data analysis approach, 

not only enriches the description and interpretation of data, but more importantly offers 

the ability to derive inferences about the nature of the data using a range of logical 

reasoning approaches (Ogiela, 2013). 

Plausible reasoning, as an exploratory data analytics approach, pertains to human’s 

problem-solving process which explores associations between the underlying domain 

specific data in conjunction with background domain knowledge to discover ‘plausible’ 

inferences. Plausible reasoning explores a (partial) set of true statements to discover a 
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plausibly acceptable association, which is the best-effort answer and often reasonable, 

considering the current understanding of the domain and the problem being investigated. 

In the absence of deterministic and ‘complete’ knowledge, plausibility can be regarded as 

naturally-fit solutions that can be deemed to be pragmatic and reasonable to solve a 

problem.  

In functional terms, plausible reasoning derives plausible solutions by exploring semantic 

associations between the data—this is different from identifying frequent patterns or 

associations within the data—and using these semantic associations to derive inferences. 

Plausible reasoning, therefore, relies on domain-specific (conceptual) relational 

knowledge (e.g., conceptual hierarchy, partial order and equivalence) and that is used to 

identify a set of plausible patterns (such as a fortiori) inherent within the data. Although, 

plausible solutions may not always be supported by objective facts, their presence provides 

a way forward to solve complex problems (Habicht, Victora, & Vaughan, 1999). 

Medical big data analysis can provide meaningful insights by turning collected data into 

actionable knowledge. The acquired knowledge helps to better informed clinical 

diagnoses, improve targeted (personalized) therapies, validate medical treatment and 

predict the adverse events to treatments, while lowering costs (Panahiazar et al., 2014; 

Roski, Bo-Linn, & Andrews, 2014; Weil, 2014). The recent surge in P4-medicine 

(Predictive, Preventive, Participatory, Personalized), the exploitation of smart devices and 

the ease of electronic communication have led to generation of large volumes of health-

related data, which is by nature high in variety and velocity (Hood & Friend, 2011; Roski 

et al., 2014). As opposed to the challenges with the management, storage and processing 

of patient data, the large volume of data offers unprecedented opportunities to discover 
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new relationships between data elements that can help advance our understanding of 

biological structures and clinical processes. (S. Abidi, Vallis, Piccinini-Vallis, Imran, & 

Abidi, 2018; Mathew & Pillai, 2016; Panahiazar et al., 2014).  

Given the scope of medical knowledge, the potential to derive new knowledge using data-

driven approaches is not just interesting but extremely useful (S. S. R. Abidi, 2007). 

Conventional health data analysis methods are hypothesis-driven approaches based on 

deductive reasoning conducted on relatively small amounts of data, drawing logical 

assertions that may have already been embedded in the premises (Morgenthaler, 2009; 

Roski et al., 2014). However, with the availability of large volumes of health data about 

clinical practices and processes, there is a need to set-aside traditional mind-sets and 

investigate additional reasoning methods that can infer plausible solutions. Whereas the 

truth of these solutions is not fully verified, their value is nevertheless based on 

observations from actual clinical practices that resulted in positive health outcomes 

(Krumholz, 2014). 

Knowledge Graphs (KG) are an upcoming approach to represent massive volumes of 

semantic data by encoding conceptual entities, their properties and the chain of 

relationships connecting them. The connectivity of knowledge graphs offers the 

opportunity to identify interesting and unknown connections among data elements.  The 

Semantic Web framework offers knowledge representation formalism, such as ontology 

languages with different level of expressivity, e.g., Resource Description Framework 

(RDF), RDF Schema and Web Ontology Language (OWL)—that are essential for 

semantic analytics via plausible reasoning. Furthermore, semantic web offers a range of 
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reasoning mechanisms to perform reasoning over knowledge graphs, and in turn to 

implement plausible reasoning (Haider, Abidi, Woensel, & Abidi, 2014).  

In this thesis, we investigate the potential of implementing plausible reasoning, as a viable 

exploratory reasoning method, to analyze semantically annotated (large) data (i.e., 

represented in knowledge graphs) to infer new knowledge, deliver useful insights and solve 

complex problems. We propose the concept of semantics-based data analytics seeking 

actionable insight from large data jointly with background domain knowledge, when 

available. In line with this objective, we evaluate the ability of our implementation of 

plausible reasoning using health data, aiming to transform large amounts of health data 

into insightful actions that can assist healthcare providers with better disease diagnosis and 

long-term care. 

1.1 Research challenges 

To accomplish the objective of this thesis, we have taken a Semantic Web inspired 

knowledge management approach to pursue our investigation of plausible reasoning over 

knowledge graphs. In this regard, there are few key research challenges being pursued: 

a) The formal description of plausible reasoning; Plausible reasoning is an old 

reasoning approach widely used in different domains (e.g., philosophy, law, 

mathematics and artificial intelligence), while its definition has not always been 

unambiguous and consistently agreed upon. Thus, plausible reasoning and its 

characteristics that distinguish it from other sort of non-deductive reasonings 

should be properly studied and a formal model of plausible reasoning applicable 

to computer systems must be defined. 
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b) Identification of plausible patterns and their representation; Plausible reasoning 

performs inference through a set of frequently recurring patterns to suggest a 

plausible statement. There exists a variety of plausible patterns that not all of them 

are applicable to our purpose or feasible to formalize (i.e., in computer systems). 

Hence, identification of the various plausible patterns along with their 

functionality and the semantics that they are applied to are paramount.  

c) Implementation of a purposeful plausible reasoning framework capable of 

providing semantic analytics; An effective development of plausible reasoning 

depends on (i) full support of the semantic associations exploited in the plausible 

patterns in one coherent framework, and (ii) formalizing and implementing the 

logic of plausible reasoning (i.e., analysis of semantically annotated data to 

generate new knowledge) exploiting reasoning methods offered by the Semantic 

Web. And,  

d) Evaluating the efficacy of plausible reasoning for analyzing large volumes of 

health data for discovery of causal relationships between data elements (e.g., drug-

disease causal relationship).  

1.2 Contributions 

Along with the primary contribution of this thesis on implementing plausible reasoning 

over knowledge graphs, this work also offers: 

1. PL-OWL; a plausible extension to OWL ontology to support the full representation 

of semantic associations applicable to plausible patterns. An ontology language 

(i.e., OWL) should provide enough expressivity to simultaneously represent 
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various semantics (e.g., hierarchical, equivalence and ordered-based) applicable to 

plausible patterns in one integrated language. 

2. A novel query-rewriting algorithm that implements plausible patterns within the 

Semantic Web framework using OWL 2 QL together with our PL-OWL. The 

plausible query rewriting algorithm reformulates SPARQL queries to explore 

knowledge graphs, discover logical entailments and draw plausible associations. 

3. Design and development of a SEmantics-based Data ANalytics (SeDan) framework 

that integrates plausible reasoning with Semantic Web technologies to discover 

hidden knowledge underlying domain-specific data. SeDan performs an 

exploratory analysis on knowledge graphs to infer plausible knowledge and, 

ultimately, extend the query answering capabilities over knowledge graphs. 

1.3 Thesis organization  

The rest of this thesis proceeds as follows. First, Chapter 2 provides an overview of some 

basic concepts justifying the motivation of the thesis. The Semantic Web and its potential 

benefits to exploratory data analytics over knowledge graphs is discussed in Chapter 2. 

Chapter 3 introduces the notion of plausibility and focuses on the definition, and 

characterization of plausible reasoning and its components, trying to depict a clear and 

unambiguous picture of plausible reasoning. Having all the basic concepts introduced, 

Chapter 4 further elaborates the challenges of implementing plausible reasoning over 

knowledge graphs and presents our solutions addressing those challenges: the plausible 

extension to OWL and plausible query rewriting algorithm. Furthermore, the architecture 

of SeDan, our framework to semantics-based data analytics, is presented in Chapter 4. The 

evaluation framework of the system, the design of the experiment and the required 



7 

 

 

materials are explained in Chapter 5. Also, this chapter provides the experimental results 

and discusses the findings. Conclusions and potentially useful future work are discussed 

in Chapter 6. 
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Chapter 2: Preliminaries 

Given the subjective nature of plausible reasoning, its capability to derive reasonable 

inferences is constrained to realize which data is most relevant and accurate. To identify 

the relevancy of data, the meaning of data and its relationships with other data items are 

paramount. This chapter discusses how semantic associations capture the meaning of data 

and how the analysis of semantic data, especially within large-scale datasets represented 

as knowledge graphs, provides the opportunity to discover valuable and actionable 

insights, and how the Semantic Web technologies contribute to this in-depth analysis.  

This chapter introduces the basic concepts that this dissertation is built upon and later in 

the following chapters we show how these building blocks justify the motivation and 

contributions of the work. However, we cannot study the analysis of data without 

considering that data is inherently uncertain and incomplete. The challenges of reasoning 

with uncertainty and the approaches to address it are discussed in this section as well. 

2.1 Semantic association 

Semantics denote the meaning of data, rather than its syntax or structure. Semantic 

associations imply (complex) relationships between resource entities. In particular, 

semantic associations express meaningful relationships between two or multiple concepts, 

which can be represented as a directed labeled link between the concepts/resources in a 

semantic space (i.e., in the form of concept-relation-concept triple). In general, a semantic 

association can be expressed as a meaningful path between any two entities or resources 

(Anyanwu & Sheth, 2003; Khoo & Na, 2006; Kim, Ostrowski, Yamaguchi, & Sheu, 2013). 
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In a graph representation of knowledge (e.g., RDF graph), two entities, 𝜈1 and 𝜈𝑛, are 

semantically associated, 𝜌(𝜈1, 𝜈𝑛), if there exists a sequence of relationships 𝜎𝑖 (1 ≤ 𝑖) 

which 𝜈1, 𝜎1, 𝜈2, 𝜎2, 𝜈3, 𝜎3, . . . , 𝜈𝑛−1, 𝜎𝑛−1, 𝜈𝑛. In a knowledge graph, a semantic association 

may imply an actionable insight representing the connections between different events, 

concepts or phenomena, which also can be inferred either based on data or domain 

knowledge (B. Aleman-Meza, Halaschek-Wiener, Arpinar, Ramakrishnan, & Sheth, 2005; 

Boanerges Aleman-Meza, Sheth, Palaniswami, Eavenson, & Arpinar, 2006; Matthew 

Perry, Sheth, Arpinar, & Hakimpour, 2009). 

2.2 Semantic analytics 

Analysis of data at the semantic level will provide new opportunities to generate and 

discover information and transform information into actionable knowledge (Serrano & 

Gyrard, 2016). Semantic analytics performs information analysis by investigating the 

relationships between different entities in ontologies and semantic metadata. Analysis of 

semantic data exploits named relationships with well-defined semantics, which makes it 

distinguishable from statistical approaches of data mining and machine learning (Matthew 

Perry et al., 2009), and typical querying and inferencing mechanisms (Decker, 2007; 

Serrano & Gyrard, 2016). 

In the analysis of semantic data, the representation of associations (i.e., complex 

relationship between two entities) is a key issue. Semantic Web knowledge representation 

models (e.g., such as RDF(S) and OWL) offer efficient tools to representation and analysis 

of semantically annotated data (e.g., RDF data), seeking actionable knowledge. In these 

languages data associations are the fundamental elements making the query and analysis 

of data easy, while keeping it understandable for humans (Matthew Perry et al., 2009).  
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2.2.1 Related work 

Mehdi et. al. (Mehdi, Brandt, Roshchin, & Runkler, 2016) investigated the potential of 

semantic technology to interact and leverage data analytics for operational use. In their 

research, they aimed to exploit massive industrial data from sensors and devices (i.e., 

Siemens Turbine), providing insights into real-time system conditions, enhanced decision 

support, reliability and cost reduction. Mehdi et. al. combined data-driven strategies with 

knowledge models by introducing an upper-level ontology of a technical system, expressed 

in OWL 2 QL. In their semantic framework for turbine analytics, the semantic layer, in the 

middle of the framework, performs semantic mapping based on the introduced ontology. 

An Ontology-Based Data Access (OBDA) system (Kharlamov et al., 2013) will query the 

data based on the domain-specific language rather than the actual heterogeneous data 

sources. In their model, Mehdi et. al. leveraged Semantic Web technologies with 

specialized programs to reduce the complexity problems of big industrial data analytics. 

However, Mehdi et. al. just introduced a generic ontology to overcome the complexity 

problem, and no analysis of semantic data leading to new inferences is performed.  

Zimmermann et. al. (Zimmermann, Lopes, Polleres, & Straccia, 2012) presented an 

extension of RDFS to support meta information (semantics) from three domains of 

temporal, fuzzy, provenance or any combination of them (e.g., temporally-annotated 

fuzzy) in the form of RDF annotations. For example, (𝑠, 𝑝, 𝑜): [𝜆] identifies a semantically 

annotated triple with meta information where [𝜆] can be a confidence value or a timestamp 

representing a time point or a temporal interval. To be able to query and reason over the 

semantically annotated RDF, Zimmermann et. al. also introduced AnQL, as an extension 

to SPARQL. In their approach, the initial effort to enrich the triple statements in RDF 
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repository with the semantic annotations is high. Also, more importantly, the 

considerations in writing the query using AnQL make the query generation complicated.   

Likewise, there exist a number of frameworks offering semantic analytics, which exploit 

domain-specific ontologies to enrich search algorithms (Ślęzak et al., 2011) (e.g., search 

for a document), question answering (MS Perry, 2008) (e.g., answering biomedical 

questions), information retrieval (Martin, Weibel, Rocke, & Boker, 2018; Ramakrishnan, 

Kochut, & Sheth, 2006), and visual analytics (Endert, 2016; Hsiao, Pandhalkudi 

Govindarajan, & Lin, 2016).  

The studies above, along with many other works, leverage semantically annotated data to 

facilitate the analysis of large-scale data. They demonstrate the utility of semantics in 

getting to know the data, providing different perspectives on data, and adding highly 

valuable information helping to better interpret underlying data when it comes to decision 

making and problem solving. However, there still exist a lack of mechanisms to in-depth 

exploratory data analysis, that not only enriches the description and interpretation of data, 

but more importantly offers the ability to derive inferences about the nature of the data and 

yield actionable descriptive, predictive and prescriptive solutions using a range of logical 

reasoning approaches (Kaisler, Espinosa, Armour, & Money, 2014; Ogiela, 2013). In this 

regard, an exploratory data-driven reasoning approach to big data analytics that allows the 

generation of new knowledge by analyzing the underlying semantics of the available 

data/knowledge is paramount.  
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2.3 Semantic Web 

Semantic Web technologies offer languages that express semantic meta-data for human 

and machine consumption.  Enriching a Web of resources with metadata, helps Semantic 

Web technologies to simultaneously carry syntactics and semantics of data. Tim Berners-

Lee (Tim Berners-Lee, Hendler, & Lassila, 2001) define the Semantic Web as: 

“The Semantic Web is an extension of the current Web in which 

information is given a well-defined meaning, better enabling 

computers and people to work in cooperation.” 

Conforming with the Open World Assumption (OWA), Semantic Web (SW) provides an 

environment in which unknown facts are not considered false, but assumed not yet 

discovered (Sabou, 2016). With this assumption, the Semantic Web technologies have 

transformed the process of data acquisition, integration, inquiry and facilitates the 

development of open-minded knowledge discovery/reasoning/inference techniques 

required in the exploratory data analytics methods (Ge, 2017). 

The World Wide Web Consortium (W3C) is the main organization developing standards 

for the World Wide Web including the Semantic Web. To deliver the Semantic Web vision, 

W3C introduces a series of languages, standards, recommendations, frameworks, and 

APIs.  

Knowledge representation formalisms in the Semantic Web framework offer 

representations that concurrently capture syntax of data while carrying its semantics. The 

Resource Description Framework (RDF), RDF Schema (RDFS) and Web Ontology 

Language (OWL) represent fine-grained annotated data at various levels of expressivity.  
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The Resource Description Framework (RDF) (Consortium, 2014) is the basic data model 

representing both data and meta-data. RDF, which was basically an attempt to tackle 

semantic limitations of XML, represents information in a way that it is syntactically and 

semantically understandable, interoperable, and reusable both for humans and machines. 

RDF statements represent both the properties associated with the entities and their 

relationships with other entities (Heflin, 2001; Wu, Eadon, & Das, 2008). RDF repositories 

store data in triple format and construct a flexible and extensible knowledge representation 

formalism that facilitates the incorporation of newly discovered facts.  

RDF Schema (RDFS) and OWL ontologies represent the associations/relationships 

between the concepts, while seamlessly capturing their semantics in an accurate, rich and 

unambiguous way. RDFS defines a basic vocabulary describing RDF data model. RDFS 

is a simple ontology language to describe expressive taxonomies, which is written in RDF, 

providing a mechanism to define groups of related concepts and their relationships  (Abell 

et al., 2017; Chiba, Nishide, & Uchiyama, 2015). RDFS organizes the classes and 

properties in a hierarchical format.  Class definitions include Resource, Class, Literal, 

Datatype, Property, etc. Properties, which are the instances of the class rdfs:Property, 

define a relationship between two class of concepts. Properties like domain, range, 

subClassOf, subPropertyOf, etc. are some property constructs of RDFS. The basic 

ontological constructs of RDFS limits its reasoning capabilities to very basic inferences 

about taxonomies (Horrocks, 2003). 

Web Ontology Language (OWL) (Harmelen & McGuinness, 2004) is an Description 

Logic-based extension to RDF and RDFS offering flexible ontology modeling while 

providing efficient automated reasoning. Well-defined syntax and semantics of OWL is 
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inherited from its predecessor DAML+OIL, providing an efficient reasoning with enough 

expressivity. Essentially, OWL uses RDF statements and supports all the class and 

property constructs of RDFS, while delivering a richer expressivity. OWL provides logical 

combinations of other classes (e.g., intersections, unions, or complements) and makes the 

enumeration of the objects feasible. In OWL, equality and disjoint statements can be made 

on classes and properties. The major addition of OWL is its capability to define restrictions 

on a particular property of a class to determine how properties behave. OWL has three 

sublanguages: Lite, DL, and Full, ordered in increasing expressivity. Because OWL Full 

is undecidable, the focus has been on OWL Lite and OWL DL which are based on 

expressive Description Logics (DL). Decidability and provision of sound, complete and 

tractable reasoning services are the key inference problems that motivate the use of 

different OWL sublanguages (Horrocks, 2003; Horrocks & Sattler, 2007). 

Linked Open Data (LOD) methods have transformed data/knowledge sharing and are used 

to link diverse data sources and integrate background knowledge to further extend the data 

coverage. SPARQL query language is utilized to retrieve and manipulate the data stored 

in heterogenous, distributed triple repositories.  

In addition, the knowledge representation formalisms of the Semantic Web allow 

automatic reasoning and inference over RDF triple stores (T Berners-Lee, Hendler, & 

Lassila, 2001; Laborie, Ravat, Song, & Teste, 2015). Built-in description logic-based 

reasoning, which supports OWL ontologies and Semantic Web rule languages (i.e., 

RuleML, SWIRL), helps perform semantic-aware analysis and automatically discovers 

relevant knowledge from underlying data/knowledge (Bouamrane, Rector, & Hurrell, 

2011; Gnanambal, 2014; Mohammadhassanzadeh, Van Woensel, Abidi, & Abidi, 2017; 
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Rodríguez-González et al., 2012). The following sections further elaborate on the 

opportunities and challenges of reasoning on the Semantic Web. 

2.3.1 Reasoning paradigms in the Semantic Web 

Semantics and expressivity of RDFS and OWL constructs provide the opportunity of 

ontology-based reasoning to discover new relationships based on RDF data. This inference 

is a logical entailment of the semantic model (i.e., ontology) leveraging the stored data. 

The OWL constructs like sameAs, differentFrom, disjointFrom, equivalentProperty, 

equivalentClass, FunctionalProperty, TransitiveProperty, someValuesFrom, and RDFS 

vocabulary like subClassOf, subPropertyOf, range, domain, and more, are some constructs 

that deliver ontological inference on the Semantic Web. 

OWL 2 EL, OWL 2 QL, and OWL 2 RL are three fragments (profiles) of OWL 2 DL 

introduced by W3C that target different application areas (i.e., regarding the expressivity 

of the ontology and size of the data) adjusting the expressivity power of OWL Full 

ontology to perform efficient reasoning (S. S. R. Abidi & Abidi, 2013; S. S. R. Abidi & 

Shayegani, 2009). OWL 2 EL performs reasoning in polynomial time suitable for 

applications with a large number of concepts and/or properties in their ontologies. OWL 2 

RL is recommended for applications that require scalable and efficient reasoning by trading 

the full expressivity of the language (i.e., compared to OWL 2), while being amenable to 

implementation using rule-based technologies. OWL 2 RL runs efficient reasoning in 

polynomial time. The third fragment of OWL 2, OWL 2 QL, is designed as an ontology 

language that provides sound and complete query answering over (very) large data in 

LOGSPACE time (i.e., with respect to the size of the data). OWL 2 QL is based on DL-
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Lite family providing many features required to query large data via a simple query 

rewriting mechanism (World Wide Web Consortium, 2012).  

The choice of an OWL flavor strongly depends on the application, the size of the data and 

complexity of the ontology representing the domain knowledge: OWL 2 EL is suitable for 

complex ontologies with intricately related classes and properties; OWL 2 RL is 

recommended for applications which require additional expressivity in the form of rules; 

and if the main purpose of the application is to leverage a moderately complex ontology to 

reason over a large amount of instance data via query rewriting, OWL 2 QL is an 

appropriate choice.  

Ontology languages concentrate on a formal specification of a conceptualisation. An 

ontology contains a set of class definitions, along with their attributes, associations 

between the classes (i.e., hierarchies) and the restrictions characterizing the relationships 

between classes and their instances (Lin, Harding, & Tsai, 2012). However, even the most 

expressive ontology language does not have enough capability to represent complex 

domain knowledge—e.g., OWL does not have the expressivity power to join relationships 

(like UncleOf relation). Ontology reasoning is based on description logics that are designed 

to acquire high expressiveness while maintaining the decidability of the reasoning. 

Classical ontology reasoning in the Semantic Web is limited to consistency checking, class 

properties and relationships and instance classification (Lin et al., 2012).  

Integrating OWL ontology with rule-based representation of knowledge (i.e., in the form 

of implication and conjunction) can overcome this limitation (Jafarpour, Abidi, & Abidi, 

2016; Matheus et al., 2005; Van Woensel, Roy, & Abidi, 2016). Rule-based reasoning 

offers more complex reasoning tasks than what ontology (e.g., OWL) reasonings deliver. 
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Rule languages allow users to describe relationships that cannot be described using DL 

used in OWL (Rattanasawad, Buranarach, Saikaew, & Supnithi, 2018). Semantic Web 

Rule Language (SWRL) supplements OWL profiles (i.e., OWL DL and OWL Lite 

profiles) with the Unary/Binary Datalog RuleML sublanguages of the RuleML providing 

a Horn clause rules extension to OWL. SWRL provides the required extra expressivity to 

reason with OWL individuals (Horrocks & Patel-Schneider, 2004).  

In addition to ontology reasoning and rule-based reasoning, the latest version of SPARQL 

query language (SPARQL 1.1) offers entailment regime, which captures the capabilities 

of W3C standards layered on top of RDF (like OWL 2) in the process of query answering. 

This capability provides a flexible mechanism for extending SPARQL queries using 

ontologies that allow semantic interpretations of RDF graphs and ultimately allow 

inference of additional RDF statements from explicitly given assertions. One of the main 

motivations behind the entailment regime was to deal with the inherent incompleteness of 

information in RDF data sources and enrich query answers with implicit information using 

ontologies defining the underlying RDF data (Glimm & Ogbuji, 2013; Kostylev & Grau, 

2015).  

To infer a new statement, entailment regime defines a set of conditions (also called 

inference constraints) to represent a SPARQL query as graph patterns including a set of 

RDF triples with variables. Evaluating the graph patterns over the RDF data will return the 

answers satisfying the variables in the query. To implement SPARQL entailment regime, 

query rewriting techniques offer the means to achieve an inference by 

transforming/extending the query pattern and infer new statement that is not explicitly 

included in the RDF data (Jing, Jeong, & Baik, 2009).  
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However, current Semantic Web languages are based on classical logic (i.e., OWL that is 

based on description logics), which are deductive, monotonic and deterministic. The 

Semantic Web technologies, as opposed to the requirements of exploratory data analysis, 

are known to be inadequate for representing and reasoning with uncertainty and 

incompleteness (Jain, Gupta, & Bhardwaj, 2018; Predoiu & Stuckenschmidt, 2008; 

Redavid, Iannone, Payne, & Semeraro, 2008).  

2.3.2 Reasoning with uncertainty 

Uncertainty is an intrinsic characteristic of various types of applications that include data 

(and knowledge) processing, which significantly limits their capability. Especially in the 

medical context, uncertainties almost always outweigh what is known; patients and health 

care providers usually have little information when starting the diagnosis and treatments 

(Krumholz, 2014).  

The term uncertainty can describe various forms of imperfect knowledge, including 

incompleteness, inconclusiveness, vagueness, ambiguity, or any other situation in which 

the Boolean truth values are unknown, unknowable, or inapplicable (Chen, Xiong, Yan, & 

Wang, 2018; Laskey et al., 2008). Uncertainties and lack of data manifest non-

deterministic relationships (Zhu, Qu, Zhao, Chen, & Jalii, 2017). Bayesian and Fuzzy 

approaches, for a best guess estimation, have been commonly used to address the 

uncertainty within the (semantic) knowledge bases (Almeida, Kaymak, & Sousa, 2010). 

Bayesian models leverage Probability theory to offer representation and reasoning systems 

for uncertain, incomplete knowledge. In Probability theory, truth-values are assigned to 

propositions identifying degrees of likelihood of a proposition that may be either true or 

false; truth-values range from zero (certain falsehood) to one (certain truth). Bayes Rule 
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exploits truth values to calculate the probability of a proposition (event) based on prior 

knowledge.  

Within the Semantic Web framework, Web Ontology Language (OWL), underpinned by 

Description Logics (DLs), is the main language for representing and reasoning over 

ontologies. However, the capabilities of DL, and inherently of OWL, will be challenged 

when it comes to the domains endowed with uncertainty. Probabilistic extensions to DLs 

and OWL allow for representing probabilistic ontologies and reasoning with them.  

Probabilistic extensions of OWL (i.e., PR-OWL) (Ausín, López-de-Ipina, & Castanedo, 

2014; R. Carvalho, Laskey, & Costa, 2013; R. N. Carvalho, Laskey, & Costa, 2017; P. da 

Costa, Laskey, & Laskey, 2008; P. C. Costa, 2005; Klinov & Parsia, 2008) are upper 

ontologies enabling the use of Bayesian theory for repressing and reasoning with 

uncertainty in the Semantic Web. PR-OWL aims to improve OWL capabilities for 

representing probabilistic ontologies based on Multi-Entity Bayesian Networks (MEBNs).  

This probabilistic extension to OWL can be considered as a bridge that connects 

deterministic ontologies defined in OWL with non-deterministic, probabilistic semantics 

of PR-OWL. However, in applications with large assertive databases, PR-OWL encounters 

some scalability issues due to the time complexity of OWL 2 DL reasoners to solve 

complex expressions (dos Santos, Carvalho, Ladeira, Weigang, & Mendes, 2015). 

Extensions of OWL with fuzzy set theory (i.e., f-OWL) (Bobillo & Straccia, 2011; Liu, 

Huang, & Lin, 2013; Quach & Hoang, 2018; Stoilos, Stamou, Tzouvaras, Pan, & Horrocks, 

2005) enable ontologies to capture, represent and reason with imprecise and vague 

information. The fuzzy OWL extensions are equipped with terminologies and grammars 

that are able to reason over fuzzy concepts, i.e., concept assertions, role assertions, concept 
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inclusions, and role inclusions are associated with a degree of truth in [0,1], rather than a 

binary truth value (0 and 1) (Laskey et al., 2008). 

Nikolaou et. al. (Nikolaou & Koubarakis, 2016) addressed the incompleteness issue in the 

Semantic Web frameworks which rely on the Open World Assumption (OWA). Nikolaou 

et. al. developed the semantics for an extension to RDF (RDFi) to define new kind of 

literals (called e-literals) for each data type with the ability to represent property values 

that exist but are unknown or partially known using constraints. RDFi extends the concept 

of an RDF graph by expressing partial information using the e-literals via a quantifier-free 

formula of a first-order constraint language ℒ. Nikolaou et. al. demonstrated the usefulness 

of the framework in geospatial Semantic Web applications. However, to support the 

constraints of ℒ (e-literals), RDFi requires the extension of FILTER operators in SPARQL 

queries, so that the e-literals can also be reflected in the condition part of the query and be 

evaluated over RDFi databases. Hence, the management of e-literals makes the query 

manipulation complicated and impose some limitations as the e-literals are only allowed 

to appear in the object element of triples. 

Agibetov et al. (Agibetov, Jiménez-Ruiz, & Solimando, 2015) proposed an evidence-based 

hypothesis testing method in the biomedical domain to cope with missing knowledge. They 

extract a causal chain from an ontology and represent it as Directed Acyclic Graph (DAG), 

which guides domain experts in conducting the experiment. This method only notifies 

physicians what knowledge is missing for the hypothesis to hold and does not generate any 

new knowledge.  

The works studied here, and some similar works, are recent endeavors addressing the 

challenges with handling uncertainty and incompleteness in the Semantic Web framework. 
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Probabilistic approaches address the representation and reasoning with degrees of 

uncertainty about ambiguous pieces of information, and fuzzy formalisms allow for 

representing and processing degrees of truth about vague pieces of information (Laskey et 

al., 2008). Although these approaches are effective in the domains in which the data is joint 

with (quantitative) uncertainty and/or vagueness (or imprecision) (Lukasiewicz, 2017), 

neither of them can handle the uncertainty resulting from incompleteness. In addition, 

despite the effectiveness of Bayesian and Fuzzy methods to handle uncertainty, these 

methods need prior knowledge, including expert’s input, statistical associations, or 

probability distributions, that might not always be available. These limitations challenge 

the efficiency of these approaches in coping with the rapid growth of data in different 

domains. 

So far, the solutions for incompleteness have focused on two aspects: representation of 

missing data and finding the missing data. The latter approaches proposed extensions to 

knowledge representation formalisms providing the capabilities to capture and represent 

incomplete data (e.g., RDFi). One main motivation for representing the missing data is to 

help the analysis of data continue when it reaches missing data. The other type of 

approaches helps the user understand what pieces of data or knowledge are missing. 

Although, both approaches are helpful to manage knowledge incompleteness, they do not 

offer reasoning with incompleteness to derive the missing knowledge/data and discover 

the knowledge that is not captured and represented in any form of domain knowledge (i.e., 

ontology or rules). As such, we argue that there is still a lack of systematic, built-in support 

for ampliative, non-deductive Semantic Web reasoning that should be studied.  
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2.3.3 Query Rewriting within the Semantic Web 

In the context of the Semantic Web, query implies the techniques and protocols that 

programmatically conduct information retrieval from the Web of Data, like data 

represented in RDF. SPARQL, the standard query language of the Semantic Web, is 

basically a graph pattern-matching query language that indicates how to construct the 

answer to a query (W3C, n.d.).  

Rewriting a query regarding the ontological constructs allows the extraction of both 

explicit and implicit knowledge from the underlying data. In fact, Query Rewriting (QR) 

helps to ask what a knowledge base knows and what it assumes. Therefore, query rewriting 

is a technique to solve queries over an incomplete knowledgebase, which is supported with 

a set of terminological constructs (Grimm & Motik, 2005; Pérez-Urbina & Rodrıguez-

Dıaz, 2012).. 

In the query rewiring techniques, using DL-based constraints, a given query will be 

converted to a transformed query with regard to the relevant knowledge in the ontology 

(TBox), and then will be evaluated over the extensional knowledge about individual 

objects (ABox), as TBox-compliant statements about the ontology. For a given query 𝒬 

and terminology 𝒯, 𝒬𝒯 is the rewritten version of 𝒬 with regard to 𝒯 (Figure 1), in which 

for every assertional knowledge 𝒜, the solutions to 𝒬 over 𝒯 and 𝒜 can be obtained by 

evaluating 𝒬𝒯 over 𝒜  (Pérez-Urbina, Motik, & Horrocks, 2010; Pérez-Urbina & 

Rodrıguez-Dıaz, 2012). 
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Figure 1- Query rewriting mechanism 

The description logic profile underlying the query-rewriting algorithm identifies the 

inference power and complexity of rewritten queries. Based on the application and required 

level of expressivity, the query-rewriting algorithm can be loaded by different fragments 

of DL to meet the requirements of the application. Therefore, the flexibility of query 

rewriting in working with different profiles of DLs has made it a suitable approach for the 

cases where different level of ontology expressivity is required. 

Query rewriting is appropriate for applications in which changes in the assertional data 

(ABox) occur more often than changes in the ontology (TBox). Additionally, reasoners 

implementing query rewriting can avoid large knowledge bases by extracting both explicit 

and implicit knowledge from the underlying data. In this regard, query rewriting potentially 

requires less memory and storage space (Pérez-Urbina & Rodrıguez-Dıaz, 2012). 

As discussed earlier, within the SW framework, query rewriting techniques offer the means 

to implement SPARQL entailment regime to realize an inference by 

transforming/extending the query pattern and inferring a new statement that is not 

explicitly included in the RDF data (Jing et al., 2009). OWL 2 QL profile supports query 

rewriting mechanisms to explore data through domain knowledge. OWL 2 QL is 

underpinned by DL-Lite family of description logics. The Open Word Assumption (OWA) 

made in DLs makes query rewriting based on OWL 2 QL an appropriate tool to develop 

exploratory data analytics in the Semantic Web scenarios (Bienvenu, 2016; Grimm & 
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Motik, 2005). In the graph representation of data in RDF, query rewriting manipulates 

graph patterns in queries (i.e., SPARQL query) to explore the graph and discover hidden 

associations in the underlying data (Jing et al., 2009). Hence, query rewriting within the 

Semantic Web can be considered as a (description) logic-based query answering technique 

that leverages OWL constructs to explore large data represented in RDF graphs and derive 

new relationships among data. 

Query Rewriting Approaches 

Rewriting a query can be done by (i) augmenting the query by adding new terms and 

conditions retrieved from ontologies to the query, (ii) trimming or relaxing the query by 

removing the terms and pruning the conditions, or (iii) substituting the query terms with 

semantically related terms. 

Logical relaxation approaches (Calì, Frosini, Poulovassilis, & Wood, 2014; Fokou, Jean, 

& Hadjali, 2014; Huang, Liu, & Zhou, 2012; Hurtado, Poulovassilis, & Wood, 2008) relax 

a query by manipulating the conditions of the query — e.g., by replacing constants with 

variables or by using the class and property hierarchies based on RDFS entailment and 

RDFS ontologies. Query rewriting approaches (Dolog, Stuckenschmidt, Wache, & 

Diederich, 2009) rewrite the query based on some predefined rules. Each rewriting rule 

consists of a matching pattern, a replacement pattern and a set of conditions that restrict 

the applicability of the rule. A query rewriting method will replace the matching pattern in 

the original query with the replacement pattern in the new query, whenever the conditions 

are met. Moreover, statistical language models (Elbassuoni, Ramanath, & Weikum, 2011), 

matching functions (Hogan, Mellotte, Powell, & Stampouli, 2012), and failure causes 
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detection models (Fokou, Jean, Hadjali, & Baron, 2016) are other RDF flexible querying 

techniques.  

In addition to the computation time of the relaxation process, query relaxation approaches 

reduce the query constrains with the aim of making it possible to retrieve answers with 

varying degrees of exactness, and do not perform any knowledge discovery or data 

analytics techniques on the RDF data. These approaches are beneficial only in the cases 

where the query contains avoidable constraints and conditions (over-constrained), e.g., 

users usually provide very broad queries or are often not able to correctly formulate 

queries. Hence, query relaxation is not efficient for the simple queries that contains no or 

few constraints, and still the KB cannot provide any answer for them. 

Augmented queries and trimmed queries, whether they are conjunctive (AND) or 

disjunctive (OR), return a super-set or sub-set of the original query. Whereas, substitution 

explores the ontology, replaces the concept(s) in the query with semantically relevant 

entities and  may return a new result set, which may partially overlap the original result set  

(Mangold, 2007). This exploratory technique is beneficial to the cases where the 

augmentation and trimming yield no answers. 

When representing the rewritten queries, the approaches above may differ from each other 

(Venetis, Stoilos, & Stamou, 2014). Union of Conjunctive Queries (UCQs) is the most 

common approach of representing a so-called perfect rewriting of a query. A union of 

conjunctive query 𝒬 is a set of conjunctive queries of the same arity and having the same 

query predicate. However, UCQ is not a golden key. Depending on the level of ontology 

expressivity that would be considered in the query-rewriting algorithm, it might turn out a 

query that is too big or too complex, which would compromise the feasibility of its 
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evaluation. This means a UCQ might contain hundreds or thousands of queries that its 

evaluation on the ABox is exponential w.r.t the size of the original query. One approach 

to reduce the size of union of conjunctive queries is query optimization by considering 

ABox, while in applications with large ABoxes this approach has its own drawbacks.  

Besides UCQs, Datalog Queries (DQs) is a set of rules, such that the head predicate of 

each rule is not a predicate used in the ontology. In comparison to UCQs, these types of 

query are harder to evaluate, but it is a solution to the cases that further ontology 

expressivity is required (Pérez-Urbina & Rodrıguez-Dıaz, 2012; Rosati, 2012). 

2.4 Knowledge graph 

Knowledge Graph (KG) is a graph-based knowledge representation formalism in the big 

data era, organizing massive volumes of data from multiple sources in multiple topical 

domains. Knowledge graphs can be considered as a set of big semantic networks 

connecting the real-world entities and their relationships in the form of predicate-argument 

structures, e.g., subject-predicate-object. Currently, large knowledge graphs in different 

areas, such as DBPedia, Yago and Google knowledge graph, supply a large amount of data 

and knowledge for the use of both the research community and the commercial sector 

(Gunaratna, 2017; Paulheim, 2017; Sadeghi, Lange, Vidal, & Auer, 2017).  

Knowledge graphs capture the relationships between the concepts and connect fragmented 

pieces of knowledge together. Knowledge graphs encode semantic associations through 

capturing different types of entities (i.e., nodes), their properties (i.e., arcs) and the chain 

of relationships that connect those entities, providing the opportunity to reveal interesting 

and unknown connections between different entities (Anyanwu & Sheth, 2003; Bianchi, 

Palmonari, Cremaschi, & Fersini, 2017; Yang, Huang, Han, Hua, & Tang, 2017).  In 
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particular, the semantics encoded in the knowledge graphs enrich graph structure (and 

graph database) into something greater than a graph-based knowledge representation 

reinforcing wider range of services (e.g., querying, analytics, reasoning, semantic search, 

etc.) than a plain graph database offers (Yang et al., 2017). 

Knowledge graphs are distinguishable from more traditional knowledge representation 

formalisms, because they simultaneously provide normalization (i.e., information is 

accessible through smallest units, e.g., entities), connectivity (i.e., relationships between 

the units carry the knowledge) and context (i.e., connections are annotated with contextual 

information to include meta-data). Hence, knowledge graphs can be considered a helpful 

platform for the task of information retrieval, knowledge discovery and question answering 

(Krotzsch, 2017; Y. Zhang, Dai, Kozareva, Smola, & Song, 2017). 

The aforementioned characteristics may associate knowledge graphs with knowledge-

bases and ontologies. Although they are often used interchangeably, they are indeed 

different concepts. Knowledge graphs are different from ontologies with regards to two 

aspects: (i) quantity (size); knowledge graphs can be considered as large ontologies that 

contain not only classes and properties, but also include instances, and (ii) extended 

requirements; like a built-in reasoner allowing the extraction of new knowledge. 

Furthermore, knowledge graphs are superior to knowledge-based systems that consist of a 

knowledge base and a reasoning engine. A knowledge graph extends conventional 

knowledge-based systems with collection, extraction and integration of information from 

additional, external sources. Ehrlinger et. al. emphasize the reasoning capabilities of 

knowledge graphs and describe it as a knowledge-based system that employs information 
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integration: “A knowledge graph acquires and integrates information into an ontology and 

applies a reasoner.” (Ehrlinger & Wolfram, 2016; Sadeghi et al., 2017) 

Furthermore, the Semantic Web technologies offer efficient knowledge representation, 

integration and reasoning formalisms by organizing numerous heterogenous data sources 

into knowledge graphs using Resource Description Framework (RDF), RDF Schema and 

Web Ontology Language (OWL) ontologies (L. Shi et al., 2017). Considering the layers 

of the Semantic Web framework, logic-based formalisms offer features that a knowledge 

graph may utilize: 

a. A semantic representation of knowledge with various levels of granularity, which 

carries syntax of data while captures its semantics: RDF stores data in the triple 

format and constructs a flexible and extensible knowledge graph that facilitates the 

incorporation of newly discovered facts. RDFS and OWL ontologies represent 

associations between concepts, model distinct types of data, while seamlessly 

capture its semantics in an accurate, rich and unambiguous way; 

b. Built-in support for deduction-based reasoning: ontology-based reasoning, rule-

based reasoning and entailment regime of SPARQL 1.1 conform with the Open 

Word Assumption (OWA) and facilitate the generation of new knowledge by 

analyzing the semantically annotated data; 

c. Linked Open Data (LOD) integrates external data sources to further extend the data 

coverage and to synthesize a unified large global data source, 

d. Query languages are utilized to navigate, manipulate and retrieve the data stored in 

heterogenous, distributed graph structures (i.e., triple repositories). 
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Therefore, the Semantic Web technologies provide a modern and efficient platform to 

implement knowledge graphs that can crawl the Web, collect and process (i.e., analyse) 

the information, and deliver interesting and unknown insights (Ehrlinger & Wolfram, 

2016). 

2.4.1 Knowledge graph analytics 

The analysis of large amount of (heterogeneous) data combined with its semantics (i.e., 

relationships between data items) in the form of a graph provides new opportunities to 

semantic data analytics, which traditional analytical approaches may not be able to offer. 

Additionally, the analysis of connected knowledge sources (in the form of knowledge 

graphs) offers a potential to explore independent disciplines (i.e., health care, public health, 

economics, political science, and etc.) and identify relationships that are impossible to be 

discovered within a single discipline alone (Roski et al., 2014). However, large knowledge 

graphs, which include numerous entities along with their relationships, pose great 

challenges to the traditional logic-based reasoning systems. Hence, there is a need for 

innovative analytical approaches that can exploit graph representation of knowledge and 

offer predictive and real-time analysis (Chen et al., 2018; Roski et al., 2014; Wei, Luo, & 

Xie, 2016).  

Velampalli et. al. (Velampalli & Jonnalagedda, 2017) proposed a framework to extract 

common skill-sets from resumes. They introduced a MapReduce algorithm to model the 

skill-sets from resumes into a graph structure (conceptual graph). Afterwards, they identify 

common skill-sets from the resulting graph using SUBDUE (Holder, Cook, & Djoko, 

1994), a popular Graph Based Data Mining (GDM) method. Their experimental results 

showed the efficiency of graph mining algorithms in the skill-set analytics. The framework 
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introduced by Velampalli et. al. and other GDM techniques, such as AGM (Inokuchi, 

Washio, & Motoda, 2000), Gaston (Nijssen & Kok, 2004), etc., look for common and 

frequent substructures, similarities, and anomalies in conceptual graphs. Their exploratory 

closure of these approaches is limited to the patterns that are frequently occurred in the 

graph. Hence, they are not able to discover the patterns that exist but are not frequent 

enough to be detected by the graph mining algorithms.  

Zhao et. al. (Zhao, Munne, Kertkeidkachorn, & Ichise, 2017) analyze knowledge graphs 

to discover missing RDF triples. To this end, they apply string-based similarity measures 

and Recurrent Neural Network (RNN) to identify similar entities in two knowledge graphs 

(e.g., DBpedia and YAGO). They perform a graph-based ontology integration method for 

mapping the similar entities. In their approach, they successfully discover missing and 

incorrect RDF triples using the Semantic Web technologies and Natural Language 

Processing (NLP) techniques. In their approach, they always require (at least) two 

knowledge graphs (i.e., ontologies) to match the existing triples, identify the missing ones, 

and discover the correct RDF triples. This limitation restricts the applicability of the 

approach to the cases that only one incomplete knowledge graph is available.  

Shi et. al. (L. Shi et al., 2017) introduced an automatic healthcare knowledge retrieval 

system from textual medical knowledge. They build a structured ontological model of 

health data from Electronic Health Record (EHR) systems, organize medical text into 

conceptual graphs, and provide semantic mapping between medical text and medical 

knowledge. Their model is stored in relational databases. Afterwards, the framework 

explores complex semantics between the entities in the graph to automatically retrieve 

knowledge. Shi et. al. performs contextual inference to prune the knowledge graph and 
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avoid the meaningless results, but this inference does not extract the knowledge hidden in 

the complex relationships.  

Yang et. al. (Yang et al., 2017) proposed an approach utilizing knowledge graphs to 

analyze the neglected influencing factors of statin-induced myopathy in a case of the 

coronary heart disease. In their approach, they generate semantic SPARQL queries based 

on the patient’s history, symptoms, blood test results, etc. to search Linked Life Data1, the 

knowledge graph. The resulting query will return a set of relevant documents helping to 

find relationships between the disease, their symptoms and side-effects. Yang et. al. 

showed the effectiveness of knowledge graphs in answering the medical cases that involve 

various concepts and parameters. However, the process of generating an optimal SPARQL 

query requires some background knowledge about the SPARQL query language and the 

structure of the knowledge graph—e.g., the relevant UMLS concept ID or URI of the 

concepts in the Linked Life Data. This requirement limits the applicability of their 

approach in real medical settings. 

The works above show the utility of knowledge graphs in real-world applications. 

Knowledge graphs construct an integrated platform for the management of a massive 

volume of data and knowledge, while they provide the opportunity for semantic data 

analytics and knowledge discovery.  These studies demonstrate knowledge graphs can 

capture data, domain-specific knowledge and the semantics of data. In applications (e.g., 

healthcare) in which the association between data items (e.g., disease-treatment 

interaction) is what is of most importance, the analysis of knowledge graphs provides a 

new way of thinking, training, and method to find interesting characteristics and actionable 

                                                 
1 http://linkedlifedata.com/ 

http://linkedlifedata.com/
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insight from underlying data (Gunaratna, 2017; Krumholz, 2014; Miller, Ramaswamy, 

Kochut, & Fard, 2015). 

2.5 Summary 

This chapter introduced semantic analytics as an exploratory approach that explores 

semantically annotated data to derive actionable insights from (large) data facilitating 

decision making and problem solving. The related work showed the exploitation of data 

semantics can significantly enhanced data interpretation, especially by non-data experts. 

However, in practice, there still exists a lack of mechanisms that implement reasoning 

approaches over large semantic data and discover complex, nuanced insights needed for 

making better informed decisions (S. R. Abidi, Cox, Abusharekh, Hashemian, & Abidi, 

2016; S. S. R. Abidi, 2001; S. S. R. Abidi & Hussain, 2007).  

Along with the requirements of semantic analytics with respect to data representation and 

analysis, the capabilities of the Semantic Web technologies were studied. It has been seen 

that the Semantic Web languages provide expressive knowledge representation formalisms 

that seamlessly capture and represent syntax and semantic of data. They also allow the 

generation of new knowledge by analyzing the underlying semantics of the available 

knowledge through a variety of reasoning mechanisms. It is shown that the graph 

representation of large data using RDF graphs and ontology languages (RDFS and OWL), 

encodes the semantic associations between entities and offers new ways of analysis to find 

actionable insight from the underlying data. 

However, the expressivity of the Semantic Web ontology languages is limited—especially 

when it comes to model complex domains with large, diverse data. This chapter studied 

several studies that successfully introduced extensions to the Semantic Web languages 
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providing the required expressivity to represent complicated associations between data 

items as well as the uncertainty associated with the data. The novel approaches capable of 

working with the extensions, analyzing the semantic data and reasoning with uncertainty 

were studied. But there is still a lack of exploratory data analytics approaches that leverage 

semantic data and infer new knowledge from large data-sets when dealing with 

incompleteness.  

It is discussed that query rewriting techniques offer the means to derive insights from data, 

which are not already stated in the data or domain knowledge. Nevertheless, a query 

rewriting engine requires a set of conditions (aka. inference constraints) conducting the 

rewriting. In the next chapter, we introduce plausible reasoning as a non-deductive, 

exploratory data-driven reasoning approach that can provide the foundations of developing 

an ampliative query rewriting engine.  
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Chapter 3: Plausible Reasoning 

In this chapter we study plausible reasoning as a weak form of inference that leverages the 

semantics of relevant concepts and allows for dealing with incomplete data during decision 

making. We also investigate the implementation of plausible reasoning through a set of 

plausible patterns (e.g., generalization, specialization, interpolation, etc.), that are applied 

to a variety of semantic relationships (e.g., conceptual hierarchy, partial order, etc.). But 

before studying the components of plausible reasoning, we need to understand what the 

plausibility is and what are the circumstances that plausible reasoning can contribute to.  

3.1 The notion of plausibility 

Plausibility implies the situations featuring some degree of imprecision that is not 

quantified. A hypothesis is plausible when the evidence supporting the hypothesis is 

stronger than the arguments against it. So, for the time being, the hypothesis is (plausibly) 

acceptable (Cellucci, 2013a). However, an accepted plausible claim can turn out to be 

false, and a implausible claim can end up being true (Bunnin & Yu, 2004).  

From Alexander’s perspective (In Top. 19.22–27), the Greek philosopher, plausibility is 

different from being true, not by being false, but by the principles on which the judgement 

is based upon—i.e., even though a plausible opinion can be in fact true. The truth of 

plausibility is not only dependent on things, but the judgment involves the listeners and 

their assumptions about things as well (Vega Renon, 1998). Aristotle (384–322 BC) 

confirms “the man who makes a good guess at truth is likely to make a good guess at what 

is plausible.” (Rh. 1355a15–18). He believes in a set of plausible opinions/arguments “it 
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is acceptable that any of these discoveries may be entirely wrong, but rather that they 

should be right in at least some respect or even in most respects” (EN1098b27–29). 

Renon (Vega Renon, 1998) leverages Aristotle’s conception on plausibility to characterize 

plausibility in two basic features: plausible opinions are (i) pragmatic in nature, and (ii) 

graded. The first feature emphasizes that plausibility is not a semantic property, but a 

practical (pragmatic) relationship that is recognized effective by a person, group or 

community. And because of its pragmatic nature, a plausible opinion is rational 

(dialectical) as well. 

In the absence of deterministic, exhaustive knowledge, plausibility is akin to natural 

experiments, when the investigator leverages the available data to make assumptions, 

examine possible outcomes and present alternatives (Habicht et al., 1999). Plausibility 

assumes there might exist more information that we are not aware of. That assumption 

conforms to the Open Word Assumption (OWA) in which a non-existing fact is not 

assumed as false, but as unknown. 

Contrary to probability, there are no numbers, e.g., degrees or level of certainty that can 

quantify the lack of precision in plausibility. However, plausible situations can be 

associated with frequency of occurrence (i.e., indicating the cases that something is true 

more often than being false) or weight of evidence (i.e., when the evidence for something 

outweighs the evidence against it) (Billington, 2017). 

Plausible opinions can be graded based on their weight and authority; a more plausible 

opinion has greater degree of real acceptance. However, although plausible opinions can 

be compared amongst each other (i.e., regarding their degree of plausibility), they would 
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exclude the possibility of mutual or internal conflicts— e.g., opinion 𝛼, accepted by a 

community, is more plausible than 𝛽, the opinion of the expert; however, 𝛽 is still 

relatively plausible even though it might contradict opinion 𝛼 (Vega Renon, 1998).  

3.2 Plausible Reasoning 

Plausible reasoning relates to the human’s problem-solving process, which analyzes the 

semantics of the available data to discover unknown associations inherent within the data 

and establish meaningful relationships to solve complex problems. Plausible reasoning 

provides a non-deductive exploratory approach to solve problems when there is enough 

evidence to justify the plausibility of the solution(s) through semantic analysis of data. 

As an exploratory analytical method, plausible reasoning has the capability to discover 

new information/knowledge. Conventional (deductive) reasoning approaches reason with 

a complete set of true statements to derive another true statement that was already 

contained within the premises. But plausible reasoning explores a partial set of true 

statements (i.e., incomplete data) to derive a plausibly true inference, which is the best-

effort answer in light of what is known so far. This new inference is often reasonable when 

it is used under the right conditions (Cellucci, 2013b; Jaynes, 2003; 

Mohammadhassanzadeh, Van Woensel, et al., 2017; Walton, Tindale, & Gordon, 2014). 

3.2.1 Characteristics of plausible reasoning 

With regard to the characteristics of human plausible reasoning, Tindale (2010) and 

Walton (2013) identified eleven characteristics for plausible reasoning: 

1. Plausible reasoning proceeds from premises that are more plausible to a conclusion 

that was less plausible before the plausible argument. 
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2. Something is found plausible when the audience has examples in their own minds. 

3. Plausible reasoning is based on common knowledge. 

4. Plausible reasoning is defeasible (non-monotonic). 

5. Plausible reasoning is based on the way things generally go in familiar situations. 

6. Plausible reasoning can be used to fill in the implicit premises in incomplete 

arguments. 

7. Plausible reasoning is commonly based on appearances from perception. 

8. Stability is an important characteristic of plausible reasoning.  

9. Plausible reasoning can be tested, and by this means, confirmed or refuted. 

10. Probing into plausible reasoning in a dialogue is a way of testing it. 

11. Plausible reasoning is graded, but it is different from the standard probability values 

and Bayesian rules used in Pascalian probability. 

The third characteristic puts an obligation on a plausible inference that the sequence of 

argumentations leading from acceptable evidences to ultimate inference should be (nearly) 

known by everyone. It means that the chain of inference used to derive a plausible solution 

should be justifiable and admissible—i.e., plausible reasoning conducts an inference from 

some generally accepted evidence (characteristic 2) to new features that are (somehow) 

familiar (characteristic 5). 

Plausible reasoning is particularly useful in the situations in which the data/knowledge is 

incomplete—i.e. the reasoner is expected to derive a conclusion while not having a 

complete set of knowledge. In this regard, plausible reasoning is ampliative and non-

demonstrative (characteristic 6), as it extends the knowledge by learning and discovering 

new pieces of knowledge, based on what is known so far. 
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The eighth characteristic implies the consistency among a set of plausible hypotheses. 

Plausible reasoning is stable as an argument can be strengthened or weakened by another. 

For example, a physician concludes that a man has fever not only from one symptom (such 

as rapid pulse or high temperature) but also from other existing symptoms (such as soreness 

of touch or thirst)—i.e., each symptom is consistent with what the other symptom(s) 

suggest. Based on the characteristics above, plausible reasoning can be recognized as an 

inference method that is: 

• Non-demonstrative; non-demonstrative reasoning methods depend on knowledge 

discovery, making hypotheses, and learning new concepts. Typical examples include 

medical diagnosis, economical statistical evidence, or findings of a scientific research. 

On the other hand, demonstrative reasoning (e.g., mathematical proof) is sound, 

deterministic, beyond controversy, and final, but it is incapable of exploring new 

knowledge (Pólya, 1954). 

• Ampliative; non-ampliative reasoning, like deduction, explicates and instantiates 

what was already expressed in the captured domain-specific knowledge (e.g., via 

deductive rules). While, ampliative reasoning generates inferences that go beyond 

what is contained (known) in the captured knowledge and explores what it assumes 

(Blachowicz, 1989; Ippoliti, 2008). 

• Non-monotonic; a plausible conclusion can be retracted in the light of further 

information. Non-monotonic logics have been devised to overcome the limitations of 

classical logics to capture and represent defeasible inference. Despite classical 

(monotonic) logics, in which the inferences are deductively valid, non-monotonic 

reasoning draws an inference from a set of facts, knowing that new facts may 
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challenge the previous conclusions (Antonelli, 2008; Billington, Estivill-Castro, 

Hexel, & Rock, 2006; Nute, 2001).  

• Subjective; a plausible argument is an expression of beliefs, opinions, personal 

preferences, values, feelings, and judgments (Jøsang, 1997). 

3.2.2 Plausible reasoning is different than probabilistic reasoning 

Mutually exclusive solutions are a set of possible responses to a question or a situation in 

which the correctness of one solution decreases the validity of the other solution(s). In 

other words, in a set of feasible mutually exclusive solutions that exhaust the possibilities 

(i.e., the sum of the probabilities is equal to 1), it is not possible that two or more solutions 

will be simultaneously acceptable. Although in some scenarios, the outcome of inference 

is mutually exclusive by nature, there are some domains (such as health, law) that multiple 

(sometimes contradicting) solutions are feasible at the same time.  

In probabilistic reasoning, the probability of the correctness of a solution is equal to 1 

minus the probability of correctness of other mutual exclusive solution(s)—i.e., the 

probability of a statement not-A is calculated as 1-pr(A). While, plausibility does not 

involve the statistical likelihood of the possibilities and solutions are not necessarily 

mutually exclusive—i.e., a new fact alters the evidence, and detracts or strengthen the 

plausibility of a solution (Walton et al., 2014). 

3.2.3 Plausible reasoning is different than fuzzy logic 

There are two types of uncertainty that have different impacts on reasoning and knowledge 

representation. The first type of uncertainty (𝜍1) occurs whenever the knowledge is 
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inherently entangled with some sort of ambiguity or contradiction. The other type of 

uncertainty (𝜍2)  is a result of missing knowledge (i.e., incompleteness) (Dompere, 2012). 

There are different approaches to deal with these two types of uncertainty. Plausible 

reasoning provides methods to overcome the uncertainty resulting from incompleteness 

and lack of knowledge (𝜍2). These approaches, like induction, analogy, and abduction 

acquire new knowledge through learning and discovery. On the other hand, statistical 

methods like probabilistic reasoning, fuzzy logic, Bayesian belief network, Dempster-

Shafer models try to solve the first kind of uncertainty (𝜍1). Statistical methods provide 

insight into the likelihood of certain items and represent beliefs that are not certain (Han, 

Klein, & Arora, 2011). 

3.3 Semantic associations applicable to plausible reasoning 

A variety of semantic relationships plays a significant role in plausible reasoning. In 

particular, plausible reasoning relies on fine-grain knowledge representing how different 

concepts are semantically associated (Derrac & Schockaert, 2015). Three types of semantic 

relationships (NISO Standard (ANSI), 2010) may be applicable to plausible reasoning: 

hierarchical relationships, equality relationships, and associative relationships. 

3.3.1 Hierarchical relationships  

Hierarchical relationships (Table 1) imply class inclusion and are based on degrees or 

levels of super-ordination and sub-ordination. The superordinate term represents a class or 

a whole, and subordinate terms refer to its members or parts. Hierarchical relationships 

include three different associations: generic relationships (is-a relationship, such as class-
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member relationship), instance relationships (is-a relationship, such as class-instance 

relationships), and whole-part relationships (such as part-of relationship).  

Table 1- Hierarchical semantic relationships 

Semantic relationship Symbol 

Element of/Part of ∈ 

Contains (as instance) ∋ 

Subset of ⊂ 

Superset of ⊃  

 

3.3.2 Equality relationships 

Equality relationships (Table 2) express the associations between two or more variants of 

a same concept, which are equivalent or nearly-equivalent. An equivalence relationship 

may belong to one of the basic types of synonyms, lexical variants, near-synonyms, generic 

posting, or cross reference to elements of compound terms.  

Table 2- Equality semantic relationships 

Semantic relationship Symbol 

Equal to = 

Almost equal to ≈ 

Not equal to ≠ 

Identical to ≡ 

Similar to ∼ 

 

3.3.3 Associative relationships 

Associative relationships (Table 3) represent associations between related concepts, which 

are neither hierarchical nor equivalence, but still semantically or conceptually related. 

Associative relationships cover several types of relationships: cause/effect (such as 

infection/hearth failure), action/product (such as classification/order), etc. Some varieties 
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of associative relationships can be interpreted using (partial) order theory, in which 

concepts are being ordered in an interpretable direction regarding a measurable property 

such as size, location, time, etc. Hence, any (binary) associative relationship can be 

considered as a partial order association if it is: 

• Reflective (𝑎 ≤ 𝑎),  

• Asymmetric (𝑎 ≤ 𝑏, 𝑏 ≤ 𝑎 𝑡ℎ𝑒𝑛 𝑎 = 𝑏), and  

• Transitive (𝑎 ≤ 𝑏, 𝑏 ≤ 𝑐 𝑡ℎ𝑒𝑛 𝑎 ≤ 𝑐).  

Table 3- Ordered semantic relationships 

Semantic relationship Symbol 

Less than < 

Greater than > 

Precedes ≺ 

Succeeds ≻ 

 

3.3.4 Representation of plausible semantics 

Plausible reasoning depends on the comprehensiveness of the knowledge representation 

formalism that incorporates diverse semantic associations connecting various entities. In 

this regard, fundamental requirements of an efficient representation of the semantic 

associations applicable to plausible reasoning include (Anshakov & Gergely, 2010; Cohen 

& Conway, 2007; Collins & Michalski, 1989; Davis, 1990; Halford, Wilson, & Phillips, 

2010; Kuipers, 1979; Panton, Matuszek, & Lenat, 2006): 

• Delivering required data/knowledge expressivity 

• Representing conceptual hierarchical relationships  

• Representing ordered relationship  

• Ability to handle complex (both syntactically and semantically) structures 
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• Capability to express context-aware knowledge 

• Representing intermediate states of reasoning process (e.g., arbitrary relationships) 

• Capability to represent ‘don’t know’  

Nevertheless, not every knowledge representation formalism automatically supports all the 

requirements above. This limitation imposes some challenges for capturing and 

representing the plausible semantics and consequently restricts the effective 

implementation of plausible reasoning. The challenges associated with the representation 

of the associations applicable to plausible reasoning is elaborated in this chapter after 

introducing the plausible patterns. Our approach to address the challenges is discussed in 

the next chapter. 

3.4 Plausible patterns 

Plausible reasoning leverages semantic associations to perform inference through a set of 

frequently recurring patterns and suggest a plausible statement, which could be further 

tested deductively (Cellucci, 2013b; Collins & Michalski, 1989). These patterns explore 

the semantic associations between the entities and do not occur in classic forms of logic 

(Mohammadhassanzadeh, Van Woensel, et al., 2017; Virvou & Kabassi, 2004).  

To identify the recuring inference patterns of plausible reasonign, Collins and Michalski 

(Collins & Michalski, 1989) collected considerable number of people’s answers to 

common questions. They studied how people connect together different pieces of 

knowledge to draw an answer that they didn’t know beforehand. They realized there are 

different inference patterns that are used to answer a question, while same patterns appear 

in different reasoning processes. The analysis of the answers resulted in the identification 
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of a taxonomy for plausible patterns: generalizaiton, specialization, similarity and 

dissimilairy. All these patterns leverage hierarchical realtionhsips to conduct an inference. 

Later, Cellucci (Cellucci, 2013b) introduced these patterns along with metaphor, 

metonymy, definition as analysis and diagrams as the rules of discovery. He considers the 

patterns as non-deductive rules, which develop solve poblems via generating plausible 

hypotheses using the already available data. In his theory, the ampliativity of the rules is 

paramount. Cellucci considers a‘heuristic power’ for the rules, which discover a 

conclusion that is not contained in the premises. In a different study (Derrac & Schockaert, 

2014, 2015), Derrac and Schockaert investigated interpretable directions between obejcts 

in conceptual spaces to infer plausible conclusions. They formulated interpolation and a 

fortiori as two reasoning patterns that conduct commonsense reasoning to fill the gaps in 

knowledge bases.  

Along with the characteristics of plausible reasoning, the studies above emphasize on the 

ampliativity of the plausible patterns—i.e., the inference patters can discover conclusions 

that were not included in the premises (non-demonstrative). However, they confirm that 

the plausibility of findings is influenced by the available data and is approved for the time 

being (non-monotonic). 

In this section, we introduce eight plausible patterns. Later, we discuss the feasibility of 

implementing the patterns with respect to the semantic associations and formalizing the 

rationale behind the patterns. However, we realize that the plausible patterns are not limited 

to the patterns listed here. More patterns may exist in the literature (i.e., philosophy, law, 

etc.) that were not identified here. 



45 

 

 

3.4.1 Generalization 

Generalization is passing from a given set of objects 𝑆, to a larger set 𝑆′, that contains the 

given set (𝑆 ∈  𝑆′). In hierarchical structures, generalization involves moving from one 

node (concept) to its parents. For example, daffodil is a type of flower and England is in 

Europe. A statement like flower_type(England, daffodil) can be generalized to 

flower_type(Europe, daffodil), since Europe includes England, and consequently includes 

whatever grows in it (Cellucci, 2013b; Collins & Michalski, 1989; Heit, 2000). The 

implication is if 𝑏 ⊆ 𝑎 and 𝐴 is true about 𝑏, then 𝐴 is true about 𝑎 as well: 

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑖𝑡𝑜𝑛:
𝑏 ⊆ 𝑎       𝐴(𝑏)

𝐴(𝑎)
. 

3.4.2 Specialization  

Specialization is passing from a given set of objects to a smaller set that is contained in the 

initial set. In hierarchical structures, specialization implies moving from one node 

(concept) to its children. Regarding the prior example, the statement can be transformed to 

flower_type(London, daffodil), since London is a part of England and daffodil (plausibly) 

grows in London as well (Cellucci, 2013b; Collins & Michalski, 1989; Heit, 2000). The 

implication is if 𝑎 ⊆ 𝑏 and 𝐴 is true about 𝑏, then 𝐴 is true about 𝑎 as well: 

𝑆𝑝𝑒𝑐𝑖𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛:
𝑎 ⊆ 𝑏       𝐴(𝑏)

𝐴(𝑎)
. 

3.4.3 Interpolation  

Interpolation is a mapping from observation space 𝑋 to conclusion space 𝑌, where 𝑥𝑖 ∈ 𝑋 

is not explicitly mapped to any y ∈ 𝑌, while there are direct mappings entities from space 

𝑋 to space 𝑌 which are relevant to 𝑥 and 𝑦. Interpolation is based on the qualitative notion 
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of conceptual betweenness. For example, we know that undergraduate and PhD students 

are both exempt from paying council tax in the UK. Hence, it is plausibly inferable that 

master’s students are also exempt from paying this tax, knowing that master’s students are 

conceptually between undergraduate students and PhD students (Derrac & Schockaert, 

2015). The implication is if 𝑎 ≤ 𝑏 ≤ 𝑐 and 𝐴 is true about 𝑎 and 𝑐, then 𝐴 is true about 𝑏 

as well: 

𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛:
𝑎 ≤ 𝑏 ≤ 𝑐     𝐴(𝑎)    𝐴(𝑐) 

𝐴(𝑏)
. 

3.4.4 A Fortiori  

A fortiori argument is an inference from a proposition with high degree of confidence to a 

less confident proposition that is not explicitly specified but it is implicit in the first one. 

Based on the a fortiori argument, truth of a statement implies another statement, which is 

included in the first one and is plausible, common and familiar (Derrac & Schockaert, 

2015; Zurek, 2012). A fortiori reasoning exploits the relationships between concepts, 

definitions and actions that have been expressed by means of a partial order. Depending 

on the orientation, a fortiori reasoning can be conducted in two variants: a maiore ad minus 

(from more to less) and a minori ad maius (from less to more) (Hallaq, 2009; Schockaert 

& Derrac, 2015; Sion, 2009).  

More to less a fortiori indicates an inference from greater to smaller, general to particular, 

whole to part, and stronger to weaker. For example, if a door is big enough for a person 

with two meters high (greater case) to pass, then a shorter person (smaller case) can pass 

through as well. The implication is if 𝑏 occurs after 𝑎 and 𝐴 is true about b, then 𝐴 is true 

about 𝑎 as well:   
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𝐴 𝑓𝑜𝑟𝑡𝑖𝑜𝑟𝑖 − 𝑚𝑜𝑟𝑒 𝑡𝑜 𝑙𝑒𝑠𝑠:
𝑎 ≤ 𝑏     𝐴(𝑏) 

𝐴(𝑎)
. 

To the contrary, less to more a fortiori denotes making an argument in the reverse 

direction. For example, if a person knows buying beer is illegal under the age of 18, then 

it is plausibly inferable that buying whiskey is illegal since it includes more alcohol than 

beer. The implication is if 𝑏 occurs after 𝑎 and 𝐴 is true about a, then 𝐴 is true about 𝑏 as 

well.   

𝐴 𝑓𝑜𝑟𝑡𝑖𝑜𝑟𝑖 − 𝑙𝑒𝑠𝑠 𝑡𝑜 𝑚𝑜𝑟𝑒:
𝑎 ≤ 𝑏     𝐴(𝑎) 

𝐴(𝑏)
. 

3.4.5 Similarity/Dissimilarity 

Similarity or dissimilarity is moving between any two comparable nodes in the hierarchy. 

For example, rose and daffodil grow in temperate climates. So, they are conceived similar. 

But bougainvillea is different as it is a subtropical flower. In this regard, 

flower_type(England, rose) is a plausible statement transform, while flower_type(England, 

bougainvillea) cannot be a valid inference (Collins & Michalski, 1989). 

In addition to the hierarchical equality, similarity and dissimilarity can be performed by 

considering equivalent concepts w.r.t. an ordered semantic. Ordered-equivalence 

semantics compare two concepts that overlap each other. For example, relationships like 

same age, same height, same severity, etc. imply a similarity between two concepts w.r.t. 

an ordered property. Likewise, ordered-based dissimilarity exploits the associations that 

express no overlap. An ordered-based dissimilarity relationship can be considered as an a 

fortiori, in which we don’t know the direction of the ordered relationship between the 

concepts. In similarity, the implication is if 𝑏 and 𝑎 are considered equal w.r.t. some 
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properties (i.e., conceptual or measurable), and 𝐴 is true about a, then 𝐴 is true about 𝑏 as 

well: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑖𝑟𝑡𝑦:
𝑎 ∼ 𝑏     𝐴(𝑎) 

𝐴(𝑏)
. 

3.4.6 Metaphor 

Metaphor assumes that entities of one domain (the target domain) are equivalent to the 

entities from another domain (the source domain), while there is no reasonable connection. 

Metaphor is considered as an ampliative pattern because it allows to find new hypothesis.  

A hypothesis driven by metaphor suggests if entities from the source domain have a certain 

property, then the entities from the target domain have that property as well. For example, 

if the target domain includes heart and the source domain consists of glass, then “Heart is 

made of glass” is a metaphor, implying people could be emotionally hurt and sad (Cellucci, 

2013b).  

Metaphor compares two not-related things and tries to find some pre-existing similarities, 

which may not necessarily mean the same in the original domains. For example, in the case 

of “Heart is made of glass”, heart and glass are assumed similar in the sense of being 

fragile: while glass is breakable into pieces, heart cannot be physical hurt—i.e., heart is 

emotionally vulnerable (Cellucci, 2013b). The implication is if 𝑇 and 𝑆 are the target and 

source domains respectively, anything that is true about the elements of 𝑆 is applicable to 

the elements of 𝑇 as well: 

𝑀𝑒𝑡𝑎𝑝ℎ𝑜𝑟:
𝑇 ⟼ 𝑆     𝑎 ∈ 𝑇     𝑥 ∈ 𝑆     𝐴(𝑥)  

𝐴(𝑎)
. 
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3.4.7 Metonymy 

Metonymy indicates using one thing instead of something else that is commonly associated 

with it. Metonymy is used in mathematical symbolisms where a letter (or a combination 

of letters) represents a triangle, or in a conversation when ‘Wall street’ denotes the New 

York Stock Exchange and its role in the international financial system (Cellucci, 2013b).  

Metonymy is different than metaphor. Metaphor is based on the similarity among the 

properties of two entities from two domains and suggest a new similarity. But metonymy 

draws an association between two concepts form a same domain—i.e., the association is 

stronger as more the two items are perceived together. The implication is if 𝑎 stands for 𝑏, 

anything that true about 𝑎 is applicable to 𝑏 as well: 

𝑀𝑒𝑡𝑎𝑝ℎ𝑜𝑟:
𝑎 ⇒ 𝑏     𝐴(𝑎)  

𝐴(𝑏)
. 

3.4.8 Other plausible patterns 

In addition to the patterns above, there are more plausible patterns (e.g., definition as 

analysis, diagrams, etc.) defined and utilized in different domains of scholastic studies. 

Although they are effective approaches to non-deductive reasoning, they could be treated 

as a subtype of one of the patterns above. For example, discovery via diagram, which 

resembles metonymy, allows a figure to represent another concept or entity. Or ‘definition 

as analysis’ attempts to find a common formal property and generalize the other properties. 

In this aspect, we found ‘definition by analysis’ a more specific version of similarity.  

In addition, there exist some other patterns (e.g., apagoge) that are although considered 

non-deductive, there is a fundamental dispute among philosophers and mathematicians on 

their power of discovery (aka. ampliativity). For example, Peirce (Peirce & Ketner, 1992) 
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believed abduction is what Aristotle meant by apagoge. While he once believed abduction 

is ampliative, later he admitted the idea of abduction being ampliative is weak. He argued 

an ampliative inference discovers something not implied in the premises, which is not true 

about abduction (Cellucci, 2013b).  

3.4.9 Plausible patterns in scientific discoveries and reasoning 

In addition to the common-sense examples that were provided to describe the rationality 

of the plausible patterns, they have also been extensively used in scientific discoveries in 

different domains all along the history of science.  

Newton utilized generalization to infer that all the bodies have the power of gravity. His 

implication was that, there is a power of gravity pertaining to all planets (his earlier 

discovery) and since the planets are bodies, then “there is a power of gravity pertaining to 

all bodies.”  

Gauss, at the age of nine, leveraged specialization to solve the problem asking the sum of 

all numbers in the set {1,2,3, … ,100}. He solved the problem by considering the general 

problem, ‘finding the sum of all numbers in the set {1,2,3, …, n}.’ Having that general 

problem solved (𝑠𝑢𝑚 = 𝑛(𝑛 + 1)/2), by specialization, he inferred that the sum of 

numbers from 1 to 100 is 5,050 (Cellucci, 2013b). 

Metaphor was used by Newton to discover a solution to the problem “Given any 

relationship whatever of fluent quantities, to find the relationship of their fluxions.” He 

considered the growing (fluent) quantities as physical objects that are moving (i.e., 

mathematical quantities construct the target domain and the source domain is comprised 

of physical quantities). Using a bottom-up analytic approach to mathematics, Newton 
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found that if two fluents 𝑥, 𝑦 are in the relationship 𝑦 = 𝑥2, the ratio of their fluxions is 

equal to 2𝑥 (Cellucci, 2013b). 

Metonymy has been widely used in geometric discoveries by Pythagoras to reason on 

concrete objects and then transfer his findings to abstract objects. For example, in the 

discovery of ‘the three angles of a triangle are equal to two right angles’, metonymy 

permits to reason over a drawn figure (i.e., the concrete object) and transfer the established 

properties to a triangle (i.e., the abstract object). Although it may seem that metonymy is 

not capable of introducing new hypothesis, it provides great heuristic values and makes 

the discovery straightforward (Cellucci, 2013b). 

Similarity measures (e.g., Cosine similarity and Euclidean distance) are the manifestation 

of (dis)similarity pattern in the conceptual space. These measures introduce criteria to 

quantify semantic (dis)similarity. The similarity and distance measures have been vastly 

used in the field of cognition to model human categorization (Derrac & Schockaert, 2015).  

3.5 Semantics underlying plausible patterns 

Hierarchical-driven plausible patterns, like generalization and specialization, explore 

hierarchical relationships of the concepts in conventional ontological constructs (i.e., 

parent-child relationship) to draw new inferences. Ordered-based patterns conduct 

plausible inferences based on conceptual betweenness and partial order of concepts, 

definitions, actions, and phenomena. Interpolation and a fortiori, two ordered-based 

patterns, leverage measurable properties to compare and sort concepts regarding their size, 

order, location, ranking, etc. and infer new pieces of knowledge.  
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Equivalence plausible patterns, similarity and dissimilarity, draw new association between 

any comparable concepts using either hierarchical or ordered relationships, which imply 

any sort of equality (or inequality). However, equivalence patterns introduce two 

challenges: (i) they are highly context-dependent; two concepts that are similar in one 

aspect, might be totally different in other aspects; (ii) they are more beneficial when there 

are more of (dis)similar concepts (Derrac & Schockaert, 2015).  

Although the mechanism of metaphor may seem comparable to similarity (i.e., they both 

search for commonalities between entities), the identification of the pre-existing 

similarities between two entities in metaphor relies on the cognitive meaning of the 

concepts, phrases, etc. in two different domains (the source and the target domains). This 

similarity is different than the epistemic commonalities between two concepts in one 

domain, which the similarity pattern looks for. Despite the conceptual similarities, which 

are intrinsic and static, the similarities in metaphor are (i) very subjective, (ii) hard to 

describe formally and challenging to capture and represent, and (iii) not necessarily 

symmetric (i.e., “Heart is made of glass” is a metaphor, but “Glass is made of heart” does 

not mean anything.), and (iv) significantly different from one domain to another. Likewise, 

the associations conducting metonymy (i) are contextual (e.g., wall street and stock 

exchange, or white house and president of the USA) and (ii) should have been observed 

prevalently in the past to make sense and be comprehensible for audience with no 

complication (Barcelona, 2012; Cellucci, 2013b).  

Table 4 classifies the plausible patterns to four main categories based on the semantic 

relationships that they are applied to: (i) generalization and specialization exploit 

hierarchical relationships, (ii) interpolation and a fortiori are built upon (partial) order 
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between concepts, (iii) similarity and dissimilarity leverages any association that imply 

some sort of equality (or inequality), and (iv) metaphor and metonymy rely on cognitive 

meaning and mental perception of concepts.  

Table 4- Definition and classification of the plausible patterns based on the semantics they leverage  

Type Plausible Pattern Description 

Hierarchy-based 

patterns 

Generalization Passing from a given set of objects to a larger set that contains 

the given set. 

Specialization Passing from a given set of objects to a smaller set that is 

contained in the given one. 

Ordered-based 

patterns 

Interpolation 

Creating a new relationship from the observation space 𝑋 to the 

conclusion space 𝑌, where 𝑥𝑖 ∈ 𝑋 is not mapped to any y ∈ 𝑌 

(unknown relationship), but other relationships  from 𝑥ℎ , 𝑥𝑗(≠

𝑥𝑖) to 𝑌 and 𝑥ℎ < 𝑥𝑖 < 𝑥𝑗 are known. 

A Fortiori 

An inference from a proposition with high degree of confidence 

to a less confident proposition that is not clearly specified but 

is implicit in the first one. 

Equivalent  

patterns 

Similarity/ 

Dissimilarity 

Moving between any two comparable nodes (siblings) in the 

concept hierarchy or comapring two overlapping (or non-

overlapping) concepts w.r.t. a measurabel property. 

Cognitive  

patterns 

Methaphor 

Considering that concepts of one domain belong to another 

domain, implying that if the concepts of the source domain have 

a specific property, the concepts from the other domain have 

the same property as well.   

Metonymy 

Letting one concept stands for another concept, which is 

relevant and represents well-known characteritstics of the 

source conpcet.  

3.5.1 Feasibility and challenges of implementing plausible patterns  

The discussion above suggests that the feasibility of implementing the plausible patterns 

depends on two key criteria: (i) capturing and representing the underlying semantics that 

the patterns are applied to (i.e., knowledge representation), and (ii) identifying and 

formalizing the rationale behind the patterns (i.e., reasoning).  

Description Logics (DLs) and related formalisms, including the ontology languages for the 

Semantic Web like OWL, offer well-defined semantics to represent and reason with 



54 

 

 

taxonomic hierarchies. Description logics express definitions of classes and their 

relationships in a hierarchical structure. Class subsumption, and instance identification are 

two key capabilities of description logics that support automatic inference of class-subclass 

relationships through inheritance (Gil, 2005). Thus, DLs and, subsequently the SW 

ontologies, can support both knowledge representation and reasoning requirements in 

hierarchical patterns (i.e., generalization and specialization), and hierarchical equivalent 

patterns (i.e., similarity and dissimilarity inferences that leverage conceptual similarities). 

However, description logics, and consequently OWL, do not essentially provide the 

required constructs to express sequential relationships with respect to a measurable 

property. While, the representation of the ordered relationships is a challenge, we identified 

the rationale of interpolation and a fortiori fathomable and practical to be formalized as a 

non-deductive form of logic. We assume the various reasoning paradigms offered by the 

Semantic Web (e.g., OWL reasoning, rule-based reasoning, query rewriting) can provide 

the required mechanisms to formalize and implement the logic behind the order-based 

patterns and generate new knowledge by analyzing the underlying ordered semantics.  

Among the patterns above, we found the working mechanism of the cognitive patterns, 

metaphor and metonymy, different and sometimes intricate as they involve cognitive 

analysis. The semantics underlying cognitive patterns require mental counterparts for 

notions regarding a particular context. This prerequisite demands an access to mental 

spaces that are constructed from relationships between the concepts (aka., semantics) along 

with a perceptual experience in general and linguistic meaning in particular (Barcelona, 

2012; Song, 2011). Hence, we found inducing symbolic and interpretable cognitive 

semantics and formalizing the cognitive plausible patterns a complicated task that imposes 
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new challenges (e.g., linguistic analysis, sentiment analysis) that are beyond the scope of 

this work.  

Our Semantic Web inspired approach to (i) represent ordered relationships among the 

hierarchical and equivalent associations within a unified ontology language and (ii) 

formalize and implement the hierarchical, order-based and equivalent patterns in one 

plausible reasoner is elaborated in the next chapter. 

3.6 Implementations of plausible reasoning 

There have been few attempts (Dontas & Zemankova, 1990; Oroumchian & Oddy, 1996) 

in different application domains to implement the theory of human plausible reasoning 

introduced by (Collins & Michalski, 1989). In their work, Collins and Michalski assumed 

that a larg body of human knowledge is stored and represented in hierarchies. By 

leveraging the hierarchcial constructs, they formalized four plausible patterns 

(generalizaiton, specializaiton, similairty and dissimilairty) that people use when they do 

not know a prompt answer. They also introduced a set of certainty factors (e.g., conditional 

likelihood, typicality) that calculates the certainty of the plausible answers. In their theory, 

the knowledge is represented in the form of logical statements (i.e., descriptor(argument) 

= referent). To perform the plausible patterns, they suggest transforming the argument or 

referent of the statement via plausible patterns, trying to find an (plausible) answer that 

satisfies the new statement. 

Dontas et. al. (Dontas & Zemankova, 1990) developed a pilot version of the theory of 

human plausible reasoning (Collins & Michalski, 1989) on the periodic table. In their 

system (called APPLAUSE) they tried to generate the unknown (or deliberately deleted) 

attribute values of the elements using the known facts of other elements via the plausible 
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patterns (including generalization, specialization, similarity and dissimilarity). To 

represent the domain knowledge, APPLAUSE utilizes the combination of hierarchies 

(nodes connected via parent-child relationships in periods and groups), statements (i.e., 

tuples in logic) describing entities in the hierarchy, similarity values between the entities, 

and dependencies and implications between properties of the entities. They used Prolog 

environment to develop APPLAUSE. 

Oroumchian et. al. (Oroumchian & Oddy, 1996) investigated the applicablilty of human 

plausible reasoning (Collins & Michalski, 1989) in the domain of information retireval. 

They were motivated by the idea that people have been doing information retrieval long 

before the develpment of computers. In their study, they try to simulate the thinking 

process of librarirans when try to find relevant documents that may be interesting to a user. 

To represent the docuemtns, they used phrases and logical terms X and BN that occure in 

the phrases. Phrases are combination of two terms that are connceted (e.g., User interface 

of Windows operating system). An X realtionship expresses the relationship between a 

pharese and its parts (e.g., relationship between 32-bit and 32-bit Operating System) and a 

BN (Broader-Narrower) relationship represent the conenction between two following 

phrases (e.g., relational and database). The X and BN relationships are leveraged to 

demonstrate the hierarchical relationhsips between the pharases and later conduct the 

plausible reasoning via generalizaiton, specializaiton, or (dis)simialrity.  

Although the experiments of both works show promising results, there are still some 

restrictions in the theory and implementation of the works that hinder the full potential of 

plausible reasoning, as an exploratory data analytic method.   
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The most important limitation of the theory, and correspondingly the systems above, is that 

they only consider hierarchical relationships in their inferences. As mentioned, the theory 

is founded on this assumption that large part of human knowledge is represented in 

hierarchies. Whereas, in real settings a variety of associations exist (e.g., cause/effect, 

action/product, partial order). Each of these associations carries different meaning and 

expresses interesting semantics between concepts that can be used in plausible reasoning 

and generate new associations.  

In addition, the representation of knowledge in the form of statements impose some serious 

limitations. In a statement, an argument is associated with a referent via a descriptor (i.e., 

descriptor(argument) = referent). This schema does not allow the system to capture and 

represent complex relationships in real-world scenarios that may involve more than one 

argument. Furthermore, the statement representation of knowledge along with the 

statement transformation approach to implement plausible patterns compels the incoming 

questions to be formulated as statements. In the domains that questions are typically 

complicated and not simply possible to be stated in the form of a simple statement (such 

as questions with conditions in their WHERE clauses) the systems above will be 

ineffective. Hence, the statement representation of knowledge limits both the knowledge 

types that the system can contain and the queries that it can answer. A flexible and dynamic 

knowledge representation that efficiently captures and represents various forms of 

semantic associations offers a great potential to increase the scope of plausible reasoning.  

Regardelss of the limtiations that the theory implies, there are some concerns regaridng the 

developed systems that renders their capabilites for real-world applications. The first 

concern is the size of the data and the scale of the experiments. APPLAUSE performed 
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plausbile reasoning on the periodic table with 102 elements (at that time and 118 elements 

now) with shallow hierachies (i.e., two-level deep hierachies), and (Oroumchian & Oddy, 

1996) evaluated their plausible information retrieval system in CACM collection that only 

includes 3,204 documents. Despite the fact that both the systems present a concept of proof 

implementation of the theory, neither of them report  any perfomance results. So, the 

applicabilty of their implementations in applications with large data is questionable.  

In addition, despite the emphasis of the theory on the significance of domian knowledge 

in conducting plausible reasoning, no standard domain knowledge is utilized in the 

plausible information retrieval system. Only simple clue-based methods were used to 

retrieve the relationships and construct the knowledge base. Their further investigation 

showed that 90% of the relationships were accurate and many relationships were not 

identified (Oroumchian & Oddy, 1996).  

Amongst the analytics systems that implement plausible reasoning to derive new 

knowledge, there are some studies that leverage the concept of plausibility to introduce 

novel approaches to handle uncertainty. For example, Schechter (Schechter, 2015) 

combined the logic of plausibility with the logic of justification to introduce a logic of 

plausible justification, which used to develop an argumentation and debate platform for 

multi-agent systems. The notion of plausibility allows the agents to hold a incorrect and 

unreliable belief, as long as they have a plausible evidence (or justification) for it. In their 

system, agents can discuss the correctness of a belief and the plausibility of the evidence.  

The mechanism and definition of plausible reasoning has not always been unambiguous 

that clearly addresses the notion of plausibility (introduced early in this chapter). In some 

studies, plausible reasoning has been mistakenly used to imply any kind of approximate 
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reasoning in complex and uncertain settings, including probability (Horvitz, Heckerman, 

& Langlotz, 1986; Prade, 1985), fuzzy logic (Bouchon-Meunier, Dubois, Godo, & Prade, 

1999), and Dempster-Shafer theory (Dezert, 2002).  

3.7 Summary 

This chapter presented plausible reasoning as a non-deductive, data-driven reasoning 

approach exploring semantic data to infer new knowledge supported by reasonable 

evidence. We studied eight patterns (including generalization, specialization, similarity, 

dissimilarity, a fortiori, interpolation, metaphor, metonymy) that navigate the relationships 

between semantic data (including hierarchical, ordered, equivalent and cognitive) to draw 

new inferences. The plausible inferences are non-demonstrative, ampliative, non-

monotonic and subjective. Despite the recognized challenges with formalizing the 

hierarchical, order-based, and equivalent plausible patterns and representing ordered-based 

relationships, we found the cognitive patterns irrelevant to the objectives of this study (at 

least at this current step of the work).  

This chapter showed, although a body of theoretical work in different disciplines (e.g., 

philosophy, mathematics, artificial intelligence) has been done to explain and formalize 

plausible reasoning, its potential to analyze semantically-represented data and discover 

interesting relationships has not been investigated in practice. Given the availability of a 

variety of sources of data (i.e., big data), along with novel knowledge representation and 

reasoning approaches designed for semantic analysis and discovery (i.e., the Semantic 

Web technologies) bring to attention the need to investigate the potential of plausible 

reasoning in big data analytics. 
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Chapter 4: Plausible Reasoning Over Knowledge Graphs 

After discussing the fundamental concepts of this thesis in the previous chapters, we are 

now able to provide a formal definition of our plausible reasoning approach by identifying 

its components, the plausible patterns and the semantics that they are based upon. These 

definitions clarify the technical aspects of our approach to implementing plausible 

reasoning over knowledge graphs. Later, the challenges of the implementation, the 

potential solutions and our contributions to address them are discussed. This is then 

followed by the technical details of our solutions and how they were applied to implement 

a plausible reasoner. Finally, we introduce the SeDan framework, as a pragmatic 

endeavour to achieve plausible reasoning in a real-world setting.  

4.1 Definitions 

Plausible reasoning has been used in a wide range of studies and its definition, which has 

not always been unambiguous, has evolved over time.  Along with the objectives of this 

thesis, we provide a formal definition of plausible reasoning conforming with the Semantic 

Web inspired approach that we have taken. We formulate a series of definitions 

formalizing the concepts that plausible reasoning is built upon. Leveraging those 

components, we ultimately define plausible reasoning over knowledge graphs.   

Definition 1 (Knowledge Graph2): a knowledge graph is a directed labeled multigraph 

where entities/concepts are represented by nodes, and edges represent their relations. In a 

knowledge graph 𝒢 = (𝒱, ℰ, ℛ, 𝒪), 𝒱 is the set of entities,  ℰ is a set of labeled directed 

                                                 
2 Knowledge graph has been widely applied in different applications, while its definition has not always been 

consistently agreed upon. Thus, including a definition that serves as a basis for our discussion and provides 

a common vision of knowledge graph is important.  
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edges between two entities, ℛ is the set of the predicate labels and 𝒪 is the ontology of the 

entities. In a knowledge graph, the triple 〈𝑠, 𝑝, 𝑜〉 represents a directed relation 𝑝 ∈  ℰ from 

a subject entity 𝑠 to the object entity 𝑜 (𝑠, 𝑜 ∈  𝒱)   (Das et al., 2017; B. Shi & Weninger, 

2016). 

Definition 2 (Semantic Association): a semantic association, 𝜎 ∈ Σ, implies a meaningful 

relationship between two concepts. In a graph representation of knowledge, a semantic 

association is equal to a directed labeled link connecting two nodes (𝑠, 𝑜 ∈  𝒱) via an edge 

(𝑝 ∈  ℰ). A semantic association can indicate super/sub-ordination relationships via 

hierarchical constructs (i.e., ∈ and ⊂), equality relationships via equivalence constructs 

(i.e., = and ≠), or interpretable directions via sequential associations (i.e.,  ≺ and ≻). 

Definition 3 (Plausible Pattern): a plausible pattern, 𝜋 ∈ Π, provides the rational criteria 

for exploring the knowledge graph by navigating from one entity (node) to another entity 

(node) based on a set of well-defined semantic relationships. In the development of 

plausible reasoning over a knowledge graph, 𝒢, plausible patterns can be considered as  

pattern matching functions, 𝜙(𝜈, 𝜋, 𝒢), that identify the triples, 〈𝜈, σ, 𝜈′〉, acknowledging 

the logic of the corresponding plausible pattern, 𝜋—i.e., two concepts, 𝜈 and 𝜈′ are 

connected via a semantic association, σ, conforming with logic of the plausible pattern, 𝜋: 

𝜙(𝜈, 𝜋, 𝒢) =  {𝜈′|〈𝜈, σ, 𝜈′〉, σ ∈ Σ, σ ⟹ 𝜋} 

in which 𝜈, 𝜈′ ∈ 𝒱, Σ = {∈, ⊂, ≺, ≻, =, ≠, … }, and Π =  {𝐺𝐸𝑁, 𝑆𝑃𝐸𝐶, 𝐼𝑁𝑇𝑃, 𝐴𝐹𝑂𝑅𝑇,

𝑆𝐼𝑀, 𝐷𝐼𝑆}. Table 5 presents the variants of the pattern matching function using relevant 

associations to retrieve the applicable semantics to each plausible pattern.  
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Table 5- The pattern matching functions based on the plausible patterns applied to semantic 

associations-there are two variants of the matching function for each of interpolation and a fortiori, as 

they can be applied in two directions.  Similarity and dissimilarity matching functions include two patterns, 

since the equivalent (or inequivalent) associations are symmetric.     

Plausible Pattern Semantic Associations Pattern Matching Function 

Generalization Σ =  {∈, ⊂} 𝜙(𝜈, 𝐺𝐸𝑁, 𝒢) =  {𝜈′|〈𝜈, σ, 𝜈′〉, σ ∈ Σ} 

Specialization Σ =  {∈, ⊂} 𝜙(𝜈, 𝑆𝑃𝐸𝐶, 𝒢) =  {𝜈′|〈𝜈′, σ, 𝜈〉, σ ∈ Σ} 

Interpolation 
Σ1 =  {<, ≺} 

Σ2 =  {>, ≻} 

𝜙(𝜈, 𝐼𝑁𝑇𝑃, 𝒢) =  {𝜈′, 𝜈′′|〈𝜈′, σ, 𝜈〉〈𝜈, σ, 𝜈′′〉, σ ∈ Σ1} 

𝜙(𝜈, 𝐼𝑁𝑇𝑃, 𝒢) =  {𝜈′, 𝜈′′|〈𝜈′′, σ, 𝜈〉〈𝜈, σ, 𝜈′〉, σ ∈ Σ2} 

A Fortiori 
Σ1 =  {<, ≺} 

Σ2 =  { >, ≻} 

𝜙(𝜈, 𝐴𝐹𝑂𝑅𝑇 − 𝐿2𝑀, 𝒢) =  {𝜈′|〈𝜈, σ, 𝜈′〉, σ ∈ Σ1} 

𝜙(𝜈, 𝐴𝐹𝑂𝑅𝑇 − 𝑀2𝐿, 𝒢) =  {𝜈′|〈𝜈, σ, 𝜈′〉, σ ∈ Σ2} 

Similarity Σ = {=, ≈, ≡, ∼ } 
𝜙(𝜈, 𝑆𝐼𝑀, 𝒢) =  {𝜈′|〈𝜈, σ, 𝜈′〉 𝑂𝑅 〈𝜈′, σ, 𝜈〉, σ ∈ Σ1} 

Dissimilarity Σ = {≠, ≉, ≢, ≁ } 
𝜙(𝜈, 𝐷𝐼𝑆, 𝒢) =  {𝜈′|〈𝜈, σ, 𝜈′〉 𝑂𝑅 〈𝜈′, σ, 𝜈〉 , σ ∈ Σ1} 

Definition 4 (Plausible Path): the path between two nodes in a knowledge graph 

connected via a (series of) semantic association(s) conforming with the logic of plausible 

patterns—i.e., a chain of semantics retrieved by pattern matching functions. A plausible 

path connects a source node to a target node via a single or a sequence of semantic 

associations applicable to plausible patterns through a set of intermediate nodes: 

𝑝𝑙𝑃𝑎𝑡ℎ = {〈𝜈, σ, 𝜈1〉〈𝜈1, σ1, 𝜈2〉 … 〈𝜈𝑛, σ𝑛, 𝜈′〉 |𝜋𝑛 ∈  Π, 𝑛 ≥ 0} 

Alternatively, we can define a plausible path as a sequence of plausible patterns:  

𝑝𝑙𝑃𝑎𝑡ℎ = (𝜋1, … , 𝜋𝑛) ;     𝜋𝑛 =  〈𝜈𝑛−1, σ𝑛, 𝜈𝑛〉, 𝑛 ≥ 1 

Definition 5 (Plausible Association): a new association, 〈𝜈, 𝜀, 𝜈′〉, connecting the source 

node to the target node (or vice versa) of a plausible path. 

Definition 6 (Plausible Reasoning): in a knowledge graph, plausible reasoning is the act 

of deriving a new line of inference (i.e., plausible association) by connecting two 

previously disconnected nodes via a plausible path (i.e., comprised of plausible patterns), 
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whose consistency can be further evaluated deductively and may lead to the discovery of 

new solutions whose reliability is plausible (Figure 2) 

 

Figure 2- Plausible reasoning over knowledge graphs - 〈𝜈, 𝜎1, 𝜈1〉〈𝜈1, 𝜎2, 𝜈2〉〈𝜈2, 𝜎3, 𝜈′〉 is a plausible path 

comprised of 3 plausible patterns. In the plausible triple, 〈𝜈, 𝜀, 𝜈′〉, 𝜀 is the plausible association. 

Let 𝒢 be a knowledge graph including ontological constructs 𝒯 and (incomplete) 

assertional data 𝒜 (𝒢 = ⟨𝒯, 𝒜⟩) and 𝒬 a query representable in the triple format 〈𝑠, 𝑝, 𝑜〉, 

a plausible reasoner 𝑝𝑙𝑅𝑒𝑠(𝒢, 𝒯, 𝒜) returns a set of solutions for 𝒬: 

Ρ𝒬=(𝑠,𝑝,𝑜)
𝒢 =  {(𝑝𝑙𝐴𝑛𝑠𝑖 , 𝑝𝑙𝑃𝑎𝑡ℎ𝑖)| 𝑖 ≥ 0} 

plAns is a plausibly inferred solution and 𝑝𝑙𝑃𝑎𝑡ℎ expresses the corresponding chain of 

semantic relationship(s) leveraged by the corresponding plausible patterns. In the formula 

above, the index of plausible answer starts from 0 (𝑖 ≥ 0), since a plausible path does not 

guarantee an answer.  

The act of plausible reasoning: our definition of plausible reasoning (definition 6) 

suggests inferring a plausible answer could be formulated as the problem of deriving a 

plausible association (definition 5) interrelating two unconnected entities via a plausible 

path (definition 4), which is comprised of a single or a sequence of plausible patterns 

(definition 3). The act of plausible reasoning over knowledge graphs can be formulated as 

a four-stage process:  

1. Receive a question to answer and the already available data (i.e., what we look for),  
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2. Utilize plausible patterns to conduct an exploratory search over the data and collect 

supporting semantic relationships relevant to the concept(s) in the question,  

3. Draw a new association by reformulating the question (e.g., making hypothesis in 

scientific discovery) using the semantics retrieved in stage 2: replacement of the 

target entities with the entity in the question will generate plausible questions that 

can be tested deductively (i.e., how we look for), 

4. Evaluate the plausibly generated questions (i.e., hypotheses) and interpret the 

results and communicate the plausible answers (i.e., how we interpret).  

In practice, a plausible reasoner, like any analytic method in scientific discoveries, starts 

with a problem (i.e., expressed in the form of a question) and the already available data to 

make new hypotheses that can be tested further (Cellucci, 2013b; Collins & Michalski, 

1989).  

4.2 Requirements and challenges of implementing plausible reasoning 

According to the definition of plausible reasoning provided earlier, developing a plausible 

reasoner has two main aspects: the representation of data/knowledge and the reasoning 

paradigm. The first aspect should address how a knowledge representation formalism can 

offer the required expressivity to capture real-world entities and their properties, while 

carrying their semantics. The second aspect tries to find a reasoning approach that 

reinforces the analysis of semantic data while conforming with the rationale underlying 

the plausible patterns. The following sections elaborate the requirements of each aspects, 

the challenges that they pose and the solutions to address those challenges.  
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4.2.1 Knowledge Representation  

The definition of plausible semantics (definition 2) implies that, in addition to the real-

word entities and their attributes, the relationships between those entities are of importance. 

The semantics of an entity is identified via a clear and unambiguous relationship with other 

entities. Furthermore, the definition of plausible reasoning (definition 6) indicates that the 

plausible reasoner leverages both data (i.e., assertional data) and domain knowledge (i.e., 

ontological constructs) to perform a chain of inferences and reach a plausible answer. 

Hence, the connectivity of data items within a source and to the relevant, external sources 

is paramount.  

Definition 5 (Plausible Association) suggests that the knowledge representation formalism 

should be capable of including arbitrary relationships that are drawn within the process of 

plausible reasoning and ultimately stores them as plausible answers. Additionally, the 

fourth step of the plausible reasoning in act raises the issue of data provenance, in which 

a plausible answer is justified. To provide users with reliable answers, the evaluation of 

the plausible answers traces the reasoning process and explains where the knowledge came 

from. 

Hence, an appropriate knowledge representation formalism for an effective plausible 

reasoning should be connected (i.e., entities are interrelated), expressive (i.e., carries 

semantics), flexible (i.e., includes relationships that may not be restricted in their domain 

and/or range) and encode the provenance (i.e., justifies where the knowledge came from).  

As discussed in chapter 2, knowledge graph offers an ideal knowledge representation 

formalism mitigating the requirements above. The Semantic Web technologies 

fundamentally provide ideal technical means reinforcing the development of graph-based 
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representation of knowledge. The Semantic Web offers a graph-based representation of 

data via RDF, and RDFS and OWL, which carry the semantics of data more profoundly.  

Resource Description Framework (RDF) serializes knowledge/data points via a connected 

series of triples in the form of subject-predicate-object. The RDF design allows the creation 

of new arbitrary graph constructs (e.g., new relations, or chain of connections), while 

providing the fundamentals to build more expressive ontology languages like RDFS and 

OWL, which can associate specific semantics within the data graph. Linked data interlinks 

different sources of data/knowledge as one connected large graph, while their origin is still 

trackable (Paulheim, 2017; Van Ossenbruggen, Nack, & Hardman, 2004).  

Knowledge graphs in the Semantic Web framework provides the means to represent and 

subsequently analyze the underlying semantics of the available data via plausible 

reasoning. However, even OWL, the most expressive knowledge representation language 

in the Semantic Web framework, does not fully support all the semantics that the plausible 

patterns are applied to.  

The built-in RDFS constructs (like subClassOf, subPropertyOf) and OWL axioms (like 

instanceOf, sameAs, differentFrom, equivalentClass) offer the necessary semantics to 

manifest the hierarchical (i.e., generalization and specialization) and hierarchical-

equivalence (i.e., hierarchical similarity and dissimilarity) plausible patterns (Table 5). The 

ordered-based (i.e., interpolation and a fortiori) and ordered-equivalence (i.e., ordered 

similarity and dissimilarity) plausible patterns conduct the reasoning based on measurable 

relationships between comparable concepts, while the existing relationships in RDFS or 

OWL cannot represent and reason with them effectively.  
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Hence, the lack of expressivity of the Semantic Web ontology languages raises the first 

challenge: to be able to implement plausible reasoning within the logic layer of the 

Semantic Web, we need to introduce an augmentation to OWL that fulfills the 

representation and, subsequently, reasoning with all the semantics underlying the plausible 

patterns in one integrated/solid framework.  

4.2.2 Reasoning paradigm  

As discussed in chapter 2, the Semantic Web technologies offer a variety of reasoning 

mechanisms that each one is suitable for different applications and domains, regarding the 

size of the data, complexity of the ontology, and the reasoning requirements (i.e., handling 

uncertainty). Now the question is which reasoning approach the most appropriate 

mechanism is to implement plausible reasoning over large data represented in knowledge 

graphs. 

The Semantic Web ontology languages (e.g., RDFS and OWL) offer the constructs to 

semantically markup data items in the Semantic Web, but they are based on formal logic 

(e.g., description logics) capturing general constraints that are globally accepted (i.e., 

rules). For the very same reason, automated reasoning via these logic-based ontology 

languages (i.e., OWL 2 EL) on RDF graphs is constrained to deductive reasoning tasks 

inferring accurate, sound and consistent (i.e., with no logical contradictions) relationships 

among the classes, properties and relationships (World Wide Web Consortium, 2012). 

Hence, conventional ontology-based reasoning lacks the advantages of non-demonstrative, 

explorative reasonings (e.g., plausible reasoning) due to the expressivity limitations 

residing in the deterministic knowledge representation languages. 
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Leveraging the ontology languages (e.g., OWL), rule languages (e.g., SWRL) are proposed 

to improve the expressivity of the Semantic Web. However, despite the efficiency of rule-

based approaches, there are some challenges in exploiting rule-based reasoning that hinder 

an effective implementation of plausible reasoning over large datasets. Traditional rule 

engines suffer from scalability. Performing rule inferences (e.g., OWL 2 RL or SWRL) on 

large datasets can take hours to finish. Even in the case of multi-core and multi-CPU 

machines, rule-based inferences should be efficiently parallelized. Although recent efforts 

have proposed distributed rule engines to handle this challenge, but performance of rule-

based reasoning with regard to large knowledge bases is still an issue (Kolovski, Wu, & 

Eadon, 2010; J. Zhang, Yang, & Li, 2017). Additionally, it is not always possible to capture 

and express the domain knowledge in the form of rules. More importantly, rule-based 

reasoning is the process of applying a set of rules to a set of statements (e.g., triples) to 

return some conclusions (i.e., answer set) (Urbani, Van Harmelen, Schlobach, & Bal, 

2011). Hence, the deductive rule reasonings materialize what has been already captured in 

the domain knowledge in the form of rules—i.e., rule-based reasoning has no ampliative 

power enabling assumption seeking or generating hypotheses. 

The latest version of the SPARQL query language, SPARQL 1.1, supports the use of 

ontological constructs to augment query answering over RDF graphs under logical 

entailments (i.e., entailment regime). For this purpose, OWL 2 QL fragment offers a 

dedicated schema to rewrite SPARQL queries (i.e., into the form of a conjunctive query) 

that will be further evaluated over RDF data. Although exploiting ontological constructs 

to rewrite a query has been in practice for decades (i.e., query rewriting has been one of 

the approaches to ontology-based data access), the new features of SPARQL 1.1, including 
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property paths, value creation, etc. (Harris & Seaborne, 2013) provide this innovative 

opportunity to rewrite a query using both the ontological part of the knowledge and the 

assertional data. Especially that the knowledge graphs, as a modern formalism for 

representing knowledge, effectively combine variety of knowledge and data sources in one 

integrated platform (Bischof, Krötzsch, Polleres, & Rudolph, 2014; Glimm & Ogbuji, 

2013).  

Thus, while OWL 2 QL supports query rewriting to preform standard reasoning tasks, 

SPARQL 1.1 reinforces more complex reasoning paradigms incorporating data-driven 

approaches. Hence, query rewriting over OWL 2 QL using SPARQL 1.1 can be considered 

as a flexible reasoning approach that can infer logical, deductive answers, while it is 

capable of leveraging data associations (i.e., semantics) to derive new plausible solutions. 

However, as discussed before, a query rewriting technique requires a set of conditions (aka. 

inference constraints) to conduct the rewriting and infer new solutions. Hence, the 

challenge of implementing plausible reasoning via query rewriting over OWL QL using 

SPARQL 1.1 could be narrowed down to the identification of the rationale of plausible 

patterns and formalizing them in the form of inference constraints conducting the query 

rewriting. In the next section we discuss how the formalization of the plausible patterns 

(definition 3) via the pattern matching function (Table 5) tackles this challenge.  

4.3 Solutions  

This research aims to investigate the potential of implementing plausible reasoning over 

knowledge graphs, targeting a semantic analytics framework for large health data 

analytics. We aim to demonstrate the effectiveness of non-deductive exploratory analytics 
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within the logic layer of the Semantic Web to infer new knowledge from large data-sets, 

especially when we are dealing with incomplete and noisy data.  

However, as discussed, despite the efficient means that Semantic Web technologies offer 

to analyze the underlying semantics of the available knowledge and facilitate the 

implementation of plausible reasoning over knowledge graphs, they are still two main 

shortcomings: the limited expressivity and reasoning obstacles. To address these 

challenges, we show:  

i. The lack of expressivity of the Semantic Web ontology languages, can be addressed 

by introducing additional markups (we call it PLausible OWL extension, PL-OWL) 

that extend OWL constructs by providing a greater flexibility in modeling and 

representing the semantics applied to the plausible patterns. 

ii. To implement plausible reasoning via plausible patterns, query rewriting is an 

appropriate reasoning paradigm on the Semantic Web that leverages OWL 

constraints (can be extended by our PL-OWL) to transform a given SPARQL query 

allowing the extraction of both explicit (deductive) and implicit (plausible) 

knowledge from the underlying data. Formalizing and implementing the rationale 

behind the plausible patterns in the form of a set of inference constraints residing in 

the core of the query rewriting algorithm can deliver plausible reasoning. And 

ultimately, 

iii. The integration of the contributions as a SEmantics-based Data ANalytics (SeDan) 

framework establishes the act of plausible reasoning (definition 6) in a working 

system to discover new associations between underlying domain-specific data when 

deductive query answering fails. The framework is evaluated using health data, since 
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semantic analytics is found relevant to healthcare (Mohammadhassanzadeh, 

Woensel, Abidi, & Abidi, 2016), as a predominantly knowledge-intensive domain 

supporting both diagnosis reasoning and predictive inference. 

The sections below elaborate the theoretical and technical aspects of each of the 

contributions that this work offers.    

4.3.1 Plausible OWL extension 

Within the Semantic Web framework, standard reasoning capabilities of OWL profiles 

(such as OWL 2 QL) support various types of ontology-based inference. Subsumption (i.e., 

class) relationship properties (i.e., rdfs:subClassOf and owl:instanceOf) support 

generalization and specialization patterns by moving between the nodes in a hierarchical 

(taxonomic) structure—i.e., from parent to child or vice versa. Equality semantics (i.e, 

owl:sameAs and owl:disjointFrom) conduct the equivalence patterns by moving between 

similar and interchangeable nodes in the ontology.  

However, OWL does not support all the semantics required in the plausible patterns. The 

order-based patterns, a fortiori and interpolation, conduct plausible reasoning based on 

measurable relationships (e.g., size, chronological order, location, ranking, phase, etc.) 

between comparable concepts, objects or actions. The existing constructs in RDF(S) or 

OWL cannot represent and reason over the measurable relationships effectively. Hence, 

we (Mohammadhassanzadeh, Raza Abidi, Shah, Karamollahi, & Abidi, 2017) have 

introduced a plausible OWL extension to represent order-based semantics within the SW 

framework.  
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Despite the probabilistic/fuzzy extensions to OWL (R. N. Carvalho et al., 2017; P. da Costa 

et al., 2008; Dong et al., 2015; Liu et al., 2013) that incorporate new type of individuals or 

uncertainty/belief/truth values describing facts, the plausible OWL extension (PL-OWL) 

does not introduce any new types of facts or values about entities. PL-OWL includes a set 

of classes, sub-classes, properties and sub-properties enabling OWL ontologies to 

incorporate (i) ordered relationships and (ii) new notions introduced in the theory of 

plausible reasoning (e.g., plausible pattern, plausibly inferred answer). The plausible 

augmentation to OWL mainly includes a new type of property (and its sub-properties) 

defining the ordered interrelations and restrictions. These properties express new types of 

semantics in the form of associations between entities. To be consistent with the OWL 

axioms, we also need to introduce some new classes characterizing the ordered properties. 

As a subclass of owl:ObjectProperty, the class OrderedProperty supplements the 

constructs of OWL to capture ordered relationships and support all three types of semantic 

associations in one coherent ontology language (definition 2). The two subclasses of 

OrderedProperty, StandsAfter and StandsBefore, provide extra expressivity identifying the 

direction of the comparison being made in interpolation and a fortiori (Table 5).  

The class of PlausiblePattern and its individuals (e.g., generalization, interpolation, etc.) 

represent the plausible patterns (definition 3) that are formalized in the form of inference 

constraints and integrated into the process of plausible reasoning (i.e., conduct the query 

rewriting). The class of Context captures the domain specific knowledge with respect to 

specific conditions to address ambiguity, especially in the case of ordered relationships 

where the associations between the items are highly dependent on the context in which 

there are being compared.  
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Subsequently, there are some extension constructs supplementing the PL-OWL properties. 

The properties standsAfter and standsBefore provide the opportunity to represent the 

ordered relationships that the domain ontology has no label for them. The instances of the 

class Context help to append the circumstances to the ordered property. But, if there is any 

labeled associations (e.g., precedes, bigger) implying an ordered relationship, it can be 

directly assigned to the StandsAfter and StandsBefore classes (this process will be 

explained further in the plausible OWL enrichment section).  

Table 6 demonstrates the proposed OWL extension followed by detailed description of 

each construct. 

Table 6- Plausible OWL extension (PLOWL) 

Class Name Supper Class On Property 

OrderedProperty ObjectProperty -  

StandsAfter  OrderedProperty standsAfter 

StandsBefore OrderedProperty standsBefore 

Context Class hasContext 

PlausiblePattern Class inferredViaPattern 

PlausibleAnswer Class - 

Property Name Type Domain Range Inverse Property 

standsAfter  StandsAfter Entity Entity standsBefore 

standsBefore StandsBefore Entity Entity standsAfter 

hasContext ObjectProperty Entity Context - 

inferredViaPattern ObjectProperty PlausibleAnswer PlausiblePattern - 

plowl:OrderedProperty is a class of properties that represents partial order between two 

classes or entities w.r.t a measurable property (i.e., plowl:Context). More formally, if P is 

an OrderedProperty, any instance of P, like (x P y), implies a sequence or a relative 

quantity between x and y – i.e., x is bigger, older, slower, etc. than y or vice versa. From 

this, the plausible reasoner would be able to conduct interpolation and a fortiori reasoning. 

plowl:StandsAfter and plowl:StandsBefore are sub-classes of plowl:OrderedProperty, 

identifying the direction of a sequence.  
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Ordered Property 

Description 

The class of ordered properties. Like owl:TransitiveProperty, owl:FunctionalProperty, etc., 

having a separate class for representing ordered properties makes the modeling of and 

reasoning with plausible semantics easier.  

Properties with OrderedProperty as their domain or range 

-   

Instances of OrderedProperty 

StandsAfter 

StandsBefore 

plowl:StandsAfter is defined as a class of properties that demonstrate the relationship 

between two classes, in which the first class stands after the second class 

(〈𝑐1 𝑆𝑡𝑎𝑛𝑑𝑠𝐴𝑓𝑡𝑒𝑟 𝑐2〉 = 〈𝑐1 ≻ 𝑐1〉). Older, taller and succeeds can be classified as 

StandsAfter relationships.  

plowl:StandsBefore is defined as a class of properties that demonstrate the relationship 

between two classes, in which the first class stands before the second class 

(〈𝑐1 𝑆𝑡𝑎𝑛𝑑𝑠𝐵𝑒𝑓𝑜𝑟𝑒 𝑐2〉 = 〈𝑐1 ≺ 𝑐2〉). Younger, shorter and precedes can be classified 

as StandsBefore relationships. 

StandsAfter 

Description 

Represents a class of properties that link any two comparable objects and expresses the 

(partial) order of them regarding a specific context.  

Properties with StandsAfter as their domain or range 

-   

Instances of OrderedProperty 

standsAfter 

StandsBefore 

Description 

Represents a class of properties that link any two comparable objects and expresses the 

(partial) order of them regarding a specific context. 

Properties with OrderedProperty as their domain or range 

-   

Instances of OrderedProperty 

standsBefore 

plowl:Context identifies the setting in which two concepts are being compared. Some 

ordered-based properties intrinsically imply a context – i.e., older, shorter and precedes 
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imply age, height and time respectively. However, there are some properties that indicate 

a general sequence – e.g., higher. Hence, Context help to clearly distinguish the conditions 

that a generic order property is representing. For example, the statement “the cancer risk 

of warts is higher than the herpes,” can be represented as higher(warts, herpes, 

cancer_risk), instead of defining the new property higherCancerRisk.  

In addition, Context helps to implement the plausible OWL extension more efficiently. 

Without Context, the ontology representing the domain knowledge requires one different 

property to represent each generic ordered property, which drastically affects the 

complexity of the OWL ontology. While, considering Context in the extension helps to 

represent a generic order property via a pair of ordered-property and a context, e.g., 

(standsAfter, cancer_risk). 

Context 

Description 

Context is a constraint for a triple statement to disambiguate its meaning and express the 

circumstances in which the statement makes sense.  

Properties with Context as their domain or range 

hasContext (range) 

inTheContextOf (range) 

Instances of Context 

will be determined by ontology engineer, based on the application domain 

plowl:PlausiblePattern is a class representing the plausible pattern flavors implemented 

in the plausible reasoner. Currently, PlausiblePattern is a simple class with 6 instances: 

generalization, specialization, similarity, dissimilarity, a fortiori, and interpolation.  

Plausible Patterns 

Description 

Includes the six well-known plausible patterns that we are implementing in this research. 

Properties with PlPattern as their domain or range 

inferredThroughPattern (range) 

Instances of PlPattern 

Generalization, Specialization, (Dis)Similarity, A fortiori, Interpolation 
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plowl:PlausibleAnswer is a class to represent the plausibly inferred answers, which are 

simply in the form of a triple statement. A plausible answer may be accompanied 

(plowl:inferredViaPattern) by the plausible pattern(s) (plowl:PlausiblePattern) that 

conducted the inference. 

Plausible Answer 

Description 

Represents a plausibly inferred association, including a triple statement, the context in which 

the triple is tangible, and the pattern that has led to this inference. 

Properties with PlausibleAnswer as their domain or range 

inferredViaPattern (domain) 

hasContext (domain) 

Instances of PlausibleAnswer 

Will be inferred via plausible reasoning using assertional knowledge 

plowl:hasContext – in the cases that the RDF repository is not able to represent a context-

based relationship in the form of a quadruple –i.e., predicate(subject, object, context)– 

hasContext will link a triple to its corresponding context, 

hasContext(URI(predicate(subject, object)), context). 

hasContext 

Type: ObjectProperty 

Description: 

This object property links a property (predicate) to a context to disambiguate the meaning 

of a triple statement.  

plowl:standsAfter is an instance of the StandsAfter class, representing a generic order 

property w.r.t a context. This property is an endeavor to represent and formalize ordered-

based relationships between two entities/classes that no equivalent ordered-based property 

(plowl:OrderedProperty) represents them in the domain ontology. For example, the 

statement higher(warts, herpes, cancer_risk) can be formalized as standsAfter(warts, 

herpes, cancer_risk). Having a standard axiom for representing the ordered-based 

properties reduces the complexity of the domain ontology and facilitates the 

implementation of the plausible patterns. 
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plowl:standsBefore is an instance of  StandsBefore class (i.e., similar to 

plowl:standsAfter, but in the reverse order) representing a generic order property w.r.t a 

context. For example, the statement higher(warts, herpes, cancer_risk) can be formalized 

as standsBefore(herpes, warts, cancer_risk). 

standsAfter 

Type: OrderedProperty (StandsAfter) 

Description: 

This object property is a link between any two comparable objects and expresses the (partial) 

order of them regarding a specific context. standsAfter(a,b,(c)) expresses that object a locates 

after object b regarding the context c. Context c can imply size, volume, ranking, level, etc. 

For example, if c = length, then a is longer than b. 

standsBefore 

Type: OrderedProperty (StandsBefore) 

Description: 

This object property is a link between any two comparable objects and expresses the (partial) 

order of them regarding a specific context. standsBefore(a,b,(c)) expresses object a locates 

before object b regarding the context c.  

plowl:InferedViaPattern connects an inferred plausible answer to the pattern(s) that were 

used in the process of plausible reasoning.  

inferredViaPattern 

Type: ObjectProperty 

Description: 

This object property connects a plausibly inferred answer (PlAnswer) to the plausible 

pattern(s) that led to the inference.  

Code 1 shows a snapshot of the implementation of the plausible OWL extension (complete 

PL-OWL Extension Code can be found in Appendix I). Based on these constructs, we will 

be able to enrich (Code 2) the existing OWL ontologies to represent ordered-based 

relationships (i.e., SemMedDB:precedes a plwol:StandsBefore), and support the plausible 

reasoner to conduct interpolation and a fortiori reasonings. 
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plowl:OrderedProperty a owl:Class ; 

   rdfs:label "OrderedProperty" ; 

   rdfs:comment "The class of (partial) ordered properties." ; 

   rdfs:subClassOf owl:ObjectProperty. 

plowl:StandsBefore a owl:OrderedProperty;    

   rdfs:range owl:Thing; 

   rdfs:domain owl:Thing; 

   rdfs:comment "This object property is used to show which concept 

   (subject) is located before another concept (object) regarding 

   a specific context. The inverse property is 

   StandsAfter."^^xsd:string. 

plowl:hasContext a owl:ObjectProperty;    

   rdfs:range plowl:Context; 

   rdfs:comment "This object property links an object property to 

   the context nodes being applied to it."^^xsd:string. 

Code 1- Implementation of some of the constructs of the plausible OWL extension 

4.3.2 Plausible OWL enrichment 

In addition to the plausible OWL extension, we introduced a plausible OWL enrichment 

to better distinguish, identify and formalize the plausible semantics underlying the 

plausible patterns. The PL-OWL enrichment works as an upper-level ontology providing 

a semantic foundation, which conducts the variants of hierarchical and equivalence 

patterns more effectively (Table 5). The plausible enrichment provides supplementary 

clarity facilitating the implementation of the plausible patterns in the query rewriting 

algorithm (the plausible query rewriting will be explained in the next section). 

As Table 7 demonstrates, this upper-level ontology is created by merging constructs from 

OWL and PL-OWL. HierarchicalProperty represents any associations that expresses 

subsumption relationships. An instance of HierarchicalProperty can conduct 

generalizations or specialization. Likewise, EquivalentProperty expresses associations 

implying any type of similarity (or dissimilarity). A SimilarityProperty or 

DissimilarityProperty is further drilled down to the ordered and hierarchical equivalent 

properties, conducting ordered-equivalent patterns or hierarchical-equivalent patterns 

respectively. 
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Having the plausible OWL extension and plausible OWL enrichment implemented, now 

we need to enrich the existing data and domain ontology for two main purposes: (i) 

supplementing the domain ontology with ordered-based properties by providing the 

required semantics to conduct ordered-based plausible patterns, a fortiori and interpolation,  

and (ii) organizing the existing associations in the ontology into three main semantic 

associations with the aim of facilitating the implementation of the plausible patterns. 

Table 7- Plausible OWL enrichment 

Class Name Supper Class Subclasses / Instances 

HierarchicalProperty owl:ObjectProperty rdf:type, db:substructure* 

EquivalentProperty owl:ObjectProperty - 

SimilarityProperty plowl:EquivalentProperty - 

DissimilarityProperty plowl:EquivalentProperty - 

OrderedSimProperty plowl:SimilarityProperty sem:occuresIn, sem:coexistWith** 

HierarchicalSimProperty plowl:SimilarityProperty owl:sameAs, obo:hasExactSynonym*** 

OrderedDissimProperty plowl:DissimilarityProperty - 

HierarchicalDissimProperty plowl:DissimilarityProperty owl:disjointWith, sem:differentFrom 
* obo: Disease Ontology, ** sem: SemMedDB, *** db: Drug Bank 

Code 2 demonstrates some ontology enrichment (based on the constructs introduced in 

Table 6 and Table 7) of the knowledge sources used in the evaluation framework. 

SemMedDB:PRECEDES          a   plwol:StandsBefore; 

SemMedDB:lower_than        a   plwol:StandsBefore; 

SemMedDB:CAUSES            a   plwol:StandsBefore; 

db:substructure            a   plwol:HierarchicalProperty; 

SemMedDB:ISA               a   plwol:HierarchicalProperty; 

SemMedDB:PART_OF           a   plwol:HierarchicalProperty; 

oboInOwl:hasExactSynonym   a   plowl:HierarchicalSimProperty; 

SemMedDB:OCCURS_IN         a   plowl:OrderedSimProperty; 

SemMedDB:COEXISTS_WITH     a   plowl:OrderedSimProperty; 

SemMedDB:different_from    a   plwol:HierarchicalDissimProperty; 

SemMedDB:different_than    a   plwol:HierarchicalDissimProperty; 

Code 2- Snapshot of the enriched ontology using the introduced plausible OWL extension 

4.3.3 Plausible query rewriting algorithm 

As discussed earlier, we utilize query rewriting as a technique to implement plausible 

patterns and explore the knowledge graph with the aim of deriving new assertions (i.e., 

entailment) answering a failed query that was initially unresolvable. In our plausible query 
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rewriting algorithm, we adopted the general idea of CGLLR algorithm (Calvanese, 

Giacomo, & Lembo, 2007), which explores the domain knowledge in an iterative process 

looking for applicable semantics to the body atom of the query. To retrieve the applicable 

semantics, the CGLLR algorithm utilizes a set of rewriting rules based on a partial function 

over a 𝐷𝐿 − 𝐿𝑖𝑡𝑒 ontology.  

Our plausible query rewriting algorithm (Mohammadhassanzadeh, Abidi, Van Woensel, 

& Abidi, 2018) is distinctive from CGLLR algorithm in two aspects. First, the CGLLR 

algorithm, like any other conventional approaches to query rewriting (Pérez-Urbina, 

Motik, & Horrocks, 2009; Rosati & Almatelli, 2010), uses only the axioms of a 𝐷𝐿 − 𝐿𝑖𝑡𝑒 

ontology (i.e., terminological component of the knowledge base) to reformulate a query. 

Then, the rewritten query will be evaluated over the extensional part of the ontology (i.e., 

assertional component). But as a data-driven approach, our PLausible Query Rewriting 

(PL-QR) algorithm considers both ontological constructs and assertional data to rewrite a 

query. Enrichment of the semantics of data with PL-OWL and merging data and domain 

ontology together in the form of a knowledge graph reinforce the advancement of OWL 

QL query rewriting over knowledge graphs using SPARQL 1.1. 

Second, the rewriting rules in CGLLR algorithm are replaced with the plausible patterns 

as a set of inference constraints conducting the search strategy for the applicable semantics 

over the knowledge graph. In fact, the two algorithms are mainly different in their principal 

search criteria (step 6 of the plausible query rewriting algorithm, Algorithm 1). 

The plausible query rewriting algorithm (Algorithm 1) starts with an initially failed query 

𝑄 (Input 1), and ends with a set of conjunctive queries, 𝑅 (Output). In addition to a failed 

query, the algorithm requires a set of preferred plausible patterns (Input 2) to limit the 
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search for the applicable semantics to the relevant semantic data and terminological 

constructs (TBox) including both hierarchical and order-based relationships (Input 3).  

We anticipate that the input ontology is in the  𝐷𝐿 − 𝐿𝑖𝑡𝑒 family since DLs of this family 

(i) are rich enough to express significant ontology languages, and (ii) query answering over 

𝐷𝐿 − 𝐿𝑖𝑡𝑒 knowledge bases can be performed in a polynomial complexity. Even slight 

extensions (i.e., plausible OWL extension) to the logics of the family make query 

answering, worst case, NLogSpace in data complexity. Hence, the logics of the 𝐷𝐿 − 𝐿𝑖𝑡𝑒 

family are effective description logic for implementing query answering over large data 

repositories (ABoxes) (Calvanese et al., 2007). 

Algorithm 1- The proposed QR algorithm (Mohammadhassanzadeh, Raza Abidi, et al., 2017) 

Input: (1) A query (triple pattern format),  

(2) a set of plausible patterns 𝜋 ∈  Π: {𝐺𝐸𝑁, 𝑆𝑃𝐸𝐶, 𝑆𝐼𝑀, 𝐷𝐼𝑆, 𝐹𝑂𝑅𝑇, 𝐼𝑁𝑇𝑃},  

(3) 𝐷𝐿 − 𝐿𝑖𝑡𝑒 TBOx  𝒯 enriched with plausible OWL extension 

Output: R, a set of rewriting queries. 

1: R =  {𝑄}; 
2: repeat 

3:    foreach 𝑞𝑢𝑒𝑟𝑦 Q ∈ R do 

4:       foreach 𝑎𝑡𝑜𝑚 𝐷 𝑖𝑛 𝑄 do 

5:          foreach 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝜋 ∈  Π do 

6:             Δ =  𝜙(𝐷, 𝜋, 𝒢) 

7:             foreach 𝐷′ ∈ Δ do 

8:                Q′ =  ∃𝐷′. Q(𝐷 → 𝐷′) ∧  𝛼(𝐷, 𝐷′); 
9:                R =  R ∪ {𝑄′}; 

10: until no unique query can be added to R; 
11: return R; 

Starting with the initial query, the algorithm (Algorithm 1) adds the query to the set 𝑅 (step 

1), which is empty when the algorithm starts. The algorithm repeats the following steps 

(steps 3 to 9) for each query in the set 𝑅  until there is no new query to be added to 𝑅 (step 

10): for each atom3 𝐷 in the query 𝑄 (step 4) and for each pattern 𝜋 in the preferred 

plausible patterns (Input 2), the algorithm attempts to find (step 6) a set (Δ) of applicable 

                                                 
3 Depending on the type of the query (i.e., yes/no question, factoid question), the user can identify the atom (i.e., subject 

or object of a triple statement) to be replaced. 
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plausible semantics (Definition 7) to the body atom via the pattern matching function 𝜙. 

The functionality of the pattern matching function is explained in Algorithm 2.  

Definition 7 (Applicable Plausible Semantic): for an atom 𝐷, atom 𝐷′ is an applicable 

plausible semantic if (i) 𝐷′ is semantically related to 𝐷 (∃𝛼 ∈ 𝒯: 𝛼(𝐷, 𝐷′)), and (ii) 𝛼 

conforms with the plausible semantics (Σ) underlying the plausible patterns (Definition 2). 

For example, rdfs:subClassOf conducts generalization pattern, owl:instanceOf is 

applicable to specialization, owl:sameAs is used in similarity, and plowl:standsAfter is 

helpful to run a fortiori or interpolation. 

For each applicable plausible semantic (𝐷′ ∈ Δ), the algorithm constructs a new query 𝑄′ 

by replacing 𝐷 with the atom  𝐷′ (step 8) and will add the new query to the set 𝑅 (step 9). 

The algorithm keeps rewriting new queries until there is no more unique query to be added 

(step 10). 

Pattern matching function 

The pattern matching function is basically a SPARQL query generator that queries a 

knowledge graph (𝓖) to retrieve a set of applicable plausible semantics to atom 𝑫 (𝜟) 

conforming with the rationale of a plausible pattern (𝝅). Algorithm 2 demonstrates the 

steps of the pattern matching function. 

The pattern matching function is implemented via a set of SPARQL queries that query the 

RDF repository based on (i) the body atom to be replaced, and (ii) the desired set of 

plausible patterns. Each case in Algorithm 2 demonstrates the construct of the SPARQL 

query corresponding to the relevant plausible pattern. 
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 Algorithm 2. The pattern matching function 

Input: (1) D: body atom of the query to change, (2) 𝜋: preferred plausible pattern, (3) 𝒢: knowledge graph 

to explore  

Output: Δ, a set of applicable semantics to atom D w.r.t 𝜋. 

1: Δ =  {∅}; 
2: switch (𝜋) 

3:    case GEN: 

4:       Δ = 𝜙(𝐷, 𝐺𝐸𝑁, 𝒢) = {𝐷′ | [𝐷 𝛼 𝐷′][𝛼 𝑎 plowl: HierarchicalProperty]}; 
5:       break; 

6:    case SPEC: 

7:       Δ = 𝜙(𝐷, 𝑆𝑃𝐸𝐶, 𝒢) = {𝐷′ | [𝐷′ 𝛼 𝐷][𝛼 𝑎 plowl: HierarchicalProperty]}; 
8:       break; 

9:    case SIM:   

10:       Δ = 𝜙(𝐷, 𝑆𝐼𝑀, 𝒢) 

           = {𝐷′ | [𝐷 𝛼 𝐷′][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝑆𝑖𝑚𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦] 
                                ∪ [𝐷′ 𝛼 𝐷][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: 𝐻𝑖𝑒𝑟𝑎𝑟𝑐ℎ𝑖𝑐𝑎𝑙𝑆𝑖𝑚𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦]};  

11:       break; 

12:    case DIS: 

13:       Δ = 𝜙(𝐷, 𝐷𝐼𝑆, 𝒢) 

           = {𝐷′ | [𝐷 𝛼 𝐷′][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: HierarchicalDissimProperty]
∪ [𝐷′ 𝛼 𝐷][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: HierarchicalDissimProperty]}; 

14:       break; 

15:    case AFORT: 

16:       Δ𝑀𝐿 = 𝜙(𝐷, 𝐴𝐹𝑂𝑅𝑇𝑀𝐿, 𝒢) 

= {𝐷′ | [𝐷′ 𝛼 𝐷][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: StandsBefore] ∪ [𝐷 𝛼 𝐷′][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: StandsAfter]}; 
17:       Δ𝐿𝑀 = 𝜙(𝐷, 𝐴𝐹𝑂𝑅𝑇𝐿𝑀, 𝒢) 

= {𝐷′ | [𝐷 𝛼 𝐷′][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: StandsBefore] ∪ [𝐷′ 𝛼 𝐷][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: StandsAfter]}; 
18:       Δ = Δ𝑀𝐿 ∪ Δ𝐿𝑀; 
19:       break; 

20:    case INTP: 

21:       Δ𝐴 = 𝜙(𝐷, 𝐼𝑁𝑇𝑃𝐴, 𝒢) = {(𝐷′, 𝐷′′) | [𝐷′𝛼 𝐷][ 𝐷 𝛼 𝐷′′][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: StandsBefore]}; 
22:       Δ𝐷 = 𝜙(𝐷, 𝐼𝑁𝑇𝑃𝐷, 𝒢) = {(𝐷′, 𝐷′′) | [𝐷′′𝛼 𝐷][ 𝐷 𝛼 𝐷′][𝛼 𝑎 𝑝𝑙𝑜𝑤𝑙: StandsAfter]}; 
23:       Δ = Δ𝐴 ∪ Δ𝐷; 
24:       break; 

25: return Δ; 

In the case of generalization (step 3 of Algorithm 2), the equivalent SPARQL query to the 

relation in step 4 will be as follows: 

SELECT ?P ?O  
WHERE  
  {  
    D ?P ?O. 
    ?P rdf:type plowl:HierarchicalProperty 
  } 

Code 3- Corresponding SPARQL query implementing generalization in the pattern matching function 

Code 3 searches for the applicable plausible semantic(s) to atom 𝐷 (the body atom of the 

query that is going to be replaced) which are in a relationship with 𝐷 via a Hierarchical 

property—e.g., rdf:type, SemMedDB:ISA (Code 2). Likewise, corresponding SPARQL 
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queries to specialization, similarity and dissimilarity relationships in Algorithm 2 (steps 7, 

10 and 13 respectively) are demonstrated in Table 8. 

Table 8- Corresponding SPARQL queries implementing specialization, similarity and dissimilarity in the 

pattern matching function 

Plausible 

Pattern 

Matching 

Function 
Corresponding SPARQL query 

Specialization 𝜙(𝐷, 𝑆𝑃𝐸𝐶, 𝒢) 

SELECT ?S ?P  

WHERE { 

    ?S ?P D. 

    ?P rdf:type plowl:HierarchicalProperty. } 

Similarity 𝜙(𝐷, 𝑆𝐼𝑀, 𝒢) 

SELECT ?P ?S ?O  

WHERE { 

    { D ?P ?O. 

      ?p rdf:type plowl:HierarchicalSimProperty. } 

    UNION 

    { ?S ?P D. 

      ?P rdf:type plowl:HierarchicalSimProperty. } 

  } 

Dissimilarity 𝜙(𝐷, 𝐷𝐼𝑆, 𝒢) 

SELECT ?P ?S ?O 

WHERE { 

    { D ?P ?O. 

      ?P rdf:type plowl:HierarchicalDissimProperty. } 

    UNION 

    { ?S ?P D. 

      ?P rdf:type plowl:HierarchicalDissimProperty. } 

  } 

In similarity and dissimilarity SPARQL queries, we are trying to consider both of the 

possible combinations of representing similar (or dissimilar) concepts – i.e.,  𝑠𝑖𝑚(𝐷, 𝐷′) 

and 𝑠𝑖𝑚(𝐷′, 𝐷) –  in order to have an exhaustive search of (dis)similar relationships. 

Hence, in the SPARQL queries the union of both possible combinations is required.  

In the case of a fortiori, depending on the direction of an ordered relationship, a fortiori 

exploration on the graph can be conducted in two variants: from more to less or from less 

to more. Therefore, the corresponding SPARQL query in the pattern matching function 

combines the semantics resulting of both directions (Table 9). However, in the justification 

step of the plausibly inferred results, SeDan identifies the direction of the a fortiori pattern.  
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Table 9- Corresponding SPARQL query implementing two variants of a fortiori in the pattern matching 

function 

A fortiori 

variation 
Matching Function Corresponding SPARQL query 

More to Less 𝜙(𝐷, 𝐴𝐹𝑂𝑅𝑇𝑀𝐿, 𝒢) 

SELECT ?P ?S ?O  

WHERE {  

    { ?S ?P D. 

      ?P rdf:type plowl:StandsBefore. } 

    UNION 

    { D ?P ?O. 

      ?P rdf:type plowl:StandsAfter. } 

  } 

Less to More 𝜙(𝐷, 𝐴𝐹𝑂𝑅𝑇𝐿𝑀, 𝒢) 

SELECT ?P ?S ?O 

WHERE { 

    { D ?P ?O. 

      ?P rdf:type plowl:StandsBefore. } 

    UNION 

    { ?S ?P D. 

      ?P rdf:type plowl:StandsAfter. } 

  } 

Like similarity and dissimilarity SPARQL queries, in each a fortiori variant (more to less 

and less to more) both of the possible combinations of representing an ordered-based 

relationship are queried and the results are combined via a union. Based on the nature of 

ordered associations, an ordered property can be represented in two directions. For 

example, the statement “x is shorter than y” can be represented as shorter(x,y), while the 

triple taller(y,x) implies the same impression. Therefore, using the axioms introduced in 

the plausible OWL extension, there are two alternatives to represent an ordered 

relationship: 𝑆𝑡𝑎𝑛𝑑𝑠𝐵𝑒𝑓𝑜𝑟𝑒(𝑥, 𝑦) ≡  𝑆𝑡𝑎𝑛𝑑𝑠𝐴𝑓𝑡𝑒𝑟(𝑦, 𝑥). Similarly, the ordered 

relationships between three concepts can be represented via either 𝑆𝑡𝑎𝑛𝑑𝑠𝐵𝑒𝑓𝑜𝑟𝑒 

(ascending order) or 𝑆𝑡𝑎𝑛𝑑𝑠𝐴𝑓𝑡𝑒𝑟 (descending order) axioms: 

𝑆𝑡𝑎𝑛𝑑𝑠𝐵𝑒𝑓𝑜𝑟𝑒(𝑥, 𝑦), 𝑆𝑡𝑎𝑛𝑑𝑠𝐵𝑒𝑓𝑜𝑟𝑒(𝑦, 𝑧) ≡  𝑆𝑡𝑎𝑛𝑑𝑠𝐴𝑓𝑡𝑒𝑟(𝑧, 𝑦), 𝑆𝑡𝑎𝑛𝑑𝑠𝐴𝑓𝑡𝑒𝑟(𝑦, 𝑥) 

Hence, in the SPARQL query for interpolation, both of the possible alternatives will be 

queried, and the results will be combined to further be used in the rewriting algorithm later 

(Table 10). 
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Table 10- Corresponding SPARQL query implementing two variants of interpolation in the pattern 

matching function (LB: lower bound, UB: upper bound) 

Interpolation 

variation 

Pattern Matching 

Function 
Corresponding SPARQL query 

Ascending order 𝜙(𝐷, 𝐼𝑁𝑇𝑃𝐴, 𝒢) 

SELECT ?P ?LB ?UB 

WHERE { 

    ?LB ?P D. 

    D   ?P ?UB. 

    ?P rdf:type plowl:StandsBefore. } 

Descending 

order  
𝜙(𝐷, 𝐼𝑁𝑇𝑃𝐷, 𝒢) 

SELECT ?P ?LB ?UB 

WHERE { 

    ?UB ?P D. 

    D   ?p ?lb. 

    ?P rdf:type plowl:StandsAfter. } 

4.4 SeDan: a semantics-based data analytics framework 

The sections above, PLausible extension to OWL (PL-OWL) and PLausible Query 

Rewriting algorithm (PL-QR), introduced the solutions that, along with the enrichment of 

underlying semantics with PL-OWL, can address the challenges of implementing plausible 

reasoning over knowledge graphs. However, to establish the act of plausible reasoning 

(Definition 6) and accomplish semantics-based data analytics in real settings, it is required 

to integrate the solutions together in one framework manifesting a purposeful plausible 

reasoner. In this regard, we developed a SEmantic-based Data ANalytics (SeDan) 

framework that implements a plausible reasoner to infer new knowledge from RDF 

knowledge graphs.   

Figure 3 demonstrates the reasoning approach of the SeDan framework when a new query 

arrives. In the first step (step 1), the original query, with no (plausible) manipulation, will 

be asked from the knowledge graph to provide the deductive answers existing in the data 

(step 2). If an answer(s) is retrieved, it will be reported as a deductive solution(s) to the 

query (step 2.1). But, in the case of a failed query (step 2.2), the plausible reasoner will be 

invoked (i.e., in line with what Definition 6 suggests).  
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Figure 3- Reasoning mechanism of SeDan framework (the numbers show the sequence of the steps) 

The plausible reasoner retrieves the applicable semantics from the knowledge graph to 

reformulate (step 3) the given query into a plausible query(ies). The subsequent plausible 

queries (if there is any), along with the supporting semantics that lead to the resulting 

plausible queries (i.e., the plausible path), will be provided to the user (step 3.1). Then, the 

user investigates the queries, validates the rationality (meaningfulness) of the plausible 

queries, and filters out the meaningless queries. It is worth to mention that at this point, 

SeDan is considered as a proof of concept (i.e., a research tool and not a diagnostic or 

decision support tool) that answers queries in research environments. Hence, the users of 

the system are researchers and scientists who possess the domain knowledge and can verify 

the meaningfulness of the plausible paths and evaluate the quality of the plausible queries 

generated by the PL-QR algorithm. 

Afterwards, the good (i.e., acceptable) plausible queries (if there is any) will be asked from 

the knowledge graph with the aim of providing a plausible answer(s) to the query. If there 

is any statement in the knowledge graph satisfying the graph pattern of the plausible query, 

then it will be presented as a plausible answer(s) (step 4.1); otherwise, the failed query will 

be considered for further rewriting by the plausible reasoner (step 4.2). The rewriting of 
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the queries continues until there is no new plausible query to be generated (i.e., or the 

reasoning process is halted by the user). Figure 4 further elaborates on the sequence of the 

steps in the process of plausible reasoning. The domain expert is engaged in the process in 

two steps: (i) the evaluation of the acceptability of plausible queries, and (ii) the validation 

of plausibly inferred answer(s).  

 

Figure 4- Plausible reasoning sequence diagram 

The domain expert needs to evaluate the acceptability of the queries and the validity of the 

inferred plausible answers due to the uncertain nature of plausible reasoning. As it was 

discussed in Chapter 3, a plausible argument is subjective. In addition, the plausible 

reasoner generates all the possible plausible queries, which not all of them are clinically 

correct or relevant to the original query. Hence, a plausible answer and its justification 

should be in line with the purpose of the question and rationale to the user who asked the 

question (Figure 4).  
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Table 11- Examples of generated plausible queries for different questions, which their acceptability was 

evaluated by the domain expert (for each question there are more plausible queries, but only few of them 

are provided here) 

Question Plausibly generated queries Patterns involved 

Plausibl

e 

Accepta

ble 

Is Herceptin of  

potential use in the 

treatment of prostate 

cancer? 

ASK { Antibodies TREATS Prostate_cancer } {GEN} ✓ 

ASK { Therapeutic_agent TREATS Prostate_cancer } {GEN} ✓ 

ASK { agonists TREATS Prostate_cancer } {SIM-OR} O 

ASK { Zoladex TREATS Prostate_cancer } {GEN, SPEC} O 
ASK {  

Radioimmunoconjugates TREATS Prostate_cancer } 
{GEN, SPEC} O 

ASK { inhibitors TREATS Prostate_cancer.  

      Antibodies TREATS Prostate_cancer.} 
{GEN, INTP} O 

ASK { inhibitors TREATS Prostate_cancer .  

      receptor TREATS Prostate_cancer. } 
{GEN, INTP} O 

What is the treatment 

of acute myocarditis? 

SELECT ?x WHERE { 

?x TREATS Breakthrough_pain. } 

{GEN, SIM-HR, 

GEN, SPEC} 
✓ 

SELECT ?x WHERE { 

?x TREATS Ventricular_Dysfunction,_Left. } 

{GEN, SIM-HR, 

AFORT-ML, INTP} 
O 

SELECT ?x WHERE { ?x TREATS Infarction.} 
{GEN, SIM-HR, 

AFORT-ML, INTP} 
O 

What organism 

causes Woolsorter's 

disease? 

SELECT ?x WHERE { 

?x semp:CAUSES semr:Rupture,_Spontaneous. } 

{SIM-HR, SIM-HR, 

GEN, AFORT-ML} 
O 

SELECT ?x WHERE { 

?x semp:CAUSES semr:Brain_Edema. } 

{SIM-HR, SIM-HR, 

GEN, SIM-OR} 
✓ 

SELECT ?x WHERE { 

?x semp:CAUSES semr:Necrosis. } 

{SIM-HR, SIM-HR, 

GEN, SIM-OR} 
O 

Matuzumab has been 

tested for treatment  

of which cancers? 

SELECT ?x WHERE { Cisplatin TREATS ?x; } 
{GEN, SIM-HR, 

SIM-OR} 
O 

SELECT ?x WHERE {  

Pharmaceutical_Preparations TREATS ?x. } 

{GEN, SIM-HR, 

GEN} 
✓ 

SELECT ?x WHERE {   

Aspartate_Transaminase TREATS ?x. } 

{GEN, SIM-HR, 

SIM-OR} 
✓ 

SELECT ?x WHERE {   

Gene_Transduction_AgentTREATS ?x. } 

{GEN, SIM-HR, 

SIM-OR} 
✓ 

Table 11 presents the plausible queries (few plausible queries out of many) generated for 

four medical questions that the Semantic MEDLINE database cannot answer them 

deductively. For example, in the case of the question asking if “Herceptin is of potential 

use in the treatment of prostate cancer?”, out of 7 plausible queries (the table does not 

include all the generated plausible queries) only 2 of them are clinically acceptable. Even 

in the case of an acceptable plausible query, not all the plausibly inferred answers are 

relevant and correct. For example, Lidocaine, Ibuprofen and Diclofenac (Table 12) are 

answers to an acceptable plausible query (?x TREATS Breakthrough_pain), but only 

Ibuprofen was found plausibly correct, an the other two are found incorrect/irrelevant with 
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regard to the concept in the original question, acute myocarditis. Chapter 5 will elaborate 

on the evaluation process in detail and discusses further why a plausible query or a 

plausible answer is found unacceptable or irrelevant. 

Table 12- Examples of plausible answers for acceptable plausible queries, which their correctness is 

evaluated by the domain expert 

Plausible query Plausible answers 
Plausible 

acceptable 

SELECT ?x WHERE { 

?x TREATS Breakthrough_pain. } 
Lidocaine O 
Ibuprofen ✓ 

Diclofenac O 
SELECT ?x WHERE { 

?x semp:CAUSES semr:Brain_Edema. } 
Pertussis_Vaccine O 
Bacillus_infection ✓ 
Agent O 
Liver_Failure O 

SELECT ?x WHERE {   

Aspartate_Transaminase TREATS ?x. } 
Gastric cancer O 
Diabetes ✓ 

Syphilis ✓ 

Hepatitis B ✓ 

4.4.1 SeDan’s architecture 

The plausible reasoner, the core component of the SeDan framework, develops the 

plausible patterns by manipulating the underlying graph directly with SPARQL query 

rewriting using OWL 2 QL and the introduced PL-OWL constructs. As Figure 5 

demonstrates (and discussed before), the plausible reasoner is comprised of two modules: 

the pattern matching function and the query rewriting algorithm. 

The pattern matching function exploits the built-in constructs of OWL QL and the 

constructs of PL-OWL to develop the rationale behind the plausible patterns when 

retrieving the applicable semantics. Then, using the retrieved semantics, the query 

rewriting algorithm transforms a given query to a plausible version. In SeDan (Figure 5), 

the knowledge graph is the source for both answering and rewriting the queries. 

Conforming with the notion, the knowledge graph in SeDan combines both the domain 

knowledge (i.e., expressed in the form of (DL) ontologies) and the domain data (i.e., 
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represented in RDF). Thus, the knowledge graph includes the material (i.e., assertional 

data) to answer a SPARQL query, while it provides the required semantics (i.e., retrieved 

from ontological constructs or semantic data) to conduct the query rewriting.  

 

Figure 5- The architecture of the SeDan framework 

The following section provides some case studies elaborating on the functionality of our 

plausible reasoner in the SeDan framework. 

4.5 Case studies 

To demonstrate the functionality of SeDan’s query rewriting algorithm, we provide two 

case studies where we attempt to answer two questions from BioASQ challenges4 

(Tsatsaronis, Balikas, Malakasiotis, & et. al., 2015) using DrugBank5 (Knox et al., 2011; 

Law, Knox, Djoumbou, & Jewison, 2014; Wishart et al., 2018), Disease Ontology6 (Kibbe, 

Arze, Felix, & Mitraka, 2015; Schriml et al., 2012) and Semantic MEDLINE7 database8 

                                                 
4 http://www.bioasq.org/ 
5 DrugBank datasets are released under a Creative Common’s Attribution-NonCommercial 4.0 International Public License 
6 Disease ontology files are available on http://disease-ontology.org/ under the Creative Commons license. 
7 The National Library of Medicine freely provides PubMed/Medline Data (more information: NLM Copyright Information). 
8 Available at https://skr3.nlm.nih.gov/SemMedDB/index.html 

http://www.bioasq.org/
http://disease-ontology.org/
https://www.nlm.nih.gov/
https://www.nlm.nih.gov/databases/download/terms_and_conditions.html
https://www.nlm.nih.gov/copyright.html
https://skr3.nlm.nih.gov/SemMedDB/index.html
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(Kilicoglu, Shin, Fiszman, Rosemblat, & Rindflesch, 2012; Rindflesch, Kilicoglu, & 

Fiszman, 2011). These materials and resources will be explained further in the Evaluation 

section. 

4.5.1 Example 1: statins cause diabetes? 

In this example, we provide a case study to elaborate on how SeDan, and in particular, the 

plausible reasoner leverage assertional data and ontological constructs to transform a 

(deductively) failed query to a new plausible query. For a question asking “Do statins 

cause diabetes?” (BioASQ challenge, Task 2b), the initial SPARQL syntax of the question 

can be written as below: 

Initial SPARQL query: 

@PREFIX sem: <https://skr3.nlm.nih.gov/SemMed#> 

ASK { "statins" sem:causes  "diabetes" } 

Answer:  

No 

Code 4- Initial query answering if statins cause diabetes 

Conventional deductive reasoning over the SemMedDB returns ‘No’, since there is no 

matching triple that unifies the query. However, by leveraging the semantics of Drug Bank 

and SemMedDB, we know:   

("Pravastatin", db:substructure, "statins")  (1) 

("Pancreatitis", sem:precedes, "Diabetes")   (2) 

("Diabetes", sem:precedes, "Hyperglycemia")        (3) 

Figure 6- Relevant semantics to the concepts in the query – substructure represents hierarchical 

relationships in DrugBank and precedes characterizes order-based relationships in SemMedDB 

In the statements above, the sub-structure predicate (Figure 6, semantic 1) represents a 

hierarchical relationship (Code 2) implying Pravastatin (DB00175) belongs to a class of 

medications known as statins. The precedes predicate, as an plowl:OrderedProperty, 

shows a “sequence” (order) of phenomena in the SemMedDB (Code 2). Semantics 2 and 

3 in Figure 6 represent the order of three diseases, Pancreatitis → Diabetes → 

Hyperglycemia, that can happen sequentially. Using the semantics above, the query 
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rewriting algorithm leverages the specialization and interpolation patterns to transform the 

initial query to the plausible query below:  

Rewritten SPARQL query: 

PREFIX db:    <https://www.drugbank.ca/drugs#> 

PREFIX sem:     <https://skr3.nlm.nih.gov/SemMed#> 

ASK  

{ "Pravastatin" sem:causes "Pancreatitis". 

  "Pravastatin", sem:causes, "Hyperglycemia". } 

Plausible 

Answer: 

(Yes,  

 {SPEC, INTP}) 

 

Code 5- Rewritten query answering if statins cause diabetes 

By posing the new query over SemMedDB (i.e., considering that the expert found the 

plausible query as a good (meaningful) plausible query), we will get a plausible positive 

answer of Yes, which is inferred via a combination of specialization and interpolation 

patterns. Pravastatin, as a type of statins (a hierarchical relationship) could cause 

Pancreatitis and Hyperglycemia, which are two diseases that occur before and after 

diabetes, respectively (an ordered relationship). Based on the rationale behind the 

specialization pattern that “when something is true about a class/entity, it might be true 

about its sub-classes as well” and the logic of interpolation pattern that “if something is 

true about two (stages of) phenomena, then it might be true for any phenomenon in 

between”, we could say statins plausibly causes diabetes, since one of its instances, 

Pravastatin, causes diseases that are prior and subsequent to diabetes.  

It should be noted that the example above represents only one plausibly rewritten query 

out of many possible queries. Depending on the existing axioms in the ontology and 

supporting semantics relevant to the concept(s) in the query, the PL-QR algorithm 

continues rewriting new queries until there is no more unique query to be retrieved. 
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4.5.2 Example 2: Herceptin treats Prostate Cancer? 

In this case study, we are asking another Yes/No question, “Is Herceptin of potential use 

in the treatment of prostate cancer?” (BioASQ challenge, Task 2b), from the SemMedDB. 

Making use of the existing triples in the database, there is no matching triple unifying the 

question. Consequently, the answer will be ‘No’. The initial SPARQL syntax of the 

question is as bellow:  

Initial SPARQL query: 

@PREFIX sem: <https://skr3.nlm.nih.gov/SemMed#> 

ASK { "Herceptin" sem:treats  "Prostate cancer" } 

Answer:  

No 

Code 6. Initial query answering if Migalastat treats Fabry Disease 

Utilizing the Disease ontology axioms (DOID:10286) and the existing triples in 

SemMedDB, we know: 

("Herceptin", sem:treats, "Malignant neoplasms")             (1) 

("Malignant neoplasms", sem:occurs_in, "Prostate carcinoma") (2) 

("Prostate carcinoma", do:isa, "Prostate cancer")          (3) 

Figure 7- Rewritten triple using the ontology axiom 

In the triples above, the treats predicate (Figure 7, semantic 1) shows a disease, malignant 

neoplasms, that could be treated by Herceptin. The occurs_in relationship (Figure 7, 

semantic 2) characterizes the “order” of the occurrence of two phases of a disease: 

malignant neoplasms and prostate carcinoma. The is_a relationship (Figure 7, semantic 

3) represents a hierarchical relationship between two diseases, prostate carcinoma and 

prostate cancer. Using the semantics above, the PL-QR algorithm exploits the 

specialization and a fortiori patterns, to transform the initial query to the expanded query 

below: 

Rewritten SPARQL query: 

PREFIX do:    < http://disease-ontology.org/term#> 

PREFIX sem:     <https://skr3.nlm.nih.gov/SemMed#> 

ASK  

{ "Herceptin" sem:treats " Malignant neoplasms". 

  "Malignant neoplasms", sem:occurs_in, "Prostate carcinoma". 

  "Prostate carcinoma", do:isa, "Prostate cancer"} 

Plausible Answer: 

(Yes,  

{SPEC, AFORT}) 

 

Code 7- Rewritten query answering if Migalastat treats Fabry Disease 
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After the approval of the query by the expert as an acceptable plausible query and asking 

the new query from SemMedDB, we will get a plausible positive answer that is inferred 

via the specialization and a fortiori patterns. The inference above means Herceptin could 

treat prostate cancer, as Herceptin could treat malignant neoplasms that is an earlier phase 

(ordered relationship) of prostate carcinoma, which is a type of (hierarchical relationship) 

prostate cancer. In other words, Herceptin could plausibly treat prostate cancer as it is 

administered to some prior phases of the disease.  

4.6 Summary 

This chapter started with providing a formal description of plausible reasoning addressing 

one of the key research challenges of the work. The formal definition of plausible 

reasoning and its components suggest an unambiguous understanding of the notion that (i) 

maps with the definition of plausible reasoning in the literature and the theory and (ii) is 

applicable to computer systems and conforms to the Semantic Web inspired approach that 

we have taken (i.e., especially with the graph representation of knowledge). 

The formal definitions introduced in this chapter clarify the requirements and challenges 

of implementing plausible reasoning over knowledge graphs. The expressivity of the 

knowledge representation formalism and the flexibility of the reasoning paradigm are two 

issues that challenge the development of the plausible patterns and the representation of 

the semantics that they are applied to. This chapter showed our solutions, including 

plausible extension to OWL (PL-OWL) and plausible query rewriting algorithm (PL-QR), 

can address these issues.  

PL-OWL introduces new constructs to existing OWL axioms enabling it to capture ordered 

relationships. PL-QR captures and develop the rationale of plausible patterns in the form 
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of inference constraints conducting the query rewriting. We introduced the SeDan 

framework that integrates the solutions in one solid framework manifesting the concept of 

semantics-based data analytics.  
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 Chapter 5: Evaluation and Experimental Results 

An effective evaluation allows for understanding of the system’s usefulness, precision, 

feasibility, as well as the potential avenues to improve (Milstein & Wetterhall, 1999). In 

the medical world, doctors are required to answer intelligent and complex questions based 

on large amounts of health data, which is usually sparse, noisy, incomplete and uncertain.  

To evaluate the efficacy of SeDan, we aim to tailor a practical medical setting, tied with 

the routine procedure of answering medical questions. Inspired by the Lehigh University 

Benchmark (LUBM) (Guo, Pan, & Heflin, 2005), SeDan will be evaluated in three 

dimensions: functionality of the plausible reasoner, correctness of the plausible answers, 

and cost-effectiveness of the system.  

Within the functionality evaluation (Figure 8), we try to assess if the plausible reasoner 

was implemented properly according to its primary objectives and operates as it was 

intended to. The functionality evaluation focuses on the navigation task of the reasoning 

engine over the knowledge graph, without considering the acceptability or adequacy of the 

answers. We expect plausible patterns, alone or in combination with other patterns, explore 

the knowledge graph, provide plausible answer(s) and extend the query answering 

coverage of the knowledge graph.  

The second aspect of the evaluation paradigm, correctness of the plausible answers, 

investigates the acceptability of the plausibly inferred answer(s) and the validity of the 

reasoning processes reaching the answer(s).  
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Figure 8- SeDan's evaluation framework 

Definition 8 (Plausibly correct answer): A plausibly inferred answer is deemed as 

plausibly correct if it is (i) reached via a meaningful, relevant set of semantics (acceptable 

plausible query) and (ii) validated by a medical domain expert. Plausibly correct answers 

are not evaluated against any evidence-based resources and are not ranked. 

Definition 9 (Acceptable plausible query): An acceptable plausible query is a query that 

is generated by the plausible query rewriting algorithm via a meaningful set of semantics 

(aka. plausible path) that are justifiable from clinical standpoint. 

Hence, the correctness evaluation of the answers is a two-step process: (i) a domain expert 

will evaluate the plausible queries and filter out the meaningless queries, (ii) acceptable 

plausible queries will be posed to the knowledge graphs and the subsequent answers will 

be evaluated by the domain expert. 

Moreover, the cost-effectiveness evaluation aims to assess efficient use of time and 

resources (Jafarpour, Raza Abidi, Van Woensel, & Raza Abidi, 2019) and determines the 
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practicality of SeDan in real world settings. The performance and feasibility of SeDan in 

plausible exploration of the knowledge graph (i.e., particularly the query rewriting 

algorithm) and discovery of the correct answers are studied via three measures: retrieval 

time of applicable plausible semantics, rewriting time of a plausible query, time to reach 

the first approved answer (also know as response time).  

This chapter introduces the essential elements of SeDan’s evaluation, presents the 

evaluation design, how it is conceived and conducted. Furthermore, the chapter will 

elaborate on the required materials to performing the evaluation. Ultimately, this chapter 

presents the experimental results and discusses the criteria being measured. 

5.1 Experiment design 

Our approach to perform the experiments includes two main phases. The first phase starts 

with posing the questions to the knowledge graph (RDF repository) in the form of plain 

SPARQL queries, without plausible reasoning. The outcome of this phase will divide the 

questions to two sets: initially answered questions and unanswered questions.  

The concept(s) in the initially answered questions are included in the knowledge graph and 

their correct (gold standard) answers (i.e., yes/no or facts) are successfully retrieved via 

SPARQL queries. While, the unanswered ones are those questions that the system either 

does not return any responses (i.e., because the knowledge graph does not include the 

necessary concepts or the answer) or provides wrong answers (i.e., compared to the gold 

standard answers or verified by an expert). 

In the second phase, the unanswered questions were posed again to SeDan, but with the 

plausible reasoning activated. The plausible reasoning engine receives the query and 
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initializes the iterative process of the query rewriting algorithm, leveraging the existing 

semantics in the knowledge graph (i.e., including domain ontologies and data). The 

resulting plausible queries (if any) were provided to the domain expert (e.g., health care 

practitioners). The plausible queries that are deemed as acceptable (i.e., based on the 

plausible path) were posed to the knowledge graph (i.e., RDF triple store) with the aim of 

retrieving plausible answers. Figure 9 depicts the flow and design of the evaluation practice 

and the modules involved at each phase.  

 
Figure 9- The workflow and design of the experiment 

5.1.1 Experiment environment 

The experiments were performed on a desktop computer with the system configuration 

(both hardware and software) as follows: 

Hardware 

• Operating System: Windows 10 Home (64-bit) 

• CPU: Intel® Core™ i7-4770 CPU @ 3.40GHz 

• RAM: 12.0 GB Dual-Channel DDR3 

• HDD: Seagate 2 TB SATA-III 6.0Gb/s (7200 RPM) 
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• Graphics: 1023 MB NVIDIA GeForce GTX 645 (NVIDIA) 

Software 

• Java JDK 1.7.0 

• Java JRE 1.8.0 

• Eclipse - Standard Luna-R (win32-×86) 

• GraphDB 

 

5.2 Resources and Materials for the Experiment 

An effective implementation of the designed experiment requires a specific set of 

resources, including: (i) a set of medical questions; (ii) a large health data set; and (iii) 

background domain ontologies, complementary to the health data. 

The medical questions that are going to be answered should be challenging enough that 

require certain knowledge or skills to answer, yet resolvable leveraging latest medical 

knowledge available—i.e., to be able to compare the plausibly inferred answers with 

medically approved responses. Additionally, it is desirable that the experimental questions 

are convertible to SPARQL queries with no complications, since the complexity of parsing 

natural language questions to SPARQL queries is not the focus of this study. In addition, 

to avoid any bias in the evaluation of the system, the questions should be provided from 

external sources and the domain expert, who is involved in the development and evaluation 

of the system, should not be engaged in the process of selecting the questions. 

Pertinent with the experimental questions, we need to load the RDF repository with a large 

health data set, which (i) can provide answers to the medical queries, (ii) is representable 

as a knowledge graph, and (iii) is preferably incomplete—i.e., here, the term data indicates 

assertions about instances, like ABox in Description Logic (DL) terminology.  
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To support the reasoning engine with the required semantics to conduct plausible 

reasoning, SeDan could be enriched with the background domain knowledge (like TBox 

in DL terminology) relevant to the experimental questions and the underlying data. The 

domain knowledge could be a set of ontologies that incorporate the concepts in questions 

and their associations; semantically richer ontologies would enhance the efficiency and 

performance of the plausible reasoning. In our experiment, we asked questions from 

BioASQ challenges from Semantic MEDLINE database (Rindflesch et al., 2011), 

DrugBank (Law et al., 2014) and Disease Ontology (Kibbe et al., 2015), utilizing the query 

rewriting algorithm to rewrite the queries with no initial answers. The sources, the data 

processing, and the selection of medical questions are discussed below (Figure 10). 

BioASQ Medical Questions. BioASQ challenges (Tsatsaronis et al., 2015) are a series of 

competitions (2013-2017) on large-scale biomedical semantic indexing and question 

answering. The purpose of the challenges is to assess the capability of machines to 

semantically index very large numbers of healthcare and life science publications and 

ontologies to compose brief and easy to understand answers to real-life biomedical 

questions. 

 
Figure 10- SeDan framework and the design of the experiment 
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BioASQ questions are formulated by European biomedical experts, reflecting a variety of 

real-life inquiries. The questions belong to 4 distinct categories: yes or no, factoid, list, and 

summary questions. While the BioASQ questions belong to a variety of contexts, biology, 

pharmacology, etc., for our evaluation we focused on those BioASQ questions that ask (i) 

for yes/no or factoid answer, and (ii) about treatment or diagnoses. We did not work with 

summary questions as they require Natural Language Processing techniques to prepare the 

answer and that is not within the scope of this study. Also, some of the questions include 

qualitative terms (i.e., the most known bacterium) that are not easily transformed into 

SPARQL queries.  

To ask the BioASQ questions from SeDan we were required to translate the questions into 

SPARQL queries. In this regard, first, the medical entities and semantic relationships 

relevant to the questions were retrieved from the knowledge base. Then, the type of the 

expected answer (yes/no or factoid) was identified. Having these essentials ready, the 

equivalent SPARQL query (ask or select) would be constructed by manifesting the header 

and the body of the query respectively.  The details of the retrieved questions from BioASQ 

Task 5, the most recent challenge of the series, is further elaborated in the section 5.3 

Statistics on the experimental questions.  

Semantic MEDLINE Database. Semantic MEDLINE database (SemMedDB) (Kilicoglu 

et al., 2012; Rindflesch et al., 2011) is a significant endeavor to facilitate healthcare and 

life science studies by providing a comprehensive resource of structured semantic 

predications. The version of SemMedDB that was deployed in the experiment contains 

over 89 million records (as subject-predicate-object triples) extracted from over 26 million 

biomedical publications (as of Apr. 30, 2016).  
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Table 13- National Library of Medicine (NLM) semantic groups 

Semantic Group Examples of Semantic Types in each group 

Activities and 

Behaviors 

Daily or Recreational Activity; Event; Governmental or Regularity Activity; Machine 

Activity; Occupational Activity; Social Behavior 

Anatomy 
Body Location or Region; Organ; Body Space or Junction; Body Substance; Cell; Cell 

Component; Embryonic Structure; Tissue 

Chemical and Drugs 
Amino Acid, Peptide, or Protein; Antibiotic; Clinical Drug; Eicosanoid; Enzyme; Lipid; 

Nucleic Acid, Pharmacologic Substance; Steroid; Vitamin 

Concepts and Ideas 
Conceptual Entity; Functional Concept; Intellectual Product; Regulation or Law; Spatial 

Concept; Temporal Concept 

Devices Drug Delivery Device; Medical Device; Research Device 

Disorders 
Acquired Abnormality; Anatomical Abnormality; Cell or Molecular Dysfunction; Disease 

or Syndrome; Mental or Behavioral Dysfunction 

Genes and Molecular 

Sequences 

Amino Acid Sequence; Carbohydrate Sequence; Gene or Genome; Molecular Sequence; 

Nucleotide Sequence 

Geographic Areas Geographic Area 

Living Beings 
Age Group; Alga; Fish; Fungus; Human; Mammal; Plant; Population Group; Professional 

or Occupational Group; Reptile; Vertebrate; Virus 

Objects Entity; Good; Manufactured Object 

Occupations Biomedical Occupation or Discipline; Occupation or Discipline 

Organizations 
Health Care Related Organization; Organization; Professional Society; Self-help or Relief 

Organization 

Phenomena 
Biologic Function; Human Caused Phenomenon or Process; Laboratory or Test Result; 

Natural Phenomenon or Process; Phenomenon or Process 

Physiology 
Cell Function; Clinical Attribute; Genetic Function; Mental Process; Molecular Function; 

Organ or Tissue Function; Organism Function; 

Procedures 
Diagnostic Procedures; Educational Activity; Health Care Activity; Laboratory Procedure; 

Therapeutic or Preventive Procedure 

In SemMedDB, the concepts (subjects and objects of the predications) belong to about 120 

Unified Medical Language System (UMLS) semantic types (i.e., activity, vitamin, etc.) 

that are grouped into 15 National Library of Medicine (NLM) semantic groups (Table 13). 

Predicates are distributed among 34 relationships (i.e., causes, occurs in, etc.) and an 

additional 27 negation relationships (Table 14). In our experiment, because of the nature 

of the questions retrieved from BioASQ challenges, we use only 3 semantic groups: 

disorders (DISO), chemicals & drugs (CHEM), and genes & molecular sequences 

(GENE). Hence, any combination of these semantic groups, including 6 types of 

predications; DISO-DISO, DISO-CHEM, DISO-GENE, CHEM-CHEM, CHEM-GENE 

and GENE-GENE, were extracted (Tao, Zhang, Jiang, Bouamrane, & Chute, 2012). The 

resulting RDF repository contains over 11 million semantic predications. 
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Table 14- List of the predicates from Semantic Medline DB 

Predicate Description 

Administered to Given to patient, when no assertion is made that the substance is being given as treatment. 

Affects 
Produces a direct effect on. Implied here is the altering or influencing of an existing condition, 

state, situation, or entity.  

Associated With Has a relationship to (gene-disease relation) 

Augments Expands or stimulates a process 

Causes 
Brings about a condition or an effect. Implied here is that an agent, such as for example, a 

pharmacologic substance or an organism, has brought about the effect. 

Coexist with Occurs together with, or jointly. 

Compared With - 

Complicates  Causes to become more severe or complex, or results in adverse effects 

Converts to Changes from one form to another (both substances) 

Diagnoses Distinguishes or identifies the nature or characteristics of 

Different from - 

Different than - 

Disrupts 
Alters or influences an already existing condition, state, or situation. Produces a negative effect 

on.  

Higher from  

Higher than  

Inhibits Decreases, limits, or blocks the action or function of (substance interaction) 

Interacts with  Substance interaction 

IS-A 
The basic hierarchical link in the UMLS Semantic Network. If one item “is a” another item, then 

the first item is more specific in meaning than the second item.  

Location of The position, site, or region of an entity or the site of a process. 

Lower than  

Manifestation of 
That part of a phenomenon which is directly observable or concretely or visibly expressed, or 

which gives evidence to the underlying process.  

Method of The manner and sequence of events in performing an act or procedure. 

Occurs in Has incidence in a group or population. 

Part of 
Composes, with one or more other physical units, some larger whole. Includes component of, 

division of, portion of, fragment of, section of, and layer of.  

Precedes 
Occurs earlier in time. This includes antedates, comes before, is in advance of, predates, and is 

prior to. 

Predisposes To be a risk to a disorder, pathology, or condition. 

Prevents Stops, hinders or eliminates an action or condition.  

Process of Disorder occurs in (higher) organism. 

Produces 
Brings forth, generates or creates. This includes yields, secretes, emits, biosynthesizes, 

generates, releases, discharges, and creates.  

Same as -  

Stimulate Increases or facilitates the action or function of (substance interaction). 

Than as -  

Treats Applies a remedy with the object of effecting a cure or managing a condition.  

Uses Employs in the carrying out of some activity. This includes applies, utilizes, employs, and avails.  

DrugBank. DrugBank (Kibbe et al., 2015; Law et al., 2014; Schriml et al., 2012) is a 

comprehensive database of biochemical and pharmacological information about drugs and 

drug targets. Each drug entry includes extensive information on properties, structure, and 

biology of the drugs. In the current setting of SeDan, we are exploiting DrugBank version 

4.5.0, of which the RDF representation contains over 3.8 million predications in total.  
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Disease Ontology. The Human Disease Ontology (DO) (Kibbe et al., 2015; Schriml et al., 

2012) is a standardized ontology for both common and rare human diseases. The Disease 

Ontology semantically integrates disease and medical vocabularies across disparate 

biomedical resources; MeSH, ICD, NCI’s thesaurus, SNOMED and OMIM. The most up 

to date version of the DO contains 203,125 semantic predications. 

GraphDB. The aforesaid materials and sources are stored to and queried via GraphDB9 

RDF triple store (http://graphdb.ontotext.com/). GraphDB is a graph database with RDF 

and SPARQL support. Its capabilities for semantic inferencing, efficient handling of 

massive volumes of data, real-time inferencing and support of quadruples make GraphDB 

an appropriate tool for an SPARQL endpoint in SeDan architecture. 

5.3 Statistics on the experimental questions 

As explained in the previous chapter, in the experiments, we focused on the questions of 

BioASQ challenges that (i) are confined within the domains of treatment or diagnosis (i.e., 

common medical questions that doctors are confronted with); and (ii) ask for yes/no or 

factoid answers (i.e., types of questions that SeDan answers). Based on two initial criteria 

for selecting the questions, 114 questions10 were retrieved: 61 questions asking about 

causes of diseases and 53 questions asking about treatments. 83 questions look for factoid 

answers and the remaining 31 questions expect yes or no as the answer.  

Table 15 presents the distribution of the retrieved questions. 

 

                                                 
9 GraphDB Free is available under an RDBMS-like free license. It is free to use but not open-source (more information here). 
10 The list of questions is available at https://tinyurl.com/y7fr3yvd 

http://graphdb.ontotext.com/
http://graphdb.ontotext.com/documentation/8.8/pdf/GraphDB-Free.pdf
https://tinyurl.com/y7fr3yvd
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Table 15- Details of the retrieved questions from BioASQ series, Task 6-Phase B question sets 

Source 
Release 

date 

No. of 

questions 

Retrieved questions 

Tota

l 

Question domain Questions type 

Cause

s 

Treatment

s 
Factoid 

Yes/N

o 

Train 5-Dec-17 2251 69 36 33 58 11 

Testset1 8-Mar-18 100 9 3 6 1 8 

Testset2 22-Mar-18 100 8 5 3 6 2 

Testset3 5-Apr-18 100 10 6 4 5 5 

Testset4 19-Apr-18 100 8 5 3 4 4 

Testset5 2-May-18 100 10 6 4 9 1 

Total   2751 114 61 53 83 31 

5.4 Functionality evaluation 

To evaluate the ability of SeDan in discovery of plausible answers we were required to 

identify the questions that were initially unresolvable. To this end, during the first phase 

of the experiment, the original questions (i.e., SPARQL queries without any modification) 

were posed over the knowledge graph containing the semantics from Semantic Medline 

database, with the plausible reasoning deactivated. As Table 16 shows, only 52 questions11 

(45%), out of 114 questions, were answered using existing triples stored in the knowledge 

base. While 62 questions (55%), including 33 causes questions (out of 61 questions) and 

29 treatments questions (out of 53 questions) were not resolvable (Table 17). 

Table 16- Details of initially answered questions (without query modification) 

Source Total 
Question domain Question type 

Causes Treatments Factoid Yes/No 

Train 34 20 14 33 1 

Testset1 2 0 2 0 2 

Testset2 2 1 1 2 0 

Testset3 4 1 3 2 2 

Testset4 4 2 2 3 1 

Testset5 6 4 2 6 0 

Total 52 28 24 46 6 

                                                 
11 List of the initially answered queries can be found in Appendix II. 
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Table 17- Details of initially unanswered questions (without query modification) 

Source #Total 
Question domain Question type 

Causes Treatments Factoid Yes/No 

Train 35 16 19 25 10 

Testset1 7 3 4 1 6 

Testset2 6 4 2 4 2 

Testset3 6 5 1 3 3 

Testset4 4 3 1 1 3 

Testset5 4 2 2 3 1 

Total 62 33 29 37 25 

In the second phase of the experiment, the unanswered questions from the first phase were 

asked again, but this time with plausible reasoning activated. Table 18 shows SeDan was 

able to generate plausible queries for 42 out of 62 (68%) initially unanswered questions, 

and only 20 questions (32%) remained unresolvable12 (Table 19).  

A question is found unresolvable when the plausible reasoner is not able to generate any 

plausible queries for that question. Lack of relevant and supporting semantics in the 

knowledge graph, including SemMedDB, Drugbank and Disease Ontology, is the main 

reason of not being able to generate any plausible queries. This issue will be further 

discussed in the Discussion section.  

Table 18- Details of questions with plausible queries 

Source Total 
Question domain Question type 

Causes Treatments Factoid Yes/No 

Train 23 11 12 15 8 

Testset1 7 3 4 1 6 

Testset2 3 2 1 1 2 

Testset3 5 5 0 2 3 

Testset4 1 1 0 0 1 

Testset5 3 1 2 1 2 

Total 42 23 19 20 22 

 

                                                 
12 List of plausibly answered questions and remained unresolvable questions can be found in appendices III 

and IV respectively. 
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Table 19- Details of remained unresolvable questions 

Source Total 
Question domain Question type 

Causes Treatments Factoid Yes/No 

Train 12 5 7 10 2 

Testset1 0 0 0 0 0 

Testset2 3 2 1 3 0 

Testset3 1 0 1 1 0 

Testset4 3 2 1 1 2 

Testset5 1 1 0 1 0 

Total 20 10 10 16 4 

Table 20 presents the plausibly answered questions and elaborates on the inputs of the 

plausible reasoning engine for each question, including: 

• Type of question; depending on the answer that a question expects (i.e., factoid or 

yes/no), a SPARQL query can be a Select or Ask13, 

• Subsequent SPARQL queries using the semantics in the knowledge graph, 

• Element to be substituted identifies the element (i.e., subject, object) of the 

SPARQL query that will be substituted in the process of plausible reasoning. For 

Select queries, in which one of the subject or object elements is a variable, the other 

non-variable element is the only option to be substituted. However, in Ask queries, 

subject, object or any combination of them could be replaced by their plausibly 

related semantics. Questions with decimal fractions show that the plausible 

reasoner investigated the substitution of both elements. 

• Depth of plausibility identifies the length of the plausible path (Definition 4) in the 

process of plausible reasoning. In fact, depth of plausibility shows the number of 

hops from the element to be substituted that the query rewriting algorithm takes in 

order to discover the knowledge graph. 

                                                 
13 Construct and Describe are two other types of SPARQL queries that are out of the scope of this experiment  
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For example, Question1 is looking for the causes of Katayama fever. The subsequent 

SPARQL query for this question will be: 

  

In the plausible resolution of this query, obo:Katayama_fever, the object element of the 

where statement, is the element of the query that will be substituted, and the query 

rewriting algorithm investigates up to a plausibility of depth of 4.  

Likewise, Question 16 asks if Saracatinib was being considered as a treatment for 

Alzheimer's disease. The subsequent SPARQL query for this question will be: 

 

In the case of Question 16, substituting one element (either subject or object) of the where 

statement is not effective in finding a plausible answer. In this regard, the plausible 

reasoner substitutes both subject (semr:Antineoplastic) and object 

(semr:Alzheimer's_Disease) with a depth of 2 for each element. In addition, insufficiency 

of substituting one element in the plausible resolution of Questions 20 and 37 compelled 

the plausible reasoner to substitute both the elements to find a plausible answer.   

As seen in Table 20, some questions (e.g., Questions 9, 15, 27) have more than one entry, 

which are numbered with decimal fraction. In the case of Ask questions, in which both 

subject and object can be substituted, the plausible reasoner investigates the substitution 

of each element (if any plausible semantics exist).

SELECT ?x 
WHERE { ?x   semp:CAUSES   obo:Katayama_fever. } 

ASK { semr:Antineoplastic_Agents   semp:TREATS   semr:Alzheimer's_Disease. } 
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Table 20- Details of the plausibly answered queries, the involved plausible patterns and the semantics conducting the patterns 

# BioASQ Question 

SPARQL Query 
Depth of 

Plausibility 

Element to 

be 

substituted 
Type WHERE clause 

1 What causes Katayama Fever? SELECT ?x   semp:CAUSES   obo:Katayama_fever 4 Object 

2 What is the cause of episodic ataxia type 6? SELECT ?x   semp:CAUSES   obo:episodic_ataxia_type_6 5 Object 

3 Do statins cause diabetes? ASK drugbank:Statins   semp:CAUSES   semr:Diabetes 4 Subject 

4 
Can Levoxyl (levothyroxine sodium) cause 

insomnia? 
ASK 

semr:Levothyroxine_Sodium   semp:CAUSES   

semr:Primary_Insomnia 
3 Object 

5 Which antibodies cause Riedel thyroiditis? SELECT ?x   semp:CAUSES   semr:Riedel's_thyroiditis 2 Object 

6.1 Is the monoclonal antibody Trastuzumab 

(Herceptin) of potential use in the treatment of 

prostate cancer? 

ASK 
semr:Herceptin   semp:TREATS   

semr:Prostate_cancer_metastatic 

2 Object 

6.2 2 Subject 

7 What is the treatment of acute myocarditis? SELECT ?x   semp:TREATS   obo:acute_myocarditis 4 Object 

8 
What is the genetic basis of the Delayed Sleep-

Phase Syndrome (DSPS)? 
SELECT 

?x   semp:CAUSES   

semr:Delayed_Sleep_Phase_Syndrome 
2 Object 

9.1 
Does DDX54 play a role in DNA damage response? ASK semr:DDX54   semp:CAUSES   semr:DNA_Damage 

2 Object 

9.2 3 Subject 

10 Does a tonsillectomy affect the patient's voice? ASK 
semr:Secondary_post_tonsillectomy_hemorrhage   

semp:CAUSES   semr:Voice_Disorders 
3 Subject 

11 
Is there an RNAi drug being developed to treat 

amyloidosis? 
ASK semr:RNAIII   semp:TREATS   semr:Amyloidosis 3 Subject 

12 
Are there RNAi approaches considered for the 

treatment of kidney injury? 
ASK 

semr:RNAIII   semp:TREATS   

semr:Injury_to_kidney_NOS 
3 Subject 

13 
Has IVIG been tested in clinical trials for the 

treatment of Alzheimer's disease? 
ASK 

semr:Immunoglobulins,_Intravenous   semp:TREATS   

semr:Alzheimer's_Disease 
2 Object 

14 Which bacteria causes erythrasma? SELECT ?x   semp:CAUSES   semr:Erythrasma 2 Object 

15.1 Do bacteria from the genus Morexella cause 

respiratory infections? 
ASK 

semr:Moraxella_Infections   semp:CAUSES   

semr:Respiratory_Tract_Infections 

2 Object 

15.2 2 Subject 

16 
Was Saracatinib being considered as a treatment for 

Alzheimer's disease? 
ASK 

semr:Antineoplastic_Agents   semp:TREATS   

semr:Alzheimer's_Disease 
{2, 2} 

{Subject, 

Object} 

17.1 Is celiac disease caused by gliadin-induced 

transglutaminase-2 (TG2)-dependent events ? 
ASK 

semr:transglutaminase_2 semp:CAUSES 

semr:Celiac_Disease 

1 Object 

17.2 2 Subject 

18.1 
Can doxycycline cause photosensitivity? ASK  semr:Doxycycline   semp:CAUSES   semr:Photosensitivity 

2 Object 

18.2 2 Subject 

19 What causes Black Lung? SELECT ?x   semp:CAUSES   obo:black_lung 4 Object 

20.1 
Can canagliflozin cause euglycemic diabetic 

ketoacidosis? 

ASK 
drugbank:Canagliflozin   semp:CAUSES   

semr:Diabetic_Ketoacidosis 
{1, 5} 

{Object, 

Subject} 

20.2 ASK 
semr:Glycosides   semp:CAUSES   

semr:Euglycemic_Diabetic_Ketoacidosis 
{3, 2} 

{Subject, 

Object} 

1
1
1
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21 
Mutation of which gene causes arterial tortuosity 

syndrome? 
SELECT  2 Object 

22 Can CD55 deficiency cause thrombosis? ASK semr:CD55   semp:CAUSES   semr:Thrombosis 2 Subject 

23 
Which diseases are caused by mutations in 

Calsequestrin 2 (CASQ2) gene? 
SELECT semr:CASQ2   semp:CAUSES ?x 2 Subject 

24 
List disorders that are caused by mutations in the 

mitochondrial MTND6 gene. 
SELECT semr:Mitochondrial_DNA_mutation   semp:CAUSES ?x 1 Subject 

25 What organism causes woolsorter's disease SELECT ?x   semp:CAUSES   obo:woolsorters_disease 4 Object 

26 Which disease(s) are caused by HEX A deficiency? SELECT obo:hexosaminidase_A_deficiency   semp:CAUSES ?x 4 Subject 

27.1 Is Brucella abortus the organism that causes 

brucillosis known to cause spontaneous abortions in 

humans? 

ASK 
semr:Brucella_abortus_infection   semp:CAUSES   

semr:Spontaneous_abortion 

2 Object 

27.2 2 Subject 

28.1 Has rituximab been considered as a treatment for 

chronic fatigues syndrome? 
ASK 

semr:rituximab   semp:TREATS   

semr:Chronic_Fatigue_Syndrome 

2 Object 

28.2 2 Subject 

29 
Dinutuximab is used for treatment of which 

disease? 
SELECT drugbank:Dinutuximab   semp:TREATS ?x 3 Subject 

30 What is the cause of Phthiriasis Palpebrarum? SELECT ?x   semp:CAUSES   obo:Phthiriasis_Palpebrarum 4 Object 

31 
Orteronel was developed for treatment of which 

cancer? 
SELECT obo:Orteronel   semp:TREATS ?x 4 Subject 

32 
Matuzumab has been tested for treatment of which 

cancers? 
SELECT drugbank:Matuzumab   semp:TREATS ?x 3 Subject 

33 
Is nivolumab used for treatment of Non-Small-Cell 

Lung Cancer? 
ASK 

drugbank:Nivolumab   semp:TREATS   semr:Non-

small_cell_lung_cancer_stage_II 
3 Subject 

34 
Is lambrolizumab effective for treatment of patients 

with melanoma? 
ASK 

drugbank:Lambrolizumab   semp:TREATS   

semr:melanoma 
4 Subject 

35 Which diseases can be treated with Afamelanotide? SELECT drugbank:Afamelanotide   semp:TREATS ?x 3 Subject 

36 
List the diseases that can be treated using 

Vedolizumab. 
SELECT drugbank:Vedolizumab   semp:TREATS ?x 3 Subject 

37.1 

Is Migalastat used for treatment of Fabry Disease? ASK 

drugbank:Migalastat   semp:TREATS   semr:Fabry_Disease 4 Subject 

37.2 semr:Piperidines   semp:TREATS   semr:Fabry_Disease {2, 2} 
{Subject, 

Object} 

38.2 
Is ocrelizumab effective for treatment of multiple 

sclerosis? 
ASK 

drugbank:Ocrelizumab   semp:TREATS   

semr:Multiple_Sclerosis 
3 Subject 

39 
For the treatment of which conditions can atypical 

neuroleptic drugs be used? 
SELECT semr:Atypical_neuroleptic   semp:TREATS ?x 3 Subject 

40.1 Is tretinoin effective for photoaging? ASK semr:Tretinoin   semp:TREATS   semr:Photoaging 3 Object 

41.1 
Could Arimidex (anastrozole) cause hot flashes? 

(hot flushes) 
ASK semr:Arimidex   semp:CAUSES   semr:Hot_flushes 2 Subject 

42 
What is the definitive treatment for low pressure 

headache? 
SELECT ?x   semp:TREATS   semr:Low_pressure_headache 3 Object 

1
1
2
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5.5 Correctness evaluation 

When extending the knowledge coverage of medical knowledge-bases, the correctness of 

the plausibly inferred answers and the validity of the reasoning processes (i.e., the 

combination of the semantics supporting the query rewriting) are important as well. Hence, 

it is disproportionately important to find out (i) if the plausible reasoner can generate 

acceptable queries (Definition 9) from the clinical perspective (i.e., the plausible path and 

the supporting semantics reaching the plausible query are clinically acceptable), and (ii) 

the plausibly inferred answers are correct (Definition 8). The acceptability of the plausible 

queries was investigated by the domain expert. The correctness of the plausible answers 

was evaluated against the gold standard answers (released by BioASQ challenges) or 

verified by the domain expert.  

Table 21 and Table 22 provide the details of SeDan’s ability in generating acceptable 

plausible queries and finding the plausibly correct answers to the questions that were 

initially unresolvable. Table 21 lists the questions that expect factoid answers along with 

all the possible answers (a fact or a list of facts) for each question. For each question and 

its corresponding gold standard answer(s), the table identifies if (i) the knowledge graph 

(including SemMedDB, DrugBank and Disease ontology) includes the gold standard 

answer(s), (ii) SeDan generates an acceptable plausible query, and (iii) the set of plausible 

answers includes the gold standard answer(s).  
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Table 21- Ability of SeDan in finding the plausibly correct answer(s) for factoid questions – some 

questions have more than one gold standard answer that are listed as a number followed by a letter (x.a)  
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1 Schistosoma spp ✓ ✓ ✓ 31 Prostate cancer ✓ ✓ ✓ 

2 EAAT1 mutations ✓ O O 32.a 
Pancreatic (Stage IV Pancreatic 

cancer) 

✓ 

✓ ✓ 

5 IgG4 ✓ ✓ ✓ 32.b Colorectal ✓ ✓ 

7.a Ibuprofen 

✓ 

✓ ✓ 32.c Non-small cell lung ✓ ✓ 

7.b Inotropic agents ✓ ✓ 32.d Ovarian (Ovarian cancer metastatic) ✓ ✓ 

7.c 
Anti-inflammatory steroid and 

non-steroid drugs 
O O 32.e Pancreatic (Pancreatic carcinoma) ✓ ✓ 

7.d Mechanical support O O 32.f Primary Peritoneal ✓ O 

8.a Human leukocyte antigen allele 

✓ 

✓ ✓ 32.g Gastric ✓ ✓ 

8.b 
Human leukocyte antigen DRB1 

allele 
✓ ✓ 32.h Ovarian (Stage IC Ovarian cancer) ✓ O 

8.c Human leukocyte antigen gene ✓ ✓ 32.i Esophageal ✓ O 

8.d Circadian gene mutations O O 32.j Cervical ✓ O 

8.e 
Structural polymorphisms in the 

hPer3 
O O 35.a Erythropoietic Protoporphyria 

✓ 

✓ ✓ 

8.f AA-NAT gene O O 35.b Vitiligo ✓ ✓ 

14 Corynebacterium minutissimum ✓ ✓ ✓ 35.c Hailey-Hailey disease ✓ ✓ 

19 Respirable coal mine dust ✓ ✓ ✓ 35.d Acne Vulgaris ✓ ✓ 

21 SLC2A10 /GLUT10 ✓ ✓ ✓ 35.e Polymorphic light eruption ✓ ✓ 

23.a 
Catecholaminergic Polymorphic 

Ventricular Tachycardia 
✓ ✓ O 35.f Actinic keratoses ✓ ✓ 

23.b 
Familial Hypertrophic 

Cardiomyopathy 
 ✓ O 36.a Crohn's disease 

✓ 
✓ ✓ 

23.c Hypertrophic Cardiomyopathy  ✓ ✓ 36.b Ulcerative colitis ✓ ✓ 

24.a Leigh syndrome ✓ ✓ ✓ 39.a Schizophrenia 

✓ 

✓ ✓ 

24.b 
Leber's hereditary optic 

neuropathy 
 ✓ ✓ 39.b Schizoaffective disorder ✓ ✓ 

24.c Dystonia  ✓ ✓ 39.c Delusional disorder ✓ ✓ 

25 Bacillus Anthracis ✓ ✓ ✓ 39.d 
Psychotic relapse in neuroleptic 

malignant syndrome 
✓ ✓ 

26.a Tay-Sachs disease ✓ ✓ ✓ 39.e 
Attention Deficit Hyperactivity 

Disorder  
✓ ✓ 

26.b Chronic GM2 gangliosidoses  ✓ ✓ 39.f Psychotic disorders  ✓ ✓ 

29 High-risk neuroblastoma ✓ ✓ ✓ 
42 Epidural blood patch ✓ O O 

30 Phthirus pubis O ✓ O 

For example, Schistosoma spp is the answer to Question 1, which is both included in the 

knowledge graph, and found by SeDan via a clinically acceptable plausible query. In the 

case of Question 2, SeDan generates acceptable plausible queries, but the knowledge graph 
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does not include the gold standard answer (EAAT1 mutations) and consequently, SeDan is 

not able to find it—despite the fact that it can generate an acceptable plausible query. 

Table 22- Ability of SeDan in finding the plausibly correct answer(s) for yes/no questions- some questions 

have been rewritten by transforming both subject and object of the statement that are listed as a number 

followed by a number (x.y) 
#

 Q
u

es
ti

o
n

 

Gold standard answer 

A
c
c
e
p

ta
b

le
 

p
la

u
si

b
le

 q
u

e
ri

e
s 

g
e
n

er
a

te
d

 

 M
a

tc
h

in
g
 a

n
sw

er
 

w
a

s 
fo

u
n

d
 

#
 Q

u
es

ti
o

n
 

Gold standard answer 

A
c
c
e
p

ta
b

le
 

p
la

u
si

b
le

 q
u

e
ri

e
s 

g
e
n

er
a

te
d

 

 M
a

tc
h

in
g
 a

n
sw

er
 

w
a

s 
fo

u
n

d
 

3 Yes ✓ ✓ 20.1 Yes ✓ 

✓ 

✓ 

4 Yes O - 20.2 Yes ✓ 
6.1 Yes ✓ ✓ 22 Yes ✓ ✓ 

6.2 Yes ✓ ✓ 27.1 Yes ✓ ✓ 

9.2 Yes ✓ ✓ 27.2 Yes ✓ ✓ 

10 Yes ✓ ✓ 28.1 Yes ✓ ✓ 

11 Yes ✓ ✓ 28.2 Yes ✓ ✓ 

12 Yes ✓ ✓ 33 Yes O O 

13 Yes ✓ ✓ 34 Yes ✓ ✓ 

15.1 Yes O - 37.1 Yes ✓ ✓ 

15.2 Yes ✓ ✓ 37.2 Yes ✓ ✓ 

16.1 Yes ✓ ✓ 38.1 Yes ✓ ✓ 

17.1 Yes O - 38.2 Yes ✓ ✓ 

17.2 Yes ✓ ✓ 40.1 Yes ✓ ✓ 

18.1 Yes ✓ ✓ 
41.1 Yes ✓ ✓ 

18.2 Yes ✓ ✓ 

In Table 21, for those questions (i.e., questions 7, 8, 23, 39, etc.) that expect (list of) factoid 

answers, there are more than one possible answer listed. Each gold standard answer is 

numbered by the respective question’s number, followed by a letter in the fraction.  

Table 22 lists the questions that expect yes or no answers with their corresponding 

plausible resolutions. For each question and corresponding gold standard answer, the table 

identifies (i) if SeDan generates an acceptable plausible query, and (ii) if the set of plausible 

answers includes the correct answer(s). Among 22 questions expecting answer Yes, SeDan 

successfully finds the anticipated answer to all of them. But only 20 of the answers are 

acceptable, since for questions 4 and 33 the generated plausible queries were not approved 

by the expert. 
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Regarding the factoid questions, although in some cases, such as questions 7, 8 and 32, 

SeDan does not find all the possible gold standard answers, it can generate acceptable 

plausible queries for 19 (out of 20) questions, which 18 of them find the plausibly correct 

answers. Among the 53 possible gold standard answers for the 20 factoid questions, SeDan 

can find 44 of the answers. However, questions 2 and 42 remained unresolvable since the 

knowledge graph does not include their answers (i.e., EAAT1 mutations and Epidural 

blood patch respectively).  

Overall, SeDan found the plausibly correct answers via acceptable plausible queries for 37 

questions (out of 42) that were initially unanswered. Two of the questions (questions 2 and 

42) are not answered since the knowledge graph does not include the correct answers. The 

other three questions (questions 4, 30, 33) are not resolved as their plausible queries were 

not clinically acceptable. Table 23 summarizes the results. 

Table 23- Summary of SeDan’s competence in finding acceptable plausible answers 

Questions Total 
Question domain Question type 

Causes Treatments Factoid Yes/No 

Plausibly resolvable queries 42 23 19 20 22 

Acceptable plausible queries  

(except questions 4, 30, 33) 
39 21 18 19 20 

With plausibly correct answers 

(except questions 2, 42) 
37 19 18 18 19 

In addition to the study of the correctness and acceptability of the plausible queries, it is 

worthwhile to investigate why some of the plausible queries are not acceptable. The 

domain expert was asked to identify the reason(s). Table 24 lists the clinically unacceptable 

plausible queries, the corresponding semantics in dispute, and the reason why a semantic 

is not acceptable.  
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For example, in the case of question 4, there are three semantics that were utilized through 

the plausible reasoning and their validity is in dispute: 

Table 24- Unacceptable plausible queries and why the corresponding semantics are not acceptable 

Question  Semantics in dispute Issue 

4 

Ischemia ISA Sleep_disturbances  Wrong relationship 

Ischemia PRECEDES Shock Vague/general concept 

Graves'_Disease ISA Mental_disorders Wrong relationship 

7.2 Infarction PRECEDES Myocarditis Vague/general concept 

8.3 
Sleep_Disorders COEXISTS_WITH Celiac_Disease Wrong relationship 

Syndrome COEXISTS_WITH Proteinuria Vague/general concept 

27.1 

Spontaneous_abortion COEXISTS_WITH Arthritis Wrong relationship 

Acute_infectious_disease PRECEDES Chronic_Disease Vague/general concept 

Acute_infectious_disease COEXISTS_WITH Meningoencephalitis Vague/general concept 

30 

Shock COEXISTS_WITH Infestation_by_Phthirus_pubis Wrong relationship 

Hyperglycemia COEXISTS_WITH Infestation_by_Phthirus_pubis Wrong relationship 

Infestation_by_Phthirus_pubis ISA Virus_Diseases Wrong relationship 

Infestation_by_Phthirus_pubis COEXISTS_WITH 

Cerebrovascular_accident 

Wrong relationship 

32.6 
inhibitors LOWER_THAN Peptides Vague/general concept 

Peptides COEXISTS_WITH Paclitaxel Wrong relationship 

32.8 
Bleomycin ISA Peptides Wrong relationship 

Vinblastine COEXISTS_WITH Peptides Wrong relationship 

32.9 Cisplatin COEXISTS_WITH Peptides Wrong relationship 

32.10 Cisplatin COEXISTS_WITH Peptides Wrong relationship 

33 Peptides COEXISTS_WITH docetaxel Wrong relationship 

• First, from the clinical perspective, there is no relationship between Ischemia and 

Sleep disturbances. Ischemia is a restriction in blood supply tissue and is not a type 

of Sleep disturbances. Hence Ischemia ISA Sleep_disturbances is a wrong 

relationship. 

• Second, Ischemia is a general term. The relationship Ischemia PRECEDES Shock 

does not identify that what kind of Ischemia (e.g., brain Ischemia, heart Ischemia, 

etc.) precedes shock. Although, some types of Ischemia (such as heart Ischemia) 

may lead to shock, there are some other types that do not cause a shock. Hence, the 

ambiguity of the semantic doesn’t let the expert to verify the reasoning process.  

• Third, the Grave’s Disease is a thyroid disorder, and not a mental disorder. Thus, 

a wrong relationship is not acceptable for the domain expert.  
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Similarly, other clinically unacceptable plausible queries were declined due to either a 

wrong relationship (i.e., a relationship that does not make sense from the medical point of 

view), or a vague or a general concept that makes the relationship imprecise and not 

necessarily always true. These results raised the possibility that not all the semantics and 

relationships existing in SemMedDB are correct and clinically approved. This issue will 

be elaborated in the Discussion section. 

5.6 Cost-effectiveness (performance) evaluation 

To study the performance of SeDan and demonstrate its usability in real world practices, a 

set of measures are introduced to calculate the time required to perform different steps of 

the query rewriting algorithm:   

• SPARQL query execution time (SQET) indicates the time required to ask a 

SPARQL query from the knowledge graph (RDF repository). Although this 

measure does not cover any steps of query rewriting algorithm and plausible 

reasoning, it provides a criterion to compare the cost of plausible reasoning with 

plain SPARQL query answering. 

• Retrieval time of applicable plausible semantics (ASRT) measures the required time 

to perform the step 6 of Algorithm 1, in which the algorithm attempts to find a set 

of plausible semantics applicable to the body atom of the query (i.e., the element 

to be substituted) via the pattern matching function. The retrieval time is itemized 

by the plausible patterns.  

• Rewriting time of a plausible query (RWT) measures the required time to perform 

the step 8 of Algorithm 1, in which one retrieved applicable semantics (from step 

6) will be replaced with the to be substituted element in the query. This value shows 
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the time required to generate a plausible query from the initial query, or a 

previously generated plausible query.  

• Time to reach the first approved answer (FAAT) identifies the time between the 

moment the user asks the question from SeDan and the moment SeDan finds the 

first plausibly correct answer (i.e., which is clinically acceptable as well)—i.e., it 

measures the total cost of finding the first acceptable plausible answer. 

Table 25 summarizes the grand mean14 of SPARQL queries execution time (SQET) for all 

the queries, broke down by the question domains and question types (the average SPARQL 

query execution time for each query is presented in Appendix V). As the table shows, it 

takes, on average, 5.6 milliseconds from SeDan to answer a SPARQL query. For the 

questions asking for treatments or the questions expecting fact(s) as their answers, the 

query execution time is higher than the average. Later, we will compare these values with 

the time required to perform different steps of the plausible reasoning and evaluate the 

usability of SeDan. 

Table 25- Grand mean of execution time (ms) of SPARQL queries (summarized of values from Appendix V) 

 

Overall 
Question domain Questions type 

 Causes Treatments Factoid Yes/No 

Grand Mean (ms) 5.6 4.6 6.8 7.1 4.5 

 

Table 26 recaps the average retrieval time of applicable plausible semantics (ASRT) 

(Appendix VI contains the detailed timings). ASRT computes the time that the pattern 

matching function searches the knowledge graph to find the applicable plausible semantics 

                                                 
14 The mean of the means.  
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conforming with a specific plausible pattern.  Table 26 provides an insight into the ASRT 

measure by breaking down the timings by sub-types of the plausible patterns.  

The average retrieval time for all the plausible patterns falls in the (approximate) range of 

5 to 19 milliseconds, except for the a fortiori - more to less pattern which is significantly 

higher. Our further investigation showed that there is an additional indexing/caching time 

in GraphDB that drastically increases the retrieval time of applicable semantics to the 

pattern a fortiori-More to less since it is the first pattern to investigate in the process of 

substituting a concept. Performing the experiment for few queries with a change in the 

order of the plausible patterns (e.g., by switching generalization to be the first pattern to 

be explored) proved the assumption. 

Figure 11 depicts the average retrieval time of plausible semantics for each question by 

each plausible pattern. To keep the plot fathomable, the retrieval times of a fortiori-more 

to less and also retrieval times greater than 50 milliseconds (4 values) are eliminated. 

Table 26- Grand mean of retrieval time of applicable plausible semantics (ms) to the concept to be 

substituted by plausible patterns (summary of values from Appendix VI) 

 Overall 

time (ms) 

Question domain Questions type 

  Causes Treatments Factoid Yes/No 

A fortiori (More to less) 164.0 230.9 72.7 271.5 91.2 

A fortiori (Less to more) 8.9 10.0 7.3 9.1 8.7 

Generalization 12.0 13.2 10.3 11.9 12.0 

Specification 9.5 9.2 10.0 8.0 10.5 

Similarity (Hierarchical) 9.4 11.1 7.1 11.8 7.7 

Similarity (Ordered-based) 17.2 18.5 15.4 16.1 17.9 

Dissimilarity (Hierarchical) 7.6 8.7 6.1 7.1 7.9 

Dissimilarity (Ordered) 6.4 6.4 6.4 5.1 7.2 

Interpolation (Stands before) 14.4 16.5 11.5 14.7 14.2 

Interpolation (Stands after) 9.4 6.4 13.6 5.5 12.1 

Grand mean (A fortiori-More to less) 10.5 11.1 9.7 9.9 10.9 

Although the values in Figure 11 are dispersed, conforming with Table 26, they show that 

the retrieval of the plausible semantics usually takes 5 to 20 milliseconds. In addition, the 
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similar trend of the lines in the figure implies that retrieval time is consistent among 

different patterns for one question. In other words, if one question (e.g., Question 4) is 

costly with regard to a specific plausible pattern, it is possible that the retrieval of the 

semantics related to the other patterns is costly as well, and vice versa.  

Regardless of the sudden rises and falls, over all, similarity and interpolation-stands before 

are the costliest patterns and dissimilarity and interpolation-stands after are the least. In 

addition to the complexity of the computation of each pattern in the pattern matching 

function, the number of applicable semantics to the concept in the question and, the number 

of relevant semantics to a plausible pattern in general, affect the required time to retrieve 

the applicable semantics.  

 

 

Figure 11- Average retrieval time (ms) of plausible semantics by plausible patterns for each question 

(values are from Appendix VI) – retrieval time of A fortiori-More to less and values bigger than 50 ms are 

cut off to keep the chart comprehensible 

Table 27 provides the quantity of the existing semantics in the knowledge graph with 

regard to each plausible pattern.  Although the numbers in the table represent the total 
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number of the semantics (and not divided by each question or each concept), it shows that 

the number of plausible semantics applicable to the costly patterns is higher (Figure 11).  

Table 27- Total number of relevant semantics to each pattern in the knowledge base 

Plausible Patterns Number of semantics 

A fortiori 35648 

Generalization 477158 

Specialization 477158 

Dissimilarity (Hierarchical) 5639 

Similarity (Hierarchical) 41281 

Similarity (Ordered) 1315959 

Interpolation 682180 

For example, Table 26 shows the highest retrieval time belongs to the similarity pattern, 

which has the biggest number of the applicable semantics in the knowledge graph (Table 

27). Likewise, dissimilarity, which imposes the least overhead to the system, has the lowest 

number of the applicable semantics in the knowledge graph. Figure 12 depicts the trend 

between the number of applicable semantics to the plausible patterns and their correspoing 

retrieval time. The plot does not show a linear relationship between the number of the 

sematnics and the required time to retrieve them, but it does imply that a higher number of 

applicable semantics costs a greater retreival time from the system.   

 

Figure 12- Comparison of the trends between the number of applicable semantics to plausible patterns 

and their retrieval time 
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Replacing the retrieved concept(s) and rewriting a query is the last overhead that the SeDan 

endures throughout the process of generating the plausible queries. Table 28 demonstrates 

the average rewriting time of a plausible query (RWT); the time required to replace an 

element in the query (the step 8 of Algorithm 1)with a concept retrieved from previous 

step (the step 6 of Algorithm 1).  

Table 28- Grand mean of the time (μs) required to generate a plausible query (summary of values from 

Appendix V) 

 

Overall 
Question domain Questions type 

 Causes Treatments Factoid Yes/No 

Grand Mean (μs) 20.4 15.2 27.4 16.0 23.5 

As Table 28 shows, it approximately takes 20 microseconds to rewrite a SPARQL query 

by replacing an element (i.e., subject or object) with an applicable plausible semantic.  

The measures above determine the time required to perform only one instance of the 

corresponding tasks. For example, SPARQL query execution time measures the time 

required to ask one SPARQL query, retrieval time of applicable plausible semantics 

identifies the cost of finding plausibly related semantics to the concept under investigation 

and rewriting time of a plausible query calculates the time of generating one plausible 

query. While, the process of performing plausible reasoning to find a plausible answer may 

contain hundreds (or thousands) of each of these steps.  

Hence, in order to have a more realistic estimation of the cost of plausible reasoning, we 

introduced another measure, time to reach the first approved answer. This measure 

calculates the total time that SeDan takes to provide a plausibly correct answer to an 

initially unanswered question. This measure is comprised of the time required to execute 
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the SPARQL queries (SQET), collect the applicable plausible semantics (ASRT) and 

rewrite the plausible queries (RWT): 

𝑇𝑖𝑚𝑒 𝑡𝑜 𝑟𝑒𝑎𝑐ℎ 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑎𝑝𝑝𝑟𝑜𝑣𝑒𝑑 𝑎𝑛𝑠𝑤𝑒𝑟 = ∑ 𝑆𝑄𝐸𝑇 + ∑ 𝐴𝑆𝑅𝑇 +  ∑ 𝑅𝑊𝑇 

Table 29 provides the information of the first approved plausible answers for each 

question. This information includes the time that SeDan needs to reach the answer, the 

plausibility depth that the answer is found at, and the plausible patterns that conducted the 

plausible reasoning.   

For example, in the case of Question 1, it takes SeDan 8.2 seconds to reach the first 

approved answer in a plausibility depth of 3 (Table 29). Figure 13 depicts the reasoning 

process and the plausible paths that SeDan navigates to reach the node Schistosoma spp in 

the knowledge graph. 

 

Figure 13- The process of plausible reasoning for Question 1 
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Table 29- Details of the first approved plausible answers for each question 

# 
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e 
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Plausible Patterns involved # 

T
im

e 
(s

ec
) 

D
ep

th
 

Plausible Patterns involved 

1 8.2 3 {SIM-HR, SIM-HR, GEN} 26.a 0.6 3 {SIM-HR, SIM-HR, SIM-OR} 
2 - - - 26.b 0.1 2 {SIM-HR, SIM-HR} 
3 1.1 2 {SPEC, SIM-HR} 27.1 2.0 1 {SIM-OR} 
4 - - - 27.2 1.1 1 {GEN} 
5 1.6 1 {SIM-OR} 28.1 0.1 1 {AFORT-ML} 
6.1 0.2 1 {GEN} 28.2 1.0 1 {AFORT-ML} 
6.2 1.1 1 {GEN} 29 0.2 2 {GEN, SIM-HR} 
7.a 17.1 4 {GEN, SIM-HR, AFORT-ML, SIM-OR} 30 - - - 
7.b - - - 31 2.4 4 {GEN, SIM-HR, GEN, GEN} 
7.c - - - 32.a 35.5 3 {GEN, SIM-HR, SIM-OR} 
7.d - - - 32.b 0.8 3 {GEN, SIM-HR, AFORT-ML} 
8.a 3.5 2 {GEN, GEN} 32.c 4.6 3 {GEN, SIM-HR, GEN} 
8.b 4.0 2 {GEN, SIM-OR} 32.d 3.3 3 {GEN, SIM-HR, GEN} 
8.c - - - 32.e 0.2 2 {GEN, SIM-HR} 
8.d - - - 32.f - - - 

8.e - - - 32.g 4.6 3 {GEN, SIM-HR, GEN} 
8.f - - - 32.h - - - 

9.2 1.2 1 {SPEC} 32.i - - - 
10 5.4 2 {SIM-OR, SIM-OR} 32.j - - - 
11 9.9 2 {GEN, AFORT-LM} 33 - - - 
12 7.5 2 {GEN, GEN} 34 0.2 3 {SIM-HR, GEN, SIM-HR} 
13 0.3 1 {AFORT-LM} 35.a 18.2 3 {GEN, SIM-HR, SPEC} 
14 24.4 2 {GEN, GEN} 35.b 5.6 3 {GEN, SIM-HR, GEN} 
15.1 - - - 35.c 27.1 3 {GEN, SIM-HR, SIM-OR} 
15.2 2.9 2 {SIM-OR, GEN} 35.d 3.1 3 {GEN, SIM-HR, AFORT-LM} 
16.1 1.3 1 {AFORT-LM} 35.e 7.5 3 {GEN, SIM-HR, GEN} 
17.1 - - - 35.f 7.3 3 {GEN, SIM-HR, GEN} 
17.2 0.2 1 {GEN} 36.a 0.2 2 {GEN, SIM-HR} 
18.1 0.2 1 {SPEC} 36.b 1.2 3 {GEN, SIM-HR, AFORT-LM} 
18.2 1.3 1 {AFORT-ML} 37.1 0.2 3 {GEN, SIM-HR, SIM-OR} 
19 0.3 2 {GEN, GEN} 37.2 5.1 2 {AFORT-ML, SIM-OR} 
20.1 1.7 4 {GEN, GEN, SIM-HR, GEN} 38.1 1.3 2 {GEN, SIM-HR} 
20.2 0.3 2 {GEN, GEN} 38.2 0.6 2 {GEN, SIM-HR} 
21 13.0 2 {SIM-OR, SIM-OR} 39.a 0.1 1 {SIM-HR} 
22 10.8 2 {SPEC, AFORT-LM} 39.b 0.1 1 {SIM-HR} 
23.a - - - 39.c 0.3 2 {SIM-HR, AFORT-ML} 
23.b - - - 39.d 0.1 1 {SIM-HR} 
23.c 1.0 2 {SIM-OR, GEN} 39.e 0.3 2 {SIM-HR, AFORT-ML} 
24.a 0.3 1 {SIM-OR} 39.f 0.3 2 {SIM-HR, AFORT-ML} 
24.b 0.6 1 {SIM-OR} 40.1 0.1 2 {SIM-HR, SIM-OR} 
24.c 0.9 1 {SIM-OR} 41.1 0.1 1 {SIM-HR} 
25 123.2 4 {SIM-HR, SIM-HR, GEN, SIM-OR} 42 - - - 

* GEN: Generalization, SPEC: Specialization, SIM: Similarity, HR: Hierarchical, OR: Ordered-based, AFORT: A 

Fortiori, ML: More to less, LM: Less to More, INTP: Interpolation, SB: Stands before, SA: Stands after 

Figure 13 shows SeDan starts the process of plausible reasoning by replacing the 

Katayama fever with intestinal schistosomiasis (from the Disease ontology), which is 

retrieved via a hierarchical similarity relationship, sameAs. Since the plausibly generated 
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query does not return any answers, SeDan moves further in the knowledge graph and 

replaces the concept with its equivalent in the SemMedDB, semr:intestinal 

schistosomiasis. Although this replacement leads to some plausibly inferred queries, none 

of them are acceptable. Then, SeDan proceeds to the plausible depth of 3, and finds five 

plausibly related semantics via a generalization relationship, semp:isa. By replacing the 

retrieved semantics, generating new plausible queries and asking the queries from the 

knowledge graph, the first plausibly correct answer will be found through 

Parasitic_infection.  

In addition to the nodes that are illustrated in Figure 13, there are some middle steps that 

either returns no results or does not influence the reasoning process. However, these steps 

impose extra cost to the system. In total, this plausible navigation of the knowledge graph 

includes: 

• 28 instances of SPARQL query execution 

• 3 instances of plausible semantics retrieval, a fortiori – more to less 

• 3 instances of plausible semantics retrieval, a fortiori – less to more 

• 3 instances of plausible semantics retrieval, generalization 

• 2 instances of plausible semantics retrieval, specialization  

• 2 instances of plausible semantics retrieval, similarity – hierarchical 

• 2 instances of plausible semantics retrieval, similarity – ordered-based 

• 2 instances of plausible semantics retrieval, dissimilarity – hierarchical 

• 2 instances of plausible semantics retrieval, dissimilarity – ordered-based 

• 2 instances of plausible semantics retrieval, interpolation – stands before 

• 2 instances of plausible semantics retrieval, interpolation – stands After 
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• 28 instances of plausible query generation 

5.7 Effectiveness of the plausible patterns 

To investigate the effectiveness and practicality of each plausible pattern in the process of 

plausible reasoning, the distribution of effective plausible patterns among the approved 

plausible answers is listed in Table 30. The table presents the number of clinically 

approved plausible queries to reach the plausibly correct answers, and the plausible 

patterns that are leveraged through the reasonings.   

Table 30 shows that some patterns, like generalization and similarity-order based are used 

more frequently, and some other, like interpolation and a fortiori, are less frequent. Not 

all the plausible patterns are used equally in the reasoning processes, but all of them are 

helpful and necessary for a successful plausible reasoning. 

Table 30- Distribution of effective plausible patterns among approved plausible answers 

# 

No. of 

clinically 

approved 

plausible 

reasoning 

Effective Plausible Patterns 
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1 2 - - ✓ - ✓ - - 

3 6 ✓ - ✓ ✓ ✓ - ✓ 

5 7 ✓ ✓ - - - ✓ - 

6.1 2 - ✓ ✓ - - - - 

6.2 2 - - ✓ - - - - 

7.1 1 ✓ - ✓ - ✓ ✓ - 

8.a 1 - - ✓ - - - - 

8.b 1 - - ✓ - - ✓ - 

9.2 4 - - ✓ ✓ - - ✓ 

10 2 - - - - - ✓ ✓ 

11 68 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

12 43 ✓ - ✓ ✓ - ✓ ✓ 

13 8 - ✓ ✓   - ✓ - 

14 5 - - ✓ ✓ - ✓ - 

15.2 35 - - ✓ - - ✓ ✓ 

16.1 3 - ✓ ✓ - - ✓ - 

17.2 16 ✓ ✓ ✓ - - - ✓ 
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18.1 8 ✓ - ✓ ✓ - ✓ - 

18.2 7 ✓ ✓ - ✓ - ✓ ✓ 

19 9 - - ✓ - - ✓ - 

20.1 5 - ✓ ✓ - ✓ - ✓ 

20.2 2 - - ✓ - - ✓ - 

21 1 - -   - - ✓ - 

22 5 - ✓ ✓ ✓ - ✓ ✓ 

23.c 1 - - ✓ - - ✓ - 

24.a 7 - - - - - ✓ - 

24.b 2 - - - - - ✓ - 

24.c 5 - - - - - ✓ - 

25 1 - - - ✓ ✓ ✓ - 

26.a 3 - - -   ✓ ✓ - 

26.b 2 - - ✓ ✓ ✓ - - 

27.1 3 ✓ ✓ - - - ✓ ✓ 

27.2 22 ✓ - ✓ - - ✓ ✓ 

28.1 16 ✓ ✓ ✓ - - - ✓ 

28.2 7 ✓ ✓ ✓ - - ✓ - 

29 31 - ✓ ✓ ✓ ✓ - ✓ 

31 2 - ✓ ✓ - ✓ ✓ - 

32.a 1 - - ✓ - ✓ ✓ - 

32.b 16 ✓ - ✓ ✓ ✓ ✓ ✓ 

32.c 1 - - ✓ - ✓ - - 

32.d 1 - - ✓ - ✓ - - 

32.e 25 ✓ ✓ ✓ - ✓ - ✓ 

32.g 2 - - ✓ - ✓ ✓ - 

34 27 ✓ ✓ ✓ ✓ ✓ - ✓ 

35.a 1 - - ✓ ✓ ✓ - - 

35.b 19 - - ✓ ✓ ✓ ✓ - 

35.c 1 - - ✓ - ✓ ✓ - 

35.d 11 - ✓ ✓ ✓ ✓ ✓ - 

35.e 1 - - ✓ - ✓ - - 

35.f 2 - - ✓ - ✓ ✓ - 

36.a 22 ✓ ✓ ✓ - ✓ - ✓ 

36.b 14 ✓ ✓ ✓ - ✓ - ✓ 

37.1 5 - - ✓ ✓ ✓ ✓ - 

37.2 1 ✓ - - - - ✓ - 

38.1 24 - ✓ ✓ ✓ ✓ - ✓ 

38.2 1 - - ✓ - ✓ - - 

39.a 26 ✓ ✓ ✓ ✓ ✓ - ✓ 

39.b 26 ✓ ✓ ✓ - ✓ - ✓ 

39.c 15 ✓ ✓ ✓ - ✓ - ✓ 

39.d 29 ✓ ✓ ✓ - ✓ ✓ ✓ 

39.e 8 ✓ ✓ ✓ - ✓ - ✓ 

39.f 9 ✓ ✓ ✓ ✓ ✓ - - 
40.1 10 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

41.1 4 - - ✓ ✓ ✓ - ✓ 
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5.8 Discussion 

Successful completion of the experiments illustrates that a plausible pattern, alone or in 

combination with other pattern(s), can provide plausible answer(s) and extends the query 

answering coverage of a knowledge graph. Aligned with three aspects of the evaluation 

framework, the designed experiment followed four main purposes to investigate the 

success of SeDan in achieving its objectives:  

• to gain insight into the functionality and behaviour of the system, 

• to report the level of success in providing a complete set of answers that are 

plausibly correct, 

• to identify how transparency facilitates the understanding and acceptance of the 

reasoning processes,  

• and ultimately, to recognize the areas to improve. 

5.8.1 SeDan’s potential use 

SeDan is designed to help clinical care providers discover new knowledge and answer 

challenging questions that might not have been answered before. As mentioned earlier, for 

the time being, SeDan is considered as a query answering framework in research 

environments providing answers to medical researchers and scientists. It aims to provide 

insight from data for the domain experts who possess the domain knowledge to ask 

complex questions and validate the (plausible) results. We believe the semantic analysis 

of large data via plausible reasoning can provide meaningful insights by turning collected 

data into actionable knowledge. The acquired knowledge helps to better informed clinical 

diagnoses, improve personalized therapies, validate medical treatment and predict the 

adverse events to treatments, while lowering costs. 
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For example, precision medicine that proposes customized, target-based healthcare has 

recently become a popular research area. In line with the objectives of precision medicine, 

drug design tries to customize the drug delivery for each individual patient with the aim of 

maximizing therapeutic effects while minimizing undesired side effects (Wang et al., 

2018). To this end, drug design studies the structure of (bio)molecules (such as protein) to 

understand the interactions between small organic molecule (i.e., ligand) and a receptor 

(i.e., patient) to suggest a therapeutic benefit for a specific patient (Klebe, 2013). Hence, 

precision medicine requires the integration of multiple data sources—such as biomedical, 

biological and biochemical data—to form a unified knowledge resource such as a 

knowledge graph to help experts find new knowledge and to answer specific questions. 

Given that an integrated knowledge resource may contain knowledge that is either not 

directly related to other knowledge elements (from another source) and the entire scope of 

the knowledge is not always known to the experts our plausible reasoning approach for 

semantic analytics, applied to the integrated knowledge graph and the associated data, is 

suitable to derive unknown and new knowledge relationships to advance the expert’s 

understanding of biological structures and clinical processes in turn support the rather 

knowledge-intensive drug discovery progress.  

Moreover, we believe that SeDan, offers a novel implementation of plausible reasoning 

over knowledge graphs—it is application is not limited to healthcare and medicine. We 

foresee the utility of SeDan for any problem domain (such as astrophysics, environment, 

and finance) that needs to derive new knowledge from large volumes of data and domain 

knowledge. In this regard, SeDan and the embedded plausible reasoning methods can 

provide new knowledge by associating knowledge atoms/elements to generate a plausible 
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response or solution to a query—the plausible response is the first step in generating new 

knowledge (without recourse to evidence) which can subsequently be validated by domain 

experts to turn plausible to deterministic knowledge that can be used for generating 

actionable insights from semantic analytics. For example, SeDan can help data-driven 

recommender systems (e.g., movie recommendation systems) in two ways: (i) to provide 

deductive answer(s) to the questions that their answers are already included in the data, (ii) 

to leverage semantics, discover unknown, complex relationships, and suggest items that 

are explicable (i.e., SeDan can justify its findings) and may not be detectable by existing 

machine learning techniques. 

5.8.2 Functionality 

The functionality perspective of the evaluation is mainly focused on the proper 

development of SeDan, regarding the predefined characteristics of navigating the 

knowledge graph, exploring the applicable plausible semantics and ultimately generating 

the equivalent plausible queries. Hence, the functionality of SeDan could be respectively 

considered equal to the practicality of the query rewriting algorithm, the main module of 

the reasoning engine.  

Table 18 showed that SeDan provides plausible resolutions for 42 out of 62 (68%) initially 

unanswered questions. Regardless of the acceptability of the plausible queries or 

correctness of the plausible answers, investigating the inference processes of the plausibly 

answered questions showed that SeDan navigates the knowledge graph and generates 

plausible queries as anticipated.  

Starting with the concept in the question, it first explores the applicable semantics to the 

concept within the depth of plausibility of one (i.e., direct neighbours of the concept in the 
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graph). The applicable semantics are explored based on the order of the plausible patterns 

(a fortiori, generalization, specialization, similarity, dissimilarity, interpolation), which is 

hard-coded in the algorithm—i.e., this sequence is not firm and could be modified.  

Following the completion of visiting the concepts (i.e., nodes) within the depth of 

plausibility of one and retrieving the applicable semantics, the rewriting algorithm starts 

exploring the semantics within the depth of plausibility of two w.r.t. to the concept in the 

original question (i.e., or depth of plausibility of one w.r.t. to the concept in the generated 

plausible queries resulting from the first round of query rewriting). These iterations 

continue until the query rewriting algorithm visits all the applicable semantics within the 

depth of the plausibility identified by the user.  

Code 8 reports the process of visiting an applicable plausible semantics at the plausibility 

depth of 3 and generating the subsequent plausible query. As seen, Katayama fever, the 

initial concept in the original question (Question 1), has been substituted by 

Schistosomiasis after three rounds of query rewiring: Katayama fever is first swapped by 

intestinal schistosomiasis from disease ontology via a hierarchical similarity. Then it 

moves to SemMedDB again via hierarchical similarity by replacing 

obo:intestinal_schistosomiasis with  semr:Intestinal_schistosomiasis. Through the third 

rewriting, Intestinal_schistosomiasis will be substituted by its super-class, 

semr:Schistosomiasis (via generalization).  

New Plausible Query: ?x semp:CAUSES semr:Schistosomiasis 
Depth of Plausibility: 3 
Sequence of Plausible Patterns: {SIM-HR, SIM-HR, GEN} 
Supporting Semantics:  

 {SIM-HR,(obo:intestinal_schistosomiasis oboInOwl:hasExactSynonym obo:Katayama_fever)} 
 {SIM-HR,(semr:Intestinal_schistosomiasis owl:sameAs obo:intestinal_schistosomiasis)} 
 {GEN,(semr:Intestinal_schistosomiasis semp:ISA semr:Schistosomiasis)} 
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Code 8. a generated plausible query during the exploration of the knowledge graph 

Further investigation of the reasoning processes of the other plausibly inferred answers 

(like what is shown in Code 8) demonstrates that the query rewriting algorithm retrieves 

the correct plausible semantics, with regard to the concept to be substituted and the 

plausible pattern under investigation, and generates plausible queries precisely, as it is 

supposed to do.  

It is worth emphasizing again that functionality evaluation does not consider the 

correctness of the plausible semantics leveraged during the reasoning nor the rationality of 

the sequence of the supporting semantics in the process of reasoning. It only confirms that 

SeDan, and to be specific, the query rewriting algorithm implements the plausible patterns 

flawlessly. 

5.8.3 Comprehensiveness 

Theoretically and practically (i.e., as functionality evaluation confirms) the plausible query 

rewriting algorithm is an exhaustive greedy search over the knowledge graph, which 

generates all the possible plausible queries within the desired depth of plausibility—i.e., if 

the time and resources allow.  

However, the retrieval of the plausibly correct answer(s) strongly depends on the 

completeness of the semantics existing in the knowledge graph. The plausible query 

rewriting algorithm explores the plausible paths and generates plausible queries so long as 

an applicable plausible semantic is found—i.e., the query rewriting algorithm terminates 

at any point where the pattern matching function fails to retrieve an applicable semantics. 

The plausibly inferred answers are comprehensive to the same extent that the knowledge 

graph (as constituted by ontologies and instances) is complete. To put it differently, the 
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completeness of the knowledge graph may have a spiral effect on the capability of the 

plausible reasoner to discover all the plausibly correct answers; a richer knowledge graph 

of semantics allows a more comprehensive set of plausible solutions. 

In our experiments, we found out that providing additional semantics (e.g., a clinically 

acceptable semantic that is manually retrieved from the most recent released biomedical 

ontologies) could help the query rewriting algorithm to go further, generate acceptable 

plausible queries, and find plausible answers for 12 questions (out of 42 plausibly answered 

questions). In fact, we investigated how enrichment of the ontological semantics can 

improve the comprehensiveness of the answer set.  

As a result, SeDan can plausibly answer 42 out of 62 (68%) initially unanswered questions, 

and only 20 questions (32%) remained unresolvable. These questions asked about a drug 

or disease that were neither included in the semantic knowledge graph nor helped by the 

manual insertion of additional semantics (if any was available). Hence, no exploration of 

the knowledge graph, albeit guided by the plausible patterns, can yield any plausible query. 

This observation verifies how the success of plausible reasoning depends on the richness 

and completeness of the available domain knowledge. 

5.8.4 Plausible correctness 

In any healthcare system it is essential to derive answers that don’t lead to wrong diagnoses 

and treatments, and encourages the user confidence in the system (Clarke et al., 1994). As 

mentioned before, the correctness of the plausible answers has two facets: (i) if SeDan 

generates acceptable plausible queries (i.e., the plausible paths to the answers are clinically 

acceptable), and (ii) if the inferred answers are plausibly correct.  
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As Table 21 shows (summarized in Table 23) among 22 questions asking for yes/no 

answers, SeDan generates acceptable plausible queries for 20 questions, which for 19 of 

them the plausibly correct answers were found. In the case of the factoid questions, 18 

questions (out of 20) were provided (at least one) plausibly correct answer—i.e., only one 

plausible query was not acceptable for the domain expert.  

Overall, among all the 42 plausibly answered questions, the answers to 37 (88%) questions 

were plausibly correct and the corresponding plausible queries were clinically approved as 

well. These results show, despite the lack of support from crisp deductive reasoning, the 

plausible reasoning is able to provide valuable insights and make acceptable plausible 

inferences. 

A reasonable and decent standard to measure the competence of SeDan in deriving the 

correct answers would be to compare its results with other participants of the BioASQ 

challenges that answered the same questions via different techniques. Therefore, we would 

be able to realize how our implementation of plausible reasoning over a health knowledge 

graph competes against other approaches (e.g., Natural Language Processing techniques, 

Machine Learning algorithms, etc.) in a practical setting. However, at this point, the details 

of the participants’ performance in the previous BioASQ challenges are not available. 

Participating in the next BioASQ challenge is considered as future work. 

5.8.5 Performance 

As mentioned before, the response time of SeDan is comprised of: (i) retrieval of the 

applicable plausible semantics, (ii) generating plausible queries based on the retrieved 

semantics, and (iii) evaluating the resulting plausible SPARQL queries over the knowledge 

graph. Experimental results show, on average, SeDan spends 16.1 milliseconds to generate 
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and evaluate a plausible query: 10.5 milliseconds to retrieve the applicable plausible 

semantics (Table 26), 20.4 microseconds to generate the corresponding plausible queries 

(Table 28) and 5.6 milliseconds to evaluate a query over the knowledge graph (Table 25).   

To get a better insight of the performance of the plausible query rewriting algorithm, we 

compared its execution time with other well-known query rewriting algorithms proposed 

and designed for Description Logics (DLs) and OWL. 

The CGLLR algorithm and the Requiem algorithm (Pérez-Urbina, Horrocks, & Motik, 

2009) were evaluated over 9 different ontologies, using 5 questions per ontology. The 

ontologies vary significantly in size, regarding the numbers of classes (ranges between 2 

to 194), properties (ranges between 1 to 31) and axioms (ranges between 2 to 222). 

Subsequently, the evaluation results show significant differences in the rewriting times of 

different questions in different ontologies—i.e., the number of queries generated in the 

rewriting ranges between 2 to 23,744 queries and the rewriting times range between 1 

millisecond to 249 seconds, respectively.  

Perez (Pérez-Urbina & Rodrıguez-Dıaz, 2012) evaluated the performance of Blackout, a 

highly optimized version of Requiem (Pérez-Urbina et al., 2010), by rewriting 14 LUBM 

queries with respect to four ABoxes with increasing size: 138K, 1.38M, 13.8M, and 138M 

triples. The results show growing rewriting times and evaluation times as the size of the 

ABoxes grows: from 26.3 milliseconds, in the smallest ABox, to 359 milliseconds in the 

biggest ABox—i.e., larger ABoxes exhaust up to 20 times more time on evaluating the 

rewritten queries.  
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Chortaras et. al. (Chortaras, Trivela, & Stamou, 2011) utilized the same data set as (Pérez-

Urbina, Horrocks, et al., 2009) to evaluate their optimized query rewriting algorithm, 

Rapid. The results prove the efficiency of Rapid, in comparison to the original version of   

Requiem. However, the rewriting times range between 1 millisecond to 2.14 seconds.  

The results above show the overall performance of a query rewriting algorithm strongly 

rely on the complexity (i.e., the number of classes, properties, etc.) of the ontologies that 

conduct the rewriting and the size of the (assertional) data that a rewritten query is 

submitted to. Comparing the results from SeDan with the other query rewriting algorithms 

shows the efficiency and applicability of the plausible query rewriting in real medical 

settings. However, like any other query rewriting algorithm, there still exist some potential 

to improve the performance of the plausible query rewriting. 

The three elements of the response time depend on the complexity of the ontologies and 

the size of data. However, in the implementation of the plausible query rewriting, the order 

of the plausible patterns identifies the order of the applicable plausible semantics to be 

retrieved. This sequence determines the inference order of the plausible answers and, 

consequently, impacts the response time. In fact, the order of the plausible patterns in the 

pattern matching function does not directly impact the overall performance of the system, 

per se, but it profoundly influences the navigation behavior of the query rewriting 

algorithm over the knowledge graph. 

The current sequence of the plausible patterns (hard-coded in the pattern matching 

function) is as {AFORT-ML, AFORT-LM, GEN, SPEC, SIM-HR, SIM-OR, DISSIM-HR, 

DISSIM-OR, INTPA, INTPD}. In the retrieval of applicable plausible semantics, the triples 

that match a fortiori-more to less pattern will be retrieved first, followed by the semantics 
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that match a fortiori-less to more pattern, then the concepts that are connected via a 

generalization relationship, and so forth. 

For example, it takes SeDan 17.1 seconds to reach Ibuprofen, one of the plausible answers 

to Question 7, at the depth of 4 via the patterns {GEN, SIM-HR, AFORT_ML, SIM-OR}. 

With the current order of the patterns, at the plausibility depth of 1, the query rewriting 

algorithm first retrieves all the semantics matching with a fortiori before reaching the triple 

obo:acute_myocarditis rdfs:subClassOf obo:myocarditis, as a generalization association. 

Similarly, in the depth of 2, it investigates the associations conforming with a fortiori, 

generalization, and specialization patterns prior to reaching the obo:myocarditis 

owl:sameAs semr:Myocarditis, as a similarity association. Figure 14 depicts the engaged 

plausible patterns at each depth of plausibility to reach the plausible answer, Ibuprofen. 

 

Figure 14- The involved plausible patterns at each depth of plausibility to reach Ibuprofen, as an answer 

to Question 7 – bold black font indicates the patterns involved during the reasoning process, and grey font 

shows the patterns that are not exploited. The underlined patterns show the exact sequence of the patterns 

that leads to the answer, Ibuprofen. 

As Figure 14 implies any changes in the sequence of the patterns would impact the time to 

reach an answer. However, any increase or decrease in the response time resulting from a 

change in the sequence of the patterns is uncertain and hard to predict. That change strongly 

depends on the number of the applicable semantics to each plausible pattern regarding the 

concept under investigation (i.e., the first input of the pattern matching function, D, body 
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atom of the query to change). Hence, finding a global optimal sequence of the plausible 

patterns is a complex task, which is considered as future work. 

5.8.6 Scalability 

The basic idea behind conventional query rewriting algorithms (Pérez-Urbina, Horrocks, 

et al., 2009; Rosati & Almatelli, 2010) is to exploit small schemas (ontological knowledge) 

to compile a modified query and evaluate it over large databases (instance data). Although, 

some optimized query rewriting algorithms cautiously incorporate ABox preprocessing to 

improve the performance of the algorithms (Kontchakov, Lutz, Toman, & Wolter, 2009), 

separating the domain knowledge from the instance data imposes some restrictions on 

perfect reformulation of the query—e.g., an ontology class with no assertions in the TBox 

(Rosati & Almatelli, 2010).  

Today, the growing attention to ontologies by both the scientists and the industries has led 

to a development of expressive, huge ontologies with thousands of classes, properties and 

instances. In addition, the World Wide Web (WWW) hosts various autonomous and large 

data sources, which may be accompanied by their own ontologies or even, like 

SemMedDB, contain domain knowledge as well as millions of individual instances 

(Bennacer, Aufaure, Cullot, Sotnykova, & Vangenot, 2004). Hence, the separation of the 

knowledge/data sources may restrict the exploratory capabilities of the query rewriting. 

An innovative setting that can efficiently handle the scalability of the computations would 

overcome the limitations of the conventional QR algorithms and to exploit the new 

opportunities that large-scale knowledge sources offer. Aligned with this objective, 

experimental results show SeDan has been a successful endeavor. The plausible query 

rewriting implements plausible patterns over a large knowledge graph (with over 11.5 
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million triple statements), which combines both ontological domain knowledge and 

assertional data. It derives plausible answers within the same response time span (in 

milliseconds to seconds) as its conventional predecessors, and yet guarantees the 

decidability. Although we have not performed the experiment with differently sized 

knowledge graphs and have not studied the performance of the system with smaller 

knowledge graphs, we anticipate that shrinking the knowledge graph will drop the number 

of the applicable plausible semantics, reduce the response time and adversely impact the 

correctness of the answers. However, it is an undeniable fact that the recent advances in 

the technology (e.g., processing power and memory capacity) have had a significant impact 

on this effort.   

Furthermore, in ever-growing domains, such as healthcare and medicine, there are always 

new findings that are not included in the knowledge bases (or knowledge graphs). Hence, 

in any knowledge-based system, keeping the knowledge base updated with the most recent 

version of the sources (and new released sources) is a never-ending job. In addition to the 

scalability issues that continuous addition of new statements would cause, consistency 

maintenance of the knowledge graph will be a serious challenge. 

5.8.7 Reliability 

The in-depth experiment results show that response times from one question to another are 

widely scattered (from milliseconds to seconds). But it was also discussed that the SeDan’s 

performance strongly depends on the number of the applicable semantics retrieved in each 

iteration of the query rewriting. Hence, the fluctuations in the response times are due to the 

different numbers of the retrieved semantics, which are expected and inevitable.    
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However, further investigation of the results shows among different runs of query 

rewritings of the same question, the response times vary slightly, while the plausible 

answers are derived consistently. Technological aspects (e.g., indexing or caching time of 

the repository, changes in the CPU usages, capacity of the memory) explains the changes 

in the response time. However, consistency in the order of the answers and plausible 

correctness of the results were anticipated as they directly depend on the order of the 

plausible patterns in the pattern matching function—i.e., consistent sequence of the 

plausible patterns guarantees the consistency in the order of the answers and plausible 

correctness of the answers. 

5.8.8 Transparency 

In the development and implementation of health care systems, human and organizational 

aspects are as important as technical issues (Yusof, Kuljis, Papazafeiropoulou, & 

Stergioulas, 2008). In healthcare analytics and medical query answering, the ultimate 

decisions will be taken by patients, physicians and health care providers. To trust a system, 

they require to understand how an outcome (e.g., diagnosis, treatment) is achieved. Hence 

a transparent, explicable analysis is paramount (Amarasingham, Patzer, Huesch, Nguyen, 

& Xie, 2014). 

As discussed in the Results section (e.g., Code 8), SeDan facilitates and encourages 

transparency by providing the details of the query rewriting process: the generated 

plausible query, the sequence of the plausible patterns and the semantics driving the 

plausible exploration of the graph. This information permits the user to investigate the 

reasoning procedure in detail, evaluate the validity of each step, and finally accept or reject 

the derived plausible solution. Hence, we expect an effective clarification of the reasoning 
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processes promotes health literacy, improves health communication, empowers user 

satisfaction, and ultimately user acceptance. 

5.9  Summary 

In this chapter we introduced the evaluation framework and its criteria to investigate the 

efficiency of SeDan and the plausible reasoner. The evaluation framework has three 

aspects: (i) functionality of the plausible reasoner, (ii) correctness of the plausible answers, 

and (iii) cost-effectiveness of the system. In the experiments, we leveraged the large-scale 

Semantic MEDLINE database, enriched with the standard clinical DrugBank and Disease 

ontologies, to answer intelligent medical questions from the BioASQ challenges.  

Our real word experiment showed that even large knowledge sources (i.e., like 

SemMedDB with over 85 million records) may not be able to answer all the relevant 

questions as they usually suffer from incompleteness. The experimental results showed 

plausible reasoning, as an exploratory reasoning method, provides plausible resolutions for 

42 out of 62 (68%) initially unanswered questions and expands the query answering 

coverage of the knowledge graph by 37 percent. It is important that 88 percent of the 

plausibly inferred answers and their corresponding reasoning processes (generated 

plausible queries) are clinically reasonable and acceptable for the domain expert.  

Although the performance of the query rewriting algorithms varies among different 

domains and queries, the experimental results prove the efficiency and applicability of the 

plausible query rewriting in real medical settings.  
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Chapter 6: Conclusion and Future Work 

In this thesis, we have implemented plausible reasoning over knowledge graphs, as a novel 

approach for performing semantics-based data analytics over large health data jointly with 

background knowledge, when available.  

We recognized plausible reasoning as an exploratory reasoning method that leverages 

applicable semantic associations to perform inference through a set of frequently recurring 

patterns and suggest a plausible statement, which could be further tested deductively. To 

implement plausible reasoning, six well-known plausible patterns (generalization, 

specialization, similarity, dissimilarity, interpolation, and a fortiori) were identified.  

Based on the semantic relationships exploited in the plausible patterns, we divided them 

into three main categories: 

• Hierarchy-based patterns, including generalization and specialization, which 

navigate from a given set of objects to a larger (or smaller) set that contains (or is 

contained in) the given set; 

• Ordered-based patterns, including a fortiori and interpolation, which leverage the 

partial order of the concepts with regard to a measurable feature to infer 

propositions that are implicit in the proposition with a higher degree of confidence; 

• Equivalence (hybrid) patterns, including similarity and dissimilarity, which move 

between any concepts that are equal (or unequal) with regard to a hierarchical or 

order-based relationship. 

We found that an effective representation of the plausible semantics (i.e., semantics that 

may conduct plausible patterns) is strongly dependent on fine-grained knowledge of how 
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different concepts are semantically related. The Semantic Web framework provides 

formalisms to semantically represent data sources as knowledge graphs with various levels 

of expressivity (i.e., RDF(S), OWL), organized using domain-specific ontologies. 

Knowledge graphs encode semantic associations between different concepts and their 

properties, providing an opportunity to reason over the knowledge and reveal useful and 

unknown connections between the entities. 

To implement the plausible patterns, we leveraged query rewriting as a Semantic Web 

querying technique that reformulates a given query to a modified version, which elicits 

both explicit (what a KB knows) and unknown (what it assumes) knowledge from the data. 

Within the Semantic Web framework, OWL 2 QL profile is designed to support a sound 

and complete query rewriting mechanism to answer queries through ontologies. OWL 2 

QL is underpinned by the DL-Lite family of description logics. The Open World 

Assumption made in Description Logics makes OWL 2 QL suitable to work with 

incomplete knowledge in the Semantic Web scenarios. 

Within the OWL 2 QL profile, the hierarchy-based patterns are supported via pre-existing  

hierarchical semantics (i.e., rdfs:subClassOf and owl:instanceOf), while the ordered-based 

patterns conduct plausible reasoning based on measurable relationships between concepts, 

such as size, chronological order, location, ranking or phase, which are not provided by 

the Semantic Web languages (such as OWL). To support the representation of the ordered-

based plausible semantics and, consequently, facilitate the implementation of the plausible 

patterns, we introduced our plausible OWL extension (PL-OWL) to represent order-based 

semantics within the SW framework.  
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The introduced query rewriting algorithm performs as a graph traversal algorithm 

leveraging plausible patterns as its heuristics. The plausible query rewriting algorithm 

draws new associations, which were initially unknown, by conducting a pattern-driven 

exploration of semantic knowledge graphs to discover hidden associations. The SeDan 

framework combines all our efforts to implement plausible reasoning and manifests the 

semantics-based data analytics in one integrated system. SeDan is comprised of three main 

modules: 

• Plausible reasoner, which the plausible query rewriting algorithm as its core 

component, 

• Knowledge sources, which provide the data, semantics and ontological constructs 

needed to evaluate the queries and support the query rewriting process, and  

• User interface, to accept the query, along with the desired plausible patterns, and 

communicate the plausible answer(s) and their justifications. 

With the designed experiment we aimed to investigate (i) the functionality of the system, 

(ii) the validity of the results, and (iii) the performance of the system. The experimental 

evaluations showed that even large knowledge bases (e.g., SemMedDB with over 85 

million records) suffer from incompleteness and may not be able to answer all the 

questions.   

The results proved a plausible pattern, alone or in combination with other pattern(s), can 

discover complex associations and extend the query answering coverage of knowledge 

bases. In addition to the acceptable functionality and efficiency of our implementation of 

plausible reasoning over knowledge graphs, delivering the details of the reasoning process 
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demonstrates our endeavour for a clear effective communication to improve user 

satisfaction and acceptance.  

6.1 Limitation and Challenges 

As mentioned earlier, the success of plausible reasoning depends on the richness and 

correctness of the data and domain knowledge that is captured and represented in the 

knowledge graph. Hence, keeping the knowledge graph updated with the latest available 

domain knowledge and including additional medical sources in the form of online medical 

Linked Data is a relentless challenge.  

The experimental results raised some concerns regarding the correctness of the data. The 

validation of the plausible queries (by the expert) showed that (i) there are some 

associations that are clinically wrong, and (ii) one (or both) of the concepts in some 

associations are vague, which would not be generally acceptable as true associations. 

Obviously, the existing imprecision and inaccuracy in the data has influenced the outcome 

and acceptability of the plausibly inferred results. Hence, it is expected that a solid, clean, 

fully verified dataset will improve the soundness and comprehensiveness of the result set 

—i.e., a more complete and correct data/knowledge returns less unacceptable plausible 

queries and, probably, more clinically acceptable plausible answers.  

To avoid extra complexity and to focus on the functionality and behaviour of the plausible 

patterns, the current implementation of the plausible query rewriting algorithm assumes (i) 

the initial query contains only one condition (i.e., one triple statement) in its WHERE 

clause, and (ii) only one component of the statement (subject or object) could be plausibly 

substituted in each round of plausible resolution of the query. This limitation didn’t impact 

the designed experiment, since the retrieved questions from the BioASQ challenges are 
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encoded to SPARQL queries with one condition in their WHERE clause. However, this 

limitation should be addressed in the improved version of the query rewriting algorithm. 

Like any other health information and clinical decision support systems, the SeDan’s 

cultural competence and acceptance within the environment that is going to be set up will 

be a challenge. As discussed earlier, we hope the transparency of the plausible reasoning 

could be of help. 

6.2 Future Work 

As briefly discussed in the results section, the present work can be extended in several 

directions: 

• First, like any other query rewriting algorithm, the present version of the plausible 

query rewriting algorithm is amenable to optimization. The optimization will either 

improve the time taken to compute the rewritings or reduce the number of the 

plausible queries generated in the rewritings.  

One obvious optimization is to improve the order of the plausible patterns which 

retrieve the applicable plausible semantics. This optimization could help both 

aspects of the optimization. If the algorithm navigates the knowledge graph more 

purposefully, it won’t explore ineffective semantics, will reduce the number of the 

generated plausible queries and will consequently reaches the plausible answer(s) 

faster.  However, finding a global optimal sequence of the patterns is complicated. 

As the scattered distribution of effective plausible patterns among the approved 

plausible answers (Table 30) shows, finding the most practical patterns or ranking 

the patterns based on their applicability is not an easy task and requires more 

consideration.  
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Another optimization could be to prune the knowledge graph as the query rewriting 

navigates it. For example, in the case of a fortiori, two syntactically different 

semantics of A standsBefore B and B standsAfter A are semantically equivalent. 

Current implementation of the plausible query rewriting algorithm does not 

distinguish the equal semantics and entails them in the reasoning process. Although 

investigating the semantics at the running time may impose extra computation 

costs, it is worth studying.  

• In the SPARQL query answering, users receive no answers because there is no 

statement (i.e., triple pattern) in the repository that matches with the conditions in 

the WHERE clause of the query.  In SeDan, conforming with the Open World 

Assumption, we showed plausible reasoning is capable of deriving answers to the 

questions that were initially irresolvable. However, there are always some yes/no 

questions that the correct answer to them is No, for which providing a clinically 

reasonable explanation for that negative answer would be helpful for user 

satisfaction.  

Among the plausible patterns, dissimilarity has this potential to generalize the idea 

of “if something is true about a concept or a phenomenon, it is plausibly not true 

for a concept or a phenomenon that is recognized as dissimilar”. Hence, it would 

be a valuable addition if we could investigate the capability of SeDan to provide an 

explanation for Ask questions with No answers. Subsequently, we may be able to 

address negation, which was not at the focus of the study at this point.  

• The experiments showed the injection of clinically correct semantics can initialize 

or resume plausible reasoning. It is also stated that keeping the knowledge graph 

updated with the most recent available knowledge sources is a continuous job. 
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However, providing this opportunity for the users (i.e., researchers or scientists) to 

manually insert statements and investigate their hypotheses (i.e., hypothesis 

testing) would be worthwhile.  

As well as the inclusion of the expert’s tacit knowledge in the form of individual 

facts, we previously showed (Mohammadhassanzadeh, Van Woensel, et al., 2017) 

analogical rules (i.e., plausible knowledge represented in the form of production 

rules) can derive new plausible facts/assertions and supplement deductive 

reasoning. Hence, including plausible rules would be a great addition to our 

plausible reasoning engine.  

• Within the Semantic Web framework, rule languages such as SWRL and SPIN 

deliver deductive reasoning. In addition, OWL 2 RL, one of the OWL 2 profiles, is 

of interest in scalable reasoning without sacrificing too much expressivity. Simialr 

to multi-strategy reasoning systems (Woensel, Mohammadhassanzadeh, Abidi, & 

Abidi, 2015), SeDan could be augmented with other types of domain knowledge, 

such as deductive rules, and offer deductive reasoning along with plausible 

reasoning.  

• In the experiments we leveraged all the available knowledge to evaluate the 

proficiency of SeDan in finding plausible answers to the questions that a large 

knowledge source, comprised of more than 11.5 million statements, could not 

provide any answers. Hence, we have no estimation how the plausible query 

rewriting algorithm performs with differently sized knowledge graphs. In this 

regard, evaluating the performance of SeDan with various sizes of knowledge 

graph is a part of future work. 
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• So far, six plausible patterns (generalization, specialization, similarity, 

dissimilarity, interpolation, and a fortiori) are formalized and included in the 

plausible query rewriting algorithm. However, based on our findings from 

argumentation studies on the crossroads of philosophy, reasoning, and logic, there 

are still more plausible patterns (i.e. apagoge, epagoge, etc.) that are worth studying 

(Aliseda, 2006; Hallaq, 2009). 

• Participating in the next BioASQ challenges to find the competency of SeDan, and 

specifically the plausible reasoning engine in comparison to the other innovative 

techniques is one of the next steps. 

• User satisfaction cannot be evaluated without the system being used by real users. 

In this regard, designing and conducting an experiment with the target users of the 

system, (e.g., physicians, medical researchers, scientists, etc.) is the next step.   
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Appendix I: PL-OWL Extension  

@prefix dc: <http://purl.org/dc/elements/1.1/> . 

@prefix grddl: <http://www.w3.org/2003/g/data-view#> . 

@prefix owl: <http://www.w3.org/2002/07/owl#> . 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . 

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> . 

@prefix xml: <http://www.w3.org/XML/1998/namespace> . 

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> . 

@prefix plowl: <http://niche.cs.dal.ca/2017/06/plowl#> . 

 

<http://niche.cs.dal.ca/2017/06/plowl/> a owl:Ontology ; 

     dc:title "Plausible OWL Schema vocabulary" ; 

     rdfs:comment """ 

  This ontology partially describes the plausible extensions to OWL. This extension 

includes 

  classes and properties that together form the basis of the PL-OWL. 

  """ ; 

     rdfs:isDefinedBy 

          <http://www.w3.org/TR/owl2-mapping-to-rdf/>, 

          <http://www.w3.org/TR/owl2-rdf-based-semantics/>, 

          <http://www.w3.org/TR/owl2-syntax/> ; 

     rdfs:seeAlso   <http://www.w3.org/TR/owl2-rdf-based-semantics/#table-axiomatic-classes>, 

                    <http://www.w3.org/TR/owl2-rdf-based-semantics/#table-axiomatic-properties> ; 

     owl:imports <http://www.w3.org/2000/01/rdf-schema>, 

     <http://www.w3.org/2002/07/owl> ; 

     owl:versionIRI <http://niche.cs.dal.ca/2017/06/plowl> ; 

     owl:versionInfo "$Date: 2016/11/07 14:59:12 $" ; 

     grddl:namespaceTransformation <http://dev.w3.org/cvsweb/2009/owl-grddl/owx2rdf.xsl> .   

  

plowl:OrderedProperty  

 a owl:Class ; 

      rdfs:label "OrderedProperty" ; 

       rdfs:comment "The class of ordered properties." ; 

      rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> ; 

      rdfs:subClassOf owl:ObjectProperty.  

 

plowl:Context  

 a owl:Class; 

 rdfs:subClassOf rdf:Node; 

 rdfs:label "Context" ; 

    rdfs:comment "Represents the context of the object property." ; 

    rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> . 

    

plowl:standsAfter  

 a plowl:OrderedProperty; 

  rdfs:label "standsAfter" ; 

     rdfs:comment "The property that represents the partial order of two classes." ; 

  rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> .  

   

plowl:PlausiblePattern  

 a owl:Class; 

  rdfs:subClassOf rdf:Node; 

  rdfs:label "Plausible Pattern" ; 

      rdfs:comment "Collection of the plausible patterns." ; 

      rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> . 

 

plowl:PlausibleAnswer  

 a owl:Class; 

  rdfs:label "Plausible Answer" ; 

      rdfs:comment "Represent the plasubily inferred triples." ; 

      rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#>; 

  rdfs:subClassOf [ 

  a owl:Restriction ; 

  owl:onProperty plowl:inferredThroughPattern ; 

  owl:allValuesFrom [ 

   a owl:Class ; 

   owl:unionOf ( 

    <http://web.cs.dal.ca/~hossein/plowl/univ-

bench.owl#Generalization> 

    <http://web.cs.dal.ca/~hossein/plowl/univ-

bench.owl#Specialization> 

    <http://web.cs.dal.ca/~hossein/plowl/univ-bench.owl#Similarity> 

    <http://web.cs.dal.ca/~hossein/plowl/univ-

bench.owl#Dissimilarity> 

    <http://web.cs.dal.ca/~hossein/plowl/univ-bench.owl#Afortiori> 

    <http://web.cs.dal.ca/~hossein/plowl/univ-

bench.owl#Interpolation> 

   ) 

   ] 
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  ], 

  [ 

  a owl:Restriction ; 

  owl:onProperty plowl:inTheContextOf ; 

  owl:someValuesFrom plowl:Context 

  ]; 

   

plowl:hasContext  

 a owl:ObjectProperty;    

   rdfs:range plowl:Context; 

   rdfs:comment "This object property links an opject property to the context nodes being 

applied to it."^^xsd:string ; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> . 

 

plowl:standsAfter  

 a owl:OrderedProperty;    

   rdfs:range owl:Thing; 

   rdfs:domain owl:Thing; 

   rdfs:comment "This object property is used to model ordering relation to show which 

concept (subject) locates after another concept (object) regarding a specific context. The inverse 

property is standsBefore.."^^xsd:string ; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> .    

 

plowl:standsBefore  

 a owl:OrderedProperty;    

   rdfs:range owl:Thing; 

   rdfs:domain owl:Thing; 

   rdfs:comment "This object property is used to model ordering relation to show which 

concept (subject) locates before another concept (object) regarding a specific context. The inverse 

property is standsAfter.."^^xsd:string ; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> .  

    

plowl:hasSubject     

 a owl:ObjectProperty;    

   rdfs:domain plowl:PlausibleAnswer; 

   rdfs:range  owl:Thing; 

   rdfs:comment "This object property links a plausible answer to its subject."^^xsd:string 

; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> . 

 

plowl:hasObject     

 a owl:ObjectProperty;    

   rdfs:domain plowl:PlausibleAnswer; 

   rdfs:range  owl:Thing; 

   rdfs:comment "This object property links a plausible answer to its object."^^xsd:string ; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> .    

    

plowl:hasPredicate     

 a owl:ObjectProperty;    

   rdfs:domain plowl:PlausibleAnswer; 

   rdfs:range  owl:Thing; 

   rdfs:comment "This object property links a plausible answer to its 

predicate."^^xsd:string ; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> . 

    

plwol:inferredThroughPattern  

 a owl:ObjectProperty;    

   rdfs:domain plowl:PlausibleAnswer; 

   rdfs:range  owl:PlausiblePattern; 

   rdfs:comment "This object property links a plausible answer to the plausible pattern that 

lead to the inference."^^xsd:string ; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> .  

   

plwol:inTheContextOf  

 a owl:ObjectProperty;    

   rdfs:domain plowl:PlausibleAnswer; 

   rdfs:range  plowl:Context; 

   rdfs:comment "This object property links a plausible answer to the context that lead to 

the inference."^^xsd:string ; 

   rdfs:isDefinedBy <http://web.cs.dal.ca/~hossein/plowl/plowl#> . 
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Appendix II: List of initially answered questions (without query modification) 

# Question Source Domain Type 

1 What causes Scurvy? Train cause Factoid 

2 What is known as the cause of subacute thyroiditis? Train cause Factoid 

3 Which viruses are best known to cause myocarditis? Train cause Factoid 

4 Which bacteria caused plague? Train cause Factoid 

5 Which pituitary adenoma is common cause of infertility in women? Train cause Factoid 

6 Which could be some of the possible causes of hypersomnia? Train cause Factoid 

7 Is valproic acid effective for glioblastoma treatment? Train treatment Yes/No 

8 What is the treatment of acute pericarditis? Train treatment Factoid 

9 What is the treatment of subacute thyroiditis? Train treatment Factoid 

10 Which disease can be treated with Delamanid? Train treatment Factoid 

11 What are the treatments for GIST (gastrointestinal stromal tumor)? Train treatment Factoid 

12 What is the treatment of Riedel disease (thyroiditis)? Train treatment Factoid 

13 Which drugs are utilized to treat eosinophilic esophagitis? Train treatment Factoid 

14 What is the treatment of choice for gastric lymphoma? Train treatment Factoid 

15 What is the treatment of neuropathic pain in children? Train treatment Factoid 

16 
Which acetylcholinesterase inhibitors are used for treatment of myasthenia 
gravis? 

Train treatment Factoid 

17 
Which is the most common cause of sudden cardiac death in young 
athletes? 

Train cause Factoid 

18 Which deficiency is the cause of restless leg syndrome? Train cause Factoid 

19 
Mutation of which gene and which chromosome cause Neurofibromatosis 
type I? 

Train cause Factoid 

20 What organism causes tularemia? Train cause Factoid 

21 What is the cause of Tardive dyskinesia? Train cause Factoid 

22 Which is the main cause of the Patau syndrome? Train cause Factoid 

23 Which bacteria cause diphtheria? Train cause Factoid 

24 How is primary intestinal lymphangiectasia (PIL) caused? Train cause Factoid 

25 What fruit causes Jamaican vomiting sickness? Train cause Factoid 

26 Which virus type causes Molluscum contagiosum? Train cause Factoid 

27 Which are the main brain dysfunctions caused by hyperbilirubinemia? Train cause Factoid 

28 Which are the causes of the Koebner phenomenon? Train cause Factoid 

29 Which gene mutations cause the Marfan syndrome? Train cause Factoid 

30 Is propranolol used for treatment of infantile hemangioma? Testset1 treatment Yes/No 

31 Is enzastaurin effective treatment of glioblastoma? Testset1 treatment Yes/No 

32 Mutations in which gene cause Schimke immune-osseous dysplasia? Testset2 cause Factoid 

33 Which disorder has been approved for treatment with Alk inhibitors? Testset2 treatment Factoid 

34 Can radius fracture cause carpal tunnel syndrome? Testset3 cause Yes/No 

35 Is cilengitide effective for treatment of glioblastoma?  Testset3 treatment Yes/No 

36 What is the first line treatment for sarcoidosis? Testset3 treatment Factoid 

37 List 2 approved drug treatments for Inflammatory Bowel Disease (IBD). Testset3 treatment Factoid 

38 Which disease is treated with Fexinidazole? Testset4 treatment Factoid 

39 What organism causes scarlet fever also known as scarletina? Testset4 cause Factoid 

40 Is subacute sclerosing panencephalitis caused by the Measles vaccine? Testset4 cause Yes/No 

41 What drug treatment can cause a spinal epidural hematoma? Testset5 cause Factoid 

42 List diseases caused by protein glutamine expanded repeats. Testset5 cause Factoid 

43 What causes leishmaniasis? Testset5 cause Factoid 

44 Please list 10 conditions which play a role in causing atrial fibrillation. Testset5 cause Factoid 

45 What drug treatment can cause a spinal epidural hematoma? Testset5 treatment Factoid 

46 Please list 3 diseases treated with Valtrex(valacyclovir) Testset5 treatment Factoid 

47 Which enzyme deficiency can cause GM1 gangliosidoses? Train cause Factoid 

48 What is the treatment of triiodothyronine toxicosis (T3_thyrotoxicosis)? Train treatment Factoid 

49 List FDA approved treatments for androgenetic allopecia. Train treatment Factoid 

50 List 4 drugs used to treat opioid addiction or overdose. Testset4 treatment Factoid 

51 Which drugs are utilized to treat eosinophilic esophagitis? Train treatment Factoid 

52 Which drugs have been found effective for the treatment of chordoma? Train treatment Factoid 
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Appendix III: List of plausibly answered questions  

#  Query Source Domain Type 

1 What causes Katayama Fever? Train cause Factoid 

2 What is the cause of episodic ataxia type 6? Train cause Factoid 

3 Do statins cause diabetes? Train cause Yes/No 

4 Can Levoxyl (levothyroxine sodium) cause insomnia? Train cause Yes/No 

5 Which antibodies cause Riedel thyroiditis? Train cause Factoid 

6 
Is the monoclonal antibody Trastuzumab (Herceptin) of potential use in the 

treatment of prostate cancer? 
Train treatment Yes/No 

7 What is the treatment of acute myocarditis? Train treatment Factoid 

8 What is the genetic basis of the Delayed Sleep-Phase Syndrome (DSPS)? Testset1 cause Factoid 

9 Does DDX54 play a role in DNA damage response? Testset1 cause Yes/No 

10 Does a tonsillectomy affect the patient's voice? Testset1 cause Yes/No 

11 Is there an RNAi drug being developed to treat amyloidosis? Testset1 treatment Yes/No 

12 Are there RNAi approaches considered for the treatment of kidney injury? Testset1 treatment Yes/No 

13 
Has IVIG been tested in clinical trials for the treatment of Alzheimer's 

disease? 
Testset1 treatment Yes/No 

14 Which bacteria causes erythrasma? Testset2 cause Factoid 

15 Do bacteria from the genus Morexella cause respiratory infections? Testset2 cause Yes/No 

16 
Was saracatinib being considered as a treatment for Alzheimer's disease in 

November 2017? 
Testset2 treatment Yes/No 

17 
Is celiac disease caused by gliadin-induced transglutaminase-2 (TG2)-

dependent events? 
Testset3 cause Yes/No 

18 Can doxycycline cause photosensitivity? Testset3 cause Yes/No 

19 What causes Black Lung? Testset3 cause Factoid 

20 Can canagliflozin cause euglycemic diabetic ketoacidosis? Testset3 cause Yes/No 

21 Mutation of which gene causes arterial tortuosity syndrome? Testset3 cause Factoid 

22 Can CD55 deficiency cause thrombosis? Testset4 cause Yes/No 

23 Which diseases are caused by mutations in Calsequestrin 2 (CASQ2) gene? Train cause Factoid 

24 
List disorders that are caused by mutations in the mitochondrial MTND6 

gene. 
Train cause Factoid 

25 What organism causes woolsorter's disease Train cause Factoid 

26 Which disease(s) are caused by HEX A deficiency? Train cause Factoid 

27 
Is Brucella abortus the organism that causes brucillosis known to cause 

spontaneous abortions in humans? 
Testset5 cause Yes/No 

28 Are AAV vectors considered for the treatment of retinal dystrophies? Testset5 treatment Yes/No 

29 Dinutuximab is used for treatment of which disease? Testset5 treatment Factoid 

30 What is the cause of Phthiriasis Palpebrarum? Train cause Factoid 

31 Orteronel was developed for treatment of which cancer? Train treatment Factoid 

32 Matuzumab has been tested for treatment of which cancers? Train treatment Factoid 

33 Is nivolumab used for treatment of Non-Small-Cell Lung Cancer? Train treatment Yes/No 

34 Is lambrolizumab effective for treatment of patients with melanoma? Train treatment Yes/No 

35 Which diseases can be treated with Afamelanotide? Train treatment Factoid 

36 List the diseases that can be treated using Vedolizumab. Train treatment Factoid 

37 Is Migalastat used for treatment of Fabry Disease? Train treatment Yes/No 

38 Is ocrelizumab effective for treatment of multiple sclerosis? Train treatment Yes/No 

39 
For the treatment of which conditions can atypical neuroleptic drugs be 

used? 
Train treatment Factoid 

40 Is tretinoin effective for photoaging? Testset1 treatment Yes/No 

41 Could Arimidex (anastrozole) cause hot flashes? (hot flushes) Train cause Yes/No 

42 What is the definitive treatment for low pressure headache? Train treatment Factoid 
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Appendix IV: List of remained unanswered questions  

#  Query Source Domain Type 

1 Which are the main causes of fetal echogenic bowel? Train cause Factoid 

2 Can vitamin B1 deficiency cause encephalopathy? Train cause Yes/No 

3 What causes erucism? Train cause Factoid 

4 Which gene-defect causes the Vel-blood type? Train cause Factoid 

5 What is the treatment of amiodarone-induced thyrotoxicosis? Train treatment Factoid 

6 List all reported treatment options for anxiety in autism spectrum disorder. Train treatment Factoid 

7 Dracorhodin perchlorate was tested for treatment of which cancers? Train treatment Factoid 

8 Is armodafinil used for treatment of insomnia? Train treatment Yes/No 

9 Pridopidine has been tested for treatment of which disorder? Train treatment Factoid 

10 Which disease is treated with Eliglustat? Train treatment Factoid 

11 What is the treatment of interferon-induced thyroiditis? Train treatment Factoid 

12 
Which inherited disorder is known to be caused by mutations in the NEMO 

gene? Train cause Factoid 

13 What causes Puffy hand syndrome? Testset2 cause Factoid 

14 What protein is the most common cause of hereditary renal amyloidosis? Testset2 cause Factoid 

15 Centor criteria are used for which disease? Testset2 treatment Factoid 

16 Which personality disorder is treated using dialectical behavior therapy? Testset3 treatment Factoid 

17 Milwaukee protocol was tested for treatment of which disease? Testset4 treatment Factoid 

18 Does SARM1 deletion cause neurodegeneration? Testset4 cause Yes/No 

19 
A bite from the Lone Star Tick Amblyomma americanum, can cause the 

victim to become allergic to red meat, yes or no? 
Testset4 cause Yes/No 

20 What is caused by the ectopic expression of CTCF? Testset5 cause Factoid 
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Appendix V: Average of execution time of SPARQL queries and 

rewriting time of a plausible query time by each question 

# 
SPARQL query execution time Rewriting time 

Average StdDev Average StdDev 

1 3724 9615.7 15 11.8 

2 4819 213261.4 15 12.7 

3 3708 7498.5 17 27.9 

4 4743 76696.3 9 53.8 

5 4641 13167.5 13 9.9 

6.1 3605 4936.5 13 11.5 

6.2 3358 5681.0 19 29.8 

7 5135 5304.9 12 11.8 

8 3928 9122.5 19 10.6 

9.2 4404 9849.1 10 61.6 

10 4291 10044.3 10 20.4 

11 5148 12305.9 9 46.3 

12 4945 11536.2 9 71.3 

13 5607 8147.2 11 26.3 

14 5240 28602.0 17 14.8 

15.1 4837 5912.6 12 19.3 

15.2 3104 5083.2 33 103.7 

16.1 5326 7721.0 11 33.1 

17.1 2969 6387.1 21 14.1 

17.2 2809 6677.3 16 11.4 

18.1 3310 5948.1 11 16.7 

18.2 3902 12100.3 14 24.0 

19 9537 19063.9 14 11.0 

20.1 3780 5641.1 13 25.9 

20.2 5126 12157.1 14 14.2 

21 6650 9574.0 11 11.7 

22 3062 5188.2 20 62.5 

23 5895 8279.8 17 11.8 

24 11843 48224.9 13 6.3 

25 3409 5911.1 15 12.2 

26 3920 6034.8 12 8.1 

27.1 4092 4496.0 12 20.7 

27.2 2806 3466.5 22 52.4 

28.1 3844 3936.8 12 18.1 

28.2 3369 5839.1 15 25.4 

29 12819 32956.3 18 10.2 

30 3918 5758.0 14 30.3 

31 4214 10506.0 16 8.1 

32 9369 21085.8 23 14.0 

33 3637 5760.8 41 141.6 

34 3261 3523.5 23 13.2 

35 31156 83894.4 19 10.7 

36 7288 15861.5 24 12.3 

37.1 3159 6550.5 19 9.9 

37.2 4415 5400.6 12 33.7 

38.1 18715 58897.1 226 420.7 

38.2 3721 6802.6 42 206.9 

39 3997 5684.0 15 9.7 

40.1 4407 9127.2 13 10.9 

41.1 2892 5514.6 19 15.1 

42 5618 11356.9 12 14.9 
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Appendix VI: Retrieval time of applicable plausible semantics by plausible patterns 

 No. 

AFORT 

(More to Less) 

AFORT  
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SIM 

(Hierarchic

al) 

SIM 

(Ordered) 
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1 384.4 1302.4 12.5 15.1 13.0 10.2 7.6 8.6 13.8 20.8 27.0 33.3 8.8 9.5 4.4 1.7 35.7 91.8 4.5 1.5 

2 980.1 6757.6 8.4 6.1 9.5 5.3 9.1 20.7 9.1 8.0 16.9 28.3 7.2 7.2 4.9 1.7 16.5 51.1 4.6 1.6 

3 122.5 124.9 5.7 3.4 9.3 19.3 17.7 38.3 6.1 5.7 18.8 28.5 6.1 4.6 5.6 6.4 15.3 76.3 4.9 1.8 

4 53.7 208.9 46.0 212.0 39.0 186.2 43.1 215 41.2 185 44.0 209 47.3 210 45 218 34.0 181.1 36.6 188 

5 128.1 166.7 10.2 10.4 11.4 10.3 4.3 1.8 11.8 11.8 10.2 9.0 6.5 7.0 3.8 1.0 4.9 3.7 4.2 2.3 

6.1 95.7 64.0 5.6 2.3 11.1 16.3 6.6 6.3 5.2 1.6 20.7 29.9 5.2 1.4 5.3 2.0 22.8 60.3 5.6 2.5 

6.2 133.4 154.0 5.4 3.9 21.0 59.0 18.6 31.8 5.9 5.4 31.6 48.4 5.5 2.7 5.8 6.4 27.5 111.0 4.9 2.9 

7 55.5 70.1 7.5 3.1 11.5 18.9 7.5 4.5 7.5 12.5 15.8 20.7 6.8 2.8 6.4 3.5 17.4 56.0 7.9 3.4 

8 174.1 245.7 15.1 10.7 40.0 103.2 6.2 4.6 14.7 10.9 17.9 34.4 10.9 14.9 6.1 3.6 12.5 27.8 6.1 4.6 

9.1 71.3 89.3 9.7 7.1 14.1 19.9 8.8 4.9 9.5 13.7 18.5 29.1 8.1 3.3 6.0 4.1 18.9 68.4 9.2 4.3 

9.2 27.9 53.7 3.0 3.8 3.8 9.8 3.7 9.1 3.0 3.4 4.8 12.4 3.0 4.4 2.9 2.6 3.3 15.2 3.0 4.0 

10 85.3 87.1 5.3 5.6 7.2 11.5 6.2 8.8 5.2 7.8 11.5 19.0 5.0 4.5 4.8 2.8 6.7 20.4 4.9 3.0 

11 32.4 130.0 4.9 12.9 5.4 15.0 4.7 8.5 4.6 11.6 6.7 15.1 4.6 13.3 4.5 8.6 4.9 10.8 4.7 11.3 

12 29.9 72.1 4.5 7.8 5.2 15.2 4.5 8.1 4.4 9.7 6.2 11.9 4.2 8.3 4.3 6.8 4.9 12.5 4.4 8.5 

13 69.0 70.2 9.9 11.4 13.1 22.0 9.3 8.4 9.2 7.1 15.8 23.2 7.9 3.4 6.9 6.2 13.5 51.4 9.1 4.5 

14 2543.7 6560.7 36.0 30.0 35.3 23.8 14.7 16.4 82.4 146 34.8 29.8 30.2 47 5.0 2.1 14.1 25.7 4.9 2.4 

15.1 67.4 52.2 7.4 3.8 12.3 21.8 7.7 9.6 7.7 12.3 14.3 16.9 6.9 6.1 6.2 3.4 15.6 62.4 7.4 3.4 

15.2 524.3 1154.7 8.8 3.4 7.0 3.0 8.0 3.9 7.6 4.3 29.1 14.9 6.7 2.6 6.7 3.4 22.8 35.0 6.0 2.1 

16.1 66.8 77.3 9.1 5.8 12.0 17.4 8.6 7.4 8.5 4.9 15.5 23.8 7.7 3.4 6.6 4.7 12.8 55.6 8.5 4.1 

17.1 168.2 0.0 25.1 0.0 3.9 0.0 4.1 0.0 8.8 0.0 28.8 0.0 26.5 0.0 3.9 0.0 4.1 0.0 3.6 0.0 

17.2 194.8 106.1 8.9 9.1 28.1 52.5 19.0 37.6 5.9 7.4 44.1 62.7 7.3 9.2 3.2 1.2 9.1 11.3 4.5 3.9 

18.1 87.6 61.2 5.6 3.9 11.4 18.4 5.3 5.9 8.5 19.3 13.1 17.7 4.5 2.0 4.5 2.3 20.7 129.0 4.2 1.5 

18.2 129.6 212.9 6.3 5.7 10.6 23.8 9.6 21.8 6.6 13.8 16.5 23.4 5.4 2.6 5.0 1.7 10.8 38.8 5.0 2.0 

19 44.5 60.0 5.3 1.3 11.6 13.1 6.2 1.5 9.9 9.6 6.4 1.3 5.5 0.9 6.0 1.8 6.6 1.4 5.5 2.0 

20.1 51.9 67.5 4.9 2.1 6.4 11.1 6.0 8.1 5.2 3.3 10.4 15.1 5.4 6.0 4.9 1.7 7.4 28.1 5.0 2.4 

20.2 55.7 69.9 7.5 1.8 8.2 1.4 5.9 0.3 4.6 2.7 5.7 0.8 4.7 2.5 6.9 0.2 6.7 1.6 10.3 8.8 

21 38.1 16.8 5.4 0.8 9.8 7.4 5.3 2.0 6.1 0.6 9.1 5.9 5.0 1.5 5.5 2.3 12.3 11.5 6.5 1.2 

22 87.1 175.5 5.1 4.7 17.4 24.9 7.2 7.8 4.4 2.4 16.3 22.4 4.6 3.2 4.5 4.3 6.0 6.4 4.6 4.4 

23 68.1 60.8 3.3 2.6 3.8 3.0 2.5 1.9 4.3 3.7 5.5 6.0 2.9 2.3 3.3 2.7 5.1 5.4 2.9 2.3 

24 194.9 0.0 6.8 0.0 9.2 0.0 3.7 0.0 4.3 0.0 5.6 0.0 4.0 0.0 4.0 0.0 4.0 0.0 4.3 0.0 
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25 92.8 75.9 7.2 7.4 12.8 10.9 6.7 10.1 14.5 31.1 14.5 15.3 3.9 0.7 4.0 2.0 10.3 14.1 4.0 1.1 

26 69.0 42.4 7.2 7.5 12.7 28.9 7.5 8.3 5.7 3.0 18.5 24.5 5.4 1.2 5.0 1.5 30.3 168.4 5.4 1.7 

27.1 51.0 65.7 6.3 3.0 8.9 13.1 6.5 5.1 6.3 3.2 12.7 14.2 5.6 1.7 6.0 2.9 13.3 34.4 6.3 2.6 

27.2 74.6 235.4 5.9 5.2 6.6 7.9 8.8 10.5 5.8 3.3 19.8 20.0 4.9 1.9 5.2 3.1 20.2 40.6 4.6 1.6 

28.1 25.5 36.1 6.7 8.4 6.3 2.8 7.3 7.6 6.2 2.5 13.5 14.1 5.9 2.5 5.7 3.3 14.9 51.1 6.5 3.7 

28.2 78.5 93.1 4.6 2.4 6.9 13.8 9.5 24.6 5.5 8.1 11.9 19.4 4.7 2.3 4.4 2.0 8.7 37.6 4.3 1.7 

29 31.9 76.6 5.0 1.3 6.2 5.5 21.8 55.2 15.3 33.0 13.7 28.4 4.6 0.6 4.2 0.7 6.0 3.2 5.6 4.4 

30 66.4 147.0 6.2 2.9 7.4 6.5 6.8 6.6 5.3 2.1 18.3 27.9 5.9 2.3 5.8 1.6 52.6 209.7 5.6 1.8 

31 114.0 96.2 5.1 2.6 7.5 5.5 4.4 1.2 5.6 3.8 12.6 17.9 4.4 1.0 4.4 1.0 6.0 7.9 4.2 1.0 

32 49.1 97.4 9.9 0.6 8.5 2.0 11.1 7.5 7.4 1.7 13.6 12.9 9.5 4.9 7.7 2.5 10.3 4.8 12.2 11.4 

33 15.9 22.8 8.4 2.2 35.6 74.4 27.6 53.9 7.5 1.5 29.4 56.2 6.7 1.6 6.5 1.6 9.4 5.6 6.7 1.6 

34 5.2 1.2 5.2 1.5 5.3 1.5 7.5 8.3 5.3 1.2 9.6 13.3 6.7 4.9 7.3 7.6 7.0 6.3 4.7 0.5 

35 447.0 881.3 14.7 17.8 5.1 0.8 11.0 11.4 6.1 0.3 38.9 67.7 5.5 0.9 5.0 0.9 5.7 0.6 5.5 0.6 

36 7.0 1.1 8.1 1.7 6.9 2.1 8.1 4.1 7.0 0.7 9.6 8.2 6.8 1.2 6.6 0.9 8.0 5.5 6.6 1.7 

37.1 54.9 69.9 6.8 7.1 5.6 5.3 5.9 5.4 4.4 1.0 10.9 8.9 4.1 0.6 4.0 0.8 4.7 1.4 4.2 0.9 

37.2 58.1 77.2 7.4 3.6 9.8 8.8 7.2 5.0 6.9 3.3 14.4 15.7 6.4 2.8 7.0 3.9 23.5 100.3 7.0 3.3 

38.1 14.5 10.1 9.7 2.1 9.1 4.9 9.6 4.2 13.6 4.0 10.8 1.0 8.1 0.5 10.2 1.8 7.7 0.5 

168.

1 

223.

5 

38.2 106.7 301.0 12.0 2.1 14.2 9.7 15.0 18.4 10.4 2.0 15.3 15.5 9.7 2.0 9.1 2.3 16.0 15.5 9.2 2.4 

39 86.6 57.4 5.0 2.3 11.6 30.3 9.1 20.0 5.6 3.9 16.5 32.6 4.8 1.4 4.7 1.6 16.2 67.0 4.7 1.7 

40.1 22.9 27.0 5.5 1.3 7.4 7.6 4.9 0.6 4.1 1.2 6.0 3.9 4.4 1.0 13.6 15.9 4.7 0.5 4.2 0.8 

41.1 209.2 108.5 5.9 3.0 10.1 11.9 16.3 35.9 5.5 1.3 38.2 84.7 4.6 0.8 4.3 0.7 59.8 184.8 4.3 0.7 

42 81.8 94.6 9.4 6.4 15.8 32.7 10.4 24.4 8.7 6.7 23.0 54.6 7.4 4.6 6.9 4.1 17.2 60.4 8.7 4.0 
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Appendix V: Notices of permission to use excerpts from author’s 

publications 

In this thesis, large and small excerpts were taken from three of the author's own published 

papers. Two of the manuscripts (Mohammadhassanzadeh, Raza Abidi, et al., 2017) and 

(Mohammadhassanzadeh, Van Woensel, et al., 2017) have been published in Biodata 

mining journal and CEUR Workshop Proceedings, respectively, which are free open-

access publication services. The third manuscripts (Mohammadhassanzadeh et al., 2018) 

has been published in an IEEE proceeding, which does not require  individuals working 

on their own  thesis to obtain a formal reuse license 

(https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf). 

Also, there are parts from another paper which is in progress at the time of submitting this 

thesis and will be submitted soon. A form of the student’s contribution to the manuscript 

was signed and submitted to the Faculty of Graduate Studies. 

https://www.ieee.org/content/dam/ieee-org/ieee/web/org/pubs/permissions_faq.pdf
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