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ABSTRACT 

 

Optical fields with complex spatial distribution are of great importance in various 

applications such as super-resolution imaging, laser nanofabrication, molecule or 

nanoparticle trapping and manipulation. This dissertation focuses mainly on both far-field 

and near-field focusing and shaping using optical vector fields.  

 

The focusing characteristics of cylindrical vector beams such as doughnut Gaussian beam 

and Bessel-Gaussian beam in a high numerical aperture focusing system were theoretically 

investigated based on the Richards-Wolf diffraction integral theory. Cosine function based 

complex amplitude filters were introduced to the high numerical aperture system to achieve 

a focusing field with a long depth of focus. Results show that a focusing spot with sub-

wavelength lateral size and short depth of focus can be obtained when the radially polarized 

doughnut Gaussian incident beam is properly designed. A cosine function based complex 

amplitude filter was designed to increase the depth of focus of the focusing field. Using 

this complex amplitude filter, hollow beams with a long focal depth were successfully 

generated in a high numerical aperture focusing system. A radially polarized Bessel-

Gaussian beam was used as the incident beam and a second-order vortex phase filter was 

used to create the null intensity on the optical axis. In addition, the radially polarized 

Bessel-Gaussian beam and the complex amplitude filter were used in a high numerical 

aperture 4π focusing system.  A long longitudinally polarized optical chain was generated 

successfully. 

 

For the near-field case, the impact of the illumination polarization on the obtained photonic 

nanojets was numerically investigated for the model of a microsphere illuminated by plane 

waves and Gaussian beams with different polarizations. Both linearly and circularly 

polarized plane waves and linearly, circularly, radially, and azimuthally polarized Gaussian 

beams were used to generate photonic nanojets. Results show that one can precisely 

engineer the overall shape, intensity, location, and transverse and longitudinal size of the 

generated photonic nanojet at will for different applications by controlling the polarization 

and the amplitude profile of the illumination beam. 
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CHAPTER 1 INTRODUCTION 

 

Engineering of optical focusing field has attracted a tremendous amount of research 

interests in the areas of super-resolution imaging, optical trapping, and nano-/micro-

particle manipulation. Laser beam shaping and focus shaping have seen great development 

over the past few decades. Equipment based on shaped optical fields has been developed 

to trap, guide, and pattern molecules, and nano/micro particles in order to better understand 

subjects such as biophysics. In the microscope field, spatial engineering of optical fields 

has been extensively studied to overcome the diffraction limit. Another hot research topic 

is that of vortex beams because of their unique orbital angular momentum property due to 

spiral phase wave front. Researchers have done a tremendous amount of work to develop 

technology using the vortex beam’s orbital angular momentum as a free space 

communication information carrier because of its orthogonality and multiplexing 

capability. In addition to the study of intensity and phase of light for various potential 

applications, the polarization of light is also a key element in optical field shaping. Many 

applications require precise control of various parameters in the optical system to achieve 

the desired focusing field. This project aims to explore new techniques for engineering the 

focusing field in both far-field and near-field and gain a better understanding of sub-

wavelength focusing through modelling. 

 

1.1  DIFFRACTION LIMIT AND OPTICAL RESOLUTION CRITERIA 

 

When light is emitted from a point source located far from a focusing system, a fraction of 

the emitted light will be captured by the optical focusing system and focused at a 

corresponding point in the focal region. However, the focusing lens does not focus the 

captured light to an infinitely small point at the focal point. Instead, a diffraction pattern is 

produced at the focal point. Diffraction happens because of the wave nature of light and 

the lens pupil is a diffracting aperture [1] - [2]. The diffraction effect was first theoretically 



 

 

2 

 

proposed by Huygens and was further investigated by Fresnel [1] - [2]. Using Young’s 

single and double slits, direct experimental observation of the diffraction effect can be 

obtained. 

 

In the focal region, the electromagnetic field distribution is the interference result of all 

diffracted light waves that emerged from the lens aperture. This diffraction pattern at the 

focal point is called the point spread function (PSF) of the focusing system [2] - [3]. In fact, 

PSF is the fundamental building block in image formation models. The PSF of an optical 

system is a three-dimensional diffraction pattern of light emitted from an infinitely small 

point source and transmitted to the focal plane through the optics. When viewed in the 

transverse plane, the PSF is a pattern of concentric rings of light surrounding a central 

bright disk. For a circular aperture, the PSF in the transverse plane is an Airy disk [3]. In 

the longitudinal plane, the diffraction pattern can have various shapes depending on the 

type of focusing system used (e.g. widefield, or confocal) but is often hourglass or 

American football shaped.  

 

Generally, the dimensions of a focusing spot produced by an optical focusing system can 

be characterized by two parameters: longitudinal size (𝐷𝐿) and transverse size (𝐷𝑇). The 

size and shape of the focusing spot has a direct impact on the resolving power of an optical 

focusing system. If there are two point objects in the specimen that are close enough to 

each other, the corresponding PSFs will merge into each other and we can no longer 

distinguish the images of these two points in the image plane. For diffraction-limited 

optical systems, various criteria such as Abbe [4], Rayleigh [5], Sparrow [6], and Houston 

[7] have developed mathematical models to determine how close two point objects can be 

separated from each other and discerned as two individual point sources in the image plane. 

The ability of an imaging system to resolve detailed features in a sample that is being 

imaged is called optical resolution. The resolution of a lens-based optical focusing system 

depends on many factors. The illumination characteristics including wavelength, 

polarization, and coherence [8] - [9] as well as certain parameters of the focusing system 

such as the numerical aperture (NA) of the objective lens [10] have direct impact on the 

overall focusing performance.  
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According to Abbe’s theory [4], incident light is diffracted by object features in the 

specimen. Features in the specimen separated by a distance d can be considered as a 

diffraction grating with a period of d whose Fourier transform forms images at the focal 

plane of the lens system. The lens system operates as a low pass filter and not all spatial 

frequencies can be collected by the lens system [11] - [12]. Therefore, the resolution is 

limited.  

 

To satisfy the following grating equation, the mth diffraction order occurs at an angle 𝜃𝑚. 

 

𝑑𝑠𝑖𝑛𝜃𝑚 = 𝑚𝜆      (1.1) 

 

where 𝜃𝑚 is the angle between the mth diffraction order and the normal direction to the 

grating surface. From the grating equation, the smaller d, meaning the smaller the details 

of a feature in the sample, the larger 𝜃𝑚 for a given diffraction order. In theory, the zero-

order and one of the higher order rays needs to be collected by the lens system in order to 

resolve that feature properly [11]. The condition for passing one of the first order diffracted 

rays through the lens system gives the Abbe diffraction limit: 

 

𝑑 =
0.5𝜆0

𝑁𝐴
      (1.2) 

 

where 𝜆0 is the free space wavelength of the illumination light. NA is the numerical 

aperture of the lens system. This means that features smaller than 
0.5𝜆0

𝑁𝐴
 in a sample cannot 

be resolved by this specific imaging system. 

 

As is shown in Figure 1, the NA of a lens is defined as: 

 

𝑁𝐴 = 𝑛 ∙ 𝑠𝑖𝑛𝜃      (1.3) 
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where n is the refractive index of the surrounding medium, and 𝜃 is the half angle of the 

maximum cone of light that can enter the lens. 

 

 
 

Figure 1 Numerical aperture of a lens. 

 

From the Abbe diffraction limit equation and the definition of NA, we can see that the 

resolution of the imaging system can be improved by increasing the refractive index of the 

surrounding medium between the sample and the lens, increasing the light acceptance angle 

of the lens system, and reducing the illumination wavelength. Typically, the Abbe 

diffraction limit for a regular white light imaging system is about 200 - 250 nm. Techniques 

that can improve the resolution beyond the Abbe diffraction limit have been called super-

resolution imaging in literatures [11].  

 

As mentioned at the beginning of this section, there are a few other classical resolution 

criteria. In principle, they are related to the size of the main lobe of the PSF of the imaging 

system. For a circular aperture with a diameter of D, the PSF is an Airy disk [3]: 

 

𝐼(𝑟) = 𝐼0 (
2𝐽1(𝑘0𝑟𝑁𝐴)

𝑘0𝑟𝑁𝐴
)
2

     (1.4) 
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where 𝑘0 =
2𝜋

𝜆0
 is the free space wave number of the illumination light. If there are two 

point sources to be imaged by a lens system, their PSFs merge into each other and can no 

longer be distinguished at the image plane when they are close enough. The Rayleigh 

resolution limit states that the images of two point sources with equal intensities are just 

resolvable if the center of the diffraction pattern produced by one point source coincides 

with the first zero of the diffraction patterns produced by the second source [3] - [5]. In this 

scenario, the field intensity distribution at the image plane shows a saddle shape [13].  

 

To satisfy the Rayleigh criteria, the distance between the two point sources d should be 

greater or equal to the radius of the Airy disk. Because the first zero of the Bessel function 

of the first kind 𝐽1(𝑥) appears at 𝑥 = 1.22𝜋, the Rayleigh diffraction limit can be written 

as: 

 

𝑑 =
0.61𝜆0

𝑁𝐴
      (1.5) 

 

However, it is worth mentioning that Abbe’s resolution limit is developed based on a 

physical model, while the Rayleigh resolution criteria is a heuristic estimation of the 

resolution limit of an optical system [4], [5], [14]. 

 

1.2  INTRODUCTION TO VARIOUS SUPER-RESOLUTION IMAGING 

TECHNIQUES 

 

In this section, the background and mechanism of various super-resolution imaging 

techniques are introduced. The principles of super-resolution microscopy, near-field 

scanning optical microscopy, and microsphere based near-field super-resolution imaging 

method are reviewed and discussed. These techniques have all achieved improved lateral 

resolution down to tens of nanometers, but each method has a unique set of limitations. 
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1.2.1  Far-field super-resolution optical imaging 

 

Conventional optical microscopy has many advantages for the imaging of biological and 

cellular samples. A typical optical microscope has a theoretical lateral resolution limit of 

200 nm according to Abbe’s diffraction limit theory. Several optical super-resolution 

microscopy systems have been developed to overcome the diffraction limit including 

confocal microscopy, point spread function engineering based stimulated emission 

depletion microscopy (STED) [15] - [21]; single molecule localization based photo-

activated localization microscopy (PALM) and stochastic optical reconstruction 

microscopy (STORM) [22] - [30], and Moiré effect based structured illumination 

microscopy (SIM) [31] - [38]. This section will briefly summarize the working principles 

of some of these techniques. 

 

The STED microscopy uses two focused laser beams of different wavelengths to achieve 

super-resolution imaging. The two beams are called the exciting laser beam and the 

depletion beam [15] - [16]. In this approach, the excitation beam activates the fluorophores 

in the sample, while the depletion beam switches off the fluorophores at predefined 

positions of the diffraction limited regions. Only the excited fluorophores in the 

complementary regions emit light, allowing features in the sample smaller than the 

diffraction limit to be resolved.  

 

In a common STED microscopy setup, super-resolution imaging can be achieved by co-

aligning a Gaussian excitation beam with a doughnut shaped depletion beam [17] - [18].  

The excitation beam activates the fluorophores in the sample. The depletion beam is 

engineered in phase and/or polarization to create a doughnut shaped focal intensity 

distribution with a zero-intensity center. The depletion beam in the STED microscopy is 

diffraction limited. But the high intensity saturates the stimulated emission transition and 

keeps most of the fluorophores in the ground state. Only those fluorophores located in the 

zero-intensity center are excited. The size of the zero-intensity center can reach a sub-

diffraction limited value and further decrease with the increase of the depletion beam 

intensity.  
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The spatial resolution of a STED microscopy is given by the size of the effective 

fluorescent region which is defined by the size of the zero-intensity center. Theoretically, 

the resolution of STED microscopy can reach the ultimate limit of a fluorescent microscope 

- molecule size.  In practice, it is limited by the signal-to-noise ratio (SNR) [39] because 

the STED microscopy needs to scan the coaligned beams together across the whole sample 

to form a super-resolution image of the sample. It is important to both generate sub-

diffraction fluorescent regions across the whole sample and to collect enough fluorescent 

photons from all regions to obtain good SNR. 

 

The PALM/STORM methods rely on fluorophore blinking in the presence of excitation 

light and collecting many images, each containing just a few active isolated fluorophores 

[22] - [23]. This method can stochastically switch on and off a subset of photoswitchable 

fluorophores at the single molecule level at a time. During each on and off cycle, the density 

of activated molecules is kept low enough that the molecular images of individual 

fluorophores do not typically overlap. Each fluorophore can then be separately identified 

using computer algorithms. Both PALM and STORM have similar imaging procedures. 

The difference between these two methods is the use of different fluorophores [41]. PALM 

uses genetically encoded photoswitchable protein fluorophores, while STORM uses 

photoswitchable dye fluorophores. The fluorophores switch between fluorescent state and 

dark state by applying excitation light of different wavelengths. The activated fluorophores 

will emit low intensity light and are imaged by a digital camera. The point spread functions 

of each individual molecule are localized with high precision based on the photon output 

before the fluorophores switch to the dark state. Repeat this process many times and a series 

of images can be obtained. A sub-diffraction limited image can be constructed by 

combining all the identified positions of the fluorescent probes. A common drawback of 

the STORM technique is that a large amount of data needs to be collected and processed, 

therefore it is slow in generating a single picture [41]. 

 

Moiré patterns or Moiré fringes are interference patterns that appear when two similar 

patterns with fine details are superimposed. If one of the fine patterns and the Moiré 

interference pattern is known, the other fine pattern can be calculated. SIM takes advantage 
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of this idea and achieves super-resolution successfully [37]. In a typical SIM setup, a 

diffraction grating is utilized in the illumination beam to generate a high contrast grating 

pattern with feature size down to the resolution limit of the microscope objective used in 

the system. This structured illumination provides one of the fine patterns. The other fine 

pattern is the small features in the sample that need to be imaged. The interference pattern 

given by these two fine patterns can then be recorded by a microscope. 

 

A typical SIM setup is usually not very complicated. The main difference between a SIM 

setup and a confocal microscope is that SIM needs a diffraction grating to generate a high-

contrast pattern with a feature size down to the resolution limit of the microscope objective 

lens. In addition, the grating must be rotatable for full image capability. For a traditional 

microscope whose resolution is limited at around 290 nm, the SIM technique can improve 

the resolution power down to 115 nm [41]. Other types of SIM based techniques have been 

developed as well. A wide-field imaging technique called saturated structured illumination 

microscopy (SSIM) was reported in 2005 [40] and 50 nm lateral resolution was achieved. 

 

During the last two decades, far-field optical super-resolution techniques have seen great 

development. Many ideas evolved into commercial products successfully. Most of these 

techniques offer both high lateral and axial resolution. However, there are other important 

factors, such as field of view (FOV), cost of the imaging system and so on, that need to be 

addressed as well. 

 

1.2.2  Near-field super-resolution optical imaging 

 

Most of the far-field techniques use fluorescent labelling to achieve super-resolution.  

There are also many techniques that can overcome the diffraction limit by taking advantage 

of the near-field evanescent waves. Evanescent waves are non-propagating 

electromagnetic waves, whose energy is spatially confined in the vicinity of the source and 

decays exponentially with distance from the source [3]. Common near-field techniques 

need to place a probe close to the sample to collect the evanescent waves. The problem 



 

 

9 

 

with this type of setup is the FOV is usually limited. In this section, a few near-field 

techniques will be reviewed and discussed. 

 

Near-field scanning optical microscopy (NSOM) is a technique that takes advantages of 

both the scanning probe imaging technology and optical microscopy technology. The first 

report of a NSOM experimental setup concept dates back to 1928 [42]. However, the idea 

wasn’t really implemented until 50 years later [43] - [47]. The development of micro 

fabrication technology enabled the fabrication of sub-wavelength optical aperture at the 

apex of a sharp transparent tip coated with metal. 

 

Generally, the NSOM technique can be implemented in different ways. In the aperture 

based method, the sample is placed on a glass hemisphere substrate. Only a small section 

of the sample is illuminated [48] - [49]. The glass substrate acts as a transducer and convert 

the collected near-field information to far-field. Lateral resolution between 10 nm and 100 

nm were reported using this technique. With the apertureless method, an external far-field 

illumination is strongly confined at the tip to achieve 1 nm to 20 nm lateral resolution. The 

problem with this method is that a useful signal must be extracted from the strong external 

illumination light [50] - [57]. The third common method is called scanning optical 

microscopy. A tip is used to collect the near-field information in close vicinity to the sample 

[58] - [59].   

 

The key element that has a significant impact on the performance of these NSOM methods 

is the aperture of the probe tip. The transmission coefficient of the probe tip can be modeled 

using the Bethe-Bouwkamp [60] - [61]. The coefficient decreases dramatically for small 

apertures. One could increase the input power to improve the SNR. But high power may 

damage the metal coating on the tip. A good balance between minimizing the aperture size 

and the input power is critical in NSOM setup [62] - [66]. NSOM technique has good 

super-resolution capability but its biggest drawback is that only the surface of samples can 

be observed. 
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Metamaterials based near-field super-resolution technique has drawn tremendous research 

interests in the past decade. Pendry et al. [67] proposed the “perfect lens” concept based 

on the negative refractive index medium theory. In theory, the negative refractive index 

medium can compensate for the decay of the evanescent waves. Therefore, the “perfect 

lens” made from negative refractive index medium can obtain a “perfect” image at the 

image plane because the near-field evanescent waves are restored as well. Metamaterials 

made from metallic nano structures are also designed to achieve super-resolution by taking 

advantage of the surface resonance effect [68]. The issue with this type of techniques is 

that special materials are required for both the lens and the medium, and it is usually limited 

to a certain frequency. 

 

A new high refractive index microsphere based near-field super-resolution imaging 

technique started to attract more and more interests since the discovery of near-field 

evanescent wave enhancement by photonic nanojet (PNJ) has been theoretically [69] and 

experimentally reported [70]. PNJ is a strong near-field focusing field obtained on the 

shadow side when a microobject, such as microsphere or microcylinder, is illuminated by 

an incident beam. Typically, microspheres are used for the study of PNJ. The lateral size 

of the generated PNJ is around 0.5𝜆 or smaller depending on the design parameters of the 

microobjects and the surrounding medium. According to various researchers’ work on the 

mechanism of how the PNJ is generated [41], the main contribution factors to the quality 

of the generated PNJ are: (1) the refractive index of the microsphere (𝑛𝑠𝑝ℎ𝑒𝑟𝑒) and the 

surrounding medium (𝑛𝑚𝑒𝑑𝑖𝑢𝑚); (2) the diameter of the microsphere; (3) the wavelength 

of the incident light. 

 

PNJ was first reported in 2004 when the group was studying the scattering of plane waves 

by lossless dielectric microcylinders and microspheres [71] - [72]. Their finite-difference 

time-domain (FDTD) numerical calculation results show that a special type of highly 

localized tight focusing field can be generated at the shadow side when a microsphere is 

properly illuminated. They also discovered that the backscattering light generated by a 

sample, such as a nanoparticle, is significantly increased if it is placed in the PNJ. This 

discovery opens the development of microsphere based super-resolution imaging. 
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In 2005, the mechanism of PNJ generation was carefully modelled by a combination of 

geometrical optics, Mie theory, and angular spectrum theory [73]. The calculation results 

concluded that the generation of PNJ is because of a combination of various factors: (1) a 

peak in the angular spectrum; (2) the finite content of the propagating spatial frequencies; 

(3) a small but also finite content of the evanescent spatial frequencies; and (4) the phase. 

A 3D spectral analysis of the PNJ [74] was conducted later. Results show that the presence 

of the evanescent components close to the microsphere surface is crucial in the PNJ 

generation process. The presence of the evanescent components depends on the refractive 

index mismatch at the border of the microsphere and the surrounding medium. Therefore, 

changing the geometry or the material properties will significantly affect the quality of the 

generated PNJ. 

 

The first experimental confirmation of the existence of PNJ was reported in 2008 [70]. 

Latex microspheres with different diameters were deposited on a cover glass as the sample. 

A laser scanning microscope was used to image the generated PNJ. The post processed 

picture served as direct proof of the existence of PNJs. Since then, the field of PNJ has 

gained tremendous research interests. Researchers studied the modification of the shape 

and size of PNJ [75]. Besides the regular shaped microspheres and microcylinders, 

researchers have started looking into PNJs generated by microparticles of other shapes. 

Micro-cuboids [76] - [77], micro-disks [78] - [79], core-shell microspheres [80] - [81], 

micro-axicons [82] - [84], micro-spheroids [85] - [87], truncated microspheres [88], liquid 

crystals filled micro shells with controlled tuning of the refractive index [89] have all been 

explored to understand the characteristics of the generated PNJs and their potential 

applications. Extensive experimental studies were also conducted to investigate the 

influence of illumination light on the obtained PNJs [90]. 

 

In the meantime, application of PNJ in super-resolution imaging [91] and single molecule 

detection [92] starts to emerge. In 2011, Z. Wang et al. [91] demonstrated the first 

microsphere based super-resolution imaging system. In their publication, silicon dioxide 

microspheres were used to generated PNJs. A conventional white light microscope was 

used to capture the virtual image of the nano patterns formed by the microspheres. Several 
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sub-diffraction limited pattern samples were used in this experiment and 100 nm features 

were successfully resolved. The ability to use PNJs generated by microspheres for super-

resolution was successfully demonstrated. However, the author also pointed out that the 

performance of the PNJ based super-resolution imaging may depend on the sample.  

 

More and more applications of PNJs in various fields have been demonstrated in recent 

years. Large microspheres were explored for super-resolution imaging to increase the FOV 

[93]. PNJ based super-resolution imaging technique was used for biological samples [94] 

- [97] and metrology [98].  One fundamental issue with the PNJ based super-resolution 

imaging approaches is the FOV is limited because of the size of the microsphere used in 

this scheme. Various methods have been proposed and demonstrated to solve this problem.  

Micromanipulators were designed for the PNJ based super-resolution imaging system to 

form a scanning system [99] - [101]. Autonomous microbots were introduced to perform 

the scanning process [102]. Atomic force microscopy (AFM) systems were modified to 

integrate the microspheres to build a scanning PNJ based super-resolution imaging [103] - 

[104]. Thin film embedded microsphere based super-resolution imaging method was 

reported in [105] - [106]. Many of the reported PNJ based super-resolution imaging 

approaches were aimed at demonstrating lower and lower resolutions. Their resolution 

measurement method was arbitrary, which makes it very difficult to compare the results. 

Therefore, a standard measurement process was proposed [107] - [108]. 

 

The microsphere based super-resolution imaging system has great advantages over other 

super-resolution imaging techniques in terms of cost-effectiveness. The potential 

applications of microsphere based super-resolution imaging system extends to many 

research fields where optical observation of sub-diffraction limited samples is required. 

However, the FOV of these systems remains an issue that limits their further development 

in various application scenarios. It is important to have more innovative concepts proposed 

and demonstrated to further develop this technology. 
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1.3  OVERVIEW OF THE DISSERTATION 

 

In the far-field, unique cylindrical vector beams are employed, and complex amplitude 

filters are designed to engineer the focusing field in a high NA focusing system. In the 

near-field, sub-wavelength PNJs generated through the interaction between a high 

refractive index dielectric microsphere and cylindrical vector beams are carefully studied.  

The objectives of this project are: 

(1) To investigate the focusing performance of various cylindrical vector beams 

(CVBs) in a high NA focusing system. 

(2) To demonstrate the feasibility of engineering the focusing field in the far-field using 

CVBs and complex amplitude filters. The implementation of the designed complex 

amplitude filters is also expected to be explored. 

(3) To study and understand the mechanism and characteristics of microsphere 

interaction with optical vector fields. This project intends to carefully investigate 

the near-field PNJ shaping using various polarized illumination beams. 

 

These objectives are all met with the results published as journal papers or presented in 

international conferences. My contributions are summarized as follows: 

 

(1) Performed analytical calculation of the focusing performance of different 

cylindrical vector beams in a high NA focusing system. Specifically, unique 

focusing fields such as sub-wavelength focusing field, long depth of focus (DOF) 

optical tube and optical chain are successfully demonstrated utilizing cosine 

function based amplitude filters and CVB in a high NA focusing system. 

(2) Developed the theory of implementing complex amplitude filters using binary 

optics. Analytical calculation results show that the proposed binary optics filter can 

achieve almost the same focusing field shaping performance as the complex 

amplitude filter. More importantly, binary optics filter doesn’t have the power 

attenuation problem and it is much easier to fabricate than the complex amplitude 

filter with a continuous varying profile. 
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(3) Demonstrated near-field PNJ shaping using optical vector beams. Numerical results 

show that one can precisely engineer the overall shape, intensity, location, and 

transverse and longitudinal size of the generated PNJ by controlling the polarization 

and the amplitude profile of the illumination beam. Knowledge developed from this 

work can be used for applications such as PNJ based sensor design in the future. 

 

The dissertation is organized as follows. Chapter 1 is dedicated to the review of various 

far-field and near-field super-resolution imaging techniques and their underlying 

principles.  

 

Chapter 2 provides a detailed description of the characteristics of CVBs. Specifically, the 

mathematical model of the focusing properties of CVBs in a high NA focusing system is 

introduced.  

 

In Chapter 3, different cylindrical vector beams and complex amplitude filters are designed 

to precisely engineer the focusing field of a high NA focusing system. The designed 

complex amplitude filters effectively increase the DOF of the focusing field. The results 

demonstrate that unique focusing field such as long DOF optical chain, optical tube can be 

easily achieved utilizing proper cylindrical vector beams and complex amplitude filters in 

a high NA focusing system. 

 

In Chapter 4, near-field interaction between optical vector fields and high refractive index 

dielectric microspheres is carefully examined. Calculation results show that the generated 

PNJs can be shaped in the near-field using different optical vector fields. 

 

Finally, conclusions are drawn, and future works are proposed at the end of the dissertation.  
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CHAPTER 2 CYLINDRICAL VECTOR BEAM AND ITS 
FOCUSING PROPERTIES 

 

In this chapter, an overview of the polarization of light is provided. The rapid increase of 

research interest in cylindrical vector beams (CVBs) is largely driven by the unique 

focusing properties of these beams in a high NA focusing system. Analytical calculation 

method based on Richards-Wolf theory is presented to characterize the focusing 

performace of CVBs in a high NA focusing system.  

 

2.1  POLARIZATION OF LIGHT 

 

Polarization is an important property of light. The vector nature of light and its interactions 

with matter make many optical devices and optical system designs possible. Polarization 

propagation and interaction with materials have been extensively explored in optical 

inspection and metrology, display technologies, data storage, optical communications, 

materials sciences, and astronomy, as well as in biological studies. 

 

Electromagnetic wave polarization is associated with the time evolution of the field 

vectors. The polarization state of a field describes the oscillation trajectory of the field 

vectors. There are several methods that have been developed for analyzing wave 

polarization, such as Jones matrix, Mueller matrix, and other matrices [109-112]. 

 

Let us consider a plane wave propagating along the z-axis in free space. The electric field 

in the phasor form reads: 

 

𝑬(𝑧, 𝑡) = 𝑅𝑒{(|𝑬𝑥|𝑒
𝑗𝜙0𝑥 + |𝑬𝑦|𝑒𝑗𝜙0𝑦)𝑒𝑗(𝑘𝑧−𝜔𝑡)}    (2.1) 

 

where 𝑬𝑥 and 𝑬𝑦 are the x and y components of the electric field. 𝜙0𝑥 and 𝜙0𝑦 are the 

phases of the x and y components of the electric field. k is the wavenumber and 𝜔 is the 

frequency of the electric field. When |𝑬𝑥| ≠ |𝑬𝑦| and 𝜙0𝑥 ≠ 𝜙0𝑦, the tip of the electric 
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field vector moves around an ellipse as the time evolves. This polarization state is called 

elliptic polarization. Although, the electric field is elliptically polarized in general, there 

are two important special cases. First, the electric field is said to be linearly polarized if the 

phases of two orthogonal components of the field are the same, 𝜙0𝑥 = 𝜙0𝑦 in Equation 

(2.1).  In this case, the electric field is always directed along a line making the angle 𝜃 =

𝑡𝑎𝑛−1 (
|𝑬𝑦|

|𝑬𝑥|
) with respect to the x-axis. Second, if the phases of the two orthogonal 

components differ by 
𝜋

2
, and |𝑬𝑥| = |𝑬𝑦| in Equation (2.1), the wave is said to be circularly 

polarized. In this case, the electric field always has the same magnitude but is moving along 

a circle. If the electric field moves counterclockwise around the circle, then the wave is 

left-handed circularly (LHC) polarized. Otherwise it’s right-handed circularly (RHC) 

polarized.  

 

In the Mueller calculus, the Stokes vector S is used to describe the polarization state of a 

wave. The Mueller matrix M is used to describe the polarization altering characteristics of 

a sample. The Stokes vector is defined relative to the following six measurable quantities 

(intensities) measured with ideal polarizers in front of a detector: 𝐼𝐻- horizontal linear 

polarizer, 𝐼𝑉- vertical linear polarizer, 𝐼45 - 45∘ linear polarizer, 𝐼135 - 135∘ linear polarizer, 

𝐼𝑅 - right circular polarizer, 𝐼𝐿 - left circular polarizer. The Stokes vector is defined as: 

 

S = [

𝑠0

𝑠1
𝑠2

𝑠3

] = [

𝐼𝐻 + 𝐼𝑉
𝐼𝐻 − 𝐼𝑉

𝐼45 − 𝐼135

𝐼𝑅 − 𝐼𝐿

] =

[
 
 
 
 
𝐸𝑥

2 + 𝐸𝑦
2

𝐸𝑥
2 − 𝐸𝑦

2

2𝐸𝑥𝐸𝑦𝑐𝑜𝑠𝛿

2𝐸𝑥𝐸𝑦𝑠𝑖𝑛𝛿]
 
 
 
 

    (2.2) 

 

where 𝑠0, 𝑠1, 𝑠2, and 𝑠3 are the Stokes vector parameters. The Stokes vector is a function 

of wavelength, position on the object, and the light’s direction of emission or scatter. 

Therefore, a Stokes vector measurement is an average over area, solid angle, and 

wavelength [112]. From the Stokes vector, the following polarization parameters can be 

defined: 
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(1) Degree of polarization: 𝐷𝑂𝑃 =
√𝑠1

2+𝑠2
2+𝑠3

2

𝑠0
 

(2) Degree of linear polarization: 𝐷𝑂𝐿𝑃 =
√𝑠1

2+𝑠2
2

𝑠0
 

(3) Degree of circular polarization: 𝐷𝑂𝐶𝑃 =
𝑠3

𝑠0
 

 

The Stokes vector for a partially polarized light wave (𝐷𝑂𝑃 < 1) is treated as a 

superposition of a completely polarized Stokes vector S𝑃 and an unpolarized Stokes vector 

S𝑈: 

 

S = S𝑃 + S𝑈 = [

𝑠0

𝑠1
𝑠2

𝑠3

] = 𝑠0𝐷𝑂𝑃

[
 
 
 
 
 

1
𝑠1

𝑠0𝐷𝑂𝑃
𝑠2

𝑠0𝐷𝑂𝑃
𝑠3

𝑠0𝐷𝑂𝑃]
 
 
 
 
 

+ (1 − 𝐷𝑂𝑃)𝑠0 [

1
0
0
0

]    (2.3) 

 

The polarized portion represents a net polarization ellipse traced by the field vector as a 

function of time. The ellipse has a magnitude of the semimajor axis 𝑎, semiminor axis 𝑏, 

and the orientation of the major axis 𝜓. Orientation of major axis 𝜓 =
1

2
arctan (

𝑠2

𝑠1
) is 

defined as the angle between the major axis of the ellipse and the x-axis. The ellipticity 

parameter 𝑒 is defined as the ratio of the ellipse’s minor to major axis: 𝑒 =
𝑏

𝑎
=

𝑠3

𝑠0+√𝑠1
2+𝑠2

2
. 

The ellipticity angle is 𝜒 = arctan
𝑏

𝑎
. Figure 2 shows an example of a polarization ellipse. 
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Figure 2 Polarization ellipse.  

 

The total beam power is not usually of interest; the Stokes parameters can be normalized 

by dividing the Stokes parameters by the total intensity 𝐼. When the non-polarized 

component is also not of interest, the Stokes parameters can be further normalized to 

obtain: 

 

S = [

𝑠0

𝑠1
𝑠2

𝑠3

] = [

1
cos(2𝜓) cos(2𝜒)

sin(2𝜓) cos(2𝜒)

sin(2𝜒)

]     (2.4) 

 

where 𝐼 is the total intensity of the beam, 𝐷𝑂𝑃 is degree of polarization,  2𝜓 =

𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑠2

𝑠1
), and 2𝜒 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑠3

√𝑠1
2+𝑠2

2
). The factor of 2 before 𝜓 represents the fact that 

any polarization ellipse is indistinguishable from one rotated by 180 degrees, while the 

factor of 2 before 𝜒 indicates that an ellipse is indistinguishable from one with the semi-

axis lengths swapped accompanied by a 90-degree rotation. Note that 𝑠1
2 + 𝑠2

2 + 𝑠3
2 = 1 
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after normalization. The three Stokes parameters 𝑠1, 𝑠2, and 𝑠3 can be plotted as a sphere 

with unity radius for pure polarization states. In other words, the three-dimensional sphere 

described by Stokes parameters 𝑠1, 𝑠2, and 𝑠3 includes all possible polarization states on 

its surface. And this sphere is called Poincaré sphere as shown in Figure 3. Partially 

polarized light, which can be considered a superposition of polarized and unpolarized light, 

is represented by a point within the volume of the Poincaré sphere. 

 

 

 

Figure 3 Poincaré sphere.  

 

2.2  INTRODUCTION TO CYLINDRICAL VECTOR BEAMS 

 

Most of the past research on super-resolution focusing and shaping dealt only with spatially 

homogeneous states of polarization, such as linear, elliptical, and circular polarizations. 

For these cases, the state of polarization (SOP) does not depend on the spatial location in 

the beam cross section. Recently there has been an increasing interest in light beams with 

spatially variant SOPs. Spatially arranging the SOP of a light beam, purposefully and 
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carefully, is expected to lead to new effects and phenomena that can expand the 

functionality and enhance the capability of optical systems. Laser beams with cylindrical 

symmetry in polarization, the so-called CVBs, are vector beam solutions of Maxwell’s 

equations that obey axial symmetry in both amplitude and phase [113]. 

 

Radial and azimuthal polarization are two of the most common polarization states (Figure 

4(b) and (c)) where the SOP follows radial and azimuthal directions at any point on the 

beam, respectively. Due to the orthogonality, radial and azimuthal polarizations form the 

basis for CVBs. Modes with radial and azimuthal polarization are well known in 

waveguide theory. However, their counterparts in free space are less familiar. 

 

 

 

Figure 4 Cylindrical vector beams. (a) Generalized CV beam, (b) Radially polarized beam, (c) 

Azimuthally polarized beam. 

 

The unique properties of CVBs have recently attracted a lot of research interest. One 

interesting application is using radially polarized beam for surface plasmon excitation and 

focusing. Surface plasmon generation has a strong excitation polarization dependence. In 

principle, a p polarized beam is required to excite surface plasmons in a typical total 

reflection configuration. p and s polarizations are two orthogonal linear polarization states 

that are most important for reflection and transmission. p polarized (from the German 

parallel) light has an electric field polarized parallel to the plane of incidence, while s 

polarized (from the German senkrecht) light is perpendicular to this plane. Researchers 
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found out that the optimal plasmonic focusing can be obtained with radial excitation 

polarization for a rotationally symmetric setup [113].  In this case, the entire beam is p 

polarized with respect to the dielectric/metal interface when a radially polarized beam is 

used, providing an efficient way to generate a highly focused surface plasmon wave. The 

rapid increase of interest in CVBs was driven largely by the unique focusing properties of 

these recently discovered beams. The focal spot of a radially polarized beam can be much 

smaller than the diffraction limited spot size of spatially homogeneously polarized beams 

in a high NA focusing system mainly because of the creation of a strong and localized 

longitudinal component [113]. Super-resolution imaging can be realized using CVBs in a 

high NA focusing system. When tightly focused, a radially polarized beam also exhibits a 

strong axial component with a smaller spot size centered on the optic axis. The strong axial 

component provides a large gradient force mainly due to the non-propagating property. 

The axial scattering and absorption forces will be reduced, which leads to the successful 

trapping of gold nanoparticles with a higher transverse trapping stiffness and trapping of 

micrometer-sized dielectric particles with a higher axial and transverse trapping efficiency 

for radially and azimuthally polarized beams, respectively [113]. In a 4Pi microscopy, both 

dark and bright spherical focal spot can be created using a radially polarized beam with 

spatially engineered amplitude and phase distribution. 

 

The focusing of electromagnetic field over a three-dimensional volume has always been 

an interesting and important research area in both theory and application aspects. The 

focusing properties of a linearly polarized (scalar) field have been well established by 

Richards and Wolf [8], [114]. However, for light beams with spatially variant SOPs, the 

focusing properties have not been thoroughly investigated until recently. 

 

2.3  FOCUSING PROPERTIES OF CVBS IN A HIGH NA FOCUSING SYSTEM 

 

The focusing property of cylindrical vector beams in a high NA focusing system can be 

numerically studied using the Richards-Wolf vectorial diffraction theory [113] - [116]. The 

geometry of the physical model is shown in Figure 5. The illumination light is a generalized 
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CV beam, which assumes a planar wave front over the pupil. The incident field in the pupil 

plane can be written in cylindrical coordinates (𝜌, 𝜑, 𝑧) as: 

 

𝐸𝑖
⃗⃗  ⃗(𝜌, 𝜑) = 𝑙0𝑃(𝜌)[𝑐𝑜𝑠𝜑0𝑒𝜌⃗⃗  ⃗ + 𝑠𝑖𝑛𝜑0𝑒𝜑⃗⃗ ⃗⃗ ]   (2.5)  

 

where 𝑙0 is the peak amplitude at the pupil plane and 𝑃(𝜌) is the axially symmetric pupil 

plane amplitude distribution normalized to 𝑙0. 𝑒𝜌⃗⃗  ⃗ and 𝑒𝜑⃗⃗⃗⃗  are unit vectors in the cylindrical 

coordinate system. 

 

 

 

Figure 5 Focusing of a CV beam in a high NA focusing system. 𝑓 is the focal length of the objective 

lens. Q(𝑟, 𝜑) is an observation point in the focal plane. 

 

A high NA focusing lens produces a spherical wave converging to the focal point. The 

amplitude distribution over the pupil is mapped onto the spherical wave front through the 

ray projection function 𝑔(𝜃) given by: 

 

𝜌

𝑓
= 𝑔(𝜃)     (2.6)  

 

where 𝑓 is the focal length of the high NA focusing lens. To satisfy the power conseravation 

requirement: 
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[𝑙0𝑃(𝜌)]22𝜋𝜌𝑑𝜌 = [𝑙0𝑃(𝜃)]22𝜋𝑓2𝑠𝑖𝑛𝜃𝑑𝜃   (2.7) 

 

Therefore, the pupil apodization function 𝑃(𝜃) on the spherical wavefront can be found 

with the help of the ray projection function 𝑔(𝜃): 

 

𝑃(𝜃) = 𝑃(𝜌)√
𝑔(𝜃)𝑔′(𝜃)

𝑠𝑖𝑛𝜃
= 𝑃(𝑓𝑔(𝜃))√

𝑔(𝜃)𝑔′(𝜃)

𝑠𝑖𝑛𝜃
  (2.8) 

 

For a typical focusing lens that obey the sine condition, the ray projection function can be 

written as:  

 

𝜌

𝑓
= 𝑔(𝜃) = 𝑠𝑖𝑛𝜃    (2.9) 

 

Therefore, the pupil plane apodization function can be written as: 

 

𝑃(𝜃) = 𝑃(𝑓𝑠𝑖𝑛𝜃)√𝑐𝑜𝑠𝜃    (2.10) 

 

The refraction of the focusing lens also changes the polarization unit vectors. The 

polarization unit vectors after refraction can be developed from Figure 5: 

 

𝑒𝑟⃗⃗  ⃗
′
= 𝑐𝑜𝑠𝜃(𝑐𝑜𝑠𝜑𝑒𝑥⃗⃗  ⃗ + 𝑠𝑖𝑛𝜑𝑒𝑦⃗⃗⃗⃗ ) + 𝑠𝑖𝑛𝜃𝑒𝑧⃗⃗  ⃗   (2.11) 

 

𝑒𝜑⃗⃗⃗⃗ 
′
= 𝑒𝜑⃗⃗⃗⃗ = −𝑠𝑖𝑛𝜑𝑒𝑥⃗⃗  ⃗ + 𝑐𝑜𝑠𝜑𝑒𝑦⃗⃗⃗⃗ ]   (2.12) 

 

According to the Richards-Wolf theory [8], [114], the EM field near the focal point is given 

by the diffraction integral over the vector field on the spherical wave front with radius 

equal to the objective lens focal length f: 
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𝐸𝑡
⃗⃗  ⃗(𝑟, ∅, 𝑧) =

−𝑖𝑘

2𝜋
∬ 𝑎 (𝜃, 𝜑)

Ω

𝑒𝑖𝑘(𝑠 ∙𝑟 )𝑑Ω 

                                              =
−𝑖𝑘

2𝜋
∫ 𝑑𝜃

𝜃𝑚𝑎𝑥

0
∫ 𝑎 (𝜃, 𝜑)𝑒𝑖𝑘(𝑠 ∙𝑟 )𝑠𝑖𝑛𝜃𝑑𝜑

2𝜋

0
 (2.13) 

 

Where 𝜃𝑚𝑎𝑥 is the maximal angle determined by the NA of the objective lens, k is the 

wavenumber, and the field strength factor 𝑎 (𝜃, 𝜑) is given by: 

 

𝑎 (𝜃, 𝜑) = 𝑙0𝑓𝑃(𝜃)[𝑐𝑜𝑠𝜑0𝑒𝑟⃗⃗  ⃗
′
+ 𝑠𝑖𝑛𝜑0𝑒𝜑⃗⃗⃗⃗ 

′
]   (2.14) 

 

At any observation point in the vicinity of the focal point, we have: 

 

𝑠 ∙ 𝑟 = 𝑧𝑐𝑜𝑠𝜃 + 𝑟𝑠𝑖𝑛𝜃 cos(𝜑 − ∅)   (2.15) 

 

Therefore, the field near the focal plane can be developed: 

 

𝐸𝑡
⃗⃗  ⃗(𝑟, ∅, 𝑧) =

−𝑖𝑘

2𝜋
∫ 𝑑𝜃

𝜃𝑚𝑎𝑥

0

∫ 𝑙0𝑓𝑃(𝜃)[𝑐𝑜𝑠𝜑0𝑒𝑟⃗⃗  ⃗
′

2𝜋

0

+ 𝑠𝑖𝑛𝜑0𝑒𝜑⃗⃗⃗⃗ 
′
]𝑒𝑖𝑘(𝑧𝑐𝑜𝑠𝜃+𝑟𝑠𝑖𝑛𝜃 cos(𝜑−∅))𝑠𝑖𝑛𝜃𝑑𝜑 

= −𝑖𝐴 ∫ 𝑑𝜃
𝜃𝑚𝑎𝑥

0
∫ 𝑃(𝜃)[𝑐𝑜𝑠𝜑0 (

𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜑𝑒 𝑥
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜑𝑒 𝑦

𝑠𝑖𝑛𝜃𝑒 𝑧

) +
2𝜋

0

                             𝑠𝑖𝑛𝜑0 (

−𝑠𝑖𝑛𝜑𝑒 𝑥
𝑐𝑜𝑠𝜑𝑒 𝑦

0𝑒 𝑧

)]𝑒𝑖𝑘(𝑧𝑐𝑜𝑠𝜃+𝑟𝑠𝑖𝑛𝜃 cos(𝜑−∅))𝑠𝑖𝑛𝜃𝑑𝜑  (2.16) 

 

This expression is still in Cartesian coordinates. The field components at the focal point 

expressed in the cylindrical coordinates can be derived using the following transformation 

relations: 

 

𝑒𝑟⃗⃗  ⃗ = 𝑐𝑜𝑠∅𝑒𝑥⃗⃗  ⃗ + 𝑠𝑖𝑛∅𝑒𝑦⃗⃗⃗⃗     (2.17) 
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𝑒∅⃗⃗  ⃗ = −𝑠𝑖𝑛∅𝑒𝑥⃗⃗  ⃗ + 𝑐𝑜𝑠∅𝑒𝑦⃗⃗⃗⃗     (2.18) 

 

Then we can obtain the field distribution in the cylindrical coordinates: 

 

𝐸𝑡
⃗⃗  ⃗(𝑟, ∅, 𝑧) = −𝑖𝐴∫ 𝑑𝜃

𝜃𝑚𝑎𝑥

0
∫ 𝑃(𝜃)[𝑐𝑜𝑠𝜑0 (

𝑐𝑜𝑠𝜃cos (𝜑−∅)𝑒 𝑟
0𝑒 ∅

𝑠𝑖𝑛𝜃𝑒 𝑧

) +
2𝜋

0

                                  𝑠𝑖𝑛𝜑0 (

0𝑒 𝑟
cos(𝜑 − ∅) 𝑒 ∅

0𝑒 𝑧

)]𝑒𝑖𝑘(𝑧𝑐𝑜𝑠𝜃+𝑟𝑠𝑖𝑛𝜃 cos(𝜑−∅))𝑠𝑖𝑛𝜃𝑑𝜑 (2.19) 

 

This expression can be further simplified with the following expression: 

 

∫ cos(𝑛𝜑) 𝑒𝑖𝑘𝑟𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜑𝑑𝜑 = 2𝜋
2𝜋

0
𝑖𝑛𝐽𝑛(𝑘𝑟𝑠𝑖𝑛𝜃)   (2.20) 

 

where 𝐽𝑛(𝑥) is the Bessel function of the first kind with order 𝑛. The amplitude of the 

radial, longitudinal, and azimuthal components can be written as: 

 

𝐸𝑟(𝑟, ∅, 𝑧) = 𝐴 ∫ 𝑃(𝜃) sin(2𝜃) 𝐽1(𝑘𝑟𝑠𝑖𝑛𝜃)𝑒𝑖𝑘𝑧𝑐𝑜𝑠𝜃𝑑𝜃
𝜃𝑚𝑎𝑥

0
  (2.21A) 

 

𝐸𝑧(𝑟, ∅, 𝑧) = 𝑖2𝐴 ∫ 𝑃(𝜃)sin2𝜃𝐽0(𝑘𝑟𝑠𝑖𝑛𝜃)𝑒𝑖𝑘𝑧𝑐𝑜𝑠𝜃𝑑𝜃
𝜃𝑚𝑎𝑥

0
  (2.21B) 

 

𝐸∅(𝑟, ∅, 𝑧) = 2𝐴 ∫ 𝑃(𝜃) sin 𝜃𝐽1(𝑘𝑟𝑠𝑖𝑛𝜃) 𝑒𝑖𝑘𝑧𝑐𝑜𝑠𝜃𝑑𝜃
𝜃𝑚𝑎𝑥

0
  (2.21C) 

 

The total field distribution in the focal region is: 

 

𝐸𝑡
⃗⃗  ⃗(𝑟, ∅, 𝑧) = 𝐸𝑟𝑒𝑟⃗⃗  ⃗ + 𝐸𝑧𝑒𝑧⃗⃗  ⃗ + 𝐸∅𝑒∅⃗⃗  ⃗    (2.22) 

 

From Equation (2.14) and Equation (2.16), we can see that the radial component of the 

incident beam contributes to the radial and longitudinal field components near the focal 
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point, while the azimuthal component in the incident beam contributes only to the 

azimuthal field component near the focal point. Therefore, radially polarized CVBs can be 

used in a high NA focusing system in order to achieve long DOF sub-wavelength focusing 

field. 
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CHAPTER 3 ENGINEERING OF THE FOCUSING FIELD OF A 
HIGH NA FOCUSING SYSTEM USING CYLINDRICAL VECTOR 

BEAMS 
 

 

Several far-field focusing field engineering schemes are proposed and demonstrated in this 

chapter. Different CVBs and complex amplitude filters are applied to a high NA focusing 

system to achieve unique focusing field, such as optical tube and optical chain, with sub-

wavelength dimensions or long DOF.  

 

3.1  CYLINDRICAL VECTOR BEAM ENGINEERING FOR SUB-WAVELENGTH 

FOCUSING IN A HIGH NA FOCUSING SYSTEM 

 

With the development of the field of micro/nano-photonics, the requirement for optical 

elements with a sub-wavelength feature size is urgent [117]. Especially, optical lithography 

and optical imaging systems generally require small lateral and/or longitudinal dimensions 

[118] - [119]. As we know, diffraction occurs when propagation of the light wave is 

perturbed. Based on Abbe's principle, the focal spot size of the plane wave with wavelength 

λ is limited by 0.51λ/NA for an aplanatic imaging lens with a high NA. Therefore, 

considering the difficulties of increasing NA of the focusing system or decreasing the 

incident wavelength, obtaining super-resolution focusing field is a big challenge in 

practical applications such as optical fabrication, and imaging [120] - [121]. 

 

In order to achieve optical focusing with high lateral resolution, both theoretical and 

experimental studies about optical super-resolution have been extensively discussed [121] 

- [126]. For the far-field apodization technique, a variety of filters were proposed to achieve 

super-resolution focusing for incident beams with different polarizations [118], [122], 

[127] - [128]. For example, a longitudinally polarized optical needle was achieved by using 

binary optics for a radially polarized beam in 2008 [122]. More recently, complex 

amplitude filters have been proposed for focusing radially polarized beams [129] - [131]. 

Essentially, the amplitude of the incident beam will be modulated by the complex 

amplitude filter. Therefore, the amplitude profile of the incident beam is important in 
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designing a filter. For example, Wang's binary optical elements are designed based on a 

radially polarized Bessel-Gaussian (BG) incident beam [122]. Apparently, the difficulty in 

fabricating the designed filters is determined by the profile of the incident beams. Recently, 

many other kinds of beams, such as the Laguerre-Gaussian (LG) beam, high order LG 

beam, high order BG beam and sinh-Gaussian beam, are discussed in detail [122], [132] - 

[133]. Generally, results have indicated that the form of the designed filters and their 

corresponding focusing performance are strongly influenced by the incident beam. 

 

3.1.1  Doughnut Gaussian beam 

 

A new kind of radially polarized beam called doughnut Gaussian (DG) beam is introduced 

in a high NA focusing system. The DG beam is like a hollow Gaussian beam. In 2010, a 

sub-wavelength focal spot was achieved by using a radially polarized narrow width annular 

beam [134]. The DG beam, which is similar to the narrow-width annular beam, is falling 

to the category of Gaussian beams [135]. Considering that the intensity is null at the center 

of the doughnut beam, the focusing field of a radially polarized DG incident beam through 

a high NA lens will exhibit high resolution. In this section, we demonstrate the focusing 

performance of a high NA focusing system for the radially polarized DG beam. Numerical 

results indicate that sub-wavelength focusing can be obtained immediately. 

 

For a high NA lens, the electric field of the DG beam at the output pupil is defined by 

Equation (3.1): 

 

𝐸𝜃0

𝜔0 = exp [− (
sin(𝜃)−𝜃0

𝜔0
)
2

]    (3.1) 

 

Where 𝜔0 reflects the beam size at the beam waist of the Gaussian beam. 𝜔0 is no larger 

than arcsin (
𝑁𝐴

𝑛
) rad. 𝜃0 refers to the radius of the DG beam. 𝜃0 is no larger than 

arcsin (
𝑁𝐴

𝑛
) rad, and the maximum intensity of the DG incident beam is exactly located at 

the output pupil's margin for 𝜃0 = arcsin (
𝑁𝐴

𝑛
). 𝜃 is the variable of the function. Obviously, 
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the shape of the defined doughnut Gaussian beam is determined by 𝜃0 and 𝜔0. To be more 

specific, the position of the maximum field intensity depends on 𝜃0. For 𝜃0 = 0, the beam 

governed by Equation (3.1) is a conventional Gaussian beam. The width of the DG beam 

is determined by 𝜔0. Therefore, 𝐸𝜃0

𝜔0 behaves like 𝛿[sin(𝜃) − 𝜃0] when 𝜔0 approaches 0. 

In order to describe the relation between the amplitude profile of the DG beam and those 

two parameters of the DG beam, the amplitude distribution of the DG beam at the output 

pupil of the lens with NA = 0.95 is shown in Figure 6(a), (b), (c) and (d) for 𝜔0 = 0.25 and 

𝜃0 = 0.1, 0.2, 0.4, and 0.8, respectively. Apparently, the radius of the DG beam increases 

when increasing 𝜃0. 

 

For a radially polarized DG beam, the intensity distribution near the focus spot z = 0 of a 

high NA objective lens can be numerically analyzed by using the Richards-Wolf theory 

[113] - [116]. For a radially polarized DG beam governed by Equation (3.1), the focusing 

field can be expressed as [8], [122], [136]: 

 

𝐸𝑟(𝑟, 𝑧) = 𝐴 ∫ √𝑐𝑜𝑠𝜃 sin(2𝜃) 𝐸𝜃0

𝜔0(𝜃)𝐽1(𝑘𝑟𝑠𝑖𝑛𝜃) exp(𝑖𝑘𝑧𝑐𝑜𝑠𝜃) 𝑑𝜃
𝛼

0
 (3.2A) 

 

𝐸𝑧(𝑟, 𝑧) = 2𝑖𝐴 ∫ √𝑐𝑜𝑠𝜃𝑠𝑖𝑛2𝜃𝐸𝜃0

𝜔0(𝜃)𝐽0(𝑘𝑟𝑠𝑖𝑛𝜃) exp(𝑖𝑘𝑧𝑐𝑜𝑠𝜃) 𝑑𝜃
𝛼

0
 (3.2B) 

 

where 𝑃(𝜃) = √𝑐𝑜𝑠𝜃 is the pupil apodization function. 𝛼 = arcsin (
𝑁𝐴

𝑛
), n is the refractive 

index of the medium between the lens and sample. It is assumed as air in this calculation. 

𝑘 =
2𝜋

𝜆
 is the wavenumber.  𝐸𝑟(𝑟, 𝑧) and 𝐸𝑧(𝑟, 𝑧) are the radially and longitudinally 

polarized components near the focus z = 0, respectively. The radial and longitudinal 

components are orthogonal to each other. Therefore, the total field intensity is |𝐸𝑡(𝑟, 𝑧)|
2 =

|𝐸𝑟(𝑟, 𝑧)|
2 + |𝐸𝑧(𝑟, 𝑧)|

2. 
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Figure 6 Amplitude distribution of the DG beam for different 𝜔0 and 𝜃0. 𝜔0 is 0.25.(a) 𝜃0 = 0.1, 

(b) 𝜃0 = 0.2, (c) 𝜃0 = 0.4, and (d) 𝜃0 = 0.8. 

 

In order to describe the focusing performance, the DOF and the full-width at half-

maximum (FWHM) of the focusing spot will be investigated. DOF is defined as the 

FWHM in the optical axis (z-axis) direction. To describe the impact of the longitudinally 

polarized component on the focused field, another parameter called beam quality is 

introduced. The beam quality 𝜂 is defined as 𝜂 =
𝛷𝑧

𝛷𝑧+𝛷𝑟 
, where 𝛷𝑖 = 2𝜋 ∫ |𝐸𝑖(𝑟, 0)|2𝑟𝑑𝑟

𝑟0

0
 

(i = r and z) and 𝑟0 is the first zero point of the field intensity distribution on the focal plane. 

In this study, the upper limit of the integration is larger than 𝑟0 for the calculation of 𝜂. As 

previously discussed, 𝐸𝜃0

𝜔0(𝜃) behaves like 𝛿(sin(𝜃) − 𝜃0) when 𝜔0 approaches 0. 

Therefore, a diffraction free beam can be obtained by taking advantage of the property of 

the 𝛿(⋅) function in the integral [137]. Theoretically, it indicates that the super-resolution 
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focusing is possible for small 𝜔0. In the following section, emphasis will be on analyzing 

the impact of 𝜃0. 

 

3.1.2  Focusing performance of a radially polarized DG beam 

 

To investigate the focusing performance of a radially polarized doughnut beam, NA and n 

are assumed to be 0.95 and 1.0, respectively. Therefore, α in Equation (3.2) is 

approximately 1.25 rad. Considering that DG has a Gaussian amplitude profile, 𝜃0 is no 

larger than arcsin (
𝑁𝐴

𝑛
) rad, and the maximum intensity of the DG incident beam is exactly 

located at the output pupil's margin for 𝜃0 = arcsin (
𝑁𝐴

𝑛
). Due to the nature of the Bessel 

function, 𝐸𝑟(0, 𝑧) is zero while 𝐽1(0) = 0. Therefore, the maximum of the field intensity 

appears at the position 𝑟 ≠ 0 for different z. Obviously, the radially polarized component 

𝐸𝑟(𝑟, 𝑧) will broaden the transversal width of the focusing spot. It means that a small 

focusing spot can be obtained by reducing the maximum intensity of the radially polarized 

component and adjusting the position where the maximum intensity appears. For 𝑟 = 0, 

𝐽0(0) = 1 and 𝐸𝑧(0, 𝑧) is the maximum for a chosen z. In this case, the radially polarized 

component does not contribute to the minimization of the focal spot. 

 

In Figure 7, the focusing performance of the radially polarized DG beam with (𝜔0 =

0.125, 𝜃0 = 0.2) and (𝜔0 = 0.125, 𝜃0 = 0.8) is displayed. For the polarized DG beam 

with 𝜃0 = 0.2, the focusing field is dominated by the radially polarized component as 

shown in Figure 7(a) - (d). The maximum intensity of the radially polarized component is 

approximately 0.98 at 𝑟 = 1.12𝜆, and it is larger than that of the longitudinally polarized 

component with the maximum intensity around 0.23 at 𝑟 = 0. Clearly, the maximum total 

field intensity cannot occur at the optical axis. But it will appear at 𝑟 = 1.12𝜆. In this case, 

the beam quality is only 𝜂 = 11.53% and the focusing field near 𝑧 = 0 is dominated by 

the radial polarization component. Therefore, the focusing spot cannot be achieved at the 

preset focal point and the FWHM does not apply. It also indicates that the high NA lens 

failed to converge on the polarized DG beam with small 𝜃0. However, the maximum 
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intensity of the longitudinal polarization component increases with the increase of 𝜃0. 

Therefore, the longitudinally polarized component is gradually becoming predominant in 

the focusing field and the focusing spot will appear at the preset focal point. The 

corresponding beam quality soars up to 77.15%. Obviously, 𝜂 is increasing with the 

increase of 𝜃0. It means that one can obtain a longitudinally polarized focusing field by 

using the radially polarized DG beam with a large 𝜃0. As shown in Figure 7(e) - (h), the 

FWHM is 0.52λ for 𝜃0 = 0.8. Essentially, with the increase of 𝜃0, the radius of the DG 

beam increases. Previous results have indicated that the outer region of the incident beam 

contributes more to the longitudinally polarized component [127] - [128], [130]. Therefore, 

a large value of 𝜃0 will contribute more to the longitudinally polarized focusing spot for 

the DG incident beam. 

 

 

 

Figure 7 Field intensity distribution of a radially polarized DG beam focused by lens with NA = 

0.95. 𝜔0 is 0.125. (a) - (d) 𝜃0 = 0.2 and (e) - (h) 𝜃0 = 0.8. (a) and (e) Intensity distribution on the 

focal plane 𝑧 = 0. Dashed, dot-dashed and solid curve represent the radial component, the 

longitudinal component and the total field intensity, respectively. (b) - (d) and (f) - (h) Intensity 

distribution on the r - z plane. (b) and (f) Radial component |𝐸𝑟|
2. (c) (g) Longitudinally polarized 

component |𝐸𝑧|
2. (d) and (h) Total field |𝐸𝑟|

2 + |𝐸𝑧|
2. 

 

In order to investigate the impact of 𝜃0 on the focusing performance, the maximum 

intensity of the radially (or longitudinally) polarized component and the corresponding 
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position on the focal plane are numerically calculated for the DG beams with different 𝜃0. 

When 𝜔0 is 0.125, the effect of 𝜃0 on the focusing performance is shown in Figure 8. The 

maximum intensity of the radially polarized component decreases from 0.99 to 0.05 with 

the increase of 𝜃0, as illustrated by the dot-dashed curve in Figure 8(a). 

 

 

 

Figure 8 Focusing characteristics of the DG beam with 𝜔0 = 0.125. (a) Maximum intensity value 

of the radial (dot-dashed curve) and the longitudinal (solid curve) component at the focal plane is 

varying with the increase of 𝜃0. (b) Dash-dotted curve represents the maximum intensity position 

of the radial component at the focal plane for different 𝜃0. Red solid curve represents the maximum 

intensity of the total field. Black solid curve describes the FWHM of the focusing spot on the focal 

plane. Dashed line marks the 𝜃0 when the maximum intensity of the total field appears at focal 

point. 

 

However, the maximum intensity of the longitudinally polarized component increases with 

the increase of 𝜃0 while 𝜃0 < 0.54. When 𝜃0 ≈ 0.47, the maximum intensity of the radially 

polarized component is approximately equal to that of the longitudinally polarized 

component. Therefore, a longitudinally polarized focusing field can be obtained by 

increasing 𝜃0 for the polarized DG beam. Meanwhile, as shown in Figure 8(b), the focusing 

performance can be improved by increasing the value of 𝜃0. For small 𝜃0, the maximum 

of the total field intensity will not occur at 𝑟 = 0 on the focal plane. When 𝜃0 is larger than 

0.54, the focusing field is at (𝑟 = 0, 𝑧 = 0). This trend is described by the dashed line in 

Figure 8(b). Obviously, the FWHM is slowly decreasing as 𝜃0 increases. However, the 
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focusing spot cannot be infinitely compressed by increasing 𝜃0. The impact of the 

longitudinally polarized component on the focusing field is investigated for varying 𝜃0 as 

shown in Figure 9. One can see that the beam quality 𝜂 increases with the increase of 𝜃0. 

In conclusion, the focusing performance is influenced by three factors as shown in Figure 

8 and Figure 9. Firstly, the radially polarized component is weakened with the increase of 

𝜃0. Secondly, the peak of the radially polarized component is shifted close to 𝑟 = 0 for 

large 𝜃0. Finally, the longitudinally polarized component is enhanced for large 𝜃0. 

Obviously, the first and final factors are helpful in obtaining the longitudinally polarized 

focusing field. While the second factor is important in improving the lateral resolution of 

the focusing field at the focal plane. 

 

 

 

Figure 9 Beam quality of the focusing field at the focal plane for the DG incident beam with 𝜔0 =
0.125  and 𝜃0 varying from 0 to1.25. 
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In order to further describe the influence of 𝜃0, the focusing performance of the DG beam 

with 𝜃0 ≈ 0.47 is thoroughly investigated. The focusing performance of the DG beam with 

𝜔0 = 0.125 and 𝜃0 ≈ 0.47 is displayed in Figure 10 and Figure 11. Although the total 

field intensity at the focal point is increasing, null intensity appears at the center of the 

focal plane as shown in Figure 10(c) and the black solid curve in Figure 11. Obviously, a 

small focusing spot can be achieved with large 𝜃0 and small 𝜔0 for DG beam focused by 

the large NA lens. 

 

In the previous content, it has been pointed out that the focusing characteristics of the DG 

beam behaves like 𝛿(sin(𝜃) − 𝜃0) when 𝜔0 is equal to 0. Thus, the difference of the 

focusing performance between the DG beam and the narrow width annular beam [18] can 

be further examined in the future. The FWHM increases with the increase of 𝜃0 for the DG 

beam. Meanwhile, the Gaussian distribution is reserved in the pupil. However, the narrow-

width annular beam is center blocked. Therefore, the depth of focus is elongated for a 

narrow annular beam. In this case, the depth of focus and the FWHM decreases 

simultaneously. 

 

 

 

Figure 10 Focusing performance of the DG beam with 𝜔0 = 0.125  and 𝜃0 = 0.467. (a), (b) and 

(c) Intensity distribution of the radial component, the longitudinal component and the total field 

intensity, respectively, on the r-z plane. z axis is ranging from -8λ to 8λ. r is ranging from 0 to 4λ. 

The focal plane is marked by the dashed line. 
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Figure 11 Intensity distribution at the focal plane 𝑧 = 0 for the DG beam with 𝜔0 = 0.125  and 

𝜃0 = 0.467. Dashed, dot-dashed and solid curve represent the radial component, the longitudinal 

component and the total field, respectively. 

 

3.1.3  Summary 

 

In this section, the focusing performance of the radially polarized DG beam by high NA 

lenses is investigated based on the Richards-Wolf integral theory [113] - [116]. The 

focusing performance, such as the FWHM and the intensity distribution at the focal plane, 

is systematically analyzed. Specifically, the effect of 𝜃0 on the focusing performance was 

discussed in detail. The magnitude distribution of the DG beam is controlled by 𝜔0 and 𝜃0. 

The position of the maximum intensity in the focusing field is determined by 𝜃0. When 𝜃0 

is small, the DG beam failed to achieve focusing on the preset focal plane. While 𝜃0 is 

relatively large, one can easily obtain a sub-wavelength focusing spot and overcome the 

diffraction limit. Compared with the narrow width annular beam, the depth of focus and 
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the FWHM decrease simultaneously for the DG incident beam. The DG beam has potential 

application in the field of super-resolution microscopy and high density optical storage. 

 

3.2   COMPLEX AMPLITUDE FILTER DESIGN FOR LONG DOF FOCUSING IN A 

HIGH NA FOCUSING SYSTEM 

 

In Equation (2.21), the exponential component 𝑒𝑖𝑘𝑧𝑐𝑜𝑠𝜃 determines the longitudinal 

distribution of the focusing field. The center of the focusing field is at z = 0. In order to 

increase the depth of focus of the focusing field, a complex amplitude filter based on the 

cosine function is designed and validated for radially polarized incident beams.  

 

3.2.1  Complex amplitude filter design 

 

The complex amplitude filter can be mathematically expressed by Equation (3.3): 

 

𝐹𝑁(𝜃) = ∑ 𝑐𝑝cos (𝑘𝑚𝑝𝑐𝑜𝑠𝜃)𝑁
𝑝=1     (3.3) 

 

where 𝑐𝑝 is an amplitude adjustment parameter, 𝑚𝑝 is displacement distance along the 

optical axis (z-axis), N is the number of the cosine functions, and k is the wavenumber of 

the incident beam. Considering Equation (3.3) describes the transmission amplitude, it 

should be normalized by the maximal absolute value of 𝐹𝑁(𝜃). Once 𝐹𝑁(𝜃) is introduced, 

𝑙0(𝜃) can be replaced by 𝑙0(𝜃)𝐹𝑁(𝜃).  

 

Now let’s take N = 1 as an example to explain the working principle of the designed 

complex amplitude filter. When N = 1, the complex amplitude filter can be written as: 

 

𝐹1(𝜃) = 𝑐1 cos(𝑘𝑚1𝑐𝑜𝑠𝜃)     (3.4) 

 

According to Euler transformation, cosine function can be expressed in terms of the 

summation of two exponential functions: 
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𝑐𝑜𝑠𝜙 =
1

2
[exp(𝑖𝜙) + exp(−𝑖𝜙)]      (3.5) 

 

Therefore Equation (3.4) can be rewritten as follows by substitute Equation (3.5) into 

Equation (3.4):  

 

𝐹1(𝜃) = 𝑐1 cos(𝑘𝑚1𝑐𝑜𝑠𝜃) =
𝑐1

2
[exp(𝑖𝑘𝑚1𝑐𝑜𝑠𝜃) + exp(−𝑖𝑘𝑚1𝑐𝑜𝑠𝜃)] (3.6) 

 

According to Equation (2.21), the focusing field for the incident beam 𝑙0(𝜃)𝐹1(𝜃) can be 

expressed as: 

 

𝐸𝑟(𝑟, 𝑧) = 

𝑐1

2
𝐴 ∫ 𝑃(𝜃) sin(2𝜃) 𝐽1(𝑘𝑟𝑠𝑖𝑛𝜃)𝑙(𝜃)[𝑒𝑖𝑘(𝑧+𝑚1)𝑐𝑜𝑠𝜃 + 𝑒𝑖𝑘(𝑧−𝑚1)𝑐𝑜𝑠𝜃]𝑑𝜃

𝜃𝑚𝑎𝑥

0
  (3.7) 

 

In principle, Equation (3.7) can be rewritten in a much simpler format: 

 

𝐸𝑟(𝑟, 𝑧) =
1

2
[𝐸𝑟(𝑟, 𝑧 + 𝑚1) + 𝐸𝑟(𝑟, 𝑧 − 𝑚1)]   (3.8) 

 

It is clear from Equation (3.9) that the incident beam will be focused at 𝑧 = +𝑚1 and 𝑧 =

−𝑚1 when the N = 1 complex amplitude filter is introduced. In principle, the focusing field 

can be designed to achieve long DOF by optimizing the 𝑚𝑝 parameter of the complex 

amplitude filter. 

 

To better understand how this complex amplitude filter can be used to engineer the 

focusing field, we introduce this filter to a high NA focusing system. Assuming NA = 0.95 

and the incident beam is a radially polarized Bessel-Gaussian beam (BG). The BG can be 

described by the following equation: 

 

𝑙(𝜃) = exp [−𝛽2 (
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝛼
)
2

] 𝐽1 (2𝛾
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝛼
)    (3.9) 
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Where 𝛼 = arcsin (
𝑁𝐴

𝑛
), 𝛽 and 𝛾 are the two parameters that control the amplitude profile 

of the BG incident beam. When there is no complex amplitude filter applied to the focusing 

system, the intensity of the radial component, the longitudinal component and the total 

field at the focal plane z = 0 along a radial axis for the BG with 𝛽 = 1 and 𝛾 = 1 can be 

calculated using Equation (2.21). The results are shown in Figure 12.  

 

 

 

Figure 12 Intensity distribution at the focal plane 𝑧 = 0 along a radial axis for the BG with 𝛽 = 1 

and 𝛾 = 1. NA = 0.95. Red, blue and black curves represent the radial component, the longitudinal 

component and the total field, respectively. 

 

Figure 13 shows the intensity of the radial component, the longitudinal component and the 

total field along the optical axis. The DOF in this case is approximately 0.8𝜆. 
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Figure 13 Intensity distribution along the optical axis direction for the BG with 𝛽 = 1 and 𝛾 = 1. 

NA = 0.95. Red, blue and black curves represent the radial component, the longitudinal component 

and the total field, respectively. 

 

If we apply a simple N = 1, 𝑐1 = 1,𝑚1 = 0.9 cosine function based complex amplitude 

filter to the same high NA focusing system, the filter will split the focusing field into two 

spots located 1.8𝜆 apart from each other. This will effectively increase the depth of focus 

of the focusing system. The profile of the complex amplitude filter is shown in Figure 14.  

The focusing field intensity calculation results for the longitudinal and radial directions are 

shown in Figure 15.  
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Figure 14 The profile of the cosine function based complex amplitude filter when N = 1, and 𝑐1 =
1,𝑚1 = 0.9. 

 

 

From Figure 15(b) we can see that the DOF has been improved significantly compared to 

Figure 13. The calculation results show that the DOF is approximately 2.2𝜆 after the simple 

N=1, 𝑐1 = 1,𝑚1 = 0.9 complex amplitude filter has been employed. It’s almost three 

times longer than the one without the complex amplitude filter.  

 

 

 

Figure 15 (a) Intensity distribution at the focal plane 𝑧 = 0 along a radial axis and (b) Intensity 

distribution along the optical axis for the BG incident beam with 𝛽 = 1 and 𝛾 = 1. NA = 0.95. 

Red, blue and black curves represent the radial component, the longitudinal component and the 

total field, respectively. The cosine function based complex amplitude filter, N = 1, and 𝑚1 = 0.9, 

is applied in this case. 
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3.2.2  Simplified complex amplitude filter design 

 

In Equation (3.3), there are two parameters 𝑐𝑝 and 𝑚𝑝 need to be determined to design a 

filter. To simplify the complex amplitude filter design process, a modulation factor 

(2𝑝 − 1) is introduced to replace 𝑐𝑝 in Equation (3.3). The modified complex amplitude 

filter can be mathematically expressed as: 

 

𝐹𝑁(𝜃) = ∑ cos [𝑘𝑚𝑝(2𝑝 − 1)𝑐𝑜𝑠𝜃]𝑁
𝑝=1     (3.10) 

 

Figure 16 demonstrates the filter profiles for three different cosine based complex 

amplitude filters. These three filters have different N values. They will be introduced to the 

same high NA focusing system and their performance will be discussed in detail. 

 

 

 

Figure 16 The profile of the modified complex amplitude filter when N = 2, 3, and 4. 𝑚1 = 0.7 for 

all cases. 

 

Figure 17 and Table 1 summarize the performance of the designed filters with different N 

values. Obviously, the DOF increases significantly with the increase of the number of 

cosine functions employed in the complex amplitude filter. The DOF reaches 9.6𝜆 when 

N = 4, and  𝑚𝑝 = 0.7 filter is used. Optimization algorithms can be used to tailor the 

focusing field according to specific application scenarios. Parameter 𝑚𝑝 must be carefully 

chosen in the filter design process in order to achieve uniform and long DOF focusing field. 
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Figure 17 (a), (c) and (e) represents the intensity distribution at the focal plane 𝑧 = 0 along a radial 

axis. (b), (d) and (f) represents the intensity distribution along the optical axis. The incident beam 

is the BG with β = 1 and γ = 1. NA = 0.95. Red, blue and black curves represent the radial 

component, the longitudinal component and the total field, respectively. A cosine function based 

complex amplitude filter, (a), (b) N = 2,  𝑚𝑝 = 0.7; (c), (d) N = 3,  𝑚𝑝 = 0.7; (e), (f) N = 4,  𝑚𝑝 =

0.7, is applied to the high NA focusing system. 

 

 



 

 

44 

 

Table 1 Comparison of the focusing performance of different cosine function based complex 

amplitude filter designs. The incident beam is the BG with β = 1 and γ = 1. NA = 0.95. 

 

Filter Design DOF FWHM 

No filter 0.8 0.68 

N = 2, 𝒎𝒑 = 𝟎. 𝟕 3.8 0.84 

N = 3, 𝒎𝒑 = 𝟎. 𝟕 6.6 0.74 

N = 4, 𝒎𝒑 = 𝟎. 𝟕 9.6 0.80 

 

In order to design a focusing field with a long depth of focus, choose large N and 𝑚𝑝 values 

first so that the focusing field can be split into multiple individual focusing spots. Then the 

parameter 𝑚𝑝 can be further optimized based on the FWHM of each focusing spots and 

their locations on the optical axis. For example, Figure 18(a) illustrates the focusing field 

when N = 5 and 𝑚𝑝 = 3. Obviously, 10 individual focusing spots can be observed because 

N = 5. A value for 𝑚𝑝 can be easily found after a quick calculation of FWHM of each 

focusing spot and their locations on the optical axis. In this case, 𝑚𝑝 = 0.7 is chosen and 

the result is shown in Figure 18(b). A long DOF focusing field is successfully achieved. 

High performance filters can be designed utilizing advanced optimization algorithms. 

 

 

Figure 18 The intensity distribution along the optical axis for (a) N = 5, 𝑚𝑝 = 3, and (b) N = 5 and 

𝑚𝑝 = 0.7. The incident beam is the BG beam with β = 1 and γ = 1. NA = 0.95. Red, blue and black 

curves represent the radial component, the longitudinal component and the total field, respectively. 
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When the parameter N increases to a particular level, only a certain region in the filter has 

relatively high transmittance. When N approaches infinity, the transmittance function of 

the cosine based complex amplitude filter will become a two-dimensional 𝛿 function. The 

filter becomes an infinitely narrow ring filter. Figure 19 shows the cosine function based 

complex amplitude filter profile when N = 10000,  𝑚𝑝 = 0.6. 

 

 

 

Figure 19 The (a) profile and (b) a schematic drawing of the cosine function based complex 

amplitude filter profile when N = 10000,  𝑚𝑝 = 0.6. 

 

3.3  CYLINDRICAL VECTOR BEAM ENGINEERING FOR LONG DOF FOCUSING 

IN A HIGH NA FOCUSING SYSTEM  

 

In this section, cosine function based complex amplitude filters are applied to a high NA 

focusing system to achieve long DOF focusing field. The performance of the complex 

amplitude filter in each application is discussed in detail. 

3.3.1  Generation of longitudinally polarized optical chain using 4π 

focusing system 

 

High NA focusing systems illuminated by radially polarized beams are drawing plenty of 

attentions due to their ability to generate various focusing patterns, which may find 

applications in areas such as super-resolution focusing, optical lithography, microscopy 
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imaging and particle manipulation [120], [122], [138], [139]. High-density optical data 

storage has been experimentally demonstrated by focusing a radially polarized beam in 

[120]. To obtain a desired focusing field, beam engineering methods such as far-field 

apodization and complex amplitude filtering have been applied to a polarized incident 

beam in a high NA focusing system [122], [131], [140] - [141]. As a result, super-resolution 

spot [120], [140], optical needle [122], [131], [142], bottle-hollow beam [141], optical 

chain [143] - [145] and spherical spot [146] - [148] have been achieved numerically or 

experimentally. For example, a sharp focus generated by a radially polarized beam was 

experimentally verified for the first time in 2003 [140]. In 2008, a longitudinally polarized 

optical needle was first generated in a high NA focusing system with the radially polarized 

Bessel-Gaussian incident beam modulated by a binary phase optical element [122]. 

 

Among various types of focusing patterns, an optical chain, which is an array of either 

bright focusing spots or dark spots, has been widely investigated for its ability to trap 

multiple particles and multilayer data recording [143] - [145], [149] - [153]. Polarization 

control method, amplitude filter and dipole source reverse method have been proposed to 

produce multiple focusing spots [144], [147], [154]. A quasiperiodic optical chain was 

produced using a diffractive optical element illuminated by a radially polarized beam [143]. 

Multiple equidistant focusing spots were created by a complex amplitude filter [150]. 

However, high axial resolution, longitudinal polarization and multiple controllable 

focusing spots have not been achieved simultaneously. In this section, a longitudinally (z-

axis) polarized optical chain is achieved in a 4π focusing system with a complex amplitude 

filter. The illuminating beam is radially polarized. The axial resolution can be remarkably 

improved in a 4π focusing system with high NA [155], [156]. To analyze the focusing 

performance of the high NA focusing system, the vectorial Debye integral is employed 

[116]. The radially polarized component of the focusing field is destructive interference at 

the focusing spot on the optical axis. Therefore, the optical chain is highly longitudinally 

polarized with axial super-resolution. More uniform-intensity focusing spots on the optical 

chain can be easily obtained by adjusting parameters of the proposed filter. 
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As shown in Figure 20, a 4π focusing system is composed of two high NA lenses directly 

facing each other. The two lenses are arranged in such a way that their optical axes and 

foci are overlapped. If the focusing fields of the left and right incident beams are 𝐸𝑙𝑒𝑓𝑡(𝑟, 𝑧) 

and 𝐸𝑟𝑖𝑔ℎ𝑡(−𝑟,−𝑧), respectively, the total electrical field 𝐸(𝑟, 𝑧) is expressed as [22]: 

 

𝐸(𝑟, 𝑧) = 𝐸𝑙𝑒𝑓𝑡(𝑟, 𝑧) + 𝐸𝑟𝑖𝑔ℎ𝑡(−𝑟, −𝑧)   (3.11) 

 

where the negative sign in front of r represents the opposite polarization direction of the 

right beam relative to the left beam. The negative sign in front of z represents the opposite 

incident direction. For a high NA lens illuminated by the radially polarized beam, the 

electric field near the focus z = 0 is governed by Richards-Wolf's integral [113] - [116]. 

Therefore, for the left radially polarized BG incident beam, the radially polarized 

component 𝐸𝑟(𝑟, 𝑧) and the longitudinally polarized component 𝐸𝑧(𝑟, 𝑧) can be expressed 

as follows [116]: 

 

𝐸𝑟(𝑟, 𝑧) = 𝐴 ∫ 𝑙(𝜃)√𝑐𝑜𝑠𝜃 sin(2𝜃) 𝐽1(𝑘𝑟𝑠𝑖𝑛𝜃)𝑒𝑖𝑘𝑧𝑐𝑜𝑠𝜃𝑑𝜃
𝛼

0
  (3.12A) 

 

𝐸𝑧(𝑟, 𝑧) = 2𝑖𝐴 ∫ 𝑙(𝜃)√𝑐𝑜𝑠𝜃sin2𝜃𝐽0(𝑘𝑟𝑠𝑖𝑛𝜃)𝑒𝑖𝑘𝑧𝑐𝑜𝑠𝜃𝑑𝜃
𝛼

0
  (3.12B) 

 

where A is a constant coefficient and 𝛼 = arcsin (
𝑁𝐴

𝑛
). 𝐽0(∙) and 𝐽1(∙) respresents the zero- 

and first-order Bessel function of first kind, respectively. √𝑐𝑜𝑠𝜃 is the pupil apodization 

function obeying the sine condition. 𝑘 =
2𝜋

𝜆
 is the wave number and λ is the wavelength. 

𝑙(𝜃) is the amplitude profile of the BG incident beam given by [122]: 

  

𝑙(𝜃) = exp [−𝛽2 (
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝛼
)
2

] 𝐽1 (2𝛾
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝛼
)   (3.13) 

 

where 𝛽 and 𝛾 are the parameters that determine the amplitude profile of the BG incident 

beam. 
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In order to obtain the longitudinally polarized optical chain, a complex amplitude filter 

based on the cosine function is introduced as follows [131], [150]: 

 

𝐹𝑁(𝜃) = ∑ 𝑐𝑝cos [𝑘𝑚𝑝(2𝑝 − 1)𝑐𝑜𝑠𝜃]𝑁
𝑝=1     (3.14) 

 

where 𝑐𝑝 is an amplitude factor and 𝑚𝑝 is a displacement along the optical axis. N is the 

number of the cosine function. The field intensity of the optical chain is determined by 𝑐𝑝 

and 𝑚𝑝, while the focusing spot number on the optical chain is determined by N. 𝐹𝑁(𝜃) is 

normalized because the transmissivity of the filter cannot be larger than 1. The BG incident 

beam in Equation (3.13) will be replaced by 𝑙(𝜃)𝐹𝑁(𝜃) after it has been modulated by the 

complex amplitude filter. 

 

 

 

Figure 20 Schematic of a 4π high NA focusing system integrated with complex amplitude filters 

illuminated by two counter-propagating radially polarized BG. The blue arrows represent the 

directions of radial polarization vectors. Lower inset: generated longitudinally polarized tight 

focusing optical chain. 

 

Based on Equations (3.11) - (3.14), the field intensity distribution near the focal spot z = 0 

of a high NA 4π focusing system shown in Figure 20 can be easily obtained. Here, we 

assume that NA = 0.95, n = 1.0 and 𝛼 ≈ 1.25. 𝛽 and 𝛾 are set to 1.0 in Equation (3.13). 
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For each lens illuminated by the radially polarized BG, the corresponding intensity 

distribution is displayed in Figure 21. The FWHM Δr of the focusing spot on the focal 

plane is approximately 0.68λ [122]. The DOF Δz is about1.45λ. The focusing spot can be 

treated as a prolate ellipsoid. The volume of the focusing spot is approximately 2.81𝜆3 

using the volume formula 𝑉 =
4𝜋(Δ𝑟)2Δ𝑧

3
, where Δ𝑟 and Δ𝑧 are FWHM and DOF of a 

focusing spot, respectively [120], [157]. Additionally, the polarization conversion 

efficiency 𝜂 is defined as 𝜂 =
Φ𝑧

Φ𝑟+Φ𝑧
, where Φ𝑟(𝑧) = 2𝜋 ∫ |𝐸𝑟(𝑧)(𝑟, 0)|

2
𝑟𝑑𝑟

𝑟0

0
 and 𝑟0 =

0.5Δ𝑟 [122]. The calculated polarization conversion efficiency 𝜂 for the aforementioned 

single lens focusing system is approximately 85%. 

 

 

 

Figure 21 Intensity distribution in the focal region of a tight focusing lens with NA = 0.95 

illuminated with a radially polarized BG. NA is 0.95. (a) Radial, longitudinal and total intensity 

distribution on the focal plane. (b) Intensity distribution on the y-z plane. The FWHM and DOF are 

0.68λ and 1.45λ, respectively. 

 

Based on the preceding discussion, one can see that the FWHM and DOF of the focusing 

spot are quite large in a single lens focusing system. A super-resolution DOF optical chain 

can be obtained when the complex amplitude filter as described in Equation (3.14) is 

applied to a 4π focusing system. NA of both lenses is chosen as 0.95. In order to obtain an 

optical chain with uniform intensity, the complex amplitude filter with N = 1, 𝑐1 = 1 and 

𝑚1 = 0.914 is adopted in the 4π focusing system. The corresponding field intensity 
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distribution near the focal region is shown in Figure 22. Among the five focusing spots on 

the optical axis, three spots have approximately equal intensity. The focusing field is 

clearly elongated along the optical axis by the designed complex amplitude filter. The 

position (r, z) of the three spots are shown in Figure 22(b) and Table 2. 

 

 
 

Figure 22 Intensity distribution in the focal region of the 4π focusing system illuminated by a 

radially polarized BG modulated by the complex amplitude filter with N = 1, 𝑐1 = 1 and 𝑚1 =
0.914. (a) Lateral intensity distribution on the focal plane (solid curve) and on the plane 𝑧 =
±0.91𝜆 (dashed curve). (b) Axial intensity along the horizontal dashed line in (c). (c) Total 

intensity distribution in the y-z plane. The vertical and horizontal dashed lines represent the y- and 

z-axis, respectively. Insets, the intensity distribution of the radially and longitudinally polarized 

component. 
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Table 2 Optical chain generated by 4𝜋 focusing system illuminated by radially polarized BG with 

complex amplitude filters.a 

 

Serial No. -3 -2 -1 0 1 2 3 

N=1 
   Position (𝝀) 
   FWHM (𝝀) 
   DOF (𝝀) 

       
- - -0.91 0 0.91 - - 
- - 0.45 0.42 0.45 - - 
- - 0.42 0.49 0.42 - - 

N=2        
   Position (𝝀) 
   FWHM (𝝀) 
   DOF (𝝀) 

- -1.41 -0.71 0 0.71 1.41 - 
- 0.51 0.51 0.50 0.51 0.51 - 
- 0.35 0.36 0.36 0.36 0.35 - 

N=3        
   Position (𝝀) 
   FWHM (𝝀) 
   DOF (𝝀) 

-2.09 -1.40 -0.71 0 0.71 1.40 2.09 
0.52 0.52 0.51 0.51 0.51 0.52 0.52 
0.34 0.35 0.36 0.36 0.36 0.35 0.34 

 

aSerial numbers of the focusing spot in the optical chain are in the first row. 0 indicates the focusing spot is located at the 

focus point. Negative sign represents the opposite direction of z-axis. 

 

For the focusing spot located at the focus, the lateral intensity distribution on the focal 

plane is displayed as the solid curve in Figure 22(a). The FWHM is approximately 0.42λ, 

which is smaller than half of the wavelength. Obviously, it achieves super-resolution. For 

a radially polarized incident beam, the focusing field is composed of both radial and 

longitudinal components. Because the maximum of the radial component is not on the 

optical axis, the size of the focusing spot will increase by this component. However, the 

intensity of the radial component at the focal plane diminishes due to the destructive 

interference. As shown in the inset of Figure 22(c), the intensity of the radial component 

on the focal plane is zero and it is very small near the focal spot. Therefore, the resolution 

is enhanced in this system. The analysis can be applied to the other two focusing spots on 

the optical axis. The DOF is 0.49λ, which is only one-third the size of the focusing spot in 

a single lens focusing system with the same parameters [122]. The spot volume is 

approximately 0.36𝜆3. Meanwhile, the focusing field is symmetric with respect to the z = 

0 plane. The focusing spots located at (0, ± 0.91λ) are identical. Their FWHM and DOF 

are 0.45λ and 0.42λ, respectively. The DOFs of the three focusing spots on the optical chain 

are approximately equal. Obviously, the axial resolution is improved in the 4π system with 

NA = 0.95. As shown in Figure 22(a), the lateral intensity distributions of the main lobe of 
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the three focusing spots are almost the same because the solid and the dashed curves 

between the first two zero points are nearly overlapping. The secondary maximum is 

different. The value is much smaller than that at r = 0. It does not affect the resolution of 

the main lobe. The corresponding spot volume is approximately 0.36𝜆3. The volume is 

about one-eighth that of a focusing spot produced in a single lens focusing system. The 

resolution of the focusing spot produced in 4π focusing system is improved significantly. 

The improvement in resolution is mainly due to the decrease in DOF of the focusing spot 

produced by the constructive interference at the position where the focusing spot is located. 

As shown in the insets of Figure 22(c), the intensity of the radially polarized component 

along the y-axis is zero. The middle focusing spot is completely longitudinally polarized. 

Because the radially polarized component disappears, the FWHM of the longitudinally 

polarized focusing spot decreases sharply. It can achieve super-resolution in the lateral 

direction. For the convenience of description, the focusing spots located at z = ± 0.91λ are 

called side focusing spots. It is obvious from Figure 22 that the intensity of the radially 

polarized component on the cross-section z = ± 0.91λ is significantly smaller than that of 

the longitudinally polarized component. A highly longitudinally polarized super-resolution 

optical chain is achieved. Specifically, it is necessary to point out the difference between 

the multiple focusing spots in the optical chain and the equidistant multi-focus generated 

by a single lens focusing system [150]. The equidistant multi-focus was directly generated 

by a complex amplitude filter described by Equation (3.14) and a single lens focusing 

system. Therefore, the FWHM and DOF of the focusing spots on the equidistant multi-

focus are as large as that of the focusing spot shown in Figure 21. In contrast, the FWHM 

and DOF of the focusing spots on the optical chain are smaller than half of the wavelength 

and can achieve super-resolution. Additionally, the focusing spots on the optical chain are 

highly longitudinally polarized. The equidistant multi-focus has both radially and 

longitudinally polarized components. 

 

Previously, the optical chain with three uniform intensity spots was achieved with N = 1. 

One can easily obtain a long optical chain with more uniform intensity focusing spots by 

increasing N in Equation (3.14). In Figure 23, the optical chains with five and seven 

focusing spots are displayed for N = 2 and 3. When N = 2, 𝑐𝑝 and 𝑚𝑝 are chosen as 𝑐1 =
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𝑐2 = 1, 𝑚1 = 0.75 and 𝑚2 = 2.1, respectively. As shown in Figure 23(c) and (d), there 

are five uniform spots along the optical axis with intensity fluctuation less than 2%. The 

FWHM of the five spots is approximately 0.50λ. It can be seen that the main lobes of the 

lateral intensity distribution of the five spots are nearly overlapping as shown in Figure 

23(a). As shown in Table 2, the DOF of the five focusing spots on the optical chain is 

approximately 0.35λ, which is one-fourth of that in the single lens. The focusing spots are 

sub-diffraction limit in the longitudinal direction. The shapes of the five spots are similar 

and their spot volumes are around 0.38𝜆3. Meanwhile, the intensity of the radially 

polarized component is much less than that of the longitudinally polarized component. 

Therefore, the obtained optical chain has a high axial resolution and small volume and it is 

highly longitudinally polarized. 

 

As shown in Figure 23(b), (c) and (e), the optical chain with seven uniform intensity spots, 

whose intensity fluctuation is less than 2%, is obtained for N = 3. Shown in Table 2, the 

FWHM on the focal plane is 0.51λ, while others are either 0.51λ or 0.52λ. The DOF is 

ranging from 0.34λ to 0.36λ. Meanwhile, the spot volume does not exceed 0.41𝜆3. Due to 

the destructive interference of the radially polarized component at the positions where the 

focusing spots are located, the obtained optical chain is highly longitudinally polarized. 

When the parameter N increases from 1 to 3, the number of focusing spots on the optical 

chain increases from 3 to 7. The length of the optical chain is elongated with the increase 

of N as well. Essentially, the number of focusing spots in the optical chain is equal to 2N 

+ 1. When N is quite large, more 𝑐𝑝 and 𝑚𝑝 (𝑝 = 1, … , 𝑁) need to be determined. In this 

case, an optimization algorithm can be developed in order to obtain optimal 𝑐𝑝 and 𝑚𝑝 

efficiently.  
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Figure 23 Intensity distribution in the focal region of the 4π focusing system illuminated by a 

radially polarized BG modulated by the complex amplitude filter with N = 2 and 3. For N = 2, 𝑐1 =
𝑐2 = 1, 𝑚1 = 0.75  and 𝑚2 = 2.1. For N = 3, 𝑐1 = 1, 𝑐2 = 0.98, 𝑐3 = 0.85, 𝑚1 = 0.7, 𝑚2 = 2.1 

and 𝑚3 = 3.5. (a) Lateral intensity distribution on the focal plane (solid curve) and the plane where 

the peaks locate (dashed and dotted curves) for N = 2. (b) Lateral intensity distribution on the focal 

plane (solid curve) and on the plane where the peaks are located (dashed, dotted and dot-dashed 

curves) for N = 3. (c) Solid and dashed curves represent the axial intensity along the horizontal 

dashed lines in (d) and (e). (d) Total intensity distribution in the y-z plane for N = 2. The vertical 

and horizontal dashed lines represent the y and z axes. (e) Total intensity distribution in the y-z 

plane for N = 3. The vertical and horizontal dashed lines represent the y and z axes. Insets in (d) 

and (e): intensity distribution of the radially and longitudinally polarized components. 
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Experimentally, the 4π focusing system requires the two opposite-position lenses that are 

coaxial and confocal. The influence of the deviation of the lens optical axes and the shift 

of the foci on the focusing performance is investigated. Let us first consider the optical 

axes mismatching case first. For simplicity, it is assumed that the optical axes of the 

referred lenses are parallel, and their foci are in the same transverse plane. 𝑑𝑟 is defined as 

the distance between the two off-axial optical axes. In order to describe the focusing 

performance clearly, the point located at 
𝑑𝑟

2
 is chosen as the origin of a new coordinate. The 

focusing spot located at the origin is explored. For a single lens, the focusing field is 

composed of radial and longitudinal components. The maximum of the longitudinally 

polarized component is on the optical axis of the lens, while the radially polarized 

component on the cross section is a doughnut distribution around the optical axis [122], 

[136]. The interference effect due to the two longitudinally polarized components will 

decrease with the increase of 𝑑𝑟. However, the intensity of the interference pattern of the 

two radial components will fluctuate for increasing 𝑑𝑟 because of the doughnut distribution 

[136]. As displayed in Figure 24(a), the total field intensity at the origin will decrease and 

then increase with the increase of 𝑑𝑟, and ultimately approaches zero for sufficiently large 

𝑑𝑟. Due to the lateral deviation of the optical axes, the lateral size of the focusing spots on 

the optical chain increases with increasing 𝑑𝑟 as shown in Figure 24(c). The intensity of 

the optical chain gradually diminishes for sufficiently large 𝑑𝑟. Only two separate bright 

focusing zones appear along the dashed lines in Figure 24(e) and (f). 
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Figure 24 Influence of the off-axis distance on the focusing performance. (a) Intensity of the origin 

(marked by blue dots) for different off-axis distance 𝑑𝑟. (b)-(f) represent the intensity distribution 

on the r-z plane for 𝑑𝑟 = 0, 0.68λ, 1.07λ, 1.89λ and 2.54λ, respectively. Intensity at the origin in 

(b)-(f) is shown in (a) as labeled by cross signs located at B, C, D, E and F. Dashed lines in (b)-(e) 

are the optical axes of lens in the 4π focusing system. 
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Another common alignment error in a 4π focusing system is foci shifting in the optical axis 

direction. In this case, the optical axes of the two lenses are overlapped but shifted in the 

optical axis direction. 𝑑𝑧 is defined as the distance between the two foci as shown in Figure 

25(a)-(d). Apparently, the effective interference zone is reduced when 𝑑𝑧 increases. The 

number of focusing spots on the optical chain will cut down at the same time. Eventually, 

the interference effect can be neglected when 𝑑𝑧 is larger than DOF of each polarized 

component and no optical chain will be obtained. If there is no complex amplitude filter, 

the DOF of the focusing field generated by the left or right lens is approximately 1.45λ.  

 

 

 

Figure 25 Schematic of the 4π focusing system with their foci located at different positions. (a) and 

(b) Intensity distribution of radially and longitudinally polarized component generated by the left 

lens in Figure 20, while (c) and (d) represent the intensity distribution of that generated by the right 

lens. Position of the focus is marked by dotted lines in (a) - (d). Shadow region indicates the 

overlapped DOF. 𝑑𝐷𝑂𝐹 is the overlapped range. (e) Total intensity distribution for N = 2 and 𝑑𝑧 =
2.5𝜆. Insets in (e) are the interference intensity distributions of radially and longitudinally polarized 

components. 
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Therefore, the interference intensity can be ignored when 𝑑𝑧 is larger than 1.45λ. When the 

complex amplitude filter is adopted, DOF of the focusing system is elongated. Large DOF 

will assure the generation of the optical chain even for a relatively significant foci shifting. 

This result is very important in experimental realization. For example, there are five 

focusing spots in Figure 23(d) when 𝑑𝑧 is zero, while three focusing spots still exist in 

Figure 25(e) for 𝑑𝑧 = 2.5𝜆. Meanwhile, the FWHM and DOF of each focusing spot in the 

effective interference zone remain the same as that with 𝑑𝑧 = 0. Therefore, a 4π focusing 

system with the proposed complex amplitude filter is robust for axial focus shifting. 

 

In this section, a scheme based on a 4π high NA focusing system and a complex amplitude 

filter is proposed to obtain an optical chain for a polarized BG incident beam. The optical 

chain is highly longitudinally polarized with a high axial resolution and a small spot 

volume. It is highly longitudinally polarized since the radially polarized component is 

destructive interference at the focusing spots. The FWHM is approximately half the 

wavelength. The DOF of the focusing spots on the optical chain is significantly reduced 

and is only one-fourth that of a single lens with the same parameters. The spot volume is 

smaller than 0.41𝜆3. A long optical chain with more focusing spots can be easily achieved 

by increasing N. The off-axis and foci shifting are also investigated. The results indicate 

that the referred scheme is robust for the foci shifting. It is, therefore, believed that the 

proposed scheme can be used in various applications such as confocal microscopy, 

nanoparticle optical trapping and manipulating. 

 

3.3.2  Generation of hollow beam with radially polarized vortex beam 

and complex amplitude filter 

 

Recently, focusing beams with different polarization have attracted tremendous attention 

due to vast potential in the field of optical measurements, optical recording, and optical 

trapping [116], [120] - [122], [140], [150], [156]. In 2003, a tight focal spot was first 

achieved using a radially polarized incident beam and an annular aperture [140]. Since 

then, various amplitude and phase filtering methods have been proposed [122], [129] - 

[131], [158] and experimentally validated to obtain a sharper focal spot [120]. A super-
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resolution focal spot was achieved and has been used in optical disk writing with high 

intensity [120]. In 2008, a longitudinally polarized optical needle with high lateral 

resolution was first proposed, based on a binary optical element for BG with radial 

polarization [122]. A global search optimization algorithm was used to obtain an optimal 

DOF during the design of the elements used for phase modulation [122], [130]. Meanwhile, 

other focusing patterns, such as a doughnut beam and the special polarized beam, were also 

investigated, based on filtering technology [150], [159] - [162]. For example, the uniform 

transversally polarized light tunnel was achieved for an azimuthally polarized beam [159]. 

 

The hollow beams, or the so-called light tunnels, have potential application in nanoparticle 

trapping and are widely investigated [150], [163] - [169]. An example is an ultra-long 

optical tube generated by a discrete complex amplitude filter derived from the magnetic 

dipole array [163]. For a radially polarized BG, the axial intensity is not zero [122], [129], 

[162]. However, the null axial intensity is obtained by introducing a high-order vortex 

phase plate for different polarized beams according to [160]. The research result indicates 

that the focusing field is changed by the vortex phase plate [170]. For example, 

transversally polarized optical needles were achieved by the first-order vortex phase and a 

binary phase plate for an azimuthally polarized incident beam [159]. These studies have 

demonstrated that the vortex phase is of great importance in realizing novel focusing 

patterns [159], [160], [170] - [172]. 

 

In this section, a second-order vortex phase plate is introduced to implement a hollow beam 

for a radially polarized BG incident beam. When the second-order vortex phase plate is 

introduced, a null axial intensity appears and provides the opportunity to obtain a hollow 

beam. Furthermore, one can acquire the focusing field with long DOF by decreasing the 

NA of the focusing system. However, the lateral size of a hollow beam increases as the NA 

decreases. Therefore, a complex amplitude filter is employed to achieve a hollow beam 

with both small lateral size and large DOF in the proposed high NA focusing system for a 

radially polarized incident beam.  
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In a high NA focusing system, the electric field near the focus spot (𝑧 = 0) in a vacuum is 

described by Richards-Wolf’s integral theory [113] - [116]. For the polarized incident beam 

with a second order vortex phase, the focusing field is written as follows [8], [136]: 

 

𝐸(𝑟, 𝜑, 𝑧) = 

−𝑖𝐴∫ ∫ 𝑙0(𝜃)𝑉(𝜙)√𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜃𝑒𝑖𝑘(𝑧𝑐𝑜𝑠𝜃+𝑟𝑠𝑖𝑛𝜃 cos(𝜙−𝜑))𝑃(𝜃, 𝜙)𝑑𝜃𝑑𝜙
2𝜋

0

𝛼

0
 (3.15) 

 

where (𝑟, 𝜑, 𝑧) are the cylindrical coordinates of the focal region, the focal point is located 

at 𝑧 = 0, 𝜃 and 𝜙 are the spherical angular coordinates of the output pupil of the focusing 

system, respectively, A is a constant, 𝑙0(𝜃) is the amplitude distribution of the incident 

beam governed by the BG function [122], 𝑉(𝜙) = 𝑒𝑖2𝜙 is the second-order vortex phase, 

which can be realized by a phase plate, 𝛼 = arcsin (
𝑁𝐴

𝑛
), where n is the refractive index of 

the surrounding media of the focusing system, k and 𝑃(𝜃, 𝜙) are the wavenumber and the 

polarization matrix, respectively, and 𝑃(𝜃, 𝜙) is given as follows for a radially polarized 

beam [160], [163], [173]: 

 

𝑃(𝜃, 𝜙) = [
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃

]    (3.16) 

 

The elements in the polarization matrix 𝑃(𝜃, 𝜙) for a radially polarized beam represent the 

x, y, and z components of the focusing field. Integration over 𝜙 in Equation (3.15) can be 

expressed by the Bessel function [160]: 

 

∫ 𝑉(𝜙)𝑒𝑖𝑘𝑟𝑠𝑖𝑛𝜃 cos(𝜙−𝜑) [
𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜙𝑐𝑜𝑠𝜃
−𝑠𝑖𝑛𝜃

] 𝑑𝜙
2𝜋

0

 

                                           = −
𝑒𝑖2𝜑

2
[

𝑖(𝑒𝑖𝜑𝐽3(𝑡) − 𝑒−𝑖𝜑𝐽1(𝑡))𝑐𝑜𝑠𝜃

(𝑒𝑖𝜑𝐽3(𝑡) + 𝑒−𝑖𝜑𝐽1(𝑡))𝑐𝑜𝑠𝜃

−2𝐽2(𝑡)𝑠𝑖𝑛𝜃

]   (3.17) 

 

where 𝑡 = 𝑘𝑟𝑠𝑖𝑛𝜃 and 𝐽𝑚(∙) is the m-order Bessel function. In Equation (3.17), 𝐽𝑚(∙) (m 

= 1, 2, and 3) is zero for t = 0. The corresponding x-, y-, and z- polarized components are 
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null intensity on the optical axis. Therefore, the focused field exhibits the characteristic of 

a hollow beam. As previously discussed, the long DOF and small lateral size cannot be 

achieved simultaneously without using a filter. Therefore, the complex amplitude filter, 

based on the cosine function, is employed and validated in producing an optical needle 

with high lateral resolution for a radially polarized incident beam [131], [150]. The 

complex amplitude filter can be expressed as follows: 

 

𝐹𝑁(𝜃) = ∑ 𝑐𝑝cos [𝑘𝑚𝑝(2𝑝 − 1)𝑐𝑜𝑠𝜃]𝑁
𝑝=1    (3.18) 

 

where 𝑐𝑝 is an amplitude adjustment parameter, 𝑚𝑝 is displacement distance along the 

optical axis (z-axis), N controls the number of the cosine functions adopted in the filter, 

and k is the wavenumber of the incident beam. Considering that Equation (3.18) describes 

the transmission amplitude, it should be normalized by the maximal absolute value of 

𝐹𝑁(𝜃). Once 𝐹𝑁(𝜃) is introduced, 𝑙0(𝜃) can be replaced by 𝑙0(𝜃)𝐹𝑁(𝜃).  

 

Combining Equations (3.15), (3.17), and (3.18), the z-polarized component of the focused 

field can be expressed as follows: 

 

𝐸(𝑟, 𝜑, 𝑧) = 

−𝑖
𝐴𝑐1

2
∫ 𝑙0(𝜃)√𝑐𝑜𝑠𝜃𝑠𝑖𝑛2𝜃𝑒𝑖2𝜙𝐽2(𝑘𝜌𝑠𝑖𝑛𝜃)[𝑒𝑖𝑘(𝑧+𝑚1)𝑐𝑜𝑠𝜃 + 𝑒𝑖𝑘(𝑧−𝑚1)𝑐𝑜𝑠𝜃]𝑑𝜃

𝛼

0
 (3.19) 

 

Equation (3.19) can be rearranged as: 

 

𝐸𝑧(𝑟, 𝜑, 𝑧) = 𝐸𝑧(𝑟, 𝜑, 𝑧 + 𝑚1) + 𝐸𝑧(𝑟, 𝜑, 𝑧 − 𝑚1)   (3.20) 

 

Obviously, the z-polarized component of the focusing field is the sum of the two individual 

focusing fields with the focal spots located at 𝑧 = ±𝑚1, respectively. If 𝑚1 is equal to zero, 

then Equation (3.20) becomes Equation (3.17). Similar expressions for x- and y-

components can be obtained and the total field intensity is given by |𝐸𝑥(𝑟, 𝜑, 𝑧)|2 +

|𝐸𝑦(𝑟, 𝜑, 𝑧)|
2
+ |𝐸𝑧(𝑟, 𝜑, 𝑧)|2. Clearly, multifocus spots appear and the distance between 
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the focal spots is 2𝑚1. The axial intensity distribution is determined by 𝑚1. Therefore, 

DOF with uniform intensity can be obtained by adjusting the parameter 𝑚1. Apparently, 

long DOF can be obtained as well by increasing N, which means more cosine functions 

should be employed. 

 

For a radially polarized BG without using additional phase plate, previous research results 

have demonstrated that the intensity along the optical axis is not zero [116], [122], [130]. 

However, the null intensity occurs at the optical axis for the BG with a second-order vortex 

phase 𝑒𝑖2𝜙. Generally, the BG incident beam 𝑙0(𝜃) is expressed as follows [116], [122]: 

 

𝑙(𝜃) = exp [−𝛽2 (
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝛼
)
2

] 𝐽1 (2𝛾
𝑠𝑖𝑛𝜃

𝑠𝑖𝑛𝛼
)    (3.21) 

 

where  𝐽1(∙) is the first-order Bessel function. 𝛽 and 𝛾  are beam parameters that are taken 

as unity in this research, assuming n and NA are 1 and 0.95, respectively. 𝛼 = arcsin (
𝑁𝐴

𝑛
)  

is approximately equal to 1.25. The intensity distributions of the total field, x-, y-, and z- 

components near the focal point are shown in Figure 26. The bright (dark) areas indicate 

the regions with high (low) electric intensity. Numerical results indicate that the intensity 

is zero on the z-axis and the null center appears for x-, y-, and z- polarized components, 

which confirms that the hollow beam is obtained for a radially polarized BG with a second-

order vortex phase plate. The total electric intensity on the x-z plane is symmetric with 

respect to the z-axis [see Equation (3.15)]. The outer (inner) diameter 𝐷𝑜 (𝐷𝑖) of the hollow 

beam is defined as the outer (inner) full width at half-maximum (FWHM) at the focal plane 

[3]. 𝐷𝑜 and 𝐷𝑖 are marked by lines AD and BC, respectively, as is shown in Figure 27(a). 

Therefore, the thickness of the hollow beam can be defined as 0.5(𝐷𝑜 − 𝐷𝑖). The region 

along the z-axis with an intensity higher than 80% of the maximum intensity is regarded as 

the DOF of the focusing field, which is highlighted by a dashed line in Figure 27(b). It can 

be clearly seen that the DOF is 0.96λ for the focused beam with a second-order vortex 

phase. The inner diameter 𝐷𝑖 of the total field at the focal plane is 0.60λ, and the outer 

diameter 𝐷𝑜 is 1.71λ. Therefore, the corresponding thickness of the obtained hollow beam 

is approximately 0.56λ. 𝐷𝑖 is determined by the order of vortex and NA of the focusing 
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system. Thus, it increases with the increase of the order of the vortex phase for a fixed NA. 

The second order is the smallest order that one can obtain a hollow beam for a radially 

polarized beam when NA = 0.95 [160]. The longitudinally polarized component is axial 

symmetric about the z-axis. However, the intensity distribution of the x- and y-polarized 

components is twisted on the transversal plane.  

 

 

 

Figure 26 Focusing field intensity distribution at the x-z plane for the radially polarized BG incident 

beam with a second-order vortex phase in the focusing system with NA = 0.95. (a) Total electric 

energy intensity near the focal point. The dotted lines, which mark the position of the maximum 

intensity, are parallel to the z axis. (b) - (d) are the intensity distributions of x-, y-, and z-polarized 

components, respectively. 

 

To elongate the DOF of a hollow beam for a radially polarized incident beam with a 

second-order vortex phase, a complex amplitude filter based on the cosine function is 

introduced, as described in Equation (3.18). To verify the validity of the proposed complex 

amplitude filter in designing a hollow beam with a long DOF, the simplest filter with N = 
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1 is investigated. Generally, the values of 𝑐𝑝 and 𝑚𝑝 are obtained using an optimization 

algorithm. For the simplest filter, the parameter 𝑐1 can be taken as unity and the amplitude 

filter 𝐹1(𝜃)is rewritten as cos(𝑘𝑚1𝑐𝑜𝑠𝜃), where 𝑘 =
2𝜋

𝜆
 is the wave number. Through an 

empirically direct search procedure, the value of 𝑚1 can be determined. According to the 

calculation, 𝑚1 = 0.5 is taken to generate the hollow beam with a long DOF. In this case, 

the expression for the designed complex amplitude filter is written as 𝐹1(𝜃) =

cos(0.5𝑘𝑐𝑜𝑠𝜃). For 𝑚1 = 0.5, the distance between the two peaks is 1.0λ. The complex 

amplitude profile of the filter 𝐹1(𝜃) is shown in Figure 28(a). The corresponding focusing 

characteristics of the radially polarized incident beam with a second-order vortex phase are 

displayed in Figure 28(b) - (d). In Figure 28(b), the bright (dark) areas represent the regions 

with high (low) electric intensity. One can see that the high intensity occurs along the z-

axis at a position where the dashed lines exist and DOF is approximately equal to 2.28λ, 

which is nearly 2.4 times that without using a filter (0.96λ). The distance between the 

dashed lines is approximately 1.33λ. Apparently, one can conclude that long DOF can be 

achieved using the designed complex amplitude filter by comparing Figure 28(c) with 

Figure 27(b). In Figure 28(c), uniform intensity distribution is achieved in the region of the 

DOF. The lateral intensity distributions of the focused hollow beam on the planes z = 0 and 

z = 1.14λ are shown in Figure 28(d). In Figure 28(d), the outer (inner) diameter of the 

hollow beam are marked by lines AD (BC). 𝐷𝑜 and 𝐷𝑖 are 2.23λ and 0.63λ, respectively. 

𝐷𝑜 and 𝐷𝑖 of the designed hollow beam are approximately equal to 130% and 113% that 

of the focusing beam without using a filter, respectively. The corresponding thickness of 

the hollow beam is approximately 0.80λ. The DOF will increase for the radially polarized 

BG incident beam by employing a second-order vortex phase and a complex amplitude 

filter, although the lateral size may slightly increase when compared with the case without 

a filter. The dot-dashed curve in Figure 28(d) represents the transverse intensity distribution 

on the plane z = 1.14λ, which is the end position of the DOF. The transverse intensity 

distributions at z = 0 and z = 1.14λ are nearly the same. The insets in Figure 28(d) are the 

two-dimensional transverse intensity distributions on the z = 0 and z = 1.14λ planes. On the 

z = 0 plane, the null center appears and is surrounded by a ring-like intensity distribution. 

 



 

 

65 

 

 

 

Figure 27 Focusing field intensity at the x-z plane for a radially polarized BG with a second-order 

vortex phase in the focusing system with NA = 0.95. (a) Intensity distribution at the focal plane z 

= 0. (b) Intensity distribution along the dotted lines in Figure 26(a). DOF of the focusing field is 

labeled by the dashed line. 

 

The numerical results indicate that total intensity does not depend on 𝜑 at the transversal 

plane. However, the intensity patterns of the x- and y-polarized components in front of and 

behind the focal point are opposite, which implies that the generated field is twisted. There 

are two intensity peaks that are symmetric about the z-axis for the x- and y-polarized 

components. To describe the twisted x- and y-polarized components, the positions of the 

intensity peaks for the two components are shown in Figure 29 for different z. 
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Figure 28 (a) Amplitude transmittance of the complex amplitude filter for N = 1, 𝑐1 = 1, and 𝑚1 =
0.5, and (b) the corresponding intensity distribution in the y-z plane, where white areas represent 

high field intensity. (c) Longitudinal intensity profile along dashed lines, where maximum of 

intensity is located in (b). DOF is approximately 2.28λ, and the range of DOF is marked by the 

dashed lines. (d) Lateral intensity distribution at different longitudinal positions of z. AD and BC 

mark outer and inner diameters 𝐷𝑜 and 𝐷𝑖, respectively. 

 

In Figure 29, the two black solid curves represent position information for the intensity 

peaks of the x-polarized component at different z. It is seen that the black solid curves are 

symmetric about the origin and twisted along the z-axis. The same characteristics exist for 

the y-polarized component. Numerical results also indicate that lines connecting the two 

intensity peaks of the x- or y-polarized components are perpendicular. To further 

demonstrate the observation, the intensity distributions of the x-, y-, and z-polarized 

components in front of, on, and behind the focus are shown in Figure 30. Their intensity 
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peaks are marked by ×. By comparing Figure 30(a1), (a2), (c1), and (c2), one can see that 

the intensity distributions of the x- and y-polarized components are twisted. The intensity 

peaks are in the first and the third quadrants for z = −1.14λ, whereas they are in the second 

and fourth quadrants for z = 1.14λ. The intensity distribution on the focal plane does not 

twist for the x- and y-polarized components. Meanwhile, the field intensity distribution 

does not twist along the optical axis for the z-polarized component. In addition, the lines 

connecting the two intensity peaks in (a1) [or (c1)] are perpendicular to those in (a2) [or 

(c2)], according to Figure 30(a1) and (a2) [or (c1) and (c2)]. On the focal plane, the 

intensity peaks are at the y-axis for the x-polarized component, whereas they are located at 

the x-axis for the y- polarized component. In a Cartesian coordinate system, the intensity 

distributions of the x- and y-polarized components twist at the defocus plane. In the 

cylindrical coordinate system, transverse polarized components are radial and azimuthal. 

The radial 𝐸𝑟 and azimuthal 𝐸𝜑 components can be expressed by 𝐸𝑥 and 𝐸𝑦, i.e., 𝐸𝑟 =

𝐸𝑥𝑐𝑜𝑠𝜑 + 𝐸𝑦𝑠𝑖𝑛𝜑 and 𝐸𝜑 = 𝐸𝑦𝑐𝑜𝑠𝜑 − 𝐸𝑥𝑠𝑖𝑛𝜑, where 𝑟 = √𝑥2 + 𝑦2 [116]. If vortex 

phase is not applied in the radially polarized incident beam, then the azimuthal component 

𝐸𝜑  is zero everywhere in image space. In the cylindrical coordinate system, the intensity 

distributions of the radial and azimuthal components are always cylindrically symmetric 

whenever near or out of focus, as shown in the insets in Figure 31. The intensity 

distributions of the components at the focus plane are given as comparisons with that at the 

defocus plane. The intensity distributions of the polarized component at the plane z = 

−1.14λ and z = 1.14λ are identical. However, the phase of the polarized components shows 

twisting and rotating on different defocus planes and a second-order vortex. For example, 

for the azimuthally polarized component, the phase jumps from −π to π along the radius. 

However, the phase jump appears as a curve at the defocus plane. For the radially polarized 

components, similar results appear. Additionally, phase distributions at different defocus 

planes are determined by 𝜌 and 𝜑. Phase singularity occurs on the optical axis for null 

central intensity. 
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Figure 29 Positions of the maximum intensity of the x- and y-polarized components on different 

transversal planes along the z-axis. Black and red solid curves represent the x- and y-polarized 

components, respectively. 

 

 

 

Figure 30 Intensity distributions of the x-, y-, and z-polarized components at different transverse 

planes along the optical axis. (a1) - (a3) Intensity distributions at transverse plane z = −1.14λ, (b1) 

- (b3) at z = 0, and (c1) - (c3) at z = 1.14λ, respectively. Intensity distributions (a1), (b1), and (c1) 

for the x-polarized component; (a2), (b2), and (c2) for the y- polarized component; and (a3), (b3), 

and (c3) for the z- polarized component. Positions of maximum intensity are marked by × for the 

x- and y-polarized components. There are two equal intensity peaks in the x- and y-polarized 

components. Field intensity of the z-polarized component is symmetrical with respect to the z-axis. 
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Considering the principle of the filter, the length of DOF will be determined by the 

parameter N. For a long DOF, more cosine functions are involved. This means that N 

increases. Since 𝑐1 is assumed to be unity, the value of 2N − 1 parameters, which are 𝑐2; 

𝑐3; … ; 𝑐𝑁 and 𝑚1; 𝑚2; … ; 𝑚𝑁, should be determined for producing a hollow beam with 

a long DOF. 𝑐𝑖 is used to control the relative amplitude of each cosine function. The values 

of those parameters are determined by optimization algorithms. However, the achievement 

of a long DOF is time-consuming when N is greater than 1. For example, if N is 20, then 

39 parameters (𝑐2, …, 𝑐20, 𝑚1, …, 𝑚20) need to be determined. To demonstrate the 

dependence of the DOF on N, N = 2 in Equation (3.18) was considered. In this case, there 

are only three parameters to determine: 𝑐2, 𝑚1, and 𝑚2. Numerical calculations indicate 

that the DOF is approximately 3.4λ while the values of 𝑐2, 𝑚1, and 𝑚2 are 0.65, 0.80, and 

2.3, respectively. The DOF is approximately 3.5 times longer than that of the focusing field 

without using an amplitude filter. At the focal plane, the outer diameter 𝐷𝑜 and the inner 

diameter 𝐷𝑖 are approximately 1.82λ and 0.62λ, respectively. They are approximately 

106% and 110% that of the focusing field without any filter. 

 

 

 

Figure 31 Phase distributions of the radially, azimuthally, and longitudinally polarized components 

at different transverse planes along the optical axis. 𝜌𝑚𝑎𝑥 = 1.5𝜆. White and dark regions represent 

high and small phase (or intensity in the insets). Insets represent the intensity distributions of the 

corresponding polarized component. Total fields are the sum of the intensity of the radial, 

azimuthal, and longitudinal components. 
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A long DOF hollow beam has been achieved by focusing a radially polarized BG with a 

second-order vortex phase and a complex amplitude filter. The scheme was analyzed using 

Richards-Wolf’s theory [113] - [116]. The null center was realized by introducing the 

second-order vortex phase. The DOF was elongated by an amplitude filter based on cosine 

functions. Numerical results indicate that the intensity distribution of the obtained hollow 

beam keeps almost invariant along the optical axis over a long distance (approximately 

3.4λ, which is 3.5 times of that of the focusing field without a filter) for N = 2. The inner 

and the outer diameters of the hollow beam are slightly changed. The intensity twist of the 

x- and y-polarized components was observed after introducing the second-order vortex 

phase. Such a beam may find applications in the field of optical trapping and guiding. 

 

3.3.3  Focusing performance of radially polarized BG with fractional 

vortex phase modulation  

 

In section 3.3.2, a vortex phase plate is introduced to create a hollow focusing field. The 

vortex phase filter can be described by 𝑉(𝜙) = 𝑒±𝑖𝑚𝜙 where m = 0, 1, 2, 3 … is the 

topological charge of vortex phase. Most of the research focuses on integer topological 

charge. For a focusing system with a high NA, the focusing field intensity distribution 

modulated by vortex phase filters with fractional topological charge has not been well 

studied. 

 

In this section, the vortex phase plate with fractional topological charge, which can be 

described by 𝑉(𝜙) = 𝑒±𝑖𝜅𝜙 (𝜅 > 0), is introduced to a high NA focusing system with a 

radially polarized BG 𝑙(𝜃) as the incident light. Therefore, the incident vortex beam 

𝑒𝑖(𝜃, 𝜙) is given by the following equation: 

 

𝑒𝑖(𝜃, 𝜙) = 𝑉(𝜙)𝑙(𝜃)     (3.22) 
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Figure 32 The focusing field intensity distribution contour plots (3𝜆 × 3𝜆) at the focal plane when 

different fractional vortex phase filters are used. NA=0.95. 𝜅 is shown at the right bottom corner of 

each plot. (d), (h) and (l) show the regular integer orders. The black dots in each plot represent the 

coordinate origins. 

 

Figure 32 shows the total focusing field intensity distribution on the focal plane when 𝜅 

varies from 0 to 3 with an interval of 0.05. For integer orders, 𝜅 = 1, 2, 3, the focusing field 

intensity distribution is symmetrical with respect to the optical axis as shown in Figure 32 

(d), (h), and (l). The field intensity on the optical axis decreases with the increase of the 

order. 

 

When the vortex order 𝜅 is non-integer, the focusing field intensity distribution is 

symmetrical with respect to the y-axis. For example, the contour map curves are not 

concentric circles anymore when 𝜅 = 0.25 as shown in Figure 32(a). The only intensity 

peak deviates from the center and appears on the positive y-axis side. Notice that a 
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secondary peak starts showing up on the negative y-axis when 𝜅 = 0.75. Apparently, there 

is a power redistribution on the focal plane in the process as 𝜅 increases from 0 to 1. 

Compare Figure 33(a1) and (e1), this power redistribution causes a focusing spot lateral 

size increase at the focal plane. In the process of 𝜅 changing from 1 to 2, there are more 

intensity peaks showing up on the focal plane. The power redistribution causes the focusing 

field on the focal plane to become a ring shaped distribution. Figure 32(h) shows a null 

center exists in the focusing field at the focal plane. Further increasing the vortex order will 

increase the lateral size of the focusing field and the diameter of the null center. 

 

For a radially polarized incident beam, the focusing field has three polarization 

components: the x-, and y- polarization components in the lateral plane and the z- 

polarization component in the longitudinal direction. Figure 33 shows the total, x-axis 

polarized component, y-axis polarized component, and z-axis polarized component 

intensity distributions when 𝜅 varies from 0 to 1 at a step of 0.25. When 𝜅 is an integer, the 

x-, y-, and z- polarization components are all symmetric with respect to the optical axis. 

When 𝜅 = 0, the z- polarization component is not zero on the optical axis, while the x-, 

and y- polarization components are not zero when 𝜅 = 1. Therefore, the total field intensity 

distribution is symmetric with respect to the optical axis, but its intensity is not zero on the 

optical axis. When 𝜅 ≥ 2 and 𝜅 is an integer, a zero intensity can be created on the optical 

axis because the three polarization components are all zero on the optical axis. In this case, 

a hollow beam can be generated. 

 

When 𝜅 is a fraction, the symmetry with respect to the x-axis disappears. The x-, and y- 

polarization components are not orthogonal to each other anymore. Compare Figure 33(a1) 

- (e1) (or (a2) - (e2), (a3) - (e3) and (a4) - (e4)), the intensity redistribution is clearly shown. 

The hollow focusing field is very important for many applications. For example, a hollow 

focused laser beam is introduced to deplete unwanted spontaneous emission in a STED 

microscope. A vortex focusing laser beam carries unique orbital angular momentum that 

can be used for nanoparticle trapping and transportation.  
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Figure 33 Focusing field intensity distribution at the focal plane when different fractional vortex 

phase filters are used. (a1) - (a4)  𝜅 = 0, (b1) - (b4) 𝜅 = 0.25, (c1) - (c4) 𝜅 = 0.5 , (d1) - (d4) 𝜅 =
0.75, and (e1) - (e4) 𝜅 = 1 show the total, x-axis polarized component, y-axis polarized component, 

and z-axis polarized component intensity distributions, respectively.  
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3.4   GENERALIZED COMPLEX AMPLITUDE FILTER  

 

In previous sections, cosine function based complex amplitude filters have been discussed. 

Unique focusing fields have been successfully demonstrated utilizing these filters in a high 

NA focusing system. In this section, the general form of complex amplitude filters and the 

fabrication of these filters will be discussed. 

 

3.4.1  Sine function based complex amplitude filter 

 

Cosine function based complex amplitude filters have been discussed in section 3.2. Sine 

function can also be used to construct complex amplitude filter for focusing field shaping. 

The sine function based complex amplitude filter can be mathematically expressed as: 

 

𝐹𝑁(𝜃) = ∑ sin [𝑘𝑚𝑝(2𝑝 − 1)𝑐𝑜𝑠𝜃]𝑁
𝑝=1    (3.23) 

 

Take N = 1 as an example, the filter can be written as: 

 

𝐹1(𝜃) = sin(𝑘𝑚1𝑐𝑜𝑠𝜃) =
1

2𝑖
[𝑒𝑖𝑘𝑚1𝑐𝑜𝑠𝜃 − 𝑒−𝑖𝑘𝑚1𝑐𝑜𝑠𝜃]  (3.24) 

 

Therefore, the radial component of the focusing field can be obtained from Equation (2.21): 

 

𝐸𝑟(𝑟, 𝑧) 

=
1

2𝑖
𝐴 ∫ 𝑃(𝜃) sin(2𝜃) 𝐽1(𝑘𝑟𝑠𝑖𝑛𝜃)𝑙(𝜃)[𝑒𝑖𝑘(𝑧+𝑚1)𝑐𝑜𝑠𝜃 − 𝑒𝑖𝑘(𝑧−𝑚1)𝑐𝑜𝑠𝜃]𝑑𝜃

𝜃𝑚𝑎𝑥

0
 (3.25) 

 

Equation (3.25) can be rewritten in a simpler format: 

 

𝐸𝑟(𝑟, 𝑧) =
1

2𝑖
[𝐸𝑟(𝑟, 𝑧 + 𝑚1) − 𝐸𝑟(𝑟, 𝑧 − 𝑚1)]   (3.26) 
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In comparison to Equation (3.10), the main difference is that the focusing field described 

by Equation (3.26) becomes the difference between the two split components. This could 

cause null intensity at the center because of the phase difference between the two split 

components. This type of filters is not ideal for applications that require a uniform focusing 

field. Figure 34 demonstrates the focusing performance of the sine function based complex 

amplitude filter with N = 1,  𝑚𝑝 = 0.7. From Figure 34(b), we can see that there is a null 

intensity center between the two split spots. 𝑚𝑝 needs to be finely adjusted in order to 

obtain a uniform focusing field. But the DOF will decrease. Compared to the focusing 

performance of cosine function based complex amplitude filter, it is much more difficult 

to optimize the sine function based complex amplitude filter to obtain a focusing field with 

a long DOF. However, extra tuning parameters can be introduced to the sine function based 

complex amplitude filter to compensate for the null intensity center so that a uniform long 

DOF focusing field can be achieved. 

 

 

 

Figure 34 (a) Intensity distribution at the focal plane 𝑧 = 0 along a radial axis and (b) intensity 

distribution along the optical axis for the BG with 𝛽 = 1 and 𝛾 = 1. NA = 0.95. Red, blue and 

black curves represent the radial component, the longitudinal component and the total field, 

respectively. The sine function based complex amplitude filter with N = 1, and 𝑚1 = 0.7 is applied 

in this case. 
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3.4.2  General form of complex amplitude filters 

 

The cosine and sine function based complex amplitude filters can be written in general 

form as: 

 

∑ cos[(2𝑛 − 1)𝑀𝑘𝑐𝑜𝑠(𝜃)]𝑁
𝑛=1     (3.27A) 

 

∑ sin[(2𝑛 − 1)𝑀𝑘𝑐𝑜𝑠(𝜃)]𝑁
𝑛=1     (3.27B) 

 

Assuming 𝑥 = cos(𝜃), Equation (3.27) can be rewritten as: 

 

∑ cos[(2𝑛 − 1)𝑀𝑘𝑥]𝑁
𝑛=1     (3.28A) 

 

∑ sin[(2𝑛 − 1)𝑀𝑘𝑥]𝑁
𝑛=1     (3.28B) 

 

All the complex amplitude filters designed in previous sections are linear combinations of 

these two functions shown in Equation (3.28). 

 

Simple trigonometry can be applied to further study the characteristics of these complex 

amplitude filters. In trigonometry mathematics, we have: 

 

𝐴 ∙ cos(𝑀𝑘𝑥) + 𝐵 ∙ sin(𝑀𝑘𝑥) = √𝐴2 + 𝐵2 sin(𝑀𝑘𝑥 + 𝜑)  (3.29) 

 

where 𝜑 = arcsin (
𝐴

√𝐴2+𝐵2
). Equation 3.29 can be rearranged in the following form: 

 

√𝐴2 + 𝐵2 sin(𝑀𝑘𝑥 + 𝜑) 

= √𝐴2 + 𝐵2 sin [(𝑀 +
𝜑

𝑘𝑥
) 𝑘𝑥] = √𝐴2 + 𝐵2 sin[𝑀′𝑘𝑥]  (3.30) 

 

where 𝑀′ = 𝑀 +
𝜑

𝑘𝑥
. Comparing Equation (3.30) and Equation (3.28), it is easy to see that 

the complex amplitude filter constructed by the linear combination of the cosine and sine 
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functions is equivalent to a sine function based complex amplitude filter. However, the 

adjustment coefficients are different. In Equation (3.30), the horizontal adjustment 

parameter 𝑀′ has a new term 
𝜑

𝑘𝑥
. Because of the existence of this new term, the focusing 

field splits into multiple focal spots and distribute unevenly along the optical axis. The 

uneven distribution of the focal spots offers the opportunity to fine tune the amplitude and 

location of each spot to optimize the overall shape of the focusing field.  

 

It has been demonstrated that the designed complex amplitude filters can be utilized to 

shape the focusing field and achieve various unique focusing fields for different application 

scenarios. The problem with the designed amplitude filter is that it will attenuate the optical 

field. Theoretically, the DOF can achieve infinite length by introducing more and more 

cosine functions to the complex amplitude filter. The attenuation effect of the complex 

amplitude limits the increase of DOF at a certain level. Another drawback with the 

designed complex amplitude filter is fabrication. Notice that the designed complex 

amplitude filter has a continuously varying profile as shown in Figure 16. In practice, it is 

very difficult to fabricate high precision filters with such a complicated profile. It is 

challenging to apply the complex amplitude filters in real applications due to these 

problems. To address these issues, binary optics can be designed based on the complex 

amplitude filters.  

 

3.4.3  Implementation of complex amplitude filters using binary optics 

 

As discussed in section 3.4.2, the generalized form of the complex amplitude filter can be 

expressed using Equation (3.28). cos(𝑛𝑀𝑘𝑥) and sin(𝑛𝑀𝑘𝑥) form an orthogonal basis 

when 𝑛 is a natural number. According to the trigonometric Fourier series theory, a binary 

filter can be constructed in the following form: 

 

𝐵𝐹 = ∑
1

2𝑛−1
sin[2𝜋(2𝑛 − 1)𝑀𝑥]+∞

𝑛=1    (3.31) 

 

where 𝑥 = cos(𝜃). After normalization, the binary optics filter can be written as: 
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𝐵𝐹(𝜃) =
𝐵𝐹

max(𝐵𝐹)
    (3.32) 

 

To verify the performance this binary optics filter design method, 𝑀 = 0.9 is chosen and 

𝐵𝐹(𝜃) can be calculated accordingly: 

 

𝐵𝐹(𝜃) = {
1,            𝜃 < 0.586

−1,0.586 ≤ 𝜃 < 1.29
1,              𝜃 ≥ 1.29

    (3.33) 

 

Equation (3.33) and Figure 35(a) illustrate the designed binary optics filter. From Figure 

35(a), one can see that the amplitude transmittance profile has a binary shape. A binary 

optics filter can then be fabricated based on the parameters given in Equation (3.33). Figure 

35(b) shows the focusing performance of this binary optics filter. A long DOF focusing 

field can be clearly observed and the intensity distribution along the optical axis has good 

uniformity. Compared to the result shown in Figure 15(b), the DOF achieved using this 

binary optics filter is almost the same as the focusing field obtained from using the cosine 

function based complex amplitude filter. This can be explained by the fact that only low 

frequency (small 𝑛 in Equation (3.31)) components have a relatively big contribution to 

the filter function. In principle, binary optics filter designed using trigonometric Fourier 

series method can also achieve high focusing field shaping performance. Most importantly, 

it doesn’t have the power attenuation problem and it is much easier to fabricate than the 

complex amplitude filter with a continuous varying profile. 

 

 

 

Figure 35 (a) Binary optics filter designed based on complex amplitude filters, and (b) focusing 

field shaping performance of the designed Binary optics filter 
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3.5  SUMMARY 

 

In this chapter, a radially polarized doughnut Gaussian beam is studied first. The radially 

polarized doughnut Gaussian beam is introduced to a high numerical aperture focusing 

system to generate a sub-wavelength focal spot. The focusing characteristics of a radially 

polarized doughnut Gaussian beam by a high numerical aperture lens are theoretically 

investigated based on the Richards-Wolf diffraction integral theory [113] - [116]. 

Numerical results indicate that sub-wavelength focusing can be easily obtained for a 

radially polarized doughnut Gaussian incident beam. Therefore, the radially polarized 

doughnut Gaussian beam is of great importance in the super-resolution focusing field. 

 

In order to achieve long depth of focus, a cosine function based complex amplitude filter 

is designed to increase the length of the depth of focus in a high NA focusing system. The 

cosine function based complex amplitude filter can split the focusing field into two or more 

components in the optical axis direction. In principle, the focusing field can be designed to 

achieve long DOF by optimizing the 𝑚𝑝 parameter of the complex amplitude filter. 

Therefore, the focusing field can be engineered for various applications. 

 

By taking advantage of the designed complex amplitude filters, hollow beams with a long 

focal depth are generated from a radially polarized BG with a second-order vortex phase 

filter. The null intensity on the optical axis is achieved by introducing the second-order 

vortex. The long focal depth is a result of the amplitude filtering based on cosine functions 

and Euler transformation. Numerical results indicate that the focal depth of a hollow beam 

is improved from 0.96λ to 2.28λ with a slight increase of the transverse size for the simplest 

amplitude filter design. The intensity distribution twist phenomenon of the x- and y-

polarized components around the optical axis due to the introduction of the vortex phase is 

also discussed. It is believed that the proposed optical system can be used to achieve 

applications such as nanoparticle acceleration and optical trapping.  
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Also, a longitudinally polarized optical chain is generated in a 4π focusing system. The 

radially polarized Bessel-Gaussian incident beam is modulated by a complex amplitude 

filter. Longitudinally polarized focusing spots with uniform intensity, high axial resolution 

and small spot volume area are achieved in the carefully designed optical system. The 

number of focusing spots in the optical chain is controllable by adjusting the complex 

amplitude filter. As an example, a longitudinally polarized optical chain with seven 

uniform intensity focusing spots is obtained. The volume of each focusing spot is reduced 

by about seven times and the axial resolution is only one-fourth of that in a single lens 

system with the same parameters. The influence of optical axes mismatching and foci 

shifting on the focusing performance is also investigated. The focusing system with the 

complex amplitude filter permits a large focus shifting because of the elongated depth of 

focus. It is expected that this research can be further used in the field such as nanoparticle 

optical trapping and manipulating. 

 

Finally, the general form of complex amplitude filters has been discussed. To address the 

optical power attenuation and the difficulty of fabrication issues of the complex amplitude 

filter because of its continuous varying profile, binary optics filter is designed using 

trigonometric Fourier series method. The focusing performance has been demonstrated and 

results show that binary optics filter can achieve the same focusing field shaping 

performance as the cosine function based complex amplitude filter. The binary optics filter 

also has the benefit of no significant power attenuation problem and it is much easier to 

fabricate than the complex amplitude filter with a continuous varying profile. 
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CHAPTER 4  NEAR-FIELD PHOTONIC NANOJET SHAPING 
USING CYLINDRICAL VECTOR BEAMS 

 

In the previous chapter, cylindrical vector beams, such as radially polarized DG and BG 

are introduced into a high NA focusing system to achieve various unique sub-wavelength 

focusing patterns. In this chapter, cylindrical vector beams are used to illuminate dielectric 

microspheres in order to generate near-field sub-wavelength PNJs. Results show that one 

can precisely engineer the overall shape, intensity, location, and transverse and longitudinal 

size of the generated PNJ by controlling the polarization and the amplitude profile of the 

illumination beam. 

 

When a microparticle such as a microsphere or microcylinder is properly illuminated, it 

can diffract light to form a tight focusing spot near the surface of the microparticle. This 

non-resonant near-field focusing spot is called photonic nanojet [69]. PNJ emerges at the 

shadow-side of the illuminated microparticle as a highly confined, high intensity sub-

wavelength electromagnetic hot spot. It was first reported in 2004 [69], [72] when the 

group was studying the scattering of plane waves by lossless dielectric microcylinders and 

microspheres. Due to their special characteristics, PNJs have been widely studied in 

applications such as super-resolution imaging [91], [93], [97], [174] - [177], biomedical 

sensors [94] - [97], nanoparticle detection and manipulation [178], [179], all-optical 

switching [180] - [181], nano-photolithography [182] - [186], and Raman signal 

enhancement [187] - [189]. In addition to regular shaped microspheres and microcylinders, 

researchers have started looking into PNJs generated by microparticles of other shapes. 

Micro-cuboids [76] - [77], micro-disks [78] - [79], core-shell microspheres [80] - [81], 

micro-axicons [82] - [84], micro-spheroids [85] - [87], truncated microspheres [88], liquid 

crystals filled micro shells with controlled tuning of the refractive index [89] have all been 

explored to understand the characteristics of the generated PNJs and their potential 

applications. 

 

The mechanism for generating a PNJ is a complex scattering, refraction and diffraction 

process. Previous research results have shown that PNJ emerges because of the 
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constructive interference between the illumination field, the scattered field, and the 

diffracted field [74]. To better understand the generation mechanism of PNJs, systematic 

studies have been conducted to investigate the impact of various parameters such as 

refractive index contrast, microparticle size and shape, and illumination wavelength on the 

generated PNJs [190]. Several approaches have been proposed and experimentally 

investigated to control and manipulate the intensity, lateral and/or longitudinal dimension 

of PNJs. For example, various functional structures have been fabricated on the 

microsphere [191] - [194] to achieve modification of the beam size and working distance 

of the photonic nanojet. However, plane waves were frequently used as the incident beams 

in most of the published literature. Only a few research groups adopted laser beams in their 

research. Laser source was used when Kim et al. experimentally observed and engineered 

PNJs in 2011 [90]. Later in 2014, Han et al. studied Gaussian beam [86] and zero-order 

Bessel beam [87] scattering by micro-spheroids. Gaussian beam was also used to generate 

highly confined PNJs from a crescent-shape refractive index profile in microsphere [195]. 

 

In addition, the polarizations of the incident beams also have an impact on the generated 

PNJs. In 2017, Darafsheh et al. analyzed the properties of the PNJs generated by dielectric 

microcylinders as a function of different key parameters [190]. These parameters included 

the size and refractive index of the microcylinder, index contrast between the microcylinder 

and the surrounding medium, shape of the microcylinder, polarizations, and wavelength of 

the incident plane wave light. In their study, only linearly polarized plane waves were 

examined. The results showed that higher intensity and smaller PNJ beam waist was 

achieved when the incident light was polarized perpendicular to the orientation of the 

microcylinder compared with the case when incident light was polarized parallel to the 

microcylinder. Also mentioned in [190], micro-particles illuminated by radially polarized 

beams can achieve tighter focusing and this effect is expected to be more pronounced with 

microspheres than with microcylinders due to the geometrical symmetry effect. Kim et al. 

[90] experimentally investigated how the wavelength, amplitude distribution, polarization, 

and a break in symmetry of the axial-symmetric structure of the illumination light affected 

the position, localization and shape of the PNJs. In their experiment results, hollow PNJs 
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were clearly observed from microspheres illuminated by a cylindrical vector laser beam 

with an azimuthal polarization. 

 

In this chapter, characteristics of the PNJs generated from microspheres illuminated by 

different polarized beams were explored using the FDTD numerical calculation method. 

The polarized beams included linearly polarized beams, circularly polarized beams, 

radially polarized beams, and azimuthally polarized beams. Our work showed how the 

polarization of the illumination beam affected specific properties of the generated PNJ. 

These results will enhance our ability to engineer PNJs for various applications in different 

fields such as super-resolution imaging, nano-particle detection and trapping, and 

microparticle-assisted biomedical sensors.  

 

4.1   NUMERICAL STUDY MODEL 

 

The geometry of the numerical study model and the corresponding characteristic 

parameters of the generated PNJ are shown in Figure 36. The microsphere with a diameter 

of D and a refractive index of 𝑛𝑝 was surrounded by a medium with a refractive index of 

𝑛𝑚. The microsphere was illuminated by a polarized beam with a free space wavelength 

of 𝜆. So, the wavelength in the medium was 
𝜆

𝑛𝑚
.  In this work, we studied the impact of 

illumination polarizations on the obtained PNJs by characterizing the following 4 important 

parameters: the maximum field intensity, the effective focal length (EFL), the transverse 

and the longitudinal sizes of the PNJ. EFL was measured from the center of the microsphere 

to the maximum intensity point of the PNJ. The transverse and longitudinal sizes were 

represented by FWHM of the PNJ electric field distribution. 
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Figure 36 Schematic illustration of the model of PNJ generated by a microsphere 

 

FDTD is a widely used numerical analysis method for computational electrodynamics. 

Time dependent Maxwell’s Equations can be discretized in time and space and then solved 

in a leapfrog manner. It was used by [69] in 2004 to first demonstrate the existence of PNJs. 

FDTD numerical calculations were performed for our model to systematically investigate 

the influence of illumination polarizations on PNJs. Based on the theoretical study results 

in [190] and experimental work in [90], we chose a polystyrene (PS) microsphere (𝑛𝑝=1.6) 

with a diameter D of 10 µm immersed in air (𝑛𝑚=1) for calculation. These parameters were 

chosen so that sub-wavelength PNJs can always be obtained outside of microspheres for 

different illumination scenarios. In addition to the regular plane wave illumination cases, 

linearly, circularly, radially and azimuthally polarized Gaussian beams were carefully 

examined. Figure 37 illustrates the amplitude profiles and the polarization patterns of the 

4 types of polarized Gaussian beams [113] applied to the microsphere model. The 

illumination wavelength was chosen as 𝜆 = 532 nm. In all cases, the illumination source 

was coherent and assumed to propagate along the z-axis. So 𝐸𝑧 component of the 

illumination beam was set to zero to indicate that it was transversely polarized at the source 

plane before illuminating the microsphere. 
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Figure 37 Illustration of the amplitude profiles and the polarization of the linearly (a), circularly 

(b), radially (c), and azimuthally (d) polarized Gaussian beams. The amplitude distribution is 

normalized to the maximum amplitude for each of the polarization states. 

 

When a polarized light beam propagates through a microsphere, its polarization state is 

modulated by the microsphere as illustrated in Figure 38. This polarization modulation 

phenomenon significantly affects the near-field intensity distribution and generates 

different types of PNJs. By studying the microsphere’s near-field focusing performance, 

PNJs can be engineered for different application scenarios. 

 

 
 

Figure 38 Illustration of polarization conversion by microspheres for (a) linear polarization, (b) 

circular polarization, (c) radial polarization, and (d) azimuthal polarization. The signs ⊗ and ⊙ 
indicate the polarization of electromagnetic field pointing in and out of the plane, respectively. 
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Numerical error always exists, and the calculation results will never give exactly the correct 

solution. Therefore, it is important to understand the sources of numerical errors and 

methods that can be taken to reduce the error to an acceptable level for a specific model. It 

is desirable to balance between an acceptable level of error and the computational costs 

because reducing the error often involves increased calculation time and computational 

resources.   

 

When Maxwell’s equations are examined in FDTD, the updated value of the electric field 

in time at any point in space is dependent on the current value of the electric field and the 

numerical curl of the local distribution of the magnetic field in space. The magnetic field 

value can be updated in a similar manner. However, it becomes quite complicated to 

calculate the numerical curl when considering multiple dimensions. In 1966, Kane Yee 

[115] proposed spatially staggering the vector components of the electric field and 

magnetic field about rectangular unit cells of a Cartesian grid so that each electric field 

vector component is located midway between a pair of magnetic field vector components, 

and conversely. This scheme is known as Yee lattice, and remains at the core of many 

FDTD software. In addition, Yee proposed a leapfrog scheme for marching in time wherein 

the electric field and magnetic field updates are staggered so that the electric field updates 

are conducted midway during each time-step between successive magnetic field updates, 

and conversely. The explicit time-stepping scheme avoids the need to solve equations 

simultaneously, but it requires an upper bound on the time-step to ensure numerical 

stability. Generally, there are several sources of error that need to be considered in FDTD 

models. 

 

First, the perfectly matched layer (PML) boundary condition. PML boundary conditions 

are implemented as an absorbing material and used to absorb incident light with minimal 

reflections. In practice, there will always be a small amount of reflections due to the 

discretization of the PML equations. The reflection from the PML can re-interfere with the 

source or the true scattered fields leading to incorrect results. This error can be monitored 

and minimized by adjusting the incident angle. Increasing the number of PML layers can 

also reduce the reflection.  
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Second, FDTD Yee grid error. In the FDTD numerical calculation process, the material at 

each position of the Yee cell is evaluated first to determine which material it is in. Then 

the electric field at that location is calculated using only that specific material property. 

One problem with the discretized Yee cell model is that it is unable to resolve structure 

variations occurs within any Yee cell and causes grid dispersion error. The dispersion 

relation on the FDTD grid is not identical to the free space case when the spatial and 

temporal mesh sizes are finite. Another problem is that it causes geometric error. It is 

impossible to resolve arbitrary geometric features when the spatial and temporal mesh sizes 

are finite. In principle, this type of error can be minimized by reducing the spatial and 

temporal mesh to 0. But computers always have finite precision numbers and there is 

always a limit to how small the mesh size can be used without introducing other type of 

numerical errors. In this numerical calculation model, non-uniform graded mesh has been 

utilized to reduce the FDTD grid dispersion and geometric errors in a highly 

computationally efficient way. 

 

Third, finite sized temporal mesh. When the size of the temporal mesh is finite, the 

permittivity is not exactly the same as the theoretical model used to describe dispersive 

materials.  

 

As discussed above, numerical calculation results will never give the “correct” answer, but 

more accurate solution is usually not available for a lot of models in practice. In order to 

determine the possible sources of error and quantify the level of error from the FDTD 

numerical calculation model, convergence testing of results from an FDTD simulation is 

necessary. To understand the convergence of a certain model, one can vary certain 

parameters, such as the mesh size, in multiple steps.  

 

∆𝜎(𝑖) = √
∫[𝜎(𝑖)−𝜎(𝑖−1)]2𝑑𝜆

∫[𝜎(𝑖)]2𝑑𝜆
     (4.1) 
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where i=1, …, N is the calculation step, 𝜎𝑖 and 𝜎𝑖−1 represent the numerical calculation 

results of the parameter under testing at adjacent calculation steps. Ideally, we want to find 

the point where this quantity becomes zero which means the results stop changing. In 

practice, we usually see that ∆𝜎(𝑖) becomes flat at certain point which means that the error 

in the model is dominated by another parameter, but this parameter under testing still has 

a contribution to the calculation error. It is also useful to considering the absolute error: 

 

∆𝜎𝑎(𝑖) = √
∫[𝜎(𝑖)−𝜎(𝑁)]2𝑑𝜆

∫[𝜎(𝑖)]2𝑑𝜆
     (4.2) 

 

This definition can give us a good estimate of the absolute error if we assume the result for 

a certain parameter under testing at step N is much closer to the “correct” solution than at 

step i. Note that this definition won’t give a good estimate when i is approaching N where 

the error will be significantly underestimated. Nonetheless, these quantities will give us the 

best estimate of errors in the absence of the exact solution. 

 

The materials used in the microsphere focusing model are not highly dispersive in the 

optical range, but the microsphere has a smooth curved surface. It is challenging to resolve 

a smoothly varying surface using Yee grid. However, this issue can be addressed by 

reducing the mesh size because the microsphere structure is micrometer scale. Specifically, 

non-uniform graded mesh has been applied to the critical region including the incident side 

and the shadow side of the microsphere to reduce the FDTD grid error in a highly 

computationally efficient way. The convergence testing process starts with the 

investigation of PML boundary condition because the mesh size parameter takes longer 

time to optimize. Due to the complexity of three-dimensional simulations and the limitation 

on computational resources, the contribution from each source to the overall error below 

10-3 (0.1%) is considered acceptable in this model. In order to meet this goal, 8 layers of 

PML is used and 10 μm (approximately 20λ) is chosen as the distance from the structure 

to the PML. The minimum mesh size at the critical region is set at 1 nm after convergence 

testing. 
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4.2   PLANE WAVE ILLUMINATION  

 

Due to its simplicity, a plane wave is frequently used to generate a PNJ [69], [72], [190]. 

In this study, we showed the PNJ generated in our model with a linearly polarized plane 

wave illumination as the first step. Then a circularly polarized plane wave was introduced 

to our model. The results for the linearly polarized plane wave illumination case were used 

as a reference to evaluate other cases in the following sections. 

 

4.2.1  Linear polarization 

 

When a microsphere is illuminated by the x- axis linearly polarized plane wave, the total 

field intensity |𝐸𝑡|
2distribution of the PNJ in the transverse plane (xy-plane) shows an 

elongated shape along the illumination light polarization direction as shown in Figure 

39(a). The |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2 components, normalized to the maximum total intensity, 

are also shown in Figure 39(b)-(d). Obviously, the |𝐸𝑥|
2 component dominates the 

generated PNJ and the |𝐸𝑦|
2
 component is nearly zero in the transverse plane. However, it 

is worth mentioning that a longitudinal component |𝐸𝑧|
2 is also introduced by the 

microsphere in the transverse plane. The explanation is that light rays converge strongly, 

and their polarization rotates accordingly when they pass through the microsphere as 

illustrated in Figure 38(a). Clearly, both |𝐸𝑥|
2 component (black arrow) and |𝐸𝑧|

2 

component (blue arrow) exist after polarization conversion. The black arrows pointing in 

the same direction meaning |𝐸𝑥|
2 components have a same phase, and thus constructive 

interferences are shown on the optical axis. However, the blue arrows on the upper part 

and lower part of the microsphere pointing in the opposite directions means a π phase 

difference is introduced in the |𝐸𝑧|
2 components. Hence, destructive interferences occur at 

the center and constructive interferences occur at outer regions. The longitudinal 

component is not as strong as the |𝐸𝑥|
2 component, but it still has a significant contribution 

to the total field and produce a PNJ with an elongated shape along the x-axis in the 

transverse plane. Intuitively, in the case of the y-axis linearly polarized plane wave 
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illumination, the PNJ will show the same elongated shape but the long axis will be parallel 

to the y-axis.  

 

The intensity distributions of the total field, the |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2 components in the 

longitudinal plane (xz-plane) are shown in Figure 39(e)-(h). The white curves in these 

figures represent the microsphere surface. A high intensity sub-wavelength near-field PNJ 

is obtained.  

 
 

Figure 39 Transverse and longitudinal electric field intensity distribution of the PNJ generated with 

the x-linearly polarized plane wave illumination. (a)-(d) intensity distribution of total field, |𝐸𝑥|
2, 

|𝐸𝑦|
2
, and |𝐸𝑧|

2 components in the transverse plane, respectively. (e)-(h) intensity distribution of 

total field, |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2components in the longitudinal plane, respectively. All the data 

are normalized to the maximum total intensity and the white curve in the bottom figures represent 

the microsphere surface unless otherwise specified. The calculation parameters, λ = 532 nm, 𝑛𝑚 =
1.0, 𝑛𝑝 = 1.6, D = 10 µm, remain unless otherwise specified. 

 

The intensity profile of different components along the x-, y- and z- axes are shown in 

Figure 40. The normalized maximum intensity in the total field is |𝐸𝑡|
2 |𝐸0|

2⁄ = 599, 

where |𝐸0|
2 represents the incident intensity. We can see from Figure 39 that the 

contribution from |𝐸𝑦|
2
component is negligible because the incident field is purely x- axis 

linearly polarized. Along the x-axis (Figure 40(a)), |𝐸𝑧|
2component has two peaks and the 

intensity of the peaks are approximately 20% of the maximum total field intensity. The 

distance between these two peaks is 380 nm. The existence of these two peaks causes the 
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slight expansion of the width of the PNJ in the x-axis direction. Along the y-axis (Figure 

40(b)), the total field |𝐸𝑡|
2 is almost identical to |𝐸𝑥|

2. Due to the asymmetric contribution 

of the |𝐸𝑧|
2component on the x- and y- axes, the generated PNJ shows an elongated shape 

in the transverse plane accordingly. The FWHM of the total intensity along the x-axis, 𝑑𝑥, 

is approximately 400 nm while the dimension along the y-axis, 𝑑𝑦, is approximately 260 

nm. Considering the incident wavelength is 532 nm, the lateral dimension of the generated 

PNJ on the y-axis is less than λ/2. In the z-axis direction as shown in Figure 40, there are 

multiple intensity peaks inside the microsphere. The dimension of the PNJ in the 

longitudinal direction is also much larger than in the transverse plane. The EFL defined as 

the distance from the center of the microsphere to the point where the maximum intensity 

of the PNJ is located is 5.05 µm. Note that the radius of the microsphere is 5 µm. Since the 

maximum intensity point is very close to the surface of the microsphere and the field 

distribution inside the microsphere is quite complex in the longitudinal direction. It is not 

feasible to use FWHM to represent the longitudinal size of the PNJ. In fact, the longitudinal 

size of PNJ 𝑑𝑧 is defined as a measurement starting from the maximum intensity point to 

one of the half maximum point which is located in the opposite direction of the 

microsphere. In this case, 𝑑𝑧 = 530 nm, is about the size of one wavelength. 

 

 
 

Figure 40 Intensity distribution of PNJ generated with the x-linearly polarized plane wave 

illumination in the transverse plane along the (a) x-, (b) y- axes, and in the longitudinal plane along 

the (c) z-axis, respectively. The light blue shading in (c) indicates the field intensity variations 

inside the microsphere. 
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4.2.2  Circular polarization 

 

In many applications, the elongated shape in one direction of the focusing field in the 

transverse plane under linear polarization illumination condition is undesirable. In contrast, 

a circularly polarized plane wave illumination can produce a perfectly symmetric focusing 

spot with respect to the optical axis in the transverse plane, as shown in Figure 41(a). In 

this case, the contribution of the two transverse components |𝐸𝑥|
2 and |𝐸𝑦|

2
 are identical. 

The field distribution results in the transverse plane in Figure 41(b) and (c) demonstrate 

that |𝐸𝑥|
2 and |𝐸𝑦|

2
 components have similar shape and intensity. Figure 42 (a) and (b) 

quantitatively verify that |𝐸𝑥|
2 and |𝐸𝑦|

2
 components are equivalent in this case. In the 

meantime, the |𝐸𝑧|
2component also has a contribution to the total field similar to the linear 

polarization case even though its contribution is much smaller compared to the |𝐸𝑥|
2 and 

|𝐸𝑦|
2
 components. It should be noted that the |𝐸𝑧|

2component is ring-shaped (Figure 

41(d)) as opposed to two peaks along one axis (Figure 39(d)) due to the time-varying nature 

of the electric field vectors of the circular polarization state. Therefore, a symmetric spot 

in the transverse plane is obtained when these components are added together to form the 

PNJ. The disadvantage of the ring-shaped |𝐸𝑧|
2 component is that it tends to enlarge the 

size of the generated PNJ in the transverse plane. 

 

Detailed electric field data can be extracted from Figure 42 to characterize the obtained 

PNJ. The normalized maximum intensity in the total field is still |𝐸𝑡|
2 |𝐸0|

2⁄ = 599 and 

the EFL remains 5.05 µm since it’s still under plane wave illumination condition. The only 

difference here is the polarization state. The |𝐸𝑥|
2 and |𝐸𝑦|

2
 components each contribute 

approximately 50% to the maximum total intensity. While the maximum intensity of the 

|𝐸𝑧|
2component only reaches approximately 12% of the maximum intensity of the total 

field. The transverse dimensions of the total field are 𝑑𝑥 = 𝑑𝑦 = 320 nm. Considering 

both the |𝐸𝑥|
2 and |𝐸𝑦|

2
 components only have a transverse size of 280 nm, it is clear to 

see the negative impact of the |𝐸𝑧|
2component on expanding the transverse size of the 

generated PNJ. 
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Figure 41 Transverse and longitudinal electric field intensity distribution of the PNJ generated with 

the circularly polarized plane wave illumination. (a)-(d) intensity distribution of total field, |𝐸𝑥|
2, 

|𝐸𝑦|
2
, and |𝐸𝑧|

2 components in the transverse plane, respectively. (e)-(h) intensity distribution of 

total field, |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2components in the longitudinal plane, respectively.  

 

 
 

Figure 42 Intensity distribution of PNJ generated with the circularly polarized plane wave 

illumination in the transverse plane along the (a) x-, (b) y- axes, and in the longitudinal plane along 

the (c) z- axis, respectively. 

 

In practice, a circularly polarized beam can be obtained using a quarter-wave plate to 

convert a linearly polarized beam into either left or right circular polarization states. 

Alternatively, liquid crystal devices such as spatial light modulators can be used to 

modulate laser light at will. Since right and left circular polarization possess the same 

symmetry characteristics, this research only shows results for right circular polarization.  

For the elliptical polarization illumination, the shape of the PNJ in the transverse plane 
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varies continuously between the shapes of the linear cases and the circular cases depending 

on the phase and the strength of the two polarization axes.  

 

4.3   GAUSSIAN BEAM ILLUMINATION  

 

Most lasers produce a beam that can be approximated as a Gaussian beam whose electric 

and magnetic field amplitude profiles are characterized by the Gaussian function. Here, the 

electric field amplitude profile of the Gaussian beam is defined as 𝐸 = exp (−
𝑥2+𝑦2

𝜔0
2 ), 

where 𝜔0 is the beam waist radius, x, and y are rectangular coordinates.  The beam size 

was set to 𝜔0 = 5 μm so that the Gaussian beam can fully illuminate the microsphere. As 

for the polarization state of the Gaussian beam, two new polarization states - radial and 

azimuthal polarizations - are thoroughly studied. The amplitude profiles and the 

polarizations of these four types of polarized Gaussian beams are shown in Figure 37. 

 

4.3.1  Linear polarization 

 

In the case of linearly polarized Gaussian beam illumination, the results are shown in 

Figure 43 and Figure 44. Compared to the linearly polarized plane wave, the electric field 

intensity distributions have almost the same shape due to the same polarization state. The 

|𝐸𝑥|
2 component still has the most contribution to the total field in the x-linearly polarized 

Gaussian beam illumination scenario. The |𝐸𝑦|
2
component has nearly zero presence in the 

total field. The two weak peaks of the |𝐸𝑧|
2 component, which are approximately 13% of 

the maximum total intensity and located 420 nm apart, slightly expand the total field in the 

x-axis direction.  

 

In addition to the influence of the polarization state, the source intensity profile difference 

also has an obvious impact on the PNJ. First, the normalized maximum intensity in the 

total field is |𝐸𝑡|
2 |𝐸0|

2⁄ = 206, a smaller number compared to the plane wave case. Note 

that the source amplitude is set to 1 for both the plane wave and the Gaussian beam in our 



 

 

95 

 

calculation. Therefore, the maximum intensity in the total field is lower in the Gaussian 

beam case simply because the Gaussian beam pumps less energy into the system. In 

practice, laser beams usually have very high intensity so the obtained PNJs under laser 

beam illumination can also achieve very high intensity. 

 

 
 

Figure 43 Transverse and longitudinal electric field intensity distribution of the PNJ generated with 

the linearly polarized Gaussian beam illumination. (a)-(d) intensity distribution of total field, |𝐸𝑥|
2, 

|𝐸𝑦|
2
, and |𝐸𝑧|

2 components in the transverse plane, respectively. (e)-(h) intensity distribution of 

total field, |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2components in the longitudinal plane, respectively. 

 

 
 

Figure 44 Intensity distribution of PNJ generated with the linearly polarized Gaussian beam 

illumination in the transverse plane along the (a) x-, (b) y- axes, and in the longitudinal plane along 

the (c) z-axis, respectively. 

 

Second, compared with the plane wave excitation mode, the obtained PNJs have almost 

the same transverse dimensions but a much larger longitudinal size for the Gaussian beam 

excitation mode. The transverse dimensions of the generated PNJ, which are 𝑑𝑥 =
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400 nm, 𝑑𝑦 = 320 nm, and the longitudinal dimension 𝑑𝑧 = 620 nm can be obtained 

from Figure 44. Also, the EFL is 5.16 µm in the Gaussian beam illumination scenario 

compared to an EFL of 5.05 µm in the plane wave case. So, the PNJs emerge at a location 

farther away from the surface of the microsphere than those generated by the plane waves. 

These phenomena can be explained by the spherical aberration effect of the microsphere 

[112].  Light rays that strike a spherical surface off-center are refracted more than ones that 

strike close to the center.  Spherical aberration causes the incoming light to end up focusing 

at different points after propagating through a spherical object. The object under study here 

is a perfect microsphere so it has strong spherical aberration. The illumination beam is a 

Gaussian beam which has high intensity along the optical axis and a relatively low intensity 

in the outer region. Therefore, the center of the Gaussian beam will have a much larger 

contribution to the focusing field than the outer part. That’s why the location of the 

maximum intensity point in the longitudinal direction moved away from the microsphere 

surface when the illumination light changed from a plane wave to a Gaussian beam. 

 

4.3.2  Circular polarization 

 

Figure 45 and Figure 46 show the results for the circularly polarized Gaussian beam 

illumination case. As discussed in the previous section, the shape of the PNJ in the 

transverse plane is very similar to the plane wave illumination except for some details 

caused by the source intensity profile difference.  

 

The normalized maximum intensity in the total field is the same as the linearly polarized 

Gaussian beam case |𝐸𝑡|
2 |𝐸0|

2⁄ = 206. The total field in the transverse plane is symmetric 

with respect to the optical axis and the transverse dimensions are 𝑑𝑥 = 𝑑𝑦 = 360 nm. Both 

the |𝐸𝑥|
2 and |𝐸𝑦|

2
 components have a transverse size of 320 nm. Even though the 

longitudinal component |𝐸𝑧|
2 is very weak. The peak intensity of |𝐸𝑧|

2 only accounts for 

approximately 7% of the maximum total intensity. It still has a negative influence of 

expanding the transverse size of the PNJ from 320 nm to 360 nm. In the longitudinal 
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direction, 𝑑𝑧 = 620 nm and EFL = 5.16 µm remain the same as the linearly polarized 

Gaussian beam case. Strong spherical aberration still exists. 

 

 
 

Figure 45 Transverse and longitudinal electric field intensity distribution of the PNJ generated with 

the circularly polarized Gaussian beam illumination. (a)-(d) intensity distribution of total field, 

|𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2 components in the transverse plane, respectively. (e)-(h) intensity 

distribution of total field, |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2components in the longitudinal plane, respectively. 

 

 
 

Figure 46 Intensity distribution of PNJ generated with the circularly polarized Gaussian beam 

illumination in the transverse plane along the (a) x-, (b) y- axes, and in the longitudinal plane along 

the (c) z- axis, respectively. 
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4.3.3  Radial polarization 

 

As depicted in Figure 37(c), radially polarized Gaussian beam has all the field vectors 

aligned in the radial direction. The amplitude profile shows a null center in the transverse 

plane due to the transverse field continuity [113]. The PNJ produced by a radially polarized 

Gaussian beam is presented in Figure 47. In the transverse plane, all three components have 

significant contributions to the total field. If we examine the polarization conversion effect 

by the microsphere as depicted in Figure 38(c), we can see that the radial components of 

the light rays after the microsphere (black arrows) have opposite directions for the upper 

and lower parts, which means a π-phase difference is introduced for the radial component. 

Thus, destructive interference occurs on the optical axis for |𝐸𝑥|
2 and |𝐸𝑦|

2
components. 

Zero intensity in the center and two peaks along the x-axis and y-axis can be expected for 

the |𝐸𝑥|
2 and |𝐸𝑦|

2
components. As for the longitudinal component, the vectors (blue 

arrows) are all pointing in the same direction, which means they are all in phase, so the 

electric field has constructive interferences on the optical axis. 

 

 
 

Figure 47 Transverse and longitudinal electric field intensity distribution of the PNJ generated with 

the radially polarized Gaussian beam illumination. (a)-(d) intensity distribution of total field, |𝐸𝑥|
2, 

|𝐸𝑦|
2
, and |𝐸𝑧|

2 components in the transverse plane, respectively. (e)-(h) intensity distribution of 

total field, |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2components in the longitudinal plane, respectively. 

 

The normalized maximum intensity in the total field is |𝐸𝑡|
2 |𝐸0|

2⁄ = 300. If we examine 

the field intensity data of each component along the x-, y-, and z- axes, as shown in Figure 
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48, it is obvious that the longitudinal component |𝐸𝑧|
2 has the major contribution to the 

total field. But the two transverse components  |𝐸𝑥|
2 and  |𝐸𝑦|

2
 expand the transverse 

dimension of the PNJ substantially. Specifically, the maximum intensity of |𝐸𝑥|
2 and  |𝐸𝑦|

2
 

can reach as high as 33% of the maximum total intensity. The distance between these two 

peaks is 440 nm. The transverse components |𝐸𝑥|
2 and  |𝐸𝑦|

2
  cause the FWHM of the 

total field  |𝐸𝑡|
2 in the transverse plane to expand up to 400 nm, while the FWHM of the 

|𝐸𝑧|
2 component in the transverse plane is only 260 nm.  

 

Along the optical axis, the longitudinal size of PNJ 𝑑𝑧 is only 160 nm, well below half of 

the illumination wavelength. A very small EFL of 5.01 µm also occurred in this 

illumination mode. In contrast to the near-field numerical calculation results, a similar 

effect is also demonstrated in a far-field high NA focusing system [113]. Theoretically, 

three-dimensional sub-diffraction limited PNJ can be achieved if we can design a method 

to suppress the contribution from the radial component while enhancing the contribution 

from the longitudinal component at the same time.  

 

 
 

Figure 48 Intensity distribution of PNJ generated with the radially polarized Gaussian beam 

illumination in the transverse plane along the (a) x-, (b) y- axes, and in the longitudinal plane along 

the (c) z- axis, respectively. 

 

 

4.3.4  Azimuthal polarization 

 

The polarization pattern and the amplitude profile for an azimuthally polarized Gaussian 

beam is depicted in Figure 37(d). The amplitude profile also shows a null center in the 
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transverse plane. Unlike the beams studied in the previous sections, azimuthally polarized 

Gaussian beam can generate a PNJ with a hollow center. In 2011, Kim et al. [90] 

experimentally observed a hollow PNJ when a 10 µm microsphere was illuminated by an 

azimuthally polarized laser beam. The existence of the hollow center is due to the fact that 

the orientation of the local polarization after the microsphere is orthogonal to the optical 

axis and no longitudinal component |𝐸𝑧|
2 exists, as is shown in Figure 38(d). The 

normalized maximum intensity enhancement achieved by the hollow PNJ outside the 

microsphere is |𝐸𝑡|
2 |𝐸0|

2⁄ = 300. The generated PNJ is purely transversely polarized. 

Hence, the contribution of |𝐸𝑧|
2 component is zero as shown in Figure 49(d). Also, due to 

the axial symmetrical nature of the azimuthally polarized beams, the field vectors located 

at the opposite end around the optical axis always have a π-phase difference. So, destructive 

interference can be expected on the optical axis for the |𝐸𝑥|
2 and |𝐸𝑦|

2
 components as 

shown in Figure 49(b) and (c). The ultimate effect is a hollow center formed in the total 

field in the transverse plane as depicted in Figure 49(a). The cross-section view of the PNJ 

with a hollow center is presented in Figure 49(e-h). 

 

 
 

Figure 49 Transverse and longitudinal electric field intensity distribution of the PNJ generated with 

the azimuthally polarized Gaussian beam illumination. (a)-(d) intensity distribution of total field, 

|𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2 components in the transverse plane, respectively. (e)-(h) intensity 

distribution of total field, |𝐸𝑥|
2, |𝐸𝑦|

2
, and |𝐸𝑧|

2components in the longitudinal plane, respectively. 
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Figure 50 Intensity distribution of PNJ generated with the azimuthally polarized Gaussian beam 

illumination in the transverse plane along the (a) x-, (b) y- axes, and in the longitudinal plane along 

the (c) maximum intensity in the z- axis direction, respectively. 

 

Figure 49(e) and (g) shows that the generated PNJ is extremely close to the surface of the 

microsphere. Intensity distribution of the PNJ outside of the microsphere in the transverse 

plane along the x- and y-axes are shown in Figure 50(a) and (b). The total field intensity 

along the z-axis is zero because all three components on the z-axis are zero. The generated 

PNJ has a hollow center in the azimuthal illumination case. Instead of showing all zero 

field intensities for the three components along the z-axis, Figure 50(c) shows the field 

intensity variations in the z-axis direction at a transverse maximum intensity point. It is 

worth mentioning that several extremely high field intensity hot spots exist inside the 

microsphere as shown in Figure 49(e) and (g), and Figure 50(c). Most of the energy is 

trapped inside the microsphere when it is illuminated with the azimuthally polarized 

Gaussian beam. 

 

To better understand the properties of this hollow PNJ, two important characterization 

parameters for the hollow PNJ are introduced. The size of the hollow center 𝑑ℎ𝑐 which is 

represented by the distance of the two maximum intensity peaks in Figure 50(a) or (b) is 

440 nm. More importantly, the thickness of the obtained hollow PNJ 𝑑𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 can be 

measured by the FWHM of the peaks in Figure 50(a) or (b) and it is below 200 nm in this 

calculation. This unique hollow PNJ has great potential in applications such as particle 

trapping and manipulation. 
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4.4  SUMMARY 
 

Table 3 exhibits the results of our numerical modelling of PNJs generated by plane waves 

and Gaussian beams with different polarizations. 

 

Table 3  Characteristics of PNJs generated by plane waves and Gaussian beams with different 

polarizations* 

 

Illumination Beam 

Maximum 
Intensity 

Transverse Plane |𝑬𝒕|
𝟐 

Longitudinal 

Plane |𝑬𝒕|
𝟐 

|𝐸𝑡|
2

|𝐸0|
2

 𝑑𝑥 (nm) 𝑑𝑦 (nm) 𝑑𝑧 (nm) EFL (µm) 

Linear 

Plane 
Wave 

599 400 260 530 5.05 

Gaussian 
Beam 

206 400 320 620 5.16 

Circular 
 

Plane 
Wave 

599 320 320 530 5.05 

Gaussian 
Beam 

206 360 360 620 5.16 

Radial 
Gaussian 

Beam 
300 400 400 160 5.01 

Azimuthal 
Gaussian 

Beam 
300 𝑑ℎ𝑐 = 440 nm; 𝑑𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 = 200 nm 

* 𝑑𝑥 is the FWHM of the total field intensity along the x-axis. 𝑑𝑦 is the FWHM of the total field intensity along the y-

axis. 𝑑𝑧 is defined as a measurement starting from the maximum intensity point of a PNJ to one of the half maximum 

point which is located at the opposite direction of the microsphere. EFL is the distance from the center of the microsphere 

to the point where the maximum intensity of the PNJ is located. 𝑑ℎ𝑐 is the diameter of the hollow center of a hollow PNJ 

which is represented by the distance of the two maximum intensity peaks along the x- axis or the y-axis. 𝑑𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠 is the 

thickness of a hollow PNJ which is represented by the FWHM of the total field intensity peaks along the x- axis or the y-

axis. 
 

After studying the PNJs generated by illumination beams with different intensity profiles 

and polarizations, we can draw the following conclusions. First, linear polarization causes 

the elongated shape of the PNJ in one direction in the transvers plane because of 

contributions from the |𝐸𝑧|
2 component. Sub-diffraction limit PNJs can still be achieved 

in the non-polarization direction in the transverse plane. Second, circular polarization can 

produce a PNJ whose transverse field intensity profile is symmetric with respect to the 

optical axis. Third, Gaussian beams with linear and circular polarization states generate 
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similar PNJs as their plane wave counterparts. But the spherical aberration is more evident 

in the Gaussian beam illumination scenario which causes the PNJs to emerge at a farther 

distance from the surface of the microsphere and exhibit a much larger longitudinal size. 

Forth, PNJs generated by radially polarized Gaussian beams are mainly formed by the sub-

diffraction limited longitudinal component |𝐸𝑧|
2. Generally, the transverse components 

|𝐸𝑥|
2 and |𝐸𝑦|

2
 greatly expand the transverse dimensions of the PNJs. However, a 3-D 

sub-diffraction limited PNJ can be achieved theoretically if one can suppress the radial 

components and enhance the longitudinal component simultaneously. Finally, azimuthally 

polarized Gaussian beams can generate a unique hollow PNJ which may be very useful in 

applications such as nanoparticle trapping.  

 
To thoroughly study the impact of the illumination polarization on the obtained PNJs, we 

numerically investigated the model of a polystyrene microsphere illuminated by plane 

waves and Gaussian beams with different polarizations. We started by studying the PNJs 

generated by linearly and circularly polarized plane waves. Then we explored PNJs 

obtained with linearly, circularly, radially, and azimuthally polarized Gaussian beams. To 

conclude, we have shown that the polarizations of the illumination beams have a significant 

impact on the properties of the obtained PNJs. By controlling the polarization and the 

amplitude profile of the illumination beam, one can precisely engineer the overall shape, 

intensity, location, and transverse and longitudinal size of the generated PNJ at will for 

different applications. Our study clarifies several important characteristics of PNJs 

generated with different illumination schemes. The results clearly showed that engineering 

the polarization of the illumination light is an effective method to generate different PNJs 

and to make them suitable for various application scenarios. 
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

 

In conclusion, this project theoretically studied the engineering of the focusing field in both 

far-field and near-field using optical vector beams in detail. 

 

In far-field, a radially polarized DG beam is studied first. The radially polarized doughnut 

Gaussian beam is introduced to a high numerical aperture focusing system to generate a 

sub-wavelength focal spot. The focusing characteristics are theoretically investigated based 

on the Richards-Wolf diffraction integral theory [113] - [116]. Numerical results show that 

a focusing spot with sub-wavelength lateral size and short DOF can be obtained when the 

radially polarized doughnut Gaussian incident beam is properly designed.  

 

To achieve long depth of focus, a cosine function based complex amplitude filter is 

designed to increase the length of DOF in a high NA focusing system. The cosine function 

based complex amplitude filter can split the focusing field into two or more components in 

the optical axis direction. In principle, the focusing field can be designed to achieve long 

DOF by optimizing the 𝑚𝑝 parameter of the complex amplitude filter.  

 

By taking advantage of the designed complex amplitude filter, hollow beams with a long 

focal depth are generated from a radially polarized BG beam with a second-order vortex 

phase filter. The null intensity on the optical axis is achieved by introducing the second-

order vortex. The long focal depth is a result of the amplitude filtering based on cosine 

functions and Euler transformation. Numerical results indicate that the DOF of a hollow 

beam is improved from 0.96λ to 3.4λ with a N = 2 complex amplitude filter design. The 

intensity distribution twist phenomenon of the x- and y-polarized components around the 

optical axis due to the introducing of the vortex phase is also discussed.  

 

A longitudinally polarized optical chain is generated in a 4π high NA focusing system. The 

radially polarized BG incident beam is modulated by a complex amplitude filter. 

Longitudinally polarized focusing spots with uniform intensity, high axial resolution and 
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small spot volume area are achieved using the carefully designed optical system. The 

number of the focusing spots in the optical chain can be designed by adjusting the 

parameters of the complex amplitude filter. As an example, a longitudinally polarized 

optical chain with seven uniform intensity focusing spots is demonstrated successfully. The 

volume of each focusing spot is reduced by approximately seven times and the axial 

resolution is only one-fourth of that in a single lens system with the same parameters. The 

influence of optical axes mismatching and foci shifting on the focusing performance is also 

discussed in detail. 

 

The impact of the illumination polarization on the obtained PNJs is numerically 

investigated for the model of a Polystyrene microsphere illuminated by plane waves and 

Gaussian beams with different polarizations. Both linearly and circularly polarized planes 

waves and linearly, circularly, radially, and azimuthally polarized Gaussian beams are used 

to generate PNJs. Results have shown that the polarizations of the illumination beams have 

a significant impact on the properties of the generated PNJs. By controlling the polarization 

and the amplitude profile of the illumination beam, one can precisely engineer the overall 

shape, intensity, location, and transverse and longitudinal size of the generated PNJ at will 

for different applications. The results clearly show that engineering the polarization of the 

illumination light is an effective method to generate different PNJs and to make them 

suitable for various application scenarios. 

 

For future work, different cylindrical vector beams can be generated using programmable 

liquid crystal on silicon (LCOS) spatial light modulator [196] - [198] and the designed 

complex amplitude filters can be implemented using binary optics. Its amplitude filtering 

performance can then be characterized. Experimental verification of the optical tube and 

optical chain needs to be performed. These unique focusing fields have great potential in 

various application scenarios. 

 

In this project, preliminary experimental work has been performed to investigate PNJs. 

Polystyrene microspheres were dispersed in liquid and then transferred to a coverslip using 

a pipette. The microspheres can be illuminated from the bottom side and the obtained PNJs 
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can be examined from the top side. The experiment was carried out using a Zeiss Axio 

Imager Z2 microscope. A 40× water immersion objective was used to observe the 

generated PNJs. This microscope system has a high precision three-dimensional motorized 

stage. Therefore, the focal plane can be scanned in the z direction at a high precision. In 

the experiment, a series of images were taken at different z level and then analyzed using 

an image processing software. PNJs were clearly observed at the top side close to the 

surface of the microspheres. The image data had also been used to quantify the location of 

the PNJs and characterize the lateral dimension of the generated PNJs. 

 

Due to the limitation of hardware resources available in the lab to generate various CVBs 

and observe the obtained PNJs in the near-field. Experimental verification of PNJs shaped 

by various optical vector beams is one of the most exciting works that can be done in the 

future. A LCOS module can be used to generate various CVBs and a near-field scanning 

optical microscope can be used to image the generated PNJs. This work could help 

researchers better understand the mechanism of PNJ generation and its ability for super-

resolution imaging. Integrated nano-micro structures that works effectively as amplitude 

or phase filters can be explored as well to further engineer the generated PNJs. 
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APPENDIX A   CODE FOR FAR-FIELD ANALYTICAL CALCULATION 
 

 

Matlab code example for the calculation of the focusing performance of a hollow Gaussian 

beam in a high NA focusing system. 
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APPENDIX B   SCRIPT FOR NEAR-FIELD NUMERICAL 
CALCULATION 

 

 

Example code for generating a radially or azimuthally polarized beam. 
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APPENDIX D   EXPERIMENTAL OBSERVATION OF PHOTONIC 
NANOJETS GENERATED BY MICROSPHERES 

 

 

I. Numerical results 

 

First, Finite-difference time-domain (FDTD) computational technique is used to solve 

Maxwell’s equations for this photonic nanojet generating model. We consider 

microspheres with a diameter of d = 15 μm and a refractive index of 𝑛𝑝 = 1.59 

(polystyrene) embedded in a medium of refractive index 𝑛𝑚 = 1.0  (air) or 1.33 (water). 

In the calculation process, linearly polarized plane waves propagate through the 

microsphere.  

 

Since the diameter of the microspheres studied here is 15 μm and the illumination light is 

in the visible region. The size parameter implies that ray optics can still be a good 

approximation. Using the geometrical optics theory, we can estimate that the effective focal 

length is around 9.33 µm in air and 19.80 µm in water. The effective focal length is defined 

as the distance from the center of a microsphere to the maximum intensity of the photonic 

nanojet. 

 
Figure 1 The contour map of the electric field distribution   

 

The FDTD analysis results are shown in Figure 1. We see that the electric field is scattered 

by the dielectric microsphere. The ripples inside and outside the microsphere are the results 

of the interference between the incident and the reflected waves. Apparently, a high 

intensity tight focusing spot can be observed at the exit interface of the microsphere. The 
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location, size and intensity of this focusing spot are controlled by the size of the spheres 

and the refractive index of both the microsphere and the surrounding medium. These are 

key parameters to study and careful considerations should be taken when selecting 

microspheres for specific applications. 

II. Experimental results 

 

The experiment was carried out using a Zeiss Axio Imager Z2 microscope. PS 

Microspheres were dispersed in liquid and transferred to a coverslip using a pipette. Then 

the sample was moved to the microscope stage. A 40× water immersion objective was used 

to investigate the photonic nanojet. Therefore, the surrounding medium is going to be water 

in this case. The microscope system has a high precision three dimensional motorized 

stage. So that it can be used to adjust the focal plane in the z direction and perform a z scan. 

In principle, the microscope can take a series of images at different z level. In this 

experiment, 77 images were taken at different z level and the resolution of the z direction 

movement is 500 nm. Therefore, the focal plane traveled a total of 38 µm in the z direction.  

 

High intensity photonic nanojet can be clearly observed from the images shown in Figure 

2. The effective focal length of the generated photonic nanojet can be extracted after 

analyzing the obtained images. 

 

Table 1 Comparison of effective focal length 

 

Physical 

Model 

Effective Focal Length 

Geometrical optics 

estimation 
FDTD analysis Experimental results 

PS in air 9.33 µm 8.83 µm - 

PS in water 19.80 µm 18.33 µm ~ 10 µm 

 

Table 1 summarizes the geometrical optics analysis, FDTD analysis and experimental 

results. As we can see that the two numerical calculation results are very close. However, 

there is a significant difference between the numerical results and the experimental results. 

Although there are many causes of this difference, we have identified two most important 



 

 

129 

 

components here: (1) the illumination is monochromatic light in the FDTD analysis 

whereas it is full spectrum white light in the experiment. (2) the coverslip in the experiment 

will change the illumination condition which in turn will cause errors in the experiment 

results.  

 

 
 

Figure 2 Experimental observation of photonic nanojet 

 


