RING EXTENSIONS WITH IDENTITY ELEMENT

by

Edward F. Card

Submitted in partial fullfillment of the requirements for the degree of Master of Science
at

Dalhousie University Halifax, Nova Scotia

August, 1994

DALHOUSIE UNIVERSITY DEPARTMENT OF MATHEMATICS, STATISTICS AND COMPUTING SCIENCE

The undersigned hereby certify that they have read and recommend to the Faculty of Graduate Studies for acceptance a thesis entitled "RING EXTENSIONS WITH IDENTITY ELEMENT"
by Edward F. Card in partial fulfillment of the requirements for the degree of Master of Science.

Supervisor:
Readers:

DALHOUSIE UNIVERSITY

DATE: \qquad 1994

AUTHOR:
Edward F. Card

TITLE:
Ring Extensions With Identity Element
\qquad
\qquad
\qquad

DEPARTMENT OR SCHOOL: Mathematics, Statistics And Computing

DEGREE: M.Sc. CONVOCATION: October YEAR: 1994

Permission is herewith granted to Dalhousie University to circulate and to have copied for non-commercial purposes, at its discretion, the above title upon the request of individuals or institutions.

Signature of Author

THE AUTHOR RESERVES OTHER PUBLICATION RIGHTS, AND NEITHER THE THESIS NOR EXTENSIVE EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED WITHOUT THE AUTHOR'S WRITTEN PERMISSION.

THE AUTHOR ATTESTS THAT PERMISSION HAS BEEN OBTAINED FOR THE USE OF ANY COPYRIGHTED MATERIAL APPEARING IN THIS THESIS (OTHER THAN BRIEF EXCERPTS REQUIRING ONLY PROPER ACKNOWLEDGEMENT IN SCHOLARLY WRITING) AND THAT ALL SUCH USE IS CLEARLY ACKNOWLEDGED.

Table of Contents

Abstract v
Acknowledgements vi
1 The Characteristic Function 1
1.1 Introduction 1
1.2 Epimorphs of the Ring of Integers 1
1.3 The Characteristic Function 19
2 Survey of Extension 30
2.1 Introduction 30
2.2 The Dorroh Construction 30
2.3 Complete Set of Extensions - The Brown and McCoy Construction 32
2.4 Robson's Construction 37
2.5 The Robson-Burgess/Stewart Construction 39
2.6 Regular Rings - Fuchs, Halperin and Funayama 42
3 Universality of the Dorroh Construction 50
3.1 The Universal Property 50
3.2 Category Theory 52
3.3 Adjunction 54
4 Properties of Robson-Burgess/Stewart Construction 59
4.1 Properties of R^{*} and R_{1} 59
5 Conclusion 79
Bibliography 80

Abstract

We will consider different methods which extend any given ring to a ring which contains an identity element. Each construction will be examined to determine properties which are retained by the extension if possessed by the original ring.

Acknowledgments

I would like to express my sincere gratitude to my supervisor, Professor Patrick Stewart, for his patience and guidance throught the creation of this thesis.

I would also like to thank my good friends, Dr. Michael Wendt, for his assistance in the area of Category Theory, and Todd Saulnier, for his assistance with the preparation of this manuscript.

I would also like to express my gratitude to my wife, Charlotte, for her love, support and encouragement while I was writing this thesis.

Finally, I would like to acknowledge my children, Ian and Lynn, my parents and other family members for their understanding and support while I was a masters student.

CHAPTER 1

The Characteristic Ring

§1.1 Introduction

In this thesis, we will examine various constructions which have been developed to extend a given ring to a ring with an identity element. One extension which we will examine, which preserves many of the properties of the original ring, is constructed by adjoining an epimorphic image of the ring of the integers to the original ring. For any given ring S, the Z-epimorph used in this construction is called the characteristic ring of S, and is uniquely determined by the additive structure of S. This chapter examines the epimorphs of the ring of integers and develops the notion of the characteristic function.

We begin the next section with a discussion of the structure of Z-epimorphs. First, given that a ring R is a Z-epimorph, it will be shown that it has one of three possible structures. Conversely, it will then be shown that any ring which has one of these three structures is a Z-epimorph. Results of this section are due to [CHEA 72, DICK 84, STOR 68].

The last section of this chapter develops the notion of the characteristic function. This characteristic function is uniquely determined by a given ring S, and associates with S a Z-epimorph, called the characteristic ring of S. Later chapters will use this characteristic ring to construct an extension of S which has an identity and preserves many properties of the original ring S.

§1.2 Epimorphs of the Ring of Integers

This section characterizes the epimorphisms of the ring of integers. As will be seen later, the "characteristic ring" $K(E n d S)$ of any arbitrary ring S will be defined
as an epimorphism of the ring of integers. This characteristic ring $K(E n d S)$ may be used to construct an extension of the original ring S which contains an identity element and preserves many of the properties of the original ring S.

In this section, each of the rings we will consider has an identity element, denoted 1. Where ambiguity may arise, the identity of any given ring S will be denoted 1_{S}. All homomorphisms $g: A \longrightarrow B$ will be assumed to satisfy $g\left(1_{A}\right)=1_{B}$. The ring of integers is denoted by Z, the field of rationals by Q, the natural numbers by N and the set of prime integers by P.

Definition 1.2.1 Given any two rings A and B, and a homomorphism $g: A \longrightarrow B$, we say that g is an epimorphism if, for any ring C and homomorphisms $f_{1}: B \longrightarrow C$ and $f_{2}: B \longrightarrow C$, we have $f_{1}=f_{2}$ if $f_{1} \circ g=f_{2} \circ g$. In this case, we call B an epimorph of A, or simply an A-epimorph.

Throughout this section the ring \underline{R} will denote a Z-epimorph through the epi$\underline{\text { morphism } f: Z \longrightarrow R}$. Of course, f is completely determined by $f(1)=1_{R}$.

Definition 1.2.2 Given a ring A, an additive abelian group W is a left A-module if there is a scalar multiplication, $*: A \times W \longrightarrow W$, defined for all a, b in A and for all w, x in W, satisfying:

1. $a *(w+x)=a * w+a * x$
2. $(a+b) * w=a * w+b * w$
3. $(a b) * w=a *(b * w)$
4. $1 * w=w$ in the case where A has an identity.

Right A-modules are defined similarly. W is said to be an A-bimodule if and only if W is both a left and a right A-module and $(a * w) * b=a *(w * b)$.

It should be noted that any ring S together with its additive operation + is an additive abelian group and therefore may be considered an A-module for some ring A in this way. We first require a lemma concerning modules, followed by a discussion regarding the structure of R.

Lemma 1.2.1 Let A and K be rings and $g: A \longrightarrow K$ a homomorphism. Then the scalar multiplications $*: A \times K \longrightarrow K$ and $*^{\prime}: K \times A \longrightarrow K$ defined by $a * k=g(a) k$ and $k *^{\prime} a=k g(a)$ for any a in A and any k in K, causes K to be an A-bimodule.

Proof. We note that $g(a)$ is an element of K for all a in A, and that the ring structure of K satisfies the four requirements which make K an A-bimodule, giving our desired result.

Definition 1.2.3 Given a ring A, a ring W is called an A-bimodule algebra if W is an A-bimodule and satisfies

$$
a *(w x)=(a * w) x=w(a * x)=(w x) * a=w(x * a)=(w * a) x
$$

for all $w, x \in W$ and all $a \in A$.

Corollary 1.2.1 Every ring K with identity is a Z-bimodule algebra.

We now consider a given Z-epimorph, R, and determine its structure. Later in this section we will show the converse, that any ring which is of one of three given structures is in fact a Z-epimorph. To begin, we prove the following lemma which shows that every Z-epimorph is commutative.

Lemma 1.2.2 [DICK 84] R is commutative.

Proof. Let $R[x]$ be the polynomial ring of R, and recall that $f: Z \longrightarrow R$ is the unique epimorphism from Z to R such that $f(1)=1_{R}$. Let I be the ideal of $R[x]$
generated by x^{2} and consider $R[x] / I$. For each element a of R we see that $(1-a x)+I$ is the multiplicative inverse of $(1+a x)+I$ since

$$
[(1+a x)+I][(1-a x)+I]=\left(1-a^{2} x^{2}\right)+I=1+I
$$

For a fixed element b of R we define two ring homomorphisms, as follows:

$$
f_{1}: R \longrightarrow R[x] / I
$$

where $f_{1}(r)=(1+b x) r(1-b x)+I$, and

$$
f_{2}: R \longrightarrow R[x] / I
$$

where $f_{2}(r)=r+I$. We see that $f_{1} \circ f=f_{2} \circ f$, so $f_{1}=f_{2}$ since f is an epimorphism. Thus for all r in R,

$$
r+I=(1+b x) r(1-b x)+I=r+b x r-r b x-b r b x x+I=r+(b r-r b) x+I
$$

Therefore $(b r-r b) x$ is an element of I. Since I is generated by x^{2}, we see that $b r-r b=0$, so $b r=r b$ proving that R is commutative.

Throughout this chapter, a tensor product over a ring S will be denoted by \otimes_{S}, except in the case where $S=Z$ when the subscript will be omitted. We now consider a tensor product, over Z, of a given Z-epimorph R and any ring K with identity. This tensor product $R \otimes K$ is shown to be a K-epimorph. This result is then used to show that when K is a field either $R \otimes K \simeq K$ or $R \otimes K \simeq 0$.

Lemma 1.2.3 For any ring $K, R \otimes K$ is a K epimorph.

Proof. Let $g_{1}: R \longrightarrow R \otimes K$ and $g_{2}: K \longrightarrow R \otimes K$ be the canonical homomorphisms of R and K into $R \otimes K$, respectively. Consider a ring T and two homomorphisms $h_{1}, h_{2}: R \otimes K \longrightarrow T$ such that $h_{1} \circ g_{2}=h_{2} \circ g_{2}$. We now look at the resultant diagram, where g is the unique homomorphism of Z into K.

We first note that, for any n in Z,

$$
\begin{aligned}
g_{1} \circ f(n) & =g_{1}\left(n 1_{R}\right) \\
& =n 1_{R} \otimes 1_{K} \\
& =1_{R} \otimes n 1_{K} \\
& =g_{2}\left(n 1_{K}\right) \\
& =g_{2} \circ g(n)
\end{aligned}
$$

and so the rectangle commutes (i.e. $g_{1} \circ f=g_{2} \circ g$).
Since $h_{1} \circ g_{2}=h_{2} \circ g_{2}$ by assumption, we have

$$
h_{1}(1 \otimes k)=h_{2}(1 \otimes k)
$$

for all k in K. Also, we see that $h_{1} \circ g_{2} \circ g=h_{2} \circ g_{2} \circ g$, so that $h_{1} \circ g_{1} \circ f=h_{2} \circ g_{1} \circ f$. Since f is an epimorphism we have that $h_{1} \circ g_{1}=h_{2} \circ g_{1}$, and so

$$
h_{1}(r \otimes 1)=h_{2}(r \otimes 1)
$$

for all r in R.
Thus, for all $r \otimes k$ in $R \otimes K$,

$$
\begin{aligned}
h_{1}(r \otimes k) & =h_{1}((r \otimes 1)(1 \otimes k)) \\
& =h_{1}(r \otimes 1) h_{1}(1 \otimes k) \\
& =h_{2}(r \otimes 1) h_{2}(1 \otimes k) \\
& =h_{2}(r \otimes k),
\end{aligned}
$$

and so $h_{1}=h_{2}$. Thus g_{2} is an epimorphism.

Lemma 1.2.4 For any field K either $R \otimes K \simeq K$ or $R \otimes K \simeq 0$.

Proof. Denote $R \otimes K$ by R_{K}. We consider the ring

$$
N=\left(\begin{array}{cc}
R_{K} & R_{K} \otimes_{K} R_{K} \\
0 & R_{K}
\end{array}\right)
$$

and note that the diagonal map

$$
h: R_{K} \rightarrow\left\{\left.\left(\begin{array}{ll}
x & 0 \\
0 & x
\end{array}\right) \right\rvert\, x \in R_{K}\right\}
$$

is an isomorphism. Denote by a the unit

$$
\left(\begin{array}{cc}
(1 \otimes 1) & (1 \otimes 1) \otimes_{K}(1 \otimes 1) \\
0 & (1 \otimes 1)
\end{array}\right)
$$

Note that

$$
a^{-1}=\left(\begin{array}{cc}
(1 \otimes 1) & (-1 \otimes 1) \otimes_{K}(1 \otimes 1) \\
0 & (1 \otimes 1)
\end{array}\right)
$$

For all k in K we have

$$
\begin{aligned}
& a\left(\begin{array}{cc}
1 \otimes k & 0 \\
0 & 1 \otimes k
\end{array}\right) a^{-1} \\
& =\left(\begin{array}{cc}
(1 \otimes k) & \left.(-1 \otimes k) \otimes_{K}(1 \otimes 1)+(1 \otimes 1) \otimes_{K}(1 \otimes k)\right) \\
0 & 1 \otimes k
\end{array}\right) \\
& =\left(\begin{array}{cc}
1 \otimes k & 0 \\
0 & 1 \otimes k
\end{array}\right)
\end{aligned}
$$

since

$$
\begin{aligned}
(-1 \otimes k) \otimes_{K}(1 \otimes 1) & =(-1 \otimes 1) k \otimes_{K}(1 \otimes 1) \\
& =(-1 \otimes 1) \otimes_{K} k(1 \otimes 1) \\
& =(-1 \otimes 1) \otimes_{K}(1 \otimes k)
\end{aligned}
$$

Thus the inner automorphism ϕ defined on N, which is determined by a, fixes the image of K in N.

Denote by $g: K \longrightarrow R_{K}$ the canonical homomorphism (epimorphism) and consider the diagram

$$
K \longrightarrow R_{K} \longrightarrow\left(\begin{array}{cc}
R_{K} & R_{K} \otimes_{K} R_{K} \\
0 & R_{K}
\end{array}\right) \xrightarrow{\longrightarrow}\left(\begin{array}{cc}
R_{K} & R_{K} \otimes_{K} R_{K} \\
0 & R_{K}
\end{array}\right)
$$

where i is the identity map and ϕ is the inner automorphism determined by a. Since $\phi=i$ on K and g is an epimorphism, we see that $\phi \circ h=i \circ h$. Let r be an element in R_{K}. Comparing the row 1 column 2 entries of $\phi \circ h(r)$ and $i \circ h(r)$ we see that

$$
\left(-r \otimes_{K} 1_{R_{K}}\right)+\left(1_{R_{K}} \otimes_{K} r\right)=0
$$

for all r in R_{K}, so

$$
\left(r \otimes_{K} 1_{R_{K}}\right)=\left(1_{R_{K}} \otimes_{K} r\right)
$$

We now consider R_{K} as a vector space over K and suppose $\operatorname{dim}_{K}\left(R_{K}\right)>1$. Then there exists an element x in R_{K} such that the set $\{1, x\}$ is linearly independent. Thus it follows that $\{x \otimes 1,1 \otimes x\}$ is linearly independent in the K-vector space $R_{K} \otimes_{K} R_{K}$. But this is a contradiction since we have shown $x \otimes 1=1 \otimes x$. Thus $\operatorname{dim}_{K}\left(R_{K}\right) \leq 1$ and so either $R_{K} \simeq K$ or $R_{K} \simeq 0$.

For results which follow, we require the following lemma which determines the zeros of tensor products. This lemma is stated without proof.

Lemma 1.2.5 [STEN 75] Let L be a right A-module and M a left A-module. Let $\left\{y_{i} \mid i \in I\right\}$ be a set of generators for M, for some index set I, and let $\left\{x_{i} \mid i \in I\right\}$ be a set of elements of L such that almost all $x_{i}=0$. Then $\sum x_{i} \otimes y_{i}=0$ in $L \otimes_{A} M$ if and only if there exists a finite set $\left\{u_{j} \mid j \in J\right\}$ of elements of L and a set $\left\{a_{j i} \mid i \in I, j \in J\right\}$ of elements of A such that
i) $a_{j i}=0$ for almost all (j, i);
ii) $\sum a_{j i} y_{i}=0$ for each j in J; and
iii) $x_{i}=\sum u_{j} a_{j i}$ for each i in I.

Definition 1.2.4 Let S be a ring and $S_{1}, S_{2}, \ldots S_{k}$ be right ideals of S. Then $S_{1} \oplus$ $\cdots \oplus S_{k}$ is a direct sum of right ideals of S if $S_{j} \cap \sum_{i=1, i \neq j}^{k} S_{i}=0$ for all $j=1,2, \ldots, k$.

We will require the following notation in the discussion to follow. Let $t_{p}(R)=$ $\left\{r \in R \mid p^{k} r=0\right.$ for some $\left.k \geq 1\right\}$, for any prime integer p. Let $t R=\oplus_{p \in P} t_{p}(R)$. Thus $t_{p}(R)$ and $t R$ are ideals of R. We note that an element r is contained in $t R$ if and only if there exists a positive integer m such that $m r=0$. In the case where $t R=0$ we say that R is torsion-free.

Lemma 1.2.6 Let Y be a subset of the primes of Z, and let $h: R \longrightarrow R \otimes Z\left[Y^{-1}\right]$ be the canonical homomorphism. Then ker $h=\oplus_{p \in Y} t_{p}(R)$.

Proof. Suppose r is an element of $\oplus_{p \in Y} t_{p}(R)$. Then there exists a positive integer m, whose prime factors belong to Y, such that $m r=0$. This implies that $m r \otimes 1 / m=0$, so that $r \otimes 1=h(r)=0$. Thus r is contained in ker h.

Suppose r is an element of ker h. Then $h(r)=r \otimes 1=0$. Let M be the set consisting of 1 and the positive integers which are products of primes in Y. Denote the elements of M by $m_{1}, m_{2}, m_{3}, \cdots$ such that $m_{i}<m_{i+1}$ for all i. We note that $m_{1}=1$. Let $y_{i}=1 / m_{i}$. Then $\left\{y_{i}\right\}$ is a set of generators for $Z\left[Y^{-1}\right]$ as a left Z-module. Consider the set $\left\{x_{i}\right\}$ where $x_{1}=r$ and $x_{i}=0$ for all $i>1$. Thus $0=r \otimes 1=\sum_{i=1}^{\infty}\left(x_{i} \otimes y_{i}\right)$. Hence, by Lemma 1.2.5, there is a set $\left\{u_{j}\right\}$ in R and a set $\left\{a_{j i}\right\}$ in Z such that:

1) almost all the $a_{j i}=0$; thus there exists an integer \bar{M} such that $a_{j i}=0$ if either $i>\bar{M}$ or $j>\bar{M} ;$
2) for each j we have that $\sum_{i=1}^{\infty} a_{j i} y_{i}=0$;
3) for each i we have that $x_{i}=\sum_{j=1}^{\infty} a_{j i} u_{j}$; that is, $r=\sum_{j=1}^{\infty} a_{j 1} u_{j}$ and $0=$ $\sum_{j=1}^{\infty} a_{j i} u_{j}$ for $i>1$.

Select an integer $k \geq \bar{M}$ such that all prime factors of k are in Y and if $a_{j i} \neq 0$, then $m_{i} \leq k$.

Consider a function $g: M \rightarrow Z\left[Y^{-1}\right]$ such that $g\left(m_{i}\right)=k!/ m_{i}$. Note that when $m_{i} \leq k$ then $g\left(m_{i}\right)$ is an integer. Since $\sum_{i=1}^{\infty} a_{j i}\left(1 / m_{i}\right)=0$ for each j,

$$
k!\left(\sum_{i=1}^{\infty} a_{j i}\left(1 / m_{i}\right)\right) u_{j}=0
$$

for each j. Thus $\sum_{i=1}^{\infty} k!\left(1 / m_{i}\right) a_{j i} u_{j}=0$ and so $\sum_{i=1}^{\infty} g\left(m_{i}\right) a_{j i} u_{j}=0$ for all j. Therefore

$$
\sum_{j=1}^{\infty}\left(\sum_{i=1}^{\infty} g\left(m_{i}\right) a_{j i} u_{j}\right)=0
$$

so

$$
0=\sum_{i=1}^{\infty}\left(g\left(m_{i}\right) \sum_{j=1}^{\infty} a_{j i} u_{i}\right)=g(1) r=k!r .
$$

Therefore r is contained in $\oplus_{p \in Y} t_{p}(R)$ and so ker $h=\oplus_{p \in \dot{Y}} t_{p}(R)$.

For any prime p of Z we can fix $K=Z /(p)$, a field. Hence $R \otimes Z /(p)$ is isomorphic to either $Z /(p)$ or 0 . From Lemma 1.2 .6 we see that

$$
\begin{aligned}
R \otimes Z /(p) & =\left\{\sum_{i}\left(r_{i} \otimes \bar{n}_{i}\right) \mid r_{i} \in R, \bar{n}_{i} \in Z /(p)\right\} \\
& =\left\{\sum_{i}\left(n_{i} r_{i} \otimes 1_{K}\right) \mid \bar{n}_{i}=n_{i}+(p) \in Z /(p)\right\} \\
& \simeq R / p R .
\end{aligned}
$$

Hence $R / p R$ is isomorphic to either $Z /(p)$ or 0 . It follows that for every prime p in $Z, p R+Z 1_{R}=R$.

We note that for any ideals I and J of Z, if $I R+Z 1_{R}=R=J R+Z 1_{R}$ then

$$
I J R+Z 1_{R}=I J R+I 1_{R}+Z 1_{R}=I\left(J R+Z 1_{R}\right)+Z 1_{R}=I R+Z 1_{R}=R
$$

So we have that $I R+Z 1_{R}=R$ for all non-zero ideals I of Z since every non-zero ideal of Z is a product of prime ideals.

Corollary 1.2.2 Let $h: R \longrightarrow R_{Q}=R \otimes Q$ be the canonical homomorphism. Then ker $h=t R$.

Proof. This follows from Lemma 1.2.6 if we take Y to be the set of all prime numbers.

We now prove one of the two main results of this section, by showing that any Z epimorph, R, has one of three forms. Later in this section we will show the converse, that any ring which has one of these three forms is a Z-epimorph. Infinite sequences $u_{1}, u_{2}, u_{3} \ldots$ will be denoted $\left\langle u_{i}\right\rangle$.

Definition 1.2.5 A ring A is $\underline{p \text {-divisible }}$ if for each $a \in A$ there is a $b \in A$ such that $a=p b$.

Lemma 1.2.7 R has one of the following forms:
(A) R is isomorphic to Z / I for some ideal I of Z;
(B) R is isomorphic to $D \oplus Z /\left(p_{1}^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}^{n_{k}}\right)$ where the p_{i} are primes, the n_{i} are positive integers, and D is a ring such that $Z \subseteq D \subseteq Q$ which is divisible by the p_{i}; or
(C) R is isomorphic to a subring of $\prod_{i=1}^{\infty} Z /\left(p_{i}^{n_{i}}\right)$, for some infinite set of primes $\left\{p_{i}\right\}$ and some infinite set of positive integers $\left\{n_{i}\right\}$, consisting of all sequences $\left\langle u_{i}\right\rangle$ where u_{i} has the form \bar{a} / \bar{b} in $Z /\left(p_{i}^{n_{i}}\right)$ for almost all i, for some element a / b in a ring D where $Z \subseteq D \subseteq Q$ and D is divisible by the primes p_{i}.

Proof. If we consider the canonical homomorphism $h: R \longrightarrow R \otimes Q=R_{Q}$, we see that ker $h=t R$ and that $R / t R$ is isomorphic to the image of R in R_{Q}. Since $R_{Q} \simeq 0$ or Q, we have either:

1) $R=t R$ in the case where $R_{Q}=0$, and so the annihilator of 1_{R} is a non-zero ideal I of Z. Recall that $R=J R+Z 1_{R}$ for all nonzero ideals J of Z. Now, since $I R=0, R=Z 1_{R} \simeq Z / I$ as required; or
2) In the case where $R_{Q} \simeq Q$ we have that $R / t R$ is isomorphic to a subring of Q. We now check that the epimorphism $f: Z \longrightarrow R$ is injective. If this were not the case there would be a non-zero m in Z such that $m 1_{R}=0$, so that $m 1_{R} \otimes 1_{Q}=0$ in R_{Q}, in which case $t R_{Q} \neq 0$ contradicting $R_{Q} \simeq Q$. Thus $Z 1_{R} \cap t R=0$ and so $R / t R$ is isomorphic to a subring D of Q such that $Z \subseteq D \subseteq Q$. Now suppose that m / n is in D where m and n are relatively prime. Then there are integers s and t such $s m+t n=1$, and so $s m / n+t=(s m+t n) / n=1 / n$ is in D. Thus $R / t R \simeq Z\left[X_{0}^{-1}\right]$ for some set X_{0} of prime numbers.

Since the first case, where $R_{Q} \simeq 0$, gives our result, the rest of the proof consists of a detailed analysis of the second case, where $R_{Q} \simeq Q$.

Consider the following diagram:

For n in Z, the upper route gives $n \longrightarrow n 1 \longrightarrow n 1 \otimes 1=1 \otimes n$ while the lower route gives $n \longrightarrow n 1 \longrightarrow n 1+t R \longrightarrow n \longrightarrow 1 \otimes n$. Since R is an epimorph of Z, this shows that the rectangle commutes. We note that the kernel of the lower route is $t R$, while the kernel of the upper route is $\oplus_{p \in X_{0}} t_{p}(R)$. Thus

$$
t R=\oplus_{p \in X_{0}} t_{p}(R) .
$$

Given an element r in $t R$, there exists $r_{1}, r_{2}, \ldots, r_{k}$ where the r_{i} are in $t_{p_{i}}(R)$ such that $r=r_{1}+\cdots+r_{k}$. We denote by $e_{p_{i}}: t R \longrightarrow t_{p_{i}}(R)$ the map which sends r to r_{i}. For \bar{r} in R we see that $\bar{r} r$ is in $t R$ and $e_{p_{i}}(\bar{r} r)=\bar{r} r_{i}=\bar{r} e_{p_{i}}(r)$.

Let g denote the isomorphism $Z\left[X_{0}^{-1}\right] \longrightarrow R / t R$. For m / n in $Z\left[X_{0}{ }^{-1}\right]$ we let a^{\prime} be the element of R such that $g(m / n)=a^{\prime}+t R$. Since $g(m)=g(m / n) g(n)$, we have $m+t R=\left(a^{\prime}+t R\right)(n+t R)=n a^{\prime}+t R$ and so $n a^{\prime}-m$ is an element of $t R$. If b is an element of R such that $n b-m$ belongs to $t R$, then $n\left(a^{\prime}-b\right)$ in $t R$ gives $a^{\prime}-b$ in $t R$, so that $a^{\prime}+t R=b+t R$. So for m / n in $Z\left[X_{0}^{-1}\right]$, if $g(m / n)=a^{\prime}+t R$ then $n a^{\prime}-m$ is in $t R$; and conversely, if b is in R such that $n b-m$ belongs to $t R$, then $g(m / n)=b+t R$.

Let $X_{1}=\left\{p \in Z \mid p\right.$ is prime, $\left.t_{p}(R) \neq 0\right\}$. We note that $X_{1} \subseteq X_{0}$, since $t R=$ $\oplus_{p \in X_{0}} t_{p}(R)$.

Fix p in X_{1} and choose a in R such that $g(1 / p)=a+t R$. Therefore $1-p a$ is in $t R$. Thus $(p a)^{(l-1)}-(p a)^{l}$ is in $t R$ for all $l \geq 1$. For a given $l \geq 1$, the assumption
that $1-(p a)^{(l-1)}$ is in $t R$ implies that

$$
\left(1-(p a)^{(l-1)}\right)+\left((p a)^{(l-1)}-(p a)^{l}\right)=1-(p a)^{l}
$$

belongs to $t R$. Thus we see that, by induction, $1-(p a)^{l}$ is an element of $t R$ for all $l \geq 1$.

Since $e_{p}(1-p a)$ is in $t_{p}(R)$, we can choose a positive integer c which is minimal such that $p^{c} e_{p}(1-p a)=0$, which implies $e_{p}\left(p^{c}-p^{c} p a\right)=0$. Thus, $e_{p}\left(p^{c}(p a)^{(l-1)}-\right.$ $\left.p^{c}(p a)^{l}\right)=0$ for all positive integers l. For each positive integer l, the assumption that $e_{p}\left(p^{c}-p^{c}(p a)^{(l-1)}\right)=0$ implies that

$$
e_{p}\left(p^{c}-p^{c}(p a)^{(l-1)}\right)+e_{p}\left(p^{c}(p a)^{l-1}-p^{c}(p a)^{l}\right)=0
$$

so that $e_{p}\left(p^{c}-p^{c}(p a)^{l}\right)=0$. Thus we see that, by induction on $l, e_{p}\left(p^{c}-p^{c}(p a)^{l}\right)=0$ for all $l \geq 1$, so since the map e_{p} is additive, $p^{c} e_{p}\left(1-(p a)^{l}\right)=0$.

For any x in $t_{p}(R)$, there exists a positive integer w such that $p^{w} x=0$, so that $p^{c}(p a)^{w} x=0$. Now $e_{p}\left(\left(p^{c}(p a)^{w}-p^{c}\right) x\right)=0$ since $p^{c} e_{p}\left(1-(p a)^{w}\right)=0$, but x in $t_{p}(R)$ implies that $\left(p^{c}(p a)^{w}-p^{c}\right) x$ is in $t_{p}(R)$. Thus

$$
e_{p}\left(\left(p^{c}(p a)^{w}-p^{c}\right) x\right)=\left(p^{c}(p a)^{w}-p^{c}\right) x
$$

so $\left(p^{c}(p a)^{w}-p^{c}\right) x=0$ which implies that $p^{c} x=0$, and so $p^{c} t_{p}(R)=0$.
Let $e(p)=e_{p}\left(1-(p a)^{c}\right)$. For any x in $t_{p}(R)$,

$$
e(p) x=e_{p}\left(\left(1-(p a)^{c}\right) x\right)=e_{p}\left(x-p^{c} x a^{c}\right)=e_{p}(x)=x
$$

Thus $e(p)$ is an identity element for $t_{p}(R)$, and $R=R(1-e(p)) \oplus \operatorname{Re}(p)$.
There are two cases to consider:

Case I: X_{1} is finite. For notation, let $X_{1}=\left\{p_{1}, \cdots, p_{k}\right\}$. Let $e=e\left(p_{1}\right)+\cdots+e\left(p_{k}\right)$. Then e is an identity element for $\oplus_{i=1}^{k} t_{p_{i}}(R)$. Now, $R=R(1-e) \oplus R e=$ $R(1-e) \oplus t R$ so that $R / t R \simeq R(1-e)$. Consider the maps $Z \longrightarrow R \longrightarrow$
$R / R(1-e(p)) \cong \operatorname{Re}(p)$. Since this composition is an epimorphism, it follows from (1) at the beginning of the proof that this map is onto and so $\operatorname{Re}(p) \cong$ $Z e(p) \cong Z /\left(p^{c}\right)$. Thus
$R \simeq R / t R \oplus Z /\left(p_{1}{ }^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}{ }^{n_{k}}\right) \simeq Z\left[X_{0}{ }^{-1}\right] \oplus Z /\left(p_{1}{ }^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}{ }^{n_{k}}\right)$ as desired.

Case II: X_{1} is infinite. For any p in X_{1}, define $S_{p}: R \longrightarrow t_{p}(R)$ by $S_{p}(r)=r e(p)$. Define $S: R \longrightarrow \prod_{p \in X_{1}} t_{p}(R)$ by

$$
S(r)=\left(S_{p_{1}}(r), S_{p_{2}}(r), \cdots\right)=\left(r e\left(p_{1}\right), r e\left(p_{2}\right), \cdots\right)
$$

Clearly, S is a ring homomorphism.
For any r in R we choose a and b such that $r=a+b$ where there exists m / n in $Z\left[X_{0}^{-1}\right]$ with $n a-m$ in $t R$, and b is in $t R$. Thus $S(r)=S(a)+S(b)$, and since b belongs to $t R$, there exists a positive integer k such that $S_{p_{i}}(b)=0$ for all $i>k$, so that $S_{p_{i}}(r)=S_{p_{i}}(a)=e\left(p_{i}\right) a$. Since $n a-m$ belongs to $t R$, there exists a positive integer \bar{k} such that $e\left(p_{i}\right)(n a-m)=0$ for all $i>\bar{k}$, which implies that $n e\left(p_{i}\right) a-e\left(p_{i}\right) m=0$. Hence we see that S is into the subring \bar{R} of the ring $\prod_{p \in X_{1}} t_{p}(R)$, consisting of sequences of the form $\left\langle u_{i}\right\rangle$ where there is an element m / n in $Z\left[X_{0}{ }^{-1}\right]$ and a positive integer l such that u_{i} has the form \bar{m} / \bar{n} in $Z e\left(p_{i}\right)$ (which is isomorphic to $Z /\left(p_{i}^{n_{i}}\right)$ for some n_{i}) for all $i>l$.

We see that S is one-to-one, for if $S(r)=0$ then $S_{p_{i}}(a)=e\left(p_{i}\right) a=0$ for infinitely many p_{i}. Therefore $m=0 \bmod p_{i}^{n_{i}}$ for infinitely many p_{i}, so that $m=0$, and so $n a$ is an element of $t R$. Thus r belongs to $t R$ so $r=0$ since $e\left(p_{i}\right) r=0$ for all i.

We also see that S is onto \bar{R}, for let $v=\left(a_{1}, a_{2}, \ldots\right)$ be in \bar{R}. Since v is in \bar{R}, there is an element m / n in $Z\left[X_{0}^{-1}\right]$ such that a_{i} has the form \bar{m} / \bar{n} in
$Z /\left(p_{i}^{n_{i}}\right)$ for almost all i. Because $R / t R \simeq Z\left[X_{0}^{-1}\right]$ we can choose $a+t R$ in $R / t R$ such that $n a-m$ is in $t R$. Hence $S_{p_{i}}(n a-m)=0$ for almost all i, therefore $S_{p_{i}}(a)=a_{i}=\bar{m} / \bar{n}$ for almost all i. Thus there exists a positive integer l such that $S_{p_{i}}(a)=a_{i}$ for all $i>l$. Let $\bar{a}=a+\sum_{i=1}^{l}\left(a_{i}-a e\left(p_{i}\right)\right)$, an element of R. Then $S(\bar{a})=v$, and so S is onto R. Thus $R \simeq \bar{R}$, as desired, completing the proof.

Thus we have proven one of the main results of this section, which gives the only possible structures of a Z-epimorph. We now show the converse, and deal with each of the three structures described in Lemma 1.2.7 separately.

Lemma 1.2.8 For any ideal I of $Z, Z / I$ is an epimorph of Z.
Proof. The canonical homomorphism $f: Z \longrightarrow Z / I$ is onto.

Lemma 1.2.9 Let $R=D \oplus Z /\left(p_{1}^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}{ }^{n_{k}}\right)$ where the p_{i} are primes, the n_{i} are positive integers, and D is a ring which is divisible by the p_{i} with $Z \subseteq D \subseteq Q$. Then R is an epimorph of Z.

Proof.

Let $R=D \oplus Z /\left(p_{1}^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}^{n_{k}}\right)$ be as in the statement of the lemma, and suppose that $g, h: R \longrightarrow S$ are ring homomorphisms such that $g\left(1_{R}\right)=h\left(1_{R}\right)$.

For each $d \in D$ let $[d]$ denote the element $\left(x, a_{1}, \cdots, a_{k}\right) \in R$ such that $x=d$, $a_{1}=0$ and $a_{i}=\bar{d}$ in $Z /\left(p_{i}^{n_{i}}\right)$ for $1<i \leq k$.

Since $\left[1 / p_{1}^{n_{1}}\right] p_{1}^{2 n_{1}} 1_{R}=p_{1}^{n_{1}} 1_{R}, g$ and h agree on $\left[1 / p_{1}^{n_{1}}\right] p_{1}^{2 n_{1}} 1_{R}$. Thus,

$$
\begin{aligned}
g([1]) & =g\left(\left[1 / p_{1}^{n_{1}}\right] p_{1}^{2 n_{1}} 1_{R}\left[1 / p_{1}^{n_{1}}\right]\right) \\
& =g\left(\left[1 / p_{1}^{n_{1}}\right] p_{1}^{2 n_{1}} l_{R}\right) g\left(\left[1 / p_{1}^{n_{1}}\right]\right) \\
& =h\left(\left[1 / p_{1}^{n_{1}}\right] p_{1}^{2 n_{1}} 1_{R}\right) g\left(\left[1 / p_{1}^{n_{1}}\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =h\left(\left[1 / p_{1}^{n_{1}}\right]\right) p_{1}^{2 n_{1}} 1_{S} g\left(\left[1 / p_{1}^{n_{1}}\right]\right) \\
& =h\left(\left[1 / p_{1}^{n_{1}}\right]\right) g\left(p_{1}^{2 n_{1}} 1_{R}\left[1 / p_{1}^{n_{1}}\right]\right) \\
& =h\left(\left[1 / p_{1}^{n_{1}}\right]\right) h\left(p_{1}^{2 n_{1}} 1_{R}\left[1 / p_{1}^{n_{1}}\right]\right) \\
& =h\left(\left[1 / p_{1}^{n_{1}}\right] p_{1}^{2 n_{1}} 1_{R}\left[1 / p_{1}^{n_{1}}\right]\right) \\
& =h([1]) .
\end{aligned}
$$

Since g and h agree on $1_{R}=(1, \overline{1}, \overline{1}, \cdots, \overline{1})$ and $-[1]=(-1,0,-\overline{1},-\overline{1}, \cdots,-\overline{1})$, they agree on their sum, that is, they agree on $(0, \overline{1}, 0,0, \cdots, 0)$. Hence g and h agree on $Z /\left(p_{1}^{n_{1}}\right)$. Using the same argument on the other coordinates, g and h agree on $Z /\left(p_{1}^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}^{n_{k}}\right)$.

Let $1 / b \in D$ for some $b \in Z$ and let $x=(1 / b, \overline{1}, \overline{1}, \cdots, \overline{1})$ and $y=(b, \overline{1}, \overline{1}, \cdots, \overline{1})$. Then $x y=1_{R}$ and $g(y)=h(y)$ since $y=b 1_{R}-(0, \overline{b-1}, \overline{b-1}, \cdots, \overline{b-1})$, so $1_{S}=$ $g(x y)=g(x) g(y)=g(x) h(y)$ and $1_{S}=h(x y)=h(y x)=h(y) h(x)$. Now $g(x)=$ $g(x) 1_{S}=g(x) h(y) h(x)=1_{S} h(x)=h(x)$. Now since g and h agree on $Z /\left(p_{1}^{n_{1}}\right) \oplus$ $\cdots \oplus Z /\left(p_{k}^{n_{k}}\right)$ it follows that $g(1 / b, 0,0, \cdots, 0)=h(1 / b, 0,0, \cdots, 0)$. Hence g and h also agree on D, so $g=h$.

We now consider the third structure of Lemma 1.2.7.
Lemma 1.2.10 Let $X=\left\{p_{1}, p_{2}, p_{3}, \ldots\right\}$ be an infinite set of primes, $\left\{n_{1}, n_{2}, n_{3}, \ldots\right\}$ an infinite set of positive integers, and let D be a ring such that $Z \subseteq D \subseteq Q$ and D is divisible by each p_{i} in X. Let R be the subring of $\prod_{i=1}^{\infty} Z /\left(p_{i}^{n_{i}}\right)$ consisting of sequences of the form $\left\langle u_{i}\right\rangle$, where there is an element a / b in D such that for almost all i, u_{i} has the form \bar{a} / \bar{b} in $Z /\left(p_{i}^{n_{i}}\right)$. Then R is an epimorph of Z.

Proof. Fix an element p_{j} in X. For all $i \neq j$, let $h_{j i}: Z\left[1 / p_{j}\right] \longrightarrow Z /\left(p_{i}^{n_{i}}\right)$ be the homomorphism where, for n in $Z, h_{j i}(n)=n+\left(p_{i}^{n_{i}}\right)$ and $h_{j i}\left(1 / p_{j}\right)=m+\left(p_{i}^{n_{i}}\right)$ where m is chosen so that $1-p_{j} m$ is an element of $\left(p_{i}{ }^{n_{i}}\right)$; this is possible since p_{j} and p_{i} are relatively prime, so that we can choose integers m and \bar{m} such that $m p_{j}+\bar{m} p_{i}^{n_{i}}=1$.

In this way, we consider $h_{j i}$ to be the "natural" homomorphism from $Z\left[1 / p_{j}\right]$ into $Z /\left(p_{i}^{n_{i}}\right)$. Let $h_{j j}: Z\left[1 / p_{j}\right] \longrightarrow Z /\left(p_{j}^{n_{j}}\right)$ be the zero map.

We now define the map $h_{j}: Z\left[1 / p_{j}\right] \longrightarrow R$ by $h_{j}(a)=\left\langle h_{j i}(a)\right\rangle$. Since the $h_{j i}$ maps are homomorphisms, we see that h_{j} preserves addition and multiplication.

Fix $a=p_{j+1} / p_{j}, b=p_{j+2} / p_{j}$ in $Z\left[1 / p_{j}\right]$. Since p_{j+1} and p_{j+2} are relatively prime, we see that $(Z a+Z b)\left(p_{j}\right)=p_{j+1} Z+p_{j+2} Z=Z$. Let $J=h_{j}(Z a+Z b)$ and $I=p_{j} Z 1_{R}$. Thus we have $J I=h_{j}\left((Z a+Z b)\left(p_{j} Z\right)\right)=h_{j}(Z)$, and so $J^{2} I=J$ and $J I^{k+1}=I^{k}$ for all positive integers k.

Let $g_{1}, g_{2}: R \longrightarrow S$ be two ring homomorphisms such that $g_{1}\left(1_{R}\right)=g_{2}\left(1_{R}\right)$. Let c, d be elements of $J^{n_{j}+1}$ and e be an element of $I^{2 n_{j}+1}$. Then $c e$ and $e d$ are in $J^{n_{j}+1} I^{2 n_{j}+1}=(J I)^{n_{j}+1} I^{n_{j}} \subseteq h_{j}(Z)\left(p_{j} Z 1_{R}\right)^{n_{j}}=p_{j}^{n_{j}} Z 1_{R} \subseteq Z 1_{R}$, so $g_{1}(c e)=g_{2}(c e)$ and $g_{1}(e d)=g_{2}(e d)$. Since e is in $I^{2 n_{j}+1} \subseteq Z 1_{R}, g_{1}(e)=g_{2}(e)$ and therefore

$$
\begin{aligned}
g_{1}(c e d) & =g_{1}(c e) g_{1}(d) \\
& =g_{2}(c e) g_{1}(d) \\
& =g_{2}(c) g_{2}(e) g_{1}(d) \\
& =g_{2}(c) g_{1}(e) g_{1}(d) \\
& =g_{2}(c) g_{1}(e d) \\
& =g_{2}(c) g_{2}(e d) \\
& =g_{2}(c e d)
\end{aligned}
$$

Thus we see that g_{1} and g_{2} agree on

$$
J^{n_{j}+1} I^{2 n_{j}+1} J^{n_{j}+1}=(J I)^{2 n_{j}+1} J=J .
$$

Therefore g_{1} and g_{2} agree on $h_{j}(a)$ and $h_{j}(b)$. Since $a=p_{j+1} / p_{j}$ and $b=p_{j+2} / p_{j}$, there are integers α and β such that $\alpha a+\beta b=1 / p_{j}$. Thus g_{1} and g_{2} agree on $h_{j}\left(Z\left[1 / p_{j}\right]\right)$, for all p_{j} in X.

Since $\left(h_{n+1}(1)-h_{n}(1)\right)\left(h_{n+2}(1)-h_{n}(1)\right)=\left\langle u_{i}\right\rangle$ where $u_{n}=1$ and $u_{m}=0$ if $m \neq n$, g_{1} and g_{2} agree on $\oplus_{p_{1} \in X} Z /\left(p_{i}^{n_{i}}\right)$. Now suppose that $w / y \in D$ where $y=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$. Fix an integer $M>k$ and let $\left\langle u_{i}\right\rangle \in R$ be the element determined by $u_{i}=0$ for all $i \leq M$ and $u_{i}=\bar{w} / \bar{y}$ for $i>M$. Then

$$
\left\langle u_{i}\right\rangle=w h_{1}\left(\frac{1}{p_{1}^{\alpha_{1}}}\right) \cdots h_{k}\left(\frac{1}{p_{k}^{\alpha_{k}}}\right) h_{k+1}(1) \cdots h_{M}(1)
$$

and so g_{1} and g_{2} agree on all elements of this form. Since every element in R is a sum of an element of this form and an element of $\oplus_{p_{i} \in X} Z /\left(p_{i}^{n_{i}}\right), g_{1}$ and g_{2} agree on R, proving the lemma.

We now state the main result of this section, which gives all of the epimorphs of the ring of integers.

Theorem 1.2.1 A ring R is an epimorph of Z if and only if it has one of the following forms:
(A) R is isomorphic to Z / I for some ideal I of Z;
(B) R is isomorphic to $D \oplus Z /\left(p_{1}{ }^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}{ }^{n_{k}}\right)$ where the p_{i} are primes, the n_{i} are positive integers, and D is a ring such that $Z \subseteq D \subseteq Q$ and D is divisible by the p_{i}; or
(C) R is isomorphic to a subring of $\prod_{i=1}^{\infty} Z /\left(p_{i}^{n_{i}}\right)$, for some infinite set of primes $\left\{p_{i}\right\}$ and positive integers n_{i}, consisting of all sequences of the form $\left\langle u_{i}\right\rangle$, where for all almost all $i, u_{i}=\bar{a} / \bar{b}$ in $Z /\left(p_{i}^{n_{i}}\right)$ for some element a / b in a ring D, where D is such that $Z \subseteq D \subseteq Q$ and D is divisible by each prime p_{i}.

Hereafter, a Z-epimorph will be said to have either form A, form B or form C if it corresponds to (A), (B), or (C), respectively, of Theorem 1.2.1.

§1.3 The Characteristic Function

Let $h: S \longrightarrow T$ be a homomorphism of rings with identity. The maximum epimorphic extension of $h(S)$ in T will be denoted by maxepi (h, T). In the special case where $S=Z$, maxepi (h, T) will be denoted by $K(T)$. The following lemma shows that maxepi (h, T) exists.

Lemma 1.3.1 If $h: S \longrightarrow T$ is a homomorphism of rings with identity then there exists a maximum epimorphic extension maxepi (h, T) of $h(S)$ in T.

Proof. We see that T contains at least one epimorph of S, namely $h(S)$. Let $\left\{U_{i}\right\}$ be the set of all epimorphic extensions of $h(S)$ in T, and let U be the subring of T generated by the U_{i}. We note that $h(S)$ is a subring of U.

Suppose $g_{1}, g_{2}: U \longrightarrow V$ are two homomorphisms of rings with identity such that $g_{1} \circ h=g_{2} \circ h$, so that we have the following situation:

$$
S \xrightarrow{h} h(S) \subseteq U \xrightarrow[g_{2}]{\stackrel{g_{1}}{\longrightarrow}} V
$$

Let x be an element of U. Then either x is an element of one of the U_{i}, in which case $g_{1}(x)=g_{2}(x)$ since the U_{i} are epimorphs of S, or x is in a subring generated by elements u_{i} each of which belongs to one of the U_{i}, in which case $g_{1}(x)=g_{2}(x)$ since g_{1} and g_{2} are ring homomorphisms. Thus $g_{1}=g_{2}$ and U is the maximum epimorphic extension of $h(S)$ in T.

Lemma 1.3.2 Let $\varphi: R \longrightarrow T$ be a homomorphism of rings with identity. Then $\varphi(K(R))$ is a subring of $K(T)$.

Proof.

Since $K(T)$ is a maximal epimorphic extension, it suffices to show that $\beta: Z \rightarrow$ $\varphi(K(R))$ is an epimorphism. Let $\gamma, \delta: \varphi(K(R)) \rightarrow V$ be two homomorphisms into the ring V such that $\gamma \circ \beta=\delta \circ \beta$. We examine the following diagram.

Since β is unique, $\beta=\varphi \circ \alpha$. Hence $\gamma \circ \varphi \circ \alpha=\delta \circ \varphi \circ \alpha$. Since α is an epimorphism $\gamma \circ \varphi=\delta \circ \varphi$ and so $\gamma=\delta$ since they agree on their common domain $\varphi(K(R))$.

Definition 1.3.1 For a ring A, the annihilator of A in Z is ann $A=\{z \in Z \mid z A=0\}$.

We note that ann A is an ideal of Z.
Definition 1.3.2 Let A be a ring. The characteristic function of A is the function $g: P \rightarrow N \cup\{ \pm \infty\}$ defined as follows.

If $0 \neq \operatorname{ann} A=\left(p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}\right)$, then $g\left(p_{i}\right)=n_{i}$ for $i=1, \ldots, k$ and $g(q)=-\infty$ for $q \in P \backslash\left\{p_{1}, \ldots, p_{k}\right\}$.

If ann $A=0$ and $p \in P$, then $g(p)=+\infty$ unless annt $t_{p}(A)=\left(p^{k}\right)$ for some $k \in N$ and $A=t_{p}(A) \oplus A^{(p)}$ where $A^{(p)}$ is an ideal of A which is p-divisible, in which case $g(p)=k$.

Example 1.3.1 1. Let $A=Z /(12)$. Then $g(2)=2, g(3)=1$, and $g(p)=-\infty$ for any prime $p>3$.
2. Let $A=Z[1 / 2,1 / 3,1 / 5] \oplus Z /(12)$. Then $g(2)=2, g(3)=1, g(5)=0$ and $g(p)=+\infty$ for all primes $p>5$.
3. Let $p_{1}, p_{2}, \ldots, p_{i}, \ldots$ be an enumeration of the primes in P, and let A be the subring of $\prod_{i=1}^{\infty} Z /\left(p_{i}^{i}\right)$ consisting of all sequences of the form $\left\langle u_{i}\right\rangle$ where, for almost all $i, u_{i}=\bar{q}$ in $Z /\left(p_{i}^{i}\right)$ for some rational number $q \in Q$. Then $g\left(p_{i}\right)=i$ for all primes p_{i} since annt $p_{p_{i}}(A) \cong Z /\left(p_{i}^{i}\right)$ and $A=t_{p_{i}}(A) \oplus B$ where B is the ideal of A consisting of all $\left\langle u_{j}\right\rangle \in A$ such that $u_{i}=0$.
4. We now introduce the notion of quasi-cyclic groups. Let p be a fixed prime integer, and let

$$
Z_{p^{\infty}}=\left\{\left.\frac{a}{p^{n}} \right\rvert\, n \in Z, n \geq 1, a \in Z, 0 \leq a<p^{n}\right\}
$$

Define addition $(+)$ as follows:

$$
\frac{a}{p^{n}}+\frac{b}{p^{m}}=\frac{a p^{m}+b p^{n}}{p^{n+m}}(\bmod 1)
$$

Then $\left(Z_{p^{\infty}},+\right)$ is a quasi-cyclic group. We note that $Z_{p^{\infty}}$ is also called a "group of type $p^{\infty} "$. We view $Z_{p^{\infty}}$ as a ring by defining multiplication as the zero multiplication. If $A=Z_{p^{\infty}}$, then the characteristic function g of A is such that $g(q)=0$ if $q \neq p$ and $g(p)=+\infty$.

Definition 1.3.3 Let A be a ring.

1. End A denotes the ring of endomorphisms of the right A-module, A_{A}.
2. \underline{A}^{0} is the ring with the same underlying additive group as A and with trivial multiplication; that is, $x y=0$ for all x, y in A^{0}.

Proposition 1.3.1 For any ring $A, E n d A, A^{0}$ and A have the same characteristic function.

Proof. Since $\operatorname{ann} A=\operatorname{ann} A^{0}=a n n E n d A$, if these annihilators are non-zero then the three characteristic functions coincide.

Assume that the annihilators are 0.
Suppose that $p \in P, \operatorname{ann~}_{p}(A)=\left(p^{k}\right)$ for some $k \in N$ and $A=t_{p}(A) \oplus A^{(p)}$ where $A^{(p)}$ is an ideal of A which is p-divisible. Then A^{0} has a corresponding direct sum decomposition, $A^{0}=\left(t_{p}(A)\right)^{0} \oplus\left(A^{(p)}\right)^{0}$ which shows that the characteristic functions of A and A^{0} agree on p.

Now suppose that $p \in P$, ann $t_{p}\left(A^{0}\right)=\left(p^{k}\right)$ and $A^{0}=t_{p}\left(A^{0}\right) \oplus B$ where B is an ideal of A^{0} and B is p-divisible.

We first check that $t_{p}(E n d A)=\left\{\theta \in \operatorname{End} A \mid \theta(A) \subseteq t_{p}(A)\right\}$. We note that $t_{p}(A)=t_{p}\left(A^{0}\right)$. Suppose $\alpha \in t_{p}(E n d A)$. Then $p^{m} \alpha=0$ for some $m \in N$ and so $p^{m} \alpha(a)=0$ for all $a \in A$. Thus $\alpha(A) \subseteq t_{p}(A)$. Since the reverse inclusion is clear, $t_{p}(E n d A)=\left\{\theta \in \operatorname{End} A \mid \theta(A) \subseteq t_{p}(A)\right\}$ and, moreover, $p^{k} \in \operatorname{ann} t_{p}(E n d A)$.

Define the homomorphism $\pi: A^{0} \longrightarrow t_{p}\left(A^{0}\right)$ by $\pi(a)=a^{\prime}$, where $a=a^{\prime}+b$ for some $a^{\prime} \in t_{p}\left(A^{0}\right)$ and $b \in B$. If $p^{m} t_{p}(E n d A)=0$, then $p^{m} \pi=0$, so p^{m} is in $\left(p^{k}\right)$. Hence ann $t_{p}(E n d A)=a n n t_{p}\left(A^{0}\right)$.

Let $\theta \in E n d A$ and $x \in B$. Since B is p-divisible there is a $y \in B$ such that $x=p^{k} y$. Since $\theta(y) \in A^{0}, \theta(y)=u+v$ where $u \in t_{p}\left(A^{0}\right)$ and $v \in B$. Hence $\theta(x)=$ $\theta\left(p^{k} y\right)=p^{k} u+p^{k} v=p^{k} v$ is in B, so $\theta(B) \subseteq B$. Let $\hat{B}=\{\alpha \in \operatorname{End} A \mid \alpha(A) \subseteq B\}$. The set \hat{B} is clearly a right ideal of $E n d A$ and it is a left ideal because $\theta(B) \subseteq B$ for all θ in End A.

We now show that \hat{B} is p-divisible. Let α be in \hat{B}. For each x in $A, \alpha(x)$ is in B, so $\alpha(x)=p y$ for some y in B. Moreover, y is unique because if z is in B and $p y=p z$, then $p(y-z)=0$ from which we see that $y-z$ is in $t_{p}\left(A^{0}\right) \cap B=0$. Hence the function γ defined by $\gamma(x)=y$ is well-defined. Since α is in End A it follows that γ is in $\operatorname{End} A$, and γ is in \hat{B} since $\gamma(A) \subseteq B$. Hence $\alpha=p \gamma$, so \hat{B} is p-divisible.

Let α be in $\hat{B} \cap t_{p}(E n d A)$. Then $\alpha=p^{k} \beta$ for some β in \hat{B}, and $p^{k} \alpha=0$. Thus
$\beta \in t_{p}(E n d A)$, so $\alpha=p^{k} \beta=0$. Hence $\hat{B} \cap t_{p}(E n d A)=0$.
Let $\theta \in E n d A$, and let $x \in A, x=u+v$ where $u \in t_{p}\left(A^{0}\right), v \in B$. Define θ_{1} and θ_{2} by $\theta_{1}(x)=u$ and $\theta_{2}(x)=v$. Clearly $\theta_{1}, \theta_{2} \in E n d A$ and since $\theta_{1}(A) \subseteq t_{p}(A)$ and $\theta_{2}(A) \subseteq B, \theta_{1} \in t_{p}(E n d A)$ and $\theta_{2} \in \hat{B}$. Because $\theta=\theta_{1}+\theta_{2}$ this shows that $\operatorname{End} A=t_{p}(E n d A) \oplus \hat{B}$. From this we see that the characteristic functions of A^{0} and End A agree on p.

Finally, suppose that $p \in P, \operatorname{annt} t_{p}(E n d A)=\left(p^{k}\right)$ for some $k \in N$ and $E n d A=$ $t_{p}(E n d A) \oplus C$ where C is an ideal of End A which is p-divisible. For each $a \in A$ define \hat{a} by $\hat{a}(x)=a x$ for all $x \in A$. We see that $\hat{a} \in E n d A$.

Let $M=\sum\{\theta(A) \mid \theta \in C\}$. Since each $\theta(A)$ is closed under addition, so too is M. If $\theta \in C$ and $a \in A$, then $\hat{a} \theta \in C$. Hence, for $a \in A$ and $\theta(x) \in M$, $a \theta(x)=(\hat{a} \theta)(x) \in M$. Hence M is a left ideal, and it is also a right ideal because for $a \in A$ and $\theta(x) \in M, \theta(x) \cdot a=\theta(x a) \in M$.

Let $m=\theta_{1}\left(a_{1}\right)+\cdots+\theta_{n}\left(a_{n}\right) \in M$, where $\theta_{1}, \ldots, \theta_{n} \in C$. Since C is p-divisible, there are $\alpha_{i} \in C$ such that $\theta_{i}=p \alpha_{i}$ for all $i=1, \ldots, n$. Thus $m=p\left(\alpha_{1}\left(a_{1}\right)+\cdots+\right.$ $\left.\alpha_{n}\left(a_{n}\right)\right)$, so M is p-divisible.

Let i be the identity endomorphism in End $A=t_{p}(E n d A) \oplus C$. Then $i=\alpha+\beta$ for some $\alpha \in t_{p}(E n d A)$ and $\beta \in C$. Let $a \in t_{p}(A)$. Then $p^{m} a=0$ for some $m \in N$ and $\beta=p^{m} \gamma$ for some $\gamma \in C$ since C is p-divisible. Now $a=i(a)=$ $\alpha(a)+\beta(a)=\alpha(a)+p^{m} \gamma(a)=\alpha(a)+\gamma\left(p^{m} a\right)=\alpha(a)+\gamma(0)=\alpha(a)$. Hence $t_{p}(A) \subseteq \alpha(A)$, and since $\alpha \in t_{p}(E n d A), \alpha(A) \subseteq t_{p}(A)$. Thus $t_{p}(A)=\alpha(A)$, and $p^{k} \in \operatorname{ann} t_{p}(A)$. Suppose $\ell \in \operatorname{ann} t_{p}(A)$. Then $\ell \alpha=0$ because $t_{p}(A)=\alpha(A)$. Also, since $i=\alpha+\beta, t_{p}(E n d A)=\alpha E n d A$ and so $\ell \in \operatorname{annt}_{p}(E n d A)=\left(p^{k}\right)$. Thus $\operatorname{ann} t_{p}(A)=a n n t_{p}(E n d A)$.

Since ann $t_{p}(A)=\left(p^{k}\right)$ and M is p-divisible, it follows that $t_{p}(A) \cap M=0$. Also, if $a \in A, a=i(a)=\alpha(a)+\beta(a) \in t_{p}(A)+M$, so $A=t_{p}(A) \oplus M$. From this we see that the characteristic functions of $\operatorname{End} A$ and A agree on p.

Therefore, we see that A, A^{0} and $E n d A$ have the same characteristic function.

Proposition 1.3.2 If A and B are rings with the same characteristic function g, then g is the characteristic function of $A \oplus B$.

Proof. If $p \in P$ and $A=t_{p}(A) \oplus A^{(p)}$ where $\operatorname{ann~}_{p}(A)=\left(p^{k}\right)$ for some $k \in N$ and $A^{(p)}$ is an ideal of A which is p-divisible, then B has a similar decomposition $B=t_{p}(B) \oplus B^{(p)}$ which gives rise to the decomposition $A \oplus B=\left(t_{p}(A) \oplus t_{p}(B)\right) \oplus$ $\left(A^{(p)} \oplus B^{(p)}\right)$.

Conversely, if $A \oplus B=t_{p}(A \oplus B) \oplus C$ where annt $t_{p}(A \oplus B)=\left(p^{k}\right), k \in N$ and C is an ideal of $A \oplus B$ which is p-divisible, then we obtain direct sum decompositions $A=t_{p}(A) \oplus X_{A}, B=t_{p}(B) \oplus X_{B}$ as follows. Let $X_{A}=C \cap A$. Then X_{A} is an ideal of A and, since $t_{p}(A) \subseteq t_{p}(A \oplus B), t_{p}(A) \cap X_{A}=0$.

Let $\alpha \in A, \beta \in B$ and suppose $\alpha+\beta \in C$. Then $\alpha=u+v$ where $u \in t_{p}(A \oplus B)$ and $v \in C$. Thus $p^{k} \alpha=p^{k} v \in C$ and so $p^{k} \alpha=p^{k+1} \gamma$ for some $\gamma \in C$. Since $C \cap t_{p}(A \oplus B)=0, \alpha=p \gamma$ so $\alpha \in C$.

Let $a \in A$. Then $a=\left(a_{1}+b_{1}\right)+(\alpha+\beta)$ where $a_{1}+b_{1} \in t_{p}(A \oplus B), \alpha+\beta \in$ $C, a_{1}, \alpha \in A$ and $b_{1}, \beta \in B$. Since the sum $A+B$ is direct, $a=a_{1}+\alpha$ and from above $\alpha \in A \cap C$. Hence $A=t_{p}(A) \oplus(C \cap A)$.

If $a \in C \cap A, a=p c$ for some $c \in C$. Now $c=a_{1}+b_{1}, a_{1} \in A, b_{1} \in B$ and so $a=p c=p a_{1}+p b_{1}$. Since $A+B$ is direct, $a=p a_{1}$ and from above $a_{1} \in C$. Hence $C \cap A$ is p-divisible. Similarly, $B=t_{p}(B) \oplus(C \cap B)$. Since A and B have the same characteristic function, ann $t_{p}(A)=\operatorname{ann}_{p}(B)$ and since $t_{p}(A \oplus B)=t_{p}(A) \oplus t_{p}(B)$, $\operatorname{ann} t_{p}(A \oplus B)=a n n t_{p}(A)=a n n t_{p}(B)$.

It follows that $A \oplus B$ has characteristic function g.

Lemma 1.3.3 Let $\varphi: S \rightarrow T$ be a homomorphism of rings with identity and let g_{S}, g_{T} be the characteristic functions of S and T, respectively. Then $g_{T}(p) \leq g_{S}(p)$ for all p in P.

Proof. Since $\varphi(S)$ is a unital subring of T, $\operatorname{ann} T=a n n \varphi(S) \supseteq a n n S$. Thus if ann $T \neq 0$ it is clear that $g_{T}(p) \leq g_{S}(p)$ for all $p \in P$.

Now assume $a n n T=0$. Since $a n n T \supseteq a n n S$ this implies that $a n n S=0$. If $g_{S}(p)=0$, then $t_{p}(S)=\{0\}$ and S is p-divisible. Hence $\varphi(S)$ is p-divisible and so T is also p-divisible because $\varphi(S)$ and T have the same identity. Suppose $x \in T$ is such that $p^{m} x=0$. Let $1=p^{m} v$ for some $v \in T$. Then $x=1 \cdot x=p^{m} v x=0$, so $t_{p}(T)=0$. Hence $g_{T}(p)=0$.

Now suppose that $0<g_{S}(p)=k<\infty$. Then $S=t_{p}(S) \oplus S^{(p)}$ where $S^{(p)}$ is an ideal of S which is p-divisible and $\operatorname{ann} t_{p}(S)=\left(p^{k}\right)$. Let $1_{S}=e+f$ where $e \in t_{p}(S)$ and $f \in S^{(p)}$. Then $1_{\varphi(S)}=1_{T}=\varphi(e)+\varphi(f)$. Let $x_{1} \in t_{p}(T)$. Then $p^{m} x_{1}=0$ for some integer m. Since $S^{(p)}$ is p-divisible, $f=p^{m} s$ for some $s \in S$ and hence $x_{1}=1 \cdot x_{1}=\varphi(e) x_{1}+\varphi(f) x_{1}=\varphi(e) x_{1}+\varphi(s) p^{m} x_{1}=\varphi(e) x_{1} \in \varphi(e) T$. So $t_{p}(T)=\varphi(e) T$. Similarly, $t_{p}(T)=T \varphi(e)$.

Let $x_{2} \in T$. Since $1_{T}=\varphi(e)+\varphi(f)$ and $\varphi(e) \varphi(f)=\varphi(e f)=\varphi(0)=0$,

$$
\begin{aligned}
x_{2} \varphi(f) & =(\varphi(e)+\varphi(f)) x_{2} \varphi(f) \\
& =\varphi(e) x_{2} \varphi(f)+\varphi(f) x_{2} \varphi(f) \\
& =x_{3} \varphi(e) \varphi(f)+\varphi(f) x_{2} \varphi(f) \\
& =\varphi(f) x_{2} \varphi(f) \in \varphi(f) T
\end{aligned}
$$

where $\varphi(e) x_{2}=x_{3} \varphi(e)$ for some $x_{3} \in T$ because $\varphi(e) T=T \varphi(e)$. It follows that $\varphi(f) T$ is an ideal of T, and $\varphi(f) T$ is p-divisible because there is an $s_{1} \in S$ such that $f=p s_{1}=p f s_{1}$ so that, for $t \in T, \varphi(f) t=\varphi\left(p f s_{1}\right) t=p \varphi(f) \varphi\left(s_{1}\right) t \in p \varphi(f) T$. Also, since $1_{T}=\varphi(e)+\varphi(f), \varphi(e) T+\varphi(f) T=T$. Moreover, $\varphi(e) T \cap \varphi(f) T=0$ because
$\varphi(e) \varphi(f)=0$. Since $p^{k} e=0, p^{k} \varphi(e) T=0$ and so the direct sum decomposition $T=\varphi(e) T \oplus \varphi(f) T$ shows that $g_{T}(p) \leq k$.

Of course, if $g_{S}(p)=\infty$ we must have $g_{T}(p) \leq g_{S}(p)$, so the proof is complete.

Note that if A is a ring with characteristic function g, then g determines an epimorph E_{g} of the integers as follows.

If $g(p)=-\infty$ for some $p, E_{g}=Z /$ ann A.
Otherwise, let $X_{1}=\{p \in P \mid 0<g(p)<\infty\}$ and $X_{0}=X_{1} \cup\{p \in P \mid g(p)=0\}$. If $X_{1}=\left\{p_{1}, \ldots, p_{n}\right\}$ is finite, $E_{g}=D \times Z /\left(p_{1}^{g\left(p_{1}\right)}\right) \times \cdots \times Z /\left(p_{n}^{g\left(p_{n}\right)}\right)$ where $D=Z[1 / p \mid p \in$ X_{0}] while if X_{1} is infinite, E_{g} is the set of all sequences $\left\langle u_{i}\right\rangle$ in $\prod_{p \in X_{1}} Z /\left(p^{g(p)}\right)$ which are eventually of the form \bar{a} / \bar{b} where $a / b \in D=Z\left\{1 / p \mid p \in X_{0}\right\}$.

Proposition 1.3.3 If R is an epimorph of Z with characteristic function g, then $R \cong E_{g}$.

Proof. If ann $R \neq 0, g(p)=-\infty$ for some p and $E_{g}=Z /$ ann R. From Theorem 1.2.1, $R \cong Z / I$ for some I and this implies that $I=a n n R$. Hence $R \cong Z / I=E_{g}$.

We now assume that ann $R=0$. First suppose that $R \cong D \oplus Z /\left(p_{1}^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}^{n_{k}}\right)$ where, for each i, p_{i} is in P, n_{i} is a positive integer, and D is a ring with $Z \subseteq D \subseteq Q$ which is divisible by p_{i} for all $i=1, \ldots, k$. From the definition of the characteristic function it is clear that $g\left(p_{i}\right)=n_{i}$ for all $i=1, \ldots, k$, that $g(q)=0$ if D is q divisible and $q \notin\left\{p_{1}, \ldots, p_{k}\right\}$, and $g(p)=\infty$ for all other primes p. Hence $E_{g}=$ $D \oplus Z /\left(p_{1}^{n_{1}}\right) \oplus \cdots \oplus Z /\left(p_{k}^{n_{k}}\right)$.

Now suppose that there is an infinite set of primes $\left\{p_{1}, p_{2}, \ldots\right\}$, a corresponding set of positive integers $\left\{n_{1}, n_{2}, \ldots\right\}$ and a ring $D, Z \subseteq D \subseteq Q$, divisible by all of the primes p_{1}, p_{2}, \ldots such that R is isomorphic to the set of all sequences $\left\langle u_{i}\right\rangle$ in $\prod_{i=1}^{\infty} Z /\left(p_{i}^{n_{i}}\right)$ for which there is some $a / b \in D$ such that $u_{i}=\bar{a} / \bar{b}$ for almost all i. For each $p_{i} \in\left\{p_{1}, p_{2}, \ldots\right\}, t_{p_{i}}(R)=\left\{\left\langle u_{i}\right\rangle \in R \mid u_{j}=0\right.$ if $\left.j \neq i\right\}$ and $R^{\left(p_{i}\right)}=$ $\left\{\left\langle u_{j}\right\rangle \in R \mid u_{i}=0\right\}$ is p_{i}-divisible. Thus $g\left(p_{i}\right)=n_{i}$ for all i. If $q \in P \backslash\left\{p_{1}, p_{2} \ldots\right\}$,
then $t_{q}(R)=0$, so $g(q)=0$ if D, and hence R, is q-divisible, and $g(q)=\infty$ otherwise. Hence E_{g} is isomorphic to R.

Proposition 1.3.4 If R is a ring with identity, then $K(R)$ and R have the same characteristic function.

Proof. Let g_{K} and g denote the characteristic functions of $K(R)$ and R respectively. Since ann $K(R)=$ ann R, we may assume $\operatorname{ann} K(R)=a n n R=\{0\}$. From Lemma 1.3.3, $g(p) \leq g_{K}(p)$ for all primes p, so we need only show that, for all $p \in P$, $g_{K}(p) \leq g(p)$.

Suppose $g(p)=k \in N$. Then $R=t_{p}(R) \oplus R^{(p)}$ where $R^{(p)}$ is an ideal of R which is p-divisible and $\operatorname{annt}_{p}(R)=\left(p^{k}\right)$. Write $1_{R}=e+d$ where $e \in t_{p}(R)$ and $d \in R^{(p)}$. Note that if $m \in Z$ and $m d=0$, then $p^{k} m 1_{R}=0$ and so $p^{k} m \in a n n R=\{0\}$, and thus $m=0$. Since $R^{(p)}$ is p-divisible, $d=p r$ for some $r \in R^{(p)}$.

Define $\theta: Z[1 / p] \rightarrow Z r$ by $\theta(f(1 / p))=f(r)$ for each $f \in Z[x]$. Suppose $f, g \in$ $Z[x]$ and $f(1 / p)=g(1 / p)$. Then $(f-g)(1 / p)=0$, so $(f-g)(x)=(x-1 / p) h(x)$ for some $h(x) \in Q[x]$ and it is easy to see that in fact $h(x) \in Z[x]$. Multiplying by p and substituting r for x we obtain $p(f-g)(r)=(p r-1) h(r)$, and since $p r-1=d-1=e$ it follows that $(f-g)(r) \in t_{p}(R) \cap R^{(p)}=\{0\}$. Hence $f(r)=g(r)$ and so θ is well-defined.

Clearly θ is an onto homomorphism. Suppose $\theta(f(1 / p))=0$ where $f(x)=a_{0}+$ $a_{1} x+\cdots+a_{m} x^{m}$. Then $a_{0}+a_{1} r+\cdots+a_{m} r^{m}=0$, and so $a_{0} p^{m} d+a_{1} p^{m-1} d+$ $\cdots+a_{m-1} p d+a_{m} d=0$. Hence $\left(a_{0} p^{m}+a_{1} p^{m-1}+\cdots+a_{m-1} p+a_{m}\right) d=0$ and so $a_{0} p^{m}+a_{1} p^{m-1}+\cdots+a_{m-1} p+a_{m}=0$ since we know that $m d=0$ implies $m=0$. But this implies that $a_{0}+a_{1}(1 / p)+\cdots+a_{m-1}\left(1 / p^{m-1}\right)+a_{m}\left(1 / p^{m}\right)=0$, so $f(1 / p)=0$. Hence θ is one to one.

The sum $Z e+Z r$ is direct since $Z e \subseteq t_{p}(R)$ and $Z r \subseteq R^{(p)}$. Since $1_{R}=e+p r \in$ $Z e \oplus Z r$, and $Z e \oplus Z r$ is an epimorph of Z of form $\mathrm{B}, Z \boldsymbol{e} \oplus Z r \subseteq K(R)$ since $K(R)$
is the maximal epimorphic extension of $Z 1_{R}$ in R.
Now, $K(R) e$ and $K(R) d$ are ideals of $K(R)$ since e and d are central idempotents. Since $1_{R}=e+d, K(R)=K(R) e+K(R) d$ and, as above, the sum is direct. Then $r=a e+b d$, for some $a, b \in K(R)$, so $a e \in R e \cap R d=\{0\}$ and hence $r \in K(R) d$. Since $d=p r$, this shows that $K(R) d$ is p-divisible and hence $t_{p}(K(R) d)=\{0\}$. Since $p^{k} e=0, p^{k} K(R) e=\{0\}$ and so $t_{p}(K(R))=K(R) e$ and $\operatorname{ann}\left(t_{p}(K(R))=\left(p^{\ell}\right)\right.$ where $\ell \leq k$. Hence $g_{K}(p) \leq g(p)$, as required.

Theorem 1.3.1 If R is a ring with identity with characteristic function g, then $K(R) \cong E_{g}$.

Proof. By the Proposition 1.3.4, $K(R)$ has characteristic function g and so $K(R) \cong$ Eg by Proposition 1.3.3.

We close this section with the following result which will be useful in what follows.
Proposition 1.3.5 Let $S \subseteq T$ be rings with the same identity and characteristic functions g_{S} and g_{T}, respectively. If $g_{S}(p) \leq g_{T}(p)$ for all p, then $K(S)=K(T)$.

Proof. We first show that one-to-one identity preserving endomorphisms of epimorphs of Z must be onto. Suppose X is a set of prime numbers, $D=Z[1 / p \mid p \in X]$ and $\alpha: D \rightarrow D$ is a one-to-one homomorphism. Then for each $p \in X, \alpha(1 / p) \neq 0$ and $p \cdot \alpha(1 / p)=1$. Hence $\alpha(1 / p)=1 / p$. Thus α is onto.

Now let R be an arbitrary epimorph of Z and suppose that $\theta: R \rightarrow R$ is a one-to-one homomorphism. Then, for each prime $p, \theta\left(t_{p}(R)\right) \subseteq t_{p}(R)$ and since $t_{p}(R)$ is finite, $\theta\left(t_{p}(R)\right)=t_{p} R$. Hence $\theta(t R)=t R$ and so θ induces a one-to-one homomorphism $\hat{\theta}: R / t R \rightarrow R / t R$. Since $R / t R=Z[1 / p \mid p \in X]$ for some set of primes X, the remarks in the above paragraph show that $\hat{\theta}$, and hence θ, is onto.

Now suppose $S \subseteq T$ are rings with the same identity and that $g_{S}(p) \leq g_{T}(p)$ for all primes p. From Lemma 1.3.3, $g_{S}=g_{T}$. We will denote this function by g. Hence from Theorem 1.3.1 $K(T) \cong E g \cong K(S)$. Suppose $\gamma: K(T) \rightarrow K(S)$ is an isomorphism. From Lemma 1.3.2 $K(S) \subseteq K(T)$, and we denote the inclusion by $i: K(S) \longrightarrow K(T)$. The composition $i \gamma: K(T) \longrightarrow K(T)$ is a one-one-one homomorphism, and so by the first part of the proof $i \gamma$ is onto. Hence i is onto and thus $K(S)=K(T)$.

CHAPTER 2

Survey of Extensions

§2.1 Introduction

In this chapter we will consider various methods which have been developed which extend an arbitrary ring to a ring with identity. The first method which we will consider, which was developed by Dorroh, extends any ring R to $R \times Z$ which contains an identity element $(0,1)$. While this construction provides an extension for any ring R, many properties of R are lost in the extension. The Dorroh extension may be generalized as $R \times Y$, where Y is a ring with identity and R is a Y-bimodule algebra.

The approach developed by Robson adjoins to a given ring R a subring of the center of End R, the ring of endomorphisms of R. Unlike the extension developed by Dorroh, however, this approach requires R to be left faithful. Burgess and Stewart developed a refinement to the Robson approach which uses the characteristic ring of End R. This refinement preserves in the extension many properties of the original ring R.

We will also investigate the special case of regular rings, and examine two approaches developed to extend a regular ring R to a regular ring with identity.

This chapter will present the various extensions, while later chapters will examine properties preserved by the extension if possessed by the original ring. Throughout this chapter, R will denote the given (arbitrary) ring.

§2.2 The Dorroh Construction

Suppose Y is a ring with identity such that R is a Y-bimodule algebra. Dorroh has demonstrated that R can be embedded in a ring S with identity, where $S=R \times Y$,
and with addition and multiplication defined as follows:

$$
\begin{aligned}
\left(r_{1}, n_{1}\right)+\left(r_{2}, n_{2}\right) & =\left(r_{1}+r_{2}, n_{1}+n_{2}\right) \\
\left(r_{1}, n_{1}\right)\left(r_{2}, n_{2}\right) & =\left(r_{1} r_{2}+n_{1} r_{2}+n_{2} r_{1}, n_{1} n_{2}\right)
\end{aligned}
$$

for all r_{1}, r_{2} in R and n_{1}, n_{2} in Y.
It is an easy exercise to show that S is a ring. The identity of S is $(\rho, 1)$ since

$$
\begin{gathered}
(r, n)(0,1)=(r 0+n 0+1 r, n 1)=(r, n) \text { and } \\
(0,1)(r, n)=(0 r+n 0+1 r, 1 n)=(r, n)
\end{gathered}
$$

for all r in R and n in Y.
To see that R is embedded in S, we now show that there is an ideal of S which is isomorphic to R. Let $T=\{(r, 0) \mid r \in R\}$, an ideal of S.

Lemma 2.2.1 R is isomorphic to T.

Proof. Define a function $f: T \longrightarrow R$ by $f(r, 0)=r$. We note that f is a homomorphism since

$$
f\left(\left(r_{1}, 0\right)+\left(r_{2}, 0\right)\right)=f\left(r_{1}+r_{2}, 0\right)=r_{1}+r_{2}=f\left(r_{1}, 0\right)+f\left(r_{2}, 0\right)
$$

and

$$
f\left(\left(r_{1}, 0\right)\left(r_{2}, 0\right)\right)=f\left(r_{1} r_{2}, 0\right)=r_{1} r_{2}=f\left(r_{1}, 0\right) f\left(r_{2}, 0\right)
$$

for all r_{1}, r_{2} in R. Further, f is one-to-one since $f\left(r_{1}, 0\right)=f\left(r_{2}, 0\right)$ implies $r_{1}=r_{2}$, and f is onto since, for all r in $R,(r, 0)$ is in T. Therefore R is isomorphic to T, and we consider R to be embedded as an ideal of S in this way.

Although R may be extended to a ring with identity $R \times Y$ using this approach, many properties possessed by the original ring R are not possessed by the extension $R \times Y$. For example, if R contains an identity 1_{R}, the canonical homomorphism
$f: R \longrightarrow R \times Y$ does not preserve the identity, i.e. $f\left(1_{R}\right)=\left(1_{R}, 0\right) \neq\left(0,1_{Y}\right)$ which is the identity of $R \times Y$. Further, if Y does not have finite characteristic, the extension $R \times Y$ does not have finite characteristic, regardless of the characteristic of the original ring R.

In view of Corollary 1.2.1, we see that any ring R may be extended to a ring with identity, $R \times Z$, using this method.

§2.3 Complete Set of Extensions - The Brown and McCoy Construction

Brown and McCoy developed a modification of the Dorroh extension which is "minimal", by providing a set \mathcal{S} of extensions of R with the following properties:

1. each S in \mathcal{S} has an identity and is equipped with a monomorphism $\theta_{S}: R \longrightarrow S$; and
2. if T is a ring with identity and $f: R \longrightarrow T$ is a monomorphism, then T contains a subring T^{\prime} such that $f(R) \subseteq T^{\prime}$ and for some ring S in \mathcal{S} there is an isomorphism $g: S \longrightarrow T^{\prime}$ such that $g\left(1_{S}\right)=1_{T}$ and the following diagram commutes.

Definition 2.3.1 Such a set \mathcal{S} is called a complete set of extensions of R.

Definition 2.3.2 Let I be an ideal of a ring R and let μ be an integer. An element x in R is a μ-fier modulo I if $x r+I=\mu r+I$ and $r x+I=\mu r+I$ for every r in R.

Let $(-a, \alpha) \in R \times Z$, the Dorroh extension of R obtained by adjoining the ring of integers, where $a \in R$ and $\alpha \in Z$ are such that a is an α-fier and $a=0$ if $\alpha=0$. We note that $Z(-a, \alpha)$ is an ideal of $R \times Z$ since

$$
(-\beta a, \beta \alpha)(r, \mu)=(-\beta a r+\beta \alpha r-\mu \beta a, \mu \beta \alpha)=(-\mu \beta a, \mu \beta \alpha)
$$

and

$$
(r, \mu)(-\beta a, \beta \alpha)=(-\beta r a+\beta \alpha r-\mu \beta a, \mu \beta \alpha)=(-\mu \beta a, \mu \beta \alpha)
$$

for all $(-\beta a, \beta \alpha)$ in $Z(-a, \alpha)$ and all (r, μ) in $R \times Z$. The factor ring $(R \times Z) / Z(-a, \alpha)$ will be denoted by $R(a, \alpha)$, and cosets of elements (r, μ) of $R \times Z$ by $[r, \mu]$. We note that, in $R(a, \alpha),\left[r_{0}, \mu_{0}\right]=\left[r_{1}, \mu_{1}\right]$ if and only if $r_{1}-r_{0}=-\lambda a$ and $\mu_{1}-\mu_{0}=\lambda \alpha$ for some λ in Z since $\left[r_{0}, \mu_{0}\right]=\left\{(r, \mu) \mid\left(r-r_{0}, \mu-\mu_{0}\right)=\lambda(-a, \alpha)\right.$ for some $\left.\lambda \in Z\right\}$.

Theorem 2.3.1 Let $\mathcal{C}=\{R(m, \mu) \mid \mu \in Z$ and m is a μ-fier of $R\}$ and for each $S=$ $R(m, \mu) \in \mathcal{C}$ let $\theta_{S}: R \longrightarrow S$ be defined by $\theta_{S}(r)=[r, 0]$. Then \mathcal{C} is a complete set of extensions of R.

Proof. Let T be a ring with identity and $f: R \longrightarrow T$ a monomorphism. Choose $\sigma \in N$ such that $(\sigma)=\left\{n \in Z \mid n 1_{T} \in f(R)\right\}$. Let $m \in R$ be such that $f(m)=$ $\sigma 1_{T}$. Then, for any $r \in R, f(m r-\sigma r)=\sigma 1_{T} f(r)-\sigma f(r)=0$ and so, since f is one-to-one, $m r=\sigma r$. Hence m is a σ-fier of R and so $R(m, \sigma) \in \mathcal{C}$. Let $T^{\prime}=$ $\left\{f(r)+n 1_{T} \mid r \in R, n \in Z\right\}$ and define $g: R(m, \sigma) \longrightarrow T^{\prime}$ by $g([r, n])=f(r)+n 1_{T}$.

We first check that g is well-defined. If $\left[r_{0}, n_{0}\right]=\left[r_{1}, n_{1}\right]$, then $r_{0}-r_{1}=-k m$ and $n_{0}-n_{1}=k \sigma$ for some $k \in Z$. Hence $f\left(r_{0}\right)-f\left(r_{1}\right)=f\left(r_{0}-r_{1}\right)=-k f(m)=-k \sigma 1_{T}$ and so

$$
f\left(r_{0}\right)+n 1_{T}=\left(f\left(r_{1}\right)-k \sigma 1_{T}\right)+n_{0} 1_{T}=f\left(r_{1}\right)+\left(n_{0}-k \sigma\right) 1_{T}=f\left(r_{1}\right)+n_{1} 1_{T} .
$$

Hence g is well-defined.
The map g is a homomorphism since

$$
\begin{aligned}
g\left(\left[r_{0}, n_{0}\right]+\left[r_{1}, n_{1}\right]\right) & =g\left(\left[r_{0}+r_{1}, n_{0}+n_{1}\right]\right) \\
& =f\left(r_{0}+r_{1}\right)+\left(n_{0}+n_{1}\right) 1_{T} \\
& =\left(f\left(r_{0}\right)+n_{0} 1_{T}\right)+\left(f\left(r_{1}\right)+n_{1} 1_{T}\right) \\
& =g\left(\left[r_{0}, n_{0}\right]\right)+g\left(\left[r_{1}, n_{1}\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(\left[r_{0}, n_{0}\right]\left[r_{1}, n_{1}\right]\right) & =g\left(\left[r_{0} r_{1}+n_{1} r_{0}+n_{0} r_{1}, n_{0} n_{1}\right]\right) \\
& =f\left(r_{0} r_{1}+n_{1} r_{0}+n_{0} r_{1}\right)+n_{0} n_{1} 1_{T} \\
& =f\left(r_{0}\right) f\left(r_{1}\right)+n_{1} 1_{T} f\left(r_{0}\right)+n_{0} 1_{T} f\left(r_{1}\right) \\
& +\left(n_{0} 1_{T}\right)\left(n_{1} 1_{T}\right) \\
& =\left(f\left(r_{0}\right)+n_{0} 1_{T}\right)\left(f\left(r_{1}\right)+n_{1} 1_{T}\right) \\
& =f\left(\left[r_{0}, n_{0}\right]\right) f\left(\left[r_{1}, n_{1}\right]\right) .
\end{aligned}
$$

Clearly g is surjective and g is also one-to-one. To see this suppose that $g([r, n])=$ 0 . Then $f(r)+n 1_{T}=0$ and so $n 1_{T}=f(-r) \in f(R)$. Hence $n \in(\sigma)$, so $n=k \sigma$ for some $k \in Z$. Also $f(r)=-n 1_{T}=-k \sigma 1_{T}=-k f(m)=f(-k m)$ and so, since f is one-to-one, $r=-k m$. Since $r=-k m$ and $n=k \sigma$ we see that $[r, n]=[0,0]$. Hence g is one-to-one.

Of course $g([0,1])=1_{T}$, so it only remains to see that, with $S=R(m, \sigma), g \circ \theta_{S}=$ f. If $r \in R$, then $g \circ \theta_{S}(r)=g([r, 0])=f(r)$ and this completes the proof.

We will now characterize those rings which have a complete set of extensions which contain only one element. In order to do this we will require the following lemma.

Lemma 2.3.1 $Z /(\alpha)$ is a homomorphic image of $R(a, \alpha)$, where the iernel of the homomorphism is $\{[r, 0] \mid r \in R\} \simeq R$.

Proof. Define the map $h: R(a, \alpha) \longrightarrow Z /(\alpha)$ by $h([r, \mu])=\bar{\mu}$, where \boldsymbol{z} is an α-fier and $\bar{\mu}=\mu+(\alpha)$ is in $Z /(\alpha)$. Since $\left[r_{0}, \mu_{0}\right]=\left[r_{1}, \mu_{1}\right]$ if and only if $\mu_{1}-\mu_{0}=\lambda \alpha$ for some $\lambda \in Z$, we see that h is well defined. Thus h is a homomorphism ince

$$
\begin{aligned}
h\left(\left[r_{0}, \mu_{0}\right]+\left[r_{1}, \mu_{1}\right]\right) & =h\left(\left[r_{0}+r_{1}, \mu_{0}+\mu_{1}\right]\right) \\
& =\overline{\mu_{0}+\mu_{1}} \\
& =\overline{\mu_{0}}+\overline{\mu_{1}} \\
& =h\left(\left[r_{0}, \mu_{0}\right]\right)+h\left(\left[r_{1}, \mu_{1}\right]\right)
\end{aligned}
$$

and

$$
\begin{aligned}
h\left(\left[r_{0}, \mu_{0}\right]\left[r_{1}, \mu_{1}\right]\right) & =h\left(\left[r_{0} r_{1}+\mu_{0} r_{1}+\mu_{1} r_{0}, \mu_{0} \mu_{1}\right]\right) \\
& =\overline{\mu_{0} \mu_{1}} \\
& =\overline{\mu_{0}} \overline{\mu_{1}} \\
& =h\left(\left[r_{0}, \mu_{0}\right]\right) h\left(\left[r_{1}, \mu_{1}\right]\right)
\end{aligned}
$$

Thus $Z /(\alpha)$ is a homomorphic image of $R(a, \alpha)$. The kernel of h is

$$
\begin{aligned}
\text { ker } h & =\{[r, \mu] \mid r \in R, \bar{\mu}=0\} \\
& =\{[r, \mu] \mid r \in R, \mu=\lambda \alpha \text { for some } \lambda \in Z\} \\
& =\{[r, 0] \mid r \in R\} \\
& \simeq R .
\end{aligned}
$$

Theorem 2.3.2 A ring R has a one-element complete set of extension if and only if R has an identity or R has no μ-fiers with $\mu \neq 0$.

Proof. Suppose that $\{S\}$ is a complete set of extensions of R with maomorphism $\theta_{S}: R \longrightarrow S$.

Let $\sigma>0$ be a generator for the principal ideal $\left\{n \in Z \mid n \cdot 1_{S} \in \theta_{S}(R)\right\}$. If $\sigma=1$, then $\theta_{S}(R)$, and hence R, has an identity.

We now assume that $\sigma>1$. Let $m \in R$ be the element where $\theta_{S}(m)=\sigma 1_{s}$. Since θ_{S} is a monomorphism, m is unique. From the proof of Theorem 2.3.1 we see that $\psi: R(m, \sigma) \longrightarrow S$ defined by $\psi[r, n]=\theta_{S}(r)+n 1_{S}$ is a monomorphism.

Let $f: R \longrightarrow R \times Z$ be defined by $f(r)=(r, 0)$. Since S is a complete set of extensions of R there is a subring T^{\prime} of $R \times Z$ such that $f(R) \subseteq T^{\prime}$, and an isomorphism $g: S \longrightarrow T^{\prime}$ such that $g\left(1_{S}\right)=(0,1)$ and $g \circ \theta_{S}=f$. Thus we have the following sequence of homomorphisms,

$$
R(m, \sigma) \xrightarrow{\psi} S \xrightarrow{g} T^{\prime} \subseteq R \times Z \xrightarrow{\pi} Z
$$

where $\pi(r, n)=n$ for all $(r, n) \in R \times Z$. Denote the composition of these homomorphisms by Γ. If $[r, n] \in R(m, \sigma)$, then

$$
\begin{aligned}
\Gamma([r, n]) & =\pi g \psi([r, n]) \\
& =\pi g\left(\theta_{S}(r)+n 1_{S}\right) \\
& =\pi\left(g \theta_{S}(r)+g\left(n 1_{S}\right)\right) \\
& =\pi(f(r)+(0, n)) \\
& =\pi((r, 0)+(0, n)) \\
& =\pi((r, n)) \\
& =n
\end{aligned}
$$

so we see that Γ is surjective and $\operatorname{ker} \Gamma=\{[r, 0] \mid r \in R\}$. Hence

$$
\frac{R(m, \sigma)}{\{[r, 0] \mid r \in R\}} \cong Z
$$

This contradicts Lemma 2.3.1 unless $\sigma=0$.
Conversely, suppose that R has an identity or that R has no μ-fier, $\mu \neq 0$. If R has an identity, $\{R\}$ is a complete set of extensions.

Now suppose that R has no μ-fiers, $\mu \neq 0$. We will show that the set consisting of the Dorroh extension, $\{R \times Z\}$, is a complete set of extensions where $I_{R \times Z}: R \longrightarrow$ $R \times Z$ is the usual embedding $r \longrightarrow(r, 0)$. Suppose that T is a ring with identity and $f: R \longrightarrow T$ is a monomorphism. Define $g: R \times Z \longrightarrow T$ by $g((r, n))=f(r)+n 1_{T}$. Then g is a homomorphism and the universal property of $R \times Z$, which we will establish in Section 3.1, tells us that the following diagram commutes. Hence it suffices to show that g is one-to-one.

Suppose $g((r, n))=0$. Then $f(r)=-n 1_{T}$. Let $a \in R$. Then $f(a r)=f(a) f(r)=$ $f(a)\left(-n 1_{T}\right)=f(-n a)$ and since f is a monomorphism, $a r=-n a$ for all $a \in R$. Hence r is a $-n$-fier and hence $n=0$. Since $f(r)=-n 1_{T}=0$ and f is one-to-one $r=0$ also. Hence g is one-to-one.

§2.4 Robson's Construction

Robson developed a construction which extends R to a ring with unity by adjoining a subring of the center of End R, the endomorphism ring of R. This construction requires R to be left faithful so that R embeds in End R by the function $g: R \longrightarrow$ End R where, for any r in $R, g(r)(x)=r x$ for all x in R.

We begin with the following definitions.
Definition 2.4.1 A ring R is left faithful if, for all r in $R, r=0$ if $r R=0$.

Definition 2.4.2 The center of a ring S is the subring $Z(S)=\{s \in S \mid s x=x s$ for all $x \in S\}$.

Lemma 2.4.1 If R is left faithful then $g: R \longrightarrow$ End R is a monomorphism.
Proof. Let r_{1}, r_{2} be in R. Then

$$
\begin{aligned}
g\left(r_{1}+r_{2}\right)(x) & =\left(r_{1}+r_{2}\right) x \\
& =r_{1} x+r_{2} x \\
& =g\left(r_{1}\right) x+g\left(r_{2}\right) x
\end{aligned}
$$

and

$$
\begin{aligned}
g\left(r_{1} r_{2}\right)(x) & =\left(r_{1} r_{2}\right) x \\
& =r_{1}\left(r_{2} x\right) \\
& =\left(g\left(r_{1}\right) \circ g\left(r_{2}\right)\right)(x)
\end{aligned}
$$

for all x in R, so g is a homomorphism.
Let y be in ker g. Then $y r=0$ for all r in R, so $y=0$. Thus g is one-to-one and a monomorphism.

The remainder of this section assumes that R is left-faithful. For each $r \in R$ we will denote $g(r)$ by \hat{r} and we will denote $g(R)$ by \hat{R}, a subring of End R.

Lemma 2.4.2 Let φ be in End R and x in R. Then $\varphi \hat{x}=\widehat{\varphi(x)}$ is in \hat{R}.

Proof. For all r in R,

$$
\begin{aligned}
(\varphi \hat{x})(r) & =\varphi(\hat{x}(r)) \\
& =\varphi(x r) \\
& =\varphi(x) r \\
& =\widehat{\varphi(x)}(r)
\end{aligned}
$$

so $\varphi \hat{x}=\widehat{\varphi(x)}$ is in \hat{R}.
Let C be a subring of $Z(E n d R)$ containing the identity map. Then we have the following results.

Lemma 2.4.3 $\hat{R}+C$ is a subring of End R.
Proof. Let $\hat{r_{1}}, \hat{r_{2}}$ be in \hat{R} and c_{1}, c_{2} be in C, so that $\hat{r_{1}}+c_{1}, \hat{r_{2}}+c_{2}$ are in $\hat{R}+C$. Then $\left(\hat{r_{1}}+c_{1}\right)-\left(\hat{r_{2}}+c_{2}\right)=\left(\hat{r_{1}}-\hat{r_{2}}\right)+\left(c_{1}-c_{2}\right)=\widehat{r_{1}} r_{2}+\left(c_{1}-c_{2}\right) \in \hat{R}+C$. Also, $\left(\hat{r_{1}}+c_{1}\right)\left(\hat{r_{2}}+c_{2}\right)=\widehat{r_{1} r_{2}}+\hat{r_{1}} c_{2}+c_{1} \hat{r_{2}}+c_{1} c_{2}=\widehat{r_{1} r_{2}}+c_{2} \hat{r_{1}}+c_{1} \hat{r_{2}}+c_{1} c_{2}=$ $\widehat{r_{1} r_{2}}+c_{2}\left(r_{1}\right)+c_{1}\left(r_{2}\right)+c_{1} c_{2}=\widehat{\left(r_{1} r_{2}+c_{2}\left(r_{1}\right)+c_{1}\left(r_{2}\right)\right)}+c_{1} c_{2} \in \hat{R}+C$.

Definition 2.4.3 A non-zero right ideal I of a ring R is essential as a right ideal of R if $I \cap J \neq 0$ for all non-zero right ideals J of R.

Lemma 2.4.4 \hat{R} is an ideal of $\hat{R}+C$, essential as a right ideal.
Proof. Since $C \subseteq Z(E n d R)$, it follows from Lemma 2.4.2 that \hat{R} is an ideal of $\hat{R}+C$. Let I be a non-zero right ideal of $\hat{R}+C$, and let $0 \neq \varphi \in I$. Then $\varphi(r) \neq 0$ for some r in R and $\varphi \hat{r}=\widehat{\varphi(r)}$ by Lemma 2.4.2. Also, by Lemma 2.4.1, $\widehat{\varphi(r)} \neq 0$ and so $I \hat{R} \neq 0$. Since $I \hat{R} \subseteq I \cap \hat{R}, \hat{R}$ is essential as a right ideal.

This approach to extend R to a ring with identity requires that R be left faithful, unlike the approach developed by Dorroh which places no restriction on R. However, this extension preserves the characteristic of R and, if R contains an identity element 1_{R}, then $g\left(1_{R}\right)=\hat{1}_{R}=i$, the identity in the extension.

§2.5 The Robson-Burgess/Stewart Construction

The Burgess/Stewart approach to extending a ring to a ring with identity was developed as a refinement to the Robson construction.

Lemma 2.5.1 The ring $K(R)$ is in the center of R, for any ring R with identity.
Proof. The proof is similar to that used in Lemma 1.2.2, which is found in [DICK 84]. Let I be the ideal of the polynomial ring $R[x]$ generated by x^{2}. Fix an element $a \in R$ and define functions $f, g: K(R) \longrightarrow R[x] / I$ by $g(k)=k+I$ and $f(k)=(1+a x) k(1-a x)+I$ for all $k \in K(R)$. Since $f\left(1_{R}\right)=g\left(1_{R}\right)$ and $K(R)$ is an epimorph of $Z, f(k)=g(k)$ for all k in $K(R)$. Thus, for all k in $K(R)$, $(1+a x) k(1-a x)-k$ belongs to I and hence $(a k-k a) x$ is in I. Since I is generated by $x^{2}, a k=k a$ for all k in $K(R)$. Therefore $K(R) \subseteq Z(R)$.

Corollary 2.5.1 For any ring $A, K(E n d A)=K\left(E n d_{A} A_{A}\right)$, where End $A_{A} A_{A}$ is the ring of bimodule endomorphisms of A.

Proof. Since $E n d_{A} A_{A} \subseteq E n d A, K\left(E n d_{A} A_{A}\right) \subseteq K(E n d A)$ by Lemma 1.3.2.
Let $\varphi \in K(\operatorname{End} A)$ and $a \in A$. Since $\varphi \in Z(E n d A), \varphi \hat{a}=\hat{a} \varphi$ and so for any $x \in A,(\varphi \hat{a})(x)=(\hat{a} \varphi)(x)$; that is, $\varphi(a x)=a \varphi(x)$. Hence $\varphi \in \operatorname{End}_{A} A_{A}$, and so we have shown that $K(E n d A) \subseteq E n d_{A} A_{A}$. Since $K(E n d A)$ is an epimorph of Z, $K(E n d A) \subseteq K\left(E n d_{A} A_{A}\right)$ as required.

Definition 2.5.1 For any ring $A, \hat{K}(A)=K($ End $A)$.
Let R be a ring with identity. From Proposition 1.3 .1 we see that R and End R have the same characteristic function, so $K(R) \cong \hat{K}(R)$ by Theorem 1.3.1. In view of this we will refer to $\hat{K}(A)$ as the characteristic ring of A for any ring A.

Example 2.5.1 $\hat{K}\left(Z_{p^{\infty}}\right) \cong Z[1 / q \mid q \in P \backslash\{p\}]$. This follows because we already know the characteristic function of $Z_{p^{\infty}}$.

Proposition 2.5.1 Every ring A is a $\hat{K}(A)$-bimodule algebra.

Proof. Define the action of $\hat{K}(A)$ on A by $\theta \cdot a=a \cdot \theta=\theta(a)$ for all $\theta \in \hat{K}(A)$ and $a \in A$.

Clearly this makes A a left $\hat{K}(A)$-module and also $(a+b) \theta=a \theta+b \theta, a 1=a$ and $a\left(\theta_{1}+\theta_{2}\right)=a \theta_{1}+a \theta_{2}$ for $a, b \in A$ and $\theta_{1}, \theta_{2}, 1 \in \hat{K}(A)$. Also, since $\hat{K}(A)$ is commutative, $a\left(\theta_{1} \theta_{2}\right)=\left(\theta_{1} \theta_{2}\right)(a)=\left(\theta_{2} \theta_{1}\right)(a)=\theta_{2}\left(\theta_{1}(a)\right)=\theta_{1}(a) \cdot \theta_{2}=\left(a \cdot \theta_{1}\right) \theta_{2}=$ $a \cdot\left(\theta_{1} \theta_{2}\right)$. Hence A is a right $\hat{K}(A)$-module. Further, $\theta_{1}\left(a \theta_{2}\right)=\theta_{1}\left(\theta_{2}(a)\right)=\theta_{1} \theta_{2}(a)=$ $\theta_{2} \theta_{1}(a)=\left(\theta_{1}(a)\right) \theta_{2}=\left(\theta_{1} \cdot a\right) \theta_{2}$ and so A is a $\hat{K}(A)$-bimodule.

We see that the algebra conditions are satisfied, since by Corollary 2.5.1, $\hat{K}(A) \subseteq$ $E n d_{A} A_{A}$, and $(a b) \theta=\theta(a b)=a \theta(b)$ again since $\hat{K}(A) \subseteq E n d_{A} A_{A}$, and so $a \cdot \theta(b)=$ $(a \theta) b=(\theta a) b=\theta(a) \cdot b=\theta(a b)=\theta \cdot(a b)$. Hence A is a $\hat{K}(A)$-bimodule algebra.

In view of the above proposition we can imbed any ring A in the Dorroh ring $A \times \hat{K}(A)$, which has an identity. We will denote this ring by A^{*}.

Proposition 2.5.2 $K\left(A^{*}\right)=\hat{K}(A)$.
Proof. Let g be the characteristic function of End A. From Propositions 1.3.1 and 1.3.4, $A, K(\operatorname{End} A), A^{0}$ and $(K(E n d A))^{0}$ all have characteristic function g. By Proposition 1.3.2 $A^{0} \times(K(E n d A))^{0}=(A \times K(E n d A))^{0}$ also has characteristic function g and so too does $A \times K(E n d A)$ by Proposition 1.3.1. Since $K(E n d A)$ is a unital subring of $A \times K(E n d A)$, it follows from Proposition 1.3.5 that $K(A \times$ $K(\operatorname{End} A))=K(K($ End $A))$. Hence $K\left(A^{*}\right)=K($ EndA $)=\hat{K}(A)$.

If A is a ring which is left faithful, then $A \cong \hat{A} \subseteq E n d A$. Define $A_{1}=\hat{A}+\hat{K}(A)$. Since $\hat{K}(A)$ is in the centre of End A by Lemma 2.5.1, A_{1} is a subring of End A by Lemma 2.4.3 and \hat{A} is an ideal of A_{1} which is essential as a right ideal by Lemma 2.4.4.

Proposition 2.5.3 If A is left faithful, A_{1} is a homomorphic image of A^{*}.

Proof. Define $\psi: A^{*} \rightarrow A_{1}$ by $\psi((a, k))=\hat{a}+k$. It is straightforward to check that ψ is a surjective homomorphism.

Proposition 2.5.4 If A is left faithful, $K\left(A_{1}\right)=\hat{K}(A)$.
Proof. We have $\hat{K}(A)=K(E n d A) \subseteq A_{1} \subseteq E n d A$. Hence by Lemma 1.3.2, $K(\hat{K}(A)) \subseteq K\left(A_{1}\right) \subseteq K(E n d A)=\hat{K}(A)$. Since $K(\hat{K}(A))=\hat{K}(A)$, the result follows.

§2.6 Regular Rings - Fuchs, Halperin and Funayama

Definition 2.6.1 A ring R is regular if, for each x in R, there exists y in R such that $x y x=x$.

Fuchs and Halperin constructed a commutative regular ring K with identity such that every regular ring R is a K-bimodule algebra. The ring K was then used to construct an extension of any given regular ring R where the extension contains an identity element and is itself regular. This construction is the Dorroh construction where the commutative regular ring K is adjoined to the original ring. The main result of this section is that any regular ring R is isomorphic to a two-sided ideal of a regular ring with identity.

It is interesting to note that no conditions are placed on the ring L other than the requirement that R be regular. We begin by collecting some basic facts about regular rings.

Proposition 2.6.1 Let R be a regular ring and let $p \in P$.

1. If I is an ideal of R, then $I^{2}=I$.
2. $\operatorname{ann~}_{p}(R)=\left(p^{k}\right)$ where $k=0$ or 1 .
3. $p R$ is p-divisible.
4. $t_{p}(R) \cap p R=0$.
5. For each $x \in p R$ there is a unique $y \in p R$ such that $x=p y$.
6. $t_{p}(R) \oplus p R=R$.
7. If p_{1}, \ldots, p_{n} are distinct primes, then $R=t_{p_{1}}(R) \oplus \cdots \oplus t_{p_{n}}(R) \oplus p_{1} \cdots p_{n} R$ and $p_{1} \cdots p_{n} R$ is divisible by p_{i} for all $i=1, \ldots, n$.
8. For each $x \in p_{1} \cdots p_{n} R$ and each $i=1, \ldots, n$ there is a unique $y \in p_{1} \cdots p_{n} R$ such that $x=p_{i} y$.

Proof.

1. If $a \in I$, then there is a $b \in R$ such that $a=a b a=(a b) a \in I^{2}$. Hence $I=I^{2}$.
2. Suppose $m>1$ and $I=\left\{x \in R \mid p^{m} x=0\right\}$. Then $p I$ is an ideal of R and $(p I)^{m}=0$. Hence $p I=0$ by 1 above, proving that ann $t_{p}(R)=\left(p^{k}\right)$ where $k=0$ or 1 .
3. Let $a=p b, b \in R$. Then $a=a x a$ for some $x \in R$ and so $a=p b x a=p(b x a)$ where $b x a=p b x b \in p R$. Hence $p R$ is p-divisible.
4. Let $a \in t_{p}(R) \cap p R$. Then $a=p b$ for some b and $p a=0$ by 2 above. Hence $p^{2} b=0$ and so $p b=0$, again by 2 above. Thus $a=0$.
5. Suppose $a=p x=p y$ where $x, y \in p R$. Then $x-y \in t_{p}(R) \cap p R$ and hence $x=y$ by 4 above.
6. Let $a \in R$. There is an $x \in R$ such that $p a=(p a) x(p a)$. Thus $a=(a-p a x a)+$ $p a x a, p(a-p a x a)=p a-(p a) x(p a)=0$ and $p a x a \in p R$.
7. Let $I=\left\{a \in R \mid p_{1} \cdots p_{n} a=0\right\}$. Clearly $t_{p_{1}}(R) \subseteq I$ for each $i=1, \ldots, n$ and the sum $t_{p_{1}}(R)+\cdots+t_{p_{n}}(R)$ is direct. Let $\pi_{i}=\left(p_{1} \cdots p_{n}\right) / p_{i}, i=1, \ldots, n$. Since the p_{i} are distinct, the greatest common divisor of π_{1}, \ldots, π_{n} is 1 . Hence there are integers $\alpha_{1}, \ldots, \alpha_{n}$ such that $\alpha_{1} \pi_{1}+\cdots+\alpha_{n} \pi_{n}=1$. So if $a \in$ I, then $a=1 \cdot a=\alpha_{1} \pi_{1} a+\cdots+\alpha_{n} \pi_{n} a$ is in $t_{p_{1}}(R) \oplus \cdots \oplus t_{p_{n}}(R)$. Thus $t_{p_{1}}(R) \oplus \cdots \oplus t_{p_{n}}(R)=I$.

Let $a \in I \cap p_{1} \cdots p_{n} R$. Then $a=p_{1} \cdots p_{n} x$ for some $x \in R$. Since $a \in$ $I, p_{1} \cdots p_{n} a=0$. Hence $p_{1}^{2} \cdots p_{n}^{2} x=0$ and so repeated use of result 2 above shows that $p_{1} \cdots p_{n} x=0$. Hence $a=0$ and we have $I \cap p_{1} \cdots p_{n} R=0$. If $a \in R, p_{1} \cdots p_{n} a=\left(p_{1} \cdots p_{n} a\right) x\left(p_{1} \cdots p_{n} a\right)$ for some $x \in R$. Hence $a-$ $p_{1} \cdots p_{n} a x a \in I$ and since $a=\left(a-p_{1} \cdots p_{n} a x a\right)+\left(p_{1} \cdots p_{n} a x a\right)$ we see that $R=t_{p_{1}}(R) \oplus \cdots \oplus t_{p_{n}}(R) \oplus p_{1} \cdots p_{n} R$.

Let $d=p_{1} \cdots p_{n} x \in p_{1} \cdots p_{n} R$. Because of the direct sum decomposition of R above, $\pi_{i} x=a_{1}+\cdots+a_{n}+y$ for some $a_{i} \in t_{p_{i}}(R)$ and $y \in p_{1} \cdots p_{n} R$. Then $d=p_{i} \pi_{i} x=p_{i} a_{1}+\cdots+p_{i} a_{n}+p_{i} y \in p_{1} \cdots p_{n} R$ and so $p_{i} a_{j}=0$ for all j. Hence $d=p_{i} y$ where $y \in p_{1} \cdots p_{n} R$, so $p_{1} \cdots p_{n} R$ is divisible by p_{i} for all $i=1, \ldots, n$.
8. Suppose $x, y, z \in p_{1} \cdots p_{n} R$ and $x=p_{i} y=p_{i} z$ for some $i=1, \ldots, n$. Then $p_{i}(y-z)=0$, so $y-z \in t_{p_{i}}(R) \cap p_{1} \cdots p_{n} R=0$. Thus $y=z$.

Let $p_{1}, p_{2}, \ldots, p_{n}, \ldots$ be an enumeration of the primes and $S=\prod_{i=1}^{\infty} Z /\left(p_{i}\right)$. Denote $K(S)$ by K. Then the elements of K are sequences $\left\langle u_{i}\right\rangle$ such that there is a rational number α / β and $u_{i}=\bar{\alpha} / \bar{\beta}$ for almost all i.

Proposition 2.6.2 Every regular ring R is a K-bimodule algebra.
Proof. Let R be a regular ring and let $a \in R$. Let $\bar{u}=\left\langle u_{i}\right\rangle \in K$. Then there is an $\alpha / \beta \in Q$ and an integer \bar{M} such that $u_{i}=\bar{\alpha} / \bar{\beta}$ for all $i>\bar{M}$. Choose M
such that $M \geq \bar{M}$ and if p is a prime divisor of β, then $p=p_{i}$ for some $i \leq M$. From Proposition 2.6.1, $R=t_{p_{1}}(R) \oplus \cdots \oplus t_{p_{M}}(R) \oplus p_{1} \cdots p_{M} R$, so we can write $a=a_{1}+\cdots+a_{M}+d$ where $a_{i} \in t_{p_{i}}(R)$ and $d \in p_{1} \cdots p_{M} R$. From results 7 and 8 of Proposition 2.6.1 there is a unique $x \in p_{1} \cdots p_{M} R$ such that $d=\beta x$. Define $\bar{u} a=a \bar{u}=u_{1} a_{1}+\cdots+u_{M} a_{M}+\alpha x$.

We now verify that this action is well defined. Suppose H is an integer such that $u_{i}=\bar{\gamma} / \bar{\delta}$, for some $\gamma / \delta \in Q$, for all $i>H$ and if p is a prime divisor of δ, then $p=p_{i}$ for some $i \leq H$. Without loss of generality we can assume that $H \geq M$. For all $i>H, u_{i}=\bar{\alpha} / \bar{\beta}=\bar{\gamma} / \bar{\delta}$ and so $\alpha \delta-\beta \gamma$ is divisible by p_{i} for all $i>H$. Hence $\alpha \delta=\beta \gamma$, so $\alpha / \beta=\gamma / \delta$.

Decompose R as

$$
R=t_{p_{1}}(R) \oplus \cdots \oplus t_{p_{H}}(R) \oplus p_{1} \cdots p_{H} R
$$

and write $a=b_{1}+\cdots+b_{H}+\bar{d}$ where $b_{i} \in t_{p_{i}}(R)$ for $i=1, \ldots, H$ and $\bar{d} \in p_{1} \cdots p_{H} R$.
If $y \in R, y=c_{1}+\cdots+c_{H}+d^{\prime}$ for some $c_{i} \in t_{p_{i}}(R), i=1, \ldots, H$, and $d^{\prime} \in p_{1} \cdots p_{H} R$. Hence $p_{1} \cdots p_{M} y \in t_{p_{M+1}}(R) \oplus \cdots \oplus t_{p_{H}}(R) \oplus p_{1} \cdots p_{H} R$ because $p_{1} \cdots p_{M} c_{i}=0$ for $i \leq M$. So we see that $p_{1} \cdots p_{M} R \subseteq t_{p_{M+1}}(R) \oplus \cdots \oplus t_{p_{H}}(R) \oplus$ $p_{1} \cdots p_{H} R$.

Let $i \leq M$. Then, since $a=a_{1}+\cdots+a_{M}+d=b_{1}+\cdots+b_{H}+\bar{d}$ and $d \in$ $t_{p_{M+1}}(R) \oplus \cdots \oplus t_{p_{H}}(R) \oplus p_{1} \cdots p_{H} R$, the fact that the sum (\star) is direct implies that $a_{i}=b_{i}$ for $i \leq M$. From this it follows that $d=b_{M+1}+\cdots+b_{H}+\bar{d}$. Now, for $j \geq M+1, p_{j}$ does not divide β, and so there is a $\bar{b}_{j} \in t_{p_{j}}(R)$ such that $b_{j}=\beta \bar{b}_{j}$. Also, for $j \geq M+1, u_{j}=\bar{\alpha} / \bar{\beta}$.

Suppose $\bar{x}, \overline{\bar{x}} \in p_{1} \cdots p_{H} R$ are such that $\bar{d}=\beta \bar{x}$ and $\bar{d}=\delta \overline{\bar{x}}$. Note that results 7 and 8 of Proposition 2.6 .1 guarantee the existence of \bar{x} and $\overline{\bar{x}}$. Then

$$
\begin{aligned}
\delta(\gamma \overline{\bar{x}}-\alpha \bar{x}) & =\delta \gamma \overline{\bar{x}}-\delta \alpha \bar{x} \\
& =\delta \gamma \overline{\bar{x}}-\beta \gamma \bar{x}
\end{aligned}
$$

$$
\begin{aligned}
& =\gamma(\delta \overline{\bar{x}}-\beta \bar{x}) \\
& =\gamma(\bar{d}-\bar{d}) \\
& =0 .
\end{aligned}
$$

Recall that if p is a prime dividing δ, then $p=p_{i}$ for some $i \leq H$. Hence $\gamma \overline{\bar{x}}-\alpha \bar{x} \in$ $\left\{r \in R \mid p_{1} \cdots p_{H} r=0\right\}=t_{p_{1}}(R) \oplus \cdots \oplus t_{p_{H}}(R)$. But $\gamma \overline{\bar{x}}-\alpha \bar{x} \in p_{1} \cdots p_{H} R$, so $\gamma \overline{\bar{x}}-\alpha \bar{x}=0$.

Now

$$
\begin{aligned}
d & =b_{M+1}+\cdots+b_{H}+\bar{d} \\
& =\beta \bar{b}_{M+1}+\cdots+\beta \bar{b}_{H}+\beta \bar{x} \\
& =\beta\left(\bar{b}_{M+1}+\cdots+\bar{b}_{H}+\bar{x}\right) .
\end{aligned}
$$

Thus the uniqueness of x implies that $x=\bar{b}_{M+1}+\cdots+\bar{b}_{H}+\bar{x}$.
The actions of K on R determined by our two decompositions agree on the first M terms because $a_{i}=b_{i}$ for $i \leq M$. We now consider the other terms:

$$
\begin{aligned}
v & =u_{M+1} b_{M+1}+\cdots+u_{H} b_{H}+\gamma \overline{\bar{x}} \\
& =u_{M+1} \beta \bar{b}_{M+1}+\cdots+u_{H} \beta \bar{b}_{H}+\alpha \bar{x} \\
& =\alpha \bar{b}_{M+1}+\cdots+\alpha \bar{b}_{H}+\alpha \bar{x}
\end{aligned}
$$

since, for $M+1 \leq i \leq H, u_{i}=\bar{\gamma} / \bar{\delta}=\bar{\alpha} / \bar{\beta}$. Hence $v=\alpha\left(\bar{b}_{M+1}+\cdots+\bar{b}_{H}+\bar{x}\right)=\alpha x$, and so the actions are the same; that is, the action of K on R is well-defined.

It is clear that, with this action, R becomes a unital right and left K-module. Also, the bimodule and algebra conditions are clear because the action is defined "componentwise". Hence R is a K-bimodule algebra.

Let R be a regular ring. In view of Proposition 2.6 .2 and the results of Section 2.2, we can form the Dorroh ring $R \times K$ which has ideal $\{(r, 0) \mid r \in R\} \cong R$. We
shall show later in Lemma 4.1.5 that K is regular and it will then follow from Lemma 4.1.9 that $R \times K$ is regular. Hence every regular ring can be embedded as a two-sided ideal in a regular ring with identity.

Funayama noted that the ring of bimodule endomorphisms, \tilde{R}, of a regular ring R is a commutative regular ring, and used this ring to construct an alternate regular extension of R with identity. Unlike the construction of Fuchs and Halperin which employed the same commutative regular ring K to extend any regular ring R, Funayama's construction employs a ring which depends on R.

Theorem 2.6.1 If R is a regular ring, then $E n d_{R} R_{R}$ is a commutative regular ring.

Proof. We first show that $E n d_{R} R_{R}$ is commutative. Let α, β be elements of $E n d_{R} R_{R}$, and let r be an element of R. Let s be the element in R such that $r=r s r$. Then

$$
\begin{aligned}
\alpha \circ \beta(r) & =\alpha \circ \beta(r s r) \\
& =\alpha(\beta(r) s r) \\
& =\beta(r) \alpha(s) r \\
& =\beta(r \alpha(s) r) \\
& =\beta \circ \alpha(r s r) \\
& =\beta \circ \alpha(r)
\end{aligned}
$$

and so $\alpha \beta=\beta \alpha$, showing that $E n d_{R} R_{R}$ is commutative.
We now demonstrate that $E n d_{R} R_{R}$ is regular. Let $\alpha \in E n d_{R} R_{R}$. We first show that $R=\operatorname{ker} \alpha \oplus \operatorname{im} \alpha$.

Let $x \in \operatorname{ker} \alpha \cap \operatorname{im} \alpha$. Then $x=\alpha(y)$ for some $y \in R$ and, since $\alpha(x)=0$, $\alpha^{2}(y)=0$. Let $s \in R$ be such that $x=x s x$. Then $x=x s x=\alpha(y) s \alpha(y)=$ $\alpha(\alpha(y) s y)=\alpha(\alpha(y)) s y=\alpha^{2}(y) s y=0$. Thus ker $\alpha \cap$ im $\alpha=0$.

Let $x \in R$ and let v be an element of R such that $\alpha(x)=\alpha(x) v \alpha(x)$. Then $x=(x-\alpha(x v x))+\alpha(x v x)$ is in ker $\alpha+i m \alpha$. Hence $R=k e r \alpha \oplus i m \alpha$.

Let $x=\alpha(y) \in \operatorname{im} \alpha$. We will show that there is a unique $z \in \operatorname{im} \alpha$ such that $x=\alpha(z)$. As above, if $x=x s x$, then $x=\alpha(y) s \alpha(y)=\alpha(\alpha(y) s y)=\alpha(\alpha(y s y))$ and so there is a $z=\alpha(y s y) \in \operatorname{im} \alpha$ such that $\alpha(z)=x$. Suppose now that $z_{1}, z_{2} \in \operatorname{im} \alpha$ and $\alpha\left(z_{1}\right)=\alpha\left(z_{2}\right)=x$. Then $z_{1}-z_{2} \in \operatorname{ker} \alpha \cap \operatorname{im} \alpha$ and hence $z_{1}=z_{2}$.

Define $\beta: R \longrightarrow R$ as follows. For $r \in R, r=a+b$, where $a \in \operatorname{ker} \alpha$ and $b=\alpha(c) \in i m \alpha$ for some unique $c \in \operatorname{im} \alpha$. Then $\beta(r)=c$. The remarks in the above paragraph and the fact that the sum $\operatorname{ker} \alpha+i m \alpha$ is direct guarantee that β is well-defined. Since α is a bimodule endomorphism β is also. Finally, let $x \in R$ and suppose $\alpha(x)=c$ where c is in $i m \alpha$ and $c=\alpha(d), d \in i m \alpha$. Then $\alpha \beta \alpha(x)=\alpha \beta(c)=\alpha(d)=c=\alpha(x)$, so $\alpha \beta \alpha=\alpha$. Hence End ${ }_{R} R_{R}$ is regular.

Proposition 2.6.3 Let R be a regular ring. Then R is an $E n d_{R} R_{R}$-bimodule algebra.

Proof. Define the action of $E n d_{R} R_{R}$ on R by $\theta \cdot r=r \cdot \theta=\theta(r)$ for all $\theta \in$ $E n d_{R} R_{R}$ and $r \in R$. Since $E n d_{R} R_{R}$ is commutative, the first part of the proof of Proposition 2.5 .1 shows that R is an $E n d_{R} R_{R^{-}}$-bimodule. Also, the proof that the algebra conditions are satisfied is as in Proposition 2.5.1. To be explicit, let r, $s \in R$ and $\theta \in E_{R} d_{R} R_{R}$. Then $(\theta r) s=\theta(r) \cdot s=\theta(r s),(r \theta) s=\theta(r) s=\theta(r s)$ and $(r s) \theta=\theta(r s)=r \theta(s)$.

In view of this proposition we can form the Dorroh ring $R \times E n d_{R} R_{R}$ which will be regular by Lemma 4.1.9, have an identity and contain a two-sided ideal isomorphic to R.

Recall, from Corollary 2.5.1, that $\hat{K}(R)=K\left(E n d_{R} R_{R}\right) \subseteq E n d_{R} R_{R}$. Hence $R^{*} \subseteq R \times E n d_{R} R_{R}$ and R^{*} is also a regular ring by Lemmas 4.1.7 and 4.1.9.

An inspection of that part of the proof of Theorem 2.6.1 that shows that End $R_{R} R_{R}$ is commutative reveals that, for any regular ring $R, \alpha \circ \beta=\beta \circ \alpha$ for any $\alpha \in \operatorname{End}_{R} R_{R}$ and $\beta \in E n d R$.

Let R be a regular ring. Then the above observation shows that $E n d_{R} R_{R} \subseteq$ $Z(E n d R)$. Also, R is left faithful since if $0 \neq r \in R$ there is an s in R such that $r=r s r$ and hence $r R \neq 0$. As a result we can employ Robson's construction to see that $R \cong \hat{R} \subseteq \hat{R}+E n d_{R} R_{R}$ where $\hat{R}+E n d_{R} R_{R}$ will be regular by Lemma 4.1.9. Also, since $\hat{K}(R) \subseteq E n d_{R} R_{R}$ by Corollary 2.5.1, $R_{1}=\hat{R}+\hat{K}(R) \subseteq \hat{R}+\operatorname{End}_{R} R_{R}$ and R_{1} is regular by Corollary 4.1.1.

CHAPTER 3

Universality of the Dorroh Construction

§3.1 The Universal Property

In this chapter we examine universality of the Dorroh construction $R \times Z$ which extends any ring R to a ring with identity. Specifically, we will see that this construction is functorial, and is part of an adjunction. We begin with the universal property, followed by a short discussion on category theory which will provide the background for the last section of this chapter.

In this section we discuss the universal property. Let R be an arbitrary ring and $R \times Z$ be the Dorroh extension of R. Let g be the canonical homomorphism which embeds R into $R \times Z$. We get the following result.

Theorem 3.1.1 Let T be a ring with identity and f a ring homomorphism, $f: R \longrightarrow$ T. Then there is a unique homomorphism $h: R \times Z \longrightarrow T$ preserving the identity such that $h \circ g=f$.

Proof. We want to show that there is a unique homomorphism h which makes the following diagram commute:

Existence:

Recall that $g(r)=(r, 0)$. For any integer n let $n_{T}=n 1_{T}$.
Define $h: R \times Z \longrightarrow T$ by $h(r, n)=f(r)+n_{T}$. We note that h is a homomorphism since

$$
\begin{aligned}
h(r, n)+h(t, m) & =f(r)+n_{T}+f(t)+m_{T} \\
& =f(r)+f(t)+n_{T}+m_{T} \\
& =f(r+t)+(n+m)_{T} \\
& =h(r+t, n+m) \\
& =h((r, n)+(t, m)) \\
\text { and } h(r, n) h(t, m) & =\left(f(r)+n_{T}\right)\left(f(t)+m_{T}\right) \\
& =f(r) f(t)+n_{T} f(t)+m_{T} f(r)+n_{T} m_{T} \\
& =f(r t)+n_{T} f(t)+m_{T} f(r)+(n m)_{T} \\
& =h(r t, 0)+h(n t, 0)+h(m r, 0)+h(0, n m) \\
& =h(r t+n t+m r, n m) \\
& =h((r, n)(t, m))
\end{aligned}
$$

for all $(r, n),(t, m)$ in $R \times Z$. We note that h preserves the identity since $h(0,1)=1_{T}$. Uniqueness:

Suppose there exists another homomorphism $h^{\prime}: R \times Z \longrightarrow T$ preserving the identity such that $h^{\prime} \circ g=f$. Let (r, n) be in $R \times Z$. By the restrictions placed on h^{\prime} we must have $h^{\prime}(r, 0)=f(r)$ and $h^{\prime}(0, n)=n_{T}$. Therefore $h^{\prime}(r, n)=h^{\prime}(r, 0)+h^{\prime}(0, n)=$ $f(r)+n_{T}=h(r, n)$, so that $h=h^{\prime}$ proving the theorem.

It is noted that the Robson construction of a ring extension does not generally satisfy this universal property. For example, in the case where R has an identity element, the Robson extension of R is $\hat{R} \cong R$. In this case g is the identity map.

Let $T=R \times Z$ be the Dorroh extension of R, with $f: R \longrightarrow R \times Z$ defined as $f(x)=(x, 0)$ for all x in R, so that we have the following situation:

Then we require a unique map $h: R \longrightarrow R \times Z$ which satisfies $h(1)=(0,1)$, so $h \circ g(1)=(0,1)$. However, $f(1)=(1,0)$, so that $h \circ g \neq f$.

§3.2 Category Theory

In this section we provide the background to category theory required for the discussion in the following section.

Definition 3.2.1 [MACL 71] A category consists of a collection of objects, denoted by A, B, C, \ldots and a collection of morphisms, denoted by f, g, h, \ldots subject to the following:

1) to every morphism, we associate a unique pair of objects called the domain and the codomain. We write $A \xrightarrow{f} B$ and say f is a morphism from A to B;
2) to every object we associate a unique morphism called the identity, and write $A \xrightarrow{1_{A}} A ;$
3) to every pair of morphisms in the situation $A \xrightarrow{f} B \xrightarrow{g} C$ we associate a unique morphism called the composite, and write $A \xrightarrow{g \circ f} C$ (such f and g will be called composable pairs);
4) in the situations $A \xrightarrow{1_{A}} A \xrightarrow{f} B$ and $A \xrightarrow{f} B \xrightarrow{1_{B}} B$, we have $f \circ 1_{A}=f$ and $1_{B} \circ f=f$; and
5) in the situation $A \xrightarrow{f} B \xrightarrow{g} C \xrightarrow{h} D$ we have $h \circ(g \circ f)=(h \circ g) \circ f$.

Given a category \underline{C}, we denote by $\operatorname{Obj}(\underline{C})$ the objects of C and by $\operatorname{Mor}(\underline{C})$ the morphisms of C.

An example of a category is Rng , whose objects are rings and whose morphisms are ring homomorphisms. A second example is Ring, the category whose objects are rings which contain identity elements and whose morphisms are ring homomorphisms which preserve the identity elements.

Definition 3.2.2 [MACL 71] Given two categories \underline{C} and \underline{D}, a functor from \underline{C} to \underline{D}, denoted by $\underline{C} \xrightarrow{F} \underline{D}$, associates to each object C of \underline{C} a unique object $F(C)$ of \underline{D} and to each morphism $C \xrightarrow{f} C^{\prime}$ of \underline{C} a unique morphism $F(C) \xrightarrow{F(f)} F\left(C^{\prime}\right)$ of \underline{D} such that $F\left(1_{C}\right)=1_{F(C)}$ and $F(f \circ g)=F(f) \circ F(g)$ for each composable pair f and g.

Definition 3.2.3 [MACL 71] A natural transformation between two functors S, T : $\underline{B} \longrightarrow \underline{C}$, denoted by $S \xrightarrow{\tau} T$, assigns to each B in $\operatorname{Obj}(\underline{B})$ a unique $S B \xrightarrow{\tau_{B}} T B$ in $\operatorname{Mor}(\underline{C})$ such that for every $B \xrightarrow{f} B^{\prime}$ in $\operatorname{Mor}(\underline{B})$, the following diagram commutes.

Definition 3.2.4 [MACL 71] Given two categories \underline{C} and \underline{D} and two functors $\underset{G}{\stackrel{F}{F}} \underset{\sim}{D}$, we say F is a left adjoint of G, denoted $F \dashv G$, if there is a natural transformation $\mu: 1_{C} \longrightarrow G F$ such that each component $\mu_{c}: C \longrightarrow G F C$ is universal to G from C (that is, for each morphism $f: C \longrightarrow C^{\prime}, G F(f)$ is the unique morphism h such that $h \circ \mu_{C}=\mu_{C^{\prime}} \circ f$.

§3.3 Adjunction

We next consider some categorical aspects of the Dorroh construction. Specifically, we interpret the Dorroh construction as a functor and as part of an adjunction. The functor $U: \underline{R i n g} \longrightarrow \underline{R n g}$, defined by $U(A \xrightarrow{f} B)=A \xrightarrow{f} B$, is commonly called "the forgetful functor", since its action is simply to "forget" the existence of the identity element. The following results are due to [MACL 71].

We define $F: \underline{R n g} \longrightarrow \underline{R i n g}$ by $F(A)=A \times Z$ for A in $\operatorname{Obj}(\underline{R n g})$ and $F(f)((a, n))=(f(a), n)$ for $A \xrightarrow{f} B$ in $\operatorname{Mor}(\underline{R n g})$.

Proposition 3.3.1 F is a functor.

Proof.

There are four conditions which must be satisfied in order for this to be a functor. We have already shown that $F(A)=A \times Z$ is in $\operatorname{Obj}(\underline{\text { Ring })}$ since $R \times Z$ has an identity element. Let $A \xrightarrow{h} A^{\prime}$ be in $\operatorname{Mor}(\underline{R n g})$. Then $F(h)(a, z)=(h(a), z)$ is in $A^{\prime} \times Z$. We see that $F(h)$ is a homomorphism which preserves the identity element, since
i) $F(h)(0,1)=(h(0), 1)=(0,1)$
ii) $\quad F(h)((a, n)+(b, m))=F(h)(a+b, n+m)$

$$
\begin{aligned}
& =(h(a+b), n+m) \\
& =(h(a)+h(b), n+m) \\
& =(h(a), n)+(h(b), m) \\
& =F(h)(a, n)+F(h)(b, m)
\end{aligned}
$$

iii) $F(h)((a, n)(b, m))=F(h)(a b+n b+m a, n m)$

$$
\begin{aligned}
& =(h(a b+n b+m a), n m) \\
& =(h(a b)+h(n b)+h(m a), n m) \\
& =(h(a b)+n h(b)+m h(a), n m) \\
& =(h(a) h(b)+n h(b)+m h(a), n m) \\
& =(h(a), n)(h(b), m) \\
& =F(h)(a, n) F(h)(b, m) .
\end{aligned}
$$

For the identity morphisms $A \xrightarrow{i_{A}} A$ in $\underline{R n g}$ and $A \times Z \xrightarrow{i_{A \times Z}} A \times Z$ in $\underline{\text { Ring }}$, we require that $F\left(i_{A}\right)=i_{A \times Z}$. We consider the following diagram:

We see that $F\left(i_{A}\right)(a, n)=\left(i_{A}(a), n\right)=(a, n)=i_{A \times Z}(a, n)$ for all (a, n) in $A \times Z$.
For any composable pair g and h in $\operatorname{Mor}(\underline{R n g})$, we require $F(g \circ h)=F(g) \circ F(h)$. Let $A \xrightarrow{h} A^{\prime} \xrightarrow{g} A^{\prime \prime}$ and consider the following diagram.

Let a be in A and n in Z. Then

$$
\begin{aligned}
F(g \circ h)(a, n) & =((g \circ h)(a), n)) \\
& =(g(h(a)), n) \\
& =F(g)(h(a), n) \\
& =F(g)(F(h)(a, n)) \\
& =(F(g) \circ F(h))(a, n)
\end{aligned}
$$

and therefore $F(g \circ h)=F(g) \circ F(h)$. Thus we see that F is a functor.

We note that the functor F gives the Dorroh extension of any ring R.

Proposition 3.3.2 The functor F is a left adjoint of the functor U.

Proof. Consider $1_{\underline{R n g}} \xrightarrow{\mu} U F$, where $1_{\underline{R n g}}$ is the identity functor, given at the components by $\mu_{A}: 1(A) \longrightarrow U F(A)$ where $a \longmapsto(a, 0)$. We note that μ_{A} is the canonical map (embedding) of Section 2.2. In view of the universality exhibited in Theorem 3.1.1, we need only show naturality. Consider the following square.

The top-right composite is $a \longmapsto(a, 0) \longmapsto(h(a), 0)$. The left-bottom composite is $a \longmapsto h(a) \longmapsto(h(a), 0)$. We note that this is similar to the free group construction on a set (being left adjoint to the forgetful functor $\underline{G r p} \longrightarrow \underline{S e t}$). We may think of the Dorroh construction as freely providing an identity for R.

CHAPTER 4

Properties of the Robson-Burgess/Stewart Construction

§4.1 Properties of R^{*} and R_{1}

We now consider properties of the constructions developed in Section 2.5. We recall that R^{*} is defined as the Dorroh extension of R obtained by adjoining $\hat{K}(R)$ to R. Also, recall that $R_{1}=\hat{R}+\hat{K}(R)$, a subring of $E n d R$, if R is left faithful.

Lemma 4.1.1 $Z\left(R^{*}\right)=\{(r, s) \mid r \in Z(R), s \in \hat{K}(R)\}$ and, if R is left faithful, then $Z\left(R_{1}\right)=\{\hat{r}+s \mid \hat{r} \in Z(\hat{R}), s \in K(\hat{R})\}$.

Proof. Let (r, s) and $\left(r_{1}, s_{1}\right)$ be elements of R^{*} where r is in $Z(R)$. Then

$$
\begin{aligned}
(r, s)\left(r_{1}, s_{1}\right) & =\left(r r_{1}+s r_{1}+s_{1} r, s s_{1}\right) \\
& =\left(r_{1} r+s r_{1}+s_{1} r, s s_{1}\right) \\
& =\left(r_{1}, s_{1}\right)(r, s)
\end{aligned}
$$

Therefore $\{(r, s) \mid r \in Z(R)\} \subseteq Z\left(R^{*}\right)$.
Let $\left(r_{2}, s_{2}\right)$ be in $Z\left(R^{*}\right)$. Then $\left(r_{2}, s_{2}\right)\left(r_{3}, s_{3}\right)=\left(r_{3}, s_{3}\right)\left(r_{2}, s_{2}\right)$ for all $\left(r_{3}, s_{3}\right)$ in R^{*}, so that

$$
\left(r_{2} r_{3}+s_{2} r_{3}+s_{3} r_{2}, s_{2} s_{3}\right)=\left(r_{3} r_{2}+s_{3} r_{2}+s_{2} r_{3}, s_{2} s_{3}\right)
$$

Thus $r_{2} r_{3}=r_{3} r_{2}$. Since r_{3} was chosen arbitrarily, we see that r_{2} is in $Z(R)$. Therefore $Z\left(R^{*}\right)=\{(r, s) \mid r \in Z(R)\}$.

To prove the second statement, we recall the discussion of Section 2.4 and view R as a subring of End R, since R is assumed to be left-faithful. We also recall from the discussion in Section 2.5 that the characteristic ring $K(E n d R)$ is contained in $Z(E n d R)$, and $K(E n d R)$ contains the identity of End R. Since $s r$ is in R for all s in End R and all r in R we see that $R_{1}=\{r+s \mid r \in R, s \in K($ End $R)\}$.

Let $r+s$ be an element of R_{1} where r belongs to $Z(R)$. Let $r_{1}+s_{1}$ be an arbitrary element of R_{1}. Then

$$
\begin{aligned}
(r+s)\left(r_{1}+s_{1}\right) & =r r_{1}+r s_{1}+s r_{1}+s s_{1} \\
& =r_{1} r+s_{1} r+r_{1} s+s_{1} s \\
& =\left(r_{1}+s_{1}\right)(r+s)
\end{aligned}
$$

Therefore we see that $\{r+s \mid r \in Z(R), s \in K(E n d R)\} \subseteq Z\left(R_{1}\right)$. Let $\bar{r}+\bar{s}$ be an element of $Z\left(R_{1}\right)$ where \bar{r} is in R and \bar{s} is in $K($ End $R)$. Then

$$
\begin{aligned}
(\bar{r}+\bar{s})\left(r_{1}+s_{1}\right) & =\bar{r} r_{1}+\bar{r} s_{1}+\bar{s} r_{1}+\bar{s} s_{1} \\
& =\bar{r} r_{1}+s_{1} \bar{r}+r_{1} \bar{s}+s_{1} \bar{s}
\end{aligned}
$$

and

$$
\left(r_{1}+s_{1}\right)(\bar{r}+\bar{s})=r_{1} \bar{r}+s_{1} \bar{r}+r_{1} \bar{s}+s_{1} \bar{s}
$$

Since $(\bar{r}+\bar{s})\left(r_{1}+s_{1}\right)=\left(r_{1}+s_{1}\right)(\bar{r}+\bar{s})$ we see that $\bar{r} r_{1}=r_{1} \bar{r}$. However, r_{1} was chosen as an arbitrary element of R, so \bar{r} belongs to $Z(R)$. Thus $Z\left(R_{1}\right)=$ $\{r+s \mid r \in Z(R), s \in K(E n d R)\}$.

For the discussion which follows, we require the following definitions.
Definition 4.1.1 Let S be a ring and let $S_{1} \oplus \cdots \oplus S_{k}$ be a direct sum of non-zero right ideals of S. If the length of such direct sums is bounded, the right uniform dimension, denoted $\operatorname{dim} S$, is the maximum value of k for the ring S; otherwise S is said to have infinite right uniform dimension. The right uniform dimension of S will be denoted by $\operatorname{dim} S$.

Definition 4.1.2 A ring R has the right ascending chain condition if, for any ascending chain of right ideals $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \cdots$ there is an integer M such that $I_{n}=I_{M}$ for all $n \geq M$.

Definition 4.1.3 Let X be a subset of a ring S. Then the right annihilator of X in S is $r_{s}(X)=\{s \in S \mid x s=0$ for all $x \in X\}$. We note that this is a generalization of Definition 1.3.1.

Definition 4.1.4 A ring R is a right Goldie ring if R has finite right uniform dimension and the ascending chain condition on right annihilators.

Definition 4.1.5 A ring R is semi-prime if R has no non-zero nilpotent ideals.

Definition 4.1.6 A ring R is prime if, for ideals A and B of R such that $A B=0$, either $A=0$ or $B=0$.

The following result is due to Andrunakievic.

Lemma 4.1.2 [DIVI 65] Let C be a ring, B an ideal of C, and A an ideal of B. Let $A^{\ddagger}=A+A C+C A+C A C$ be the ideal of C generated by A. Then $A^{\ddagger^{3}} \subseteq A$.

Proof. We see that $A, A C, C A, C A C \subseteq B$ and $A^{\ddagger^{3}} \subseteq B A^{\ddagger} B$. Thus

$$
\begin{aligned}
A^{\ddagger^{3}} \subseteq B A^{\ddagger} B & =B(A+A C+C A+C A C) B \\
& =B A B+B A C B+B C A B+B C A C B \\
& \subseteq A+A B+B A+B A B \\
& \subseteq A
\end{aligned}
$$

Lemma 4.1.3 [ROBS 79] If R is left faithful, then
i) R is essential as a right ideal of R_{1}.
ii) R and R_{1} have the same right uniform dimension.
iii) R is semi-prime if and only if R_{1} is semi-prime.
iv) R is prime if and only if R_{1} is prime.
v) [MCCO 87] R is semi-prime Goldie if and only if R_{1} is semi-prime Goldie.

Proof. Recall that $R_{1}=R+K(E n d R)$ where $K(E n d R)$ is the characteristic ring of End R.
i) This follows from Lemma 2.4.4.
ii) We see that $\operatorname{dim} R_{1} \geq \operatorname{dim} R$ since $R \subseteq R_{1}$ and right ideals of R are right ideals of R_{1}. Thus if $\operatorname{dim} R=\infty$ then $\operatorname{dim} R_{1}=\infty$. Suppose $\operatorname{dim} R=k$ for some $k<\infty$, and that $\operatorname{dim} R_{1}>\operatorname{dim} R$. Let $\left\{A_{1}, A_{2}, \ldots, A_{k+1}\right\}$ be a set of right ideals of R_{1} such that the sum $A_{1}+A_{2}+\cdots+A_{k+1}$ is direct. For each $i=1,2, \ldots, k+1$, let $B_{i}=A_{i} \cap R$, a right ideal of R. Since R is essential as a right ideal of $R_{1}, B_{i} \neq 0$ for all i, so $B_{1}+\cdots+B_{k+1}$ is a direct sum, a contradiction of our supposition that $\operatorname{dim} R=k$. Therefore $\operatorname{dim} R=\operatorname{dim} R_{1}$.
iii) Suppose R is semi-prime. If R_{1} is not semi-prime, then there is an ideal A of R_{1} such that $A \neq 0$ and $A^{k}=0$ for some k. Now $A \cap R$ is an ideal of R and $A \cap R \neq 0$ since R is essential as a right ideal of R_{1}. However $(A \cap R)^{k}=0$, a contradiction to the assumption that R is semi-prime. Therefore if R is semi-prime then R_{1} is semi-prime.

Conversely, suppose R_{1} is semi-prime. If R is not semi-prime then there is an ideal I of R such that $I \neq 0$ and $I^{k}=0$ for some k. Let $J=I+I R_{1}+$ $R_{1} I+R_{1} I R_{1}$, an ideal of R_{1}. Now, $J \neq 0$ and, in view of Lemma 4.1.2, we see that $J^{3} \subseteq I$, so $J^{3 k}=0$, showing that R_{1} is not semi-prime, a contradiction. Therefore if R_{1} is semi-prime then R is semi-prime.
iv) Suppose R_{1} is prime. Recall that R is viewed as a subring of $\operatorname{End}(R)$ and R is an ideal of R_{1}. Let A and B be ideals of R such that $A B=0$. Let $A^{*}=A+A R_{1}+R_{1} A+R_{1} A R_{1}$ and let $B^{*}=B+B R_{1}+R_{1} B+R_{1} B R_{1}$. From Lemma 4.1.2 we see that both A^{*} and B^{*} are ideals of R_{1} such that $A^{*^{3}} \subseteq A$ and $B^{*^{3}} \subseteq B$. Since $A B=0$ we see that $A^{*^{3}} B^{*^{3}}=0$. Since R_{1} is prime we have that either $A^{*}=0$ or $B^{*}=0$. Now $A \subseteq A^{*}$ and $B \subseteq B^{*}$, so that either $A=0$ or $B=0$. Thus either $A=0$ or $B=0$, proving that R is prime.

Conversely, suppose R is prime. Let A and B be ideals of R_{1} such that $A B=0$. Now $A \cap R$ and $B \cap R$ are ideals of R such that $(A \cap R)(B \cap R)=0$. Thus either $A \cap R=0$ or $B \cap R=0$ since R is prime. Therefore either $A=0$ or $B=0$ because R is essential as a right ideal of R_{1}, and so R_{1} is prime.
v) We have already shown that R is semi-prime if and only if R_{1} is semi-prime, and that R and R_{1} have the same right uniform dimension. It remains then to show that R has the ascending chain condition on right annihilators (denoted ACCRA) if and only if R_{1} has the ACCRA.

Suppose that R has the ACCRA and let $X_{i} \subseteq R_{1}$, for $i=1,2, \ldots$ be subsets of R_{1} such that $r_{R_{1}}\left(X_{1}\right) \subseteq r_{R_{1}}\left(X_{2}\right) \subseteq \cdots \subseteq r_{R_{1}}\left(X_{n}\right) \subseteq \cdots$ is an ascending chain of right annihilators in R_{1}.

Let $a \in R$. For each i, if $X_{i} a=0$ then $R X_{i} a=0$. Assume that $R X_{i} a=0$. Then $X_{i} a=0$, for otherwise $R S R+R S+S R+S$, where S is the subring of R generated by $X_{i} a$, would be a non-zero nilpotent ideal of the semi-prime ring R, a contradiction. Thus $X_{i} a=0$ if and only if $R X_{i} a=0$.

Consequently we see that

$$
r_{R_{1}}\left(X_{i}\right) \cap R=\left\{a \in R \mid r a=0 \text { for all } r \in X_{i}\right\}=r_{R}\left(R X_{i}\right) .
$$

Thus we have an ascending chain of right annihilators in R,

$$
r_{R}\left(R X_{1}\right) \subseteq r_{R}\left(R X_{2}\right) \subseteq \cdots \subseteq r_{R}\left(X_{n}\right) \subseteq \cdots
$$

which must terminate since R is assumed to have ACCRA. So there exists an integer M such that $r_{R}\left(R X_{M}\right)=r_{R_{1}}\left(R X_{n}\right)$ for all $n \geq M$. Fix some integer t where $t \geq M$. We must show that $r_{R_{1}}\left(X_{t}\right)=r_{R_{1}}\left(X_{M}\right)$, and since $r_{R_{1}}\left(X_{M}\right) \subseteq r_{R_{1}}\left(X_{t}\right)$ we need only show $r_{R_{1}}\left(X_{t}\right) \subseteq r_{R_{1}}\left(X_{M}\right)$.

If $\beta R=0$ for some $\beta \in R_{1}$, then $\beta=0$. To show this, let $I=\left\{\beta \in R_{1} \mid \beta R=0\right\}$, an ideal of R_{1}. If $I \neq 0$ then $I \cap R \neq 0$ since R is essential as a right ideal of R_{1}. Therefore $(I \cap R)^{2}=0$, a contradiction of the assumption that R is semi-prime. Thus $I=0$. Similarly we see that if $R \beta=0$ then $\beta=0$.

Now, suppose $X_{t} \alpha=0$ for some $\alpha \in R_{1}$. Then $X_{t} \alpha R=0$ so that $\alpha R \subseteq$ $r_{R}\left(R X_{t}\right)=r_{R}\left(R X_{M}\right)$. Thus $R X_{M} \alpha R=0$, and so $R X_{M} \alpha=0$ since R is left faithful, and thus $X_{M} \alpha=0$, showing that $\alpha \in r_{R_{1}}\left(X_{M}\right)$. Therefore $r_{R_{1}}\left(X_{t}\right) \subseteq$ $r_{R_{1}}\left(X_{M}\right)$, proving that R_{1} has ACCRA if R has ACCRA.

It remains to show that if R_{1} has ACCRA then R has ACCRA.
Suppose R_{1} has ACCRA and let $X_{i} \subseteq R$ for $i=1,2, \ldots$ be subsets such that $r_{R}\left(X_{1}\right) \subseteq r_{R}\left(X_{2}\right) \subseteq \cdots \subseteq r_{R}\left(X_{n}\right) \subseteq \cdots$ is an ascending chain of right annihilators in R. Let $Y_{i}=\cup_{j=i}^{\infty} X_{i}$ for each i. Then $r_{R}\left(Y_{i}\right) \subseteq r_{R}\left(Y_{i+1}\right)$ for all i and $r_{R}\left(X_{i}\right)=r_{R}\left(Y_{i}\right)$ for all i.

Since $Y_{i+1} \subseteq Y_{i}$ for all $i, r_{R_{1}}\left(Y_{1}\right) \subseteq r_{R_{1}}\left(Y_{2}\right) \subseteq \cdots \subseteq r_{R_{1}}\left(X_{n}\right) \subseteq \cdots$ is an ascending chain of right annihilators in R_{1}. Thus there is an integer \bar{M} such that $r_{R_{1}}\left(Y_{\bar{M}}\right)=r_{R_{1}}\left(Y_{i}\right)$ for all $i \geq \bar{M}$. Since for all $i, r_{R}\left(Y_{i}\right)=R \cap r_{R_{1}}\left(Y_{i}\right)$ and $r_{R}\left(Y_{i}\right)=r_{R}\left(X_{i}\right)$, it follows that $r_{R}\left(X_{\bar{M}}\right)=r_{R}\left(X_{i}\right)$ for all $i \geq \bar{M}$.

Definition 4.1.7 A ring R is right noetherian if, for any ascending chain of right ideals $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \cdots$, there is an integer M such that $I_{n}=I_{M}$ for all $n \geq M$.

Definition 4.1.8 A ring T is right artinian if, for any descending chain of right ideals $I_{1} \supseteq I_{2} \supseteq \cdots \supseteq I_{n} \supseteq \cdots$, there is an integer M such that $I_{n}=I_{M}$ for all $n \geq M$. Left artinian is similarly defined. A ring T is artinian if it is both left and right artinian.

Lemma 4.1.4 Let R be a ring and K an ideal of R. Then:
i) if R / K and K are right artinian, then R is right artinian; and
ii) if R / K and K are right noetherian, then R is right noetherian.

Proof.

i) Let $\left\{I_{n}\right\}$ for $n \geq 1$, be a decreasing chain of right ideals of R. Then $\left\{\left(I_{n}+K\right) / K\right\}$ is a decreasing chain of right ideals of R / K, so there exists an integer M_{1} such that $\left(I_{n}+K\right) / K=\left(I_{M_{1}}+K\right) / K$ for all $n \geq M_{1}$. Similarly, $\left\{I_{n} \cap K\right\}$ is a decreasing chain of right ideals of K, so there exists an integer M_{2} such that $I_{n} \cap K=I_{M_{2}} \cap K$ for all $n \geq M_{2}$. Let M be the greater of M_{1} and M_{2}. Fix n such that $n \geq M$. Let $x \in I_{M}$. Then $x+K=r+K$ for some $r \in I_{n}$ so $x=r+k$ for some $k \in K$. Now $x-r=k \in I_{M}$ and $x-r=k \in K$, so $k \in I_{M} \cap K$. Therefore $k \in I_{n} \cap K$. Thus $x=r+k \in I_{n}$. So $I_{M} \subseteq I_{n}$, showing that $I_{M}=I_{n}$.
ii) The proof for right noetherian rings is similar.

Recall from Example 1.3 .1 the definition of a quasi-cyclic group, $Z_{p \infty}$, for any prime p. It is interesting to note that the only proper subgroups of $Z_{p^{\infty}}$ are generated
by $1 / p^{n}$ for any n. Consequently, we see that quasi-cyclic groups are artinian, but are not noetherian.

The following result is due to Fuchs, and is stated without proof.

Theorem 4.1.1 [FUCH 60] An artinian ring U, with no additive subgroup which is a quasi-cyclic group, is the ring-theoretic direct sum of a torsion free artinian ring B and a finite number of artinian p-rings C_{i} belonging to the different primes p_{i},

$$
U=B \oplus C_{\mathbf{1}} \oplus \cdots \oplus C_{r} .
$$

The rings B, C_{1}, \ldots, C_{r} are uniquely determined.

Proposition 4.1.1 [BURG 89]

i) If R is right noetherian, so are R^{*} and R_{1};
ii) If R is right artinian and R has no additive subgroup which is a quasi-cyclic group, then R^{*} and R_{1} are right artinian.

Proof.

i) We note that R is an ideal of both R^{*} and R_{1}. Since R is assumed to be right noetherian we need only show that $K(R)$ is right noetherian since $K(R) \simeq R_{1} / R$ and $K(R) \simeq R^{*} / R$; Lemma 4.1.4 will then complete the proof.

Suppose $K(R)$ is of form C. Then $K(R)$ is not noetherian, as the ascending chain of ideals $\left\{\prod_{i=1}^{n} Z /\left(p_{i}^{\alpha_{i}}\right)\right\}$ shows. Thus R is not right noetherian, since $\left\{I_{n}=\oplus_{i=1}^{n} t_{p_{i}}(R)\right\}$ is a set of ideals of R such that $I_{1} \subseteq I_{2} \subseteq \cdots \subseteq I_{n} \subseteq \cdots$ and for each n there exists an $n^{\prime}>n$ such that $I_{n} \neq I_{n^{\prime}}$, a contradiction. Therefore $K(R)$ is either of form A or B , both of which are right noetherian. Thus R^{*} and R^{\prime} are right noetherian.
ii) From Theorem 4.1.1 we see that $K(R)$ is either of form A , or of form B where D is a right artinian ring (if $R=Q, X_{0}$ is infinite). Thus $K(R)$ is right artinian, and the result follows from Lemma 4.1.4.

We recall Example 1.3.1 and note the case of $R=Z_{p^{\infty}}$, which is right artinian and has $K\left(Z_{p^{\infty}}\right)=Z[1 / q \mid q \neq p]$. Since $K\left(Z_{p^{\infty}}\right)$ is not right artinian, R^{*} and R_{1} are not right artinian. This example shows the necessity of R not containing an additive subgroup which is quasi-cyclic if the right artinian property is to be extended from R to R^{*} and R_{1}.

Definition 4.1.9

a) An element $e \in R$ is an idempotent if $e^{2}=e$.
b) Let I be an ideal of $R . I$ is idempotent if $I^{2}=I$.
c) R is strongly regular if, for each x in R, there exists y in R such that $x^{2} y=x$.
d) An element e in R is central if $e x=x e$ for all x in R.
e) For each element a in R let (a) denote the principal ideal generated by a. The ring R is biregular if for each a in R there exists a central idempotent e in R such that $(a)=(e)$.

For the rest of this section all rings are assumed to have all ideals idempotent and hence are left-faithful.

Lemma 4.1.5 Let R be such that every ideal is idempotent. Then $K(R)$ is regular.

Proof. We note that, in the case where $K(R)=Z / I$ for some non-zero ideal I of $Z, K(R)$ must be a finite direct sum of fields and so $K(R)$ is regular. Thus the remainder of the proof will consider the case where $K(R)$ is either of form B or form C. Let $f: P \longrightarrow N \cup\{\infty\}$ denote the function which determines $K(R)$, $X_{1}=\{p \in P \mid 0<f(p)<\infty\}, X_{0}=\{p \in P \mid 0 \leq f(p)<\infty\}$ and $D=Z\left[X_{0}^{-1}\right]$.

Let p be a prime number. Then

$$
p R=(p R)^{2}=p R p R=\left(p^{2}\right)\left(R^{2}\right)=p(p R)
$$

since $p R$ is an ideal of R. Hence $p R$ is p-divisible.
Recall that $t_{p}(R)=\left\{x \in R \mid p^{n} x=0\right.$ for some $\left.n \geq 1\right\}$. Then

$$
p t_{p}(R)=\left(p t_{p}(R)\right)^{2}=p^{2}\left(t_{p}(R)\right)^{2}=p^{2} t_{p}(R)
$$

since $t_{p}(R)^{2}=t_{p}(R)$.
Therefore,

$$
p t_{p}(R)=p\left(p t_{p}(R)\right)=p\left(p^{2} t_{p}(R)\right)=p^{2}\left(p t_{p}(R)\right)=\cdots=p^{m} t_{p}(R) .
$$

If x is in $t_{p}(R), p^{m} x=0$ for some $m \geq 1$, and hence

$$
x p t_{p}(R)=x p^{m} t_{p}(R)=p^{m} x t_{p}(R)=0 t_{p}(R)=0 .
$$

Hence, $t_{p}(R)\left(p t_{p}(R)\right)=0$, so $\left(p t_{p}(R)\right)^{2}=0$. Therefore $p t_{p}(R)=0$ since $p t_{p}(R)=$ $\left(p t_{p}(R)\right)^{2}$. Consequently, ann $t_{p}(R)=\left(p^{k}\right)$ for $k=0$ or 1 .

We will show that $R=p R \oplus t_{p}(R)$. Let a be an element of R. Since $p R=p^{2} R$ there is an element b in R such that $p a=p^{2} b$. Hence $p(a-p b)=0$ and so $a-p b$ is an element of $t_{p}(R)$. Now, $a=p b+(a-p b)$ which is contained in $p R+t_{p}(R)$, so $R=p R+t_{p}(R)$. Also, since $p R$ is p-divisible and $p t_{p}(R)=0, p R \cap t_{p}(R)=0$. Hence $R=p R \oplus t_{p}(R)$ and so $f(p)=0$ or 1 and $D=Z\left[X_{0}^{-1}\right]=Q$.

Recall that X_{1} is the set of primes p_{i} for which a component $Z /\left(p_{i}^{n_{i}}\right)$, for some integer $n_{i} \geq 1$, appears.

If X_{1} is finite, so that $K(R) \simeq Q \oplus Z /\left(p_{1}\right) \oplus \cdots \oplus Z /\left(p_{n}\right)$, then $K(R)$ is regular because it is isomorphic to a direct sum of fields. On the other hand, if X_{1} is infinite then $K(R) \simeq\left\{\left\langle u_{i}\right\rangle \mid\left\langle u_{i}\right\rangle\right.$ is an element of $\prod_{p \in X_{1}} Z /(p)$ such that there is some a / b in Q and $u_{i}=\bar{a} / \bar{b}$ for almost all $\left.i\right\}$. Let $\left\langle u_{i}\right\rangle$ be an element of $K(R)$. Define the components of $\left\langle v_{i}\right\rangle$ by:

$$
v_{i}= \begin{cases}u_{i}^{(-1)} & \text { if } u_{i} \neq 0 \\ 0 & \text { if } u_{i}=0\end{cases}
$$

Then $\left\langle v_{i}\right\rangle$ is also an element of $K(R)$ and $\left\langle u_{i}\right\rangle\left\langle v_{i}\right\rangle\left\langle u_{i}\right\rangle=\left\langle u_{i}\right\rangle$. Hence $K(R)$ is regular.

Lemma 4.1.6 Let R be strongly regular. Then $K(R)$ is strongly regular.

Proof. If R is strongly regular, then all ideals of R are idempotent. Consequently, by Lemma 4.1.5 $K(R)$ is regular. Since $K(R)$ is also commutative, $K(R)$ is strongly regular.

Lemma 4.1.7 Let R be regular. Then $K(R)$ is regular.

Proof. From Proposition 2.6 .1 we see that all ideals of R are idempotent. Therefore $K(R)$ is regular.

Lemma 4.1.8 $K(R)$ is regular if and only if $K(R)$ is strongly regular.
Proof. We note that $K(R)$ is commutative, since it is an epimorph of Z.

Lemma 4.1.9 Let A be a ring, B an ideal of A. If A / B and B are both regular, then A is regular.

Proof. Let a be an element of A. There exists an element $x \in A$ such that $(a+B)(x+B)(a+B)=(a+B)$ since A / B is regular. Thus $a x a+B=a+B$, so $a x a-a$ is an element of B. Since B is regular, there exists an element b of B such that $(a x a-a) b(a x a-a)=a x a-a$. Therefore $a(x a b+b a x-x a b a x-b+x) a=a$ as desired.

Corollary 4.1.1 If R is regular then R_{1} is regular.
Proof. Since $K(R) \simeq R_{1} / R$ and $K(R)$ is regular the conditions of the lemma apply, showing that R_{1} is regular.

Lemma 4.1.10 Let A be a ring, B an ideal of A. If A / B and B are both strongly regular, then A is strongly regular.

Proof. Let a be an element of A. There exists an element $x \in A$ such that $(a+B)^{2}(x+B)=a+B$ since A / B is strongly regular. Thus $a^{2} x-a$ is an element of B. Since B is strongly regular there exists an element b in B such that ($a^{2} x-$ $a)\left(a^{2} x-a\right) b=a^{2} x-a$, and so $a=a^{2}\left(x-x a^{2} x b+x a b+a x b-b\right)$, proving that A is strongly regular.

Corollary 4.1.2 If R is strongly regular then R_{1} is strongly regular.
Proof. Since $K(R) \simeq R_{1} / R$ is strongly regular by Lemma 4.1.6, R_{1} is strongly regular.

Lemma 4.1.11 Let A be a ring with identity, B an ideal of A. If B has all ideals idempotent and A / B is commutative regular, then A has all ideals idempotent.

Proof. Let I be an ideal of A, and let a be an element of I. Then $(I+B) / B$ is an ideal of A / B, which is commutative regular. Thus there exists an element b in A such that $(a+B)^{2}(b+B)=a+B$. Therefore $a^{2} b-a$ is an element of B. Let J be the ideal of B generated by $a^{2} b-a$. Now $J=J^{2}$ and $J \subseteq I$, so $J=J^{2} \subseteq I^{2}$. Hence $\left(a^{2} b-a\right) \in I^{2}$ and since $a^{2} b \in I^{2}, a \in I^{2}$. This shows that $I \subseteq I^{2}$ and so all ideals of A are idempotent.

Corollary 4.1.3 If R has all ideals idempotent then R_{1} has all ideals idempotent.

Proof. We note that $K(R) \simeq R_{1} / R$ is commutative regular by Lemma 4.1.5.

Finally, we show that the Burgess/Stewart extension of a biregular ring is also biregular and so every biregular ring can be embedded in a biregular ring with identity. This result is due to [VRAB 70]. To demonstrate this we first require the following definitions.

Definition 4.1.10 The Boolean algebra of central idempotents of a ring $(S,+, \cdot)$ is $(B, \overline{+}, *)$ where $B=\{e \in Z(S) \mid e \cdot e=e\}$ and the operations are defined by

$$
e \bar{f} f=e+f-2 e \cdot f \text { and } e * f=e \cdot f
$$

Lemma 4.1.12 The Boolean algebra of any ring S is an associative ring.

Proof.

The proof involves a straight forward check of the ring properties. Let e, f, g be in B and s in S. Then

$$
(e * f) \cdot(e * f)=e \cdot f \cdot e \cdot f=e \cdot e \cdot f \cdot f=e \cdot f=e * f,
$$

$$
\begin{aligned}
&(e * f) \cdot s=e \cdot f \cdot s=e \cdot s \cdot f=s \cdot e \cdot f=s \cdot(e * f) \\
&(e \bar{\mp} f) \cdot(e \bar{\mp} f)=(e+f-2 e \cdot f) \cdot(e+f-2 e \cdot f) \\
&=e \cdot e+e \cdot f-2 e \cdot f \cdot e+f \cdot e+f \cdot f-f \cdot 2 e \cdot f-2 e \cdot f \cdot e \\
&-2 e \cdot f \cdot f+2 \cdot e \cdot f \cdot 2 e \cdot f \\
&=e+e \cdot f-2 e \cdot f+e \cdot f+f-2 e \cdot f-2 e \cdot f-2 e \cdot f+4 e \cdot f \\
&=e+f-2 e \cdot f \\
&=(e \bar{\mp} f)
\end{aligned}
$$

and

$$
\begin{aligned}
(e \bar{\mp} f) \cdot s & =(e+f-2 e \cdot f) \cdot s \\
& =e \cdot s+f \cdot s-2 e \cdot f \cdot s \\
& =s \cdot e+s \cdot f-s \cdot 2 e \cdot f \\
& =s \cdot(e \bar{\mp} f)
\end{aligned}
$$

Thus $e * f$ and $e \overline{+} f$ belong to B.
We see that $\bar{\mp}$ is associative since

$$
\begin{aligned}
(e \bar{\mp} f) \overline{+} g & =(e+f-2 e \cdot f) \bar{\mp} g \\
& =e+f-2 \cdot e \cdot f+g-2 \cdot(e+f-2 e \cdot f) \cdot g \\
& =e+f-2 e \cdot f+g-2 e-2 f-4 e \cdot f \cdot g \\
& =e+f+g-2 f \cdot g-2 e \cdot f-2 e \cdot g+4 e \cdot f \cdot g \\
& =e+(f+g-2 f \cdot g)-2 e \cdot(f+g-2 f g) \\
& =e \bar{\mp}(f+g-2 f \cdot g) \\
& =e \bar{\mp}(f \bar{\mp} g)
\end{aligned}
$$

We also note that

$$
e \overline{+} f=e+f-2 e \cdot f=f+e-2 f \cdot e=f \overline{+} e
$$

and

$$
e \bar{\mp} 0=e,
$$

so that $\bar{\mp}$ is commutative and has an additive identity. We see that elements of B have additive inverses since $e \overline{+} e=e+e-2 e \cdot e=0$. Finally, we see that B satisfies the distributive property since

$$
\begin{aligned}
e *(f \overline{+} g) & =e *(f+g-2 f \cdot g) \\
& =e \cdot f+e \cdot g-2 e \cdot f \cdot g \\
& =e \cdot f+e \cdot g-2 e \cdot f \cdot e \cdot g \\
& =e \cdot f \overline{+} e \cdot g \\
& =(e * f) \bar{\mp}(e * g)
\end{aligned}
$$

Thus $(B, \bar{\mp}, *)$ is an associative ring.

We require the following three lemmas which will be used to prove that the Burgess/Stewart extension preserves biregularity.

Lemma 4.1.13 Let S be a ring with identity and B the Boolean algebra of central idempotents of S. If N is a maximal ideal of S then $(N \cap B)$ is a maximal ideal of B.

Proof. Let e, f be in $N \cap B$ and g be in B. Then $e \overline{+} f=e+f-2 e f$ belongs to $N \cap B$ and $g * e=g e$ is in $N \cap B$, so $N \cap B$ is an ideal of B. Let I be an ideal of B containing $N \cap B$ where $N \cap B \neq I$. Let e be in $I \backslash N \cap B$. Then $N+e S=S$ since N is a maximal ideal of S, so $1=n+e s$ for some n in N and s in S. Therefore
$e=e n+e s$, so $1-e=n-e n$ belongs to N. Thus $1-e$ belongs to $N \cap B$, which is contained in I, so $e \bar{\mp}(1-e)$ belongs to I. Since

$$
\begin{aligned}
e \bar{\mp}(1-e) & =e+1-e-2 e(1-e) \\
& =1-2\left(e-e^{2}\right) \\
& =1
\end{aligned}
$$

we see that 1 belongs to I, and so $I=B$. Therefore $N \cap B$ is a maximal ideal of B.

Lemma 4.1.14 Let S be a ring and B the Boolean algebra of central idempotents of S. If e, f are elements of B then $u=e+f-e f$ is in B and $e u=e, f u=f$. If I is an ideal of S then $I \cap B$ is an ideal of B. If I is an ideal of S and $C=I \cap B$ then $C S$ is an ideal of S and for any element x in $C S$ there are elements e in C and s in S such that $x=e s$.

Proof. Let e, f be elements of B, s an element of S and $u=e+f-e f$. Then

$$
\begin{aligned}
u^{2} & =(e+f-e f)(e+f-e f) \\
& =e e+e f-e e f+f e+f f-f e f-e f e-e f f+e f e f \\
& =e+e f-e f+e f+f-e f-e f-e f+e f \\
& =e+f-e f \\
& =u
\end{aligned}
$$

and

$$
\begin{aligned}
u s & =(e+f-e f) s \\
& =e s+f s-e f s \\
& =s e+s f-s e f \\
& =s u
\end{aligned}
$$

so u belongs to B. We also note that

$$
\begin{aligned}
e u & =e(e+f-e f) \\
& =e^{2}+e f-e^{2} f \\
& =e
\end{aligned}
$$

and similarly $f u=f$, proving the first statement.
Now, let I be an ideal of S, g an element of B and e, f elements of $I \cap B$. Then $e \overline{+} f=e+f-e f$ is in I, and so $e \overline{+} f$ belongs to $I \cap B$. Also, $e * g=e g$ is in I, so $e * g$ is in $I \cap B$. Thus $I \cap B$ is an ideal of B, verifying the second statement.

Finally, we verify the third statement. Let I be an ideal of S and $C=I \cap B$. Let $x=\sum_{i=1}^{n} e_{i} s_{i}$ be an element of $C S$ for some positive integer n and elements e_{i} in C and s_{i} in S. Suppose $n=2$, so that $x=e_{1} s_{1}+e_{2} s_{2}$. Let $u=e_{1}+e_{2}-e_{1} e_{2}$. Then $u e_{1}=e_{1}$ and $u e_{2}=e_{2}$ so that $x=u\left(e_{1} s_{1}+e_{2} s_{2}\right)$ is of the required form since u is in C. We assume that if $x=\sum_{i=1}^{n-1} e_{i} s_{i}$ then $x=e s$ for some e in S and s in S.

Now suppose $x=\sum_{i=1}^{n} e_{i} s_{i}$. Then $x=\sum_{i=1}^{n-1} e_{i} s_{i}+e_{n} s_{n}$ so that $x=\bar{e} \bar{s}+e_{n} s_{n}$ for some \bar{e} in C and \bar{s} in S. As above, let $\bar{u}=\bar{e}+e_{n}-\bar{e} e_{n}$. Then $x=\bar{u}\left(\bar{e} \bar{s}+e_{n} s_{n}\right)$ is of the right form. Thus, by induction on n, we see that for any x in $C S$ there are elements e in C and s in S such that $x=e s$.

Now suppose $e_{1} s_{1}$ and $e_{2} s_{2}$ are elements of $C S$. Then $e_{1} s_{1}+e_{2} s_{2}=u s$ for some u in C and s in S. Also, for any s^{\prime} in S we see that $\left(e_{1} s_{1}\right) s^{\prime}=e_{1}\left(s_{1} s^{\prime}\right)$ is in $C S$ and $s^{\prime}\left(e_{1} s_{1}\right)=\left(s^{\prime} e_{1}\right) s_{1}=\left(e_{1} s^{\prime}\right) s_{1}=e_{1}\left(s^{\prime} s_{1}\right)$ is in CS. Thus $C S$ is an ideal of S.

Lemma 4.1.15 If S is a semiprime ring with identity such that, for every maximal ideal M of B, the Boolean ring of central idempotents of $S, M S$ is a maximal ideal of S then S is biregular.

Proof. Let a be a non-zero element of S and (a) the principal ideal of S generated by a. Since S contains an identity we see that $(a)=S a S$. We first show that $S=$
$S a S \oplus l a n n S a S$ where lann denotes the left annihilator in S. Let $I=$ SaS^lann $S a S$, an ideal of S. Then $I^{2}=0$ so $I=0$ since S is semiprime. Suppose $S a S \oplus l a n n S a S$ is a proper ideal of S. Since S has an identity, we see that $S a S \oplus l a n n S a S$ is a contained in some maximal ideal N of S by Zorn's lemma. From Lemma 4.1.13 we note that $N \cap B$ is a maximal ideal of B. Thus, by assumption, $(N \cap B) S$ is a maximal ideal of S. Now $(N \cap B) S$ is contained in N, so $(N \cap B) S=N$. Since a is in $N, a=e s$ for some e in $N \cap B$ and some s in S by Lemma 4.1.14. Further, $(1-e) S a S=S(1-e) e s S=S \cdot 0 \cdot S=0$, so $1-e$ belongs to lann $S a S$, and thus $1-e$ is in N. Therefore $1=(1-e)+e$ is in N contradicting the supposition that $N \neq S$. Therefore $S=S a S \oplus l a n n S a S$.

Let $1=e+f$ where e is in $S a S$ and f belongs to lann SaS. Let x be in SaS. Then ex $-x=(1-f) x-x=-f x$ is in lann SaS. Since $e x-x$ is also in $S a S$ and $S a S \cap l a n n S a S=0$, we see that $e x=x$. Thus $e^{2}=e$ and $S a S=S e S$. For any s in S, es $-s e=(1-f) s-s(1-f)=-f s+s f$ and so, as above, es $=s e$ showing that e is central, and showing that S is biregular.

We next show that certain extensions of biregular rings are biregular, from which the preservation of biregularity by the Burgess/Stewart construction will follow.

Lemma 4.1.16 Suppose S is a ring with identity containing an ideal R which, as a ring, is biregular. Also, suppose S has a central regular subring T such that $S=R+T$. Then S is biregular.

Proof. We note that both R and T are semiprime. Let I be an ideal of S such that $I^{2}=0$. Now S / R is semiprime since

$$
\frac{S}{R}=\frac{T+R}{R} \simeq \frac{T}{T \cap R},
$$

which is regular since homomorphic images of regular rings are regular. Since

$$
\frac{I+R}{R} \subseteq \frac{S}{R}
$$

we see that $I \subseteq R$. Thus $I=0$ since R is biregular. Therefore S is semiprime.
Let B be the Boolean algebra of central idempotents of S, and M a maximal ideal of B. By Lemma 4.1.15 it suffices to show that $M S$ is a maximal ideal of S. We note that since $S=R+T$ and T is central, central idempotents of R are in B.

Suppose that there exists an ideal K of S containing $M S$ and $K \neq M S$. We need to show that $K=S$. There are three cases to consider.

Case I: If $M S \cap R \neq K \cap R$ there is, since R is biregular, a central idempotent e of R such that e is in $K \cap R$ and e does not belong to $M S \cap R$. As noted above, e is in B, so e is not in M and thus $1=e \bar{\mp} m$ for some m in M. Therefore $1=e+m-2 e m$ and hence $1-e$ is in MS. Thus $e, 1-e$ belong to K and so $K=S$, proving that S is biregular.

Case II: If $M S \cap R=K \cap R$ and R is contained in $M S$, then $R \subseteq M S \subset K$ and

$$
\begin{aligned}
K & =K \cap S \\
& =K \cap(R+T) \\
& =K \cap(M S+T) \\
& =M S+K \cap T \text { (since } M S \subseteq K \text {). }
\end{aligned}
$$

Since $M S \neq K$ there is a non-zero element s in $K \cap T$ such that s is not in $M S$. There is an element t in T such that $s=s t s$, since T is regular, and so $e=s t$ is an idempotent. We note that e is not in $M S$ since $s=e s$ and s is not in MS. Further, e is in B since e belongs to T and T is central. We note that e is not in M since e is not in $M S$, so $1-e$ belongs to M, as discussed above. Thus $e, 1-e$ belong to K and so $K=S$. Hence S is biregular.

Case III: Suppose $M S \cap R=K \cap R$ and R is not contained in $M S$. Let a be an element in R where a is not in $M S$. There is a central idempotent e in R such that
$(a)=(e)$, since R is biregular. As noted above, e is in B. Since a is not in $M S$, neither is e in $M S$. Thus e is not in M and, as above, $1-e$ is in M. Therefore both e and $1-e$ are in $M S+R$, so $M S+R=S$.

Let k be an element of K. Then there exist elements x in $M S$ and r in R such that $k=x+r$. Thus $k-x=r$ is in $K \cap R$, since $M S$ is contained in K. Further, $k-x=r$ is in $M S$ since $K \cap R=M S \cap R$. Thus $k=x+r$ is in $M S$ and so K is contained in $M S$, contradicting our assumption that K is a proper extension of $M S$. Therefore this case III can not occur.

Corollary 4.1.4 If R is biregular then R^{*} and R_{1} are biregular.

Proof. Since every ideal of R is idempotent, $K(R)$ is regular by Lemma 4.1.5.

CHAPTER 5

Conclusion

We have considered a variety of methods which extend any given ring to a ring with identity, although some methods are restricted in regard to the rings which may be extended. For instance, the method developed in [ROBS 79], and by implication the refinements made by [BURG 89], requires that the given ring be left-faithful, while the methods discussed in [FUCH 68, FUNA 66] deal only with regular rings.

We have shown that the construction given by [DORR 32] extends any ring to a ring with identity by adjoining the ring of integers to the original ring. While this approach places no restrictions on the original ring, many of the properties of the original ring may be lost in the extension. However, this construction is functorial, and in fact is part of an adjunction.

The method discussed in [ROBS 79] embeds the original ring R (which is required to be left-faithful) into the ring of endomorphisms of R, which contains an identity. More generally, we see that $R+C$ is an extension of R with identity for any subring C of the center of End R.
[BURG 89] refines the method developed in [ROBS 79] by adjoining the characteristic ring to the original ring. We have shown that this construction retains many of the properties possessed by the original ring.

In the case of regular rings, we have shown that there is a commutative regular ring with identity S such that every regular ring is an S-bimodule. This ring was used in [FUCH 68] to develop a construction which extends any regular ring to a regular ring with identity. A second construction regarding regular rings was developed in [FUNA 66] by adjoining to a regular ring R the ring of endomorphism of R, using arithmetic similar to that used by [DORR 32]. In view of the method discussed in [ROBS 79], we have suggested a refinement to Funayama's approach.

Bibliography

[BROW 46] B. Brown and N. McCoy, "Rings with Unit Element which Contain a Given Ring", Duke Math. J. 13 (1946) 9-20.
[BURG 89] W.D. Burgess and P.N. Stewart, "The Characteristic Ring and the Best Way to Adjoin a One", J. Australian Math. Soc. (Series A) 47 (1989) 483-496.
[CHEA 72] T. Cheatham and E. Enochs, "The Epimorphic Images of a Dedekind Domain", Proc. Amer. Math. Soc. 35 (1972) 37-42.
[DICK 84] W. Dicks and W. Stephenson, "Epimorphs and Dominions of Dedekind Domains", J. London Math. Soc. 29 (1984) 224-228.
[DIVI 65] N. J. Divinsky, Rings and Radicals, (University of Toronto Press, Toronto, 1965).
[DORR 32] J.L. Dorroh, "Concerning Adjunctions to Algebras", Bull. Amer. Math. Soc. 38 (1932) 85-88.
[FUCH 60] L. Fuchs, Abelian Groups, (Pergamon Press, Oxford, 1960).
[FUCH 68] L. Fuchs and I. Halperin, "On Embedding a Regular Ring in a Regular Ring with Identity", Fund. Math. 54 (1964), 285-290.
[FUCH 93] L. Fuchs, Infinite Abelian Groups, Vol. 2, (Academic Press, New York, 1993).
[FUNA 66] N. Funayama, "Imbedding a Regular Ring in a Regular Ring with Identity", Nagoya Math. J. 27 (1966), 61-64.
[GOOD 79] K.R. Goodearl, Von Neumann Regular Rings, (Pitman, London, 1979).
[MACL 71] S. MacLane, Categories for the Working Mathematician, (SpringerVerlag, New York, 1971).
[MCCO 86] N. McConnell, Embedding a Ring in a Ring with Identity, University of Tasmania, 1986.
[MCCO 87] J. C. McConnell and J. C. Robson, Non-Commutative Noetherian Rings, (John Wiley and Sons, New York, 1987).
[ROBS 79] J.C. Robson, "A Unified Approach to Unity", Comm. Algebra 7 (1979), 1245-1255.
[SILV 67] L. Silver, "Non-Commutative Localizations and Applications", J. Algebra 7 (1967) 44-76.
[STEN 75] B. Stenstrom, Rings of Quotients, (Springer- Verlag, New York, 1975).
[STOR 68] H.H. Storrer, "Epimorphismen von Kommutativen Ringen", Comment Math. Helv. 43 (1968) 378-401.
[STOR 73] H. H. Storrer, "Epimorphic Extensions of Non-Commutative Rings", Comment Math. Helv. 48 (1973), 72-86.
[VRAB 70] J. Vrabec, "Adjoining a Unit to a Biregular Ring", Math. Ann. 188 (1970), 219-226.

