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Abstract 

We will consider different methods which extend any given ring to 

a ring which contains an identity element. Each construction will be 

examined to determine properties which are retained by the extension if 

possessed by the original ring. 
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CHAPTER 1 

The Characteristic Ring 

§1.1 Introduction 
In this thesis, we will examine various constructions which have been developed to 

extend a given ring to a ring with an identity element. One extension which we will 

examine, which preserves many of the properties of the original ring, is constructed by 

adjoining an epimorphic image of the ring of the integers to the original ring. For any 

given ring S, the Z-epimorph used in this construction is called the characteristic ring 

of S, and is uniquely determined by the additive structure of S. This chapter examines 

the epimorphs of the ring of integers and develops the notion of the characteristic 

function. 

We begin the next section with a discussion of the structure of Z-epimorphs. 

First, given that a ring R is a Z-epimorph, it will be shown that it has one of 

three possible structures. Conversely, it will then be shown that any ring which has 

one of these three structures is a Z-epimorph. Results of this section are due to 

[CHEA 72, DICK 84, STOR 68]. 

The last section of this chapter develops the notion of the characteristic function. 

This characteristic function is uniquely determined by a given ring S, and associates 

with S a Z-epimorph, called the characteristic ring of S. Later chapters will use this 

characteristic ring to construct an extension of S which has an identity and preserves 

many properties of the original ring S. 

§1.2 Epimorphs of the Ring of Integers 
This section characterizes the epimorphisms of the ring of integers. As will be 

seen later, the "characteristic ring" K(EndS) of any arbitrary ring Swill be defined 
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as an epimorphism of the ring of integers. This characteristic ring K(End S) may 

be used to construct an extension of the original ring S which contains an identity 

element and preserves many of the properties of the original ring S. 
In this section, each of the rings we will consider has an identity element, denoted 

1. Where ambiguity may arise, the identity of any given ring S will be denoted ls. 

All homomorphisms g : A --> B will be assumed to satisfy g(lA) = la. The ring of 

integers is denoted by Z, the field of rationals by Q, the natural numbers by N and 

the set of prime integers by P. 

Definition 1.2.1 Given any two rings A and B, and a homomorphism g : A --> B, 

we say that g is an epimorphism if, for any ring C and homomorphisms J1 : B --> C 

and h : B --> C, we have !1 = h if !1 o g = h o g. In this case, we call B an 

epimorph of A, or simply an A-epimorph. D 

Throughout this section the ring R will denote a Z-epimorph through the epi-

morphism f: Z--> R. Of course, f is completely determined by f(l) = lR . 

Definition 1.2.2 Given a ring A, an additive abelian group W is a left A-module if 

there is a scalar multiplication, * : A x W --> W, defined for all a, bin A and for all 

w, x in W, satisfying: 

4. 1 * w = w in the case where A has an identity. 

Right A-modules are defined similarly. W is said to be an A-bimodule if and only if 

Wis both a left and a right A-module and (a* w) * b =a* (w * b). 
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It should be noted that any ring S together with its additive operation + is an 

additive abelian group and therefore may be considered an A-module for some ring 

A in this way. We first require a lemma concerning modules, followed by a discussion 

regarding the structure of R. 

Lemma 1.2.1 Let A and K be rings and g : A --+ K a homomorphism. Then the 

scalar multiplications * : A x K --+ K and *' : K x A --+ K defined by a* k = g( a )k 

and k *'a= kg(a) for any a in A and any k in K, causes K to be an A-bimodule. 

Proof. We note that g( a) is an element of K for all a in A, and that the ring 

structure of K satisfies the four requirements which make K an A-bimodule, giving 

our desired result. 

Definition 1.2.3 Given a ring A, a ring W is called an A-bimodule algebra if W is 

an A-bimodule and satisfies 

a * ( wx) = (a* w )x = w( a * x) = ( wx) * a = w( x * a) = ( w * a )x 

for all w,x E Wand all a EA. D 

Corollary 1.2.1 Every ring K with identity is a Z-bimodule algebra. 

We now consider a given Z-epimorph, R, and determine its structure. Later in 

this section we will show the converse, that any ring which is of one of three given 

structures is in fact a Z-epimorph. To begin, we prove the following lemma which 

shows that every Z-epimorph is commutative. 

Lemma 1.2.2 [DIC/( 84} R is commutative. 

Proof. Let R[x} be the polynomial ring of R, and recall that J : Z --> R is the 

unique epimorphism from Z to R such that J(l) = ln. Let / be the ideal of R[x} 



4 

generated by x 2 and consider R[ x] / J. For each element a of R we see that ( 1 - ax) + I 
is the multiplicative inverse of ( 1 + ax) + I since 

[(!+ax)+/][(! - ax)+ I]= (1 - a2x 2 ) +I= I+/. 

For a fixed element b of R we define two ring homomorphisms, as follows: 

J,: R-+ R[x]/I 

where J1(r) = (1 + bx)r(l - bx)+ I, and 

h: R-+ R[x]/I 

wheref,(r) = r+I. We see that f 1 of = J,of, so f 1 = J, since J is an epimorphism. 

Thus for all r in R, 

r +I= (1 + bx)r(I - bx)+ I= r+ bxr-rbx - brbxx+ I= r + (br -rb)x+ I . 

Therefore (br - rb)x is an element of /. Since I is generated by x2, we see that 

br - rb = 0, so br = rb proving that R is commutative. 

Throughout this chapter, a tensor product over a ring S will be denoted by 0 s, 

except in the case where S = Z when the subscript will be omitted. We now consider 

a tensor product, over Z, of a given Z-epimorph R and any ring K with identity. 

This tensor product R 0 K is shown to be a K-epimorph. This result is then used to 

show that when K is a field either R 0 K K or R 0 K 0. 

Lemma 1.2.3 For any ring K, R 0 K is a K epimorph. 

Proof. Let g1 : R -+ R @K and 92 : K -+ R @K be the canonical homomorphisms 

of R and K into R 0 K , respectively. Consider a ring T and two homomorphisms 

h1 , h2 : R 0 K -+ T such that h1 o 92 = h2 o 92 • We now look at the resultant 

diagram, where g is the unique homomorphism of Z into K. 
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J (epi) 
z R 

9 91 

h1 
K R0K ====:::::T 

92 h2 

We first note that, for any n in Z, 

91 o f(n) 91(nIR) 

nIR 0 IK 

lR 0 nIK 

92(nIK) 

92 o 9(n), 

and so the rectangle commutes (i .e. 91 o J = 92 o 9 ). 

Since h1 o 92 = h2 o 92 by assumption, we have 

for all kin K . Also, we see that h1 o 92 o 9 = h2 o 92 o 9, so that h1 o 91 o J = h2 o 91 of. 

Since J is an epimorphism we have that h1 o 91 = h2 o 91, and so 

for all r in R. 
Thus, for all r 0 kin R 0 K , 

h1((r 0 !)(! 0 k)) 

h1 (r 0 l)h1 (1 0 k) 

h2(r 0 l)h2(l 0 k) 

h2(r 0 k), 
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and so h1 = h2 • Thus g2 is an epimorphism. 

Lemma 1.2.4 For any field K either R 0 K '.:= K or R 0 K '.:= 0. 

Proof. Denote R 0 K by RK. We consider the ring 

and note that the diagonal map 

is an isomorphism. Denote by a the unit 

Note that 

For all k in K we have 

a ( I 0 k O ) a-' 
0 I 0 k 

( 
(! 0 k) (-1 0 k) 0 K (! 0 I)+(! 0 !) 0 K (! 0 k))) 

0 I 0 k 

( 
l @ k O ) 

0 I 0 k 



since 

(-10l)k0K(l01) 

(-101) 0K k(l 01) 

(-101)0K(l0k). 
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Thus the inner automorphism ¢, defined on N, which is determined by a, fixes the 

image of Kin N. 

Denote by g : K ---> RK the canonical homomorphism (epimorphism) and con-

sider the diagram 

where i is the identity map and ¢, is the inner automorphism determined by a. Since 

¢, = i on K and g is an epimorphism, we see that ¢, o h = i o h. Let r be an element 

in RK. Comparing the row 1 column 2 entries of¢, o h(r) and i o h(r) we see that 

for all r in RK , so 

We now consider RK as a vector space over Kand suppose dimK(RK) > l. Then 

there exists an element x in RK such that the set {l , x} is linearly independent . Thus 

it follows that {x 0 l , l 0 x} is linearly independent in the K-vector space RK 0 K RK . 

But this is a contradiction since we have shown x 0 1 = 1. 0 x . Thus dimK(RK) '.::'. I 

and so either RK '.::'. K or RK '.::'. 0. 
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For results which follow, we require the following lemma which determines the 

zeros of tensor products. This lemma is stated without proof. 

Lemma 1.2.5 {STEN 75} Let L be a right A-module and M a left A-module. Let 

{y; Ii E I} be a set of generators for M, for some index set I, and let { x; Ii E I} 

be a set of elements of L such that almost all x; = 0. Then I: x; 0 y; = 0 in 

L 0A M if and only if there exists a finite set { u, I j E J} of elements of L and a set 

{a,; Ii E /, j E J} of elements of A such that 

i) a,;= 0 for almost all (j, i); 

ii) I: a,;y; = 0 for each j in J; and 

iii) x; = I: u,a,; for each i in I. 

Definition 1.2.4 Let S be a ring and S1 , S 2 , ••• Sk be right ideals of S. Then S1 EB 

···EB Sk is a direct sum of right ideals of S if S, n I:7=t,i,tj S; = 0 for all j = I, 2, ... , k. 

We will require the following notation in the discussion to follow. Let tp( R) = 
{r E RI pkr = 0 for some k 2'. I}, for any prime integer p. Let tR = EllpEPtp(R). 

Thus tp(R) and tR are ideals of R. We note that an element r is contained in tR if 

and only if there exists a positive integer m such that mr = 0. In the case where 

tR = 0 we say that R is torsion-free. 

Lemma 1.2.6 Let Y be a subset of the primes of Z, and let h: R--+ R 0 Z[Y-1] 

be the canonical homomorphism. Then ker h = EBpEYtp( R). 

Proof. Supposer is an element of EBpEYtp(R). Then there exists a positive integer m, 

whose prime factors belong to Y, such that mr = 0. This implies that mr 01/m = 0, 

so that r 0 I = h(r) = 0. Thus r is contained in ker h. 
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Suppose r is an element of ker h. Then h(r) = r ® 1 = 0. Let M be the set 

consisting of 1 and the positive integers which are products of primes in Y. Denote 

the elements of M by m 1, m 2, m 3, · · · such that m; < m;H for all i. We note that 

m1 = 1. Let y; = 1/m;. Then {y;} is a set of generators for Z[Y-1] as a left 

Z-module. Consider the set {x;} where x 1 = r and x; = 0 for all i > 1. Thus 

0 = r ® 1 = E~, (x; ® y;). Hence, by Lemma 1.2.5, there is a set { u;} in Rand a set 

{ a;;} in Z such that: 

1) almost all the a;; = O; thus there exists an integer M such that a;; = 0 if either 

i >Mor j > M; 

2) for each j we have that E~, a;;y; = O; 

3) for each i we have that x; = E~, a;;u;; that is, r 

E~1 a;;u; for i > 1. 

E~1 a;, u; and 0 

Select an integer k M such that all prime factors of k are in Y and if a;; =J 0, then 

m; k. 

Consider a function g : M -+ z[Y-1] such that g(m;) = k!/m;. Note that when 

m; k then g(m;) is an integer. Since E~, a;;(l/m;) = 0 for each j, 

for each j. Thus E~1 k!(l/m;)a;;u; = 0 and so E~1 g(m;)a;;u; = 0 for all j. There-

fore 

so 

0 = t (g(m;) a;;u) = g(l )r = k!r. 

Therefore r is contained in ffiveYtp(R) and so ker h = ffi vevt.(R). 
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For any prime p of Z we can fix I<= Z/(p), a field. Hence R@Z/(p) is isomorphic 

to either Z/(p) or 0. From Lemma 1.2.6 we see that 

R@Z/(p) = {~(r,0n,) Ir, E R,n; E Z/(p)} 

{ ~(n;r; 0 lK) I ii;= n; + (p) E Z/(p)} 

::e R/pR. 

Hence R/pR is isomorphic to either Z/(p) or 0. It follows that for every prime pin 

Z, pR +Zin= R. 

We note that for any ideals I and J of Z, if IR+ Zln = R = JR+ Zln then 

So we have that IR+ Zln = R for all non-zero ideals I of Z since every non-zero 

ideal of Z is a product of prime ideals. 

Corollary 1.2.2 Let h : R---+ RQ = R 0 Q be the canonical homomorphism. Then 

kerh = tR. 

Proof. This follows from Lemma 1.2.6 if we take Y to be the set of all prime 

numbers. 

We now prove one of the two main results of this section, by showing that any Z-

epimorph, R, has one of three forms. Later in this section we will show the converse, 

that any ring which has one of these three forms is a Z-epimorph. Infinite sequences 

u1, u2, u3 ... will be denoted (u,). 

Definition 1.2.5 A ring A is p - divisible if for each a E A there is a b E A such 

that a= pb. 

Lemma 1.2.7 R has one of the following forms: 
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( A) R is isomorphic to Z / I for some ideal I of Z; 

(B) R is isomorphic to D (fJ Z/(p~1 ) (fJ • · · (fJ Z/(p;•) where the Pi are primes, the ni 

. are positive integers, and D is a ring such that Z <:;; D <:;; Q which is divisible 

by the Pii or 

(C) R is isomorphic to a subring of TI~1 Z/(p'/'), for some infinite set of primes 

{p;} and some infinite set of positive integers { ni}, consisting of all sequences 

(ui) where Ui has the form a/bin Z/(p'/') for almost all i, for some element a/b 

in a ring D where Z <:;; D <:;; Q and D is divisible by the primes Pi. 

Proof. If we consider the canonical homomorphism h: R---> R 0 Q = Rq, we see 

that ker h = tR and that R/tR is isomorphic to the image of R in Rq. Since Rq '.::e 0 

or Q, we have either: 

1) R = tR in the case where Rq = 0, and so the annihilator of lR is a non-zero 

ideal / of Z. Recall that R = JR+ ZlR for all nonzero ideals J of Z . Now, 

since/ R = 0, R = ZlR '.::e Z/ I as required; or 

2) In the case where Rq '.::e Q we have that R/tR is isomorphic to a subring of Q. 
We now check that the epimorphism f : Z ---> R is injective. If this were not the 

case there would be a non-zero min Z such that mlR = 0, so that mlR ® lq = 0 

in Rq, in which case tRq ,j, 0 contradicting Rq '.::e Q. Thus ZlR () tR = 0 and 

so R/tR is isomorphic to a subring D of Q such that Z <:;; D <:;; Q. Now suppose 

that m/n is in D where m and n are relatively prime. Then there are integers 

sand t such sm+tn = 1, and so sm/n+t = (sm+tn)/n = 1/n is in D. Thus 

R/tR '.::e Z[X01] for some set X 0 of prime numbers. 

Since the first case, where Rq '.::e 0, gives our result, the rest of the proof consists 

of a detailed analysis of the second case, where Rq '.::e Q. 

Consider the following diagram: 
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z ____ _ 
epi 

R/tR _________ Z[X0 - 1] 

For n in Z, the upper route gives n ----> nl ----> nl 0 1 = I 0 n while the lower 

route gives n ----> nl ----> nl + tR ----> n ----> l 0 n. Since R is an epimorph of Z, 

this shows that the rectangle commutes. We note that the kernel of the lower route 

is tR, while the kernel of the upper route is Ellpex,tp( R). Thus 

tR = Ell,ex,t,(R). 

Given an element r in tR, there exists r 1 , r 2 , ••• , rk where the r; are in t,;(R) such 

that r = r 1 + · · · + rk , We denote by ep;: tR----> tp;(R) the map which sends r tor,. 

For fin R we see that fr is in tR and e,;(fr) =fr;= fe,;(r). 

Let g denote the isomorphism Z[x0 - 1 ] ----> R/tR. For m/n in Z(x0 - 1J we let a' 

be the element of R such that g(m/n) = a' +tR. Since g(m) = g(m/n)g(n), we have 

m + tR = (a'+ tR)(n + tR) = na' + tR and so na' - m is an element of tR. If bis 

an element of R such that nb - m belongs to tR, then n(a' - b) in tR gives a' - b 

in tR, so that a'+ tR = b + tR. So for m/n in Z[X0 1 ], if g(m/n) = a'+ tR then 

na' - m is in tR; and conversely, if b is in R such that nb - m belongs to tR, then 

g(m/n) = b + tR. 

Let X 1 = {p E Z Ip is prime, t,(R) c/ 0}. We note that X 1 <;;; X 0 , since tR = 

Ell pEX,tp(R) . 

Fix pin X 1 and choose a in R such that g(l/p) =a+ tR. Therefore l - pa is in 

tR. Thus (pa)<1- 1> - (pa) 1 is in tR for all I 2'. I. For a given I 2'. 1, the assumption 
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that 1 - (pa)(l-t) is in tR implies that 

(1 - (pa)U- 1>) + ((pa)U- 1> - (pa)1) = 1 - (pa)1 

belongs to tR. Thus we see that, by induction, 1 - (pa )1 is an element of tR for all 

12: 1. 

Since ep(l - pa) is in tp(R), we can choose a positive integer c which is minimal 

such that peep(! - pa) = 0, which implies ep(pc - pcpa) = 0. Thus, ep(pc(pa)U- 1> -

pc(pa)1) = 0 for all positive integers I. For each positive integer I, the assumption 

that ep(pc - pc(pa)U- 1>) = 0 implies that 

so that ep(pc - pc(pa)1) = 0. Thus we see that, by induction on I, ep(Pc - pc(pa)1) = 0 

for all I 2: 1, so since the map eP is additive, pcep(l - (pa)1) = 0. 

For any x in tp(R), there exists a positive integer w such that pwx = 0, so that 

pc(pa)wx = 0. Now ep((pc(pat - pc)x) = 0 since pcep(l - (pa)w) = 0, but x in tp(R) 

implies that (pc(pa)w - pc)x is in tp(R). Thus 

ep((pc(pa)w _ pc)x) = (pc(pa)w _ pc)x, 

so (pc(pa)w - pc)x = 0 which implies that pcx = 0, and so pctp(R) = 0. 

Let e(p) = ep(l - (pa)°). For any x in tp(R), 

e(p)x = ep((l - (pa)°)x) = ep(x - pcxac) = ep(x) = x. 

Thus e(p) is an identity element for tp(R), and R = R(l - e(p)) El) Re(p). 

There are two cases to consider: 

Case I: X1 is finite. For notation, let X 1 ={Pt,· · · ,pk}. Let e = e(p1 ) + · · · + e(pk)· 

Then e is an identity element for E&7=t tP;(R). No\\', R = R(l - e) El) Re = 
R(l - e) El) tR so that R/tR c::: R(l - e). Consider the maps Z --, R --, 
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R/ R(l - e(p)) 3" Re(p). Since this composition is an epimorphism, it follows 

from (1) at the beginning of the proof that this map is onto and so Re(p) 3" 

Ze(p) 3" Z/(pc). Thus 

as desired. 

Case II: X 1 is infinite. For any pin X 1 , define Sp : R--+ tp(R) by Sp(r) = re(p). 

Define S: R--+ ITpeX, tp(R) by 

Clearly, S is a ring homomorphism. 

For any r in R we choose a and b such that r = a+ b where there exists m/n 

in Z[x0 - 1J with na - min tR, and bis in tR. Thus S(r) = S(a) + S(b), and 

since b belongs to tR, there exists a positive integer k such that Sp;(b) = 0 for 

all i > k, so that Sp;(r) = Sp;(a) = e(p;)a. Since na - m belongs to tR, there 

exists a positive integer k such that e(p;)(na - m) = 0 for all i > k, which 

implies that ne(p;)a - e(p;)m = 0. Hence we see that S is into the subring R 
of the ring ITpeX, tp(R), consisting of sequences of the form (u;) where there is 

an element m/n in Z[Xo -I] and a positive integer I such that u; has the form 

m/ii in Ze(p;) (which is isomorphic to Z/(p';') for some n,) for all i > I. 

We see that S is one-to-one, for if S(r) = 0 then Sp;(a) = e(p;)a = 0 for 

infinitely many p;. Therefore m = 0 mod p'/' for infinitely many p;, so that 

m = 0, and so na is an element of tR. Thus r belongs to tR so r = 0 since 

e(p; )r = 0 for all i. 

We also see that S is onto R, for let v = (a 1 , a2, •.• ) be in R.. Since v is 

in R, there is an element m/n in Z(X01) such that a; has the form m/n in 
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Z/(p't) for almost all i. Because R/tR Z[X0 1} we can choose a+tR in R/tR 

such that na - mis in tR. Hence Sp,(na - m) = 0 for almost all i, therefore 

Sp,(a) = ai = m/n for almost all i. Thus there exists a positive integer I such 

that Sp,(a) = ai for all i > 1. Let ii= a+ E\=1(ai - ae(pi)), an element of R. 

Then S(a) = v, and so S is onto R. Thus R R, as desired, completing the 

proof. 

Thus we have proven one of the main results of this section, which gives the only 

possible structures of a Z-epimorph. We now show the converse, and deal with each 

of the three structures described in Lemma 1.2. 7 separately. 

Lemma 1.2.8 For any ideal I of Z, Z/1 is an epimorph of Z. 

Proof. The canonical homomorphism f: Z---+ Z/ I is onto. 

Lemma 1.2.9 Let R = D EB Z /(P1 n,) EB · · · EB Z / (Pk n,) where the Pi are primes, the 

ni are positive integers, and D is a ring which is divisible by the Pi with Z D Q. 
Then R is an epimorph of Z. 

Proof. 

Let R =DEB Z/(pf') EB••· EB Z/(p;•) be as in the statement of the lemma, and 

suppose that g, h : R ---+ S are ring homomorphisms such that g(ln) = h(ln)-

For each d E D let [d] denote the element (x, a1, · · ·, ak) E R such that x = d, 

a1 = 0 and ai = ii. in Z /(pf') for 1 < i :5 k. 

Since [1/pf' ]Pin' ln = pf' ln, g and h agree on [1/pf' ]Pin' ln. Thus, 

g([l]) g([lM' ]Pi"' ln[IM']) 

g([I/pf' ]Pi"' ln)g([lM']) 

h([I/pf' )pi"' In)g([I/pf']) 



h([l/p;1 ])pfn1 lsg([lM1]) 

h([lM1])g(pin1 lR[lM1]) 

h([lMt ])h(pfnt lR[lMI]) 

h([lM1 ]Pin' lR[lM1]) 

h([l]) . 
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Sinceg and h agree on IR= (I,i,i, ... ,J:) and-[!]= (-1,0,-i,-i, .. , , -i), they 

agree on their sum, that is, they agree on (0, i, 0, 0, · · ·, 0). Hence g and h agree 

on Z/(p~ 1 ). Using the same argument on the other coordinates, g and h agree on 

Z/(p;1 ) EB ... EB Z/(p~•). 

Let 1/b E D for some b E Z and let x = (1/b, i, 1, .. ·, 1) and y = (b, 1, I, .. ·,!). 
Then xy = IR and g(y) = h(y) since y = blR- (0,b- l,b-1,· · · , b- !), so ls= 

g(xy) = g(x)g(y) = g(x)h(y) and ls = h(xy) = h(yx) = h(y)h(x). Now g(x) = 

g(x)ls = g(x)h(y)h(x) = lsh(x) = h(x). Now since g and h agree on Z/(p;1 ) EB 

.. · EB Z/(p~') it follows that g(I/b, 0, 0, .. · , 0) = h(I/ b, 0, 0, .. ·, 0). Hence g and h 

also agree on D, so g = h. 

We now consider the third structure of Lemma 1.2. 7. 

Lemma 1.2.10 Let X = {p1 ,p2,p3, .. . } be an infinite set of primes, {n1 , n2, n3, . . . } 

an infinite set of positive integers, and let D be a ring such that Z <;; D <;; Q and 

D is divisible by each p; in X. Let R be the subring of [1~ 1 Z / (p;n') consisting of 

sequences of the form (u;), where there is an element a/b in D such that for almost 

all i, u; has the form a/bin Z/(p;n'). Then R is an epimorph of Z. 

Proof. Fix an element Pi in X . For all i cf j, let hii: Z[l/piJ --> Z/(pt ') be the 

homomorphism where, for n in Z , hi;(n) = n+(p;n') and hi;(l / pi) = m+(p;n') where 

m is chosen so that I - Pim is an element of (p;n' ); this is possible since Pi and p; are 

relatively prime, so that we can choose integers m and m such that mpi + mp;n' = I. 
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In this way, we consider h;; to be the "natural" homomorphism from Z(l / p;] into 

Z/(p;n'). Let h;; : Z(l/p;] ---> Z/(p'Ji) be the zero map. 

We now define the map h; : Z[l/p;] ---> R by h;(a) = (h;;(a)) . Since the h;; 

maps are homomorphisms, we see that h; preserves addition and multiplication. 

Fix a= P;+i/P;, b = P;+2 /p; in Z(l/p;]. Since P;+1 and P;+2 are relatively prime, 

we see that (Za+Zb)(p;) = P;+1 Z+P;+2 Z = Z . Let J = h;(Za+Zb) and I= p;Zln. 

Thus we have JI= h;((Za + Zb)(p;Z)) = h;(Z) , and so J2 I= J and J [k+l = [k for 

all positive integers k. 

Let 91, 92 : R ---> S be two ring homomorphisms such that 91(ln) = 92(ln). 

Let c, d be elements of Jn,+l and e be an element of pn;H . Then ce and ed are in 

r,+1[2n,+1 = (Jit,+ 1 Jn; <;;; h;(Z)(p;Zlnt' = p'J'Zln <;;; Zln, so 91(ce) = 92(ce) 

and 91(ed) = 92(ed) . Since e is in pn;H <;;; Zln, 91(e) = 92(e) and therefore 

Thus we see that 91 and 92 agree on 

91(ce)91(d) 

92( ce )91( d) 

92(c)92(e)91(d) 

92( c)91 ( e )91 ( d) 

92( c)91 ( ed) 

92(c)92(ed) 

92(ced) . 

Therefore 91 and 92 agree on h;(a) and h;(b) . Since a = Pi+i/P; and b = P; +2/ p;, 

there are integers a and (3 such that aa + (Jb = 1/p;. Thus 91 and 92 agree on 

h;(Z[l/p;]), for all Pi in X. 
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Since (hn+1(l)-hn(l))(hn+2(l)-hn(l)) = (u;) where Un= land Um = 0 if m /- n, 

g1 and 92 agree on /J!p,EXZ/(p?'). Now suppose that w/y E D where y = pf1 • • • P? -

Fix an integer M > k and let (u;) E R be the element determined by u; = 0 for all 

i '.o Mand u; = w/y for i > M. Then 

and so g1 and g2 agree on all elements of this form. Since every element in R is a 

sum of an element of this form and an element of /J!p,EXZ/(p';'), g1 and g2 agree on 

R, proving the lemma. 

We now state the main result of this section, which gives all of the epimorphs of 

the ring of integers. 

Theorem 1.2.1 A ring R is an epimorph of Z if and only if it has one of the 

following forms: 

(A) R is isomorphic to Z/ I for some ideal I of Z; 

{B) R is isomorphic to D 1J, Z / (p1 ni) /J, · · · /J, Z / (Pk n•) where the p; are primes, the n; 

are positive integers, and D is a ring such that Z <;; D <;; Q and D is divisible 

by the p;; or 

(C) R is isomorphic to a subring of IT~1 Z/(p';'), for some infinite set of primes 

{p;} and positive integers n;, consisting of all sequences of the form (u;), where 

for all almost all i, u; =a/bin Z/(pf') for some element a/bin a ring D, where 

D is such that Z <;; D <;; Q and D is divisible by each prime p;. 

Hereafter, a Z-epimorph will be said to have either form A, form B or form C if 

it corresponds to (A), (B), or (C), respectively, of Theorem 1.2.1. 
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§ 1.3 The Characteristic Function 
Let h : S ----> T be a homomorphism of rings with identity. The maximum 

epimorphic extension of h(S) in Twill be denoted by maxepi(h,T) . In the special 

case where S = Z, maxepi(h,T) will be denoted by K(T). The following lemma 

shows that maxepi ( h, T) exists. 

Lemma 1.3.1 If h : S ----> T is a homomorphism of rings with identity then there 

exists a maximum epimorphic extension maxepi(h, T) of h(S) in T . 

Proof. We see that T contains at least one epimorph of S, namely h(S). Let { U;} 

be the set of all epimorphic extensions of h(S) in T, and let Ube the subring of T 

generated by the U;. We note that h(S) is a subring of U. 

Suppose g1 , g2 : U----> V are two homomorphisms of rings with identity such that 

g1 o h = g2 o h, so that we have the following situation: 

91 

S ...!:..... h(S) <;;,. U =: V . 
92 

Let x be an element of U. Then either x is an element of one of the U;, in which 

case g1 (x) = g2(x) since the U; are epimorphs of S, or xis in a subring generated by 

elements u; each of which belongs to one of the U;, in which case g1(x) = g2 (x) since 

g, and 92 are ring homomorphisms. Thus g1 = g2 and U is the maximum epimorphic 

extension of h(S) in T. 

Lemma 1.3.2 Let <p : R ----> T be a homomorphism of rings with identity. Then 

<p(K(R)) is a subring of K(T) . 

Proof. 
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Since K(T) is a maximal epimorphic extension, it suffices to show that /3 : Z -> 

cp(K(R)) is an epimorphism. Let 1 , 8 : cp(K(R)) -> V be two homomorphisms into 

the ring V such that I o f3 = 8 o /3. We examine the following diagram. 

__:K(R).!!.._ 'Y 

Z cp(K(R)) v. 
/3 -8-

Since f3 is unique, f3 = cp o a. Hence I o cp o a = 8 o cp o a. Since a is an epimorphism 

1 o cp = 8 o cp and so 1 = 8 since they agree on their common domain cp(K(R)). 

Definition 1.3.1 For a ring A, the annihilator of A in Z is ann A = { z E Z I zA = 0}. 

We note that ann A is an ideal of Z . 

Definition 1.3.2 Let A be a ring. The characteristic function of A is the function 

g : P -> N U { ±oo} defined as follows. 

If O # annA =(pf'· .. p;•), then g(p;) = n; for i = 1, ... , k and g(q) = -oo for 

q E P \ {p1, .. , , pk}. 

If annA = 0 and p E P, then g(p) = +oo unless anntp(A) = (pk) for some k EN 

and A = tp(A) ffi A(P) where A(P) is an ideal of A which is p-divisible, in which case 

g(p) = k. 

Example 1.3.1 1. Let A = Z/(12). Then g(2) = 2, g(3) = 1, and g(p) = -oo 

for any prime p > 3. 

2. Let A = Z[l/2, 1/3, 1/5] ffi Z/(12). Then g(2) = 2, g(3) 

g(p) = +oo for all primes p > 5. 

1, g(5) = 0 and 
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3. Let p1 ,p2, ... ,Pi, ... be an enumeration of the primes in P, and let A be the 

subring of f1~1 Z/(p:) consisting of all sequences of the form (ui) where, for 

almost all i, Ui = ij in Z/(p:) for some rational number q E Q. Then g(pi) = i 
for all primes Pi since anntp;(A) Z/(p:) and A= tp;(A) Ell B where B is the 

ideal of A consisting of all (u;) EA such that Ui = 0. 

,/. We now introduce the notion of quasi-cyclic groups. Let p be a fixed prime 

integer, and let 

Zpoo = {~I n E Z, n 2'. 1, a E Z, 0 '.5 a< pn}. 

Define addition ( +) as follows: 

Then (Zpoo, +) is a quasi-cyclic group . We note that Zpoo is also called a "group 

of type p00 ". We view Zpoo as a ring by defining multiplication as the zero 

multiplication. If A = Zpoo , then the characteristic function g of A is such that 

g(q) = 0 if q =J p and g(p) = +oo. 

Definition 1.3.3 Let A be a ring. 

1. End A denotes the ring of endomorphisms of the right A-module, AA. 

2. A0 is the ring with the same underlying additive group as A and with trivial 

multiplication; that is, xy = 0 for all x, y in A0 • 

Proposition 1.3.1 For any ring A , End A , A 0 and A have the same characteristic 

function. 
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Proof. Since ann A = ann A0 = ann End A, if these annihilators are non-zero then 

the three characteristic functions coincide. 

Assume that the annihilators are 0. 

Suppose that p E P, ann tp( A) = (pk) for some k E N and A = tp( A) EB A (P) where 

A(p) is an ideal of A which is p-divisible. Then A0 has a corresponding direct sum 

decomposition, A0 = (tp(A)) 0 EB (A(P))0 which shows that the characteristic functions 

of A and A0 agree on p. 

Now suppose that p E P, ann tp(A0 ) = (pk) and A0 = tp(A0 ) El) B where B is an 

ideal of A0 and B is p-divisible. 

We first check that t"( EndA) = { 0 E End A I 0( A) t"( A)}. We note that 

tp(A) = tp(A0 ). Suppose a E tp(EndA). Then pma = 0 for some m E N and 

so pma(a) = 0 for all a EA. Thus a(A) tp(A) . Since the reverse inclusion is clear, 

t"(EndA) = {0 E End A I 0(A) t"(A)} and, moreover, pk E ann tp(EndA). 

Define the homomorphism 1r : A0 --> tp(A0 ) by 1r(a} = a', where a = a'+ b for 

some a' E tp(A0 ) and b E B. If pmtp(EndA) = 0, then pm7r = 0, so pm is in (pk). 

Hence ann tp(EndA) = ann tp(A0 ). 

Let 0 E End A and x E B. Since B is p-divisible there is a y E B such that 

x = pky_ Since 0(y) E A0 , 0(y) = u + v where u E tp(A0 ) and v EB. Hence 0(x) = 

0(pky) = pku + pkv = pkv is in B, so 0(B) B. Let iJ = {a E End A I a(A) B}. 

The set iJ is clearly a right ideal of End A and it is a left ideal because 0( B) B for 

all 0 in End A. 

We now show that iJ is p-divisible. Let a be in iJ. For each x in A, a(x) is in 

B, so a(x) = py for some y in B. Moreover, y is unique because if z is in Band 

py = pz, then p(y - z) = 0 from which we see that y - z is in t"(A0 ) n B = 0. Hence 

the function, defined by 1(x) = y is well-defined. Since a is in End A it follows that 

1 is in End A, and I is in iJ since 1(A) B. Hence a= P'Y , so iJ is p-divisible. 

Let a be in iJ n t"(EndA). Then a= pk/3 for some f3 in iJ , and pka = 0. Thus 
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/3 E t.(EndA), so a= pk/3 = 0. Hence B n t.(EndA) = 0. 

Let 0 E End A, and let x E A, x = u + v where u E tp(A0 ), v E B. Define 01 

and 02 by 01(x) = u and 02(x) = v. Clearly 01,02 E End A and since 01(A) tp(A) 

and 02(A) B, 01 E tp(EndA) and 02 E B. Because 0 = 01 + 02 this shows that 

End A= t.(EndA) ffi B. From this we see that the characteristic functions of A0 and 

End A agree on p. 

Finally, suppose that p E P, annt.(EndA) = (pk) for some k EN and End A= 

tp(EndA) ffi C where C is an ideal of End A which is p-divisible. For each a E A 

define a by ii(x) = ax for all x EA. We see that a E EndA. 

Let M = Z {0(A) I 0 E C}. Since each 0(A) is closed under addition, so too 

is M. If 0 E C and a E A, then ii0 E C. Hence, for a E A and 0(x) E M, 

a0(x) = (ii0)(x) EM. Hence Mis a left ideal, and it is also a right ideal because for 

a EA and 0(x) EM, 0(x) ·a= 0(xa) EM. 

Let m = 01(a1) + · · · + 0n(an) EM, where 01, ... , 0n EC. Since C is p-divisible, 

there are a; E C such that 0; = pa; for all i = 1, ... , n. Thus m = p(a1(a1) + • • • + 
an(an)), so Mis p-divisible. 

Let i be the identity endomorphism in End A = tp( EndA) ffi C. Then i = a + /3 

for some a E tp(EndA) and /3 E C. Let a E tp(A). Then pma = 0 for some 

m E N and /3 = pm, for some I E C since C is p-divisible. Now a = i(a) = 
a(a) + /3(a) = a(a) + pm1 (a) = a(a) + 1 (pma) = a(a) + 1 (0) = a(a) . Hence 

tp(A) a(A), and since a E t.(EndA), a(A) t.(A). Thus t.(A) = a(A), and 

pk E annt.(A). Suppose f E annt.(A). Then fa= 0 because t.(A) = a(A). Also, 

since i = a+ /3, t.(EndA) = aEndA and so f E annt.(EndA) = (pk). Thus 

annt.(A) = annt,(EndA). 

Since ann t,(A) = (l) and M is p-divisible, it follows that tp(A) n M = 0. Also, 

if a EA, a= i(a) = a(a) + f3(a) E t,(A) + M, so A= t,(A) ffi M. From this we see 

that the characteristic functions of End A and A agree on p. 
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Therefore, we see that A, A0 and End A have the same characteristic function. 

Proposition 1.3.2 If A and B are rings with the same characteristic function g, 

then g is the characteristic function of A El) B. 

Proof. If p E P and A = tp(A} El) A(p) where anntp(A) = (pk) for some k E N 

and A(P) is an ideal of A which is p-divisible, then B has a similar decomposition 

B = tp(B) El) B(P) which gives rise to the decomposition A El) B = (tp(A) El) tp(B)) El) 

(A(P) El) B(Pl). 

Conversely, if A El) B = tp(A El) B) El) C where anntp(A El) B) = (pk), k EN and C 

is an ideal of A El) B which is p-divisible, then we obtain direct sum decompositions 

A= t"(A} EB XA, B = tp(B) EB Xa as follows. Let XA = C n A. Then XA is an ideal 

of A and, since tp(A) <;; tp(A El) B), tp(A) n XA = 0. 

Let c, E A, f3 E B and suppose c, + f3 E C. Then c, = u + v where u E t,(A El) B) 

and v E C. Thus pkc, = pkv E C and so pkc, = pk+1, for some I E C. Since 

C n t,(A EBB)= 0, a= n so a E C. 

Let a E A. Then a= (a1 + b1} +(a+ /3) where a1 + b1 E tp(A El) B), c, + f3 E 

C, a1 , c, E A and b1 , f3 E B. Since the sum A+ B is direct, a = a1 + c, and from above 

aEAnC. HenceA=tp(A)EB(CnA}. 

If a E C n A, a = pc for some c E C. Now c = a1 + b1, a1 E A, b1 E B and so 

a= pc= pa1 + pb1 • Since A+ Bis direct, a= pa1 and from above a1 EC. Hence 

C n A is p-divisible. Similarly, B = tp(B) El) (C n B). Since A and B have the same 

characteristic function, annt,(A} = anntp(B) and since t,(A El) B) = t,(A) El) t,(B), 

ann tp(A El) B) = ann tp(A) = ann tp(B). 

It follows that A El) B has characteristic function g. 



25 

Lemma 1.3.3 Let cp: S---+ T be a homomorphism of rings with identity and let gs, 

9T be the characteristic functions of S and T, respectively. Then 9T(P) $ gs(P) for 

all p in P. 

Proof. Since cp(S) is a unital subring of T, annT = anncp(S) 2 annS. Thus if 

annT ,f O it is clear that 9T(P) $ gs(p) for all p E P. 

Now assume ann T = 0. Since ann T 2 ann S this implies that ann S = 0. If 

gs(p) = 0, then tp(S) = {O} and Sis p-divisible. Hence cp(S) is p-divisible and so T 

is also p-divisible because cp(S) and T have the same identity. Suppose x ET is such 

that pmx = 0. Let 1 = pmv for some v ET. Then x = 1 • x = pmvx = O, so tp(T) = 0. 

Hence 9T(P) = 0. 

Now suppose that O < gs(p) = k < oo. Then S = tp(S) EB S(p) where S(P) 

is an ideal of S which is p-divisible and anntp(S) = (pk). Let ls = e + f where 

e E tp(S) and f E S(P)_ Then I.,(S) = Ir = cp(e) + cp(f) . Let X1 E t,(T). Then 

pmx1 = 0 for some integer m. Since S(P) is p-divisible, f = pms for some s E Sand 

hence x1 = 1 · x1 = cp( e )x1 + cp(f)x1 = cp( e )x1 + cp( s )pm x1 = cp( e )x1 E cp( e )T. So 

tp(T) = cp(e)T. Similarly, tp(T) = Tcp(e) . 

Let x2 ET. Since lT = cp(e) + cp(f) and cp(e)cp(f) = cp(ef) = cp(O) = 0, 

( cp( e) + cp(f) )x2cp(f) 

cp( e )x2cp(f) + cp(f)x2cp(f) 

X3cp( e )cp(f) + cp(f)x2cp(f) 

cp(f)x2cp(f) E cp(f)T, 

where cp(e)x2 = x3 cp(e) for some x3 E T because cp(e)T = Tcp(e) . It follows that 

cp(f)T is an ideal of T, and cp(f)T is p-divisible because there is an s1 ES such that 

f = ps1 = pfs1 so that, fort ET, cp(f)t = cp(pfs1)t = pcp(f)cp(s1)t E pcp(f)T. Also, 

since Ir= cp(e) + cp(f), cp(e)T + cp(f)T = T . Moreover, ·cp(e)T n cp(f)T = 0 because 
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cp(e)cp(J) = 0. Since p"e = 0, p"cp(e)T = 0 and so the direct sum decomposition 

T = cp(e)T EB cp(J)T shows that 9T(P) S k. 

Of course, if gs(p) = oo we must have 9T(P) S gs(p), so the proof is complete. 

Note that if A is a ring with characteristic function g, then g determines an 

epimorph E9 of the integers as follows. 

If g(p) = -oo for some p, E9 = Z/ann A. 

Otherwise, let X 1 = {p E PIO< g(p) < oo} and Xa = X1 U{p E P I g(p) = O}. If 

X 1 = {pi, ... ,Pn} is finite, E9 = DxZ/(pff"')) X · · -xZ/(r,.(Pn)) where D = Z[l/p Ip E 

Xa] while if X 1 is infinite, E9 is the set of all sequences (u;) in ITvEX, Z/(p9<vl) which 

are eventually of the form a/b where a/b ED= Z{l/p Ip E X0 }. 

Proposition 1.3.3 If R is an epimorph of Z with characteristic function g, then 

Proof. If ann R f 0, g(p) = -oo for some p and E9 = Z / ann R. From Theorem 

1.2.1, R Z/ I for some I and this implies that / = ann R. Hence R Z/ I= E9 • 

We now assume that ann R = 0. First suppose that R DEl)Z/(p~1 )EB·· ·EBZ/(p;') 
where, for each i, p; is in P, n; is a positive integer, and D is a ring with Z D Q 

which is divisible by p; for all i = 1, ... , k. From the definition of the characteristic 

function it is clear that g(p;) = n; for all i = 1, ... , k, that g(q) = 0 if D is q-

divisible and q (/ {p1 , ••• ,pk}, and g(p) = oo for all other primes p. Hence E9 = 

Now suppose that there is an infinite set of primes {p1, p2 , ••• }, a corresponding 

set of positive integers {ni,n2 , •• • } and a ring D, Z D Q, divisible by all 

of the primes p1 ,p2 , ••• such that R is isomorphic to the set of all sequences (u;) 

in [1~ 1 Z/(p?;) for which there is some a/b E D such that u; = a/b for almost 

all i . For each p; E {p1,P2, .. . }, tp;(R) = { (u;) ER I u; = 0 if j f i} and R(p;) = 
{(u;) ER I u; = O} is p;-divisible. Thus g(p;) = n; for ;,_II i. If q E P \ {p1 ,p2 •. • } , 
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then tq(R) = 0, so g(q) = 0 if D, and hence R, is q-divisible, and g(q) = oo otherwise. 

Hence E9 is isomorphic to R. 

Proposition 1.3.4 If R is a ring with identity, then K(R) and R have the same 

characteristic function. 

Proof. Let 9K and g denote the characteristic functions of K(R) and R respectively. 

Since annK(R) = annR, we may assume annK(R) = annR = {0} . From Lemma 

1.3.3, g(p) $ 9K(P) for all primes p, so we need only show that , for all p E P, 

9K(P) $ g(p). 

Suppose g(p) = k EN. Then R = tp(R) Ell R(p) where R(P) is an ideal of R which 

is p-divisible and anntp(R) = (pk). Write lR = e + d where e E tp(R) and d E R(P). 

Note that if m E Z and md = 0, then pkmlR = 0 and so pkm E ann R = {0}, and 

thus m = 0. Since R(P) is p-divisible, d = pr for some r E R(P). 

Define 0 : Z[l/p] _. Zr by 0(!(1/p)) = f(r) for each f E Z[x]. Suppose f,g E 

Z[x] and f(l/p) = g(l/p). Then (f- g)(l/p) = 0, so (f - g)(x) = (x - 1/p)h(x) for 

some h(x) E Q[x] and it is easy to see that in fact h(x) E Z[x]. Multiplying by p and 

substituting r for x we obtain p(f-g)(r) = (pr-l)h(r), and since pr-I= d-1 = e 

it follows that (f - g)(r) E tp(R) n R(P) = {0}. Hence f(r) = g(r) and so 0 is 

well-defined. 

Clearly 0 is an onto homomorphism. Suppose 0(!(1/p)) = 0 where f(x) = a0 + 
a1x + · · · + amxm. Then ao + a1r + · · · + amrm = 0, and so aopmd + a1pm-ld + 
· · · + llm-1Pd + amd = 0. Hence (aopm + a1pm-t + · · · + am-tP + am) d = 0 and so 

aopm + a1pm-t + · · · +am-1P+am = 0 since we know that md = 0 implies m = 0. But 

this implies that ao + a,(1/p) + · ·· + am-1(!/pm-l) + am(l/pm) = 0, so / (1/ p) = 0. 

Hence 0 is one to one. 

The sum Ze + Zr is direct since Ze <;;; tp(R) and Zr<;;; R(P). Since lR = e + pr E 

Ze Ell Zr, and Ze Ell Zr is an epimorph of Z of form B, Ze Ell Zr<;;; K(R) since K(R) 
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is the maximal epimorphic extension of Zln in R. 

Now, K(R)e and K(R)d are ideals of K(R) since e and dare central idempotents. 

Since ln = e + d, K(R) = K(R)e + K(R)d and, as above, the sum is direct. Then 

r = ae + bd, for some a, b E K(R), so ae E Ren Rd = {0} and hence r E K(R)d. 

Since d = pr, this shows that K(R)d is p-divisible and hence tp(K(R)d) = {0}. Since 

pke = 0, pkK(R)e = {0} and so t"(K(R)) = K(R)e and ann(tp(K(R)) = (p1) where 

e :S k. Hence 9K(P) :S g(p), as required. 

Theorem 1.3.1 If R is a ring with identity with characteristic function g, then 

K(R) E9 • 

Proof. By the Proposition 1.3.4, K(R) has characteristic function g and so K(R) 

Eg by Proposition 1.3.3. 

We close this section with the following result which will be useful in what follows. 

Proposition 1.3.5 Let S T be rings with the same identity and characteristic 

functions gs and 9T, respectively. If gs(p) :S gr(p) for all p, then K(S) = K(T). 

Proof. We first show that one-to-one identity preserving endomorphisms of epi-

morphs of Z must be onto. Suppose Xis a set of prime numbers, D = Z[l/p Ip EX] 

and a: D...., Dis a one-to-one homomorphism. Then for each p EX, a(l/p) =f 0 

and p · a(l/p) = 1. Hence a(l/p) = 1/p. Thus a is onto. 

Now let R be an arbitrary epimorph of Z and suppose that 0 : R -, R is a one-

to-one homomorphism. Then, for each prime p, 0(t"(R)) tp(R) and since t"(R) is 

finite, 0(tp(R)) = tpR. Hence 0(tR) = tR and so 0 induces a one-to-one homomor-

phism 0: R/tR-, R/tR. Since R/tR = Z[l/p Ip E X] for some set of primes X, the 

remarks in the above paragraph show that 0, and hence 0, is onto. 
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Now suppose S <:;;Tare rings with the same identity and that gs(p) gy(p) for all 

primes p. From Lemma 1.3.3, gs = gy. We will denote this function by g. Hence from 

Theorem 1.3.1 K(T) Eg K(S). Suppose 'Y: K(T) --+ K(S) is an isomorphism. 

From Lemma 1.3.2 K(S) <:;; K(T), and we denote the inclusion by i: K(S)-----> K(T). 

The composition h : K(T) -----> K(T) is a one-one-one homomorphism, and so by 

the first part of the proof i"'( is onto. Hence i is onto and thus K(S) = K(T). 



§2.1 Introduction 

CHAPTER 2 

Survey of Extensions 

In this chapter we will consider various methods which have been developed which 

extend an arbitrary ring to a ring with identity. The first method which we will 

consider, which was developed by Dorroh, extends any ring R to Rx Z which contains 

an identity element (0, 1 ). While this construction provides an extension for any ring 

R, many properties of R are lost in the extension. The Dorroh extension may be 

generalized as Rx Y, where Y is a ring with identity and Risa Y-bimodule algebra. 

The approach developed by Robson adjoins to a given ring R a subring of the 

center of End R, the ring of endomorphisms of R. Unlike the extension developed by 

Dorroh, however, this approach requires R to be left faithful. Burgess and Stewart 

developed a refinement to the Robson approach which uses the characteristic ring of 

End R. This refinement preserves in the extension many properties of the original 

ring R. 

We will also investigate the special case of regular rings, and examine two ap-

proaches developed to extend a regular ring R to a regular ring with identity. 

This chapter will present the various extensions, while later chapters will examine 

properties preserved by the extension if possessed by the original ring. Throughout 

this chapter, R will denote the given (arbitrary) ring. 

§2.2 The Dorroh Construction 
Suppose Y is a ring with identity such that Risa Y-bimodule algebra. Dorroh has 

demonstrated that R can be embedded in a ring S with identity, where S = R x Y , 
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and with addition and multiplication defined as follows: 

(r 1,ni) + (r2,n2) 

(r1, n1)(r2, n2) 

for all r 1,r2 in Rand n,, n2 in Y. 

(r, + r2, n, + n2) 

It is an easy exercise to show that S is a ring. The identity of S is () , 1) since 

(r,n)(O,l)=(rO+nO+lr,nl)=(r,n) and 

(0, l)(r, n) =(Or+ nO + lr, ln) = (r, n) 

for all r in R and n in Y . 
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To see that R is embedded in S , we now show that there is an ideal >f S which is 

isomorphic to R. Let T = {(r,O) Ir ER}, an ideal of S. 

Lemma 2.2.1 R is isomorphic to T. 

Proof. Define a function J : T ----> R by J(r, 0) r. We note that f is a 

homomorphism since 

J((ri, 0) + (r2, 0)) = J(r1 + r2, 0) = r, + r2 = J(ri, 0) + J(ri , 0) 

and 

for all r 1, r 2 in R. Further, f is one-to-one since f(r1, 0) = J(r2, 0) implies r 1 = r2, 

and f is onto since, for all r in R, (r, 0) is in T. Therefore R is isomorphic to T, and 

we consider R to be embedded as an ideal of S in this way. 

Although R may be extended to a ring with identity R x Y using this approach, 

many properties possessed by the original ring R are not possessed by the extension 

R x Y . For example, if R contains an identity IR, the canonical homomorphism 
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f: R----, Rx Y does not preserve the identity, i.e. f(ln) = (ln, 0) # (0, ly) which is 

the identity of Rx Y. Further, if Y does not have finite characteristic, the extension 

Rx Y does not have finite characteristic, regardless of the characteristic of the original 

ring R. 

In view of Corollary 1.2.1, we see that any ring R may be extended to a ring with 

identity, Rx Z, using this method. 

§2.3 Complete Set of Extensions - The Brown and McCoy 
Construction 

Brown and McCoy developed a modification of the Dorroh extension which is 

"minimal", by providing a set S of extensions of R with the following properties: 

1. each Sin S has an identity and is equipped with a monomorphism 0s : R ----, S ; 

and 

2. if T is a ring with identity and f : R ----, T is a monomorphism, then T 

contains a subring T' such that f( R) T' and for some ring S in S there is 

an isomorphism g: S----, T' such that g(ls) = lr and the following diagram 

commutes. 

0s R __________ s 

f g 

T' 

Definition 2.3.1 Such a set Sis called a complete set of extensions of R. 
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Definition 2.3.2 Let I be an ideal of a ring R and let µ be an integer. An element 

x in R is a µ-fier modulo I if xr + I = µr + I and rx + I = µr + I for every r in R. 

A µ-fier modulo(O) is called a µ-fier. 

Let (-a, a) E Rx Z, the Dorroh extension of R obtained by adjoining the ring of 

integers, where a E R and a E Z are such that a is an a-fier and a = 0 if a = 0. We 

note that Z(-a, a) is an ideal of Rx Z since 

(-{3a, {3a)(r, µ) = (-{3ar + {3ar - µ{3a, µ{3a) = (-µ{3a, µ{3a) 

and 

(r, µ)(-{3a, {3a) = (-{3ra + {3ar - µ{3a, µ{3a) = (-µ{3a, µ{3a) 

for all (-{3a, {3a) in Z(-a, a) and all (r, µ) in Rx Z. The factor ring (Rx Z)/Z(-a, a) 

will be denoted by R(a,a), and cosets of elements (r,µ) of Rx Z by [r, µ]. We note 

that, in R( a, a), [ro, µo] = [r1, µi] if and only if r 1 - ro = -.Xa and µ1 - µo = .Xa for 

some A in Z since [r0 , µ0 ] = {(r, µ) I (r - r 0 , µ - µo) = .X(-a, a) for some A E Z}. 

Theorem 2.3.1 Let C = { R( m, µ) I µ E Z and m is a µ-fier of R} and for each S = 

R( m, µ) E C let 0s : R --> S be defined by 0s( r) = [r, O] . Then C is a complete set of 

extensions of R. 

Proof. Let T be a ring with identity and f : R --> T a monomorphism. Choose 

u E N such that (u) = {n E Z I nlT E f(R)}. Let m E R be such that f(m) = 

u!T. Then, for any r E R , f(mr - ur) = ulTf(r) - uf(r) = 0 and so, since f 

is one-to-one, mr = ur. Hence m is a u-fier of R and so R(m, u) E C. Let T' = 

{!(r) + nlr Ir E R, n E Z} and define g: R(m, u) --> T' by g([r , n]) = f( r ) + nlT. 

We first check that g is well-defined. If (r0 , no]= [r1 , n1], then r0 - r 1 = -km and 

n0 - n1 = ku for some k E Z. Hence J(ro) - J(ri) = J(ro - ri) = -kf(m) = -kulT 

and so 

J(ro) + nlr = (J(r1) - kulT) + nolT = J(ri) + (no - ku)lT = J(ri) + n 1 Ir. 



Hence g is well-defined. 

The map g is a homomorphism since 

and 

g([ro, no]+ [ri, n1]) g([ro + r1, no+ n1]) 

J(ro + r1) +(no+ n1)lr 

(J(ro) + nolr) + (f(r1) + n1lr) 

g([ro, no])+ g([ri, ni]) 

g([ror1 + n1ro + nor1, non1]) 

J(ror1 + n1ro + nort) + nonilr 

J(ro)f(ri) + n11r f(ro) + nolr J(r1) 

+ (nolr)(nilr) 

(J(ro) + nolr)(J(r1) + n1lr) 

J([ro, no])J([ri, n1]). 
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Clearly g is surjective and g is also one-to-one. To see this suppose that g([r, n]) = 
0. Then J(r) + nlr = 0 and so nlr = J(-r) E J(R). Hence n E (u), son= ku for 

some k E Z. Also J(r) = -nlr = -kulr = -kf(m) = J(-km) and so, since f is 

one-to-one, r = -km. Since r = -km and n = ku we see that [r, n] = [O, 0] . Hence 

g is one-to-one. 

Of course g([O, 11) = lr, so it only remains to see that, with S = R(m,u), go05 = 

J. If r E R, then go 0s(r) = g([r, 01) = J(r) and this completes the proof. 

We will now characterize those rings which have a complete set of extmsions which 

contain only one element. In order to do this we will require the followi1g lemma. 

Lemma 2.3.1 Z/(o:) is a homomorphic image of R(a,o:), where the ,ernel of the 

homomorphism is {(r, OJ Ir E R} R. 
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Proof. Define the map h: R(a,a)----> Z/(a) by h([r,µ]) = ji, where, is an a-fier 

and ji =µ+(a) is in Z/(a). Since (ro, µ0] = [ri, µ1] if and only if µ1 - µ 0 = ,\a for 

some ,\ E Z, we see that h is well defined. Thus h is a homomorphism ince 

and 

µo + µ1 

µo + µ1 

h([ro,µo]) + h([ri,µ1]) 

Thus Z/(a) is a homomorphic image of R(a, a). The kernel of his 

kerh {[r,µ] Ir ER, ji = O} 

{[r,µ] Ir ER,µ= ,\c, for some,\ E Z} 

{[r,O] Ir ER} 

=e R. 

Theorem 2.3.2 A ring R has a one-element complete set of extension if and only 

if R has an identity or R has no µ-fiers with µ cJ 0. 

Proof. Suppose that {S} is a complete set of extensions of R with moomorphism 

0s : R----> S. 
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Let <r > 0 be a generator for the principal ideal {n E Z In· ls E 0s(R)} . If <r = 1, 

then 0s(R), and hence R, has an identity. 

We now assume that <r > 1. Let m E R be the element where 0s(m) = o-1,. Since 

0s is a monomorphism, m is unique. From the proof of Theorem 2.3.1 we see that 

,j;: R(m, o-)---> S defined by ,f;[r, nJ = 0s(r) + nls is a monomorphism. 

Let f : R ---> Rx Z be defined by f(r) = (r,O). Since Sis a complete set 

of extensions of R there is a subring T' of R x Z such that f(R) <:;; T' , and an 

isomorphism g: S---> T' such that g(ls) = (0, 1) and go 0s = f. Thus we have the 

following sequence of homomorphisms, 

R(m,o-) ..!..,, S 2-+ T' <:;;Rx Z 2-+ Z 

where ir(r, n) = n for all (r, n) E R x Z. Denote the composition of these homomor-

phisms by r . If [r, nJ E R(m, o-), then 

r([r, n]) irg,f;([r, n]) 

irg(0s(r) + nls) 

ir(g0s(r) + g(nls)) 

ir(f(r) + (0, n)) 

ir((r,O) + (O,n)) 

ir((r,n)) 

n 

so we see that r is surjective and ker r = {[r, OJ I r E R}. Hence 

R(m,o-) ""z 
{[r, OJ Ir E R} - · 

This contradicts Lemma 2.3.1 unless o- = 0. 

Conversely, suppose that R has an identity or that R has no µ-fier, µ f 0. If R 

has an identity, { R} is a complete set of extensions. 



37 

Now suppose that R has no µ-fiers, µ c/ 0. We will show that the set consisting of 

the Dorroh extension, {Rx Z}, is a complete set of extensions where lnxz : R ---+ 

Rx Z is the usual embedding r---+ (r, 0). Suppose that Tis a ring witb identity and 

f: R---+ Tis a monomorphism. Define g : Rx Z---+ T by g((r, n)) = f(r) + nlr. 

Then g is a homomorphism and the universal property of Rx Z, which we will establish 

in Section 3.1, tells us that the following diagram commutes. Hence it suffices to show 

that g is one-to-one. 

0nxz R __________ RxZ 

f g 

g(R X Z) 

Suppose g((r,n)) = 0. Then J(r) = -nlr. Let a ER. Then f(ar) = f(a)J(r) = 
J(a)(-nlr) = J(-na) and since J is a monomorphism, ar = -na for all a E R. 

Hence r is a -n-fier and hence n = 0. Since J(r) = -nlr = 0 and J is one-to-one 

r = 0 also. Hence g is one-to-one. 

§2.4 Robson's Construction 
Robson developed a construction which extends R to a ring with unity by adjoining 

a subring of the center of End R, the endomorphism ring of R. This construction 

requires R to be left faithful so that R embeds in End R by the function g : R ---+ 

End R where, for any r in R, g(r)(x) = rx for all x in R. 

We begin with the following definitions. 

Definition 2.4.1 A ring R is left faithful if, for all r in · R, r = 0 if rR = 0. 
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Definition 2.4.2 The center of a ring S is the subring Z(S) = { s E SI sx = xs for 

all x ES}. 

Lemma 2.4.1 If R is left faithful then g: R----+ End R is a monomorphism. 

Proof. Let r 1 , r 2 be in R. Then 

and 

for all x in R, so g is a homomorphism. 

(r1r2)x 

r1(r2x) 

(g(r1 ) o g(r2 )) (x) 

Let y be in ker g. Then yr = 0 for all r in R, so y = 0. Thus g is one-to-one and 

a monomorphism. 

The remainder of this section assumes that R is left-faithful. For each r E R we 

will denote g(r) by rand we will denote g(R) by R, a subring of End R. 

Lemma 2.4.2 Let rp be in End Rand x in R. Then rpx = rp(x) is in R. 

Proof. For all r in R, 

(rpx)(r) rp(x(r)) 

rp(xr) 

rp(x)r 

rp(x)(r) 
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so <px = <p(x) is in R. 

Let C be a subring of Z(End R) containing the identity map. Then we have the 

following results. 

Lemma 2.4.3 R + C is a subring of End R. 

Proof. Let f1, f 2 be in Rand c1 , c2 be in C, so that f 1 + c1 , f2 + c2 are in R + C. 

Then (r1 + c1 ) - (f2 + c2) = (r", - f2) + (c1 - c2) = r1--=-r2 + (c1 - c2) ER+ C. 

Also, (f1 + ci)(f2 + c2) = r-;?2 + r"ic2 + c,f2 + c1c2 = r-;?2 + c2f1 + c1f2 + c1c2 = 

rJ1'"2+c2(ri) +c1Tr'2) +c1C2 =~+c1C2 E k+c. 

Definition 2.4.3 A non-zero right ideal I of a ring R is essential as a right ideal of 

R if In J # 0 for all non-zero right ideals J of R. D 

Lemma 2.4.4 R is an ideal of R + C, essential as a right ideal. 

Proof. Since C <;;; Z(End R), it follows from Lemma 2.4.2 that R is an ideal of 

R + C. Let I be a non-zero right ideal of R + C, and let O ,/ <p E /. Then <p(r) # 0 

for some r in Rand <pr= <p(r) by Lemma 2.4.2. Also, by Lemma 2.4.1, <p(r) # 0 and 

so IR # 0. Since IR <;;; I n R, R is essential as a right ideal. 

This approach to extend R to a ring with identity requires that R be left faithful, 

unlike the approach developed by Dorroh which places no restriction on R. However, 

this extension preserves the characteristic of Rand, if R contains an identity element 

IR, then g(lR) = iR = i, the ident ity in the extension. 

§2.5 The Robson-Burgess/Stewart Construction 
The Burgess/Stewart approach to extending a ring to a ring with identity was 

developed as a refinement to the Robson construction. · 
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Lemma 2.5.1 The ring K(R) is in the center of R, for any ring R with identity. 

Proof. The proof is similar to that used in Lemma 1.2.2, which is found in 

[DICK 84] . Let I be the ideal of the polynomial ring R[x] generated by x2• Fix 

an element a E R and define functions /, g : K(R) ---+ R[x]/ I by g(k) = k + I 
and f(k) = (1 + ax)k(l - ax)+ I for all k E K(R). Since /(IR) = g(lR) and 

K(R) is an epimorph of Z, f(k) = g(k) for all k in K(R). Thus, for all k in K(R), 

(1 + ax)k(l - ax)- k belongs to I and hence (ak- ka)x is in/. Since I is generated 

by x2, ak = ka for all kin K(R). Therefore K(R) <:::; Z(R). 

Corollary 2.5.1 For any ring A, K(EndA) = K(EndAAA) , where End AAA is the 

ring of bimodule endomorphisms of A. 

Proof. Since End AAA<:::; End A, K(EndAAA) <:::; K(EndA) by Lemma 1.3.2. 

Let cp E K(End A) and a E A. Since cp E Z(End A), cpa = acp and so for any 

x E A, (cpa)(x) = (acp)(x); that is, cp(ax) = acp(x). Hence cp E EndAAA, and so 

we have shown that K(EndA) <:::; End AAA. Since K(EndA) is an epimorph of Z, 

K(EndA) <:::; K(EndAAA) as required. 

Definition 2.5.1 For any ring A, k(A) = K(EndA). D 

Let R be a ring with identity. From Proposition 1.3.1 we see that Rand End R 

have the same characteristic function, so K(R) k(R) by Theorem 1.3.1. In view 

of this we will refer to k(A) as the characterist ic ring of A for any ring A. 

Example 2.5.1 k(Zpoo) Z[l/q I q E P \ {p}]. This follows because we already 

know the characteristic function of Zpoo. 

Proposition 2.5.1 Every ring A is a k(A)-bimodule algebra. 
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Proof. Define the action of I<(A) on A by 0 ·a= a· 0 = 0(a) for all 0 E I<(A) and 

a EA. 

Clearly this makes A a left K(A)-module and also (a+ b)0 = a0 + b0, al = a 

and a(01 + 02) = a01 + a02 for a, b E A and 01, 02, 1 E K(A). Also, since K(A) is 

commutative, a(0102) = (0102)(a) = (0201)(a) = 02(01(a)) = 01(a) · 02 =(a· 01)02 = 

a· (0102). Hence A is a right K(A)-module. Further, 01(a02) = 01(02(a)) = 0102(a) = 

0201(a) = (01 (a))02 = (01 · a)02 and so A is a K(A)-bimodule. 

We see that the algebra conditions are satisfied, since by Corollary 2.5.1, K(A) 

EndAAA, and (ab)0 = 0(ab) = a0(b) again since K(A) EndAAA, and so a· 0(b) = 

(a0)b = (0a)b = 0(a) · b = 0(ab) = 0 · (ab). Hence A is a K(A)-bimodule algebra. 

In view of the above proposition we can imbed any ring A in the Dorroh ring 

A x I<(A), which has an identity. We will denote this ring by A•. 

Proposition 2.5.2 K(A•) = K(A). 

Proof. Let g be the characteristic function of End A. From Propositions 1.3.1 

and 1.3.4, A, K(End A), A0 and (K(End A))0 all have characteristic function g . 

By Proposition 1.3.2 A0 x (K(End A))0 = (A x K(EndA)) 0 also has characteristic 

function g and so too does A x K(EndA) by Proposition 1.3.1. Since K(End A) 

is a unital subring of Ax K(EndA), it follows from Proposition 1.3.5 that K(A x 

K(EndA)) = K(K(EndA)). Hence K(A•) = K(EndA) = I<(A) . 

If A is a ring which is left faithful , then A~ A~ End A. Define A 1 =A+ I<(A). 

Since I<(A) is in the centre of End A by Lemma 2.5.1, A 1 is a subring of End A by 

Lemma 2.4.3 and A is an ideal of A 1 which is essential as a right ideal by Lemma 

2.4.4. 

Proposition 2.5.3 If A is left faithful, A 1 is a homomorphic image of A". 
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Proof. Define ,/J: A*----> A1 by ,p((a, k}) =a+ k. It is straightforward to check that 

,/J is a surjective homomorphism. 

Proposition 2.5.4 If A is left faithful, K(Ai} = K(A). 

Proof. We have K(A} = K(EndA) <;; A1 <;; EndA. Hence by Lemma 1.3.2, 

K(K(A)) <;; K(A1 ) <;; K(EndA) = K(A). Since K(I<(A)) = I<(A), the result 

follows. 

§2.6 Regular Rings - Fuchs, Halperin and Funayama 

Definition 2.6.1 A ring R is regular if, for each x in R, there exists y in R such 

that xyx = x. D 

Fuchs and Halperin constructed a commutative regular ring K with identity such 

that every regular ring R is a K-bimodule algebra. The ring K was then used to 

construct an extension of any given regular ring R where the extension contains an 

identity element and is itself regular. This construction is the Dorroh construction 

where the commutative regular ring K is adjoined to the original rini. The main 

result of this section is that any regular ring R is isomorphic to a two-rided ideal of 

a regular ring with identity. 

It is interesting to note that no conditions are placed on the ring l other than 

the requirement that R be regular. We begin by collecting some basi< facts about 

regular rings. 

Proposition 2.6.1 Let R be a regular ring and let p E P. 

1. If I is an ideal of R, then 12 = I. 

2. ann Ip( R) = (pk) where k = 0 or I. 
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3. pR is p-divisible. 

,f. t,(R) n pR = 0. 

5. For each x E pR there is a unique y E pR such that x = py. 

6. t,(R) EB pR = R. 

7. If p1, ... , Pn are distinct primes, then R = t,, ( R) EB · • · EB t,. ( R) EB P1 · · · Pn R and 

P1 · · · PnR is divisible by p, for all i = 1, ... , n. 

8. For each x E p1 · · · PnR and each i = 1, ... , n there is a unique y E P1 · · · PnR 

such that x = p,y. 

Proof. 

1. If a E J, then there is ab ER such that a= aba = (ab)a E /2. Hence I= !2. 

2. Suppose m > 1 and I = {x ER I pmx = 0}. Then pl is an ideal of R and 

(pl)m = 0. Hence pl = 0 by 1 above, proving that ann t,(R) = (l) where 

k=0orl. 

3. Let a= pb,b ER. Then a= axa for some x ER and so a= pbxa = p(bxa) 

where bxa = pbxb E pR. Hence pR is p-divisible. 

4. Let a E tv(R) n pR. Then a = pb for some b and pa = 0 by 2 above. Hence 

p2 b = 0 and so pb = 0, again by 2 above. Thus a = 0. 

5. Suppose a = px = py where x, y E pR. Then x - y E tv(R) n pR and hence 

x = y by 4 above. 

6. Let a ER. There is an x E R such that pa= (pa)x(pa). Thus a= (a- paxa) + 
paxa, p(a - paxa) = pa - (pa)x(pa) = 0 and paxa E pR. 
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7. Let I= {a ER I Pt··· Pna = 0}. Clearly tp,(R) c;; I for each i = 1, ... , n and 

the sum tp, (R) + · · · + tPn(R) is direct. Let tr; = (P1 · · · Pn)/p;, i = 1, ... , n . 

Since the p; are distinct, the greatest common divisor of 7rt, • . . , 1r n is 1. Hence 

there are integers °'t, ... ,an such that a 1tr1 + · · · + O<n1rn = 1. So if a E 

I, then a= 1 ·a= O<t1rta + ··· + antrna is in tp,(R) $ · · · $ tpn(R). Thus 

tp 1 ( R) $ • • • EIJ tPn ( R) = f • 
Let a E I n Pt · · · PnR. Then a = Pt · · · PnX for some x E R. Since a E 

I, P1 · · · Pna = 0. Hence Pi · · · p~ x = 0 and so repeated use of result 2 above 

shows that P1 · · · PnX = 0. Hence a = 0 and we have I n Pt · · · PnR = 0. 

If a E R, P1 · · · Pna = (P1 · · · Pna)x(p1 · · · Pna) for some x E R. Hence a -

P1 · · · Pnaxa E I and since a= (a - P1 · · · Pnaxa) + (P1 · · · Pnaxa) we see that 

R = tp, ( R) Ell ... Ell tPn ( R) Ell Pt ... Pn R. 

Let d = p1 · · · PnX E Pt · · · PnR. Because of the direct sum decomposition of R 

above, tr;X = a1 +···+an+ y for some a; E tp,(R) and y E p1 · · · PnR. Then 

d = p;tr;x = p,a1 + · · · + p,an + p;y E Pt · · · PnR and so p,a, = 0 for all j . Hence 

d = p;y where y E P1 · · · PnR, so P1 · · · PnR is divisible by p; for all i =I , ... , n. 

8. Suppose x,y,z E p1···pnR and x = p;y = p;z for some i = l , ... ,n. Then 

p;(y - z) = 0, soy - z E tp,(R) n Pt ··· PnR = 0. Thus y = z. 

Let P1,P2, •••, Pn,·· · be an enumeration of the primes and S = m:1 Z/(p,). De-

note I<(S) by I< . Then the elements of I< are sequences (u,) such that there is a 

rational number a/ f3 and u; = &.//3 for almost all i. 

Proposition 2.6.2 Every regular ring R is a I< -bimodule algebra. 

Proof. Let R be a regular ring and let a E R. Let ii = (u,) E I<. Then there 

is an a/ f3 E Q and an integer M such that u; = ii//3 for all i > M. Choose M 
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such that M ?: M and if p is a prime divisor of /3, then p = p; for some i :5 M. 

From Proposition 2.6.1, R = t,, ( R) El) • • • El) t,M ( R) El) Pt · · · PM R, so we can write 

a = at+···+ aM + d where a; E t.,(R) and d E Pt··· PMR. From results 7 and 

8 of Proposition 2.6.1 there is a unique x E Pt··· PM R such that d = (Jx. Define 

ua = au = Utat + · · · + UMaM + ax. 

We now verify that this action is well defined. Suppose H is an integer such that 

u; = 7/8, for some 'Y/8 E Q, for all i > H and if pis a prime divisor of 8, then 

p = p; for some i :5 H. Without loss of generality we can assume that H?: M. For 

all i > H, u; = a/ fj = "y /8 and so ao - fJ'Y is divisible by p; for all i > H. Hence 

ao = /3"1, so a/(3 = 'Y/8. 
Decompose R as 

and write a= bt + · · · + bH + J. where b; E t,;(R) for i = 1, ... , Hand J. E p1 · · · PHR. 

If y E R, y = Ct+···+ cH + d' for some e; E iv;(R), i = l, ... , H, and 

d' E Pt···pHR. Hencept · ··PMY E tPM+i(R)EB···EBt,H(R)Ellpt···pHR because 

Pt··· PMC; = 0 for i :5 M. So we see that Pt··· PMR £;; tPM+i (R) EB··· EB t,H(R) El) 

Pt · · ·pHR-

Let i :5 M. Then, since a = at + · · · + aM + d = bt + · · · + bH + J. and d E 

tPM+i ( R) EB · · · EB t,H ( R) EB Pt · · · PH R, the fact that the sum ( *) is direct implies that 

a; = b; for i :5 M. From this it follows that d = bM+I + · · · + bH + J.. Now, for 

j ?: M + 1, Pi does not divide (3, and so there is a b, E t,, ( R) such that b, = f3b, . 
Also, for j?: M + 1, u, = a/"/3. 

Suppose x, x E Pt ···PH R are such that J. = f3x and J = ox. Note that results 7 

and 8 of Proposition 2.6.1 guarantee the existence of x and x. Then 

o('Yx- ax) D"fx - fox 

O"fx-fJ'Yx 



,(8x - f3x) 

,(J-J) 

0. 
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Recall that if pis a prime dividing 8, then p = p; for some i S:: H. Hence 1x - ax E 

{r ER I Pt --·pHr = O} = tp,(R) El)··· El) tPH(R). But 1x - ax E Pt ·--pHR, so 

1x - ax= 0. 

Now 

d bM+1 + · · · + bH + d 

f3bM+1 + · · · + f3bH + f3x 

f3(bM+1 + • • • + bH + x). 

Thus the uniqueness of x implies that x = bM+t + · · · + bH + x. 

The actions of I< on R determined by our two decompositions agree on the first 

M terms because a,= b, for i S:: M . We now consider the other terms: 

V UM+1bM+I + · · · + UHbH + ,x 
UM+1f3bM+1 + · · · + UHf3bH + 0/X 

abM+1 + · · · + abH + ax 

since, for M + 1 S:: i S:: H, u, = t/8 = &//J. Hence v = a(bM+i + · · · + bH + x) = ax, 

and so the actions are the same; that is, the action of I< on R is well-defined. 

It is clear that, with this action, R becomes a unital right and left I<-module. 

Also, the bimodule and algebra conditions are clear because the action is defined 

"componentwise". Hence Risa I<-bimodule algebra. 

Let R be a regular ring. In view of Proposition 2.6.2 and the results of Section 

2.2, we can form the Dorroh ring Rx I< which has ideal {(r,0) Ir ER} 2:: R. We 



47 

shall show later in Lemma 4.1.5 that J{ is regular and it will then follow from Lemma 

4.1.9 that Rx J{ is regular. Hence every regular ring can be embedded as a two-sided 

ideal in a regular ring with identity. 

Funayama noted that the ring of bimodule endomorphisms, R, of a regular ring 

R is a commutative regular ring, and used this ring to construct an alternate reg-

ular extension of R with identity. Unlike the construction of Fuchs and Halperin 

which employed the same commutative regular ring K to extend any regular ring R, 

Funayama's construction employs a ring which depends on R. 

Theorem 2.6.1 If R is a regular ring, then End RRR is a commutative regular ring. 

Proof. We first show that End RRR is commutative. Let a, f3 be elements of 

EndRRR, and let r be an element of R. Lets be the element in R such that r = rsr. 

Then 

aof](r) a o fJ(rsr) 

a(fJ(r)sr) 

fJ(r)a(s)r 

fJ(ra(s)r) 

f3 o a(rsr) 

(Joa(r) 

and so a/3 = (Ja, showing that EndRRR is commutative. 

We now demonstrate that End RRR is regular. Let a E End RRR- We first show 

that R = ker a EB im a. 

Let x E kera n ima. Then x = a(y) for some y E Rand, since a(x) = 0, 

a 2(y) = 0. Let s E R be such that x = xsx . Then x = xsx = a(y)sa(y) 

a(a(y)sy) = a(a(y))sy = a 2(y)sy = 0. Thus ker an im a= 0. 
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Let x E R and let v be an element of R such that a(x) = a(x)va(x). Then 

x = (x - a(xvx)) + a(xvx) is in kera + ima. Hence R = kera El) ima. 

Let x = a(y) E im a. We will show that there is a unique z E im a such that 

x = a(z). As above, if x = xsx, then x = a(y)sa(y) = a(a(y)sy) = a(a(ysy)) and 

so there is a z = a(ysy) E ima such that a(z) = x. Suppose now that z1, z2 E ima 

and a(z1 ) = a(z2 ) = x. Then z1 - z2 E ker a (1 im a and hence z1 = z2 • 

Define f3 : R ----+ R as follows. For r E R, r = a + b, where a E ker a and 

b = a(c) E im a for some unique c E im a. Then f3(r) = c. The remarks in 

the above paragraph and the fact that the sum ker a + im a is direct guarantee 

that f3 is well-defined. Since a is a bimodule endomorphism f3 is also. Finally, let 

x E Rand suppose a(x) = c where c is in ima and c = a(d), d E ima. Then 

af3a(x) = af3(c) = a(d) = c = a(x), so af3a = a. Hence EndRRR is regular. 

Proposition 2.6.3 Let R be a regular ring. Then R is an EndRRwbimodule alge-

bra. 

Proof. Define the action of End RRR on R by O • r = r • 0 = O(r) for all O E 

End RRR and r E R. Since End RRR is commutative, the first part of the proof 

of Proposition 2.5.1 shows that R is an End RRwbimodule. Also, the proof that 

the algebra conditions are satisfied is as in Proposition 2.5.1. To be explicit, let r, 

s ER and OE EndRRR. Then (Or)s = O(r) · s = O(rs), (rO)s = O(r)s = O(rs) and 

(rs)O = O(rs) = rO(s) . 

In view of this proposition we can form the Dorroh ring R x End RRR which will 

be regular by Lemma 4.1.9 , have an identity and contain a two-sided ideal isomorphic 

to R. 

Recall, from Corollary 2.5.1, that k(R) = K(EndRRR) <;; EndRRR. Hence 

R• <;;Rx EndRRR and R* is also a regular ring by Lemmas 4.1.7 and 4.1.9. 
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An inspection of that part of the proof of Theorem 2.6.1 that shows that End nRn 

is commutative reveals that, for any regular ring R, c, o /3 = /3 oc, for any a E End nRn 

and /3 E End R. 

Let R be a regular ring. Then the above observation shows that End nRn <:::: 

Z(End R). Also, R is left faithful since if O # r E R there is an s in R such that 

r = rsr and hence rR # 0. As a result we can employ Robson's construction to see 

that R R <:::: R + End nRn where R + End nRn will be regular by Lemma 4.1.9. 

Also, since K(R) <:::: EndnRn by Corollary 2.5.1, R1 = R + K(R) <:::: R + EndnRn 

and R1 is regular by Corollary 4.1.1. 



CHAPTER3 

Universality of the Dorroh Construction 

§3.1 The Universal Property 
In this chapter we examine universality of the Dorroh construction R x Z which 

extends any ring R to a ring with identity. Specifically, we will see that this construc-

tion is functorial, and is part of an adjunction. We begin with the universal property, 

followed by a short discussion on category theory which will provide the background 

for the last section of this chapter. 

In this section we discuss the universal property. Let R be an arbitrary ring and 

R x Z be the Dorroh extension of R. Let g be the canonical homomorphism which 

embeds R into Rx Z. We get the following result . 

Theorem 3.1.1 Let T be a ring with identity and fa ring homomorphism, f: R--> 

T . Then there is a unique homomorphism h : R x Z --> T preserving the identity 

such that h o g = J. 

Proof. We want to show that there is a unique homomorphism h which makes the 

following diagram commute: 

R _____ 9 _____ RxZ 

f 
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I 
I 
I 
I 
I 
I 
1:l!h 
I 
I 
I 

I 
T 
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Existence: 

Recall that g(r) = (r, 0). For any integer n let nr = nlr. 

Define h: Rx Z--> T by h(r, n) = f(r)+nr. We note that his a homomorphism 

since 

h(r, n) + h(t, m) 

and h(r, n)h(t, m) 

J(r) + nr + J(t) + mr 

J(r) + J(t) + nr + mr 

J(r+t)+(n+m)r 

h(r+t,n+m) 

h((r, n) + (t, m)) 

(J(r) + nr)(J(t) + mr) 

J(r)J(t) + nr J(t) + mr J(r) + nrmr 

J(rt) + nr f(t) + mr J(r) + (nm)r 

h(rt, 0) + h(nt, 0) + h(mr, 0) + h(0, nm) 

h(rt + nt + mr, nm) 

h((r, n)(t, m)) 

for all (r, n), (t, m) in Rx Z. We note that h preserves the identity since h(0, 1) = Jr. 
Uniqueness: 

Suppose there exists another homomorphism h' : Rx Z --> T preserving the identity 

such that h' o g = J. Let (r, n) be in R x Z . By the restrictions placed on h' we 

must have h'(r, 0) = f(r) and h'(0, n) = nr. Therefore h'(r, n) = h'(r, 0) + h'(0, n) = 
J(r) + nr = h(r, n) , so that h = h' proving the theorem. 

It is noted that the Robson construction of a ring extension does not generally 

satisfy this universal property. For example, in the case where R has an identity 

element, the Robson extension of R is R R. In this case g is the identity map. 
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Let T = R x Z be the Dorroh extension of R, with f : R --+ R x Z defined as 

f(x) = (x,0) for all x in R, so that we have the following situation: 

R g R 
I 
I 

/// 
I 
I 
I 

f : :l!h? 
I 
I 
I 

I 
RxZ 

Then we require a unique map h: R--+ Rx Z which satisfies h(l) = (0, 1), so 

ho g(l) = (0, 1). However, f(l) = (1,0), so that hog f. f. 

§3.2 Category Theory 
In this section we provide the background to category theory required for the 

discussion in the following section. 

Definition 3.2.1 [MACL 71] A category consists of a collection of objects, denoted 

by A,B,C, .. . and a collection of morphisms, denoted by J,g,h, ... subject to the 

following: 

1) to every morphism, we associate a unique pair of objects called the domain 

and the codomain. We write A _!_, B and say J is a morphism from A to B; 

2) to every object we associate a. unique morphism called the identity, and write 

A~A; 

3) to every pair of morphisms in the situation A _!_, B C we associate a 

unique morphism called the composite, and write A C (such f and g will 

be called composable pairs); 
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4) in the situations A A ....!..... B and A ....!..... B _I_!,_, B, we have Jo IA = J 
and 18 of= f; and 

5) in the situation A....!..... B ...!!....+ C D we have ho (go J) = (hog) o J. 

Given a category Q., we denote by Obj(Q) the objects of C and by Mor(Q) the 

morphisms of C. 
An example of a category is Rng, whose objects are rings and whose morphisms 

are ring homomorphisms. A second example is Ring, the category whose objects are 

rings which contain identity elements and whose morphisms are ring homomorphisms 

which preserve the identity elements. 

Definition 3.2.2 (MACL 71] Given two categories Q. and J2., a functor from Q. to 

12, denoted by Q _f_, 12, associates to each object C of Q a unique object F(C) of 12 

and to each morphism C ....!..... C' of Q a unique morphism F(C) !':ill F(C') of 12 such 

that F(Ic) = IF(C) and F(J o g) = F(J) o F(g) for each composable pair J and g. 

Definition 3.2.3 [MACL 71] A natural transformation between two functors S, T: 

fl.----> Q, denoted by S -2..., T, assigns to each Bin Obj(Jl.) a unique SB.!.!!... TB in 

Mor(Q) such that for every B ....!..... B' in Mor(fl.), the following diagram commutes. 
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SB TB 

Sf TJ 

SB' _________ TB' 

F 
Definition 3.2.4 [MACL 71] Given two categories Q_ and J2 and two functors Q_":'f J2, 
we say F is a left adjoint of G, denoted F ---1 G, if there is a natural transformation 

µ:le---, GF such that each component µc: C---, GFC is universal to G from C 

(that is, for each morphism f: C---, C', GF(J) is the unique morphism h such that 

ha µc = µc• a f. 

§3.3 Adjunction 
We next consider some categorical aspects of the Dorroh construction. Specifically, 

we interpret the Dorroh construction as a functor and as part of an adjunction. The 

functor U: Ring---, Rng, defined by U(A -1-. B) = A -1-. B , is commonly called 

"the forgetful functor" , since its action is simply to "forget" the existence of the 

identity element. The following results are due to [MACL 71]. 

We define F : Rng ---, Ring by F(A) = A x Z for A in Obj(Rng) and 

F(J)((a,n)) = (J(a),n) for A -1-. Bin Mor(Rng) . 
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Proposition 3.3.1 F is a functor. 

Proof. 

There are four conditions which must be satisfied in order for this to be a functor. 

We have already shown that F(A) = A x Z is in Obj(Ring) since RX Z has an 

identity element. Let A~ A' be in Mor(Rng). Then F(h)(a,z) = (h(a),z) is in 

A' x Z. We see that F(h) is a homomorphism which preserves the identity element, 

since 

i) F(h)(O, 1) = (h(O), 1) = (0, 1) 

ii) F(h)((a,n)+(b,m)) 

iii) F(h)((a,n)(b,m)) 

F(h)(a+b,n+m) 

(h(a+b),n+m) 

(h(a) + h(b),n + m) 

(h(a), n) + (h(b), m) 

F(h)(a,n) + F(h)(b,m) 

F(h)(ab+ nb + ma, nm) 

(h(ab + nb + ma), nm) 

(h(ab) + h(nb) + h(ma), nm) 

(h(ab) + nh(b) + mh(a), nm) 

(h(a)h(b) + nh(b) + mh(a),nm) 

(h(a), n)(h(b), m) 

F(h)(a, n)F(h)(b,m). 

For the identity morphisms A A in Rng and A x Z •~ A x Z in Ring, we 

require that F(iA) = iAxZ• We consider the following diagram: 
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A A 

F F 

Ax z ________ A x z 

We see that F(iA)(a,n) = (iA(a),n) = (a,n) = iAxz(a,n) for all (a,n) in Ax Z. 

For any composable pair g and h in Mor(Rng), we require F(goh) = F(g)oF(h). 

Let A __!:___, A' ____I}___. A" and consider the following diagram. 

A h A' g A" 

F F F 

Ax z ________ A' x z ________ A" x z 
F(h) F(g) 



Let a be in A and n in Z. Then 

F(goh)(a,n) ((go h)(a), n)) 

(g(h(a)),n) 

F(g)(h(a), n) 

F(g)(F(h)(a,n)) 

(F(g) o F(h))(a,n) 

and therefore F(g oh)= F(g) o F(h) . Thus we see that Fis a functor . 

We note that the functor F gives the Dorroh extension of any ring R. 

Proposition 3.3.2 The functor F is a left adjoint of the functor U. 
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Proof. Consider lRng ...!:... U F, where lRng is the identity functor, given at the 

components by µA : !(A) --t UF(A) where a 1--+ (a,O) . We note that µA is the 

canonical map (embedding) of Section 2.2. In view of the universality exhibited in 

Theorem 3.1.1, we need only show naturality. Consider the following square. 

A AxZ 

h UF(h) 

A' ________ A' X z 
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The top-right composite is a>--> (a, 0) >--> (h(a), 0). The left-bottom composite 

is a>--> h(a) >--> (h(a), 0). We note that this is similar to the free group construction 

on a set (being left adjoint to the forgetful functor Grp ------> Set). We may think of 

the Dorroh construction as freely providing an identity for R. 
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Properties of the Robson-Burgess/Stewart Construction 

§4.1 Properties of R* and R, 
We now consider properties of the constructions developed in Section 2.5. We 

recall that R* is defined as the Dorroh extension of R obtained by adjoining k ( R) to 

R. Also, recall that R1 = R + k(R), a subring of EndR, if R is left faithful. 

Lemma 4.1.1 Z(R') = { (r, s) Ir E Z(R), s E k(R)} and, if R is left faithful, then 

Z(R1) = {r + s Ir E Z(R), s E K(R) }. 

Proof. Let (r,s) and (r1,si) be elements of R' where r is in Z(R). Then 

Therefore {(r,s) Ir E Z(R)} Z(R*). 

Let (r2, s2) be in Z(R*). Then (r2, s2)(r3, S3) = (r3, s3)(r2, s2) for all (r3, s3) in 

R*, so that 

Thus r2r3 = r3r 2. Since r3 was chosen arbitrarily, we see that r 2 is in Z(R). Therefore 

Z(R*) = {(r,s) Ir E Z(R)}. 

To prove the second statement, we recall the discussion of Section 2.4 and view 

R as a subring of End R, since R is assumed to be left-faithful. We also recall from 

the discussion in Section 2.5 that the characteristic ring K(End R) is contained in 

Z(End R), and K(End R) contains the identity of End R. Since sr is in R for all s 

in End Rand all r in R we see that R1 = {r + s Ir ER, s E K(End R)}. 

59 
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Let r + s be an element of R, where r belongs to Z(R). Let r 1 + s1 be an arbitrary 

element of R1 • Then 

(r + s)(r1 + s1 ) 

(r1 + s1 )(r + s). 

Therefore we see that {r + s Ir E Z(R),s E I<(End R)} Z(R1 ). Let r + s be an 

element of Z(R,) where r is in Rands is in I<(End R) . Then 

and 

(r1 + s,)(r + s) = r1r + s1r + r1s + s1s. 

Since (r + s)(r1 + s,) = (r1 + s1)(r + s) we see that fr1 = r1r. However, r 1 

was chosen as an arbitrary element of R, so r belongs to Z(R). Thus Z(R,) = 
{r + s I r E Z(R), s E I<(End R)} . 

For the discussion which follows, we require the following definitions. 

Definition 4.1.1 Let S be a ring and let S1 El)• •• El) Sk be a direct sum of non-zero 

right idea.ls of S. If the length of such direct sums is bounded, the right uniform 

dimension, denoted dimS, is the maximum value of k for the ring S; otherwise Sis 

said to have infinite right uniform dimension. The right uniform dimension of S will 

be denoted by dim S. 

Definition 4.1.2 A ring R has the right ascending cha.in condition if, for any as-

cending cha.in of right idea.ls / 1 [ 2 • • · In · · · there is an integer M such that 

In= IM for a.II n 2". M . 
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Definition 4.1.3 Let X be a subset of a ring S. Then the right annihilator of X in 

Sis r,(X) = {s ES I xs = 0 for all x EX} . We note that this is a generalization of 

Definition 1.3.1. 

Definition 4.1.4 A ring R is a right Goldie ring if R has finite right uniform dimen-

sion and the ascending chain condition on right annihilators. 

Definition 4.1.5 A ring R is semi-prime if R has no non-zero nilpotent ideals. 

Definition 4.1.6 A ring R is prime if, for ideals A and B of R such that AB = 0, 

either A = 0 or B = 0. 

The following result is due to Andrunakievic. 

Lemma 4.1.2 {DIV! 65} Let C be a ring, Ban ideal ofC, and A an ideal of B. Let 

At = A+ AC+ CA+ C AC be the ideal of C generated by A. Then At3 A. 

Proof. We see that A, AC, CA, GAG~ Band At3 BAtB. Thus 

B(A +AC+ CA+ CAC)B 

BAB+ BACB+ BCAB+ BCACB 

A+AB+BA+BAB 

A. 

Lemma 4.1.3 {ROBS 79} If R is left faithful, then 

i) R is essential as a right ideal of R1 • 

ii) R and R 1 have the same right uniform dimension. 
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iii) R is semi-prime if and only if R1 is semi-prime. 

iv) R is prime if and only if R1 is prime. 

v) [MCCO 87} R is semi-prime Goldie if and only if R1 is semi-prime Goldie. 

Proof. Recall that R1 = R + K(End R) where K(End R) is the characteristic ring 

of End R. 

i) This follows from Lemma 2.4.4. 

ii) We see that dim R1 :C:: dim R since R R1 and right ideals of R are right 

ideals of R1. Thus if dim R = oo then dim R1 = oo. Suppose dim R = k for 

some k < oo, and that dim R1 > dim R. Let {A1, A2 , ••• , Ak+d be a set of 

right ideals of R1 such that the sum A1 + A2 + · · · + Ak+1 is direct. For each 

i = 1, 2, ... , k + l, let B; = A; n R, a right ideal of R. Since R is essential 

as a right ideal of R1 , B; ,f 0 for all i, so B1 + · · · + Bk+I is a direct sum, a 

contradiction of our supposition that dim R = k. Therefore dim R = dim R1. 

iii) Suppose R is semi-prime. If R1 is not semi-prime, then there is an ideal A of R1 

such that A ,f 0 and Ak = 0 for some k. Now AnR is an ideal of Rand AnR ,f 0 

since R is essential as a right ideal of R1. However (An R)k = 0, a contradiction 

to the assumption that R is semi-prime. Therefore if R is semi-prime then R1 

is semi-prime. 

Conversely, suppose R1 is semi-prime. If R is not semi-prime then there is an 

ideal I of R such that I ,f 0 and [k = 0 for some k. Let J = I + I R1 + 
Rd+ R1 l R1 , an ideal of R1 • Now, J ,f 0 and, in view of Lemma 4.1.2, we see 

that J3 I, so J3k = 0, showing that R1 is not semi-prime, a contradiction. 

Therefore if R1 is semi-prime then R is semi-prime. 
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iv) Suppose R1 is prime. Recall that R is viewed as a subring of End(R) and 

R is an ideal of R1 • Let A and B be ideals of R such that AB = 0. Let 

A•= A+ AR,+ R,A + R1AR1 and let B" = B + BR1 + R1B + R1BR1• From 

Lemma 4.1.2 we see that both A• and B• are ideals of R1 such that A•' A 

and B•' B. Since AB = 0 we see that A•' B*' = 0. Since R1 is prime we 

have that either A*= 0 or B* = 0. Now A~ A* and B B*, so that either 

A = 0 or B = 0. Thus either A = 0 or B = 0, proving that R is prime. 

Conversely, suppose R is prime. Let A and B be ideals of R1 such that AB = 0. 

Now An R and B n R are ideals of R such that (An R)(B n R) = 0. Thus 

either An R = 0 or B n R = 0 since R is prime. Therefore either A = 0 or 

B = 0 because R is essential as a right ideal of R1 , and so R1 is prime. 

v) We have already shown that R is semi-prime if and only if R, is semi-prime, 

and that R and R1 have the same right uniform dimension. It remains then to 

show that R has the ascending chain condition on right annihilators ( denoted 

ACCRA) if and only if R, has the ACCRA. 

Suppose that R has the ACCRA and let X, R1 , for i = 1,2, ... be subsets of 

R, such that rR, (X,) rR, (X2) .. · rR, (Xn) .. · is an ascending chain 

of right annihilators in R1• 

Let a E R. For each i, if X,a = 0 then RX,a = 0. Assume that RX,a = 0. 

Then X,a = 0, for otherwise RSR +RS+ SR+ S, where S is the sub ring of R 

generated by X,a, would be a non-zero nilpotent ideal of the semi-prime ring 

R, a contradiction. Thus X,a = 0 if and only if RX,a = 0. 

Consequently we see that 
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Thus we have an ascending chain of right annihilators in R, 

which must terminate since R is assumed to have ACCRA. So there exists 

an integer M such that rn(RXM) = rn, (RXn) for all n 2'. M. Fix some 

integer t where t 2'. M. We must show that rn,(X,) = rn,(XM), and since 

rn, (XM) rn, (X,) we need only show rn, (X,) rn, (XM ). 

If /JR= 0 for some /3 E R1, then /3 = 0. To show this, let I= {/3 E R1 I /3R = O}, 

an ideal of R,. If I c/ 0 then In R c/ 0 since R is essential as a right ideal of R1 • 

Therefore (In R)2 = 0, a contradiction of the assumption that R is semi-prime. 

Thus I = 0. Similarly we see that if R/3 = 0 then /3 = 0. 

Now, suppose X,a = 0 for some a E R1 . Then X,aR = 0 so that aR 

rn(RX,) = rn(RXM ). Thus RXMaR = 0, and so RXMa = 0 since R is left 

faithful, and thus XMa = 0, showing that a E rn, (XM ). Therefore rn, (X,) 

rn, (XM ), proving that R1 has ACCRA if R has ACCRA. 

It remains to show that if R1 has ACCRA then R has ACCRA. 

Suppose R1 has ACCRA and let X; R for i = 1, 2, ... be subsets such 

that rn(X1) rn(X2 ) • • • rn(X.) • • • is an ascending chain of right 

annihilators in R. Let Y; = Uj=;X; for each i. Then rn(Y;) rR(Y.+1) for all i 

and rR(X;) = rR(Y;) for all i. 

Since Y;+1 Y; for all i, rR,(Yi) rR,(Yi) ·· · rR,(Xn) ···is an 

ascending chain of right annihilators in R1 • Thus there is an integer Iv/ such 

that rR, (Y,w) = rn, (Y;) for all i 2'. Iv/. Since for all i, rR(Y;) = Rn rR, (Y;) and 

rR(Y;) = rn(X;), it follows that rR(X,w) = rn(X;) for all i 2'. Iv/. 
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Definition 4.1. 7 A ring R is right noetherian if, for any ascending chain of right 

ideals I1 <; h <; · · · <; In <; · · ·, there is an integer M such that In = IM for all 

n2M. D 

Definition 4.1.8 A ring Tis right artinian if, for any descending chain of right ideals 

I1 2 I2 2 · · · 2 In 2 · · ·, there is an integer M such that In = IM for all n 2 M. 

Left artinian is similarly defined. A ring T is artinian if it is both left and right 

artinian. D 

Lemma 4.1.4 Let R be a ring and I< an ideal of R. Then: 

i) if Rf [( and [( are right artinian, then R is right artinian; and 

ii} if Rf I< and I< are right noetherian, then R is right noetherian. 

Proof. 

i) Let {In} for n 2 1, be a decreasing chain of right ideals of R. Then {(In+I<)f I<} 

is a decreasing chain of right ideals of Rf [(, so there exists an integer M1 such 

that Un + I<)f I< = (IM, + K)f I( for all n 2 M1. Similarly, {Inn K} is a 

decreasing chain of right ideals of I( , so there exists an integer M2 such that 

Inn I( = IM, n I( for all n 2 M 2 • Let M be the greater of M 1 and M 2 • Fix 

n such that n 2 M. Let x E IM , Then x + I( = r + I( for some r E In so 

x = r + k for some k E K. Now x - r = k E IM and x - r = k E K, so 

k E IM n I<. Therefore k E Inn K. Thus x = r + k E In. So IM<; In , showing 

that IM= In. 

ii) The proof for right noetherian rings is similar. 

Recall from Example 1.3.1 the definition of a quasi-cyclic group, Z,oo, for any 

prime p. It is interesting to note that the only proper subgroups of Z,oo are generated 
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by 1/pn for any n. Consequently, we see that quasi-cyclic groups are artinian, but 

are not noetherian. 

The following result is due to Fuchs, and is stated without proof. 

Theorem 4.1.1 [FUGH 60} An artinian ring U, with no additive subgroup which is 

a quasi-cyclic group, is the ring-theoretic direct sum of a torsion free artinian ring B 

and a finite number of artinian p-rings C; belonging to the different primes p;, 

U = B Ell C1 Ell··· Ell Cr. 

The rings B, C1 , .. • , Cr are uniquely determined. 

Proposition 4.1.1 [BURG 89} 

i} If R is right noetherian, so are R* and R1; 

ii} If R is right artinian and R has no additive subgroup which is a quasi-cyclic 

group, then R* and R1 are right artinian. 

Proof. 

i) We note that R is an ideal of both R* and R1 • Since R is assumed to be right 

noetherian we need only show that K(R) is right noetherian since K(R) Ri/ R 

and K(R) R• / R; Lemma 4.1.4 will then complete the proof. 

Suppose K(R) is of form C. Then K(R) is not noetherian, as the ascending 

chain of ideals {TT?=! Z/(p'(')} shows. Thus R is not right noetherian, since 

Un = Ellf=1 t"' (R)} is a set of ideals of R such that I1 <;;; Ii <;;; • • • <;;; In <;;; • • · and 

for each n there exists an n' > n such that In c/ In,, a contradiction. Therefore 

K(R) is either of form A or B, both of which are right noetherian. Thus R* 

and R' are right noetherian. 
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ii) From Theorem 4.1.1 we see that K(R) is either of form A, or of form B where 

Dis a right artinian ring (if R = Q, X 0 is infinite). Thus K(R) is right artinian, 

and the result follows from Lemma 4.1.4. 

We recall Example 1.3.1 and note the case of R = Zvoo , which is right artinian 

and has K(Zvoo) = Z[l/q I q 'f' p]. Since K(Zvoo) is not right artinian, R' and R1 are 

not right artinian. This example shows the necessity of R not containing an additive 

subgroup which is quasi-cyclic if the right artinian property is to be extended from 

R to R" and R1 • 

Definition 4.1.9 

a) An element e E R is an idempotent if e2 = e. 

b) Let I be an ideal of R. I is idempotent if / 2 = I. 

c) R is strongly regular if, for each x in R, there exists yin R such that x 2 y = x. 

d) An element e in R is central if ex = xe for all x in R. 

e) For each element a in R let (a) denote the principal ideal generated by a. The 

ring R is biregular if for each a in R there exists a central idempotent e in R 

such that (a)= (e). 

For the rest of this section all rings are assumed to have all ideals idempotent and 

hence are left-faithful. 

Lemma 4.1.5 Let R be such that every ideal is idempotent. Then K(R) is regular. 
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Proof. We note that, in the case where K(R) = Z/ I for some non-zero ideal 

I of Z, K(R) must be a finite direct sum of fields and so K(R) is regular. Thus 

the remainder of the proof will consider the case where K(R) is either of form B 

or form C. Let f : P --, NU { oo} denote the function which determines K(R), 

X1 = {p E p IO< f(p) < oo}, Xo = {p E p IO~ f(p) < oo} and D = Z[X;1]. 

Let p be a prime number. Then 

pR = (pR) 2 = pRpR = (p2 )(R2 ) = p(pR) 

since pR is an ideal of R. Hence pR is p-divisible. 

Recall that t,(R) = {x ER I pnx = 0 for some n :::". 1}. Then 

since t,(R)2 = t,(R). 

Therefore, 

If xis in t,(R), pmx = 0 for some m :::". 1, and hence 

Hence, t,(R)(pt,(R)) = 0, so (pt,(R)) 2 = 0. Therefore pt,(R) = 0 since pt,(R) = 

(pt,(R)) 2 • Consequently, annt,(R) = (pk) fork= 0 or 1. 

We will show that R = pR Ell t,(R). Let a be an element of R. Since pR = p2 R 

there is an element bin R such that pa= p2 b. Hence p(a - pb) = 0 and so a - pb 

is an element of t,(R). Now, a= pb + (a - pb) which is contained in pR + t,(R), so 

R = pR + t,(R). Also, since pR is p-divisible and pt,(R) = 0, pR n t,(R) = 0. Hence 

R = pR Ell t,(R) and so f(p) = 0 or .1 and D = Z[X; 1] = Q. 
Recall that X 1 is the set of primes p; for which a component Z/(p?'), for some 

integer n; ;::=: 1, appears. 
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If X 1 is finite, so that K(R) Q ffi Z/(p1 ) ffi · · · ffi Z/(Pn), then K(R) is regular 

because it is isomorphic to a direct sum of fields. On the other hand, if X 1 is infinite 

then K(R) {(u,) I (u,) is an element of TTpeX, Z/(p) such that there is some a/b 

in Q and u, = a/b for almost all i}. Let (u,) be an element of K(R). Define the 

components of (v,) by: 

{ 
(-1) u, 

Vi= 
0 

if u, -f 0 

if u, = 0. 

Then (v,) is also an element of K(R) and (u,)(v,)(u,) 

regular. 

(u,). Hence K(R) is 

Lemma 4.1.6 Let R be strongly regular. Then K(R) is strongly regular. 

Proof. If R is strongly regular, then all ideals of R are idempotent. Consequently, 

by Lemma 4.1.5 K(R) is regular. Since K(R) is also commutative, K(R) is strongly 

regular. 

Lemma 4.1.7 Let R be regular. Then K(R) is regular. 

Proof. From Proposition 2.6.1 we see that all ideals of R are idempotent. Therefore 

K ( R) is regular. 

Lemma 4.1.8 K(R) is regular if and only if K(R) is strongly regular. 

Proof. We note that K(R) is commutative, since it is an epimorph of Z. 

Lemma 4.1.9 Let A be a ring, B an ideal of A. If A/ B and B are both regular, 

then A is regular. 
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Proof. Let a be an element of A. There exists an element x E A such that 

(a+ B)(x + B)(a + B) = (a+ B) since A/ B is regular. Thus axa + B =a+ B, so 

axa - a is an element of B. Since Bis regular, there exists an element b of B such 

that (axa- a)b(axa- a)= axa- a. Therefore a(xab+ bax - xabax - b+ x)a = a as 

desired. 

Corollary 4.1.1 If R is regular then R1 is regular. 

Proof. Since K(R) :e R,/ Rand K(R) is regular the conditions of the lemma apply, 

showing that R1 is regular. 

Lemma 4.1.10 Let A be a ring, B an ideal of A. If A/ B and B are both strongly 

regular, then A is strongly regular. 

Proof. Let a be an element of A. There exists an element x E A such that 

(a+ B)2(x + B) =a+ B since A/ B is strongly regular. Thus a2x - a is an element 

of B. Since B is strongly regular there exists an element bin B such that (a 2x -

a)(a2x - a)b = a2x - a, and so a= a2(x - xa2xb + xab + axb- b), proving that A is 

strongly regular. 

Corollary 4.1.2 If R is strongly regular then R1 is strongly regular. 

Proof. Since K(R) :e R,/ R is strongly regular by Lemma 4.1.6, R1 is strongly 

regular. 

Lemma 4.1.11 Let A be a ring with identity, B an ideal of A. If B has all ideals 

idempotent and A/ B is commutative regular, then A has all ideals idempotent. 
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Proof. Let I be an ideal of A, and let a be an element of I . Then (I+ B)/ B is 

an ideal of A/ B, which is commutative regular. Thus there exists an element bin A 

such that (a+ B)2 (b + B) =a+ B. Therefore a2b- a is an element of B. Let J be 

the ideal of B generated by a2b - a. Now J = J2 and J I, so J = J2 12. Hence 

(a 2b- a) E / 2 and since a2 b E / 2 , a E /2. This shows that I~ ! 2 and so all ideals of 

A are idempotent. 

Corollary 4.1.3 If R has all ideals idempotent then R 1 has all ideals idempotent. 

Proof. We note that I<(R) '.:e Ri/ R is commutative regular by Lemma 4.1.5. 

Finally, we show that the Burgess/Stewart extension of a biregular ring is also 

biregular and so every biregular ring can be embedded in a biregular ring with identity. 

This result is due to [VRAB 70] . To demonstrate this we first require the following 

definitions. 

Definition 4.1.10 The Boolean algebra of central idempotents of a ring (S, +, ·) is 

(B, f, *) where B = { e E Z(S) I e · e = e} and the operations are defined by 

ef f = e + f - 2e · f and e * f = e · f 

Lemma 4.1.12 The Boolean algebra of any ring S is an associative ring. 

Proof. 

The proof involves a straight forward check of the ring properties. Let e, f , g be 

in Band s in S. Then 

(n f) · (e * f) = e · f · e · f = e · e · f · f = e · f = e * f , 



(eff) · (eff) 

and 

(e * J) · s = e · J · s = e · s · J = s · e · J = s · (e * J), 

(e + f - 2e · J) · (e + f - 2e · J) 

e · e + e · J - 2e · J · e + J · e + J · J - J · 2e · J - 2e · J · e 

- 2e · J · J + 2 · e · J · 2e · J 
e + e · J - 2e · J + e · J + J - 2e · J - 2e · J - 2e · f + 4e · J 
e + J- 2e · f 

(eff) 

(e+J) · s ( e + f - 2e · J) · s 

e · s + f · s - 2e · f · s 

s · e + s · J - s · 2e · J 
s · (e+J). 

Thus e * J and ef f belong to B. 

We see that + is associative since 

(e+J)+g (e + J - 2e · J)fg 

e + J - 2 · e · J + g - 2 · ( e + J - 2e · J) · g 

e + J - 2e · J + g - 2e - 2/ - 4e · J · g 

e + J + g - 2f · g - 2e · J - 2e · g + 4e · J · g 

e + (J + g - 2J · g) - 2e · (J + g - 2fg) 

ef(J + g - 2J • g) 

ef(Jfg) . 

72 
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We also note that 

e-t f = e + f - 2e · f = f + e - 2f · e = f-+e 

and 

efO = e, 

so that f is commutative and has an additive identity. We see that elements of B 

have additive inverses since e-te = e + e - 2e · e = 0. Finally, we see that B satisfies 

the distributive property since 

Thus (B, f, *) is an associative ring. 

e * (f + g - 2f · g) 

e · f + e · g - 2e · f · g 

e · f + e · g - 2e · f · e · g 

e · f-+e · g 

(e * J)f(e * g). 

We require the following three lemmas which will be used to prove that the 

Burgess/Stewart extension preserves biregularity. 

Lemma 4.1.13 Let S be a ring with identity and B the Boolean algebra of central 

idempotents of S. If N is a maximal ideal of S then (N n B) is a maximal ideal of 

B. 

Proof. Let e, f be in N n B and g be in B. Then e-t f = e + f - 2ef belongs to 

N n B and g * e = ge is in N n B, so N n B is an ideal of B. Let I be an ideal of 

B containing N n B where N n B # I. Let e be in I\N n B. Then N + eS = S 

since N is a maximal ideal of S, so I = n + es for some. n in N and s in S. Therefore 
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e =en+ es, so 1 - e = n - en belongs to N. Thus 1 - e belongs to N n B, which is 

contained in I, so e-t(l - e) belongs to I. Since 

e-t(l - e) e + 1 - e - 2e(l - e) 

1 - 2(e - e2 ) 

we see that 1 belongs to I, and so I= B. Therefore N n Bis a maximal ideal of B. 

Lemma 4.1.14 Let S be a ring and B the Boolean algebra of central idempotents of 

S. If e, fare elements of B then u = e + f - ef is in Band eu = e, Ju= f. If I is 

an ideal of S then I n B is an ideal of B. If I is an ideal of S and C = In B then 

CS is an ideal of S and for any element x in CS there are elements e in C and s in 

S such that x = es. 

Proof. Let e, f be elements of B, s an element of Sand u = e + f - ef. Then 

and 

u2 (e+f-ef)(e+f-ef) 

ee + ef - eef + f e +ff - f ef - ef e - ef f + ef ef 

e + ef - ef + ef + f - ef - ef - ef + ef 

e + f - ef 

u 

us (e+f-ef)s 

es+fs-efs 

se + sf - sef 

SU 



so u belongs to B. We also note that 

eu e( e + J - ef) 

e2 + ef- e2J 

e 

and similarly Ju = J, proving the first statement. 
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Now, let /bean ideal of S, g an element of Band e, f elements of/ n B. Then 

e-t- f = e + f - ef is in/, and so e-t J belongs to/ n B. Also, e * g = eg is in /, so 

e * g is in / n B. Thus / n Bis an ideal of B, verifying the second statement. 

Finally, we verify the third statement. Let /bean ideal of Sand C =In B. Let 

x = Li=I e;s; be an element of CS for some positive integer n and elements e; in C 

and s; in S . Suppose n = 2, so that x = e1s1 + e2s2• Let u = e1 + e2 - e1e2. Then 

ue1 = e1 and ue2 = e2 so that x = u(e1s1 + e2s2) is of the required form since u is in 

C. We assume that if x = I:;',;;} e;s; then x = es for some e in Sands in S. 

Now suppose x = Li=I e;s; . Then x = I:;;',:} e;s; + ensn so that x =es+ ensn for 

some e in C and s in S . As above, let ii. = e + en - een. Then x = u(es + ensn) is 

of the right form . Thus, by induction on n, we see that for any x in CS there are 

elements e in C and s in S such that x = es. 

Now suppose e1s1 and e2s2 are elements of CS. Then e1s1 + e2s2 = us for some 

u in C ands in S. Also, for any s' in S we see that (e 1s1 )s' = e1(s 1 s') is in CS and 

s'(e1s1 ) = (s'e,)s1 = (e1s')s1 = e1(s's1 ) is in CS. Thus CS is an ideal of S. 

Lemma 4.1.15 If Sis a semiprime ring with identity such that, for every maximal 

ideal M of B, the Boolean ring of central idempotents of S, MS is a maximal ideal of 

S then S is biregular. 

Proof. Let a be a non-zero element of S and (a) the principal ideal of S generated 

by a. Since S contains an identity we see that (a) = SaS. We first show that S = 
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SaS(fJ/ann SaS where lann denotes the left annihilator in S. Let I= SaSnlann SaS, 

an ideal of S. Then / 2 = 0 so I= 0 since Sis semiprime. Suppose SaS (fJlannSaS 

is a proper ideal of S. Since S has an identity, we see that SaS (fJ lann SaS is a 

contained in some maximal ideal N of S by Zorn's lemma. From Lemma 4.1.13 we 

note that N n B is a maximal ideal of B. Thus, by assumption, (N n B)S is a 

maximal ideal of S. Now (N n B)S is contained in N, so (N n B)S = N. Since a 

is in N, a = es for some e in N n B and some s in S by Lemma 4.1.14. Further, 

(1 - e)SaS = S(l - e)esS = S · 0 · S = 0, so 1 - e belongs to lann SaS, and thus 

1 - e is in N. Therefore 1 = (1 - e) + e is in N contradicting the supposition that 

N -f S. Therefore S = SaS (fJ lann SaS. 

Let 1 = e + f where e is in SaS and f belongs to lann SaS. Let x be in SaS. 

Then ex - x = (1 - f)x - x = - J x is in lann SaS. Since ex - x is also in SaS and 

SaS n lann SaS = 0, we see that ex= x. Thus e2 = e and SaS = SeS. For any sin 

S, es - se = (1 - f)s - s(l - J) = - f s + sf and so, as above, es = se showing that 

e is central, and showing that S is biregular. 

We next show that certain extensions of biregular rings are biregular, from which 

the preservation of biregularity by the Burgess/Stewart construction will follow. 

Lemma 4.1.16 Suppose S is a ring with identity containing an ideal R which, as a 

ring, is biregular. Also, suppose S has a central regular subring T such that S = R+ T. 

Then S is biregular. 

Proof. We note that both Rand Tare semiprime. Let I be an ideal of S such that 

/ 2 = 0. Now S/ R is semiprime since 

§__T+R~_T_ 
R- R -TnR' 

which is regular since homomorphic images of regular rings are regular. Since 
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we see that I R. Thus I = 0 since R is biregular. Therefore S is semiprime. 

Let B be the Boolean algebra of central idempotents of S, and M a maximal ideal 

of B. By Lemma 4.1.15 it suffices to show that MS is a maximal ideal of S. We note 

that since S = R + T and T is central, central idempotents of R are in B. 
Suppose that there exists an ideal K of S containing MS and K f MS. We need 

to show that K = S. There are three cases to consider. 

Case I: If MS n Rf Kn R there is, since R is biregular, a central idempotent e of R 

such that e is in K n R and e does not belong to MS n R. As noted above, 

e is in B, so e is not in M and thus 1 = e+m for some m in M. Therefore 

1 = e + m - 2em and hence 1 - e is in MS. Thus e, 1 - e belong to Kand so 

K = S, proving that S is biregular. 

Case II: If MS n R =Kn Rand R is contained in MS, then R ~MSc Kand 

K KnS 

Kn (R+ T) 

Kn(MS+T) 

MS+ Kn T (since MS~ K). 

Since MS f K there is a non-zero element s in K n T such that s is not in 

MS. There is an element tin T such thats= sts, since Tis regular, and so 

e = st is an idempotent. We note that e is not in MS since s = es and s is not 

in MS. Further, e is in B since e belongs to T and T is central. We note that 

e is not in M since e is not in MS, so 1 - e belongs to M, as discussed above. 

Thus e, 1 - e belong to [( and so K = S. Hence Sis biregular. 

Case Ill: Suppose MS n R = Kn R and R is not contained in MS. Let a be an element 

in R where a is not in MS. There is a central idempotent e in R such that 
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(a)= (e), since R is biregular. As noted above, e is in B . Since a is not in MS, 

neither is e in MS. Thus e is not in Mand, as above, 1 - e is in M. Therefore 

both e and 1 - e are in MS+ R, so MS+ R = S . 

Let k be an element of J{. Then there exist elements x in MS and r in R such 

that k = x + r . Thus k - x = r is in /{ n R, since MS is contained in K . 

Further, k - x = r is in MS since J{ n R = MS n R. Thus k = x + r is in MS 

and so /{ is contained in MS, contradicting our assumption that /{ is a proper 

extension of MS. Therefore this case I II can not occur. 

Corollary 4.1.4 If R is biregular then R* and R 1 are biregular. 

Proof. Since every ideal of R is idempotent, I<(R) is regular by Lemma 4.1.5. 



CHAPTER5 

Conclusion 

We have considered a variety of methods which extend any given ring to a ring 

with identity, although some methods are restricted in regard to the rings which may 

be extended. For instance, the method developed in [ROBS 79], and by implication 

the refinements made by [BURG 89], requires that the given ring be left-faithful, 

while the methods discussed in [FUCH 68, FUNA 66] deal only with regular rings. 

We have shown that the construction given by [DORR 32] extends any ring to a 

ring with identity by adjoining the ring of integers to the original ring. While this 

approach places no restrictions on the original ring, many of the properties of the 

original ring may be lost in the extension. However, this construction is functorial, 

and in fact is part of an adjunction. 

The method discussed in [ROBS 79] embeds the original ring R (which is required 

to be left-faithful) into the ring of endomorphisms of R, which contains an identity. 

More generally, we see that R + C is an extension of R with identity for any subring 

C of the center of End R. 

[BURG 89] refines the method developed in [ROBS 79] by adjoining the charac-

teristic ring to the original ring. We have shown that this construction retains many 

of the properties possessed by the original ring. 

In the case of regular rings, we have shown that there is a commutative regular 

ring with identity S such that every regular ring is an S-bimodule. This ring was used 

in [FUCH 68] to develop a construction which extends any regular ring t6 a regular 

ring with identity. A second construction regarding regular rings was developed in 

[FUNA 66] by adjoining to a regular ring R the ring of endomorphism of R, using 

arithmetic similar to that used by [DORR 32]. In view of the method discussed in 

[ROBS 79], we have suggested a refinement to Funayarpa's approach. 
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