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Abstract  

The mid-IR frequency region is highly intriguing due to its transition response to gas 

molecules. To date, this region has provided numerous applications, such as gas detection, 

atmospheric monitoring, and environmental trace for toxic vapors. In general, mid-IR 

frequency sources are more complex to make compared to visible and near-IR sources. To 

generate mid-IR frequencies from visible or near-IR frequencies, difference frequency 

generation (DFG) of optical nonlinear frequency conversion is used. This can be done 

through a material with relatively high nonlinear properties, such as gallium arsenide 

(GaAs). GaAs is a crystal of semiconductor materials with a broad mid-IR transparency 

region. The further development of technology has made GaAs the optimal choice for mid-

IR generation. 

However, one major drawback in using DFG is phase velocity mismatching between 

interacting waves, which results from optical frequency conversion. Phase-mismatch 

essentially degrades the conversion efficiency. The anisotropic properties of some 

nonlinear crystals can overcome the phase-mismatch using birefringent phase matching 

(BPM).  Unfortunately, because GaAs is an isotropic crystal, its lack of anisotropic 

properties prevents the use of BPM with GaAs. Modifications to the GaAs crystal are thus 

required through the addition of another material, rendering the modified crystal 

anisotropic.   

If metallic nanowires of silver (Ag) are embedded in GaAs, the composite structure is 

characterized as a metamaterial with anisotropic properties. The structure is optically 

characterized by full wave simulation using the finite difference time domain (FDTD) 

method to compute the refractive indices from the scattering parameters (S-parameters) in 

order to investigate it for phase matching. The resultant phase-matched mid-IR frequencies 

are broad and tunable from 2.8 µm to 11 µm. The tuning is performed by varying the pump 

and the signal wavelength.  

A structure of GaAs with periodic arrays of longitudinal nanoholes is investigated for 

phase matching. The refractive indices of the structure are determined from the S-

parameters using FDTD simulation. The longest wavelength achieved is 16.2229 μm and 

the shortest is 3.2961 μm. The results of the FDTD simulation are compared with results 

obtained from the effective medium theory, using the Maxwell Garnett model. The 

comparison shows excellent agreement.   
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Chapter 1 

Introduction  

1.1 Preface  

In this work, we investigate the possibility of achieving phase matching between three 

waves interacting nonlinearly by using the birefringent phase-matching (BPM) method in 

the nonlinear medium of gallium arsenide (GaAs), and by using nanostructure 

metamaterials to generate difference frequency generated (DFG) outcomes in the mid-IR 

spectrum region.   

1.2 Introduction  

Difference frequency generation (DFG) results from a three-wave nonlinear interaction 

process that occurs within an optical material exposed to very intense light. It is one of two 

possible results of the interaction, the other one being sum frequency generation (SFG). As 

one of the most important applications of nonlinear optics, DFG was first theoretically 

investigated in 1962 [1]. Nonlinear optics became possible after the discovery of the laser 

in 1960. Second-harmonic generation (SHG), which is a special case of SFG, was the first 

experiment performed in nonlinear optics [2]. The mid-IR frequencies spectrum region is 

more complex to generate using ordinary laser sources than the near-IR and visible 

spectrum region. DFG is an optical frequency conversion and is often used to generate mid-

IR. The mid-IR spectral region from 3 µm to 20 µm is the  vibration-transition region for 

many molecules, making this spectral region highly attractive in spectroscopy [3], [4]. 

Nonlinear optical conversions are generally very weak due to the small values of the 

nonlinear coefficients of materials. The conversion efficiency using DFG was studied in 

1968 by [5]. They found that increasing the crystal length along the propagating direction 

of the interacting waves will increase the interaction volume while also increasing the 

conversion efficiency. However, phase-mismatch between the interacting waves impairs 

conversion efficiency. The phase-mismatch is a result of different waves with different 

frequencies traveling through a dispersive optical medium. 

Phase matching, which involves momentum conservation of the photons, is an 
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important aspect to consider in nonlinear optical frequency conversions. In general, phase 

matching requires the medium to be a non-dispersive material. If the materials are 

dispersive, anisotropic properties of some nonlinear crystals might be used to overcome 

the phase-mismatch, using a birefringent phase-matching (BPM) method [6], [7]. BPM 

relies on the refractive index of the crystal to be different for different wave polarizations 

and propagations relative to crystal lattice axes. In this way, the phase-mismatched waves 

will propagate with different polarizations of different associated refractive indices in order 

to compensate the phase-mismatch. 

Quasi-phase matching  (QPM) is an alternative technique to birefringent phase 

matching[ 8], [9]. In QPM, the sign of the nonlinearity coefficient 𝜒(2) is modulated 

periodically positive and negative along the propagating directing of the interacting waves. 

Another technique for phase matching that is used only for waveguide nonlinear medium 

is modal dispersion phase matching (MDPM). Different nonlinear media use BPM and 

QPM, such as periodically poled lithium niobate (PPLN), potassium titanyl phosphate 

(KTP), and barium borate (BBO). Most DFG based on parametric wavelength conversion 

uses nonlinear crystals (e.g., PPLN, KTP, BBO) and lithium niobate [10], [11]. 

Semiconductor materials of relatively high nonlinear dielectric coefficient are 

alternatives for optical frequency conversion, such as GaAs and InP [12], [13].  GaAs with 

large second-order susceptibility 𝜒(2) and a wide transparent infrared optical window (from 

1 µm to 17 µm) is a better selection for difference frequency generation in mid-IR 

frequencies generation [14]. Despite these advantages, it is not possible to use 

birefringence phase-matching techniques with GaAs or InP, due to their isotropic 

properties. 

There are other methods for achieving phase matching in III-V semiconductors with a 

cubic lattice structure for difference frequency generation, such as quasi-phase matching, 

modal phase matching, domain-disordered quasi-phase matching, and suspended GaAs 

waveguides [15]–[18]. Tunable emissions from 6.7 µm to 12.7 µm have been demonstrated 

in a nonguided orientation patterned GaAs [19], and the longest wavelength was generated 

through DFG in an AlGaAs waveguide from 7.5 µm to 8.5 µm [20]. 

Phase matching using artificial anisotropy is possible if a strongly anisotropic structure 

can be obtained. Artificial birefringence using multi-layered GaAs/AlAs was first proposed 
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by J. P. van der Ziel [21]. Relatively large birefringence has been demonstrated with the 

multilayer structure of oxidized GaAs/AlAs [22]. Phase matching has been achieved for 

parametric amplification of down conversion by using artificial birefringence in multilayer 

waveguides of oxidized GaAs/AlAs[23]. Phase matching has also been demonstrated for a 

DFG by using artificial birefringence with a multilayer structure of GaAs/Alx Ga1-x As with 

three layers of Alx Ga1-x As and one layer of GaAs [24]. Obtaining a large birefringence or 

a strongly anisotropic structure has been challenging. The use of an optical metamaterial 

with metallic nanowires is an alternative method of obtaining a strongly anisotropic 

structure [25]–[29]  

In the present research, we perform a theoretical investigation for the phase-matching 

aspect of DFG in two different nanostructure metamaterial media of GaAs as the host 

material, with inclusions of periodic arrays of silver nanowires and nanoholes to generate 

mid-infrared wavelengths (terahertz frequencies). 

1.3 Thesis Objectives and Contributions  

The first goal in the present study is to find a composite structure of GaAs as a nonlinear 

material with another material to make a uniaxial anisotropic medium in order to 

compensate the phase-mismatch that arises in the DFG process caused by dispersive and 

isotropic properties of GaAs. The difference frequency generation of three wave-mixing 

processes is one of the methods used to generate mid-IR frequencies. GaAs that possesses 

a relatively high nonlinearity coefficient and near- and mid-IR transparency regions are a 

good choice for the mid-IR generation using the DFG method.  

The second goal, after a suitable structure has been selected, is to meet the 

requirements that the generated mid-IR frequencies should be frequency-tunable and cover 

the entire mid-IR transparency spectrum of GaAs. 

As well, we theoretically characterize and investigate a nanostructure of GaAs and 

silver nanowires from the scattering parameters using an FDTD simulation. The study 

shows that the composite structure behaves as a uniaxial anisotropic medium, with a 

transparency region at near-IR spectrum for the electric field parallel to the wires, and 

transparency at near- and mid-IR for electric fields orthogonal to the wires.  Phase matching 

is achieved in the structure of DFG for three-wave-mixing processes, generating waves of 
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mid-IR frequencies from two interacting waves of near-IR frequencies. The resultant 

generated mid-IR is broad and tunable by adjusting the two near-IR frequencies.  

Further, the nanostructure of GaAs with nanoholes is characterized and investigated 

for phase matching of DFG for three wave-mixing processes. The study shows the structure 

promises very broad and tunable generated mid-IR frequencies. 

1.4 Thesis Organization   

The thesis presents a combination of nonlinear optics, especially DFG, as well as optical 

metamaterial structures.  

Chapter 2 discusses nonlinear optics and its application of frequency conversion, 

coupled wave equations for DFG, and methods used to overcome the phase-mismatch of 

optical frequency conversions, such as birefringent phase matching and quasi-phase 

matching methods.  

Chapter 3 is devoted to optical metamaterial, specifically principles and applications. 

It includes a description of the type of structures used in this work.   

Chapter 4 covers linear optical properties as well as refractive and absorption indices 

of a composite metamaterial structure of GaAs and silver nanowires. The structure is 

characterized using scattering parameters computed by FDTD simulation and a retrieving 

method to determine the linear properties from the scattering parameters. 

Chapter 5 shows how GaAs and silver nanowire structure satisfies the phase matching 

for DFG of three wave-mixing processes. It explains the proper selection of the 

polarizations of the three interacting waves in such a way as to minimize the ohmic loss of 

the metal wires. 

Chapter 6 introduces another structure of GaAs with nanoholes. FDTD simulation is 

used to characterize this structure, showing how it is a more suitable option than 

GaAs/silver structure for use as a uniaxial anisotropic structure and to compensate phase-

mismatch.  

Chapter 7 provides a summary of the study’s achievements in relation to the thesis’ 

objectives, and suggests possible research directions for future work. 
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Chapter 2 

Nonlinear Optics  

2.1  Introduction    

In most cases, the optical response of optical materials to non-high intense light is linear, 

such as refraction, absorption or scattering, whereas when the light has a very high 

intensity, a nonlinear response arises, producing frequency conversion. The nonlinear 

coefficient 𝜒(2) is very small compared to the linear coefficient 𝜒(1).  When an optical field 

is applied to materials, dipole moments of atoms or molecules are created, making the 

material polarized. If the applied field 𝐸 is not very high, it will result in linear polarization 

𝑃𝐿: 

𝑃𝐿 = 𝜀𝑜𝜒
(1)𝐸                                                        (2.1) 

where 𝜒(1) is the ordinary or linear susceptibility. If the optical electric field is too high, 

nonlinear polarization  𝑃𝑁𝐿 will arise, and the medium will be linearly and nonlinearly 

polarized. The scalar form of the total polarization 𝑃𝑇 is [30]: 

𝑃𝑇 = 𝑃𝐿 + 𝑃𝑁𝐿 = 𝜀𝑜(𝜒
(1)𝐸 + 𝜒(2)𝐸𝐸 + 𝜒(3)𝐸𝐸𝐸 +⋯ . )               (2.2) 

The displacement current 𝐷 is related to the total polarization by:  

𝐷 = 𝜀𝑜𝐸 + 𝑃
𝑇                                                       (2.3) 

If we assume the medium is nonmagnetic (𝜇 = 𝜇𝑜) and source-free (𝜌𝑣 = 𝐽 = 0), the 

polarization 𝑃𝑇, the optical field 𝐸, and the medium constitutes (𝜀𝑜 , 𝜇𝑜) are related by  

Maxwell’s equations: 

∇ × E = −𝜇𝑜
𝜕𝐻

𝜕𝑡
                                                      (2.4) 

∇ × H = −
𝜕(𝜀𝑜𝐸+𝑃

𝑇)

𝜕𝑡
                                                 (2.5) 
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We can then take the curl of Eq. (2.4) and apply Eq. (2.5) into the resultant equation: 

  ∇ × (∇ × E) = −𝜇𝑜
𝜕

𝜕𝑡
[
𝜕(𝜀𝑜𝐸+𝑃

𝑇)

𝜕𝑡
]                                         (2.6) 

Next, we can substitute  𝑃𝑇 = 𝜀𝑜𝜒
(1)𝐸 + 𝑃𝑁𝐿 into Eq. (2.6): 

∇ × (∇ × E) + 𝜀𝑟𝜀𝑜𝜇𝑜
𝜕2𝐸

𝜕𝑡2
= −𝜇𝑜

𝜕2𝑃𝑁𝐿

𝜕𝑡2
                                   (2.7) 

where 𝜀𝑟 = 1 + 𝜒
(1) is the relative permittivity of materials. If we substitute 𝜀𝑜𝜇𝑜 = 1/𝑐

2, 

where 𝑐 is the speed of light, we get: 

  ∇ × (∇ × E) +
𝜀𝑟

𝑐2
𝜕2𝐸

𝜕𝑡2
= −

1

𝜀𝑜𝑐2
𝜕2𝑃𝑁𝐿

𝜕𝑡2
                                      (2.8) 

Equation (2.8) is the general wave equation of nonlinear optics. It can be simplified based 

on some special assumptions. The left-hand side of Eq. (2.8) can be written as:  

∇ × (∇ × E) = ∇(∇ ⋅ 𝐸) − ∇2𝐸                                         (2.9) 

The  term ∇ ⋅ 𝐸 on the right-hand right can be ignored for the assumption of the transverse 

field of infinite plane waves or slow varying amplitude approximation [6], [30], [31]. 

However, the nonlinear wave equation in (2.8) can simplified as: 

∇2𝐸 −
𝜀𝑟

𝑐2
𝜕2𝐸

𝜕𝑡2
=

1

𝜀𝑜𝑐2
𝜕2𝑃𝑁𝐿

𝜕𝑡2
                                             (2.10) 

2.2 Coupled Wave Equations for DFG 

Difference frequency generation (DFG) is a process of interaction of three waves. Two of 

them are applied and the third one is generated. The two applied waves are named, by 

convention, the pump and the signal waves, with frequencies of 𝜔𝑝 and 𝜔𝑠, respectively. 

The generated wave is referred to as an idler wave of frequency 𝜔𝑖, where  𝜔𝑖 = 𝜔𝑝 − 𝜔𝑠 

and 𝜔𝑝 > 𝜔𝑠 > 𝜔𝑖. Also, sum frequency generation (SFG) can be achieved depending on 

how the conservation of photon momentum is satisfied. Figure 2.1 illustrates the DFG 

schematically. 
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We can rewrite the scalar form of the total polarization, linear and nonlinear, given in 

Eq. (2.2) in a vectoral and tensor form, ignoring the third-order susceptibility response, as:   

𝑃𝑎
𝑇 = 𝑃𝑎

𝐿 + 𝑃𝑎
𝑁𝐿 = 𝜀𝑜[∑ 𝜒𝑎𝑏

(1)
𝑏 𝐸𝑏 + ∑ 𝜒𝑎𝑏𝑐

(2)
𝑏𝑐 𝐸𝑏𝐸𝑐]                              (2.11) 

where 𝑎, 𝑏, and 𝑐 are geometrical axes of the coordinate system. If a nonlinear medium is 

excited with a pump wave of frequency 𝜔𝑝, an electric field  𝐸𝑝,  a signal wave of frequency 

𝜔𝑠, and an electric field 𝐸𝑠, the generated nonlinear polarization for the DFG  will oscillate 

Figure 2.1: (a) Energy diagram describing DFG; (b) geometry of DFG 

 

𝝌(𝟐) 

Pump 𝜔𝑝 

Signal 𝜔𝑠 

Idler  𝜔𝑖 

  𝜔𝑖 = 𝜔𝑝 −𝜔𝑠 

𝜔𝑝 𝜔𝑠 𝜔 𝜔𝑠 𝜔𝑝 𝜔𝑖 𝜔 

ℏ𝜔𝑝 

ℏ𝜔𝑠 

ℏ𝜔𝑖 

(a) 

(b) 
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with a frequency of 𝜔𝑖. From Eq. (2.11), we can write the generated nonlinear polarization 

for the difference frequency as: 

𝑃𝑎
𝑁𝐿(𝜔𝑖) = 𝜀𝑜[𝜒𝑎𝑏𝑐

(2) 𝐸𝑏(𝜔𝑝)𝐸𝑐
∗(𝜔𝑠) + 𝜒𝑎𝑏𝑐

(2) 𝐸𝑏
∗(𝜔𝑠)𝐸𝑐(𝜔𝑝)]                        (2.12) 

If, for simplicity’s sake, an effective second-order susceptibility  𝜒𝑒𝑓𝑓
(2)

 is used along all the 

coordinates axes and a special case of the pump and signal waves are parallel, Eq. (2.12) 

can be rewritten in the following form by replacing 𝜒𝑒𝑓𝑓
(2)

 with the most common contracted 

form of 𝑑𝑒𝑓𝑓, where  𝜒𝑒𝑓𝑓
(2)
= 2𝑑𝑒𝑓𝑓: 

𝑃𝑁𝐿(𝜔𝑖) = 4𝜀𝑜𝑑𝑒𝑓𝑓𝐸𝑝𝐸𝑠
∗                                            (2.13) 

If the idler wave with frequency 𝜔𝑖  propagates along the +𝑧 direction, then the solution 

of the wave equation (2.10), in the absence of the nonlinear polarization, is:   

𝐸𝑖(𝑧, 𝑡) = 𝐴𝑖𝑒
𝑗(𝑘𝑖𝑧−𝜔𝑖𝑡) + c. c.                                      (2.14) 

where 𝐴𝑖  and 𝑘𝑖 are the amplitude and the wavenumber of the idler wave, respectively, 

𝑘𝑖 =
𝑛𝑖𝜔𝑖

𝑐
                                                      (2.15) 

and where 𝑛𝑖 is the refractive index of the medium at the idler wave frequency 𝜔𝑖. A similar 

solution will work for the applied waves, the pump and the signal: 

𝐸𝑝(𝑧, 𝑡) = 𝐴𝑝𝑒
𝑗(𝑘𝑝𝑧−𝜔𝑝𝑡) + c. c.                                     (2.16) 

𝐸𝑠(𝑧, 𝑡) = 𝐴𝑠𝑒
𝑗(𝑘𝑠𝑧−𝜔𝑠𝑡) + c. c.                                      (2.17) 

where  𝐴𝑝  and 𝐴𝑠 are the amplitudes of the pump and signal waves, respectively, and 𝑘𝑝 

and 𝑘𝑠 are the wavenumbers of the pump and the signal waves, respectively:  

𝑘𝑝 =
𝑛𝑝𝜔𝑝

𝑐
                                                       (2.18) 

𝑘𝑠 =
𝑛𝑠𝜔𝑠

𝑐
                                                       (2.19) 
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Here, 𝑛𝑝 and 𝑛𝑠 denote the refractive indices of the nonlinear medium at the frequencies 

𝜔𝑝 and 𝜔𝑖, respectively. The nonlinear polarization 𝑃𝑁𝐿(𝜔𝑖) in Eq. (2.13) can be rewritten 

after applying Eq. (2.16) and Eq. (2.17) into Eq. (2.13), where 𝜔𝑖 = 𝜔𝑝 − 𝜔𝑠 and 𝜔𝑖 >

𝜔𝑝 > 𝜔𝑠: 

𝑃𝑁𝐿(𝜔𝑖) = 4𝜀𝑜𝑑𝑒𝑓𝑓𝐴𝑝𝐴𝑠
∗𝑒𝑗[(𝑘𝑝−𝑘𝑠)𝑧−𝜔𝑖𝑡] + c. c.                            (2.20) 

Next, we can substitute Eqs. (2.20) and (2.14) into the wave equation (2.10). Using only 

𝑑2/𝑑𝑧2 (because the fields depend only on the 𝑧 coordinate), the resultant wave equation 

after omitting the time dependence is:   

𝑑2𝐴𝑖

𝑑𝑧2
+ 2𝑗𝑘𝑖

𝑑𝐴𝑖

𝑑𝑧
=
−4𝜔𝑖

2𝑑𝑒𝑓𝑓

𝑐2
𝐴𝑝𝐴𝑠

∗𝑒𝑗(𝑘𝑝−𝑘𝑠−𝑘𝑖)𝑧                      (2.21)                                  

The first term on the left-hand side of  Eq. (2.21) can be neglected under the approximation 

of slowly varying amplitude [6]: 

|
𝑑2𝐴𝑖

𝑑𝑧2
| ≪ |2𝑗𝑘𝑖

𝑑𝐴𝑖

𝑑𝑧
|                                               (2.22) 

Equation (2.21) can be rewritten after the approximation as:  

[
𝑑𝐴𝑖

𝑑𝑧
] =

2𝑗𝑑𝑒𝑓𝑓
(2)
𝜔𝑖
2

𝑐2𝑘𝑖
𝐴𝑝𝐴𝑠

∗𝑒jΔ𝑘𝑧                                       (2.23) 

where Δ𝑘 is the phase or momentum mismatch between the three interacting waves   

Δ𝑘 = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖                                                 (2.24) 

by integrating Eq. (2.23) from 0 to the 𝐿, where 𝐿 is the propagation length, we get:  

𝐴𝑖 =
2𝑗𝑑𝑒𝑓𝑓𝜔𝑖

2𝐴𝑝𝐴𝑠
∗

𝑐2𝑘𝑖
(
𝑒jΔ𝑘𝐿−1

jΔ𝑘𝐿
)                                          (2.25) 

Next, by squaring both sides of Eq. (2.25) and replacing the squares of amplitudes 𝐴𝑖
2, 𝐴𝑝

2 , 

and 𝐴𝑠
2 by 𝐼𝑖, 𝐼𝑝 and 𝐼𝑠,  based on the relation 𝐼 = 2𝑛𝜀𝑜𝑐|𝐴|

2 , the resultant equation is [6]: 
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𝐼𝑖 =
8𝑑𝑒𝑓𝑓𝜔𝑖

2𝐼𝑝𝐼𝑠

𝑛𝑖𝑛𝑝𝑛𝑠𝜀𝑜𝑐
2
𝐿2sinc2 (

Δ𝑘𝐿

2𝜋
)                                         (2.26)  

The efficiency 𝜂 of the DFG can be defined as: 

𝜂 =
𝐼𝑖

𝐼𝑠
=

8𝑑𝑒𝑓𝑓𝜔𝑖
2𝐼𝑝

𝑛𝑖𝑛𝑝𝑛𝑠𝜀𝑜𝑐
2 𝐿
2sinc2 (

Δ𝑘𝐿

2𝜋
)                                     (2.27) 

The efficiency 𝜂 of the difference generation system is dependent on the phase-mismatch 

Δ𝑘  through the sinc function by the factor sinc2(Δ𝑘𝐿/2𝜋), as shown in Fig. (2.2).  

  

If we consider the collinear interaction where the three interacting waves propagate in the 

same directions, then the phase-mismatch for the DFG can be written after applying Eqs. 

(2.15), (2.18), and (2.19) into Eq. (2.24) as:  

Δ𝑘 =
1

𝑐
(𝑛𝑝𝜔𝑝 − 𝑛𝑠𝜔𝑠 − 𝑛𝑖𝜔𝑖)                                         (2.28) 

Note that the DFG conversion must satisfy the photon energy conservation law as well:  

𝜔𝑖 = 𝜔𝑝 − 𝜔𝑠                                                      (2.29) 

𝐼𝑖 will increase if the interacting waves travel at the same velocity or are phase-matched 

(Δ𝑘 = 0). If the phase matching is not satisfied (Δ𝑘 ≠ 0), the accumulated energy of the 

2𝜋 4𝜋 2𝜋 −4𝜋 

Δ𝑘𝐿 

si
n
c2
( Δ
𝑘
𝐿
/2
𝜋
)  

Figure 2.2: Sinc(Δ𝑘𝐿/2𝜋) factor by which the generated wave intensity 𝐼𝑖 is reduced.  

_ 
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DFG wave (idler wave) will be transferred back to the pump and signal waves as they travel 

through the medium. The idler wave intensity will fluctuate between maximum and zero 

as a kind of oscillation. Figure (2.3) illustrates how the generated wave intensity increases 

at phase matching and oscillates between maximum and zero when phase matching is not 

satisfied. The idler intensity reaches its first maximum at a certain length (called the  

coherence  length [30] 𝐿𝑐𝑜ℎ) before declining again to zero: 

𝐿𝑐𝑜ℎ = 𝜋/|Δ𝑘|                                                  (2.30) 

Although phase matching can be achieved where the medium is not dispersive in such a 

manner as  𝑛𝑝 = 𝑛𝑠 = 𝑛𝑖, most crystals in nature are dispersive. 

2.3 Phase Matching  

Phase matching is achieved only if the three interacting waves travel at the same velocity. 

Unfortunately, this will occur only if the nonlinear medium is nondispersive. There are two 

Figure 2.3: Idler wave intensity as a function of propagation length 𝐿. In non-matched 

phase cases, the energy flows backward and forward between the idler and the applied 

waves and the pump and the signal every 2𝐿𝑐𝑜ℎ. In the matched phase case, the 

intensity increases with the propagation length 𝐿. 

𝐿/𝐿𝑐𝑜ℎ 
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r 
w
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e 
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n
si

ty
 [
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.]
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main methods to overcome phase mismatching: birefringence phase matching (BPM) and 

quasi-phase matching (QPM). 

2.3.1 Birefringent Phase Matching (BPM) 

This method uses the anisotropic properties of nonlinear crystals, such as uniaxial or biaxial 

properties, to compensate the phase-mismatch caused by the dispersion. The crystals are 

usually characterized by three principal indices 𝑛𝑥 , 𝑛𝑦, and 𝑛𝑧 along three principal axes 

𝑥, y, and 𝑧, respectively.  If the crystal is uniaxial, it is characterized by two equal principal 

indices, known as ordinary indices 𝑛𝑜, 𝑛𝑜 = 𝑛𝑥 = 𝑛𝑦, while the third one (which is 

different) is known as the extraordinary index 𝑛𝑒, 𝑛𝑒 = 𝑛𝑧 , where  𝑛𝑒 ≠ 𝑛𝑜. The waves 

associated with 𝑛𝑒 are called extraordinary waves (e-waves), while the waves associated 

with  𝑛𝑜 are called ordinary waves (o-waves).   

 Let us consider a second-harmonic generation wave as the simplest example to show 

how the anisotropic properties of dispersive crystal would overcome a phase-mismatch. 

An efficient second-harmonic wave with a frequency of 𝜔2 can be generated from a wave 

of fundamental frequency 𝜔1if the energy and momentum conservation laws 𝜔2 =     2𝜔1 

and   𝜔2𝑛(𝜔2) = 2𝜔1𝑛(𝜔1), respectively, are satisfied. If the crystal is dispersive and 

isotopic, as shown in Fig. 2.4(a), it is not possible to fulfill the momentum condition, since 

𝑛(𝜔2) ≠ 𝑛(𝜔1), but the anisotropic properties in Fig. 2.4(b) would satisfy the condition 

as 𝑛(𝜔2) = 𝑛(𝜔1). In such cases, the fundamental wave is an e-wave and the second-

harmonic wave is an o-wave. The same situation can be applied to the DFG phase-matching 

condition. There are two main classification for DFG phase matching: type I is where the 

idler and the signal waves are parallel, and type II is where the idler and the signal are 

orthogonal. Equations (2.31) and (2.32) denote the momentum conservation conditions for 

DFG and apply type I and type II phase matching, respectively. 

  𝜔𝑖𝑛𝑜(𝜔𝑖) = 𝜔𝑝𝑛𝑒(𝜔𝑝) − 𝜔𝑠𝑛𝑜(𝜔𝑠)                                        (2.31) 

𝜔𝑖𝑛𝑜(𝜔𝑖) = 𝜔𝑝𝑛𝑜(𝜔𝑝) − 𝜔𝑠𝑛𝑒(𝜔𝑠)                                        (2.32)                              
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Equations (2.31) and (2.32)  can be satisfied by tuning the pumping frequency 𝜔𝑝 or the  

signal frequency 𝜔𝑠, or by adjusting the crystal temperature or the incident angle of the 

pump wave with respect to the optic axis of crystal [7], [30], [32], [33]. 

 

2.3.2 Quasi-Phase Matching (QPM) 

QPM uses a periodic structure of modulated nonlinear coefficient 𝑑𝑒𝑓𝑓 alternating between    

positive and negative at each coherence length 𝐿𝑐𝑜ℎ = 𝜋/|Δ𝑘|, with period Λ = 2𝐿𝑐𝑜ℎ. The 

accumulated phase-mismatch is compensated by adding 𝜋 at each coherence length 

𝐿𝑐𝑜ℎ, as shown in Fig. 2.5. It is more convenient to write the phase-matching condition in 

Eq. (2.28) in terms of wavelengths instead of frequencies by including the QPM term:   

Δ𝑄𝑃𝑀 = Δ𝑘 −
2𝜋

Λ
= 𝑛𝑝

2𝜋

𝜆𝑝
− 𝑛𝑠

2𝜋

𝜆𝑠
− 𝑛𝑖

2𝜋

𝜆𝑖
−
2𝜋

Λ
                               (2.33) 

Figure (2.6) shows how the QPM boosts the idler generated wave intensity 𝐼𝑖, compared 

with the case of phase-mismatch. 

By comparing QPM with BPM, we can see the advantages and disadvantages of both 

methods. In QPM, it is not necessary to choose specific polarization directions of the 

applied waves to achieve phase matching, while it is necessary in BPM. On the other hand, 

𝜔 𝜔2 𝜔2 𝜔1 𝜔 𝜔1 

𝑛𝑒 

𝑛𝑜 

𝑛
(𝜔

) 

𝑛
(𝜔

) 
Figure 2.4: (a) Typical dispersion relation of an isotopic crystal showing that it is not 

possible to achieve the momentum conservation law, 𝜔2𝑛(𝜔2) = 2𝜔1𝑛(𝜔1), because 

of  𝑛(𝜔2) ≠ 𝑛(𝜔1). (b) Anisotropic-dispersion properties show that 𝑛(𝜔2) = 𝑛(𝜔1) 
to satisfy the conservation law of photon momentum, 𝜔2𝑛(𝜔2) = 2𝜔1𝑛(𝜔1). 

(𝑎) (𝑏) 
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the fabrication of the QPM crystal is a drawback compared with BPM which exists in some 

crystals in nature [34]–[36]. 

 

 

Λ = 2𝐿coh 

𝑧 

𝑑𝑒𝑓𝑓 

−𝑑𝑒𝑓𝑓 

Figure 2.5: Nonlinear crystal with modulated nonlinear coefficient  

𝑑𝑒𝑓𝑓, alternating between  positive and negative at each coherence 

length 𝐿𝑐𝑜ℎ = 𝜋/|Δ𝑘|, with period Λ = 2𝐿𝑐𝑜ℎ. 
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Figure 2.6: Quasi-phase matching and non-phase matching curves showing how the 

QPM boosts the generated intensity compared with an oscillation in the phase-

mismatching case. 
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Chapter 3 

Optical Metamaterials    

3.1 Introduction   

Metamaterial is generally defined as a composite structure of subwavelength particles of 

different materials and is usually built in a periodic manner of the particles. The size and 

shape of the particles, along with the constituent materials, determine the metamaterial’s 

characteristics. An optical metamaterial medium is treated as inhomogeneous at the 

microscopic scale, but its electromagnetic response is expressed in terms of homogenized 

effective constituent parameters (permittivity and permeability) at the macroscopic scale 

[25]. 

The first mention of metamaterials occurred in 2000, in a paper by Smith et al.[37] . 

The research experiment demonstrated the existence of a negative index of a split-ring-

resonator (SRR) structure at microwave frequencies. A negative index medium does not 

exist in nature, which is why it is called a metamaterial [25]. The term “negative index 

material” was first used in 1968 by [38], who showed theoretically the possibility to have 

a material with negative permittivity and permeability that results in a negative index. Note 

that it is not necessary for a structure to have a negative index property in order for it to be 

considered a metamaterial. Metamaterials can be any structure of metals, dielectric or 

semiconductors whose particle size and separation are at the subwavelength scale.  

There are two main approaches to characterizing metamaterial structures in terms of 

their electromagnetic constitutive parameters: electric permittivity 𝜀 and magnetic 

permeability 𝜇. The first approach uses the effective medium theory, while the second 

extracts them from scattering parameters. Both methods are presented in this chapter.   

3.2 Effective Medium Theory  

The effective medium theory determines macroscopically the electromagnetic parameters 

(permittivity, permeability) of a composite structure by averaging the constitutive 

parameters of its particles that are subwavelength in size. Some articles refer to the particles 

as “scatters”   [39]–[41]. In the optical fields where the wavelengths are in the range of 



16 
 

 
 

hundreds of nanometres, the particles are nanoparticles. Figure 3.1 shows the simplest 

particle shape of a spherical with permittivity 𝜀𝑝, embedded in a host material with 

permittivity 𝜀𝑠. The particle is much smaller in size compared with the wavelength, 𝑎 ≪ 𝜆; 

however, the interaction of the particle with electromagnetics can be analyzed by quasi-

static approximation  [42]–[44]. 

 

 

The effective permittivity of the spherical particle and the host material is given by  [28], 

[45]: 

𝜀𝑒𝑓𝑓 = 𝜀ℎ
𝑓𝜀ℎ(𝜀𝑝−𝜀ℎ)

𝜀ℎ+(1−𝑓)(𝜀𝑝−𝜀ℎ)
1

3

                                                (3.1) 

where 𝑓 is the filling ratio of the particles inside the host. The relation in Eq. (3.1) is known 

as Maxwell-Garnett. If the particle is not spherical, the relation in Eq. (3.1) should be 

modified to be in a more general form by adding a geometrical parameter known as the 

depolarization factor 𝑞𝑖: 

𝜀𝑒𝑓𝑓 = 𝜀ℎ
𝑓𝜀ℎ(𝜀𝑝−𝜀ℎ)

𝜀ℎ+(1−𝑓)(𝜀𝑝−𝜀ℎ)𝑞𝑖
                                                (3.2) 

Figure 3.1: Spherical particle with permittivity 𝜀𝑝embedded in a host material with 

permittivity 𝜀ℎ. 
 

𝜀𝑝 

𝑎 

𝜀ℎ 
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where 𝑖 = 1, 2, and 3 represents the three principal axes of the particle, with the 

corresponding depolarization factors of 𝑞1 𝑞2, and  𝑞3 [40]. The depolarization factors of 

a particle shape depend on the ratio of its principal axes, not on their absolute values, and 

must satisfy 𝑞1 + 𝑞2+𝑞3 = 1. If the particle is a sphere, then 𝑞1 = 𝑞2 = 𝑞3 = 1/3 and the 

effective permittivity 𝜀𝑒𝑓𝑓 will be as in Eq. (3.1). The depolarization factors of different 

shapes of ellipsoids and circular cylinder can be found in [41], [46]–[48]. A needle shape 

is a special case of ellipsoid and has the depolarization factors of 𝑞1 = 0  and 𝑞2 = 𝑞3 =

1/2, while a disk is a special case of a circular cylinder and has depolarization factors of 

𝑞1 = 1 and 𝑞2 = 𝑞3 = 0. Cylindrical nanowires and longitudinal holes are special cases of 

a circular cylinder shape with depolarization factors of 𝑞1 = 0  and 𝑞2 = 𝑞3 = 1/2. 

3.3  Drude Model-Effective Permittivity 

The plasma frequency in a bulk of conductors such as metals depends on the electron 

density and mass. It is usually in the spectrum region of near ultraviolet (UV) or visible 

[25]. In [49], Pendry showed that the plasma frequency can be shifted toward lower 

frequencies up to the far-infrared spectrum region by using arrays of periodic infinite thin 

metallic wires. Figure 3.2 shows a two-dimensional cubic periodic array of thin metal wires 

with conductivity 𝜎, radius 𝑟, and period 𝑑, embedded in a host material of permittivity 𝜀ℎ. 

The wire boundary reduces the average electron density and increases the effective electron 

mass, thus reducing the plasma frequency [25], [49]. The Drude model effective 

permittivity for fields parallel to the wires is given by [25], [49]: 

𝜀𝑒𝑓𝑓 = 𝜀ℎ −
𝜔𝑝
2

𝜔(𝜔+𝑗𝜀𝑜𝑑2𝜔𝑝
2/𝜋𝑎2𝜎)

                                              (3.3) 

where the plasma frequency of the wire media given by:  

𝜔𝑝
2 =

2𝜋𝑐2

𝑑2 𝑙𝑛(𝑑/𝑎)
                                                          (3.4) 

However, the above-mentioned methods for finding effective permittivity have some 

restrictions. Using the effective medium theory makes it difficult to find the depolarization 

factors for some complex shapes, while the Drude model method determines the 
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permittivity only along the wires and the orthogonal permittivity is approximated to be 

equal to the host material permittivity 𝜀ℎ. 

 

 

3.4 Extracting Effective Permittivity from Scattering Parameters  

Metamaterial is a structure with geometrical properties that are much smaller than the 

operating wavelength. It is important to compute the effective electromagnetic parameters 

of metamaterial, such as permittivity 𝜀, permeability 𝜇, refractive index 𝑛, and wave 

impedance 𝜂. These four parameters are interrelated complex quantities. The parameters 𝜀 

and 𝜇 form the constitutive relations of the electromagnetic response of material to its 

excitation and are part of the Maxwell’s equations. The other parameters, 𝑛 and 𝜂, are 

mostly related to the wave propagation and boundary conditions between different 

materials within a structure. 

Although metamaterial structure is treated as inhomogeneous at the microscopic 

scale, its electromagnetic macroscopic response is expressed in terms of homogenized 

effective parameters. Figure 3.3 shows a schematic of a symmetrically homogenous slab 

of  thickness 𝐿 that represents a metamaterial with macroscopic scattering parameters (S-

parameters ) [50]. Due to the symmetry properties of the slab, 𝑆22 = 𝑆11and 𝑆12 = 𝑆21. 

Figure 3.2: Two-dimensional arrays of infinite thin metal wires of radius 𝑟 and period 𝑑, 

embedded in a host material of permittivity 𝜀ℎ. 

2𝑟 𝑑 

𝜀ℎ 
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These scattering parameters are entirely related to the electromagnetic parameters,  𝜇 , 𝑛 , 

and 𝜂. 

There are numerous ways to determine complex effective electromagnetic parameters 

from a macroscopic response. One method uses S-parameters and only requires knowing 

the magnitude and phase of the parameters. 𝑆11 and 𝑆21, as shown in Fig. 3.3, represent the 

reflection and transmission parameters, respectively. 𝑆11 is a fraction of the incident field 

that is reflected, while 𝑆21is a fraction of the transmitted field through the slab thickness 𝐿.  

S-parameter terminology is   primarily used at microwave frequencies but can be used at 

optical frequencies as well.   

  

  

 

 

 

 

 

 

 

 

The method relies on the measurements or full-wave numerical simulation of a slab of 

metamaterial structure to compute the S -parameters. If the homogenous slab of thickness 

𝐿 in Fig. 3.3 is placed in a vacuum (free space ), and a plane wave with wavenumber 𝑘𝑜 is 

applied normally to the slab, the index 𝑛 and the wave impedance 𝜂 will be related to the 

S -parameters 𝑆11  and 𝑆21 in accordance with the following equations [50]: 

 

𝑛 = ±
1

𝑘𝑜𝐿
𝑐𝑜𝑠−1 (

1

2𝑆21
2 [1 − 𝑆11

2 + 𝑆21
2 ])                                       (3.5) 

 

𝜂 = ±√
(1+𝑆11)

2−𝑆21
2

(1−𝑆11)
2−𝑆21

2                                                            (3.6)                                                   

where 𝑘𝑜 is a free space wavenumber. The index 𝑛 and the impedance 𝜂 are related to the 

S-parameters based on Fresnel’s equations. The index 𝑛 in Eq. (3.5) is a complex number, 

𝑆21 𝑆11 

Figure 3.3: Symmetrically homogenous metamaterial structure slab. 

𝐿 0 
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with 𝑅𝑒(𝑛) referring to the refractive index and 𝐼𝑚(𝑛) referring to the absorption index, 

as given in equations (3.7) and (3.8), respectively: 

𝑅𝑒(𝑛) = ±𝑅𝑒 {
1

𝑘𝑜𝐿
𝑐𝑜𝑠−1 (

1

2𝑆21
2 [1 − 𝑆11

2 + 𝑆21
2 ])} +

2𝑚𝜋

𝑘𝑜𝐿
                      (3.7) 

𝐼𝑚(𝑛) = ±𝐼𝑚 {
1

𝑘𝑜𝐿
𝑐𝑜𝑠−1 (

1

2𝑆21
2 [1 − 𝑆11

2 + 𝑆21
2 ])}                          (3.8) 

The sign of the  𝐼𝑚(𝑛) in Eq. (3.8) is selected to be positive in order to satisfy the causality 

condition. This condition requires the imaginary part of the index to be positive for any 

passive material. The sign selected in Eq. (3.8) must also be applied to Eq. (3.7), since they 

are both one complex solution of Eq. (3.5).  

In the real part of the index 𝑅𝑒(𝑛) in Eq. (3.7), it is possible to have a positive or 

negative sign., based on the causality condition that passive materials have positive or 

negative refractive indices. Caution should be used to select the sign of 𝑅𝑒(𝑛), as the 

positive and negative values are possible solutions. To choose the correct sign, it is 

essential to be familiar in advance with the expected value of 𝑅𝑒(𝑛), and 𝑅𝑒(𝑛) must be 

continuous across a wide range of wavelengths [25]. The boundaries of the slab and 

thickness 𝐿  should be carefully selected to obtain the right results. The S-parameters are 

strongly related to the boundary locations of the slab and thickness, in that 𝑆11 depends on 

the boundary location and 𝑆21 depends on the thickness 𝐿. 

Another method is proposed by [51] to retrieve 𝑛 from the S -parameters given by:  

𝑅𝑒(𝑛) =
1

𝑘𝑜𝐿
{𝐼𝑚[𝑙𝑛(𝑒𝑗𝑛𝑘𝑜𝐿)] + 2𝑚𝜋}                                        (3.9)  

𝐼𝑚(𝑛) = −𝑗
1

𝑘𝑜𝐿𝐿
{𝑅𝑒[𝑙𝑛(𝑒𝑗𝑛𝑘𝑜𝐿)]}                                       (3.10) 

where  

𝑒𝑗𝑛𝑘𝑜𝐿 =
𝑆21

1−𝑆11
η−1

η+1

                                                     (3.11) 

This method starts by obtaining the wave impedance 𝜂 in Eq. (3.6), and then applying 𝜂 in 

Eq. (3.11) to compute the complex exponential function 𝑒𝑗𝑛𝑘𝑜𝐿. The sign of the impedance 

𝜂 is selected such that the imaginary part of the index 𝐼𝑚(𝑛) in Eq. (3.10) must be positive 

for the causality condition.  Both methods were used in this work for the same goal. Based 
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on the results obtained using the two methods, the first one was more robust and had fewer 

errors. 

Selecting the thickness of the slab 𝐿 had a huge impact on the achieved results. The 

main criterion used to determine whether we had the correct results was the continuity of 

the retrieved results over a range of wavelength of interest. The effective medium theory 

was used as a third method, mainly as a comparison to verify our retrieved results from the 

S-parameters. The structures investigated in this work are periodic, and it was found that 

the corrected results were obtained when we used the thickness 𝐿 as being equal to one 

period length of the structure. 

The permittivity 𝜀 and permeability 𝜇 can be found using the retrieved index 𝑛 and the 

impedance 𝜂, based on the following relations [25], [50], [51]: 

𝜀 =
𝑛

𝜂
                                                            (3.12) 

𝜇 = 𝑛𝜂                                                         (3.13) 

The parameters 𝜀 and 𝜇 are constitutive parameters that relate the material response to its 

excitation. If the magnetic response of a material at optical frequencies is negligible [25], 

then we might use  𝜇 = 1, the value of the free space medium. Therefore, we need only to 

compute 𝜀. Combining equations (3.12) with (3.13) and using 𝜇 = 1, the effective 

permittivity 𝜀 is given by: 

𝜀 =  𝑛2                                                      (3.14)             

Effective medium theories relate the permittivity of individual elements of a composed 

structure to obtain the resultant effective one. The relation in Eq. (3.14) was used to 

compute the permittivity obtained by the retrieval method from the S-parameters with that 

obtained by the effective medium theory.     
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Chapter 4 

Optical Analysis of GaAs and Ag Nanowire Metamaterial from 

Scattering Parameters at Near- and Mid-IR Frequencies  

4.1 Abstract  

Phase matching in optical difference frequency generation (DFG) with the nonlinear 

medium gallium arsenide (GaAs) is unachievable due to the dispersion and isotropic 

properties of GaAs. However, an anisotropic property can compensate for the dispersion. 

This study optically characterizes an anisotropic metamaterial nanostructure of silver (Ag) 

nanowires embedded in GaAs, by using finite difference time domain (FDTD) simulation. 

A transparent region with very low losses is defined for DFG waves with polarization 

parallel and orthogonal to the wires.  

4.2 Introduction  

A zinc-blende (cubic) lattice structure with isotropic linear properties has a large second-

order nonlinear susceptibility 𝜒(2) and a wide optical transmission window of λ = 1 µm to 

17 µm[14]. These properties make GaAs a good choice for nonlinear optical interaction 

processes of three-wave mixing (parametric interaction processes) in the mid-IR spectrum, 

for example, optical frequency conversion, optical parametric amplification, or optical 

parametric oscillation [17], [18], [20], [23].  A nonlinear interaction process involves an 

energy exchange among the waves to be mixed. An efficient interaction requires energy 

and momentum conservation of the mixed waves. Energy conservation involves frequency 

matching, while momentum conservation involves phase matching. 

Phase matching among waves with different frequencies is not achievable in an isotropic 

dispersive GaAs medium, because the waves travel with different velocities. However, 

birefringence with an anisotropic medium can compensate for the dispersion[52]. Inserting metal 

nanowires such as silver (Ag) nanowires into a GaAs medium results in a medium with an 

anisotropic linear property. Phase-matched difference generated wavelengths from 2.8 µm to 11 
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µm have been achieved by using artificial birefringence in a structure of GaAs with silver 

nanowires[53]. 

It has been demonstrated that a composite of metal nanowires in a polymer structure can be 

used to achieve extreme anisotropic properties at optical and near-IR frequencies [26]. A 

homogeneous effective anisotropic medium can be realized via a 3D nanowire medium in the 

optical frequency region [29]. It has been shown that parallel wire media possess very strong spatial 

dispersion effects at any frequency[54]. The periodic arrangement of thin metallic wires has been 

analyzed numerically and characterized at microwave frequencies as a low loss medium for waves 

with polarization parallel  to the wires [55].  In addition, a theoretical analytical and numerical study 

has investigated thermal emission from a finite metamaterial medium of silver nanowires for waves 

with polarization parallel to the wires [56]. A bulk medium of silver nanowires has demonstrated 

that the medium exhibits negative refraction at any angle of light incidence in the visible 

frequencies[28].  

In the present study, a metamaterial nanostructure medium of GaAs with embedded 

silver nanowires is characterized at the frequencies of the optical transparency region of 

GaAs, from 𝜆 = 1 µm to 17 µm, for an E field polarized parallel (𝐸∥) and orthogonally (𝐸⊥) 

to the nanowires. The characterization is defined by the linear properties of the refractive 

and absorption indices. A finite difference time domain (FDTD) method was employed to 

determine the scattering parameters (S-parameters) used to find the refractive and 

absorption indices. The aim of this research is to contribute to an understanding of the 

GaAs and Ag nanowire medium by characterizing it at near- and mid-IR frequencies, for 

field polarizations parallel and orthogonal to the wires.   

4.3 Computing Optical Linear Properties from the S-Parameters  

Although a metamaterial medium is treated as inhomogeneous at the nanoscale, its 

electromagnetic response is expressed in terms of homogenized effective parameters. 

Fig.4.1(a) shows the metamaterial structure of GaAs and a two-dimensional square of 

embedded arrays of silver nanowires, with period 𝑑 and radius 𝑎. 

 A thin slab of metamaterial medium is selected to compute the S-parameters [50], 

[51], [57]. Fig. 4.1 (b) illustrates the top view of a slab of the medium of thickness 𝑑, with 

wires along the 𝑥-axis with period 𝑑. It is necessary to compute the complex index 𝑛, 𝑛 =
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𝑅𝑒(𝑛) + 𝑗𝐼𝑚(𝑛) from the S-parameters for the E field polarized parallel (𝐸∥) and 

orthogonally (𝐸⊥) to the wires. 𝑅𝑒(𝑛) represents the refractive index and 𝐼𝑚(𝑛) represents 

the absorption index for passive materials.  

 

If a plane wave is applied normally to the boundary of the slab at the origin 𝑧 = 0, the structure 

index 𝑛 and impedance 𝜂 are related to the S-parameters 𝑆11 (reflection coefficient) and 𝑆21 

(transmission parameter) in accordance with the following equations[51]:  

                                                      𝜂 = ±√
(1+𝑆11)2−𝑆21

2

(1−𝑆11)2−𝑆21
2                                                                  (4.1) 

                                                          𝑒𝑗𝑛𝑘𝑜𝐿 =
𝑆21

1−𝑆11
𝜂−1

𝜂+1

                                                                     (4.2) 

The real and imaginary parts of the index 𝑛, 𝑅𝑒(𝑛), and 𝐼𝑚(𝑛) are derived from Eq. (4.1) 

and Eq. (4.2) as follows[51] : 

𝑅𝑒(𝑛) =
1

𝑘𝑜𝐿
{𝐼𝑚[𝑙𝑛(𝑒𝑗𝑛𝑘𝑜𝐿)] + 2𝑚𝜋}                                  (4.3a) 

𝐼𝑚(𝑛) = −𝑗
1

𝑘𝑜𝐿
{𝑅𝑒[𝑙𝑛(𝑒𝑗𝑛𝑘𝑜𝐿)]}                                      (4.3b) 

 

Here 𝐿 and 𝑘𝑜  are the slab thickness and the wave number of the incident wave in free 

space, respectively, and 𝑚 is an integer number. Due to the symmetry properties of the 

Figure 4.1: (a) Nanostructure of GaAs as host medium with embedded square arrays 

of silver nanowires with period 𝑑 and radius 𝑎. (b) Top view of a slab of the structure.  
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slab, 𝑆22=𝑆11 and 𝑆12=𝑆21. The sign of the impedance 𝜂 in Eq. (4.1) is chosen so that the 

imaginary part of the index 𝐼𝑚(𝑛) in Eq. (4.3b) is positive, to satisfy the causality 

condition. The causality condition requires the imaginary part of the index to be positive 

for any passive material [58], [59]. The FDTD simulation was applied to the slab by using 

the commercial software tool RSoft FullWAVE®. A periodic boundary condition was 

implemented in the transverse direction along the 𝑥-axis, perpendicular to the propagating 

wave, as shown in Fig.4.1(b). The wires extend unbounded along the 𝑦-axis. 

Experimentally measured data for the refractive and absorption indices of GaAs [60] and 

Ag [61], from 𝜆 = 1 μm to 17 μm, were used in the FDTD simulation. Fig. 4.2(a) shows 

the real and imaginary parts of the Ag indices 𝑅𝑒(𝑛𝐴𝑔) and 𝐼𝑚(𝑛𝐴𝑔), respectively. 

Fig.4.2(b) illustrates the real refractive index of GaAs, 𝑅𝑒(𝑛𝐺𝑎𝐴𝑠), where the imaginary 

part is negligible.  

 

 

 Fig. 4.3  shows the computed S-parameters, magnitude and phase, for 𝐸∥ and 𝐸⊥, at 

𝑑 = 150 nm and 𝑎 = 25 nm.The geometric parameters 𝑑 and 𝑎 have been chosen based 

on the long wavelength limit for metamaterials, (𝑑, 𝑎) ≪ 𝜆. For 𝐸∥, as the wavelength 

decreases below 2 µm, the reflection declines and the transmission increases, implying that 

the structure tends to behave as a transparent medium with very little loss. At longer 

wavelengths, with much stronger interaction between the parallel fields and the wires, the 

structure acts as a reflector. For 𝐸⊥, transmission is high for the entire region of interest, 

(a) (b) 

Figure 4.2: Experimental measured data of the refractive and the absorption 

indices, from 1 µm to 17 µm. (a) Silver. (b) GaAs. 
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from 𝜆 = 1 μm to 17 μm, especially for 𝜆 > 3 μm. At shorter wavelengths of 𝜆 < 3 μm, 

the structure behaves as a transparent dielectric with little absorption. 

 

Fig.4.4 illustrates the two-dimensional electric field distribution for the parallel 

polarization 𝐸∥, represented by 𝐸𝑦, at 𝑑 = 200 nm and 𝑎 = 35 nm, for 𝜆 = 1 μm and 

1.8 μm.  The field distribution was obtained using FDTD simulation by applying a plane 

wave of unity intensity. Additional details on FDTD simulation using the RSoft tool are 

given in Appendix A. The distribution illustrated in Fig. 4.4(b) is at 𝜆 = 1.8 μm, which 

shows that the transmission has declined compared with the distribution of  𝜆 = 1 μm 

depicted in Fig. 4.4(a). This implies that the loss will increase at longer wavelengths. The 
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Figure 4.3: S-parameters at 𝑑 = 150 nm and 𝑎 = 25 nm, for parallel polarization 𝐸∥ 
and orthogonal polarization 𝐸⊥. (a) Magnitude of 𝑆21 and 𝑆11 for 𝐸∥. (b) Phase of 𝑆21 
and 𝑆11 for 𝐸∥. (c) Magnitude of 𝑆21 and 𝑆11 for 𝐸⊥. (d) Phase of 𝑆21 and 𝑆11 for 𝐸⊥. 
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distribution also indicates that the wavelengths inside the structure for the corresponding 

free space incident wavelengths,  𝜆 = 1 μm and   𝜆 = 1.8 μm, became shorter, with values 

of 0.3 μm and 1.25 μm, respectively.  As a result, the effective refractive indices are 3.33 

and 1.44 for  𝜆 = 1  μm and 1.8 μm, respectively. This indicates strong normal dispersion 

 

Figure 4.4: Field distribution for the parallel polarization  𝐸∥ represented by 𝐸𝑦. at 

𝑑 = 200 nm and 𝑎 = 35 nm. (a) 𝜆 = 1 μm. (a).  (b) 𝜆 = 1.8 μm. 

(a) 

(b) 
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, as the refractive index decreases with longer wavelengths. Figure (4.5) illustrates the two-

dimensional electric field distribution for the orthogonal polarization 𝐸⊥, represented by 

𝐸𝑥,  at 𝑑 = 200 nm and 𝑎 = 35 nm, for 𝜆 = 1 μm and 1.8 μm. The distribution depicted 

in Fig. 4.5b is for 𝜆 = 1.8 μm, which shows that the transmission has increased compared 

with 𝜆 = 1 μm depicted in Fig 4.5a.  

.  

 

 

(a) 

(b) 

Figure 4.5: Field distribution for the orthogonal polarization 𝐸⊥ represented by 

𝐸𝑥 at 𝑑 = 200 nm and 𝑎 = 35 nm. (a) 𝜆 = 1 μm. (a).  (b) 𝜆 = 1.8 μm. 
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 The wavelengths inside the structure for the corresponding free space incident 

wavelengths,  𝜆 = 1 μm and   𝜆 = 1.8 μm, became shorter, with values of  0.22 μm  and 

0. 25 μm, respectively.  As a result, the effective refractive indices are 4.54 and 4, for  𝜆 =

1  μm and 1.8 μm, respectively. This indicates that the normal dispersion is not strong. 

Figure 4.6 shows the electric field distribution for parallel 𝐸𝑦 and orthogonal 𝐸𝑥 

polarizations at 𝑑 = 200 nm and 𝑎 = 35 nm, for 𝜆 = 3.5  μm.  It is obvious that the 

parallel polarized field  𝐸𝑦 is highly reflected and decaying inside the structure, while the 

orthogonal polarized field 𝐸𝑥 is partially reflected and propagating through the structure. 

The parallel polarization is attenuated due to the high absorption by the silver nanowires, 

whereas the wires have less effect on the orthogonal polarization. As result, the longer 

wavelengths of parallel polarization experience higher loss compared to the shorter 

wavelengths, and vice-versa for the orthogonal polarizations. 

Figure 4.7 shows the real and imaginary refractive and absorption indices for 𝐸∥ and 

𝐸⊥.  𝑅𝑒(𝑛∥), 𝐼𝑚(𝑛∥), 𝑅𝑒(𝑛⊥) and 𝐼𝑚(𝑛⊥) were computed from the S-parameters presented 

in Fig.4.3 by using the equations (4.3a) and (4.3b). It can be seen from 𝑅𝑒(𝑛∥) and 𝑅𝑒(𝑛⊥) 

in Figures 4.7(a) and 4.7(b), respectively, that the structure can be characterized as an 

anisotropic medium with uniaxial properties. 

The 𝑅𝑒(𝑛∥) dispersion function shown in Fig. 4.7(a) changes from normal dispersion 

to anomalous dispersion at the plasma frequency 𝑓𝑝 of the plasma wavelength 𝜆𝑝 =

1.93 μm. At wavelengths shorter than the plasma wavelength, 𝜆 < 𝜆𝑝, 𝑅𝑒(𝑛∥) represents 

normal dispersion, the 𝐼𝑚(𝑛∥) shown in Fig. 4.7(c) is very small, and the structure behaves 

as a transparent dielectric. For 𝜆 > 𝜆𝑝, 𝑅𝑒(𝑛∥) represents anomalous dispersion, 𝐼𝑚(𝑛∥) 

increases, and the structure acts as a strong reflector and absorber.  

For 𝐸⊥interactions, 𝑅𝑒(𝑛⊥) in Fig. 4.7(b) represents normal dispersion, the 𝐼𝑚(𝑛⊥) 

shown in Fig.4.7(d) is very small especially for 𝜆 > 3 𝜇𝑚, and the structure behaves as a 

dielectric over the entire range of 𝜆 = 1 μm to 17 μm.  
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Figure 4.6: Field distribution at 𝑑 = 200 nm and 𝑎 = 35 nm, and 𝜆 = 1 μm. (a)  

Parallel polarization to the wires 𝐸∥ represented by 𝐸𝑦. (b) Orthogonal polarization 

to the wires  𝐸⊥  represented by 𝐸𝑥. 

(b) 

(a) 



31 
 

 
 

 

The achieved contrasting dispersion results of 𝑅𝑒(𝑛∥) and 𝑅𝑒(𝑛⊥) are very promising for 

the use of this structure in birefringent phase matched optical DFG. DFG for GaAs requires 

the three interacting waves to be orthogonal, based on the nonzero elements of the second-

order susceptibilities of GaAs  𝜒𝑥𝑦𝑧
(2)

 = 𝜒𝑦𝑧𝑥
(2)

= 𝜒𝑧𝑥𝑦
(2)

 [62]. Mid-IR waves with wavelengths 

longer than 3 µm are generated by the DFG of two near-IR waves with wavelengths shorter 

than 2 µm. Due to the very small losses of the structure at wavelengths shorter than 2 µm 

for 𝐸∥, one of the two applied near-IR waves is polarized parallel to the wires, while the 

second applied near-IR wave and the generated mid-IR waves are orthogonally polarized. 

𝐼𝑚
(𝑛
⊥
) 

𝑅
𝑒
(𝑛
⊥
) 

𝑅
𝑒
(𝑛
∥
) 

𝐼𝑚
(𝑛
∥
) 

(b) (a) 

Wavelength Wavelength 

Figure 4.7: Refractive and absorption indices at 𝑑 = 150 nm and a= 25 nm, for 

parallel polarization 𝐸∥ and orthogonal polarization 𝐸⊥. (a) and (c) show 𝑅𝑒(𝑛∥) and 

𝐼𝑚(𝑛∥) for 𝐸∥, respectively. (b) and (d) show 𝑅𝑒(𝑛⊥)  and 𝐼𝑚(𝑛⊥) for 𝐸⊥, 

respectively.  

(c) (d) 
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𝜆𝑝 
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The magnetic permeability of natural materials at optical frequencies is always close 

to the free space value of unity ( 𝜇 = 1) [25]. Some structures with sub-wavelength 

dimensions may achieve a magnetic response. However, since no magnetic response is 

expected for the structure under consideration, the permittivity 𝜀 is determined by 𝜀 = 𝑛2 

[55], [63]. Figures 4.8 and 4.9 show the real and imaginary parts of the parallel and 

orthogonal permittivity computed from the corresponding refractive indices shown in Fig. 

4.7. 

 

 𝑅𝑒(𝜀∥) in Fig.4.8 exhibits a decrease from positive values to negative values, with a 

value of zero at the plasma wavelength 𝜆𝑝 = 1.93 μm. This is the plasma wavelength also 

shown in Fig.4.7, where the refractive index changes from normal to anomalous dispersion. 

The corresponding imaginary permittivity at the plasma wavelength is 𝐼𝑚(𝜀∥) = 0.42. At 

wavelengths longer than the plasma wavelength, 𝜆 > 𝜆𝑝, 𝑅𝑒(𝜀∥) becomes negative, 

𝐼𝑚(𝜀∥) increases, and the structure acts as a strong reflector. In Fig.4.9, 𝑅𝑒(𝜀⊥) is positive 

and 𝐼𝑚(𝜀⊥) is very small, especially for 𝜆 > 3 μm. 

The transparent region for parallel polarization waves can be widened either by 

decreasing the wire radius 𝑎, or by increasing the period 𝑑. Fig.4.10 shows different S-

𝑅𝑒(𝜀∥) 

𝐼𝑚(𝜀∥) 

Figure 4.8: 𝑅𝑒(𝜀∥) and 𝐼𝑚(𝜀∥) at = 150 nm and 𝑎 = 25 nm, computed from the 

corresponding refractive indices that are shown in Fig. 4.7 (a) and Fig.4.7(c).  
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parameter results for 𝐸∥, at wire radii 𝑎 = 15 nm, 25 nm, and 35 nm, with a fixed period 

of 𝑑 = 150 nm.  Fig.4.11 shows 𝑅𝑒(𝑛∥) and 𝐼𝑚(𝑛∥) computed from the S-parameters. A 

smaller radius causes the plasma wavelength to redshift and widens the transparent region.   

 

4.4 Comparison with Drude Model Results 

The Drude model approximation is another method for finding only the parallel effective 

permittivity of a wire medium, as shown in Fig. 4.1(a). If the structure satisfies the long 

wavelength limit (𝑎, 𝑑) ≪ 𝜆, the effective parallel permittivity along the wires is 

represented by the Drude model as [49], [56]: 

𝜀∥ = 𝜀𝐺𝑎𝐴𝑠 −
𝜔𝑝
2

𝜔(𝜔+𝑗𝜀𝑜𝑑2𝜔𝑝
2/𝜋𝑎2𝜎𝐴𝑔)

                         (4.4) 

where 𝜔𝑝 is the plasma frequency, defined as: 

                                     𝜔𝑝
2 =

2𝜋𝑐2

𝑑2 𝑙𝑛(𝑑/𝑎)
                                                            (4.5) 
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Figure 4.9: 𝑅𝑒(𝜀⊥) and 𝐼𝑚(𝜀⊥) at d = 150 nm and 𝑎 = 25 nm, computed from 

the corresponding refractive indices shown in Fig. 4.7 (b) and Fig.4.7(d).  
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𝜀𝐺𝑎𝐴𝑠 is the permittivity of GaAs, and σAg represents the electrical conductivity of silver. The 

experimental data for GaAs permittivity used for the Drude model are the same as those used in 

the FDTD simulation. The corresponding index is defined as 𝑛∥ = ±√𝜀∥. Because the structure is 

passive, the sign of the square root is selected so that the imaginary part is positive. Fig. 4.12 

compares the refractive indices obtained via the Drude model with those obtained from the FDTD 

simulation, at 𝑑 = 150 nm and 𝑎 = 25 nm. The silver conductivity σAg in Eq. (4.4) is 

6.28 × 107Ω−1m−1. The comparison shows excellent agreement at the short wavelengths, with 

a slight discrepancy at longer wavelengths.  

Figure 4.10: S-parameters for wire radius 𝑎 = 15 nm, 25 nm, and 35 nm, with a 

fixed period of 𝑑 = 150 nm, for parallel polarization 𝐸∥. (a) Magnitude of 𝑆21. (b) 

Phase of 𝑆21. (c) Magnitude of 𝑆11. (d) Phase of 𝑆11. 
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4.5 Conclusions 

Optical linear properties of a GaAs and silver nanowire metamaterial have been 

characterized by determining the refractive and absorption indices from the S-parameters. 

A retrieval method was used to extract the indices from the S-parameters. The results show 

Figure 4.11: 𝑅𝑒(𝑛∥) and 𝐼𝑚(𝑛∥) for wire radius 𝑎 = 15 nm, 25 nm, and 35 nm, 

with a fixed period of 𝑑 = 150 nm, computed from the S-parameters presented in 

Fig. 4.10, for 𝐸∥. (a) 𝑅𝑒(𝑛∥). (b) 𝐼𝑚(𝑛∥).   
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Figure 4.12: Comparison of parallel refractive and absorption indices obtained from 

the FDTD simulation and the Drude model, at 𝑑 = 150 nm and a = 25 nm. (a) 

𝑅𝑒(𝑛∥). (b) 𝐼𝑚(𝑛∥). 
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a transparent region for waves with polarization parallel to the nanowires at near-IR 

frequencies. The near-IR transparent region and the anisotropic properties of the nanowires 

can be utilized to compensate for phase mismatching of three-wave mixing in the isotropic-

dispersive GaAs. One of the two near-IR waves is applied with polarization parallel to the 

nanowires, while the second near-IR wave and the generated mid-IR waves are polarized 

orthogonally to the wires. The transparent near-IR region can by widened either by 

decreasing the radius or by increasing the period of the nanowires. To verify the results, 

the FDTD simulation results were compared with those obtained via the Drude model. 

Excellent agreement was achieved at the short wavelengths, with a slight discrepancy at 

longer wavelengths.  
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Chapter 5 

Phase Matching for Difference Frequency Generation in GaAs Via an 

Artificial Birefringence Technique Using Silver Nanowires 

Published in IEEE Photonics Journal, June 2018, Vol. 10, No. 3., 1300110 

DOI:10.1109/JPHOT.2018.2841983 

Copyright © IEEE 

5.1 Abstract  

The lack of anisotropic properties in GaAs prevents the use of birefringence as a phase 

matching technique in three-wave mixing with GaAs as a nonlinear medium. When metallic 

nanowires are embedded in GaAs, the composite structure is characterized as a metamaterial 

with anisotropic properties, if the separation distance between the nanowires is less than the 

wavelengths of the mixed waves. The effective permittivity is used to investigate this 

metamaterial structure with its anisotropic properties theoretically in terms of phase 

matching for difference frequency generation (DFG). The resultant difference frequencies, 

which are in the mid-infrared region, are broadly tunable from 2.8 µm to 11 µm. This tuning 

is performed by varying the pump and the signal wavelengths in the range between 1μm to 

2 µm. The losses of the structure due to absorption are included using the transfer matrix 

method. 

5.2 Introduction  

Phase matching, which involves momentum conservation of the photons, is the most 

important aspect to consider in nonlinear optical frequency mixing[6]. In general, phase 

matching requires the medium to be a non-dispersive material. Although the materials are 

dispersive, phase matching is achieved by using birefringence and quasi-phase matching 

techniques in media made of materials such as periodically poled lithium niobate (PPLN), 

potassium titanyl phosphate (KTP), and barium borate (BBO). Difference frequency 

generation is used to generate optical frequencies that cannot be generated by using 

ordinary laser sources. Most difference frequency generation (DFG) based on parametric 
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wavelength conversion uses nonlinear crystals, such as PPLN, KTP, BBO, and lithium 

niobate[10], [11]. GaAs and InP, with a cubic lattice structure from the III-V 

semiconductor group, are alternative for optical frequency mixing[34]. Optical mixing 

based on InP material for second harmonic generation and optical rectification were 

experimentally verified for 1.55 µm fundamental wavelength[13]. GaAs, with larger 

second-order susceptibility 𝜒(2) and wide transparent infrared optical window, from 1 µm 

to 17 µm, is a better candidate for difference frequency generation[14]. Despite these 

advantages, it is not possible to use birefringence phase matching techniques with GaAs or 

InP, due to their isotropic properties.  

There are other methods for achieving phase matching in III-V semiconductors with a 

cubic lattice structure, for difference frequency generation, such as quasi-phase matching, 

modal phase matching, domain-disordered quasi-phase matching, and suspended GaAs 

waveguides [14], [16]–[18], [64]. Tunable emissions from 6.7 µm to 12.7 µm have been 

demonstrated in a nonguided orientation patterned GaAs [19], and the longest wavelength 

was generated through DFG in AlGaAs waveguide from 7.5 µm to 8.5 µm [20]. 

Phase matching by using artificial anisotropy is possible if a strongly anisotropic 

structure can be obtained. Artificial birefringence using multi-layered GaAs/AlAs was first 

proposed by J. P. van der Ziel [21]. Relatively large birefringence has been demonstrated 

with the multilayer structure of oxidized GaAs/AlAs [22]. Phase matching has been 

achieved for parametric amplification of down conversion by using artificial birefringence 

in multilayer waveguides of oxidized GaAs/AlAs [23]. Phase matching has been 

demonstrated for a DFG by using artificial birefringence with a multilayer structure of 

GaAs/Alx Ga1-x As, with three layers of Alx Ga1-x As and one layer of GaAs [24]. Obtaining 

a large birefringence or a strongly anisotropic structure has been challenging. The use of 

an optical metamaterial with metallic nanowires is an alternative method of obtaining a 

strongly anisotropic structure[25]–[29].  

In the present research, we performed a theoretical investigation of the phase matching 

aspect of DFG in a slab medium of a metamaterial structure of GaAs with permittivity 

𝜀𝐺𝑎𝐴𝑠 as the host material, with inclusions of periodic arrays of silver nanowires. To our 

knowledge, there have been no published attempts made to use nanowires with GaAs 
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metamaterials structure for phase matching to generate mid-infrared wavelengths 

(terahertz frequencies). 

5.3 Theory  

The metamaterial structure that is composite of a dielectric and very thin periodic metallic 

wires could have an effective plasma frequency below the bulk plasma frequency which is 

generally in the ultraviolet (UV) range. The effective plasma frequency is changeable and 

could be reduced to IR, THz, or GHz by changing the period of the wires[49], [56], [65]. 

In metamaterial structures, where metal and dielectric nanoparticles are intermixed 

together within the scale of nanometers, finding the optical response of such structures by 

solving Maxwell’s equations is impossible because of the complexity of the boundary 

conditions. An inhomogeneous structure with a scale less than the wavelength is treated as 

one macroscopically uniform medium using the approximation of the effective medium 

approach [25]. Under this approximation, the scattering response by individual metal and 

dielectric nanoparticles is determined from the average response of the whole system using 

the effective permittivity[25]. 

The geometry analyzed in this work is a slab of a composite structure of periodic arrays 

of silver nanowires of a period 𝑑 and a radius 𝑎  embedded in GaAs with electric 

permittivity  𝜀𝐺𝑎𝐴𝑠 as a host medium, as shown in Fig.5.1(a). Fig.5.2(b) shows the Miller 

indices of the GaAs lattice structure as defined in Cartesian coordinates and illustrates the 

polarizations and propagation of the three waves to be mixed. The three waves are defined 

as the pump wave 𝜔𝑝, with electric field 𝐸𝑝; the signal wave 𝜔𝑠, with electric field 𝐸𝑠; and 

the idler wave 𝜔𝑖(𝜔𝑖 = 𝜔𝑝 − 𝜔𝑠), with electric field 𝐸𝑖, where 𝜔𝑝 > 𝜔𝑠 > 𝜔𝑖. 

We consider the applied waves at normal incidence to the wires, with the electric field 

polarized parallel to the wires along [001] for the pump wave 𝐸𝑝, and orthogonally 

polarized along [1̅10] for the signal wave 𝐸𝑠. Based on the second order  susceptibilities 

𝜒𝑥𝑦𝑧
(2)

 and 𝜒𝑦𝑧𝑥
(2)

 of GaAs, the resultant difference wave 𝐸𝑖 will be orthogonally polarized 

along [1̅10]. If the waves are propagating orthogonally to the wires and the electric field 

is parallel, with the limit 𝑑 ≪ 𝜆, the effective permittivity of the structure in the direction 

parallel to the wires can be modeled by lossy Drude model  [49], [56], [65] as:  
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𝜀𝑧 = 𝜀
∥ = 𝜀𝐺𝑎𝐴𝑠 [1 −

𝜔𝑝𝑙𝑎𝑠𝑚𝑎
2

𝜔(𝜔+𝑖𝛾𝑒𝑓𝑓)
]                                             (5.1) 

𝛾𝑒𝑓𝑓 =
𝜀𝑜

𝜎

2𝑐2

𝑎2𝑙𝑛(𝑑/𝑎)
  ,  𝜔𝑝𝑙𝑎𝑠𝑚𝑎

2 =
1

𝜀𝐺𝑎𝐴𝑠

2𝜋𝑐2

𝑑2 𝑙𝑛(𝑑/𝑎)
                                  (5.2) 

Here 𝛾𝑒𝑓𝑓 is the effective damping frequency, 𝜔𝑝𝑙𝑎𝑠𝑚𝑎 is the effective plasma frequency, 

and σ is the static conductivity of silver. The effective damping frequency 𝛾𝑒𝑓𝑓 strongly 

depends on the wire radius 𝑎, which offers more degree of freedom to modify the 

absorption properties of the structure. If the wires radii are very thin compared to the 

wavelength (𝑎 ≪ 𝜆), their orthogonal polarization can be neglected, and the orthogonal 

permittivity will be the same as the host medium 𝜀𝐺𝑎𝐴𝑠 [54]: 

𝜀𝑥 = 𝜀𝑦 = 𝜀
⊥ = 𝜀𝐺𝑎𝐴𝑠                                              (5.3) 

The TE polarization has the electric field directed along the z-axis; and the TM 

polarization has the electric field oriented parallel to the 𝑥𝑦 plane, which thus has 

components in 𝑥 the and 𝑦 directions. The idler wave 𝜔𝑖 and the signal wave 𝜔𝑠 are TM 

polarized with wavevectors 𝑘𝑖 and 𝑘𝑠, respectively. They propagate in the plane 𝑥𝑦, 

making an angle of 45o with respect to the 𝑥 and 𝑦 axes. The pump wave 𝜔𝑝 is TE polarized 

Figure 5.1:  (a) Structure of silver nanowires of period 𝑑 embedded in GaAs medium 

of electric permittivity 𝜀𝐺𝑎𝐴𝑠, with a thickness 𝐿 = 𝑁𝑑, and semi-infinite height and 

width, where 𝑁 is the number of wires columns. (b) Illustration of Miller indices of 

GaAs lattice structure with Cartesian coordinates, wave propagation directions, and 

polarizations. 
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in the z-direction with a wavevector 𝑘𝑝 according to the following Type-I coupling 

interaction:   

𝐸𝑝(𝑇𝐸) − 𝐸𝑠(𝑇𝑀)
𝜒𝑥𝑧𝑦
(2)
=𝜒𝑦𝑧𝑥

(2)

⇒       𝐸𝑖(𝑇𝑀)                                    (5.4) 

Type-I coupling is a polarization configuration where the signal polarization is parallel to the idler 

polarization; while in type-II, the signal and the idler polarizations are orthogonal[66]. Efficient 

difference frequency generation requires large second-order susceptibility 𝜒(2) and phase matching 

between the three wavevectors; 𝑘𝑝(𝜔𝑝), 𝑘𝑠(𝜔𝑠), and 𝑘𝑖(𝜔𝑖). The phase matching condition is 

expressed in terms of the wavevectors as Δ𝑘 = 𝑘𝑝(𝜔𝑝) − 𝑘𝑠(𝜔𝑠) − 𝑘𝑖(𝜔𝑖).This structure can 

be successfully fabricated using electrochemically growing of metallic nanowires in porous 

alumina template [67]–[70], where the holes are filled with the metals such as silver (Ag). In the 

following stage the host alumina matrix is removed, and the free-standing wires are filled with 

another material such as GaAs [69], [70].  

5.4 Results and Discussions   

We investigated the structure within the optical transmission window of GaAs, in the 

spectral region from  1 μm to 17 μm. The pump wave has the shortest wavelength, the 

idler wave has the longest wavelength, and the wavelength of the signal wave is between 

the other two. The structure is tuned by varying the pump wave frequency 𝜔𝑝 and the signal 

wave frequency 𝜔𝑠.  The idler wave is the wave with the difference frequency 𝜔𝑖 = 𝜔𝑝 −

𝜔𝑠 that satisfies the phase matching condition. We used experimentally measured data for 

GaAs permittivity [60]. The structure parameters values have been chosen for the diameter 

2𝑎 = 35 nm and the period 𝑑 = 350 nm, as a compromise between the absorption and the 

longest achievable difference frequency at the matching. 

Fig.5.2 shows the real and imaginary parts of the parallel and the orthogonal 

permittivities 𝜀∥ and 𝜀⊥. As the pump wave is parallel polarized, the real and imaginary 

parts of the parallel permittivity are plotted with respect to the pump-wave wavelengths; at 

the same time, the orthogonal permittivity is plotted with respect to the idler-wave 

wavelengths or the signal-wave wavelengths because of their orthogonal polarization. The 

orthogonal permittivity is just the plot of the experimental measured data of GaAs 
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permittivity, with only the real part values and neglecting the imaginary part[60]. The silver 

conductivity in Eq. (5.1) is 6.28*107Ω-1m-1. 

 

 To examine the phase matching aspect, it is necessary to deal with the refractive indices, 

𝑛∥ = 𝑅𝑒(±√𝜀∥) and   𝑛⊥ = 𝑅𝑒(±√𝜀⊥). The square root has two possible solution values, 

positive or negative (negative refractive index). Since the orthogonal permittivity is the 

permittivity of GaAs  (𝜀⊥ = 𝜀𝐺𝑎𝐴𝑠), this indicates a positive refractive index. In the case 

of the parallel permittivity 𝜀∥, the causality requires the imaginary part of the refractive 

index to be positive for any passive material [25], [58], [59], which results in a positive 

refractive index. Fig.5.3 shows the parallel and perpendicular refractive indices. The 

parallel refractive index 𝑛∥ has strongly dispersive properties because of the effect of the 

metal nanowires, while the perpendicular 𝑛⊥, which is the experimentally measured data 

of the refractive index of GaAs [60], is less dispersive. These contrasting refractive indices 

Figure 5.2: Parallel and perpendicular permittivity 𝜀∥ and 𝜀⊥ for wires dimeter 

2𝑎 = 35 nm and period 𝑑 = 350 nm; (a), (b) real parts of parallel and 

orthogonal permittivity. (c), (d) imaginary parts of parallel and orthogonal 

permittivity. 
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along the principal axes provide a possibility of achieving phase matching for three waves 

mixing and, specifically, generating frequencies in the mid-infrared region. 

 

The transfer matrix method was used to compute the absorption through the structure medium as 

it is treated as macroscopically uniform medium [25], with a complex effective refractive index 

𝑛̃∥ = √𝜀∥. The system is three layers media as shown in Fig.5.4. The structure of thickness 𝐿 and 

complex refractive index  𝑛̃∥ is impressed in a layer of index 𝑛𝑜. Three transfer matrices needed to 

find and multiplied to get the complete transfer matrix. First, we find the transfer matrices at the 

two interfaces: 

𝑀12 =
1

𝑡12
[
1 𝑟12
𝑟12 1

]                                                  (5.5) 

𝑀23 =
1

𝑡23
[
1 𝑟23
𝑟23 1

]                                                 (5.6) 

  The transfer matrix of the structure layer between the interfaces is as following:  

𝑀2 = [
𝑒𝑗𝛿 0
0 𝑒−𝑗𝛿

]                                                 (5.7) 

where 𝑟12 = −𝑟23 = 𝑟 =
𝑛𝑜−𝑛̃

∥

𝑛𝑜+𝑛̃∥
, 𝑡12 =

2𝑛𝑜

𝑛𝑜+𝑛̃∥
, 𝑡23 =

2𝑛̃∥

𝑛𝑜+𝑛̃∥
 , and 𝛿 =

2𝜋

𝜆
𝑛̃∥𝐿. The complete 

transfer matrix 𝑀 = 𝑀12𝑀23𝑀2: 

Figure 5.3: Parallel 𝑛∥ and orthogonal 𝑛⊥  indices for wires dimeter 2𝑎 = 35 nm and 

period 𝑑 = 350 nm; (a) parallel index, (b) orthogonal index. 
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𝑀 = [
𝑏11 𝑏12
𝑏21 𝑏22

] =
𝑒𝑗𝛿

𝑡12𝑡23
[
1 − 𝑟2𝑒−𝑗2𝛿 −𝑟(1 − 𝑒−𝑗2𝛿)

𝑟(1 − 𝑒−𝑗2𝛿) −𝑟2 + 𝑒−𝑗2𝛿
]                 (5.8)                                                       

 

This three -layers system behaves as Fabry-Perot etalon illuminated by one incident 

light from the left of the structure, then the reflectance 𝑅 and transmittance 𝑇  are defined 

from the matrix 𝑀 as following: 

𝑅 = |
𝑏21

𝑏11
|
2

= |
𝑟(1−𝑒−𝑗2𝛿)

1−𝑟2𝑒−𝑗2𝛿
|
2

                                           (5.9) 

𝑇 = |
1

𝑏11
|
2

= |
𝑡12𝑡23𝑒

−𝑗𝛿

1−𝑟2𝑒−𝑗2𝛿
|
2

                                         (5.10) 

Fig. 5.5 shows the absorption 𝐴 = 1 − 𝑅 − 𝑇 of the structure for thickness 𝐿 = 𝑁𝑑 =

35 μm with 𝑁 = 100 (number of wire columns), where 𝑑 = 35nm. 𝑅 is the reflectance, 

and 𝑇 is the transmittance, assuming 𝑛𝑜 = 1 for the surrounding medium. The pump waves 

whose electric field is parallel to the wires experience absorption, while the signal and idler 

waves whose electric fields are orthogonal to the wires do not experience absorption due 

to neglecting the orthogonal polarization of the thin wires[54] . 

It is obvious from the real part of the parallel permittivity 𝑅𝑒(𝜀∥) in Fig.5.2(a), or the 

absorption 𝐴 in Fig.55, that the plasma wavelength of the structure, 𝜆𝑝𝑙𝑎𝑠𝑚𝑎 = 𝑐/𝜔𝑝𝑙𝑎𝑠𝑚𝑎, 

is around 5 μm. The absorption is extremely high at the plasma wavelength, while in the 

region of the wavelengths that are much shorter than the plasma wavelength (𝜆 ≪ 𝜆𝑝𝑙𝑎𝑠𝑚𝑎) 

the absorption is low, in which case the real part of the parallel permittivity is positive, the 

imaginary part is very small, and the optical transmission is dominant. In the region where 

Figure 5.4: Three layers system to find reflectance 𝑅 and transmittance 𝑇. 
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the wavelengths are much longer than the plasma wavelength, the optical reflection is 

dominant. The pump-wave wavelengths 𝜆𝑝 that satisfy the phase matching are in the range 

of the spectrum from 1 μm to  1.2277 μm, which are shorter in wavelength than the plasma 

wavelength. 

In the spectrum region  𝜆 < 3 μm, narrow oscillations (Fabry–Perot oscillations) occur 

in the absorption. These oscillations exist because of the coherent interference between the 

partial internal reflected waves. The oscillations disappear in the spectrum region 𝜆 >

3 μm because the imaginary part of the parallel permittivity 𝐼𝑚(𝜀∥) in Fig.5.2(c) becomes 

valuable, thus the absorption resonance starts to dominate, while the partial internal 

reflections will disappear. 

 

Based on the refractive indices, we can determine the phase mismatch between the waves 

according to:  

𝛥𝑘 =  𝑛∥(𝜔𝑝)
𝜔𝑝

𝑐
− 𝑛⊥(𝜔𝑠)

𝜔𝑠

𝑐
− 𝑛⊥(𝜔𝑖)

𝜔𝑖

𝑐
                                 (5.11)                                                                                     

The phase mismatch Eq. (5.11) was tested by varying the pump frequency  𝜔𝑝 and signal 

frequency 𝜔𝑠. When the phase mismatch Δ𝑘 = 0, the difference frequency 𝜔𝑖 is assigned to be 

the third frequency that satisfies the conservation of energy and momentum. Fig. 5.6 shows the 

Figure 5.5: Absorption of structure for wires diameter 2𝑎 = 35 𝑛𝑚, period 

𝑑 = 350 nm, 𝑛𝑜 = 1, and thickness  𝐿 = 𝑁𝑑 = 35 μm with 𝑁 = 100 

(number of wire columns).  
 

Pump Wavelength (µm) 

 

A
b

so
rp

ti
o

n
 



46 
 

 
 

case of the phase mismatch plot (Δ𝑘/𝑘𝑝) as a function of the idler wavelength 𝜆𝑖, at three 

different values of the pump wavelengths 𝜆𝑝 = 1 μm, 1.069 μm, and 1.1923 μm.  

 

It was found that the phase matching is satisfied at the following idler wavelengths 𝜆𝑖 =

11.033 μm, 7.5406 μm, and 3.875 μm, respectively. The corresponding signal wavelengths 

at the matching are 𝜆𝑠 = 1.0997 μm, 1.2455 μm, and  1.7222μm, respectively. The tuning 

relationship between the three wavelengths that satisfied the phase matching and the energy 

conservation in the entire spectrum from 1 μm to 17 μm is shown in Fig. 5.7.  

It is clear from this tuning relationship that the possible tuned range of the idler wavelengths, 

which is in the mid-infrared range, is broad, and extends from 11 μm as the longest wavelength 

to the shortest wavelength of 2.8 μm. The pump-wave wavelengths vary from 1 μm to 

1.2277 μm, while the signal-wave wavelengths changes from 1.0997 μm  to 2.1809 μm. This 

is a very interesting result since the pump and the signal wavelengths lie in the spectrum region 

from 1 μm up to 2 μm, in which the conventional tunable laser sources are available. 

Nonlinear conversion processes are generally very weak due to small nonlinear 

coefficients of materials. The conversion efficiency at phase matching ∆𝑘 = 0 in a plane-

wave approximation, nondepleted pump approximation, and including the effects of linear 

absorption is given by [71]:  

Figure 5.6: Mismatch plot (𝛥𝑘/𝑘𝑝) as function of idler wavelength 𝜆𝑖  at three 

different values of pump wavelengths 𝜆𝑝 = 1 μm, 1.069 μm, and 1.1923 μm, 

where Δ𝑘 = 𝑘𝑝 − 𝑘𝑠 − 𝑘𝑖  and 𝑘𝑝 is wavevector of the pump signal. Matching is 

achieved at the signal wavelengths 𝜆𝑠 = 1.0997 μm, 1.2455 μm, and  1.7222μm, 

respectively. Resulting idler wavelengths are 𝜆𝑖 = 11.033 μm, 7.5406 μm, and 

3.875 μm , respectively.   

 Δ
𝑘
/𝑘
𝑝

  

Idler Wavelength (µm) 

𝜆𝑝 = 1 𝜇𝑚     

𝜆𝑝 = 1.069 𝜇𝑚   

𝜆𝑝 = 1.1923 𝜇𝑚   
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𝜂 =
𝑃𝑖

𝑃𝑠
= 𝜂𝑜𝑒[−(𝛼𝑝+𝛼𝑠+𝛼𝑖)𝐿/2]

𝑠𝑖𝑛ℎ2[(𝛼𝑝+𝛼𝑠−𝛼𝑖)𝐿/4]

[(𝛼𝑝+𝛼𝑠−𝛼𝑖)𝐿/4]
2  ,    𝜂𝑜 =

8𝜋2𝑑𝑒𝑓𝑓
(2)
𝐿2𝐼𝑝

𝜀𝑜𝑛𝑝𝑛𝑠𝑛𝑖𝑐𝜆𝑖
2            (5.12) 

 

𝜂𝑜 is the lossless efficiency. 𝛼𝑝, 𝛼𝑠, and 𝛼𝑖 are absorption coefficients for pump, signal, 

and idler waves, respectively. 𝑛𝑝, 𝑛𝑠, and 𝑛𝑖 are refractive indices for pump, signal, idler 

waves, respectively. If the signal and the idler waves absorptions are neglected because of 

their negligible interaction to the tiny nanowires, the normalized efficiency to the pump 

intensity 𝐼𝑝 is given as:  

𝜂

𝐼𝑝
=

8𝜋2𝑑𝑒𝑓𝑓
(2)
𝐿2

𝜀𝑜𝑛𝑝𝑛𝑠𝑛𝑖𝑐𝜆𝑖
2 𝑒
(
−𝛼∥𝐿

2
) 𝑠𝑖𝑛ℎ

2(
𝛼∥𝐿

4
)

(
𝛼∥𝐿

4
)
2                                       (5.13) 

𝛼∥ is the absorption coefficient along the nanowires, and 𝛼∥ = 𝛼𝑝 = 4𝜋 ∗ 𝑖𝑚(√𝜀∥)/𝜆𝑝. 

Fig. 5.8 shows the absorption coefficient 𝛼∥ versus the pump wavelength at phase 

matching, from 1 μm to 1.2277 μm. Absorption causes a propagation loss to the pump 

wave of 0.05 dB/μm at the wavelength of 1μm, and 0.075 dB/μm at wavelength 1.2μm.  

Figure5.7: Tuning relationship between three wavelengths that satisfy the phase 

matching condition. Pump wavelengths vary from 1 μm to  1.2277μm, signal 

wavelengths change from 1.0997 μm  to 2.1809 μm , and idler wavelength extend 

from 11.033 μm  to 2.8091 μm. 
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Fig.5.9 shows the normalized efficiency 𝜂 𝐼𝑝⁄  versus the propagation length with the 

following parameters: 𝜆𝑖 = 11𝜇𝑚, 𝑛𝑝 = 3.4415, 𝑛𝑠 = 3.4591, 𝑛𝑖 = 3.2678, and 𝑑𝑒𝑓𝑓
(2)
=

370 pm/V [6]. The efficiency is very week and limited with the propagation distances 

because of the ohmic loss at the pump wavelengths. Larger refractive indices and longer 

idler wavelengths decrease the efficiency.  

 

 

Figure 5.8:  Absorption coefficient 𝛼 with respect to the pump wavelength for 

𝐿 = 35 μm and 𝑑 = 350 nm. 
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Figure 5.9: Normalized efficiency 𝜂 𝐼𝑝⁄  
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This efficiency could be higher if pump depletion is assumed. Practically, the 

propagation loss of metallic nanowires, e.g. silver, is much less than the theoretically 

calculated [72]. We expect, based on the results in [72], the propagation loss in our structure 

be much less than theoretically calculated; this will increase the efficiency as well as the 

propagation length.    

5.5 Conclusions  

We have investigated the phase matching condition for DFG by using a composite structure 

of metamaterial of mixing GaAs as a nonlinear material with periodic arrays of silver 

nanowires. The structure exhibits extreme optical anisotropy along the principle axes due 

to the higher parallel polarization along the wires compared with the orthogonal 

polarization. Phase matching was achieved for generating tunable broad mid-infrared 

wavelengths from 2.8 μm to 11 μm. The pump and the signal wavelengths lie in the 

spectrum range from 1 μm to 2 μm. The absorption by metallic nanoparticles is a 

challenging problem in metamaterials. Here, we applied the pump wave of the shortest 

wavelengths, from 1 μm to 1.2277 μm , as parallel polarized wave along the wires, in 

which the absorption is minimum. To shift the spectrum, the period 𝑑 should be changed 

to larger values for the redshift and lower for the blueshift. 

This investigated region of the mid-infrared from  2.8 μm to 11 μm is a part of the mid-

infrared spectrum 3 − 20 μm , which is very interesting in science and technology. It is the 

wavelengths region of vibrational resonances of many molecules, making the mid-infrared 

sources very important in spectroscopy, chemical and biomolecular sensing. Also, it lies in 

the two of the optical transmission windows of the atmosphere 3 − 5 μm and 8 − 13 μm, 

which are important in remote sensing.    
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Chapter 6  

Phase-matched Mid-infrared Difference Frequency Generation 

Using A Nanostructured Gallium Arsenide Metamaterial with 

Nanoholes 
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This work is licensed under a Creative Commons Attribution 4.0 License 
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6.1 Abstract 

Phase-matched wavelength conversion is achieved in difference frequency generation 

(DFG) in a structure of gallium arsenide (GaAs) with periodic arrays of nanoholes. Linear 

properties (refractive indices) of the structure are determined from the S-parameters of the 

structure. Finite difference time domain (FDTD) simulation is used to calculate the S-

parameters. The longest wavelength achieved is 16.2229 μm and the shortest is 3.2961 μm. 

The results of the FDTD simulation are compared with results obtained from the effective 

medium theory by using the Maxwell Garnett model. The comparison shows excellent 

agreement.   

6.2 Introduction 

Due to the vibrational transition of many molecules, the mid-infrared (mid-IR) spectral 

region is an interesting area of spectroscopy. Nonlinear optical difference frequency 

conversion is one of the most functional techniques for generating coherent, broad, and 

discrete light sources for spectroscopy in the mid-IR region [4]. Mid-IR conversion via 

DFG involves a coupling between two waves with different frequencies to generate a 

difference frequency through a nonlinear medium.  

Most available difference frequency generation methods based on parametric 

wavelength conversion use nonlinear crystals, such as periodically poled lithium niobate 

(PPLN), potassium titanly phosphate (KTP), and barium borate (BBO) [10], [11]. 

Birefringence phase matching and quasi-phase matching techniques are used to achieve 
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efficient conversion [8], [73], [74]. Semiconductors, of special interest for monolithic 

integration, have greater optical nonlinearity properties than commonly used crystals such 

as PPLN, KTP, and BBO. GaAs, with its wide transparent optical window, from 1 µm to 

17 µm, is the best choice for mid-infrared conversion using difference frequency 

generation  [13], [14], [34], [60]. Phase matching between the waves to be mixed is a 

crucial factor for strong coupling and efficient frequency conversion. Unfortunately, it is 

not possible to achieve phase matching for DFG in GaAs, due to its natural isotropic 

properties. This problem can be solved via a multilayered structure of GaAs with other 

materials. Different approaches to achieve phase matching in GaAs structures include 

quasi-phase matching[15][16], modal phase matching [75][76], Bessel laser beam phase 

matching [17], and suspended GaAs waveguides [18]. 

Birefringence phase matching based on artificial anisotropy properties is possible. 

Artificial anisotropy properties in semiconductors were first proposed with multilayered 

GaAs/AlAs [21], and relatively large birefringence has been demonstrated for a 

multilayered GaAs/AlAs structure  [22]–[24]. Tunable wavelengths from 6.7 µm to 12.7 

µm using quasi-phase matching have been demonstrated in orientation-patterned GaAs 

[19]. Wavelengths from 7.5 µm to 8.5 µm were generated through a multilayered AlGaAs 

waveguide [20]. Phase-matched difference generated wavelengths from 2.8 µm to 11 µm 

have been achieved by using artificial birefringence in a structure of GaAs with silver 

nanowires [53]. 

In this work, we present a determination of wide, phase-matched, mid-IR generation in 

a structure of GaAs with nanoholes. FDTD simulation with the RSoft tool is used to 

calculate the scattering (S) parameters of the structure. Refractive indices are determined 

from the S-parameters by using a retrieving algorithm. This type of structure can be 

fabricated via a metal-assisted chemical etching technique [77]–[79]. 

6.3 Wave Mixing and Phase Mismatch   

Difference frequency generation employs the difference in frequency of two waves applied 

through an optical nonlinear medium. The two waves are defined as a pump wave of  

frequency 𝜔𝑝 , electric field 𝐸𝑝, and wave vector 𝑘𝑝, and a signal wave of frequency 𝜔𝑠, 

electric field 𝐸𝑠 ,and wave vector  𝑘𝑠. The difference frequency wave that is generated is 
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referred to as an idler wave of frequency 𝜔𝑖, electric field 𝐸𝑖, and wave vector 𝑘𝑖, where  

𝜔𝑝 >  𝜔𝑠 >  𝜔𝑖. In this study, the nonlinear medium used is a nanostructured GaAs 

metamaterial with two-dimensional square arrays of cylindrical nanoholes, with period 𝑑 

and radius 𝑟, as shown in Fig. 6.1 (a). The structure has a length 𝐿 along the direction of 

wave propagation. Fig.6.2(b) shows the wave propagation directions 𝑘𝑝, 𝑘𝑠, and 𝑘𝑖, and 

the polarization orientations of the waves with respect to the GaAs crystal axes. The basic 

unit cell of the structure is illustrated in Fig.6.1(c).  

   

       

By considering the colinear wave vectors of the interacting waves and  accordance 

with the conservation laws of energy and momentum of the photons, 𝜔𝑖 = 𝜔𝑝 − 𝜔𝑠 and 

𝑘𝑖 = 𝑘𝑝 − 𝑘𝑠, respectively,  the colinear phase mismatching is defined  as     

Δ𝑘 = 𝑛𝑝
𝜔𝑝

𝑐
− 𝑛𝑠

𝜔𝑠

𝑐
− 𝑛𝑖

𝜔𝑖

𝑐
                                          (6.1)                            

where  𝑘𝑝 = 𝑛𝑝
𝜔𝑝

𝐶
, 𝑘𝑠 = 𝑛𝑠

𝜔𝑠

𝐶
, and 𝑘𝑖 = 𝑛𝑖

𝜔𝑖

𝐶
.  𝑛𝑝, 𝑛𝑠, and  𝑛𝑖 are the refractive indices at 

the frequencies  𝜔𝑝, 𝜔𝑠, and  𝜔𝑖, respectively. Based on this structure, only Type-II 
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Figure 6.1: (a) GaAs structure with nanoholes of period 𝑑 and radius 𝑟. The 

structure has a length 𝐿 along the direction of wave propagating. (b) Illustration of 

Miller indices of the GaAs lattice structure with Cartesian coordinates, wave 

propagation directions, and polarizations. (c) Unit cell of the structure.  
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coupling interaction satisfies the phase matching condition. Type-II coupling is a 

polarization configuration where the signal and idler polarizations are orthogonal; while in 

type-I, the signal and the idler polarizations are parallel. Based on Type-II polarizations,  

we consider the applied waves at normal incidence to the holes, with  electric field 

polarized parallel(𝐸∥) to the holes along [001] for the signal wave 𝐸𝑠, and polarized 

orthogonal (𝐸⊥)to the holes along [1̅10] for the pump wave 𝐸𝑝. Based on nonzero elements 

of  second-order susceptibilities of GaAs  𝜒𝑥𝑦𝑧
(2)

 = 𝜒𝑦𝑧𝑥
(2)

= 𝜒𝑧𝑥𝑦
(2)

 [6], the resultant difference 

wave of electric field  𝐸𝑖 will be polarized orthogonal to the holes along [1̅10]. The three 

waves propagate in the plane 𝑥𝑦, making an angle of 45o with respect to the 𝑥 and 𝑦 axes. 

The orthogonal polarizations waves have the electric field oriented parallel to the 𝑥𝑦 plane, 

which thus has components in 𝑥 the and 𝑦 directions. 

 It is essential to know the effective refractive indices of a structure in order to determine 

the phase matching. There are two main approaches for finding the effective refractive 

indices of metamaterial structures. The first is to use effective medium theories[25], where 

the long wavelength limit should be satisfied. The second is to retrieve the refractive 

indices from the S-parameters [50], [51], or from the reflection and transmission 

coefficients [57]. In this work, the retrieving technique is the main method employed, while 

the effective medium theory is used for comparison purposes. 

6.4 Computing Linear Properties of The Structure from S-Parameters by Using The 

retrieval Technique    

Full wave simulation using FDTD is applied to determine the S-parameters of the structure. 

To find the S-parameters of a metamaterial structure via full wave simulation, it is 

necessary to use a thin slab of the structure and to characterize it as an effective 

homogeneous medium[25], [50], [51]. If the structure is periodic, usually a single cell is 

selected as the thinnest slab. For an incident plane wave normal to the structure, the S-

parameters are Related to the refractive index 𝑛 in accordance with the following equations 

[50]: 

𝑅𝑒(𝑛) = ±𝑅𝑒 {
1

𝑘𝑜𝐿
𝑐𝑜𝑠−1 (

1

2𝑆21
2 [1 − 𝑆11

2 + 𝑆21
2 ])} +

2𝑚𝜋

𝑘𝑜𝐿
                      (6.2) 
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𝐼𝑚(𝑛) = ±𝐼𝑚 {
1

𝑘𝑜𝐿
𝑐𝑜𝑠−1 (

1

2𝑆21
2 [1 − 𝑆11

2 + 𝑆21
2 ])}                          (6.3) 

Here 𝐿 is the slab length, where 𝐿 = 𝑑 if a single cell is considered. 𝑘𝑜 is the wave number 

of the incident wave in free space and 𝑚 is an integer number. Due to the symmetry 

properties of the slab, 𝑆22 = 𝑆11and 𝑆12 = 𝑆21. Because the structure is passive, with no 

negative index elements, the signs in Eq. (6.2) and Eq. (6.3) are determined so as to obtain 

positive real and imaginary values. Based on the long wavelength limit for metamaterials 

(𝑑, 𝑟 ≪ 𝜆) and achieving phase matching, the hole periods are almost in the range between 

𝑑 = 115  nm to  140 nm and the corresponding hole radius between  𝑟 = 0.1 𝑑 to 0.25 𝑑. 

  

The S-parameters are computed by using a FDTD simulation of a thin one-cell layer 

of the structure, for incident waves polarized parallel and orthogonal to the holes, in the 

Figure 6.2: S-parameters at 𝑑 = 140 nm and 𝑟 = 35 nm, for parallel polarization 𝐸∥ 
and orthogonal polarization 𝐸⊥. (a) Magnitude of 𝑆21. (b) Phase of 𝑆21. (c) Magnitude 

of 𝑆11. (d) Phase of 𝑆11. 
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entire spectrum of the GaAs optical transmission window, 𝜆 = 1 μm to 17 μm. Transverse 

periodic boundary conditions were applied in the direction perpendicular to the propagation 

direction of the incident waves. Experimentally measured data for the refractive index of 

GaAs [60] were used in the FDTD simulation.  

   

Fig.6.2 shows computed S-parameters of the structure, magnitude and phase, for the 

period  𝑑 = 140 nm and radius 𝑟 = 35 nm. The structure exhibits slightly more reflection 

with orthogonal polarization than parallel polarization, and greater transmission with 

parallel polarization than orthogonal polarization. As the wavelength increases, the 

transmission increases and the reflection decreases. Fig. 6.3 shows the 𝑆-parameters, 

magnitude and phase, as a function of 𝑟 at 𝜆 = 1 μm for two different periods: 𝑑 = 120 nm  

and 140 nm. 

Fig.6.3: S-parameters as a function of  𝑟 for parallel polarization 𝐸∥  at 𝜆 = 1 μm, 

for 𝑑 = 120 nm and 140 μm. (a) Magnitude of 𝑆21 (b) Phase of 𝑆21 (c) 

Magnitude of 𝑆11 and (d) Phase of 𝑆11. 
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Since GaAs is nonadsorbing in its optical window, only real indices of the structure 

exist. Fig. 6.4 shows two retrieved real indices, 𝑅𝑒(𝑛∥) and 𝑅𝑒(𝑛⊥), computed from the S-

parameters presented in Fig.6.2. 𝑅𝑒(𝑛∥) represents the index parallel to the longitudinal 

axis of the nanoholes, and 𝑅𝑒(𝑛⊥) represents the index perpendicular to the longitudinal 

axis of the nanoholes. The contrast between the indices, 𝑅𝑒(𝑛∥) and  𝑅𝑒(𝑛⊥) indicates that 

GaAs with nanoholes acts as an anisotropic medium. This promises well for birefringence 

phase matching in the structure. 

  

Varying the parameters of the structure, 𝑑 or 𝑟, will not change the refractive index 

profiles shown in Fig.6. 4; however, the values will be changed. Lowering the values of 

the indices relative to the GaAs index can be done by increasing the volume fraction of the 

nanoholes inside the structure. This can be achieved either by decreasing 𝑑 or increasing 

𝑟. Figures 6.5(a) and 6.5(b) show the refractive indices of the structure in relation to the 

GaAs index, for two different periods: 𝑑 = 120 nm and 140 nm, and a radius of 𝑟 =

35 nm.  

Figure 6.6  illustrates the two-dimensional electric field distribution for the parallel 

polarization 𝐸∥ and the orthogonal polarization 𝐸⊥, at 𝑑 = 140 nm and 𝑎 = 35 nm, for 

𝜆 = 1 μm 

In
d

ex
 

Wavelength (µm) 

𝑅𝑒(𝑛⊥) 

𝑅𝑒(𝑛∥) 

Figure 6.4: Real refractive indices 𝑅𝑒(𝑛∥) and 𝑅𝑒(𝑛⊥) at 𝑑 = 140 nm 

and 𝑟 = 35 nm.  
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(a) (b) 
𝐺𝑎𝐴𝑠 

Structure with 𝑑 = 120 nm 
Structure with 𝑑 = 140 nm 

𝐺𝑎𝐴𝑠 
Structure with 𝑑 = 140 nm 
Structure with 𝑑 = 120 nm 

Figure 6.5: Real retrieved indices at 𝑟 = 35 nm for periods 𝑑 = 120  and 140 nm 

compared with GaAs refractive index. (a) Parallel index 𝑅𝑒(𝑛∥).  (b)  Perpendicular 

index 𝑅𝑒(𝑛⊥). 
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Figure 6.6: Field distribution at 𝑑 = 140 nm and 𝑎 = 35 nm, and 𝜆 = 1 μm. 

(a) Parallel polarization to the wires 𝐸∥. (b) Orthogonal polarization to the 

wires  𝐸⊥. 

(b) Contour Map of 𝐸⊥ 

Contour Map of 𝐸∥ 
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The field distribution was obtained using FDTD simulation by applying a plane wave of 

unity intensity. Additional details on FDTD simulation using the RSoft tool are given in 

Appendix A. The distribution illustrated in Fig. 6.6(a) is of 𝐸∥, which shows that the parallel 

field is stronger than the orthogonal field 𝐸⊥ depicted in Fig. 6.6(b).  

  

The distribution also indicates that the wavelengths inside the structure for 𝐸∥ and 𝐸⊥ of 

the corresponding free space incident wavelengths,  𝜆 = 1 μm, became shorter, with values 

of 0.32 μm and 0.31 μm, respectively.  As a result, the effective refractive indices are 3.1 

Figure 6.7: Field distribution at 𝑑 = 140 nm and 𝑎 = 35 nm, and 𝜆 = 6 μm. (a) 

Parallel polarization to the wires 𝐸∥. (b) Orthogonal polarization to the wires  𝐸⊥. 

   

(a) 

(b) 

Contour Map of 𝐸∥ 

Contour Map of 𝐸⊥ 
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and 3.2 for 𝐸∥ and 𝐸⊥  , respectively. Figure 6.7 displays  𝐸∥ and  𝐸⊥ fields distribution, at 

𝑑 = 140 nm and 𝑎 = 35 nm, for 𝜆 = 6 μm, which shows that 𝐸∥ is more intensive   than 

𝐸⊥. The distribution indicates that the wavelengths inside the structure for 𝐸∥ and 𝐸⊥ are of 

the corresponding free space incident wavelengths,  𝜆 = 6 μm, became shorter, with values 

of 2.15 μm and 2μm, respectively.  As a result, the effective refractive indices are 2.79 and 

3 for 𝐸∥ and 𝐸⊥  , respectively. The determined refractive indices from the wavelengths of 

the fields distribution inside the structure, at  𝜆 = 1 μm and 𝜆 = 6 μm,  agree with the  

those retrieved from the S-parameters, that are shown in Fig. 6.4. 

6.5 Achieving Birefringence Phase Matching in The Structure   

Changing the optical properties of GaAs from isotropic to anisotropic through the inclusion 

of nanoholes is beneficial, since it permits the use of birefringence phase matching in the 

GaAs medium. The structure was tested for phase matching possibilities by varying the 

pump frequency, 𝜔𝑝, and the signal frequency, 𝜔𝑠. The difference frequency, 𝜔𝑖, is 

assigned in accordance with energy and momentum conservation laws. The refractive 

indices plotted in Fig. 6.4 were applied in the phase mismatching relation given in Eq. 

(6.1). 𝑛𝑝 and  𝑛𝑖 correspond to the perpendicular index 𝑛⊥, and 𝑛𝑠 to the parallel index 𝑛∥. 

Fig. 6.6  plots the mismatch function (Δ𝑘/𝑘𝑝) for three different pump wavelengths: 𝜆𝑝 =

1.0333 μm, 1.1171 μm, and 1.3053 μm. 𝑘𝑝 is the wave number of the pump wave at the 

selected 𝜆𝑝. Each plot satisfies the energy conservation law. Momentum conservation is 

satisfied at phase matching (Δ𝑘 = 0).  Figures 6.8 (a) and 6.8 (b) plot (Δ𝑘/𝑘𝑝)  as a 

function of the idler wavelength, 𝜆𝑖, and the signal wavelength, 𝜆𝑠, respectively, at the 

specified pump wavelengths, 𝜆𝑝. For these selected cases, the idler wavelengths at phase 

matching are 𝜆𝑖 = 15.5875 μm, 5.7537 μm, and 3.3195 μm, and the corresponding 

signal wavelengths are 𝜆𝑠 = 1.067 μm, 1.3863 μm, and 2.1511 μm, respectively. The 

structure was scanned for the entire GaAs transmission spectrum, from 𝜆 = 1 μm to 𝜆 =

17 μm. The phase-matched wavelength curves, or tuning curves, that relate the three 

wavelengths 𝜆𝑝, 𝜆𝑠, and 𝜆𝑖, are shown in Fig. 6.9. The tuning curves in Fig. 6.9 show that 

the pump wavelength, 𝜆𝑝, extends from 1.0333 μm to 1.3983 μm. The signal wavelength, 

𝜆𝑠, ranges from 1.1067 μm to 2.7932 μm, and the idler wavelength, 𝜆𝑖, ranges from 
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15.5875 μm to 2.8001 μm. This generated idler wavelength band is broad, continuous, 

and tunable through tuning of the input pump and/or signal wavelengths. The band can be 

redshifted or broadened by increasing 𝑑 or decreasing 𝑟, or vice versa 

 

.   

Fig. 6.10 shows different phase-matched wavelength curves, or tuning curves, for idler 

and signal wavelengths as a function of the pump wavelength, at different values of 𝑟 and 

𝑑. The curves for different 𝑟 and 𝑑 values are plotted in different colors, while the idler 

wavelength curves are represented by dashed lines and the signal wavelength curves by 

Figure 6.8: Mismatch function (Δ𝑘/𝑘𝑝) for three different pump wavelengths: 𝜆𝑝 =

1.0333 μm, 1.1171 μm, and 1.3053 μm, at 𝑑 = 140 nm and 𝑟 = 35 nm. (a) (Δ𝑘/𝑘𝑝) 

as a function of the idler wavelength, 𝜆𝑖, with phase-matched idler wavelengths: 𝜆𝑖 =
15.5875 μm, 5.7537 μm, and 3.3195 μm. (b) (Δ𝑘/𝑘𝑝) as a function of the signal 

wavelength, 𝜆𝑠, with the corresponding phase-matched signal wavelengths: 𝜆𝑠 =
1.067 μm, 1.3863 μm, and 2.1511 μm. 
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Figure 6.9: Phase-matched wavelength curves, or tuning curves, that relate 

idler wavelengths, 𝜆𝑖, and signal wavelengths, 𝜆𝑠 to pump wavelengths, 𝜆𝑝, 

at 𝑑 = 140 nm and 𝑟 = 35 nm. 
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solid lines. As 𝑟 decreases, the idler and signal wavelengths are broadened and redshifted. 

For example, for 𝑑 = 120 nm and 𝑟 = 35 nm (shown in black), the longest idler 

wavelength is 4.633 μm and the shortest is 2.4612 μm. However, if 𝑟 is decreased to 

25 nm, with 𝑑  remaining at 120 nm (shown in green), the longest idler wavelength is 

6.6704 μm and the shortest is 2.8993 μm.   

The idler wavelengths are broadened considerably more by an increase in 𝑑 than by a 

decrease in 𝑟, as shown by the green and blue dashed curves, which correspond to 𝑑 =

120 nm and 140 nm, respectively, with  𝑟  remaining constant at 25nm . At 𝑑 = 140 nm, 

the longest idler wavelength is 16.2229 μm, as compared to 6.6704 μm at 𝑑 = 120 nm.  

  

Nonlinear conversion processes are generally very weak due to small nonlinear coefficients 

of materials. Phase matching and longer interaction length will increase the efficiency.  The 

conversion efficiency at phase matching (∆𝑘 = 0) for   nondepleted pump assumption is 

given by[18], [71] :  

𝜂 =
𝑃𝑖

𝑃𝑠
=
8𝜋2𝑑𝑒𝑓𝑓

(2)
𝐿2𝐼𝑝

𝜀𝑜𝑛𝑝𝑛𝑠𝑛𝑖𝑐𝜆𝑖
2                                                (6.4) 

𝑃𝑖 and  𝑃𝑠 are the idler and signal powers, respectively, and  𝐼𝑝 is the pump intensity;  𝑛𝑖, 

𝑑 = 140 nm, 𝑟 = 25 nm 

𝑑 = 120 nm, 𝑟 = 15 nm 
𝑑 = 120 nm, 𝑟 = 25 nm 
𝑑 = 120 nm, 𝑟 = 35 nm 

𝐷𝑎𝑠ℎ𝑒𝑑 𝑙𝑖𝑛𝑒𝑠: 𝜆𝑖 

𝑆𝑜𝑖𝑙𝑑  𝑙𝑖𝑛𝑒𝑠: 𝜆𝑠 

Figure 6.10: Phase-matched wavelength curves that relate  𝜆𝑖 and  𝜆𝑠 to 𝜆𝑝, at different 

values of 𝑑 and 𝑟. The signal wavelengths, 𝜆𝑠, are represented by solid lines, while the 

idler wavelengths, 𝜆𝑖, are represented by dashed lines. The colors red, green, and black 

correspond to 𝑑 = 120 nm  with 𝑟 = 15 nm, 25 nm, and 35 nm, respectively. The 

color blue corresponds to 𝑑 = 140 nm with 𝑟 = 25 nm.  
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𝑛𝑠, and 𝑛𝑝 are their refractive indices. Fig. 6.11 shows  the efficiency 𝜂[%] versus the 

interaction  length 𝐿, at the case 𝑑 = 140 nm and 𝑟 = 35 nm, with the following 

parameters  at the phase matching condition: 𝜆𝑖 = 15.5875 𝜇𝑚, 𝑛𝑝 = 3.0918, 𝑛𝑠 =

3.1107, 𝑛𝑖 = 2.8369, and 𝑑𝑒𝑓𝑓
(2)
= 370 pm/V, with assumption 𝐼𝑝 = 1𝑘𝑊/𝑐𝑚

2. The 

efficiency increases parabolically with the interaction length and linearly with the pump 

intensity. Longer interaction medium or more pump intensity will boost the generated idler 

wave.  

 

6.6 Comparison with Effective Medium Theory Results  

Effective medium theory provides a permittivity mixing formula that uses a quasi-static 

approximation approach to find the effective permittivity of a composite structure consisting of 

particles of different materials. In this study the Maxwell Garnett approximation was used to 

determine the effective permittivities parallel to, 𝜀∥
𝑒𝑓𝑓

, And perpendicular to, 𝜀⊥
𝑒𝑓𝑓

, the nanoholes 

of the structure illustrated in Fig.6.1 (a). To consider the two components of the metamaterial: GaAs 

and nanoholes, the following Maxwell Garnett formulas were used[28], [80]:     

                                                                𝜀∥
𝑒𝑓𝑓
= 𝑓 + (1 − 𝑓)ε                                                        (6.5a) 

                                                            𝜀⊥
𝑒𝑓𝑓
= ε +

2𝑓ε (1−ε)

2ε +(1−𝑓)(1−ε )
                                                      (6.5b) 

𝜂
 [
%
] 

Interaction length 𝐿 (mm)  

Figure 6.11: Efficiency 𝜂[%] versus the interaction length 𝐿 for 𝐼𝑝 = 1𝑘𝑊/𝑐𝑚
2. 
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Here 𝑓is the volume fraction of the nanoholes included in the GaAs medium, where 0 ≤ 𝑓 ≤ 1, 

𝑓 = 𝜋𝑟2/𝑑2,  and 𝜀 is the permittivity of the GaAs. The experimental data used for the GaAs 

refractive index [60] were the same as those used in the FDTD simulation. In order to examine the 

phase matching aspect, it is necessary to take into account the effective refractive indices, 𝑛∥
𝑒𝑓𝑓
=

𝑅𝑒 (±√𝜀∥
𝑒𝑓𝑓
) and 𝑛⊥

𝑒𝑓𝑓
= 𝑅𝑒 (±√𝜀⊥

𝑒𝑓𝑓
). The square root has two possible solutions, positive 

and negative (corresponding to a negative refractive index). Because the structure does not include 

any negative index materials, the positive solution was selected. Fig. 6.12 compares the refractive 

indices obtained by using the FDTD simulation with those obtained via the Maxwell Garnett 

theory. One set of parameters was chosen to show:  𝑑 = 140 nm with 𝑟 = 25 nm for the FDTD 

simulation and the corresponding 𝑓 = 0.1002 for the Maxwell Garnett. 

 

The comparison shows good agreement in the profiles, with slight disagreement in the 

magnitudes, seen slightly more for the perpendicular index. This slight disagreement is due 

to the fact that the Maxwell Garnett theory uses the proximation of the quasi-static 

approach while FDTD is full wave simulation. 

 

Figure 6.12: Comparison of refractive indices obtained from the FDTD simulation and 

the Maxwell Garnett theory. (a) and (b) Parallel and perpendicular indices, 

respectively, at  𝑑 = 140 nm  and 𝑟 = 25 nm for the FDTD simulation, and at the 

corresponding 𝑓 = 0.1002 for the Maxwell Garnett theory.  
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6.7 Conclusions  

The phase matching condition for DFG hast been investigated by using a nonlinear optical 

structure comprised of a GaAs with inclusions of periodic arrays of nanoholes. This 

structure, to our knowledge, has never been investigated for phase matching.  FDTD 

simulation was used to determine the scattering (S) parameters of the composite structure. 

Linear properties (refractive indices) of the structure were then extracted from the S-

parameters by using a retrieving algorithm. The structure exhibits optical anisotropy along 

the principal axes.  

Phase matching was found at certain range of hole periods, from  d = 115 nm  to 

140 nm, and at the corresponding radius from  r = 0.1d to 0.25d. The generated mid-IR 

is broad and tunable through tuning of the input pump and/or signal wavelengths. The 

generated phase matched spectrum from 3.2961 μm to 16.2229 μm was achieved at d =

140 nm and r = 25nm. The pump and signal wavelengths are in the spectral range less 

than 3 µm. For comparison with the FDTD simulation results, the Maxwell Garnett theory 

was used to determine effective permittivities, the comparison shows an excellent 

agreement.  
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Chapter 7 

Conclusions  

The purpose of this study was to find a nanostructure that consists of GaAs and another 

material, so that the resultant structure behaves as an anisotropic medium to apply BPM 

for the DFG of the optical frequency conversion. The goal was to generate broad and 

frequency-tunable phase-matched mid-IR frequencies. The following section summarizes 

the results of this work. 

7.1 Summary   

A nanostructure of GaAs and periodic arrays of silver nanowires was characterized and 

analyzed by finding its refractive and absorption indices from S-parameters computed 

using an FDTD simulation. A retrieving method was used to extract the indices from the 

S-parameters. The characterization showed that the structure exhibits extreme optical 

anisotropy along its principal axes and possesses a near-IR transparency region in the fields 

parallel to the wires, and near- and mid-IR transparency regions in the orthogonal fields. 

Within these frequency regions, the structure acts as a dielectric with minimum ohmic loss. 

The regions were utilized to apply one of the interacting waves of near-IR frequency with 

polarization along the wires, while the other near- and mid-IR frequencies were 

orthogonally polarized to the wires in order to use BPM. A Drude model for metal wires 

media was employed for comparative purposes only in order to verify the results obtained 

by FDTD simulation.  

In the study, a silver nanowire structure with GaAs was investigated for phase 

matching. The phase matching was achieved for generating tunable broad mid-infrared 

wavelengths from 2.8 µm to 11 µm at a wire period of 350 nm and a diameter of 35 nm.  

The pump and the signal wavelengths lie in the spectrum range from 1 µm to 2 µm. To 

shift the spectrum, the period of the wires should be changed to larger values for the redshift 

and lower ones for the blueshift. However, increasing or decreasing the wire period above 

or below certain values might lead to loss of phase matching. Even though the structure 
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has minimum loss at certain near-IR frequencies of parallel fields, the metal wires are still 

there, and the absorption is accumulated along the propagation distance. 

A structure of GaAs with inclusions of periodic arrays of longitudinal nanoholes was 

characterized and investigated for phase matching DFG. An FDTD simulation was applied 

to a slab of the structure to compute the structure’s S-parameters, after which the refractive 

indices were extracted from the S-parameters using a retrieving method. The structure 

exhibited optical anisotropy along the principal axes with transparency regions, which is 

the same as GaAs from 1 µm to 17 µm for electric fields parallel and orthogonally polarized 

to the wires. The phase matching was achieved only at a certain range of hole periods, from 

115 nm  to 140 nm, and at the corresponding radius from one-tenth to one-quarter of the 

hole period. The generated mid-IR is broad and frequency-tunable by varying the pump 

and/or signal frequencies. 

 A generated phase-matched spectrum from 3.2961 μm to 16.2229 μm was achieved 

at a period of 140 nm and a radius of 25 nm. The longest achieved wavelength can be 

shifted to longer values if the hole periods increase or the radius decreases. To enable a 

comparison with the FDTD simulation results, the Maxwell Garnett theory was used to 

determine effective permittivity, with the comparison showing excellent agreement. 

The nanohole structure is much more practical than the silver nanowires, due to its 

lossless properties and longer mid-IR frequencies achievement. Furthermore, it is free of 

any plasma resonance which might occur in the wire media at certain wire media.  

7.2 Future Work 

Based on the results of the present study, the following research could be carried out in 

relation to this work: 

1. Fabricating the structure of GaAs with longitudinal holes is highly recommended. The 

structure promises practical considerable phase-matching achievements for DFG.   

2. Investigating the structure of GaAs with nanoholes as a waveguide medium for phase 

matching in DFG.    
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Appendix A 

FDTD Simulations Using RSoft Tool   

The finite-difference time-domain (FDTD) technique is the FullWave® simulation tool of 

RSoft® Component Design Suite. It computes electromagnetic fields inside a structure as 

a function of time and space as a response to electromagnetic excitation. In this work, 

version v2019.03 of the FullWave® was used [81], [82].  

A.1  Drawing Structure   

A new design starts by clicking on the “RSoft CAD Layout” icon. Select “File” and then 

“New” from the taskbar menu. The “Startup Window”, as shown in Fig. A.1, will then 

open. Select “FullWave” and “2D” (two-dimensional) in this window and click “OK”. A 

new window will open with a different taskbar menu, as shown in Fig. A.2. Click on 

“Utility” to open a smaller inset window, where you can select “Array Layout”.    

 
Figure A.1: Window starting new design.  
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.  

 

Figure A.3 shows the “Array Layout Generator” window, where you can edit the size 

and type of the array’s lattice. Our case is a 2D array of size L ×M in the X and Z directions. 

Cubic lattice of size 33 × 33 and cylindrical shape elements were selected. “Thesis” is the 

name given to the new design. The name is written in the space at the bottom of the 

Figure A.2: Layout window for new design.  

Figure A.3: Array layout generator.  
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window. After writing the name of the design and hitting “OK”, a window appears 

displaying the top view of the array’s layout, as shown Fig. A.4. Inserting the geometrical 

parameters and the materials properties is a crucial step in the design. RSoft has many 

material properties in its library, but material can also be added to the library. In the left 

toolbar, there is an icon to insert the geometrical parameters of the structure, such as the 

array period and cylindrical element radius.  

 

A.2  Adding Material    

Adding new material to the library of the FullWave is supported by RSoft. Specifically, 

RSoft supports dispersive, anisotropic, and second-order nonlinear materials. 

 Clicking on the “Edit Material” icon on the left toolbar will open a window where 

you can add new material, as shown in Fig. A.5. Select “New Material” and give a name 

to the material to be added. In the same window is the icon “Import NK Data”, where you 

can upload the material data. The data should be in three columns: the first column is for 

wavelength; the second is for refractive index (N); and the third is for absorption index (K).  

We used this feature to add experimental measured data of gallium arsenide (GaAs) and 

Figure: A.4:  Top view of size 33 × 33 cubic lattice and cylindrical shape elements.  
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silver (Ag) to the library. Theoretical data for GaAs and Ag are already in the library, but 

our goal is to use experimental data.  

 

A.3  Run Simulation      

To run the simulation, an excitation field must be applied to the structure. In the right 

toolbar, click on the “Launch Field” folder to open a window where you can add and edit 

excitation field parameters such as location, type, frequency, or orientation.  In our case, 

we used a “Pulsed” and “Plane Wave” field, as shown in the bottom of the structure in Fig. 

A.6.  

 

Further, because we are interested in finding the S-parameters of the structure, 𝑆11 and  

𝑆21, we added two ports to the top and bottom of the structure to compute the S-parameters, 

Figure A.5: Adding new material to RSoft library.  

Figure A.6: Window showing addition of excitation field.  
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as shown in Fig. A.7. Prior to starting the simulation, the boundary conditions of the 

structure should be defined. In our case, we applied a periodic boundary condition along 

the direction perpendicular to the wave propagation (𝑥 axis), while a perfectly matched 

layer (PML) boundary condition was applied at the end of the wave propagation direction 

(𝑧 axis).  Based on the retrieving techniques of computing  S-parameters [50], [51] to use  

a thin layer of  structures  to compute the S-parameters, a unit-cell was selected. It 

maintained the same boundary conditions mentioned above, as shown in Fig. A.8. 

The simulation starts by clicking on the simulation icon on the left toolbar. A new 

window will open for editing the simulation parameters, as shown in Fig. A.9. In this 

window, you can select grid size, field polarization, enabling or disabling 

dispersive/nonlinearity properties, excitation field type, output display, boundary 

conditions, and more. Please refer to reference [81] for more details on how to edit 

simulation parameters.   

 

 

Figure A.7: Adding two ports to compute S-parameters. 

Port 

1 

Port 

2 
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The simulation results are usually in file distribution, but you can obtain data of the S-

parameters if you insert the two ports at the end of the structure, as shown in Fig. A. 7. The 

S-parameters files will be saved in the directory where the RSoft was installed, as shown 

in Fig. A.10. The files, thesis_port1_olap and thesis_port2_olap, are data files in text 

Figure A.8: Unit cell of structure.  

Figure A.9: Window to edit simulation parameters.  
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format for  𝑆11 and  𝑆21, respectively. These data can be transferred to MATLAB to 

compute the refractive indices.  

 

 

.   

Figure: A.10: Files of S-parameters data.  
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Appendix B 

MATLAB Codes for The Wire Medium -Drude Model  

clc; 

clearvars; 

% Constants --------------------------------------------- 

prompt = 'What is value of x? x=1(no=1,n2=GaAs),x=2(no=GaAs,n2=GaAs , x=3 

(no=n2=1)) '; 

x=input(prompt); % x is the boundaries of the slab structure  

prompt = 'What is value of d? '; 

d = input(prompt); % “d” is the wire period  

prompt = 'What is value of r? '; 

r = input(prompt); % “r” is the wire radius  

prompt = 'What is value of z? '; 

z=input(prompt); % “z “is the slab thickness  

prompt = 'What is value of kk?'; 

kk=input(prompt); % “kk” is the iteration loop number  

r1=r*10^-9; 

d1=d*10^-9; 

C=3*10^8; 

h=6.63*10^-34; 

segma=6.28*10^7;% conductivity of silver  

epson=8.8542*10^-12; % permittivity in the free space  

%---------------------------------------------------------------- 

load GaAs_d1.txt; % reading GaAs data  

x1=GaAs_d1(:,1); 

y1=GaAs_d1(:,2); 

xx1=rot90(x1); 

yy1=rot90(y1); 

%---------------------------------------- 

% GaAs and Au optical properties for W3 

% (1) GaAs  

 ev_GaAs_3=xx1; 

 n_GaAs_x_3=yy1; 

 naser1=xx1; 

 naser2=fliplr(naser1); 

 o=naser1+naser2; 

 %w1 calculations  

ev1=fliplr(xx1); 

GaAs1= fliplr(yy1); 

prompt = 'What is value of value of n , ev_1(n)? '; 

n=input(prompt); 

ev_1=ev1(n); 

n_GaAs_1=GaAs1(n); 



81 
 

 
 

eGaAs_1=n_GaAs_1^2; 

landa_1=1.24./ev_1; 

w1=2*pi*C*10^6./landa_1; 

gama=(1i*epson*2*pi*(C^2))/(segma*(pi*r1^2)*log(d1/r1)); 

wp_s=2*pi*(C^2)./((d1^2)*eGaAs_1*log(d1/r1)); 

effz=eGaAs_1*(1-(wp_s/(w1*(w1+gama)))); 

neffz=real(sqrt(effz)); 

keffz=imag(sqrt(effz)); 

% Interpolation  

 % (1) GaAs  

 % w3 calculations  

  ev_3=linspace(0.07,ev_1-0.07,kk); 

  landa_3=(1.24./ev_3); 

  w3=2*pi*C*10^6./landa_3; 

n_GaAs_3=interp1(ev_GaAs_3,n_GaAs_x_3,ev_3,'spline'); 

 %------------------------------------------------ 

  % w2 calculations  

 ev_2=fliplr(ev_3); 

 landa_2=(1.24./ev_2); 

 w2=2*pi*C*10^6./landa_2; 

 n_GaAs_2=fliplr(n_GaAs_3); 

%----------------------------------- 

beta1=neffz*(w1/C); 

beta2= n_GaAs_2.*(w2/C); 

beta3= n_GaAs_3.*(w3/C); 

fy=(beta1-beta3-beta2)./beta1; 

%---------------------- 

% Transfer Matrix Method  

% Loss Calculations  

ev=linspace(1.24,0.07,kk); 

GaAs=interp1(ev1,GaAs1,ev,'spline'); 

eGaAs=GaAs.^2; 

landa=(1.24./ev); 

w=2*pi*C*10^6./landa; 

gama=(1i*epson*2*pi*(C^2))/(segma*(pi*r1^2)*log(d1/r1)); 

wp_s=2*pi*(C^2)./((d1^2)*eGaAs*log(d1/r1)); 

landa_p=(2*pi*C*10^6)./sqrt(wp_s); 

ez=eGaAs.*(1-(wp_s./(w.*(w+gama)))); 

ne=real(sqrt(ez)); 

ke=imag(sqrt(ez)); 

n1=ne-ke*1i; 

alpha=(4*pi.*ke)./landa; 

if x==1  

n2=GaAs; 

no=1; 

elseif x==2 
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no=GaAs; 

n2=GaAs; 

else 

    no=1.00; 

    n2=1.00; 

end  

delta=(1i*2*pi*z*n1)./(landa); 

dem=(no+n1).*(n1+n2).*exp(delta)+(no-n1).*(n1-n2).*exp(-delta); 

rr=((no-n1).*(n1+n2).*exp(delta)+(no+n1).*(n1-n2).*exp(-delta))./dem; 

tt=(4.*no.*n1)./dem; 

R=abs(rr.^2); 

T=abs(tt.^2); 

A=1-R-T 

 plot(landa_3,fy); hold on ; title('phase mismatch');figure; plot(landa,T) 

title('Transmssion');figure; plot(landa,A);title('absorption') 

figure;plot(landa,R);title('Reflection ') 

figure;plot(landa,ne) ;title('real_permitivity');hold on 

figure 

plot(landa,ke) 

plot(landa,alpha) 

match=fy; 

for nn=1:kk-1 

    if match(nn+1)>=0 && match(nn)<=0  

       nx=nn; 

       kp=keffz; 

       np=neffz ;      

       ns=n_GaAs_2(nx); 

       ni=n_GaAs_3(nx); 

       landa_3_m=(landa_3(nn+1)+landa_3(nn))./2; 

        landa_2_m=(landa_1*landa_3_m)/(landa_3_m-landa_1); 

        ev_m_3=1.24/landa_3_m; 

        ev_m_2=1.24/landa_2_m; 

       ev_m_1= ev_m_2+ev_m_3; 

    end 

end 
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Appendix C 

MATLAB Codes for The Effective Medium Theory  

clc; 

clearvars; 

% Constants 

prompt = 'What is value of kk?'; 

kk=input(prompt); 

q=0.0; 

C=3*10^8; 

prompt = 'What is value of r? '; 

r = input(prompt); 

prompt = 'What is value of d? '; 

d = input(prompt); 

ff=pi*(r^2/d^2); 

rr=2*pi*r; 

load GaAs_d1.txt; 

x1=GaAs_d1(:,1); 

y1=GaAs_d1(:,2); 

y2=GaAs_d1(:,3); 

y3=GaAs_d1(:,4); 

xx1=rot90(x1); 

yy1=rot90(y1); 

yy2=rot90(y2); 

yy3=rot90(y3); 

%---------------------------------------- 

    ev_GaAs_3=xx1; 

    n_GaAs_x_3=yy1; 

% (2) Au     

   ev_Au_3=xx1; 

   n_Au_x_3=yy2./yy2; 

   k_Au_x_3=0.0*yy3; 

 %------------------------------------------- 

 ev1=fliplr(xx1); 

GaAs1= fliplr(yy1); 

 for n=1:90 

ev_1=ev1(n); 

n_GaAs_1=GaAs1(n); 

eGaAs_1=n_GaAs_1^2; 

landa_1=1.24./ev_1; 

w1=2*pi*C*10^6./landa_1; 

landa_1_n=landa_1.*10^3; 

dpfxy_1= 0.5 -((2/9)*(rr./landa_1_n).^3)*1i; 

n_Au_1=1.0; 
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k_Au_1=0.0; 

N_Au_1=n_Au_1+1j*k_Au_1; 

emetalyz1=(N_Au_1).^2; 

eGaAsyz1=(n_GaAs_1).^2; 

zz1=(emetalyz1-eGaAsyz1); 

effyz1=eGaAsyz1+((ff*eGaAsyz1.*zz1)./(eGaAsyz1+dpfxy_1.*(1-ff)*zz1)); 

neffyz1=real(sqrt(effyz1)); 

 %  Interpolation  

 % w3 

ev_3=linspace(0.07,ev_1-0.07,kk); 

landa_3=(1.24./ev_3); 

w3=2*pi*C*10^6./landa_3; 

n_GaAs_3=interp1(ev_GaAs_3,n_GaAs_x_3,ev_3); 

n_Au_3=interp1(ev_Au_3,n_Au_x_3,ev_3); 

k_Au_3=interp1(ev_Au_3,k_Au_x_3,ev_3); 

N_Au_3=complex(n_Au_3,k_Au_3);  

landa_3_n=landa_3.*10^3; 

dpfxy_3= 0.5 -((2/9)*(rr./landa_3_n).^3)*1i; 

emetalx_w3=(N_Au_3).^2; 

eGaAsx_w3=(n_GaAs_3).^2; 

z=(emetalx_w3-eGaAsx_w3); 

effx_w3=eGaAsx_w3+((ff*eGaAsx_w3.*z)./(eGaAsx_w3+dpfxy_3.*(1-ff).*z)); 

neffx_w3=real(sqrt(effx_w3)); 

keffx_w3=imag(sqrt(effx_w3)); 

  % w2   

ev_2=fliplr(ev_3); 

landa_2=(1.24./ev_2); 

w2=2*pi*C*10^6./landa_2; 

n_GaAs_2=fliplr(n_GaAs_3); 

N_Au_2=fliplr(N_Au_3); 

emetalx_w2=(N_Au_2).^2; 

eGaAsx_w2=(n_GaAs_2).^2; 

effx_w2=(1-ff)*eGaAsx_w2+ff*emetalx_w2; 

neffx_w2=real(sqrt(effx_w2)); 

beta1=neffyz1*(w1/C); 

beta2=neffx_w2.*(w2/C); 

beta3=neffx_w3.*(w3/C); 

fy=(beta1-beta3-beta2)./beta1; 

figure;plot(ev_3,fy);plot(landa_3,fy); hold on ;plot(landa_3, real(effx_w3))  

figure;plot(landa_3,imag(effx_w3));plot(landa_2,real(effx_w2));figure; 

plot(landa_2,imag(effx_w2));plot(landa_3,fom);figure 

plot(landa_3,imag(emetalx_w3)); figure 

if n== 1 

plot(landa_2,neffx_w2,landa_3,neffx_w3); 

figure;plot(landa_2,n_GaAs_2); 

end 
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plot(landa_3,neffx_w3,landa_2,neffx_w2,landa_3,n_GaAs_3); 

figure;plot(landa_3,neffx_w3);hold on;plot(landa_2,neffx_w2); 

loss=real(effx_w3)./imag(effx_w3); 

loss=keffx_w3./neffx_w3; 

figure;plot(landa_3,imag(effx_w3)) 

match=fy; 

for nn=1:kk-1 

    if match(nn+1)>=0 && match(nn)<=0  

         q=q+1; 

        l3(q)=(landa_3(nn+1)+landa_3(nn))./2; 

        l2(q)=(landa_1*l3(q))/(l3(q)-landa_1); 

        l1(q)=landa_1; 

        e3(q)=1.24./l3(q); 

        e2(q)=1.24./l2(q); 

        e1(q)=e2(q)+e3(q); 

    end  

end 

end 

hold off  

figure;plot(l1,l3,l1,l2) 

Amax=max(l1); 

Amin=min(l1); 

%---------------------- 

l1_x=Amin:0.001:Amax; 

l2_x=interp1(l1,l2,l1_x,'spline'); 

l3_x=interp1(l1,l3,l1_x,'spline'); 

g=1; 

while l2_x(g)<l3_x(g) 

    L2(g)=l2_x(g); 

    L3(g)=l3_x(g); 

    L1(g)=l1_x(g); 

    g=g+1; 

end 

plot(L1,L3,L1,L2) 

        

         

        L1=rot90(L1); 

L2=rot90(L2); 

L3=rot90(L3); 

save('L1_GaAs.txt','L1','-ascii'); 

save('L2_120_25.txt','L2','-ascii'); 

save('L3_120_25.txt','L3','-ascii'); 
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